1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2019 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
27 #include "safe-ctype.h"
28 #include "libiberty.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
38 struct elf_info_failed
40 struct bfd_link_info *info;
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
47 struct elf_find_verdep_info
49 /* General link information. */
50 struct bfd_link_info *info;
51 /* The number of dependencies. */
53 /* Whether we had a failure. */
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry *, struct elf_info_failed *);
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 unsigned long r_symndx,
65 if (r_symndx >= cookie->locsymcount
66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 struct elf_link_hash_entry *h;
70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72 while (h->root.type == bfd_link_hash_indirect
73 || h->root.type == bfd_link_hash_warning)
74 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76 if ((h->root.type == bfd_link_hash_defined
77 || h->root.type == bfd_link_hash_defweak)
78 && discarded_section (h->root.u.def.section))
79 return h->root.u.def.section;
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
89 Elf_Internal_Sym *isym;
91 /* Need to: get the symbol; get the section. */
92 isym = &cookie->locsyms[r_symndx];
93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 && discard ? discarded_section (isec) : 1)
101 /* Define a symbol in a dynamic linkage section. */
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 struct bfd_link_info *info,
109 struct elf_link_hash_entry *h;
110 struct bfd_link_hash_entry *bh;
111 const struct elf_backend_data *bed;
113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h->root.type = bfd_link_hash_new;
126 bed = get_elf_backend_data (abfd);
127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
128 sec, 0, NULL, FALSE, bed->collect,
131 h = (struct elf_link_hash_entry *) bh;
132 BFD_ASSERT (h != NULL);
135 h->root.linker_def = 1;
136 h->type = STT_OBJECT;
137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
149 struct elf_link_hash_entry *h;
150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
151 struct elf_link_hash_table *htab = elf_hash_table (info);
153 /* This function may be called more than once. */
154 if (htab->sgot != NULL)
157 flags = bed->dynamic_sec_flags;
159 s = bfd_make_section_anyway_with_flags (abfd,
160 (bed->rela_plts_and_copies_p
161 ? ".rela.got" : ".rel.got"),
162 (bed->dynamic_sec_flags
165 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
175 if (bed->want_got_plt)
177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 || !bfd_set_section_alignment (abfd, s,
180 bed->s->log_file_align))
185 /* The first bit of the global offset table is the header. */
186 s->size += bed->got_header_size;
188 if (bed->want_got_sym)
190 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
191 (or .got.plt) section. We don't do this in the linker script
192 because we don't want to define the symbol if we are not creating
193 a global offset table. */
194 h = _bfd_elf_define_linkage_sym (abfd, info, s,
195 "_GLOBAL_OFFSET_TABLE_");
196 elf_hash_table (info)->hgot = h;
204 /* Create a strtab to hold the dynamic symbol names. */
206 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 struct elf_link_hash_table *hash_table;
210 hash_table = elf_hash_table (info);
211 if (hash_table->dynobj == NULL)
213 /* We may not set dynobj, an input file holding linker created
214 dynamic sections to abfd, which may be a dynamic object with
215 its own dynamic sections. We need to find a normal input file
216 to hold linker created sections if possible. */
217 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
221 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
223 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
224 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
225 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
233 hash_table->dynobj = abfd;
236 if (hash_table->dynstr == NULL)
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
260 if (! is_elf_hash_table (info->hash))
263 if (elf_hash_table (info)->dynamic_sections_created)
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
272 flags = bed->dynamic_sec_flags;
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
295 || ! bfd_set_section_alignment (abfd, s, 1))
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
309 elf_hash_table (info)->dynsym = s;
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
342 if (info->emit_gnu_hash)
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
370 /* Create dynamic sections when linking against a dynamic object. */
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
404 if (bed->want_plt_sym)
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
422 if (! _bfd_elf_create_got_section (abfd, info))
425 if (bed->want_dynbss)
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
439 if (bed->want_dynrelro)
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
462 if (bfd_link_executable (info))
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
473 if (bed->want_dynrelro)
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
483 htab->sreldynrelro = s;
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
503 if (h->dynindx == -1)
505 struct elf_strtab_hash *dynstr;
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
522 if (!elf_hash_table (info)->is_relocatable_executable)
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
533 dynstr = elf_hash_table (info)->dynstr;
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
542 /* We don't put any version information in the dynamic string
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
559 if (indx == (size_t) -1)
561 h->dynstr_index = indx;
567 /* Mark a symbol dynamic. */
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
591 /* NB: If a symbol is made dynamic by --dynamic-list, it has
593 h->root.non_ir_ref_dynamic = 1;
597 /* Record an assignment to a symbol made by a linker script. We need
598 this in case some dynamic object refers to this symbol. */
601 bfd_elf_record_link_assignment (bfd *output_bfd,
602 struct bfd_link_info *info,
607 struct elf_link_hash_entry *h, *hv;
608 struct elf_link_hash_table *htab;
609 const struct elf_backend_data *bed;
611 if (!is_elf_hash_table (info->hash))
614 htab = elf_hash_table (info);
615 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
619 if (h->root.type == bfd_link_hash_warning)
620 h = (struct elf_link_hash_entry *) h->root.u.i.link;
622 if (h->versioned == unknown)
624 /* Set versioned if symbol version is unknown. */
625 char *version = strrchr (name, ELF_VER_CHR);
628 if (version > name && version[-1] != ELF_VER_CHR)
629 h->versioned = versioned_hidden;
631 h->versioned = versioned;
635 /* Symbols defined in a linker script but not referenced anywhere
636 else will have non_elf set. */
639 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
643 switch (h->root.type)
645 case bfd_link_hash_defined:
646 case bfd_link_hash_defweak:
647 case bfd_link_hash_common:
649 case bfd_link_hash_undefweak:
650 case bfd_link_hash_undefined:
651 /* Since we're defining the symbol, don't let it seem to have not
652 been defined. record_dynamic_symbol and size_dynamic_sections
653 may depend on this. */
654 h->root.type = bfd_link_hash_new;
655 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
656 bfd_link_repair_undef_list (&htab->root);
658 case bfd_link_hash_new:
660 case bfd_link_hash_indirect:
661 /* We had a versioned symbol in a dynamic library. We make the
662 the versioned symbol point to this one. */
663 bed = get_elf_backend_data (output_bfd);
665 while (hv->root.type == bfd_link_hash_indirect
666 || hv->root.type == bfd_link_hash_warning)
667 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
668 /* We don't need to update h->root.u since linker will set them
670 h->root.type = bfd_link_hash_undefined;
671 hv->root.type = bfd_link_hash_indirect;
672 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
673 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
680 /* If this symbol is being provided by the linker script, and it is
681 currently defined by a dynamic object, but not by a regular
682 object, then mark it as undefined so that the generic linker will
683 force the correct value. */
687 h->root.type = bfd_link_hash_undefined;
689 /* If this symbol is currently defined by a dynamic object, but not
690 by a regular object, then clear out any version information because
691 the symbol will not be associated with the dynamic object any
693 if (h->def_dynamic && !h->def_regular)
694 h->verinfo.verdef = NULL;
696 /* Make sure this symbol is not garbage collected. */
703 bed = get_elf_backend_data (output_bfd);
704 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
705 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
706 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
709 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
711 if (!bfd_link_relocatable (info)
713 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
714 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
719 || bfd_link_dll (info)
720 || elf_hash_table (info)->is_relocatable_executable)
724 if (! bfd_elf_link_record_dynamic_symbol (info, h))
727 /* If this is a weak defined symbol, and we know a corresponding
728 real symbol from the same dynamic object, make sure the real
729 symbol is also made into a dynamic symbol. */
732 struct elf_link_hash_entry *def = weakdef (h);
734 if (def->dynindx == -1
735 && !bfd_elf_link_record_dynamic_symbol (info, def))
743 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
744 success, and 2 on a failure caused by attempting to record a symbol
745 in a discarded section, eg. a discarded link-once section symbol. */
748 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
753 struct elf_link_local_dynamic_entry *entry;
754 struct elf_link_hash_table *eht;
755 struct elf_strtab_hash *dynstr;
758 Elf_External_Sym_Shndx eshndx;
759 char esym[sizeof (Elf64_External_Sym)];
761 if (! is_elf_hash_table (info->hash))
764 /* See if the entry exists already. */
765 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
766 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
769 amt = sizeof (*entry);
770 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
774 /* Go find the symbol, so that we can find it's name. */
775 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
776 1, input_indx, &entry->isym, esym, &eshndx))
778 bfd_release (input_bfd, entry);
782 if (entry->isym.st_shndx != SHN_UNDEF
783 && entry->isym.st_shndx < SHN_LORESERVE)
787 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
788 if (s == NULL || bfd_is_abs_section (s->output_section))
790 /* We can still bfd_release here as nothing has done another
791 bfd_alloc. We can't do this later in this function. */
792 bfd_release (input_bfd, entry);
797 name = (bfd_elf_string_from_elf_section
798 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
799 entry->isym.st_name));
801 dynstr = elf_hash_table (info)->dynstr;
804 /* Create a strtab to hold the dynamic symbol names. */
805 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
810 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
811 if (dynstr_index == (size_t) -1)
813 entry->isym.st_name = dynstr_index;
815 eht = elf_hash_table (info);
817 entry->next = eht->dynlocal;
818 eht->dynlocal = entry;
819 entry->input_bfd = input_bfd;
820 entry->input_indx = input_indx;
823 /* Whatever binding the symbol had before, it's now local. */
825 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
827 /* The dynindx will be set at the end of size_dynamic_sections. */
832 /* Return the dynindex of a local dynamic symbol. */
835 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
839 struct elf_link_local_dynamic_entry *e;
841 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
842 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
847 /* This function is used to renumber the dynamic symbols, if some of
848 them are removed because they are marked as local. This is called
849 via elf_link_hash_traverse. */
852 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
855 size_t *count = (size_t *) data;
860 if (h->dynindx != -1)
861 h->dynindx = ++(*count);
867 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
868 STB_LOCAL binding. */
871 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
874 size_t *count = (size_t *) data;
876 if (!h->forced_local)
879 if (h->dynindx != -1)
880 h->dynindx = ++(*count);
885 /* Return true if the dynamic symbol for a given section should be
886 omitted when creating a shared library. */
888 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
889 struct bfd_link_info *info,
892 struct elf_link_hash_table *htab;
895 switch (elf_section_data (p)->this_hdr.sh_type)
899 /* If sh_type is yet undecided, assume it could be
900 SHT_PROGBITS/SHT_NOBITS. */
902 htab = elf_hash_table (info);
903 if (p == htab->tls_sec)
906 if (htab->text_index_section != NULL)
907 return p != htab->text_index_section && p != htab->data_index_section;
909 return (htab->dynobj != NULL
910 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
911 && ip->output_section == p);
913 /* There shouldn't be section relative relocations
914 against any other section. */
921 _bfd_elf_omit_section_dynsym_all
922 (bfd *output_bfd ATTRIBUTE_UNUSED,
923 struct bfd_link_info *info ATTRIBUTE_UNUSED,
924 asection *p ATTRIBUTE_UNUSED)
929 /* Assign dynsym indices. In a shared library we generate a section
930 symbol for each output section, which come first. Next come symbols
931 which have been forced to local binding. Then all of the back-end
932 allocated local dynamic syms, followed by the rest of the global
933 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
934 (This prevents the early call before elf_backend_init_index_section
935 and strip_excluded_output_sections setting dynindx for sections
936 that are stripped.) */
939 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
940 struct bfd_link_info *info,
941 unsigned long *section_sym_count)
943 unsigned long dynsymcount = 0;
944 bfd_boolean do_sec = section_sym_count != NULL;
946 if (bfd_link_pic (info)
947 || elf_hash_table (info)->is_relocatable_executable)
949 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
951 for (p = output_bfd->sections; p ; p = p->next)
952 if ((p->flags & SEC_EXCLUDE) == 0
953 && (p->flags & SEC_ALLOC) != 0
954 && elf_hash_table (info)->dynamic_relocs
955 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
959 elf_section_data (p)->dynindx = dynsymcount;
962 elf_section_data (p)->dynindx = 0;
965 *section_sym_count = dynsymcount;
967 elf_link_hash_traverse (elf_hash_table (info),
968 elf_link_renumber_local_hash_table_dynsyms,
971 if (elf_hash_table (info)->dynlocal)
973 struct elf_link_local_dynamic_entry *p;
974 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
975 p->dynindx = ++dynsymcount;
977 elf_hash_table (info)->local_dynsymcount = dynsymcount;
979 elf_link_hash_traverse (elf_hash_table (info),
980 elf_link_renumber_hash_table_dynsyms,
983 /* There is an unused NULL entry at the head of the table which we
984 must account for in our count even if the table is empty since it
985 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
989 elf_hash_table (info)->dynsymcount = dynsymcount;
993 /* Merge st_other field. */
996 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
997 const Elf_Internal_Sym *isym, asection *sec,
998 bfd_boolean definition, bfd_boolean dynamic)
1000 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1002 /* If st_other has a processor-specific meaning, specific
1003 code might be needed here. */
1004 if (bed->elf_backend_merge_symbol_attribute)
1005 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1010 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1011 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1013 /* Keep the most constraining visibility. Leave the remainder
1014 of the st_other field to elf_backend_merge_symbol_attribute. */
1015 if (symvis - 1 < hvis - 1)
1016 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1019 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1020 && (sec->flags & SEC_READONLY) == 0)
1021 h->protected_def = 1;
1024 /* This function is called when we want to merge a new symbol with an
1025 existing symbol. It handles the various cases which arise when we
1026 find a definition in a dynamic object, or when there is already a
1027 definition in a dynamic object. The new symbol is described by
1028 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1029 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1030 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1031 of an old common symbol. We set OVERRIDE if the old symbol is
1032 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1033 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1034 to change. By OK to change, we mean that we shouldn't warn if the
1035 type or size does change. */
1038 _bfd_elf_merge_symbol (bfd *abfd,
1039 struct bfd_link_info *info,
1041 Elf_Internal_Sym *sym,
1044 struct elf_link_hash_entry **sym_hash,
1046 bfd_boolean *pold_weak,
1047 unsigned int *pold_alignment,
1049 bfd_boolean *override,
1050 bfd_boolean *type_change_ok,
1051 bfd_boolean *size_change_ok,
1052 bfd_boolean *matched)
1054 asection *sec, *oldsec;
1055 struct elf_link_hash_entry *h;
1056 struct elf_link_hash_entry *hi;
1057 struct elf_link_hash_entry *flip;
1060 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1061 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1062 const struct elf_backend_data *bed;
1064 bfd_boolean default_sym = *matched;
1070 bind = ELF_ST_BIND (sym->st_info);
1072 if (! bfd_is_und_section (sec))
1073 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1075 h = ((struct elf_link_hash_entry *)
1076 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1081 bed = get_elf_backend_data (abfd);
1083 /* NEW_VERSION is the symbol version of the new symbol. */
1084 if (h->versioned != unversioned)
1086 /* Symbol version is unknown or versioned. */
1087 new_version = strrchr (name, ELF_VER_CHR);
1090 if (h->versioned == unknown)
1092 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1093 h->versioned = versioned_hidden;
1095 h->versioned = versioned;
1098 if (new_version[0] == '\0')
1102 h->versioned = unversioned;
1107 /* For merging, we only care about real symbols. But we need to make
1108 sure that indirect symbol dynamic flags are updated. */
1110 while (h->root.type == bfd_link_hash_indirect
1111 || h->root.type == bfd_link_hash_warning)
1112 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1116 if (hi == h || h->root.type == bfd_link_hash_new)
1120 /* OLD_HIDDEN is true if the existing symbol is only visible
1121 to the symbol with the same symbol version. NEW_HIDDEN is
1122 true if the new symbol is only visible to the symbol with
1123 the same symbol version. */
1124 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1125 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1126 if (!old_hidden && !new_hidden)
1127 /* The new symbol matches the existing symbol if both
1132 /* OLD_VERSION is the symbol version of the existing
1136 if (h->versioned >= versioned)
1137 old_version = strrchr (h->root.root.string,
1142 /* The new symbol matches the existing symbol if they
1143 have the same symbol version. */
1144 *matched = (old_version == new_version
1145 || (old_version != NULL
1146 && new_version != NULL
1147 && strcmp (old_version, new_version) == 0));
1152 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1157 switch (h->root.type)
1162 case bfd_link_hash_undefined:
1163 case bfd_link_hash_undefweak:
1164 oldbfd = h->root.u.undef.abfd;
1167 case bfd_link_hash_defined:
1168 case bfd_link_hash_defweak:
1169 oldbfd = h->root.u.def.section->owner;
1170 oldsec = h->root.u.def.section;
1173 case bfd_link_hash_common:
1174 oldbfd = h->root.u.c.p->section->owner;
1175 oldsec = h->root.u.c.p->section;
1177 *pold_alignment = h->root.u.c.p->alignment_power;
1180 if (poldbfd && *poldbfd == NULL)
1183 /* Differentiate strong and weak symbols. */
1184 newweak = bind == STB_WEAK;
1185 oldweak = (h->root.type == bfd_link_hash_defweak
1186 || h->root.type == bfd_link_hash_undefweak);
1188 *pold_weak = oldweak;
1190 /* We have to check it for every instance since the first few may be
1191 references and not all compilers emit symbol type for undefined
1193 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1195 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1196 respectively, is from a dynamic object. */
1198 newdyn = (abfd->flags & DYNAMIC) != 0;
1200 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1201 syms and defined syms in dynamic libraries respectively.
1202 ref_dynamic on the other hand can be set for a symbol defined in
1203 a dynamic library, and def_dynamic may not be set; When the
1204 definition in a dynamic lib is overridden by a definition in the
1205 executable use of the symbol in the dynamic lib becomes a
1206 reference to the executable symbol. */
1209 if (bfd_is_und_section (sec))
1211 if (bind != STB_WEAK)
1213 h->ref_dynamic_nonweak = 1;
1214 hi->ref_dynamic_nonweak = 1;
1219 /* Update the existing symbol only if they match. */
1222 hi->dynamic_def = 1;
1226 /* If we just created the symbol, mark it as being an ELF symbol.
1227 Other than that, there is nothing to do--there is no merge issue
1228 with a newly defined symbol--so we just return. */
1230 if (h->root.type == bfd_link_hash_new)
1236 /* In cases involving weak versioned symbols, we may wind up trying
1237 to merge a symbol with itself. Catch that here, to avoid the
1238 confusion that results if we try to override a symbol with
1239 itself. The additional tests catch cases like
1240 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1241 dynamic object, which we do want to handle here. */
1243 && (newweak || oldweak)
1244 && ((abfd->flags & DYNAMIC) == 0
1245 || !h->def_regular))
1250 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1251 else if (oldsec != NULL)
1253 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1254 indices used by MIPS ELF. */
1255 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1258 /* Handle a case where plugin_notice won't be called and thus won't
1259 set the non_ir_ref flags on the first pass over symbols. */
1261 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1262 && newdyn != olddyn)
1264 h->root.non_ir_ref_dynamic = TRUE;
1265 hi->root.non_ir_ref_dynamic = TRUE;
1268 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1269 respectively, appear to be a definition rather than reference. */
1271 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1273 olddef = (h->root.type != bfd_link_hash_undefined
1274 && h->root.type != bfd_link_hash_undefweak
1275 && h->root.type != bfd_link_hash_common);
1277 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1278 respectively, appear to be a function. */
1280 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1281 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1283 oldfunc = (h->type != STT_NOTYPE
1284 && bed->is_function_type (h->type));
1286 if (!(newfunc && oldfunc)
1287 && ELF_ST_TYPE (sym->st_info) != h->type
1288 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1289 && h->type != STT_NOTYPE
1290 && (newdef || bfd_is_com_section (sec))
1291 && (olddef || h->root.type == bfd_link_hash_common))
1293 /* If creating a default indirect symbol ("foo" or "foo@") from
1294 a dynamic versioned definition ("foo@@") skip doing so if
1295 there is an existing regular definition with a different
1296 type. We don't want, for example, a "time" variable in the
1297 executable overriding a "time" function in a shared library. */
1305 /* When adding a symbol from a regular object file after we have
1306 created indirect symbols, undo the indirection and any
1313 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1314 h->forced_local = 0;
1318 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1320 h->root.type = bfd_link_hash_undefined;
1321 h->root.u.undef.abfd = abfd;
1325 h->root.type = bfd_link_hash_new;
1326 h->root.u.undef.abfd = NULL;
1332 /* Check TLS symbols. We don't check undefined symbols introduced
1333 by "ld -u" which have no type (and oldbfd NULL), and we don't
1334 check symbols from plugins because they also have no type. */
1336 && (oldbfd->flags & BFD_PLUGIN) == 0
1337 && (abfd->flags & BFD_PLUGIN) == 0
1338 && ELF_ST_TYPE (sym->st_info) != h->type
1339 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1342 bfd_boolean ntdef, tdef;
1343 asection *ntsec, *tsec;
1345 if (h->type == STT_TLS)
1366 /* xgettext:c-format */
1367 (_("%s: TLS definition in %pB section %pA "
1368 "mismatches non-TLS definition in %pB section %pA"),
1369 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1370 else if (!tdef && !ntdef)
1372 /* xgettext:c-format */
1373 (_("%s: TLS reference in %pB "
1374 "mismatches non-TLS reference in %pB"),
1375 h->root.root.string, tbfd, ntbfd);
1378 /* xgettext:c-format */
1379 (_("%s: TLS definition in %pB section %pA "
1380 "mismatches non-TLS reference in %pB"),
1381 h->root.root.string, tbfd, tsec, ntbfd);
1384 /* xgettext:c-format */
1385 (_("%s: TLS reference in %pB "
1386 "mismatches non-TLS definition in %pB section %pA"),
1387 h->root.root.string, tbfd, ntbfd, ntsec);
1389 bfd_set_error (bfd_error_bad_value);
1393 /* If the old symbol has non-default visibility, we ignore the new
1394 definition from a dynamic object. */
1396 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1397 && !bfd_is_und_section (sec))
1400 /* Make sure this symbol is dynamic. */
1402 hi->ref_dynamic = 1;
1403 /* A protected symbol has external availability. Make sure it is
1404 recorded as dynamic.
1406 FIXME: Should we check type and size for protected symbol? */
1407 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1408 return bfd_elf_link_record_dynamic_symbol (info, h);
1413 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1416 /* If the new symbol with non-default visibility comes from a
1417 relocatable file and the old definition comes from a dynamic
1418 object, we remove the old definition. */
1419 if (hi->root.type == bfd_link_hash_indirect)
1421 /* Handle the case where the old dynamic definition is
1422 default versioned. We need to copy the symbol info from
1423 the symbol with default version to the normal one if it
1424 was referenced before. */
1427 hi->root.type = h->root.type;
1428 h->root.type = bfd_link_hash_indirect;
1429 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1431 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1432 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1434 /* If the new symbol is hidden or internal, completely undo
1435 any dynamic link state. */
1436 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1437 h->forced_local = 0;
1444 /* FIXME: Should we check type and size for protected symbol? */
1454 /* If the old symbol was undefined before, then it will still be
1455 on the undefs list. If the new symbol is undefined or
1456 common, we can't make it bfd_link_hash_new here, because new
1457 undefined or common symbols will be added to the undefs list
1458 by _bfd_generic_link_add_one_symbol. Symbols may not be
1459 added twice to the undefs list. Also, if the new symbol is
1460 undefweak then we don't want to lose the strong undef. */
1461 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1463 h->root.type = bfd_link_hash_undefined;
1464 h->root.u.undef.abfd = abfd;
1468 h->root.type = bfd_link_hash_new;
1469 h->root.u.undef.abfd = NULL;
1472 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1474 /* If the new symbol is hidden or internal, completely undo
1475 any dynamic link state. */
1476 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1477 h->forced_local = 0;
1483 /* FIXME: Should we check type and size for protected symbol? */
1489 /* If a new weak symbol definition comes from a regular file and the
1490 old symbol comes from a dynamic library, we treat the new one as
1491 strong. Similarly, an old weak symbol definition from a regular
1492 file is treated as strong when the new symbol comes from a dynamic
1493 library. Further, an old weak symbol from a dynamic library is
1494 treated as strong if the new symbol is from a dynamic library.
1495 This reflects the way glibc's ld.so works.
1497 Also allow a weak symbol to override a linker script symbol
1498 defined by an early pass over the script. This is done so the
1499 linker knows the symbol is defined in an object file, for the
1500 DEFINED script function.
1502 Do this before setting *type_change_ok or *size_change_ok so that
1503 we warn properly when dynamic library symbols are overridden. */
1505 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1507 if (olddef && newdyn)
1510 /* Allow changes between different types of function symbol. */
1511 if (newfunc && oldfunc)
1512 *type_change_ok = TRUE;
1514 /* It's OK to change the type if either the existing symbol or the
1515 new symbol is weak. A type change is also OK if the old symbol
1516 is undefined and the new symbol is defined. */
1521 && h->root.type == bfd_link_hash_undefined))
1522 *type_change_ok = TRUE;
1524 /* It's OK to change the size if either the existing symbol or the
1525 new symbol is weak, or if the old symbol is undefined. */
1528 || h->root.type == bfd_link_hash_undefined)
1529 *size_change_ok = TRUE;
1531 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1532 symbol, respectively, appears to be a common symbol in a dynamic
1533 object. If a symbol appears in an uninitialized section, and is
1534 not weak, and is not a function, then it may be a common symbol
1535 which was resolved when the dynamic object was created. We want
1536 to treat such symbols specially, because they raise special
1537 considerations when setting the symbol size: if the symbol
1538 appears as a common symbol in a regular object, and the size in
1539 the regular object is larger, we must make sure that we use the
1540 larger size. This problematic case can always be avoided in C,
1541 but it must be handled correctly when using Fortran shared
1544 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1545 likewise for OLDDYNCOMMON and OLDDEF.
1547 Note that this test is just a heuristic, and that it is quite
1548 possible to have an uninitialized symbol in a shared object which
1549 is really a definition, rather than a common symbol. This could
1550 lead to some minor confusion when the symbol really is a common
1551 symbol in some regular object. However, I think it will be
1557 && (sec->flags & SEC_ALLOC) != 0
1558 && (sec->flags & SEC_LOAD) == 0
1561 newdyncommon = TRUE;
1563 newdyncommon = FALSE;
1567 && h->root.type == bfd_link_hash_defined
1569 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1570 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1573 olddyncommon = TRUE;
1575 olddyncommon = FALSE;
1577 /* We now know everything about the old and new symbols. We ask the
1578 backend to check if we can merge them. */
1579 if (bed->merge_symbol != NULL)
1581 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1586 /* There are multiple definitions of a normal symbol. Skip the
1587 default symbol as well as definition from an IR object. */
1588 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1589 && !default_sym && h->def_regular
1591 && (oldbfd->flags & BFD_PLUGIN) != 0
1592 && (abfd->flags & BFD_PLUGIN) == 0))
1594 /* Handle a multiple definition. */
1595 (*info->callbacks->multiple_definition) (info, &h->root,
1596 abfd, sec, *pvalue);
1601 /* If both the old and the new symbols look like common symbols in a
1602 dynamic object, set the size of the symbol to the larger of the
1607 && sym->st_size != h->size)
1609 /* Since we think we have two common symbols, issue a multiple
1610 common warning if desired. Note that we only warn if the
1611 size is different. If the size is the same, we simply let
1612 the old symbol override the new one as normally happens with
1613 symbols defined in dynamic objects. */
1615 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1616 bfd_link_hash_common, sym->st_size);
1617 if (sym->st_size > h->size)
1618 h->size = sym->st_size;
1620 *size_change_ok = TRUE;
1623 /* If we are looking at a dynamic object, and we have found a
1624 definition, we need to see if the symbol was already defined by
1625 some other object. If so, we want to use the existing
1626 definition, and we do not want to report a multiple symbol
1627 definition error; we do this by clobbering *PSEC to be
1628 bfd_und_section_ptr.
1630 We treat a common symbol as a definition if the symbol in the
1631 shared library is a function, since common symbols always
1632 represent variables; this can cause confusion in principle, but
1633 any such confusion would seem to indicate an erroneous program or
1634 shared library. We also permit a common symbol in a regular
1635 object to override a weak symbol in a shared object. */
1640 || (h->root.type == bfd_link_hash_common
1641 && (newweak || newfunc))))
1645 newdyncommon = FALSE;
1647 *psec = sec = bfd_und_section_ptr;
1648 *size_change_ok = TRUE;
1650 /* If we get here when the old symbol is a common symbol, then
1651 we are explicitly letting it override a weak symbol or
1652 function in a dynamic object, and we don't want to warn about
1653 a type change. If the old symbol is a defined symbol, a type
1654 change warning may still be appropriate. */
1656 if (h->root.type == bfd_link_hash_common)
1657 *type_change_ok = TRUE;
1660 /* Handle the special case of an old common symbol merging with a
1661 new symbol which looks like a common symbol in a shared object.
1662 We change *PSEC and *PVALUE to make the new symbol look like a
1663 common symbol, and let _bfd_generic_link_add_one_symbol do the
1667 && h->root.type == bfd_link_hash_common)
1671 newdyncommon = FALSE;
1672 *pvalue = sym->st_size;
1673 *psec = sec = bed->common_section (oldsec);
1674 *size_change_ok = TRUE;
1677 /* Skip weak definitions of symbols that are already defined. */
1678 if (newdef && olddef && newweak)
1680 /* Don't skip new non-IR weak syms. */
1681 if (!(oldbfd != NULL
1682 && (oldbfd->flags & BFD_PLUGIN) != 0
1683 && (abfd->flags & BFD_PLUGIN) == 0))
1689 /* Merge st_other. If the symbol already has a dynamic index,
1690 but visibility says it should not be visible, turn it into a
1692 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1693 if (h->dynindx != -1)
1694 switch (ELF_ST_VISIBILITY (h->other))
1698 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1703 /* If the old symbol is from a dynamic object, and the new symbol is
1704 a definition which is not from a dynamic object, then the new
1705 symbol overrides the old symbol. Symbols from regular files
1706 always take precedence over symbols from dynamic objects, even if
1707 they are defined after the dynamic object in the link.
1709 As above, we again permit a common symbol in a regular object to
1710 override a definition in a shared object if the shared object
1711 symbol is a function or is weak. */
1716 || (bfd_is_com_section (sec)
1717 && (oldweak || oldfunc)))
1722 /* Change the hash table entry to undefined, and let
1723 _bfd_generic_link_add_one_symbol do the right thing with the
1726 h->root.type = bfd_link_hash_undefined;
1727 h->root.u.undef.abfd = h->root.u.def.section->owner;
1728 *size_change_ok = TRUE;
1731 olddyncommon = FALSE;
1733 /* We again permit a type change when a common symbol may be
1734 overriding a function. */
1736 if (bfd_is_com_section (sec))
1740 /* If a common symbol overrides a function, make sure
1741 that it isn't defined dynamically nor has type
1744 h->type = STT_NOTYPE;
1746 *type_change_ok = TRUE;
1749 if (hi->root.type == bfd_link_hash_indirect)
1752 /* This union may have been set to be non-NULL when this symbol
1753 was seen in a dynamic object. We must force the union to be
1754 NULL, so that it is correct for a regular symbol. */
1755 h->verinfo.vertree = NULL;
1758 /* Handle the special case of a new common symbol merging with an
1759 old symbol that looks like it might be a common symbol defined in
1760 a shared object. Note that we have already handled the case in
1761 which a new common symbol should simply override the definition
1762 in the shared library. */
1765 && bfd_is_com_section (sec)
1768 /* It would be best if we could set the hash table entry to a
1769 common symbol, but we don't know what to use for the section
1770 or the alignment. */
1771 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1772 bfd_link_hash_common, sym->st_size);
1774 /* If the presumed common symbol in the dynamic object is
1775 larger, pretend that the new symbol has its size. */
1777 if (h->size > *pvalue)
1780 /* We need to remember the alignment required by the symbol
1781 in the dynamic object. */
1782 BFD_ASSERT (pold_alignment);
1783 *pold_alignment = h->root.u.def.section->alignment_power;
1786 olddyncommon = FALSE;
1788 h->root.type = bfd_link_hash_undefined;
1789 h->root.u.undef.abfd = h->root.u.def.section->owner;
1791 *size_change_ok = TRUE;
1792 *type_change_ok = TRUE;
1794 if (hi->root.type == bfd_link_hash_indirect)
1797 h->verinfo.vertree = NULL;
1802 /* Handle the case where we had a versioned symbol in a dynamic
1803 library and now find a definition in a normal object. In this
1804 case, we make the versioned symbol point to the normal one. */
1805 flip->root.type = h->root.type;
1806 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1807 h->root.type = bfd_link_hash_indirect;
1808 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1809 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1813 flip->ref_dynamic = 1;
1820 /* This function is called to create an indirect symbol from the
1821 default for the symbol with the default version if needed. The
1822 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1823 set DYNSYM if the new indirect symbol is dynamic. */
1826 _bfd_elf_add_default_symbol (bfd *abfd,
1827 struct bfd_link_info *info,
1828 struct elf_link_hash_entry *h,
1830 Elf_Internal_Sym *sym,
1834 bfd_boolean *dynsym)
1836 bfd_boolean type_change_ok;
1837 bfd_boolean size_change_ok;
1840 struct elf_link_hash_entry *hi;
1841 struct bfd_link_hash_entry *bh;
1842 const struct elf_backend_data *bed;
1843 bfd_boolean collect;
1844 bfd_boolean dynamic;
1845 bfd_boolean override;
1847 size_t len, shortlen;
1849 bfd_boolean matched;
1851 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1854 /* If this symbol has a version, and it is the default version, we
1855 create an indirect symbol from the default name to the fully
1856 decorated name. This will cause external references which do not
1857 specify a version to be bound to this version of the symbol. */
1858 p = strchr (name, ELF_VER_CHR);
1859 if (h->versioned == unknown)
1863 h->versioned = unversioned;
1868 if (p[1] != ELF_VER_CHR)
1870 h->versioned = versioned_hidden;
1874 h->versioned = versioned;
1879 /* PR ld/19073: We may see an unversioned definition after the
1885 bed = get_elf_backend_data (abfd);
1886 collect = bed->collect;
1887 dynamic = (abfd->flags & DYNAMIC) != 0;
1889 shortlen = p - name;
1890 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1891 if (shortname == NULL)
1893 memcpy (shortname, name, shortlen);
1894 shortname[shortlen] = '\0';
1896 /* We are going to create a new symbol. Merge it with any existing
1897 symbol with this name. For the purposes of the merge, act as
1898 though we were defining the symbol we just defined, although we
1899 actually going to define an indirect symbol. */
1900 type_change_ok = FALSE;
1901 size_change_ok = FALSE;
1904 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1905 &hi, poldbfd, NULL, NULL, &skip, &override,
1906 &type_change_ok, &size_change_ok, &matched))
1912 if (hi->def_regular)
1914 /* If the undecorated symbol will have a version added by a
1915 script different to H, then don't indirect to/from the
1916 undecorated symbol. This isn't ideal because we may not yet
1917 have seen symbol versions, if given by a script on the
1918 command line rather than via --version-script. */
1919 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1924 = bfd_find_version_for_sym (info->version_info,
1925 hi->root.root.string, &hide);
1926 if (hi->verinfo.vertree != NULL && hide)
1928 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1932 if (hi->verinfo.vertree != NULL
1933 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1939 /* Add the default symbol if not performing a relocatable link. */
1940 if (! bfd_link_relocatable (info))
1943 if (bh->type == bfd_link_hash_defined
1944 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1946 /* Mark the previous definition from IR object as
1947 undefined so that the generic linker will override
1949 bh->type = bfd_link_hash_undefined;
1950 bh->u.undef.abfd = bh->u.def.section->owner;
1952 if (! (_bfd_generic_link_add_one_symbol
1953 (info, abfd, shortname, BSF_INDIRECT,
1954 bfd_ind_section_ptr,
1955 0, name, FALSE, collect, &bh)))
1957 hi = (struct elf_link_hash_entry *) bh;
1962 /* In this case the symbol named SHORTNAME is overriding the
1963 indirect symbol we want to add. We were planning on making
1964 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1965 is the name without a version. NAME is the fully versioned
1966 name, and it is the default version.
1968 Overriding means that we already saw a definition for the
1969 symbol SHORTNAME in a regular object, and it is overriding
1970 the symbol defined in the dynamic object.
1972 When this happens, we actually want to change NAME, the
1973 symbol we just added, to refer to SHORTNAME. This will cause
1974 references to NAME in the shared object to become references
1975 to SHORTNAME in the regular object. This is what we expect
1976 when we override a function in a shared object: that the
1977 references in the shared object will be mapped to the
1978 definition in the regular object. */
1980 while (hi->root.type == bfd_link_hash_indirect
1981 || hi->root.type == bfd_link_hash_warning)
1982 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1984 h->root.type = bfd_link_hash_indirect;
1985 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1989 hi->ref_dynamic = 1;
1993 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1998 /* Now set HI to H, so that the following code will set the
1999 other fields correctly. */
2003 /* Check if HI is a warning symbol. */
2004 if (hi->root.type == bfd_link_hash_warning)
2005 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2007 /* If there is a duplicate definition somewhere, then HI may not
2008 point to an indirect symbol. We will have reported an error to
2009 the user in that case. */
2011 if (hi->root.type == bfd_link_hash_indirect)
2013 struct elf_link_hash_entry *ht;
2015 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2016 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2018 /* A reference to the SHORTNAME symbol from a dynamic library
2019 will be satisfied by the versioned symbol at runtime. In
2020 effect, we have a reference to the versioned symbol. */
2021 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2022 hi->dynamic_def |= ht->dynamic_def;
2024 /* See if the new flags lead us to realize that the symbol must
2030 if (! bfd_link_executable (info)
2037 if (hi->ref_regular)
2043 /* We also need to define an indirection from the nondefault version
2047 len = strlen (name);
2048 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2049 if (shortname == NULL)
2051 memcpy (shortname, name, shortlen);
2052 memcpy (shortname + shortlen, p + 1, len - shortlen);
2054 /* Once again, merge with any existing symbol. */
2055 type_change_ok = FALSE;
2056 size_change_ok = FALSE;
2058 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2059 &hi, poldbfd, NULL, NULL, &skip, &override,
2060 &type_change_ok, &size_change_ok, &matched))
2068 /* Here SHORTNAME is a versioned name, so we don't expect to see
2069 the type of override we do in the case above unless it is
2070 overridden by a versioned definition. */
2071 if (hi->root.type != bfd_link_hash_defined
2072 && hi->root.type != bfd_link_hash_defweak)
2074 /* xgettext:c-format */
2075 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2081 if (! (_bfd_generic_link_add_one_symbol
2082 (info, abfd, shortname, BSF_INDIRECT,
2083 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2085 hi = (struct elf_link_hash_entry *) bh;
2087 /* If there is a duplicate definition somewhere, then HI may not
2088 point to an indirect symbol. We will have reported an error
2089 to the user in that case. */
2091 if (hi->root.type == bfd_link_hash_indirect)
2093 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2094 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2095 hi->dynamic_def |= h->dynamic_def;
2097 /* See if the new flags lead us to realize that the symbol
2103 if (! bfd_link_executable (info)
2109 if (hi->ref_regular)
2119 /* This routine is used to export all defined symbols into the dynamic
2120 symbol table. It is called via elf_link_hash_traverse. */
2123 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2125 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2127 /* Ignore indirect symbols. These are added by the versioning code. */
2128 if (h->root.type == bfd_link_hash_indirect)
2131 /* Ignore this if we won't export it. */
2132 if (!eif->info->export_dynamic && !h->dynamic)
2135 if (h->dynindx == -1
2136 && (h->def_regular || h->ref_regular)
2137 && ! bfd_hide_sym_by_version (eif->info->version_info,
2138 h->root.root.string))
2140 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2150 /* Look through the symbols which are defined in other shared
2151 libraries and referenced here. Update the list of version
2152 dependencies. This will be put into the .gnu.version_r section.
