1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info *info;
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
45 struct elf_find_verdep_info
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
51 /* Whether we had a failure. */
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
58 /* Define a symbol in a dynamic linkage section. */
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 get_elf_backend_data (abfd)->collect,
86 h = (struct elf_link_hash_entry *) bh;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
111 flags = bed->dynamic_sec_flags;
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
129 if (bed->want_got_plt)
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
142 if (bed->want_got_sym)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
158 /* Create a strtab to hold the dynamic symbol names. */
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 struct elf_link_hash_table *hash_table;
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
168 if (hash_table->dynstr == NULL)
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
192 if (! is_elf_hash_table (info->hash))
195 if (elf_hash_table (info)->dynamic_sections_created)
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
204 flags = bed->dynamic_sec_flags;
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
227 || ! bfd_set_section_alignment (abfd, s, 1))
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
273 if (info->emit_gnu_hash)
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
301 /* Create dynamic sections when linking against a dynamic object. */
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
335 if (bed->want_plt_sym)
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
353 if (! _bfd_elf_create_got_section (abfd, info))
356 if (bed->want_dynbss)
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
407 if (h->dynindx == -1)
409 struct elf_strtab_hash *dynstr;
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
426 if (!elf_hash_table (info)->is_relocatable_executable)
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
437 dynstr = elf_hash_table (info)->dynstr;
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
446 /* We don't put any version information in the dynamic string
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
463 if (indx == (bfd_size_type) -1)
465 h->dynstr_index = indx;
471 /* Mark a symbol dynamic. */
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
508 if (!is_elf_hash_table (info->hash))
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
516 switch (h->root.type)
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
550 case bfd_link_hash_warning:
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
562 h->root.type = bfd_link_hash_undefined;
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
571 h->verinfo.verdef = NULL;
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
584 if (!info->relocatable
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
631 if (! is_elf_hash_table (info->hash))
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
648 bfd_release (input_bfd, entry);
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
671 dynstr = elf_hash_table (info)->dynstr;
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
683 entry->isym.st_name = dynstr_index;
685 eht = elf_hash_table (info);
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
693 /* Whatever binding the symbol had before, it's now local. */
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
697 /* The dynindx will be set at the end of size_dynamic_sections. */
702 /* Return the dynindex of a local dynamic symbol. */
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
709 struct elf_link_local_dynamic_entry *e;
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
725 size_t *count = (size_t *) data;
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
744 size_t *count = (size_t *) data;
746 if (!h->forced_local)
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
762 struct elf_link_hash_table *htab;
764 switch (elf_section_data (p)->this_hdr.sh_type)
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
791 /* There shouldn't be section relative relocations
792 against any other section. */
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
809 unsigned long dynsymcount = 0;
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
821 elf_section_data (p)->dynindx = 0;
823 *section_sym_count = dynsymcount;
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
829 if (elf_hash_table (info)->dynlocal)
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
846 elf_hash_table (info)->dynsymcount = dynsymcount;
850 /* Merge st_other field. */
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
878 unsigned char hvis, symvis, other, nvis;
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
892 nvis = hvis < symvis ? hvis : symvis;
894 h->other = other | nvis;
898 /* This function is called when we want to define a new symbol. It
899 handles the various cases which arise when we find a definition in
900 a dynamic object, or when there is already a definition in a
901 dynamic object. The new symbol is described by NAME, SYM, PSEC,
902 and PVALUE. We set SYM_HASH to the hash table entry. We set
903 OVERRIDE if the old symbol is overriding a new definition. We set
904 TYPE_CHANGE_OK if it is OK for the type to change. We set
905 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
906 change, we mean that we shouldn't warn if the type or size does
907 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
908 object is overridden by a regular object. */
911 _bfd_elf_merge_symbol (bfd *abfd,
912 struct bfd_link_info *info,
914 Elf_Internal_Sym *sym,
917 bfd_boolean *pold_weak,
918 unsigned int *pold_alignment,
919 struct elf_link_hash_entry **sym_hash,
921 bfd_boolean *override,
922 bfd_boolean *type_change_ok,
923 bfd_boolean *size_change_ok)
925 asection *sec, *oldsec;
926 struct elf_link_hash_entry *h;
927 struct elf_link_hash_entry *hi;
928 struct elf_link_hash_entry *flip;
931 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
932 bfd_boolean newweak, oldweak, newfunc, oldfunc;
933 const struct elf_backend_data *bed;
939 bind = ELF_ST_BIND (sym->st_info);
941 /* Silently discard TLS symbols from --just-syms. There's no way to
942 combine a static TLS block with a new TLS block for this executable. */
943 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
944 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
950 if (! bfd_is_und_section (sec))
951 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
953 h = ((struct elf_link_hash_entry *)
954 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
959 bed = get_elf_backend_data (abfd);
961 /* This code is for coping with dynamic objects, and is only useful
962 if we are doing an ELF link. */
963 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966 /* For merging, we only care about real symbols. But we need to make
967 sure that indirect symbol dynamic flags are updated. */
969 while (h->root.type == bfd_link_hash_indirect
970 || h->root.type == bfd_link_hash_warning)
971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
973 /* We have to check it for every instance since the first few may be
974 references and not all compilers emit symbol type for undefined
976 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
978 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
979 respectively, is from a dynamic object. */
981 newdyn = (abfd->flags & DYNAMIC) != 0;
983 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
984 syms and defined syms in dynamic libraries respectively.
985 ref_dynamic on the other hand can be set for a symbol defined in
986 a dynamic library, and def_dynamic may not be set; When the
987 definition in a dynamic lib is overridden by a definition in the
988 executable use of the symbol in the dynamic lib becomes a
989 reference to the executable symbol. */
992 if (bfd_is_und_section (sec))
994 if (bind != STB_WEAK)
996 h->ref_dynamic_nonweak = 1;
997 hi->ref_dynamic_nonweak = 1;
1003 hi->dynamic_def = 1;
1007 /* If we just created the symbol, mark it as being an ELF symbol.
1008 Other than that, there is nothing to do--there is no merge issue
1009 with a newly defined symbol--so we just return. */
1011 if (h->root.type == bfd_link_hash_new)
1017 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1020 switch (h->root.type)
1027 case bfd_link_hash_undefined:
1028 case bfd_link_hash_undefweak:
1029 oldbfd = h->root.u.undef.abfd;
1033 case bfd_link_hash_defined:
1034 case bfd_link_hash_defweak:
1035 oldbfd = h->root.u.def.section->owner;
1036 oldsec = h->root.u.def.section;
1039 case bfd_link_hash_common:
1040 oldbfd = h->root.u.c.p->section->owner;
1041 oldsec = h->root.u.c.p->section;
1045 /* Differentiate strong and weak symbols. */
1046 newweak = bind == STB_WEAK;
1047 oldweak = (h->root.type == bfd_link_hash_defweak
1048 || h->root.type == bfd_link_hash_undefweak);
1050 *pold_weak = oldweak;
1052 /* In cases involving weak versioned symbols, we may wind up trying
1053 to merge a symbol with itself. Catch that here, to avoid the
1054 confusion that results if we try to override a symbol with
1055 itself. The additional tests catch cases like
1056 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1057 dynamic object, which we do want to handle here. */
1059 && (newweak || oldweak)
1060 && ((abfd->flags & DYNAMIC) == 0
1061 || !h->def_regular))
1066 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1067 else if (oldsec != NULL)
1069 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1070 indices used by MIPS ELF. */
1071 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1074 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1075 respectively, appear to be a definition rather than reference. */
1077 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1079 olddef = (h->root.type != bfd_link_hash_undefined
1080 && h->root.type != bfd_link_hash_undefweak
1081 && h->root.type != bfd_link_hash_common);
1083 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1084 respectively, appear to be a function. */
1086 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1087 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1089 oldfunc = (h->type != STT_NOTYPE
1090 && bed->is_function_type (h->type));
1092 /* When we try to create a default indirect symbol from the dynamic
1093 definition with the default version, we skip it if its type and
1094 the type of existing regular definition mismatch. We only do it
1095 if the existing regular definition won't be dynamic. */
1096 if (pold_alignment == NULL
1098 && !info->export_dynamic
1103 && (olddef || h->root.type == bfd_link_hash_common)
1104 && ELF_ST_TYPE (sym->st_info) != h->type
1105 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1106 && h->type != STT_NOTYPE
1107 && !(newfunc && oldfunc))
1113 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1114 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1115 *type_change_ok = TRUE;
1117 /* Check TLS symbol. We don't check undefined symbol introduced by
1119 else if (oldbfd != NULL
1120 && ELF_ST_TYPE (sym->st_info) != h->type
1121 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1124 bfd_boolean ntdef, tdef;
1125 asection *ntsec, *tsec;
1127 if (h->type == STT_TLS)
1147 (*_bfd_error_handler)
1148 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1149 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1150 else if (!tdef && !ntdef)
1151 (*_bfd_error_handler)
1152 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1153 tbfd, ntbfd, h->root.root.string);
1155 (*_bfd_error_handler)
1156 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1157 tbfd, tsec, ntbfd, h->root.root.string);
1159 (*_bfd_error_handler)
1160 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1161 tbfd, ntbfd, ntsec, h->root.root.string);
1163 bfd_set_error (bfd_error_bad_value);
1167 /* If the old symbol has non-default visibility, we ignore the new
1168 definition from a dynamic object. */
1170 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1171 && !bfd_is_und_section (sec))
1174 /* Make sure this symbol is dynamic. */
1176 hi->ref_dynamic = 1;
1177 /* A protected symbol has external availability. Make sure it is
1178 recorded as dynamic.
1180 FIXME: Should we check type and size for protected symbol? */
1181 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1182 return bfd_elf_link_record_dynamic_symbol (info, h);
1187 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1190 /* If the new symbol with non-default visibility comes from a
1191 relocatable file and the old definition comes from a dynamic
1192 object, we remove the old definition. */
1193 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1195 /* Handle the case where the old dynamic definition is
1196 default versioned. We need to copy the symbol info from
1197 the symbol with default version to the normal one if it
1198 was referenced before. */
1201 struct elf_link_hash_entry *vh = *sym_hash;
1203 vh->root.type = h->root.type;
1204 h->root.type = bfd_link_hash_indirect;
1205 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1207 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1208 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1210 /* If the new symbol is hidden or internal, completely undo
1211 any dynamic link state. */
1212 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1213 h->forced_local = 0;
1220 /* FIXME: Should we check type and size for protected symbol? */
1230 /* If the old symbol was undefined before, then it will still be
1231 on the undefs list. If the new symbol is undefined or
1232 common, we can't make it bfd_link_hash_new here, because new
1233 undefined or common symbols will be added to the undefs list
1234 by _bfd_generic_link_add_one_symbol. Symbols may not be
1235 added twice to the undefs list. Also, if the new symbol is
1236 undefweak then we don't want to lose the strong undef. */
1237 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1239 h->root.type = bfd_link_hash_undefined;
1240 h->root.u.undef.abfd = abfd;
1244 h->root.type = bfd_link_hash_new;
1245 h->root.u.undef.abfd = NULL;
1248 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1250 /* If the new symbol is hidden or internal, completely undo
1251 any dynamic link state. */
1252 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1253 h->forced_local = 0;
1259 /* FIXME: Should we check type and size for protected symbol? */
1265 if (bind == STB_GNU_UNIQUE)
1266 h->unique_global = 1;
1268 /* If a new weak symbol definition comes from a regular file and the
1269 old symbol comes from a dynamic library, we treat the new one as
1270 strong. Similarly, an old weak symbol definition from a regular
1271 file is treated as strong when the new symbol comes from a dynamic
1272 library. Further, an old weak symbol from a dynamic library is
1273 treated as strong if the new symbol is from a dynamic library.
1274 This reflects the way glibc's ld.so works.
1276 Do this before setting *type_change_ok or *size_change_ok so that
1277 we warn properly when dynamic library symbols are overridden. */
1279 if (newdef && !newdyn && olddyn)
1281 if (olddef && newdyn)
1284 /* Allow changes between different types of function symbol. */
1285 if (newfunc && oldfunc)
1286 *type_change_ok = TRUE;
1288 /* It's OK to change the type if either the existing symbol or the
1289 new symbol is weak. A type change is also OK if the old symbol
1290 is undefined and the new symbol is defined. */
1295 && h->root.type == bfd_link_hash_undefined))
1296 *type_change_ok = TRUE;
1298 /* It's OK to change the size if either the existing symbol or the
1299 new symbol is weak, or if the old symbol is undefined. */
1302 || h->root.type == bfd_link_hash_undefined)
1303 *size_change_ok = TRUE;
1305 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1306 symbol, respectively, appears to be a common symbol in a dynamic
1307 object. If a symbol appears in an uninitialized section, and is
1308 not weak, and is not a function, then it may be a common symbol
1309 which was resolved when the dynamic object was created. We want
1310 to treat such symbols specially, because they raise special
1311 considerations when setting the symbol size: if the symbol
1312 appears as a common symbol in a regular object, and the size in
1313 the regular object is larger, we must make sure that we use the
1314 larger size. This problematic case can always be avoided in C,
1315 but it must be handled correctly when using Fortran shared
1318 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1319 likewise for OLDDYNCOMMON and OLDDEF.
1321 Note that this test is just a heuristic, and that it is quite
1322 possible to have an uninitialized symbol in a shared object which
1323 is really a definition, rather than a common symbol. This could
1324 lead to some minor confusion when the symbol really is a common
1325 symbol in some regular object. However, I think it will be
1331 && (sec->flags & SEC_ALLOC) != 0
1332 && (sec->flags & SEC_LOAD) == 0
1335 newdyncommon = TRUE;
1337 newdyncommon = FALSE;
1341 && h->root.type == bfd_link_hash_defined
1343 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1344 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1347 olddyncommon = TRUE;
1349 olddyncommon = FALSE;
1351 /* We now know everything about the old and new symbols. We ask the
1352 backend to check if we can merge them. */
1353 if (bed->merge_symbol
1354 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1355 pold_alignment, skip, override,
1356 type_change_ok, size_change_ok,
1357 &newdyn, &newdef, &newdyncommon, &newweak,
1359 &olddyn, &olddef, &olddyncommon, &oldweak,
1363 /* If both the old and the new symbols look like common symbols in a
1364 dynamic object, set the size of the symbol to the larger of the
1369 && sym->st_size != h->size)
1371 /* Since we think we have two common symbols, issue a multiple
1372 common warning if desired. Note that we only warn if the
1373 size is different. If the size is the same, we simply let
1374 the old symbol override the new one as normally happens with
1375 symbols defined in dynamic objects. */
1377 if (! ((*info->callbacks->multiple_common)
1378 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1381 if (sym->st_size > h->size)
1382 h->size = sym->st_size;
1384 *size_change_ok = TRUE;
1387 /* If we are looking at a dynamic object, and we have found a
1388 definition, we need to see if the symbol was already defined by
1389 some other object. If so, we want to use the existing
1390 definition, and we do not want to report a multiple symbol
1391 definition error; we do this by clobbering *PSEC to be
1392 bfd_und_section_ptr.
1394 We treat a common symbol as a definition if the symbol in the
1395 shared library is a function, since common symbols always
1396 represent variables; this can cause confusion in principle, but
1397 any such confusion would seem to indicate an erroneous program or
1398 shared library. We also permit a common symbol in a regular
1399 object to override a weak symbol in a shared object. */
1404 || (h->root.type == bfd_link_hash_common
1405 && (newweak || newfunc))))
1409 newdyncommon = FALSE;
1411 *psec = sec = bfd_und_section_ptr;
1412 *size_change_ok = TRUE;
1414 /* If we get here when the old symbol is a common symbol, then
1415 we are explicitly letting it override a weak symbol or
1416 function in a dynamic object, and we don't want to warn about
1417 a type change. If the old symbol is a defined symbol, a type
1418 change warning may still be appropriate. */
1420 if (h->root.type == bfd_link_hash_common)
1421 *type_change_ok = TRUE;
1424 /* Handle the special case of an old common symbol merging with a
1425 new symbol which looks like a common symbol in a shared object.
1426 We change *PSEC and *PVALUE to make the new symbol look like a
1427 common symbol, and let _bfd_generic_link_add_one_symbol do the
1431 && h->root.type == bfd_link_hash_common)
1435 newdyncommon = FALSE;
1436 *pvalue = sym->st_size;
1437 *psec = sec = bed->common_section (oldsec);
1438 *size_change_ok = TRUE;
1441 /* Skip weak definitions of symbols that are already defined. */
1442 if (newdef && olddef && newweak)
1444 /* Don't skip new non-IR weak syms. */
1445 if (!(oldbfd != NULL
1446 && (oldbfd->flags & BFD_PLUGIN) != 0
1447 && (abfd->flags & BFD_PLUGIN) == 0))
1450 /* Merge st_other. If the symbol already has a dynamic index,
1451 but visibility says it should not be visible, turn it into a
1453 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1454 if (h->dynindx != -1)
1455 switch (ELF_ST_VISIBILITY (h->other))
1459 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1464 /* If the old symbol is from a dynamic object, and the new symbol is
1465 a definition which is not from a dynamic object, then the new
1466 symbol overrides the old symbol. Symbols from regular files
1467 always take precedence over symbols from dynamic objects, even if
1468 they are defined after the dynamic object in the link.
1470 As above, we again permit a common symbol in a regular object to
1471 override a definition in a shared object if the shared object
1472 symbol is a function or is weak. */
1477 || (bfd_is_com_section (sec)
1478 && (oldweak || oldfunc)))
1483 /* Change the hash table entry to undefined, and let
1484 _bfd_generic_link_add_one_symbol do the right thing with the
1487 h->root.type = bfd_link_hash_undefined;
1488 h->root.u.undef.abfd = h->root.u.def.section->owner;
1489 *size_change_ok = TRUE;
1492 olddyncommon = FALSE;
1494 /* We again permit a type change when a common symbol may be
1495 overriding a function. */
1497 if (bfd_is_com_section (sec))
1501 /* If a common symbol overrides a function, make sure
1502 that it isn't defined dynamically nor has type
1505 h->type = STT_NOTYPE;
1507 *type_change_ok = TRUE;
1510 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1513 /* This union may have been set to be non-NULL when this symbol
1514 was seen in a dynamic object. We must force the union to be
1515 NULL, so that it is correct for a regular symbol. */
1516 h->verinfo.vertree = NULL;
1519 /* Handle the special case of a new common symbol merging with an
1520 old symbol that looks like it might be a common symbol defined in
1521 a shared object. Note that we have already handled the case in
1522 which a new common symbol should simply override the definition
1523 in the shared library. */
1526 && bfd_is_com_section (sec)
1529 /* It would be best if we could set the hash table entry to a
1530 common symbol, but we don't know what to use for the section
1531 or the alignment. */
1532 if (! ((*info->callbacks->multiple_common)
1533 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1536 /* If the presumed common symbol in the dynamic object is
1537 larger, pretend that the new symbol has its size. */
1539 if (h->size > *pvalue)
1542 /* We need to remember the alignment required by the symbol
1543 in the dynamic object. */
1544 BFD_ASSERT (pold_alignment);
1545 *pold_alignment = h->root.u.def.section->alignment_power;
1548 olddyncommon = FALSE;
1550 h->root.type = bfd_link_hash_undefined;
1551 h->root.u.undef.abfd = h->root.u.def.section->owner;
1553 *size_change_ok = TRUE;
1554 *type_change_ok = TRUE;
1556 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1559 h->verinfo.vertree = NULL;
1564 /* Handle the case where we had a versioned symbol in a dynamic
1565 library and now find a definition in a normal object. In this
1566 case, we make the versioned symbol point to the normal one. */
1567 flip->root.type = h->root.type;
1568 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1569 h->root.type = bfd_link_hash_indirect;
1570 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1571 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1575 flip->ref_dynamic = 1;
1582 /* This function is called to create an indirect symbol from the
1583 default for the symbol with the default version if needed. The
1584 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1585 set DYNSYM if the new indirect symbol is dynamic. */
1588 _bfd_elf_add_default_symbol (bfd *abfd,
1589 struct bfd_link_info *info,
1590 struct elf_link_hash_entry *h,
1592 Elf_Internal_Sym *sym,
1595 bfd_boolean *dynsym,
1596 bfd_boolean override)
1598 bfd_boolean type_change_ok;
1599 bfd_boolean size_change_ok;
1602 struct elf_link_hash_entry *hi;
1603 struct bfd_link_hash_entry *bh;
1604 const struct elf_backend_data *bed;
1605 bfd_boolean collect;
1606 bfd_boolean dynamic;
1608 size_t len, shortlen;
1611 /* If this symbol has a version, and it is the default version, we
1612 create an indirect symbol from the default name to the fully
1613 decorated name. This will cause external references which do not
1614 specify a version to be bound to this version of the symbol. */
1615 p = strchr (name, ELF_VER_CHR);
1616 if (p == NULL || p[1] != ELF_VER_CHR)
1621 /* We are overridden by an old definition. We need to check if we
1622 need to create the indirect symbol from the default name. */
1623 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1625 BFD_ASSERT (hi != NULL);
1628 while (hi->root.type == bfd_link_hash_indirect
1629 || hi->root.type == bfd_link_hash_warning)
1631 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1637 bed = get_elf_backend_data (abfd);
1638 collect = bed->collect;
1639 dynamic = (abfd->flags & DYNAMIC) != 0;
1641 shortlen = p - name;
1642 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1643 if (shortname == NULL)
1645 memcpy (shortname, name, shortlen);
1646 shortname[shortlen] = '\0';
1648 /* We are going to create a new symbol. Merge it with any existing
1649 symbol with this name. For the purposes of the merge, act as
1650 though we were defining the symbol we just defined, although we
1651 actually going to define an indirect symbol. */
1652 type_change_ok = FALSE;
1653 size_change_ok = FALSE;
1655 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1656 NULL, NULL, &hi, &skip, &override,
1657 &type_change_ok, &size_change_ok))
1666 if (! (_bfd_generic_link_add_one_symbol
1667 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1668 0, name, FALSE, collect, &bh)))
1670 hi = (struct elf_link_hash_entry *) bh;
1674 /* In this case the symbol named SHORTNAME is overriding the
1675 indirect symbol we want to add. We were planning on making
1676 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1677 is the name without a version. NAME is the fully versioned
1678 name, and it is the default version.
1680 Overriding means that we already saw a definition for the
1681 symbol SHORTNAME in a regular object, and it is overriding
1682 the symbol defined in the dynamic object.
1684 When this happens, we actually want to change NAME, the
1685 symbol we just added, to refer to SHORTNAME. This will cause
1686 references to NAME in the shared object to become references
1687 to SHORTNAME in the regular object. This is what we expect
1688 when we override a function in a shared object: that the
1689 references in the shared object will be mapped to the
1690 definition in the regular object. */
1692 while (hi->root.type == bfd_link_hash_indirect
1693 || hi->root.type == bfd_link_hash_warning)
1694 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1696 h->root.type = bfd_link_hash_indirect;
1697 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1701 hi->ref_dynamic = 1;
1705 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1710 /* Now set HI to H, so that the following code will set the
1711 other fields correctly. */
1715 /* Check if HI is a warning symbol. */
1716 if (hi->root.type == bfd_link_hash_warning)
1717 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1719 /* If there is a duplicate definition somewhere, then HI may not
1720 point to an indirect symbol. We will have reported an error to
1721 the user in that case. */
1723 if (hi->root.type == bfd_link_hash_indirect)
1725 struct elf_link_hash_entry *ht;
1727 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1728 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1730 /* See if the new flags lead us to realize that the symbol must
1736 if (! info->executable
1743 if (hi->ref_regular)
1749 /* We also need to define an indirection from the nondefault version
1753 len = strlen (name);
1754 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1755 if (shortname == NULL)
1757 memcpy (shortname, name, shortlen);
1758 memcpy (shortname + shortlen, p + 1, len - shortlen);
1760 /* Once again, merge with any existing symbol. */
1761 type_change_ok = FALSE;
1762 size_change_ok = FALSE;
1764 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1765 NULL, NULL, &hi, &skip, &override,
1766 &type_change_ok, &size_change_ok))
1774 /* Here SHORTNAME is a versioned name, so we don't expect to see
1775 the type of override we do in the case above unless it is
1776 overridden by a versioned definition. */
1777 if (hi->root.type != bfd_link_hash_defined
1778 && hi->root.type != bfd_link_hash_defweak)
1779 (*_bfd_error_handler)
1780 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1786 if (! (_bfd_generic_link_add_one_symbol
1787 (info, abfd, shortname, BSF_INDIRECT,
1788 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1790 hi = (struct elf_link_hash_entry *) bh;
1792 /* If there is a duplicate definition somewhere, then HI may not
1793 point to an indirect symbol. We will have reported an error
1794 to the user in that case. */
1796 if (hi->root.type == bfd_link_hash_indirect)
1798 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1800 /* See if the new flags lead us to realize that the symbol
1806 if (! info->executable
1812 if (hi->ref_regular)
1822 /* This routine is used to export all defined symbols into the dynamic
1823 symbol table. It is called via elf_link_hash_traverse. */
1826 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1828 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1830 /* Ignore indirect symbols. These are added by the versioning code. */
1831 if (h->root.type == bfd_link_hash_indirect)
1834 /* Ignore this if we won't export it. */
1835 if (!eif->info->export_dynamic && !h->dynamic)
1838 if (h->dynindx == -1
1839 && (h->def_regular || h->ref_regular)
1840 && ! bfd_hide_sym_by_version (eif->info->version_info,
1841 h->root.root.string))
1843 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1853 /* Look through the symbols which are defined in other shared
1854 libraries and referenced here. Update the list of version
1855 dependencies. This will be put into the .gnu.version_r section.
1856 This function is called via elf_link_hash_traverse. */
1859 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1862 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1863 Elf_Internal_Verneed *t;
1864 Elf_Internal_Vernaux *a;
1867 /* We only care about symbols defined in shared objects with version
1872 || h->verinfo.verdef == NULL)
1875 /* See if we already know about this version. */
1876 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1880 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1883 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1884 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1890 /* This is a new version. Add it to tree we are building. */
1895 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1898 rinfo->failed = TRUE;
1902 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1903 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1904 elf_tdata (rinfo->info->output_bfd)->verref = t;
1908 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1911 rinfo->failed = TRUE;
1915 /* Note that we are copying a string pointer here, and testing it
1916 above. If bfd_elf_string_from_elf_section is ever changed to
1917 discard the string data when low in memory, this will have to be
1919 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1921 a->vna_flags = h->verinfo.verdef->vd_flags;
1922 a->vna_nextptr = t->vn_auxptr;
1924 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1927 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1934 /* Figure out appropriate versions for all the symbols. We may not
1935 have the version number script until we have read all of the input
1936 files, so until that point we don't know which symbols should be
1937 local. This function is called via elf_link_hash_traverse. */
1940 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1942 struct elf_info_failed *sinfo;
1943 struct bfd_link_info *info;
1944 const struct elf_backend_data *bed;
1945 struct elf_info_failed eif;
1949 sinfo = (struct elf_info_failed *) data;
1952 /* Fix the symbol flags. */
1955 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1958 sinfo->failed = TRUE;
1962 /* We only need version numbers for symbols defined in regular
1964 if (!h->def_regular)
1967 bed = get_elf_backend_data (info->output_bfd);
1968 p = strchr (h->root.root.string, ELF_VER_CHR);
1969 if (p != NULL && h->verinfo.vertree == NULL)
1971 struct bfd_elf_version_tree *t;
1976 /* There are two consecutive ELF_VER_CHR characters if this is
1977 not a hidden symbol. */
1979 if (*p == ELF_VER_CHR)
1985 /* If there is no version string, we can just return out. */
1993 /* Look for the version. If we find it, it is no longer weak. */
1994 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1996 if (strcmp (t->name, p) == 0)
2000 struct bfd_elf_version_expr *d;
2002 len = p - h->root.root.string;
2003 alc = (char *) bfd_malloc (len);
2006 sinfo->failed = TRUE;
2009 memcpy (alc, h->root.root.string, len - 1);
2010 alc[len - 1] = '\0';
2011 if (alc[len - 2] == ELF_VER_CHR)
2012 alc[len - 2] = '\0';
2014 h->verinfo.vertree = t;
2018 if (t->globals.list != NULL)
2019 d = (*t->match) (&t->globals, NULL, alc);
2021 /* See if there is anything to force this symbol to
2023 if (d == NULL && t->locals.list != NULL)
2025 d = (*t->match) (&t->locals, NULL, alc);
2028 && ! info->export_dynamic)
2029 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2037 /* If we are building an application, we need to create a
2038 version node for this version. */
2039 if (t == NULL && info->executable)
2041 struct bfd_elf_version_tree **pp;
2044 /* If we aren't going to export this symbol, we don't need
2045 to worry about it. */
2046 if (h->dynindx == -1)
2050 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2053 sinfo->failed = TRUE;
2058 t->name_indx = (unsigned int) -1;
2062 /* Don't count anonymous version tag. */
2063 if (sinfo->info->version_info != NULL
2064 && sinfo->info->version_info->vernum == 0)
2066 for (pp = &sinfo->info->version_info;
2070 t->vernum = version_index;
2074 h->verinfo.vertree = t;
2078 /* We could not find the version for a symbol when
2079 generating a shared archive. Return an error. */
2080 (*_bfd_error_handler)
2081 (_("%B: version node not found for symbol %s"),
2082 info->output_bfd, h->root.root.string);
2083 bfd_set_error (bfd_error_bad_value);
2084 sinfo->failed = TRUE;
2092 /* If we don't have a version for this symbol, see if we can find
2094 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2099 = bfd_find_version_for_sym (sinfo->info->version_info,
2100 h->root.root.string, &hide);
2101 if (h->verinfo.vertree != NULL && hide)
2102 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2108 /* Read and swap the relocs from the section indicated by SHDR. This
2109 may be either a REL or a RELA section. The relocations are
2110 translated into RELA relocations and stored in INTERNAL_RELOCS,
2111 which should have already been allocated to contain enough space.
2112 The EXTERNAL_RELOCS are a buffer where the external form of the
2113 relocations should be stored.
2115 Returns FALSE if something goes wrong. */
2118 elf_link_read_relocs_from_section (bfd *abfd,
2120 Elf_Internal_Shdr *shdr,
2121 void *external_relocs,
2122 Elf_Internal_Rela *internal_relocs)
2124 const struct elf_backend_data *bed;
2125 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2126 const bfd_byte *erela;
2127 const bfd_byte *erelaend;
2128 Elf_Internal_Rela *irela;
2129 Elf_Internal_Shdr *symtab_hdr;
2132 /* Position ourselves at the start of the section. */
2133 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2136 /* Read the relocations. */
2137 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2140 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2141 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2143 bed = get_elf_backend_data (abfd);
2145 /* Convert the external relocations to the internal format. */
2146 if (shdr->sh_entsize == bed->s->sizeof_rel)
2147 swap_in = bed->s->swap_reloc_in;
2148 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2149 swap_in = bed->s->swap_reloca_in;
2152 bfd_set_error (bfd_error_wrong_format);
2156 erela = (const bfd_byte *) external_relocs;
2157 erelaend = erela + shdr->sh_size;
2158 irela = internal_relocs;
2159 while (erela < erelaend)
2163 (*swap_in) (abfd, erela, irela);
2164 r_symndx = ELF32_R_SYM (irela->r_info);
2165 if (bed->s->arch_size == 64)
2169 if ((size_t) r_symndx >= nsyms)
2171 (*_bfd_error_handler)
2172 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2173 " for offset 0x%lx in section `%A'"),
2175 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2176 bfd_set_error (bfd_error_bad_value);
2180 else if (r_symndx != STN_UNDEF)
2182 (*_bfd_error_handler)
2183 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2184 " when the object file has no symbol table"),
2186 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2187 bfd_set_error (bfd_error_bad_value);
2190 irela += bed->s->int_rels_per_ext_rel;
2191 erela += shdr->sh_entsize;
2197 /* Read and swap the relocs for a section O. They may have been
2198 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2199 not NULL, they are used as buffers to read into. They are known to
2200 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2201 the return value is allocated using either malloc or bfd_alloc,
2202 according to the KEEP_MEMORY argument. If O has two relocation
2203 sections (both REL and RELA relocations), then the REL_HDR
2204 relocations will appear first in INTERNAL_RELOCS, followed by the
2205 RELA_HDR relocations. */
2208 _bfd_elf_link_read_relocs (bfd *abfd,
2210 void *external_relocs,
2211 Elf_Internal_Rela *internal_relocs,
2212 bfd_boolean keep_memory)
2214 void *alloc1 = NULL;
2215 Elf_Internal_Rela *alloc2 = NULL;
2216 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2217 struct bfd_elf_section_data *esdo = elf_section_data (o);
2218 Elf_Internal_Rela *internal_rela_relocs;
2220 if (esdo->relocs != NULL)
2221 return esdo->relocs;
2223 if (o->reloc_count == 0)
2226 if (internal_relocs == NULL)
2230 size = o->reloc_count;
2231 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2233 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2235 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2236 if (internal_relocs == NULL)
2240 if (external_relocs == NULL)
2242 bfd_size_type size = 0;
2245 size += esdo->rel.hdr->sh_size;
2247 size += esdo->rela.hdr->sh_size;
2249 alloc1 = bfd_malloc (size);
2252 external_relocs = alloc1;
2255 internal_rela_relocs = internal_relocs;
2258 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2262 external_relocs = (((bfd_byte *) external_relocs)
2263 + esdo->rel.hdr->sh_size);
2264 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2265 * bed->s->int_rels_per_ext_rel);
2269 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2271 internal_rela_relocs)))
2274 /* Cache the results for next time, if we can. */
2276 esdo->relocs = internal_relocs;
2281 /* Don't free alloc2, since if it was allocated we are passing it
2282 back (under the name of internal_relocs). */
2284 return internal_relocs;
2292 bfd_release (abfd, alloc2);
2299 /* Compute the size of, and allocate space for, REL_HDR which is the
2300 section header for a section containing relocations for O. */
2303 _bfd_elf_link_size_reloc_section (bfd *abfd,
2304 struct bfd_elf_section_reloc_data *reldata)
2306 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2308 /* That allows us to calculate the size of the section. */
2309 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2311 /* The contents field must last into write_object_contents, so we
2312 allocate it with bfd_alloc rather than malloc. Also since we
2313 cannot be sure that the contents will actually be filled in,
2314 we zero the allocated space. */
2315 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2316 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2319 if (reldata->hashes == NULL && reldata->count)
2321 struct elf_link_hash_entry **p;
2323 p = (struct elf_link_hash_entry **)
2324 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2328 reldata->hashes = p;
2334 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2335 originated from the section given by INPUT_REL_HDR) to the
2339 _bfd_elf_link_output_relocs (bfd *output_bfd,
2340 asection *input_section,
2341 Elf_Internal_Shdr *input_rel_hdr,
2342 Elf_Internal_Rela *internal_relocs,
2343 struct elf_link_hash_entry **rel_hash
2346 Elf_Internal_Rela *irela;
2347 Elf_Internal_Rela *irelaend;
2349 struct bfd_elf_section_reloc_data *output_reldata;
2350 asection *output_section;
2351 const struct elf_backend_data *bed;
2352 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2353 struct bfd_elf_section_data *esdo;
2355 output_section = input_section->output_section;
2357 bed = get_elf_backend_data (output_bfd);
2358 esdo = elf_section_data (output_section);
2359 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2361 output_reldata = &esdo->rel;
2362 swap_out = bed->s->swap_reloc_out;
2364 else if (esdo->rela.hdr
2365 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2367 output_reldata = &esdo->rela;
2368 swap_out = bed->s->swap_reloca_out;
2372 (*_bfd_error_handler)
2373 (_("%B: relocation size mismatch in %B section %A"),
2374 output_bfd, input_section->owner, input_section);
2375 bfd_set_error (bfd_error_wrong_format);
2379 erel = output_reldata->hdr->contents;
2380 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2381 irela = internal_relocs;
2382 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2383 * bed->s->int_rels_per_ext_rel);
2384 while (irela < irelaend)
2386 (*swap_out) (output_bfd, irela, erel);
2387 irela += bed->s->int_rels_per_ext_rel;
2388 erel += input_rel_hdr->sh_entsize;
2391 /* Bump the counter, so that we know where to add the next set of
2393 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2398 /* Make weak undefined symbols in PIE dynamic. */
2401 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2402 struct elf_link_hash_entry *h)
2406 && h->root.type == bfd_link_hash_undefweak)
2407 return bfd_elf_link_record_dynamic_symbol (info, h);
2412 /* Fix up the flags for a symbol. This handles various cases which
2413 can only be fixed after all the input files are seen. This is
2414 currently called by both adjust_dynamic_symbol and
2415 assign_sym_version, which is unnecessary but perhaps more robust in
2416 the face of future changes. */
2419 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2420 struct elf_info_failed *eif)
2422 const struct elf_backend_data *bed;
2424 /* If this symbol was mentioned in a non-ELF file, try to set
2425 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2426 permit a non-ELF file to correctly refer to a symbol defined in
2427 an ELF dynamic object. */
2430 while (h->root.type == bfd_link_hash_indirect)
2431 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2433 if (h->root.type != bfd_link_hash_defined
2434 && h->root.type != bfd_link_hash_defweak)
2437 h->ref_regular_nonweak = 1;
2441 if (h->root.u.def.section->owner != NULL
2442 && (bfd_get_flavour (h->root.u.def.section->owner)
2443 == bfd_target_elf_flavour))
2446 h->ref_regular_nonweak = 1;
2452 if (h->dynindx == -1
2456 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2465 /* Unfortunately, NON_ELF is only correct if the symbol
2466 was first seen in a non-ELF file. Fortunately, if the symbol
2467 was first seen in an ELF file, we're probably OK unless the
2468 symbol was defined in a non-ELF file. Catch that case here.
