1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27 #include "safe-ctype.h"
28 #include "libiberty.h"
31 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
35 struct elf_link_hash_entry *h;
36 struct bfd_link_hash_entry *bh;
37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
40 /* This function may be called more than once. */
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
45 switch (bed->s->arch_size)
56 bfd_set_error (bfd_error_bad_value);
60 flags = bed->dynamic_sec_flags;
62 s = bfd_make_section_with_flags (abfd, ".got", flags);
64 || !bfd_set_section_alignment (abfd, s, ptralign))
67 if (bed->want_got_plt)
69 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
71 || !bfd_set_section_alignment (abfd, s, ptralign))
75 if (bed->want_got_sym)
77 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
78 (or .got.plt) section. We don't do this in the linker script
79 because we don't want to define the symbol if we are not creating
80 a global offset table. */
82 if (!(_bfd_generic_link_add_one_symbol
83 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
84 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
86 h = (struct elf_link_hash_entry *) bh;
89 h->other = STV_HIDDEN;
91 if (! info->executable
92 && ! bfd_elf_link_record_dynamic_symbol (info, h))
95 elf_hash_table (info)->hgot = h;
98 /* The first bit of the global offset table is the header. */
99 s->size += bed->got_header_size + bed->got_symbol_offset;
104 /* Create a strtab to hold the dynamic symbol names. */
106 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
108 struct elf_link_hash_table *hash_table;
110 hash_table = elf_hash_table (info);
111 if (hash_table->dynobj == NULL)
112 hash_table->dynobj = abfd;
114 if (hash_table->dynstr == NULL)
116 hash_table->dynstr = _bfd_elf_strtab_init ();
117 if (hash_table->dynstr == NULL)
123 /* Create some sections which will be filled in with dynamic linking
124 information. ABFD is an input file which requires dynamic sections
125 to be created. The dynamic sections take up virtual memory space
126 when the final executable is run, so we need to create them before
127 addresses are assigned to the output sections. We work out the
128 actual contents and size of these sections later. */
131 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
134 register asection *s;
135 struct elf_link_hash_entry *h;
136 struct bfd_link_hash_entry *bh;
137 const struct elf_backend_data *bed;
139 if (! is_elf_hash_table (info->hash))
142 if (elf_hash_table (info)->dynamic_sections_created)
145 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
148 abfd = elf_hash_table (info)->dynobj;
149 bed = get_elf_backend_data (abfd);
151 flags = bed->dynamic_sec_flags;
153 /* A dynamically linked executable has a .interp section, but a
154 shared library does not. */
155 if (info->executable)
157 s = bfd_make_section_with_flags (abfd, ".interp",
158 flags | SEC_READONLY);
163 if (! info->traditional_format)
165 s = bfd_make_section_with_flags (abfd, ".eh_frame_hdr",
166 flags | SEC_READONLY);
168 || ! bfd_set_section_alignment (abfd, s, 2))
170 elf_hash_table (info)->eh_info.hdr_sec = s;
173 /* Create sections to hold version informations. These are removed
174 if they are not needed. */
175 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
176 flags | SEC_READONLY);
178 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
181 s = bfd_make_section_with_flags (abfd, ".gnu.version",
182 flags | SEC_READONLY);
184 || ! bfd_set_section_alignment (abfd, s, 1))
187 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
188 flags | SEC_READONLY);
190 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
193 s = bfd_make_section_with_flags (abfd, ".dynsym",
194 flags | SEC_READONLY);
196 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
199 s = bfd_make_section_with_flags (abfd, ".dynstr",
200 flags | SEC_READONLY);
204 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
209 /* The special symbol _DYNAMIC is always set to the start of the
210 .dynamic section. We could set _DYNAMIC in a linker script, but we
211 only want to define it if we are, in fact, creating a .dynamic
212 section. We don't want to define it if there is no .dynamic
213 section, since on some ELF platforms the start up code examines it
214 to decide how to initialize the process. */
215 h = elf_link_hash_lookup (elf_hash_table (info), "_DYNAMIC",
216 FALSE, FALSE, FALSE);
219 /* Zap symbol defined in an as-needed lib that wasn't linked.
220 This is a symptom of a larger problem: Absolute symbols
221 defined in shared libraries can't be overridden, because we
222 lose the link to the bfd which is via the symbol section. */
223 h->root.type = bfd_link_hash_new;
226 if (! (_bfd_generic_link_add_one_symbol
227 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
228 get_elf_backend_data (abfd)->collect, &bh)))
230 h = (struct elf_link_hash_entry *) bh;
232 h->type = STT_OBJECT;
234 if (! info->executable
235 && ! bfd_elf_link_record_dynamic_symbol (info, h))
238 s = bfd_make_section_with_flags (abfd, ".hash",
239 flags | SEC_READONLY);
241 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
243 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
245 /* Let the backend create the rest of the sections. This lets the
246 backend set the right flags. The backend will normally create
247 the .got and .plt sections. */
248 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
251 elf_hash_table (info)->dynamic_sections_created = TRUE;
256 /* Create dynamic sections when linking against a dynamic object. */
259 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
261 flagword flags, pltflags;
263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
265 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
266 .rel[a].bss sections. */
267 flags = bed->dynamic_sec_flags;
270 if (bed->plt_not_loaded)
271 /* We do not clear SEC_ALLOC here because we still want the OS to
272 allocate space for the section; it's just that there's nothing
273 to read in from the object file. */
274 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
276 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
277 if (bed->plt_readonly)
278 pltflags |= SEC_READONLY;
280 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
282 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
285 if (bed->want_plt_sym)
287 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
289 struct elf_link_hash_entry *h;
290 struct bfd_link_hash_entry *bh = NULL;
292 if (! (_bfd_generic_link_add_one_symbol
293 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
294 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
296 h = (struct elf_link_hash_entry *) bh;
298 h->type = STT_OBJECT;
300 if (! info->executable
301 && ! bfd_elf_link_record_dynamic_symbol (info, h))
305 s = bfd_make_section_with_flags (abfd,
306 (bed->default_use_rela_p
307 ? ".rela.plt" : ".rel.plt"),
308 flags | SEC_READONLY);
310 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
313 if (! _bfd_elf_create_got_section (abfd, info))
316 if (bed->want_dynbss)
318 /* The .dynbss section is a place to put symbols which are defined
319 by dynamic objects, are referenced by regular objects, and are
320 not functions. We must allocate space for them in the process
321 image and use a R_*_COPY reloc to tell the dynamic linker to
322 initialize them at run time. The linker script puts the .dynbss
323 section into the .bss section of the final image. */
324 s = bfd_make_section_with_flags (abfd, ".dynbss",
326 | SEC_LINKER_CREATED));
330 /* The .rel[a].bss section holds copy relocs. This section is not
331 normally needed. We need to create it here, though, so that the
332 linker will map it to an output section. We can't just create it
333 only if we need it, because we will not know whether we need it
334 until we have seen all the input files, and the first time the
335 main linker code calls BFD after examining all the input files
336 (size_dynamic_sections) the input sections have already been
337 mapped to the output sections. If the section turns out not to
338 be needed, we can discard it later. We will never need this
339 section when generating a shared object, since they do not use
343 s = bfd_make_section_with_flags (abfd,
344 (bed->default_use_rela_p
345 ? ".rela.bss" : ".rel.bss"),
346 flags | SEC_READONLY);
348 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
356 /* Record a new dynamic symbol. We record the dynamic symbols as we
357 read the input files, since we need to have a list of all of them
358 before we can determine the final sizes of the output sections.
359 Note that we may actually call this function even though we are not
360 going to output any dynamic symbols; in some cases we know that a
361 symbol should be in the dynamic symbol table, but only if there is
365 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
366 struct elf_link_hash_entry *h)
368 if (h->dynindx == -1)
370 struct elf_strtab_hash *dynstr;
375 /* XXX: The ABI draft says the linker must turn hidden and
376 internal symbols into STB_LOCAL symbols when producing the
377 DSO. However, if ld.so honors st_other in the dynamic table,
378 this would not be necessary. */
379 switch (ELF_ST_VISIBILITY (h->other))
383 if (h->root.type != bfd_link_hash_undefined
384 && h->root.type != bfd_link_hash_undefweak)
387 if (!elf_hash_table (info)->is_relocatable_executable)
395 h->dynindx = elf_hash_table (info)->dynsymcount;
396 ++elf_hash_table (info)->dynsymcount;
398 dynstr = elf_hash_table (info)->dynstr;
401 /* Create a strtab to hold the dynamic symbol names. */
402 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
407 /* We don't put any version information in the dynamic string
409 name = h->root.root.string;
410 p = strchr (name, ELF_VER_CHR);
412 /* We know that the p points into writable memory. In fact,
413 there are only a few symbols that have read-only names, being
414 those like _GLOBAL_OFFSET_TABLE_ that are created specially
415 by the backends. Most symbols will have names pointing into
416 an ELF string table read from a file, or to objalloc memory. */
419 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
424 if (indx == (bfd_size_type) -1)
426 h->dynstr_index = indx;
432 /* Record an assignment to a symbol made by a linker script. We need
433 this in case some dynamic object refers to this symbol. */
436 bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
437 struct bfd_link_info *info,
441 struct elf_link_hash_entry *h;
442 struct elf_link_hash_table *htab;
444 if (!is_elf_hash_table (info->hash))
447 htab = elf_hash_table (info);
448 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
452 /* Since we're defining the symbol, don't let it seem to have not
453 been defined. record_dynamic_symbol and size_dynamic_sections
454 may depend on this. */
455 if (h->root.type == bfd_link_hash_undefweak
456 || h->root.type == bfd_link_hash_undefined)
458 h->root.type = bfd_link_hash_new;
459 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
460 bfd_link_repair_undef_list (&htab->root);
463 if (h->root.type == bfd_link_hash_new)
466 /* If this symbol is being provided by the linker script, and it is
467 currently defined by a dynamic object, but not by a regular
468 object, then mark it as undefined so that the generic linker will
469 force the correct value. */
473 h->root.type = bfd_link_hash_undefined;
475 /* If this symbol is not being provided by the linker script, and it is
476 currently defined by a dynamic object, but not by a regular object,
477 then clear out any version information because the symbol will not be
478 associated with the dynamic object any more. */
482 h->verinfo.verdef = NULL;
486 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
488 if (!info->relocatable
490 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
491 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
497 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
500 if (! bfd_elf_link_record_dynamic_symbol (info, h))
503 /* If this is a weak defined symbol, and we know a corresponding
504 real symbol from the same dynamic object, make sure the real
505 symbol is also made into a dynamic symbol. */
506 if (h->u.weakdef != NULL
507 && h->u.weakdef->dynindx == -1)
509 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
517 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
518 success, and 2 on a failure caused by attempting to record a symbol
519 in a discarded section, eg. a discarded link-once section symbol. */
522 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
527 struct elf_link_local_dynamic_entry *entry;
528 struct elf_link_hash_table *eht;
529 struct elf_strtab_hash *dynstr;
530 unsigned long dynstr_index;
532 Elf_External_Sym_Shndx eshndx;
533 char esym[sizeof (Elf64_External_Sym)];
535 if (! is_elf_hash_table (info->hash))
538 /* See if the entry exists already. */
539 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
540 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
543 amt = sizeof (*entry);
544 entry = bfd_alloc (input_bfd, amt);
548 /* Go find the symbol, so that we can find it's name. */
549 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
550 1, input_indx, &entry->isym, esym, &eshndx))
552 bfd_release (input_bfd, entry);
556 if (entry->isym.st_shndx != SHN_UNDEF
557 && (entry->isym.st_shndx < SHN_LORESERVE
558 || entry->isym.st_shndx > SHN_HIRESERVE))
562 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
563 if (s == NULL || bfd_is_abs_section (s->output_section))
565 /* We can still bfd_release here as nothing has done another
566 bfd_alloc. We can't do this later in this function. */
567 bfd_release (input_bfd, entry);
572 name = (bfd_elf_string_from_elf_section
573 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
574 entry->isym.st_name));
576 dynstr = elf_hash_table (info)->dynstr;
579 /* Create a strtab to hold the dynamic symbol names. */
580 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
585 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
586 if (dynstr_index == (unsigned long) -1)
588 entry->isym.st_name = dynstr_index;
590 eht = elf_hash_table (info);
592 entry->next = eht->dynlocal;
593 eht->dynlocal = entry;
594 entry->input_bfd = input_bfd;
595 entry->input_indx = input_indx;
598 /* Whatever binding the symbol had before, it's now local. */
600 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
602 /* The dynindx will be set at the end of size_dynamic_sections. */
607 /* Return the dynindex of a local dynamic symbol. */
610 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
614 struct elf_link_local_dynamic_entry *e;
616 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
617 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
622 /* This function is used to renumber the dynamic symbols, if some of
623 them are removed because they are marked as local. This is called
624 via elf_link_hash_traverse. */
627 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
630 size_t *count = data;
632 if (h->root.type == bfd_link_hash_warning)
633 h = (struct elf_link_hash_entry *) h->root.u.i.link;
638 if (h->dynindx != -1)
639 h->dynindx = ++(*count);
645 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
646 STB_LOCAL binding. */
649 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
652 size_t *count = data;
654 if (h->root.type == bfd_link_hash_warning)
655 h = (struct elf_link_hash_entry *) h->root.u.i.link;
657 if (!h->forced_local)
660 if (h->dynindx != -1)
661 h->dynindx = ++(*count);
666 /* Return true if the dynamic symbol for a given section should be
667 omitted when creating a shared library. */
669 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
670 struct bfd_link_info *info,
673 switch (elf_section_data (p)->this_hdr.sh_type)
677 /* If sh_type is yet undecided, assume it could be
678 SHT_PROGBITS/SHT_NOBITS. */
680 if (strcmp (p->name, ".got") == 0
681 || strcmp (p->name, ".got.plt") == 0
682 || strcmp (p->name, ".plt") == 0)
685 bfd *dynobj = elf_hash_table (info)->dynobj;
688 && (ip = bfd_get_section_by_name (dynobj, p->name)) != NULL
689 && (ip->flags & SEC_LINKER_CREATED)
690 && ip->output_section == p)
695 /* There shouldn't be section relative relocations
696 against any other section. */
702 /* Assign dynsym indices. In a shared library we generate a section
703 symbol for each output section, which come first. Next come symbols
704 which have been forced to local binding. Then all of the back-end
705 allocated local dynamic syms, followed by the rest of the global
709 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
710 struct bfd_link_info *info,
711 unsigned long *section_sym_count)
713 unsigned long dynsymcount = 0;
715 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
717 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
719 for (p = output_bfd->sections; p ; p = p->next)
720 if ((p->flags & SEC_EXCLUDE) == 0
721 && (p->flags & SEC_ALLOC) != 0
722 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
723 elf_section_data (p)->dynindx = ++dynsymcount;
725 *section_sym_count = dynsymcount;
727 elf_link_hash_traverse (elf_hash_table (info),
728 elf_link_renumber_local_hash_table_dynsyms,
731 if (elf_hash_table (info)->dynlocal)
733 struct elf_link_local_dynamic_entry *p;
734 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
735 p->dynindx = ++dynsymcount;
738 elf_link_hash_traverse (elf_hash_table (info),
739 elf_link_renumber_hash_table_dynsyms,
742 /* There is an unused NULL entry at the head of the table which
743 we must account for in our count. Unless there weren't any
744 symbols, which means we'll have no table at all. */
745 if (dynsymcount != 0)
748 return elf_hash_table (info)->dynsymcount = dynsymcount;
751 /* This function is called when we want to define a new symbol. It
752 handles the various cases which arise when we find a definition in
753 a dynamic object, or when there is already a definition in a
754 dynamic object. The new symbol is described by NAME, SYM, PSEC,
755 and PVALUE. We set SYM_HASH to the hash table entry. We set
756 OVERRIDE if the old symbol is overriding a new definition. We set
757 TYPE_CHANGE_OK if it is OK for the type to change. We set
758 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
759 change, we mean that we shouldn't warn if the type or size does
760 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
761 object is overridden by a regular object. */
764 _bfd_elf_merge_symbol (bfd *abfd,
765 struct bfd_link_info *info,
767 Elf_Internal_Sym *sym,
770 unsigned int *pold_alignment,
771 struct elf_link_hash_entry **sym_hash,
773 bfd_boolean *override,
774 bfd_boolean *type_change_ok,
775 bfd_boolean *size_change_ok)
777 asection *sec, *oldsec;
778 struct elf_link_hash_entry *h;
779 struct elf_link_hash_entry *flip;
782 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
783 bfd_boolean newweak, oldweak;
789 bind = ELF_ST_BIND (sym->st_info);
791 if (! bfd_is_und_section (sec))
792 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
794 h = ((struct elf_link_hash_entry *)
795 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
800 /* This code is for coping with dynamic objects, and is only useful
801 if we are doing an ELF link. */
802 if (info->hash->creator != abfd->xvec)
805 /* For merging, we only care about real symbols. */
807 while (h->root.type == bfd_link_hash_indirect
808 || h->root.type == bfd_link_hash_warning)
809 h = (struct elf_link_hash_entry *) h->root.u.i.link;
811 /* If we just created the symbol, mark it as being an ELF symbol.
812 Other than that, there is nothing to do--there is no merge issue
813 with a newly defined symbol--so we just return. */
815 if (h->root.type == bfd_link_hash_new)
821 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
824 switch (h->root.type)
831 case bfd_link_hash_undefined:
832 case bfd_link_hash_undefweak:
833 oldbfd = h->root.u.undef.abfd;
837 case bfd_link_hash_defined:
838 case bfd_link_hash_defweak:
839 oldbfd = h->root.u.def.section->owner;
840 oldsec = h->root.u.def.section;
843 case bfd_link_hash_common:
844 oldbfd = h->root.u.c.p->section->owner;
845 oldsec = h->root.u.c.p->section;
849 /* In cases involving weak versioned symbols, we may wind up trying
850 to merge a symbol with itself. Catch that here, to avoid the
851 confusion that results if we try to override a symbol with
852 itself. The additional tests catch cases like
853 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
854 dynamic object, which we do want to handle here. */
856 && ((abfd->flags & DYNAMIC) == 0
860 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
861 respectively, is from a dynamic object. */
863 if ((abfd->flags & DYNAMIC) != 0)
869 olddyn = (oldbfd->flags & DYNAMIC) != 0;
874 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
875 indices used by MIPS ELF. */
876 switch (h->root.type)
882 case bfd_link_hash_defined:
883 case bfd_link_hash_defweak:
884 hsec = h->root.u.def.section;
887 case bfd_link_hash_common:
888 hsec = h->root.u.c.p->section;
895 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
898 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
899 respectively, appear to be a definition rather than reference. */
901 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
906 if (h->root.type == bfd_link_hash_undefined
907 || h->root.type == bfd_link_hash_undefweak
908 || h->root.type == bfd_link_hash_common)
913 /* Check TLS symbol. */
914 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
915 && ELF_ST_TYPE (sym->st_info) != h->type)
918 bfd_boolean ntdef, tdef;
919 asection *ntsec, *tsec;
921 if (h->type == STT_TLS)
941 (*_bfd_error_handler)
942 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
943 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
944 else if (!tdef && !ntdef)
945 (*_bfd_error_handler)
946 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
947 tbfd, ntbfd, h->root.root.string);
949 (*_bfd_error_handler)
950 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
951 tbfd, tsec, ntbfd, h->root.root.string);
953 (*_bfd_error_handler)
954 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
955 tbfd, ntbfd, ntsec, h->root.root.string);
957 bfd_set_error (bfd_error_bad_value);
961 /* We need to remember if a symbol has a definition in a dynamic
962 object or is weak in all dynamic objects. Internal and hidden
963 visibility will make it unavailable to dynamic objects. */
964 if (newdyn && !h->dynamic_def)
966 if (!bfd_is_und_section (sec))
970 /* Check if this symbol is weak in all dynamic objects. If it
971 is the first time we see it in a dynamic object, we mark
972 if it is weak. Otherwise, we clear it. */
975 if (bind == STB_WEAK)
978 else if (bind != STB_WEAK)
983 /* If the old symbol has non-default visibility, we ignore the new
984 definition from a dynamic object. */
986 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
987 && !bfd_is_und_section (sec))
990 /* Make sure this symbol is dynamic. */
992 /* A protected symbol has external availability. Make sure it is
995 FIXME: Should we check type and size for protected symbol? */
996 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
997 return bfd_elf_link_record_dynamic_symbol (info, h);
1002 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1005 /* If the new symbol with non-default visibility comes from a
1006 relocatable file and the old definition comes from a dynamic
1007 object, we remove the old definition. */
1008 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1011 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1012 && bfd_is_und_section (sec))
1014 /* If the new symbol is undefined and the old symbol was
1015 also undefined before, we need to make sure
1016 _bfd_generic_link_add_one_symbol doesn't mess
1017 up the linker hash table undefs list. Since the old
1018 definition came from a dynamic object, it is still on the
1020 h->root.type = bfd_link_hash_undefined;
1021 h->root.u.undef.abfd = abfd;
1025 h->root.type = bfd_link_hash_new;
1026 h->root.u.undef.abfd = NULL;
1035 /* FIXME: Should we check type and size for protected symbol? */
1041 /* Differentiate strong and weak symbols. */
1042 newweak = bind == STB_WEAK;
1043 oldweak = (h->root.type == bfd_link_hash_defweak
1044 || h->root.type == bfd_link_hash_undefweak);
1046 /* If a new weak symbol definition comes from a regular file and the
1047 old symbol comes from a dynamic library, we treat the new one as
1048 strong. Similarly, an old weak symbol definition from a regular
1049 file is treated as strong when the new symbol comes from a dynamic
1050 library. Further, an old weak symbol from a dynamic library is
1051 treated as strong if the new symbol is from a dynamic library.
1052 This reflects the way glibc's ld.so works.
1054 Do this before setting *type_change_ok or *size_change_ok so that
1055 we warn properly when dynamic library symbols are overridden. */
1057 if (newdef && !newdyn && olddyn)
1059 if (olddef && newdyn)
1062 /* It's OK to change the type if either the existing symbol or the
1063 new symbol is weak. A type change is also OK if the old symbol
1064 is undefined and the new symbol is defined. */
1069 && h->root.type == bfd_link_hash_undefined))
1070 *type_change_ok = TRUE;
1072 /* It's OK to change the size if either the existing symbol or the
1073 new symbol is weak, or if the old symbol is undefined. */
1076 || h->root.type == bfd_link_hash_undefined)
1077 *size_change_ok = TRUE;
1079 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1080 symbol, respectively, appears to be a common symbol in a dynamic
1081 object. If a symbol appears in an uninitialized section, and is
1082 not weak, and is not a function, then it may be a common symbol
1083 which was resolved when the dynamic object was created. We want
1084 to treat such symbols specially, because they raise special
1085 considerations when setting the symbol size: if the symbol
1086 appears as a common symbol in a regular object, and the size in
1087 the regular object is larger, we must make sure that we use the
1088 larger size. This problematic case can always be avoided in C,
1089 but it must be handled correctly when using Fortran shared
1092 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1093 likewise for OLDDYNCOMMON and OLDDEF.
1095 Note that this test is just a heuristic, and that it is quite
1096 possible to have an uninitialized symbol in a shared object which
1097 is really a definition, rather than a common symbol. This could
1098 lead to some minor confusion when the symbol really is a common
1099 symbol in some regular object. However, I think it will be
1105 && (sec->flags & SEC_ALLOC) != 0
1106 && (sec->flags & SEC_LOAD) == 0
1108 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1109 newdyncommon = TRUE;
1111 newdyncommon = FALSE;
1115 && h->root.type == bfd_link_hash_defined
1117 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1118 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1120 && h->type != STT_FUNC)
1121 olddyncommon = TRUE;
1123 olddyncommon = FALSE;
1125 /* If both the old and the new symbols look like common symbols in a
1126 dynamic object, set the size of the symbol to the larger of the
1131 && sym->st_size != h->size)
1133 /* Since we think we have two common symbols, issue a multiple
1134 common warning if desired. Note that we only warn if the
1135 size is different. If the size is the same, we simply let
1136 the old symbol override the new one as normally happens with
1137 symbols defined in dynamic objects. */
1139 if (! ((*info->callbacks->multiple_common)
1140 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1141 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1144 if (sym->st_size > h->size)
1145 h->size = sym->st_size;
1147 *size_change_ok = TRUE;
1150 /* If we are looking at a dynamic object, and we have found a
1151 definition, we need to see if the symbol was already defined by
1152 some other object. If so, we want to use the existing
1153 definition, and we do not want to report a multiple symbol
1154 definition error; we do this by clobbering *PSEC to be
1155 bfd_und_section_ptr.
1157 We treat a common symbol as a definition if the symbol in the
1158 shared library is a function, since common symbols always
1159 represent variables; this can cause confusion in principle, but
1160 any such confusion would seem to indicate an erroneous program or
1161 shared library. We also permit a common symbol in a regular
1162 object to override a weak symbol in a shared object. */
1167 || (h->root.type == bfd_link_hash_common
1169 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
1173 newdyncommon = FALSE;
1175 *psec = sec = bfd_und_section_ptr;
1176 *size_change_ok = TRUE;
1178 /* If we get here when the old symbol is a common symbol, then
1179 we are explicitly letting it override a weak symbol or
1180 function in a dynamic object, and we don't want to warn about
1181 a type change. If the old symbol is a defined symbol, a type
1182 change warning may still be appropriate. */
1184 if (h->root.type == bfd_link_hash_common)
1185 *type_change_ok = TRUE;
1188 /* Handle the special case of an old common symbol merging with a
1189 new symbol which looks like a common symbol in a shared object.
1190 We change *PSEC and *PVALUE to make the new symbol look like a
1191 common symbol, and let _bfd_generic_link_add_one_symbol will do
1195 && h->root.type == bfd_link_hash_common)
1199 newdyncommon = FALSE;
1200 *pvalue = sym->st_size;
1201 *psec = sec = bfd_com_section_ptr;
1202 *size_change_ok = TRUE;
1205 /* Skip weak definitions of symbols that are already defined. */
1206 if (newdef && olddef && newweak && !oldweak)
1209 /* If the old symbol is from a dynamic object, and the new symbol is
1210 a definition which is not from a dynamic object, then the new
1211 symbol overrides the old symbol. Symbols from regular files
1212 always take precedence over symbols from dynamic objects, even if
1213 they are defined after the dynamic object in the link.