2153 This function is called via elf_link_hash_traverse. */
2156 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2159 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2160 Elf_Internal_Verneed *t;
2161 Elf_Internal_Vernaux *a;
2164 /* We only care about symbols defined in shared objects with version
2169 || h->verinfo.verdef == NULL
2170 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2171 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2174 /* See if we already know about this version. */
2175 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2179 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2182 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2183 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2189 /* This is a new version. Add it to tree we are building. */
2194 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2197 rinfo->failed = TRUE;
2201 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2202 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2203 elf_tdata (rinfo->info->output_bfd)->verref = t;
2207 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2210 rinfo->failed = TRUE;
2214 /* Note that we are copying a string pointer here, and testing it
2215 above. If bfd_elf_string_from_elf_section is ever changed to
2216 discard the string data when low in memory, this will have to be
2218 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2220 a->vna_flags = h->verinfo.verdef->vd_flags;
2221 a->vna_nextptr = t->vn_auxptr;
2223 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2226 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2233 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2234 hidden. Set *T_P to NULL if there is no match. */
2237 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2238 struct elf_link_hash_entry *h,
2239 const char *version_p,
2240 struct bfd_elf_version_tree **t_p,
2243 struct bfd_elf_version_tree *t;
2245 /* Look for the version. If we find it, it is no longer weak. */
2246 for (t = info->version_info; t != NULL; t = t->next)
2248 if (strcmp (t->name, version_p) == 0)
2252 struct bfd_elf_version_expr *d;
2254 len = version_p - h->root.root.string;
2255 alc = (char *) bfd_malloc (len);
2258 memcpy (alc, h->root.root.string, len - 1);
2259 alc[len - 1] = '\0';
2260 if (alc[len - 2] == ELF_VER_CHR)
2261 alc[len - 2] = '\0';
2263 h->verinfo.vertree = t;
2267 if (t->globals.list != NULL)
2268 d = (*t->match) (&t->globals, NULL, alc);
2270 /* See if there is anything to force this symbol to
2272 if (d == NULL && t->locals.list != NULL)
2274 d = (*t->match) (&t->locals, NULL, alc);
2277 && ! info->export_dynamic)
2291 /* Return TRUE if the symbol H is hidden by version script. */
2294 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2295 struct elf_link_hash_entry *h)
2298 bfd_boolean hide = FALSE;
2299 const struct elf_backend_data *bed
2300 = get_elf_backend_data (info->output_bfd);
2302 /* Version script only hides symbols defined in regular objects. */
2303 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2306 p = strchr (h->root.root.string, ELF_VER_CHR);
2307 if (p != NULL && h->verinfo.vertree == NULL)
2309 struct bfd_elf_version_tree *t;
2312 if (*p == ELF_VER_CHR)
2316 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2320 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2325 /* If we don't have a version for this symbol, see if we can find
2327 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2330 = bfd_find_version_for_sym (info->version_info,
2331 h->root.root.string, &hide);
2332 if (h->verinfo.vertree != NULL && hide)
2334 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2342 /* Figure out appropriate versions for all the symbols. We may not
2343 have the version number script until we have read all of the input
2344 files, so until that point we don't know which symbols should be
2345 local. This function is called via elf_link_hash_traverse. */
2348 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2350 struct elf_info_failed *sinfo;
2351 struct bfd_link_info *info;
2352 const struct elf_backend_data *bed;
2353 struct elf_info_failed eif;
2357 sinfo = (struct elf_info_failed *) data;
2360 /* Fix the symbol flags. */
2363 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2366 sinfo->failed = TRUE;
2370 bed = get_elf_backend_data (info->output_bfd);
2372 /* We only need version numbers for symbols defined in regular
2374 if (!h->def_regular)
2376 /* Hide symbols defined in discarded input sections. */
2377 if ((h->root.type == bfd_link_hash_defined
2378 || h->root.type == bfd_link_hash_defweak)
2379 && discarded_section (h->root.u.def.section))
2380 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2385 p = strchr (h->root.root.string, ELF_VER_CHR);
2386 if (p != NULL && h->verinfo.vertree == NULL)
2388 struct bfd_elf_version_tree *t;
2391 if (*p == ELF_VER_CHR)
2394 /* If there is no version string, we can just return out. */
2398 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2400 sinfo->failed = TRUE;
2405 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2407 /* If we are building an application, we need to create a
2408 version node for this version. */
2409 if (t == NULL && bfd_link_executable (info))
2411 struct bfd_elf_version_tree **pp;
2414 /* If we aren't going to export this symbol, we don't need
2415 to worry about it. */
2416 if (h->dynindx == -1)
2419 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2423 sinfo->failed = TRUE;
2428 t->name_indx = (unsigned int) -1;
2432 /* Don't count anonymous version tag. */
2433 if (sinfo->info->version_info != NULL
2434 && sinfo->info->version_info->vernum == 0)
2436 for (pp = &sinfo->info->version_info;
2440 t->vernum = version_index;
2444 h->verinfo.vertree = t;
2448 /* We could not find the version for a symbol when
2449 generating a shared archive. Return an error. */
2451 /* xgettext:c-format */
2452 (_("%pB: version node not found for symbol %s"),
2453 info->output_bfd, h->root.root.string);
2454 bfd_set_error (bfd_error_bad_value);
2455 sinfo->failed = TRUE;
2460 /* If we don't have a version for this symbol, see if we can find
2463 && h->verinfo.vertree == NULL
2464 && sinfo->info->version_info != NULL)
2467 = bfd_find_version_for_sym (sinfo->info->version_info,
2468 h->root.root.string, &hide);
2469 if (h->verinfo.vertree != NULL && hide)
2470 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2476 /* Read and swap the relocs from the section indicated by SHDR. This
2477 may be either a REL or a RELA section. The relocations are
2478 translated into RELA relocations and stored in INTERNAL_RELOCS,
2479 which should have already been allocated to contain enough space.
2480 The EXTERNAL_RELOCS are a buffer where the external form of the
2481 relocations should be stored.
2483 Returns FALSE if something goes wrong. */
2486 elf_link_read_relocs_from_section (bfd *abfd,
2488 Elf_Internal_Shdr *shdr,
2489 void *external_relocs,
2490 Elf_Internal_Rela *internal_relocs)
2492 const struct elf_backend_data *bed;
2493 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2494 const bfd_byte *erela;
2495 const bfd_byte *erelaend;
2496 Elf_Internal_Rela *irela;
2497 Elf_Internal_Shdr *symtab_hdr;
2500 /* Position ourselves at the start of the section. */
2501 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2504 /* Read the relocations. */
2505 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2508 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2509 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2511 bed = get_elf_backend_data (abfd);
2513 /* Convert the external relocations to the internal format. */
2514 if (shdr->sh_entsize == bed->s->sizeof_rel)
2515 swap_in = bed->s->swap_reloc_in;
2516 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2517 swap_in = bed->s->swap_reloca_in;
2520 bfd_set_error (bfd_error_wrong_format);
2524 erela = (const bfd_byte *) external_relocs;
2525 erelaend = erela + shdr->sh_size;
2526 irela = internal_relocs;
2527 while (erela < erelaend)
2531 (*swap_in) (abfd, erela, irela);
2532 r_symndx = ELF32_R_SYM (irela->r_info);
2533 if (bed->s->arch_size == 64)
2537 if ((size_t) r_symndx >= nsyms)
2540 /* xgettext:c-format */
2541 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2542 " for offset %#" PRIx64 " in section `%pA'"),
2543 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2544 (uint64_t) irela->r_offset, sec);
2545 bfd_set_error (bfd_error_bad_value);
2549 else if (r_symndx != STN_UNDEF)
2552 /* xgettext:c-format */
2553 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2554 " for offset %#" PRIx64 " in section `%pA'"
2555 " when the object file has no symbol table"),
2556 abfd, (uint64_t) r_symndx,
2557 (uint64_t) irela->r_offset, sec);
2558 bfd_set_error (bfd_error_bad_value);
2561 irela += bed->s->int_rels_per_ext_rel;
2562 erela += shdr->sh_entsize;
2568 /* Read and swap the relocs for a section O. They may have been
2569 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2570 not NULL, they are used as buffers to read into. They are known to
2571 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2572 the return value is allocated using either malloc or bfd_alloc,
2573 according to the KEEP_MEMORY argument. If O has two relocation
2574 sections (both REL and RELA relocations), then the REL_HDR
2575 relocations will appear first in INTERNAL_RELOCS, followed by the
2576 RELA_HDR relocations. */
2579 _bfd_elf_link_read_relocs (bfd *abfd,
2581 void *external_relocs,
2582 Elf_Internal_Rela *internal_relocs,
2583 bfd_boolean keep_memory)
2585 void *alloc1 = NULL;
2586 Elf_Internal_Rela *alloc2 = NULL;
2587 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2588 struct bfd_elf_section_data *esdo = elf_section_data (o);
2589 Elf_Internal_Rela *internal_rela_relocs;
2591 if (esdo->relocs != NULL)
2592 return esdo->relocs;
2594 if (o->reloc_count == 0)
2597 if (internal_relocs == NULL)
2601 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2603 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2605 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2606 if (internal_relocs == NULL)
2610 if (external_relocs == NULL)
2612 bfd_size_type size = 0;
2615 size += esdo->rel.hdr->sh_size;
2617 size += esdo->rela.hdr->sh_size;
2619 alloc1 = bfd_malloc (size);
2622 external_relocs = alloc1;
2625 internal_rela_relocs = internal_relocs;
2628 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2632 external_relocs = (((bfd_byte *) external_relocs)
2633 + esdo->rel.hdr->sh_size);
2634 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2635 * bed->s->int_rels_per_ext_rel);
2639 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2641 internal_rela_relocs)))
2644 /* Cache the results for next time, if we can. */
2646 esdo->relocs = internal_relocs;
2651 /* Don't free alloc2, since if it was allocated we are passing it
2652 back (under the name of internal_relocs). */
2654 return internal_relocs;
2662 bfd_release (abfd, alloc2);
2669 /* Compute the size of, and allocate space for, REL_HDR which is the
2670 section header for a section containing relocations for O. */
2673 _bfd_elf_link_size_reloc_section (bfd *abfd,
2674 struct bfd_elf_section_reloc_data *reldata)
2676 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2678 /* That allows us to calculate the size of the section. */
2679 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2681 /* The contents field must last into write_object_contents, so we
2682 allocate it with bfd_alloc rather than malloc. Also since we
2683 cannot be sure that the contents will actually be filled in,
2684 we zero the allocated space. */
2685 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2686 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2689 if (reldata->hashes == NULL && reldata->count)
2691 struct elf_link_hash_entry **p;
2693 p = ((struct elf_link_hash_entry **)
2694 bfd_zmalloc (reldata->count * sizeof (*p)));
2698 reldata->hashes = p;
2704 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2705 originated from the section given by INPUT_REL_HDR) to the
2709 _bfd_elf_link_output_relocs (bfd *output_bfd,
2710 asection *input_section,
2711 Elf_Internal_Shdr *input_rel_hdr,
2712 Elf_Internal_Rela *internal_relocs,
2713 struct elf_link_hash_entry **rel_hash
2716 Elf_Internal_Rela *irela;
2717 Elf_Internal_Rela *irelaend;
2719 struct bfd_elf_section_reloc_data *output_reldata;
2720 asection *output_section;
2721 const struct elf_backend_data *bed;
2722 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2723 struct bfd_elf_section_data *esdo;
2725 output_section = input_section->output_section;
2727 bed = get_elf_backend_data (output_bfd);
2728 esdo = elf_section_data (output_section);
2729 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2731 output_reldata = &esdo->rel;
2732 swap_out = bed->s->swap_reloc_out;
2734 else if (esdo->rela.hdr
2735 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2737 output_reldata = &esdo->rela;
2738 swap_out = bed->s->swap_reloca_out;
2743 /* xgettext:c-format */
2744 (_("%pB: relocation size mismatch in %pB section %pA"),
2745 output_bfd, input_section->owner, input_section);
2746 bfd_set_error (bfd_error_wrong_format);
2750 erel = output_reldata->hdr->contents;
2751 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2752 irela = internal_relocs;
2753 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2754 * bed->s->int_rels_per_ext_rel);
2755 while (irela < irelaend)
2757 (*swap_out) (output_bfd, irela, erel);
2758 irela += bed->s->int_rels_per_ext_rel;
2759 erel += input_rel_hdr->sh_entsize;
2762 /* Bump the counter, so that we know where to add the next set of
2764 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2769 /* Make weak undefined symbols in PIE dynamic. */
2772 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2773 struct elf_link_hash_entry *h)
2775 if (bfd_link_pie (info)
2777 && h->root.type == bfd_link_hash_undefweak)
2778 return bfd_elf_link_record_dynamic_symbol (info, h);
2783 /* Fix up the flags for a symbol. This handles various cases which
2784 can only be fixed after all the input files are seen. This is
2785 currently called by both adjust_dynamic_symbol and
2786 assign_sym_version, which is unnecessary but perhaps more robust in
2787 the face of future changes. */
2790 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2791 struct elf_info_failed *eif)
2793 const struct elf_backend_data *bed;
2795 /* If this symbol was mentioned in a non-ELF file, try to set
2796 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2797 permit a non-ELF file to correctly refer to a symbol defined in
2798 an ELF dynamic object. */
2801 while (h->root.type == bfd_link_hash_indirect)
2802 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2804 if (h->root.type != bfd_link_hash_defined
2805 && h->root.type != bfd_link_hash_defweak)
2808 h->ref_regular_nonweak = 1;
2812 if (h->root.u.def.section->owner != NULL
2813 && (bfd_get_flavour (h->root.u.def.section->owner)
2814 == bfd_target_elf_flavour))
2817 h->ref_regular_nonweak = 1;
2823 if (h->dynindx == -1
2827 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2836 /* Unfortunately, NON_ELF is only correct if the symbol
2837 was first seen in a non-ELF file. Fortunately, if the symbol
2838 was first seen in an ELF file, we're probably OK unless the
2839 symbol was defined in a non-ELF file. Catch that case here.
2840 FIXME: We're still in trouble if the symbol was first seen in
2841 a dynamic object, and then later in a non-ELF regular object. */
2842 if ((h->root.type == bfd_link_hash_defined
2843 || h->root.type == bfd_link_hash_defweak)
2845 && (h->root.u.def.section->owner != NULL
2846 ? (bfd_get_flavour (h->root.u.def.section->owner)
2847 != bfd_target_elf_flavour)
2848 : (bfd_is_abs_section (h->root.u.def.section)
2849 && !h->def_dynamic)))
2853 /* Backend specific symbol fixup. */
2854 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2855 if (bed->elf_backend_fixup_symbol
2856 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2859 /* If this is a final link, and the symbol was defined as a common
2860 symbol in a regular object file, and there was no definition in
2861 any dynamic object, then the linker will have allocated space for
2862 the symbol in a common section but the DEF_REGULAR
2863 flag will not have been set. */
2864 if (h->root.type == bfd_link_hash_defined
2868 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2871 /* Symbols defined in discarded sections shouldn't be dynamic. */
2872 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2873 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2875 /* If a weak undefined symbol has non-default visibility, we also
2876 hide it from the dynamic linker. */
2877 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2878 && h->root.type == bfd_link_hash_undefweak)
2879 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2881 /* A hidden versioned symbol in executable should be forced local if
2882 it is is locally defined, not referenced by shared library and not
2884 else if (bfd_link_executable (eif->info)
2885 && h->versioned == versioned_hidden
2886 && !eif->info->export_dynamic
2890 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2892 /* If -Bsymbolic was used (which means to bind references to global
2893 symbols to the definition within the shared object), and this
2894 symbol was defined in a regular object, then it actually doesn't
2895 need a PLT entry. Likewise, if the symbol has non-default
2896 visibility. If the symbol has hidden or internal visibility, we
2897 will force it local. */
2898 else if (h->needs_plt
2899 && bfd_link_pic (eif->info)
2900 && is_elf_hash_table (eif->info->hash)
2901 && (SYMBOLIC_BIND (eif->info, h)
2902 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2905 bfd_boolean force_local;
2907 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2908 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2909 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2912 /* If this is a weak defined symbol in a dynamic object, and we know
2913 the real definition in the dynamic object, copy interesting flags
2914 over to the real definition. */
2915 if (h->is_weakalias)
2917 struct elf_link_hash_entry *def = weakdef (h);
2919 /* If the real definition is defined by a regular object file,
2920 don't do anything special. See the longer description in
2921 _bfd_elf_adjust_dynamic_symbol, below. */
2922 if (def->def_regular)
2925 while ((h = h->u.alias) != def)
2926 h->is_weakalias = 0;
2930 while (h->root.type == bfd_link_hash_indirect)
2931 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2932 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2933 || h->root.type == bfd_link_hash_defweak);
2934 BFD_ASSERT (def->def_dynamic);
2935 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
2936 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2943 /* Make the backend pick a good value for a dynamic symbol. This is
2944 called via elf_link_hash_traverse, and also calls itself
2948 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2950 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2951 struct elf_link_hash_table *htab;
2952 const struct elf_backend_data *bed;
2954 if (! is_elf_hash_table (eif->info->hash))
2957 /* Ignore indirect symbols. These are added by the versioning code. */
2958 if (h->root.type == bfd_link_hash_indirect)
2961 /* Fix the symbol flags. */
2962 if (! _bfd_elf_fix_symbol_flags (h, eif))
2965 htab = elf_hash_table (eif->info);
2966 bed = get_elf_backend_data (htab->dynobj);
2968 if (h->root.type == bfd_link_hash_undefweak)
2970 if (eif->info->dynamic_undefined_weak == 0)
2971 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2972 else if (eif->info->dynamic_undefined_weak > 0
2974 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2975 && !bfd_hide_sym_by_version (eif->info->version_info,
2976 h->root.root.string))
2978 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2986 /* If this symbol does not require a PLT entry, and it is not
2987 defined by a dynamic object, or is not referenced by a regular
2988 object, ignore it. We do have to handle a weak defined symbol,
2989 even if no regular object refers to it, if we decided to add it
2990 to the dynamic symbol table. FIXME: Do we normally need to worry
2991 about symbols which are defined by one dynamic object and
2992 referenced by another one? */
2994 && h->type != STT_GNU_IFUNC
2998 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3000 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3004 /* If we've already adjusted this symbol, don't do it again. This
3005 can happen via a recursive call. */
3006 if (h->dynamic_adjusted)
3009 /* Don't look at this symbol again. Note that we must set this
3010 after checking the above conditions, because we may look at a
3011 symbol once, decide not to do anything, and then get called
3012 recursively later after REF_REGULAR is set below. */
3013 h->dynamic_adjusted = 1;
3015 /* If this is a weak definition, and we know a real definition, and
3016 the real symbol is not itself defined by a regular object file,
3017 then get a good value for the real definition. We handle the
3018 real symbol first, for the convenience of the backend routine.
3020 Note that there is a confusing case here. If the real definition
3021 is defined by a regular object file, we don't get the real symbol
3022 from the dynamic object, but we do get the weak symbol. If the
3023 processor backend uses a COPY reloc, then if some routine in the
3024 dynamic object changes the real symbol, we will not see that
3025 change in the corresponding weak symbol. This is the way other
3026 ELF linkers work as well, and seems to be a result of the shared
3029 I will clarify this issue. Most SVR4 shared libraries define the
3030 variable _timezone and define timezone as a weak synonym. The
3031 tzset call changes _timezone. If you write
3032 extern int timezone;
3034 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3035 you might expect that, since timezone is a synonym for _timezone,
3036 the same number will print both times. However, if the processor
3037 backend uses a COPY reloc, then actually timezone will be copied
3038 into your process image, and, since you define _timezone
3039 yourself, _timezone will not. Thus timezone and _timezone will
3040 wind up at different memory locations. The tzset call will set
3041 _timezone, leaving timezone unchanged. */
3043 if (h->is_weakalias)
3045 struct elf_link_hash_entry *def = weakdef (h);
3047 /* If we get to this point, there is an implicit reference to
3048 the alias by a regular object file via the weak symbol H. */
3049 def->ref_regular = 1;
3051 /* Ensure that the backend adjust_dynamic_symbol function sees
3052 the strong alias before H by recursively calling ourselves. */
3053 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3057 /* If a symbol has no type and no size and does not require a PLT
3058 entry, then we are probably about to do the wrong thing here: we
3059 are probably going to create a COPY reloc for an empty object.
3060 This case can arise when a shared object is built with assembly
3061 code, and the assembly code fails to set the symbol type. */
3063 && h->type == STT_NOTYPE
3066 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3067 h->root.root.string);
3069 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3078 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3082 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3083 struct elf_link_hash_entry *h,
3086 unsigned int power_of_two;
3088 asection *sec = h->root.u.def.section;
3090 /* The section alignment of the definition is the maximum alignment
3091 requirement of symbols defined in the section. Since we don't
3092 know the symbol alignment requirement, we start with the
3093 maximum alignment and check low bits of the symbol address
3094 for the minimum alignment. */
3095 power_of_two = bfd_get_section_alignment (sec->owner, sec);
3096 mask = ((bfd_vma) 1 << power_of_two) - 1;
3097 while ((h->root.u.def.value & mask) != 0)
3103 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
3106 /* Adjust the section alignment if needed. */
3107 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
3112 /* We make sure that the symbol will be aligned properly. */
3113 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3115 /* Define the symbol as being at this point in DYNBSS. */
3116 h->root.u.def.section = dynbss;
3117 h->root.u.def.value = dynbss->size;
3119 /* Increment the size of DYNBSS to make room for the symbol. */
3120 dynbss->size += h->size;
3122 /* No error if extern_protected_data is true. */
3123 if (h->protected_def
3124 && (!info->extern_protected_data
3125 || (info->extern_protected_data < 0
3126 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3127 info->callbacks->einfo
3128 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3129 h->root.root.string);
3134 /* Adjust all external symbols pointing into SEC_MERGE sections
3135 to reflect the object merging within the sections. */
3138 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3142 if ((h->root.type == bfd_link_hash_defined
3143 || h->root.type == bfd_link_hash_defweak)
3144 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3145 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3147 bfd *output_bfd = (bfd *) data;
3149 h->root.u.def.value =
3150 _bfd_merged_section_offset (output_bfd,
3151 &h->root.u.def.section,
3152 elf_section_data (sec)->sec_info,
3153 h->root.u.def.value);
3159 /* Returns false if the symbol referred to by H should be considered
3160 to resolve local to the current module, and true if it should be
3161 considered to bind dynamically. */
3164 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3165 struct bfd_link_info *info,
3166 bfd_boolean not_local_protected)
3168 bfd_boolean binding_stays_local_p;
3169 const struct elf_backend_data *bed;
3170 struct elf_link_hash_table *hash_table;
3175 while (h->root.type == bfd_link_hash_indirect
3176 || h->root.type == bfd_link_hash_warning)
3177 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3179 /* If it was forced local, then clearly it's not dynamic. */
3180 if (h->dynindx == -1)
3182 if (h->forced_local)
3185 /* Identify the cases where name binding rules say that a
3186 visible symbol resolves locally. */
3187 binding_stays_local_p = (bfd_link_executable (info)
3188 || SYMBOLIC_BIND (info, h));
3190 switch (ELF_ST_VISIBILITY (h->other))
3197 hash_table = elf_hash_table (info);
3198 if (!is_elf_hash_table (hash_table))
3201 bed = get_elf_backend_data (hash_table->dynobj);
3203 /* Proper resolution for function pointer equality may require
3204 that these symbols perhaps be resolved dynamically, even though
3205 we should be resolving them to the current module. */
3206 if (!not_local_protected || !bed->is_function_type (h->type))
3207 binding_stays_local_p = TRUE;
3214 /* If it isn't defined locally, then clearly it's dynamic. */
3215 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3218 /* Otherwise, the symbol is dynamic if binding rules don't tell
3219 us that it remains local. */
3220 return !binding_stays_local_p;
3223 /* Return true if the symbol referred to by H should be considered
3224 to resolve local to the current module, and false otherwise. Differs
3225 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3226 undefined symbols. The two functions are virtually identical except
3227 for the place where dynindx == -1 is tested. If that test is true,
3228 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3229 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3231 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3232 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3233 treatment of undefined weak symbols. For those that do not make
3234 undefined weak symbols dynamic, both functions may return false. */
3237 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3238 struct bfd_link_info *info,
3239 bfd_boolean local_protected)
3241 const struct elf_backend_data *bed;
3242 struct elf_link_hash_table *hash_table;
3244 /* If it's a local sym, of course we resolve locally. */
3248 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3249 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3250 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3253 /* Forced local symbols resolve locally. */
3254 if (h->forced_local)
3257 /* Common symbols that become definitions don't get the DEF_REGULAR
3258 flag set, so test it first, and don't bail out. */
3259 if (ELF_COMMON_DEF_P (h))
3261 /* If we don't have a definition in a regular file, then we can't
3262 resolve locally. The sym is either undefined or dynamic. */
3263 else if (!h->def_regular)
3266 /* Non-dynamic symbols resolve locally. */
3267 if (h->dynindx == -1)
3270 /* At this point, we know the symbol is defined and dynamic. In an
3271 executable it must resolve locally, likewise when building symbolic
3272 shared libraries. */
3273 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3276 /* Now deal with defined dynamic symbols in shared libraries. Ones
3277 with default visibility might not resolve locally. */
3278 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3281 hash_table = elf_hash_table (info);
3282 if (!is_elf_hash_table (hash_table))
3285 bed = get_elf_backend_data (hash_table->dynobj);
3287 /* If extern_protected_data is false, STV_PROTECTED non-function
3288 symbols are local. */
3289 if ((!info->extern_protected_data
3290 || (info->extern_protected_data < 0
3291 && !bed->extern_protected_data))
3292 && !bed->is_function_type (h->type))
3295 /* Function pointer equality tests may require that STV_PROTECTED
3296 symbols be treated as dynamic symbols. If the address of a
3297 function not defined in an executable is set to that function's
3298 plt entry in the executable, then the address of the function in
3299 a shared library must also be the plt entry in the executable. */
3300 return local_protected;
3303 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3304 aligned. Returns the first TLS output section. */
3306 struct bfd_section *
3307 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3309 struct bfd_section *sec, *tls;
3310 unsigned int align = 0;
3312 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3313 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3317 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3318 if (sec->alignment_power > align)
3319 align = sec->alignment_power;
3321 elf_hash_table (info)->tls_sec = tls;
3323 /* Ensure the alignment of the first section is the largest alignment,
3324 so that the tls segment starts aligned. */
3326 tls->alignment_power = align;
3331 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3333 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3334 Elf_Internal_Sym *sym)
3336 const struct elf_backend_data *bed;
3338 /* Local symbols do not count, but target specific ones might. */
3339 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3340 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3343 bed = get_elf_backend_data (abfd);
3344 /* Function symbols do not count. */
3345 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3348 /* If the section is undefined, then so is the symbol. */
3349 if (sym->st_shndx == SHN_UNDEF)
3352 /* If the symbol is defined in the common section, then
3353 it is a common definition and so does not count. */
3354 if (bed->common_definition (sym))
3357 /* If the symbol is in a target specific section then we
3358 must rely upon the backend to tell us what it is. */
3359 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3360 /* FIXME - this function is not coded yet:
3362 return _bfd_is_global_symbol_definition (abfd, sym);
3364 Instead for now assume that the definition is not global,
3365 Even if this is wrong, at least the linker will behave
3366 in the same way that it used to do. */
3372 /* Search the symbol table of the archive element of the archive ABFD
3373 whose archive map contains a mention of SYMDEF, and determine if
3374 the symbol is defined in this element. */
3376 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3378 Elf_Internal_Shdr * hdr;
3382 Elf_Internal_Sym *isymbuf;
3383 Elf_Internal_Sym *isym;
3384 Elf_Internal_Sym *isymend;
3387 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3391 if (! bfd_check_format (abfd, bfd_object))
3394 /* Select the appropriate symbol table. If we don't know if the
3395 object file is an IR object, give linker LTO plugin a chance to
3396 get the correct symbol table. */
3397 if (abfd->plugin_format == bfd_plugin_yes
3398 #if BFD_SUPPORTS_PLUGINS
3399 || (abfd->plugin_format == bfd_plugin_unknown
3400 && bfd_link_plugin_object_p (abfd))
3404 /* Use the IR symbol table if the object has been claimed by
3406 abfd = abfd->plugin_dummy_bfd;
3407 hdr = &elf_tdata (abfd)->symtab_hdr;
3409 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3410 hdr = &elf_tdata (abfd)->symtab_hdr;
3412 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3414 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3416 /* The sh_info field of the symtab header tells us where the
3417 external symbols start. We don't care about the local symbols. */
3418 if (elf_bad_symtab (abfd))
3420 extsymcount = symcount;
3425 extsymcount = symcount - hdr->sh_info;
3426 extsymoff = hdr->sh_info;
3429 if (extsymcount == 0)
3432 /* Read in the symbol table. */
3433 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3435 if (isymbuf == NULL)
3438 /* Scan the symbol table looking for SYMDEF. */
3440 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3444 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3449 if (strcmp (name, symdef->name) == 0)
3451 result = is_global_data_symbol_definition (abfd, isym);
3461 /* Add an entry to the .dynamic table. */
3464 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3468 struct elf_link_hash_table *hash_table;
3469 const struct elf_backend_data *bed;
3471 bfd_size_type newsize;
3472 bfd_byte *newcontents;
3473 Elf_Internal_Dyn dyn;
3475 hash_table = elf_hash_table (info);
3476 if (! is_elf_hash_table (hash_table))
3479 if (tag == DT_RELA || tag == DT_REL)
3480 hash_table->dynamic_relocs = TRUE;
3482 bed = get_elf_backend_data (hash_table->dynobj);
3483 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3484 BFD_ASSERT (s != NULL);
3486 newsize = s->size + bed->s->sizeof_dyn;
3487 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3488 if (newcontents == NULL)
3492 dyn.d_un.d_val = val;
3493 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3496 s->contents = newcontents;
3501 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3502 otherwise just check whether one already exists. Returns -1 on error,
3503 1 if a DT_NEEDED tag already exists, and 0 on success. */
3506 elf_add_dt_needed_tag (bfd *abfd,
3507 struct bfd_link_info *info,
3511 struct elf_link_hash_table *hash_table;
3514 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3517 hash_table = elf_hash_table (info);
3518 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3519 if (strindex == (size_t) -1)
3522 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3525 const struct elf_backend_data *bed;
3528 bed = get_elf_backend_data (hash_table->dynobj);
3529 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3531 for (extdyn = sdyn->contents;
3532 extdyn < sdyn->contents + sdyn->size;
3533 extdyn += bed->s->sizeof_dyn)
3535 Elf_Internal_Dyn dyn;
3537 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3538 if (dyn.d_tag == DT_NEEDED
3539 && dyn.d_un.d_val == strindex)
3541 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3549 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3552 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3556 /* We were just checking for existence of the tag. */
3557 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3562 /* Return true if SONAME is on the needed list between NEEDED and STOP
3563 (or the end of list if STOP is NULL), and needed by a library that
3567 on_needed_list (const char *soname,
3568 struct bfd_link_needed_list *needed,
3569 struct bfd_link_needed_list *stop)
3571 struct bfd_link_needed_list *look;
3572 for (look = needed; look != stop; look = look->next)
3573 if (strcmp (soname, look->name) == 0
3574 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3575 /* If needed by a library that itself is not directly
3576 needed, recursively check whether that library is
3577 indirectly needed. Since we add DT_NEEDED entries to
3578 the end of the list, library dependencies appear after
3579 the library. Therefore search prior to the current
3580 LOOK, preventing possible infinite recursion. */
3581 || on_needed_list (elf_dt_name (look->by), needed, look)))
3587 /* Sort symbol by value, section, and size. */
3589 elf_sort_symbol (const void *arg1, const void *arg2)
3591 const struct elf_link_hash_entry *h1;
3592 const struct elf_link_hash_entry *h2;
3593 bfd_signed_vma vdiff;
3595 h1 = *(const struct elf_link_hash_entry **) arg1;
3596 h2 = *(const struct elf_link_hash_entry **) arg2;
3597 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3599 return vdiff > 0 ? 1 : -1;
3602 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3604 return sdiff > 0 ? 1 : -1;
3606 vdiff = h1->size - h2->size;
3607 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3610 /* This function is used to adjust offsets into .dynstr for
3611 dynamic symbols. This is called via elf_link_hash_traverse. */
3614 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3616 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3618 if (h->dynindx != -1)
3619 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3623 /* Assign string offsets in .dynstr, update all structures referencing
3627 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3629 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3630 struct elf_link_local_dynamic_entry *entry;
3631 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3632 bfd *dynobj = hash_table->dynobj;
3635 const struct elf_backend_data *bed;
3638 _bfd_elf_strtab_finalize (dynstr);
3639 size = _bfd_elf_strtab_size (dynstr);
3641 bed = get_elf_backend_data (dynobj);
3642 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3643 BFD_ASSERT (sdyn != NULL);
3645 /* Update all .dynamic entries referencing .dynstr strings. */
3646 for (extdyn = sdyn->contents;
3647 extdyn < sdyn->contents + sdyn->size;
3648 extdyn += bed->s->sizeof_dyn)
3650 Elf_Internal_Dyn dyn;
3652 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3656 dyn.d_un.d_val = size;
3666 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3671 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3674 /* Now update local dynamic symbols. */
3675 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3676 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3677 entry->isym.st_name);
3679 /* And the rest of dynamic symbols. */
3680 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3682 /* Adjust version definitions. */
3683 if (elf_tdata (output_bfd)->cverdefs)
3688 Elf_Internal_Verdef def;
3689 Elf_Internal_Verdaux defaux;
3691 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3695 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3697 p += sizeof (Elf_External_Verdef);
3698 if (def.vd_aux != sizeof (Elf_External_Verdef))
3700 for (i = 0; i < def.vd_cnt; ++i)
3702 _bfd_elf_swap_verdaux_in (output_bfd,
3703 (Elf_External_Verdaux *) p, &defaux);
3704 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3706 _bfd_elf_swap_verdaux_out (output_bfd,
3707 &defaux, (Elf_External_Verdaux *) p);
3708 p += sizeof (Elf_External_Verdaux);
3711 while (def.vd_next);
3714 /* Adjust version references. */
3715 if (elf_tdata (output_bfd)->verref)
3720 Elf_Internal_Verneed need;
3721 Elf_Internal_Vernaux needaux;
3723 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3727 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3729 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3730 _bfd_elf_swap_verneed_out (output_bfd, &need,
3731 (Elf_External_Verneed *) p);
3732 p += sizeof (Elf_External_Verneed);
3733 for (i = 0; i < need.vn_cnt; ++i)
3735 _bfd_elf_swap_vernaux_in (output_bfd,
3736 (Elf_External_Vernaux *) p, &needaux);
3737 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3739 _bfd_elf_swap_vernaux_out (output_bfd,
3741 (Elf_External_Vernaux *) p);
3742 p += sizeof (Elf_External_Vernaux);
3745 while (need.vn_next);
3751 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3752 The default is to only match when the INPUT and OUTPUT are exactly
3756 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3757 const bfd_target *output)
3759 return input == output;
3762 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3763 This version is used when different targets for the same architecture
3764 are virtually identical. */
3767 _bfd_elf_relocs_compatible (const bfd_target *input,
3768 const bfd_target *output)
3770 const struct elf_backend_data *obed, *ibed;
3772 if (input == output)
3775 ibed = xvec_get_elf_backend_data (input);
3776 obed = xvec_get_elf_backend_data (output);
3778 if (ibed->arch != obed->arch)
3781 /* If both backends are using this function, deem them compatible. */
3782 return ibed->relocs_compatible == obed->relocs_compatible;
3785 /* Make a special call to the linker "notice" function to tell it that
3786 we are about to handle an as-needed lib, or have finished
3787 processing the lib. */
3790 _bfd_elf_notice_as_needed (bfd *ibfd,
3791 struct bfd_link_info *info,
3792 enum notice_asneeded_action act)
3794 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3797 /* Check relocations an ELF object file. */
3800 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3802 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3803 struct elf_link_hash_table *htab = elf_hash_table (info);
3805 /* If this object is the same format as the output object, and it is
3806 not a shared library, then let the backend look through the
3809 This is required to build global offset table entries and to
3810 arrange for dynamic relocs. It is not required for the
3811 particular common case of linking non PIC code, even when linking
3812 against shared libraries, but unfortunately there is no way of
3813 knowing whether an object file has been compiled PIC or not.
3814 Looking through the relocs is not particularly time consuming.
3815 The problem is that we must either (1) keep the relocs in memory,
3816 which causes the linker to require additional runtime memory or
3817 (2) read the relocs twice from the input file, which wastes time.