2469 FIXME: We're still in trouble if the symbol was first seen in
2470 a dynamic object, and then later in a non-ELF regular object. */
2471 if ((h->root.type == bfd_link_hash_defined
2472 || h->root.type == bfd_link_hash_defweak)
2474 && (h->root.u.def.section->owner != NULL
2475 ? (bfd_get_flavour (h->root.u.def.section->owner)
2476 != bfd_target_elf_flavour)
2477 : (bfd_is_abs_section (h->root.u.def.section)
2478 && !h->def_dynamic)))
2482 /* Backend specific symbol fixup. */
2483 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2484 if (bed->elf_backend_fixup_symbol
2485 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2488 /* If this is a final link, and the symbol was defined as a common
2489 symbol in a regular object file, and there was no definition in
2490 any dynamic object, then the linker will have allocated space for
2491 the symbol in a common section but the DEF_REGULAR
2492 flag will not have been set. */
2493 if (h->root.type == bfd_link_hash_defined
2497 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2500 /* If -Bsymbolic was used (which means to bind references to global
2501 symbols to the definition within the shared object), and this
2502 symbol was defined in a regular object, then it actually doesn't
2503 need a PLT entry. Likewise, if the symbol has non-default
2504 visibility. If the symbol has hidden or internal visibility, we
2505 will force it local. */
2507 && eif->info->shared
2508 && is_elf_hash_table (eif->info->hash)
2509 && (SYMBOLIC_BIND (eif->info, h)
2510 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2513 bfd_boolean force_local;
2515 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2516 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2517 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2520 /* If a weak undefined symbol has non-default visibility, we also
2521 hide it from the dynamic linker. */
2522 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2523 && h->root.type == bfd_link_hash_undefweak)
2524 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2526 /* If this is a weak defined symbol in a dynamic object, and we know
2527 the real definition in the dynamic object, copy interesting flags
2528 over to the real definition. */
2529 if (h->u.weakdef != NULL)
2531 /* If the real definition is defined by a regular object file,
2532 don't do anything special. See the longer description in
2533 _bfd_elf_adjust_dynamic_symbol, below. */
2534 if (h->u.weakdef->def_regular)
2535 h->u.weakdef = NULL;
2538 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2540 while (h->root.type == bfd_link_hash_indirect)
2541 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2543 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2544 || h->root.type == bfd_link_hash_defweak);
2545 BFD_ASSERT (weakdef->def_dynamic);
2546 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2547 || weakdef->root.type == bfd_link_hash_defweak);
2548 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2555 /* Make the backend pick a good value for a dynamic symbol. This is
2556 called via elf_link_hash_traverse, and also calls itself
2560 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2562 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2564 const struct elf_backend_data *bed;
2566 if (! is_elf_hash_table (eif->info->hash))
2569 /* Ignore indirect symbols. These are added by the versioning code. */
2570 if (h->root.type == bfd_link_hash_indirect)
2573 /* Fix the symbol flags. */
2574 if (! _bfd_elf_fix_symbol_flags (h, eif))
2577 /* If this symbol does not require a PLT entry, and it is not
2578 defined by a dynamic object, or is not referenced by a regular
2579 object, ignore it. We do have to handle a weak defined symbol,
2580 even if no regular object refers to it, if we decided to add it
2581 to the dynamic symbol table. FIXME: Do we normally need to worry
2582 about symbols which are defined by one dynamic object and
2583 referenced by another one? */
2585 && h->type != STT_GNU_IFUNC
2589 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2591 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2595 /* If we've already adjusted this symbol, don't do it again. This
2596 can happen via a recursive call. */
2597 if (h->dynamic_adjusted)
2600 /* Don't look at this symbol again. Note that we must set this
2601 after checking the above conditions, because we may look at a
2602 symbol once, decide not to do anything, and then get called
2603 recursively later after REF_REGULAR is set below. */
2604 h->dynamic_adjusted = 1;
2606 /* If this is a weak definition, and we know a real definition, and
2607 the real symbol is not itself defined by a regular object file,
2608 then get a good value for the real definition. We handle the
2609 real symbol first, for the convenience of the backend routine.
2611 Note that there is a confusing case here. If the real definition
2612 is defined by a regular object file, we don't get the real symbol
2613 from the dynamic object, but we do get the weak symbol. If the
2614 processor backend uses a COPY reloc, then if some routine in the
2615 dynamic object changes the real symbol, we will not see that
2616 change in the corresponding weak symbol. This is the way other
2617 ELF linkers work as well, and seems to be a result of the shared
2620 I will clarify this issue. Most SVR4 shared libraries define the
2621 variable _timezone and define timezone as a weak synonym. The
2622 tzset call changes _timezone. If you write
2623 extern int timezone;
2625 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2626 you might expect that, since timezone is a synonym for _timezone,
2627 the same number will print both times. However, if the processor
2628 backend uses a COPY reloc, then actually timezone will be copied
2629 into your process image, and, since you define _timezone
2630 yourself, _timezone will not. Thus timezone and _timezone will
2631 wind up at different memory locations. The tzset call will set
2632 _timezone, leaving timezone unchanged. */
2634 if (h->u.weakdef != NULL)
2636 /* If we get to this point, there is an implicit reference to
2637 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2638 h->u.weakdef->ref_regular = 1;
2640 /* Ensure that the backend adjust_dynamic_symbol function sees
2641 H->U.WEAKDEF before H by recursively calling ourselves. */
2642 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2646 /* If a symbol has no type and no size and does not require a PLT
2647 entry, then we are probably about to do the wrong thing here: we
2648 are probably going to create a COPY reloc for an empty object.
2649 This case can arise when a shared object is built with assembly
2650 code, and the assembly code fails to set the symbol type. */
2652 && h->type == STT_NOTYPE
2654 (*_bfd_error_handler)
2655 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2656 h->root.root.string);
2658 dynobj = elf_hash_table (eif->info)->dynobj;
2659 bed = get_elf_backend_data (dynobj);
2661 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2670 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2674 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2677 unsigned int power_of_two;
2679 asection *sec = h->root.u.def.section;
2681 /* The section aligment of definition is the maximum alignment
2682 requirement of symbols defined in the section. Since we don't
2683 know the symbol alignment requirement, we start with the
2684 maximum alignment and check low bits of the symbol address
2685 for the minimum alignment. */
2686 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2687 mask = ((bfd_vma) 1 << power_of_two) - 1;
2688 while ((h->root.u.def.value & mask) != 0)
2694 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2697 /* Adjust the section alignment if needed. */
2698 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2703 /* We make sure that the symbol will be aligned properly. */
2704 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2706 /* Define the symbol as being at this point in DYNBSS. */
2707 h->root.u.def.section = dynbss;
2708 h->root.u.def.value = dynbss->size;
2710 /* Increment the size of DYNBSS to make room for the symbol. */
2711 dynbss->size += h->size;
2716 /* Adjust all external symbols pointing into SEC_MERGE sections
2717 to reflect the object merging within the sections. */
2720 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2724 if ((h->root.type == bfd_link_hash_defined
2725 || h->root.type == bfd_link_hash_defweak)
2726 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2727 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2729 bfd *output_bfd = (bfd *) data;
2731 h->root.u.def.value =
2732 _bfd_merged_section_offset (output_bfd,
2733 &h->root.u.def.section,
2734 elf_section_data (sec)->sec_info,
2735 h->root.u.def.value);
2741 /* Returns false if the symbol referred to by H should be considered
2742 to resolve local to the current module, and true if it should be
2743 considered to bind dynamically. */
2746 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2747 struct bfd_link_info *info,
2748 bfd_boolean not_local_protected)
2750 bfd_boolean binding_stays_local_p;
2751 const struct elf_backend_data *bed;
2752 struct elf_link_hash_table *hash_table;
2757 while (h->root.type == bfd_link_hash_indirect
2758 || h->root.type == bfd_link_hash_warning)
2759 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2761 /* If it was forced local, then clearly it's not dynamic. */
2762 if (h->dynindx == -1)
2764 if (h->forced_local)
2767 /* Identify the cases where name binding rules say that a
2768 visible symbol resolves locally. */
2769 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2771 switch (ELF_ST_VISIBILITY (h->other))
2778 hash_table = elf_hash_table (info);
2779 if (!is_elf_hash_table (hash_table))
2782 bed = get_elf_backend_data (hash_table->dynobj);
2784 /* Proper resolution for function pointer equality may require
2785 that these symbols perhaps be resolved dynamically, even though
2786 we should be resolving them to the current module. */
2787 if (!not_local_protected || !bed->is_function_type (h->type))
2788 binding_stays_local_p = TRUE;
2795 /* If it isn't defined locally, then clearly it's dynamic. */
2796 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2799 /* Otherwise, the symbol is dynamic if binding rules don't tell
2800 us that it remains local. */
2801 return !binding_stays_local_p;
2804 /* Return true if the symbol referred to by H should be considered
2805 to resolve local to the current module, and false otherwise. Differs
2806 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2807 undefined symbols. The two functions are virtually identical except
2808 for the place where forced_local and dynindx == -1 are tested. If
2809 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2810 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2811 the symbol is local only for defined symbols.
2812 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2813 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2814 treatment of undefined weak symbols. For those that do not make
2815 undefined weak symbols dynamic, both functions may return false. */
2818 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2819 struct bfd_link_info *info,
2820 bfd_boolean local_protected)
2822 const struct elf_backend_data *bed;
2823 struct elf_link_hash_table *hash_table;
2825 /* If it's a local sym, of course we resolve locally. */
2829 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2830 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2831 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2834 /* Common symbols that become definitions don't get the DEF_REGULAR
2835 flag set, so test it first, and don't bail out. */
2836 if (ELF_COMMON_DEF_P (h))
2838 /* If we don't have a definition in a regular file, then we can't
2839 resolve locally. The sym is either undefined or dynamic. */
2840 else if (!h->def_regular)
2843 /* Forced local symbols resolve locally. */
2844 if (h->forced_local)
2847 /* As do non-dynamic symbols. */
2848 if (h->dynindx == -1)
2851 /* At this point, we know the symbol is defined and dynamic. In an
2852 executable it must resolve locally, likewise when building symbolic
2853 shared libraries. */
2854 if (info->executable || SYMBOLIC_BIND (info, h))
2857 /* Now deal with defined dynamic symbols in shared libraries. Ones
2858 with default visibility might not resolve locally. */
2859 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2862 hash_table = elf_hash_table (info);
2863 if (!is_elf_hash_table (hash_table))
2866 bed = get_elf_backend_data (hash_table->dynobj);
2868 /* STV_PROTECTED non-function symbols are local. */
2869 if (!bed->is_function_type (h->type))
2872 /* Function pointer equality tests may require that STV_PROTECTED
2873 symbols be treated as dynamic symbols. If the address of a
2874 function not defined in an executable is set to that function's
2875 plt entry in the executable, then the address of the function in
2876 a shared library must also be the plt entry in the executable. */
2877 return local_protected;
2880 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2881 aligned. Returns the first TLS output section. */
2883 struct bfd_section *
2884 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2886 struct bfd_section *sec, *tls;
2887 unsigned int align = 0;
2889 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2890 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2894 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2895 if (sec->alignment_power > align)
2896 align = sec->alignment_power;
2898 elf_hash_table (info)->tls_sec = tls;
2900 /* Ensure the alignment of the first section is the largest alignment,
2901 so that the tls segment starts aligned. */
2903 tls->alignment_power = align;
2908 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2910 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2911 Elf_Internal_Sym *sym)
2913 const struct elf_backend_data *bed;
2915 /* Local symbols do not count, but target specific ones might. */
2916 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2917 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2920 bed = get_elf_backend_data (abfd);
2921 /* Function symbols do not count. */
2922 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2925 /* If the section is undefined, then so is the symbol. */
2926 if (sym->st_shndx == SHN_UNDEF)
2929 /* If the symbol is defined in the common section, then
2930 it is a common definition and so does not count. */
2931 if (bed->common_definition (sym))
2934 /* If the symbol is in a target specific section then we
2935 must rely upon the backend to tell us what it is. */
2936 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2937 /* FIXME - this function is not coded yet:
2939 return _bfd_is_global_symbol_definition (abfd, sym);
2941 Instead for now assume that the definition is not global,
2942 Even if this is wrong, at least the linker will behave
2943 in the same way that it used to do. */
2949 /* Search the symbol table of the archive element of the archive ABFD
2950 whose archive map contains a mention of SYMDEF, and determine if
2951 the symbol is defined in this element. */
2953 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2955 Elf_Internal_Shdr * hdr;
2956 bfd_size_type symcount;
2957 bfd_size_type extsymcount;
2958 bfd_size_type extsymoff;
2959 Elf_Internal_Sym *isymbuf;
2960 Elf_Internal_Sym *isym;
2961 Elf_Internal_Sym *isymend;
2964 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2968 if (! bfd_check_format (abfd, bfd_object))
2971 /* If we have already included the element containing this symbol in the
2972 link then we do not need to include it again. Just claim that any symbol
2973 it contains is not a definition, so that our caller will not decide to
2974 (re)include this element. */
2975 if (abfd->archive_pass)
2978 /* Select the appropriate symbol table. */
2979 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2980 hdr = &elf_tdata (abfd)->symtab_hdr;
2982 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2984 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2986 /* The sh_info field of the symtab header tells us where the
2987 external symbols start. We don't care about the local symbols. */
2988 if (elf_bad_symtab (abfd))
2990 extsymcount = symcount;
2995 extsymcount = symcount - hdr->sh_info;
2996 extsymoff = hdr->sh_info;
2999 if (extsymcount == 0)
3002 /* Read in the symbol table. */
3003 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3005 if (isymbuf == NULL)
3008 /* Scan the symbol table looking for SYMDEF. */
3010 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3014 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3019 if (strcmp (name, symdef->name) == 0)
3021 result = is_global_data_symbol_definition (abfd, isym);
3031 /* Add an entry to the .dynamic table. */
3034 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3038 struct elf_link_hash_table *hash_table;
3039 const struct elf_backend_data *bed;
3041 bfd_size_type newsize;
3042 bfd_byte *newcontents;
3043 Elf_Internal_Dyn dyn;
3045 hash_table = elf_hash_table (info);
3046 if (! is_elf_hash_table (hash_table))
3049 bed = get_elf_backend_data (hash_table->dynobj);
3050 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3051 BFD_ASSERT (s != NULL);
3053 newsize = s->size + bed->s->sizeof_dyn;
3054 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3055 if (newcontents == NULL)
3059 dyn.d_un.d_val = val;
3060 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3063 s->contents = newcontents;
3068 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3069 otherwise just check whether one already exists. Returns -1 on error,
3070 1 if a DT_NEEDED tag already exists, and 0 on success. */
3073 elf_add_dt_needed_tag (bfd *abfd,
3074 struct bfd_link_info *info,
3078 struct elf_link_hash_table *hash_table;
3079 bfd_size_type strindex;
3081 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3084 hash_table = elf_hash_table (info);
3085 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3086 if (strindex == (bfd_size_type) -1)
3089 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3092 const struct elf_backend_data *bed;
3095 bed = get_elf_backend_data (hash_table->dynobj);
3096 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3098 for (extdyn = sdyn->contents;
3099 extdyn < sdyn->contents + sdyn->size;
3100 extdyn += bed->s->sizeof_dyn)
3102 Elf_Internal_Dyn dyn;
3104 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3105 if (dyn.d_tag == DT_NEEDED
3106 && dyn.d_un.d_val == strindex)
3108 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3116 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3119 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3123 /* We were just checking for existence of the tag. */
3124 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3130 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3132 for (; needed != NULL; needed = needed->next)
3133 if (strcmp (soname, needed->name) == 0)
3139 /* Sort symbol by value, section, and size. */
3141 elf_sort_symbol (const void *arg1, const void *arg2)
3143 const struct elf_link_hash_entry *h1;
3144 const struct elf_link_hash_entry *h2;
3145 bfd_signed_vma vdiff;
3147 h1 = *(const struct elf_link_hash_entry **) arg1;
3148 h2 = *(const struct elf_link_hash_entry **) arg2;
3149 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3151 return vdiff > 0 ? 1 : -1;
3154 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3156 return sdiff > 0 ? 1 : -1;
3158 vdiff = h1->size - h2->size;
3159 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3162 /* This function is used to adjust offsets into .dynstr for
3163 dynamic symbols. This is called via elf_link_hash_traverse. */
3166 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3168 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3170 if (h->dynindx != -1)
3171 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3175 /* Assign string offsets in .dynstr, update all structures referencing
3179 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3181 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3182 struct elf_link_local_dynamic_entry *entry;
3183 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3184 bfd *dynobj = hash_table->dynobj;
3187 const struct elf_backend_data *bed;
3190 _bfd_elf_strtab_finalize (dynstr);
3191 size = _bfd_elf_strtab_size (dynstr);
3193 bed = get_elf_backend_data (dynobj);
3194 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3195 BFD_ASSERT (sdyn != NULL);
3197 /* Update all .dynamic entries referencing .dynstr strings. */
3198 for (extdyn = sdyn->contents;
3199 extdyn < sdyn->contents + sdyn->size;
3200 extdyn += bed->s->sizeof_dyn)
3202 Elf_Internal_Dyn dyn;
3204 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3208 dyn.d_un.d_val = size;
3218 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3223 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3226 /* Now update local dynamic symbols. */
3227 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3228 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3229 entry->isym.st_name);
3231 /* And the rest of dynamic symbols. */
3232 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3234 /* Adjust version definitions. */
3235 if (elf_tdata (output_bfd)->cverdefs)
3240 Elf_Internal_Verdef def;
3241 Elf_Internal_Verdaux defaux;
3243 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3247 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3249 p += sizeof (Elf_External_Verdef);
3250 if (def.vd_aux != sizeof (Elf_External_Verdef))
3252 for (i = 0; i < def.vd_cnt; ++i)
3254 _bfd_elf_swap_verdaux_in (output_bfd,
3255 (Elf_External_Verdaux *) p, &defaux);
3256 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3258 _bfd_elf_swap_verdaux_out (output_bfd,
3259 &defaux, (Elf_External_Verdaux *) p);
3260 p += sizeof (Elf_External_Verdaux);
3263 while (def.vd_next);
3266 /* Adjust version references. */
3267 if (elf_tdata (output_bfd)->verref)
3272 Elf_Internal_Verneed need;
3273 Elf_Internal_Vernaux needaux;
3275 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3279 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3281 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3282 _bfd_elf_swap_verneed_out (output_bfd, &need,
3283 (Elf_External_Verneed *) p);
3284 p += sizeof (Elf_External_Verneed);
3285 for (i = 0; i < need.vn_cnt; ++i)
3287 _bfd_elf_swap_vernaux_in (output_bfd,
3288 (Elf_External_Vernaux *) p, &needaux);
3289 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3291 _bfd_elf_swap_vernaux_out (output_bfd,
3293 (Elf_External_Vernaux *) p);
3294 p += sizeof (Elf_External_Vernaux);
3297 while (need.vn_next);
3303 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3304 The default is to only match when the INPUT and OUTPUT are exactly
3308 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3309 const bfd_target *output)
3311 return input == output;
3314 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3315 This version is used when different targets for the same architecture
3316 are virtually identical. */
3319 _bfd_elf_relocs_compatible (const bfd_target *input,
3320 const bfd_target *output)
3322 const struct elf_backend_data *obed, *ibed;
3324 if (input == output)
3327 ibed = xvec_get_elf_backend_data (input);
3328 obed = xvec_get_elf_backend_data (output);
3330 if (ibed->arch != obed->arch)
3333 /* If both backends are using this function, deem them compatible. */
3334 return ibed->relocs_compatible == obed->relocs_compatible;
3337 /* Add symbols from an ELF object file to the linker hash table. */
3340 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3342 Elf_Internal_Ehdr *ehdr;
3343 Elf_Internal_Shdr *hdr;
3344 bfd_size_type symcount;
3345 bfd_size_type extsymcount;
3346 bfd_size_type extsymoff;
3347 struct elf_link_hash_entry **sym_hash;
3348 bfd_boolean dynamic;
3349 Elf_External_Versym *extversym = NULL;
3350 Elf_External_Versym *ever;
3351 struct elf_link_hash_entry *weaks;
3352 struct elf_link_hash_entry **nondeflt_vers = NULL;
3353 bfd_size_type nondeflt_vers_cnt = 0;
3354 Elf_Internal_Sym *isymbuf = NULL;
3355 Elf_Internal_Sym *isym;
3356 Elf_Internal_Sym *isymend;
3357 const struct elf_backend_data *bed;
3358 bfd_boolean add_needed;
3359 struct elf_link_hash_table *htab;
3361 void *alloc_mark = NULL;
3362 struct bfd_hash_entry **old_table = NULL;
3363 unsigned int old_size = 0;
3364 unsigned int old_count = 0;
3365 void *old_tab = NULL;
3368 struct bfd_link_hash_entry *old_undefs = NULL;
3369 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3370 long old_dynsymcount = 0;
3371 bfd_size_type old_dynstr_size = 0;
3373 size_t hashsize = 0;
3375 htab = elf_hash_table (info);
3376 bed = get_elf_backend_data (abfd);
3378 if ((abfd->flags & DYNAMIC) == 0)
3384 /* You can't use -r against a dynamic object. Also, there's no
3385 hope of using a dynamic object which does not exactly match
3386 the format of the output file. */
3387 if (info->relocatable
3388 || !is_elf_hash_table (htab)
3389 || info->output_bfd->xvec != abfd->xvec)
3391 if (info->relocatable)
3392 bfd_set_error (bfd_error_invalid_operation);
3394 bfd_set_error (bfd_error_wrong_format);
3399 ehdr = elf_elfheader (abfd);
3400 if (info->warn_alternate_em
3401 && bed->elf_machine_code != ehdr->e_machine
3402 && ((bed->elf_machine_alt1 != 0
3403 && ehdr->e_machine == bed->elf_machine_alt1)
3404 || (bed->elf_machine_alt2 != 0
3405 && ehdr->e_machine == bed->elf_machine_alt2)))
3406 info->callbacks->einfo
3407 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3408 ehdr->e_machine, abfd, bed->elf_machine_code);
3410 /* As a GNU extension, any input sections which are named
3411 .gnu.warning.SYMBOL are treated as warning symbols for the given
3412 symbol. This differs from .gnu.warning sections, which generate
3413 warnings when they are included in an output file. */
3414 /* PR 12761: Also generate this warning when building shared libraries. */
3415 if (info->executable || info->shared)
3419 for (s = abfd->sections; s != NULL; s = s->next)
3423 name = bfd_get_section_name (abfd, s);
3424 if (CONST_STRNEQ (name, ".gnu.warning."))
3429 name += sizeof ".gnu.warning." - 1;
3431 /* If this is a shared object, then look up the symbol
3432 in the hash table. If it is there, and it is already
3433 been defined, then we will not be using the entry
3434 from this shared object, so we don't need to warn.
3435 FIXME: If we see the definition in a regular object
3436 later on, we will warn, but we shouldn't. The only
3437 fix is to keep track of what warnings we are supposed
3438 to emit, and then handle them all at the end of the
3442 struct elf_link_hash_entry *h;
3444 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3446 /* FIXME: What about bfd_link_hash_common? */
3448 && (h->root.type == bfd_link_hash_defined
3449 || h->root.type == bfd_link_hash_defweak))
3451 /* We don't want to issue this warning. Clobber
3452 the section size so that the warning does not
3453 get copied into the output file. */
3460 msg = (char *) bfd_alloc (abfd, sz + 1);
3464 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3469 if (! (_bfd_generic_link_add_one_symbol
3470 (info, abfd, name, BSF_WARNING, s, 0, msg,
3471 FALSE, bed->collect, NULL)))
3474 if (! info->relocatable)
3476 /* Clobber the section size so that the warning does
3477 not get copied into the output file. */
3480 /* Also set SEC_EXCLUDE, so that symbols defined in
3481 the warning section don't get copied to the output. */
3482 s->flags |= SEC_EXCLUDE;
3491 /* If we are creating a shared library, create all the dynamic
3492 sections immediately. We need to attach them to something,
3493 so we attach them to this BFD, provided it is the right
3494 format. FIXME: If there are no input BFD's of the same
3495 format as the output, we can't make a shared library. */
3497 && is_elf_hash_table (htab)
3498 && info->output_bfd->xvec == abfd->xvec
3499 && !htab->dynamic_sections_created)
3501 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3505 else if (!is_elf_hash_table (htab))
3510 const char *soname = NULL;
3512 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3515 /* ld --just-symbols and dynamic objects don't mix very well.
3516 ld shouldn't allow it. */
3517 if ((s = abfd->sections) != NULL
3518 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3521 /* If this dynamic lib was specified on the command line with
3522 --as-needed in effect, then we don't want to add a DT_NEEDED
3523 tag unless the lib is actually used. Similary for libs brought
3524 in by another lib's DT_NEEDED. When --no-add-needed is used
3525 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3526 any dynamic library in DT_NEEDED tags in the dynamic lib at
3528 add_needed = (elf_dyn_lib_class (abfd)
3529 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3530 | DYN_NO_NEEDED)) == 0;
3532 s = bfd_get_section_by_name (abfd, ".dynamic");
3537 unsigned int elfsec;
3538 unsigned long shlink;
3540 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3547 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3548 if (elfsec == SHN_BAD)
3549 goto error_free_dyn;
3550 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3552 for (extdyn = dynbuf;
3553 extdyn < dynbuf + s->size;
3554 extdyn += bed->s->sizeof_dyn)
3556 Elf_Internal_Dyn dyn;
3558 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3559 if (dyn.d_tag == DT_SONAME)
3561 unsigned int tagv = dyn.d_un.d_val;
3562 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3564 goto error_free_dyn;
3566 if (dyn.d_tag == DT_NEEDED)
3568 struct bfd_link_needed_list *n, **pn;
3570 unsigned int tagv = dyn.d_un.d_val;
3572 amt = sizeof (struct bfd_link_needed_list);
3573 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3574 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3575 if (n == NULL || fnm == NULL)
3576 goto error_free_dyn;
3577 amt = strlen (fnm) + 1;
3578 anm = (char *) bfd_alloc (abfd, amt);
3580 goto error_free_dyn;
3581 memcpy (anm, fnm, amt);
3585 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3589 if (dyn.d_tag == DT_RUNPATH)
3591 struct bfd_link_needed_list *n, **pn;
3593 unsigned int tagv = dyn.d_un.d_val;
3595 amt = sizeof (struct bfd_link_needed_list);
3596 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3597 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3598 if (n == NULL || fnm == NULL)
3599 goto error_free_dyn;
3600 amt = strlen (fnm) + 1;
3601 anm = (char *) bfd_alloc (abfd, amt);
3603 goto error_free_dyn;
3604 memcpy (anm, fnm, amt);
3608 for (pn = & runpath;
3614 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3615 if (!runpath && dyn.d_tag == DT_RPATH)
3617 struct bfd_link_needed_list *n, **pn;
3619 unsigned int tagv = dyn.d_un.d_val;
3621 amt = sizeof (struct bfd_link_needed_list);
3622 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3623 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3624 if (n == NULL || fnm == NULL)
3625 goto error_free_dyn;
3626 amt = strlen (fnm) + 1;
3627 anm = (char *) bfd_alloc (abfd, amt);
3629 goto error_free_dyn;
3630 memcpy (anm, fnm, amt);
3640 if (dyn.d_tag == DT_AUDIT)
3642 unsigned int tagv = dyn.d_un.d_val;
3643 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3650 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3651 frees all more recently bfd_alloc'd blocks as well. */
3657 struct bfd_link_needed_list **pn;
3658 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3663 /* We do not want to include any of the sections in a dynamic
3664 object in the output file. We hack by simply clobbering the
3665 list of sections in the BFD. This could be handled more
3666 cleanly by, say, a new section flag; the existing
3667 SEC_NEVER_LOAD flag is not the one we want, because that one
3668 still implies that the section takes up space in the output
3670 bfd_section_list_clear (abfd);
3672 /* Find the name to use in a DT_NEEDED entry that refers to this
3673 object. If the object has a DT_SONAME entry, we use it.