1215 As above, we again permit a common symbol in a regular object to
1216 override a definition in a shared object if the shared object
1217 symbol is a function or is weak. */
1222 || (bfd_is_com_section (sec)
1224 || h->type == STT_FUNC)))
1229 /* Change the hash table entry to undefined, and let
1230 _bfd_generic_link_add_one_symbol do the right thing with the
1233 h->root.type = bfd_link_hash_undefined;
1234 h->root.u.undef.abfd = h->root.u.def.section->owner;
1235 *size_change_ok = TRUE;
1238 olddyncommon = FALSE;
1240 /* We again permit a type change when a common symbol may be
1241 overriding a function. */
1243 if (bfd_is_com_section (sec))
1244 *type_change_ok = TRUE;
1246 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1249 /* This union may have been set to be non-NULL when this symbol
1250 was seen in a dynamic object. We must force the union to be
1251 NULL, so that it is correct for a regular symbol. */
1252 h->verinfo.vertree = NULL;
1255 /* Handle the special case of a new common symbol merging with an
1256 old symbol that looks like it might be a common symbol defined in
1257 a shared object. Note that we have already handled the case in
1258 which a new common symbol should simply override the definition
1259 in the shared library. */
1262 && bfd_is_com_section (sec)
1265 /* It would be best if we could set the hash table entry to a
1266 common symbol, but we don't know what to use for the section
1267 or the alignment. */
1268 if (! ((*info->callbacks->multiple_common)
1269 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1270 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1273 /* If the presumed common symbol in the dynamic object is
1274 larger, pretend that the new symbol has its size. */
1276 if (h->size > *pvalue)
1279 /* We need to remember the alignment required by the symbol
1280 in the dynamic object. */
1281 BFD_ASSERT (pold_alignment);
1282 *pold_alignment = h->root.u.def.section->alignment_power;
1285 olddyncommon = FALSE;
1287 h->root.type = bfd_link_hash_undefined;
1288 h->root.u.undef.abfd = h->root.u.def.section->owner;
1290 *size_change_ok = TRUE;
1291 *type_change_ok = TRUE;
1293 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1296 h->verinfo.vertree = NULL;
1301 /* Handle the case where we had a versioned symbol in a dynamic
1302 library and now find a definition in a normal object. In this
1303 case, we make the versioned symbol point to the normal one. */
1304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1305 flip->root.type = h->root.type;
1306 h->root.type = bfd_link_hash_indirect;
1307 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1308 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1309 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1313 flip->ref_dynamic = 1;
1320 /* This function is called to create an indirect symbol from the
1321 default for the symbol with the default version if needed. The
1322 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1323 set DYNSYM if the new indirect symbol is dynamic. */
1326 _bfd_elf_add_default_symbol (bfd *abfd,
1327 struct bfd_link_info *info,
1328 struct elf_link_hash_entry *h,
1330 Elf_Internal_Sym *sym,
1333 bfd_boolean *dynsym,
1334 bfd_boolean override)
1336 bfd_boolean type_change_ok;
1337 bfd_boolean size_change_ok;
1340 struct elf_link_hash_entry *hi;
1341 struct bfd_link_hash_entry *bh;
1342 const struct elf_backend_data *bed;
1343 bfd_boolean collect;
1344 bfd_boolean dynamic;
1346 size_t len, shortlen;
1349 /* If this symbol has a version, and it is the default version, we
1350 create an indirect symbol from the default name to the fully
1351 decorated name. This will cause external references which do not
1352 specify a version to be bound to this version of the symbol. */
1353 p = strchr (name, ELF_VER_CHR);
1354 if (p == NULL || p[1] != ELF_VER_CHR)
1359 /* We are overridden by an old definition. We need to check if we
1360 need to create the indirect symbol from the default name. */
1361 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1363 BFD_ASSERT (hi != NULL);
1366 while (hi->root.type == bfd_link_hash_indirect
1367 || hi->root.type == bfd_link_hash_warning)
1369 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1375 bed = get_elf_backend_data (abfd);
1376 collect = bed->collect;
1377 dynamic = (abfd->flags & DYNAMIC) != 0;
1379 shortlen = p - name;
1380 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1381 if (shortname == NULL)
1383 memcpy (shortname, name, shortlen);
1384 shortname[shortlen] = '\0';
1386 /* We are going to create a new symbol. Merge it with any existing
1387 symbol with this name. For the purposes of the merge, act as
1388 though we were defining the symbol we just defined, although we
1389 actually going to define an indirect symbol. */
1390 type_change_ok = FALSE;
1391 size_change_ok = FALSE;
1393 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1394 NULL, &hi, &skip, &override,
1395 &type_change_ok, &size_change_ok))
1404 if (! (_bfd_generic_link_add_one_symbol
1405 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1406 0, name, FALSE, collect, &bh)))
1408 hi = (struct elf_link_hash_entry *) bh;
1412 /* In this case the symbol named SHORTNAME is overriding the
1413 indirect symbol we want to add. We were planning on making
1414 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1415 is the name without a version. NAME is the fully versioned
1416 name, and it is the default version.
1418 Overriding means that we already saw a definition for the
1419 symbol SHORTNAME in a regular object, and it is overriding
1420 the symbol defined in the dynamic object.
1422 When this happens, we actually want to change NAME, the
1423 symbol we just added, to refer to SHORTNAME. This will cause
1424 references to NAME in the shared object to become references
1425 to SHORTNAME in the regular object. This is what we expect
1426 when we override a function in a shared object: that the
1427 references in the shared object will be mapped to the
1428 definition in the regular object. */
1430 while (hi->root.type == bfd_link_hash_indirect
1431 || hi->root.type == bfd_link_hash_warning)
1432 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1434 h->root.type = bfd_link_hash_indirect;
1435 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1439 hi->ref_dynamic = 1;
1443 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1448 /* Now set HI to H, so that the following code will set the
1449 other fields correctly. */
1453 /* If there is a duplicate definition somewhere, then HI may not
1454 point to an indirect symbol. We will have reported an error to
1455 the user in that case. */
1457 if (hi->root.type == bfd_link_hash_indirect)
1459 struct elf_link_hash_entry *ht;
1461 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1462 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1464 /* See if the new flags lead us to realize that the symbol must
1476 if (hi->ref_regular)
1482 /* We also need to define an indirection from the nondefault version
1486 len = strlen (name);
1487 shortname = bfd_hash_allocate (&info->hash->table, len);
1488 if (shortname == NULL)
1490 memcpy (shortname, name, shortlen);
1491 memcpy (shortname + shortlen, p + 1, len - shortlen);
1493 /* Once again, merge with any existing symbol. */
1494 type_change_ok = FALSE;
1495 size_change_ok = FALSE;
1497 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1498 NULL, &hi, &skip, &override,
1499 &type_change_ok, &size_change_ok))
1507 /* Here SHORTNAME is a versioned name, so we don't expect to see
1508 the type of override we do in the case above unless it is
1509 overridden by a versioned definition. */
1510 if (hi->root.type != bfd_link_hash_defined
1511 && hi->root.type != bfd_link_hash_defweak)
1512 (*_bfd_error_handler)
1513 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1519 if (! (_bfd_generic_link_add_one_symbol
1520 (info, abfd, shortname, BSF_INDIRECT,
1521 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1523 hi = (struct elf_link_hash_entry *) bh;
1525 /* If there is a duplicate definition somewhere, then HI may not
1526 point to an indirect symbol. We will have reported an error
1527 to the user in that case. */
1529 if (hi->root.type == bfd_link_hash_indirect)
1531 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1533 /* See if the new flags lead us to realize that the symbol
1545 if (hi->ref_regular)
1555 /* This routine is used to export all defined symbols into the dynamic
1556 symbol table. It is called via elf_link_hash_traverse. */
1559 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1561 struct elf_info_failed *eif = data;
1563 /* Ignore indirect symbols. These are added by the versioning code. */
1564 if (h->root.type == bfd_link_hash_indirect)
1567 if (h->root.type == bfd_link_hash_warning)
1568 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1570 if (h->dynindx == -1
1574 struct bfd_elf_version_tree *t;
1575 struct bfd_elf_version_expr *d;
1577 for (t = eif->verdefs; t != NULL; t = t->next)
1579 if (t->globals.list != NULL)
1581 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1586 if (t->locals.list != NULL)
1588 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1597 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1608 /* Look through the symbols which are defined in other shared
1609 libraries and referenced here. Update the list of version
1610 dependencies. This will be put into the .gnu.version_r section.
1611 This function is called via elf_link_hash_traverse. */
1614 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1617 struct elf_find_verdep_info *rinfo = data;
1618 Elf_Internal_Verneed *t;
1619 Elf_Internal_Vernaux *a;
1622 if (h->root.type == bfd_link_hash_warning)
1623 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1625 /* We only care about symbols defined in shared objects with version
1630 || h->verinfo.verdef == NULL)
1633 /* See if we already know about this version. */
1634 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1636 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1639 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1640 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1646 /* This is a new version. Add it to tree we are building. */
1651 t = bfd_zalloc (rinfo->output_bfd, amt);
1654 rinfo->failed = TRUE;
1658 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1659 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1660 elf_tdata (rinfo->output_bfd)->verref = t;
1664 a = bfd_zalloc (rinfo->output_bfd, amt);
1666 /* Note that we are copying a string pointer here, and testing it
1667 above. If bfd_elf_string_from_elf_section is ever changed to
1668 discard the string data when low in memory, this will have to be
1670 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1672 a->vna_flags = h->verinfo.verdef->vd_flags;
1673 a->vna_nextptr = t->vn_auxptr;
1675 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1678 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1685 /* Figure out appropriate versions for all the symbols. We may not
1686 have the version number script until we have read all of the input
1687 files, so until that point we don't know which symbols should be
1688 local. This function is called via elf_link_hash_traverse. */
1691 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1693 struct elf_assign_sym_version_info *sinfo;
1694 struct bfd_link_info *info;
1695 const struct elf_backend_data *bed;
1696 struct elf_info_failed eif;
1703 if (h->root.type == bfd_link_hash_warning)
1704 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1706 /* Fix the symbol flags. */
1709 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1712 sinfo->failed = TRUE;
1716 /* We only need version numbers for symbols defined in regular
1718 if (!h->def_regular)
1721 bed = get_elf_backend_data (sinfo->output_bfd);
1722 p = strchr (h->root.root.string, ELF_VER_CHR);
1723 if (p != NULL && h->verinfo.vertree == NULL)
1725 struct bfd_elf_version_tree *t;
1730 /* There are two consecutive ELF_VER_CHR characters if this is
1731 not a hidden symbol. */
1733 if (*p == ELF_VER_CHR)
1739 /* If there is no version string, we can just return out. */
1747 /* Look for the version. If we find it, it is no longer weak. */
1748 for (t = sinfo->verdefs; t != NULL; t = t->next)
1750 if (strcmp (t->name, p) == 0)
1754 struct bfd_elf_version_expr *d;
1756 len = p - h->root.root.string;
1757 alc = bfd_malloc (len);
1760 memcpy (alc, h->root.root.string, len - 1);
1761 alc[len - 1] = '\0';
1762 if (alc[len - 2] == ELF_VER_CHR)
1763 alc[len - 2] = '\0';
1765 h->verinfo.vertree = t;
1769 if (t->globals.list != NULL)
1770 d = (*t->match) (&t->globals, NULL, alc);
1772 /* See if there is anything to force this symbol to
1774 if (d == NULL && t->locals.list != NULL)
1776 d = (*t->match) (&t->locals, NULL, alc);
1779 && ! info->export_dynamic)
1780 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1788 /* If we are building an application, we need to create a
1789 version node for this version. */
1790 if (t == NULL && info->executable)
1792 struct bfd_elf_version_tree **pp;
1795 /* If we aren't going to export this symbol, we don't need
1796 to worry about it. */
1797 if (h->dynindx == -1)
1801 t = bfd_zalloc (sinfo->output_bfd, amt);
1804 sinfo->failed = TRUE;
1809 t->name_indx = (unsigned int) -1;
1813 /* Don't count anonymous version tag. */
1814 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1816 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1818 t->vernum = version_index;
1822 h->verinfo.vertree = t;
1826 /* We could not find the version for a symbol when
1827 generating a shared archive. Return an error. */
1828 (*_bfd_error_handler)
1829 (_("%B: undefined versioned symbol name %s"),
1830 sinfo->output_bfd, h->root.root.string);
1831 bfd_set_error (bfd_error_bad_value);
1832 sinfo->failed = TRUE;
1840 /* If we don't have a version for this symbol, see if we can find
1842 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1844 struct bfd_elf_version_tree *t;
1845 struct bfd_elf_version_tree *local_ver;
1846 struct bfd_elf_version_expr *d;
1848 /* See if can find what version this symbol is in. If the
1849 symbol is supposed to be local, then don't actually register
1852 for (t = sinfo->verdefs; t != NULL; t = t->next)
1854 if (t->globals.list != NULL)
1856 bfd_boolean matched;
1860 while ((d = (*t->match) (&t->globals, d,
1861 h->root.root.string)) != NULL)
1866 /* There is a version without definition. Make
1867 the symbol the default definition for this
1869 h->verinfo.vertree = t;
1877 /* There is no undefined version for this symbol. Hide the
1879 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1882 if (t->locals.list != NULL)
1885 while ((d = (*t->match) (&t->locals, d,
1886 h->root.root.string)) != NULL)
1889 /* If the match is "*", keep looking for a more
1890 explicit, perhaps even global, match.
1891 XXX: Shouldn't this be !d->wildcard instead? */
1892 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1901 if (local_ver != NULL)
1903 h->verinfo.vertree = local_ver;
1904 if (h->dynindx != -1
1905 && ! info->export_dynamic)
1907 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1915 /* Read and swap the relocs from the section indicated by SHDR. This
1916 may be either a REL or a RELA section. The relocations are
1917 translated into RELA relocations and stored in INTERNAL_RELOCS,
1918 which should have already been allocated to contain enough space.
1919 The EXTERNAL_RELOCS are a buffer where the external form of the
1920 relocations should be stored.
1922 Returns FALSE if something goes wrong. */
1925 elf_link_read_relocs_from_section (bfd *abfd,
1927 Elf_Internal_Shdr *shdr,
1928 void *external_relocs,
1929 Elf_Internal_Rela *internal_relocs)
1931 const struct elf_backend_data *bed;
1932 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
1933 const bfd_byte *erela;
1934 const bfd_byte *erelaend;
1935 Elf_Internal_Rela *irela;
1936 Elf_Internal_Shdr *symtab_hdr;
1939 /* Position ourselves at the start of the section. */
1940 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1943 /* Read the relocations. */
1944 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1947 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1948 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1950 bed = get_elf_backend_data (abfd);
1952 /* Convert the external relocations to the internal format. */
1953 if (shdr->sh_entsize == bed->s->sizeof_rel)
1954 swap_in = bed->s->swap_reloc_in;
1955 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1956 swap_in = bed->s->swap_reloca_in;
1959 bfd_set_error (bfd_error_wrong_format);
1963 erela = external_relocs;
1964 erelaend = erela + shdr->sh_size;
1965 irela = internal_relocs;
1966 while (erela < erelaend)
1970 (*swap_in) (abfd, erela, irela);
1971 r_symndx = ELF32_R_SYM (irela->r_info);
1972 if (bed->s->arch_size == 64)
1974 if ((size_t) r_symndx >= nsyms)
1976 (*_bfd_error_handler)
1977 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1978 " for offset 0x%lx in section `%A'"),
1980 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
1981 bfd_set_error (bfd_error_bad_value);
1984 irela += bed->s->int_rels_per_ext_rel;
1985 erela += shdr->sh_entsize;
1991 /* Read and swap the relocs for a section O. They may have been
1992 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1993 not NULL, they are used as buffers to read into. They are known to
1994 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1995 the return value is allocated using either malloc or bfd_alloc,
1996 according to the KEEP_MEMORY argument. If O has two relocation
1997 sections (both REL and RELA relocations), then the REL_HDR
1998 relocations will appear first in INTERNAL_RELOCS, followed by the
1999 REL_HDR2 relocations. */
2002 _bfd_elf_link_read_relocs (bfd *abfd,
2004 void *external_relocs,
2005 Elf_Internal_Rela *internal_relocs,
2006 bfd_boolean keep_memory)
2008 Elf_Internal_Shdr *rel_hdr;
2009 void *alloc1 = NULL;
2010 Elf_Internal_Rela *alloc2 = NULL;
2011 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2013 if (elf_section_data (o)->relocs != NULL)
2014 return elf_section_data (o)->relocs;
2016 if (o->reloc_count == 0)
2019 rel_hdr = &elf_section_data (o)->rel_hdr;
2021 if (internal_relocs == NULL)
2025 size = o->reloc_count;
2026 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2028 internal_relocs = bfd_alloc (abfd, size);
2030 internal_relocs = alloc2 = bfd_malloc (size);
2031 if (internal_relocs == NULL)
2035 if (external_relocs == NULL)
2037 bfd_size_type size = rel_hdr->sh_size;
2039 if (elf_section_data (o)->rel_hdr2)
2040 size += elf_section_data (o)->rel_hdr2->sh_size;
2041 alloc1 = bfd_malloc (size);
2044 external_relocs = alloc1;
2047 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2051 if (elf_section_data (o)->rel_hdr2
2052 && (!elf_link_read_relocs_from_section
2054 elf_section_data (o)->rel_hdr2,
2055 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2056 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2057 * bed->s->int_rels_per_ext_rel))))
2060 /* Cache the results for next time, if we can. */
2062 elf_section_data (o)->relocs = internal_relocs;
2067 /* Don't free alloc2, since if it was allocated we are passing it
2068 back (under the name of internal_relocs). */
2070 return internal_relocs;
2080 /* Compute the size of, and allocate space for, REL_HDR which is the
2081 section header for a section containing relocations for O. */
2084 _bfd_elf_link_size_reloc_section (bfd *abfd,
2085 Elf_Internal_Shdr *rel_hdr,
2088 bfd_size_type reloc_count;
2089 bfd_size_type num_rel_hashes;
2091 /* Figure out how many relocations there will be. */
2092 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2093 reloc_count = elf_section_data (o)->rel_count;
2095 reloc_count = elf_section_data (o)->rel_count2;
2097 num_rel_hashes = o->reloc_count;
2098 if (num_rel_hashes < reloc_count)
2099 num_rel_hashes = reloc_count;
2101 /* That allows us to calculate the size of the section. */
2102 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2104 /* The contents field must last into write_object_contents, so we
2105 allocate it with bfd_alloc rather than malloc. Also since we
2106 cannot be sure that the contents will actually be filled in,
2107 we zero the allocated space. */
2108 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2109 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2112 /* We only allocate one set of hash entries, so we only do it the
2113 first time we are called. */
2114 if (elf_section_data (o)->rel_hashes == NULL
2117 struct elf_link_hash_entry **p;
2119 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2123 elf_section_data (o)->rel_hashes = p;
2129 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2130 originated from the section given by INPUT_REL_HDR) to the
2134 _bfd_elf_link_output_relocs (bfd *output_bfd,
2135 asection *input_section,
2136 Elf_Internal_Shdr *input_rel_hdr,
2137 Elf_Internal_Rela *internal_relocs,
2138 struct elf_link_hash_entry **rel_hash
2141 Elf_Internal_Rela *irela;
2142 Elf_Internal_Rela *irelaend;
2144 Elf_Internal_Shdr *output_rel_hdr;
2145 asection *output_section;
2146 unsigned int *rel_countp = NULL;
2147 const struct elf_backend_data *bed;
2148 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2150 output_section = input_section->output_section;
2151 output_rel_hdr = NULL;
2153 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2154 == input_rel_hdr->sh_entsize)
2156 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2157 rel_countp = &elf_section_data (output_section)->rel_count;
2159 else if (elf_section_data (output_section)->rel_hdr2
2160 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2161 == input_rel_hdr->sh_entsize))
2163 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2164 rel_countp = &elf_section_data (output_section)->rel_count2;
2168 (*_bfd_error_handler)
2169 (_("%B: relocation size mismatch in %B section %A"),
2170 output_bfd, input_section->owner, input_section);
2171 bfd_set_error (bfd_error_wrong_object_format);
2175 bed = get_elf_backend_data (output_bfd);
2176 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2177 swap_out = bed->s->swap_reloc_out;
2178 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2179 swap_out = bed->s->swap_reloca_out;
2183 erel = output_rel_hdr->contents;
2184 erel += *rel_countp * input_rel_hdr->sh_entsize;
2185 irela = internal_relocs;
2186 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2187 * bed->s->int_rels_per_ext_rel);
2188 while (irela < irelaend)
2190 (*swap_out) (output_bfd, irela, erel);
2191 irela += bed->s->int_rels_per_ext_rel;
2192 erel += input_rel_hdr->sh_entsize;
2195 /* Bump the counter, so that we know where to add the next set of
2197 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2202 /* Fix up the flags for a symbol. This handles various cases which
2203 can only be fixed after all the input files are seen. This is
2204 currently called by both adjust_dynamic_symbol and
2205 assign_sym_version, which is unnecessary but perhaps more robust in
2206 the face of future changes. */
2209 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2210 struct elf_info_failed *eif)
2212 /* If this symbol was mentioned in a non-ELF file, try to set
2213 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2214 permit a non-ELF file to correctly refer to a symbol defined in
2215 an ELF dynamic object. */
2218 while (h->root.type == bfd_link_hash_indirect)
2219 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2221 if (h->root.type != bfd_link_hash_defined
2222 && h->root.type != bfd_link_hash_defweak)
2225 h->ref_regular_nonweak = 1;
2229 if (h->root.u.def.section->owner != NULL
2230 && (bfd_get_flavour (h->root.u.def.section->owner)
2231 == bfd_target_elf_flavour))
2234 h->ref_regular_nonweak = 1;
2240 if (h->dynindx == -1
2244 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2253 /* Unfortunately, NON_ELF is only correct if the symbol
2254 was first seen in a non-ELF file. Fortunately, if the symbol
2255 was first seen in an ELF file, we're probably OK unless the
2256 symbol was defined in a non-ELF file. Catch that case here.
2257 FIXME: We're still in trouble if the symbol was first seen in
2258 a dynamic object, and then later in a non-ELF regular object. */
2259 if ((h->root.type == bfd_link_hash_defined
2260 || h->root.type == bfd_link_hash_defweak)
2262 && (h->root.u.def.section->owner != NULL
2263 ? (bfd_get_flavour (h->root.u.def.section->owner)
2264 != bfd_target_elf_flavour)
2265 : (bfd_is_abs_section (h->root.u.def.section)
2266 && !h->def_dynamic)))
2270 /* If this is a final link, and the symbol was defined as a common
2271 symbol in a regular object file, and there was no definition in
2272 any dynamic object, then the linker will have allocated space for
2273 the symbol in a common section but the DEF_REGULAR
2274 flag will not have been set. */
2275 if (h->root.type == bfd_link_hash_defined
2279 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2282 /* If -Bsymbolic was used (which means to bind references to global
2283 symbols to the definition within the shared object), and this
2284 symbol was defined in a regular object, then it actually doesn't
2285 need a PLT entry. Likewise, if the symbol has non-default
2286 visibility. If the symbol has hidden or internal visibility, we
2287 will force it local. */
2289 && eif->info->shared
2290 && is_elf_hash_table (eif->info->hash)
2291 && (eif->info->symbolic
2292 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2295 const struct elf_backend_data *bed;
2296 bfd_boolean force_local;
2298 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2300 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2301 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2302 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2305 /* If a weak undefined symbol has non-default visibility, we also
2306 hide it from the dynamic linker. */
2307 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2308 && h->root.type == bfd_link_hash_undefweak)
2310 const struct elf_backend_data *bed;
2311 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2312 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2315 /* If this is a weak defined symbol in a dynamic object, and we know
2316 the real definition in the dynamic object, copy interesting flags
2317 over to the real definition. */
2318 if (h->u.weakdef != NULL)
2320 struct elf_link_hash_entry *weakdef;
2322 weakdef = h->u.weakdef;
2323 if (h->root.type == bfd_link_hash_indirect)
2324 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2326 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2327 || h->root.type == bfd_link_hash_defweak);
2328 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2329 || weakdef->root.type == bfd_link_hash_defweak);
2330 BFD_ASSERT (weakdef->def_dynamic);
2332 /* If the real definition is defined by a regular object file,
2333 don't do anything special. See the longer description in
2334 _bfd_elf_adjust_dynamic_symbol, below. */
2335 if (weakdef->def_regular)
2336 h->u.weakdef = NULL;
2339 const struct elf_backend_data *bed;
2341 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2342 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2349 /* Make the backend pick a good value for a dynamic symbol. This is
2350 called via elf_link_hash_traverse, and also calls itself
2354 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2356 struct elf_info_failed *eif = data;
2358 const struct elf_backend_data *bed;
2360 if (! is_elf_hash_table (eif->info->hash))
2363 if (h->root.type == bfd_link_hash_warning)
2365 h->plt = elf_hash_table (eif->info)->init_offset;
2366 h->got = elf_hash_table (eif->info)->init_offset;
2368 /* When warning symbols are created, they **replace** the "real"
2369 entry in the hash table, thus we never get to see the real
2370 symbol in a hash traversal. So look at it now. */
2371 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2374 /* Ignore indirect symbols. These are added by the versioning code. */
2375 if (h->root.type == bfd_link_hash_indirect)
2378 /* Fix the symbol flags. */
2379 if (! _bfd_elf_fix_symbol_flags (h, eif))
2382 /* If this symbol does not require a PLT entry, and it is not
2383 defined by a dynamic object, or is not referenced by a regular
2384 object, ignore it. We do have to handle a weak defined symbol,
2385 even if no regular object refers to it, if we decided to add it
2386 to the dynamic symbol table. FIXME: Do we normally need to worry
2387 about symbols which are defined by one dynamic object and
2388 referenced by another one? */
2393 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2395 h->plt = elf_hash_table (eif->info)->init_offset;
2399 /* If we've already adjusted this symbol, don't do it again. This
2400 can happen via a recursive call. */
2401 if (h->dynamic_adjusted)
2404 /* Don't look at this symbol again. Note that we must set this
2405 after checking the above conditions, because we may look at a
2406 symbol once, decide not to do anything, and then get called
2407 recursively later after REF_REGULAR is set below. */
2408 h->dynamic_adjusted = 1;
2410 /* If this is a weak definition, and we know a real definition, and
2411 the real symbol is not itself defined by a regular object file,
2412 then get a good value for the real definition. We handle the
2413 real symbol first, for the convenience of the backend routine.
2415 Note that there is a confusing case here. If the real definition
2416 is defined by a regular object file, we don't get the real symbol
2417 from the dynamic object, but we do get the weak symbol. If the
2418 processor backend uses a COPY reloc, then if some routine in the
2419 dynamic object changes the real symbol, we will not see that
2420 change in the corresponding weak symbol. This is the way other
2421 ELF linkers work as well, and seems to be a result of the shared
2424 I will clarify this issue. Most SVR4 shared libraries define the
2425 variable _timezone and define timezone as a weak synonym. The
2426 tzset call changes _timezone. If you write
2427 extern int timezone;
2429 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2430 you might expect that, since timezone is a synonym for _timezone,
2431 the same number will print both times. However, if the processor
2432 backend uses a COPY reloc, then actually timezone will be copied
2433 into your process image, and, since you define _timezone
2434 yourself, _timezone will not. Thus timezone and _timezone will
2435 wind up at different memory locations. The tzset call will set
2436 _timezone, leaving timezone unchanged. */
2438 if (h->u.weakdef != NULL)
2440 /* If we get to this point, we know there is an implicit
2441 reference by a regular object file via the weak symbol H.
2442 FIXME: Is this really true? What if the traversal finds
2443 H->U.WEAKDEF before it finds H? */
2444 h->u.weakdef->ref_regular = 1;
2446 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2450 /* If a symbol has no type and no size and does not require a PLT
2451 entry, then we are probably about to do the wrong thing here: we
2452 are probably going to create a COPY reloc for an empty object.