3818 This would be a good case for using mmap.
3820 I have no idea how to handle linking PIC code into a file of a
3821 different format. It probably can't be done. */
3822 if ((abfd->flags & DYNAMIC) == 0
3823 && is_elf_hash_table (htab)
3824 && bed->check_relocs != NULL
3825 && elf_object_id (abfd) == elf_hash_table_id (htab)
3826 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3830 for (o = abfd->sections; o != NULL; o = o->next)
3832 Elf_Internal_Rela *internal_relocs;
3835 /* Don't check relocations in excluded sections. */
3836 if ((o->flags & SEC_RELOC) == 0
3837 || (o->flags & SEC_EXCLUDE) != 0
3838 || o->reloc_count == 0
3839 || ((info->strip == strip_all || info->strip == strip_debugger)
3840 && (o->flags & SEC_DEBUGGING) != 0)
3841 || bfd_is_abs_section (o->output_section))
3844 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3846 if (internal_relocs == NULL)
3849 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3851 if (elf_section_data (o)->relocs != internal_relocs)
3852 free (internal_relocs);
3862 /* Add symbols from an ELF object file to the linker hash table. */
3865 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3867 Elf_Internal_Ehdr *ehdr;
3868 Elf_Internal_Shdr *hdr;
3872 struct elf_link_hash_entry **sym_hash;
3873 bfd_boolean dynamic;
3874 Elf_External_Versym *extversym = NULL;
3875 Elf_External_Versym *ever;
3876 struct elf_link_hash_entry *weaks;
3877 struct elf_link_hash_entry **nondeflt_vers = NULL;
3878 size_t nondeflt_vers_cnt = 0;
3879 Elf_Internal_Sym *isymbuf = NULL;
3880 Elf_Internal_Sym *isym;
3881 Elf_Internal_Sym *isymend;
3882 const struct elf_backend_data *bed;
3883 bfd_boolean add_needed;
3884 struct elf_link_hash_table *htab;
3886 void *alloc_mark = NULL;
3887 struct bfd_hash_entry **old_table = NULL;
3888 unsigned int old_size = 0;
3889 unsigned int old_count = 0;
3890 void *old_tab = NULL;
3892 struct bfd_link_hash_entry *old_undefs = NULL;
3893 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3894 void *old_strtab = NULL;
3897 bfd_boolean just_syms;
3899 htab = elf_hash_table (info);
3900 bed = get_elf_backend_data (abfd);
3902 if ((abfd->flags & DYNAMIC) == 0)
3908 /* You can't use -r against a dynamic object. Also, there's no
3909 hope of using a dynamic object which does not exactly match
3910 the format of the output file. */
3911 if (bfd_link_relocatable (info)
3912 || !is_elf_hash_table (htab)
3913 || info->output_bfd->xvec != abfd->xvec)
3915 if (bfd_link_relocatable (info))
3916 bfd_set_error (bfd_error_invalid_operation);
3918 bfd_set_error (bfd_error_wrong_format);
3923 ehdr = elf_elfheader (abfd);
3924 if (info->warn_alternate_em
3925 && bed->elf_machine_code != ehdr->e_machine
3926 && ((bed->elf_machine_alt1 != 0
3927 && ehdr->e_machine == bed->elf_machine_alt1)
3928 || (bed->elf_machine_alt2 != 0
3929 && ehdr->e_machine == bed->elf_machine_alt2)))
3931 /* xgettext:c-format */
3932 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3933 ehdr->e_machine, abfd, bed->elf_machine_code);
3935 /* As a GNU extension, any input sections which are named
3936 .gnu.warning.SYMBOL are treated as warning symbols for the given
3937 symbol. This differs from .gnu.warning sections, which generate
3938 warnings when they are included in an output file. */
3939 /* PR 12761: Also generate this warning when building shared libraries. */
3940 for (s = abfd->sections; s != NULL; s = s->next)
3944 name = bfd_get_section_name (abfd, s);
3945 if (CONST_STRNEQ (name, ".gnu.warning."))
3950 name += sizeof ".gnu.warning." - 1;
3952 /* If this is a shared object, then look up the symbol
3953 in the hash table. If it is there, and it is already
3954 been defined, then we will not be using the entry
3955 from this shared object, so we don't need to warn.
3956 FIXME: If we see the definition in a regular object
3957 later on, we will warn, but we shouldn't. The only
3958 fix is to keep track of what warnings we are supposed
3959 to emit, and then handle them all at the end of the
3963 struct elf_link_hash_entry *h;
3965 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3967 /* FIXME: What about bfd_link_hash_common? */
3969 && (h->root.type == bfd_link_hash_defined
3970 || h->root.type == bfd_link_hash_defweak))
3975 msg = (char *) bfd_alloc (abfd, sz + 1);
3979 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3984 if (! (_bfd_generic_link_add_one_symbol
3985 (info, abfd, name, BSF_WARNING, s, 0, msg,
3986 FALSE, bed->collect, NULL)))
3989 if (bfd_link_executable (info))
3991 /* Clobber the section size so that the warning does
3992 not get copied into the output file. */
3995 /* Also set SEC_EXCLUDE, so that symbols defined in
3996 the warning section don't get copied to the output. */
3997 s->flags |= SEC_EXCLUDE;
4002 just_syms = ((s = abfd->sections) != NULL
4003 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4008 /* If we are creating a shared library, create all the dynamic
4009 sections immediately. We need to attach them to something,
4010 so we attach them to this BFD, provided it is the right
4011 format and is not from ld --just-symbols. Always create the
4012 dynamic sections for -E/--dynamic-list. FIXME: If there
4013 are no input BFD's of the same format as the output, we can't
4014 make a shared library. */
4016 && (bfd_link_pic (info)
4017 || (!bfd_link_relocatable (info)
4019 && (info->export_dynamic || info->dynamic)))
4020 && is_elf_hash_table (htab)
4021 && info->output_bfd->xvec == abfd->xvec
4022 && !htab->dynamic_sections_created)
4024 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4028 else if (!is_elf_hash_table (htab))
4032 const char *soname = NULL;
4034 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4035 const Elf_Internal_Phdr *phdr;
4038 /* ld --just-symbols and dynamic objects don't mix very well.
4039 ld shouldn't allow it. */
4043 /* If this dynamic lib was specified on the command line with
4044 --as-needed in effect, then we don't want to add a DT_NEEDED
4045 tag unless the lib is actually used. Similary for libs brought
4046 in by another lib's DT_NEEDED. When --no-add-needed is used
4047 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4048 any dynamic library in DT_NEEDED tags in the dynamic lib at
4050 add_needed = (elf_dyn_lib_class (abfd)
4051 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4052 | DYN_NO_NEEDED)) == 0;
4054 s = bfd_get_section_by_name (abfd, ".dynamic");
4059 unsigned int elfsec;
4060 unsigned long shlink;
4062 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4069 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4070 if (elfsec == SHN_BAD)
4071 goto error_free_dyn;
4072 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4074 for (extdyn = dynbuf;
4075 extdyn < dynbuf + s->size;
4076 extdyn += bed->s->sizeof_dyn)
4078 Elf_Internal_Dyn dyn;
4080 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4081 if (dyn.d_tag == DT_SONAME)
4083 unsigned int tagv = dyn.d_un.d_val;
4084 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4086 goto error_free_dyn;
4088 if (dyn.d_tag == DT_NEEDED)
4090 struct bfd_link_needed_list *n, **pn;
4092 unsigned int tagv = dyn.d_un.d_val;
4094 amt = sizeof (struct bfd_link_needed_list);
4095 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4096 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4097 if (n == NULL || fnm == NULL)
4098 goto error_free_dyn;
4099 amt = strlen (fnm) + 1;
4100 anm = (char *) bfd_alloc (abfd, amt);
4102 goto error_free_dyn;
4103 memcpy (anm, fnm, amt);
4107 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4111 if (dyn.d_tag == DT_RUNPATH)
4113 struct bfd_link_needed_list *n, **pn;
4115 unsigned int tagv = dyn.d_un.d_val;
4117 amt = sizeof (struct bfd_link_needed_list);
4118 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4119 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4120 if (n == NULL || fnm == NULL)
4121 goto error_free_dyn;
4122 amt = strlen (fnm) + 1;
4123 anm = (char *) bfd_alloc (abfd, amt);
4125 goto error_free_dyn;
4126 memcpy (anm, fnm, amt);
4130 for (pn = & runpath;
4136 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4137 if (!runpath && dyn.d_tag == DT_RPATH)
4139 struct bfd_link_needed_list *n, **pn;
4141 unsigned int tagv = dyn.d_un.d_val;
4143 amt = sizeof (struct bfd_link_needed_list);
4144 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4145 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4146 if (n == NULL || fnm == NULL)
4147 goto error_free_dyn;
4148 amt = strlen (fnm) + 1;
4149 anm = (char *) bfd_alloc (abfd, amt);
4151 goto error_free_dyn;
4152 memcpy (anm, fnm, amt);
4162 if (dyn.d_tag == DT_AUDIT)
4164 unsigned int tagv = dyn.d_un.d_val;
4165 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4172 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4173 frees all more recently bfd_alloc'd blocks as well. */
4179 struct bfd_link_needed_list **pn;
4180 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4185 /* If we have a PT_GNU_RELRO program header, mark as read-only
4186 all sections contained fully therein. This makes relro
4187 shared library sections appear as they will at run-time. */
4188 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4189 while (phdr-- > elf_tdata (abfd)->phdr)
4190 if (phdr->p_type == PT_GNU_RELRO)
4192 for (s = abfd->sections; s != NULL; s = s->next)
4193 if ((s->flags & SEC_ALLOC) != 0
4194 && s->vma >= phdr->p_vaddr
4195 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4196 s->flags |= SEC_READONLY;
4200 /* We do not want to include any of the sections in a dynamic
4201 object in the output file. We hack by simply clobbering the
4202 list of sections in the BFD. This could be handled more
4203 cleanly by, say, a new section flag; the existing
4204 SEC_NEVER_LOAD flag is not the one we want, because that one
4205 still implies that the section takes up space in the output
4207 bfd_section_list_clear (abfd);
4209 /* Find the name to use in a DT_NEEDED entry that refers to this
4210 object. If the object has a DT_SONAME entry, we use it.
4211 Otherwise, if the generic linker stuck something in
4212 elf_dt_name, we use that. Otherwise, we just use the file
4214 if (soname == NULL || *soname == '\0')
4216 soname = elf_dt_name (abfd);
4217 if (soname == NULL || *soname == '\0')
4218 soname = bfd_get_filename (abfd);
4221 /* Save the SONAME because sometimes the linker emulation code
4222 will need to know it. */
4223 elf_dt_name (abfd) = soname;
4225 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4229 /* If we have already included this dynamic object in the
4230 link, just ignore it. There is no reason to include a
4231 particular dynamic object more than once. */
4235 /* Save the DT_AUDIT entry for the linker emulation code. */
4236 elf_dt_audit (abfd) = audit;
4239 /* If this is a dynamic object, we always link against the .dynsym
4240 symbol table, not the .symtab symbol table. The dynamic linker
4241 will only see the .dynsym symbol table, so there is no reason to
4242 look at .symtab for a dynamic object. */
4244 if (! dynamic || elf_dynsymtab (abfd) == 0)
4245 hdr = &elf_tdata (abfd)->symtab_hdr;
4247 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4249 symcount = hdr->sh_size / bed->s->sizeof_sym;
4251 /* The sh_info field of the symtab header tells us where the
4252 external symbols start. We don't care about the local symbols at
4254 if (elf_bad_symtab (abfd))
4256 extsymcount = symcount;
4261 extsymcount = symcount - hdr->sh_info;
4262 extsymoff = hdr->sh_info;
4265 sym_hash = elf_sym_hashes (abfd);
4266 if (extsymcount != 0)
4268 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4270 if (isymbuf == NULL)
4273 if (sym_hash == NULL)
4275 /* We store a pointer to the hash table entry for each
4278 amt *= sizeof (struct elf_link_hash_entry *);
4279 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4280 if (sym_hash == NULL)
4281 goto error_free_sym;
4282 elf_sym_hashes (abfd) = sym_hash;
4288 /* Read in any version definitions. */
4289 if (!_bfd_elf_slurp_version_tables (abfd,
4290 info->default_imported_symver))
4291 goto error_free_sym;
4293 /* Read in the symbol versions, but don't bother to convert them
4294 to internal format. */
4295 if (elf_dynversym (abfd) != 0)
4297 Elf_Internal_Shdr *versymhdr;
4299 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4300 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4301 if (extversym == NULL)
4302 goto error_free_sym;
4303 amt = versymhdr->sh_size;
4304 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4305 || bfd_bread (extversym, amt, abfd) != amt)
4306 goto error_free_vers;
4310 /* If we are loading an as-needed shared lib, save the symbol table
4311 state before we start adding symbols. If the lib turns out
4312 to be unneeded, restore the state. */
4313 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4318 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4320 struct bfd_hash_entry *p;
4321 struct elf_link_hash_entry *h;
4323 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4325 h = (struct elf_link_hash_entry *) p;
4326 entsize += htab->root.table.entsize;
4327 if (h->root.type == bfd_link_hash_warning)
4328 entsize += htab->root.table.entsize;
4332 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4333 old_tab = bfd_malloc (tabsize + entsize);
4334 if (old_tab == NULL)
4335 goto error_free_vers;
4337 /* Remember the current objalloc pointer, so that all mem for
4338 symbols added can later be reclaimed. */
4339 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4340 if (alloc_mark == NULL)
4341 goto error_free_vers;
4343 /* Make a special call to the linker "notice" function to
4344 tell it that we are about to handle an as-needed lib. */
4345 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4346 goto error_free_vers;
4348 /* Clone the symbol table. Remember some pointers into the
4349 symbol table, and dynamic symbol count. */
4350 old_ent = (char *) old_tab + tabsize;
4351 memcpy (old_tab, htab->root.table.table, tabsize);
4352 old_undefs = htab->root.undefs;
4353 old_undefs_tail = htab->root.undefs_tail;
4354 old_table = htab->root.table.table;
4355 old_size = htab->root.table.size;
4356 old_count = htab->root.table.count;
4357 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4358 if (old_strtab == NULL)
4359 goto error_free_vers;
4361 for (i = 0; i < htab->root.table.size; i++)
4363 struct bfd_hash_entry *p;
4364 struct elf_link_hash_entry *h;
4366 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4368 memcpy (old_ent, p, htab->root.table.entsize);
4369 old_ent = (char *) old_ent + htab->root.table.entsize;
4370 h = (struct elf_link_hash_entry *) p;
4371 if (h->root.type == bfd_link_hash_warning)
4373 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4374 old_ent = (char *) old_ent + htab->root.table.entsize;
4381 ever = extversym != NULL ? extversym + extsymoff : NULL;
4382 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4384 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4388 asection *sec, *new_sec;
4391 struct elf_link_hash_entry *h;
4392 struct elf_link_hash_entry *hi;
4393 bfd_boolean definition;
4394 bfd_boolean size_change_ok;
4395 bfd_boolean type_change_ok;
4396 bfd_boolean new_weak;
4397 bfd_boolean old_weak;
4398 bfd_boolean override;
4400 bfd_boolean discarded;
4401 unsigned int old_alignment;
4403 bfd_boolean matched;
4407 flags = BSF_NO_FLAGS;
4409 value = isym->st_value;
4410 common = bed->common_definition (isym);
4411 if (common && info->inhibit_common_definition)
4413 /* Treat common symbol as undefined for --no-define-common. */
4414 isym->st_shndx = SHN_UNDEF;
4419 bind = ELF_ST_BIND (isym->st_info);
4423 /* This should be impossible, since ELF requires that all
4424 global symbols follow all local symbols, and that sh_info
4425 point to the first global symbol. Unfortunately, Irix 5
4430 if (isym->st_shndx != SHN_UNDEF && !common)
4438 case STB_GNU_UNIQUE:
4439 flags = BSF_GNU_UNIQUE;
4443 /* Leave it up to the processor backend. */
4447 if (isym->st_shndx == SHN_UNDEF)
4448 sec = bfd_und_section_ptr;
4449 else if (isym->st_shndx == SHN_ABS)
4450 sec = bfd_abs_section_ptr;
4451 else if (isym->st_shndx == SHN_COMMON)
4453 sec = bfd_com_section_ptr;
4454 /* What ELF calls the size we call the value. What ELF
4455 calls the value we call the alignment. */
4456 value = isym->st_size;
4460 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4462 sec = bfd_abs_section_ptr;
4463 else if (discarded_section (sec))
4465 /* Symbols from discarded section are undefined. We keep
4467 sec = bfd_und_section_ptr;
4469 isym->st_shndx = SHN_UNDEF;
4471 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4475 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4478 goto error_free_vers;
4480 if (isym->st_shndx == SHN_COMMON
4481 && (abfd->flags & BFD_PLUGIN) != 0)
4483 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4487 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4489 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4491 goto error_free_vers;
4495 else if (isym->st_shndx == SHN_COMMON
4496 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4497 && !bfd_link_relocatable (info))
4499 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4503 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4504 | SEC_LINKER_CREATED);
4505 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4507 goto error_free_vers;
4511 else if (bed->elf_add_symbol_hook)
4513 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4515 goto error_free_vers;
4517 /* The hook function sets the name to NULL if this symbol
4518 should be skipped for some reason. */
4523 /* Sanity check that all possibilities were handled. */
4526 bfd_set_error (bfd_error_bad_value);
4527 goto error_free_vers;
4530 /* Silently discard TLS symbols from --just-syms. There's
4531 no way to combine a static TLS block with a new TLS block
4532 for this executable. */
4533 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4534 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4537 if (bfd_is_und_section (sec)
4538 || bfd_is_com_section (sec))
4543 size_change_ok = FALSE;
4544 type_change_ok = bed->type_change_ok;
4551 if (is_elf_hash_table (htab))
4553 Elf_Internal_Versym iver;
4554 unsigned int vernum = 0;
4559 if (info->default_imported_symver)
4560 /* Use the default symbol version created earlier. */
4561 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4566 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4568 vernum = iver.vs_vers & VERSYM_VERSION;
4570 /* If this is a hidden symbol, or if it is not version
4571 1, we append the version name to the symbol name.
4572 However, we do not modify a non-hidden absolute symbol
4573 if it is not a function, because it might be the version
4574 symbol itself. FIXME: What if it isn't? */
4575 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4577 && (!bfd_is_abs_section (sec)
4578 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4581 size_t namelen, verlen, newlen;
4584 if (isym->st_shndx != SHN_UNDEF)
4586 if (vernum > elf_tdata (abfd)->cverdefs)
4588 else if (vernum > 1)
4590 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4597 /* xgettext:c-format */
4598 (_("%pB: %s: invalid version %u (max %d)"),
4600 elf_tdata (abfd)->cverdefs);
4601 bfd_set_error (bfd_error_bad_value);
4602 goto error_free_vers;
4607 /* We cannot simply test for the number of
4608 entries in the VERNEED section since the
4609 numbers for the needed versions do not start
4611 Elf_Internal_Verneed *t;
4614 for (t = elf_tdata (abfd)->verref;
4618 Elf_Internal_Vernaux *a;
4620 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4622 if (a->vna_other == vernum)
4624 verstr = a->vna_nodename;
4634 /* xgettext:c-format */
4635 (_("%pB: %s: invalid needed version %d"),
4636 abfd, name, vernum);
4637 bfd_set_error (bfd_error_bad_value);
4638 goto error_free_vers;
4642 namelen = strlen (name);
4643 verlen = strlen (verstr);
4644 newlen = namelen + verlen + 2;
4645 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4646 && isym->st_shndx != SHN_UNDEF)
4649 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4650 if (newname == NULL)
4651 goto error_free_vers;
4652 memcpy (newname, name, namelen);
4653 p = newname + namelen;
4655 /* If this is a defined non-hidden version symbol,
4656 we add another @ to the name. This indicates the
4657 default version of the symbol. */
4658 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4659 && isym->st_shndx != SHN_UNDEF)
4661 memcpy (p, verstr, verlen + 1);
4666 /* If this symbol has default visibility and the user has
4667 requested we not re-export it, then mark it as hidden. */
4668 if (!bfd_is_und_section (sec)
4671 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4672 isym->st_other = (STV_HIDDEN
4673 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4675 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4676 sym_hash, &old_bfd, &old_weak,
4677 &old_alignment, &skip, &override,
4678 &type_change_ok, &size_change_ok,
4680 goto error_free_vers;
4685 /* Override a definition only if the new symbol matches the
4687 if (override && matched)
4691 while (h->root.type == bfd_link_hash_indirect
4692 || h->root.type == bfd_link_hash_warning)
4693 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4695 if (elf_tdata (abfd)->verdef != NULL
4698 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4701 if (! (_bfd_generic_link_add_one_symbol
4702 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4703 (struct bfd_link_hash_entry **) sym_hash)))
4704 goto error_free_vers;
4706 if ((abfd->flags & DYNAMIC) == 0
4707 && (bfd_get_flavour (info->output_bfd)
4708 == bfd_target_elf_flavour))
4710 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4711 elf_tdata (info->output_bfd)->has_gnu_symbols
4712 |= elf_gnu_symbol_ifunc;
4713 if ((flags & BSF_GNU_UNIQUE))
4714 elf_tdata (info->output_bfd)->has_gnu_symbols
4715 |= elf_gnu_symbol_unique;
4719 /* We need to make sure that indirect symbol dynamic flags are
4722 while (h->root.type == bfd_link_hash_indirect
4723 || h->root.type == bfd_link_hash_warning)
4724 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4726 /* Setting the index to -3 tells elf_link_output_extsym that
4727 this symbol is defined in a discarded section. */
4733 new_weak = (flags & BSF_WEAK) != 0;
4737 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4738 && is_elf_hash_table (htab)
4739 && h->u.alias == NULL)
4741 /* Keep a list of all weak defined non function symbols from
4742 a dynamic object, using the alias field. Later in this
4743 function we will set the alias field to the correct
4744 value. We only put non-function symbols from dynamic
4745 objects on this list, because that happens to be the only
4746 time we need to know the normal symbol corresponding to a
4747 weak symbol, and the information is time consuming to
4748 figure out. If the alias field is not already NULL,
4749 then this symbol was already defined by some previous
4750 dynamic object, and we will be using that previous
4751 definition anyhow. */
4757 /* Set the alignment of a common symbol. */
4758 if ((common || bfd_is_com_section (sec))
4759 && h->root.type == bfd_link_hash_common)
4764 align = bfd_log2 (isym->st_value);
4767 /* The new symbol is a common symbol in a shared object.
4768 We need to get the alignment from the section. */
4769 align = new_sec->alignment_power;
4771 if (align > old_alignment)
4772 h->root.u.c.p->alignment_power = align;
4774 h->root.u.c.p->alignment_power = old_alignment;
4777 if (is_elf_hash_table (htab))
4779 /* Set a flag in the hash table entry indicating the type of
4780 reference or definition we just found. A dynamic symbol
4781 is one which is referenced or defined by both a regular
4782 object and a shared object. */
4783 bfd_boolean dynsym = FALSE;
4785 /* Plugin symbols aren't normal. Don't set def_regular or
4786 ref_regular for them, or make them dynamic. */
4787 if ((abfd->flags & BFD_PLUGIN) != 0)
4794 if (bind != STB_WEAK)
4795 h->ref_regular_nonweak = 1;
4807 /* If the indirect symbol has been forced local, don't
4808 make the real symbol dynamic. */
4809 if ((h == hi || !hi->forced_local)
4810 && (bfd_link_dll (info)
4820 hi->ref_dynamic = 1;
4825 hi->def_dynamic = 1;
4828 /* If the indirect symbol has been forced local, don't
4829 make the real symbol dynamic. */
4830 if ((h == hi || !hi->forced_local)
4834 && weakdef (h)->dynindx != -1)))
4838 /* Check to see if we need to add an indirect symbol for
4839 the default name. */
4841 || (!override && h->root.type == bfd_link_hash_common))
4842 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4843 sec, value, &old_bfd, &dynsym))
4844 goto error_free_vers;
4846 /* Check the alignment when a common symbol is involved. This
4847 can change when a common symbol is overridden by a normal
4848 definition or a common symbol is ignored due to the old
4849 normal definition. We need to make sure the maximum
4850 alignment is maintained. */
4851 if ((old_alignment || common)
4852 && h->root.type != bfd_link_hash_common)
4854 unsigned int common_align;
4855 unsigned int normal_align;
4856 unsigned int symbol_align;
4860 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4861 || h->root.type == bfd_link_hash_defweak);
4863 symbol_align = ffs (h->root.u.def.value) - 1;
4864 if (h->root.u.def.section->owner != NULL
4865 && (h->root.u.def.section->owner->flags
4866 & (DYNAMIC | BFD_PLUGIN)) == 0)
4868 normal_align = h->root.u.def.section->alignment_power;
4869 if (normal_align > symbol_align)
4870 normal_align = symbol_align;
4873 normal_align = symbol_align;
4877 common_align = old_alignment;
4878 common_bfd = old_bfd;
4883 common_align = bfd_log2 (isym->st_value);
4885 normal_bfd = old_bfd;
4888 if (normal_align < common_align)
4890 /* PR binutils/2735 */
4891 if (normal_bfd == NULL)
4893 /* xgettext:c-format */
4894 (_("warning: alignment %u of common symbol `%s' in %pB is"
4895 " greater than the alignment (%u) of its section %pA"),
4896 1 << common_align, name, common_bfd,
4897 1 << normal_align, h->root.u.def.section);
4900 /* xgettext:c-format */
4901 (_("warning: alignment %u of symbol `%s' in %pB"
4902 " is smaller than %u in %pB"),
4903 1 << normal_align, name, normal_bfd,
4904 1 << common_align, common_bfd);
4908 /* Remember the symbol size if it isn't undefined. */
4909 if (isym->st_size != 0
4910 && isym->st_shndx != SHN_UNDEF
4911 && (definition || h->size == 0))
4914 && h->size != isym->st_size
4915 && ! size_change_ok)
4917 /* xgettext:c-format */
4918 (_("warning: size of symbol `%s' changed"
4919 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4920 name, (uint64_t) h->size, old_bfd,
4921 (uint64_t) isym->st_size, abfd);
4923 h->size = isym->st_size;
4926 /* If this is a common symbol, then we always want H->SIZE
4927 to be the size of the common symbol. The code just above
4928 won't fix the size if a common symbol becomes larger. We
4929 don't warn about a size change here, because that is
4930 covered by --warn-common. Allow changes between different
4932 if (h->root.type == bfd_link_hash_common)
4933 h->size = h->root.u.c.size;
4935 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4936 && ((definition && !new_weak)
4937 || (old_weak && h->root.type == bfd_link_hash_common)
4938 || h->type == STT_NOTYPE))
4940 unsigned int type = ELF_ST_TYPE (isym->st_info);
4942 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4944 if (type == STT_GNU_IFUNC
4945 && (abfd->flags & DYNAMIC) != 0)
4948 if (h->type != type)
4950 if (h->type != STT_NOTYPE && ! type_change_ok)
4951 /* xgettext:c-format */
4953 (_("warning: type of symbol `%s' changed"
4954 " from %d to %d in %pB"),
4955 name, h->type, type, abfd);
4961 /* Merge st_other field. */
4962 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4964 /* We don't want to make debug symbol dynamic. */
4966 && (sec->flags & SEC_DEBUGGING)
4967 && !bfd_link_relocatable (info))
4970 /* Nor should we make plugin symbols dynamic. */
4971 if ((abfd->flags & BFD_PLUGIN) != 0)
4976 h->target_internal = isym->st_target_internal;
4977 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4980 if (definition && !dynamic)
4982 char *p = strchr (name, ELF_VER_CHR);
4983 if (p != NULL && p[1] != ELF_VER_CHR)
4985 /* Queue non-default versions so that .symver x, x@FOO
4986 aliases can be checked. */
4989 amt = ((isymend - isym + 1)
4990 * sizeof (struct elf_link_hash_entry *));
4992 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4994 goto error_free_vers;
4996 nondeflt_vers[nondeflt_vers_cnt++] = h;
5000 if (dynsym && h->dynindx == -1)
5002 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5003 goto error_free_vers;
5005 && weakdef (h)->dynindx == -1)
5007 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5008 goto error_free_vers;
5011 else if (h->dynindx != -1)
5012 /* If the symbol already has a dynamic index, but
5013 visibility says it should not be visible, turn it into
5015 switch (ELF_ST_VISIBILITY (h->other))
5019 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5024 /* Don't add DT_NEEDED for references from the dummy bfd nor
5025 for unmatched symbol. */
5030 && h->ref_regular_nonweak
5032 || (old_bfd->flags & BFD_PLUGIN) == 0))
5033 || (h->ref_dynamic_nonweak
5034 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5035 && !on_needed_list (elf_dt_name (abfd),
5036 htab->needed, NULL))))
5039 const char *soname = elf_dt_name (abfd);
5041 info->callbacks->minfo ("%!", soname, old_bfd,
5042 h->root.root.string);
5044 /* A symbol from a library loaded via DT_NEEDED of some
5045 other library is referenced by a regular object.
5046 Add a DT_NEEDED entry for it. Issue an error if
5047 --no-add-needed is used and the reference was not
5050 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5053 /* xgettext:c-format */
5054 (_("%pB: undefined reference to symbol '%s'"),
5056 bfd_set_error (bfd_error_missing_dso);
5057 goto error_free_vers;
5060 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5061 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5064 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
5066 goto error_free_vers;
5068 BFD_ASSERT (ret == 0);
5073 if (info->lto_plugin_active
5074 && !bfd_link_relocatable (info)
5075 && (abfd->flags & BFD_PLUGIN) == 0
5081 if (bed->s->arch_size == 32)
5086 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5087 referenced in regular objects so that linker plugin will get
5088 the correct symbol resolution. */
5090 sym_hash = elf_sym_hashes (abfd);
5091 for (s = abfd->sections; s != NULL; s = s->next)
5093 Elf_Internal_Rela *internal_relocs;
5094 Elf_Internal_Rela *rel, *relend;
5096 /* Don't check relocations in excluded sections. */
5097 if ((s->flags & SEC_RELOC) == 0
5098 || s->reloc_count == 0
5099 || (s->flags & SEC_EXCLUDE) != 0
5100 || ((info->strip == strip_all
5101 || info->strip == strip_debugger)
5102 && (s->flags & SEC_DEBUGGING) != 0))
5105 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5108 if (internal_relocs == NULL)
5109 goto error_free_vers;
5111 rel = internal_relocs;
5112 relend = rel + s->reloc_count;
5113 for ( ; rel < relend; rel++)
5115 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5116 struct elf_link_hash_entry *h;
5118 /* Skip local symbols. */
5119 if (r_symndx < extsymoff)
5122 h = sym_hash[r_symndx - extsymoff];
5124 h->root.non_ir_ref_regular = 1;
5127 if (elf_section_data (s)->relocs != internal_relocs)
5128 free (internal_relocs);
5132 if (extversym != NULL)
5138 if (isymbuf != NULL)
5144 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5148 /* Restore the symbol table. */
5149 old_ent = (char *) old_tab + tabsize;
5150 memset (elf_sym_hashes (abfd), 0,
5151 extsymcount * sizeof (struct elf_link_hash_entry *));
5152 htab->root.table.table = old_table;
5153 htab->root.table.size = old_size;
5154 htab->root.table.count = old_count;
5155 memcpy (htab->root.table.table, old_tab, tabsize);
5156 htab->root.undefs = old_undefs;
5157 htab->root.undefs_tail = old_undefs_tail;
5158 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5161 for (i = 0; i < htab->root.table.size; i++)
5163 struct bfd_hash_entry *p;
5164 struct elf_link_hash_entry *h;
5166 unsigned int alignment_power;
5167 unsigned int non_ir_ref_dynamic;
5169 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5171 h = (struct elf_link_hash_entry *) p;
5172 if (h->root.type == bfd_link_hash_warning)
5173 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5175 /* Preserve the maximum alignment and size for common
5176 symbols even if this dynamic lib isn't on DT_NEEDED
5177 since it can still be loaded at run time by another
5179 if (h->root.type == bfd_link_hash_common)
5181 size = h->root.u.c.size;
5182 alignment_power = h->root.u.c.p->alignment_power;
5187 alignment_power = 0;
5189 /* Preserve non_ir_ref_dynamic so that this symbol
5190 will be exported when the dynamic lib becomes needed
5191 in the second pass. */
5192 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5193 memcpy (p, old_ent, htab->root.table.entsize);
5194 old_ent = (char *) old_ent + htab->root.table.entsize;
5195 h = (struct elf_link_hash_entry *) p;
5196 if (h->root.type == bfd_link_hash_warning)
5198 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5199 old_ent = (char *) old_ent + htab->root.table.entsize;
5200 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5202 if (h->root.type == bfd_link_hash_common)
5204 if (size > h->root.u.c.size)
5205 h->root.u.c.size = size;
5206 if (alignment_power > h->root.u.c.p->alignment_power)
5207 h->root.u.c.p->alignment_power = alignment_power;
5209 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5213 /* Make a special call to the linker "notice" function to
5214 tell it that symbols added for crefs may need to be removed. */
5215 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5216 goto error_free_vers;
5219 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5221 if (nondeflt_vers != NULL)
5222 free (nondeflt_vers);
5226 if (old_tab != NULL)
5228 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5229 goto error_free_vers;
5234 /* Now that all the symbols from this input file are created, if
5235 not performing a relocatable link, handle .symver foo, foo@BAR
5236 such that any relocs against foo become foo@BAR. */
5237 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5241 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5243 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5244 char *shortname, *p;
5246 p = strchr (h->root.root.string, ELF_VER_CHR);
5248 || (h->root.type != bfd_link_hash_defined
5249 && h->root.type != bfd_link_hash_defweak))
5252 amt = p - h->root.root.string;
5253 shortname = (char *) bfd_malloc (amt + 1);
5255 goto error_free_vers;
5256 memcpy (shortname, h->root.root.string, amt);
5257 shortname[amt] = '\0';
5259 hi = (struct elf_link_hash_entry *)
5260 bfd_link_hash_lookup (&htab->root, shortname,
5261 FALSE, FALSE, FALSE);
5263 && hi->root.type == h->root.type
5264 && hi->root.u.def.value == h->root.u.def.value
5265 && hi->root.u.def.section == h->root.u.def.section)
5267 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5268 hi->root.type = bfd_link_hash_indirect;
5269 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5270 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5271 sym_hash = elf_sym_hashes (abfd);
5273 for (symidx = 0; symidx < extsymcount; ++symidx)
5274 if (sym_hash[symidx] == hi)
5276 sym_hash[symidx] = h;
5282 free (nondeflt_vers);
5283 nondeflt_vers = NULL;
5286 /* Now set the alias field correctly for all the weak defined
5287 symbols we found. The only way to do this is to search all the
5288 symbols. Since we only need the information for non functions in
5289 dynamic objects, that's the only time we actually put anything on
5290 the list WEAKS. We need this information so that if a regular
5291 object refers to a symbol defined weakly in a dynamic object, the
5292 real symbol in the dynamic object is also put in the dynamic
5293 symbols; we also must arrange for both symbols to point to the
5294 same memory location. We could handle the general case of symbol
5295 aliasing, but a general symbol alias can only be generated in
5296 assembler code, handling it correctly would be very time
5297 consuming, and other ELF linkers don't handle general aliasing
5301 struct elf_link_hash_entry **hpp;
5302 struct elf_link_hash_entry **hppend;
5303 struct elf_link_hash_entry **sorted_sym_hash;
5304 struct elf_link_hash_entry *h;
5307 /* Since we have to search the whole symbol list for each weak
5308 defined symbol, search time for N weak defined symbols will be
5309 O(N^2). Binary search will cut it down to O(NlogN). */
5311 amt *= sizeof (struct elf_link_hash_entry *);
5312 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5313 if (sorted_sym_hash == NULL)
5315 sym_hash = sorted_sym_hash;
5316 hpp = elf_sym_hashes (abfd);
5317 hppend = hpp + extsymcount;
5319 for (; hpp < hppend; hpp++)
5323 && h->root.type == bfd_link_hash_defined
5324 && !bed->is_function_type (h->type))
5332 qsort (sorted_sym_hash, sym_count,
5333 sizeof (struct elf_link_hash_entry *),
5336 while (weaks != NULL)
5338 struct elf_link_hash_entry *hlook;
5341 size_t i, j, idx = 0;
5344 weaks = hlook->u.alias;
5345 hlook->u.alias = NULL;
5347 if (hlook->root.type != bfd_link_hash_defined
5348 && hlook->root.type != bfd_link_hash_defweak)
5351 slook = hlook->root.u.def.section;
5352 vlook = hlook->root.u.def.value;
5358 bfd_signed_vma vdiff;
5360 h = sorted_sym_hash[idx];
5361 vdiff = vlook - h->root.u.def.value;
5368 int sdiff = slook->id - h->root.u.def.section->id;
5378 /* We didn't find a value/section match. */
5382 /* With multiple aliases, or when the weak symbol is already
5383 strongly defined, we have multiple matching symbols and
5384 the binary search above may land on any of them. Step
5385 one past the matching symbol(s). */
5388 h = sorted_sym_hash[idx];
5389 if (h->root.u.def.section != slook
5390 || h->root.u.def.value != vlook)
5394 /* Now look back over the aliases. Since we sorted by size
5395 as well as value and section, we'll choose the one with
5396 the largest size. */
5399 h = sorted_sym_hash[idx];
5401 /* Stop if value or section doesn't match. */
5402 if (h->root.u.def.section != slook
5403 || h->root.u.def.value != vlook)
5405 else if (h != hlook)
5407 struct elf_link_hash_entry *t;
5410 hlook->is_weakalias = 1;
5412 if (t->u.alias != NULL)
5413 while (t->u.alias != h)
5417 /* If the weak definition is in the list of dynamic
5418 symbols, make sure the real definition is put
5420 if (hlook->dynindx != -1 && h->dynindx == -1)
5422 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5425 free (sorted_sym_hash);
5430 /* If the real definition is in the list of dynamic
5431 symbols, make sure the weak definition is put
5432 there as well. If we don't do this, then the
5433 dynamic loader might not merge the entries for the
5434 real definition and the weak definition. */
5435 if (h->dynindx != -1 && hlook->dynindx == -1)
5437 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5438 goto err_free_sym_hash;
5445 free (sorted_sym_hash);
5448 if (bed->check_directives
5449 && !(*bed->check_directives) (abfd, info))
5452 /* If this is a non-traditional link, try to optimize the handling
5453 of the .stab/.stabstr sections. */
5455 && ! info->traditional_format
5456 && is_elf_hash_table (htab)
5457 && (info->strip != strip_all && info->strip != strip_debugger))
5461 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5462 if (stabstr != NULL)
5464 bfd_size_type string_offset = 0;
5467 for (stab = abfd->sections; stab; stab = stab->next)
5468 if (CONST_STRNEQ (stab->name, ".stab")
5469 && (!stab->name[5] ||
5470 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5471 && (stab->flags & SEC_MERGE) == 0
5472 && !bfd_is_abs_section (stab->output_section))
5474 struct bfd_elf_section_data *secdata;
5476 secdata = elf_section_data (stab);
5477 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5478 stabstr, &secdata->sec_info,
5481 if (secdata->sec_info)
5482 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5487 if (is_elf_hash_table (htab) && add_needed)
5489 /* Add this bfd to the loaded list. */
5490 struct elf_link_loaded_list *n;
5492 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5496 n->next = htab->loaded;
5503 if (old_tab != NULL)
5505 if (old_strtab != NULL)
5507 if (nondeflt_vers != NULL)
5508 free (nondeflt_vers);
5509 if (extversym != NULL)
5512 if (isymbuf != NULL)
5518 /* Return the linker hash table entry of a symbol that might be
5519 satisfied by an archive symbol. Return -1 on error. */
5521 struct elf_link_hash_entry *
5522 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5523 struct bfd_link_info *info,
5526 struct elf_link_hash_entry *h;
5530 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5534 /* If this is a default version (the name contains @@), look up the
5535 symbol again with only one `@' as well as without the version.
5536 The effect is that references to the symbol with and without the
5537 version will be matched by the default symbol in the archive. */
5539 p = strchr (name, ELF_VER_CHR);
5540 if (p == NULL || p[1] != ELF_VER_CHR)
5543 /* First check with only one `@'. */
5544 len = strlen (name);
5545 copy = (char *) bfd_alloc (abfd, len);
5547 return (struct elf_link_hash_entry *) -1;
5549 first = p - name + 1;
5550 memcpy (copy, name, first);
5551 memcpy (copy + first, name + first + 1, len - first);
5553 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5556 /* We also need to check references to the symbol without the
5558 copy[first - 1] = '\0';
5559 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5560 FALSE, FALSE, TRUE);
5563 bfd_release (abfd, copy);
5567 /* Add symbols from an ELF archive file to the linker hash table. We
5568 don't use _bfd_generic_link_add_archive_symbols because we need to
5569 handle versioned symbols.