3674 Otherwise, if the generic linker stuck something in
3675 elf_dt_name, we use that. Otherwise, we just use the file
3677 if (soname == NULL || *soname == '\0')
3679 soname = elf_dt_name (abfd);
3680 if (soname == NULL || *soname == '\0')
3681 soname = bfd_get_filename (abfd);
3684 /* Save the SONAME because sometimes the linker emulation code
3685 will need to know it. */
3686 elf_dt_name (abfd) = soname;
3688 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3692 /* If we have already included this dynamic object in the
3693 link, just ignore it. There is no reason to include a
3694 particular dynamic object more than once. */
3698 /* Save the DT_AUDIT entry for the linker emulation code. */
3699 elf_dt_audit (abfd) = audit;
3702 /* If this is a dynamic object, we always link against the .dynsym
3703 symbol table, not the .symtab symbol table. The dynamic linker
3704 will only see the .dynsym symbol table, so there is no reason to
3705 look at .symtab for a dynamic object. */
3707 if (! dynamic || elf_dynsymtab (abfd) == 0)
3708 hdr = &elf_tdata (abfd)->symtab_hdr;
3710 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3712 symcount = hdr->sh_size / bed->s->sizeof_sym;
3714 /* The sh_info field of the symtab header tells us where the
3715 external symbols start. We don't care about the local symbols at
3717 if (elf_bad_symtab (abfd))
3719 extsymcount = symcount;
3724 extsymcount = symcount - hdr->sh_info;
3725 extsymoff = hdr->sh_info;
3729 if (extsymcount != 0)
3731 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3733 if (isymbuf == NULL)
3736 /* We store a pointer to the hash table entry for each external
3738 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3739 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3740 if (sym_hash == NULL)
3741 goto error_free_sym;
3742 elf_sym_hashes (abfd) = sym_hash;
3747 /* Read in any version definitions. */
3748 if (!_bfd_elf_slurp_version_tables (abfd,
3749 info->default_imported_symver))
3750 goto error_free_sym;
3752 /* Read in the symbol versions, but don't bother to convert them
3753 to internal format. */
3754 if (elf_dynversym (abfd) != 0)
3756 Elf_Internal_Shdr *versymhdr;
3758 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3759 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3760 if (extversym == NULL)
3761 goto error_free_sym;
3762 amt = versymhdr->sh_size;
3763 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3764 || bfd_bread (extversym, amt, abfd) != amt)
3765 goto error_free_vers;
3769 /* If we are loading an as-needed shared lib, save the symbol table
3770 state before we start adding symbols. If the lib turns out
3771 to be unneeded, restore the state. */
3772 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3777 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3779 struct bfd_hash_entry *p;
3780 struct elf_link_hash_entry *h;
3782 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3784 h = (struct elf_link_hash_entry *) p;
3785 entsize += htab->root.table.entsize;
3786 if (h->root.type == bfd_link_hash_warning)
3787 entsize += htab->root.table.entsize;
3791 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3792 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3793 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3794 if (old_tab == NULL)
3795 goto error_free_vers;
3797 /* Remember the current objalloc pointer, so that all mem for
3798 symbols added can later be reclaimed. */
3799 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3800 if (alloc_mark == NULL)
3801 goto error_free_vers;
3803 /* Make a special call to the linker "notice" function to
3804 tell it that we are about to handle an as-needed lib. */
3805 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3806 notice_as_needed, 0, NULL))
3807 goto error_free_vers;
3809 /* Clone the symbol table and sym hashes. Remember some
3810 pointers into the symbol table, and dynamic symbol count. */
3811 old_hash = (char *) old_tab + tabsize;
3812 old_ent = (char *) old_hash + hashsize;
3813 memcpy (old_tab, htab->root.table.table, tabsize);
3814 memcpy (old_hash, sym_hash, hashsize);
3815 old_undefs = htab->root.undefs;
3816 old_undefs_tail = htab->root.undefs_tail;
3817 old_table = htab->root.table.table;
3818 old_size = htab->root.table.size;
3819 old_count = htab->root.table.count;
3820 old_dynsymcount = htab->dynsymcount;
3821 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3823 for (i = 0; i < htab->root.table.size; i++)
3825 struct bfd_hash_entry *p;
3826 struct elf_link_hash_entry *h;
3828 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3830 memcpy (old_ent, p, htab->root.table.entsize);
3831 old_ent = (char *) old_ent + htab->root.table.entsize;
3832 h = (struct elf_link_hash_entry *) p;
3833 if (h->root.type == bfd_link_hash_warning)
3835 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3836 old_ent = (char *) old_ent + htab->root.table.entsize;
3843 ever = extversym != NULL ? extversym + extsymoff : NULL;
3844 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3846 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3850 asection *sec, *new_sec;
3853 struct elf_link_hash_entry *h;
3854 struct elf_link_hash_entry *hi;
3855 bfd_boolean definition;
3856 bfd_boolean size_change_ok;
3857 bfd_boolean type_change_ok;
3858 bfd_boolean new_weakdef;
3859 bfd_boolean new_weak;
3860 bfd_boolean old_weak;
3861 bfd_boolean override;
3863 unsigned int old_alignment;
3865 bfd * undef_bfd = NULL;
3869 flags = BSF_NO_FLAGS;
3871 value = isym->st_value;
3873 common = bed->common_definition (isym);
3875 bind = ELF_ST_BIND (isym->st_info);
3879 /* This should be impossible, since ELF requires that all
3880 global symbols follow all local symbols, and that sh_info
3881 point to the first global symbol. Unfortunately, Irix 5
3886 if (isym->st_shndx != SHN_UNDEF && !common)
3894 case STB_GNU_UNIQUE:
3895 flags = BSF_GNU_UNIQUE;
3899 /* Leave it up to the processor backend. */
3903 if (isym->st_shndx == SHN_UNDEF)
3904 sec = bfd_und_section_ptr;
3905 else if (isym->st_shndx == SHN_ABS)
3906 sec = bfd_abs_section_ptr;
3907 else if (isym->st_shndx == SHN_COMMON)
3909 sec = bfd_com_section_ptr;
3910 /* What ELF calls the size we call the value. What ELF
3911 calls the value we call the alignment. */
3912 value = isym->st_size;
3916 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3918 sec = bfd_abs_section_ptr;
3919 else if (discarded_section (sec))
3921 /* Symbols from discarded section are undefined. We keep
3923 sec = bfd_und_section_ptr;
3924 isym->st_shndx = SHN_UNDEF;
3926 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3930 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3933 goto error_free_vers;
3935 if (isym->st_shndx == SHN_COMMON
3936 && (abfd->flags & BFD_PLUGIN) != 0)
3938 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3942 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3944 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3946 goto error_free_vers;
3950 else if (isym->st_shndx == SHN_COMMON
3951 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3952 && !info->relocatable)
3954 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3958 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3959 | SEC_LINKER_CREATED);
3960 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3962 goto error_free_vers;
3966 else if (bed->elf_add_symbol_hook)
3968 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3970 goto error_free_vers;
3972 /* The hook function sets the name to NULL if this symbol
3973 should be skipped for some reason. */
3978 /* Sanity check that all possibilities were handled. */
3981 bfd_set_error (bfd_error_bad_value);
3982 goto error_free_vers;
3985 if (bfd_is_und_section (sec)
3986 || bfd_is_com_section (sec))
3991 size_change_ok = FALSE;
3992 type_change_ok = bed->type_change_ok;
3998 if (is_elf_hash_table (htab))
4000 Elf_Internal_Versym iver;
4001 unsigned int vernum = 0;
4004 /* If this is a definition of a symbol which was previously
4005 referenced, then make a note of the bfd that contained the
4006 reference. This is used if we need to refer to the source
4007 of the reference later on. */
4008 if (! bfd_is_und_section (sec))
4010 h = elf_link_hash_lookup (elf_hash_table (info), name,
4011 FALSE, FALSE, FALSE);
4014 && (h->root.type == bfd_link_hash_undefined
4015 || h->root.type == bfd_link_hash_undefweak)
4016 && h->root.u.undef.abfd)
4017 undef_bfd = h->root.u.undef.abfd;
4022 if (info->default_imported_symver)
4023 /* Use the default symbol version created earlier. */
4024 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4029 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4031 vernum = iver.vs_vers & VERSYM_VERSION;
4033 /* If this is a hidden symbol, or if it is not version
4034 1, we append the version name to the symbol name.
4035 However, we do not modify a non-hidden absolute symbol
4036 if it is not a function, because it might be the version
4037 symbol itself. FIXME: What if it isn't? */
4038 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4040 && (!bfd_is_abs_section (sec)
4041 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4044 size_t namelen, verlen, newlen;
4047 if (isym->st_shndx != SHN_UNDEF)
4049 if (vernum > elf_tdata (abfd)->cverdefs)
4051 else if (vernum > 1)
4053 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4059 (*_bfd_error_handler)
4060 (_("%B: %s: invalid version %u (max %d)"),
4062 elf_tdata (abfd)->cverdefs);
4063 bfd_set_error (bfd_error_bad_value);
4064 goto error_free_vers;
4069 /* We cannot simply test for the number of
4070 entries in the VERNEED section since the
4071 numbers for the needed versions do not start
4073 Elf_Internal_Verneed *t;
4076 for (t = elf_tdata (abfd)->verref;
4080 Elf_Internal_Vernaux *a;
4082 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4084 if (a->vna_other == vernum)
4086 verstr = a->vna_nodename;
4095 (*_bfd_error_handler)
4096 (_("%B: %s: invalid needed version %d"),
4097 abfd, name, vernum);
4098 bfd_set_error (bfd_error_bad_value);
4099 goto error_free_vers;
4103 namelen = strlen (name);
4104 verlen = strlen (verstr);
4105 newlen = namelen + verlen + 2;
4106 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4107 && isym->st_shndx != SHN_UNDEF)
4110 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4111 if (newname == NULL)
4112 goto error_free_vers;
4113 memcpy (newname, name, namelen);
4114 p = newname + namelen;
4116 /* If this is a defined non-hidden version symbol,
4117 we add another @ to the name. This indicates the
4118 default version of the symbol. */
4119 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4120 && isym->st_shndx != SHN_UNDEF)
4122 memcpy (p, verstr, verlen + 1);
4127 /* If necessary, make a second attempt to locate the bfd
4128 containing an unresolved reference to the current symbol. */
4129 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4131 h = elf_link_hash_lookup (elf_hash_table (info), name,
4132 FALSE, FALSE, FALSE);
4135 && (h->root.type == bfd_link_hash_undefined
4136 || h->root.type == bfd_link_hash_undefweak)
4137 && h->root.u.undef.abfd)
4138 undef_bfd = h->root.u.undef.abfd;
4141 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4142 &value, &old_weak, &old_alignment,
4143 sym_hash, &skip, &override,
4144 &type_change_ok, &size_change_ok))
4145 goto error_free_vers;
4154 while (h->root.type == bfd_link_hash_indirect
4155 || h->root.type == bfd_link_hash_warning)
4156 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4158 /* Remember the old alignment if this is a common symbol, so
4159 that we don't reduce the alignment later on. We can't
4160 check later, because _bfd_generic_link_add_one_symbol
4161 will set a default for the alignment which we want to
4162 override. We also remember the old bfd where the existing
4163 definition comes from. */
4164 switch (h->root.type)
4169 case bfd_link_hash_defined:
4170 case bfd_link_hash_defweak:
4171 old_bfd = h->root.u.def.section->owner;
4174 case bfd_link_hash_common:
4175 old_bfd = h->root.u.c.p->section->owner;
4176 old_alignment = h->root.u.c.p->alignment_power;
4180 if (elf_tdata (abfd)->verdef != NULL
4183 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4186 if (! (_bfd_generic_link_add_one_symbol
4187 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4188 (struct bfd_link_hash_entry **) sym_hash)))
4189 goto error_free_vers;
4192 /* We need to make sure that indirect symbol dynamic flags are
4195 while (h->root.type == bfd_link_hash_indirect
4196 || h->root.type == bfd_link_hash_warning)
4197 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4200 if (is_elf_hash_table (htab))
4201 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4203 new_weak = (flags & BSF_WEAK) != 0;
4204 new_weakdef = FALSE;
4208 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4209 && is_elf_hash_table (htab)
4210 && h->u.weakdef == NULL)
4212 /* Keep a list of all weak defined non function symbols from
4213 a dynamic object, using the weakdef field. Later in this
4214 function we will set the weakdef field to the correct
4215 value. We only put non-function symbols from dynamic
4216 objects on this list, because that happens to be the only
4217 time we need to know the normal symbol corresponding to a
4218 weak symbol, and the information is time consuming to
4219 figure out. If the weakdef field is not already NULL,
4220 then this symbol was already defined by some previous
4221 dynamic object, and we will be using that previous
4222 definition anyhow. */
4224 h->u.weakdef = weaks;
4229 /* Set the alignment of a common symbol. */
4230 if ((common || bfd_is_com_section (sec))
4231 && h->root.type == bfd_link_hash_common)
4236 align = bfd_log2 (isym->st_value);
4239 /* The new symbol is a common symbol in a shared object.
4240 We need to get the alignment from the section. */
4241 align = new_sec->alignment_power;
4243 if (align > old_alignment)
4244 h->root.u.c.p->alignment_power = align;
4246 h->root.u.c.p->alignment_power = old_alignment;
4249 if (is_elf_hash_table (htab))
4253 /* Check the alignment when a common symbol is involved. This
4254 can change when a common symbol is overridden by a normal
4255 definition or a common symbol is ignored due to the old
4256 normal definition. We need to make sure the maximum
4257 alignment is maintained. */
4258 if ((old_alignment || common)
4259 && h->root.type != bfd_link_hash_common)
4261 unsigned int common_align;
4262 unsigned int normal_align;
4263 unsigned int symbol_align;
4267 symbol_align = ffs (h->root.u.def.value) - 1;
4268 if (h->root.u.def.section->owner != NULL
4269 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4271 normal_align = h->root.u.def.section->alignment_power;
4272 if (normal_align > symbol_align)
4273 normal_align = symbol_align;
4276 normal_align = symbol_align;
4280 common_align = old_alignment;
4281 common_bfd = old_bfd;
4286 common_align = bfd_log2 (isym->st_value);
4288 normal_bfd = old_bfd;
4291 if (normal_align < common_align)
4293 /* PR binutils/2735 */
4294 if (normal_bfd == NULL)
4295 (*_bfd_error_handler)
4296 (_("Warning: alignment %u of common symbol `%s' in %B"
4297 " is greater than the alignment (%u) of its section %A"),
4298 common_bfd, h->root.u.def.section,
4299 1 << common_align, name, 1 << normal_align);
4301 (*_bfd_error_handler)
4302 (_("Warning: alignment %u of symbol `%s' in %B"
4303 " is smaller than %u in %B"),
4304 normal_bfd, common_bfd,
4305 1 << normal_align, name, 1 << common_align);
4309 /* Remember the symbol size if it isn't undefined. */
4310 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4311 && (definition || h->size == 0))
4314 && h->size != isym->st_size
4315 && ! size_change_ok)
4316 (*_bfd_error_handler)
4317 (_("Warning: size of symbol `%s' changed"
4318 " from %lu in %B to %lu in %B"),
4320 name, (unsigned long) h->size,
4321 (unsigned long) isym->st_size);
4323 h->size = isym->st_size;
4326 /* If this is a common symbol, then we always want H->SIZE
4327 to be the size of the common symbol. The code just above
4328 won't fix the size if a common symbol becomes larger. We
4329 don't warn about a size change here, because that is
4330 covered by --warn-common. Allow changed between different
4332 if (h->root.type == bfd_link_hash_common)
4333 h->size = h->root.u.c.size;
4335 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4336 && ((definition && !new_weak)
4337 || (old_weak && h->root.type == bfd_link_hash_common)
4338 || h->type == STT_NOTYPE))
4340 unsigned int type = ELF_ST_TYPE (isym->st_info);
4342 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4344 if (type == STT_GNU_IFUNC
4345 && (abfd->flags & DYNAMIC) != 0)
4348 if (h->type != type)
4350 if (h->type != STT_NOTYPE && ! type_change_ok)
4351 (*_bfd_error_handler)
4352 (_("Warning: type of symbol `%s' changed"
4353 " from %d to %d in %B"),
4354 abfd, name, h->type, type);
4360 /* Merge st_other field. */
4361 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4363 /* Set a flag in the hash table entry indicating the type of
4364 reference or definition we just found. Keep a count of
4365 the number of dynamic symbols we find. A dynamic symbol
4366 is one which is referenced or defined by both a regular
4367 object and a shared object. */
4374 if (bind != STB_WEAK)
4375 h->ref_regular_nonweak = 1;
4387 /* If the indirect symbol has been forced local, don't
4388 make the real symbol dynamic. */
4389 if ((h == hi || !hi->forced_local)
4390 && (! info->executable
4400 hi->ref_dynamic = 1;
4405 hi->def_dynamic = 1;
4408 /* If the indirect symbol has been forced local, don't
4409 make the real symbol dynamic. */
4410 if ((h == hi || !hi->forced_local)
4413 || (h->u.weakdef != NULL
4415 && h->u.weakdef->dynindx != -1)))
4419 /* We don't want to make debug symbol dynamic. */
4420 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4423 /* Nor should we make plugin symbols dynamic. */
4424 if ((abfd->flags & BFD_PLUGIN) != 0)
4428 h->target_internal = isym->st_target_internal;
4430 /* Check to see if we need to add an indirect symbol for
4431 the default name. */
4432 if (definition || h->root.type == bfd_link_hash_common)
4433 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4434 &sec, &value, &dynsym,
4436 goto error_free_vers;
4438 if (definition && !dynamic)
4440 char *p = strchr (name, ELF_VER_CHR);
4441 if (p != NULL && p[1] != ELF_VER_CHR)
4443 /* Queue non-default versions so that .symver x, x@FOO
4444 aliases can be checked. */
4447 amt = ((isymend - isym + 1)
4448 * sizeof (struct elf_link_hash_entry *));
4450 (struct elf_link_hash_entry **) bfd_malloc (amt);
4452 goto error_free_vers;
4454 nondeflt_vers[nondeflt_vers_cnt++] = h;
4458 if (dynsym && h->dynindx == -1)
4460 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4461 goto error_free_vers;
4462 if (h->u.weakdef != NULL
4464 && h->u.weakdef->dynindx == -1)
4466 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4467 goto error_free_vers;
4470 else if (dynsym && h->dynindx != -1)
4471 /* If the symbol already has a dynamic index, but
4472 visibility says it should not be visible, turn it into
4474 switch (ELF_ST_VISIBILITY (h->other))
4478 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4483 /* Don't add DT_NEEDED for references from the dummy bfd. */
4488 && (undef_bfd == NULL
4489 || (undef_bfd->flags & BFD_PLUGIN) == 0))
4491 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4492 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4495 const char *soname = elf_dt_name (abfd);
4497 /* A symbol from a library loaded via DT_NEEDED of some
4498 other library is referenced by a regular object.
4499 Add a DT_NEEDED entry for it. Issue an error if
4500 --no-add-needed is used and the reference was not
4502 if (undef_bfd != NULL
4503 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4505 (*_bfd_error_handler)
4506 (_("%B: undefined reference to symbol '%s'"),
4508 (*_bfd_error_handler)
4509 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4511 bfd_set_error (bfd_error_invalid_operation);
4512 goto error_free_vers;
4515 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4516 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4519 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4521 goto error_free_vers;
4523 BFD_ASSERT (ret == 0);
4528 if (extversym != NULL)
4534 if (isymbuf != NULL)
4540 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4544 /* Restore the symbol table. */
4545 if (bed->as_needed_cleanup)
4546 (*bed->as_needed_cleanup) (abfd, info);
4547 old_hash = (char *) old_tab + tabsize;
4548 old_ent = (char *) old_hash + hashsize;
4549 sym_hash = elf_sym_hashes (abfd);
4550 htab->root.table.table = old_table;
4551 htab->root.table.size = old_size;
4552 htab->root.table.count = old_count;
4553 memcpy (htab->root.table.table, old_tab, tabsize);
4554 memcpy (sym_hash, old_hash, hashsize);
4555 htab->root.undefs = old_undefs;
4556 htab->root.undefs_tail = old_undefs_tail;
4557 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4558 for (i = 0; i < htab->root.table.size; i++)
4560 struct bfd_hash_entry *p;
4561 struct elf_link_hash_entry *h;
4563 unsigned int alignment_power;
4565 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4567 h = (struct elf_link_hash_entry *) p;
4568 if (h->root.type == bfd_link_hash_warning)
4569 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4570 if (h->dynindx >= old_dynsymcount
4571 && h->dynstr_index < old_dynstr_size)
4572 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4574 /* Preserve the maximum alignment and size for common
4575 symbols even if this dynamic lib isn't on DT_NEEDED
4576 since it can still be loaded at run time by another
4578 if (h->root.type == bfd_link_hash_common)
4580 size = h->root.u.c.size;
4581 alignment_power = h->root.u.c.p->alignment_power;
4586 alignment_power = 0;
4588 memcpy (p, old_ent, htab->root.table.entsize);
4589 old_ent = (char *) old_ent + htab->root.table.entsize;
4590 h = (struct elf_link_hash_entry *) p;
4591 if (h->root.type == bfd_link_hash_warning)
4593 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4594 old_ent = (char *) old_ent + htab->root.table.entsize;
4595 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4597 if (h->root.type == bfd_link_hash_common)
4599 if (size > h->root.u.c.size)
4600 h->root.u.c.size = size;
4601 if (alignment_power > h->root.u.c.p->alignment_power)
4602 h->root.u.c.p->alignment_power = alignment_power;
4607 /* Make a special call to the linker "notice" function to
4608 tell it that symbols added for crefs may need to be removed. */
4609 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4610 notice_not_needed, 0, NULL))
4611 goto error_free_vers;
4614 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4616 if (nondeflt_vers != NULL)
4617 free (nondeflt_vers);
4621 if (old_tab != NULL)
4623 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4624 notice_needed, 0, NULL))
4625 goto error_free_vers;
4630 /* Now that all the symbols from this input file are created, handle
4631 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4632 if (nondeflt_vers != NULL)
4634 bfd_size_type cnt, symidx;
4636 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4638 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4639 char *shortname, *p;
4641 p = strchr (h->root.root.string, ELF_VER_CHR);
4643 || (h->root.type != bfd_link_hash_defined
4644 && h->root.type != bfd_link_hash_defweak))
4647 amt = p - h->root.root.string;
4648 shortname = (char *) bfd_malloc (amt + 1);
4650 goto error_free_vers;
4651 memcpy (shortname, h->root.root.string, amt);
4652 shortname[amt] = '\0';
4654 hi = (struct elf_link_hash_entry *)
4655 bfd_link_hash_lookup (&htab->root, shortname,
4656 FALSE, FALSE, FALSE);
4658 && hi->root.type == h->root.type
4659 && hi->root.u.def.value == h->root.u.def.value
4660 && hi->root.u.def.section == h->root.u.def.section)
4662 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4663 hi->root.type = bfd_link_hash_indirect;
4664 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4665 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4666 sym_hash = elf_sym_hashes (abfd);
4668 for (symidx = 0; symidx < extsymcount; ++symidx)
4669 if (sym_hash[symidx] == hi)
4671 sym_hash[symidx] = h;
4677 free (nondeflt_vers);
4678 nondeflt_vers = NULL;
4681 /* Now set the weakdefs field correctly for all the weak defined
4682 symbols we found. The only way to do this is to search all the
4683 symbols. Since we only need the information for non functions in
4684 dynamic objects, that's the only time we actually put anything on
4685 the list WEAKS. We need this information so that if a regular
4686 object refers to a symbol defined weakly in a dynamic object, the
4687 real symbol in the dynamic object is also put in the dynamic
4688 symbols; we also must arrange for both symbols to point to the
4689 same memory location. We could handle the general case of symbol
4690 aliasing, but a general symbol alias can only be generated in
4691 assembler code, handling it correctly would be very time
4692 consuming, and other ELF linkers don't handle general aliasing
4696 struct elf_link_hash_entry **hpp;
4697 struct elf_link_hash_entry **hppend;
4698 struct elf_link_hash_entry **sorted_sym_hash;
4699 struct elf_link_hash_entry *h;
4702 /* Since we have to search the whole symbol list for each weak
4703 defined symbol, search time for N weak defined symbols will be
4704 O(N^2). Binary search will cut it down to O(NlogN). */
4705 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4706 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4707 if (sorted_sym_hash == NULL)
4709 sym_hash = sorted_sym_hash;
4710 hpp = elf_sym_hashes (abfd);
4711 hppend = hpp + extsymcount;
4713 for (; hpp < hppend; hpp++)
4717 && h->root.type == bfd_link_hash_defined
4718 && !bed->is_function_type (h->type))
4726 qsort (sorted_sym_hash, sym_count,
4727 sizeof (struct elf_link_hash_entry *),
4730 while (weaks != NULL)
4732 struct elf_link_hash_entry *hlook;
4738 weaks = hlook->u.weakdef;
4739 hlook->u.weakdef = NULL;
4741 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4742 || hlook->root.type == bfd_link_hash_defweak
4743 || hlook->root.type == bfd_link_hash_common
4744 || hlook->root.type == bfd_link_hash_indirect);
4745 slook = hlook->root.u.def.section;
4746 vlook = hlook->root.u.def.value;
4752 bfd_signed_vma vdiff;
4754 h = sorted_sym_hash[idx];
4755 vdiff = vlook - h->root.u.def.value;
4762 long sdiff = slook->id - h->root.u.def.section->id;
4772 /* We didn't find a value/section match. */
4776 /* With multiple aliases, or when the weak symbol is already
4777 strongly defined, we have multiple matching symbols and
4778 the binary search above may land on any of them. Step
4779 one past the matching symbol(s). */
4782 h = sorted_sym_hash[idx];
4783 if (h->root.u.def.section != slook
4784 || h->root.u.def.value != vlook)
4788 /* Now look back over the aliases. Since we sorted by size
4789 as well as value and section, we'll choose the one with
4790 the largest size. */
4793 h = sorted_sym_hash[idx];
4795 /* Stop if value or section doesn't match. */
4796 if (h->root.u.def.section != slook
4797 || h->root.u.def.value != vlook)
4799 else if (h != hlook)
4801 hlook->u.weakdef = h;
4803 /* If the weak definition is in the list of dynamic
4804 symbols, make sure the real definition is put
4806 if (hlook->dynindx != -1 && h->dynindx == -1)
4808 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4811 free (sorted_sym_hash);
4816 /* If the real definition is in the list of dynamic
4817 symbols, make sure the weak definition is put
4818 there as well. If we don't do this, then the
4819 dynamic loader might not merge the entries for the
4820 real definition and the weak definition. */
4821 if (h->dynindx != -1 && hlook->dynindx == -1)
4823 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4824 goto err_free_sym_hash;
4831 free (sorted_sym_hash);
4834 if (bed->check_directives
4835 && !(*bed->check_directives) (abfd, info))
4838 /* If this object is the same format as the output object, and it is
4839 not a shared library, then let the backend look through the
4842 This is required to build global offset table entries and to
4843 arrange for dynamic relocs. It is not required for the
4844 particular common case of linking non PIC code, even when linking
4845 against shared libraries, but unfortunately there is no way of
4846 knowing whether an object file has been compiled PIC or not.
4847 Looking through the relocs is not particularly time consuming.
4848 The problem is that we must either (1) keep the relocs in memory,
4849 which causes the linker to require additional runtime memory or
4850 (2) read the relocs twice from the input file, which wastes time.
4851 This would be a good case for using mmap.
4853 I have no idea how to handle linking PIC code into a file of a
4854 different format. It probably can't be done. */
4856 && is_elf_hash_table (htab)
4857 && bed->check_relocs != NULL
4858 && elf_object_id (abfd) == elf_hash_table_id (htab)
4859 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4863 for (o = abfd->sections; o != NULL; o = o->next)
4865 Elf_Internal_Rela *internal_relocs;
4868 if ((o->flags & SEC_RELOC) == 0
4869 || o->reloc_count == 0
4870 || ((info->strip == strip_all || info->strip == strip_debugger)
4871 && (o->flags & SEC_DEBUGGING) != 0)
4872 || bfd_is_abs_section (o->output_section))
4875 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4877 if (internal_relocs == NULL)
4880 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4882 if (elf_section_data (o)->relocs != internal_relocs)
4883 free (internal_relocs);
4890 /* If this is a non-traditional link, try to optimize the handling
4891 of the .stab/.stabstr sections. */
4893 && ! info->traditional_format
4894 && is_elf_hash_table (htab)
4895 && (info->strip != strip_all && info->strip != strip_debugger))
4899 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4900 if (stabstr != NULL)
4902 bfd_size_type string_offset = 0;
4905 for (stab = abfd->sections; stab; stab = stab->next)
4906 if (CONST_STRNEQ (stab->name, ".stab")
4907 && (!stab->name[5] ||
4908 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4909 && (stab->flags & SEC_MERGE) == 0
4910 && !bfd_is_abs_section (stab->output_section))
4912 struct bfd_elf_section_data *secdata;
4914 secdata = elf_section_data (stab);
4915 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4916 stabstr, &secdata->sec_info,
4919 if (secdata->sec_info)
4920 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4925 if (is_elf_hash_table (htab) && add_needed)
4927 /* Add this bfd to the loaded list. */
4928 struct elf_link_loaded_list *n;
4930 n = (struct elf_link_loaded_list *)
4931 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4935 n->next = htab->loaded;
4942 if (old_tab != NULL)
4944 if (nondeflt_vers != NULL)
4945 free (nondeflt_vers);
4946 if (extversym != NULL)
4949 if (isymbuf != NULL)
4955 /* Return the linker hash table entry of a symbol that might be
4956 satisfied by an archive symbol. Return -1 on error. */
4958 struct elf_link_hash_entry *
4959 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4960 struct bfd_link_info *info,
4963 struct elf_link_hash_entry *h;
4967 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4971 /* If this is a default version (the name contains @@), look up the
4972 symbol again with only one `@' as well as without the version.
4973 The effect is that references to the symbol with and without the
4974 version will be matched by the default symbol in the archive. */
4976 p = strchr (name, ELF_VER_CHR);
4977 if (p == NULL || p[1] != ELF_VER_CHR)
4980 /* First check with only one `@'. */
4981 len = strlen (name);
4982 copy = (char *) bfd_alloc (abfd, len);
4984 return (struct elf_link_hash_entry *) 0 - 1;
4986 first = p - name + 1;
4987 memcpy (copy, name, first);
4988 memcpy (copy + first, name + first + 1, len - first);
4990 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4993 /* We also need to check references to the symbol without the
4995 copy[first - 1] = '\0';
4996 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4997 FALSE, FALSE, TRUE);
5000 bfd_release (abfd, copy);
5004 /* Add symbols from an ELF archive file to the linker hash table. We
5005 don't use _bfd_generic_link_add_archive_symbols because of a
5006 problem which arises on UnixWare. The UnixWare libc.so is an
5007 archive which includes an entry libc.so.1 which defines a bunch of
5008 symbols. The libc.so archive also includes a number of other
5009 object files, which also define symbols, some of which are the same
5010 as those defined in libc.so.1. Correct linking requires that we
5011 consider each object file in turn, and include it if it defines any
5012 symbols we need. _bfd_generic_link_add_archive_symbols does not do
5013 this; it looks through the list of undefined symbols, and includes
5014 any object file which defines them. When this algorithm is used on
5015 UnixWare, it winds up pulling in libc.so.1 early and defining a
5016 bunch of symbols. This means that some of the other objects in the
5017 archive are not included in the link, which is incorrect since they
5018 precede libc.so.1 in the archive.
5020 Fortunately, ELF archive handling is simpler than that done by
5021 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5022 oddities. In ELF, if we find a symbol in the archive map, and the
5023 symbol is currently undefined, we know that we must pull in that
5026 Unfortunately, we do have to make multiple passes over the symbol
5027 table until nothing further is resolved. */
5030 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5033 bfd_boolean *defined = NULL;
5034 bfd_boolean *included = NULL;
5038 const struct elf_backend_data *bed;
5039 struct elf_link_hash_entry * (*archive_symbol_lookup)
5040 (bfd *, struct bfd_link_info *, const char *);
5042 if (! bfd_has_map (abfd))
5044 /* An empty archive is a special case. */
5045 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5047 bfd_set_error (bfd_error_no_armap);
5051 /* Keep track of all symbols we know to be already defined, and all
5052 files we know to be already included. This is to speed up the
5053 second and subsequent passes. */
5054 c = bfd_ardata (abfd)->symdef_count;
5058 amt *= sizeof (bfd_boolean);
5059 defined = (bfd_boolean *) bfd_zmalloc (amt);
5060 included = (bfd_boolean *) bfd_zmalloc (amt);
5061 if (defined == NULL || included == NULL)
5064 symdefs = bfd_ardata (abfd)->symdefs;
5065 bed = get_elf_backend_data (abfd);
5066 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5079 symdefend = symdef + c;
5080 for (i = 0; symdef < symdefend; symdef++, i++)
5082 struct elf_link_hash_entry *h;
5084 struct bfd_link_hash_entry *undefs_tail;
5087 if (defined[i] || included[i])
5089 if (symdef->file_offset == last)
5095 h = archive_symbol_lookup (abfd, info, symdef->name);
5096 if (h == (struct elf_link_hash_entry *) 0 - 1)
5102 if (h->root.type == bfd_link_hash_common)
5104 /* We currently have a common symbol. The archive map contains
5105 a reference to this symbol, so we may want to include it. We
5106 only want to include it however, if this archive element
5107 contains a definition of the symbol, not just another common
5110 Unfortunately some archivers (including GNU ar) will put
5111 declarations of common symbols into their archive maps, as
5112 well as real definitions, so we cannot just go by the archive
5113 map alone. Instead we must read in the element's symbol
5114 table and check that to see what kind of symbol definition
5116 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5119 else if (h->root.type != bfd_link_hash_undefined)
5121 if (h->root.type != bfd_link_hash_undefweak)
5126 /* We need to include this archive member. */
5127 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5128 if (element == NULL)
5131 if (! bfd_check_format (element, bfd_object))
5134 /* Doublecheck that we have not included this object
5135 already--it should be impossible, but there may be
5136 something wrong with the archive. */
5137 if (element->archive_pass != 0)
5139 bfd_set_error (bfd_error_bad_value);
5142 element->archive_pass = 1;
5144 undefs_tail = info->hash->undefs_tail;
5146 if (!(*info->callbacks
5147 ->add_archive_element) (info, element, symdef->name, &element))
5149 if (!bfd_link_add_symbols (element, info))
5152 /* If there are any new undefined symbols, we need to make
5153 another pass through the archive in order to see whether
5154 they can be defined. FIXME: This isn't perfect, because
5155 common symbols wind up on undefs_tail and because an
5156 undefined symbol which is defined later on in this pass
5157 does not require another pass. This isn't a bug, but it
5158 does make the code less efficient than it could be. */
5159 if (undefs_tail != info->hash->undefs_tail)
5162 /* Look backward to mark all symbols from this object file
5163 which we have already seen in this pass. */
5167 included[mark] = TRUE;
5172 while (symdefs[mark].file_offset == symdef->file_offset);
5174 /* We mark subsequent symbols from this object file as we go
5175 on through the loop. */
5176 last = symdef->file_offset;
5187 if (defined != NULL)
5189 if (included != NULL)
5194 /* Given an ELF BFD, add symbols to the global hash table as
5198 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5200 switch (bfd_get_format (abfd))
5203 return elf_link_add_object_symbols (abfd, info);
5205 return elf_link_add_archive_symbols (abfd, info);
5207 bfd_set_error (bfd_error_wrong_format);
5212 struct hash_codes_info
5214 unsigned long *hashcodes;
5218 /* This function will be called though elf_link_hash_traverse to store
5219 all hash value of the exported symbols in an array. */
5222 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5224 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5230 /* Ignore indirect symbols. These are added by the versioning code. */
5231 if (h->dynindx == -1)
5234 name = h->root.root.string;
5235 p = strchr (name, ELF_VER_CHR);
5238 alc = (char *) bfd_malloc (p - name + 1);
5244 memcpy (alc, name, p - name);
5245 alc[p - name] = '\0';
5249 /* Compute the hash value. */
5250 ha = bfd_elf_hash (name);
5252 /* Store the found hash value in the array given as the argument. */
5253 *(inf->hashcodes)++ = ha;
5255 /* And store it in the struct so that we can put it in the hash table
5257 h->u.elf_hash_value = ha;
5265 struct collect_gnu_hash_codes
5268 const struct elf_backend_data *bed;
5269 unsigned long int nsyms;
5270 unsigned long int maskbits;
5271 unsigned long int *hashcodes;
5272 unsigned long int *hashval;
5273 unsigned long int *indx;
5274 unsigned long int *counts;
5277 long int min_dynindx;
5278 unsigned long int bucketcount;
5279 unsigned long int symindx;
5280 long int local_indx;
5281 long int shift1, shift2;
5282 unsigned long int mask;
5286 /* This function will be called though elf_link_hash_traverse to store
5287 all hash value of the exported symbols in an array. */
5290 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5292 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5298 /* Ignore indirect symbols. These are added by the versioning code. */
5299 if (h->dynindx == -1)
5302 /* Ignore also local symbols and undefined symbols. */
5303 if (! (*s->bed->elf_hash_symbol) (h))
5306 name = h->root.root.string;
5307 p = strchr (name, ELF_VER_CHR);
5310 alc = (char *) bfd_malloc (p - name + 1);
5316 memcpy (alc, name, p - name);
5317 alc[p - name] = '\0';
5321 /* Compute the hash value. */
5322 ha = bfd_elf_gnu_hash (name);
5324 /* Store the found hash value in the array for compute_bucket_count,
5325 and also for .dynsym reordering purposes. */
5326 s->hashcodes[s->nsyms] = ha;
5327 s->hashval[h->dynindx] = ha;
5329 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5330 s->min_dynindx = h->dynindx;
5338 /* This function will be called though elf_link_hash_traverse to do
5339 final dynaminc symbol renumbering. */
5342 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5344 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5345 unsigned long int bucket;
5346 unsigned long int val;
5348 /* Ignore indirect symbols. */
5349 if (h->dynindx == -1)
5352 /* Ignore also local symbols and undefined symbols. */
5353 if (! (*s->bed->elf_hash_symbol) (h))
5355 if (h->dynindx >= s->min_dynindx)
5356 h->dynindx = s->local_indx++;
5360 bucket = s->hashval[h->dynindx] % s->bucketcount;
5361 val = (s->hashval[h->dynindx] >> s->shift1)
5362 & ((s->maskbits >> s->shift1) - 1);
5363 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5365 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5366 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5367 if (s->counts[bucket] == 1)
5368 /* Last element terminates the chain. */
5370 bfd_put_32 (s->output_bfd, val,
5371 s->contents + (s->indx[bucket] - s->symindx) * 4);
5372 --s->counts[bucket];
5373 h->dynindx = s->indx[bucket]++;
5377 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5380 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5382 return !(h->forced_local
5383 || h->root.type == bfd_link_hash_undefined
5384 || h->root.type == bfd_link_hash_undefweak
5385 || ((h->root.type == bfd_link_hash_defined
5386 || h->root.type == bfd_link_hash_defweak)
5387 && h->root.u.def.section->output_section == NULL));
5390 /* Array used to determine the number of hash table buckets to use
5391 based on the number of symbols there are. If there are fewer than
5392 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5393 fewer than 37 we use 17 buckets, and so forth. We never use more
5394 than 32771 buckets. */
5396 static const size_t elf_buckets[] =
5398 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5402 /* Compute bucket count for hashing table. We do not use a static set
5403 of possible tables sizes anymore. Instead we determine for all
5404 possible reasonable sizes of the table the outcome (i.e., the
5405 number of collisions etc) and choose the best solution. The
5406 weighting functions are not too simple to allow the table to grow
5407 without bounds. Instead one of the weighting factors is the size.