2453 This case can arise when a shared object is built with assembly
2454 code, and the assembly code fails to set the symbol type. */
2456 && h->type == STT_NOTYPE
2458 (*_bfd_error_handler)
2459 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2460 h->root.root.string);
2462 dynobj = elf_hash_table (eif->info)->dynobj;
2463 bed = get_elf_backend_data (dynobj);
2464 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2473 /* Adjust all external symbols pointing into SEC_MERGE sections
2474 to reflect the object merging within the sections. */
2477 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2481 if (h->root.type == bfd_link_hash_warning)
2482 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2484 if ((h->root.type == bfd_link_hash_defined
2485 || h->root.type == bfd_link_hash_defweak)
2486 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2487 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2489 bfd *output_bfd = data;
2491 h->root.u.def.value =
2492 _bfd_merged_section_offset (output_bfd,
2493 &h->root.u.def.section,
2494 elf_section_data (sec)->sec_info,
2495 h->root.u.def.value);
2501 /* Returns false if the symbol referred to by H should be considered
2502 to resolve local to the current module, and true if it should be
2503 considered to bind dynamically. */
2506 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2507 struct bfd_link_info *info,
2508 bfd_boolean ignore_protected)
2510 bfd_boolean binding_stays_local_p;
2515 while (h->root.type == bfd_link_hash_indirect
2516 || h->root.type == bfd_link_hash_warning)
2517 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2519 /* If it was forced local, then clearly it's not dynamic. */
2520 if (h->dynindx == -1)
2522 if (h->forced_local)
2525 /* Identify the cases where name binding rules say that a
2526 visible symbol resolves locally. */
2527 binding_stays_local_p = info->executable || info->symbolic;
2529 switch (ELF_ST_VISIBILITY (h->other))
2536 /* Proper resolution for function pointer equality may require
2537 that these symbols perhaps be resolved dynamically, even though
2538 we should be resolving them to the current module. */
2539 if (!ignore_protected || h->type != STT_FUNC)
2540 binding_stays_local_p = TRUE;
2547 /* If it isn't defined locally, then clearly it's dynamic. */
2548 if (!h->def_regular)
2551 /* Otherwise, the symbol is dynamic if binding rules don't tell
2552 us that it remains local. */
2553 return !binding_stays_local_p;
2556 /* Return true if the symbol referred to by H should be considered
2557 to resolve local to the current module, and false otherwise. Differs
2558 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2559 undefined symbols and weak symbols. */
2562 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2563 struct bfd_link_info *info,
2564 bfd_boolean local_protected)
2566 /* If it's a local sym, of course we resolve locally. */
2570 /* Common symbols that become definitions don't get the DEF_REGULAR
2571 flag set, so test it first, and don't bail out. */
2572 if (ELF_COMMON_DEF_P (h))
2574 /* If we don't have a definition in a regular file, then we can't
2575 resolve locally. The sym is either undefined or dynamic. */
2576 else if (!h->def_regular)
2579 /* Forced local symbols resolve locally. */
2580 if (h->forced_local)
2583 /* As do non-dynamic symbols. */
2584 if (h->dynindx == -1)
2587 /* At this point, we know the symbol is defined and dynamic. In an
2588 executable it must resolve locally, likewise when building symbolic
2589 shared libraries. */
2590 if (info->executable || info->symbolic)
2593 /* Now deal with defined dynamic symbols in shared libraries. Ones
2594 with default visibility might not resolve locally. */
2595 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2598 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2599 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2602 /* STV_PROTECTED non-function symbols are local. */
2603 if (h->type != STT_FUNC)
2606 /* Function pointer equality tests may require that STV_PROTECTED
2607 symbols be treated as dynamic symbols, even when we know that the
2608 dynamic linker will resolve them locally. */
2609 return local_protected;
2612 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2613 aligned. Returns the first TLS output section. */
2615 struct bfd_section *
2616 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2618 struct bfd_section *sec, *tls;
2619 unsigned int align = 0;
2621 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2622 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2626 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2627 if (sec->alignment_power > align)
2628 align = sec->alignment_power;
2630 elf_hash_table (info)->tls_sec = tls;
2632 /* Ensure the alignment of the first section is the largest alignment,
2633 so that the tls segment starts aligned. */
2635 tls->alignment_power = align;
2640 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2642 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2643 Elf_Internal_Sym *sym)
2645 /* Local symbols do not count, but target specific ones might. */
2646 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2647 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2650 /* Function symbols do not count. */
2651 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2654 /* If the section is undefined, then so is the symbol. */
2655 if (sym->st_shndx == SHN_UNDEF)
2658 /* If the symbol is defined in the common section, then
2659 it is a common definition and so does not count. */
2660 if (sym->st_shndx == SHN_COMMON)
2663 /* If the symbol is in a target specific section then we
2664 must rely upon the backend to tell us what it is. */
2665 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2666 /* FIXME - this function is not coded yet:
2668 return _bfd_is_global_symbol_definition (abfd, sym);
2670 Instead for now assume that the definition is not global,
2671 Even if this is wrong, at least the linker will behave
2672 in the same way that it used to do. */
2678 /* Search the symbol table of the archive element of the archive ABFD
2679 whose archive map contains a mention of SYMDEF, and determine if
2680 the symbol is defined in this element. */
2682 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2684 Elf_Internal_Shdr * hdr;
2685 bfd_size_type symcount;
2686 bfd_size_type extsymcount;
2687 bfd_size_type extsymoff;
2688 Elf_Internal_Sym *isymbuf;
2689 Elf_Internal_Sym *isym;
2690 Elf_Internal_Sym *isymend;
2693 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2697 if (! bfd_check_format (abfd, bfd_object))
2700 /* If we have already included the element containing this symbol in the
2701 link then we do not need to include it again. Just claim that any symbol
2702 it contains is not a definition, so that our caller will not decide to
2703 (re)include this element. */
2704 if (abfd->archive_pass)
2707 /* Select the appropriate symbol table. */
2708 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2709 hdr = &elf_tdata (abfd)->symtab_hdr;
2711 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2713 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2715 /* The sh_info field of the symtab header tells us where the
2716 external symbols start. We don't care about the local symbols. */
2717 if (elf_bad_symtab (abfd))
2719 extsymcount = symcount;
2724 extsymcount = symcount - hdr->sh_info;
2725 extsymoff = hdr->sh_info;
2728 if (extsymcount == 0)
2731 /* Read in the symbol table. */
2732 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2734 if (isymbuf == NULL)
2737 /* Scan the symbol table looking for SYMDEF. */
2739 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2743 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2748 if (strcmp (name, symdef->name) == 0)
2750 result = is_global_data_symbol_definition (abfd, isym);
2760 /* Add an entry to the .dynamic table. */
2763 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2767 struct elf_link_hash_table *hash_table;
2768 const struct elf_backend_data *bed;
2770 bfd_size_type newsize;
2771 bfd_byte *newcontents;
2772 Elf_Internal_Dyn dyn;
2774 hash_table = elf_hash_table (info);
2775 if (! is_elf_hash_table (hash_table))
2778 if (info->warn_shared_textrel && info->shared && tag == DT_TEXTREL)
2780 (_("warning: creating a DT_TEXTREL in a shared object."));
2782 bed = get_elf_backend_data (hash_table->dynobj);
2783 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2784 BFD_ASSERT (s != NULL);
2786 newsize = s->size + bed->s->sizeof_dyn;
2787 newcontents = bfd_realloc (s->contents, newsize);
2788 if (newcontents == NULL)
2792 dyn.d_un.d_val = val;
2793 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
2796 s->contents = newcontents;
2801 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2802 otherwise just check whether one already exists. Returns -1 on error,
2803 1 if a DT_NEEDED tag already exists, and 0 on success. */
2806 elf_add_dt_needed_tag (bfd *abfd,
2807 struct bfd_link_info *info,
2811 struct elf_link_hash_table *hash_table;
2812 bfd_size_type oldsize;
2813 bfd_size_type strindex;
2815 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
2818 hash_table = elf_hash_table (info);
2819 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2820 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2821 if (strindex == (bfd_size_type) -1)
2824 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2827 const struct elf_backend_data *bed;
2830 bed = get_elf_backend_data (hash_table->dynobj);
2831 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2833 for (extdyn = sdyn->contents;
2834 extdyn < sdyn->contents + sdyn->size;
2835 extdyn += bed->s->sizeof_dyn)
2837 Elf_Internal_Dyn dyn;
2839 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2840 if (dyn.d_tag == DT_NEEDED
2841 && dyn.d_un.d_val == strindex)
2843 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2851 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
2854 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2858 /* We were just checking for existence of the tag. */
2859 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2864 /* Called via elf_link_hash_traverse, elf_smash_syms sets all symbols
2865 belonging to NOT_NEEDED to bfd_link_hash_new. We know there are no
2866 references from regular objects to these symbols.
2868 ??? Should we do something about references from other dynamic
2869 obects? If not, we potentially lose some warnings about undefined
2870 symbols. But how can we recover the initial undefined / undefweak
2873 struct elf_smash_syms_data
2876 struct elf_link_hash_table *htab;
2877 bfd_boolean twiddled;
2881 elf_smash_syms (struct elf_link_hash_entry *h, void *data)
2883 struct elf_smash_syms_data *inf = (struct elf_smash_syms_data *) data;
2884 struct bfd_link_hash_entry *bh;
2886 switch (h->root.type)
2889 case bfd_link_hash_new:
2892 case bfd_link_hash_undefined:
2893 if (h->root.u.undef.abfd != inf->not_needed)
2895 if (h->root.u.undef.weak != NULL
2896 && h->root.u.undef.weak != inf->not_needed)
2898 /* Symbol was undefweak in u.undef.weak bfd, and has become
2899 undefined in as-needed lib. Restore weak. */
2900 h->root.type = bfd_link_hash_undefweak;
2901 h->root.u.undef.abfd = h->root.u.undef.weak;
2902 if (h->root.u.undef.next != NULL
2903 || inf->htab->root.undefs_tail == &h->root)
2904 inf->twiddled = TRUE;
2909 case bfd_link_hash_undefweak:
2910 if (h->root.u.undef.abfd != inf->not_needed)
2914 case bfd_link_hash_defined:
2915 case bfd_link_hash_defweak:
2916 if (h->root.u.def.section->owner != inf->not_needed)
2920 case bfd_link_hash_common:
2921 if (h->root.u.c.p->section->owner != inf->not_needed)
2925 case bfd_link_hash_warning:
2926 case bfd_link_hash_indirect:
2927 elf_smash_syms ((struct elf_link_hash_entry *) h->root.u.i.link, data);
2928 if (h->root.u.i.link->type != bfd_link_hash_new)
2930 if (h->root.u.i.link->u.undef.abfd != inf->not_needed)
2935 /* There is no way we can undo symbol table state from defined or
2936 defweak back to undefined. */
2940 /* Set sym back to newly created state, but keep undef.next if it is
2941 being used as a list pointer. */
2942 bh = h->root.u.undef.next;
2945 if (bh != NULL || inf->htab->root.undefs_tail == &h->root)
2946 inf->twiddled = TRUE;
2947 (*inf->htab->root.table.newfunc) (&h->root.root,
2948 &inf->htab->root.table,
2949 h->root.root.string);
2950 h->root.u.undef.next = bh;
2951 h->root.u.undef.abfd = inf->not_needed;
2956 /* Sort symbol by value and section. */
2958 elf_sort_symbol (const void *arg1, const void *arg2)
2960 const struct elf_link_hash_entry *h1;
2961 const struct elf_link_hash_entry *h2;
2962 bfd_signed_vma vdiff;
2964 h1 = *(const struct elf_link_hash_entry **) arg1;
2965 h2 = *(const struct elf_link_hash_entry **) arg2;
2966 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2968 return vdiff > 0 ? 1 : -1;
2971 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2973 return sdiff > 0 ? 1 : -1;
2978 /* This function is used to adjust offsets into .dynstr for
2979 dynamic symbols. This is called via elf_link_hash_traverse. */
2982 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2984 struct elf_strtab_hash *dynstr = data;
2986 if (h->root.type == bfd_link_hash_warning)
2987 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2989 if (h->dynindx != -1)
2990 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2994 /* Assign string offsets in .dynstr, update all structures referencing
2998 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3000 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3001 struct elf_link_local_dynamic_entry *entry;
3002 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3003 bfd *dynobj = hash_table->dynobj;
3006 const struct elf_backend_data *bed;
3009 _bfd_elf_strtab_finalize (dynstr);
3010 size = _bfd_elf_strtab_size (dynstr);
3012 bed = get_elf_backend_data (dynobj);
3013 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3014 BFD_ASSERT (sdyn != NULL);
3016 /* Update all .dynamic entries referencing .dynstr strings. */
3017 for (extdyn = sdyn->contents;
3018 extdyn < sdyn->contents + sdyn->size;
3019 extdyn += bed->s->sizeof_dyn)
3021 Elf_Internal_Dyn dyn;
3023 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3027 dyn.d_un.d_val = size;
3035 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3040 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3043 /* Now update local dynamic symbols. */
3044 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3045 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3046 entry->isym.st_name);
3048 /* And the rest of dynamic symbols. */
3049 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3051 /* Adjust version definitions. */
3052 if (elf_tdata (output_bfd)->cverdefs)
3057 Elf_Internal_Verdef def;
3058 Elf_Internal_Verdaux defaux;
3060 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3064 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3066 p += sizeof (Elf_External_Verdef);
3067 if (def.vd_aux != sizeof (Elf_External_Verdef))
3069 for (i = 0; i < def.vd_cnt; ++i)
3071 _bfd_elf_swap_verdaux_in (output_bfd,
3072 (Elf_External_Verdaux *) p, &defaux);
3073 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3075 _bfd_elf_swap_verdaux_out (output_bfd,
3076 &defaux, (Elf_External_Verdaux *) p);
3077 p += sizeof (Elf_External_Verdaux);
3080 while (def.vd_next);
3083 /* Adjust version references. */
3084 if (elf_tdata (output_bfd)->verref)
3089 Elf_Internal_Verneed need;
3090 Elf_Internal_Vernaux needaux;
3092 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3096 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3098 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3099 _bfd_elf_swap_verneed_out (output_bfd, &need,
3100 (Elf_External_Verneed *) p);
3101 p += sizeof (Elf_External_Verneed);
3102 for (i = 0; i < need.vn_cnt; ++i)
3104 _bfd_elf_swap_vernaux_in (output_bfd,
3105 (Elf_External_Vernaux *) p, &needaux);
3106 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3108 _bfd_elf_swap_vernaux_out (output_bfd,
3110 (Elf_External_Vernaux *) p);
3111 p += sizeof (Elf_External_Vernaux);
3114 while (need.vn_next);
3120 /* Add symbols from an ELF object file to the linker hash table. */
3123 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3125 bfd_boolean (*add_symbol_hook)
3126 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
3127 const char **, flagword *, asection **, bfd_vma *);
3128 bfd_boolean (*check_relocs)
3129 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
3130 bfd_boolean (*check_directives)
3131 (bfd *, struct bfd_link_info *);
3132 bfd_boolean collect;
3133 Elf_Internal_Shdr *hdr;
3134 bfd_size_type symcount;
3135 bfd_size_type extsymcount;
3136 bfd_size_type extsymoff;
3137 struct elf_link_hash_entry **sym_hash;
3138 bfd_boolean dynamic;
3139 Elf_External_Versym *extversym = NULL;
3140 Elf_External_Versym *ever;
3141 struct elf_link_hash_entry *weaks;
3142 struct elf_link_hash_entry **nondeflt_vers = NULL;
3143 bfd_size_type nondeflt_vers_cnt = 0;
3144 Elf_Internal_Sym *isymbuf = NULL;
3145 Elf_Internal_Sym *isym;
3146 Elf_Internal_Sym *isymend;
3147 const struct elf_backend_data *bed;
3148 bfd_boolean add_needed;
3149 struct elf_link_hash_table * hash_table;
3152 hash_table = elf_hash_table (info);
3154 bed = get_elf_backend_data (abfd);
3155 add_symbol_hook = bed->elf_add_symbol_hook;
3156 collect = bed->collect;
3158 if ((abfd->flags & DYNAMIC) == 0)
3164 /* You can't use -r against a dynamic object. Also, there's no
3165 hope of using a dynamic object which does not exactly match
3166 the format of the output file. */
3167 if (info->relocatable
3168 || !is_elf_hash_table (hash_table)
3169 || hash_table->root.creator != abfd->xvec)
3171 if (info->relocatable)
3172 bfd_set_error (bfd_error_invalid_operation);
3174 bfd_set_error (bfd_error_wrong_format);
3179 /* As a GNU extension, any input sections which are named
3180 .gnu.warning.SYMBOL are treated as warning symbols for the given
3181 symbol. This differs from .gnu.warning sections, which generate
3182 warnings when they are included in an output file. */
3183 if (info->executable)
3187 for (s = abfd->sections; s != NULL; s = s->next)
3191 name = bfd_get_section_name (abfd, s);
3192 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
3197 name += sizeof ".gnu.warning." - 1;
3199 /* If this is a shared object, then look up the symbol
3200 in the hash table. If it is there, and it is already
3201 been defined, then we will not be using the entry
3202 from this shared object, so we don't need to warn.
3203 FIXME: If we see the definition in a regular object
3204 later on, we will warn, but we shouldn't. The only
3205 fix is to keep track of what warnings we are supposed
3206 to emit, and then handle them all at the end of the
3210 struct elf_link_hash_entry *h;
3212 h = elf_link_hash_lookup (hash_table, name,
3213 FALSE, FALSE, TRUE);
3215 /* FIXME: What about bfd_link_hash_common? */
3217 && (h->root.type == bfd_link_hash_defined
3218 || h->root.type == bfd_link_hash_defweak))
3220 /* We don't want to issue this warning. Clobber
3221 the section size so that the warning does not
3222 get copied into the output file. */
3229 msg = bfd_alloc (abfd, sz + 1);
3233 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3238 if (! (_bfd_generic_link_add_one_symbol
3239 (info, abfd, name, BSF_WARNING, s, 0, msg,
3240 FALSE, collect, NULL)))
3243 if (! info->relocatable)
3245 /* Clobber the section size so that the warning does
3246 not get copied into the output file. */
3249 /* Also set SEC_EXCLUDE, so that symbols defined in
3250 the warning section don't get copied to the output. */
3251 s->flags |= SEC_EXCLUDE;
3260 /* If we are creating a shared library, create all the dynamic
3261 sections immediately. We need to attach them to something,
3262 so we attach them to this BFD, provided it is the right
3263 format. FIXME: If there are no input BFD's of the same
3264 format as the output, we can't make a shared library. */
3266 && is_elf_hash_table (hash_table)
3267 && hash_table->root.creator == abfd->xvec
3268 && ! hash_table->dynamic_sections_created)
3270 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3274 else if (!is_elf_hash_table (hash_table))
3279 const char *soname = NULL;
3280 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3283 /* ld --just-symbols and dynamic objects don't mix very well.
3284 Test for --just-symbols by looking at info set up by
3285 _bfd_elf_link_just_syms. */
3286 if ((s = abfd->sections) != NULL
3287 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3290 /* If this dynamic lib was specified on the command line with
3291 --as-needed in effect, then we don't want to add a DT_NEEDED
3292 tag unless the lib is actually used. Similary for libs brought
3293 in by another lib's DT_NEEDED. When --no-add-needed is used
3294 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3295 any dynamic library in DT_NEEDED tags in the dynamic lib at
3297 add_needed = (elf_dyn_lib_class (abfd)
3298 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3299 | DYN_NO_NEEDED)) == 0;
3301 s = bfd_get_section_by_name (abfd, ".dynamic");
3307 unsigned long shlink;
3309 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3310 goto error_free_dyn;
3312 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3314 goto error_free_dyn;
3315 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3317 for (extdyn = dynbuf;
3318 extdyn < dynbuf + s->size;
3319 extdyn += bed->s->sizeof_dyn)
3321 Elf_Internal_Dyn dyn;
3323 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3324 if (dyn.d_tag == DT_SONAME)
3326 unsigned int tagv = dyn.d_un.d_val;
3327 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3329 goto error_free_dyn;
3331 if (dyn.d_tag == DT_NEEDED)
3333 struct bfd_link_needed_list *n, **pn;
3335 unsigned int tagv = dyn.d_un.d_val;
3337 amt = sizeof (struct bfd_link_needed_list);
3338 n = bfd_alloc (abfd, amt);
3339 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3340 if (n == NULL || fnm == NULL)
3341 goto error_free_dyn;
3342 amt = strlen (fnm) + 1;
3343 anm = bfd_alloc (abfd, amt);
3345 goto error_free_dyn;
3346 memcpy (anm, fnm, amt);
3350 for (pn = & hash_table->needed;
3356 if (dyn.d_tag == DT_RUNPATH)
3358 struct bfd_link_needed_list *n, **pn;
3360 unsigned int tagv = dyn.d_un.d_val;
3362 amt = sizeof (struct bfd_link_needed_list);
3363 n = bfd_alloc (abfd, amt);
3364 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3365 if (n == NULL || fnm == NULL)
3366 goto error_free_dyn;
3367 amt = strlen (fnm) + 1;
3368 anm = bfd_alloc (abfd, amt);
3370 goto error_free_dyn;
3371 memcpy (anm, fnm, amt);
3375 for (pn = & runpath;
3381 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3382 if (!runpath && dyn.d_tag == DT_RPATH)
3384 struct bfd_link_needed_list *n, **pn;
3386 unsigned int tagv = dyn.d_un.d_val;
3388 amt = sizeof (struct bfd_link_needed_list);
3389 n = bfd_alloc (abfd, amt);
3390 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3391 if (n == NULL || fnm == NULL)
3392 goto error_free_dyn;
3393 amt = strlen (fnm) + 1;
3394 anm = bfd_alloc (abfd, amt);
3401 memcpy (anm, fnm, amt);
3416 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3417 frees all more recently bfd_alloc'd blocks as well. */
3423 struct bfd_link_needed_list **pn;
3424 for (pn = & hash_table->runpath;
3431 /* We do not want to include any of the sections in a dynamic
3432 object in the output file. We hack by simply clobbering the
3433 list of sections in the BFD. This could be handled more
3434 cleanly by, say, a new section flag; the existing
3435 SEC_NEVER_LOAD flag is not the one we want, because that one
3436 still implies that the section takes up space in the output
3438 bfd_section_list_clear (abfd);
3440 /* Find the name to use in a DT_NEEDED entry that refers to this
3441 object. If the object has a DT_SONAME entry, we use it.
3442 Otherwise, if the generic linker stuck something in
3443 elf_dt_name, we use that. Otherwise, we just use the file
3445 if (soname == NULL || *soname == '\0')
3447 soname = elf_dt_name (abfd);
3448 if (soname == NULL || *soname == '\0')
3449 soname = bfd_get_filename (abfd);
3452 /* Save the SONAME because sometimes the linker emulation code
3453 will need to know it. */
3454 elf_dt_name (abfd) = soname;
3456 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3460 /* If we have already included this dynamic object in the
3461 link, just ignore it. There is no reason to include a
3462 particular dynamic object more than once. */
3467 /* If this is a dynamic object, we always link against the .dynsym
3468 symbol table, not the .symtab symbol table. The dynamic linker
3469 will only see the .dynsym symbol table, so there is no reason to
3470 look at .symtab for a dynamic object. */
3472 if (! dynamic || elf_dynsymtab (abfd) == 0)
3473 hdr = &elf_tdata (abfd)->symtab_hdr;
3475 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3477 symcount = hdr->sh_size / bed->s->sizeof_sym;
3479 /* The sh_info field of the symtab header tells us where the
3480 external symbols start. We don't care about the local symbols at
3482 if (elf_bad_symtab (abfd))
3484 extsymcount = symcount;
3489 extsymcount = symcount - hdr->sh_info;
3490 extsymoff = hdr->sh_info;
3494 if (extsymcount != 0)
3496 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3498 if (isymbuf == NULL)
3501 /* We store a pointer to the hash table entry for each external
3503 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3504 sym_hash = bfd_alloc (abfd, amt);
3505 if (sym_hash == NULL)
3506 goto error_free_sym;
3507 elf_sym_hashes (abfd) = sym_hash;
3512 /* Read in any version definitions. */
3513 if (!_bfd_elf_slurp_version_tables (abfd,
3514 info->default_imported_symver))
3515 goto error_free_sym;
3517 /* Read in the symbol versions, but don't bother to convert them
3518 to internal format. */
3519 if (elf_dynversym (abfd) != 0)
3521 Elf_Internal_Shdr *versymhdr;
3523 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3524 extversym = bfd_malloc (versymhdr->sh_size);
3525 if (extversym == NULL)
3526 goto error_free_sym;
3527 amt = versymhdr->sh_size;
3528 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3529 || bfd_bread (extversym, amt, abfd) != amt)
3530 goto error_free_vers;
3536 ever = extversym != NULL ? extversym + extsymoff : NULL;
3537 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3539 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3543 asection *sec, *new_sec;
3546 struct elf_link_hash_entry *h;
3547 bfd_boolean definition;
3548 bfd_boolean size_change_ok;
3549 bfd_boolean type_change_ok;
3550 bfd_boolean new_weakdef;
3551 bfd_boolean override;
3552 unsigned int old_alignment;
3557 flags = BSF_NO_FLAGS;
3559 value = isym->st_value;
3562 bind = ELF_ST_BIND (isym->st_info);
3563 if (bind == STB_LOCAL)
3565 /* This should be impossible, since ELF requires that all
3566 global symbols follow all local symbols, and that sh_info
3567 point to the first global symbol. Unfortunately, Irix 5
3571 else if (bind == STB_GLOBAL)
3573 if (isym->st_shndx != SHN_UNDEF
3574 && isym->st_shndx != SHN_COMMON)
3577 else if (bind == STB_WEAK)
3581 /* Leave it up to the processor backend. */
3584 if (isym->st_shndx == SHN_UNDEF)
3585 sec = bfd_und_section_ptr;
3586 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3588 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3590 sec = bfd_abs_section_ptr;
3591 else if (sec->kept_section)
3593 /* Symbols from discarded section are undefined, and have
3594 default visibility. */
3595 sec = bfd_und_section_ptr;
3596 isym->st_shndx = SHN_UNDEF;
3597 isym->st_other = STV_DEFAULT
3598 | (isym->st_other & ~ ELF_ST_VISIBILITY(-1));
3600 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3603 else if (isym->st_shndx == SHN_ABS)
3604 sec = bfd_abs_section_ptr;
3605 else if (isym->st_shndx == SHN_COMMON)
3607 sec = bfd_com_section_ptr;
3608 /* What ELF calls the size we call the value. What ELF
3609 calls the value we call the alignment. */
3610 value = isym->st_size;
3614 /* Leave it up to the processor backend. */
3617 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3620 goto error_free_vers;
3622 if (isym->st_shndx == SHN_COMMON
3623 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3625 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3629 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3632 | SEC_LINKER_CREATED
3633 | SEC_THREAD_LOCAL));
3635 goto error_free_vers;
3639 else if (add_symbol_hook)
3641 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3643 goto error_free_vers;
3645 /* The hook function sets the name to NULL if this symbol
3646 should be skipped for some reason. */
3651 /* Sanity check that all possibilities were handled. */
3654 bfd_set_error (bfd_error_bad_value);
3655 goto error_free_vers;
3658 if (bfd_is_und_section (sec)
3659 || bfd_is_com_section (sec))
3664 size_change_ok = FALSE;
3665 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3670 if (is_elf_hash_table (hash_table))
3672 Elf_Internal_Versym iver;
3673 unsigned int vernum = 0;
3678 if (info->default_imported_symver)
3679 /* Use the default symbol version created earlier. */
3680 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3685 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3687 vernum = iver.vs_vers & VERSYM_VERSION;
3689 /* If this is a hidden symbol, or if it is not version
3690 1, we append the version name to the symbol name.
3691 However, we do not modify a non-hidden absolute
3692 symbol, because it might be the version symbol
3693 itself. FIXME: What if it isn't? */
3694 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3695 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3698 size_t namelen, verlen, newlen;
3701 if (isym->st_shndx != SHN_UNDEF)
3703 if (vernum > elf_tdata (abfd)->cverdefs)
3705 else if (vernum > 1)
3707 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3713 (*_bfd_error_handler)
3714 (_("%B: %s: invalid version %u (max %d)"),
3716 elf_tdata (abfd)->cverdefs);
3717 bfd_set_error (bfd_error_bad_value);
3718 goto error_free_vers;
3723 /* We cannot simply test for the number of
3724 entries in the VERNEED section since the
3725 numbers for the needed versions do not start
3727 Elf_Internal_Verneed *t;
3730 for (t = elf_tdata (abfd)->verref;
3734 Elf_Internal_Vernaux *a;
3736 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3738 if (a->vna_other == vernum)
3740 verstr = a->vna_nodename;
3749 (*_bfd_error_handler)
3750 (_("%B: %s: invalid needed version %d"),
3751 abfd, name, vernum);
3752 bfd_set_error (bfd_error_bad_value);
3753 goto error_free_vers;
3757 namelen = strlen (name);
3758 verlen = strlen (verstr);
3759 newlen = namelen + verlen + 2;
3760 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3761 && isym->st_shndx != SHN_UNDEF)
3764 newname = bfd_alloc (abfd, newlen);
3765 if (newname == NULL)
3766 goto error_free_vers;
3767 memcpy (newname, name, namelen);
3768 p = newname + namelen;
3770 /* If this is a defined non-hidden version symbol,
3771 we add another @ to the name. This indicates the
3772 default version of the symbol. */
3773 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3774 && isym->st_shndx != SHN_UNDEF)
3776 memcpy (p, verstr, verlen + 1);
3781 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3782 &value, &old_alignment,
3783 sym_hash, &skip, &override,
3784 &type_change_ok, &size_change_ok))
3785 goto error_free_vers;
3794 while (h->root.type == bfd_link_hash_indirect
3795 || h->root.type == bfd_link_hash_warning)
3796 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3798 /* Remember the old alignment if this is a common symbol, so
3799 that we don't reduce the alignment later on. We can't
3800 check later, because _bfd_generic_link_add_one_symbol
3801 will set a default for the alignment which we want to
3802 override. We also remember the old bfd where the existing
3803 definition comes from. */
3804 switch (h->root.type)
3809 case bfd_link_hash_defined:
3810 case bfd_link_hash_defweak:
3811 old_bfd = h->root.u.def.section->owner;
3814 case bfd_link_hash_common:
3815 old_bfd = h->root.u.c.p->section->owner;
3816 old_alignment = h->root.u.c.p->alignment_power;
3820 if (elf_tdata (abfd)->verdef != NULL
3824 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3827 if (! (_bfd_generic_link_add_one_symbol
3828 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3829 (struct bfd_link_hash_entry **) sym_hash)))
3830 goto error_free_vers;
3833 while (h->root.type == bfd_link_hash_indirect
3834 || h->root.type == bfd_link_hash_warning)
3835 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3838 new_weakdef = FALSE;
3841 && (flags & BSF_WEAK) != 0
3842 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3843 && is_elf_hash_table (hash_table)
3844 && h->u.weakdef == NULL)
3846 /* Keep a list of all weak defined non function symbols from
3847 a dynamic object, using the weakdef field. Later in this
3848 function we will set the weakdef field to the correct
3849 value. We only put non-function symbols from dynamic
3850 objects on this list, because that happens to be the only
3851 time we need to know the normal symbol corresponding to a
3852 weak symbol, and the information is time consuming to
3853 figure out. If the weakdef field is not already NULL,
3854 then this symbol was already defined by some previous
3855 dynamic object, and we will be using that previous
3856 definition anyhow. */
3858 h->u.weakdef = weaks;
3863 /* Set the alignment of a common symbol. */
3864 if ((isym->st_shndx == SHN_COMMON
3865 || bfd_is_com_section (sec))
3866 && h->root.type == bfd_link_hash_common)
3870 if (isym->st_shndx == SHN_COMMON)
3871 align = bfd_log2 (isym->st_value);
3874 /* The new symbol is a common symbol in a shared object.