5571 Fortunately, ELF archive handling is simpler than that done by
5572 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5573 oddities. In ELF, if we find a symbol in the archive map, and the
5574 symbol is currently undefined, we know that we must pull in that
5577 Unfortunately, we do have to make multiple passes over the symbol
5578 table until nothing further is resolved. */
5581 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5584 unsigned char *included = NULL;
5588 const struct elf_backend_data *bed;
5589 struct elf_link_hash_entry * (*archive_symbol_lookup)
5590 (bfd *, struct bfd_link_info *, const char *);
5592 if (! bfd_has_map (abfd))
5594 /* An empty archive is a special case. */
5595 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5597 bfd_set_error (bfd_error_no_armap);
5601 /* Keep track of all symbols we know to be already defined, and all
5602 files we know to be already included. This is to speed up the
5603 second and subsequent passes. */
5604 c = bfd_ardata (abfd)->symdef_count;
5608 amt *= sizeof (*included);
5609 included = (unsigned char *) bfd_zmalloc (amt);
5610 if (included == NULL)
5613 symdefs = bfd_ardata (abfd)->symdefs;
5614 bed = get_elf_backend_data (abfd);
5615 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5628 symdefend = symdef + c;
5629 for (i = 0; symdef < symdefend; symdef++, i++)
5631 struct elf_link_hash_entry *h;
5633 struct bfd_link_hash_entry *undefs_tail;
5638 if (symdef->file_offset == last)
5644 h = archive_symbol_lookup (abfd, info, symdef->name);
5645 if (h == (struct elf_link_hash_entry *) -1)
5651 if (h->root.type == bfd_link_hash_common)
5653 /* We currently have a common symbol. The archive map contains
5654 a reference to this symbol, so we may want to include it. We
5655 only want to include it however, if this archive element
5656 contains a definition of the symbol, not just another common
5659 Unfortunately some archivers (including GNU ar) will put
5660 declarations of common symbols into their archive maps, as
5661 well as real definitions, so we cannot just go by the archive
5662 map alone. Instead we must read in the element's symbol
5663 table and check that to see what kind of symbol definition
5665 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5668 else if (h->root.type != bfd_link_hash_undefined)
5670 if (h->root.type != bfd_link_hash_undefweak)
5671 /* Symbol must be defined. Don't check it again. */
5676 /* We need to include this archive member. */
5677 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5678 if (element == NULL)
5681 if (! bfd_check_format (element, bfd_object))
5684 undefs_tail = info->hash->undefs_tail;
5686 if (!(*info->callbacks
5687 ->add_archive_element) (info, element, symdef->name, &element))
5689 if (!bfd_link_add_symbols (element, info))
5692 /* If there are any new undefined symbols, we need to make
5693 another pass through the archive in order to see whether
5694 they can be defined. FIXME: This isn't perfect, because
5695 common symbols wind up on undefs_tail and because an
5696 undefined symbol which is defined later on in this pass
5697 does not require another pass. This isn't a bug, but it
5698 does make the code less efficient than it could be. */
5699 if (undefs_tail != info->hash->undefs_tail)
5702 /* Look backward to mark all symbols from this object file
5703 which we have already seen in this pass. */
5707 included[mark] = TRUE;
5712 while (symdefs[mark].file_offset == symdef->file_offset);
5714 /* We mark subsequent symbols from this object file as we go
5715 on through the loop. */
5716 last = symdef->file_offset;
5726 if (included != NULL)
5731 /* Given an ELF BFD, add symbols to the global hash table as
5735 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5737 switch (bfd_get_format (abfd))
5740 return elf_link_add_object_symbols (abfd, info);
5742 return elf_link_add_archive_symbols (abfd, info);
5744 bfd_set_error (bfd_error_wrong_format);
5749 struct hash_codes_info
5751 unsigned long *hashcodes;
5755 /* This function will be called though elf_link_hash_traverse to store
5756 all hash value of the exported symbols in an array. */
5759 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5761 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5766 /* Ignore indirect symbols. These are added by the versioning code. */
5767 if (h->dynindx == -1)
5770 name = h->root.root.string;
5771 if (h->versioned >= versioned)
5773 char *p = strchr (name, ELF_VER_CHR);
5776 alc = (char *) bfd_malloc (p - name + 1);
5782 memcpy (alc, name, p - name);
5783 alc[p - name] = '\0';
5788 /* Compute the hash value. */
5789 ha = bfd_elf_hash (name);
5791 /* Store the found hash value in the array given as the argument. */
5792 *(inf->hashcodes)++ = ha;
5794 /* And store it in the struct so that we can put it in the hash table
5796 h->u.elf_hash_value = ha;
5804 struct collect_gnu_hash_codes
5807 const struct elf_backend_data *bed;
5808 unsigned long int nsyms;
5809 unsigned long int maskbits;
5810 unsigned long int *hashcodes;
5811 unsigned long int *hashval;
5812 unsigned long int *indx;
5813 unsigned long int *counts;
5816 long int min_dynindx;
5817 unsigned long int bucketcount;
5818 unsigned long int symindx;
5819 long int local_indx;
5820 long int shift1, shift2;
5821 unsigned long int mask;
5825 /* This function will be called though elf_link_hash_traverse to store
5826 all hash value of the exported symbols in an array. */
5829 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5831 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5836 /* Ignore indirect symbols. These are added by the versioning code. */
5837 if (h->dynindx == -1)
5840 /* Ignore also local symbols and undefined symbols. */
5841 if (! (*s->bed->elf_hash_symbol) (h))
5844 name = h->root.root.string;
5845 if (h->versioned >= versioned)
5847 char *p = strchr (name, ELF_VER_CHR);
5850 alc = (char *) bfd_malloc (p - name + 1);
5856 memcpy (alc, name, p - name);
5857 alc[p - name] = '\0';
5862 /* Compute the hash value. */
5863 ha = bfd_elf_gnu_hash (name);
5865 /* Store the found hash value in the array for compute_bucket_count,
5866 and also for .dynsym reordering purposes. */
5867 s->hashcodes[s->nsyms] = ha;
5868 s->hashval[h->dynindx] = ha;
5870 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5871 s->min_dynindx = h->dynindx;
5879 /* This function will be called though elf_link_hash_traverse to do
5880 final dynaminc symbol renumbering. */
5883 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5885 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5886 unsigned long int bucket;
5887 unsigned long int val;
5889 /* Ignore indirect symbols. */
5890 if (h->dynindx == -1)
5893 /* Ignore also local symbols and undefined symbols. */
5894 if (! (*s->bed->elf_hash_symbol) (h))
5896 if (h->dynindx >= s->min_dynindx)
5897 h->dynindx = s->local_indx++;
5901 bucket = s->hashval[h->dynindx] % s->bucketcount;
5902 val = (s->hashval[h->dynindx] >> s->shift1)
5903 & ((s->maskbits >> s->shift1) - 1);
5904 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5906 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5907 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5908 if (s->counts[bucket] == 1)
5909 /* Last element terminates the chain. */
5911 bfd_put_32 (s->output_bfd, val,
5912 s->contents + (s->indx[bucket] - s->symindx) * 4);
5913 --s->counts[bucket];
5914 h->dynindx = s->indx[bucket]++;
5918 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5921 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5923 return !(h->forced_local
5924 || h->root.type == bfd_link_hash_undefined
5925 || h->root.type == bfd_link_hash_undefweak
5926 || ((h->root.type == bfd_link_hash_defined
5927 || h->root.type == bfd_link_hash_defweak)
5928 && h->root.u.def.section->output_section == NULL));
5931 /* Array used to determine the number of hash table buckets to use
5932 based on the number of symbols there are. If there are fewer than
5933 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5934 fewer than 37 we use 17 buckets, and so forth. We never use more
5935 than 32771 buckets. */
5937 static const size_t elf_buckets[] =
5939 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5943 /* Compute bucket count for hashing table. We do not use a static set
5944 of possible tables sizes anymore. Instead we determine for all
5945 possible reasonable sizes of the table the outcome (i.e., the
5946 number of collisions etc) and choose the best solution. The
5947 weighting functions are not too simple to allow the table to grow
5948 without bounds. Instead one of the weighting factors is the size.
5949 Therefore the result is always a good payoff between few collisions
5950 (= short chain lengths) and table size. */
5952 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5953 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5954 unsigned long int nsyms,
5957 size_t best_size = 0;
5958 unsigned long int i;
5960 /* We have a problem here. The following code to optimize the table
5961 size requires an integer type with more the 32 bits. If
5962 BFD_HOST_U_64_BIT is set we know about such a type. */
5963 #ifdef BFD_HOST_U_64_BIT
5968 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5969 bfd *dynobj = elf_hash_table (info)->dynobj;
5970 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5971 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5972 unsigned long int *counts;
5974 unsigned int no_improvement_count = 0;
5976 /* Possible optimization parameters: if we have NSYMS symbols we say
5977 that the hashing table must at least have NSYMS/4 and at most
5979 minsize = nsyms / 4;
5982 best_size = maxsize = nsyms * 2;
5987 if ((best_size & 31) == 0)
5991 /* Create array where we count the collisions in. We must use bfd_malloc
5992 since the size could be large. */
5994 amt *= sizeof (unsigned long int);
5995 counts = (unsigned long int *) bfd_malloc (amt);
5999 /* Compute the "optimal" size for the hash table. The criteria is a
6000 minimal chain length. The minor criteria is (of course) the size
6002 for (i = minsize; i < maxsize; ++i)
6004 /* Walk through the array of hashcodes and count the collisions. */
6005 BFD_HOST_U_64_BIT max;
6006 unsigned long int j;
6007 unsigned long int fact;
6009 if (gnu_hash && (i & 31) == 0)
6012 memset (counts, '\0', i * sizeof (unsigned long int));
6014 /* Determine how often each hash bucket is used. */
6015 for (j = 0; j < nsyms; ++j)
6016 ++counts[hashcodes[j] % i];
6018 /* For the weight function we need some information about the
6019 pagesize on the target. This is information need not be 100%
6020 accurate. Since this information is not available (so far) we
6021 define it here to a reasonable default value. If it is crucial
6022 to have a better value some day simply define this value. */
6023 # ifndef BFD_TARGET_PAGESIZE
6024 # define BFD_TARGET_PAGESIZE (4096)
6027 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6029 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6032 /* Variant 1: optimize for short chains. We add the squares
6033 of all the chain lengths (which favors many small chain
6034 over a few long chains). */
6035 for (j = 0; j < i; ++j)
6036 max += counts[j] * counts[j];
6038 /* This adds penalties for the overall size of the table. */
6039 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6042 /* Variant 2: Optimize a lot more for small table. Here we
6043 also add squares of the size but we also add penalties for
6044 empty slots (the +1 term). */
6045 for (j = 0; j < i; ++j)
6046 max += (1 + counts[j]) * (1 + counts[j]);
6048 /* The overall size of the table is considered, but not as
6049 strong as in variant 1, where it is squared. */
6050 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6054 /* Compare with current best results. */
6055 if (max < best_chlen)
6059 no_improvement_count = 0;
6061 /* PR 11843: Avoid futile long searches for the best bucket size
6062 when there are a large number of symbols. */
6063 else if (++no_improvement_count == 100)
6070 #endif /* defined (BFD_HOST_U_64_BIT) */
6072 /* This is the fallback solution if no 64bit type is available or if we
6073 are not supposed to spend much time on optimizations. We select the
6074 bucket count using a fixed set of numbers. */
6075 for (i = 0; elf_buckets[i] != 0; i++)
6077 best_size = elf_buckets[i];
6078 if (nsyms < elf_buckets[i + 1])
6081 if (gnu_hash && best_size < 2)
6088 /* Size any SHT_GROUP section for ld -r. */
6091 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6096 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6097 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6098 && (s = ibfd->sections) != NULL
6099 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6100 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6105 /* Set a default stack segment size. The value in INFO wins. If it
6106 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6107 undefined it is initialized. */
6110 bfd_elf_stack_segment_size (bfd *output_bfd,
6111 struct bfd_link_info *info,
6112 const char *legacy_symbol,
6113 bfd_vma default_size)
6115 struct elf_link_hash_entry *h = NULL;
6117 /* Look for legacy symbol. */
6119 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6120 FALSE, FALSE, FALSE);
6121 if (h && (h->root.type == bfd_link_hash_defined
6122 || h->root.type == bfd_link_hash_defweak)
6124 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6126 /* The symbol has no type if specified on the command line. */
6127 h->type = STT_OBJECT;
6128 if (info->stacksize)
6129 /* xgettext:c-format */
6130 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6131 output_bfd, legacy_symbol);
6132 else if (h->root.u.def.section != bfd_abs_section_ptr)
6133 /* xgettext:c-format */
6134 _bfd_error_handler (_("%pB: %s not absolute"),
6135 output_bfd, legacy_symbol);
6137 info->stacksize = h->root.u.def.value;
6140 if (!info->stacksize)
6141 /* If the user didn't set a size, or explicitly inhibit the
6142 size, set it now. */
6143 info->stacksize = default_size;
6145 /* Provide the legacy symbol, if it is referenced. */
6146 if (h && (h->root.type == bfd_link_hash_undefined
6147 || h->root.type == bfd_link_hash_undefweak))
6149 struct bfd_link_hash_entry *bh = NULL;
6151 if (!(_bfd_generic_link_add_one_symbol
6152 (info, output_bfd, legacy_symbol,
6153 BSF_GLOBAL, bfd_abs_section_ptr,
6154 info->stacksize >= 0 ? info->stacksize : 0,
6155 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6158 h = (struct elf_link_hash_entry *) bh;
6160 h->type = STT_OBJECT;
6166 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6168 struct elf_gc_sweep_symbol_info
6170 struct bfd_link_info *info;
6171 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6176 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6179 && (((h->root.type == bfd_link_hash_defined
6180 || h->root.type == bfd_link_hash_defweak)
6181 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6182 && h->root.u.def.section->gc_mark))
6183 || h->root.type == bfd_link_hash_undefined
6184 || h->root.type == bfd_link_hash_undefweak))
6186 struct elf_gc_sweep_symbol_info *inf;
6188 inf = (struct elf_gc_sweep_symbol_info *) data;
6189 (*inf->hide_symbol) (inf->info, h, TRUE);
6192 h->ref_regular_nonweak = 0;
6198 /* Set up the sizes and contents of the ELF dynamic sections. This is
6199 called by the ELF linker emulation before_allocation routine. We
6200 must set the sizes of the sections before the linker sets the
6201 addresses of the various sections. */
6204 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6207 const char *filter_shlib,
6209 const char *depaudit,
6210 const char * const *auxiliary_filters,
6211 struct bfd_link_info *info,
6212 asection **sinterpptr)
6215 const struct elf_backend_data *bed;
6219 if (!is_elf_hash_table (info->hash))
6222 dynobj = elf_hash_table (info)->dynobj;
6224 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6226 struct bfd_elf_version_tree *verdefs;
6227 struct elf_info_failed asvinfo;
6228 struct bfd_elf_version_tree *t;
6229 struct bfd_elf_version_expr *d;
6233 /* If we are supposed to export all symbols into the dynamic symbol
6234 table (this is not the normal case), then do so. */
6235 if (info->export_dynamic
6236 || (bfd_link_executable (info) && info->dynamic))
6238 struct elf_info_failed eif;
6242 elf_link_hash_traverse (elf_hash_table (info),
6243 _bfd_elf_export_symbol,
6251 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6253 if (soname_indx == (size_t) -1
6254 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6258 soname_indx = (size_t) -1;
6260 /* Make all global versions with definition. */
6261 for (t = info->version_info; t != NULL; t = t->next)
6262 for (d = t->globals.list; d != NULL; d = d->next)
6263 if (!d->symver && d->literal)
6265 const char *verstr, *name;
6266 size_t namelen, verlen, newlen;
6267 char *newname, *p, leading_char;
6268 struct elf_link_hash_entry *newh;
6270 leading_char = bfd_get_symbol_leading_char (output_bfd);
6272 namelen = strlen (name) + (leading_char != '\0');
6274 verlen = strlen (verstr);
6275 newlen = namelen + verlen + 3;
6277 newname = (char *) bfd_malloc (newlen);
6278 if (newname == NULL)
6280 newname[0] = leading_char;
6281 memcpy (newname + (leading_char != '\0'), name, namelen);
6283 /* Check the hidden versioned definition. */
6284 p = newname + namelen;
6286 memcpy (p, verstr, verlen + 1);
6287 newh = elf_link_hash_lookup (elf_hash_table (info),
6288 newname, FALSE, FALSE,
6291 || (newh->root.type != bfd_link_hash_defined
6292 && newh->root.type != bfd_link_hash_defweak))
6294 /* Check the default versioned definition. */
6296 memcpy (p, verstr, verlen + 1);
6297 newh = elf_link_hash_lookup (elf_hash_table (info),
6298 newname, FALSE, FALSE,
6303 /* Mark this version if there is a definition and it is
6304 not defined in a shared object. */
6306 && !newh->def_dynamic
6307 && (newh->root.type == bfd_link_hash_defined
6308 || newh->root.type == bfd_link_hash_defweak))
6312 /* Attach all the symbols to their version information. */
6313 asvinfo.info = info;
6314 asvinfo.failed = FALSE;
6316 elf_link_hash_traverse (elf_hash_table (info),
6317 _bfd_elf_link_assign_sym_version,
6322 if (!info->allow_undefined_version)
6324 /* Check if all global versions have a definition. */
6325 bfd_boolean all_defined = TRUE;
6326 for (t = info->version_info; t != NULL; t = t->next)
6327 for (d = t->globals.list; d != NULL; d = d->next)
6328 if (d->literal && !d->symver && !d->script)
6331 (_("%s: undefined version: %s"),
6332 d->pattern, t->name);
6333 all_defined = FALSE;
6338 bfd_set_error (bfd_error_bad_value);
6343 /* Set up the version definition section. */
6344 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6345 BFD_ASSERT (s != NULL);
6347 /* We may have created additional version definitions if we are
6348 just linking a regular application. */
6349 verdefs = info->version_info;
6351 /* Skip anonymous version tag. */
6352 if (verdefs != NULL && verdefs->vernum == 0)
6353 verdefs = verdefs->next;
6355 if (verdefs == NULL && !info->create_default_symver)
6356 s->flags |= SEC_EXCLUDE;
6362 Elf_Internal_Verdef def;
6363 Elf_Internal_Verdaux defaux;
6364 struct bfd_link_hash_entry *bh;
6365 struct elf_link_hash_entry *h;
6371 /* Make space for the base version. */
6372 size += sizeof (Elf_External_Verdef);
6373 size += sizeof (Elf_External_Verdaux);
6376 /* Make space for the default version. */
6377 if (info->create_default_symver)
6379 size += sizeof (Elf_External_Verdef);
6383 for (t = verdefs; t != NULL; t = t->next)
6385 struct bfd_elf_version_deps *n;
6387 /* Don't emit base version twice. */
6391 size += sizeof (Elf_External_Verdef);
6392 size += sizeof (Elf_External_Verdaux);
6395 for (n = t->deps; n != NULL; n = n->next)
6396 size += sizeof (Elf_External_Verdaux);
6400 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6401 if (s->contents == NULL && s->size != 0)
6404 /* Fill in the version definition section. */
6408 def.vd_version = VER_DEF_CURRENT;
6409 def.vd_flags = VER_FLG_BASE;
6412 if (info->create_default_symver)
6414 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6415 def.vd_next = sizeof (Elf_External_Verdef);
6419 def.vd_aux = sizeof (Elf_External_Verdef);
6420 def.vd_next = (sizeof (Elf_External_Verdef)
6421 + sizeof (Elf_External_Verdaux));
6424 if (soname_indx != (size_t) -1)
6426 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6428 def.vd_hash = bfd_elf_hash (soname);
6429 defaux.vda_name = soname_indx;
6436 name = lbasename (output_bfd->filename);
6437 def.vd_hash = bfd_elf_hash (name);
6438 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6440 if (indx == (size_t) -1)
6442 defaux.vda_name = indx;
6444 defaux.vda_next = 0;
6446 _bfd_elf_swap_verdef_out (output_bfd, &def,
6447 (Elf_External_Verdef *) p);
6448 p += sizeof (Elf_External_Verdef);
6449 if (info->create_default_symver)
6451 /* Add a symbol representing this version. */
6453 if (! (_bfd_generic_link_add_one_symbol
6454 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6456 get_elf_backend_data (dynobj)->collect, &bh)))
6458 h = (struct elf_link_hash_entry *) bh;
6461 h->type = STT_OBJECT;
6462 h->verinfo.vertree = NULL;
6464 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6467 /* Create a duplicate of the base version with the same
6468 aux block, but different flags. */
6471 def.vd_aux = sizeof (Elf_External_Verdef);
6473 def.vd_next = (sizeof (Elf_External_Verdef)
6474 + sizeof (Elf_External_Verdaux));
6477 _bfd_elf_swap_verdef_out (output_bfd, &def,
6478 (Elf_External_Verdef *) p);
6479 p += sizeof (Elf_External_Verdef);
6481 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6482 (Elf_External_Verdaux *) p);
6483 p += sizeof (Elf_External_Verdaux);
6485 for (t = verdefs; t != NULL; t = t->next)
6488 struct bfd_elf_version_deps *n;
6490 /* Don't emit the base version twice. */
6495 for (n = t->deps; n != NULL; n = n->next)
6498 /* Add a symbol representing this version. */
6500 if (! (_bfd_generic_link_add_one_symbol
6501 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6503 get_elf_backend_data (dynobj)->collect, &bh)))
6505 h = (struct elf_link_hash_entry *) bh;
6508 h->type = STT_OBJECT;
6509 h->verinfo.vertree = t;
6511 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6514 def.vd_version = VER_DEF_CURRENT;
6516 if (t->globals.list == NULL
6517 && t->locals.list == NULL
6519 def.vd_flags |= VER_FLG_WEAK;
6520 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6521 def.vd_cnt = cdeps + 1;
6522 def.vd_hash = bfd_elf_hash (t->name);
6523 def.vd_aux = sizeof (Elf_External_Verdef);
6526 /* If a basever node is next, it *must* be the last node in
6527 the chain, otherwise Verdef construction breaks. */
6528 if (t->next != NULL && t->next->vernum == 0)
6529 BFD_ASSERT (t->next->next == NULL);
6531 if (t->next != NULL && t->next->vernum != 0)
6532 def.vd_next = (sizeof (Elf_External_Verdef)
6533 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6535 _bfd_elf_swap_verdef_out (output_bfd, &def,
6536 (Elf_External_Verdef *) p);
6537 p += sizeof (Elf_External_Verdef);
6539 defaux.vda_name = h->dynstr_index;
6540 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6542 defaux.vda_next = 0;
6543 if (t->deps != NULL)
6544 defaux.vda_next = sizeof (Elf_External_Verdaux);
6545 t->name_indx = defaux.vda_name;
6547 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6548 (Elf_External_Verdaux *) p);
6549 p += sizeof (Elf_External_Verdaux);
6551 for (n = t->deps; n != NULL; n = n->next)
6553 if (n->version_needed == NULL)
6555 /* This can happen if there was an error in the
6557 defaux.vda_name = 0;
6561 defaux.vda_name = n->version_needed->name_indx;
6562 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6565 if (n->next == NULL)
6566 defaux.vda_next = 0;
6568 defaux.vda_next = sizeof (Elf_External_Verdaux);
6570 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6571 (Elf_External_Verdaux *) p);
6572 p += sizeof (Elf_External_Verdaux);
6576 elf_tdata (output_bfd)->cverdefs = cdefs;
6580 bed = get_elf_backend_data (output_bfd);
6582 if (info->gc_sections && bed->can_gc_sections)
6584 struct elf_gc_sweep_symbol_info sweep_info;
6586 /* Remove the symbols that were in the swept sections from the
6587 dynamic symbol table. */
6588 sweep_info.info = info;
6589 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6590 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6594 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6597 struct elf_find_verdep_info sinfo;
6599 /* Work out the size of the version reference section. */
6601 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6602 BFD_ASSERT (s != NULL);
6605 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6606 if (sinfo.vers == 0)
6608 sinfo.failed = FALSE;
6610 elf_link_hash_traverse (elf_hash_table (info),
6611 _bfd_elf_link_find_version_dependencies,
6616 if (elf_tdata (output_bfd)->verref == NULL)
6617 s->flags |= SEC_EXCLUDE;
6620 Elf_Internal_Verneed *vn;
6625 /* Build the version dependency section. */
6628 for (vn = elf_tdata (output_bfd)->verref;
6630 vn = vn->vn_nextref)
6632 Elf_Internal_Vernaux *a;
6634 size += sizeof (Elf_External_Verneed);
6636 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6637 size += sizeof (Elf_External_Vernaux);
6641 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6642 if (s->contents == NULL)
6646 for (vn = elf_tdata (output_bfd)->verref;
6648 vn = vn->vn_nextref)
6651 Elf_Internal_Vernaux *a;
6655 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6658 vn->vn_version = VER_NEED_CURRENT;
6660 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6661 elf_dt_name (vn->vn_bfd) != NULL
6662 ? elf_dt_name (vn->vn_bfd)
6663 : lbasename (vn->vn_bfd->filename),
6665 if (indx == (size_t) -1)
6668 vn->vn_aux = sizeof (Elf_External_Verneed);
6669 if (vn->vn_nextref == NULL)
6672 vn->vn_next = (sizeof (Elf_External_Verneed)
6673 + caux * sizeof (Elf_External_Vernaux));
6675 _bfd_elf_swap_verneed_out (output_bfd, vn,
6676 (Elf_External_Verneed *) p);
6677 p += sizeof (Elf_External_Verneed);
6679 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6681 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6682 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6683 a->vna_nodename, FALSE);
6684 if (indx == (size_t) -1)
6687 if (a->vna_nextptr == NULL)
6690 a->vna_next = sizeof (Elf_External_Vernaux);
6692 _bfd_elf_swap_vernaux_out (output_bfd, a,
6693 (Elf_External_Vernaux *) p);
6694 p += sizeof (Elf_External_Vernaux);
6698 elf_tdata (output_bfd)->cverrefs = crefs;
6702 /* Any syms created from now on start with -1 in
6703 got.refcount/offset and plt.refcount/offset. */
6704 elf_hash_table (info)->init_got_refcount
6705 = elf_hash_table (info)->init_got_offset;
6706 elf_hash_table (info)->init_plt_refcount
6707 = elf_hash_table (info)->init_plt_offset;
6709 if (bfd_link_relocatable (info)
6710 && !_bfd_elf_size_group_sections (info))
6713 /* The backend may have to create some sections regardless of whether
6714 we're dynamic or not. */
6715 if (bed->elf_backend_always_size_sections
6716 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6719 /* Determine any GNU_STACK segment requirements, after the backend
6720 has had a chance to set a default segment size. */
6721 if (info->execstack)
6722 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6723 else if (info->noexecstack)
6724 elf_stack_flags (output_bfd) = PF_R | PF_W;
6728 asection *notesec = NULL;
6731 for (inputobj = info->input_bfds;
6733 inputobj = inputobj->link.next)
6738 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6740 s = inputobj->sections;
6741 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6744 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6747 if (s->flags & SEC_CODE)
6751 else if (bed->default_execstack)
6754 if (notesec || info->stacksize > 0)
6755 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6756 if (notesec && exec && bfd_link_relocatable (info)
6757 && notesec->output_section != bfd_abs_section_ptr)
6758 notesec->output_section->flags |= SEC_CODE;
6761 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6763 struct elf_info_failed eif;
6764 struct elf_link_hash_entry *h;
6768 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6769 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6773 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6775 info->flags |= DF_SYMBOLIC;
6783 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6785 if (indx == (size_t) -1)
6788 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6789 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6793 if (filter_shlib != NULL)
6797 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6798 filter_shlib, TRUE);
6799 if (indx == (size_t) -1
6800 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6804 if (auxiliary_filters != NULL)
6806 const char * const *p;
6808 for (p = auxiliary_filters; *p != NULL; p++)
6812 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6814 if (indx == (size_t) -1
6815 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6824 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6826 if (indx == (size_t) -1
6827 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6831 if (depaudit != NULL)
6835 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6837 if (indx == (size_t) -1
6838 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6845 /* Find all symbols which were defined in a dynamic object and make
6846 the backend pick a reasonable value for them. */
6847 elf_link_hash_traverse (elf_hash_table (info),
6848 _bfd_elf_adjust_dynamic_symbol,
6853 /* Add some entries to the .dynamic section. We fill in some of the
6854 values later, in bfd_elf_final_link, but we must add the entries
6855 now so that we know the final size of the .dynamic section. */
6857 /* If there are initialization and/or finalization functions to
6858 call then add the corresponding DT_INIT/DT_FINI entries. */
6859 h = (info->init_function
6860 ? elf_link_hash_lookup (elf_hash_table (info),
6861 info->init_function, FALSE,
6868 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6871 h = (info->fini_function
6872 ? elf_link_hash_lookup (elf_hash_table (info),
6873 info->fini_function, FALSE,
6880 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6884 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6885 if (s != NULL && s->linker_has_input)
6887 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6888 if (! bfd_link_executable (info))
6893 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6894 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6895 && (o = sub->sections) != NULL
6896 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6897 for (o = sub->sections; o != NULL; o = o->next)
6898 if (elf_section_data (o)->this_hdr.sh_type
6899 == SHT_PREINIT_ARRAY)
6902 (_("%pB: .preinit_array section is not allowed in DSO"),
6907 bfd_set_error (bfd_error_nonrepresentable_section);
6911 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6912 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6915 s = bfd_get_section_by_name (output_bfd, ".init_array");
6916 if (s != NULL && s->linker_has_input)
6918 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6919 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6922 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6923 if (s != NULL && s->linker_has_input)
6925 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6926 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6930 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6931 /* If .dynstr is excluded from the link, we don't want any of
6932 these tags. Strictly, we should be checking each section
6933 individually; This quick check covers for the case where
6934 someone does a /DISCARD/ : { *(*) }. */
6935 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6937 bfd_size_type strsize;
6939 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6940 if ((info->emit_hash
6941 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6942 || (info->emit_gnu_hash
6943 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6944 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6945 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6946 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6947 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6948 bed->s->sizeof_sym))
6953 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6956 /* The backend must work out the sizes of all the other dynamic
6959 && bed->elf_backend_size_dynamic_sections != NULL
6960 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6963 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6965 if (elf_tdata (output_bfd)->cverdefs)
6967 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6969 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6970 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6974 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6976 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6979 else if (info->flags & DF_BIND_NOW)
6981 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6987 if (bfd_link_executable (info))
6988 info->flags_1 &= ~ (DF_1_INITFIRST
6991 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6995 if (elf_tdata (output_bfd)->cverrefs)
6997 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6999 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7000 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7004 if ((elf_tdata (output_bfd)->cverrefs == 0
7005 && elf_tdata (output_bfd)->cverdefs == 0)
7006 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7010 s = bfd_get_linker_section (dynobj, ".gnu.version");
7011 s->flags |= SEC_EXCLUDE;
7017 /* Find the first non-excluded output section. We'll use its
7018 section symbol for some emitted relocs. */
7020 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7024 for (s = output_bfd->sections; s != NULL; s = s->next)
7025 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7026 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7028 elf_hash_table (info)->text_index_section = s;
7033 /* Find two non-excluded output sections, one for code, one for data.
7034 We'll use their section symbols for some emitted relocs. */
7036 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7040 /* Data first, since setting text_index_section changes
7041 _bfd_elf_omit_section_dynsym_default. */
7042 for (s = output_bfd->sections; s != NULL; s = s->next)
7043 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
7044 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7046 elf_hash_table (info)->data_index_section = s;
7050 for (s = output_bfd->sections; s != NULL; s = s->next)
7051 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
7052 == (SEC_ALLOC | SEC_READONLY))
7053 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7055 elf_hash_table (info)->text_index_section = s;
7059 if (elf_hash_table (info)->text_index_section == NULL)
7060 elf_hash_table (info)->text_index_section
7061 = elf_hash_table (info)->data_index_section;
7065 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7067 const struct elf_backend_data *bed;
7068 unsigned long section_sym_count;
7069 bfd_size_type dynsymcount = 0;
7071 if (!is_elf_hash_table (info->hash))
7074 bed = get_elf_backend_data (output_bfd);
7075 (*bed->elf_backend_init_index_section) (output_bfd, info);
7077 /* Assign dynsym indices. In a shared library we generate a section
7078 symbol for each output section, which come first. Next come all
7079 of the back-end allocated local dynamic syms, followed by the rest
7080 of the global symbols.
7082 This is usually not needed for static binaries, however backends
7083 can request to always do it, e.g. the MIPS backend uses dynamic
7084 symbol counts to lay out GOT, which will be produced in the
7085 presence of GOT relocations even in static binaries (holding fixed
7086 data in that case, to satisfy those relocations). */
7088 if (elf_hash_table (info)->dynamic_sections_created
7089 || bed->always_renumber_dynsyms)
7090 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7091 §ion_sym_count);
7093 if (elf_hash_table (info)->dynamic_sections_created)
7097 unsigned int dtagcount;
7099 dynobj = elf_hash_table (info)->dynobj;
7101 /* Work out the size of the symbol version section. */
7102 s = bfd_get_linker_section (dynobj, ".gnu.version");
7103 BFD_ASSERT (s != NULL);
7104 if ((s->flags & SEC_EXCLUDE) == 0)
7106 s->size = dynsymcount * sizeof (Elf_External_Versym);
7107 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7108 if (s->contents == NULL)
7111 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7115 /* Set the size of the .dynsym and .hash sections. We counted
7116 the number of dynamic symbols in elf_link_add_object_symbols.
7117 We will build the contents of .dynsym and .hash when we build
7118 the final symbol table, because until then we do not know the
7119 correct value to give the symbols. We built the .dynstr
7120 section as we went along in elf_link_add_object_symbols. */
7121 s = elf_hash_table (info)->dynsym;
7122 BFD_ASSERT (s != NULL);
7123 s->size = dynsymcount * bed->s->sizeof_sym;
7125 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7126 if (s->contents == NULL)
7129 /* The first entry in .dynsym is a dummy symbol. Clear all the
7130 section syms, in case we don't output them all. */
7131 ++section_sym_count;
7132 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7134 elf_hash_table (info)->bucketcount = 0;
7136 /* Compute the size of the hashing table. As a side effect this
7137 computes the hash values for all the names we export. */
7138 if (info->emit_hash)
7140 unsigned long int *hashcodes;
7141 struct hash_codes_info hashinf;
7143 unsigned long int nsyms;
7145 size_t hash_entry_size;
7147 /* Compute the hash values for all exported symbols. At the same
7148 time store the values in an array so that we could use them for
7150 amt = dynsymcount * sizeof (unsigned long int);
7151 hashcodes = (unsigned long int *) bfd_malloc (amt);
7152 if (hashcodes == NULL)
7154 hashinf.hashcodes = hashcodes;
7155 hashinf.error = FALSE;
7157 /* Put all hash values in HASHCODES. */
7158 elf_link_hash_traverse (elf_hash_table (info),
7159 elf_collect_hash_codes, &hashinf);
7166 nsyms = hashinf.hashcodes - hashcodes;
7168 = compute_bucket_count (info, hashcodes, nsyms, 0);
7171 if (bucketcount == 0 && nsyms > 0)
7174 elf_hash_table (info)->bucketcount = bucketcount;
7176 s = bfd_get_linker_section (dynobj, ".hash");
7177 BFD_ASSERT (s != NULL);
7178 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7179 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7180 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7181 if (s->contents == NULL)
7184 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7185 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7186 s->contents + hash_entry_size);
7189 if (info->emit_gnu_hash)
7192 unsigned char *contents;
7193 struct collect_gnu_hash_codes cinfo;
7197 memset (&cinfo, 0, sizeof (cinfo));
7199 /* Compute the hash values for all exported symbols. At the same
7200 time store the values in an array so that we could use them for
7202 amt = dynsymcount * 2 * sizeof (unsigned long int);
7203 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7204 if (cinfo.hashcodes == NULL)
7207 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7208 cinfo.min_dynindx = -1;
7209 cinfo.output_bfd = output_bfd;
7212 /* Put all hash values in HASHCODES. */
7213 elf_link_hash_traverse (elf_hash_table (info),
7214 elf_collect_gnu_hash_codes, &cinfo);
7217 free (cinfo.hashcodes);
7222 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7224 if (bucketcount == 0)
7226 free (cinfo.hashcodes);
7230 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7231 BFD_ASSERT (s != NULL);
7233 if (cinfo.nsyms == 0)
7235 /* Empty .gnu.hash section is special. */
7236 BFD_ASSERT (cinfo.min_dynindx == -1);
7237 free (cinfo.hashcodes);
7238 s->size = 5 * 4 + bed->s->arch_size / 8;
7239 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7240 if (contents == NULL)
7242 s->contents = contents;
7243 /* 1 empty bucket. */
7244 bfd_put_32 (output_bfd, 1, contents);
7245 /* SYMIDX above the special symbol 0. */
7246 bfd_put_32 (output_bfd, 1, contents + 4);
7247 /* Just one word for bitmask. */
7248 bfd_put_32 (output_bfd, 1, contents + 8);
7249 /* Only hash fn bloom filter. */
7250 bfd_put_32 (output_bfd, 0, contents + 12);
7251 /* No hashes are valid - empty bitmask. */
7252 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7253 /* No hashes in the only bucket. */
7254 bfd_put_32 (output_bfd, 0,
7255 contents + 16 + bed->s->arch_size / 8);
7259 unsigned long int maskwords, maskbitslog2, x;
7260 BFD_ASSERT (cinfo.min_dynindx != -1);
7264 while ((x >>= 1) != 0)
7266 if (maskbitslog2 < 3)
7268 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7269 maskbitslog2 = maskbitslog2 + 3;
7271 maskbitslog2 = maskbitslog2 + 2;
7272 if (bed->s->arch_size == 64)
7274 if (maskbitslog2 == 5)
7280 cinfo.mask = (1 << cinfo.shift1) - 1;
7281 cinfo.shift2 = maskbitslog2;
7282 cinfo.maskbits = 1 << maskbitslog2;
7283 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7284 amt = bucketcount * sizeof (unsigned long int) * 2;
7285 amt += maskwords * sizeof (bfd_vma);
7286 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7287 if (cinfo.bitmask == NULL)
7289 free (cinfo.hashcodes);
7293 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7294 cinfo.indx = cinfo.counts + bucketcount;
7295 cinfo.symindx = dynsymcount - cinfo.nsyms;
7296 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7298 /* Determine how often each hash bucket is used. */
7299 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7300 for (i = 0; i < cinfo.nsyms; ++i)
7301 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7303 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7304 if (cinfo.counts[i] != 0)
7306 cinfo.indx[i] = cnt;
7307 cnt += cinfo.counts[i];
7309 BFD_ASSERT (cnt == dynsymcount);
7310 cinfo.bucketcount = bucketcount;
7311 cinfo.local_indx = cinfo.min_dynindx;
7313 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7314 s->size += cinfo.maskbits / 8;
7315 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7316 if (contents == NULL)
7318 free (cinfo.bitmask);
7319 free (cinfo.hashcodes);
7323 s->contents = contents;
7324 bfd_put_32 (output_bfd, bucketcount, contents);
7325 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7326 bfd_put_32 (output_bfd, maskwords, contents + 8);
7327 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7328 contents += 16 + cinfo.maskbits / 8;
7330 for (i = 0; i < bucketcount; ++i)
7332 if (cinfo.counts[i] == 0)
7333 bfd_put_32 (output_bfd, 0, contents);
7335 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7339 cinfo.contents = contents;
7341 /* Renumber dynamic symbols, populate .gnu.hash section. */
7342 elf_link_hash_traverse (elf_hash_table (info),
7343 elf_renumber_gnu_hash_syms, &cinfo);
7345 contents = s->contents + 16;
7346 for (i = 0; i < maskwords; ++i)
7348 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7350 contents += bed->s->arch_size / 8;
7353 free (cinfo.bitmask);
7354 free (cinfo.hashcodes);
7358 s = bfd_get_linker_section (dynobj, ".dynstr");
7359 BFD_ASSERT (s != NULL);
7361 elf_finalize_dynstr (output_bfd, info);
7363 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7365 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7366 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7373 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7376 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7379 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7380 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7383 /* Finish SHF_MERGE section merging. */
7386 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7391 if (!is_elf_hash_table (info->hash))
7394 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7395 if ((ibfd->flags & DYNAMIC) == 0
7396 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7397 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7398 == get_elf_backend_data (obfd)->s->elfclass))
7399 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7400 if ((sec->flags & SEC_MERGE) != 0
7401 && !bfd_is_abs_section (sec->output_section))
7403 struct bfd_elf_section_data *secdata;
7405 secdata = elf_section_data (sec);
7406 if (! _bfd_add_merge_section (obfd,
7407 &elf_hash_table (info)->merge_info,
7408 sec, &secdata->sec_info))
7410 else if (secdata->sec_info)
7411 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7414 if (elf_hash_table (info)->merge_info != NULL)
7415 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7416 merge_sections_remove_hook);
7420 /* Create an entry in an ELF linker hash table. */
7422 struct bfd_hash_entry *
7423 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7424 struct bfd_hash_table *table,
7427 /* Allocate the structure if it has not already been allocated by a
7431 entry = (struct bfd_hash_entry *)
7432 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7437 /* Call the allocation method of the superclass. */
7438 entry = _bfd_link_hash_newfunc (entry, table, string);
7441 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7442 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7444 /* Set local fields. */
7447 ret->got = htab->init_got_refcount;
7448 ret->plt = htab->init_plt_refcount;
7449 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7450 - offsetof (struct elf_link_hash_entry, size)));
7451 /* Assume that we have been called by a non-ELF symbol reader.