5408 Therefore the result is always a good payoff between few collisions
5409 (= short chain lengths) and table size. */
5411 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5412 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5413 unsigned long int nsyms,
5416 size_t best_size = 0;
5417 unsigned long int i;
5419 /* We have a problem here. The following code to optimize the table
5420 size requires an integer type with more the 32 bits. If
5421 BFD_HOST_U_64_BIT is set we know about such a type. */
5422 #ifdef BFD_HOST_U_64_BIT
5427 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5428 bfd *dynobj = elf_hash_table (info)->dynobj;
5429 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5430 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5431 unsigned long int *counts;
5433 unsigned int no_improvement_count = 0;
5435 /* Possible optimization parameters: if we have NSYMS symbols we say
5436 that the hashing table must at least have NSYMS/4 and at most
5438 minsize = nsyms / 4;
5441 best_size = maxsize = nsyms * 2;
5446 if ((best_size & 31) == 0)
5450 /* Create array where we count the collisions in. We must use bfd_malloc
5451 since the size could be large. */
5453 amt *= sizeof (unsigned long int);
5454 counts = (unsigned long int *) bfd_malloc (amt);
5458 /* Compute the "optimal" size for the hash table. The criteria is a
5459 minimal chain length. The minor criteria is (of course) the size
5461 for (i = minsize; i < maxsize; ++i)
5463 /* Walk through the array of hashcodes and count the collisions. */
5464 BFD_HOST_U_64_BIT max;
5465 unsigned long int j;
5466 unsigned long int fact;
5468 if (gnu_hash && (i & 31) == 0)
5471 memset (counts, '\0', i * sizeof (unsigned long int));
5473 /* Determine how often each hash bucket is used. */
5474 for (j = 0; j < nsyms; ++j)
5475 ++counts[hashcodes[j] % i];
5477 /* For the weight function we need some information about the
5478 pagesize on the target. This is information need not be 100%
5479 accurate. Since this information is not available (so far) we
5480 define it here to a reasonable default value. If it is crucial
5481 to have a better value some day simply define this value. */
5482 # ifndef BFD_TARGET_PAGESIZE
5483 # define BFD_TARGET_PAGESIZE (4096)
5486 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5488 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5491 /* Variant 1: optimize for short chains. We add the squares
5492 of all the chain lengths (which favors many small chain
5493 over a few long chains). */
5494 for (j = 0; j < i; ++j)
5495 max += counts[j] * counts[j];
5497 /* This adds penalties for the overall size of the table. */
5498 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5501 /* Variant 2: Optimize a lot more for small table. Here we
5502 also add squares of the size but we also add penalties for
5503 empty slots (the +1 term). */
5504 for (j = 0; j < i; ++j)
5505 max += (1 + counts[j]) * (1 + counts[j]);
5507 /* The overall size of the table is considered, but not as
5508 strong as in variant 1, where it is squared. */
5509 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5513 /* Compare with current best results. */
5514 if (max < best_chlen)
5518 no_improvement_count = 0;
5520 /* PR 11843: Avoid futile long searches for the best bucket size
5521 when there are a large number of symbols. */
5522 else if (++no_improvement_count == 100)
5529 #endif /* defined (BFD_HOST_U_64_BIT) */
5531 /* This is the fallback solution if no 64bit type is available or if we
5532 are not supposed to spend much time on optimizations. We select the
5533 bucket count using a fixed set of numbers. */
5534 for (i = 0; elf_buckets[i] != 0; i++)
5536 best_size = elf_buckets[i];
5537 if (nsyms < elf_buckets[i + 1])
5540 if (gnu_hash && best_size < 2)
5547 /* Size any SHT_GROUP section for ld -r. */
5550 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5554 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5555 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5556 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5561 /* Set a default stack segment size. The value in INFO wins. If it
5562 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5563 undefined it is initialized. */
5566 bfd_elf_stack_segment_size (bfd *output_bfd,
5567 struct bfd_link_info *info,
5568 const char *legacy_symbol,
5569 bfd_vma default_size)
5571 struct elf_link_hash_entry *h = NULL;
5573 /* Look for legacy symbol. */
5575 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5576 FALSE, FALSE, FALSE);
5577 if (h && (h->root.type == bfd_link_hash_defined
5578 || h->root.type == bfd_link_hash_defweak)
5580 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5582 /* The symbol has no type if specified on the command line. */
5583 h->type = STT_OBJECT;
5584 if (info->stacksize)
5585 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5586 output_bfd, legacy_symbol);
5587 else if (h->root.u.def.section != bfd_abs_section_ptr)
5588 (*_bfd_error_handler) (_("%B: %s not absolute"),
5589 output_bfd, legacy_symbol);
5591 info->stacksize = h->root.u.def.value;
5594 if (!info->stacksize)
5595 /* If the user didn't set a size, or explicitly inhibit the
5596 size, set it now. */
5597 info->stacksize = default_size;
5599 /* Provide the legacy symbol, if it is referenced. */
5600 if (h && (h->root.type == bfd_link_hash_undefined
5601 || h->root.type == bfd_link_hash_undefweak))
5603 struct bfd_link_hash_entry *bh = NULL;
5605 if (!(_bfd_generic_link_add_one_symbol
5606 (info, output_bfd, legacy_symbol,
5607 BSF_GLOBAL, bfd_abs_section_ptr,
5608 info->stacksize >= 0 ? info->stacksize : 0,
5609 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5612 h = (struct elf_link_hash_entry *) bh;
5614 h->type = STT_OBJECT;
5620 /* Set up the sizes and contents of the ELF dynamic sections. This is
5621 called by the ELF linker emulation before_allocation routine. We
5622 must set the sizes of the sections before the linker sets the
5623 addresses of the various sections. */
5626 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5629 const char *filter_shlib,
5631 const char *depaudit,
5632 const char * const *auxiliary_filters,
5633 struct bfd_link_info *info,
5634 asection **sinterpptr)
5636 bfd_size_type soname_indx;
5638 const struct elf_backend_data *bed;
5639 struct elf_info_failed asvinfo;
5643 soname_indx = (bfd_size_type) -1;
5645 if (!is_elf_hash_table (info->hash))
5648 bed = get_elf_backend_data (output_bfd);
5650 /* Any syms created from now on start with -1 in
5651 got.refcount/offset and plt.refcount/offset. */
5652 elf_hash_table (info)->init_got_refcount
5653 = elf_hash_table (info)->init_got_offset;
5654 elf_hash_table (info)->init_plt_refcount
5655 = elf_hash_table (info)->init_plt_offset;
5657 if (info->relocatable
5658 && !_bfd_elf_size_group_sections (info))
5661 /* The backend may have to create some sections regardless of whether
5662 we're dynamic or not. */
5663 if (bed->elf_backend_always_size_sections
5664 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5667 /* Determine any GNU_STACK segment requirements, after the backend
5668 has had a chance to set a default segment size. */
5669 if (info->execstack)
5670 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5671 else if (info->noexecstack)
5672 elf_stack_flags (output_bfd) = PF_R | PF_W;
5676 asection *notesec = NULL;
5679 for (inputobj = info->input_bfds;
5681 inputobj = inputobj->link_next)
5686 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5688 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5691 if (s->flags & SEC_CODE)
5695 else if (bed->default_execstack)
5698 if (notesec || info->stacksize > 0)
5699 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5700 if (notesec && exec && info->relocatable
5701 && notesec->output_section != bfd_abs_section_ptr)
5702 notesec->output_section->flags |= SEC_CODE;
5705 dynobj = elf_hash_table (info)->dynobj;
5707 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5709 struct elf_info_failed eif;
5710 struct elf_link_hash_entry *h;
5712 struct bfd_elf_version_tree *t;
5713 struct bfd_elf_version_expr *d;
5715 bfd_boolean all_defined;
5717 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5718 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5722 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5724 if (soname_indx == (bfd_size_type) -1
5725 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5731 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5733 info->flags |= DF_SYMBOLIC;
5741 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5743 if (indx == (bfd_size_type) -1)
5746 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5747 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5751 if (filter_shlib != NULL)
5755 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5756 filter_shlib, TRUE);
5757 if (indx == (bfd_size_type) -1
5758 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5762 if (auxiliary_filters != NULL)
5764 const char * const *p;
5766 for (p = auxiliary_filters; *p != NULL; p++)
5770 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5772 if (indx == (bfd_size_type) -1
5773 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5782 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5784 if (indx == (bfd_size_type) -1
5785 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5789 if (depaudit != NULL)
5793 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5795 if (indx == (bfd_size_type) -1
5796 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5803 /* If we are supposed to export all symbols into the dynamic symbol
5804 table (this is not the normal case), then do so. */
5805 if (info->export_dynamic
5806 || (info->executable && info->dynamic))
5808 elf_link_hash_traverse (elf_hash_table (info),
5809 _bfd_elf_export_symbol,
5815 /* Make all global versions with definition. */
5816 for (t = info->version_info; t != NULL; t = t->next)
5817 for (d = t->globals.list; d != NULL; d = d->next)
5818 if (!d->symver && d->literal)
5820 const char *verstr, *name;
5821 size_t namelen, verlen, newlen;
5822 char *newname, *p, leading_char;
5823 struct elf_link_hash_entry *newh;
5825 leading_char = bfd_get_symbol_leading_char (output_bfd);
5827 namelen = strlen (name) + (leading_char != '\0');
5829 verlen = strlen (verstr);
5830 newlen = namelen + verlen + 3;
5832 newname = (char *) bfd_malloc (newlen);
5833 if (newname == NULL)
5835 newname[0] = leading_char;
5836 memcpy (newname + (leading_char != '\0'), name, namelen);
5838 /* Check the hidden versioned definition. */
5839 p = newname + namelen;
5841 memcpy (p, verstr, verlen + 1);
5842 newh = elf_link_hash_lookup (elf_hash_table (info),
5843 newname, FALSE, FALSE,
5846 || (newh->root.type != bfd_link_hash_defined
5847 && newh->root.type != bfd_link_hash_defweak))
5849 /* Check the default versioned definition. */
5851 memcpy (p, verstr, verlen + 1);
5852 newh = elf_link_hash_lookup (elf_hash_table (info),
5853 newname, FALSE, FALSE,
5858 /* Mark this version if there is a definition and it is
5859 not defined in a shared object. */
5861 && !newh->def_dynamic
5862 && (newh->root.type == bfd_link_hash_defined
5863 || newh->root.type == bfd_link_hash_defweak))
5867 /* Attach all the symbols to their version information. */
5868 asvinfo.info = info;
5869 asvinfo.failed = FALSE;
5871 elf_link_hash_traverse (elf_hash_table (info),
5872 _bfd_elf_link_assign_sym_version,
5877 if (!info->allow_undefined_version)
5879 /* Check if all global versions have a definition. */
5881 for (t = info->version_info; t != NULL; t = t->next)
5882 for (d = t->globals.list; d != NULL; d = d->next)
5883 if (d->literal && !d->symver && !d->script)
5885 (*_bfd_error_handler)
5886 (_("%s: undefined version: %s"),
5887 d->pattern, t->name);
5888 all_defined = FALSE;
5893 bfd_set_error (bfd_error_bad_value);
5898 /* Find all symbols which were defined in a dynamic object and make
5899 the backend pick a reasonable value for them. */
5900 elf_link_hash_traverse (elf_hash_table (info),
5901 _bfd_elf_adjust_dynamic_symbol,
5906 /* Add some entries to the .dynamic section. We fill in some of the
5907 values later, in bfd_elf_final_link, but we must add the entries
5908 now so that we know the final size of the .dynamic section. */
5910 /* If there are initialization and/or finalization functions to
5911 call then add the corresponding DT_INIT/DT_FINI entries. */
5912 h = (info->init_function
5913 ? elf_link_hash_lookup (elf_hash_table (info),
5914 info->init_function, FALSE,
5921 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5924 h = (info->fini_function
5925 ? elf_link_hash_lookup (elf_hash_table (info),
5926 info->fini_function, FALSE,
5933 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5937 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5938 if (s != NULL && s->linker_has_input)
5940 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5941 if (! info->executable)
5946 for (sub = info->input_bfds; sub != NULL;
5947 sub = sub->link_next)
5948 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5949 for (o = sub->sections; o != NULL; o = o->next)
5950 if (elf_section_data (o)->this_hdr.sh_type
5951 == SHT_PREINIT_ARRAY)
5953 (*_bfd_error_handler)
5954 (_("%B: .preinit_array section is not allowed in DSO"),
5959 bfd_set_error (bfd_error_nonrepresentable_section);
5963 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5964 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5967 s = bfd_get_section_by_name (output_bfd, ".init_array");
5968 if (s != NULL && s->linker_has_input)
5970 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5971 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5974 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5975 if (s != NULL && s->linker_has_input)
5977 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5978 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5982 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5983 /* If .dynstr is excluded from the link, we don't want any of
5984 these tags. Strictly, we should be checking each section
5985 individually; This quick check covers for the case where
5986 someone does a /DISCARD/ : { *(*) }. */
5987 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5989 bfd_size_type strsize;
5991 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5992 if ((info->emit_hash
5993 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5994 || (info->emit_gnu_hash
5995 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5996 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5997 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5998 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5999 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6000 bed->s->sizeof_sym))
6005 /* The backend must work out the sizes of all the other dynamic
6008 && bed->elf_backend_size_dynamic_sections != NULL
6009 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6012 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6015 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6017 unsigned long section_sym_count;
6018 struct bfd_elf_version_tree *verdefs;
6021 /* Set up the version definition section. */
6022 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6023 BFD_ASSERT (s != NULL);
6025 /* We may have created additional version definitions if we are
6026 just linking a regular application. */
6027 verdefs = info->version_info;
6029 /* Skip anonymous version tag. */
6030 if (verdefs != NULL && verdefs->vernum == 0)
6031 verdefs = verdefs->next;
6033 if (verdefs == NULL && !info->create_default_symver)
6034 s->flags |= SEC_EXCLUDE;
6039 struct bfd_elf_version_tree *t;
6041 Elf_Internal_Verdef def;
6042 Elf_Internal_Verdaux defaux;
6043 struct bfd_link_hash_entry *bh;
6044 struct elf_link_hash_entry *h;
6050 /* Make space for the base version. */
6051 size += sizeof (Elf_External_Verdef);
6052 size += sizeof (Elf_External_Verdaux);
6055 /* Make space for the default version. */
6056 if (info->create_default_symver)
6058 size += sizeof (Elf_External_Verdef);
6062 for (t = verdefs; t != NULL; t = t->next)
6064 struct bfd_elf_version_deps *n;
6066 /* Don't emit base version twice. */
6070 size += sizeof (Elf_External_Verdef);
6071 size += sizeof (Elf_External_Verdaux);
6074 for (n = t->deps; n != NULL; n = n->next)
6075 size += sizeof (Elf_External_Verdaux);
6079 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6080 if (s->contents == NULL && s->size != 0)
6083 /* Fill in the version definition section. */
6087 def.vd_version = VER_DEF_CURRENT;
6088 def.vd_flags = VER_FLG_BASE;
6091 if (info->create_default_symver)
6093 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6094 def.vd_next = sizeof (Elf_External_Verdef);
6098 def.vd_aux = sizeof (Elf_External_Verdef);
6099 def.vd_next = (sizeof (Elf_External_Verdef)
6100 + sizeof (Elf_External_Verdaux));
6103 if (soname_indx != (bfd_size_type) -1)
6105 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6107 def.vd_hash = bfd_elf_hash (soname);
6108 defaux.vda_name = soname_indx;
6115 name = lbasename (output_bfd->filename);
6116 def.vd_hash = bfd_elf_hash (name);
6117 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6119 if (indx == (bfd_size_type) -1)
6121 defaux.vda_name = indx;
6123 defaux.vda_next = 0;
6125 _bfd_elf_swap_verdef_out (output_bfd, &def,
6126 (Elf_External_Verdef *) p);
6127 p += sizeof (Elf_External_Verdef);
6128 if (info->create_default_symver)
6130 /* Add a symbol representing this version. */
6132 if (! (_bfd_generic_link_add_one_symbol
6133 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6135 get_elf_backend_data (dynobj)->collect, &bh)))
6137 h = (struct elf_link_hash_entry *) bh;
6140 h->type = STT_OBJECT;
6141 h->verinfo.vertree = NULL;
6143 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6146 /* Create a duplicate of the base version with the same
6147 aux block, but different flags. */
6150 def.vd_aux = sizeof (Elf_External_Verdef);
6152 def.vd_next = (sizeof (Elf_External_Verdef)
6153 + sizeof (Elf_External_Verdaux));
6156 _bfd_elf_swap_verdef_out (output_bfd, &def,
6157 (Elf_External_Verdef *) p);
6158 p += sizeof (Elf_External_Verdef);
6160 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6161 (Elf_External_Verdaux *) p);
6162 p += sizeof (Elf_External_Verdaux);
6164 for (t = verdefs; t != NULL; t = t->next)
6167 struct bfd_elf_version_deps *n;
6169 /* Don't emit the base version twice. */
6174 for (n = t->deps; n != NULL; n = n->next)
6177 /* Add a symbol representing this version. */
6179 if (! (_bfd_generic_link_add_one_symbol
6180 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6182 get_elf_backend_data (dynobj)->collect, &bh)))
6184 h = (struct elf_link_hash_entry *) bh;
6187 h->type = STT_OBJECT;
6188 h->verinfo.vertree = t;
6190 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6193 def.vd_version = VER_DEF_CURRENT;
6195 if (t->globals.list == NULL
6196 && t->locals.list == NULL
6198 def.vd_flags |= VER_FLG_WEAK;
6199 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6200 def.vd_cnt = cdeps + 1;
6201 def.vd_hash = bfd_elf_hash (t->name);
6202 def.vd_aux = sizeof (Elf_External_Verdef);
6205 /* If a basever node is next, it *must* be the last node in
6206 the chain, otherwise Verdef construction breaks. */
6207 if (t->next != NULL && t->next->vernum == 0)
6208 BFD_ASSERT (t->next->next == NULL);
6210 if (t->next != NULL && t->next->vernum != 0)
6211 def.vd_next = (sizeof (Elf_External_Verdef)
6212 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6214 _bfd_elf_swap_verdef_out (output_bfd, &def,
6215 (Elf_External_Verdef *) p);
6216 p += sizeof (Elf_External_Verdef);
6218 defaux.vda_name = h->dynstr_index;
6219 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6221 defaux.vda_next = 0;
6222 if (t->deps != NULL)
6223 defaux.vda_next = sizeof (Elf_External_Verdaux);
6224 t->name_indx = defaux.vda_name;
6226 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6227 (Elf_External_Verdaux *) p);
6228 p += sizeof (Elf_External_Verdaux);
6230 for (n = t->deps; n != NULL; n = n->next)
6232 if (n->version_needed == NULL)
6234 /* This can happen if there was an error in the
6236 defaux.vda_name = 0;
6240 defaux.vda_name = n->version_needed->name_indx;
6241 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6244 if (n->next == NULL)
6245 defaux.vda_next = 0;
6247 defaux.vda_next = sizeof (Elf_External_Verdaux);
6249 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6250 (Elf_External_Verdaux *) p);
6251 p += sizeof (Elf_External_Verdaux);
6255 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6256 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6259 elf_tdata (output_bfd)->cverdefs = cdefs;
6262 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6264 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6267 else if (info->flags & DF_BIND_NOW)
6269 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6275 if (info->executable)
6276 info->flags_1 &= ~ (DF_1_INITFIRST
6279 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6283 /* Work out the size of the version reference section. */
6285 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6286 BFD_ASSERT (s != NULL);
6288 struct elf_find_verdep_info sinfo;
6291 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6292 if (sinfo.vers == 0)
6294 sinfo.failed = FALSE;
6296 elf_link_hash_traverse (elf_hash_table (info),
6297 _bfd_elf_link_find_version_dependencies,
6302 if (elf_tdata (output_bfd)->verref == NULL)
6303 s->flags |= SEC_EXCLUDE;
6306 Elf_Internal_Verneed *t;
6311 /* Build the version dependency section. */
6314 for (t = elf_tdata (output_bfd)->verref;
6318 Elf_Internal_Vernaux *a;
6320 size += sizeof (Elf_External_Verneed);
6322 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6323 size += sizeof (Elf_External_Vernaux);
6327 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6328 if (s->contents == NULL)
6332 for (t = elf_tdata (output_bfd)->verref;
6337 Elf_Internal_Vernaux *a;
6341 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6344 t->vn_version = VER_NEED_CURRENT;
6346 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6347 elf_dt_name (t->vn_bfd) != NULL
6348 ? elf_dt_name (t->vn_bfd)
6349 : lbasename (t->vn_bfd->filename),
6351 if (indx == (bfd_size_type) -1)
6354 t->vn_aux = sizeof (Elf_External_Verneed);
6355 if (t->vn_nextref == NULL)
6358 t->vn_next = (sizeof (Elf_External_Verneed)
6359 + caux * sizeof (Elf_External_Vernaux));
6361 _bfd_elf_swap_verneed_out (output_bfd, t,
6362 (Elf_External_Verneed *) p);
6363 p += sizeof (Elf_External_Verneed);
6365 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6367 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6368 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6369 a->vna_nodename, FALSE);
6370 if (indx == (bfd_size_type) -1)
6373 if (a->vna_nextptr == NULL)
6376 a->vna_next = sizeof (Elf_External_Vernaux);
6378 _bfd_elf_swap_vernaux_out (output_bfd, a,
6379 (Elf_External_Vernaux *) p);
6380 p += sizeof (Elf_External_Vernaux);
6384 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6385 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6388 elf_tdata (output_bfd)->cverrefs = crefs;
6392 if ((elf_tdata (output_bfd)->cverrefs == 0
6393 && elf_tdata (output_bfd)->cverdefs == 0)
6394 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6395 §ion_sym_count) == 0)
6397 s = bfd_get_linker_section (dynobj, ".gnu.version");
6398 s->flags |= SEC_EXCLUDE;
6404 /* Find the first non-excluded output section. We'll use its
6405 section symbol for some emitted relocs. */
6407 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6411 for (s = output_bfd->sections; s != NULL; s = s->next)
6412 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6413 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6415 elf_hash_table (info)->text_index_section = s;
6420 /* Find two non-excluded output sections, one for code, one for data.
6421 We'll use their section symbols for some emitted relocs. */
6423 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6427 /* Data first, since setting text_index_section changes
6428 _bfd_elf_link_omit_section_dynsym. */
6429 for (s = output_bfd->sections; s != NULL; s = s->next)
6430 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6431 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6433 elf_hash_table (info)->data_index_section = s;
6437 for (s = output_bfd->sections; s != NULL; s = s->next)
6438 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6439 == (SEC_ALLOC | SEC_READONLY))
6440 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6442 elf_hash_table (info)->text_index_section = s;
6446 if (elf_hash_table (info)->text_index_section == NULL)
6447 elf_hash_table (info)->text_index_section
6448 = elf_hash_table (info)->data_index_section;
6452 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6454 const struct elf_backend_data *bed;
6456 if (!is_elf_hash_table (info->hash))
6459 bed = get_elf_backend_data (output_bfd);
6460 (*bed->elf_backend_init_index_section) (output_bfd, info);
6462 if (elf_hash_table (info)->dynamic_sections_created)
6466 bfd_size_type dynsymcount;
6467 unsigned long section_sym_count;
6468 unsigned int dtagcount;
6470 dynobj = elf_hash_table (info)->dynobj;
6472 /* Assign dynsym indicies. In a shared library we generate a
6473 section symbol for each output section, which come first.
6474 Next come all of the back-end allocated local dynamic syms,
6475 followed by the rest of the global symbols. */
6477 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6478 §ion_sym_count);
6480 /* Work out the size of the symbol version section. */
6481 s = bfd_get_linker_section (dynobj, ".gnu.version");
6482 BFD_ASSERT (s != NULL);
6483 if (dynsymcount != 0
6484 && (s->flags & SEC_EXCLUDE) == 0)
6486 s->size = dynsymcount * sizeof (Elf_External_Versym);
6487 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6488 if (s->contents == NULL)
6491 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6495 /* Set the size of the .dynsym and .hash sections. We counted
6496 the number of dynamic symbols in elf_link_add_object_symbols.
6497 We will build the contents of .dynsym and .hash when we build
6498 the final symbol table, because until then we do not know the
6499 correct value to give the symbols. We built the .dynstr
6500 section as we went along in elf_link_add_object_symbols. */
6501 s = bfd_get_linker_section (dynobj, ".dynsym");
6502 BFD_ASSERT (s != NULL);
6503 s->size = dynsymcount * bed->s->sizeof_sym;
6505 if (dynsymcount != 0)
6507 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6508 if (s->contents == NULL)
6511 /* The first entry in .dynsym is a dummy symbol.
6512 Clear all the section syms, in case we don't output them all. */
6513 ++section_sym_count;
6514 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6517 elf_hash_table (info)->bucketcount = 0;
6519 /* Compute the size of the hashing table. As a side effect this
6520 computes the hash values for all the names we export. */
6521 if (info->emit_hash)
6523 unsigned long int *hashcodes;
6524 struct hash_codes_info hashinf;
6526 unsigned long int nsyms;
6528 size_t hash_entry_size;
6530 /* Compute the hash values for all exported symbols. At the same
6531 time store the values in an array so that we could use them for
6533 amt = dynsymcount * sizeof (unsigned long int);
6534 hashcodes = (unsigned long int *) bfd_malloc (amt);
6535 if (hashcodes == NULL)
6537 hashinf.hashcodes = hashcodes;
6538 hashinf.error = FALSE;
6540 /* Put all hash values in HASHCODES. */
6541 elf_link_hash_traverse (elf_hash_table (info),
6542 elf_collect_hash_codes, &hashinf);
6549 nsyms = hashinf.hashcodes - hashcodes;
6551 = compute_bucket_count (info, hashcodes, nsyms, 0);
6554 if (bucketcount == 0)
6557 elf_hash_table (info)->bucketcount = bucketcount;
6559 s = bfd_get_linker_section (dynobj, ".hash");
6560 BFD_ASSERT (s != NULL);
6561 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6562 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6563 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6564 if (s->contents == NULL)
6567 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6568 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6569 s->contents + hash_entry_size);
6572 if (info->emit_gnu_hash)
6575 unsigned char *contents;
6576 struct collect_gnu_hash_codes cinfo;
6580 memset (&cinfo, 0, sizeof (cinfo));
6582 /* Compute the hash values for all exported symbols. At the same
6583 time store the values in an array so that we could use them for
6585 amt = dynsymcount * 2 * sizeof (unsigned long int);
6586 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6587 if (cinfo.hashcodes == NULL)
6590 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6591 cinfo.min_dynindx = -1;
6592 cinfo.output_bfd = output_bfd;
6595 /* Put all hash values in HASHCODES. */
6596 elf_link_hash_traverse (elf_hash_table (info),
6597 elf_collect_gnu_hash_codes, &cinfo);
6600 free (cinfo.hashcodes);
6605 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6607 if (bucketcount == 0)
6609 free (cinfo.hashcodes);
6613 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6614 BFD_ASSERT (s != NULL);
6616 if (cinfo.nsyms == 0)
6618 /* Empty .gnu.hash section is special. */
6619 BFD_ASSERT (cinfo.min_dynindx == -1);
6620 free (cinfo.hashcodes);
6621 s->size = 5 * 4 + bed->s->arch_size / 8;
6622 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6623 if (contents == NULL)
6625 s->contents = contents;
6626 /* 1 empty bucket. */
6627 bfd_put_32 (output_bfd, 1, contents);
6628 /* SYMIDX above the special symbol 0. */
6629 bfd_put_32 (output_bfd, 1, contents + 4);
6630 /* Just one word for bitmask. */
6631 bfd_put_32 (output_bfd, 1, contents + 8);
6632 /* Only hash fn bloom filter. */
6633 bfd_put_32 (output_bfd, 0, contents + 12);
6634 /* No hashes are valid - empty bitmask. */
6635 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6636 /* No hashes in the only bucket. */
6637 bfd_put_32 (output_bfd, 0,
6638 contents + 16 + bed->s->arch_size / 8);
6642 unsigned long int maskwords, maskbitslog2, x;
6643 BFD_ASSERT (cinfo.min_dynindx != -1);
6647 while ((x >>= 1) != 0)
6649 if (maskbitslog2 < 3)
6651 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6652 maskbitslog2 = maskbitslog2 + 3;
6654 maskbitslog2 = maskbitslog2 + 2;
6655 if (bed->s->arch_size == 64)
6657 if (maskbitslog2 == 5)
6663 cinfo.mask = (1 << cinfo.shift1) - 1;
6664 cinfo.shift2 = maskbitslog2;
6665 cinfo.maskbits = 1 << maskbitslog2;
6666 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6667 amt = bucketcount * sizeof (unsigned long int) * 2;
6668 amt += maskwords * sizeof (bfd_vma);
6669 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6670 if (cinfo.bitmask == NULL)
6672 free (cinfo.hashcodes);
6676 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6677 cinfo.indx = cinfo.counts + bucketcount;
6678 cinfo.symindx = dynsymcount - cinfo.nsyms;
6679 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6681 /* Determine how often each hash bucket is used. */
6682 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6683 for (i = 0; i < cinfo.nsyms; ++i)
6684 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6686 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6687 if (cinfo.counts[i] != 0)
6689 cinfo.indx[i] = cnt;
6690 cnt += cinfo.counts[i];
6692 BFD_ASSERT (cnt == dynsymcount);
6693 cinfo.bucketcount = bucketcount;
6694 cinfo.local_indx = cinfo.min_dynindx;
6696 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6697 s->size += cinfo.maskbits / 8;
6698 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6699 if (contents == NULL)
6701 free (cinfo.bitmask);
6702 free (cinfo.hashcodes);
6706 s->contents = contents;
6707 bfd_put_32 (output_bfd, bucketcount, contents);
6708 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6709 bfd_put_32 (output_bfd, maskwords, contents + 8);
6710 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6711 contents += 16 + cinfo.maskbits / 8;
6713 for (i = 0; i < bucketcount; ++i)
6715 if (cinfo.counts[i] == 0)
6716 bfd_put_32 (output_bfd, 0, contents);
6718 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6722 cinfo.contents = contents;
6724 /* Renumber dynamic symbols, populate .gnu.hash section. */
6725 elf_link_hash_traverse (elf_hash_table (info),
6726 elf_renumber_gnu_hash_syms, &cinfo);
6728 contents = s->contents + 16;
6729 for (i = 0; i < maskwords; ++i)
6731 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6733 contents += bed->s->arch_size / 8;
6736 free (cinfo.bitmask);
6737 free (cinfo.hashcodes);
6741 s = bfd_get_linker_section (dynobj, ".dynstr");
6742 BFD_ASSERT (s != NULL);
6744 elf_finalize_dynstr (output_bfd, info);
6746 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6748 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6749 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6756 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6759 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6762 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6763 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6766 /* Finish SHF_MERGE section merging. */
6769 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6774 if (!is_elf_hash_table (info->hash))
6777 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6778 if ((ibfd->flags & DYNAMIC) == 0)
6779 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6780 if ((sec->flags & SEC_MERGE) != 0
6781 && !bfd_is_abs_section (sec->output_section))
6783 struct bfd_elf_section_data *secdata;
6785 secdata = elf_section_data (sec);
6786 if (! _bfd_add_merge_section (abfd,
6787 &elf_hash_table (info)->merge_info,
6788 sec, &secdata->sec_info))
6790 else if (secdata->sec_info)
6791 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6794 if (elf_hash_table (info)->merge_info != NULL)
6795 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6796 merge_sections_remove_hook);
6800 /* Create an entry in an ELF linker hash table. */
6802 struct bfd_hash_entry *
6803 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6804 struct bfd_hash_table *table,
6807 /* Allocate the structure if it has not already been allocated by a
6811 entry = (struct bfd_hash_entry *)
6812 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6817 /* Call the allocation method of the superclass. */
6818 entry = _bfd_link_hash_newfunc (entry, table, string);
6821 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6822 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6824 /* Set local fields. */
6827 ret->got = htab->init_got_refcount;
6828 ret->plt = htab->init_plt_refcount;
6829 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6830 - offsetof (struct elf_link_hash_entry, size)));
6831 /* Assume that we have been called by a non-ELF symbol reader.