3875 We need to get the alignment from the section. */
3876 align = new_sec->alignment_power;
3878 if (align > old_alignment
3879 /* Permit an alignment power of zero if an alignment of one
3880 is specified and no other alignments have been specified. */
3881 || (isym->st_value == 1 && old_alignment == 0))
3882 h->root.u.c.p->alignment_power = align;
3884 h->root.u.c.p->alignment_power = old_alignment;
3887 if (is_elf_hash_table (hash_table))
3891 /* Check the alignment when a common symbol is involved. This
3892 can change when a common symbol is overridden by a normal
3893 definition or a common symbol is ignored due to the old
3894 normal definition. We need to make sure the maximum
3895 alignment is maintained. */
3896 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3897 && h->root.type != bfd_link_hash_common)
3899 unsigned int common_align;
3900 unsigned int normal_align;
3901 unsigned int symbol_align;
3905 symbol_align = ffs (h->root.u.def.value) - 1;
3906 if (h->root.u.def.section->owner != NULL
3907 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3909 normal_align = h->root.u.def.section->alignment_power;
3910 if (normal_align > symbol_align)
3911 normal_align = symbol_align;
3914 normal_align = symbol_align;
3918 common_align = old_alignment;
3919 common_bfd = old_bfd;
3924 common_align = bfd_log2 (isym->st_value);
3926 normal_bfd = old_bfd;
3929 if (normal_align < common_align)
3930 (*_bfd_error_handler)
3931 (_("Warning: alignment %u of symbol `%s' in %B"
3932 " is smaller than %u in %B"),
3933 normal_bfd, common_bfd,
3934 1 << normal_align, name, 1 << common_align);
3937 /* Remember the symbol size and type. */
3938 if (isym->st_size != 0
3939 && (definition || h->size == 0))
3941 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3942 (*_bfd_error_handler)
3943 (_("Warning: size of symbol `%s' changed"
3944 " from %lu in %B to %lu in %B"),
3946 name, (unsigned long) h->size,
3947 (unsigned long) isym->st_size);
3949 h->size = isym->st_size;
3952 /* If this is a common symbol, then we always want H->SIZE
3953 to be the size of the common symbol. The code just above
3954 won't fix the size if a common symbol becomes larger. We
3955 don't warn about a size change here, because that is
3956 covered by --warn-common. */
3957 if (h->root.type == bfd_link_hash_common)
3958 h->size = h->root.u.c.size;
3960 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3961 && (definition || h->type == STT_NOTYPE))
3963 if (h->type != STT_NOTYPE
3964 && h->type != ELF_ST_TYPE (isym->st_info)
3965 && ! type_change_ok)
3966 (*_bfd_error_handler)
3967 (_("Warning: type of symbol `%s' changed"
3968 " from %d to %d in %B"),
3969 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
3971 h->type = ELF_ST_TYPE (isym->st_info);
3974 /* If st_other has a processor-specific meaning, specific
3975 code might be needed here. We never merge the visibility
3976 attribute with the one from a dynamic object. */
3977 if (bed->elf_backend_merge_symbol_attribute)
3978 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3981 /* If this symbol has default visibility and the user has requested
3982 we not re-export it, then mark it as hidden. */
3983 if (definition && !dynamic
3985 || (abfd->my_archive && abfd->my_archive->no_export))
3986 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
3987 isym->st_other = STV_HIDDEN | (isym->st_other & ~ ELF_ST_VISIBILITY (-1));
3989 if (isym->st_other != 0 && !dynamic)
3991 unsigned char hvis, symvis, other, nvis;
3993 /* Take the balance of OTHER from the definition. */
3994 other = (definition ? isym->st_other : h->other);
3995 other &= ~ ELF_ST_VISIBILITY (-1);
3997 /* Combine visibilities, using the most constraining one. */
3998 hvis = ELF_ST_VISIBILITY (h->other);
3999 symvis = ELF_ST_VISIBILITY (isym->st_other);
4005 nvis = hvis < symvis ? hvis : symvis;
4007 h->other = other | nvis;
4010 /* Set a flag in the hash table entry indicating the type of
4011 reference or definition we just found. Keep a count of
4012 the number of dynamic symbols we find. A dynamic symbol
4013 is one which is referenced or defined by both a regular
4014 object and a shared object. */
4021 if (bind != STB_WEAK)
4022 h->ref_regular_nonweak = 1;
4026 if (! info->executable
4039 || (h->u.weakdef != NULL
4041 && h->u.weakdef->dynindx != -1))
4045 /* Check to see if we need to add an indirect symbol for
4046 the default name. */
4047 if (definition || h->root.type == bfd_link_hash_common)
4048 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4049 &sec, &value, &dynsym,
4051 goto error_free_vers;
4053 if (definition && !dynamic)
4055 char *p = strchr (name, ELF_VER_CHR);
4056 if (p != NULL && p[1] != ELF_VER_CHR)
4058 /* Queue non-default versions so that .symver x, x@FOO
4059 aliases can be checked. */
4060 if (! nondeflt_vers)
4062 amt = (isymend - isym + 1)
4063 * sizeof (struct elf_link_hash_entry *);
4064 nondeflt_vers = bfd_malloc (amt);
4066 nondeflt_vers [nondeflt_vers_cnt++] = h;
4070 if (dynsym && h->dynindx == -1)
4072 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4073 goto error_free_vers;
4074 if (h->u.weakdef != NULL
4076 && h->u.weakdef->dynindx == -1)
4078 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4079 goto error_free_vers;
4082 else if (dynsym && h->dynindx != -1)
4083 /* If the symbol already has a dynamic index, but
4084 visibility says it should not be visible, turn it into
4086 switch (ELF_ST_VISIBILITY (h->other))
4090 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4101 const char *soname = elf_dt_name (abfd);
4103 /* A symbol from a library loaded via DT_NEEDED of some
4104 other library is referenced by a regular object.
4105 Add a DT_NEEDED entry for it. Issue an error if
4106 --no-add-needed is used. */
4107 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4109 (*_bfd_error_handler)
4110 (_("%s: invalid DSO for symbol `%s' definition"),
4112 bfd_set_error (bfd_error_bad_value);
4113 goto error_free_vers;
4116 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4119 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4121 goto error_free_vers;
4123 BFD_ASSERT (ret == 0);
4128 /* Now that all the symbols from this input file are created, handle
4129 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4130 if (nondeflt_vers != NULL)
4132 bfd_size_type cnt, symidx;
4134 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4136 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4137 char *shortname, *p;
4139 p = strchr (h->root.root.string, ELF_VER_CHR);
4141 || (h->root.type != bfd_link_hash_defined
4142 && h->root.type != bfd_link_hash_defweak))
4145 amt = p - h->root.root.string;
4146 shortname = bfd_malloc (amt + 1);
4147 memcpy (shortname, h->root.root.string, amt);
4148 shortname[amt] = '\0';
4150 hi = (struct elf_link_hash_entry *)
4151 bfd_link_hash_lookup (&hash_table->root, shortname,
4152 FALSE, FALSE, FALSE);
4154 && hi->root.type == h->root.type
4155 && hi->root.u.def.value == h->root.u.def.value
4156 && hi->root.u.def.section == h->root.u.def.section)
4158 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4159 hi->root.type = bfd_link_hash_indirect;
4160 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4161 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
4162 sym_hash = elf_sym_hashes (abfd);
4164 for (symidx = 0; symidx < extsymcount; ++symidx)
4165 if (sym_hash[symidx] == hi)
4167 sym_hash[symidx] = h;
4173 free (nondeflt_vers);
4174 nondeflt_vers = NULL;
4177 if (extversym != NULL)
4183 if (isymbuf != NULL)
4188 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4190 /* Remove symbols defined in an as-needed shared lib that wasn't
4192 struct elf_smash_syms_data inf;
4193 inf.not_needed = abfd;
4194 inf.htab = hash_table;
4195 inf.twiddled = FALSE;
4196 elf_link_hash_traverse (hash_table, elf_smash_syms, &inf);
4198 bfd_link_repair_undef_list (&hash_table->root);
4202 /* Now set the weakdefs field correctly for all the weak defined
4203 symbols we found. The only way to do this is to search all the
4204 symbols. Since we only need the information for non functions in
4205 dynamic objects, that's the only time we actually put anything on
4206 the list WEAKS. We need this information so that if a regular
4207 object refers to a symbol defined weakly in a dynamic object, the
4208 real symbol in the dynamic object is also put in the dynamic
4209 symbols; we also must arrange for both symbols to point to the
4210 same memory location. We could handle the general case of symbol
4211 aliasing, but a general symbol alias can only be generated in
4212 assembler code, handling it correctly would be very time
4213 consuming, and other ELF linkers don't handle general aliasing
4217 struct elf_link_hash_entry **hpp;
4218 struct elf_link_hash_entry **hppend;
4219 struct elf_link_hash_entry **sorted_sym_hash;
4220 struct elf_link_hash_entry *h;
4223 /* Since we have to search the whole symbol list for each weak
4224 defined symbol, search time for N weak defined symbols will be
4225 O(N^2). Binary search will cut it down to O(NlogN). */
4226 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4227 sorted_sym_hash = bfd_malloc (amt);
4228 if (sorted_sym_hash == NULL)
4230 sym_hash = sorted_sym_hash;
4231 hpp = elf_sym_hashes (abfd);
4232 hppend = hpp + extsymcount;
4234 for (; hpp < hppend; hpp++)
4238 && h->root.type == bfd_link_hash_defined
4239 && h->type != STT_FUNC)
4247 qsort (sorted_sym_hash, sym_count,
4248 sizeof (struct elf_link_hash_entry *),
4251 while (weaks != NULL)
4253 struct elf_link_hash_entry *hlook;
4260 weaks = hlook->u.weakdef;
4261 hlook->u.weakdef = NULL;
4263 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4264 || hlook->root.type == bfd_link_hash_defweak
4265 || hlook->root.type == bfd_link_hash_common
4266 || hlook->root.type == bfd_link_hash_indirect);
4267 slook = hlook->root.u.def.section;
4268 vlook = hlook->root.u.def.value;
4275 bfd_signed_vma vdiff;
4277 h = sorted_sym_hash [idx];
4278 vdiff = vlook - h->root.u.def.value;
4285 long sdiff = slook->id - h->root.u.def.section->id;
4298 /* We didn't find a value/section match. */
4302 for (i = ilook; i < sym_count; i++)
4304 h = sorted_sym_hash [i];
4306 /* Stop if value or section doesn't match. */
4307 if (h->root.u.def.value != vlook
4308 || h->root.u.def.section != slook)
4310 else if (h != hlook)
4312 hlook->u.weakdef = h;
4314 /* If the weak definition is in the list of dynamic
4315 symbols, make sure the real definition is put
4317 if (hlook->dynindx != -1 && h->dynindx == -1)
4319 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4323 /* If the real definition is in the list of dynamic
4324 symbols, make sure the weak definition is put
4325 there as well. If we don't do this, then the
4326 dynamic loader might not merge the entries for the
4327 real definition and the weak definition. */
4328 if (h->dynindx != -1 && hlook->dynindx == -1)
4330 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4338 free (sorted_sym_hash);
4341 check_directives = get_elf_backend_data (abfd)->check_directives;
4342 if (check_directives)
4343 check_directives (abfd, info);
4345 /* If this object is the same format as the output object, and it is
4346 not a shared library, then let the backend look through the
4349 This is required to build global offset table entries and to
4350 arrange for dynamic relocs. It is not required for the
4351 particular common case of linking non PIC code, even when linking
4352 against shared libraries, but unfortunately there is no way of
4353 knowing whether an object file has been compiled PIC or not.
4354 Looking through the relocs is not particularly time consuming.
4355 The problem is that we must either (1) keep the relocs in memory,
4356 which causes the linker to require additional runtime memory or
4357 (2) read the relocs twice from the input file, which wastes time.
4358 This would be a good case for using mmap.
4360 I have no idea how to handle linking PIC code into a file of a
4361 different format. It probably can't be done. */
4362 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4364 && is_elf_hash_table (hash_table)
4365 && hash_table->root.creator == abfd->xvec
4366 && check_relocs != NULL)
4370 for (o = abfd->sections; o != NULL; o = o->next)
4372 Elf_Internal_Rela *internal_relocs;
4375 if ((o->flags & SEC_RELOC) == 0
4376 || o->reloc_count == 0
4377 || ((info->strip == strip_all || info->strip == strip_debugger)
4378 && (o->flags & SEC_DEBUGGING) != 0)
4379 || bfd_is_abs_section (o->output_section))
4382 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4384 if (internal_relocs == NULL)
4387 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4389 if (elf_section_data (o)->relocs != internal_relocs)
4390 free (internal_relocs);
4397 /* If this is a non-traditional link, try to optimize the handling
4398 of the .stab/.stabstr sections. */
4400 && ! info->traditional_format
4401 && is_elf_hash_table (hash_table)
4402 && (info->strip != strip_all && info->strip != strip_debugger))
4406 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4407 if (stabstr != NULL)
4409 bfd_size_type string_offset = 0;
4412 for (stab = abfd->sections; stab; stab = stab->next)
4413 if (strncmp (".stab", stab->name, 5) == 0
4414 && (!stab->name[5] ||
4415 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4416 && (stab->flags & SEC_MERGE) == 0
4417 && !bfd_is_abs_section (stab->output_section))
4419 struct bfd_elf_section_data *secdata;
4421 secdata = elf_section_data (stab);
4422 if (! _bfd_link_section_stabs (abfd,
4423 &hash_table->stab_info,
4428 if (secdata->sec_info)
4429 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4434 if (is_elf_hash_table (hash_table) && add_needed)
4436 /* Add this bfd to the loaded list. */
4437 struct elf_link_loaded_list *n;
4439 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4443 n->next = hash_table->loaded;
4444 hash_table->loaded = n;
4450 if (nondeflt_vers != NULL)
4451 free (nondeflt_vers);
4452 if (extversym != NULL)
4455 if (isymbuf != NULL)
4461 /* Return the linker hash table entry of a symbol that might be
4462 satisfied by an archive symbol. Return -1 on error. */
4464 struct elf_link_hash_entry *
4465 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4466 struct bfd_link_info *info,
4469 struct elf_link_hash_entry *h;
4473 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4477 /* If this is a default version (the name contains @@), look up the
4478 symbol again with only one `@' as well as without the version.
4479 The effect is that references to the symbol with and without the
4480 version will be matched by the default symbol in the archive. */
4482 p = strchr (name, ELF_VER_CHR);
4483 if (p == NULL || p[1] != ELF_VER_CHR)
4486 /* First check with only one `@'. */
4487 len = strlen (name);
4488 copy = bfd_alloc (abfd, len);
4490 return (struct elf_link_hash_entry *) 0 - 1;
4492 first = p - name + 1;
4493 memcpy (copy, name, first);
4494 memcpy (copy + first, name + first + 1, len - first);
4496 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4499 /* We also need to check references to the symbol without the
4501 copy[first - 1] = '\0';
4502 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4503 FALSE, FALSE, FALSE);
4506 bfd_release (abfd, copy);
4510 /* Add symbols from an ELF archive file to the linker hash table. We
4511 don't use _bfd_generic_link_add_archive_symbols because of a
4512 problem which arises on UnixWare. The UnixWare libc.so is an
4513 archive which includes an entry libc.so.1 which defines a bunch of
4514 symbols. The libc.so archive also includes a number of other
4515 object files, which also define symbols, some of which are the same
4516 as those defined in libc.so.1. Correct linking requires that we
4517 consider each object file in turn, and include it if it defines any
4518 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4519 this; it looks through the list of undefined symbols, and includes
4520 any object file which defines them. When this algorithm is used on
4521 UnixWare, it winds up pulling in libc.so.1 early and defining a
4522 bunch of symbols. This means that some of the other objects in the
4523 archive are not included in the link, which is incorrect since they
4524 precede libc.so.1 in the archive.
4526 Fortunately, ELF archive handling is simpler than that done by
4527 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4528 oddities. In ELF, if we find a symbol in the archive map, and the
4529 symbol is currently undefined, we know that we must pull in that
4532 Unfortunately, we do have to make multiple passes over the symbol
4533 table until nothing further is resolved. */
4536 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4539 bfd_boolean *defined = NULL;
4540 bfd_boolean *included = NULL;
4544 const struct elf_backend_data *bed;
4545 struct elf_link_hash_entry * (*archive_symbol_lookup)
4546 (bfd *, struct bfd_link_info *, const char *);
4548 if (! bfd_has_map (abfd))
4550 /* An empty archive is a special case. */
4551 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4553 bfd_set_error (bfd_error_no_armap);
4557 /* Keep track of all symbols we know to be already defined, and all
4558 files we know to be already included. This is to speed up the
4559 second and subsequent passes. */
4560 c = bfd_ardata (abfd)->symdef_count;
4564 amt *= sizeof (bfd_boolean);
4565 defined = bfd_zmalloc (amt);
4566 included = bfd_zmalloc (amt);
4567 if (defined == NULL || included == NULL)
4570 symdefs = bfd_ardata (abfd)->symdefs;
4571 bed = get_elf_backend_data (abfd);
4572 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4585 symdefend = symdef + c;
4586 for (i = 0; symdef < symdefend; symdef++, i++)
4588 struct elf_link_hash_entry *h;
4590 struct bfd_link_hash_entry *undefs_tail;
4593 if (defined[i] || included[i])
4595 if (symdef->file_offset == last)
4601 h = archive_symbol_lookup (abfd, info, symdef->name);
4602 if (h == (struct elf_link_hash_entry *) 0 - 1)
4608 if (h->root.type == bfd_link_hash_common)
4610 /* We currently have a common symbol. The archive map contains
4611 a reference to this symbol, so we may want to include it. We
4612 only want to include it however, if this archive element
4613 contains a definition of the symbol, not just another common
4616 Unfortunately some archivers (including GNU ar) will put
4617 declarations of common symbols into their archive maps, as
4618 well as real definitions, so we cannot just go by the archive
4619 map alone. Instead we must read in the element's symbol
4620 table and check that to see what kind of symbol definition
4622 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4625 else if (h->root.type != bfd_link_hash_undefined)
4627 if (h->root.type != bfd_link_hash_undefweak)
4632 /* We need to include this archive member. */
4633 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4634 if (element == NULL)
4637 if (! bfd_check_format (element, bfd_object))
4640 /* Doublecheck that we have not included this object
4641 already--it should be impossible, but there may be
4642 something wrong with the archive. */
4643 if (element->archive_pass != 0)
4645 bfd_set_error (bfd_error_bad_value);
4648 element->archive_pass = 1;
4650 undefs_tail = info->hash->undefs_tail;
4652 if (! (*info->callbacks->add_archive_element) (info, element,
4655 if (! bfd_link_add_symbols (element, info))
4658 /* If there are any new undefined symbols, we need to make
4659 another pass through the archive in order to see whether
4660 they can be defined. FIXME: This isn't perfect, because
4661 common symbols wind up on undefs_tail and because an
4662 undefined symbol which is defined later on in this pass
4663 does not require another pass. This isn't a bug, but it
4664 does make the code less efficient than it could be. */
4665 if (undefs_tail != info->hash->undefs_tail)
4668 /* Look backward to mark all symbols from this object file
4669 which we have already seen in this pass. */
4673 included[mark] = TRUE;
4678 while (symdefs[mark].file_offset == symdef->file_offset);
4680 /* We mark subsequent symbols from this object file as we go
4681 on through the loop. */
4682 last = symdef->file_offset;
4693 if (defined != NULL)
4695 if (included != NULL)
4700 /* Given an ELF BFD, add symbols to the global hash table as
4704 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4706 switch (bfd_get_format (abfd))
4709 return elf_link_add_object_symbols (abfd, info);
4711 return elf_link_add_archive_symbols (abfd, info);
4713 bfd_set_error (bfd_error_wrong_format);
4718 /* This function will be called though elf_link_hash_traverse to store
4719 all hash value of the exported symbols in an array. */
4722 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4724 unsigned long **valuep = data;
4730 if (h->root.type == bfd_link_hash_warning)
4731 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4733 /* Ignore indirect symbols. These are added by the versioning code. */
4734 if (h->dynindx == -1)
4737 name = h->root.root.string;
4738 p = strchr (name, ELF_VER_CHR);
4741 alc = bfd_malloc (p - name + 1);
4742 memcpy (alc, name, p - name);
4743 alc[p - name] = '\0';
4747 /* Compute the hash value. */
4748 ha = bfd_elf_hash (name);
4750 /* Store the found hash value in the array given as the argument. */
4753 /* And store it in the struct so that we can put it in the hash table
4755 h->u.elf_hash_value = ha;
4763 /* Array used to determine the number of hash table buckets to use
4764 based on the number of symbols there are. If there are fewer than
4765 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4766 fewer than 37 we use 17 buckets, and so forth. We never use more
4767 than 32771 buckets. */
4769 static const size_t elf_buckets[] =
4771 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4775 /* Compute bucket count for hashing table. We do not use a static set
4776 of possible tables sizes anymore. Instead we determine for all
4777 possible reasonable sizes of the table the outcome (i.e., the
4778 number of collisions etc) and choose the best solution. The
4779 weighting functions are not too simple to allow the table to grow
4780 without bounds. Instead one of the weighting factors is the size.