7452 This flag is then reset by the code which reads an ELF input
7453 file. This ensures that a symbol created by a non-ELF symbol
7454 reader will have the flag set correctly. */
7461 /* Copy data from an indirect symbol to its direct symbol, hiding the
7462 old indirect symbol. Also used for copying flags to a weakdef. */
7465 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7466 struct elf_link_hash_entry *dir,
7467 struct elf_link_hash_entry *ind)
7469 struct elf_link_hash_table *htab;
7471 /* Copy down any references that we may have already seen to the
7472 symbol which just became indirect. */
7474 if (dir->versioned != versioned_hidden)
7475 dir->ref_dynamic |= ind->ref_dynamic;
7476 dir->ref_regular |= ind->ref_regular;
7477 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7478 dir->non_got_ref |= ind->non_got_ref;
7479 dir->needs_plt |= ind->needs_plt;
7480 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7482 if (ind->root.type != bfd_link_hash_indirect)
7485 /* Copy over the global and procedure linkage table refcount entries.
7486 These may have been already set up by a check_relocs routine. */
7487 htab = elf_hash_table (info);
7488 if (ind->got.refcount > htab->init_got_refcount.refcount)
7490 if (dir->got.refcount < 0)
7491 dir->got.refcount = 0;
7492 dir->got.refcount += ind->got.refcount;
7493 ind->got.refcount = htab->init_got_refcount.refcount;
7496 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7498 if (dir->plt.refcount < 0)
7499 dir->plt.refcount = 0;
7500 dir->plt.refcount += ind->plt.refcount;
7501 ind->plt.refcount = htab->init_plt_refcount.refcount;
7504 if (ind->dynindx != -1)
7506 if (dir->dynindx != -1)
7507 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7508 dir->dynindx = ind->dynindx;
7509 dir->dynstr_index = ind->dynstr_index;
7511 ind->dynstr_index = 0;
7516 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7517 struct elf_link_hash_entry *h,
7518 bfd_boolean force_local)
7520 /* STT_GNU_IFUNC symbol must go through PLT. */
7521 if (h->type != STT_GNU_IFUNC)
7523 h->plt = elf_hash_table (info)->init_plt_offset;
7528 h->forced_local = 1;
7529 if (h->dynindx != -1)
7531 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7534 h->dynstr_index = 0;
7539 /* Hide a symbol. */
7542 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7543 struct bfd_link_info *info,
7544 struct bfd_link_hash_entry *h)
7546 if (is_elf_hash_table (info->hash))
7548 const struct elf_backend_data *bed
7549 = get_elf_backend_data (output_bfd);
7550 struct elf_link_hash_entry *eh
7551 = (struct elf_link_hash_entry *) h;
7552 bed->elf_backend_hide_symbol (info, eh, TRUE);
7553 eh->def_dynamic = 0;
7554 eh->ref_dynamic = 0;
7555 eh->dynamic_def = 0;
7559 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7563 _bfd_elf_link_hash_table_init
7564 (struct elf_link_hash_table *table,
7566 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7567 struct bfd_hash_table *,
7569 unsigned int entsize,
7570 enum elf_target_id target_id)
7573 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7575 table->init_got_refcount.refcount = can_refcount - 1;
7576 table->init_plt_refcount.refcount = can_refcount - 1;
7577 table->init_got_offset.offset = -(bfd_vma) 1;
7578 table->init_plt_offset.offset = -(bfd_vma) 1;
7579 /* The first dynamic symbol is a dummy. */
7580 table->dynsymcount = 1;
7582 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7584 table->root.type = bfd_link_elf_hash_table;
7585 table->hash_table_id = target_id;
7590 /* Create an ELF linker hash table. */
7592 struct bfd_link_hash_table *
7593 _bfd_elf_link_hash_table_create (bfd *abfd)
7595 struct elf_link_hash_table *ret;
7596 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7598 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7602 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7603 sizeof (struct elf_link_hash_entry),
7609 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7614 /* Destroy an ELF linker hash table. */
7617 _bfd_elf_link_hash_table_free (bfd *obfd)
7619 struct elf_link_hash_table *htab;
7621 htab = (struct elf_link_hash_table *) obfd->link.hash;
7622 if (htab->dynstr != NULL)
7623 _bfd_elf_strtab_free (htab->dynstr);
7624 _bfd_merge_sections_free (htab->merge_info);
7625 _bfd_generic_link_hash_table_free (obfd);
7628 /* This is a hook for the ELF emulation code in the generic linker to
7629 tell the backend linker what file name to use for the DT_NEEDED
7630 entry for a dynamic object. */
7633 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7635 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7636 && bfd_get_format (abfd) == bfd_object)
7637 elf_dt_name (abfd) = name;
7641 bfd_elf_get_dyn_lib_class (bfd *abfd)
7644 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7645 && bfd_get_format (abfd) == bfd_object)
7646 lib_class = elf_dyn_lib_class (abfd);
7653 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7655 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7656 && bfd_get_format (abfd) == bfd_object)
7657 elf_dyn_lib_class (abfd) = lib_class;
7660 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7661 the linker ELF emulation code. */
7663 struct bfd_link_needed_list *
7664 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7665 struct bfd_link_info *info)
7667 if (! is_elf_hash_table (info->hash))
7669 return elf_hash_table (info)->needed;
7672 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7673 hook for the linker ELF emulation code. */
7675 struct bfd_link_needed_list *
7676 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7677 struct bfd_link_info *info)
7679 if (! is_elf_hash_table (info->hash))
7681 return elf_hash_table (info)->runpath;
7684 /* Get the name actually used for a dynamic object for a link. This
7685 is the SONAME entry if there is one. Otherwise, it is the string
7686 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7689 bfd_elf_get_dt_soname (bfd *abfd)
7691 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7692 && bfd_get_format (abfd) == bfd_object)
7693 return elf_dt_name (abfd);
7697 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7698 the ELF linker emulation code. */
7701 bfd_elf_get_bfd_needed_list (bfd *abfd,
7702 struct bfd_link_needed_list **pneeded)
7705 bfd_byte *dynbuf = NULL;
7706 unsigned int elfsec;
7707 unsigned long shlink;
7708 bfd_byte *extdyn, *extdynend;
7710 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7714 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7715 || bfd_get_format (abfd) != bfd_object)
7718 s = bfd_get_section_by_name (abfd, ".dynamic");
7719 if (s == NULL || s->size == 0)
7722 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7725 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7726 if (elfsec == SHN_BAD)
7729 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7731 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7732 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7735 extdynend = extdyn + s->size;
7736 for (; extdyn < extdynend; extdyn += extdynsize)
7738 Elf_Internal_Dyn dyn;
7740 (*swap_dyn_in) (abfd, extdyn, &dyn);
7742 if (dyn.d_tag == DT_NULL)
7745 if (dyn.d_tag == DT_NEEDED)
7748 struct bfd_link_needed_list *l;
7749 unsigned int tagv = dyn.d_un.d_val;
7752 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7757 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7778 struct elf_symbuf_symbol
7780 unsigned long st_name; /* Symbol name, index in string tbl */
7781 unsigned char st_info; /* Type and binding attributes */
7782 unsigned char st_other; /* Visibilty, and target specific */
7785 struct elf_symbuf_head
7787 struct elf_symbuf_symbol *ssym;
7789 unsigned int st_shndx;
7796 Elf_Internal_Sym *isym;
7797 struct elf_symbuf_symbol *ssym;
7802 /* Sort references to symbols by ascending section number. */
7805 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7807 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7808 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7810 return s1->st_shndx - s2->st_shndx;
7814 elf_sym_name_compare (const void *arg1, const void *arg2)
7816 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7817 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7818 return strcmp (s1->name, s2->name);
7821 static struct elf_symbuf_head *
7822 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7824 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7825 struct elf_symbuf_symbol *ssym;
7826 struct elf_symbuf_head *ssymbuf, *ssymhead;
7827 size_t i, shndx_count, total_size;
7829 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7833 for (ind = indbuf, i = 0; i < symcount; i++)
7834 if (isymbuf[i].st_shndx != SHN_UNDEF)
7835 *ind++ = &isymbuf[i];
7838 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7839 elf_sort_elf_symbol);
7842 if (indbufend > indbuf)
7843 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7844 if (ind[0]->st_shndx != ind[1]->st_shndx)
7847 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7848 + (indbufend - indbuf) * sizeof (*ssym));
7849 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7850 if (ssymbuf == NULL)
7856 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7857 ssymbuf->ssym = NULL;
7858 ssymbuf->count = shndx_count;
7859 ssymbuf->st_shndx = 0;
7860 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7862 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7865 ssymhead->ssym = ssym;
7866 ssymhead->count = 0;
7867 ssymhead->st_shndx = (*ind)->st_shndx;
7869 ssym->st_name = (*ind)->st_name;
7870 ssym->st_info = (*ind)->st_info;
7871 ssym->st_other = (*ind)->st_other;
7874 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7875 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7882 /* Check if 2 sections define the same set of local and global
7886 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7887 struct bfd_link_info *info)
7890 const struct elf_backend_data *bed1, *bed2;
7891 Elf_Internal_Shdr *hdr1, *hdr2;
7892 size_t symcount1, symcount2;
7893 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7894 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7895 Elf_Internal_Sym *isym, *isymend;
7896 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7897 size_t count1, count2, i;
7898 unsigned int shndx1, shndx2;
7904 /* Both sections have to be in ELF. */
7905 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7906 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7909 if (elf_section_type (sec1) != elf_section_type (sec2))
7912 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7913 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7914 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7917 bed1 = get_elf_backend_data (bfd1);
7918 bed2 = get_elf_backend_data (bfd2);
7919 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7920 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7921 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7922 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7924 if (symcount1 == 0 || symcount2 == 0)
7930 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7931 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7933 if (ssymbuf1 == NULL)
7935 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7937 if (isymbuf1 == NULL)
7940 if (!info->reduce_memory_overheads)
7941 elf_tdata (bfd1)->symbuf = ssymbuf1
7942 = elf_create_symbuf (symcount1, isymbuf1);
7945 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7947 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7949 if (isymbuf2 == NULL)
7952 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7953 elf_tdata (bfd2)->symbuf = ssymbuf2
7954 = elf_create_symbuf (symcount2, isymbuf2);
7957 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7959 /* Optimized faster version. */
7961 struct elf_symbol *symp;
7962 struct elf_symbuf_symbol *ssym, *ssymend;
7965 hi = ssymbuf1->count;
7970 mid = (lo + hi) / 2;
7971 if (shndx1 < ssymbuf1[mid].st_shndx)
7973 else if (shndx1 > ssymbuf1[mid].st_shndx)
7977 count1 = ssymbuf1[mid].count;
7984 hi = ssymbuf2->count;
7989 mid = (lo + hi) / 2;
7990 if (shndx2 < ssymbuf2[mid].st_shndx)
7992 else if (shndx2 > ssymbuf2[mid].st_shndx)
7996 count2 = ssymbuf2[mid].count;
8002 if (count1 == 0 || count2 == 0 || count1 != count2)
8006 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8008 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8009 if (symtable1 == NULL || symtable2 == NULL)
8013 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8014 ssym < ssymend; ssym++, symp++)
8016 symp->u.ssym = ssym;
8017 symp->name = bfd_elf_string_from_elf_section (bfd1,
8023 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8024 ssym < ssymend; ssym++, symp++)
8026 symp->u.ssym = ssym;
8027 symp->name = bfd_elf_string_from_elf_section (bfd2,
8032 /* Sort symbol by name. */
8033 qsort (symtable1, count1, sizeof (struct elf_symbol),
8034 elf_sym_name_compare);
8035 qsort (symtable2, count1, sizeof (struct elf_symbol),
8036 elf_sym_name_compare);
8038 for (i = 0; i < count1; i++)
8039 /* Two symbols must have the same binding, type and name. */
8040 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8041 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8042 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8049 symtable1 = (struct elf_symbol *)
8050 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8051 symtable2 = (struct elf_symbol *)
8052 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8053 if (symtable1 == NULL || symtable2 == NULL)
8056 /* Count definitions in the section. */
8058 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8059 if (isym->st_shndx == shndx1)
8060 symtable1[count1++].u.isym = isym;
8063 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8064 if (isym->st_shndx == shndx2)
8065 symtable2[count2++].u.isym = isym;
8067 if (count1 == 0 || count2 == 0 || count1 != count2)
8070 for (i = 0; i < count1; i++)
8072 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8073 symtable1[i].u.isym->st_name);
8075 for (i = 0; i < count2; i++)
8077 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8078 symtable2[i].u.isym->st_name);
8080 /* Sort symbol by name. */
8081 qsort (symtable1, count1, sizeof (struct elf_symbol),
8082 elf_sym_name_compare);
8083 qsort (symtable2, count1, sizeof (struct elf_symbol),
8084 elf_sym_name_compare);
8086 for (i = 0; i < count1; i++)
8087 /* Two symbols must have the same binding, type and name. */
8088 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8089 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8090 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8108 /* Return TRUE if 2 section types are compatible. */
8111 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8112 bfd *bbfd, const asection *bsec)
8116 || abfd->xvec->flavour != bfd_target_elf_flavour
8117 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8120 return elf_section_type (asec) == elf_section_type (bsec);
8123 /* Final phase of ELF linker. */
8125 /* A structure we use to avoid passing large numbers of arguments. */
8127 struct elf_final_link_info
8129 /* General link information. */
8130 struct bfd_link_info *info;
8133 /* Symbol string table. */
8134 struct elf_strtab_hash *symstrtab;
8135 /* .hash section. */
8137 /* symbol version section (.gnu.version). */
8138 asection *symver_sec;
8139 /* Buffer large enough to hold contents of any section. */
8141 /* Buffer large enough to hold external relocs of any section. */
8142 void *external_relocs;
8143 /* Buffer large enough to hold internal relocs of any section. */
8144 Elf_Internal_Rela *internal_relocs;
8145 /* Buffer large enough to hold external local symbols of any input
8147 bfd_byte *external_syms;
8148 /* And a buffer for symbol section indices. */
8149 Elf_External_Sym_Shndx *locsym_shndx;
8150 /* Buffer large enough to hold internal local symbols of any input
8152 Elf_Internal_Sym *internal_syms;
8153 /* Array large enough to hold a symbol index for each local symbol
8154 of any input BFD. */
8156 /* Array large enough to hold a section pointer for each local
8157 symbol of any input BFD. */
8158 asection **sections;
8159 /* Buffer for SHT_SYMTAB_SHNDX section. */
8160 Elf_External_Sym_Shndx *symshndxbuf;
8161 /* Number of STT_FILE syms seen. */
8162 size_t filesym_count;
8165 /* This struct is used to pass information to elf_link_output_extsym. */
8167 struct elf_outext_info
8170 bfd_boolean localsyms;
8171 bfd_boolean file_sym_done;
8172 struct elf_final_link_info *flinfo;
8176 /* Support for evaluating a complex relocation.
8178 Complex relocations are generalized, self-describing relocations. The
8179 implementation of them consists of two parts: complex symbols, and the
8180 relocations themselves.
8182 The relocations are use a reserved elf-wide relocation type code (R_RELC
8183 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8184 information (start bit, end bit, word width, etc) into the addend. This
8185 information is extracted from CGEN-generated operand tables within gas.
8187 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8188 internal) representing prefix-notation expressions, including but not
8189 limited to those sorts of expressions normally encoded as addends in the
8190 addend field. The symbol mangling format is:
8193 | <unary-operator> ':' <node>
8194 | <binary-operator> ':' <node> ':' <node>
8197 <literal> := 's' <digits=N> ':' <N character symbol name>
8198 | 'S' <digits=N> ':' <N character section name>
8202 <binary-operator> := as in C
8203 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8206 set_symbol_value (bfd *bfd_with_globals,
8207 Elf_Internal_Sym *isymbuf,
8212 struct elf_link_hash_entry **sym_hashes;
8213 struct elf_link_hash_entry *h;
8214 size_t extsymoff = locsymcount;
8216 if (symidx < locsymcount)
8218 Elf_Internal_Sym *sym;
8220 sym = isymbuf + symidx;
8221 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8223 /* It is a local symbol: move it to the
8224 "absolute" section and give it a value. */
8225 sym->st_shndx = SHN_ABS;
8226 sym->st_value = val;
8229 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8233 /* It is a global symbol: set its link type
8234 to "defined" and give it a value. */
8236 sym_hashes = elf_sym_hashes (bfd_with_globals);
8237 h = sym_hashes [symidx - extsymoff];
8238 while (h->root.type == bfd_link_hash_indirect
8239 || h->root.type == bfd_link_hash_warning)
8240 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8241 h->root.type = bfd_link_hash_defined;
8242 h->root.u.def.value = val;
8243 h->root.u.def.section = bfd_abs_section_ptr;
8247 resolve_symbol (const char *name,
8249 struct elf_final_link_info *flinfo,
8251 Elf_Internal_Sym *isymbuf,
8254 Elf_Internal_Sym *sym;
8255 struct bfd_link_hash_entry *global_entry;
8256 const char *candidate = NULL;
8257 Elf_Internal_Shdr *symtab_hdr;
8260 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8262 for (i = 0; i < locsymcount; ++ i)
8266 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8269 candidate = bfd_elf_string_from_elf_section (input_bfd,
8270 symtab_hdr->sh_link,
8273 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8274 name, candidate, (unsigned long) sym->st_value);
8276 if (candidate && strcmp (candidate, name) == 0)
8278 asection *sec = flinfo->sections [i];
8280 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8281 *result += sec->output_offset + sec->output_section->vma;
8283 printf ("Found symbol with value %8.8lx\n",
8284 (unsigned long) *result);
8290 /* Hmm, haven't found it yet. perhaps it is a global. */
8291 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8292 FALSE, FALSE, TRUE);
8296 if (global_entry->type == bfd_link_hash_defined
8297 || global_entry->type == bfd_link_hash_defweak)
8299 *result = (global_entry->u.def.value
8300 + global_entry->u.def.section->output_section->vma
8301 + global_entry->u.def.section->output_offset);
8303 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8304 global_entry->root.string, (unsigned long) *result);
8312 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8313 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8314 names like "foo.end" which is the end address of section "foo". */
8317 resolve_section (const char *name,
8325 for (curr = sections; curr; curr = curr->next)
8326 if (strcmp (curr->name, name) == 0)
8328 *result = curr->vma;
8332 /* Hmm. still haven't found it. try pseudo-section names. */
8333 /* FIXME: This could be coded more efficiently... */
8334 for (curr = sections; curr; curr = curr->next)
8336 len = strlen (curr->name);
8337 if (len > strlen (name))
8340 if (strncmp (curr->name, name, len) == 0)
8342 if (strncmp (".end", name + len, 4) == 0)
8344 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8348 /* Insert more pseudo-section names here, if you like. */
8356 undefined_reference (const char *reftype, const char *name)
8358 /* xgettext:c-format */
8359 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8364 eval_symbol (bfd_vma *result,
8367 struct elf_final_link_info *flinfo,
8369 Elf_Internal_Sym *isymbuf,
8378 const char *sym = *symp;
8380 bfd_boolean symbol_is_section = FALSE;
8385 if (len < 1 || len > sizeof (symbuf))
8387 bfd_set_error (bfd_error_invalid_operation);
8400 *result = strtoul (sym, (char **) symp, 16);
8404 symbol_is_section = TRUE;
8408 symlen = strtol (sym, (char **) symp, 10);
8409 sym = *symp + 1; /* Skip the trailing ':'. */
8411 if (symend < sym || symlen + 1 > sizeof (symbuf))
8413 bfd_set_error (bfd_error_invalid_operation);
8417 memcpy (symbuf, sym, symlen);
8418 symbuf[symlen] = '\0';
8419 *symp = sym + symlen;
8421 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8422 the symbol as a section, or vice-versa. so we're pretty liberal in our
8423 interpretation here; section means "try section first", not "must be a
8424 section", and likewise with symbol. */
8426 if (symbol_is_section)
8428 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8429 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8430 isymbuf, locsymcount))
8432 undefined_reference ("section", symbuf);
8438 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8439 isymbuf, locsymcount)
8440 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8443 undefined_reference ("symbol", symbuf);
8450 /* All that remains are operators. */
8452 #define UNARY_OP(op) \
8453 if (strncmp (sym, #op, strlen (#op)) == 0) \
8455 sym += strlen (#op); \
8459 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8460 isymbuf, locsymcount, signed_p)) \
8463 *result = op ((bfd_signed_vma) a); \
8469 #define BINARY_OP(op) \
8470 if (strncmp (sym, #op, strlen (#op)) == 0) \
8472 sym += strlen (#op); \
8476 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8477 isymbuf, locsymcount, signed_p)) \
8480 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8481 isymbuf, locsymcount, signed_p)) \
8484 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8514 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8515 bfd_set_error (bfd_error_invalid_operation);
8521 put_value (bfd_vma size,
8522 unsigned long chunksz,
8527 location += (size - chunksz);
8529 for (; size; size -= chunksz, location -= chunksz)
8534 bfd_put_8 (input_bfd, x, location);
8538 bfd_put_16 (input_bfd, x, location);
8542 bfd_put_32 (input_bfd, x, location);
8543 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8549 bfd_put_64 (input_bfd, x, location);
8550 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8563 get_value (bfd_vma size,
8564 unsigned long chunksz,
8571 /* Sanity checks. */
8572 BFD_ASSERT (chunksz <= sizeof (x)
8575 && (size % chunksz) == 0
8576 && input_bfd != NULL
8577 && location != NULL);
8579 if (chunksz == sizeof (x))
8581 BFD_ASSERT (size == chunksz);
8583 /* Make sure that we do not perform an undefined shift operation.
8584 We know that size == chunksz so there will only be one iteration
8585 of the loop below. */
8589 shift = 8 * chunksz;
8591 for (; size; size -= chunksz, location += chunksz)
8596 x = (x << shift) | bfd_get_8 (input_bfd, location);
8599 x = (x << shift) | bfd_get_16 (input_bfd, location);
8602 x = (x << shift) | bfd_get_32 (input_bfd, location);
8606 x = (x << shift) | bfd_get_64 (input_bfd, location);
8617 decode_complex_addend (unsigned long *start, /* in bits */
8618 unsigned long *oplen, /* in bits */
8619 unsigned long *len, /* in bits */
8620 unsigned long *wordsz, /* in bytes */
8621 unsigned long *chunksz, /* in bytes */
8622 unsigned long *lsb0_p,
8623 unsigned long *signed_p,
8624 unsigned long *trunc_p,
8625 unsigned long encoded)
8627 * start = encoded & 0x3F;
8628 * len = (encoded >> 6) & 0x3F;
8629 * oplen = (encoded >> 12) & 0x3F;
8630 * wordsz = (encoded >> 18) & 0xF;
8631 * chunksz = (encoded >> 22) & 0xF;
8632 * lsb0_p = (encoded >> 27) & 1;
8633 * signed_p = (encoded >> 28) & 1;
8634 * trunc_p = (encoded >> 29) & 1;
8637 bfd_reloc_status_type
8638 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8639 asection *input_section ATTRIBUTE_UNUSED,
8641 Elf_Internal_Rela *rel,
8644 bfd_vma shift, x, mask;
8645 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8646 bfd_reloc_status_type r;
8648 /* Perform this reloc, since it is complex.
8649 (this is not to say that it necessarily refers to a complex
8650 symbol; merely that it is a self-describing CGEN based reloc.
8651 i.e. the addend has the complete reloc information (bit start, end,
8652 word size, etc) encoded within it.). */
8654 decode_complex_addend (&start, &oplen, &len, &wordsz,
8655 &chunksz, &lsb0_p, &signed_p,
8656 &trunc_p, rel->r_addend);
8658 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8661 shift = (start + 1) - len;
8663 shift = (8 * wordsz) - (start + len);
8665 x = get_value (wordsz, chunksz, input_bfd,
8666 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8669 printf ("Doing complex reloc: "
8670 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8671 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8672 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8673 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8674 oplen, (unsigned long) x, (unsigned long) mask,
8675 (unsigned long) relocation);
8680 /* Now do an overflow check. */
8681 r = bfd_check_overflow ((signed_p
8682 ? complain_overflow_signed
8683 : complain_overflow_unsigned),
8684 len, 0, (8 * wordsz),
8688 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8691 printf (" relocation: %8.8lx\n"
8692 " shifted mask: %8.8lx\n"
8693 " shifted/masked reloc: %8.8lx\n"
8694 " result: %8.8lx\n",
8695 (unsigned long) relocation, (unsigned long) (mask << shift),
8696 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8698 put_value (wordsz, chunksz, input_bfd, x,
8699 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8703 /* Functions to read r_offset from external (target order) reloc
8704 entry. Faster than bfd_getl32 et al, because we let the compiler
8705 know the value is aligned. */
8708 ext32l_r_offset (const void *p)
8715 const union aligned32 *a
8716 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8718 uint32_t aval = ( (uint32_t) a->c[0]
8719 | (uint32_t) a->c[1] << 8
8720 | (uint32_t) a->c[2] << 16
8721 | (uint32_t) a->c[3] << 24);
8726 ext32b_r_offset (const void *p)
8733 const union aligned32 *a
8734 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8736 uint32_t aval = ( (uint32_t) a->c[0] << 24
8737 | (uint32_t) a->c[1] << 16
8738 | (uint32_t) a->c[2] << 8
8739 | (uint32_t) a->c[3]);
8743 #ifdef BFD_HOST_64_BIT
8745 ext64l_r_offset (const void *p)
8752 const union aligned64 *a
8753 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8755 uint64_t aval = ( (uint64_t) a->c[0]
8756 | (uint64_t) a->c[1] << 8
8757 | (uint64_t) a->c[2] << 16
8758 | (uint64_t) a->c[3] << 24
8759 | (uint64_t) a->c[4] << 32
8760 | (uint64_t) a->c[5] << 40
8761 | (uint64_t) a->c[6] << 48
8762 | (uint64_t) a->c[7] << 56);
8767 ext64b_r_offset (const void *p)
8774 const union aligned64 *a
8775 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8777 uint64_t aval = ( (uint64_t) a->c[0] << 56
8778 | (uint64_t) a->c[1] << 48
8779 | (uint64_t) a->c[2] << 40
8780 | (uint64_t) a->c[3] << 32
8781 | (uint64_t) a->c[4] << 24
8782 | (uint64_t) a->c[5] << 16
8783 | (uint64_t) a->c[6] << 8
8784 | (uint64_t) a->c[7]);
8789 /* When performing a relocatable link, the input relocations are
8790 preserved. But, if they reference global symbols, the indices
8791 referenced must be updated. Update all the relocations found in
8795 elf_link_adjust_relocs (bfd *abfd,
8797 struct bfd_elf_section_reloc_data *reldata,
8799 struct bfd_link_info *info)
8802 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8804 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8805 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8806 bfd_vma r_type_mask;
8808 unsigned int count = reldata->count;
8809 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8811 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8813 swap_in = bed->s->swap_reloc_in;
8814 swap_out = bed->s->swap_reloc_out;
8816 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8818 swap_in = bed->s->swap_reloca_in;
8819 swap_out = bed->s->swap_reloca_out;
8824 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8827 if (bed->s->arch_size == 32)
8834 r_type_mask = 0xffffffff;
8838 erela = reldata->hdr->contents;
8839 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8841 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8844 if (*rel_hash == NULL)
8847 if ((*rel_hash)->indx == -2
8848 && info->gc_sections
8849 && ! info->gc_keep_exported)
8851 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8852 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8854 (*rel_hash)->root.root.string);
8855 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8857 bfd_set_error (bfd_error_invalid_operation);
8860 BFD_ASSERT ((*rel_hash)->indx >= 0);
8862 (*swap_in) (abfd, erela, irela);
8863 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8864 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8865 | (irela[j].r_info & r_type_mask));
8866 (*swap_out) (abfd, irela, erela);
8869 if (bed->elf_backend_update_relocs)
8870 (*bed->elf_backend_update_relocs) (sec, reldata);
8872 if (sort && count != 0)
8874 bfd_vma (*ext_r_off) (const void *);
8877 bfd_byte *base, *end, *p, *loc;
8878 bfd_byte *buf = NULL;
8880 if (bed->s->arch_size == 32)
8882 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8883 ext_r_off = ext32l_r_offset;
8884 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8885 ext_r_off = ext32b_r_offset;
8891 #ifdef BFD_HOST_64_BIT
8892 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8893 ext_r_off = ext64l_r_offset;
8894 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8895 ext_r_off = ext64b_r_offset;
8901 /* Must use a stable sort here. A modified insertion sort,
8902 since the relocs are mostly sorted already. */
8903 elt_size = reldata->hdr->sh_entsize;
8904 base = reldata->hdr->contents;
8905 end = base + count * elt_size;
8906 if (elt_size > sizeof (Elf64_External_Rela))
8909 /* Ensure the first element is lowest. This acts as a sentinel,
8910 speeding the main loop below. */
8911 r_off = (*ext_r_off) (base);
8912 for (p = loc = base; (p += elt_size) < end; )
8914 bfd_vma r_off2 = (*ext_r_off) (p);
8923 /* Don't just swap *base and *loc as that changes the order
8924 of the original base[0] and base[1] if they happen to
8925 have the same r_offset. */
8926 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8927 memcpy (onebuf, loc, elt_size);
8928 memmove (base + elt_size, base, loc - base);
8929 memcpy (base, onebuf, elt_size);
8932 for (p = base + elt_size; (p += elt_size) < end; )
8934 /* base to p is sorted, *p is next to insert. */
8935 r_off = (*ext_r_off) (p);
8936 /* Search the sorted region for location to insert. */
8938 while (r_off < (*ext_r_off) (loc))
8943 /* Chances are there is a run of relocs to insert here,
8944 from one of more input files. Files are not always
8945 linked in order due to the way elf_link_input_bfd is
8946 called. See pr17666. */
8947 size_t sortlen = p - loc;
8948 bfd_vma r_off2 = (*ext_r_off) (loc);
8949 size_t runlen = elt_size;
8950 size_t buf_size = 96 * 1024;
8951 while (p + runlen < end
8952 && (sortlen <= buf_size
8953 || runlen + elt_size <= buf_size)
8954 && r_off2 > (*ext_r_off) (p + runlen))
8958 buf = bfd_malloc (buf_size);
8962 if (runlen < sortlen)
8964 memcpy (buf, p, runlen);
8965 memmove (loc + runlen, loc, sortlen);
8966 memcpy (loc, buf, runlen);
8970 memcpy (buf, loc, sortlen);
8971 memmove (loc, p, runlen);
8972 memcpy (loc + runlen, buf, sortlen);
8974 p += runlen - elt_size;
8977 /* Hashes are no longer valid. */
8978 free (reldata->hashes);
8979 reldata->hashes = NULL;
8985 struct elf_link_sort_rela
8991 enum elf_reloc_type_class type;
8992 /* We use this as an array of size int_rels_per_ext_rel. */
8993 Elf_Internal_Rela rela[1];
8997 elf_link_sort_cmp1 (const void *A, const void *B)
8999 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9000 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9001 int relativea, relativeb;
9003 relativea = a->type == reloc_class_relative;
9004 relativeb = b->type == reloc_class_relative;
9006 if (relativea < relativeb)
9008 if (relativea > relativeb)
9010 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9012 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9014 if (a->rela->r_offset < b->rela->r_offset)
9016 if (a->rela->r_offset > b->rela->r_offset)
9022 elf_link_sort_cmp2 (const void *A, const void *B)
9024 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9025 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9027 if (a->type < b->type)
9029 if (a->type > b->type)
9031 if (a->u.offset < b->u.offset)
9033 if (a->u.offset > b->u.offset)
9035 if (a->rela->r_offset < b->rela->r_offset)
9037 if (a->rela->r_offset > b->rela->r_offset)
9043 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9045 asection *dynamic_relocs;
9048 bfd_size_type count, size;
9049 size_t i, ret, sort_elt, ext_size;
9050 bfd_byte *sort, *s_non_relative, *p;
9051 struct elf_link_sort_rela *sq;
9052 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9053 int i2e = bed->s->int_rels_per_ext_rel;
9054 unsigned int opb = bfd_octets_per_byte (abfd);
9055 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9056 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9057 struct bfd_link_order *lo;
9059 bfd_boolean use_rela;
9061 /* Find a dynamic reloc section. */
9062 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9063 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9064 if (rela_dyn != NULL && rela_dyn->size > 0
9065 && rel_dyn != NULL && rel_dyn->size > 0)
9067 bfd_boolean use_rela_initialised = FALSE;
9069 /* This is just here to stop gcc from complaining.
9070 Its initialization checking code is not perfect. */
9073 /* Both sections are present. Examine the sizes
9074 of the indirect sections to help us choose. */
9075 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9076 if (lo->type == bfd_indirect_link_order)
9078 asection *o = lo->u.indirect.section;
9080 if ((o->size % bed->s->sizeof_rela) == 0)
9082 if ((o->size % bed->s->sizeof_rel) == 0)
9083 /* Section size is divisible by both rel and rela sizes.
9084 It is of no help to us. */
9088 /* Section size is only divisible by rela. */
9089 if (use_rela_initialised && !use_rela)
9091 _bfd_error_handler (_("%pB: unable to sort relocs - "
9092 "they are in more than one size"),
9094 bfd_set_error (bfd_error_invalid_operation);
9100 use_rela_initialised = TRUE;
9104 else if ((o->size % bed->s->sizeof_rel) == 0)
9106 /* Section size is only divisible by rel. */
9107 if (use_rela_initialised && use_rela)
9109 _bfd_error_handler (_("%pB: unable to sort relocs - "
9110 "they are in more than one size"),
9112 bfd_set_error (bfd_error_invalid_operation);
9118 use_rela_initialised = TRUE;
9123 /* The section size is not divisible by either -
9124 something is wrong. */
9125 _bfd_error_handler (_("%pB: unable to sort relocs - "
9126 "they are of an unknown size"), abfd);
9127 bfd_set_error (bfd_error_invalid_operation);
9132 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9133 if (lo->type == bfd_indirect_link_order)
9135 asection *o = lo->u.indirect.section;
9137 if ((o->size % bed->s->sizeof_rela) == 0)
9139 if ((o->size % bed->s->sizeof_rel) == 0)
9140 /* Section size is divisible by both rel and rela sizes.