6832 This flag is then reset by the code which reads an ELF input
6833 file. This ensures that a symbol created by a non-ELF symbol
6834 reader will have the flag set correctly. */
6841 /* Copy data from an indirect symbol to its direct symbol, hiding the
6842 old indirect symbol. Also used for copying flags to a weakdef. */
6845 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6846 struct elf_link_hash_entry *dir,
6847 struct elf_link_hash_entry *ind)
6849 struct elf_link_hash_table *htab;
6851 /* Copy down any references that we may have already seen to the
6852 symbol which just became indirect. */
6854 dir->ref_dynamic |= ind->ref_dynamic;
6855 dir->ref_regular |= ind->ref_regular;
6856 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6857 dir->non_got_ref |= ind->non_got_ref;
6858 dir->needs_plt |= ind->needs_plt;
6859 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6861 if (ind->root.type != bfd_link_hash_indirect)
6864 /* Copy over the global and procedure linkage table refcount entries.
6865 These may have been already set up by a check_relocs routine. */
6866 htab = elf_hash_table (info);
6867 if (ind->got.refcount > htab->init_got_refcount.refcount)
6869 if (dir->got.refcount < 0)
6870 dir->got.refcount = 0;
6871 dir->got.refcount += ind->got.refcount;
6872 ind->got.refcount = htab->init_got_refcount.refcount;
6875 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6877 if (dir->plt.refcount < 0)
6878 dir->plt.refcount = 0;
6879 dir->plt.refcount += ind->plt.refcount;
6880 ind->plt.refcount = htab->init_plt_refcount.refcount;
6883 if (ind->dynindx != -1)
6885 if (dir->dynindx != -1)
6886 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6887 dir->dynindx = ind->dynindx;
6888 dir->dynstr_index = ind->dynstr_index;
6890 ind->dynstr_index = 0;
6895 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6896 struct elf_link_hash_entry *h,
6897 bfd_boolean force_local)
6899 /* STT_GNU_IFUNC symbol must go through PLT. */
6900 if (h->type != STT_GNU_IFUNC)
6902 h->plt = elf_hash_table (info)->init_plt_offset;
6907 h->forced_local = 1;
6908 if (h->dynindx != -1)
6911 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6917 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6921 _bfd_elf_link_hash_table_init
6922 (struct elf_link_hash_table *table,
6924 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6925 struct bfd_hash_table *,
6927 unsigned int entsize,
6928 enum elf_target_id target_id)
6931 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6933 table->init_got_refcount.refcount = can_refcount - 1;
6934 table->init_plt_refcount.refcount = can_refcount - 1;
6935 table->init_got_offset.offset = -(bfd_vma) 1;
6936 table->init_plt_offset.offset = -(bfd_vma) 1;
6937 /* The first dynamic symbol is a dummy. */
6938 table->dynsymcount = 1;
6940 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6942 table->root.type = bfd_link_elf_hash_table;
6943 table->hash_table_id = target_id;
6948 /* Create an ELF linker hash table. */
6950 struct bfd_link_hash_table *
6951 _bfd_elf_link_hash_table_create (bfd *abfd)
6953 struct elf_link_hash_table *ret;
6954 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6956 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6960 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6961 sizeof (struct elf_link_hash_entry),
6971 /* Destroy an ELF linker hash table. */
6974 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6976 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6977 if (htab->dynstr != NULL)
6978 _bfd_elf_strtab_free (htab->dynstr);
6979 _bfd_merge_sections_free (htab->merge_info);
6980 _bfd_generic_link_hash_table_free (hash);
6983 /* This is a hook for the ELF emulation code in the generic linker to
6984 tell the backend linker what file name to use for the DT_NEEDED
6985 entry for a dynamic object. */
6988 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6990 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6991 && bfd_get_format (abfd) == bfd_object)
6992 elf_dt_name (abfd) = name;
6996 bfd_elf_get_dyn_lib_class (bfd *abfd)
6999 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7000 && bfd_get_format (abfd) == bfd_object)
7001 lib_class = elf_dyn_lib_class (abfd);
7008 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7010 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7011 && bfd_get_format (abfd) == bfd_object)
7012 elf_dyn_lib_class (abfd) = lib_class;
7015 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7016 the linker ELF emulation code. */
7018 struct bfd_link_needed_list *
7019 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7020 struct bfd_link_info *info)
7022 if (! is_elf_hash_table (info->hash))
7024 return elf_hash_table (info)->needed;
7027 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7028 hook for the linker ELF emulation code. */
7030 struct bfd_link_needed_list *
7031 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7032 struct bfd_link_info *info)
7034 if (! is_elf_hash_table (info->hash))
7036 return elf_hash_table (info)->runpath;
7039 /* Get the name actually used for a dynamic object for a link. This
7040 is the SONAME entry if there is one. Otherwise, it is the string
7041 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7044 bfd_elf_get_dt_soname (bfd *abfd)
7046 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7047 && bfd_get_format (abfd) == bfd_object)
7048 return elf_dt_name (abfd);
7052 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7053 the ELF linker emulation code. */
7056 bfd_elf_get_bfd_needed_list (bfd *abfd,
7057 struct bfd_link_needed_list **pneeded)
7060 bfd_byte *dynbuf = NULL;
7061 unsigned int elfsec;
7062 unsigned long shlink;
7063 bfd_byte *extdyn, *extdynend;
7065 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7069 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7070 || bfd_get_format (abfd) != bfd_object)
7073 s = bfd_get_section_by_name (abfd, ".dynamic");
7074 if (s == NULL || s->size == 0)
7077 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7080 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7081 if (elfsec == SHN_BAD)
7084 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7086 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7087 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7090 extdynend = extdyn + s->size;
7091 for (; extdyn < extdynend; extdyn += extdynsize)
7093 Elf_Internal_Dyn dyn;
7095 (*swap_dyn_in) (abfd, extdyn, &dyn);
7097 if (dyn.d_tag == DT_NULL)
7100 if (dyn.d_tag == DT_NEEDED)
7103 struct bfd_link_needed_list *l;
7104 unsigned int tagv = dyn.d_un.d_val;
7107 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7112 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7133 struct elf_symbuf_symbol
7135 unsigned long st_name; /* Symbol name, index in string tbl */
7136 unsigned char st_info; /* Type and binding attributes */
7137 unsigned char st_other; /* Visibilty, and target specific */
7140 struct elf_symbuf_head
7142 struct elf_symbuf_symbol *ssym;
7143 bfd_size_type count;
7144 unsigned int st_shndx;
7151 Elf_Internal_Sym *isym;
7152 struct elf_symbuf_symbol *ssym;
7157 /* Sort references to symbols by ascending section number. */
7160 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7162 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7163 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7165 return s1->st_shndx - s2->st_shndx;
7169 elf_sym_name_compare (const void *arg1, const void *arg2)
7171 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7172 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7173 return strcmp (s1->name, s2->name);
7176 static struct elf_symbuf_head *
7177 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7179 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7180 struct elf_symbuf_symbol *ssym;
7181 struct elf_symbuf_head *ssymbuf, *ssymhead;
7182 bfd_size_type i, shndx_count, total_size;
7184 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7188 for (ind = indbuf, i = 0; i < symcount; i++)
7189 if (isymbuf[i].st_shndx != SHN_UNDEF)
7190 *ind++ = &isymbuf[i];
7193 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7194 elf_sort_elf_symbol);
7197 if (indbufend > indbuf)
7198 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7199 if (ind[0]->st_shndx != ind[1]->st_shndx)
7202 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7203 + (indbufend - indbuf) * sizeof (*ssym));
7204 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7205 if (ssymbuf == NULL)
7211 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7212 ssymbuf->ssym = NULL;
7213 ssymbuf->count = shndx_count;
7214 ssymbuf->st_shndx = 0;
7215 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7217 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7220 ssymhead->ssym = ssym;
7221 ssymhead->count = 0;
7222 ssymhead->st_shndx = (*ind)->st_shndx;
7224 ssym->st_name = (*ind)->st_name;
7225 ssym->st_info = (*ind)->st_info;
7226 ssym->st_other = (*ind)->st_other;
7229 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7230 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7237 /* Check if 2 sections define the same set of local and global
7241 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7242 struct bfd_link_info *info)
7245 const struct elf_backend_data *bed1, *bed2;
7246 Elf_Internal_Shdr *hdr1, *hdr2;
7247 bfd_size_type symcount1, symcount2;
7248 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7249 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7250 Elf_Internal_Sym *isym, *isymend;
7251 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7252 bfd_size_type count1, count2, i;
7253 unsigned int shndx1, shndx2;
7259 /* Both sections have to be in ELF. */
7260 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7261 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7264 if (elf_section_type (sec1) != elf_section_type (sec2))
7267 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7268 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7269 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7272 bed1 = get_elf_backend_data (bfd1);
7273 bed2 = get_elf_backend_data (bfd2);
7274 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7275 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7276 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7277 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7279 if (symcount1 == 0 || symcount2 == 0)
7285 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7286 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7288 if (ssymbuf1 == NULL)
7290 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7292 if (isymbuf1 == NULL)
7295 if (!info->reduce_memory_overheads)
7296 elf_tdata (bfd1)->symbuf = ssymbuf1
7297 = elf_create_symbuf (symcount1, isymbuf1);
7300 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7302 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7304 if (isymbuf2 == NULL)
7307 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7308 elf_tdata (bfd2)->symbuf = ssymbuf2
7309 = elf_create_symbuf (symcount2, isymbuf2);
7312 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7314 /* Optimized faster version. */
7315 bfd_size_type lo, hi, mid;
7316 struct elf_symbol *symp;
7317 struct elf_symbuf_symbol *ssym, *ssymend;
7320 hi = ssymbuf1->count;
7325 mid = (lo + hi) / 2;
7326 if (shndx1 < ssymbuf1[mid].st_shndx)
7328 else if (shndx1 > ssymbuf1[mid].st_shndx)
7332 count1 = ssymbuf1[mid].count;
7339 hi = ssymbuf2->count;
7344 mid = (lo + hi) / 2;
7345 if (shndx2 < ssymbuf2[mid].st_shndx)
7347 else if (shndx2 > ssymbuf2[mid].st_shndx)
7351 count2 = ssymbuf2[mid].count;
7357 if (count1 == 0 || count2 == 0 || count1 != count2)
7360 symtable1 = (struct elf_symbol *)
7361 bfd_malloc (count1 * sizeof (struct elf_symbol));
7362 symtable2 = (struct elf_symbol *)
7363 bfd_malloc (count2 * sizeof (struct elf_symbol));
7364 if (symtable1 == NULL || symtable2 == NULL)
7368 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7369 ssym < ssymend; ssym++, symp++)
7371 symp->u.ssym = ssym;
7372 symp->name = bfd_elf_string_from_elf_section (bfd1,
7378 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7379 ssym < ssymend; ssym++, symp++)
7381 symp->u.ssym = ssym;
7382 symp->name = bfd_elf_string_from_elf_section (bfd2,
7387 /* Sort symbol by name. */
7388 qsort (symtable1, count1, sizeof (struct elf_symbol),
7389 elf_sym_name_compare);
7390 qsort (symtable2, count1, sizeof (struct elf_symbol),
7391 elf_sym_name_compare);
7393 for (i = 0; i < count1; i++)
7394 /* Two symbols must have the same binding, type and name. */
7395 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7396 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7397 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7404 symtable1 = (struct elf_symbol *)
7405 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7406 symtable2 = (struct elf_symbol *)
7407 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7408 if (symtable1 == NULL || symtable2 == NULL)
7411 /* Count definitions in the section. */
7413 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7414 if (isym->st_shndx == shndx1)
7415 symtable1[count1++].u.isym = isym;
7418 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7419 if (isym->st_shndx == shndx2)
7420 symtable2[count2++].u.isym = isym;
7422 if (count1 == 0 || count2 == 0 || count1 != count2)
7425 for (i = 0; i < count1; i++)
7427 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7428 symtable1[i].u.isym->st_name);
7430 for (i = 0; i < count2; i++)
7432 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7433 symtable2[i].u.isym->st_name);
7435 /* Sort symbol by name. */
7436 qsort (symtable1, count1, sizeof (struct elf_symbol),
7437 elf_sym_name_compare);
7438 qsort (symtable2, count1, sizeof (struct elf_symbol),
7439 elf_sym_name_compare);
7441 for (i = 0; i < count1; i++)
7442 /* Two symbols must have the same binding, type and name. */
7443 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7444 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7445 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7463 /* Return TRUE if 2 section types are compatible. */
7466 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7467 bfd *bbfd, const asection *bsec)
7471 || abfd->xvec->flavour != bfd_target_elf_flavour
7472 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7475 return elf_section_type (asec) == elf_section_type (bsec);
7478 /* Final phase of ELF linker. */
7480 /* A structure we use to avoid passing large numbers of arguments. */
7482 struct elf_final_link_info
7484 /* General link information. */
7485 struct bfd_link_info *info;
7488 /* Symbol string table. */
7489 struct bfd_strtab_hash *symstrtab;
7490 /* .dynsym section. */
7491 asection *dynsym_sec;
7492 /* .hash section. */
7494 /* symbol version section (.gnu.version). */
7495 asection *symver_sec;
7496 /* Buffer large enough to hold contents of any section. */
7498 /* Buffer large enough to hold external relocs of any section. */
7499 void *external_relocs;
7500 /* Buffer large enough to hold internal relocs of any section. */
7501 Elf_Internal_Rela *internal_relocs;
7502 /* Buffer large enough to hold external local symbols of any input
7504 bfd_byte *external_syms;
7505 /* And a buffer for symbol section indices. */
7506 Elf_External_Sym_Shndx *locsym_shndx;
7507 /* Buffer large enough to hold internal local symbols of any input
7509 Elf_Internal_Sym *internal_syms;
7510 /* Array large enough to hold a symbol index for each local symbol
7511 of any input BFD. */
7513 /* Array large enough to hold a section pointer for each local
7514 symbol of any input BFD. */
7515 asection **sections;
7516 /* Buffer to hold swapped out symbols. */
7518 /* And one for symbol section indices. */
7519 Elf_External_Sym_Shndx *symshndxbuf;
7520 /* Number of swapped out symbols in buffer. */
7521 size_t symbuf_count;
7522 /* Number of symbols which fit in symbuf. */
7524 /* And same for symshndxbuf. */
7525 size_t shndxbuf_size;
7526 /* Number of STT_FILE syms seen. */
7527 size_t filesym_count;
7530 /* This struct is used to pass information to elf_link_output_extsym. */
7532 struct elf_outext_info
7535 bfd_boolean localsyms;
7536 bfd_boolean need_second_pass;
7537 bfd_boolean second_pass;
7538 struct elf_final_link_info *flinfo;
7542 /* Support for evaluating a complex relocation.
7544 Complex relocations are generalized, self-describing relocations. The
7545 implementation of them consists of two parts: complex symbols, and the
7546 relocations themselves.
7548 The relocations are use a reserved elf-wide relocation type code (R_RELC
7549 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7550 information (start bit, end bit, word width, etc) into the addend. This
7551 information is extracted from CGEN-generated operand tables within gas.
7553 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7554 internal) representing prefix-notation expressions, including but not
7555 limited to those sorts of expressions normally encoded as addends in the
7556 addend field. The symbol mangling format is:
7559 | <unary-operator> ':' <node>
7560 | <binary-operator> ':' <node> ':' <node>
7563 <literal> := 's' <digits=N> ':' <N character symbol name>
7564 | 'S' <digits=N> ':' <N character section name>
7568 <binary-operator> := as in C
7569 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7572 set_symbol_value (bfd *bfd_with_globals,
7573 Elf_Internal_Sym *isymbuf,
7578 struct elf_link_hash_entry **sym_hashes;
7579 struct elf_link_hash_entry *h;
7580 size_t extsymoff = locsymcount;
7582 if (symidx < locsymcount)
7584 Elf_Internal_Sym *sym;
7586 sym = isymbuf + symidx;
7587 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7589 /* It is a local symbol: move it to the
7590 "absolute" section and give it a value. */
7591 sym->st_shndx = SHN_ABS;
7592 sym->st_value = val;
7595 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7599 /* It is a global symbol: set its link type
7600 to "defined" and give it a value. */
7602 sym_hashes = elf_sym_hashes (bfd_with_globals);
7603 h = sym_hashes [symidx - extsymoff];
7604 while (h->root.type == bfd_link_hash_indirect
7605 || h->root.type == bfd_link_hash_warning)
7606 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7607 h->root.type = bfd_link_hash_defined;
7608 h->root.u.def.value = val;
7609 h->root.u.def.section = bfd_abs_section_ptr;
7613 resolve_symbol (const char *name,
7615 struct elf_final_link_info *flinfo,
7617 Elf_Internal_Sym *isymbuf,
7620 Elf_Internal_Sym *sym;
7621 struct bfd_link_hash_entry *global_entry;
7622 const char *candidate = NULL;
7623 Elf_Internal_Shdr *symtab_hdr;
7626 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7628 for (i = 0; i < locsymcount; ++ i)
7632 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7635 candidate = bfd_elf_string_from_elf_section (input_bfd,
7636 symtab_hdr->sh_link,
7639 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7640 name, candidate, (unsigned long) sym->st_value);
7642 if (candidate && strcmp (candidate, name) == 0)
7644 asection *sec = flinfo->sections [i];
7646 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7647 *result += sec->output_offset + sec->output_section->vma;
7649 printf ("Found symbol with value %8.8lx\n",
7650 (unsigned long) *result);
7656 /* Hmm, haven't found it yet. perhaps it is a global. */
7657 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7658 FALSE, FALSE, TRUE);
7662 if (global_entry->type == bfd_link_hash_defined
7663 || global_entry->type == bfd_link_hash_defweak)
7665 *result = (global_entry->u.def.value
7666 + global_entry->u.def.section->output_section->vma
7667 + global_entry->u.def.section->output_offset);
7669 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7670 global_entry->root.string, (unsigned long) *result);
7679 resolve_section (const char *name,
7686 for (curr = sections; curr; curr = curr->next)
7687 if (strcmp (curr->name, name) == 0)
7689 *result = curr->vma;
7693 /* Hmm. still haven't found it. try pseudo-section names. */
7694 for (curr = sections; curr; curr = curr->next)
7696 len = strlen (curr->name);
7697 if (len > strlen (name))
7700 if (strncmp (curr->name, name, len) == 0)
7702 if (strncmp (".end", name + len, 4) == 0)
7704 *result = curr->vma + curr->size;
7708 /* Insert more pseudo-section names here, if you like. */
7716 undefined_reference (const char *reftype, const char *name)
7718 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7723 eval_symbol (bfd_vma *result,
7726 struct elf_final_link_info *flinfo,
7728 Elf_Internal_Sym *isymbuf,
7737 const char *sym = *symp;
7739 bfd_boolean symbol_is_section = FALSE;
7744 if (len < 1 || len > sizeof (symbuf))
7746 bfd_set_error (bfd_error_invalid_operation);
7759 *result = strtoul (sym, (char **) symp, 16);
7763 symbol_is_section = TRUE;
7766 symlen = strtol (sym, (char **) symp, 10);
7767 sym = *symp + 1; /* Skip the trailing ':'. */
7769 if (symend < sym || symlen + 1 > sizeof (symbuf))
7771 bfd_set_error (bfd_error_invalid_operation);
7775 memcpy (symbuf, sym, symlen);
7776 symbuf[symlen] = '\0';
7777 *symp = sym + symlen;
7779 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7780 the symbol as a section, or vice-versa. so we're pretty liberal in our
7781 interpretation here; section means "try section first", not "must be a
7782 section", and likewise with symbol. */
7784 if (symbol_is_section)
7786 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7787 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7788 isymbuf, locsymcount))
7790 undefined_reference ("section", symbuf);
7796 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7797 isymbuf, locsymcount)
7798 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7801 undefined_reference ("symbol", symbuf);
7808 /* All that remains are operators. */
7810 #define UNARY_OP(op) \
7811 if (strncmp (sym, #op, strlen (#op)) == 0) \
7813 sym += strlen (#op); \
7817 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7818 isymbuf, locsymcount, signed_p)) \
7821 *result = op ((bfd_signed_vma) a); \
7827 #define BINARY_OP(op) \
7828 if (strncmp (sym, #op, strlen (#op)) == 0) \
7830 sym += strlen (#op); \
7834 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7835 isymbuf, locsymcount, signed_p)) \
7838 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7839 isymbuf, locsymcount, signed_p)) \
7842 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7872 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7873 bfd_set_error (bfd_error_invalid_operation);
7879 put_value (bfd_vma size,
7880 unsigned long chunksz,
7885 location += (size - chunksz);
7887 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7895 bfd_put_8 (input_bfd, x, location);
7898 bfd_put_16 (input_bfd, x, location);
7901 bfd_put_32 (input_bfd, x, location);
7905 bfd_put_64 (input_bfd, x, location);
7915 get_value (bfd_vma size,
7916 unsigned long chunksz,
7923 /* Sanity checks. */
7924 BFD_ASSERT (chunksz <= sizeof (x)
7927 && (size % chunksz) == 0
7928 && input_bfd != NULL
7929 && location != NULL);
7931 if (chunksz == sizeof (x))
7933 BFD_ASSERT (size == chunksz);
7935 /* Make sure that we do not perform an undefined shift operation.
7936 We know that size == chunksz so there will only be one iteration
7937 of the loop below. */
7941 shift = 8 * chunksz;
7943 for (; size; size -= chunksz, location += chunksz)
7948 x = (x << shift) | bfd_get_8 (input_bfd, location);
7951 x = (x << shift) | bfd_get_16 (input_bfd, location);
7954 x = (x << shift) | bfd_get_32 (input_bfd, location);
7958 x = (x << shift) | bfd_get_64 (input_bfd, location);
7969 decode_complex_addend (unsigned long *start, /* in bits */
7970 unsigned long *oplen, /* in bits */
7971 unsigned long *len, /* in bits */
7972 unsigned long *wordsz, /* in bytes */
7973 unsigned long *chunksz, /* in bytes */
7974 unsigned long *lsb0_p,
7975 unsigned long *signed_p,
7976 unsigned long *trunc_p,
7977 unsigned long encoded)
7979 * start = encoded & 0x3F;
7980 * len = (encoded >> 6) & 0x3F;
7981 * oplen = (encoded >> 12) & 0x3F;
7982 * wordsz = (encoded >> 18) & 0xF;
7983 * chunksz = (encoded >> 22) & 0xF;
7984 * lsb0_p = (encoded >> 27) & 1;
7985 * signed_p = (encoded >> 28) & 1;
7986 * trunc_p = (encoded >> 29) & 1;
7989 bfd_reloc_status_type
7990 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7991 asection *input_section ATTRIBUTE_UNUSED,
7993 Elf_Internal_Rela *rel,
7996 bfd_vma shift, x, mask;
7997 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7998 bfd_reloc_status_type r;
8000 /* Perform this reloc, since it is complex.
8001 (this is not to say that it necessarily refers to a complex
8002 symbol; merely that it is a self-describing CGEN based reloc.
8003 i.e. the addend has the complete reloc information (bit start, end,
8004 word size, etc) encoded within it.). */
8006 decode_complex_addend (&start, &oplen, &len, &wordsz,
8007 &chunksz, &lsb0_p, &signed_p,
8008 &trunc_p, rel->r_addend);
8010 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8013 shift = (start + 1) - len;
8015 shift = (8 * wordsz) - (start + len);
8017 /* FIXME: octets_per_byte. */
8018 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8021 printf ("Doing complex reloc: "
8022 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8023 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8024 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8025 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8026 oplen, (unsigned long) x, (unsigned long) mask,
8027 (unsigned long) relocation);
8032 /* Now do an overflow check. */
8033 r = bfd_check_overflow ((signed_p
8034 ? complain_overflow_signed
8035 : complain_overflow_unsigned),
8036 len, 0, (8 * wordsz),
8040 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8043 printf (" relocation: %8.8lx\n"
8044 " shifted mask: %8.8lx\n"
8045 " shifted/masked reloc: %8.8lx\n"
8046 " result: %8.8lx\n",
8047 (unsigned long) relocation, (unsigned long) (mask << shift),
8048 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8050 /* FIXME: octets_per_byte. */
8051 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8055 /* When performing a relocatable link, the input relocations are
8056 preserved. But, if they reference global symbols, the indices
8057 referenced must be updated. Update all the relocations found in
8061 elf_link_adjust_relocs (bfd *abfd,
8062 struct bfd_elf_section_reloc_data *reldata)
8065 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8067 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8068 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8069 bfd_vma r_type_mask;
8071 unsigned int count = reldata->count;
8072 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8074 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8076 swap_in = bed->s->swap_reloc_in;
8077 swap_out = bed->s->swap_reloc_out;
8079 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8081 swap_in = bed->s->swap_reloca_in;
8082 swap_out = bed->s->swap_reloca_out;
8087 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8090 if (bed->s->arch_size == 32)
8097 r_type_mask = 0xffffffff;
8101 erela = reldata->hdr->contents;
8102 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8104 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8107 if (*rel_hash == NULL)
8110 BFD_ASSERT ((*rel_hash)->indx >= 0);
8112 (*swap_in) (abfd, erela, irela);
8113 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8114 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8115 | (irela[j].r_info & r_type_mask));
8116 (*swap_out) (abfd, irela, erela);
8120 struct elf_link_sort_rela
8126 enum elf_reloc_type_class type;
8127 /* We use this as an array of size int_rels_per_ext_rel. */
8128 Elf_Internal_Rela rela[1];
8132 elf_link_sort_cmp1 (const void *A, const void *B)
8134 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8135 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8136 int relativea, relativeb;
8138 relativea = a->type == reloc_class_relative;
8139 relativeb = b->type == reloc_class_relative;
8141 if (relativea < relativeb)
8143 if (relativea > relativeb)
8145 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8147 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8149 if (a->rela->r_offset < b->rela->r_offset)
8151 if (a->rela->r_offset > b->rela->r_offset)
8157 elf_link_sort_cmp2 (const void *A, const void *B)
8159 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8160 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8163 if (a->u.offset < b->u.offset)
8165 if (a->u.offset > b->u.offset)
8167 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8168 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8173 if (a->rela->r_offset < b->rela->r_offset)
8175 if (a->rela->r_offset > b->rela->r_offset)
8181 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8183 asection *dynamic_relocs;
8186 bfd_size_type count, size;
8187 size_t i, ret, sort_elt, ext_size;
8188 bfd_byte *sort, *s_non_relative, *p;
8189 struct elf_link_sort_rela *sq;
8190 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8191 int i2e = bed->s->int_rels_per_ext_rel;
8192 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8193 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8194 struct bfd_link_order *lo;
8196 bfd_boolean use_rela;
8198 /* Find a dynamic reloc section. */
8199 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8200 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8201 if (rela_dyn != NULL && rela_dyn->size > 0
8202 && rel_dyn != NULL && rel_dyn->size > 0)
8204 bfd_boolean use_rela_initialised = FALSE;
8206 /* This is just here to stop gcc from complaining.
8207 It's initialization checking code is not perfect. */
8210 /* Both sections are present. Examine the sizes
8211 of the indirect sections to help us choose. */
8212 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8213 if (lo->type == bfd_indirect_link_order)
8215 asection *o = lo->u.indirect.section;
8217 if ((o->size % bed->s->sizeof_rela) == 0)
8219 if ((o->size % bed->s->sizeof_rel) == 0)
8220 /* Section size is divisible by both rel and rela sizes.
8221 It is of no help to us. */
8225 /* Section size is only divisible by rela. */
8226 if (use_rela_initialised && (use_rela == FALSE))
8229 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8230 bfd_set_error (bfd_error_invalid_operation);
8236 use_rela_initialised = TRUE;
8240 else if ((o->size % bed->s->sizeof_rel) == 0)
8242 /* Section size is only divisible by rel. */
8243 if (use_rela_initialised && (use_rela == TRUE))
8246 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8247 bfd_set_error (bfd_error_invalid_operation);
8253 use_rela_initialised = TRUE;
8258 /* The section size is not divisible by either - something is wrong. */
8260 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8261 bfd_set_error (bfd_error_invalid_operation);
8266 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8267 if (lo->type == bfd_indirect_link_order)
8269 asection *o = lo->u.indirect.section;
8271 if ((o->size % bed->s->sizeof_rela) == 0)
8273 if ((o->size % bed->s->sizeof_rel) == 0)
8274 /* Section size is divisible by both rel and rela sizes.
8275 It is of no help to us. */
8279 /* Section size is only divisible by rela. */
8280 if (use_rela_initialised && (use_rela == FALSE))
8283 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8284 bfd_set_error (bfd_error_invalid_operation);
8290 use_rela_initialised = TRUE;
8294 else if ((o->size % bed->s->sizeof_rel) == 0)
8296 /* Section size is only divisible by rel. */
8297 if (use_rela_initialised && (use_rela == TRUE))
8300 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8301 bfd_set_error (bfd_error_invalid_operation);
8307 use_rela_initialised = TRUE;
8312 /* The section size is not divisible by either - something is wrong. */
8314 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8315 bfd_set_error (bfd_error_invalid_operation);
8320 if (! use_rela_initialised)
8324 else if (rela_dyn != NULL && rela_dyn->size > 0)
8326 else if (rel_dyn != NULL && rel_dyn->size > 0)
8333 dynamic_relocs = rela_dyn;
8334 ext_size = bed->s->sizeof_rela;
8335 swap_in = bed->s->swap_reloca_in;
8336 swap_out = bed->s->swap_reloca_out;
8340 dynamic_relocs = rel_dyn;
8341 ext_size = bed->s->sizeof_rel;
8342 swap_in = bed->s->swap_reloc_in;
8343 swap_out = bed->s->swap_reloc_out;
8347 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8348 if (lo->type == bfd_indirect_link_order)
8349 size += lo->u.indirect.section->size;
8351 if (size != dynamic_relocs->size)
8354 sort_elt = (sizeof (struct elf_link_sort_rela)
8355 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8357 count = dynamic_relocs->size / ext_size;
8360 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8364 (*info->callbacks->warning)
8365 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8369 if (bed->s->arch_size == 32)
8370 r_sym_mask = ~(bfd_vma) 0xff;
8372 r_sym_mask = ~(bfd_vma) 0xffffffff;
8374 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8375 if (lo->type == bfd_indirect_link_order)
8377 bfd_byte *erel, *erelend;
8378 asection *o = lo->u.indirect.section;
8380 if (o->contents == NULL && o->size != 0)
8382 /* This is a reloc section that is being handled as a normal
8383 section. See bfd_section_from_shdr. We can't combine
8384 relocs in this case. */
8389 erelend = o->contents + o->size;
8390 /* FIXME: octets_per_byte. */
8391 p = sort + o->output_offset / ext_size * sort_elt;
8393 while (erel < erelend)
8395 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8397 (*swap_in) (abfd, erel, s->rela);
8398 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8399 s->u.sym_mask = r_sym_mask;
8405 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8407 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8409 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8410 if (s->type != reloc_class_relative)
8416 sq = (struct elf_link_sort_rela *) s_non_relative;
8417 for (; i < count; i++, p += sort_elt)
8419 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8420 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8422 sp->u.offset = sq->rela->r_offset;
8425 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8427 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8428 if (lo->type == bfd_indirect_link_order)
8430 bfd_byte *erel, *erelend;
8431 asection *o = lo->u.indirect.section;
8434 erelend = o->contents + o->size;
8435 /* FIXME: octets_per_byte. */
8436 p = sort + o->output_offset / ext_size * sort_elt;
8437 while (erel < erelend)
8439 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8440 (*swap_out) (abfd, s->rela, erel);
8447 *psec = dynamic_relocs;
8451 /* Flush the output symbols to the file. */
8454 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8455 const struct elf_backend_data *bed)
8457 if (flinfo->symbuf_count > 0)
8459 Elf_Internal_Shdr *hdr;
8463 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8464 pos = hdr->sh_offset + hdr->sh_size;
8465 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8466 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8467 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8470 hdr->sh_size += amt;
8471 flinfo->symbuf_count = 0;
8477 /* Add a symbol to the output symbol table. */
8480 elf_link_output_sym (struct elf_final_link_info *flinfo,
8482 Elf_Internal_Sym *elfsym,
8483 asection *input_sec,
8484 struct elf_link_hash_entry *h)
8487 Elf_External_Sym_Shndx *destshndx;
8488 int (*output_symbol_hook)
8489 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8490 struct elf_link_hash_entry *);
8491 const struct elf_backend_data *bed;
8493 bed = get_elf_backend_data (flinfo->output_bfd);
8494 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8495 if (output_symbol_hook != NULL)
8497 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8502 if (name == NULL || *name == '\0')
8503 elfsym->st_name = 0;
8504 else if (input_sec->flags & SEC_EXCLUDE)
8505 elfsym->st_name = 0;
8508 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8510 if (elfsym->st_name == (unsigned long) -1)
8514 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8516 if (! elf_link_flush_output_syms (flinfo, bed))
8520 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8521 destshndx = flinfo->symshndxbuf;
8522 if (destshndx != NULL)
8524 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8528 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8529 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8531 if (destshndx == NULL)
8533 flinfo->symshndxbuf = destshndx;
8534 memset ((char *) destshndx + amt, 0, amt);
8535 flinfo->shndxbuf_size *= 2;
8537 destshndx += bfd_get_symcount (flinfo->output_bfd);
8540 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8541 flinfo->symbuf_count += 1;
8542 bfd_get_symcount (flinfo->output_bfd) += 1;
8547 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8550 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8552 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8553 && sym->st_shndx < SHN_LORESERVE)
8555 /* The gABI doesn't support dynamic symbols in output sections
8557 (*_bfd_error_handler)
8558 (_("%B: Too many sections: %d (>= %d)"),
8559 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8560 bfd_set_error (bfd_error_nonrepresentable_section);
8566 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8567 allowing an unsatisfied unversioned symbol in the DSO to match a
8568 versioned symbol that would normally require an explicit version.