4781 Therefore the result is always a good payoff between few collisions
4782 (= short chain lengths) and table size. */
4784 compute_bucket_count (struct bfd_link_info *info)
4786 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4787 size_t best_size = 0;
4788 unsigned long int *hashcodes;
4789 unsigned long int *hashcodesp;
4790 unsigned long int i;
4793 /* Compute the hash values for all exported symbols. At the same
4794 time store the values in an array so that we could use them for
4797 amt *= sizeof (unsigned long int);
4798 hashcodes = bfd_malloc (amt);
4799 if (hashcodes == NULL)
4801 hashcodesp = hashcodes;
4803 /* Put all hash values in HASHCODES. */
4804 elf_link_hash_traverse (elf_hash_table (info),
4805 elf_collect_hash_codes, &hashcodesp);
4807 /* We have a problem here. The following code to optimize the table
4808 size requires an integer type with more the 32 bits. If
4809 BFD_HOST_U_64_BIT is set we know about such a type. */
4810 #ifdef BFD_HOST_U_64_BIT
4813 unsigned long int nsyms = hashcodesp - hashcodes;
4816 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4817 unsigned long int *counts ;
4818 bfd *dynobj = elf_hash_table (info)->dynobj;
4819 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4821 /* Possible optimization parameters: if we have NSYMS symbols we say
4822 that the hashing table must at least have NSYMS/4 and at most
4824 minsize = nsyms / 4;
4827 best_size = maxsize = nsyms * 2;
4829 /* Create array where we count the collisions in. We must use bfd_malloc
4830 since the size could be large. */
4832 amt *= sizeof (unsigned long int);
4833 counts = bfd_malloc (amt);
4840 /* Compute the "optimal" size for the hash table. The criteria is a
4841 minimal chain length. The minor criteria is (of course) the size
4843 for (i = minsize; i < maxsize; ++i)
4845 /* Walk through the array of hashcodes and count the collisions. */
4846 BFD_HOST_U_64_BIT max;
4847 unsigned long int j;
4848 unsigned long int fact;
4850 memset (counts, '\0', i * sizeof (unsigned long int));
4852 /* Determine how often each hash bucket is used. */
4853 for (j = 0; j < nsyms; ++j)
4854 ++counts[hashcodes[j] % i];
4856 /* For the weight function we need some information about the
4857 pagesize on the target. This is information need not be 100%
4858 accurate. Since this information is not available (so far) we
4859 define it here to a reasonable default value. If it is crucial
4860 to have a better value some day simply define this value. */
4861 # ifndef BFD_TARGET_PAGESIZE
4862 # define BFD_TARGET_PAGESIZE (4096)
4865 /* We in any case need 2 + NSYMS entries for the size values and
4867 max = (2 + nsyms) * (bed->s->arch_size / 8);
4870 /* Variant 1: optimize for short chains. We add the squares
4871 of all the chain lengths (which favors many small chain
4872 over a few long chains). */
4873 for (j = 0; j < i; ++j)
4874 max += counts[j] * counts[j];
4876 /* This adds penalties for the overall size of the table. */
4877 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4880 /* Variant 2: Optimize a lot more for small table. Here we
4881 also add squares of the size but we also add penalties for
4882 empty slots (the +1 term). */
4883 for (j = 0; j < i; ++j)
4884 max += (1 + counts[j]) * (1 + counts[j]);
4886 /* The overall size of the table is considered, but not as
4887 strong as in variant 1, where it is squared. */
4888 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4892 /* Compare with current best results. */
4893 if (max < best_chlen)
4903 #endif /* defined (BFD_HOST_U_64_BIT) */
4905 /* This is the fallback solution if no 64bit type is available or if we
4906 are not supposed to spend much time on optimizations. We select the
4907 bucket count using a fixed set of numbers. */
4908 for (i = 0; elf_buckets[i] != 0; i++)
4910 best_size = elf_buckets[i];
4911 if (dynsymcount < elf_buckets[i + 1])
4916 /* Free the arrays we needed. */
4922 /* Set up the sizes and contents of the ELF dynamic sections. This is
4923 called by the ELF linker emulation before_allocation routine. We
4924 must set the sizes of the sections before the linker sets the
4925 addresses of the various sections. */
4928 bfd_elf_size_dynamic_sections (bfd *output_bfd,
4931 const char *filter_shlib,
4932 const char * const *auxiliary_filters,
4933 struct bfd_link_info *info,
4934 asection **sinterpptr,
4935 struct bfd_elf_version_tree *verdefs)
4937 bfd_size_type soname_indx;
4939 const struct elf_backend_data *bed;
4940 struct elf_assign_sym_version_info asvinfo;
4944 soname_indx = (bfd_size_type) -1;
4946 if (!is_elf_hash_table (info->hash))
4949 elf_tdata (output_bfd)->relro = info->relro;
4950 if (info->execstack)
4951 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4952 else if (info->noexecstack)
4953 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4957 asection *notesec = NULL;
4960 for (inputobj = info->input_bfds;
4962 inputobj = inputobj->link_next)
4966 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
4968 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4971 if (s->flags & SEC_CODE)
4980 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4981 if (exec && info->relocatable
4982 && notesec->output_section != bfd_abs_section_ptr)
4983 notesec->output_section->flags |= SEC_CODE;
4987 /* Any syms created from now on start with -1 in
4988 got.refcount/offset and plt.refcount/offset. */
4989 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset;
4991 /* The backend may have to create some sections regardless of whether
4992 we're dynamic or not. */
4993 bed = get_elf_backend_data (output_bfd);
4994 if (bed->elf_backend_always_size_sections
4995 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4998 dynobj = elf_hash_table (info)->dynobj;
5000 /* If there were no dynamic objects in the link, there is nothing to
5005 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5008 if (elf_hash_table (info)->dynamic_sections_created)
5010 struct elf_info_failed eif;
5011 struct elf_link_hash_entry *h;
5013 struct bfd_elf_version_tree *t;
5014 struct bfd_elf_version_expr *d;
5015 bfd_boolean all_defined;
5017 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5018 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5022 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5024 if (soname_indx == (bfd_size_type) -1
5025 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5031 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5033 info->flags |= DF_SYMBOLIC;
5040 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5042 if (indx == (bfd_size_type) -1
5043 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5046 if (info->new_dtags)
5048 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5049 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5054 if (filter_shlib != NULL)
5058 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5059 filter_shlib, TRUE);
5060 if (indx == (bfd_size_type) -1
5061 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5065 if (auxiliary_filters != NULL)
5067 const char * const *p;
5069 for (p = auxiliary_filters; *p != NULL; p++)
5073 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5075 if (indx == (bfd_size_type) -1
5076 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5082 eif.verdefs = verdefs;
5085 /* If we are supposed to export all symbols into the dynamic symbol
5086 table (this is not the normal case), then do so. */
5087 if (info->export_dynamic)
5089 elf_link_hash_traverse (elf_hash_table (info),
5090 _bfd_elf_export_symbol,
5096 /* Make all global versions with definition. */
5097 for (t = verdefs; t != NULL; t = t->next)
5098 for (d = t->globals.list; d != NULL; d = d->next)
5099 if (!d->symver && d->symbol)
5101 const char *verstr, *name;
5102 size_t namelen, verlen, newlen;
5104 struct elf_link_hash_entry *newh;
5107 namelen = strlen (name);
5109 verlen = strlen (verstr);
5110 newlen = namelen + verlen + 3;
5112 newname = bfd_malloc (newlen);
5113 if (newname == NULL)
5115 memcpy (newname, name, namelen);
5117 /* Check the hidden versioned definition. */
5118 p = newname + namelen;
5120 memcpy (p, verstr, verlen + 1);
5121 newh = elf_link_hash_lookup (elf_hash_table (info),
5122 newname, FALSE, FALSE,
5125 || (newh->root.type != bfd_link_hash_defined
5126 && newh->root.type != bfd_link_hash_defweak))
5128 /* Check the default versioned definition. */
5130 memcpy (p, verstr, verlen + 1);
5131 newh = elf_link_hash_lookup (elf_hash_table (info),
5132 newname, FALSE, FALSE,
5137 /* Mark this version if there is a definition and it is
5138 not defined in a shared object. */
5140 && !newh->def_dynamic
5141 && (newh->root.type == bfd_link_hash_defined
5142 || newh->root.type == bfd_link_hash_defweak))
5146 /* Attach all the symbols to their version information. */
5147 asvinfo.output_bfd = output_bfd;
5148 asvinfo.info = info;
5149 asvinfo.verdefs = verdefs;
5150 asvinfo.failed = FALSE;
5152 elf_link_hash_traverse (elf_hash_table (info),
5153 _bfd_elf_link_assign_sym_version,
5158 if (!info->allow_undefined_version)
5160 /* Check if all global versions have a definition. */
5162 for (t = verdefs; t != NULL; t = t->next)
5163 for (d = t->globals.list; d != NULL; d = d->next)
5164 if (!d->symver && !d->script)
5166 (*_bfd_error_handler)
5167 (_("%s: undefined version: %s"),
5168 d->pattern, t->name);
5169 all_defined = FALSE;
5174 bfd_set_error (bfd_error_bad_value);
5179 /* Find all symbols which were defined in a dynamic object and make
5180 the backend pick a reasonable value for them. */
5181 elf_link_hash_traverse (elf_hash_table (info),
5182 _bfd_elf_adjust_dynamic_symbol,
5187 /* Add some entries to the .dynamic section. We fill in some of the
5188 values later, in bfd_elf_final_link, but we must add the entries
5189 now so that we know the final size of the .dynamic section. */
5191 /* If there are initialization and/or finalization functions to
5192 call then add the corresponding DT_INIT/DT_FINI entries. */
5193 h = (info->init_function
5194 ? elf_link_hash_lookup (elf_hash_table (info),
5195 info->init_function, FALSE,
5202 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5205 h = (info->fini_function
5206 ? elf_link_hash_lookup (elf_hash_table (info),
5207 info->fini_function, FALSE,
5214 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5218 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
5220 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5221 if (! info->executable)
5226 for (sub = info->input_bfds; sub != NULL;
5227 sub = sub->link_next)
5228 for (o = sub->sections; o != NULL; o = o->next)
5229 if (elf_section_data (o)->this_hdr.sh_type
5230 == SHT_PREINIT_ARRAY)
5232 (*_bfd_error_handler)
5233 (_("%B: .preinit_array section is not allowed in DSO"),
5238 bfd_set_error (bfd_error_nonrepresentable_section);
5242 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5243 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5246 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
5248 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5249 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5252 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
5254 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5255 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5259 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5260 /* If .dynstr is excluded from the link, we don't want any of
5261 these tags. Strictly, we should be checking each section
5262 individually; This quick check covers for the case where
5263 someone does a /DISCARD/ : { *(*) }. */
5264 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5266 bfd_size_type strsize;
5268 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5269 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
5270 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5271 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5272 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5273 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5274 bed->s->sizeof_sym))
5279 /* The backend must work out the sizes of all the other dynamic
5281 if (bed->elf_backend_size_dynamic_sections
5282 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5285 if (elf_hash_table (info)->dynamic_sections_created)
5287 unsigned long section_sym_count;
5290 /* Set up the version definition section. */
5291 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5292 BFD_ASSERT (s != NULL);
5294 /* We may have created additional version definitions if we are
5295 just linking a regular application. */
5296 verdefs = asvinfo.verdefs;
5298 /* Skip anonymous version tag. */
5299 if (verdefs != NULL && verdefs->vernum == 0)
5300 verdefs = verdefs->next;
5302 if (verdefs == NULL && !info->create_default_symver)
5303 s->flags |= SEC_EXCLUDE;
5308 struct bfd_elf_version_tree *t;
5310 Elf_Internal_Verdef def;
5311 Elf_Internal_Verdaux defaux;
5312 struct bfd_link_hash_entry *bh;
5313 struct elf_link_hash_entry *h;
5319 /* Make space for the base version. */
5320 size += sizeof (Elf_External_Verdef);
5321 size += sizeof (Elf_External_Verdaux);
5324 /* Make space for the default version. */
5325 if (info->create_default_symver)
5327 size += sizeof (Elf_External_Verdef);
5331 for (t = verdefs; t != NULL; t = t->next)
5333 struct bfd_elf_version_deps *n;
5335 size += sizeof (Elf_External_Verdef);
5336 size += sizeof (Elf_External_Verdaux);
5339 for (n = t->deps; n != NULL; n = n->next)
5340 size += sizeof (Elf_External_Verdaux);
5344 s->contents = bfd_alloc (output_bfd, s->size);
5345 if (s->contents == NULL && s->size != 0)
5348 /* Fill in the version definition section. */
5352 def.vd_version = VER_DEF_CURRENT;
5353 def.vd_flags = VER_FLG_BASE;
5356 if (info->create_default_symver)
5358 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5359 def.vd_next = sizeof (Elf_External_Verdef);
5363 def.vd_aux = sizeof (Elf_External_Verdef);
5364 def.vd_next = (sizeof (Elf_External_Verdef)
5365 + sizeof (Elf_External_Verdaux));
5368 if (soname_indx != (bfd_size_type) -1)
5370 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5372 def.vd_hash = bfd_elf_hash (soname);
5373 defaux.vda_name = soname_indx;
5380 name = basename (output_bfd->filename);
5381 def.vd_hash = bfd_elf_hash (name);
5382 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5384 if (indx == (bfd_size_type) -1)
5386 defaux.vda_name = indx;
5388 defaux.vda_next = 0;
5390 _bfd_elf_swap_verdef_out (output_bfd, &def,
5391 (Elf_External_Verdef *) p);
5392 p += sizeof (Elf_External_Verdef);
5393 if (info->create_default_symver)
5395 /* Add a symbol representing this version. */
5397 if (! (_bfd_generic_link_add_one_symbol
5398 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5400 get_elf_backend_data (dynobj)->collect, &bh)))
5402 h = (struct elf_link_hash_entry *) bh;
5405 h->type = STT_OBJECT;
5406 h->verinfo.vertree = NULL;
5408 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5411 /* Create a duplicate of the base version with the same
5412 aux block, but different flags. */
5415 def.vd_aux = sizeof (Elf_External_Verdef);
5417 def.vd_next = (sizeof (Elf_External_Verdef)
5418 + sizeof (Elf_External_Verdaux));
5421 _bfd_elf_swap_verdef_out (output_bfd, &def,
5422 (Elf_External_Verdef *) p);
5423 p += sizeof (Elf_External_Verdef);
5425 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5426 (Elf_External_Verdaux *) p);
5427 p += sizeof (Elf_External_Verdaux);
5429 for (t = verdefs; t != NULL; t = t->next)
5432 struct bfd_elf_version_deps *n;
5435 for (n = t->deps; n != NULL; n = n->next)
5438 /* Add a symbol representing this version. */
5440 if (! (_bfd_generic_link_add_one_symbol
5441 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5443 get_elf_backend_data (dynobj)->collect, &bh)))
5445 h = (struct elf_link_hash_entry *) bh;
5448 h->type = STT_OBJECT;
5449 h->verinfo.vertree = t;
5451 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5454 def.vd_version = VER_DEF_CURRENT;
5456 if (t->globals.list == NULL
5457 && t->locals.list == NULL
5459 def.vd_flags |= VER_FLG_WEAK;
5460 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5461 def.vd_cnt = cdeps + 1;
5462 def.vd_hash = bfd_elf_hash (t->name);
5463 def.vd_aux = sizeof (Elf_External_Verdef);
5465 if (t->next != NULL)
5466 def.vd_next = (sizeof (Elf_External_Verdef)
5467 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5469 _bfd_elf_swap_verdef_out (output_bfd, &def,
5470 (Elf_External_Verdef *) p);
5471 p += sizeof (Elf_External_Verdef);
5473 defaux.vda_name = h->dynstr_index;
5474 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5476 defaux.vda_next = 0;
5477 if (t->deps != NULL)
5478 defaux.vda_next = sizeof (Elf_External_Verdaux);
5479 t->name_indx = defaux.vda_name;
5481 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5482 (Elf_External_Verdaux *) p);
5483 p += sizeof (Elf_External_Verdaux);
5485 for (n = t->deps; n != NULL; n = n->next)
5487 if (n->version_needed == NULL)
5489 /* This can happen if there was an error in the
5491 defaux.vda_name = 0;
5495 defaux.vda_name = n->version_needed->name_indx;
5496 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5499 if (n->next == NULL)
5500 defaux.vda_next = 0;
5502 defaux.vda_next = sizeof (Elf_External_Verdaux);
5504 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5505 (Elf_External_Verdaux *) p);
5506 p += sizeof (Elf_External_Verdaux);
5510 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5511 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5514 elf_tdata (output_bfd)->cverdefs = cdefs;
5517 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5519 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5522 else if (info->flags & DF_BIND_NOW)
5524 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5530 if (info->executable)
5531 info->flags_1 &= ~ (DF_1_INITFIRST
5534 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5538 /* Work out the size of the version reference section. */
5540 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5541 BFD_ASSERT (s != NULL);
5543 struct elf_find_verdep_info sinfo;
5545 sinfo.output_bfd = output_bfd;
5547 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5548 if (sinfo.vers == 0)
5550 sinfo.failed = FALSE;
5552 elf_link_hash_traverse (elf_hash_table (info),
5553 _bfd_elf_link_find_version_dependencies,
5556 if (elf_tdata (output_bfd)->verref == NULL)
5557 s->flags |= SEC_EXCLUDE;
5560 Elf_Internal_Verneed *t;
5565 /* Build the version definition section. */
5568 for (t = elf_tdata (output_bfd)->verref;
5572 Elf_Internal_Vernaux *a;
5574 size += sizeof (Elf_External_Verneed);
5576 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5577 size += sizeof (Elf_External_Vernaux);
5581 s->contents = bfd_alloc (output_bfd, s->size);
5582 if (s->contents == NULL)
5586 for (t = elf_tdata (output_bfd)->verref;
5591 Elf_Internal_Vernaux *a;
5595 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5598 t->vn_version = VER_NEED_CURRENT;
5600 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5601 elf_dt_name (t->vn_bfd) != NULL
5602 ? elf_dt_name (t->vn_bfd)
5603 : basename (t->vn_bfd->filename),
5605 if (indx == (bfd_size_type) -1)
5608 t->vn_aux = sizeof (Elf_External_Verneed);
5609 if (t->vn_nextref == NULL)
5612 t->vn_next = (sizeof (Elf_External_Verneed)
5613 + caux * sizeof (Elf_External_Vernaux));
5615 _bfd_elf_swap_verneed_out (output_bfd, t,
5616 (Elf_External_Verneed *) p);
5617 p += sizeof (Elf_External_Verneed);
5619 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5621 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5622 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5623 a->vna_nodename, FALSE);
5624 if (indx == (bfd_size_type) -1)
5627 if (a->vna_nextptr == NULL)
5630 a->vna_next = sizeof (Elf_External_Vernaux);
5632 _bfd_elf_swap_vernaux_out (output_bfd, a,
5633 (Elf_External_Vernaux *) p);
5634 p += sizeof (Elf_External_Vernaux);
5638 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5639 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5642 elf_tdata (output_bfd)->cverrefs = crefs;
5646 if ((elf_tdata (output_bfd)->cverrefs == 0
5647 && elf_tdata (output_bfd)->cverdefs == 0)
5648 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5649 §ion_sym_count) == 0)
5651 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5652 s->flags |= SEC_EXCLUDE;
5659 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5661 if (!is_elf_hash_table (info->hash))
5664 if (elf_hash_table (info)->dynamic_sections_created)
5667 const struct elf_backend_data *bed;
5669 bfd_size_type dynsymcount;
5670 unsigned long section_sym_count;
5671 size_t bucketcount = 0;
5672 size_t hash_entry_size;
5673 unsigned int dtagcount;
5675 dynobj = elf_hash_table (info)->dynobj;
5677 /* Assign dynsym indicies. In a shared library we generate a
5678 section symbol for each output section, which come first.
5679 Next come all of the back-end allocated local dynamic syms,
5680 followed by the rest of the global symbols. */
5682 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5683 §ion_sym_count);
5685 /* Work out the size of the symbol version section. */
5686 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5687 BFD_ASSERT (s != NULL);
5688 if (dynsymcount != 0
5689 && (s->flags & SEC_EXCLUDE) == 0)
5691 s->size = dynsymcount * sizeof (Elf_External_Versym);
5692 s->contents = bfd_zalloc (output_bfd, s->size);
5693 if (s->contents == NULL)
5696 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5700 /* Set the size of the .dynsym and .hash sections. We counted
5701 the number of dynamic symbols in elf_link_add_object_symbols.
5702 We will build the contents of .dynsym and .hash when we build
5703 the final symbol table, because until then we do not know the
5704 correct value to give the symbols. We built the .dynstr
5705 section as we went along in elf_link_add_object_symbols. */
5706 s = bfd_get_section_by_name (dynobj, ".dynsym");
5707 BFD_ASSERT (s != NULL);
5708 bed = get_elf_backend_data (output_bfd);
5709 s->size = dynsymcount * bed->s->sizeof_sym;
5711 if (dynsymcount != 0)
5713 s->contents = bfd_alloc (output_bfd, s->size);
5714 if (s->contents == NULL)
5717 /* The first entry in .dynsym is a dummy symbol.
5718 Clear all the section syms, in case we don't output them all. */
5719 ++section_sym_count;
5720 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
5723 /* Compute the size of the hashing table. As a side effect this
5724 computes the hash values for all the names we export. */
5725 bucketcount = compute_bucket_count (info);
5727 s = bfd_get_section_by_name (dynobj, ".hash");
5728 BFD_ASSERT (s != NULL);
5729 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
5730 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5731 s->contents = bfd_zalloc (output_bfd, s->size);
5732 if (s->contents == NULL)
5735 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5736 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5737 s->contents + hash_entry_size);
5739 elf_hash_table (info)->bucketcount = bucketcount;
5741 s = bfd_get_section_by_name (dynobj, ".dynstr");
5742 BFD_ASSERT (s != NULL);
5744 elf_finalize_dynstr (output_bfd, info);
5746 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5748 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5749 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5756 /* Final phase of ELF linker. */
5758 /* A structure we use to avoid passing large numbers of arguments. */
5760 struct elf_final_link_info
5762 /* General link information. */
5763 struct bfd_link_info *info;
5766 /* Symbol string table. */
5767 struct bfd_strtab_hash *symstrtab;
5768 /* .dynsym section. */
5769 asection *dynsym_sec;
5770 /* .hash section. */
5772 /* symbol version section (.gnu.version). */
5773 asection *symver_sec;
5774 /* Buffer large enough to hold contents of any section. */
5776 /* Buffer large enough to hold external relocs of any section. */
5777 void *external_relocs;
5778 /* Buffer large enough to hold internal relocs of any section. */
5779 Elf_Internal_Rela *internal_relocs;
5780 /* Buffer large enough to hold external local symbols of any input
5782 bfd_byte *external_syms;
5783 /* And a buffer for symbol section indices. */
5784 Elf_External_Sym_Shndx *locsym_shndx;
5785 /* Buffer large enough to hold internal local symbols of any input
5787 Elf_Internal_Sym *internal_syms;
5788 /* Array large enough to hold a symbol index for each local symbol
5789 of any input BFD. */
5791 /* Array large enough to hold a section pointer for each local
5792 symbol of any input BFD. */
5793 asection **sections;
5794 /* Buffer to hold swapped out symbols. */
5796 /* And one for symbol section indices. */
5797 Elf_External_Sym_Shndx *symshndxbuf;
5798 /* Number of swapped out symbols in buffer. */
5799 size_t symbuf_count;
5800 /* Number of symbols which fit in symbuf. */
5802 /* And same for symshndxbuf. */
5803 size_t shndxbuf_size;
5806 /* This struct is used to pass information to elf_link_output_extsym. */
5808 struct elf_outext_info
5811 bfd_boolean localsyms;
5812 struct elf_final_link_info *finfo;
5815 /* When performing a relocatable link, the input relocations are
5816 preserved. But, if they reference global symbols, the indices
5817 referenced must be updated. Update all the relocations in
5818 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5821 elf_link_adjust_relocs (bfd *abfd,
5822 Elf_Internal_Shdr *rel_hdr,
5824 struct elf_link_hash_entry **rel_hash)
5827 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5829 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5830 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5831 bfd_vma r_type_mask;
5834 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5836 swap_in = bed->s->swap_reloc_in;
5837 swap_out = bed->s->swap_reloc_out;
5839 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5841 swap_in = bed->s->swap_reloca_in;
5842 swap_out = bed->s->swap_reloca_out;
5847 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5850 if (bed->s->arch_size == 32)
5857 r_type_mask = 0xffffffff;
5861 erela = rel_hdr->contents;
5862 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5864 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5867 if (*rel_hash == NULL)
5870 BFD_ASSERT ((*rel_hash)->indx >= 0);
5872 (*swap_in) (abfd, erela, irela);
5873 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5874 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5875 | (irela[j].r_info & r_type_mask));
5876 (*swap_out) (abfd, irela, erela);
5880 struct elf_link_sort_rela
5886 enum elf_reloc_type_class type;
5887 /* We use this as an array of size int_rels_per_ext_rel. */
5888 Elf_Internal_Rela rela[1];
5892 elf_link_sort_cmp1 (const void *A, const void *B)
5894 const struct elf_link_sort_rela *a = A;
5895 const struct elf_link_sort_rela *b = B;
5896 int relativea, relativeb;
5898 relativea = a->type == reloc_class_relative;
5899 relativeb = b->type == reloc_class_relative;
5901 if (relativea < relativeb)
5903 if (relativea > relativeb)
5905 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5907 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5909 if (a->rela->r_offset < b->rela->r_offset)
5911 if (a->rela->r_offset > b->rela->r_offset)
5917 elf_link_sort_cmp2 (const void *A, const void *B)
5919 const struct elf_link_sort_rela *a = A;
5920 const struct elf_link_sort_rela *b = B;
5923 if (a->u.offset < b->u.offset)
5925 if (a->u.offset > b->u.offset)
5927 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5928 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5933 if (a->rela->r_offset < b->rela->r_offset)
5935 if (a->rela->r_offset > b->rela->r_offset)
5941 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5944 bfd_size_type count, size;
5945 size_t i, ret, sort_elt, ext_size;
5946 bfd_byte *sort, *s_non_relative, *p;
5947 struct elf_link_sort_rela *sq;
5948 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5949 int i2e = bed->s->int_rels_per_ext_rel;
5950 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5951 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5952 struct bfd_link_order *lo;
5955 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
5956 if (reldyn == NULL || reldyn->size == 0)
5958 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
5959 if (reldyn == NULL || reldyn->size == 0)
5961 ext_size = bed->s->sizeof_rel;
5962 swap_in = bed->s->swap_reloc_in;
5963 swap_out = bed->s->swap_reloc_out;
5967 ext_size = bed->s->sizeof_rela;
5968 swap_in = bed->s->swap_reloca_in;
5969 swap_out = bed->s->swap_reloca_out;
5971 count = reldyn->size / ext_size;
5974 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
5975 if (lo->type == bfd_indirect_link_order)
5977 asection *o = lo->u.indirect.section;
5981 if (size != reldyn->size)
5984 sort_elt = (sizeof (struct elf_link_sort_rela)
5985 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5986 sort = bfd_zmalloc (sort_elt * count);
5989 (*info->callbacks->warning)
5990 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5994 if (bed->s->arch_size == 32)
5995 r_sym_mask = ~(bfd_vma) 0xff;
5997 r_sym_mask = ~(bfd_vma) 0xffffffff;
5999 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
6000 if (lo->type == bfd_indirect_link_order)
6002 bfd_byte *erel, *erelend;
6003 asection *o = lo->u.indirect.section;
6005 if (o->contents == NULL && o->size != 0)
6007 /* This is a reloc section that is being handled as a normal
6008 section. See bfd_section_from_shdr. We can't combine
6009 relocs in this case. */
6014 erelend = o->contents + o->size;
6015 p = sort + o->output_offset / ext_size * sort_elt;
6016 while (erel < erelend)
6018 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6019 (*swap_in) (abfd, erel, s->rela);
6020 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
6021 s->u.sym_mask = r_sym_mask;
6027 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
6029 for (i = 0, p = sort; i < count; i++, p += sort_elt)
6031 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6032 if (s->type != reloc_class_relative)
6038 sq = (struct elf_link_sort_rela *) s_non_relative;
6039 for (; i < count; i++, p += sort_elt)
6041 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
6042 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
6044 sp->u.offset = sq->rela->r_offset;
6047 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
6049 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
6050 if (lo->type == bfd_indirect_link_order)
6052 bfd_byte *erel, *erelend;
6053 asection *o = lo->u.indirect.section;
6056 erelend = o->contents + o->size;
6057 p = sort + o->output_offset / ext_size * sort_elt;
6058 while (erel < erelend)
6060 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6061 (*swap_out) (abfd, s->rela, erel);
6072 /* Flush the output symbols to the file. */
6075 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
6076 const struct elf_backend_data *bed)
6078 if (finfo->symbuf_count > 0)
6080 Elf_Internal_Shdr *hdr;
6084 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
6085 pos = hdr->sh_offset + hdr->sh_size;
6086 amt = finfo->symbuf_count * bed->s->sizeof_sym;
6087 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
6088 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
6091 hdr->sh_size += amt;
6092 finfo->symbuf_count = 0;
6098 /* Add a symbol to the output symbol table. */
6101 elf_link_output_sym (struct elf_final_link_info *finfo,
6103 Elf_Internal_Sym *elfsym,
6104 asection *input_sec,
6105 struct elf_link_hash_entry *h)
6108 Elf_External_Sym_Shndx *destshndx;
6109 bfd_boolean (*output_symbol_hook)
6110 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
6111 struct elf_link_hash_entry *);
6112 const struct elf_backend_data *bed;
6114 bed = get_elf_backend_data (finfo->output_bfd);
6115 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
6116 if (output_symbol_hook != NULL)
6118 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
6122 if (name == NULL || *name == '\0')
6123 elfsym->st_name = 0;
6124 else if (input_sec->flags & SEC_EXCLUDE)
6125 elfsym->st_name = 0;
6128 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
6130 if (elfsym->st_name == (unsigned long) -1)
6134 if (finfo->symbuf_count >= finfo->symbuf_size)
6136 if (! elf_link_flush_output_syms (finfo, bed))
6140 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
6141 destshndx = finfo->symshndxbuf;
6142 if (destshndx != NULL)
6144 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
6148 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
6149 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
6150 if (destshndx == NULL)
6152 memset ((char *) destshndx + amt, 0, amt);
6153 finfo->shndxbuf_size *= 2;
6155 destshndx += bfd_get_symcount (finfo->output_bfd);
6158 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
6159 finfo->symbuf_count += 1;
6160 bfd_get_symcount (finfo->output_bfd) += 1;
6165 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6166 allowing an unsatisfied unversioned symbol in the DSO to match a
6167 versioned symbol that would normally require an explicit version.