9141 It is of no help to us. */
9145 /* Section size is only divisible by rela. */
9146 if (use_rela_initialised && !use_rela)
9148 _bfd_error_handler (_("%pB: unable to sort relocs - "
9149 "they are in more than one size"),
9151 bfd_set_error (bfd_error_invalid_operation);
9157 use_rela_initialised = TRUE;
9161 else if ((o->size % bed->s->sizeof_rel) == 0)
9163 /* Section size is only divisible by rel. */
9164 if (use_rela_initialised && use_rela)
9166 _bfd_error_handler (_("%pB: unable to sort relocs - "
9167 "they are in more than one size"),
9169 bfd_set_error (bfd_error_invalid_operation);
9175 use_rela_initialised = TRUE;
9180 /* The section size is not divisible by either -
9181 something is wrong. */
9182 _bfd_error_handler (_("%pB: unable to sort relocs - "
9183 "they are of an unknown size"), abfd);
9184 bfd_set_error (bfd_error_invalid_operation);
9189 if (! use_rela_initialised)
9193 else if (rela_dyn != NULL && rela_dyn->size > 0)
9195 else if (rel_dyn != NULL && rel_dyn->size > 0)
9202 dynamic_relocs = rela_dyn;
9203 ext_size = bed->s->sizeof_rela;
9204 swap_in = bed->s->swap_reloca_in;
9205 swap_out = bed->s->swap_reloca_out;
9209 dynamic_relocs = rel_dyn;
9210 ext_size = bed->s->sizeof_rel;
9211 swap_in = bed->s->swap_reloc_in;
9212 swap_out = bed->s->swap_reloc_out;
9216 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9217 if (lo->type == bfd_indirect_link_order)
9218 size += lo->u.indirect.section->size;
9220 if (size != dynamic_relocs->size)
9223 sort_elt = (sizeof (struct elf_link_sort_rela)
9224 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9226 count = dynamic_relocs->size / ext_size;
9229 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9233 (*info->callbacks->warning)
9234 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9238 if (bed->s->arch_size == 32)
9239 r_sym_mask = ~(bfd_vma) 0xff;
9241 r_sym_mask = ~(bfd_vma) 0xffffffff;
9243 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9244 if (lo->type == bfd_indirect_link_order)
9246 bfd_byte *erel, *erelend;
9247 asection *o = lo->u.indirect.section;
9249 if (o->contents == NULL && o->size != 0)
9251 /* This is a reloc section that is being handled as a normal
9252 section. See bfd_section_from_shdr. We can't combine
9253 relocs in this case. */
9258 erelend = o->contents + o->size;
9259 p = sort + o->output_offset * opb / ext_size * sort_elt;
9261 while (erel < erelend)
9263 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9265 (*swap_in) (abfd, erel, s->rela);
9266 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9267 s->u.sym_mask = r_sym_mask;
9273 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9275 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9277 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9278 if (s->type != reloc_class_relative)
9284 sq = (struct elf_link_sort_rela *) s_non_relative;
9285 for (; i < count; i++, p += sort_elt)
9287 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9288 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9290 sp->u.offset = sq->rela->r_offset;
9293 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9295 struct elf_link_hash_table *htab = elf_hash_table (info);
9296 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9298 /* We have plt relocs in .rela.dyn. */
9299 sq = (struct elf_link_sort_rela *) sort;
9300 for (i = 0; i < count; i++)
9301 if (sq[count - i - 1].type != reloc_class_plt)
9303 if (i != 0 && htab->srelplt->size == i * ext_size)
9305 struct bfd_link_order **plo;
9306 /* Put srelplt link_order last. This is so the output_offset
9307 set in the next loop is correct for DT_JMPREL. */
9308 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9309 if ((*plo)->type == bfd_indirect_link_order
9310 && (*plo)->u.indirect.section == htab->srelplt)
9316 plo = &(*plo)->next;
9319 dynamic_relocs->map_tail.link_order = lo;
9324 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9325 if (lo->type == bfd_indirect_link_order)
9327 bfd_byte *erel, *erelend;
9328 asection *o = lo->u.indirect.section;
9331 erelend = o->contents + o->size;
9332 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9333 while (erel < erelend)
9335 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9336 (*swap_out) (abfd, s->rela, erel);
9343 *psec = dynamic_relocs;
9347 /* Add a symbol to the output symbol string table. */
9350 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9352 Elf_Internal_Sym *elfsym,
9353 asection *input_sec,
9354 struct elf_link_hash_entry *h)
9356 int (*output_symbol_hook)
9357 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9358 struct elf_link_hash_entry *);
9359 struct elf_link_hash_table *hash_table;
9360 const struct elf_backend_data *bed;
9361 bfd_size_type strtabsize;
9363 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9365 bed = get_elf_backend_data (flinfo->output_bfd);
9366 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9367 if (output_symbol_hook != NULL)
9369 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9376 || (input_sec->flags & SEC_EXCLUDE))
9377 elfsym->st_name = (unsigned long) -1;
9380 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9381 to get the final offset for st_name. */
9383 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9385 if (elfsym->st_name == (unsigned long) -1)
9389 hash_table = elf_hash_table (flinfo->info);
9390 strtabsize = hash_table->strtabsize;
9391 if (strtabsize <= hash_table->strtabcount)
9393 strtabsize += strtabsize;
9394 hash_table->strtabsize = strtabsize;
9395 strtabsize *= sizeof (*hash_table->strtab);
9397 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9399 if (hash_table->strtab == NULL)
9402 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9403 hash_table->strtab[hash_table->strtabcount].dest_index
9404 = hash_table->strtabcount;
9405 hash_table->strtab[hash_table->strtabcount].destshndx_index
9406 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9408 bfd_get_symcount (flinfo->output_bfd) += 1;
9409 hash_table->strtabcount += 1;
9414 /* Swap symbols out to the symbol table and flush the output symbols to
9418 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9420 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9423 const struct elf_backend_data *bed;
9425 Elf_Internal_Shdr *hdr;
9429 if (!hash_table->strtabcount)
9432 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9434 bed = get_elf_backend_data (flinfo->output_bfd);
9436 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9437 symbuf = (bfd_byte *) bfd_malloc (amt);
9441 if (flinfo->symshndxbuf)
9443 amt = sizeof (Elf_External_Sym_Shndx);
9444 amt *= bfd_get_symcount (flinfo->output_bfd);
9445 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9446 if (flinfo->symshndxbuf == NULL)
9453 for (i = 0; i < hash_table->strtabcount; i++)
9455 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9456 if (elfsym->sym.st_name == (unsigned long) -1)
9457 elfsym->sym.st_name = 0;
9460 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9461 elfsym->sym.st_name);
9462 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9463 ((bfd_byte *) symbuf
9464 + (elfsym->dest_index
9465 * bed->s->sizeof_sym)),
9466 (flinfo->symshndxbuf
9467 + elfsym->destshndx_index));
9470 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9471 pos = hdr->sh_offset + hdr->sh_size;
9472 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9473 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9474 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9476 hdr->sh_size += amt;
9484 free (hash_table->strtab);
9485 hash_table->strtab = NULL;
9490 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9493 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9495 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9496 && sym->st_shndx < SHN_LORESERVE)
9498 /* The gABI doesn't support dynamic symbols in output sections
9501 /* xgettext:c-format */
9502 (_("%pB: too many sections: %d (>= %d)"),
9503 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9504 bfd_set_error (bfd_error_nonrepresentable_section);
9510 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9511 allowing an unsatisfied unversioned symbol in the DSO to match a
9512 versioned symbol that would normally require an explicit version.
9513 We also handle the case that a DSO references a hidden symbol
9514 which may be satisfied by a versioned symbol in another DSO. */
9517 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9518 const struct elf_backend_data *bed,
9519 struct elf_link_hash_entry *h)
9522 struct elf_link_loaded_list *loaded;
9524 if (!is_elf_hash_table (info->hash))
9527 /* Check indirect symbol. */
9528 while (h->root.type == bfd_link_hash_indirect)
9529 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9531 switch (h->root.type)
9537 case bfd_link_hash_undefined:
9538 case bfd_link_hash_undefweak:
9539 abfd = h->root.u.undef.abfd;
9541 || (abfd->flags & DYNAMIC) == 0
9542 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9546 case bfd_link_hash_defined:
9547 case bfd_link_hash_defweak:
9548 abfd = h->root.u.def.section->owner;
9551 case bfd_link_hash_common:
9552 abfd = h->root.u.c.p->section->owner;
9555 BFD_ASSERT (abfd != NULL);
9557 for (loaded = elf_hash_table (info)->loaded;
9559 loaded = loaded->next)
9562 Elf_Internal_Shdr *hdr;
9566 Elf_Internal_Shdr *versymhdr;
9567 Elf_Internal_Sym *isym;
9568 Elf_Internal_Sym *isymend;
9569 Elf_Internal_Sym *isymbuf;
9570 Elf_External_Versym *ever;
9571 Elf_External_Versym *extversym;
9573 input = loaded->abfd;
9575 /* We check each DSO for a possible hidden versioned definition. */
9577 || (input->flags & DYNAMIC) == 0
9578 || elf_dynversym (input) == 0)
9581 hdr = &elf_tdata (input)->dynsymtab_hdr;
9583 symcount = hdr->sh_size / bed->s->sizeof_sym;
9584 if (elf_bad_symtab (input))
9586 extsymcount = symcount;
9591 extsymcount = symcount - hdr->sh_info;
9592 extsymoff = hdr->sh_info;
9595 if (extsymcount == 0)
9598 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9600 if (isymbuf == NULL)
9603 /* Read in any version definitions. */
9604 versymhdr = &elf_tdata (input)->dynversym_hdr;
9605 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9606 if (extversym == NULL)
9609 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9610 || (bfd_bread (extversym, versymhdr->sh_size, input)
9611 != versymhdr->sh_size))
9619 ever = extversym + extsymoff;
9620 isymend = isymbuf + extsymcount;
9621 for (isym = isymbuf; isym < isymend; isym++, ever++)
9624 Elf_Internal_Versym iver;
9625 unsigned short version_index;
9627 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9628 || isym->st_shndx == SHN_UNDEF)
9631 name = bfd_elf_string_from_elf_section (input,
9634 if (strcmp (name, h->root.root.string) != 0)
9637 _bfd_elf_swap_versym_in (input, ever, &iver);
9639 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9641 && h->forced_local))
9643 /* If we have a non-hidden versioned sym, then it should
9644 have provided a definition for the undefined sym unless
9645 it is defined in a non-shared object and forced local.
9650 version_index = iver.vs_vers & VERSYM_VERSION;
9651 if (version_index == 1 || version_index == 2)
9653 /* This is the base or first version. We can use it. */
9667 /* Convert ELF common symbol TYPE. */
9670 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9672 /* Commom symbol can only appear in relocatable link. */
9673 if (!bfd_link_relocatable (info))
9675 switch (info->elf_stt_common)
9679 case elf_stt_common:
9682 case no_elf_stt_common:
9689 /* Add an external symbol to the symbol table. This is called from
9690 the hash table traversal routine. When generating a shared object,
9691 we go through the symbol table twice. The first time we output
9692 anything that might have been forced to local scope in a version
9693 script. The second time we output the symbols that are still
9697 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9699 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9700 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9701 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9703 Elf_Internal_Sym sym;
9704 asection *input_sec;
9705 const struct elf_backend_data *bed;
9710 if (h->root.type == bfd_link_hash_warning)
9712 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9713 if (h->root.type == bfd_link_hash_new)
9717 /* Decide whether to output this symbol in this pass. */
9718 if (eoinfo->localsyms)
9720 if (!h->forced_local)
9725 if (h->forced_local)
9729 bed = get_elf_backend_data (flinfo->output_bfd);
9731 if (h->root.type == bfd_link_hash_undefined)
9733 /* If we have an undefined symbol reference here then it must have
9734 come from a shared library that is being linked in. (Undefined
9735 references in regular files have already been handled unless
9736 they are in unreferenced sections which are removed by garbage
9738 bfd_boolean ignore_undef = FALSE;
9740 /* Some symbols may be special in that the fact that they're
9741 undefined can be safely ignored - let backend determine that. */
9742 if (bed->elf_backend_ignore_undef_symbol)
9743 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9745 /* If we are reporting errors for this situation then do so now. */
9748 && (!h->ref_regular || flinfo->info->gc_sections)
9749 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9750 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9751 (*flinfo->info->callbacks->undefined_symbol)
9752 (flinfo->info, h->root.root.string,
9753 h->ref_regular ? NULL : h->root.u.undef.abfd,
9755 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9757 /* Strip a global symbol defined in a discarded section. */
9762 /* We should also warn if a forced local symbol is referenced from
9763 shared libraries. */
9764 if (bfd_link_executable (flinfo->info)
9769 && h->ref_dynamic_nonweak
9770 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9774 struct elf_link_hash_entry *hi = h;
9776 /* Check indirect symbol. */
9777 while (hi->root.type == bfd_link_hash_indirect)
9778 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9780 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9781 /* xgettext:c-format */
9782 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9783 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9784 /* xgettext:c-format */
9785 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9787 /* xgettext:c-format */
9788 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9789 def_bfd = flinfo->output_bfd;
9790 if (hi->root.u.def.section != bfd_abs_section_ptr)
9791 def_bfd = hi->root.u.def.section->owner;
9792 _bfd_error_handler (msg, flinfo->output_bfd,
9793 h->root.root.string, def_bfd);
9794 bfd_set_error (bfd_error_bad_value);
9795 eoinfo->failed = TRUE;
9799 /* We don't want to output symbols that have never been mentioned by
9800 a regular file, or that we have been told to strip. However, if
9801 h->indx is set to -2, the symbol is used by a reloc and we must
9806 else if ((h->def_dynamic
9808 || h->root.type == bfd_link_hash_new)
9812 else if (flinfo->info->strip == strip_all)
9814 else if (flinfo->info->strip == strip_some
9815 && bfd_hash_lookup (flinfo->info->keep_hash,
9816 h->root.root.string, FALSE, FALSE) == NULL)
9818 else if ((h->root.type == bfd_link_hash_defined
9819 || h->root.type == bfd_link_hash_defweak)
9820 && ((flinfo->info->strip_discarded
9821 && discarded_section (h->root.u.def.section))
9822 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9823 && h->root.u.def.section->owner != NULL
9824 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9826 else if ((h->root.type == bfd_link_hash_undefined
9827 || h->root.type == bfd_link_hash_undefweak)
9828 && h->root.u.undef.abfd != NULL
9829 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9834 /* If we're stripping it, and it's not a dynamic symbol, there's
9835 nothing else to do. However, if it is a forced local symbol or
9836 an ifunc symbol we need to give the backend finish_dynamic_symbol
9837 function a chance to make it dynamic. */
9840 && type != STT_GNU_IFUNC
9841 && !h->forced_local)
9845 sym.st_size = h->size;
9846 sym.st_other = h->other;
9847 switch (h->root.type)
9850 case bfd_link_hash_new:
9851 case bfd_link_hash_warning:
9855 case bfd_link_hash_undefined:
9856 case bfd_link_hash_undefweak:
9857 input_sec = bfd_und_section_ptr;
9858 sym.st_shndx = SHN_UNDEF;
9861 case bfd_link_hash_defined:
9862 case bfd_link_hash_defweak:
9864 input_sec = h->root.u.def.section;
9865 if (input_sec->output_section != NULL)
9868 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9869 input_sec->output_section);
9870 if (sym.st_shndx == SHN_BAD)
9873 /* xgettext:c-format */
9874 (_("%pB: could not find output section %pA for input section %pA"),
9875 flinfo->output_bfd, input_sec->output_section, input_sec);
9876 bfd_set_error (bfd_error_nonrepresentable_section);
9877 eoinfo->failed = TRUE;
9881 /* ELF symbols in relocatable files are section relative,
9882 but in nonrelocatable files they are virtual
9884 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9885 if (!bfd_link_relocatable (flinfo->info))
9887 sym.st_value += input_sec->output_section->vma;
9888 if (h->type == STT_TLS)
9890 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9891 if (tls_sec != NULL)
9892 sym.st_value -= tls_sec->vma;
9898 BFD_ASSERT (input_sec->owner == NULL
9899 || (input_sec->owner->flags & DYNAMIC) != 0);
9900 sym.st_shndx = SHN_UNDEF;
9901 input_sec = bfd_und_section_ptr;
9906 case bfd_link_hash_common:
9907 input_sec = h->root.u.c.p->section;
9908 sym.st_shndx = bed->common_section_index (input_sec);
9909 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9912 case bfd_link_hash_indirect:
9913 /* These symbols are created by symbol versioning. They point
9914 to the decorated version of the name. For example, if the
9915 symbol foo@@GNU_1.2 is the default, which should be used when
9916 foo is used with no version, then we add an indirect symbol
9917 foo which points to foo@@GNU_1.2. We ignore these symbols,
9918 since the indirected symbol is already in the hash table. */
9922 if (type == STT_COMMON || type == STT_OBJECT)
9923 switch (h->root.type)
9925 case bfd_link_hash_common:
9926 type = elf_link_convert_common_type (flinfo->info, type);
9928 case bfd_link_hash_defined:
9929 case bfd_link_hash_defweak:
9930 if (bed->common_definition (&sym))
9931 type = elf_link_convert_common_type (flinfo->info, type);
9935 case bfd_link_hash_undefined:
9936 case bfd_link_hash_undefweak:
9942 if (h->forced_local)
9944 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9945 /* Turn off visibility on local symbol. */
9946 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9948 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9949 else if (h->unique_global && h->def_regular)
9950 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9951 else if (h->root.type == bfd_link_hash_undefweak
9952 || h->root.type == bfd_link_hash_defweak)
9953 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9955 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9956 sym.st_target_internal = h->target_internal;
9958 /* Give the processor backend a chance to tweak the symbol value,
9959 and also to finish up anything that needs to be done for this
9960 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9961 forced local syms when non-shared is due to a historical quirk.
9962 STT_GNU_IFUNC symbol must go through PLT. */
9963 if ((h->type == STT_GNU_IFUNC
9965 && !bfd_link_relocatable (flinfo->info))
9966 || ((h->dynindx != -1
9968 && ((bfd_link_pic (flinfo->info)
9969 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9970 || h->root.type != bfd_link_hash_undefweak))
9971 || !h->forced_local)
9972 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9974 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9975 (flinfo->output_bfd, flinfo->info, h, &sym)))
9977 eoinfo->failed = TRUE;
9982 /* If we are marking the symbol as undefined, and there are no
9983 non-weak references to this symbol from a regular object, then
9984 mark the symbol as weak undefined; if there are non-weak
9985 references, mark the symbol as strong. We can't do this earlier,
9986 because it might not be marked as undefined until the
9987 finish_dynamic_symbol routine gets through with it. */
9988 if (sym.st_shndx == SHN_UNDEF
9990 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9991 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9994 type = ELF_ST_TYPE (sym.st_info);
9996 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9997 if (type == STT_GNU_IFUNC)
10000 if (h->ref_regular_nonweak)
10001 bindtype = STB_GLOBAL;
10003 bindtype = STB_WEAK;
10004 sym.st_info = ELF_ST_INFO (bindtype, type);
10007 /* If this is a symbol defined in a dynamic library, don't use the
10008 symbol size from the dynamic library. Relinking an executable
10009 against a new library may introduce gratuitous changes in the
10010 executable's symbols if we keep the size. */
10011 if (sym.st_shndx == SHN_UNDEF
10016 /* If a non-weak symbol with non-default visibility is not defined
10017 locally, it is a fatal error. */
10018 if (!bfd_link_relocatable (flinfo->info)
10019 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10020 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10021 && h->root.type == bfd_link_hash_undefined
10022 && !h->def_regular)
10026 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10027 /* xgettext:c-format */
10028 msg = _("%pB: protected symbol `%s' isn't defined");
10029 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10030 /* xgettext:c-format */
10031 msg = _("%pB: internal symbol `%s' isn't defined");
10033 /* xgettext:c-format */
10034 msg = _("%pB: hidden symbol `%s' isn't defined");
10035 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10036 bfd_set_error (bfd_error_bad_value);
10037 eoinfo->failed = TRUE;
10041 /* If this symbol should be put in the .dynsym section, then put it
10042 there now. We already know the symbol index. We also fill in
10043 the entry in the .hash section. */
10044 if (h->dynindx != -1
10045 && elf_hash_table (flinfo->info)->dynamic_sections_created
10046 && elf_hash_table (flinfo->info)->dynsym != NULL
10047 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10051 /* Since there is no version information in the dynamic string,
10052 if there is no version info in symbol version section, we will
10053 have a run-time problem if not linking executable, referenced
10054 by shared library, or not bound locally. */
10055 if (h->verinfo.verdef == NULL
10056 && (!bfd_link_executable (flinfo->info)
10058 || !h->def_regular))
10060 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10062 if (p && p [1] != '\0')
10065 /* xgettext:c-format */
10066 (_("%pB: no symbol version section for versioned symbol `%s'"),
10067 flinfo->output_bfd, h->root.root.string);
10068 eoinfo->failed = TRUE;
10073 sym.st_name = h->dynstr_index;
10074 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10075 + h->dynindx * bed->s->sizeof_sym);
10076 if (!check_dynsym (flinfo->output_bfd, &sym))
10078 eoinfo->failed = TRUE;
10081 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10083 if (flinfo->hash_sec != NULL)
10085 size_t hash_entry_size;
10086 bfd_byte *bucketpos;
10088 size_t bucketcount;
10091 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10092 bucket = h->u.elf_hash_value % bucketcount;
10095 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10096 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10097 + (bucket + 2) * hash_entry_size);
10098 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10099 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10101 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10102 ((bfd_byte *) flinfo->hash_sec->contents
10103 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10106 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10108 Elf_Internal_Versym iversym;
10109 Elf_External_Versym *eversym;
10111 if (!h->def_regular)
10113 if (h->verinfo.verdef == NULL
10114 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10115 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10116 iversym.vs_vers = 0;
10118 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10122 if (h->verinfo.vertree == NULL)
10123 iversym.vs_vers = 1;
10125 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10126 if (flinfo->info->create_default_symver)
10130 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10131 defined locally. */
10132 if (h->versioned == versioned_hidden && h->def_regular)
10133 iversym.vs_vers |= VERSYM_HIDDEN;
10135 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10136 eversym += h->dynindx;
10137 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10141 /* If the symbol is undefined, and we didn't output it to .dynsym,
10142 strip it from .symtab too. Obviously we can't do this for
10143 relocatable output or when needed for --emit-relocs. */
10144 else if (input_sec == bfd_und_section_ptr
10146 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10147 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10148 && !bfd_link_relocatable (flinfo->info))
10151 /* Also strip others that we couldn't earlier due to dynamic symbol
10155 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10158 /* Output a FILE symbol so that following locals are not associated
10159 with the wrong input file. We need one for forced local symbols
10160 if we've seen more than one FILE symbol or when we have exactly
10161 one FILE symbol but global symbols are present in a file other
10162 than the one with the FILE symbol. We also need one if linker
10163 defined symbols are present. In practice these conditions are
10164 always met, so just emit the FILE symbol unconditionally. */
10165 if (eoinfo->localsyms
10166 && !eoinfo->file_sym_done
10167 && eoinfo->flinfo->filesym_count != 0)
10169 Elf_Internal_Sym fsym;
10171 memset (&fsym, 0, sizeof (fsym));
10172 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10173 fsym.st_shndx = SHN_ABS;
10174 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10175 bfd_und_section_ptr, NULL))
10178 eoinfo->file_sym_done = TRUE;
10181 indx = bfd_get_symcount (flinfo->output_bfd);
10182 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10186 eoinfo->failed = TRUE;
10191 else if (h->indx == -2)
10197 /* Return TRUE if special handling is done for relocs in SEC against
10198 symbols defined in discarded sections. */
10201 elf_section_ignore_discarded_relocs (asection *sec)
10203 const struct elf_backend_data *bed;
10205 switch (sec->sec_info_type)
10207 case SEC_INFO_TYPE_STABS:
10208 case SEC_INFO_TYPE_EH_FRAME:
10209 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10215 bed = get_elf_backend_data (sec->owner);
10216 if (bed->elf_backend_ignore_discarded_relocs != NULL
10217 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10223 /* Return a mask saying how ld should treat relocations in SEC against
10224 symbols defined in discarded sections. If this function returns
10225 COMPLAIN set, ld will issue a warning message. If this function
10226 returns PRETEND set, and the discarded section was link-once and the
10227 same size as the kept link-once section, ld will pretend that the
10228 symbol was actually defined in the kept section. Otherwise ld will
10229 zero the reloc (at least that is the intent, but some cooperation by
10230 the target dependent code is needed, particularly for REL targets). */
10233 _bfd_elf_default_action_discarded (asection *sec)
10235 if (sec->flags & SEC_DEBUGGING)
10238 if (strcmp (".eh_frame", sec->name) == 0)
10241 if (strcmp (".gcc_except_table", sec->name) == 0)
10244 return COMPLAIN | PRETEND;
10247 /* Find a match between a section and a member of a section group. */
10250 match_group_member (asection *sec, asection *group,
10251 struct bfd_link_info *info)
10253 asection *first = elf_next_in_group (group);
10254 asection *s = first;
10258 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10261 s = elf_next_in_group (s);
10269 /* Check if the kept section of a discarded section SEC can be used
10270 to replace it. Return the replacement if it is OK. Otherwise return
10274 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10278 kept = sec->kept_section;
10281 if ((kept->flags & SEC_GROUP) != 0)
10282 kept = match_group_member (sec, kept, info);
10284 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10285 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10287 sec->kept_section = kept;
10292 /* Link an input file into the linker output file. This function
10293 handles all the sections and relocations of the input file at once.
10294 This is so that we only have to read the local symbols once, and
10295 don't have to keep them in memory. */
10298 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10300 int (*relocate_section)
10301 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10302 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10304 Elf_Internal_Shdr *symtab_hdr;
10305 size_t locsymcount;
10307 Elf_Internal_Sym *isymbuf;
10308 Elf_Internal_Sym *isym;
10309 Elf_Internal_Sym *isymend;
10311 asection **ppsection;
10313 const struct elf_backend_data *bed;
10314 struct elf_link_hash_entry **sym_hashes;
10315 bfd_size_type address_size;
10316 bfd_vma r_type_mask;
10318 bfd_boolean have_file_sym = FALSE;
10320 output_bfd = flinfo->output_bfd;
10321 bed = get_elf_backend_data (output_bfd);
10322 relocate_section = bed->elf_backend_relocate_section;
10324 /* If this is a dynamic object, we don't want to do anything here:
10325 we don't want the local symbols, and we don't want the section
10327 if ((input_bfd->flags & DYNAMIC) != 0)
10330 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10331 if (elf_bad_symtab (input_bfd))
10333 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10338 locsymcount = symtab_hdr->sh_info;
10339 extsymoff = symtab_hdr->sh_info;
10342 /* Read the local symbols. */
10343 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10344 if (isymbuf == NULL && locsymcount != 0)
10346 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10347 flinfo->internal_syms,
10348 flinfo->external_syms,
10349 flinfo->locsym_shndx);
10350 if (isymbuf == NULL)
10354 /* Find local symbol sections and adjust values of symbols in
10355 SEC_MERGE sections. Write out those local symbols we know are
10356 going into the output file. */
10357 isymend = isymbuf + locsymcount;
10358 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10360 isym++, pindex++, ppsection++)
10364 Elf_Internal_Sym osym;
10370 if (elf_bad_symtab (input_bfd))
10372 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10379 if (isym->st_shndx == SHN_UNDEF)
10380 isec = bfd_und_section_ptr;
10381 else if (isym->st_shndx == SHN_ABS)
10382 isec = bfd_abs_section_ptr;
10383 else if (isym->st_shndx == SHN_COMMON)
10384 isec = bfd_com_section_ptr;
10387 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10390 /* Don't attempt to output symbols with st_shnx in the
10391 reserved range other than SHN_ABS and SHN_COMMON. */
10395 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10396 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10398 _bfd_merged_section_offset (output_bfd, &isec,
10399 elf_section_data (isec)->sec_info,
10405 /* Don't output the first, undefined, symbol. In fact, don't
10406 output any undefined local symbol. */
10407 if (isec == bfd_und_section_ptr)
10410 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10412 /* We never output section symbols. Instead, we use the
10413 section symbol of the corresponding section in the output
10418 /* If we are stripping all symbols, we don't want to output this
10420 if (flinfo->info->strip == strip_all)
10423 /* If we are discarding all local symbols, we don't want to
10424 output this one. If we are generating a relocatable output
10425 file, then some of the local symbols may be required by
10426 relocs; we output them below as we discover that they are
10428 if (flinfo->info->discard == discard_all)
10431 /* If this symbol is defined in a section which we are
10432 discarding, we don't need to keep it. */
10433 if (isym->st_shndx != SHN_UNDEF
10434 && isym->st_shndx < SHN_LORESERVE
10435 && bfd_section_removed_from_list (output_bfd,
10436 isec->output_section))
10439 /* Get the name of the symbol. */
10440 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10445 /* See if we are discarding symbols with this name. */
10446 if ((flinfo->info->strip == strip_some
10447 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10449 || (((flinfo->info->discard == discard_sec_merge
10450 && (isec->flags & SEC_MERGE)
10451 && !bfd_link_relocatable (flinfo->info))
10452 || flinfo->info->discard == discard_l)
10453 && bfd_is_local_label_name (input_bfd, name)))
10456 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10458 if (input_bfd->lto_output)
10459 /* -flto puts a temp file name here. This means builds
10460 are not reproducible. Discard the symbol. */
10462 have_file_sym = TRUE;
10463 flinfo->filesym_count += 1;
10465 if (!have_file_sym)
10467 /* In the absence of debug info, bfd_find_nearest_line uses
10468 FILE symbols to determine the source file for local
10469 function symbols. Provide a FILE symbol here if input
10470 files lack such, so that their symbols won't be
10471 associated with a previous input file. It's not the
10472 source file, but the best we can do. */
10473 have_file_sym = TRUE;
10474 flinfo->filesym_count += 1;
10475 memset (&osym, 0, sizeof (osym));
10476 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10477 osym.st_shndx = SHN_ABS;
10478 if (!elf_link_output_symstrtab (flinfo,
10479 (input_bfd->lto_output ? NULL
10480 : input_bfd->filename),
10481 &osym, bfd_abs_section_ptr,
10488 /* Adjust the section index for the output file. */
10489 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10490 isec->output_section);
10491 if (osym.st_shndx == SHN_BAD)
10494 /* ELF symbols in relocatable files are section relative, but
10495 in executable files they are virtual addresses. Note that
10496 this code assumes that all ELF sections have an associated
10497 BFD section with a reasonable value for output_offset; below
10498 we assume that they also have a reasonable value for
10499 output_section. Any special sections must be set up to meet
10500 these requirements. */
10501 osym.st_value += isec->output_offset;
10502 if (!bfd_link_relocatable (flinfo->info))
10504 osym.st_value += isec->output_section->vma;
10505 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10507 /* STT_TLS symbols are relative to PT_TLS segment base. */
10508 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10509 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10511 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10516 indx = bfd_get_symcount (output_bfd);
10517 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10524 if (bed->s->arch_size == 32)
10526 r_type_mask = 0xff;
10532 r_type_mask = 0xffffffff;
10537 /* Relocate the contents of each section. */
10538 sym_hashes = elf_sym_hashes (input_bfd);
10539 for (o = input_bfd->sections; o != NULL; o = o->next)
10541 bfd_byte *contents;
10543 if (! o->linker_mark)
10545 /* This section was omitted from the link. */
10549 if (!flinfo->info->resolve_section_groups
10550 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10552 /* Deal with the group signature symbol. */
10553 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10554 unsigned long symndx = sec_data->this_hdr.sh_info;
10555 asection *osec = o->output_section;
10557 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10558 if (symndx >= locsymcount
10559 || (elf_bad_symtab (input_bfd)
10560 && flinfo->sections[symndx] == NULL))
10562 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10563 while (h->root.type == bfd_link_hash_indirect
10564 || h->root.type == bfd_link_hash_warning)
10565 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10566 /* Arrange for symbol to be output. */
10568 elf_section_data (osec)->this_hdr.sh_info = -2;
10570 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10572 /* We'll use the output section target_index. */
10573 asection *sec = flinfo->sections[symndx]->output_section;
10574 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10578 if (flinfo->indices[symndx] == -1)
10580 /* Otherwise output the local symbol now. */
10581 Elf_Internal_Sym sym = isymbuf[symndx];
10582 asection *sec = flinfo->sections[symndx]->output_section;
10587 name = bfd_elf_string_from_elf_section (input_bfd,
10588 symtab_hdr->sh_link,
10593 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10595 if (sym.st_shndx == SHN_BAD)
10598 sym.st_value += o->output_offset;
10600 indx = bfd_get_symcount (output_bfd);
10601 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10606 flinfo->indices[symndx] = indx;
10610 elf_section_data (osec)->this_hdr.sh_info
10611 = flinfo->indices[symndx];
10615 if ((o->flags & SEC_HAS_CONTENTS) == 0
10616 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10619 if ((o->flags & SEC_LINKER_CREATED) != 0)
10621 /* Section was created by _bfd_elf_link_create_dynamic_sections
10626 /* Get the contents of the section. They have been cached by a
10627 relaxation routine. Note that o is a section in an input
10628 file, so the contents field will not have been set by any of
10629 the routines which work on output files. */
10630 if (elf_section_data (o)->this_hdr.contents != NULL)
10632 contents = elf_section_data (o)->this_hdr.contents;
10633 if (bed->caches_rawsize
10635 && o->rawsize < o->size)
10637 memcpy (flinfo->contents, contents, o->rawsize);
10638 contents = flinfo->contents;
10643 contents = flinfo->contents;
10644 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10648 if ((o->flags & SEC_RELOC) != 0)
10650 Elf_Internal_Rela *internal_relocs;
10651 Elf_Internal_Rela *rel, *relend;
10652 int action_discarded;
10655 /* Get the swapped relocs. */
10657 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10658 flinfo->internal_relocs, FALSE);
10659 if (internal_relocs == NULL
10660 && o->reloc_count > 0)
10663 /* We need to reverse-copy input .ctors/.dtors sections if
10664 they are placed in .init_array/.finit_array for output. */
10665 if (o->size > address_size
10666 && ((strncmp (o->name, ".ctors", 6) == 0
10667 && strcmp (o->output_section->name,
10668 ".init_array") == 0)
10669 || (strncmp (o->name, ".dtors", 6) == 0
10670 && strcmp (o->output_section->name,
10671 ".fini_array") == 0))
10672 && (o->name[6] == 0 || o->name[6] == '.'))
10674 if (o->size * bed->s->int_rels_per_ext_rel
10675 != o->reloc_count * address_size)
10678 /* xgettext:c-format */
10679 (_("error: %pB: size of section %pA is not "
10680 "multiple of address size"),
10682 bfd_set_error (bfd_error_bad_value);
10685 o->flags |= SEC_ELF_REVERSE_COPY;
10688 action_discarded = -1;
10689 if (!elf_section_ignore_discarded_relocs (o))
10690 action_discarded = (*bed->action_discarded) (o);
10692 /* Run through the relocs evaluating complex reloc symbols and
10693 looking for relocs against symbols from discarded sections
10694 or section symbols from removed link-once sections.
10695 Complain about relocs against discarded sections. Zero
10696 relocs against removed link-once sections. */
10698 rel = internal_relocs;
10699 relend = rel + o->reloc_count;
10700 for ( ; rel < relend; rel++)
10702 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10703 unsigned int s_type;
10704 asection **ps, *sec;
10705 struct elf_link_hash_entry *h = NULL;
10706 const char *sym_name;
10708 if (r_symndx == STN_UNDEF)
10711 if (r_symndx >= locsymcount
10712 || (elf_bad_symtab (input_bfd)
10713 && flinfo->sections[r_symndx] == NULL))
10715 h = sym_hashes[r_symndx - extsymoff];
10717 /* Badly formatted input files can contain relocs that
10718 reference non-existant symbols. Check here so that
10719 we do not seg fault. */
10723 /* xgettext:c-format */
10724 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10725 "that references a non-existent global symbol"),
10726 input_bfd, (uint64_t) rel->r_info, o);
10727 bfd_set_error (bfd_error_bad_value);
10731 while (h->root.type == bfd_link_hash_indirect
10732 || h->root.type == bfd_link_hash_warning)
10733 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10737 /* If a plugin symbol is referenced from a non-IR file,
10738 mark the symbol as undefined. Note that the
10739 linker may attach linker created dynamic sections
10740 to the plugin bfd. Symbols defined in linker
10741 created sections are not plugin symbols. */
10742 if ((h->root.non_ir_ref_regular
10743 || h->root.non_ir_ref_dynamic)
10744 && (h->root.type == bfd_link_hash_defined
10745 || h->root.type == bfd_link_hash_defweak)
10746 && (h->root.u.def.section->flags
10747 & SEC_LINKER_CREATED) == 0
10748 && h->root.u.def.section->owner != NULL
10749 && (h->root.u.def.section->owner->flags
10750 & BFD_PLUGIN) != 0)
10752 h->root.type = bfd_link_hash_undefined;
10753 h->root.u.undef.abfd = h->root.u.def.section->owner;
10757 if (h->root.type == bfd_link_hash_defined
10758 || h->root.type == bfd_link_hash_defweak)
10759 ps = &h->root.u.def.section;
10761 sym_name = h->root.root.string;
10765 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10767 s_type = ELF_ST_TYPE (sym->st_info);
10768 ps = &flinfo->sections[r_symndx];
10769 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10773 if ((s_type == STT_RELC || s_type == STT_SRELC)
10774 && !bfd_link_relocatable (flinfo->info))
10777 bfd_vma dot = (rel->r_offset
10778 + o->output_offset + o->output_section->vma);
10780 printf ("Encountered a complex symbol!");
10781 printf (" (input_bfd %s, section %s, reloc %ld\n",
10782 input_bfd->filename, o->name,
10783 (long) (rel - internal_relocs));
10784 printf (" symbol: idx %8.8lx, name %s\n",
10785 r_symndx, sym_name);
10786 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10787 (unsigned long) rel->r_info,
10788 (unsigned long) rel->r_offset);
10790 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10791 isymbuf, locsymcount, s_type == STT_SRELC))
10794 /* Symbol evaluated OK. Update to absolute value. */
10795 set_symbol_value (input_bfd, isymbuf, locsymcount,
10800 if (action_discarded != -1 && ps != NULL)
10802 /* Complain if the definition comes from a
10803 discarded section. */
10804 if ((sec = *ps) != NULL && discarded_section (sec))
10806 BFD_ASSERT (r_symndx != STN_UNDEF);
10807 if (action_discarded & COMPLAIN)
10808 (*flinfo->info->callbacks->einfo)
10809 /* xgettext:c-format */
10810 (_("%X`%s' referenced in section `%pA' of %pB: "
10811 "defined in discarded section `%pA' of %pB\n"),
10812 sym_name, o, input_bfd, sec, sec->owner);
10814 /* Try to do the best we can to support buggy old
10815 versions of gcc. Pretend that the symbol is
10816 really defined in the kept linkonce section.
10817 FIXME: This is quite broken. Modifying the
10818 symbol here means we will be changing all later
10819 uses of the symbol, not just in this section. */
10820 if (action_discarded & PRETEND)
10824 kept = _bfd_elf_check_kept_section (sec,
10836 /* Relocate the section by invoking a back end routine.
10838 The back end routine is responsible for adjusting the
10839 section contents as necessary, and (if using Rela relocs
10840 and generating a relocatable output file) adjusting the
10841 reloc addend as necessary.
10843 The back end routine does not have to worry about setting
10844 the reloc address or the reloc symbol index.
10846 The back end routine is given a pointer to the swapped in
10847 internal symbols, and can access the hash table entries
10848 for the external symbols via elf_sym_hashes (input_bfd).
10850 When generating relocatable output, the back end routine
10851 must handle STB_LOCAL/STT_SECTION symbols specially. The
10852 output symbol is going to be a section symbol
10853 corresponding to the output section, which will require
10854 the addend to be adjusted. */
10856 ret = (*relocate_section) (output_bfd, flinfo->info,
10857 input_bfd, o, contents,
10865 || bfd_link_relocatable (flinfo->info)
10866 || flinfo->info->emitrelocations)
10868 Elf_Internal_Rela *irela;
10869 Elf_Internal_Rela *irelaend, *irelamid;
10870 bfd_vma last_offset;
10871 struct elf_link_hash_entry **rel_hash;
10872 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10873 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10874 unsigned int next_erel;
10875 bfd_boolean rela_normal;
10876 struct bfd_elf_section_data *esdi, *esdo;
10878 esdi = elf_section_data (o);
10879 esdo = elf_section_data (o->output_section);
10880 rela_normal = FALSE;
10882 /* Adjust the reloc addresses and symbol indices. */
10884 irela = internal_relocs;
10885 irelaend = irela + o->reloc_count;
10886 rel_hash = esdo->rel.hashes + esdo->rel.count;
10887 /* We start processing the REL relocs, if any. When we reach
10888 IRELAMID in the loop, we switch to the RELA relocs. */
10890 if (esdi->rel.hdr != NULL)
10891 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10892 * bed->s->int_rels_per_ext_rel);
10893 rel_hash_list = rel_hash;
10894 rela_hash_list = NULL;
10895 last_offset = o->output_offset;
10896 if (!bfd_link_relocatable (flinfo->info))
10897 last_offset += o->output_section->vma;
10898 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10900 unsigned long r_symndx;
10902 Elf_Internal_Sym sym;
10904 if (next_erel == bed->s->int_rels_per_ext_rel)
10910 if (irela == irelamid)
10912 rel_hash = esdo->rela.hashes + esdo->rela.count;
10913 rela_hash_list = rel_hash;
10914 rela_normal = bed->rela_normal;
10917 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10920 if (irela->r_offset >= (bfd_vma) -2)
10922 /* This is a reloc for a deleted entry or somesuch.