8569 We also handle the case that a DSO references a hidden symbol
8570 which may be satisfied by a versioned symbol in another DSO. */
8573 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8574 const struct elf_backend_data *bed,
8575 struct elf_link_hash_entry *h)
8578 struct elf_link_loaded_list *loaded;
8580 if (!is_elf_hash_table (info->hash))
8583 /* Check indirect symbol. */
8584 while (h->root.type == bfd_link_hash_indirect)
8585 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8587 switch (h->root.type)
8593 case bfd_link_hash_undefined:
8594 case bfd_link_hash_undefweak:
8595 abfd = h->root.u.undef.abfd;
8596 if ((abfd->flags & DYNAMIC) == 0
8597 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8601 case bfd_link_hash_defined:
8602 case bfd_link_hash_defweak:
8603 abfd = h->root.u.def.section->owner;
8606 case bfd_link_hash_common:
8607 abfd = h->root.u.c.p->section->owner;
8610 BFD_ASSERT (abfd != NULL);
8612 for (loaded = elf_hash_table (info)->loaded;
8614 loaded = loaded->next)
8617 Elf_Internal_Shdr *hdr;
8618 bfd_size_type symcount;
8619 bfd_size_type extsymcount;
8620 bfd_size_type extsymoff;
8621 Elf_Internal_Shdr *versymhdr;
8622 Elf_Internal_Sym *isym;
8623 Elf_Internal_Sym *isymend;
8624 Elf_Internal_Sym *isymbuf;
8625 Elf_External_Versym *ever;
8626 Elf_External_Versym *extversym;
8628 input = loaded->abfd;
8630 /* We check each DSO for a possible hidden versioned definition. */
8632 || (input->flags & DYNAMIC) == 0
8633 || elf_dynversym (input) == 0)
8636 hdr = &elf_tdata (input)->dynsymtab_hdr;
8638 symcount = hdr->sh_size / bed->s->sizeof_sym;
8639 if (elf_bad_symtab (input))
8641 extsymcount = symcount;
8646 extsymcount = symcount - hdr->sh_info;
8647 extsymoff = hdr->sh_info;
8650 if (extsymcount == 0)
8653 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8655 if (isymbuf == NULL)
8658 /* Read in any version definitions. */
8659 versymhdr = &elf_tdata (input)->dynversym_hdr;
8660 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8661 if (extversym == NULL)
8664 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8665 || (bfd_bread (extversym, versymhdr->sh_size, input)
8666 != versymhdr->sh_size))
8674 ever = extversym + extsymoff;
8675 isymend = isymbuf + extsymcount;
8676 for (isym = isymbuf; isym < isymend; isym++, ever++)
8679 Elf_Internal_Versym iver;
8680 unsigned short version_index;
8682 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8683 || isym->st_shndx == SHN_UNDEF)
8686 name = bfd_elf_string_from_elf_section (input,
8689 if (strcmp (name, h->root.root.string) != 0)
8692 _bfd_elf_swap_versym_in (input, ever, &iver);
8694 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8696 && h->forced_local))
8698 /* If we have a non-hidden versioned sym, then it should
8699 have provided a definition for the undefined sym unless
8700 it is defined in a non-shared object and forced local.
8705 version_index = iver.vs_vers & VERSYM_VERSION;
8706 if (version_index == 1 || version_index == 2)
8708 /* This is the base or first version. We can use it. */
8722 /* Add an external symbol to the symbol table. This is called from
8723 the hash table traversal routine. When generating a shared object,
8724 we go through the symbol table twice. The first time we output
8725 anything that might have been forced to local scope in a version
8726 script. The second time we output the symbols that are still
8730 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8732 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8733 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8734 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8736 Elf_Internal_Sym sym;
8737 asection *input_sec;
8738 const struct elf_backend_data *bed;
8742 if (h->root.type == bfd_link_hash_warning)
8744 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8745 if (h->root.type == bfd_link_hash_new)
8749 /* Decide whether to output this symbol in this pass. */
8750 if (eoinfo->localsyms)
8752 if (!h->forced_local)
8754 if (eoinfo->second_pass
8755 && !((h->root.type == bfd_link_hash_defined
8756 || h->root.type == bfd_link_hash_defweak)
8757 && h->root.u.def.section->output_section != NULL))
8762 if (h->forced_local)
8766 bed = get_elf_backend_data (flinfo->output_bfd);
8768 if (h->root.type == bfd_link_hash_undefined)
8770 /* If we have an undefined symbol reference here then it must have
8771 come from a shared library that is being linked in. (Undefined
8772 references in regular files have already been handled unless
8773 they are in unreferenced sections which are removed by garbage
8775 bfd_boolean ignore_undef = FALSE;
8777 /* Some symbols may be special in that the fact that they're
8778 undefined can be safely ignored - let backend determine that. */
8779 if (bed->elf_backend_ignore_undef_symbol)
8780 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8782 /* If we are reporting errors for this situation then do so now. */
8785 && (!h->ref_regular || flinfo->info->gc_sections)
8786 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8787 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8789 if (!(flinfo->info->callbacks->undefined_symbol
8790 (flinfo->info, h->root.root.string,
8791 h->ref_regular ? NULL : h->root.u.undef.abfd,
8793 (flinfo->info->unresolved_syms_in_shared_libs
8794 == RM_GENERATE_ERROR))))
8796 bfd_set_error (bfd_error_bad_value);
8797 eoinfo->failed = TRUE;
8803 /* We should also warn if a forced local symbol is referenced from
8804 shared libraries. */
8805 if (!flinfo->info->relocatable
8806 && flinfo->info->executable
8811 && h->ref_dynamic_nonweak
8812 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8816 struct elf_link_hash_entry *hi = h;
8818 /* Check indirect symbol. */
8819 while (hi->root.type == bfd_link_hash_indirect)
8820 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8822 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8823 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8824 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8825 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8827 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8828 def_bfd = flinfo->output_bfd;
8829 if (hi->root.u.def.section != bfd_abs_section_ptr)
8830 def_bfd = hi->root.u.def.section->owner;
8831 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8832 h->root.root.string);
8833 bfd_set_error (bfd_error_bad_value);
8834 eoinfo->failed = TRUE;
8838 /* We don't want to output symbols that have never been mentioned by
8839 a regular file, or that we have been told to strip. However, if
8840 h->indx is set to -2, the symbol is used by a reloc and we must
8844 else if ((h->def_dynamic
8846 || h->root.type == bfd_link_hash_new)
8850 else if (flinfo->info->strip == strip_all)
8852 else if (flinfo->info->strip == strip_some
8853 && bfd_hash_lookup (flinfo->info->keep_hash,
8854 h->root.root.string, FALSE, FALSE) == NULL)
8856 else if ((h->root.type == bfd_link_hash_defined
8857 || h->root.type == bfd_link_hash_defweak)
8858 && ((flinfo->info->strip_discarded
8859 && discarded_section (h->root.u.def.section))
8860 || (h->root.u.def.section->owner != NULL
8861 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8863 else if ((h->root.type == bfd_link_hash_undefined
8864 || h->root.type == bfd_link_hash_undefweak)
8865 && h->root.u.undef.abfd != NULL
8866 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8871 /* If we're stripping it, and it's not a dynamic symbol, there's
8872 nothing else to do unless it is a forced local symbol or a
8873 STT_GNU_IFUNC symbol. */
8876 && h->type != STT_GNU_IFUNC
8877 && !h->forced_local)
8881 sym.st_size = h->size;
8882 sym.st_other = h->other;
8883 if (h->forced_local)
8885 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8886 /* Turn off visibility on local symbol. */
8887 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8889 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8890 else if (h->unique_global && h->def_regular)
8891 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8892 else if (h->root.type == bfd_link_hash_undefweak
8893 || h->root.type == bfd_link_hash_defweak)
8894 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8896 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8897 sym.st_target_internal = h->target_internal;
8899 switch (h->root.type)
8902 case bfd_link_hash_new:
8903 case bfd_link_hash_warning:
8907 case bfd_link_hash_undefined:
8908 case bfd_link_hash_undefweak:
8909 input_sec = bfd_und_section_ptr;
8910 sym.st_shndx = SHN_UNDEF;
8913 case bfd_link_hash_defined:
8914 case bfd_link_hash_defweak:
8916 input_sec = h->root.u.def.section;
8917 if (input_sec->output_section != NULL)
8919 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8921 bfd_boolean second_pass_sym
8922 = (input_sec->owner == flinfo->output_bfd
8923 || input_sec->owner == NULL
8924 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8925 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8927 eoinfo->need_second_pass |= second_pass_sym;
8928 if (eoinfo->second_pass != second_pass_sym)
8933 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8934 input_sec->output_section);
8935 if (sym.st_shndx == SHN_BAD)
8937 (*_bfd_error_handler)
8938 (_("%B: could not find output section %A for input section %A"),
8939 flinfo->output_bfd, input_sec->output_section, input_sec);
8940 bfd_set_error (bfd_error_nonrepresentable_section);
8941 eoinfo->failed = TRUE;
8945 /* ELF symbols in relocatable files are section relative,
8946 but in nonrelocatable files they are virtual
8948 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8949 if (!flinfo->info->relocatable)
8951 sym.st_value += input_sec->output_section->vma;
8952 if (h->type == STT_TLS)
8954 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8955 if (tls_sec != NULL)
8956 sym.st_value -= tls_sec->vma;
8959 /* The TLS section may have been garbage collected. */
8960 BFD_ASSERT (flinfo->info->gc_sections
8961 && !input_sec->gc_mark);
8968 BFD_ASSERT (input_sec->owner == NULL
8969 || (input_sec->owner->flags & DYNAMIC) != 0);
8970 sym.st_shndx = SHN_UNDEF;
8971 input_sec = bfd_und_section_ptr;
8976 case bfd_link_hash_common:
8977 input_sec = h->root.u.c.p->section;
8978 sym.st_shndx = bed->common_section_index (input_sec);
8979 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8982 case bfd_link_hash_indirect:
8983 /* These symbols are created by symbol versioning. They point
8984 to the decorated version of the name. For example, if the
8985 symbol foo@@GNU_1.2 is the default, which should be used when
8986 foo is used with no version, then we add an indirect symbol
8987 foo which points to foo@@GNU_1.2. We ignore these symbols,
8988 since the indirected symbol is already in the hash table. */
8992 /* Give the processor backend a chance to tweak the symbol value,
8993 and also to finish up anything that needs to be done for this
8994 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8995 forced local syms when non-shared is due to a historical quirk.
8996 STT_GNU_IFUNC symbol must go through PLT. */
8997 if ((h->type == STT_GNU_IFUNC
8999 && !flinfo->info->relocatable)
9000 || ((h->dynindx != -1
9002 && ((flinfo->info->shared
9003 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9004 || h->root.type != bfd_link_hash_undefweak))
9005 || !h->forced_local)
9006 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9008 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9009 (flinfo->output_bfd, flinfo->info, h, &sym)))
9011 eoinfo->failed = TRUE;
9016 /* If we are marking the symbol as undefined, and there are no
9017 non-weak references to this symbol from a regular object, then
9018 mark the symbol as weak undefined; if there are non-weak
9019 references, mark the symbol as strong. We can't do this earlier,
9020 because it might not be marked as undefined until the
9021 finish_dynamic_symbol routine gets through with it. */
9022 if (sym.st_shndx == SHN_UNDEF
9024 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9025 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9028 unsigned int type = ELF_ST_TYPE (sym.st_info);
9030 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9031 if (type == STT_GNU_IFUNC)
9034 if (h->ref_regular_nonweak)
9035 bindtype = STB_GLOBAL;
9037 bindtype = STB_WEAK;
9038 sym.st_info = ELF_ST_INFO (bindtype, type);
9041 /* If this is a symbol defined in a dynamic library, don't use the
9042 symbol size from the dynamic library. Relinking an executable
9043 against a new library may introduce gratuitous changes in the
9044 executable's symbols if we keep the size. */
9045 if (sym.st_shndx == SHN_UNDEF
9050 /* If a non-weak symbol with non-default visibility is not defined
9051 locally, it is a fatal error. */
9052 if (!flinfo->info->relocatable
9053 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9054 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9055 && h->root.type == bfd_link_hash_undefined
9060 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9061 msg = _("%B: protected symbol `%s' isn't defined");
9062 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9063 msg = _("%B: internal symbol `%s' isn't defined");
9065 msg = _("%B: hidden symbol `%s' isn't defined");
9066 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9067 bfd_set_error (bfd_error_bad_value);
9068 eoinfo->failed = TRUE;
9072 /* If this symbol should be put in the .dynsym section, then put it
9073 there now. We already know the symbol index. We also fill in
9074 the entry in the .hash section. */
9075 if (flinfo->dynsym_sec != NULL
9077 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9081 /* Since there is no version information in the dynamic string,
9082 if there is no version info in symbol version section, we will
9083 have a run-time problem. */
9084 if (h->verinfo.verdef == NULL)
9086 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9088 if (p && p [1] != '\0')
9090 (*_bfd_error_handler)
9091 (_("%B: No symbol version section for versioned symbol `%s'"),
9092 flinfo->output_bfd, h->root.root.string);
9093 eoinfo->failed = TRUE;
9098 sym.st_name = h->dynstr_index;
9099 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9100 if (!check_dynsym (flinfo->output_bfd, &sym))
9102 eoinfo->failed = TRUE;
9105 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9107 if (flinfo->hash_sec != NULL)
9109 size_t hash_entry_size;
9110 bfd_byte *bucketpos;
9115 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9116 bucket = h->u.elf_hash_value % bucketcount;
9119 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9120 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9121 + (bucket + 2) * hash_entry_size);
9122 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9123 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9125 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9126 ((bfd_byte *) flinfo->hash_sec->contents
9127 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9130 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9132 Elf_Internal_Versym iversym;
9133 Elf_External_Versym *eversym;
9135 if (!h->def_regular)
9137 if (h->verinfo.verdef == NULL)
9138 iversym.vs_vers = 0;
9140 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9144 if (h->verinfo.vertree == NULL)
9145 iversym.vs_vers = 1;
9147 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9148 if (flinfo->info->create_default_symver)
9153 iversym.vs_vers |= VERSYM_HIDDEN;
9155 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9156 eversym += h->dynindx;
9157 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9161 /* If we're stripping it, then it was just a dynamic symbol, and
9162 there's nothing else to do. */
9163 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9166 indx = bfd_get_symcount (flinfo->output_bfd);
9167 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9170 eoinfo->failed = TRUE;
9175 else if (h->indx == -2)
9181 /* Return TRUE if special handling is done for relocs in SEC against
9182 symbols defined in discarded sections. */
9185 elf_section_ignore_discarded_relocs (asection *sec)
9187 const struct elf_backend_data *bed;
9189 switch (sec->sec_info_type)
9191 case SEC_INFO_TYPE_STABS:
9192 case SEC_INFO_TYPE_EH_FRAME:
9198 bed = get_elf_backend_data (sec->owner);
9199 if (bed->elf_backend_ignore_discarded_relocs != NULL
9200 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9206 /* Return a mask saying how ld should treat relocations in SEC against
9207 symbols defined in discarded sections. If this function returns
9208 COMPLAIN set, ld will issue a warning message. If this function
9209 returns PRETEND set, and the discarded section was link-once and the
9210 same size as the kept link-once section, ld will pretend that the
9211 symbol was actually defined in the kept section. Otherwise ld will
9212 zero the reloc (at least that is the intent, but some cooperation by
9213 the target dependent code is needed, particularly for REL targets). */
9216 _bfd_elf_default_action_discarded (asection *sec)
9218 if (sec->flags & SEC_DEBUGGING)
9221 if (strcmp (".eh_frame", sec->name) == 0)
9224 if (strcmp (".gcc_except_table", sec->name) == 0)
9227 return COMPLAIN | PRETEND;
9230 /* Find a match between a section and a member of a section group. */
9233 match_group_member (asection *sec, asection *group,
9234 struct bfd_link_info *info)
9236 asection *first = elf_next_in_group (group);
9237 asection *s = first;
9241 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9244 s = elf_next_in_group (s);
9252 /* Check if the kept section of a discarded section SEC can be used
9253 to replace it. Return the replacement if it is OK. Otherwise return
9257 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9261 kept = sec->kept_section;
9264 if ((kept->flags & SEC_GROUP) != 0)
9265 kept = match_group_member (sec, kept, info);
9267 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9268 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9270 sec->kept_section = kept;
9275 /* Link an input file into the linker output file. This function
9276 handles all the sections and relocations of the input file at once.
9277 This is so that we only have to read the local symbols once, and
9278 don't have to keep them in memory. */
9281 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9283 int (*relocate_section)
9284 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9285 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9287 Elf_Internal_Shdr *symtab_hdr;
9290 Elf_Internal_Sym *isymbuf;
9291 Elf_Internal_Sym *isym;
9292 Elf_Internal_Sym *isymend;
9294 asection **ppsection;
9296 const struct elf_backend_data *bed;
9297 struct elf_link_hash_entry **sym_hashes;
9298 bfd_size_type address_size;
9299 bfd_vma r_type_mask;
9301 bfd_boolean have_file_sym = FALSE;
9303 output_bfd = flinfo->output_bfd;
9304 bed = get_elf_backend_data (output_bfd);
9305 relocate_section = bed->elf_backend_relocate_section;
9307 /* If this is a dynamic object, we don't want to do anything here:
9308 we don't want the local symbols, and we don't want the section
9310 if ((input_bfd->flags & DYNAMIC) != 0)
9313 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9314 if (elf_bad_symtab (input_bfd))
9316 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9321 locsymcount = symtab_hdr->sh_info;
9322 extsymoff = symtab_hdr->sh_info;
9325 /* Read the local symbols. */
9326 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9327 if (isymbuf == NULL && locsymcount != 0)
9329 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9330 flinfo->internal_syms,
9331 flinfo->external_syms,
9332 flinfo->locsym_shndx);
9333 if (isymbuf == NULL)
9337 /* Find local symbol sections and adjust values of symbols in
9338 SEC_MERGE sections. Write out those local symbols we know are
9339 going into the output file. */
9340 isymend = isymbuf + locsymcount;
9341 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9343 isym++, pindex++, ppsection++)
9347 Elf_Internal_Sym osym;
9353 if (elf_bad_symtab (input_bfd))
9355 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9362 if (isym->st_shndx == SHN_UNDEF)
9363 isec = bfd_und_section_ptr;
9364 else if (isym->st_shndx == SHN_ABS)
9365 isec = bfd_abs_section_ptr;
9366 else if (isym->st_shndx == SHN_COMMON)
9367 isec = bfd_com_section_ptr;
9370 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9373 /* Don't attempt to output symbols with st_shnx in the
9374 reserved range other than SHN_ABS and SHN_COMMON. */
9378 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9379 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9381 _bfd_merged_section_offset (output_bfd, &isec,
9382 elf_section_data (isec)->sec_info,
9388 /* Don't output the first, undefined, symbol. */
9389 if (ppsection == flinfo->sections)
9392 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9394 /* We never output section symbols. Instead, we use the
9395 section symbol of the corresponding section in the output
9400 /* If we are stripping all symbols, we don't want to output this
9402 if (flinfo->info->strip == strip_all)
9405 /* If we are discarding all local symbols, we don't want to
9406 output this one. If we are generating a relocatable output
9407 file, then some of the local symbols may be required by
9408 relocs; we output them below as we discover that they are
9410 if (flinfo->info->discard == discard_all)
9413 /* If this symbol is defined in a section which we are
9414 discarding, we don't need to keep it. */
9415 if (isym->st_shndx != SHN_UNDEF
9416 && isym->st_shndx < SHN_LORESERVE
9417 && bfd_section_removed_from_list (output_bfd,
9418 isec->output_section))
9421 /* Get the name of the symbol. */
9422 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9427 /* See if we are discarding symbols with this name. */
9428 if ((flinfo->info->strip == strip_some
9429 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9431 || (((flinfo->info->discard == discard_sec_merge
9432 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9433 || flinfo->info->discard == discard_l)
9434 && bfd_is_local_label_name (input_bfd, name)))
9437 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9439 have_file_sym = TRUE;
9440 flinfo->filesym_count += 1;
9444 /* In the absence of debug info, bfd_find_nearest_line uses
9445 FILE symbols to determine the source file for local
9446 function symbols. Provide a FILE symbol here if input
9447 files lack such, so that their symbols won't be
9448 associated with a previous input file. It's not the
9449 source file, but the best we can do. */
9450 have_file_sym = TRUE;
9451 flinfo->filesym_count += 1;
9452 memset (&osym, 0, sizeof (osym));
9453 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9454 osym.st_shndx = SHN_ABS;
9455 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9456 bfd_abs_section_ptr, NULL))
9462 /* Adjust the section index for the output file. */
9463 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9464 isec->output_section);
9465 if (osym.st_shndx == SHN_BAD)
9468 /* ELF symbols in relocatable files are section relative, but
9469 in executable files they are virtual addresses. Note that
9470 this code assumes that all ELF sections have an associated
9471 BFD section with a reasonable value for output_offset; below
9472 we assume that they also have a reasonable value for
9473 output_section. Any special sections must be set up to meet
9474 these requirements. */
9475 osym.st_value += isec->output_offset;
9476 if (!flinfo->info->relocatable)
9478 osym.st_value += isec->output_section->vma;
9479 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9481 /* STT_TLS symbols are relative to PT_TLS segment base. */
9482 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9483 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9487 indx = bfd_get_symcount (output_bfd);
9488 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9495 if (bed->s->arch_size == 32)
9503 r_type_mask = 0xffffffff;
9508 /* Relocate the contents of each section. */
9509 sym_hashes = elf_sym_hashes (input_bfd);
9510 for (o = input_bfd->sections; o != NULL; o = o->next)
9514 if (! o->linker_mark)
9516 /* This section was omitted from the link. */
9520 if (flinfo->info->relocatable
9521 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9523 /* Deal with the group signature symbol. */
9524 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9525 unsigned long symndx = sec_data->this_hdr.sh_info;
9526 asection *osec = o->output_section;
9528 if (symndx >= locsymcount
9529 || (elf_bad_symtab (input_bfd)
9530 && flinfo->sections[symndx] == NULL))
9532 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9533 while (h->root.type == bfd_link_hash_indirect
9534 || h->root.type == bfd_link_hash_warning)
9535 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9536 /* Arrange for symbol to be output. */
9538 elf_section_data (osec)->this_hdr.sh_info = -2;
9540 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9542 /* We'll use the output section target_index. */
9543 asection *sec = flinfo->sections[symndx]->output_section;
9544 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9548 if (flinfo->indices[symndx] == -1)
9550 /* Otherwise output the local symbol now. */
9551 Elf_Internal_Sym sym = isymbuf[symndx];
9552 asection *sec = flinfo->sections[symndx]->output_section;
9557 name = bfd_elf_string_from_elf_section (input_bfd,
9558 symtab_hdr->sh_link,
9563 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9565 if (sym.st_shndx == SHN_BAD)
9568 sym.st_value += o->output_offset;
9570 indx = bfd_get_symcount (output_bfd);
9571 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9575 flinfo->indices[symndx] = indx;
9579 elf_section_data (osec)->this_hdr.sh_info
9580 = flinfo->indices[symndx];
9584 if ((o->flags & SEC_HAS_CONTENTS) == 0
9585 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9588 if ((o->flags & SEC_LINKER_CREATED) != 0)
9590 /* Section was created by _bfd_elf_link_create_dynamic_sections
9595 /* Get the contents of the section. They have been cached by a
9596 relaxation routine. Note that o is a section in an input
9597 file, so the contents field will not have been set by any of
9598 the routines which work on output files. */
9599 if (elf_section_data (o)->this_hdr.contents != NULL)
9600 contents = elf_section_data (o)->this_hdr.contents;
9603 contents = flinfo->contents;
9604 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9608 if ((o->flags & SEC_RELOC) != 0)
9610 Elf_Internal_Rela *internal_relocs;
9611 Elf_Internal_Rela *rel, *relend;
9612 int action_discarded;
9615 /* Get the swapped relocs. */
9617 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9618 flinfo->internal_relocs, FALSE);
9619 if (internal_relocs == NULL
9620 && o->reloc_count > 0)
9623 /* We need to reverse-copy input .ctors/.dtors sections if
9624 they are placed in .init_array/.finit_array for output. */
9625 if (o->size > address_size
9626 && ((strncmp (o->name, ".ctors", 6) == 0
9627 && strcmp (o->output_section->name,
9628 ".init_array") == 0)
9629 || (strncmp (o->name, ".dtors", 6) == 0
9630 && strcmp (o->output_section->name,
9631 ".fini_array") == 0))
9632 && (o->name[6] == 0 || o->name[6] == '.'))
9634 if (o->size != o->reloc_count * address_size)
9636 (*_bfd_error_handler)
9637 (_("error: %B: size of section %A is not "
9638 "multiple of address size"),
9640 bfd_set_error (bfd_error_on_input);
9643 o->flags |= SEC_ELF_REVERSE_COPY;
9646 action_discarded = -1;
9647 if (!elf_section_ignore_discarded_relocs (o))
9648 action_discarded = (*bed->action_discarded) (o);
9650 /* Run through the relocs evaluating complex reloc symbols and
9651 looking for relocs against symbols from discarded sections
9652 or section symbols from removed link-once sections.
9653 Complain about relocs against discarded sections. Zero
9654 relocs against removed link-once sections. */
9656 rel = internal_relocs;
9657 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9658 for ( ; rel < relend; rel++)
9660 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9661 unsigned int s_type;
9662 asection **ps, *sec;
9663 struct elf_link_hash_entry *h = NULL;
9664 const char *sym_name;
9666 if (r_symndx == STN_UNDEF)
9669 if (r_symndx >= locsymcount
9670 || (elf_bad_symtab (input_bfd)
9671 && flinfo->sections[r_symndx] == NULL))
9673 h = sym_hashes[r_symndx - extsymoff];
9675 /* Badly formatted input files can contain relocs that
9676 reference non-existant symbols. Check here so that
9677 we do not seg fault. */
9682 sprintf_vma (buffer, rel->r_info);
9683 (*_bfd_error_handler)
9684 (_("error: %B contains a reloc (0x%s) for section %A "
9685 "that references a non-existent global symbol"),
9686 input_bfd, o, buffer);
9687 bfd_set_error (bfd_error_bad_value);
9691 while (h->root.type == bfd_link_hash_indirect
9692 || h->root.type == bfd_link_hash_warning)
9693 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9698 if (h->root.type == bfd_link_hash_defined
9699 || h->root.type == bfd_link_hash_defweak)
9700 ps = &h->root.u.def.section;
9702 sym_name = h->root.root.string;
9706 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9708 s_type = ELF_ST_TYPE (sym->st_info);
9709 ps = &flinfo->sections[r_symndx];
9710 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9714 if ((s_type == STT_RELC || s_type == STT_SRELC)
9715 && !flinfo->info->relocatable)
9718 bfd_vma dot = (rel->r_offset
9719 + o->output_offset + o->output_section->vma);
9721 printf ("Encountered a complex symbol!");
9722 printf (" (input_bfd %s, section %s, reloc %ld\n",
9723 input_bfd->filename, o->name,
9724 (long) (rel - internal_relocs));
9725 printf (" symbol: idx %8.8lx, name %s\n",
9726 r_symndx, sym_name);
9727 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9728 (unsigned long) rel->r_info,
9729 (unsigned long) rel->r_offset);
9731 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9732 isymbuf, locsymcount, s_type == STT_SRELC))
9735 /* Symbol evaluated OK. Update to absolute value. */
9736 set_symbol_value (input_bfd, isymbuf, locsymcount,
9741 if (action_discarded != -1 && ps != NULL)
9743 /* Complain if the definition comes from a
9744 discarded section. */
9745 if ((sec = *ps) != NULL && discarded_section (sec))
9747 BFD_ASSERT (r_symndx != STN_UNDEF);
9748 if (action_discarded & COMPLAIN)
9749 (*flinfo->info->callbacks->einfo)
9750 (_("%X`%s' referenced in section `%A' of %B: "
9751 "defined in discarded section `%A' of %B\n"),
9752 sym_name, o, input_bfd, sec, sec->owner);
9754 /* Try to do the best we can to support buggy old
9755 versions of gcc. Pretend that the symbol is
9756 really defined in the kept linkonce section.
9757 FIXME: This is quite broken. Modifying the
9758 symbol here means we will be changing all later
9759 uses of the symbol, not just in this section. */
9760 if (action_discarded & PRETEND)
9764 kept = _bfd_elf_check_kept_section (sec,
9776 /* Relocate the section by invoking a back end routine.
9778 The back end routine is responsible for adjusting the
9779 section contents as necessary, and (if using Rela relocs
9780 and generating a relocatable output file) adjusting the
9781 reloc addend as necessary.
9783 The back end routine does not have to worry about setting
9784 the reloc address or the reloc symbol index.
9786 The back end routine is given a pointer to the swapped in
9787 internal symbols, and can access the hash table entries
9788 for the external symbols via elf_sym_hashes (input_bfd).
9790 When generating relocatable output, the back end routine
9791 must handle STB_LOCAL/STT_SECTION symbols specially. The
9792 output symbol is going to be a section symbol
9793 corresponding to the output section, which will require
9794 the addend to be adjusted. */
9796 ret = (*relocate_section) (output_bfd, flinfo->info,
9797 input_bfd, o, contents,
9805 || flinfo->info->relocatable
9806 || flinfo->info->emitrelocations)
9808 Elf_Internal_Rela *irela;
9809 Elf_Internal_Rela *irelaend, *irelamid;
9810 bfd_vma last_offset;
9811 struct elf_link_hash_entry **rel_hash;
9812 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9813 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9814 unsigned int next_erel;
9815 bfd_boolean rela_normal;
9816 struct bfd_elf_section_data *esdi, *esdo;
9818 esdi = elf_section_data (o);
9819 esdo = elf_section_data (o->output_section);
9820 rela_normal = FALSE;
9822 /* Adjust the reloc addresses and symbol indices. */
9824 irela = internal_relocs;
9825 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9826 rel_hash = esdo->rel.hashes + esdo->rel.count;
9827 /* We start processing the REL relocs, if any. When we reach
9828 IRELAMID in the loop, we switch to the RELA relocs. */
9830 if (esdi->rel.hdr != NULL)
9831 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9832 * bed->s->int_rels_per_ext_rel);
9833 rel_hash_list = rel_hash;
9834 rela_hash_list = NULL;
9835 last_offset = o->output_offset;
9836 if (!flinfo->info->relocatable)
9837 last_offset += o->output_section->vma;
9838 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9840 unsigned long r_symndx;
9842 Elf_Internal_Sym sym;
9844 if (next_erel == bed->s->int_rels_per_ext_rel)
9850 if (irela == irelamid)
9852 rel_hash = esdo->rela.hashes + esdo->rela.count;
9853 rela_hash_list = rel_hash;
9854 rela_normal = bed->rela_normal;
9857 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9860 if (irela->r_offset >= (bfd_vma) -2)
9862 /* This is a reloc for a deleted entry or somesuch.