6168 We also handle the case that a DSO references a hidden symbol
6169 which may be satisfied by a versioned symbol in another DSO. */
6172 elf_link_check_versioned_symbol (struct bfd_link_info *info,
6173 const struct elf_backend_data *bed,
6174 struct elf_link_hash_entry *h)
6177 struct elf_link_loaded_list *loaded;
6179 if (!is_elf_hash_table (info->hash))
6182 switch (h->root.type)
6188 case bfd_link_hash_undefined:
6189 case bfd_link_hash_undefweak:
6190 abfd = h->root.u.undef.abfd;
6191 if ((abfd->flags & DYNAMIC) == 0
6192 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
6196 case bfd_link_hash_defined:
6197 case bfd_link_hash_defweak:
6198 abfd = h->root.u.def.section->owner;
6201 case bfd_link_hash_common:
6202 abfd = h->root.u.c.p->section->owner;
6205 BFD_ASSERT (abfd != NULL);
6207 for (loaded = elf_hash_table (info)->loaded;
6209 loaded = loaded->next)
6212 Elf_Internal_Shdr *hdr;
6213 bfd_size_type symcount;
6214 bfd_size_type extsymcount;
6215 bfd_size_type extsymoff;
6216 Elf_Internal_Shdr *versymhdr;
6217 Elf_Internal_Sym *isym;
6218 Elf_Internal_Sym *isymend;
6219 Elf_Internal_Sym *isymbuf;
6220 Elf_External_Versym *ever;
6221 Elf_External_Versym *extversym;
6223 input = loaded->abfd;
6225 /* We check each DSO for a possible hidden versioned definition. */
6227 || (input->flags & DYNAMIC) == 0
6228 || elf_dynversym (input) == 0)
6231 hdr = &elf_tdata (input)->dynsymtab_hdr;
6233 symcount = hdr->sh_size / bed->s->sizeof_sym;
6234 if (elf_bad_symtab (input))
6236 extsymcount = symcount;
6241 extsymcount = symcount - hdr->sh_info;
6242 extsymoff = hdr->sh_info;
6245 if (extsymcount == 0)
6248 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6250 if (isymbuf == NULL)
6253 /* Read in any version definitions. */
6254 versymhdr = &elf_tdata (input)->dynversym_hdr;
6255 extversym = bfd_malloc (versymhdr->sh_size);
6256 if (extversym == NULL)
6259 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6260 || (bfd_bread (extversym, versymhdr->sh_size, input)
6261 != versymhdr->sh_size))
6269 ever = extversym + extsymoff;
6270 isymend = isymbuf + extsymcount;
6271 for (isym = isymbuf; isym < isymend; isym++, ever++)
6274 Elf_Internal_Versym iver;
6275 unsigned short version_index;
6277 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6278 || isym->st_shndx == SHN_UNDEF)
6281 name = bfd_elf_string_from_elf_section (input,
6284 if (strcmp (name, h->root.root.string) != 0)
6287 _bfd_elf_swap_versym_in (input, ever, &iver);
6289 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6291 /* If we have a non-hidden versioned sym, then it should
6292 have provided a definition for the undefined sym. */
6296 version_index = iver.vs_vers & VERSYM_VERSION;
6297 if (version_index == 1 || version_index == 2)
6299 /* This is the base or first version. We can use it. */
6313 /* Add an external symbol to the symbol table. This is called from
6314 the hash table traversal routine. When generating a shared object,
6315 we go through the symbol table twice. The first time we output
6316 anything that might have been forced to local scope in a version
6317 script. The second time we output the symbols that are still
6321 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
6323 struct elf_outext_info *eoinfo = data;
6324 struct elf_final_link_info *finfo = eoinfo->finfo;
6326 Elf_Internal_Sym sym;
6327 asection *input_sec;
6328 const struct elf_backend_data *bed;
6330 if (h->root.type == bfd_link_hash_warning)
6332 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6333 if (h->root.type == bfd_link_hash_new)
6337 /* Decide whether to output this symbol in this pass. */
6338 if (eoinfo->localsyms)
6340 if (!h->forced_local)
6345 if (h->forced_local)
6349 bed = get_elf_backend_data (finfo->output_bfd);
6351 /* If we have an undefined symbol reference here then it must have
6352 come from a shared library that is being linked in. (Undefined
6353 references in regular files have already been handled). If we
6354 are reporting errors for this situation then do so now. */
6355 if (h->root.type == bfd_link_hash_undefined
6358 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6359 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6361 if (! ((*finfo->info->callbacks->undefined_symbol)
6362 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6363 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6365 eoinfo->failed = TRUE;
6370 /* We should also warn if a forced local symbol is referenced from
6371 shared libraries. */
6372 if (! finfo->info->relocatable
6373 && (! finfo->info->shared)
6378 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6380 (*_bfd_error_handler)
6381 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
6382 finfo->output_bfd, h->root.u.def.section->owner,
6383 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6385 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
6386 ? "hidden" : "local",
6387 h->root.root.string);
6388 eoinfo->failed = TRUE;
6392 /* We don't want to output symbols that have never been mentioned by
6393 a regular file, or that we have been told to strip. However, if
6394 h->indx is set to -2, the symbol is used by a reloc and we must
6398 else if ((h->def_dynamic
6400 || h->root.type == bfd_link_hash_new)
6404 else if (finfo->info->strip == strip_all)
6406 else if (finfo->info->strip == strip_some
6407 && bfd_hash_lookup (finfo->info->keep_hash,
6408 h->root.root.string, FALSE, FALSE) == NULL)
6410 else if (finfo->info->strip_discarded
6411 && (h->root.type == bfd_link_hash_defined
6412 || h->root.type == bfd_link_hash_defweak)
6413 && elf_discarded_section (h->root.u.def.section))
6418 /* If we're stripping it, and it's not a dynamic symbol, there's
6419 nothing else to do unless it is a forced local symbol. */
6422 && !h->forced_local)
6426 sym.st_size = h->size;
6427 sym.st_other = h->other;
6428 if (h->forced_local)
6429 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6430 else if (h->root.type == bfd_link_hash_undefweak
6431 || h->root.type == bfd_link_hash_defweak)
6432 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6434 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6436 switch (h->root.type)
6439 case bfd_link_hash_new:
6440 case bfd_link_hash_warning:
6444 case bfd_link_hash_undefined:
6445 case bfd_link_hash_undefweak:
6446 input_sec = bfd_und_section_ptr;
6447 sym.st_shndx = SHN_UNDEF;
6450 case bfd_link_hash_defined:
6451 case bfd_link_hash_defweak:
6453 input_sec = h->root.u.def.section;
6454 if (input_sec->output_section != NULL)
6457 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6458 input_sec->output_section);
6459 if (sym.st_shndx == SHN_BAD)
6461 (*_bfd_error_handler)
6462 (_("%B: could not find output section %A for input section %A"),
6463 finfo->output_bfd, input_sec->output_section, input_sec);
6464 eoinfo->failed = TRUE;
6468 /* ELF symbols in relocatable files are section relative,
6469 but in nonrelocatable files they are virtual
6471 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6472 if (! finfo->info->relocatable)
6474 sym.st_value += input_sec->output_section->vma;
6475 if (h->type == STT_TLS)
6477 /* STT_TLS symbols are relative to PT_TLS segment
6479 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6480 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6486 BFD_ASSERT (input_sec->owner == NULL
6487 || (input_sec->owner->flags & DYNAMIC) != 0);
6488 sym.st_shndx = SHN_UNDEF;
6489 input_sec = bfd_und_section_ptr;
6494 case bfd_link_hash_common:
6495 input_sec = h->root.u.c.p->section;
6496 sym.st_shndx = SHN_COMMON;
6497 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6500 case bfd_link_hash_indirect:
6501 /* These symbols are created by symbol versioning. They point
6502 to the decorated version of the name. For example, if the
6503 symbol foo@@GNU_1.2 is the default, which should be used when
6504 foo is used with no version, then we add an indirect symbol
6505 foo which points to foo@@GNU_1.2. We ignore these symbols,
6506 since the indirected symbol is already in the hash table. */
6510 /* Give the processor backend a chance to tweak the symbol value,
6511 and also to finish up anything that needs to be done for this
6512 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6513 forced local syms when non-shared is due to a historical quirk. */
6514 if ((h->dynindx != -1
6516 && ((finfo->info->shared
6517 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6518 || h->root.type != bfd_link_hash_undefweak))
6519 || !h->forced_local)
6520 && elf_hash_table (finfo->info)->dynamic_sections_created)
6522 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6523 (finfo->output_bfd, finfo->info, h, &sym)))
6525 eoinfo->failed = TRUE;
6530 /* If we are marking the symbol as undefined, and there are no
6531 non-weak references to this symbol from a regular object, then
6532 mark the symbol as weak undefined; if there are non-weak
6533 references, mark the symbol as strong. We can't do this earlier,
6534 because it might not be marked as undefined until the
6535 finish_dynamic_symbol routine gets through with it. */
6536 if (sym.st_shndx == SHN_UNDEF
6538 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6539 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6543 if (h->ref_regular_nonweak)
6544 bindtype = STB_GLOBAL;
6546 bindtype = STB_WEAK;
6547 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6550 /* If a non-weak symbol with non-default visibility is not defined
6551 locally, it is a fatal error. */
6552 if (! finfo->info->relocatable
6553 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6554 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6555 && h->root.type == bfd_link_hash_undefined
6558 (*_bfd_error_handler)
6559 (_("%B: %s symbol `%s' isn't defined"),
6561 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6563 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6564 ? "internal" : "hidden",
6565 h->root.root.string);
6566 eoinfo->failed = TRUE;
6570 /* If this symbol should be put in the .dynsym section, then put it
6571 there now. We already know the symbol index. We also fill in
6572 the entry in the .hash section. */
6573 if (h->dynindx != -1
6574 && elf_hash_table (finfo->info)->dynamic_sections_created)
6578 size_t hash_entry_size;
6579 bfd_byte *bucketpos;
6583 sym.st_name = h->dynstr_index;
6584 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6585 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6587 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6588 bucket = h->u.elf_hash_value % bucketcount;
6590 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6591 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6592 + (bucket + 2) * hash_entry_size);
6593 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6594 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6595 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6596 ((bfd_byte *) finfo->hash_sec->contents
6597 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6599 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6601 Elf_Internal_Versym iversym;
6602 Elf_External_Versym *eversym;
6604 if (!h->def_regular)
6606 if (h->verinfo.verdef == NULL)
6607 iversym.vs_vers = 0;
6609 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6613 if (h->verinfo.vertree == NULL)
6614 iversym.vs_vers = 1;
6616 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6617 if (finfo->info->create_default_symver)
6622 iversym.vs_vers |= VERSYM_HIDDEN;
6624 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6625 eversym += h->dynindx;
6626 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6630 /* If we're stripping it, then it was just a dynamic symbol, and
6631 there's nothing else to do. */
6632 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6635 h->indx = bfd_get_symcount (finfo->output_bfd);
6637 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6639 eoinfo->failed = TRUE;
6646 /* Return TRUE if special handling is done for relocs in SEC against
6647 symbols defined in discarded sections. */
6650 elf_section_ignore_discarded_relocs (asection *sec)
6652 const struct elf_backend_data *bed;
6654 switch (sec->sec_info_type)
6656 case ELF_INFO_TYPE_STABS:
6657 case ELF_INFO_TYPE_EH_FRAME:
6663 bed = get_elf_backend_data (sec->owner);
6664 if (bed->elf_backend_ignore_discarded_relocs != NULL
6665 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6671 enum action_discarded
6677 /* Return a mask saying how ld should treat relocations in SEC against
6678 symbols defined in discarded sections. If this function returns
6679 COMPLAIN set, ld will issue a warning message. If this function
6680 returns PRETEND set, and the discarded section was link-once and the
6681 same size as the kept link-once section, ld will pretend that the
6682 symbol was actually defined in the kept section. Otherwise ld will
6683 zero the reloc (at least that is the intent, but some cooperation by
6684 the target dependent code is needed, particularly for REL targets). */
6687 elf_action_discarded (asection *sec)
6689 if (sec->flags & SEC_DEBUGGING)
6692 if (strcmp (".eh_frame", sec->name) == 0)
6695 if (strcmp (".gcc_except_table", sec->name) == 0)
6698 if (strcmp (".PARISC.unwind", sec->name) == 0)
6701 if (strcmp (".fixup", sec->name) == 0)
6704 return COMPLAIN | PRETEND;
6707 /* Find a match between a section and a member of a section group. */
6710 match_group_member (asection *sec, asection *group)
6712 asection *first = elf_next_in_group (group);
6713 asection *s = first;
6717 if (bfd_elf_match_symbols_in_sections (s, sec))
6727 /* Check if the kept section of a discarded section SEC can be used
6728 to replace it. Return the replacement if it is OK. Otherwise return
6732 _bfd_elf_check_kept_section (asection *sec)
6736 kept = sec->kept_section;
6739 if (elf_sec_group (sec) != NULL)
6740 kept = match_group_member (sec, kept);
6741 if (kept != NULL && sec->size != kept->size)
6747 /* Link an input file into the linker output file. This function
6748 handles all the sections and relocations of the input file at once.
6749 This is so that we only have to read the local symbols once, and
6750 don't have to keep them in memory. */
6753 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6755 bfd_boolean (*relocate_section)
6756 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6757 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6759 Elf_Internal_Shdr *symtab_hdr;
6762 Elf_Internal_Sym *isymbuf;
6763 Elf_Internal_Sym *isym;
6764 Elf_Internal_Sym *isymend;
6766 asection **ppsection;
6768 const struct elf_backend_data *bed;
6769 bfd_boolean emit_relocs;
6770 struct elf_link_hash_entry **sym_hashes;
6772 output_bfd = finfo->output_bfd;
6773 bed = get_elf_backend_data (output_bfd);
6774 relocate_section = bed->elf_backend_relocate_section;
6776 /* If this is a dynamic object, we don't want to do anything here:
6777 we don't want the local symbols, and we don't want the section
6779 if ((input_bfd->flags & DYNAMIC) != 0)
6782 emit_relocs = (finfo->info->relocatable
6783 || finfo->info->emitrelocations);
6785 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6786 if (elf_bad_symtab (input_bfd))
6788 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6793 locsymcount = symtab_hdr->sh_info;
6794 extsymoff = symtab_hdr->sh_info;
6797 /* Read the local symbols. */
6798 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6799 if (isymbuf == NULL && locsymcount != 0)
6801 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6802 finfo->internal_syms,
6803 finfo->external_syms,
6804 finfo->locsym_shndx);
6805 if (isymbuf == NULL)
6809 /* Find local symbol sections and adjust values of symbols in
6810 SEC_MERGE sections. Write out those local symbols we know are
6811 going into the output file. */
6812 isymend = isymbuf + locsymcount;
6813 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6815 isym++, pindex++, ppsection++)
6819 Elf_Internal_Sym osym;
6823 if (elf_bad_symtab (input_bfd))
6825 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6832 if (isym->st_shndx == SHN_UNDEF)
6833 isec = bfd_und_section_ptr;
6834 else if (isym->st_shndx < SHN_LORESERVE
6835 || isym->st_shndx > SHN_HIRESERVE)
6837 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6839 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6840 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6842 _bfd_merged_section_offset (output_bfd, &isec,
6843 elf_section_data (isec)->sec_info,
6846 else if (isym->st_shndx == SHN_ABS)
6847 isec = bfd_abs_section_ptr;
6848 else if (isym->st_shndx == SHN_COMMON)
6849 isec = bfd_com_section_ptr;
6858 /* Don't output the first, undefined, symbol. */
6859 if (ppsection == finfo->sections)
6862 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6864 /* We never output section symbols. Instead, we use the
6865 section symbol of the corresponding section in the output
6870 /* If we are stripping all symbols, we don't want to output this
6872 if (finfo->info->strip == strip_all)
6875 /* If we are discarding all local symbols, we don't want to
6876 output this one. If we are generating a relocatable output
6877 file, then some of the local symbols may be required by
6878 relocs; we output them below as we discover that they are
6880 if (finfo->info->discard == discard_all)
6883 /* If this symbol is defined in a section which we are
6884 discarding, we don't need to keep it, but note that
6885 linker_mark is only reliable for sections that have contents.
6886 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6887 as well as linker_mark. */
6888 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6890 || (! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6891 || (! finfo->info->relocatable
6892 && (isec->flags & SEC_EXCLUDE) != 0)))
6895 /* If the section is not in the output BFD's section list, it is not
6897 if (bfd_section_removed_from_list (output_bfd, isec->output_section))
6900 /* Get the name of the symbol. */
6901 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6906 /* See if we are discarding symbols with this name. */
6907 if ((finfo->info->strip == strip_some
6908 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6910 || (((finfo->info->discard == discard_sec_merge
6911 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6912 || finfo->info->discard == discard_l)
6913 && bfd_is_local_label_name (input_bfd, name)))
6916 /* If we get here, we are going to output this symbol. */
6920 /* Adjust the section index for the output file. */
6921 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6922 isec->output_section);
6923 if (osym.st_shndx == SHN_BAD)
6926 *pindex = bfd_get_symcount (output_bfd);
6928 /* ELF symbols in relocatable files are section relative, but
6929 in executable files they are virtual addresses. Note that
6930 this code assumes that all ELF sections have an associated
6931 BFD section with a reasonable value for output_offset; below
6932 we assume that they also have a reasonable value for
6933 output_section. Any special sections must be set up to meet
6934 these requirements. */
6935 osym.st_value += isec->output_offset;
6936 if (! finfo->info->relocatable)
6938 osym.st_value += isec->output_section->vma;
6939 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6941 /* STT_TLS symbols are relative to PT_TLS segment base. */
6942 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6943 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6947 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6951 /* Relocate the contents of each section. */
6952 sym_hashes = elf_sym_hashes (input_bfd);
6953 for (o = input_bfd->sections; o != NULL; o = o->next)
6957 if (! o->linker_mark)
6959 /* This section was omitted from the link. */
6963 if ((o->flags & SEC_HAS_CONTENTS) == 0
6964 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
6967 if ((o->flags & SEC_LINKER_CREATED) != 0)
6969 /* Section was created by _bfd_elf_link_create_dynamic_sections
6974 /* Get the contents of the section. They have been cached by a
6975 relaxation routine. Note that o is a section in an input
6976 file, so the contents field will not have been set by any of
6977 the routines which work on output files. */
6978 if (elf_section_data (o)->this_hdr.contents != NULL)
6979 contents = elf_section_data (o)->this_hdr.contents;
6982 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6984 contents = finfo->contents;
6985 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
6989 if ((o->flags & SEC_RELOC) != 0)
6991 Elf_Internal_Rela *internal_relocs;
6992 bfd_vma r_type_mask;
6995 /* Get the swapped relocs. */
6997 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
6998 finfo->internal_relocs, FALSE);
6999 if (internal_relocs == NULL
7000 && o->reloc_count > 0)
7003 if (bed->s->arch_size == 32)
7010 r_type_mask = 0xffffffff;
7014 /* Run through the relocs looking for any against symbols
7015 from discarded sections and section symbols from
7016 removed link-once sections. Complain about relocs
7017 against discarded sections. Zero relocs against removed
7018 link-once sections. Preserve debug information as much
7020 if (!elf_section_ignore_discarded_relocs (o))
7022 Elf_Internal_Rela *rel, *relend;
7023 unsigned int action = elf_action_discarded (o);
7025 rel = internal_relocs;
7026 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
7027 for ( ; rel < relend; rel++)
7029 unsigned long r_symndx = rel->r_info >> r_sym_shift;
7030 asection **ps, *sec;
7031 struct elf_link_hash_entry *h = NULL;
7032 const char *sym_name;
7034 if (r_symndx == STN_UNDEF)
7037 if (r_symndx >= locsymcount
7038 || (elf_bad_symtab (input_bfd)
7039 && finfo->sections[r_symndx] == NULL))
7041 h = sym_hashes[r_symndx - extsymoff];
7043 /* Badly formatted input files can contain relocs that
7044 reference non-existant symbols. Check here so that
7045 we do not seg fault. */
7050 sprintf_vma (buffer, rel->r_info);
7051 (*_bfd_error_handler)
7052 (_("error: %B contains a reloc (0x%s) for section %A "
7053 "that references a non-existent global symbol"),
7054 input_bfd, o, buffer);
7055 bfd_set_error (bfd_error_bad_value);
7059 while (h->root.type == bfd_link_hash_indirect
7060 || h->root.type == bfd_link_hash_warning)
7061 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7063 if (h->root.type != bfd_link_hash_defined
7064 && h->root.type != bfd_link_hash_defweak)
7067 ps = &h->root.u.def.section;
7068 sym_name = h->root.root.string;
7072 Elf_Internal_Sym *sym = isymbuf + r_symndx;
7073 ps = &finfo->sections[r_symndx];
7074 sym_name = bfd_elf_sym_name (input_bfd,
7079 /* Complain if the definition comes from a
7080 discarded section. */
7081 if ((sec = *ps) != NULL && elf_discarded_section (sec))
7083 BFD_ASSERT (r_symndx != 0);
7084 if (action & COMPLAIN)
7086 (*_bfd_error_handler)
7087 (_("`%s' referenced in section `%A' of %B: "
7088 "defined in discarded section `%A' of %B"),
7089 o, input_bfd, sec, sec->owner, sym_name);
7090 bfd_set_error (bfd_error_bad_value);
7094 /* Try to do the best we can to support buggy old
7095 versions of gcc. If we've warned, or this is
7096 debugging info, pretend that the symbol is
7097 really defined in the kept linkonce section.
7098 FIXME: This is quite broken. Modifying the
7099 symbol here means we will be changing all later
7100 uses of the symbol, not just in this section.
7101 The only thing that makes this half reasonable
7102 is that we warn in non-debug sections, and
7103 debug sections tend to come after other
7105 if (action & PRETEND)
7109 kept = _bfd_elf_check_kept_section (sec);
7117 /* Remove the symbol reference from the reloc, but
7118 don't kill the reloc completely. This is so that
7119 a zero value will be written into the section,
7120 which may have non-zero contents put there by the
7121 assembler. Zero in things like an eh_frame fde
7122 pc_begin allows stack unwinders to recognize the
7124 rel->r_info &= r_type_mask;
7130 /* Relocate the section by invoking a back end routine.
7132 The back end routine is responsible for adjusting the
7133 section contents as necessary, and (if using Rela relocs
7134 and generating a relocatable output file) adjusting the
7135 reloc addend as necessary.
7137 The back end routine does not have to worry about setting
7138 the reloc address or the reloc symbol index.
7140 The back end routine is given a pointer to the swapped in
7141 internal symbols, and can access the hash table entries
7142 for the external symbols via elf_sym_hashes (input_bfd).
7144 When generating relocatable output, the back end routine
7145 must handle STB_LOCAL/STT_SECTION symbols specially. The
7146 output symbol is going to be a section symbol
7147 corresponding to the output section, which will require
7148 the addend to be adjusted. */
7150 if (! (*relocate_section) (output_bfd, finfo->info,
7151 input_bfd, o, contents,
7159 Elf_Internal_Rela *irela;
7160 Elf_Internal_Rela *irelaend;
7161 bfd_vma last_offset;
7162 struct elf_link_hash_entry **rel_hash;
7163 struct elf_link_hash_entry **rel_hash_list;
7164 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
7165 unsigned int next_erel;
7166 bfd_boolean rela_normal;
7168 input_rel_hdr = &elf_section_data (o)->rel_hdr;
7169 rela_normal = (bed->rela_normal
7170 && (input_rel_hdr->sh_entsize
7171 == bed->s->sizeof_rela));
7173 /* Adjust the reloc addresses and symbol indices. */
7175 irela = internal_relocs;
7176 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
7177 rel_hash = (elf_section_data (o->output_section)->rel_hashes
7178 + elf_section_data (o->output_section)->rel_count
7179 + elf_section_data (o->output_section)->rel_count2);
7180 rel_hash_list = rel_hash;
7181 last_offset = o->output_offset;
7182 if (!finfo->info->relocatable)
7183 last_offset += o->output_section->vma;
7184 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
7186 unsigned long r_symndx;
7188 Elf_Internal_Sym sym;
7190 if (next_erel == bed->s->int_rels_per_ext_rel)
7196 irela->r_offset = _bfd_elf_section_offset (output_bfd,
7199 if (irela->r_offset >= (bfd_vma) -2)
7201 /* This is a reloc for a deleted entry or somesuch.