10923 Turn it into an R_*_NONE reloc, at the same
10924 offset as the last reloc. elf_eh_frame.c and
10925 bfd_elf_discard_info rely on reloc offsets
10927 irela->r_offset = last_offset;
10929 irela->r_addend = 0;
10933 irela->r_offset += o->output_offset;
10935 /* Relocs in an executable have to be virtual addresses. */
10936 if (!bfd_link_relocatable (flinfo->info))
10937 irela->r_offset += o->output_section->vma;
10939 last_offset = irela->r_offset;
10941 r_symndx = irela->r_info >> r_sym_shift;
10942 if (r_symndx == STN_UNDEF)
10945 if (r_symndx >= locsymcount
10946 || (elf_bad_symtab (input_bfd)
10947 && flinfo->sections[r_symndx] == NULL))
10949 struct elf_link_hash_entry *rh;
10950 unsigned long indx;
10952 /* This is a reloc against a global symbol. We
10953 have not yet output all the local symbols, so
10954 we do not know the symbol index of any global
10955 symbol. We set the rel_hash entry for this
10956 reloc to point to the global hash table entry
10957 for this symbol. The symbol index is then
10958 set at the end of bfd_elf_final_link. */
10959 indx = r_symndx - extsymoff;
10960 rh = elf_sym_hashes (input_bfd)[indx];
10961 while (rh->root.type == bfd_link_hash_indirect
10962 || rh->root.type == bfd_link_hash_warning)
10963 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10965 /* Setting the index to -2 tells
10966 elf_link_output_extsym that this symbol is
10967 used by a reloc. */
10968 BFD_ASSERT (rh->indx < 0);
10975 /* This is a reloc against a local symbol. */
10978 sym = isymbuf[r_symndx];
10979 sec = flinfo->sections[r_symndx];
10980 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10982 /* I suppose the backend ought to fill in the
10983 section of any STT_SECTION symbol against a
10984 processor specific section. */
10985 r_symndx = STN_UNDEF;
10986 if (bfd_is_abs_section (sec))
10988 else if (sec == NULL || sec->owner == NULL)
10990 bfd_set_error (bfd_error_bad_value);
10995 asection *osec = sec->output_section;
10997 /* If we have discarded a section, the output
10998 section will be the absolute section. In
10999 case of discarded SEC_MERGE sections, use
11000 the kept section. relocate_section should
11001 have already handled discarded linkonce
11003 if (bfd_is_abs_section (osec)
11004 && sec->kept_section != NULL
11005 && sec->kept_section->output_section != NULL)
11007 osec = sec->kept_section->output_section;
11008 irela->r_addend -= osec->vma;
11011 if (!bfd_is_abs_section (osec))
11013 r_symndx = osec->target_index;
11014 if (r_symndx == STN_UNDEF)
11016 irela->r_addend += osec->vma;
11017 osec = _bfd_nearby_section (output_bfd, osec,
11019 irela->r_addend -= osec->vma;
11020 r_symndx = osec->target_index;
11025 /* Adjust the addend according to where the
11026 section winds up in the output section. */
11028 irela->r_addend += sec->output_offset;
11032 if (flinfo->indices[r_symndx] == -1)
11034 unsigned long shlink;
11039 if (flinfo->info->strip == strip_all)
11041 /* You can't do ld -r -s. */
11042 bfd_set_error (bfd_error_invalid_operation);
11046 /* This symbol was skipped earlier, but
11047 since it is needed by a reloc, we
11048 must output it now. */
11049 shlink = symtab_hdr->sh_link;
11050 name = (bfd_elf_string_from_elf_section
11051 (input_bfd, shlink, sym.st_name));
11055 osec = sec->output_section;
11057 _bfd_elf_section_from_bfd_section (output_bfd,
11059 if (sym.st_shndx == SHN_BAD)
11062 sym.st_value += sec->output_offset;
11063 if (!bfd_link_relocatable (flinfo->info))
11065 sym.st_value += osec->vma;
11066 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11068 struct elf_link_hash_table *htab
11069 = elf_hash_table (flinfo->info);
11071 /* STT_TLS symbols are relative to PT_TLS
11073 if (htab->tls_sec != NULL)
11074 sym.st_value -= htab->tls_sec->vma;
11077 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11082 indx = bfd_get_symcount (output_bfd);
11083 ret = elf_link_output_symstrtab (flinfo, name,
11089 flinfo->indices[r_symndx] = indx;
11094 r_symndx = flinfo->indices[r_symndx];
11097 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11098 | (irela->r_info & r_type_mask));
11101 /* Swap out the relocs. */
11102 input_rel_hdr = esdi->rel.hdr;
11103 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11105 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11110 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11111 * bed->s->int_rels_per_ext_rel);
11112 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11115 input_rela_hdr = esdi->rela.hdr;
11116 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11118 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11127 /* Write out the modified section contents. */
11128 if (bed->elf_backend_write_section
11129 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11132 /* Section written out. */
11134 else switch (o->sec_info_type)
11136 case SEC_INFO_TYPE_STABS:
11137 if (! (_bfd_write_section_stabs
11139 &elf_hash_table (flinfo->info)->stab_info,
11140 o, &elf_section_data (o)->sec_info, contents)))
11143 case SEC_INFO_TYPE_MERGE:
11144 if (! _bfd_write_merged_section (output_bfd, o,
11145 elf_section_data (o)->sec_info))
11148 case SEC_INFO_TYPE_EH_FRAME:
11150 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11155 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11157 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11165 if (! (o->flags & SEC_EXCLUDE))
11167 file_ptr offset = (file_ptr) o->output_offset;
11168 bfd_size_type todo = o->size;
11170 offset *= bfd_octets_per_byte (output_bfd);
11172 if ((o->flags & SEC_ELF_REVERSE_COPY))
11174 /* Reverse-copy input section to output. */
11177 todo -= address_size;
11178 if (! bfd_set_section_contents (output_bfd,
11186 offset += address_size;
11190 else if (! bfd_set_section_contents (output_bfd,
11204 /* Generate a reloc when linking an ELF file. This is a reloc
11205 requested by the linker, and does not come from any input file. This
11206 is used to build constructor and destructor tables when linking
11210 elf_reloc_link_order (bfd *output_bfd,
11211 struct bfd_link_info *info,
11212 asection *output_section,
11213 struct bfd_link_order *link_order)
11215 reloc_howto_type *howto;
11219 struct bfd_elf_section_reloc_data *reldata;
11220 struct elf_link_hash_entry **rel_hash_ptr;
11221 Elf_Internal_Shdr *rel_hdr;
11222 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11223 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11226 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11228 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11231 bfd_set_error (bfd_error_bad_value);
11235 addend = link_order->u.reloc.p->addend;
11238 reldata = &esdo->rel;
11239 else if (esdo->rela.hdr)
11240 reldata = &esdo->rela;
11247 /* Figure out the symbol index. */
11248 rel_hash_ptr = reldata->hashes + reldata->count;
11249 if (link_order->type == bfd_section_reloc_link_order)
11251 indx = link_order->u.reloc.p->u.section->target_index;
11252 BFD_ASSERT (indx != 0);
11253 *rel_hash_ptr = NULL;
11257 struct elf_link_hash_entry *h;
11259 /* Treat a reloc against a defined symbol as though it were
11260 actually against the section. */
11261 h = ((struct elf_link_hash_entry *)
11262 bfd_wrapped_link_hash_lookup (output_bfd, info,
11263 link_order->u.reloc.p->u.name,
11264 FALSE, FALSE, TRUE));
11266 && (h->root.type == bfd_link_hash_defined
11267 || h->root.type == bfd_link_hash_defweak))
11271 section = h->root.u.def.section;
11272 indx = section->output_section->target_index;
11273 *rel_hash_ptr = NULL;
11274 /* It seems that we ought to add the symbol value to the
11275 addend here, but in practice it has already been added
11276 because it was passed to constructor_callback. */
11277 addend += section->output_section->vma + section->output_offset;
11279 else if (h != NULL)
11281 /* Setting the index to -2 tells elf_link_output_extsym that
11282 this symbol is used by a reloc. */
11289 (*info->callbacks->unattached_reloc)
11290 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11295 /* If this is an inplace reloc, we must write the addend into the
11297 if (howto->partial_inplace && addend != 0)
11299 bfd_size_type size;
11300 bfd_reloc_status_type rstat;
11303 const char *sym_name;
11305 size = (bfd_size_type) bfd_get_reloc_size (howto);
11306 buf = (bfd_byte *) bfd_zmalloc (size);
11307 if (buf == NULL && size != 0)
11309 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11316 case bfd_reloc_outofrange:
11319 case bfd_reloc_overflow:
11320 if (link_order->type == bfd_section_reloc_link_order)
11321 sym_name = bfd_section_name (output_bfd,
11322 link_order->u.reloc.p->u.section);
11324 sym_name = link_order->u.reloc.p->u.name;
11325 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11326 howto->name, addend, NULL, NULL,
11331 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11333 * bfd_octets_per_byte (output_bfd),
11340 /* The address of a reloc is relative to the section in a
11341 relocatable file, and is a virtual address in an executable
11343 offset = link_order->offset;
11344 if (! bfd_link_relocatable (info))
11345 offset += output_section->vma;
11347 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11349 irel[i].r_offset = offset;
11350 irel[i].r_info = 0;
11351 irel[i].r_addend = 0;
11353 if (bed->s->arch_size == 32)
11354 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11356 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11358 rel_hdr = reldata->hdr;
11359 erel = rel_hdr->contents;
11360 if (rel_hdr->sh_type == SHT_REL)
11362 erel += reldata->count * bed->s->sizeof_rel;
11363 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11367 irel[0].r_addend = addend;
11368 erel += reldata->count * bed->s->sizeof_rela;
11369 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11378 /* Get the output vma of the section pointed to by the sh_link field. */
11381 elf_get_linked_section_vma (struct bfd_link_order *p)
11383 Elf_Internal_Shdr **elf_shdrp;
11387 s = p->u.indirect.section;
11388 elf_shdrp = elf_elfsections (s->owner);
11389 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11390 elfsec = elf_shdrp[elfsec]->sh_link;
11392 The Intel C compiler generates SHT_IA_64_UNWIND with
11393 SHF_LINK_ORDER. But it doesn't set the sh_link or
11394 sh_info fields. Hence we could get the situation
11395 where elfsec is 0. */
11398 const struct elf_backend_data *bed
11399 = get_elf_backend_data (s->owner);
11400 if (bed->link_order_error_handler)
11401 bed->link_order_error_handler
11402 /* xgettext:c-format */
11403 (_("%pB: warning: sh_link not set for section `%pA'"), s->owner, s);
11408 s = elf_shdrp[elfsec]->bfd_section;
11409 return s->output_section->vma + s->output_offset;
11414 /* Compare two sections based on the locations of the sections they are
11415 linked to. Used by elf_fixup_link_order. */
11418 compare_link_order (const void * a, const void * b)
11423 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11424 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11427 return apos > bpos;
11431 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11432 order as their linked sections. Returns false if this could not be done
11433 because an output section includes both ordered and unordered
11434 sections. Ideally we'd do this in the linker proper. */
11437 elf_fixup_link_order (bfd *abfd, asection *o)
11439 int seen_linkorder;
11442 struct bfd_link_order *p;
11444 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11446 struct bfd_link_order **sections;
11447 asection *s, *other_sec, *linkorder_sec;
11451 linkorder_sec = NULL;
11453 seen_linkorder = 0;
11454 for (p = o->map_head.link_order; p != NULL; p = p->next)
11456 if (p->type == bfd_indirect_link_order)
11458 s = p->u.indirect.section;
11460 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11461 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11462 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11463 && elfsec < elf_numsections (sub)
11464 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11465 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11479 if (seen_other && seen_linkorder)
11481 if (other_sec && linkorder_sec)
11483 /* xgettext:c-format */
11484 (_("%pA has both ordered [`%pA' in %pB] "
11485 "and unordered [`%pA' in %pB] sections"),
11486 o, linkorder_sec, linkorder_sec->owner,
11487 other_sec, other_sec->owner);
11490 (_("%pA has both ordered and unordered sections"), o);
11491 bfd_set_error (bfd_error_bad_value);
11496 if (!seen_linkorder)
11499 sections = (struct bfd_link_order **)
11500 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11501 if (sections == NULL)
11503 seen_linkorder = 0;
11505 for (p = o->map_head.link_order; p != NULL; p = p->next)
11507 sections[seen_linkorder++] = p;
11509 /* Sort the input sections in the order of their linked section. */
11510 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11511 compare_link_order);
11513 /* Change the offsets of the sections. */
11515 for (n = 0; n < seen_linkorder; n++)
11517 s = sections[n]->u.indirect.section;
11518 offset &= ~(bfd_vma) 0 << s->alignment_power;
11519 s->output_offset = offset / bfd_octets_per_byte (abfd);
11520 sections[n]->offset = offset;
11521 offset += sections[n]->size;
11528 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11529 Returns TRUE upon success, FALSE otherwise. */
11532 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11534 bfd_boolean ret = FALSE;
11536 const struct elf_backend_data *bed;
11538 enum bfd_architecture arch;
11540 asymbol **sympp = NULL;
11544 elf_symbol_type *osymbuf;
11546 implib_bfd = info->out_implib_bfd;
11547 bed = get_elf_backend_data (abfd);
11549 if (!bfd_set_format (implib_bfd, bfd_object))
11552 /* Use flag from executable but make it a relocatable object. */
11553 flags = bfd_get_file_flags (abfd);
11554 flags &= ~HAS_RELOC;
11555 if (!bfd_set_start_address (implib_bfd, 0)
11556 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11559 /* Copy architecture of output file to import library file. */
11560 arch = bfd_get_arch (abfd);
11561 mach = bfd_get_mach (abfd);
11562 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11563 && (abfd->target_defaulted
11564 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11567 /* Get symbol table size. */
11568 symsize = bfd_get_symtab_upper_bound (abfd);
11572 /* Read in the symbol table. */
11573 sympp = (asymbol **) xmalloc (symsize);
11574 symcount = bfd_canonicalize_symtab (abfd, sympp);
11578 /* Allow the BFD backend to copy any private header data it
11579 understands from the output BFD to the import library BFD. */
11580 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11583 /* Filter symbols to appear in the import library. */
11584 if (bed->elf_backend_filter_implib_symbols)
11585 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11588 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11591 bfd_set_error (bfd_error_no_symbols);
11592 _bfd_error_handler (_("%pB: no symbol found for import library"),
11598 /* Make symbols absolute. */
11599 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11600 sizeof (*osymbuf));
11601 for (src_count = 0; src_count < symcount; src_count++)
11603 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11604 sizeof (*osymbuf));
11605 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11606 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11607 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11608 osymbuf[src_count].internal_elf_sym.st_value =
11609 osymbuf[src_count].symbol.value;
11610 sympp[src_count] = &osymbuf[src_count].symbol;
11613 bfd_set_symtab (implib_bfd, sympp, symcount);
11615 /* Allow the BFD backend to copy any private data it understands
11616 from the output BFD to the import library BFD. This is done last
11617 to permit the routine to look at the filtered symbol table. */
11618 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11621 if (!bfd_close (implib_bfd))
11632 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11636 if (flinfo->symstrtab != NULL)
11637 _bfd_elf_strtab_free (flinfo->symstrtab);
11638 if (flinfo->contents != NULL)
11639 free (flinfo->contents);
11640 if (flinfo->external_relocs != NULL)
11641 free (flinfo->external_relocs);
11642 if (flinfo->internal_relocs != NULL)
11643 free (flinfo->internal_relocs);
11644 if (flinfo->external_syms != NULL)
11645 free (flinfo->external_syms);
11646 if (flinfo->locsym_shndx != NULL)
11647 free (flinfo->locsym_shndx);
11648 if (flinfo->internal_syms != NULL)
11649 free (flinfo->internal_syms);
11650 if (flinfo->indices != NULL)
11651 free (flinfo->indices);
11652 if (flinfo->sections != NULL)
11653 free (flinfo->sections);
11654 if (flinfo->symshndxbuf != NULL)
11655 free (flinfo->symshndxbuf);
11656 for (o = obfd->sections; o != NULL; o = o->next)
11658 struct bfd_elf_section_data *esdo = elf_section_data (o);
11659 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11660 free (esdo->rel.hashes);
11661 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11662 free (esdo->rela.hashes);
11666 /* Do the final step of an ELF link. */
11669 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11671 bfd_boolean dynamic;
11672 bfd_boolean emit_relocs;
11674 struct elf_final_link_info flinfo;
11676 struct bfd_link_order *p;
11678 bfd_size_type max_contents_size;
11679 bfd_size_type max_external_reloc_size;
11680 bfd_size_type max_internal_reloc_count;
11681 bfd_size_type max_sym_count;
11682 bfd_size_type max_sym_shndx_count;
11683 Elf_Internal_Sym elfsym;
11685 Elf_Internal_Shdr *symtab_hdr;
11686 Elf_Internal_Shdr *symtab_shndx_hdr;
11687 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11688 struct elf_outext_info eoinfo;
11689 bfd_boolean merged;
11690 size_t relativecount = 0;
11691 asection *reldyn = 0;
11693 asection *attr_section = NULL;
11694 bfd_vma attr_size = 0;
11695 const char *std_attrs_section;
11696 struct elf_link_hash_table *htab = elf_hash_table (info);
11698 if (!is_elf_hash_table (htab))
11701 if (bfd_link_pic (info))
11702 abfd->flags |= DYNAMIC;
11704 dynamic = htab->dynamic_sections_created;
11705 dynobj = htab->dynobj;
11707 emit_relocs = (bfd_link_relocatable (info)
11708 || info->emitrelocations);
11710 flinfo.info = info;
11711 flinfo.output_bfd = abfd;
11712 flinfo.symstrtab = _bfd_elf_strtab_init ();
11713 if (flinfo.symstrtab == NULL)
11718 flinfo.hash_sec = NULL;
11719 flinfo.symver_sec = NULL;
11723 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11724 /* Note that dynsym_sec can be NULL (on VMS). */
11725 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11726 /* Note that it is OK if symver_sec is NULL. */
11729 flinfo.contents = NULL;
11730 flinfo.external_relocs = NULL;
11731 flinfo.internal_relocs = NULL;
11732 flinfo.external_syms = NULL;
11733 flinfo.locsym_shndx = NULL;
11734 flinfo.internal_syms = NULL;
11735 flinfo.indices = NULL;
11736 flinfo.sections = NULL;
11737 flinfo.symshndxbuf = NULL;
11738 flinfo.filesym_count = 0;
11740 /* The object attributes have been merged. Remove the input
11741 sections from the link, and set the contents of the output
11743 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11744 for (o = abfd->sections; o != NULL; o = o->next)
11746 bfd_boolean remove_section = FALSE;
11748 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11749 || strcmp (o->name, ".gnu.attributes") == 0)
11751 for (p = o->map_head.link_order; p != NULL; p = p->next)
11753 asection *input_section;
11755 if (p->type != bfd_indirect_link_order)
11757 input_section = p->u.indirect.section;
11758 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11759 elf_link_input_bfd ignores this section. */
11760 input_section->flags &= ~SEC_HAS_CONTENTS;
11763 attr_size = bfd_elf_obj_attr_size (abfd);
11764 bfd_set_section_size (abfd, o, attr_size);
11765 /* Skip this section later on. */
11766 o->map_head.link_order = NULL;
11770 remove_section = TRUE;
11772 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11774 /* Remove empty group section from linker output. */
11775 remove_section = TRUE;
11777 if (remove_section)
11779 o->flags |= SEC_EXCLUDE;
11780 bfd_section_list_remove (abfd, o);
11781 abfd->section_count--;
11785 /* Count up the number of relocations we will output for each output
11786 section, so that we know the sizes of the reloc sections. We
11787 also figure out some maximum sizes. */
11788 max_contents_size = 0;
11789 max_external_reloc_size = 0;
11790 max_internal_reloc_count = 0;
11792 max_sym_shndx_count = 0;
11794 for (o = abfd->sections; o != NULL; o = o->next)
11796 struct bfd_elf_section_data *esdo = elf_section_data (o);
11797 o->reloc_count = 0;
11799 for (p = o->map_head.link_order; p != NULL; p = p->next)
11801 unsigned int reloc_count = 0;
11802 unsigned int additional_reloc_count = 0;
11803 struct bfd_elf_section_data *esdi = NULL;
11805 if (p->type == bfd_section_reloc_link_order
11806 || p->type == bfd_symbol_reloc_link_order)
11808 else if (p->type == bfd_indirect_link_order)
11812 sec = p->u.indirect.section;
11814 /* Mark all sections which are to be included in the
11815 link. This will normally be every section. We need
11816 to do this so that we can identify any sections which
11817 the linker has decided to not include. */
11818 sec->linker_mark = TRUE;
11820 if (sec->flags & SEC_MERGE)
11823 if (sec->rawsize > max_contents_size)
11824 max_contents_size = sec->rawsize;
11825 if (sec->size > max_contents_size)
11826 max_contents_size = sec->size;
11828 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11829 && (sec->owner->flags & DYNAMIC) == 0)
11833 /* We are interested in just local symbols, not all
11835 if (elf_bad_symtab (sec->owner))
11836 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11837 / bed->s->sizeof_sym);
11839 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11841 if (sym_count > max_sym_count)
11842 max_sym_count = sym_count;
11844 if (sym_count > max_sym_shndx_count
11845 && elf_symtab_shndx_list (sec->owner) != NULL)
11846 max_sym_shndx_count = sym_count;
11848 if (esdo->this_hdr.sh_type == SHT_REL
11849 || esdo->this_hdr.sh_type == SHT_RELA)
11850 /* Some backends use reloc_count in relocation sections
11851 to count particular types of relocs. Of course,
11852 reloc sections themselves can't have relocations. */
11854 else if (emit_relocs)
11856 reloc_count = sec->reloc_count;
11857 if (bed->elf_backend_count_additional_relocs)
11860 c = (*bed->elf_backend_count_additional_relocs) (sec);
11861 additional_reloc_count += c;
11864 else if (bed->elf_backend_count_relocs)
11865 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11867 esdi = elf_section_data (sec);
11869 if ((sec->flags & SEC_RELOC) != 0)
11871 size_t ext_size = 0;
11873 if (esdi->rel.hdr != NULL)
11874 ext_size = esdi->rel.hdr->sh_size;
11875 if (esdi->rela.hdr != NULL)
11876 ext_size += esdi->rela.hdr->sh_size;
11878 if (ext_size > max_external_reloc_size)
11879 max_external_reloc_size = ext_size;
11880 if (sec->reloc_count > max_internal_reloc_count)
11881 max_internal_reloc_count = sec->reloc_count;
11886 if (reloc_count == 0)
11889 reloc_count += additional_reloc_count;
11890 o->reloc_count += reloc_count;
11892 if (p->type == bfd_indirect_link_order && emit_relocs)
11896 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11897 esdo->rel.count += additional_reloc_count;
11899 if (esdi->rela.hdr)
11901 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11902 esdo->rela.count += additional_reloc_count;
11908 esdo->rela.count += reloc_count;
11910 esdo->rel.count += reloc_count;
11914 if (o->reloc_count > 0)
11915 o->flags |= SEC_RELOC;
11918 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11919 set it (this is probably a bug) and if it is set
11920 assign_section_numbers will create a reloc section. */
11921 o->flags &=~ SEC_RELOC;
11924 /* If the SEC_ALLOC flag is not set, force the section VMA to
11925 zero. This is done in elf_fake_sections as well, but forcing
11926 the VMA to 0 here will ensure that relocs against these
11927 sections are handled correctly. */
11928 if ((o->flags & SEC_ALLOC) == 0
11929 && ! o->user_set_vma)
11933 if (! bfd_link_relocatable (info) && merged)
11934 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11936 /* Figure out the file positions for everything but the symbol table
11937 and the relocs. We set symcount to force assign_section_numbers
11938 to create a symbol table. */
11939 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11940 BFD_ASSERT (! abfd->output_has_begun);
11941 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11944 /* Set sizes, and assign file positions for reloc sections. */
11945 for (o = abfd->sections; o != NULL; o = o->next)
11947 struct bfd_elf_section_data *esdo = elf_section_data (o);
11948 if ((o->flags & SEC_RELOC) != 0)
11951 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11955 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11959 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11960 to count upwards while actually outputting the relocations. */
11961 esdo->rel.count = 0;
11962 esdo->rela.count = 0;
11964 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11966 /* Cache the section contents so that they can be compressed
11967 later. Use bfd_malloc since it will be freed by
11968 bfd_compress_section_contents. */
11969 unsigned char *contents = esdo->this_hdr.contents;
11970 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11973 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11974 if (contents == NULL)
11976 esdo->this_hdr.contents = contents;
11980 /* We have now assigned file positions for all the sections except
11981 .symtab, .strtab, and non-loaded reloc sections. We start the
11982 .symtab section at the current file position, and write directly
11983 to it. We build the .strtab section in memory. */
11984 bfd_get_symcount (abfd) = 0;
11985 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11986 /* sh_name is set in prep_headers. */
11987 symtab_hdr->sh_type = SHT_SYMTAB;
11988 /* sh_flags, sh_addr and sh_size all start off zero. */
11989 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11990 /* sh_link is set in assign_section_numbers. */
11991 /* sh_info is set below. */
11992 /* sh_offset is set just below. */
11993 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11995 if (max_sym_count < 20)
11996 max_sym_count = 20;
11997 htab->strtabsize = max_sym_count;
11998 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11999 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12000 if (htab->strtab == NULL)
12002 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12004 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12005 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12007 if (info->strip != strip_all || emit_relocs)
12009 file_ptr off = elf_next_file_pos (abfd);
12011 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12013 /* Note that at this point elf_next_file_pos (abfd) is
12014 incorrect. We do not yet know the size of the .symtab section.
12015 We correct next_file_pos below, after we do know the size. */
12017 /* Start writing out the symbol table. The first symbol is always a
12019 elfsym.st_value = 0;
12020 elfsym.st_size = 0;
12021 elfsym.st_info = 0;
12022 elfsym.st_other = 0;
12023 elfsym.st_shndx = SHN_UNDEF;
12024 elfsym.st_target_internal = 0;
12025 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12026 bfd_und_section_ptr, NULL) != 1)
12029 /* Output a symbol for each section. We output these even if we are
12030 discarding local symbols, since they are used for relocs. These
12031 symbols have no names. We store the index of each one in the
12032 index field of the section, so that we can find it again when
12033 outputting relocs. */
12035 elfsym.st_size = 0;
12036 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12037 elfsym.st_other = 0;
12038 elfsym.st_value = 0;
12039 elfsym.st_target_internal = 0;
12040 for (i = 1; i < elf_numsections (abfd); i++)
12042 o = bfd_section_from_elf_index (abfd, i);
12045 o->target_index = bfd_get_symcount (abfd);
12046 elfsym.st_shndx = i;
12047 if (!bfd_link_relocatable (info))
12048 elfsym.st_value = o->vma;
12049 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12056 /* Allocate some memory to hold information read in from the input
12058 if (max_contents_size != 0)
12060 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12061 if (flinfo.contents == NULL)
12065 if (max_external_reloc_size != 0)
12067 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12068 if (flinfo.external_relocs == NULL)
12072 if (max_internal_reloc_count != 0)
12074 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12075 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12076 if (flinfo.internal_relocs == NULL)
12080 if (max_sym_count != 0)
12082 amt = max_sym_count * bed->s->sizeof_sym;
12083 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12084 if (flinfo.external_syms == NULL)
12087 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12088 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12089 if (flinfo.internal_syms == NULL)
12092 amt = max_sym_count * sizeof (long);
12093 flinfo.indices = (long int *) bfd_malloc (amt);
12094 if (flinfo.indices == NULL)
12097 amt = max_sym_count * sizeof (asection *);
12098 flinfo.sections = (asection **) bfd_malloc (amt);
12099 if (flinfo.sections == NULL)
12103 if (max_sym_shndx_count != 0)
12105 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12106 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12107 if (flinfo.locsym_shndx == NULL)
12113 bfd_vma base, end = 0;
12116 for (sec = htab->tls_sec;
12117 sec && (sec->flags & SEC_THREAD_LOCAL);
12120 bfd_size_type size = sec->size;
12123 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12125 struct bfd_link_order *ord = sec->map_tail.link_order;
12128 size = ord->offset + ord->size;
12130 end = sec->vma + size;
12132 base = htab->tls_sec->vma;
12133 /* Only align end of TLS section if static TLS doesn't have special
12134 alignment requirements. */
12135 if (bed->static_tls_alignment == 1)
12136 end = align_power (end, htab->tls_sec->alignment_power);
12137 htab->tls_size = end - base;
12140 /* Reorder SHF_LINK_ORDER sections. */
12141 for (o = abfd->sections; o != NULL; o = o->next)
12143 if (!elf_fixup_link_order (abfd, o))
12147 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12150 /* Since ELF permits relocations to be against local symbols, we
12151 must have the local symbols available when we do the relocations.
12152 Since we would rather only read the local symbols once, and we
12153 would rather not keep them in memory, we handle all the
12154 relocations for a single input file at the same time.
12156 Unfortunately, there is no way to know the total number of local
12157 symbols until we have seen all of them, and the local symbol
12158 indices precede the global symbol indices. This means that when
12159 we are generating relocatable output, and we see a reloc against
12160 a global symbol, we can not know the symbol index until we have
12161 finished examining all the local symbols to see which ones we are
12162 going to output. To deal with this, we keep the relocations in
12163 memory, and don't output them until the end of the link. This is
12164 an unfortunate waste of memory, but I don't see a good way around
12165 it. Fortunately, it only happens when performing a relocatable
12166 link, which is not the common case. FIXME: If keep_memory is set
12167 we could write the relocs out and then read them again; I don't
12168 know how bad the memory loss will be. */
12170 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12171 sub->output_has_begun = FALSE;
12172 for (o = abfd->sections; o != NULL; o = o->next)
12174 for (p = o->map_head.link_order; p != NULL; p = p->next)
12176 if (p->type == bfd_indirect_link_order
12177 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12178 == bfd_target_elf_flavour)
12179 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12181 if (! sub->output_has_begun)
12183 if (! elf_link_input_bfd (&flinfo, sub))
12185 sub->output_has_begun = TRUE;
12188 else if (p->type == bfd_section_reloc_link_order
12189 || p->type == bfd_symbol_reloc_link_order)
12191 if (! elf_reloc_link_order (abfd, info, o, p))
12196 if (! _bfd_default_link_order (abfd, info, o, p))
12198 if (p->type == bfd_indirect_link_order
12199 && (bfd_get_flavour (sub)
12200 == bfd_target_elf_flavour)
12201 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12202 != bed->s->elfclass))
12204 const char *iclass, *oclass;
12206 switch (bed->s->elfclass)
12208 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12209 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12210 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12214 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12216 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12217 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12218 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12222 bfd_set_error (bfd_error_wrong_format);
12224 /* xgettext:c-format */
12225 (_("%pB: file class %s incompatible with %s"),
12226 sub, iclass, oclass);
12235 /* Free symbol buffer if needed. */
12236 if (!info->reduce_memory_overheads)
12238 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12239 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12240 && elf_tdata (sub)->symbuf)
12242 free (elf_tdata (sub)->symbuf);
12243 elf_tdata (sub)->symbuf = NULL;
12247 /* Output any global symbols that got converted to local in a
12248 version script or due to symbol visibility. We do this in a
12249 separate step since ELF requires all local symbols to appear
12250 prior to any global symbols. FIXME: We should only do this if
12251 some global symbols were, in fact, converted to become local.
12252 FIXME: Will this work correctly with the Irix 5 linker? */
12253 eoinfo.failed = FALSE;
12254 eoinfo.flinfo = &flinfo;
12255 eoinfo.localsyms = TRUE;
12256 eoinfo.file_sym_done = FALSE;
12257 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12261 /* If backend needs to output some local symbols not present in the hash
12262 table, do it now. */
12263 if (bed->elf_backend_output_arch_local_syms
12264 && (info->strip != strip_all || emit_relocs))
12266 typedef int (*out_sym_func)
12267 (void *, const char *, Elf_Internal_Sym *, asection *,
12268 struct elf_link_hash_entry *);
12270 if (! ((*bed->elf_backend_output_arch_local_syms)
12271 (abfd, info, &flinfo,
12272 (out_sym_func) elf_link_output_symstrtab)))
12276 /* That wrote out all the local symbols. Finish up the symbol table
12277 with the global symbols. Even if we want to strip everything we
12278 can, we still need to deal with those global symbols that got
12279 converted to local in a version script. */
12281 /* The sh_info field records the index of the first non local symbol. */
12282 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12285 && htab->dynsym != NULL
12286 && htab->dynsym->output_section != bfd_abs_section_ptr)
12288 Elf_Internal_Sym sym;
12289 bfd_byte *dynsym = htab->dynsym->contents;
12291 o = htab->dynsym->output_section;
12292 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12294 /* Write out the section symbols for the output sections. */
12295 if (bfd_link_pic (info)
12296 || htab->is_relocatable_executable)
12302 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12304 sym.st_target_internal = 0;
12306 for (s = abfd->sections; s != NULL; s = s->next)
12312 dynindx = elf_section_data (s)->dynindx;
12315 indx = elf_section_data (s)->this_idx;
12316 BFD_ASSERT (indx > 0);
12317 sym.st_shndx = indx;
12318 if (! check_dynsym (abfd, &sym))
12320 sym.st_value = s->vma;
12321 dest = dynsym + dynindx * bed->s->sizeof_sym;
12322 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12326 /* Write out the local dynsyms. */
12327 if (htab->dynlocal)
12329 struct elf_link_local_dynamic_entry *e;
12330 for (e = htab->dynlocal; e ; e = e->next)
12335 /* Copy the internal symbol and turn off visibility.
12336 Note that we saved a word of storage and overwrote
12337 the original st_name with the dynstr_index. */
12339 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12341 s = bfd_section_from_elf_index (e->input_bfd,
12346 elf_section_data (s->output_section)->this_idx;
12347 if (! check_dynsym (abfd, &sym))
12349 sym.st_value = (s->output_section->vma
12351 + e->isym.st_value);
12354 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12355 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12360 /* We get the global symbols from the hash table. */
12361 eoinfo.failed = FALSE;
12362 eoinfo.localsyms = FALSE;
12363 eoinfo.flinfo = &flinfo;
12364 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12368 /* If backend needs to output some symbols not present in the hash
12369 table, do it now. */
12370 if (bed->elf_backend_output_arch_syms
12371 && (info->strip != strip_all || emit_relocs))
12373 typedef int (*out_sym_func)
12374 (void *, const char *, Elf_Internal_Sym *, asection *,
12375 struct elf_link_hash_entry *);
12377 if (! ((*bed->elf_backend_output_arch_syms)
12378 (abfd, info, &flinfo,
12379 (out_sym_func) elf_link_output_symstrtab)))
12383 /* Finalize the .strtab section. */
12384 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12386 /* Swap out the .strtab section. */
12387 if (!elf_link_swap_symbols_out (&flinfo))
12390 /* Now we know the size of the symtab section. */
12391 if (bfd_get_symcount (abfd) > 0)
12393 /* Finish up and write out the symbol string table (.strtab)
12395 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12396 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12398 if (elf_symtab_shndx_list (abfd))
12400 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12402 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12404 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12405 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12406 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12407 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12408 symtab_shndx_hdr->sh_size = amt;
12410 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12413 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12414 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12419 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12420 /* sh_name was set in prep_headers. */
12421 symstrtab_hdr->sh_type = SHT_STRTAB;
12422 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12423 symstrtab_hdr->sh_addr = 0;
12424 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12425 symstrtab_hdr->sh_entsize = 0;
12426 symstrtab_hdr->sh_link = 0;
12427 symstrtab_hdr->sh_info = 0;
12428 /* sh_offset is set just below. */
12429 symstrtab_hdr->sh_addralign = 1;
12431 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12433 elf_next_file_pos (abfd) = off;
12435 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12436 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12440 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12442 _bfd_error_handler (_("%pB: failed to generate import library"),
12443 info->out_implib_bfd);
12447 /* Adjust the relocs to have the correct symbol indices. */
12448 for (o = abfd->sections; o != NULL; o = o->next)
12450 struct bfd_elf_section_data *esdo = elf_section_data (o);
12453 if ((o->flags & SEC_RELOC) == 0)
12456 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12457 if (esdo->rel.hdr != NULL
12458 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12460 if (esdo->rela.hdr != NULL
12461 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12464 /* Set the reloc_count field to 0 to prevent write_relocs from
12465 trying to swap the relocs out itself. */
12466 o->reloc_count = 0;
12469 if (dynamic && info->combreloc && dynobj != NULL)
12470 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12472 /* If we are linking against a dynamic object, or generating a
12473 shared library, finish up the dynamic linking information. */
12476 bfd_byte *dyncon, *dynconend;
12478 /* Fix up .dynamic entries. */
12479 o = bfd_get_linker_section (dynobj, ".dynamic");
12480 BFD_ASSERT (o != NULL);
12482 dyncon = o->contents;
12483 dynconend = o->contents + o->size;
12484 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12486 Elf_Internal_Dyn dyn;
12489 bfd_size_type sh_size;
12492 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12499 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12501 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12503 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12504 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12507 dyn.d_un.d_val = relativecount;
12514 name = info->init_function;
12517 name = info->fini_function;
12520 struct elf_link_hash_entry *h;
12522 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12524 && (h->root.type == bfd_link_hash_defined
12525 || h->root.type == bfd_link_hash_defweak))
12527 dyn.d_un.d_ptr = h->root.u.def.value;
12528 o = h->root.u.def.section;
12529 if (o->output_section != NULL)
12530 dyn.d_un.d_ptr += (o->output_section->vma
12531 + o->output_offset);
12534 /* The symbol is imported from another shared
12535 library and does not apply to this one. */
12536 dyn.d_un.d_ptr = 0;
12543 case DT_PREINIT_ARRAYSZ:
12544 name = ".preinit_array";
12546 case DT_INIT_ARRAYSZ:
12547 name = ".init_array";
12549 case DT_FINI_ARRAYSZ:
12550 name = ".fini_array";
12552 o = bfd_get_section_by_name (abfd, name);
12556 (_("could not find section %s"), name);
12561 (_("warning: %s section has zero size"), name);
12562 dyn.d_un.d_val = o->size;
12565 case DT_PREINIT_ARRAY:
12566 name = ".preinit_array";
12568 case DT_INIT_ARRAY:
12569 name = ".init_array";
12571 case DT_FINI_ARRAY:
12572 name = ".fini_array";
12574 o = bfd_get_section_by_name (abfd, name);
12581 name = ".gnu.hash";
12590 name = ".gnu.version_d";
12593 name = ".gnu.version_r";
12596 name = ".gnu.version";
12598 o = bfd_get_linker_section (dynobj, name);
12600 if (o == NULL || bfd_is_abs_section (o->output_section))
12603 (_("could not find section %s"), name);
12606 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12609 (_("warning: section '%s' is being made into a note"), name);
12610 bfd_set_error (bfd_error_nonrepresentable_section);
12613 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12620 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12626 for (i = 1; i < elf_numsections (abfd); i++)
12628 Elf_Internal_Shdr *hdr;
12630 hdr = elf_elfsections (abfd)[i];
12631 if (hdr->sh_type == type
12632 && (hdr->sh_flags & SHF_ALLOC) != 0)
12634 sh_size += hdr->sh_size;
12636 || sh_addr > hdr->sh_addr)
12637 sh_addr = hdr->sh_addr;
12641 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12643 /* Don't count procedure linkage table relocs in the
12644 overall reloc count. */
12645 sh_size -= htab->srelplt->size;
12647 /* If the size is zero, make the address zero too.