9863 Turn it into an R_*_NONE reloc, at the same
9864 offset as the last reloc. elf_eh_frame.c and
9865 bfd_elf_discard_info rely on reloc offsets
9867 irela->r_offset = last_offset;
9869 irela->r_addend = 0;
9873 irela->r_offset += o->output_offset;
9875 /* Relocs in an executable have to be virtual addresses. */
9876 if (!flinfo->info->relocatable)
9877 irela->r_offset += o->output_section->vma;
9879 last_offset = irela->r_offset;
9881 r_symndx = irela->r_info >> r_sym_shift;
9882 if (r_symndx == STN_UNDEF)
9885 if (r_symndx >= locsymcount
9886 || (elf_bad_symtab (input_bfd)
9887 && flinfo->sections[r_symndx] == NULL))
9889 struct elf_link_hash_entry *rh;
9892 /* This is a reloc against a global symbol. We
9893 have not yet output all the local symbols, so
9894 we do not know the symbol index of any global
9895 symbol. We set the rel_hash entry for this
9896 reloc to point to the global hash table entry
9897 for this symbol. The symbol index is then
9898 set at the end of bfd_elf_final_link. */
9899 indx = r_symndx - extsymoff;
9900 rh = elf_sym_hashes (input_bfd)[indx];
9901 while (rh->root.type == bfd_link_hash_indirect
9902 || rh->root.type == bfd_link_hash_warning)
9903 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9905 /* Setting the index to -2 tells
9906 elf_link_output_extsym that this symbol is
9908 BFD_ASSERT (rh->indx < 0);
9916 /* This is a reloc against a local symbol. */
9919 sym = isymbuf[r_symndx];
9920 sec = flinfo->sections[r_symndx];
9921 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9923 /* I suppose the backend ought to fill in the
9924 section of any STT_SECTION symbol against a
9925 processor specific section. */
9926 r_symndx = STN_UNDEF;
9927 if (bfd_is_abs_section (sec))
9929 else if (sec == NULL || sec->owner == NULL)
9931 bfd_set_error (bfd_error_bad_value);
9936 asection *osec = sec->output_section;
9938 /* If we have discarded a section, the output
9939 section will be the absolute section. In
9940 case of discarded SEC_MERGE sections, use
9941 the kept section. relocate_section should
9942 have already handled discarded linkonce
9944 if (bfd_is_abs_section (osec)
9945 && sec->kept_section != NULL
9946 && sec->kept_section->output_section != NULL)
9948 osec = sec->kept_section->output_section;
9949 irela->r_addend -= osec->vma;
9952 if (!bfd_is_abs_section (osec))
9954 r_symndx = osec->target_index;
9955 if (r_symndx == STN_UNDEF)
9957 irela->r_addend += osec->vma;
9958 osec = _bfd_nearby_section (output_bfd, osec,
9960 irela->r_addend -= osec->vma;
9961 r_symndx = osec->target_index;
9966 /* Adjust the addend according to where the
9967 section winds up in the output section. */
9969 irela->r_addend += sec->output_offset;
9973 if (flinfo->indices[r_symndx] == -1)
9975 unsigned long shlink;
9980 if (flinfo->info->strip == strip_all)
9982 /* You can't do ld -r -s. */
9983 bfd_set_error (bfd_error_invalid_operation);
9987 /* This symbol was skipped earlier, but
9988 since it is needed by a reloc, we
9989 must output it now. */
9990 shlink = symtab_hdr->sh_link;
9991 name = (bfd_elf_string_from_elf_section
9992 (input_bfd, shlink, sym.st_name));
9996 osec = sec->output_section;
9998 _bfd_elf_section_from_bfd_section (output_bfd,
10000 if (sym.st_shndx == SHN_BAD)
10003 sym.st_value += sec->output_offset;
10004 if (!flinfo->info->relocatable)
10006 sym.st_value += osec->vma;
10007 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10009 /* STT_TLS symbols are relative to PT_TLS
10011 BFD_ASSERT (elf_hash_table (flinfo->info)
10012 ->tls_sec != NULL);
10013 sym.st_value -= (elf_hash_table (flinfo->info)
10018 indx = bfd_get_symcount (output_bfd);
10019 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10024 flinfo->indices[r_symndx] = indx;
10029 r_symndx = flinfo->indices[r_symndx];
10032 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10033 | (irela->r_info & r_type_mask));
10036 /* Swap out the relocs. */
10037 input_rel_hdr = esdi->rel.hdr;
10038 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10040 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10045 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10046 * bed->s->int_rels_per_ext_rel);
10047 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10050 input_rela_hdr = esdi->rela.hdr;
10051 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10053 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10062 /* Write out the modified section contents. */
10063 if (bed->elf_backend_write_section
10064 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10067 /* Section written out. */
10069 else switch (o->sec_info_type)
10071 case SEC_INFO_TYPE_STABS:
10072 if (! (_bfd_write_section_stabs
10074 &elf_hash_table (flinfo->info)->stab_info,
10075 o, &elf_section_data (o)->sec_info, contents)))
10078 case SEC_INFO_TYPE_MERGE:
10079 if (! _bfd_write_merged_section (output_bfd, o,
10080 elf_section_data (o)->sec_info))
10083 case SEC_INFO_TYPE_EH_FRAME:
10085 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10092 /* FIXME: octets_per_byte. */
10093 if (! (o->flags & SEC_EXCLUDE))
10095 file_ptr offset = (file_ptr) o->output_offset;
10096 bfd_size_type todo = o->size;
10097 if ((o->flags & SEC_ELF_REVERSE_COPY))
10099 /* Reverse-copy input section to output. */
10102 todo -= address_size;
10103 if (! bfd_set_section_contents (output_bfd,
10111 offset += address_size;
10115 else if (! bfd_set_section_contents (output_bfd,
10129 /* Generate a reloc when linking an ELF file. This is a reloc
10130 requested by the linker, and does not come from any input file. This
10131 is used to build constructor and destructor tables when linking
10135 elf_reloc_link_order (bfd *output_bfd,
10136 struct bfd_link_info *info,
10137 asection *output_section,
10138 struct bfd_link_order *link_order)
10140 reloc_howto_type *howto;
10144 struct bfd_elf_section_reloc_data *reldata;
10145 struct elf_link_hash_entry **rel_hash_ptr;
10146 Elf_Internal_Shdr *rel_hdr;
10147 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10148 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10151 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10153 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10156 bfd_set_error (bfd_error_bad_value);
10160 addend = link_order->u.reloc.p->addend;
10163 reldata = &esdo->rel;
10164 else if (esdo->rela.hdr)
10165 reldata = &esdo->rela;
10172 /* Figure out the symbol index. */
10173 rel_hash_ptr = reldata->hashes + reldata->count;
10174 if (link_order->type == bfd_section_reloc_link_order)
10176 indx = link_order->u.reloc.p->u.section->target_index;
10177 BFD_ASSERT (indx != 0);
10178 *rel_hash_ptr = NULL;
10182 struct elf_link_hash_entry *h;
10184 /* Treat a reloc against a defined symbol as though it were
10185 actually against the section. */
10186 h = ((struct elf_link_hash_entry *)
10187 bfd_wrapped_link_hash_lookup (output_bfd, info,
10188 link_order->u.reloc.p->u.name,
10189 FALSE, FALSE, TRUE));
10191 && (h->root.type == bfd_link_hash_defined
10192 || h->root.type == bfd_link_hash_defweak))
10196 section = h->root.u.def.section;
10197 indx = section->output_section->target_index;
10198 *rel_hash_ptr = NULL;
10199 /* It seems that we ought to add the symbol value to the
10200 addend here, but in practice it has already been added
10201 because it was passed to constructor_callback. */
10202 addend += section->output_section->vma + section->output_offset;
10204 else if (h != NULL)
10206 /* Setting the index to -2 tells elf_link_output_extsym that
10207 this symbol is used by a reloc. */
10214 if (! ((*info->callbacks->unattached_reloc)
10215 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10221 /* If this is an inplace reloc, we must write the addend into the
10223 if (howto->partial_inplace && addend != 0)
10225 bfd_size_type size;
10226 bfd_reloc_status_type rstat;
10229 const char *sym_name;
10231 size = (bfd_size_type) bfd_get_reloc_size (howto);
10232 buf = (bfd_byte *) bfd_zmalloc (size);
10235 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10242 case bfd_reloc_outofrange:
10245 case bfd_reloc_overflow:
10246 if (link_order->type == bfd_section_reloc_link_order)
10247 sym_name = bfd_section_name (output_bfd,
10248 link_order->u.reloc.p->u.section);
10250 sym_name = link_order->u.reloc.p->u.name;
10251 if (! ((*info->callbacks->reloc_overflow)
10252 (info, NULL, sym_name, howto->name, addend, NULL,
10253 NULL, (bfd_vma) 0)))
10260 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10261 link_order->offset, size);
10267 /* The address of a reloc is relative to the section in a
10268 relocatable file, and is a virtual address in an executable
10270 offset = link_order->offset;
10271 if (! info->relocatable)
10272 offset += output_section->vma;
10274 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10276 irel[i].r_offset = offset;
10277 irel[i].r_info = 0;
10278 irel[i].r_addend = 0;
10280 if (bed->s->arch_size == 32)
10281 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10283 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10285 rel_hdr = reldata->hdr;
10286 erel = rel_hdr->contents;
10287 if (rel_hdr->sh_type == SHT_REL)
10289 erel += reldata->count * bed->s->sizeof_rel;
10290 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10294 irel[0].r_addend = addend;
10295 erel += reldata->count * bed->s->sizeof_rela;
10296 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10305 /* Get the output vma of the section pointed to by the sh_link field. */
10308 elf_get_linked_section_vma (struct bfd_link_order *p)
10310 Elf_Internal_Shdr **elf_shdrp;
10314 s = p->u.indirect.section;
10315 elf_shdrp = elf_elfsections (s->owner);
10316 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10317 elfsec = elf_shdrp[elfsec]->sh_link;
10319 The Intel C compiler generates SHT_IA_64_UNWIND with
10320 SHF_LINK_ORDER. But it doesn't set the sh_link or
10321 sh_info fields. Hence we could get the situation
10322 where elfsec is 0. */
10325 const struct elf_backend_data *bed
10326 = get_elf_backend_data (s->owner);
10327 if (bed->link_order_error_handler)
10328 bed->link_order_error_handler
10329 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10334 s = elf_shdrp[elfsec]->bfd_section;
10335 return s->output_section->vma + s->output_offset;
10340 /* Compare two sections based on the locations of the sections they are
10341 linked to. Used by elf_fixup_link_order. */
10344 compare_link_order (const void * a, const void * b)
10349 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10350 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10353 return apos > bpos;
10357 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10358 order as their linked sections. Returns false if this could not be done
10359 because an output section includes both ordered and unordered
10360 sections. Ideally we'd do this in the linker proper. */
10363 elf_fixup_link_order (bfd *abfd, asection *o)
10365 int seen_linkorder;
10368 struct bfd_link_order *p;
10370 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10372 struct bfd_link_order **sections;
10373 asection *s, *other_sec, *linkorder_sec;
10377 linkorder_sec = NULL;
10379 seen_linkorder = 0;
10380 for (p = o->map_head.link_order; p != NULL; p = p->next)
10382 if (p->type == bfd_indirect_link_order)
10384 s = p->u.indirect.section;
10386 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10387 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10388 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10389 && elfsec < elf_numsections (sub)
10390 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10391 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10405 if (seen_other && seen_linkorder)
10407 if (other_sec && linkorder_sec)
10408 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10410 linkorder_sec->owner, other_sec,
10413 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10415 bfd_set_error (bfd_error_bad_value);
10420 if (!seen_linkorder)
10423 sections = (struct bfd_link_order **)
10424 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10425 if (sections == NULL)
10427 seen_linkorder = 0;
10429 for (p = o->map_head.link_order; p != NULL; p = p->next)
10431 sections[seen_linkorder++] = p;
10433 /* Sort the input sections in the order of their linked section. */
10434 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10435 compare_link_order);
10437 /* Change the offsets of the sections. */
10439 for (n = 0; n < seen_linkorder; n++)
10441 s = sections[n]->u.indirect.section;
10442 offset &= ~(bfd_vma) 0 << s->alignment_power;
10443 s->output_offset = offset;
10444 sections[n]->offset = offset;
10445 /* FIXME: octets_per_byte. */
10446 offset += sections[n]->size;
10454 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10458 if (flinfo->symstrtab != NULL)
10459 _bfd_stringtab_free (flinfo->symstrtab);
10460 if (flinfo->contents != NULL)
10461 free (flinfo->contents);
10462 if (flinfo->external_relocs != NULL)
10463 free (flinfo->external_relocs);
10464 if (flinfo->internal_relocs != NULL)
10465 free (flinfo->internal_relocs);
10466 if (flinfo->external_syms != NULL)
10467 free (flinfo->external_syms);
10468 if (flinfo->locsym_shndx != NULL)
10469 free (flinfo->locsym_shndx);
10470 if (flinfo->internal_syms != NULL)
10471 free (flinfo->internal_syms);
10472 if (flinfo->indices != NULL)
10473 free (flinfo->indices);
10474 if (flinfo->sections != NULL)
10475 free (flinfo->sections);
10476 if (flinfo->symbuf != NULL)
10477 free (flinfo->symbuf);
10478 if (flinfo->symshndxbuf != NULL)
10479 free (flinfo->symshndxbuf);
10480 for (o = obfd->sections; o != NULL; o = o->next)
10482 struct bfd_elf_section_data *esdo = elf_section_data (o);
10483 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10484 free (esdo->rel.hashes);
10485 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10486 free (esdo->rela.hashes);
10490 /* Do the final step of an ELF link. */
10493 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10495 bfd_boolean dynamic;
10496 bfd_boolean emit_relocs;
10498 struct elf_final_link_info flinfo;
10500 struct bfd_link_order *p;
10502 bfd_size_type max_contents_size;
10503 bfd_size_type max_external_reloc_size;
10504 bfd_size_type max_internal_reloc_count;
10505 bfd_size_type max_sym_count;
10506 bfd_size_type max_sym_shndx_count;
10508 Elf_Internal_Sym elfsym;
10510 Elf_Internal_Shdr *symtab_hdr;
10511 Elf_Internal_Shdr *symtab_shndx_hdr;
10512 Elf_Internal_Shdr *symstrtab_hdr;
10513 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10514 struct elf_outext_info eoinfo;
10515 bfd_boolean merged;
10516 size_t relativecount = 0;
10517 asection *reldyn = 0;
10519 asection *attr_section = NULL;
10520 bfd_vma attr_size = 0;
10521 const char *std_attrs_section;
10523 if (! is_elf_hash_table (info->hash))
10527 abfd->flags |= DYNAMIC;
10529 dynamic = elf_hash_table (info)->dynamic_sections_created;
10530 dynobj = elf_hash_table (info)->dynobj;
10532 emit_relocs = (info->relocatable
10533 || info->emitrelocations);
10535 flinfo.info = info;
10536 flinfo.output_bfd = abfd;
10537 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10538 if (flinfo.symstrtab == NULL)
10543 flinfo.dynsym_sec = NULL;
10544 flinfo.hash_sec = NULL;
10545 flinfo.symver_sec = NULL;
10549 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10550 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10551 /* Note that dynsym_sec can be NULL (on VMS). */
10552 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10553 /* Note that it is OK if symver_sec is NULL. */
10556 flinfo.contents = NULL;
10557 flinfo.external_relocs = NULL;
10558 flinfo.internal_relocs = NULL;
10559 flinfo.external_syms = NULL;
10560 flinfo.locsym_shndx = NULL;
10561 flinfo.internal_syms = NULL;
10562 flinfo.indices = NULL;
10563 flinfo.sections = NULL;
10564 flinfo.symbuf = NULL;
10565 flinfo.symshndxbuf = NULL;
10566 flinfo.symbuf_count = 0;
10567 flinfo.shndxbuf_size = 0;
10568 flinfo.filesym_count = 0;
10570 /* The object attributes have been merged. Remove the input
10571 sections from the link, and set the contents of the output
10573 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10574 for (o = abfd->sections; o != NULL; o = o->next)
10576 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10577 || strcmp (o->name, ".gnu.attributes") == 0)
10579 for (p = o->map_head.link_order; p != NULL; p = p->next)
10581 asection *input_section;
10583 if (p->type != bfd_indirect_link_order)
10585 input_section = p->u.indirect.section;
10586 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10587 elf_link_input_bfd ignores this section. */
10588 input_section->flags &= ~SEC_HAS_CONTENTS;
10591 attr_size = bfd_elf_obj_attr_size (abfd);
10594 bfd_set_section_size (abfd, o, attr_size);
10596 /* Skip this section later on. */
10597 o->map_head.link_order = NULL;
10600 o->flags |= SEC_EXCLUDE;
10604 /* Count up the number of relocations we will output for each output
10605 section, so that we know the sizes of the reloc sections. We
10606 also figure out some maximum sizes. */
10607 max_contents_size = 0;
10608 max_external_reloc_size = 0;
10609 max_internal_reloc_count = 0;
10611 max_sym_shndx_count = 0;
10613 for (o = abfd->sections; o != NULL; o = o->next)
10615 struct bfd_elf_section_data *esdo = elf_section_data (o);
10616 o->reloc_count = 0;
10618 for (p = o->map_head.link_order; p != NULL; p = p->next)
10620 unsigned int reloc_count = 0;
10621 struct bfd_elf_section_data *esdi = NULL;
10623 if (p->type == bfd_section_reloc_link_order
10624 || p->type == bfd_symbol_reloc_link_order)
10626 else if (p->type == bfd_indirect_link_order)
10630 sec = p->u.indirect.section;
10631 esdi = elf_section_data (sec);
10633 /* Mark all sections which are to be included in the
10634 link. This will normally be every section. We need
10635 to do this so that we can identify any sections which
10636 the linker has decided to not include. */
10637 sec->linker_mark = TRUE;
10639 if (sec->flags & SEC_MERGE)
10642 if (esdo->this_hdr.sh_type == SHT_REL
10643 || esdo->this_hdr.sh_type == SHT_RELA)
10644 /* Some backends use reloc_count in relocation sections
10645 to count particular types of relocs. Of course,
10646 reloc sections themselves can't have relocations. */
10648 else if (info->relocatable || info->emitrelocations)
10649 reloc_count = sec->reloc_count;
10650 else if (bed->elf_backend_count_relocs)
10651 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10653 if (sec->rawsize > max_contents_size)
10654 max_contents_size = sec->rawsize;
10655 if (sec->size > max_contents_size)
10656 max_contents_size = sec->size;
10658 /* We are interested in just local symbols, not all
10660 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10661 && (sec->owner->flags & DYNAMIC) == 0)
10665 if (elf_bad_symtab (sec->owner))
10666 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10667 / bed->s->sizeof_sym);
10669 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10671 if (sym_count > max_sym_count)
10672 max_sym_count = sym_count;
10674 if (sym_count > max_sym_shndx_count
10675 && elf_symtab_shndx (sec->owner) != 0)
10676 max_sym_shndx_count = sym_count;
10678 if ((sec->flags & SEC_RELOC) != 0)
10680 size_t ext_size = 0;
10682 if (esdi->rel.hdr != NULL)
10683 ext_size = esdi->rel.hdr->sh_size;
10684 if (esdi->rela.hdr != NULL)
10685 ext_size += esdi->rela.hdr->sh_size;
10687 if (ext_size > max_external_reloc_size)
10688 max_external_reloc_size = ext_size;
10689 if (sec->reloc_count > max_internal_reloc_count)
10690 max_internal_reloc_count = sec->reloc_count;
10695 if (reloc_count == 0)
10698 o->reloc_count += reloc_count;
10700 if (p->type == bfd_indirect_link_order
10701 && (info->relocatable || info->emitrelocations))
10704 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10705 if (esdi->rela.hdr)
10706 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10711 esdo->rela.count += reloc_count;
10713 esdo->rel.count += reloc_count;
10717 if (o->reloc_count > 0)
10718 o->flags |= SEC_RELOC;
10721 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10722 set it (this is probably a bug) and if it is set
10723 assign_section_numbers will create a reloc section. */
10724 o->flags &=~ SEC_RELOC;
10727 /* If the SEC_ALLOC flag is not set, force the section VMA to
10728 zero. This is done in elf_fake_sections as well, but forcing
10729 the VMA to 0 here will ensure that relocs against these
10730 sections are handled correctly. */
10731 if ((o->flags & SEC_ALLOC) == 0
10732 && ! o->user_set_vma)
10736 if (! info->relocatable && merged)
10737 elf_link_hash_traverse (elf_hash_table (info),
10738 _bfd_elf_link_sec_merge_syms, abfd);
10740 /* Figure out the file positions for everything but the symbol table
10741 and the relocs. We set symcount to force assign_section_numbers
10742 to create a symbol table. */
10743 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10744 BFD_ASSERT (! abfd->output_has_begun);
10745 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10748 /* Set sizes, and assign file positions for reloc sections. */
10749 for (o = abfd->sections; o != NULL; o = o->next)
10751 struct bfd_elf_section_data *esdo = elf_section_data (o);
10752 if ((o->flags & SEC_RELOC) != 0)
10755 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10759 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10763 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10764 to count upwards while actually outputting the relocations. */
10765 esdo->rel.count = 0;
10766 esdo->rela.count = 0;
10769 _bfd_elf_assign_file_positions_for_relocs (abfd);
10771 /* We have now assigned file positions for all the sections except
10772 .symtab and .strtab. We start the .symtab section at the current
10773 file position, and write directly to it. We build the .strtab
10774 section in memory. */
10775 bfd_get_symcount (abfd) = 0;
10776 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10777 /* sh_name is set in prep_headers. */
10778 symtab_hdr->sh_type = SHT_SYMTAB;
10779 /* sh_flags, sh_addr and sh_size all start off zero. */
10780 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10781 /* sh_link is set in assign_section_numbers. */
10782 /* sh_info is set below. */
10783 /* sh_offset is set just below. */
10784 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10786 off = elf_next_file_pos (abfd);
10787 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10789 /* Note that at this point elf_next_file_pos (abfd) is
10790 incorrect. We do not yet know the size of the .symtab section.
10791 We correct next_file_pos below, after we do know the size. */
10793 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10794 continuously seeking to the right position in the file. */
10795 if (! info->keep_memory || max_sym_count < 20)
10796 flinfo.symbuf_size = 20;
10798 flinfo.symbuf_size = max_sym_count;
10799 amt = flinfo.symbuf_size;
10800 amt *= bed->s->sizeof_sym;
10801 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10802 if (flinfo.symbuf == NULL)
10804 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10806 /* Wild guess at number of output symbols. realloc'd as needed. */
10807 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10808 flinfo.shndxbuf_size = amt;
10809 amt *= sizeof (Elf_External_Sym_Shndx);
10810 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10811 if (flinfo.symshndxbuf == NULL)
10815 /* Start writing out the symbol table. The first symbol is always a
10817 if (info->strip != strip_all
10820 elfsym.st_value = 0;
10821 elfsym.st_size = 0;
10822 elfsym.st_info = 0;
10823 elfsym.st_other = 0;
10824 elfsym.st_shndx = SHN_UNDEF;
10825 elfsym.st_target_internal = 0;
10826 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10831 /* Output a symbol for each section. We output these even if we are
10832 discarding local symbols, since they are used for relocs. These
10833 symbols have no names. We store the index of each one in the
10834 index field of the section, so that we can find it again when
10835 outputting relocs. */
10836 if (info->strip != strip_all
10839 elfsym.st_size = 0;
10840 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10841 elfsym.st_other = 0;
10842 elfsym.st_value = 0;
10843 elfsym.st_target_internal = 0;
10844 for (i = 1; i < elf_numsections (abfd); i++)
10846 o = bfd_section_from_elf_index (abfd, i);
10849 o->target_index = bfd_get_symcount (abfd);
10850 elfsym.st_shndx = i;
10851 if (!info->relocatable)
10852 elfsym.st_value = o->vma;
10853 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10859 /* Allocate some memory to hold information read in from the input
10861 if (max_contents_size != 0)
10863 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10864 if (flinfo.contents == NULL)
10868 if (max_external_reloc_size != 0)
10870 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10871 if (flinfo.external_relocs == NULL)
10875 if (max_internal_reloc_count != 0)
10877 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10878 amt *= sizeof (Elf_Internal_Rela);
10879 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10880 if (flinfo.internal_relocs == NULL)
10884 if (max_sym_count != 0)
10886 amt = max_sym_count * bed->s->sizeof_sym;
10887 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10888 if (flinfo.external_syms == NULL)
10891 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10892 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10893 if (flinfo.internal_syms == NULL)
10896 amt = max_sym_count * sizeof (long);
10897 flinfo.indices = (long int *) bfd_malloc (amt);
10898 if (flinfo.indices == NULL)
10901 amt = max_sym_count * sizeof (asection *);
10902 flinfo.sections = (asection **) bfd_malloc (amt);
10903 if (flinfo.sections == NULL)
10907 if (max_sym_shndx_count != 0)
10909 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10910 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10911 if (flinfo.locsym_shndx == NULL)
10915 if (elf_hash_table (info)->tls_sec)
10917 bfd_vma base, end = 0;
10920 for (sec = elf_hash_table (info)->tls_sec;
10921 sec && (sec->flags & SEC_THREAD_LOCAL);
10924 bfd_size_type size = sec->size;
10927 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10929 struct bfd_link_order *ord = sec->map_tail.link_order;
10932 size = ord->offset + ord->size;
10934 end = sec->vma + size;
10936 base = elf_hash_table (info)->tls_sec->vma;
10937 /* Only align end of TLS section if static TLS doesn't have special
10938 alignment requirements. */
10939 if (bed->static_tls_alignment == 1)
10940 end = align_power (end,
10941 elf_hash_table (info)->tls_sec->alignment_power);
10942 elf_hash_table (info)->tls_size = end - base;
10945 /* Reorder SHF_LINK_ORDER sections. */
10946 for (o = abfd->sections; o != NULL; o = o->next)
10948 if (!elf_fixup_link_order (abfd, o))
10952 /* Since ELF permits relocations to be against local symbols, we
10953 must have the local symbols available when we do the relocations.
10954 Since we would rather only read the local symbols once, and we
10955 would rather not keep them in memory, we handle all the
10956 relocations for a single input file at the same time.
10958 Unfortunately, there is no way to know the total number of local
10959 symbols until we have seen all of them, and the local symbol
10960 indices precede the global symbol indices. This means that when
10961 we are generating relocatable output, and we see a reloc against
10962 a global symbol, we can not know the symbol index until we have
10963 finished examining all the local symbols to see which ones we are
10964 going to output. To deal with this, we keep the relocations in
10965 memory, and don't output them until the end of the link. This is
10966 an unfortunate waste of memory, but I don't see a good way around
10967 it. Fortunately, it only happens when performing a relocatable
10968 link, which is not the common case. FIXME: If keep_memory is set
10969 we could write the relocs out and then read them again; I don't
10970 know how bad the memory loss will be. */
10972 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10973 sub->output_has_begun = FALSE;
10974 for (o = abfd->sections; o != NULL; o = o->next)
10976 for (p = o->map_head.link_order; p != NULL; p = p->next)
10978 if (p->type == bfd_indirect_link_order
10979 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10980 == bfd_target_elf_flavour)
10981 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10983 if (! sub->output_has_begun)
10985 if (! elf_link_input_bfd (&flinfo, sub))
10987 sub->output_has_begun = TRUE;
10990 else if (p->type == bfd_section_reloc_link_order
10991 || p->type == bfd_symbol_reloc_link_order)
10993 if (! elf_reloc_link_order (abfd, info, o, p))
10998 if (! _bfd_default_link_order (abfd, info, o, p))
11000 if (p->type == bfd_indirect_link_order
11001 && (bfd_get_flavour (sub)
11002 == bfd_target_elf_flavour)
11003 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11004 != bed->s->elfclass))
11006 const char *iclass, *oclass;
11008 if (bed->s->elfclass == ELFCLASS64)
11010 iclass = "ELFCLASS32";
11011 oclass = "ELFCLASS64";
11015 iclass = "ELFCLASS64";
11016 oclass = "ELFCLASS32";
11019 bfd_set_error (bfd_error_wrong_format);
11020 (*_bfd_error_handler)
11021 (_("%B: file class %s incompatible with %s"),
11022 sub, iclass, oclass);
11031 /* Free symbol buffer if needed. */
11032 if (!info->reduce_memory_overheads)
11034 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11035 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11036 && elf_tdata (sub)->symbuf)
11038 free (elf_tdata (sub)->symbuf);
11039 elf_tdata (sub)->symbuf = NULL;
11043 /* Output a FILE symbol so that following locals are not associated
11044 with the wrong input file. */
11045 memset (&elfsym, 0, sizeof (elfsym));
11046 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
11047 elfsym.st_shndx = SHN_ABS;
11049 if (flinfo.filesym_count > 1
11050 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11051 bfd_und_section_ptr, NULL))
11054 /* Output any global symbols that got converted to local in a
11055 version script or due to symbol visibility. We do this in a
11056 separate step since ELF requires all local symbols to appear
11057 prior to any global symbols. FIXME: We should only do this if
11058 some global symbols were, in fact, converted to become local.
11059 FIXME: Will this work correctly with the Irix 5 linker? */
11060 eoinfo.failed = FALSE;
11061 eoinfo.flinfo = &flinfo;
11062 eoinfo.localsyms = TRUE;
11063 eoinfo.need_second_pass = FALSE;
11064 eoinfo.second_pass = FALSE;
11065 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11069 if (flinfo.filesym_count == 1
11070 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11071 bfd_und_section_ptr, NULL))
11074 if (eoinfo.need_second_pass)
11076 eoinfo.second_pass = TRUE;
11077 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11082 /* If backend needs to output some local symbols not present in the hash
11083 table, do it now. */
11084 if (bed->elf_backend_output_arch_local_syms)
11086 typedef int (*out_sym_func)
11087 (void *, const char *, Elf_Internal_Sym *, asection *,
11088 struct elf_link_hash_entry *);
11090 if (! ((*bed->elf_backend_output_arch_local_syms)
11091 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11095 /* That wrote out all the local symbols. Finish up the symbol table
11096 with the global symbols. Even if we want to strip everything we
11097 can, we still need to deal with those global symbols that got
11098 converted to local in a version script. */
11100 /* The sh_info field records the index of the first non local symbol. */
11101 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11104 && flinfo.dynsym_sec != NULL
11105 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11107 Elf_Internal_Sym sym;
11108 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11109 long last_local = 0;
11111 /* Write out the section symbols for the output sections. */
11112 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11118 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11120 sym.st_target_internal = 0;
11122 for (s = abfd->sections; s != NULL; s = s->next)
11128 dynindx = elf_section_data (s)->dynindx;
11131 indx = elf_section_data (s)->this_idx;
11132 BFD_ASSERT (indx > 0);
11133 sym.st_shndx = indx;
11134 if (! check_dynsym (abfd, &sym))
11136 sym.st_value = s->vma;
11137 dest = dynsym + dynindx * bed->s->sizeof_sym;
11138 if (last_local < dynindx)
11139 last_local = dynindx;
11140 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11144 /* Write out the local dynsyms. */
11145 if (elf_hash_table (info)->dynlocal)
11147 struct elf_link_local_dynamic_entry *e;
11148 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11153 /* Copy the internal symbol and turn off visibility.