7202 Turn it into an R_*_NONE reloc, at the same
7203 offset as the last reloc. elf_eh_frame.c and
7204 elf_bfd_discard_info rely on reloc offsets
7206 irela->r_offset = last_offset;
7208 irela->r_addend = 0;
7212 irela->r_offset += o->output_offset;
7214 /* Relocs in an executable have to be virtual addresses. */
7215 if (!finfo->info->relocatable)
7216 irela->r_offset += o->output_section->vma;
7218 last_offset = irela->r_offset;
7220 r_symndx = irela->r_info >> r_sym_shift;
7221 if (r_symndx == STN_UNDEF)
7224 if (r_symndx >= locsymcount
7225 || (elf_bad_symtab (input_bfd)
7226 && finfo->sections[r_symndx] == NULL))
7228 struct elf_link_hash_entry *rh;
7231 /* This is a reloc against a global symbol. We
7232 have not yet output all the local symbols, so
7233 we do not know the symbol index of any global
7234 symbol. We set the rel_hash entry for this
7235 reloc to point to the global hash table entry
7236 for this symbol. The symbol index is then
7237 set at the end of bfd_elf_final_link. */
7238 indx = r_symndx - extsymoff;
7239 rh = elf_sym_hashes (input_bfd)[indx];
7240 while (rh->root.type == bfd_link_hash_indirect
7241 || rh->root.type == bfd_link_hash_warning)
7242 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7244 /* Setting the index to -2 tells
7245 elf_link_output_extsym that this symbol is
7247 BFD_ASSERT (rh->indx < 0);
7255 /* This is a reloc against a local symbol. */
7258 sym = isymbuf[r_symndx];
7259 sec = finfo->sections[r_symndx];
7260 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7262 /* I suppose the backend ought to fill in the
7263 section of any STT_SECTION symbol against a
7264 processor specific section. */
7266 if (bfd_is_abs_section (sec))
7268 else if (sec == NULL || sec->owner == NULL)
7270 bfd_set_error (bfd_error_bad_value);
7275 asection *osec = sec->output_section;
7277 /* If we have discarded a section, the output
7278 section will be the absolute section. In
7279 case of discarded link-once and discarded
7280 SEC_MERGE sections, use the kept section. */
7281 if (bfd_is_abs_section (osec)
7282 && sec->kept_section != NULL
7283 && sec->kept_section->output_section != NULL)
7285 osec = sec->kept_section->output_section;
7286 irela->r_addend -= osec->vma;
7289 if (!bfd_is_abs_section (osec))
7291 r_symndx = osec->target_index;
7292 BFD_ASSERT (r_symndx != 0);
7296 /* Adjust the addend according to where the
7297 section winds up in the output section. */
7299 irela->r_addend += sec->output_offset;
7303 if (finfo->indices[r_symndx] == -1)
7305 unsigned long shlink;
7309 if (finfo->info->strip == strip_all)
7311 /* You can't do ld -r -s. */
7312 bfd_set_error (bfd_error_invalid_operation);
7316 /* This symbol was skipped earlier, but
7317 since it is needed by a reloc, we
7318 must output it now. */
7319 shlink = symtab_hdr->sh_link;
7320 name = (bfd_elf_string_from_elf_section
7321 (input_bfd, shlink, sym.st_name));
7325 osec = sec->output_section;
7327 _bfd_elf_section_from_bfd_section (output_bfd,
7329 if (sym.st_shndx == SHN_BAD)
7332 sym.st_value += sec->output_offset;
7333 if (! finfo->info->relocatable)
7335 sym.st_value += osec->vma;
7336 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7338 /* STT_TLS symbols are relative to PT_TLS
7340 BFD_ASSERT (elf_hash_table (finfo->info)
7342 sym.st_value -= (elf_hash_table (finfo->info)
7347 finfo->indices[r_symndx]
7348 = bfd_get_symcount (output_bfd);
7350 if (! elf_link_output_sym (finfo, name, &sym, sec,
7355 r_symndx = finfo->indices[r_symndx];
7358 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
7359 | (irela->r_info & r_type_mask));
7362 /* Swap out the relocs. */
7363 if (input_rel_hdr->sh_size != 0
7364 && !bed->elf_backend_emit_relocs (output_bfd, o,
7370 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7371 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7373 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7374 * bed->s->int_rels_per_ext_rel);
7375 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
7376 if (!bed->elf_backend_emit_relocs (output_bfd, o,
7385 /* Write out the modified section contents. */
7386 if (bed->elf_backend_write_section
7387 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7389 /* Section written out. */
7391 else switch (o->sec_info_type)
7393 case ELF_INFO_TYPE_STABS:
7394 if (! (_bfd_write_section_stabs
7396 &elf_hash_table (finfo->info)->stab_info,
7397 o, &elf_section_data (o)->sec_info, contents)))
7400 case ELF_INFO_TYPE_MERGE:
7401 if (! _bfd_write_merged_section (output_bfd, o,
7402 elf_section_data (o)->sec_info))
7405 case ELF_INFO_TYPE_EH_FRAME:
7407 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7414 if (! (o->flags & SEC_EXCLUDE)
7415 && ! bfd_set_section_contents (output_bfd, o->output_section,
7417 (file_ptr) o->output_offset,
7428 /* Generate a reloc when linking an ELF file. This is a reloc
7429 requested by the linker, and does come from any input file. This
7430 is used to build constructor and destructor tables when linking
7434 elf_reloc_link_order (bfd *output_bfd,
7435 struct bfd_link_info *info,
7436 asection *output_section,
7437 struct bfd_link_order *link_order)
7439 reloc_howto_type *howto;
7443 struct elf_link_hash_entry **rel_hash_ptr;
7444 Elf_Internal_Shdr *rel_hdr;
7445 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7446 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7450 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7453 bfd_set_error (bfd_error_bad_value);
7457 addend = link_order->u.reloc.p->addend;
7459 /* Figure out the symbol index. */
7460 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7461 + elf_section_data (output_section)->rel_count
7462 + elf_section_data (output_section)->rel_count2);
7463 if (link_order->type == bfd_section_reloc_link_order)
7465 indx = link_order->u.reloc.p->u.section->target_index;
7466 BFD_ASSERT (indx != 0);
7467 *rel_hash_ptr = NULL;
7471 struct elf_link_hash_entry *h;
7473 /* Treat a reloc against a defined symbol as though it were
7474 actually against the section. */
7475 h = ((struct elf_link_hash_entry *)
7476 bfd_wrapped_link_hash_lookup (output_bfd, info,
7477 link_order->u.reloc.p->u.name,
7478 FALSE, FALSE, TRUE));
7480 && (h->root.type == bfd_link_hash_defined
7481 || h->root.type == bfd_link_hash_defweak))
7485 section = h->root.u.def.section;
7486 indx = section->output_section->target_index;
7487 *rel_hash_ptr = NULL;
7488 /* It seems that we ought to add the symbol value to the
7489 addend here, but in practice it has already been added
7490 because it was passed to constructor_callback. */
7491 addend += section->output_section->vma + section->output_offset;
7495 /* Setting the index to -2 tells elf_link_output_extsym that
7496 this symbol is used by a reloc. */
7503 if (! ((*info->callbacks->unattached_reloc)
7504 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7510 /* If this is an inplace reloc, we must write the addend into the
7512 if (howto->partial_inplace && addend != 0)
7515 bfd_reloc_status_type rstat;
7518 const char *sym_name;
7520 size = bfd_get_reloc_size (howto);
7521 buf = bfd_zmalloc (size);
7524 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7531 case bfd_reloc_outofrange:
7534 case bfd_reloc_overflow:
7535 if (link_order->type == bfd_section_reloc_link_order)
7536 sym_name = bfd_section_name (output_bfd,
7537 link_order->u.reloc.p->u.section);
7539 sym_name = link_order->u.reloc.p->u.name;
7540 if (! ((*info->callbacks->reloc_overflow)
7541 (info, NULL, sym_name, howto->name, addend, NULL,
7542 NULL, (bfd_vma) 0)))
7549 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7550 link_order->offset, size);
7556 /* The address of a reloc is relative to the section in a
7557 relocatable file, and is a virtual address in an executable
7559 offset = link_order->offset;
7560 if (! info->relocatable)
7561 offset += output_section->vma;
7563 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7565 irel[i].r_offset = offset;
7567 irel[i].r_addend = 0;
7569 if (bed->s->arch_size == 32)
7570 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7572 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7574 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7575 erel = rel_hdr->contents;
7576 if (rel_hdr->sh_type == SHT_REL)
7578 erel += (elf_section_data (output_section)->rel_count
7579 * bed->s->sizeof_rel);
7580 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7584 irel[0].r_addend = addend;
7585 erel += (elf_section_data (output_section)->rel_count
7586 * bed->s->sizeof_rela);
7587 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7590 ++elf_section_data (output_section)->rel_count;
7596 /* Get the output vma of the section pointed to by the sh_link field. */
7599 elf_get_linked_section_vma (struct bfd_link_order *p)
7601 Elf_Internal_Shdr **elf_shdrp;
7605 s = p->u.indirect.section;
7606 elf_shdrp = elf_elfsections (s->owner);
7607 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7608 elfsec = elf_shdrp[elfsec]->sh_link;
7610 The Intel C compiler generates SHT_IA_64_UNWIND with
7611 SHF_LINK_ORDER. But it doesn't set theh sh_link or
7612 sh_info fields. Hence we could get the situation
7613 where elfsec is 0. */
7616 const struct elf_backend_data *bed
7617 = get_elf_backend_data (s->owner);
7618 if (bed->link_order_error_handler)
7619 bed->link_order_error_handler
7620 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
7625 s = elf_shdrp[elfsec]->bfd_section;
7626 return s->output_section->vma + s->output_offset;
7631 /* Compare two sections based on the locations of the sections they are
7632 linked to. Used by elf_fixup_link_order. */
7635 compare_link_order (const void * a, const void * b)
7640 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7641 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7648 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7649 order as their linked sections. Returns false if this could not be done
7650 because an output section includes both ordered and unordered
7651 sections. Ideally we'd do this in the linker proper. */
7654 elf_fixup_link_order (bfd *abfd, asection *o)
7659 struct bfd_link_order *p;
7661 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7663 struct bfd_link_order **sections;
7669 for (p = o->map_head.link_order; p != NULL; p = p->next)
7671 if (p->type == bfd_indirect_link_order
7672 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7673 == bfd_target_elf_flavour)
7674 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7676 s = p->u.indirect.section;
7677 elfsec = _bfd_elf_section_from_bfd_section (sub, s);
7679 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7688 if (!seen_linkorder)
7691 if (seen_other && seen_linkorder)
7693 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7695 bfd_set_error (bfd_error_bad_value);
7699 sections = (struct bfd_link_order **)
7700 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7703 for (p = o->map_head.link_order; p != NULL; p = p->next)
7705 sections[seen_linkorder++] = p;
7707 /* Sort the input sections in the order of their linked section. */
7708 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7709 compare_link_order);
7711 /* Change the offsets of the sections. */
7713 for (n = 0; n < seen_linkorder; n++)
7715 s = sections[n]->u.indirect.section;
7716 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7717 s->output_offset = offset;
7718 sections[n]->offset = offset;
7719 offset += sections[n]->size;
7726 /* Do the final step of an ELF link. */
7729 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7731 bfd_boolean dynamic;
7732 bfd_boolean emit_relocs;
7734 struct elf_final_link_info finfo;
7735 register asection *o;
7736 register struct bfd_link_order *p;
7738 bfd_size_type max_contents_size;
7739 bfd_size_type max_external_reloc_size;
7740 bfd_size_type max_internal_reloc_count;
7741 bfd_size_type max_sym_count;
7742 bfd_size_type max_sym_shndx_count;
7744 Elf_Internal_Sym elfsym;
7746 Elf_Internal_Shdr *symtab_hdr;
7747 Elf_Internal_Shdr *symtab_shndx_hdr;
7748 Elf_Internal_Shdr *symstrtab_hdr;
7749 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7750 struct elf_outext_info eoinfo;
7752 size_t relativecount = 0;
7753 asection *reldyn = 0;
7756 if (! is_elf_hash_table (info->hash))
7760 abfd->flags |= DYNAMIC;
7762 dynamic = elf_hash_table (info)->dynamic_sections_created;
7763 dynobj = elf_hash_table (info)->dynobj;
7765 emit_relocs = (info->relocatable
7766 || info->emitrelocations
7767 || bed->elf_backend_emit_relocs);
7770 finfo.output_bfd = abfd;
7771 finfo.symstrtab = _bfd_elf_stringtab_init ();
7772 if (finfo.symstrtab == NULL)
7777 finfo.dynsym_sec = NULL;
7778 finfo.hash_sec = NULL;
7779 finfo.symver_sec = NULL;
7783 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7784 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7785 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7786 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7787 /* Note that it is OK if symver_sec is NULL. */
7790 finfo.contents = NULL;
7791 finfo.external_relocs = NULL;
7792 finfo.internal_relocs = NULL;
7793 finfo.external_syms = NULL;
7794 finfo.locsym_shndx = NULL;
7795 finfo.internal_syms = NULL;
7796 finfo.indices = NULL;
7797 finfo.sections = NULL;
7798 finfo.symbuf = NULL;
7799 finfo.symshndxbuf = NULL;
7800 finfo.symbuf_count = 0;
7801 finfo.shndxbuf_size = 0;
7803 /* Count up the number of relocations we will output for each output
7804 section, so that we know the sizes of the reloc sections. We
7805 also figure out some maximum sizes. */
7806 max_contents_size = 0;
7807 max_external_reloc_size = 0;
7808 max_internal_reloc_count = 0;
7810 max_sym_shndx_count = 0;
7812 for (o = abfd->sections; o != NULL; o = o->next)
7814 struct bfd_elf_section_data *esdo = elf_section_data (o);
7817 for (p = o->map_head.link_order; p != NULL; p = p->next)
7819 unsigned int reloc_count = 0;
7820 struct bfd_elf_section_data *esdi = NULL;
7821 unsigned int *rel_count1;
7823 if (p->type == bfd_section_reloc_link_order
7824 || p->type == bfd_symbol_reloc_link_order)
7826 else if (p->type == bfd_indirect_link_order)
7830 sec = p->u.indirect.section;
7831 esdi = elf_section_data (sec);
7833 /* Mark all sections which are to be included in the
7834 link. This will normally be every section. We need
7835 to do this so that we can identify any sections which
7836 the linker has decided to not include. */
7837 sec->linker_mark = TRUE;
7839 if (sec->flags & SEC_MERGE)
7842 if (info->relocatable || info->emitrelocations)
7843 reloc_count = sec->reloc_count;
7844 else if (bed->elf_backend_count_relocs)
7846 Elf_Internal_Rela * relocs;
7848 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7851 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7853 if (elf_section_data (o)->relocs != relocs)
7857 if (sec->rawsize > max_contents_size)
7858 max_contents_size = sec->rawsize;
7859 if (sec->size > max_contents_size)
7860 max_contents_size = sec->size;
7862 /* We are interested in just local symbols, not all
7864 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7865 && (sec->owner->flags & DYNAMIC) == 0)
7869 if (elf_bad_symtab (sec->owner))
7870 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7871 / bed->s->sizeof_sym);
7873 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7875 if (sym_count > max_sym_count)
7876 max_sym_count = sym_count;
7878 if (sym_count > max_sym_shndx_count
7879 && elf_symtab_shndx (sec->owner) != 0)
7880 max_sym_shndx_count = sym_count;
7882 if ((sec->flags & SEC_RELOC) != 0)
7886 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7887 if (ext_size > max_external_reloc_size)
7888 max_external_reloc_size = ext_size;
7889 if (sec->reloc_count > max_internal_reloc_count)
7890 max_internal_reloc_count = sec->reloc_count;
7895 if (reloc_count == 0)
7898 o->reloc_count += reloc_count;
7900 /* MIPS may have a mix of REL and RELA relocs on sections.
7901 To support this curious ABI we keep reloc counts in
7902 elf_section_data too. We must be careful to add the
7903 relocations from the input section to the right output
7904 count. FIXME: Get rid of one count. We have
7905 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7906 rel_count1 = &esdo->rel_count;
7909 bfd_boolean same_size;
7910 bfd_size_type entsize1;
7912 entsize1 = esdi->rel_hdr.sh_entsize;
7913 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7914 || entsize1 == bed->s->sizeof_rela);
7915 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7918 rel_count1 = &esdo->rel_count2;
7920 if (esdi->rel_hdr2 != NULL)
7922 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7923 unsigned int alt_count;
7924 unsigned int *rel_count2;
7926 BFD_ASSERT (entsize2 != entsize1
7927 && (entsize2 == bed->s->sizeof_rel
7928 || entsize2 == bed->s->sizeof_rela));
7930 rel_count2 = &esdo->rel_count2;
7932 rel_count2 = &esdo->rel_count;
7934 /* The following is probably too simplistic if the
7935 backend counts output relocs unusually. */
7936 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7937 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7938 *rel_count2 += alt_count;
7939 reloc_count -= alt_count;
7942 *rel_count1 += reloc_count;
7945 if (o->reloc_count > 0)
7946 o->flags |= SEC_RELOC;
7949 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7950 set it (this is probably a bug) and if it is set
7951 assign_section_numbers will create a reloc section. */
7952 o->flags &=~ SEC_RELOC;
7955 /* If the SEC_ALLOC flag is not set, force the section VMA to
7956 zero. This is done in elf_fake_sections as well, but forcing
7957 the VMA to 0 here will ensure that relocs against these
7958 sections are handled correctly. */
7959 if ((o->flags & SEC_ALLOC) == 0
7960 && ! o->user_set_vma)
7964 if (! info->relocatable && merged)
7965 elf_link_hash_traverse (elf_hash_table (info),
7966 _bfd_elf_link_sec_merge_syms, abfd);
7968 /* Figure out the file positions for everything but the symbol table
7969 and the relocs. We set symcount to force assign_section_numbers
7970 to create a symbol table. */
7971 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7972 BFD_ASSERT (! abfd->output_has_begun);
7973 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7976 /* Set sizes, and assign file positions for reloc sections. */
7977 for (o = abfd->sections; o != NULL; o = o->next)
7979 if ((o->flags & SEC_RELOC) != 0)
7981 if (!(_bfd_elf_link_size_reloc_section
7982 (abfd, &elf_section_data (o)->rel_hdr, o)))
7985 if (elf_section_data (o)->rel_hdr2
7986 && !(_bfd_elf_link_size_reloc_section
7987 (abfd, elf_section_data (o)->rel_hdr2, o)))
7991 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7992 to count upwards while actually outputting the relocations. */
7993 elf_section_data (o)->rel_count = 0;
7994 elf_section_data (o)->rel_count2 = 0;
7997 _bfd_elf_assign_file_positions_for_relocs (abfd);
7999 /* We have now assigned file positions for all the sections except
8000 .symtab and .strtab. We start the .symtab section at the current
8001 file position, and write directly to it. We build the .strtab
8002 section in memory. */
8003 bfd_get_symcount (abfd) = 0;
8004 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8005 /* sh_name is set in prep_headers. */
8006 symtab_hdr->sh_type = SHT_SYMTAB;
8007 /* sh_flags, sh_addr and sh_size all start off zero. */
8008 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8009 /* sh_link is set in assign_section_numbers. */
8010 /* sh_info is set below. */
8011 /* sh_offset is set just below. */
8012 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
8014 off = elf_tdata (abfd)->next_file_pos;
8015 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
8017 /* Note that at this point elf_tdata (abfd)->next_file_pos is
8018 incorrect. We do not yet know the size of the .symtab section.
8019 We correct next_file_pos below, after we do know the size. */
8021 /* Allocate a buffer to hold swapped out symbols. This is to avoid
8022 continuously seeking to the right position in the file. */
8023 if (! info->keep_memory || max_sym_count < 20)
8024 finfo.symbuf_size = 20;
8026 finfo.symbuf_size = max_sym_count;
8027 amt = finfo.symbuf_size;
8028 amt *= bed->s->sizeof_sym;
8029 finfo.symbuf = bfd_malloc (amt);
8030 if (finfo.symbuf == NULL)
8032 if (elf_numsections (abfd) > SHN_LORESERVE)
8034 /* Wild guess at number of output symbols. realloc'd as needed. */
8035 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
8036 finfo.shndxbuf_size = amt;
8037 amt *= sizeof (Elf_External_Sym_Shndx);
8038 finfo.symshndxbuf = bfd_zmalloc (amt);
8039 if (finfo.symshndxbuf == NULL)
8043 /* Start writing out the symbol table. The first symbol is always a
8045 if (info->strip != strip_all
8048 elfsym.st_value = 0;
8051 elfsym.st_other = 0;
8052 elfsym.st_shndx = SHN_UNDEF;
8053 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
8058 /* Output a symbol for each section. We output these even if we are
8059 discarding local symbols, since they are used for relocs. These
8060 symbols have no names. We store the index of each one in the
8061 index field of the section, so that we can find it again when
8062 outputting relocs. */
8063 if (info->strip != strip_all
8067 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8068 elfsym.st_other = 0;
8069 for (i = 1; i < elf_numsections (abfd); i++)
8071 o = bfd_section_from_elf_index (abfd, i);
8073 o->target_index = bfd_get_symcount (abfd);
8074 elfsym.st_shndx = i;
8075 if (info->relocatable || o == NULL)
8076 elfsym.st_value = 0;
8078 elfsym.st_value = o->vma;
8079 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
8081 if (i == SHN_LORESERVE - 1)
8082 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
8086 /* Allocate some memory to hold information read in from the input
8088 if (max_contents_size != 0)
8090 finfo.contents = bfd_malloc (max_contents_size);
8091 if (finfo.contents == NULL)
8095 if (max_external_reloc_size != 0)
8097 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
8098 if (finfo.external_relocs == NULL)
8102 if (max_internal_reloc_count != 0)
8104 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
8105 amt *= sizeof (Elf_Internal_Rela);
8106 finfo.internal_relocs = bfd_malloc (amt);
8107 if (finfo.internal_relocs == NULL)
8111 if (max_sym_count != 0)
8113 amt = max_sym_count * bed->s->sizeof_sym;
8114 finfo.external_syms = bfd_malloc (amt);
8115 if (finfo.external_syms == NULL)
8118 amt = max_sym_count * sizeof (Elf_Internal_Sym);
8119 finfo.internal_syms = bfd_malloc (amt);
8120 if (finfo.internal_syms == NULL)
8123 amt = max_sym_count * sizeof (long);
8124 finfo.indices = bfd_malloc (amt);
8125 if (finfo.indices == NULL)
8128 amt = max_sym_count * sizeof (asection *);
8129 finfo.sections = bfd_malloc (amt);
8130 if (finfo.sections == NULL)
8134 if (max_sym_shndx_count != 0)
8136 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
8137 finfo.locsym_shndx = bfd_malloc (amt);
8138 if (finfo.locsym_shndx == NULL)
8142 if (elf_hash_table (info)->tls_sec)
8144 bfd_vma base, end = 0;
8147 for (sec = elf_hash_table (info)->tls_sec;
8148 sec && (sec->flags & SEC_THREAD_LOCAL);
8151 bfd_vma size = sec->size;
8153 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
8155 struct bfd_link_order *o;
8157 for (o = sec->map_head.link_order; o != NULL; o = o->next)
8158 if (size < o->offset + o->size)
8159 size = o->offset + o->size;
8161 end = sec->vma + size;
8163 base = elf_hash_table (info)->tls_sec->vma;
8164 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
8165 elf_hash_table (info)->tls_size = end - base;
8168 /* Reorder SHF_LINK_ORDER sections. */
8169 for (o = abfd->sections; o != NULL; o = o->next)
8171 if (!elf_fixup_link_order (abfd, o))
8175 /* Since ELF permits relocations to be against local symbols, we
8176 must have the local symbols available when we do the relocations.
8177 Since we would rather only read the local symbols once, and we
8178 would rather not keep them in memory, we handle all the
8179 relocations for a single input file at the same time.
8181 Unfortunately, there is no way to know the total number of local
8182 symbols until we have seen all of them, and the local symbol
8183 indices precede the global symbol indices. This means that when
8184 we are generating relocatable output, and we see a reloc against
8185 a global symbol, we can not know the symbol index until we have
8186 finished examining all the local symbols to see which ones we are
8187 going to output. To deal with this, we keep the relocations in
8188 memory, and don't output them until the end of the link. This is
8189 an unfortunate waste of memory, but I don't see a good way around
8190 it. Fortunately, it only happens when performing a relocatable
8191 link, which is not the common case. FIXME: If keep_memory is set
8192 we could write the relocs out and then read them again; I don't
8193 know how bad the memory loss will be. */
8195 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8196 sub->output_has_begun = FALSE;
8197 for (o = abfd->sections; o != NULL; o = o->next)
8199 for (p = o->map_head.link_order; p != NULL; p = p->next)
8201 if (p->type == bfd_indirect_link_order
8202 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
8203 == bfd_target_elf_flavour)
8204 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
8206 if (! sub->output_has_begun)
8208 if (! elf_link_input_bfd (&finfo, sub))
8210 sub->output_has_begun = TRUE;
8213 else if (p->type == bfd_section_reloc_link_order
8214 || p->type == bfd_symbol_reloc_link_order)
8216 if (! elf_reloc_link_order (abfd, info, o, p))
8221 if (! _bfd_default_link_order (abfd, info, o, p))
8227 /* Output any global symbols that got converted to local in a
8228 version script or due to symbol visibility. We do this in a
8229 separate step since ELF requires all local symbols to appear
8230 prior to any global symbols. FIXME: We should only do this if
8231 some global symbols were, in fact, converted to become local.
8232 FIXME: Will this work correctly with the Irix 5 linker? */
8233 eoinfo.failed = FALSE;
8234 eoinfo.finfo = &finfo;
8235 eoinfo.localsyms = TRUE;
8236 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8241 /* That wrote out all the local symbols. Finish up the symbol table
8242 with the global symbols. Even if we want to strip everything we
8243 can, we still need to deal with those global symbols that got
8244 converted to local in a version script. */
8246 /* The sh_info field records the index of the first non local symbol. */
8247 symtab_hdr->sh_info = bfd_get_symcount (abfd);
8250 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
8252 Elf_Internal_Sym sym;
8253 bfd_byte *dynsym = finfo.dynsym_sec->contents;
8254 long last_local = 0;
8256 /* Write out the section symbols for the output sections. */
8257 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
8263 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8266 for (s = abfd->sections; s != NULL; s = s->next)
8272 dynindx = elf_section_data (s)->dynindx;
8275 indx = elf_section_data (s)->this_idx;
8276 BFD_ASSERT (indx > 0);
8277 sym.st_shndx = indx;
8278 sym.st_value = s->vma;
8279 dest = dynsym + dynindx * bed->s->sizeof_sym;
8280 if (last_local < dynindx)
8281 last_local = dynindx;
8282 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8286 /* Write out the local dynsyms. */
8287 if (elf_hash_table (info)->dynlocal)
8289 struct elf_link_local_dynamic_entry *e;
8290 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
8295 sym.st_size = e->isym.st_size;
8296 sym.st_other = e->isym.st_other;
8298 /* Copy the internal symbol as is.