12648 This is to avoid a glibc bug. If the backend
12649 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12650 zero, then we'll put DT_RELA at the end of
12651 DT_JMPREL. glibc will interpret the end of
12652 DT_RELA matching the end of DT_JMPREL as the
12653 case where DT_RELA includes DT_JMPREL, and for
12654 LD_BIND_NOW will decide that processing DT_RELA
12655 will process the PLT relocs too. Net result:
12656 No PLT relocs applied. */
12659 /* If .rela.plt is the first .rela section, exclude
12660 it from DT_RELA. */
12661 else if (sh_addr == (htab->srelplt->output_section->vma
12662 + htab->srelplt->output_offset))
12663 sh_addr += htab->srelplt->size;
12666 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12667 dyn.d_un.d_val = sh_size;
12669 dyn.d_un.d_ptr = sh_addr;
12672 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12676 /* If we have created any dynamic sections, then output them. */
12677 if (dynobj != NULL)
12679 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12682 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12683 if (((info->warn_shared_textrel && bfd_link_pic (info))
12684 || info->error_textrel)
12685 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12687 bfd_byte *dyncon, *dynconend;
12689 dyncon = o->contents;
12690 dynconend = o->contents + o->size;
12691 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12693 Elf_Internal_Dyn dyn;
12695 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12697 if (dyn.d_tag == DT_TEXTREL)
12699 if (info->error_textrel)
12700 info->callbacks->einfo
12701 (_("%P%X: read-only segment has dynamic relocations\n"));
12703 info->callbacks->einfo
12704 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12710 for (o = dynobj->sections; o != NULL; o = o->next)
12712 if ((o->flags & SEC_HAS_CONTENTS) == 0
12714 || o->output_section == bfd_abs_section_ptr)
12716 if ((o->flags & SEC_LINKER_CREATED) == 0)
12718 /* At this point, we are only interested in sections
12719 created by _bfd_elf_link_create_dynamic_sections. */
12722 if (htab->stab_info.stabstr == o)
12724 if (htab->eh_info.hdr_sec == o)
12726 if (strcmp (o->name, ".dynstr") != 0)
12728 if (! bfd_set_section_contents (abfd, o->output_section,
12730 (file_ptr) o->output_offset
12731 * bfd_octets_per_byte (abfd),
12737 /* The contents of the .dynstr section are actually in a
12741 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12742 if (bfd_seek (abfd, off, SEEK_SET) != 0
12743 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12749 if (!info->resolve_section_groups)
12751 bfd_boolean failed = FALSE;
12753 BFD_ASSERT (bfd_link_relocatable (info));
12754 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12759 /* If we have optimized stabs strings, output them. */
12760 if (htab->stab_info.stabstr != NULL)
12762 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12766 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12769 elf_final_link_free (abfd, &flinfo);
12771 elf_linker (abfd) = TRUE;
12775 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12776 if (contents == NULL)
12777 return FALSE; /* Bail out and fail. */
12778 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12779 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12786 elf_final_link_free (abfd, &flinfo);
12790 /* Initialize COOKIE for input bfd ABFD. */
12793 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12794 struct bfd_link_info *info, bfd *abfd)
12796 Elf_Internal_Shdr *symtab_hdr;
12797 const struct elf_backend_data *bed;
12799 bed = get_elf_backend_data (abfd);
12800 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12802 cookie->abfd = abfd;
12803 cookie->sym_hashes = elf_sym_hashes (abfd);
12804 cookie->bad_symtab = elf_bad_symtab (abfd);
12805 if (cookie->bad_symtab)
12807 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12808 cookie->extsymoff = 0;
12812 cookie->locsymcount = symtab_hdr->sh_info;
12813 cookie->extsymoff = symtab_hdr->sh_info;
12816 if (bed->s->arch_size == 32)
12817 cookie->r_sym_shift = 8;
12819 cookie->r_sym_shift = 32;
12821 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12822 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12824 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12825 cookie->locsymcount, 0,
12827 if (cookie->locsyms == NULL)
12829 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12832 if (info->keep_memory)
12833 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12838 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12841 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12843 Elf_Internal_Shdr *symtab_hdr;
12845 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12846 if (cookie->locsyms != NULL
12847 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12848 free (cookie->locsyms);
12851 /* Initialize the relocation information in COOKIE for input section SEC
12852 of input bfd ABFD. */
12855 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12856 struct bfd_link_info *info, bfd *abfd,
12859 if (sec->reloc_count == 0)
12861 cookie->rels = NULL;
12862 cookie->relend = NULL;
12866 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12867 info->keep_memory);
12868 if (cookie->rels == NULL)
12870 cookie->rel = cookie->rels;
12871 cookie->relend = cookie->rels + sec->reloc_count;
12873 cookie->rel = cookie->rels;
12877 /* Free the memory allocated by init_reloc_cookie_rels,
12881 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12884 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12885 free (cookie->rels);
12888 /* Initialize the whole of COOKIE for input section SEC. */
12891 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12892 struct bfd_link_info *info,
12895 if (!init_reloc_cookie (cookie, info, sec->owner))
12897 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12902 fini_reloc_cookie (cookie, sec->owner);
12907 /* Free the memory allocated by init_reloc_cookie_for_section,
12911 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12914 fini_reloc_cookie_rels (cookie, sec);
12915 fini_reloc_cookie (cookie, sec->owner);
12918 /* Garbage collect unused sections. */
12920 /* Default gc_mark_hook. */
12923 _bfd_elf_gc_mark_hook (asection *sec,
12924 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12925 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12926 struct elf_link_hash_entry *h,
12927 Elf_Internal_Sym *sym)
12931 switch (h->root.type)
12933 case bfd_link_hash_defined:
12934 case bfd_link_hash_defweak:
12935 return h->root.u.def.section;
12937 case bfd_link_hash_common:
12938 return h->root.u.c.p->section;
12945 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12950 /* Return the debug definition section. */
12953 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
12954 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12955 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12956 struct elf_link_hash_entry *h,
12957 Elf_Internal_Sym *sym)
12961 /* Return the global debug definition section. */
12962 if ((h->root.type == bfd_link_hash_defined
12963 || h->root.type == bfd_link_hash_defweak)
12964 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
12965 return h->root.u.def.section;
12969 /* Return the local debug definition section. */
12970 asection *isec = bfd_section_from_elf_index (sec->owner,
12972 if ((isec->flags & SEC_DEBUGGING) != 0)
12979 /* COOKIE->rel describes a relocation against section SEC, which is
12980 a section we've decided to keep. Return the section that contains
12981 the relocation symbol, or NULL if no section contains it. */
12984 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12985 elf_gc_mark_hook_fn gc_mark_hook,
12986 struct elf_reloc_cookie *cookie,
12987 bfd_boolean *start_stop)
12989 unsigned long r_symndx;
12990 struct elf_link_hash_entry *h;
12992 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12993 if (r_symndx == STN_UNDEF)
12996 if (r_symndx >= cookie->locsymcount
12997 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12999 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13002 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13006 while (h->root.type == bfd_link_hash_indirect
13007 || h->root.type == bfd_link_hash_warning)
13008 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13010 /* If this symbol is weak and there is a non-weak definition, we
13011 keep the non-weak definition because many backends put
13012 dynamic reloc info on the non-weak definition for code
13013 handling copy relocs. */
13014 if (h->is_weakalias)
13015 weakdef (h)->mark = 1;
13017 if (start_stop != NULL)
13019 /* To work around a glibc bug, mark XXX input sections
13020 when there is a reference to __start_XXX or __stop_XXX
13024 asection *s = h->u2.start_stop_section;
13025 *start_stop = !s->gc_mark;
13030 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13033 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13034 &cookie->locsyms[r_symndx]);
13037 /* COOKIE->rel describes a relocation against section SEC, which is
13038 a section we've decided to keep. Mark the section that contains
13039 the relocation symbol. */
13042 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13044 elf_gc_mark_hook_fn gc_mark_hook,
13045 struct elf_reloc_cookie *cookie)
13048 bfd_boolean start_stop = FALSE;
13050 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13051 while (rsec != NULL)
13053 if (!rsec->gc_mark)
13055 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13056 || (rsec->owner->flags & DYNAMIC) != 0)
13058 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13063 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13068 /* The mark phase of garbage collection. For a given section, mark
13069 it and any sections in this section's group, and all the sections
13070 which define symbols to which it refers. */
13073 _bfd_elf_gc_mark (struct bfd_link_info *info,
13075 elf_gc_mark_hook_fn gc_mark_hook)
13078 asection *group_sec, *eh_frame;
13082 /* Mark all the sections in the group. */
13083 group_sec = elf_section_data (sec)->next_in_group;
13084 if (group_sec && !group_sec->gc_mark)
13085 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13088 /* Look through the section relocs. */
13090 eh_frame = elf_eh_frame_section (sec->owner);
13091 if ((sec->flags & SEC_RELOC) != 0
13092 && sec->reloc_count > 0
13093 && sec != eh_frame)
13095 struct elf_reloc_cookie cookie;
13097 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13101 for (; cookie.rel < cookie.relend; cookie.rel++)
13102 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13107 fini_reloc_cookie_for_section (&cookie, sec);
13111 if (ret && eh_frame && elf_fde_list (sec))
13113 struct elf_reloc_cookie cookie;
13115 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13119 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13120 gc_mark_hook, &cookie))
13122 fini_reloc_cookie_for_section (&cookie, eh_frame);
13126 eh_frame = elf_section_eh_frame_entry (sec);
13127 if (ret && eh_frame && !eh_frame->gc_mark)
13128 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13134 /* Scan and mark sections in a special or debug section group. */
13137 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13139 /* Point to first section of section group. */
13141 /* Used to iterate the section group. */
13144 bfd_boolean is_special_grp = TRUE;
13145 bfd_boolean is_debug_grp = TRUE;
13147 /* First scan to see if group contains any section other than debug
13148 and special section. */
13149 ssec = msec = elf_next_in_group (grp);
13152 if ((msec->flags & SEC_DEBUGGING) == 0)
13153 is_debug_grp = FALSE;
13155 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13156 is_special_grp = FALSE;
13158 msec = elf_next_in_group (msec);
13160 while (msec != ssec);
13162 /* If this is a pure debug section group or pure special section group,
13163 keep all sections in this group. */
13164 if (is_debug_grp || is_special_grp)
13169 msec = elf_next_in_group (msec);
13171 while (msec != ssec);
13175 /* Keep debug and special sections. */
13178 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13179 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
13183 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13186 bfd_boolean some_kept;
13187 bfd_boolean debug_frag_seen;
13188 bfd_boolean has_kept_debug_info;
13190 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13192 isec = ibfd->sections;
13193 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13196 /* Ensure all linker created sections are kept,
13197 see if any other section is already marked,
13198 and note if we have any fragmented debug sections. */
13199 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13200 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13202 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13204 else if (isec->gc_mark
13205 && (isec->flags & SEC_ALLOC) != 0
13206 && elf_section_type (isec) != SHT_NOTE)
13209 if (!debug_frag_seen
13210 && (isec->flags & SEC_DEBUGGING)
13211 && CONST_STRNEQ (isec->name, ".debug_line."))
13212 debug_frag_seen = TRUE;
13215 /* If no non-note alloc section in this file will be kept, then
13216 we can toss out the debug and special sections. */
13220 /* Keep debug and special sections like .comment when they are
13221 not part of a group. Also keep section groups that contain
13222 just debug sections or special sections. */
13223 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13225 if ((isec->flags & SEC_GROUP) != 0)
13226 _bfd_elf_gc_mark_debug_special_section_group (isec);
13227 else if (((isec->flags & SEC_DEBUGGING) != 0
13228 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13229 && elf_next_in_group (isec) == NULL)
13231 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13232 has_kept_debug_info = TRUE;
13235 /* Look for CODE sections which are going to be discarded,
13236 and find and discard any fragmented debug sections which
13237 are associated with that code section. */
13238 if (debug_frag_seen)
13239 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13240 if ((isec->flags & SEC_CODE) != 0
13241 && isec->gc_mark == 0)
13246 ilen = strlen (isec->name);
13248 /* Association is determined by the name of the debug
13249 section containing the name of the code section as
13250 a suffix. For example .debug_line.text.foo is a
13251 debug section associated with .text.foo. */
13252 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13256 if (dsec->gc_mark == 0
13257 || (dsec->flags & SEC_DEBUGGING) == 0)
13260 dlen = strlen (dsec->name);
13263 && strncmp (dsec->name + (dlen - ilen),
13264 isec->name, ilen) == 0)
13269 /* Mark debug sections referenced by kept debug sections. */
13270 if (has_kept_debug_info)
13271 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13273 && (isec->flags & SEC_DEBUGGING) != 0)
13274 if (!_bfd_elf_gc_mark (info, isec,
13275 elf_gc_mark_debug_section))
13282 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13285 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13287 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13291 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13292 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13293 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13296 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13299 for (o = sub->sections; o != NULL; o = o->next)
13301 /* When any section in a section group is kept, we keep all
13302 sections in the section group. If the first member of
13303 the section group is excluded, we will also exclude the
13305 if (o->flags & SEC_GROUP)
13307 asection *first = elf_next_in_group (o);
13308 o->gc_mark = first->gc_mark;
13314 /* Skip sweeping sections already excluded. */
13315 if (o->flags & SEC_EXCLUDE)
13318 /* Since this is early in the link process, it is simple
13319 to remove a section from the output. */
13320 o->flags |= SEC_EXCLUDE;
13322 if (info->print_gc_sections && o->size != 0)
13323 /* xgettext:c-format */
13324 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13332 /* Propagate collected vtable information. This is called through
13333 elf_link_hash_traverse. */
13336 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13338 /* Those that are not vtables. */
13340 || h->u2.vtable == NULL
13341 || h->u2.vtable->parent == NULL)
13344 /* Those vtables that do not have parents, we cannot merge. */
13345 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13348 /* If we've already been done, exit. */
13349 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13352 /* Make sure the parent's table is up to date. */
13353 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13355 if (h->u2.vtable->used == NULL)
13357 /* None of this table's entries were referenced. Re-use the
13359 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13360 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13365 bfd_boolean *cu, *pu;
13367 /* Or the parent's entries into ours. */
13368 cu = h->u2.vtable->used;
13370 pu = h->u2.vtable->parent->u2.vtable->used;
13373 const struct elf_backend_data *bed;
13374 unsigned int log_file_align;
13376 bed = get_elf_backend_data (h->root.u.def.section->owner);
13377 log_file_align = bed->s->log_file_align;
13378 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13393 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13396 bfd_vma hstart, hend;
13397 Elf_Internal_Rela *relstart, *relend, *rel;
13398 const struct elf_backend_data *bed;
13399 unsigned int log_file_align;
13401 /* Take care of both those symbols that do not describe vtables as
13402 well as those that are not loaded. */
13404 || h->u2.vtable == NULL
13405 || h->u2.vtable->parent == NULL)
13408 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13409 || h->root.type == bfd_link_hash_defweak);
13411 sec = h->root.u.def.section;
13412 hstart = h->root.u.def.value;
13413 hend = hstart + h->size;
13415 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13417 return *(bfd_boolean *) okp = FALSE;
13418 bed = get_elf_backend_data (sec->owner);
13419 log_file_align = bed->s->log_file_align;
13421 relend = relstart + sec->reloc_count;
13423 for (rel = relstart; rel < relend; ++rel)
13424 if (rel->r_offset >= hstart && rel->r_offset < hend)
13426 /* If the entry is in use, do nothing. */
13427 if (h->u2.vtable->used
13428 && (rel->r_offset - hstart) < h->u2.vtable->size)
13430 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13431 if (h->u2.vtable->used[entry])
13434 /* Otherwise, kill it. */
13435 rel->r_offset = rel->r_info = rel->r_addend = 0;
13441 /* Mark sections containing dynamically referenced symbols. When
13442 building shared libraries, we must assume that any visible symbol is
13446 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13448 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13449 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13451 if ((h->root.type == bfd_link_hash_defined
13452 || h->root.type == bfd_link_hash_defweak)
13453 && ((h->ref_dynamic && !h->forced_local)
13454 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13455 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13456 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13457 && (!bfd_link_executable (info)
13458 || info->gc_keep_exported
13459 || info->export_dynamic
13462 && (*d->match) (&d->head, NULL, h->root.root.string)))
13463 && (h->versioned >= versioned
13464 || !bfd_hide_sym_by_version (info->version_info,
13465 h->root.root.string)))))
13466 h->root.u.def.section->flags |= SEC_KEEP;
13471 /* Keep all sections containing symbols undefined on the command-line,
13472 and the section containing the entry symbol. */
13475 _bfd_elf_gc_keep (struct bfd_link_info *info)
13477 struct bfd_sym_chain *sym;
13479 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13481 struct elf_link_hash_entry *h;
13483 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13484 FALSE, FALSE, FALSE);
13487 && (h->root.type == bfd_link_hash_defined
13488 || h->root.type == bfd_link_hash_defweak)
13489 && !bfd_is_abs_section (h->root.u.def.section)
13490 && !bfd_is_und_section (h->root.u.def.section))
13491 h->root.u.def.section->flags |= SEC_KEEP;
13496 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13497 struct bfd_link_info *info)
13499 bfd *ibfd = info->input_bfds;
13501 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13504 struct elf_reloc_cookie cookie;
13506 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13508 sec = ibfd->sections;
13509 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13512 if (!init_reloc_cookie (&cookie, info, ibfd))
13515 for (sec = ibfd->sections; sec; sec = sec->next)
13517 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13518 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13520 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13521 fini_reloc_cookie_rels (&cookie, sec);
13528 /* Do mark and sweep of unused sections. */
13531 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13533 bfd_boolean ok = TRUE;
13535 elf_gc_mark_hook_fn gc_mark_hook;
13536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13537 struct elf_link_hash_table *htab;
13539 if (!bed->can_gc_sections
13540 || !is_elf_hash_table (info->hash))
13542 _bfd_error_handler(_("warning: gc-sections option ignored"));
13546 bed->gc_keep (info);
13547 htab = elf_hash_table (info);
13549 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13550 at the .eh_frame section if we can mark the FDEs individually. */
13551 for (sub = info->input_bfds;
13552 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13553 sub = sub->link.next)
13556 struct elf_reloc_cookie cookie;
13558 sec = sub->sections;
13559 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13561 sec = bfd_get_section_by_name (sub, ".eh_frame");
13562 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13564 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13565 if (elf_section_data (sec)->sec_info
13566 && (sec->flags & SEC_LINKER_CREATED) == 0)
13567 elf_eh_frame_section (sub) = sec;
13568 fini_reloc_cookie_for_section (&cookie, sec);
13569 sec = bfd_get_next_section_by_name (NULL, sec);
13573 /* Apply transitive closure to the vtable entry usage info. */
13574 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13578 /* Kill the vtable relocations that were not used. */
13579 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13583 /* Mark dynamically referenced symbols. */
13584 if (htab->dynamic_sections_created || info->gc_keep_exported)
13585 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13587 /* Grovel through relocs to find out who stays ... */
13588 gc_mark_hook = bed->gc_mark_hook;
13589 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13593 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13594 || elf_object_id (sub) != elf_hash_table_id (htab)
13595 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13599 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13602 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13603 Also treat note sections as a root, if the section is not part
13604 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13605 well as FINI_ARRAY sections for ld -r. */
13606 for (o = sub->sections; o != NULL; o = o->next)
13608 && (o->flags & SEC_EXCLUDE) == 0
13609 && ((o->flags & SEC_KEEP) != 0
13610 || (bfd_link_relocatable (info)
13611 && ((elf_section_data (o)->this_hdr.sh_type
13612 == SHT_PREINIT_ARRAY)
13613 || (elf_section_data (o)->this_hdr.sh_type
13615 || (elf_section_data (o)->this_hdr.sh_type
13616 == SHT_FINI_ARRAY)))
13617 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13618 && elf_next_in_group (o) == NULL )))
13620 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13625 /* Allow the backend to mark additional target specific sections. */
13626 bed->gc_mark_extra_sections (info, gc_mark_hook);
13628 /* ... and mark SEC_EXCLUDE for those that go. */
13629 return elf_gc_sweep (abfd, info);
13632 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13635 bfd_elf_gc_record_vtinherit (bfd *abfd,
13637 struct elf_link_hash_entry *h,
13640 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13641 struct elf_link_hash_entry **search, *child;
13642 size_t extsymcount;
13643 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13645 /* The sh_info field of the symtab header tells us where the
13646 external symbols start. We don't care about the local symbols at
13648 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13649 if (!elf_bad_symtab (abfd))
13650 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13652 sym_hashes = elf_sym_hashes (abfd);
13653 sym_hashes_end = sym_hashes + extsymcount;
13655 /* Hunt down the child symbol, which is in this section at the same
13656 offset as the relocation. */
13657 for (search = sym_hashes; search != sym_hashes_end; ++search)
13659 if ((child = *search) != NULL
13660 && (child->root.type == bfd_link_hash_defined
13661 || child->root.type == bfd_link_hash_defweak)
13662 && child->root.u.def.section == sec
13663 && child->root.u.def.value == offset)
13667 /* xgettext:c-format */
13668 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13669 abfd, sec, (uint64_t) offset);
13670 bfd_set_error (bfd_error_invalid_operation);
13674 if (!child->u2.vtable)
13676 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13677 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13678 if (!child->u2.vtable)
13683 /* This *should* only be the absolute section. It could potentially
13684 be that someone has defined a non-global vtable though, which
13685 would be bad. It isn't worth paging in the local symbols to be
13686 sure though; that case should simply be handled by the assembler. */
13688 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13691 child->u2.vtable->parent = h;
13696 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13699 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13700 asection *sec ATTRIBUTE_UNUSED,
13701 struct elf_link_hash_entry *h,
13704 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13705 unsigned int log_file_align = bed->s->log_file_align;
13709 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13710 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13715 if (addend >= h->u2.vtable->size)
13717 size_t size, bytes, file_align;
13718 bfd_boolean *ptr = h->u2.vtable->used;
13720 /* While the symbol is undefined, we have to be prepared to handle
13722 file_align = 1 << log_file_align;
13723 if (h->root.type == bfd_link_hash_undefined)
13724 size = addend + file_align;
13728 if (addend >= size)
13730 /* Oops! We've got a reference past the defined end of
13731 the table. This is probably a bug -- shall we warn? */
13732 size = addend + file_align;
13735 size = (size + file_align - 1) & -file_align;
13737 /* Allocate one extra entry for use as a "done" flag for the
13738 consolidation pass. */
13739 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13743 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13749 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13750 * sizeof (bfd_boolean));
13751 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13755 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13760 /* And arrange for that done flag to be at index -1. */
13761 h->u2.vtable->used = ptr + 1;
13762 h->u2.vtable->size = size;
13765 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13770 /* Map an ELF section header flag to its corresponding string. */
13774 flagword flag_value;
13775 } elf_flags_to_name_table;
13777 static elf_flags_to_name_table elf_flags_to_names [] =
13779 { "SHF_WRITE", SHF_WRITE },
13780 { "SHF_ALLOC", SHF_ALLOC },
13781 { "SHF_EXECINSTR", SHF_EXECINSTR },
13782 { "SHF_MERGE", SHF_MERGE },
13783 { "SHF_STRINGS", SHF_STRINGS },
13784 { "SHF_INFO_LINK", SHF_INFO_LINK},
13785 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13786 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13787 { "SHF_GROUP", SHF_GROUP },
13788 { "SHF_TLS", SHF_TLS },
13789 { "SHF_MASKOS", SHF_MASKOS },
13790 { "SHF_EXCLUDE", SHF_EXCLUDE },
13793 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13795 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13796 struct flag_info *flaginfo,
13799 const bfd_vma sh_flags = elf_section_flags (section);
13801 if (!flaginfo->flags_initialized)
13803 bfd *obfd = info->output_bfd;
13804 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13805 struct flag_info_list *tf = flaginfo->flag_list;
13807 int without_hex = 0;
13809 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13812 flagword (*lookup) (char *);
13814 lookup = bed->elf_backend_lookup_section_flags_hook;
13815 if (lookup != NULL)
13817 flagword hexval = (*lookup) ((char *) tf->name);
13821 if (tf->with == with_flags)
13822 with_hex |= hexval;
13823 else if (tf->with == without_flags)
13824 without_hex |= hexval;
13829 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13831 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13833 if (tf->with == with_flags)
13834 with_hex |= elf_flags_to_names[i].flag_value;
13835 else if (tf->with == without_flags)
13836 without_hex |= elf_flags_to_names[i].flag_value;
13843 info->callbacks->einfo
13844 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13848 flaginfo->flags_initialized = TRUE;
13849 flaginfo->only_with_flags |= with_hex;
13850 flaginfo->not_with_flags |= without_hex;
13853 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13856 if ((flaginfo->not_with_flags & sh_flags) != 0)
13862 struct alloc_got_off_arg {
13864 struct bfd_link_info *info;
13867 /* We need a special top-level link routine to convert got reference counts
13868 to real got offsets. */
13871 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13873 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13874 bfd *obfd = gofarg->info->output_bfd;
13875 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13877 if (h->got.refcount > 0)
13879 h->got.offset = gofarg->gotoff;
13880 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13883 h->got.offset = (bfd_vma) -1;
13888 /* And an accompanying bit to work out final got entry offsets once
13889 we're done. Should be called from final_link. */
13892 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13893 struct bfd_link_info *info)
13896 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13898 struct alloc_got_off_arg gofarg;
13900 BFD_ASSERT (abfd == info->output_bfd);
13902 if (! is_elf_hash_table (info->hash))
13905 /* The GOT offset is relative to the .got section, but the GOT header is
13906 put into the .got.plt section, if the backend uses it. */
13907 if (bed->want_got_plt)
13910 gotoff = bed->got_header_size;
13912 /* Do the local .got entries first. */
13913 for (i = info->input_bfds; i; i = i->link.next)
13915 bfd_signed_vma *local_got;
13916 size_t j, locsymcount;
13917 Elf_Internal_Shdr *symtab_hdr;
13919 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13922 local_got = elf_local_got_refcounts (i);
13926 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13927 if (elf_bad_symtab (i))
13928 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13930 locsymcount = symtab_hdr->sh_info;
13932 for (j = 0; j < locsymcount; ++j)
13934 if (local_got[j] > 0)
13936 local_got[j] = gotoff;
13937 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13940 local_got[j] = (bfd_vma) -1;
13944 /* Then the global .got entries. .plt refcounts are handled by
13945 adjust_dynamic_symbol */
13946 gofarg.gotoff = gotoff;
13947 gofarg.info = info;
13948 elf_link_hash_traverse (elf_hash_table (info),
13949 elf_gc_allocate_got_offsets,
13954 /* Many folk need no more in the way of final link than this, once
13955 got entry reference counting is enabled. */
13958 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13960 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13963 /* Invoke the regular ELF backend linker to do all the work. */
13964 return bfd_elf_final_link (abfd, info);
13968 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13970 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13972 if (rcookie->bad_symtab)
13973 rcookie->rel = rcookie->rels;
13975 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13977 unsigned long r_symndx;
13979 if (! rcookie->bad_symtab)
13980 if (rcookie->rel->r_offset > offset)
13982 if (rcookie->rel->r_offset != offset)
13985 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13986 if (r_symndx == STN_UNDEF)
13989 if (r_symndx >= rcookie->locsymcount
13990 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13992 struct elf_link_hash_entry *h;
13994 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13996 while (h->root.type == bfd_link_hash_indirect
13997 || h->root.type == bfd_link_hash_warning)
13998 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14000 if ((h->root.type == bfd_link_hash_defined
14001 || h->root.type == bfd_link_hash_defweak)
14002 && (h->root.u.def.section->owner != rcookie->abfd
14003 || h->root.u.def.section->kept_section != NULL
14004 || discarded_section (h->root.u.def.section)))
14009 /* It's not a relocation against a global symbol,
14010 but it could be a relocation against a local
14011 symbol for a discarded section. */
14013 Elf_Internal_Sym *isym;
14015 /* Need to: get the symbol; get the section. */
14016 isym = &rcookie->locsyms[r_symndx];
14017 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14019 && (isec->kept_section != NULL
14020 || discarded_section (isec)))
14028 /* Discard unneeded references to discarded sections.
14029 Returns -1 on error, 1 if any section's size was changed, 0 if
14030 nothing changed. This function assumes that the relocations are in
14031 sorted order, which is true for all known assemblers. */
14034 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14036 struct elf_reloc_cookie cookie;
14041 if (info->traditional_format
14042 || !is_elf_hash_table (info->hash))
14045 o = bfd_get_section_by_name (output_bfd, ".stab");
14050 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14053 || i->reloc_count == 0
14054 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14058 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14061 if (!init_reloc_cookie_for_section (&cookie, info, i))
14064 if (_bfd_discard_section_stabs (abfd, i,
14065 elf_section_data (i)->sec_info,
14066 bfd_elf_reloc_symbol_deleted_p,
14070 fini_reloc_cookie_for_section (&cookie, i);
14075 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14076 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14080 int eh_changed = 0;
14081 unsigned int eh_alignment;
14083 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14089 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14092 if (!init_reloc_cookie_for_section (&cookie, info, i))
14095 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14096 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14097 bfd_elf_reloc_symbol_deleted_p,
14101 if (i->size != i->rawsize)
14105 fini_reloc_cookie_for_section (&cookie, i);
14108 eh_alignment = 1 << o->alignment_power;
14109 /* Skip over zero terminator, and prevent empty sections from
14110 adding alignment padding at the end. */
14111 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14113 i->flags |= SEC_EXCLUDE;
14114 else if (i->size > 4)
14116 /* The last non-empty eh_frame section doesn't need padding. */
14119 /* Any prior sections must pad the last FDE out to the output
14120 section alignment. Otherwise we might have zero padding
14121 between sections, which would be seen as a terminator. */
14122 for (; i != NULL; i = i->map_tail.s)
14124 /* All but the last zero terminator should have been removed. */
14129 = (i->size + eh_alignment - 1) & -eh_alignment;
14130 if (i->size != size)
14138 elf_link_hash_traverse (elf_hash_table (info),
14139 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14142 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14144 const struct elf_backend_data *bed;
14147 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14149 s = abfd->sections;
14150 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14153 bed = get_elf_backend_data (abfd);
14155 if (bed->elf_backend_discard_info != NULL)
14157 if (!init_reloc_cookie (&cookie, info, abfd))
14160 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14163 fini_reloc_cookie (&cookie, abfd);
14167 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14168 _bfd_elf_end_eh_frame_parsing (info);
14170 if (info->eh_frame_hdr_type
14171 && !bfd_link_relocatable (info)
14172 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14179 _bfd_elf_section_already_linked (bfd *abfd,
14181 struct bfd_link_info *info)
14184 const char *name, *key;
14185 struct bfd_section_already_linked *l;
14186 struct bfd_section_already_linked_hash_entry *already_linked_list;
14188 if (sec->output_section == bfd_abs_section_ptr)
14191 flags = sec->flags;
14193 /* Return if it isn't a linkonce section. A comdat group section
14194 also has SEC_LINK_ONCE set. */
14195 if ((flags & SEC_LINK_ONCE) == 0)
14198 /* Don't put group member sections on our list of already linked
14199 sections. They are handled as a group via their group section. */
14200 if (elf_sec_group (sec) != NULL)
14203 /* For a SHT_GROUP section, use the group signature as the key. */
14205 if ((flags & SEC_GROUP) != 0
14206 && elf_next_in_group (sec) != NULL
14207 && elf_group_name (elf_next_in_group (sec)) != NULL)
14208 key = elf_group_name (elf_next_in_group (sec));
14211 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14212 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14213 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14216 /* Must be a user linkonce section that doesn't follow gcc's
14217 naming convention. In this case we won't be matching
14218 single member groups. */
14222 already_linked_list = bfd_section_already_linked_table_lookup (key);
14224 for (l = already_linked_list->entry; l != NULL; l = l->next)
14226 /* We may have 2 different types of sections on the list: group
14227 sections with a signature of <key> (<key> is some string),
14228 and linkonce sections named .gnu.linkonce.<type>.<key>.
14229 Match like sections. LTO plugin sections are an exception.
14230 They are always named .gnu.linkonce.t.<key> and match either
14231 type of section. */
14232 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14233 && ((flags & SEC_GROUP) != 0
14234 || strcmp (name, l->sec->name) == 0))
14235 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14237 /* The section has already been linked. See if we should
14238 issue a warning. */
14239 if (!_bfd_handle_already_linked (sec, l, info))
14242 if (flags & SEC_GROUP)
14244 asection *first = elf_next_in_group (sec);
14245 asection *s = first;
14249 s->output_section = bfd_abs_section_ptr;
14250 /* Record which group discards it. */
14251 s->kept_section = l->sec;
14252 s = elf_next_in_group (s);
14253 /* These lists are circular. */
14263 /* A single member comdat group section may be discarded by a
14264 linkonce section and vice versa. */
14265 if ((flags & SEC_GROUP) != 0)
14267 asection *first = elf_next_in_group (sec);
14269 if (first != NULL && elf_next_in_group (first) == first)
14270 /* Check this single member group against linkonce sections. */
14271 for (l = already_linked_list->entry; l != NULL; l = l->next)
14272 if ((l->sec->flags & SEC_GROUP) == 0
14273 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14275 first->output_section = bfd_abs_section_ptr;
14276 first->kept_section = l->sec;
14277 sec->output_section = bfd_abs_section_ptr;
14282 /* Check this linkonce section against single member groups. */
14283 for (l = already_linked_list->entry; l != NULL; l = l->next)
14284 if (l->sec->flags & SEC_GROUP)
14286 asection *first = elf_next_in_group (l->sec);
14289 && elf_next_in_group (first) == first
14290 && bfd_elf_match_symbols_in_sections (first, sec, info))
14292 sec->output_section = bfd_abs_section_ptr;
14293 sec->kept_section = first;
14298 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14299 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14300 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14301 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14302 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14303 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14304 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14305 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14306 The reverse order cannot happen as there is never a bfd with only the
14307 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14308 matter as here were are looking only for cross-bfd sections. */
14310 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14311 for (l = already_linked_list->entry; l != NULL; l = l->next)
14312 if ((l->sec->flags & SEC_GROUP) == 0
14313 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14315 if (abfd != l->sec->owner)
14316 sec->output_section = bfd_abs_section_ptr;
14320 /* This is the first section with this name. Record it. */
14321 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14322 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14323 return sec->output_section == bfd_abs_section_ptr;
14327 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14329 return sym->st_shndx == SHN_COMMON;
14333 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14339 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14341 return bfd_com_section_ptr;
14345 _bfd_elf_default_got_elt_size (bfd *abfd,
14346 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14347 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14348 bfd *ibfd ATTRIBUTE_UNUSED,
14349 unsigned long symndx ATTRIBUTE_UNUSED)
14351 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14352 return bed->s->arch_size / 8;
14355 /* Routines to support the creation of dynamic relocs. */
14357 /* Returns the name of the dynamic reloc section associated with SEC. */
14359 static const char *
14360 get_dynamic_reloc_section_name (bfd * abfd,
14362 bfd_boolean is_rela)
14365 const char *old_name = bfd_get_section_name (NULL, sec);
14366 const char *prefix = is_rela ? ".rela" : ".rel";
14368 if (old_name == NULL)
14371 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14372 sprintf (name, "%s%s", prefix, old_name);
14377 /* Returns the dynamic reloc section associated with SEC.
14378 If necessary compute the name of the dynamic reloc section based
14379 on SEC's name (looked up in ABFD's string table) and the setting
14383 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14385 bfd_boolean is_rela)
14387 asection * reloc_sec = elf_section_data (sec)->sreloc;
14389 if (reloc_sec == NULL)
14391 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14395 reloc_sec = bfd_get_linker_section (abfd, name);
14397 if (reloc_sec != NULL)
14398 elf_section_data (sec)->sreloc = reloc_sec;
14405 /* Returns the dynamic reloc section associated with SEC. If the
14406 section does not exist it is created and attached to the DYNOBJ
14407 bfd and stored in the SRELOC field of SEC's elf_section_data
14410 ALIGNMENT is the alignment for the newly created section and
14411 IS_RELA defines whether the name should be .rela.<SEC's name>
14412 or .rel.<SEC's name>. The section name is looked up in the
14413 string table associated with ABFD. */
14416 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14418 unsigned int alignment,
14420 bfd_boolean is_rela)
14422 asection * reloc_sec = elf_section_data (sec)->sreloc;
14424 if (reloc_sec == NULL)
14426 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14431 reloc_sec = bfd_get_linker_section (dynobj, name);
14433 if (reloc_sec == NULL)
14435 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14436 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14437 if ((sec->flags & SEC_ALLOC) != 0)
14438 flags |= SEC_ALLOC | SEC_LOAD;
14440 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14441 if (reloc_sec != NULL)
14443 /* _bfd_elf_get_sec_type_attr chooses a section type by
14444 name. Override as it may be wrong, eg. for a user
14445 section named "auto" we'll get ".relauto" which is
14446 seen to be a .rela section. */
14447 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14448 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14453 elf_section_data (sec)->sreloc = reloc_sec;
14459 /* Copy the ELF symbol type and other attributes for a linker script
14460 assignment from HSRC to HDEST. Generally this should be treated as
14461 if we found a strong non-dynamic definition for HDEST (except that
14462 ld ignores multiple definition errors). */
14464 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14465 struct bfd_link_hash_entry *hdest,
14466 struct bfd_link_hash_entry *hsrc)
14468 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14469 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14470 Elf_Internal_Sym isym;
14472 ehdest->type = ehsrc->type;
14473 ehdest->target_internal = ehsrc->target_internal;
14475 isym.st_other = ehsrc->other;
14476 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14479 /* Append a RELA relocation REL to section S in BFD. */
14482 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14484 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14485 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14486 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14487 bed->s->swap_reloca_out (abfd, rel, loc);
14490 /* Append a REL relocation REL to section S in BFD. */
14493 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14495 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14496 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14497 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14498 bed->s->swap_reloc_out (abfd, rel, loc);
14501 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14503 struct bfd_link_hash_entry *
14504 bfd_elf_define_start_stop (struct bfd_link_info *info,
14505 const char *symbol, asection *sec)
14507 struct elf_link_hash_entry *h;
14509 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14510 FALSE, FALSE, TRUE);
14512 && (h->root.type == bfd_link_hash_undefined
14513 || h->root.type == bfd_link_hash_undefweak
14514 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14516 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14517 h->root.type = bfd_link_hash_defined;
14518 h->root.u.def.section = sec;
14519 h->root.u.def.value = 0;
14520 h->def_regular = 1;
14521 h->def_dynamic = 0;
14523 h->u2.start_stop_section = sec;
14524 if (symbol[0] == '.')
14526 /* .startof. and .sizeof. symbols are local. */
14527 const struct elf_backend_data *bed;
14528 bed = get_elf_backend_data (info->output_bfd);
14529 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14533 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14534 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14536 bfd_elf_link_record_dynamic_symbol (info, h);