11154 Note that we saved a word of storage and overwrote
11155 the original st_name with the dynstr_index. */
11157 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11159 s = bfd_section_from_elf_index (e->input_bfd,
11164 elf_section_data (s->output_section)->this_idx;
11165 if (! check_dynsym (abfd, &sym))
11167 sym.st_value = (s->output_section->vma
11169 + e->isym.st_value);
11172 if (last_local < e->dynindx)
11173 last_local = e->dynindx;
11175 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11176 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11180 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11184 /* We get the global symbols from the hash table. */
11185 eoinfo.failed = FALSE;
11186 eoinfo.localsyms = FALSE;
11187 eoinfo.flinfo = &flinfo;
11188 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11192 /* If backend needs to output some symbols not present in the hash
11193 table, do it now. */
11194 if (bed->elf_backend_output_arch_syms)
11196 typedef int (*out_sym_func)
11197 (void *, const char *, Elf_Internal_Sym *, asection *,
11198 struct elf_link_hash_entry *);
11200 if (! ((*bed->elf_backend_output_arch_syms)
11201 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11205 /* Flush all symbols to the file. */
11206 if (! elf_link_flush_output_syms (&flinfo, bed))
11209 /* Now we know the size of the symtab section. */
11210 off += symtab_hdr->sh_size;
11212 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11213 if (symtab_shndx_hdr->sh_name != 0)
11215 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11216 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11217 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11218 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11219 symtab_shndx_hdr->sh_size = amt;
11221 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11224 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11225 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11230 /* Finish up and write out the symbol string table (.strtab)
11232 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11233 /* sh_name was set in prep_headers. */
11234 symstrtab_hdr->sh_type = SHT_STRTAB;
11235 symstrtab_hdr->sh_flags = 0;
11236 symstrtab_hdr->sh_addr = 0;
11237 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11238 symstrtab_hdr->sh_entsize = 0;
11239 symstrtab_hdr->sh_link = 0;
11240 symstrtab_hdr->sh_info = 0;
11241 /* sh_offset is set just below. */
11242 symstrtab_hdr->sh_addralign = 1;
11244 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11245 elf_next_file_pos (abfd) = off;
11247 if (bfd_get_symcount (abfd) > 0)
11249 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11250 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11254 /* Adjust the relocs to have the correct symbol indices. */
11255 for (o = abfd->sections; o != NULL; o = o->next)
11257 struct bfd_elf_section_data *esdo = elf_section_data (o);
11258 if ((o->flags & SEC_RELOC) == 0)
11261 if (esdo->rel.hdr != NULL)
11262 elf_link_adjust_relocs (abfd, &esdo->rel);
11263 if (esdo->rela.hdr != NULL)
11264 elf_link_adjust_relocs (abfd, &esdo->rela);
11266 /* Set the reloc_count field to 0 to prevent write_relocs from
11267 trying to swap the relocs out itself. */
11268 o->reloc_count = 0;
11271 if (dynamic && info->combreloc && dynobj != NULL)
11272 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11274 /* If we are linking against a dynamic object, or generating a
11275 shared library, finish up the dynamic linking information. */
11278 bfd_byte *dyncon, *dynconend;
11280 /* Fix up .dynamic entries. */
11281 o = bfd_get_linker_section (dynobj, ".dynamic");
11282 BFD_ASSERT (o != NULL);
11284 dyncon = o->contents;
11285 dynconend = o->contents + o->size;
11286 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11288 Elf_Internal_Dyn dyn;
11292 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11299 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11301 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11303 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11304 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11307 dyn.d_un.d_val = relativecount;
11314 name = info->init_function;
11317 name = info->fini_function;
11320 struct elf_link_hash_entry *h;
11322 h = elf_link_hash_lookup (elf_hash_table (info), name,
11323 FALSE, FALSE, TRUE);
11325 && (h->root.type == bfd_link_hash_defined
11326 || h->root.type == bfd_link_hash_defweak))
11328 dyn.d_un.d_ptr = h->root.u.def.value;
11329 o = h->root.u.def.section;
11330 if (o->output_section != NULL)
11331 dyn.d_un.d_ptr += (o->output_section->vma
11332 + o->output_offset);
11335 /* The symbol is imported from another shared
11336 library and does not apply to this one. */
11337 dyn.d_un.d_ptr = 0;
11344 case DT_PREINIT_ARRAYSZ:
11345 name = ".preinit_array";
11347 case DT_INIT_ARRAYSZ:
11348 name = ".init_array";
11350 case DT_FINI_ARRAYSZ:
11351 name = ".fini_array";
11353 o = bfd_get_section_by_name (abfd, name);
11356 (*_bfd_error_handler)
11357 (_("%B: could not find output section %s"), abfd, name);
11361 (*_bfd_error_handler)
11362 (_("warning: %s section has zero size"), name);
11363 dyn.d_un.d_val = o->size;
11366 case DT_PREINIT_ARRAY:
11367 name = ".preinit_array";
11369 case DT_INIT_ARRAY:
11370 name = ".init_array";
11372 case DT_FINI_ARRAY:
11373 name = ".fini_array";
11380 name = ".gnu.hash";
11389 name = ".gnu.version_d";
11392 name = ".gnu.version_r";
11395 name = ".gnu.version";
11397 o = bfd_get_section_by_name (abfd, name);
11400 (*_bfd_error_handler)
11401 (_("%B: could not find output section %s"), abfd, name);
11404 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11406 (*_bfd_error_handler)
11407 (_("warning: section '%s' is being made into a note"), name);
11408 bfd_set_error (bfd_error_nonrepresentable_section);
11411 dyn.d_un.d_ptr = o->vma;
11418 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11422 dyn.d_un.d_val = 0;
11423 dyn.d_un.d_ptr = 0;
11424 for (i = 1; i < elf_numsections (abfd); i++)
11426 Elf_Internal_Shdr *hdr;
11428 hdr = elf_elfsections (abfd)[i];
11429 if (hdr->sh_type == type
11430 && (hdr->sh_flags & SHF_ALLOC) != 0)
11432 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11433 dyn.d_un.d_val += hdr->sh_size;
11436 if (dyn.d_un.d_ptr == 0
11437 || hdr->sh_addr < dyn.d_un.d_ptr)
11438 dyn.d_un.d_ptr = hdr->sh_addr;
11444 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11448 /* If we have created any dynamic sections, then output them. */
11449 if (dynobj != NULL)
11451 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11454 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11455 if (((info->warn_shared_textrel && info->shared)
11456 || info->error_textrel)
11457 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11459 bfd_byte *dyncon, *dynconend;
11461 dyncon = o->contents;
11462 dynconend = o->contents + o->size;
11463 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11465 Elf_Internal_Dyn dyn;
11467 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11469 if (dyn.d_tag == DT_TEXTREL)
11471 if (info->error_textrel)
11472 info->callbacks->einfo
11473 (_("%P%X: read-only segment has dynamic relocations.\n"));
11475 info->callbacks->einfo
11476 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11482 for (o = dynobj->sections; o != NULL; o = o->next)
11484 if ((o->flags & SEC_HAS_CONTENTS) == 0
11486 || o->output_section == bfd_abs_section_ptr)
11488 if ((o->flags & SEC_LINKER_CREATED) == 0)
11490 /* At this point, we are only interested in sections
11491 created by _bfd_elf_link_create_dynamic_sections. */
11494 if (elf_hash_table (info)->stab_info.stabstr == o)
11496 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11498 if (strcmp (o->name, ".dynstr") != 0)
11500 /* FIXME: octets_per_byte. */
11501 if (! bfd_set_section_contents (abfd, o->output_section,
11503 (file_ptr) o->output_offset,
11509 /* The contents of the .dynstr section are actually in a
11511 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11512 if (bfd_seek (abfd, off, SEEK_SET) != 0
11513 || ! _bfd_elf_strtab_emit (abfd,
11514 elf_hash_table (info)->dynstr))
11520 if (info->relocatable)
11522 bfd_boolean failed = FALSE;
11524 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11529 /* If we have optimized stabs strings, output them. */
11530 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11532 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11536 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11539 elf_final_link_free (abfd, &flinfo);
11541 elf_linker (abfd) = TRUE;
11545 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11546 if (contents == NULL)
11547 return FALSE; /* Bail out and fail. */
11548 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11549 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11556 elf_final_link_free (abfd, &flinfo);
11560 /* Initialize COOKIE for input bfd ABFD. */
11563 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11564 struct bfd_link_info *info, bfd *abfd)
11566 Elf_Internal_Shdr *symtab_hdr;
11567 const struct elf_backend_data *bed;
11569 bed = get_elf_backend_data (abfd);
11570 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11572 cookie->abfd = abfd;
11573 cookie->sym_hashes = elf_sym_hashes (abfd);
11574 cookie->bad_symtab = elf_bad_symtab (abfd);
11575 if (cookie->bad_symtab)
11577 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11578 cookie->extsymoff = 0;
11582 cookie->locsymcount = symtab_hdr->sh_info;
11583 cookie->extsymoff = symtab_hdr->sh_info;
11586 if (bed->s->arch_size == 32)
11587 cookie->r_sym_shift = 8;
11589 cookie->r_sym_shift = 32;
11591 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11592 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11594 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11595 cookie->locsymcount, 0,
11597 if (cookie->locsyms == NULL)
11599 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11602 if (info->keep_memory)
11603 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11608 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11611 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11613 Elf_Internal_Shdr *symtab_hdr;
11615 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11616 if (cookie->locsyms != NULL
11617 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11618 free (cookie->locsyms);
11621 /* Initialize the relocation information in COOKIE for input section SEC
11622 of input bfd ABFD. */
11625 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11626 struct bfd_link_info *info, bfd *abfd,
11629 const struct elf_backend_data *bed;
11631 if (sec->reloc_count == 0)
11633 cookie->rels = NULL;
11634 cookie->relend = NULL;
11638 bed = get_elf_backend_data (abfd);
11640 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11641 info->keep_memory);
11642 if (cookie->rels == NULL)
11644 cookie->rel = cookie->rels;
11645 cookie->relend = (cookie->rels
11646 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11648 cookie->rel = cookie->rels;
11652 /* Free the memory allocated by init_reloc_cookie_rels,
11656 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11659 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11660 free (cookie->rels);
11663 /* Initialize the whole of COOKIE for input section SEC. */
11666 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11667 struct bfd_link_info *info,
11670 if (!init_reloc_cookie (cookie, info, sec->owner))
11672 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11677 fini_reloc_cookie (cookie, sec->owner);
11682 /* Free the memory allocated by init_reloc_cookie_for_section,
11686 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11689 fini_reloc_cookie_rels (cookie, sec);
11690 fini_reloc_cookie (cookie, sec->owner);
11693 /* Garbage collect unused sections. */
11695 /* Default gc_mark_hook. */
11698 _bfd_elf_gc_mark_hook (asection *sec,
11699 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11700 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11701 struct elf_link_hash_entry *h,
11702 Elf_Internal_Sym *sym)
11704 const char *sec_name;
11708 switch (h->root.type)
11710 case bfd_link_hash_defined:
11711 case bfd_link_hash_defweak:
11712 return h->root.u.def.section;
11714 case bfd_link_hash_common:
11715 return h->root.u.c.p->section;
11717 case bfd_link_hash_undefined:
11718 case bfd_link_hash_undefweak:
11719 /* To work around a glibc bug, keep all XXX input sections
11720 when there is an as yet undefined reference to __start_XXX
11721 or __stop_XXX symbols. The linker will later define such
11722 symbols for orphan input sections that have a name
11723 representable as a C identifier. */
11724 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11725 sec_name = h->root.root.string + 8;
11726 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11727 sec_name = h->root.root.string + 7;
11731 if (sec_name && *sec_name != '\0')
11735 for (i = info->input_bfds; i; i = i->link_next)
11737 sec = bfd_get_section_by_name (i, sec_name);
11739 sec->flags |= SEC_KEEP;
11749 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11754 /* COOKIE->rel describes a relocation against section SEC, which is
11755 a section we've decided to keep. Return the section that contains
11756 the relocation symbol, or NULL if no section contains it. */
11759 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11760 elf_gc_mark_hook_fn gc_mark_hook,
11761 struct elf_reloc_cookie *cookie)
11763 unsigned long r_symndx;
11764 struct elf_link_hash_entry *h;
11766 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11767 if (r_symndx == STN_UNDEF)
11770 if (r_symndx >= cookie->locsymcount
11771 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11773 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11774 while (h->root.type == bfd_link_hash_indirect
11775 || h->root.type == bfd_link_hash_warning)
11776 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11778 /* If this symbol is weak and there is a non-weak definition, we
11779 keep the non-weak definition because many backends put
11780 dynamic reloc info on the non-weak definition for code
11781 handling copy relocs. */
11782 if (h->u.weakdef != NULL)
11783 h->u.weakdef->mark = 1;
11784 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11787 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11788 &cookie->locsyms[r_symndx]);
11791 /* COOKIE->rel describes a relocation against section SEC, which is
11792 a section we've decided to keep. Mark the section that contains
11793 the relocation symbol. */
11796 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11798 elf_gc_mark_hook_fn gc_mark_hook,
11799 struct elf_reloc_cookie *cookie)
11803 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11804 if (rsec && !rsec->gc_mark)
11806 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11807 || (rsec->owner->flags & DYNAMIC) != 0)
11809 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11815 /* The mark phase of garbage collection. For a given section, mark
11816 it and any sections in this section's group, and all the sections
11817 which define symbols to which it refers. */
11820 _bfd_elf_gc_mark (struct bfd_link_info *info,
11822 elf_gc_mark_hook_fn gc_mark_hook)
11825 asection *group_sec, *eh_frame;
11829 /* Mark all the sections in the group. */
11830 group_sec = elf_section_data (sec)->next_in_group;
11831 if (group_sec && !group_sec->gc_mark)
11832 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11835 /* Look through the section relocs. */
11837 eh_frame = elf_eh_frame_section (sec->owner);
11838 if ((sec->flags & SEC_RELOC) != 0
11839 && sec->reloc_count > 0
11840 && sec != eh_frame)
11842 struct elf_reloc_cookie cookie;
11844 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11848 for (; cookie.rel < cookie.relend; cookie.rel++)
11849 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11854 fini_reloc_cookie_for_section (&cookie, sec);
11858 if (ret && eh_frame && elf_fde_list (sec))
11860 struct elf_reloc_cookie cookie;
11862 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11866 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11867 gc_mark_hook, &cookie))
11869 fini_reloc_cookie_for_section (&cookie, eh_frame);
11876 /* Keep debug and special sections. */
11879 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11880 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11884 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11887 bfd_boolean some_kept;
11889 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11892 /* Ensure all linker created sections are kept, and see whether
11893 any other section is already marked. */
11895 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11897 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11899 else if (isec->gc_mark)
11903 /* If no section in this file will be kept, then we can
11904 toss out debug sections. */
11908 /* Keep debug and special sections like .comment when they are
11909 not part of a group, or when we have single-member groups. */
11910 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11911 if ((elf_next_in_group (isec) == NULL
11912 || elf_next_in_group (isec) == isec)
11913 && ((isec->flags & SEC_DEBUGGING) != 0
11914 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11920 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11922 struct elf_gc_sweep_symbol_info
11924 struct bfd_link_info *info;
11925 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11930 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11933 && (((h->root.type == bfd_link_hash_defined
11934 || h->root.type == bfd_link_hash_defweak)
11935 && !(h->def_regular
11936 && h->root.u.def.section->gc_mark))
11937 || h->root.type == bfd_link_hash_undefined
11938 || h->root.type == bfd_link_hash_undefweak))
11940 struct elf_gc_sweep_symbol_info *inf;
11942 inf = (struct elf_gc_sweep_symbol_info *) data;
11943 (*inf->hide_symbol) (inf->info, h, TRUE);
11944 h->def_regular = 0;
11945 h->ref_regular = 0;
11946 h->ref_regular_nonweak = 0;
11952 /* The sweep phase of garbage collection. Remove all garbage sections. */
11954 typedef bfd_boolean (*gc_sweep_hook_fn)
11955 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11958 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11961 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11962 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11963 unsigned long section_sym_count;
11964 struct elf_gc_sweep_symbol_info sweep_info;
11966 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11970 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11973 for (o = sub->sections; o != NULL; o = o->next)
11975 /* When any section in a section group is kept, we keep all
11976 sections in the section group. If the first member of
11977 the section group is excluded, we will also exclude the
11979 if (o->flags & SEC_GROUP)
11981 asection *first = elf_next_in_group (o);
11982 o->gc_mark = first->gc_mark;
11988 /* Skip sweeping sections already excluded. */
11989 if (o->flags & SEC_EXCLUDE)
11992 /* Since this is early in the link process, it is simple
11993 to remove a section from the output. */
11994 o->flags |= SEC_EXCLUDE;
11996 if (info->print_gc_sections && o->size != 0)
11997 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11999 /* But we also have to update some of the relocation
12000 info we collected before. */
12002 && (o->flags & SEC_RELOC) != 0
12003 && o->reloc_count > 0
12004 && !bfd_is_abs_section (o->output_section))
12006 Elf_Internal_Rela *internal_relocs;
12010 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12011 info->keep_memory);
12012 if (internal_relocs == NULL)
12015 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12017 if (elf_section_data (o)->relocs != internal_relocs)
12018 free (internal_relocs);
12026 /* Remove the symbols that were in the swept sections from the dynamic
12027 symbol table. GCFIXME: Anyone know how to get them out of the
12028 static symbol table as well? */
12029 sweep_info.info = info;
12030 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12031 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12034 _bfd_elf_link_renumber_dynsyms (abfd, info, §ion_sym_count);
12038 /* Propagate collected vtable information. This is called through
12039 elf_link_hash_traverse. */
12042 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12044 /* Those that are not vtables. */
12045 if (h->vtable == NULL || h->vtable->parent == NULL)
12048 /* Those vtables that do not have parents, we cannot merge. */
12049 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12052 /* If we've already been done, exit. */
12053 if (h->vtable->used && h->vtable->used[-1])
12056 /* Make sure the parent's table is up to date. */
12057 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12059 if (h->vtable->used == NULL)
12061 /* None of this table's entries were referenced. Re-use the
12063 h->vtable->used = h->vtable->parent->vtable->used;
12064 h->vtable->size = h->vtable->parent->vtable->size;
12069 bfd_boolean *cu, *pu;
12071 /* Or the parent's entries into ours. */
12072 cu = h->vtable->used;
12074 pu = h->vtable->parent->vtable->used;
12077 const struct elf_backend_data *bed;
12078 unsigned int log_file_align;
12080 bed = get_elf_backend_data (h->root.u.def.section->owner);
12081 log_file_align = bed->s->log_file_align;
12082 n = h->vtable->parent->vtable->size >> log_file_align;
12097 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12100 bfd_vma hstart, hend;
12101 Elf_Internal_Rela *relstart, *relend, *rel;
12102 const struct elf_backend_data *bed;
12103 unsigned int log_file_align;
12105 /* Take care of both those symbols that do not describe vtables as
12106 well as those that are not loaded. */
12107 if (h->vtable == NULL || h->vtable->parent == NULL)
12110 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12111 || h->root.type == bfd_link_hash_defweak);
12113 sec = h->root.u.def.section;
12114 hstart = h->root.u.def.value;
12115 hend = hstart + h->size;
12117 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12119 return *(bfd_boolean *) okp = FALSE;
12120 bed = get_elf_backend_data (sec->owner);
12121 log_file_align = bed->s->log_file_align;
12123 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12125 for (rel = relstart; rel < relend; ++rel)
12126 if (rel->r_offset >= hstart && rel->r_offset < hend)
12128 /* If the entry is in use, do nothing. */
12129 if (h->vtable->used
12130 && (rel->r_offset - hstart) < h->vtable->size)
12132 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12133 if (h->vtable->used[entry])
12136 /* Otherwise, kill it. */
12137 rel->r_offset = rel->r_info = rel->r_addend = 0;
12143 /* Mark sections containing dynamically referenced symbols. When
12144 building shared libraries, we must assume that any visible symbol is
12148 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12150 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12152 if ((h->root.type == bfd_link_hash_defined
12153 || h->root.type == bfd_link_hash_defweak)
12155 || ((!info->executable || info->export_dynamic)
12157 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12158 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12159 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12160 || !bfd_hide_sym_by_version (info->version_info,
12161 h->root.root.string)))))
12162 h->root.u.def.section->flags |= SEC_KEEP;
12167 /* Keep all sections containing symbols undefined on the command-line,
12168 and the section containing the entry symbol. */
12171 _bfd_elf_gc_keep (struct bfd_link_info *info)
12173 struct bfd_sym_chain *sym;
12175 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12177 struct elf_link_hash_entry *h;
12179 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12180 FALSE, FALSE, FALSE);
12183 && (h->root.type == bfd_link_hash_defined
12184 || h->root.type == bfd_link_hash_defweak)
12185 && !bfd_is_abs_section (h->root.u.def.section))
12186 h->root.u.def.section->flags |= SEC_KEEP;
12190 /* Do mark and sweep of unused sections. */
12193 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12195 bfd_boolean ok = TRUE;
12197 elf_gc_mark_hook_fn gc_mark_hook;
12198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12200 if (!bed->can_gc_sections
12201 || !is_elf_hash_table (info->hash))
12203 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12207 bed->gc_keep (info);
12209 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12210 at the .eh_frame section if we can mark the FDEs individually. */
12211 _bfd_elf_begin_eh_frame_parsing (info);
12212 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12215 struct elf_reloc_cookie cookie;
12217 sec = bfd_get_section_by_name (sub, ".eh_frame");
12218 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12220 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12221 if (elf_section_data (sec)->sec_info
12222 && (sec->flags & SEC_LINKER_CREATED) == 0)
12223 elf_eh_frame_section (sub) = sec;
12224 fini_reloc_cookie_for_section (&cookie, sec);
12225 sec = bfd_get_next_section_by_name (sec);
12228 _bfd_elf_end_eh_frame_parsing (info);
12230 /* Apply transitive closure to the vtable entry usage info. */
12231 elf_link_hash_traverse (elf_hash_table (info),
12232 elf_gc_propagate_vtable_entries_used,
12237 /* Kill the vtable relocations that were not used. */
12238 elf_link_hash_traverse (elf_hash_table (info),
12239 elf_gc_smash_unused_vtentry_relocs,
12244 /* Mark dynamically referenced symbols. */
12245 if (elf_hash_table (info)->dynamic_sections_created)
12246 elf_link_hash_traverse (elf_hash_table (info),
12247 bed->gc_mark_dynamic_ref,
12250 /* Grovel through relocs to find out who stays ... */
12251 gc_mark_hook = bed->gc_mark_hook;
12252 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12256 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12259 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12260 Also treat note sections as a root, if the section is not part
12262 for (o = sub->sections; o != NULL; o = o->next)
12264 && (o->flags & SEC_EXCLUDE) == 0
12265 && ((o->flags & SEC_KEEP) != 0
12266 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12267 && elf_next_in_group (o) == NULL )))
12269 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12274 /* Allow the backend to mark additional target specific sections. */
12275 bed->gc_mark_extra_sections (info, gc_mark_hook);
12277 /* ... and mark SEC_EXCLUDE for those that go. */
12278 return elf_gc_sweep (abfd, info);
12281 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12284 bfd_elf_gc_record_vtinherit (bfd *abfd,
12286 struct elf_link_hash_entry *h,
12289 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12290 struct elf_link_hash_entry **search, *child;
12291 bfd_size_type extsymcount;
12292 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12294 /* The sh_info field of the symtab header tells us where the
12295 external symbols start. We don't care about the local symbols at
12297 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12298 if (!elf_bad_symtab (abfd))
12299 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12301 sym_hashes = elf_sym_hashes (abfd);
12302 sym_hashes_end = sym_hashes + extsymcount;
12304 /* Hunt down the child symbol, which is in this section at the same
12305 offset as the relocation. */
12306 for (search = sym_hashes; search != sym_hashes_end; ++search)
12308 if ((child = *search) != NULL
12309 && (child->root.type == bfd_link_hash_defined
12310 || child->root.type == bfd_link_hash_defweak)
12311 && child->root.u.def.section == sec
12312 && child->root.u.def.value == offset)
12316 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12317 abfd, sec, (unsigned long) offset);
12318 bfd_set_error (bfd_error_invalid_operation);
12322 if (!child->vtable)
12324 child->vtable = (struct elf_link_virtual_table_entry *)
12325 bfd_zalloc (abfd, sizeof (*child->vtable));
12326 if (!child->vtable)
12331 /* This *should* only be the absolute section. It could potentially
12332 be that someone has defined a non-global vtable though, which
12333 would be bad. It isn't worth paging in the local symbols to be
12334 sure though; that case should simply be handled by the assembler. */
12336 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12339 child->vtable->parent = h;
12344 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12347 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12348 asection *sec ATTRIBUTE_UNUSED,
12349 struct elf_link_hash_entry *h,
12352 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12353 unsigned int log_file_align = bed->s->log_file_align;
12357 h->vtable = (struct elf_link_virtual_table_entry *)
12358 bfd_zalloc (abfd, sizeof (*h->vtable));
12363 if (addend >= h->vtable->size)
12365 size_t size, bytes, file_align;
12366 bfd_boolean *ptr = h->vtable->used;
12368 /* While the symbol is undefined, we have to be prepared to handle
12370 file_align = 1 << log_file_align;
12371 if (h->root.type == bfd_link_hash_undefined)
12372 size = addend + file_align;
12376 if (addend >= size)
12378 /* Oops! We've got a reference past the defined end of
12379 the table. This is probably a bug -- shall we warn? */
12380 size = addend + file_align;
12383 size = (size + file_align - 1) & -file_align;
12385 /* Allocate one extra entry for use as a "done" flag for the
12386 consolidation pass. */
12387 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12391 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12397 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12398 * sizeof (bfd_boolean));
12399 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12403 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12408 /* And arrange for that done flag to be at index -1. */
12409 h->vtable->used = ptr + 1;
12410 h->vtable->size = size;
12413 h->vtable->used[addend >> log_file_align] = TRUE;
12418 /* Map an ELF section header flag to its corresponding string. */
12422 flagword flag_value;
12423 } elf_flags_to_name_table;
12425 static elf_flags_to_name_table elf_flags_to_names [] =
12427 { "SHF_WRITE", SHF_WRITE },
12428 { "SHF_ALLOC", SHF_ALLOC },
12429 { "SHF_EXECINSTR", SHF_EXECINSTR },
12430 { "SHF_MERGE", SHF_MERGE },
12431 { "SHF_STRINGS", SHF_STRINGS },
12432 { "SHF_INFO_LINK", SHF_INFO_LINK},
12433 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12434 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12435 { "SHF_GROUP", SHF_GROUP },
12436 { "SHF_TLS", SHF_TLS },
12437 { "SHF_MASKOS", SHF_MASKOS },
12438 { "SHF_EXCLUDE", SHF_EXCLUDE },
12441 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12443 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12444 struct flag_info *flaginfo,
12447 const bfd_vma sh_flags = elf_section_flags (section);
12449 if (!flaginfo->flags_initialized)
12451 bfd *obfd = info->output_bfd;
12452 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12453 struct flag_info_list *tf = flaginfo->flag_list;
12455 int without_hex = 0;
12457 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12460 flagword (*lookup) (char *);
12462 lookup = bed->elf_backend_lookup_section_flags_hook;
12463 if (lookup != NULL)
12465 flagword hexval = (*lookup) ((char *) tf->name);
12469 if (tf->with == with_flags)
12470 with_hex |= hexval;
12471 else if (tf->with == without_flags)
12472 without_hex |= hexval;
12477 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12479 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12481 if (tf->with == with_flags)
12482 with_hex |= elf_flags_to_names[i].flag_value;
12483 else if (tf->with == without_flags)
12484 without_hex |= elf_flags_to_names[i].flag_value;
12491 info->callbacks->einfo
12492 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12496 flaginfo->flags_initialized = TRUE;
12497 flaginfo->only_with_flags |= with_hex;
12498 flaginfo->not_with_flags |= without_hex;
12501 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12504 if ((flaginfo->not_with_flags & sh_flags) != 0)
12510 struct alloc_got_off_arg {
12512 struct bfd_link_info *info;
12515 /* We need a special top-level link routine to convert got reference counts
12516 to real got offsets. */
12519 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12521 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12522 bfd *obfd = gofarg->info->output_bfd;
12523 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12525 if (h->got.refcount > 0)
12527 h->got.offset = gofarg->gotoff;
12528 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12531 h->got.offset = (bfd_vma) -1;
12536 /* And an accompanying bit to work out final got entry offsets once
12537 we're done. Should be called from final_link. */
12540 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12541 struct bfd_link_info *info)
12544 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12546 struct alloc_got_off_arg gofarg;
12548 BFD_ASSERT (abfd == info->output_bfd);
12550 if (! is_elf_hash_table (info->hash))
12553 /* The GOT offset is relative to the .got section, but the GOT header is
12554 put into the .got.plt section, if the backend uses it. */
12555 if (bed->want_got_plt)
12558 gotoff = bed->got_header_size;
12560 /* Do the local .got entries first. */
12561 for (i = info->input_bfds; i; i = i->link_next)
12563 bfd_signed_vma *local_got;
12564 bfd_size_type j, locsymcount;
12565 Elf_Internal_Shdr *symtab_hdr;
12567 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12570 local_got = elf_local_got_refcounts (i);
12574 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12575 if (elf_bad_symtab (i))
12576 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12578 locsymcount = symtab_hdr->sh_info;
12580 for (j = 0; j < locsymcount; ++j)
12582 if (local_got[j] > 0)
12584 local_got[j] = gotoff;
12585 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12588 local_got[j] = (bfd_vma) -1;
12592 /* Then the global .got entries. .plt refcounts are handled by
12593 adjust_dynamic_symbol */
12594 gofarg.gotoff = gotoff;
12595 gofarg.info = info;
12596 elf_link_hash_traverse (elf_hash_table (info),
12597 elf_gc_allocate_got_offsets,
12602 /* Many folk need no more in the way of final link than this, once
12603 got entry reference counting is enabled. */
12606 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12608 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12611 /* Invoke the regular ELF backend linker to do all the work. */
12612 return bfd_elf_final_link (abfd, info);
12616 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12618 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12620 if (rcookie->bad_symtab)
12621 rcookie->rel = rcookie->rels;
12623 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12625 unsigned long r_symndx;
12627 if (! rcookie->bad_symtab)
12628 if (rcookie->rel->r_offset > offset)
12630 if (rcookie->rel->r_offset != offset)
12633 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12634 if (r_symndx == STN_UNDEF)
12637 if (r_symndx >= rcookie->locsymcount
12638 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12640 struct elf_link_hash_entry *h;
12642 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12644 while (h->root.type == bfd_link_hash_indirect
12645 || h->root.type == bfd_link_hash_warning)
12646 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12648 if ((h->root.type == bfd_link_hash_defined
12649 || h->root.type == bfd_link_hash_defweak)
12650 && discarded_section (h->root.u.def.section))
12657 /* It's not a relocation against a global symbol,
12658 but it could be a relocation against a local
12659 symbol for a discarded section. */
12661 Elf_Internal_Sym *isym;
12663 /* Need to: get the symbol; get the section. */
12664 isym = &rcookie->locsyms[r_symndx];
12665 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12666 if (isec != NULL && discarded_section (isec))
12674 /* Discard unneeded references to discarded sections.
12675 Returns TRUE if any section's size was changed. */
12676 /* This function assumes that the relocations are in sorted order,
12677 which is true for all known assemblers. */
12680 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12682 struct elf_reloc_cookie cookie;
12683 asection *stab, *eh;
12684 const struct elf_backend_data *bed;
12686 bfd_boolean ret = FALSE;
12688 if (info->traditional_format
12689 || !is_elf_hash_table (info->hash))
12692 _bfd_elf_begin_eh_frame_parsing (info);
12693 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12695 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12698 bed = get_elf_backend_data (abfd);
12701 if (!info->relocatable)
12703 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12706 || bfd_is_abs_section (eh->output_section)))
12707 eh = bfd_get_next_section_by_name (eh);
12710 stab = bfd_get_section_by_name (abfd, ".stab");
12712 && (stab->size == 0
12713 || bfd_is_abs_section (stab->output_section)
12714 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12719 && bed->elf_backend_discard_info == NULL)
12722 if (!init_reloc_cookie (&cookie, info, abfd))
12726 && stab->reloc_count > 0
12727 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12729 if (_bfd_discard_section_stabs (abfd, stab,
12730 elf_section_data (stab)->sec_info,
12731 bfd_elf_reloc_symbol_deleted_p,
12734 fini_reloc_cookie_rels (&cookie, stab);
12738 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12740 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12741 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12742 bfd_elf_reloc_symbol_deleted_p,
12745 fini_reloc_cookie_rels (&cookie, eh);
12746 eh = bfd_get_next_section_by_name (eh);
12749 if (bed->elf_backend_discard_info != NULL
12750 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12753 fini_reloc_cookie (&cookie, abfd);
12755 _bfd_elf_end_eh_frame_parsing (info);
12757 if (info->eh_frame_hdr
12758 && !info->relocatable
12759 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12766 _bfd_elf_section_already_linked (bfd *abfd,
12768 struct bfd_link_info *info)
12771 const char *name, *key;
12772 struct bfd_section_already_linked *l;
12773 struct bfd_section_already_linked_hash_entry *already_linked_list;
12775 if (sec->output_section == bfd_abs_section_ptr)
12778 flags = sec->flags;
12780 /* Return if it isn't a linkonce section. A comdat group section
12781 also has SEC_LINK_ONCE set. */
12782 if ((flags & SEC_LINK_ONCE) == 0)
12785 /* Don't put group member sections on our list of already linked
12786 sections. They are handled as a group via their group section. */
12787 if (elf_sec_group (sec) != NULL)
12790 /* For a SHT_GROUP section, use the group signature as the key. */
12792 if ((flags & SEC_GROUP) != 0
12793 && elf_next_in_group (sec) != NULL
12794 && elf_group_name (elf_next_in_group (sec)) != NULL)
12795 key = elf_group_name (elf_next_in_group (sec));
12798 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12799 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12800 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12803 /* Must be a user linkonce section that doesn't follow gcc's
12804 naming convention. In this case we won't be matching
12805 single member groups. */
12809 already_linked_list = bfd_section_already_linked_table_lookup (key);
12811 for (l = already_linked_list->entry; l != NULL; l = l->next)
12813 /* We may have 2 different types of sections on the list: group
12814 sections with a signature of <key> (<key> is some string),
12815 and linkonce sections named .gnu.linkonce.<type>.<key>.
12816 Match like sections. LTO plugin sections are an exception.
12817 They are always named .gnu.linkonce.t.<key> and match either
12818 type of section. */
12819 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12820 && ((flags & SEC_GROUP) != 0
12821 || strcmp (name, l->sec->name) == 0))
12822 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12824 /* The section has already been linked. See if we should
12825 issue a warning. */
12826 if (!_bfd_handle_already_linked (sec, l, info))
12829 if (flags & SEC_GROUP)
12831 asection *first = elf_next_in_group (sec);
12832 asection *s = first;
12836 s->output_section = bfd_abs_section_ptr;
12837 /* Record which group discards it. */
12838 s->kept_section = l->sec;
12839 s = elf_next_in_group (s);
12840 /* These lists are circular. */
12850 /* A single member comdat group section may be discarded by a
12851 linkonce section and vice versa. */
12852 if ((flags & SEC_GROUP) != 0)
12854 asection *first = elf_next_in_group (sec);
12856 if (first != NULL && elf_next_in_group (first) == first)
12857 /* Check this single member group against linkonce sections. */
12858 for (l = already_linked_list->entry; l != NULL; l = l->next)
12859 if ((l->sec->flags & SEC_GROUP) == 0
12860 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12862 first->output_section = bfd_abs_section_ptr;
12863 first->kept_section = l->sec;
12864 sec->output_section = bfd_abs_section_ptr;
12869 /* Check this linkonce section against single member groups. */
12870 for (l = already_linked_list->entry; l != NULL; l = l->next)
12871 if (l->sec->flags & SEC_GROUP)
12873 asection *first = elf_next_in_group (l->sec);
12876 && elf_next_in_group (first) == first
12877 && bfd_elf_match_symbols_in_sections (first, sec, info))
12879 sec->output_section = bfd_abs_section_ptr;
12880 sec->kept_section = first;
12885 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12886 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12887 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12888 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12889 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12890 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12891 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12892 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12893 The reverse order cannot happen as there is never a bfd with only the
12894 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12895 matter as here were are looking only for cross-bfd sections. */
12897 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12898 for (l = already_linked_list->entry; l != NULL; l = l->next)
12899 if ((l->sec->flags & SEC_GROUP) == 0
12900 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12902 if (abfd != l->sec->owner)
12903 sec->output_section = bfd_abs_section_ptr;
12907 /* This is the first section with this name. Record it. */
12908 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12909 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12910 return sec->output_section == bfd_abs_section_ptr;
12914 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12916 return sym->st_shndx == SHN_COMMON;
12920 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12926 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12928 return bfd_com_section_ptr;
12932 _bfd_elf_default_got_elt_size (bfd *abfd,
12933 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12934 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12935 bfd *ibfd ATTRIBUTE_UNUSED,
12936 unsigned long symndx ATTRIBUTE_UNUSED)
12938 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12939 return bed->s->arch_size / 8;
12942 /* Routines to support the creation of dynamic relocs. */
12944 /* Returns the name of the dynamic reloc section associated with SEC. */
12946 static const char *
12947 get_dynamic_reloc_section_name (bfd * abfd,
12949 bfd_boolean is_rela)
12952 const char *old_name = bfd_get_section_name (NULL, sec);
12953 const char *prefix = is_rela ? ".rela" : ".rel";
12955 if (old_name == NULL)
12958 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12959 sprintf (name, "%s%s", prefix, old_name);
12964 /* Returns the dynamic reloc section associated with SEC.
12965 If necessary compute the name of the dynamic reloc section based
12966 on SEC's name (looked up in ABFD's string table) and the setting
12970 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12972 bfd_boolean is_rela)
12974 asection * reloc_sec = elf_section_data (sec)->sreloc;
12976 if (reloc_sec == NULL)
12978 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12982 reloc_sec = bfd_get_linker_section (abfd, name);
12984 if (reloc_sec != NULL)
12985 elf_section_data (sec)->sreloc = reloc_sec;
12992 /* Returns the dynamic reloc section associated with SEC. If the
12993 section does not exist it is created and attached to the DYNOBJ
12994 bfd and stored in the SRELOC field of SEC's elf_section_data
12997 ALIGNMENT is the alignment for the newly created section and
12998 IS_RELA defines whether the name should be .rela.<SEC's name>
12999 or .rel.<SEC's name>. The section name is looked up in the
13000 string table associated with ABFD. */
13003 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13005 unsigned int alignment,
13007 bfd_boolean is_rela)
13009 asection * reloc_sec = elf_section_data (sec)->sreloc;
13011 if (reloc_sec == NULL)
13013 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13018 reloc_sec = bfd_get_linker_section (dynobj, name);
13020 if (reloc_sec == NULL)
13022 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13023 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13024 if ((sec->flags & SEC_ALLOC) != 0)
13025 flags |= SEC_ALLOC | SEC_LOAD;
13027 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13028 if (reloc_sec != NULL)
13030 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13035 elf_section_data (sec)->sreloc = reloc_sec;
13041 /* Copy the ELF symbol type associated with a linker hash entry. */
13043 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13044 struct bfd_link_hash_entry * hdest,
13045 struct bfd_link_hash_entry * hsrc)
13047 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13048 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13050 ehdest->type = ehsrc->type;
13051 ehdest->target_internal = ehsrc->target_internal;
13054 /* Append a RELA relocation REL to section S in BFD. */
13057 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13059 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13060 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13061 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13062 bed->s->swap_reloca_out (abfd, rel, loc);
13065 /* Append a REL relocation REL to section S in BFD. */
13068 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13070 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13071 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13072 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13073 bed->s->swap_reloc_out (abfd, rel, loc);