8299 Note that we saved a word of storage and overwrote
8300 the original st_name with the dynstr_index. */
8303 if (e->isym.st_shndx != SHN_UNDEF
8304 && (e->isym.st_shndx < SHN_LORESERVE
8305 || e->isym.st_shndx > SHN_HIRESERVE))
8307 s = bfd_section_from_elf_index (e->input_bfd,
8311 elf_section_data (s->output_section)->this_idx;
8312 sym.st_value = (s->output_section->vma
8314 + e->isym.st_value);
8317 if (last_local < e->dynindx)
8318 last_local = e->dynindx;
8320 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
8321 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8325 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
8329 /* We get the global symbols from the hash table. */
8330 eoinfo.failed = FALSE;
8331 eoinfo.localsyms = FALSE;
8332 eoinfo.finfo = &finfo;
8333 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8338 /* If backend needs to output some symbols not present in the hash
8339 table, do it now. */
8340 if (bed->elf_backend_output_arch_syms)
8342 typedef bfd_boolean (*out_sym_func)
8343 (void *, const char *, Elf_Internal_Sym *, asection *,
8344 struct elf_link_hash_entry *);
8346 if (! ((*bed->elf_backend_output_arch_syms)
8347 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8351 /* Flush all symbols to the file. */
8352 if (! elf_link_flush_output_syms (&finfo, bed))
8355 /* Now we know the size of the symtab section. */
8356 off += symtab_hdr->sh_size;
8358 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8359 if (symtab_shndx_hdr->sh_name != 0)
8361 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8362 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8363 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8364 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
8365 symtab_shndx_hdr->sh_size = amt;
8367 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
8370 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
8371 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
8376 /* Finish up and write out the symbol string table (.strtab)
8378 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8379 /* sh_name was set in prep_headers. */
8380 symstrtab_hdr->sh_type = SHT_STRTAB;
8381 symstrtab_hdr->sh_flags = 0;
8382 symstrtab_hdr->sh_addr = 0;
8383 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8384 symstrtab_hdr->sh_entsize = 0;
8385 symstrtab_hdr->sh_link = 0;
8386 symstrtab_hdr->sh_info = 0;
8387 /* sh_offset is set just below. */
8388 symstrtab_hdr->sh_addralign = 1;
8390 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8391 elf_tdata (abfd)->next_file_pos = off;
8393 if (bfd_get_symcount (abfd) > 0)
8395 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8396 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8400 /* Adjust the relocs to have the correct symbol indices. */
8401 for (o = abfd->sections; o != NULL; o = o->next)
8403 if ((o->flags & SEC_RELOC) == 0)
8406 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8407 elf_section_data (o)->rel_count,
8408 elf_section_data (o)->rel_hashes);
8409 if (elf_section_data (o)->rel_hdr2 != NULL)
8410 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8411 elf_section_data (o)->rel_count2,
8412 (elf_section_data (o)->rel_hashes
8413 + elf_section_data (o)->rel_count));
8415 /* Set the reloc_count field to 0 to prevent write_relocs from
8416 trying to swap the relocs out itself. */
8420 if (dynamic && info->combreloc && dynobj != NULL)
8421 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8423 /* If we are linking against a dynamic object, or generating a
8424 shared library, finish up the dynamic linking information. */
8427 bfd_byte *dyncon, *dynconend;
8429 /* Fix up .dynamic entries. */
8430 o = bfd_get_section_by_name (dynobj, ".dynamic");
8431 BFD_ASSERT (o != NULL);
8433 dyncon = o->contents;
8434 dynconend = o->contents + o->size;
8435 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8437 Elf_Internal_Dyn dyn;
8441 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8448 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8450 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8452 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8453 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8456 dyn.d_un.d_val = relativecount;
8463 name = info->init_function;
8466 name = info->fini_function;
8469 struct elf_link_hash_entry *h;
8471 h = elf_link_hash_lookup (elf_hash_table (info), name,
8472 FALSE, FALSE, TRUE);
8474 && (h->root.type == bfd_link_hash_defined
8475 || h->root.type == bfd_link_hash_defweak))
8477 dyn.d_un.d_val = h->root.u.def.value;
8478 o = h->root.u.def.section;
8479 if (o->output_section != NULL)
8480 dyn.d_un.d_val += (o->output_section->vma
8481 + o->output_offset);
8484 /* The symbol is imported from another shared
8485 library and does not apply to this one. */
8493 case DT_PREINIT_ARRAYSZ:
8494 name = ".preinit_array";
8496 case DT_INIT_ARRAYSZ:
8497 name = ".init_array";
8499 case DT_FINI_ARRAYSZ:
8500 name = ".fini_array";
8502 o = bfd_get_section_by_name (abfd, name);
8505 (*_bfd_error_handler)
8506 (_("%B: could not find output section %s"), abfd, name);
8510 (*_bfd_error_handler)
8511 (_("warning: %s section has zero size"), name);
8512 dyn.d_un.d_val = o->size;
8515 case DT_PREINIT_ARRAY:
8516 name = ".preinit_array";
8519 name = ".init_array";
8522 name = ".fini_array";
8535 name = ".gnu.version_d";
8538 name = ".gnu.version_r";
8541 name = ".gnu.version";
8543 o = bfd_get_section_by_name (abfd, name);
8546 (*_bfd_error_handler)
8547 (_("%B: could not find output section %s"), abfd, name);
8550 dyn.d_un.d_ptr = o->vma;
8557 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8562 for (i = 1; i < elf_numsections (abfd); i++)
8564 Elf_Internal_Shdr *hdr;
8566 hdr = elf_elfsections (abfd)[i];
8567 if (hdr->sh_type == type
8568 && (hdr->sh_flags & SHF_ALLOC) != 0)
8570 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8571 dyn.d_un.d_val += hdr->sh_size;
8574 if (dyn.d_un.d_val == 0
8575 || hdr->sh_addr < dyn.d_un.d_val)
8576 dyn.d_un.d_val = hdr->sh_addr;
8582 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8586 /* If we have created any dynamic sections, then output them. */
8589 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8592 for (o = dynobj->sections; o != NULL; o = o->next)
8594 if ((o->flags & SEC_HAS_CONTENTS) == 0
8596 || o->output_section == bfd_abs_section_ptr)
8598 if ((o->flags & SEC_LINKER_CREATED) == 0)
8600 /* At this point, we are only interested in sections
8601 created by _bfd_elf_link_create_dynamic_sections. */
8604 if (elf_hash_table (info)->stab_info.stabstr == o)
8606 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8608 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8610 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8612 if (! bfd_set_section_contents (abfd, o->output_section,
8614 (file_ptr) o->output_offset,
8620 /* The contents of the .dynstr section are actually in a
8622 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8623 if (bfd_seek (abfd, off, SEEK_SET) != 0
8624 || ! _bfd_elf_strtab_emit (abfd,
8625 elf_hash_table (info)->dynstr))
8631 if (info->relocatable)
8633 bfd_boolean failed = FALSE;
8635 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8640 /* If we have optimized stabs strings, output them. */
8641 if (elf_hash_table (info)->stab_info.stabstr != NULL)
8643 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8647 if (info->eh_frame_hdr)
8649 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8653 if (finfo.symstrtab != NULL)
8654 _bfd_stringtab_free (finfo.symstrtab);
8655 if (finfo.contents != NULL)
8656 free (finfo.contents);
8657 if (finfo.external_relocs != NULL)
8658 free (finfo.external_relocs);
8659 if (finfo.internal_relocs != NULL)
8660 free (finfo.internal_relocs);
8661 if (finfo.external_syms != NULL)
8662 free (finfo.external_syms);
8663 if (finfo.locsym_shndx != NULL)
8664 free (finfo.locsym_shndx);
8665 if (finfo.internal_syms != NULL)
8666 free (finfo.internal_syms);
8667 if (finfo.indices != NULL)
8668 free (finfo.indices);
8669 if (finfo.sections != NULL)
8670 free (finfo.sections);
8671 if (finfo.symbuf != NULL)
8672 free (finfo.symbuf);
8673 if (finfo.symshndxbuf != NULL)
8674 free (finfo.symshndxbuf);
8675 for (o = abfd->sections; o != NULL; o = o->next)
8677 if ((o->flags & SEC_RELOC) != 0
8678 && elf_section_data (o)->rel_hashes != NULL)
8679 free (elf_section_data (o)->rel_hashes);
8682 elf_tdata (abfd)->linker = TRUE;
8687 if (finfo.symstrtab != NULL)
8688 _bfd_stringtab_free (finfo.symstrtab);
8689 if (finfo.contents != NULL)
8690 free (finfo.contents);
8691 if (finfo.external_relocs != NULL)
8692 free (finfo.external_relocs);
8693 if (finfo.internal_relocs != NULL)
8694 free (finfo.internal_relocs);
8695 if (finfo.external_syms != NULL)
8696 free (finfo.external_syms);
8697 if (finfo.locsym_shndx != NULL)
8698 free (finfo.locsym_shndx);
8699 if (finfo.internal_syms != NULL)
8700 free (finfo.internal_syms);
8701 if (finfo.indices != NULL)
8702 free (finfo.indices);
8703 if (finfo.sections != NULL)
8704 free (finfo.sections);
8705 if (finfo.symbuf != NULL)
8706 free (finfo.symbuf);
8707 if (finfo.symshndxbuf != NULL)
8708 free (finfo.symshndxbuf);
8709 for (o = abfd->sections; o != NULL; o = o->next)
8711 if ((o->flags & SEC_RELOC) != 0
8712 && elf_section_data (o)->rel_hashes != NULL)
8713 free (elf_section_data (o)->rel_hashes);
8719 /* Garbage collect unused sections. */
8721 /* The mark phase of garbage collection. For a given section, mark
8722 it and any sections in this section's group, and all the sections
8723 which define symbols to which it refers. */
8725 typedef asection * (*gc_mark_hook_fn)
8726 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8727 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8730 _bfd_elf_gc_mark (struct bfd_link_info *info,
8732 gc_mark_hook_fn gc_mark_hook)
8735 asection *group_sec;
8739 /* Mark all the sections in the group. */
8740 group_sec = elf_section_data (sec)->next_in_group;
8741 if (group_sec && !group_sec->gc_mark)
8742 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
8745 /* Look through the section relocs. */
8747 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8749 Elf_Internal_Rela *relstart, *rel, *relend;
8750 Elf_Internal_Shdr *symtab_hdr;
8751 struct elf_link_hash_entry **sym_hashes;
8754 bfd *input_bfd = sec->owner;
8755 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8756 Elf_Internal_Sym *isym = NULL;
8759 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8760 sym_hashes = elf_sym_hashes (input_bfd);
8762 /* Read the local symbols. */
8763 if (elf_bad_symtab (input_bfd))
8765 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8769 extsymoff = nlocsyms = symtab_hdr->sh_info;
8771 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8772 if (isym == NULL && nlocsyms != 0)
8774 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8780 /* Read the relocations. */
8781 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8783 if (relstart == NULL)
8788 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8790 if (bed->s->arch_size == 32)
8795 for (rel = relstart; rel < relend; rel++)
8797 unsigned long r_symndx;
8799 struct elf_link_hash_entry *h;
8801 r_symndx = rel->r_info >> r_sym_shift;
8805 if (r_symndx >= nlocsyms
8806 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8808 h = sym_hashes[r_symndx - extsymoff];
8809 while (h->root.type == bfd_link_hash_indirect
8810 || h->root.type == bfd_link_hash_warning)
8811 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8812 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8816 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8819 if (rsec && !rsec->gc_mark)
8821 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8823 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
8832 if (elf_section_data (sec)->relocs != relstart)
8835 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8837 if (! info->keep_memory)
8840 symtab_hdr->contents = (unsigned char *) isym;
8847 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8850 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8854 if (h->root.type == bfd_link_hash_warning)
8855 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8857 if (h->dynindx != -1
8858 && ((h->root.type != bfd_link_hash_defined
8859 && h->root.type != bfd_link_hash_defweak)
8860 || h->root.u.def.section->gc_mark))
8861 h->dynindx = (*idx)++;
8866 /* The sweep phase of garbage collection. Remove all garbage sections. */
8868 typedef bfd_boolean (*gc_sweep_hook_fn)
8869 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8872 elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8876 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8880 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8883 for (o = sub->sections; o != NULL; o = o->next)
8885 /* Keep debug and special sections. */
8886 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
8887 || (o->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
8893 /* Skip sweeping sections already excluded. */
8894 if (o->flags & SEC_EXCLUDE)
8897 /* Since this is early in the link process, it is simple
8898 to remove a section from the output. */
8899 o->flags |= SEC_EXCLUDE;
8901 /* But we also have to update some of the relocation
8902 info we collected before. */
8904 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
8906 Elf_Internal_Rela *internal_relocs;
8910 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8912 if (internal_relocs == NULL)
8915 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8917 if (elf_section_data (o)->relocs != internal_relocs)
8918 free (internal_relocs);
8926 /* Remove the symbols that were in the swept sections from the dynamic
8927 symbol table. GCFIXME: Anyone know how to get them out of the
8928 static symbol table as well? */
8932 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8934 elf_hash_table (info)->dynsymcount = i;
8940 /* Propagate collected vtable information. This is called through
8941 elf_link_hash_traverse. */
8944 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8946 if (h->root.type == bfd_link_hash_warning)
8947 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8949 /* Those that are not vtables. */
8950 if (h->vtable == NULL || h->vtable->parent == NULL)
8953 /* Those vtables that do not have parents, we cannot merge. */
8954 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
8957 /* If we've already been done, exit. */
8958 if (h->vtable->used && h->vtable->used[-1])
8961 /* Make sure the parent's table is up to date. */
8962 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
8964 if (h->vtable->used == NULL)
8966 /* None of this table's entries were referenced. Re-use the
8968 h->vtable->used = h->vtable->parent->vtable->used;
8969 h->vtable->size = h->vtable->parent->vtable->size;
8974 bfd_boolean *cu, *pu;
8976 /* Or the parent's entries into ours. */
8977 cu = h->vtable->used;
8979 pu = h->vtable->parent->vtable->used;
8982 const struct elf_backend_data *bed;
8983 unsigned int log_file_align;
8985 bed = get_elf_backend_data (h->root.u.def.section->owner);
8986 log_file_align = bed->s->log_file_align;
8987 n = h->vtable->parent->vtable->size >> log_file_align;
9002 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
9005 bfd_vma hstart, hend;
9006 Elf_Internal_Rela *relstart, *relend, *rel;
9007 const struct elf_backend_data *bed;
9008 unsigned int log_file_align;
9010 if (h->root.type == bfd_link_hash_warning)
9011 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9013 /* Take care of both those symbols that do not describe vtables as
9014 well as those that are not loaded. */
9015 if (h->vtable == NULL || h->vtable->parent == NULL)
9018 BFD_ASSERT (h->root.type == bfd_link_hash_defined
9019 || h->root.type == bfd_link_hash_defweak);
9021 sec = h->root.u.def.section;
9022 hstart = h->root.u.def.value;
9023 hend = hstart + h->size;
9025 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
9027 return *(bfd_boolean *) okp = FALSE;
9028 bed = get_elf_backend_data (sec->owner);
9029 log_file_align = bed->s->log_file_align;
9031 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
9033 for (rel = relstart; rel < relend; ++rel)
9034 if (rel->r_offset >= hstart && rel->r_offset < hend)
9036 /* If the entry is in use, do nothing. */
9038 && (rel->r_offset - hstart) < h->vtable->size)
9040 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
9041 if (h->vtable->used[entry])
9044 /* Otherwise, kill it. */
9045 rel->r_offset = rel->r_info = rel->r_addend = 0;
9051 /* Mark sections containing dynamically referenced symbols. This is called
9052 through elf_link_hash_traverse. */
9055 elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
9056 void *okp ATTRIBUTE_UNUSED)
9058 if (h->root.type == bfd_link_hash_warning)
9059 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9061 if ((h->root.type == bfd_link_hash_defined
9062 || h->root.type == bfd_link_hash_defweak)
9064 h->root.u.def.section->flags |= SEC_KEEP;
9069 /* Mark sections containing global symbols. This is called through
9070 elf_link_hash_traverse. */
9073 elf_mark_used_section (struct elf_link_hash_entry *h,
9074 void *data ATTRIBUTE_UNUSED)
9076 if (h->root.type == bfd_link_hash_warning)
9077 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9079 if (h->root.type == bfd_link_hash_defined
9080 || h->root.type == bfd_link_hash_defweak)
9082 asection *s = h->root.u.def.section;
9083 if (s != NULL && s->output_section != NULL)
9084 s->output_section->flags |= SEC_KEEP;
9090 /* Do mark and sweep of unused sections. */
9093 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
9095 bfd_boolean ok = TRUE;
9097 asection * (*gc_mark_hook)
9098 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
9099 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
9101 if (!info->gc_sections)
9103 /* If we are called when info->gc_sections is 0, we will mark
9104 all sections containing global symbols for non-relocatable
9106 if (!info->relocatable)
9107 elf_link_hash_traverse (elf_hash_table (info),
9108 elf_mark_used_section, NULL);
9112 if (!get_elf_backend_data (abfd)->can_gc_sections
9113 || info->relocatable
9114 || info->emitrelocations
9116 || !is_elf_hash_table (info->hash))
9118 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
9122 /* Apply transitive closure to the vtable entry usage info. */
9123 elf_link_hash_traverse (elf_hash_table (info),
9124 elf_gc_propagate_vtable_entries_used,
9129 /* Kill the vtable relocations that were not used. */
9130 elf_link_hash_traverse (elf_hash_table (info),
9131 elf_gc_smash_unused_vtentry_relocs,
9136 /* Mark dynamically referenced symbols. */
9137 if (elf_hash_table (info)->dynamic_sections_created)
9138 elf_link_hash_traverse (elf_hash_table (info),
9139 elf_gc_mark_dynamic_ref_symbol,
9144 /* Grovel through relocs to find out who stays ... */
9145 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
9146 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9150 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9153 for (o = sub->sections; o != NULL; o = o->next)
9155 if (o->flags & SEC_KEEP)
9157 /* _bfd_elf_discard_section_eh_frame knows how to discard
9158 orphaned FDEs so don't mark sections referenced by the
9159 EH frame section. */
9160 if (strcmp (o->name, ".eh_frame") == 0)
9162 else if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9168 /* ... and mark SEC_EXCLUDE for those that go. */
9169 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
9175 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
9178 bfd_elf_gc_record_vtinherit (bfd *abfd,
9180 struct elf_link_hash_entry *h,
9183 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
9184 struct elf_link_hash_entry **search, *child;
9185 bfd_size_type extsymcount;
9186 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9188 /* The sh_info field of the symtab header tells us where the
9189 external symbols start. We don't care about the local symbols at
9191 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
9192 if (!elf_bad_symtab (abfd))
9193 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
9195 sym_hashes = elf_sym_hashes (abfd);
9196 sym_hashes_end = sym_hashes + extsymcount;
9198 /* Hunt down the child symbol, which is in this section at the same
9199 offset as the relocation. */
9200 for (search = sym_hashes; search != sym_hashes_end; ++search)
9202 if ((child = *search) != NULL
9203 && (child->root.type == bfd_link_hash_defined
9204 || child->root.type == bfd_link_hash_defweak)
9205 && child->root.u.def.section == sec
9206 && child->root.u.def.value == offset)
9210 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
9211 abfd, sec, (unsigned long) offset);
9212 bfd_set_error (bfd_error_invalid_operation);
9218 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
9224 /* This *should* only be the absolute section. It could potentially
9225 be that someone has defined a non-global vtable though, which
9226 would be bad. It isn't worth paging in the local symbols to be
9227 sure though; that case should simply be handled by the assembler. */
9229 child->vtable->parent = (struct elf_link_hash_entry *) -1;
9232 child->vtable->parent = h;
9237 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
9240 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
9241 asection *sec ATTRIBUTE_UNUSED,
9242 struct elf_link_hash_entry *h,
9245 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9246 unsigned int log_file_align = bed->s->log_file_align;
9250 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
9255 if (addend >= h->vtable->size)
9257 size_t size, bytes, file_align;
9258 bfd_boolean *ptr = h->vtable->used;
9260 /* While the symbol is undefined, we have to be prepared to handle
9262 file_align = 1 << log_file_align;
9263 if (h->root.type == bfd_link_hash_undefined)
9264 size = addend + file_align;
9270 /* Oops! We've got a reference past the defined end of
9271 the table. This is probably a bug -- shall we warn? */
9272 size = addend + file_align;
9275 size = (size + file_align - 1) & -file_align;
9277 /* Allocate one extra entry for use as a "done" flag for the
9278 consolidation pass. */
9279 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
9283 ptr = bfd_realloc (ptr - 1, bytes);
9289 oldbytes = (((h->vtable->size >> log_file_align) + 1)
9290 * sizeof (bfd_boolean));
9291 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
9295 ptr = bfd_zmalloc (bytes);
9300 /* And arrange for that done flag to be at index -1. */
9301 h->vtable->used = ptr + 1;
9302 h->vtable->size = size;
9305 h->vtable->used[addend >> log_file_align] = TRUE;
9310 struct alloc_got_off_arg {
9312 unsigned int got_elt_size;
9315 /* We need a special top-level link routine to convert got reference counts
9316 to real got offsets. */
9319 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
9321 struct alloc_got_off_arg *gofarg = arg;
9323 if (h->root.type == bfd_link_hash_warning)
9324 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9326 if (h->got.refcount > 0)
9328 h->got.offset = gofarg->gotoff;
9329 gofarg->gotoff += gofarg->got_elt_size;
9332 h->got.offset = (bfd_vma) -1;
9337 /* And an accompanying bit to work out final got entry offsets once
9338 we're done. Should be called from final_link. */
9341 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
9342 struct bfd_link_info *info)
9345 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9347 unsigned int got_elt_size = bed->s->arch_size / 8;
9348 struct alloc_got_off_arg gofarg;
9350 if (! is_elf_hash_table (info->hash))
9353 /* The GOT offset is relative to the .got section, but the GOT header is
9354 put into the .got.plt section, if the backend uses it. */
9355 if (bed->want_got_plt)
9358 gotoff = bed->got_header_size;
9360 /* Do the local .got entries first. */
9361 for (i = info->input_bfds; i; i = i->link_next)
9363 bfd_signed_vma *local_got;
9364 bfd_size_type j, locsymcount;
9365 Elf_Internal_Shdr *symtab_hdr;
9367 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
9370 local_got = elf_local_got_refcounts (i);
9374 symtab_hdr = &elf_tdata (i)->symtab_hdr;
9375 if (elf_bad_symtab (i))
9376 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9378 locsymcount = symtab_hdr->sh_info;
9380 for (j = 0; j < locsymcount; ++j)
9382 if (local_got[j] > 0)
9384 local_got[j] = gotoff;
9385 gotoff += got_elt_size;
9388 local_got[j] = (bfd_vma) -1;
9392 /* Then the global .got entries. .plt refcounts are handled by
9393 adjust_dynamic_symbol */
9394 gofarg.gotoff = gotoff;
9395 gofarg.got_elt_size = got_elt_size;
9396 elf_link_hash_traverse (elf_hash_table (info),
9397 elf_gc_allocate_got_offsets,
9402 /* Many folk need no more in the way of final link than this, once
9403 got entry reference counting is enabled. */
9406 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
9408 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
9411 /* Invoke the regular ELF backend linker to do all the work. */
9412 return bfd_elf_final_link (abfd, info);
9416 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
9418 struct elf_reloc_cookie *rcookie = cookie;
9420 if (rcookie->bad_symtab)
9421 rcookie->rel = rcookie->rels;
9423 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9425 unsigned long r_symndx;
9427 if (! rcookie->bad_symtab)
9428 if (rcookie->rel->r_offset > offset)
9430 if (rcookie->rel->r_offset != offset)
9433 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9434 if (r_symndx == SHN_UNDEF)
9437 if (r_symndx >= rcookie->locsymcount
9438 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9440 struct elf_link_hash_entry *h;
9442 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9444 while (h->root.type == bfd_link_hash_indirect
9445 || h->root.type == bfd_link_hash_warning)
9446 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9448 if ((h->root.type == bfd_link_hash_defined
9449 || h->root.type == bfd_link_hash_defweak)
9450 && elf_discarded_section (h->root.u.def.section))
9457 /* It's not a relocation against a global symbol,
9458 but it could be a relocation against a local
9459 symbol for a discarded section. */
9461 Elf_Internal_Sym *isym;
9463 /* Need to: get the symbol; get the section. */
9464 isym = &rcookie->locsyms[r_symndx];
9465 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9467 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9468 if (isec != NULL && elf_discarded_section (isec))
9477 /* Discard unneeded references to discarded sections.
9478 Returns TRUE if any section's size was changed. */
9479 /* This function assumes that the relocations are in sorted order,
9480 which is true for all known assemblers. */
9483 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9485 struct elf_reloc_cookie cookie;
9486 asection *stab, *eh;
9487 Elf_Internal_Shdr *symtab_hdr;
9488 const struct elf_backend_data *bed;
9491 bfd_boolean ret = FALSE;
9493 if (info->traditional_format
9494 || !is_elf_hash_table (info->hash))
9497 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9499 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9502 bed = get_elf_backend_data (abfd);
9504 if ((abfd->flags & DYNAMIC) != 0)
9507 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9508 if (info->relocatable
9511 || bfd_is_abs_section (eh->output_section))))
9514 stab = bfd_get_section_by_name (abfd, ".stab");
9517 || bfd_is_abs_section (stab->output_section)
9518 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9523 && bed->elf_backend_discard_info == NULL)
9526 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9528 cookie.sym_hashes = elf_sym_hashes (abfd);
9529 cookie.bad_symtab = elf_bad_symtab (abfd);
9530 if (cookie.bad_symtab)
9532 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9533 cookie.extsymoff = 0;
9537 cookie.locsymcount = symtab_hdr->sh_info;
9538 cookie.extsymoff = symtab_hdr->sh_info;
9541 if (bed->s->arch_size == 32)
9542 cookie.r_sym_shift = 8;
9544 cookie.r_sym_shift = 32;
9546 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9547 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9549 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9550 cookie.locsymcount, 0,
9552 if (cookie.locsyms == NULL)
9559 count = stab->reloc_count;
9561 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9563 if (cookie.rels != NULL)
9565 cookie.rel = cookie.rels;
9566 cookie.relend = cookie.rels;
9567 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9568 if (_bfd_discard_section_stabs (abfd, stab,
9569 elf_section_data (stab)->sec_info,
9570 bfd_elf_reloc_symbol_deleted_p,
9573 if (elf_section_data (stab)->relocs != cookie.rels)
9581 count = eh->reloc_count;
9583 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9585 cookie.rel = cookie.rels;
9586 cookie.relend = cookie.rels;
9587 if (cookie.rels != NULL)
9588 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9590 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9591 bfd_elf_reloc_symbol_deleted_p,
9595 if (cookie.rels != NULL
9596 && elf_section_data (eh)->relocs != cookie.rels)
9600 if (bed->elf_backend_discard_info != NULL
9601 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9604 if (cookie.locsyms != NULL
9605 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9607 if (! info->keep_memory)
9608 free (cookie.locsyms);
9610 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9614 if (info->eh_frame_hdr
9615 && !info->relocatable
9616 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9623 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9626 const char *name, *p;
9627 struct bfd_section_already_linked *l;
9628 struct bfd_section_already_linked_hash_entry *already_linked_list;
9631 /* A single member comdat group section may be discarded by a
9632 linkonce section. See below. */
9633 if (sec->output_section == bfd_abs_section_ptr)
9638 /* Check if it belongs to a section group. */
9639 group = elf_sec_group (sec);
9641 /* Return if it isn't a linkonce section nor a member of a group. A
9642 comdat group section also has SEC_LINK_ONCE set. */
9643 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
9648 /* If this is the member of a single member comdat group, check if
9649 the group should be discarded. */
9650 if (elf_next_in_group (sec) == sec
9651 && (group->flags & SEC_LINK_ONCE) != 0)
9657 /* FIXME: When doing a relocatable link, we may have trouble
9658 copying relocations in other sections that refer to local symbols
9659 in the section being discarded. Those relocations will have to
9660 be converted somehow; as of this writing I'm not sure that any of
9661 the backends handle that correctly.
9663 It is tempting to instead not discard link once sections when
9664 doing a relocatable link (technically, they should be discarded
9665 whenever we are building constructors). However, that fails,
9666 because the linker winds up combining all the link once sections
9667 into a single large link once section, which defeats the purpose
9668 of having link once sections in the first place.
9670 Also, not merging link once sections in a relocatable link
9671 causes trouble for MIPS ELF, which relies on link once semantics
9672 to handle the .reginfo section correctly. */
9674 name = bfd_get_section_name (abfd, sec);
9676 if (strncmp (name, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0
9677 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
9682 already_linked_list = bfd_section_already_linked_table_lookup (p);
9684 for (l = already_linked_list->entry; l != NULL; l = l->next)
9686 /* We may have 3 different sections on the list: group section,
9687 comdat section and linkonce section. SEC may be a linkonce or
9688 group section. We match a group section with a group section,
9689 a linkonce section with a linkonce section, and ignore comdat
9691 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
9692 && strcmp (name, l->sec->name) == 0
9693 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9695 /* The section has already been linked. See if we should
9697 switch (flags & SEC_LINK_DUPLICATES)
9702 case SEC_LINK_DUPLICATES_DISCARD:
9705 case SEC_LINK_DUPLICATES_ONE_ONLY:
9706 (*_bfd_error_handler)
9707 (_("%B: ignoring duplicate section `%A'"),
9711 case SEC_LINK_DUPLICATES_SAME_SIZE:
9712 if (sec->size != l->sec->size)
9713 (*_bfd_error_handler)
9714 (_("%B: duplicate section `%A' has different size"),
9718 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
9719 if (sec->size != l->sec->size)
9720 (*_bfd_error_handler)
9721 (_("%B: duplicate section `%A' has different size"),
9723 else if (sec->size != 0)
9725 bfd_byte *sec_contents, *l_sec_contents;
9727 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
9728 (*_bfd_error_handler)
9729 (_("%B: warning: could not read contents of section `%A'"),
9731 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
9733 (*_bfd_error_handler)
9734 (_("%B: warning: could not read contents of section `%A'"),
9735 l->sec->owner, l->sec);
9736 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
9737 (*_bfd_error_handler)
9738 (_("%B: warning: duplicate section `%A' has different contents"),
9742 free (sec_contents);
9744 free (l_sec_contents);
9749 /* Set the output_section field so that lang_add_section
9750 does not create a lang_input_section structure for this
9751 section. Since there might be a symbol in the section
9752 being discarded, we must retain a pointer to the section
9753 which we are really going to use. */
9754 sec->output_section = bfd_abs_section_ptr;
9755 sec->kept_section = l->sec;
9757 if (flags & SEC_GROUP)
9759 asection *first = elf_next_in_group (sec);
9760 asection *s = first;
9764 s->output_section = bfd_abs_section_ptr;
9765 /* Record which group discards it. */
9766 s->kept_section = l->sec;
9767 s = elf_next_in_group (s);
9768 /* These lists are circular. */
9780 /* If this is the member of a single member comdat group and the
9781 group hasn't be discarded, we check if it matches a linkonce
9782 section. We only record the discarded comdat group. Otherwise
9783 the undiscarded group will be discarded incorrectly later since
9784 itself has been recorded. */
9785 for (l = already_linked_list->entry; l != NULL; l = l->next)
9786 if ((l->sec->flags & SEC_GROUP) == 0
9787 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9788 && bfd_elf_match_symbols_in_sections (l->sec,
9789 elf_next_in_group (sec)))
9791 elf_next_in_group (sec)->output_section = bfd_abs_section_ptr;
9792 elf_next_in_group (sec)->kept_section = l->sec;
9793 group->output_section = bfd_abs_section_ptr;
9800 /* There is no direct match. But for linkonce section, we should
9801 check if there is a match with comdat group member. We always
9802 record the linkonce section, discarded or not. */
9803 for (l = already_linked_list->entry; l != NULL; l = l->next)
9804 if (l->sec->flags & SEC_GROUP)
9806 asection *first = elf_next_in_group (l->sec);
9809 && elf_next_in_group (first) == first
9810 && bfd_elf_match_symbols_in_sections (first, sec))
9812 sec->output_section = bfd_abs_section_ptr;
9813 sec->kept_section = l->sec;
9818 /* This is the first section with this name. Record it. */
9819 bfd_section_already_linked_table_insert (already_linked_list, sec);
9823 bfd_elf_set_symbol (struct elf_link_hash_entry *h, bfd_vma val)
9825 h->root.type = bfd_link_hash_defined;
9826 h->root.u.def.section = bfd_abs_section_ptr;
9827 h->root.u.def.value = val;
9829 h->type = STT_OBJECT;
9830 h->other = STV_HIDDEN | (h->other & ~ ELF_ST_VISIBILITY (-1));
9831 h->forced_local = 1;
9834 /* Set NAME to VAL if the symbol exists and is undefined. */
9837 _bfd_elf_provide_symbol (struct bfd_link_info *info, const char *name,
9840 struct elf_link_hash_entry *h;
9842 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE,
9844 if (h != NULL && (h->root.type == bfd_link_hash_undefined
9845 || h->root.type == bfd_link_hash_undefweak))
9846 bfd_elf_set_symbol (h, val);
9849 /* Set START and END to boundaries of SEC if they exist and are
9853 _bfd_elf_provide_section_bound_symbols (struct bfd_link_info *info,
9858 struct elf_link_hash_entry *hs, *he;
9859 bfd_vma start_val, end_val;
9860 bfd_boolean do_start, do_end;
9862 /* Check if we need them or not first. */
9863 hs = elf_link_hash_lookup (elf_hash_table (info), start, FALSE,
9865 do_start = (hs != NULL
9866 && (hs->root.type == bfd_link_hash_undefined
9867 || hs->root.type == bfd_link_hash_undefweak));
9869 he = elf_link_hash_lookup (elf_hash_table (info), end, FALSE,
9871 do_end = (he != NULL
9872 && (he->root.type == bfd_link_hash_undefined
9873 || he->root.type == bfd_link_hash_undefweak));
9875 if (!do_start && !do_end)
9880 start_val = sec->vma;
9881 end_val = start_val + sec->size;
9885 /* We have to choose those values very carefully. Some targets,
9886 like alpha, may have relocation overflow with 0. "__bss_start"
9887 should be defined in all cases. */
9888 struct elf_link_hash_entry *h
9889 = elf_link_hash_lookup (elf_hash_table (info), "__bss_start",
9890 FALSE, FALSE, FALSE);
9891 if (h != NULL && h->root.type == bfd_link_hash_defined)
9892 start_val = h->root.u.def.value;
9895 end_val = start_val;
9899 bfd_elf_set_symbol (hs, start_val);
9902 bfd_elf_set_symbol (he, end_val);