1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info *info;
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
45 struct elf_find_verdep_info
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
51 /* Whether we had a failure. */
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
58 /* Define a symbol in a dynamic linkage section. */
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 get_elf_backend_data (abfd)->collect,
86 h = (struct elf_link_hash_entry *) bh;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
111 flags = bed->dynamic_sec_flags;
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
129 if (bed->want_got_plt)
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
142 if (bed->want_got_sym)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
158 /* Create a strtab to hold the dynamic symbol names. */
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 struct elf_link_hash_table *hash_table;
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
168 if (hash_table->dynstr == NULL)
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
192 if (! is_elf_hash_table (info->hash))
195 if (elf_hash_table (info)->dynamic_sections_created)
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
204 flags = bed->dynamic_sec_flags;
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
227 || ! bfd_set_section_alignment (abfd, s, 1))
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
273 if (info->emit_gnu_hash)
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
301 /* Create dynamic sections when linking against a dynamic object. */
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
335 if (bed->want_plt_sym)
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
353 if (! _bfd_elf_create_got_section (abfd, info))
356 if (bed->want_dynbss)
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
407 if (h->dynindx == -1)
409 struct elf_strtab_hash *dynstr;
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
426 if (!elf_hash_table (info)->is_relocatable_executable)
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
437 dynstr = elf_hash_table (info)->dynstr;
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
446 /* We don't put any version information in the dynamic string
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
463 if (indx == (bfd_size_type) -1)
465 h->dynstr_index = indx;
471 /* Mark a symbol dynamic. */
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
508 if (!is_elf_hash_table (info->hash))
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
516 switch (h->root.type)
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
550 case bfd_link_hash_warning:
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
562 h->root.type = bfd_link_hash_undefined;
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
571 h->verinfo.verdef = NULL;
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
584 if (!info->relocatable
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
631 if (! is_elf_hash_table (info->hash))
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
648 bfd_release (input_bfd, entry);
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
671 dynstr = elf_hash_table (info)->dynstr;
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
683 entry->isym.st_name = dynstr_index;
685 eht = elf_hash_table (info);
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
693 /* Whatever binding the symbol had before, it's now local. */
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
697 /* The dynindx will be set at the end of size_dynamic_sections. */
702 /* Return the dynindex of a local dynamic symbol. */
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
709 struct elf_link_local_dynamic_entry *e;
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
725 size_t *count = (size_t *) data;
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
744 size_t *count = (size_t *) data;
746 if (!h->forced_local)
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
762 struct elf_link_hash_table *htab;
764 switch (elf_section_data (p)->this_hdr.sh_type)
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
791 /* There shouldn't be section relative relocations
792 against any other section. */
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
809 unsigned long dynsymcount = 0;
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
821 elf_section_data (p)->dynindx = 0;
823 *section_sym_count = dynsymcount;
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
829 if (elf_hash_table (info)->dynlocal)
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
846 elf_hash_table (info)->dynsymcount = dynsymcount;
850 /* Merge st_other field. */
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
878 unsigned char hvis, symvis, other, nvis;
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
892 nvis = hvis < symvis ? hvis : symvis;
894 h->other = other | nvis;
898 /* Mark if a symbol has a definition in a dynamic object or is
899 weak in all dynamic objects. */
902 _bfd_elf_mark_dynamic_def_weak (struct elf_link_hash_entry *h,
903 asection *sec, int bind)
907 if (!bfd_is_und_section (sec))
911 /* Check if this symbol is weak in all dynamic objects. If it
912 is the first time we see it in a dynamic object, we mark
913 if it is weak. Otherwise, we clear it. */
916 if (bind == STB_WEAK)
919 else if (bind != STB_WEAK)
925 /* This function is called when we want to define a new symbol. It
926 handles the various cases which arise when we find a definition in
927 a dynamic object, or when there is already a definition in a
928 dynamic object. The new symbol is described by NAME, SYM, PSEC,
929 and PVALUE. We set SYM_HASH to the hash table entry. We set
930 OVERRIDE if the old symbol is overriding a new definition. We set
931 TYPE_CHANGE_OK if it is OK for the type to change. We set
932 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
933 change, we mean that we shouldn't warn if the type or size does
934 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
935 object is overridden by a regular object. */
938 _bfd_elf_merge_symbol (bfd *abfd,
939 struct bfd_link_info *info,
941 Elf_Internal_Sym *sym,
944 bfd_boolean *pold_weak,
945 unsigned int *pold_alignment,
946 struct elf_link_hash_entry **sym_hash,
948 bfd_boolean *override,
949 bfd_boolean *type_change_ok,
950 bfd_boolean *size_change_ok)
952 asection *sec, *oldsec;
953 struct elf_link_hash_entry *h;
954 struct elf_link_hash_entry *hi;
955 struct elf_link_hash_entry *flip;
958 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
959 bfd_boolean newweak, oldweak, newfunc, oldfunc;
960 const struct elf_backend_data *bed;
966 bind = ELF_ST_BIND (sym->st_info);
968 /* Silently discard TLS symbols from --just-syms. There's no way to
969 combine a static TLS block with a new TLS block for this executable. */
970 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
971 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
977 if (! bfd_is_und_section (sec))
978 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
980 h = ((struct elf_link_hash_entry *)
981 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
986 bed = get_elf_backend_data (abfd);
988 /* This code is for coping with dynamic objects, and is only useful
989 if we are doing an ELF link. */
990 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
993 /* For merging, we only care about real symbols. But we need to make
994 sure that indirect symbol dynamic flags are updated. */
996 while (h->root.type == bfd_link_hash_indirect
997 || h->root.type == bfd_link_hash_warning)
998 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1000 /* We have to check it for every instance since the first few may be
1001 refereences and not all compilers emit symbol type for undefined
1003 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1005 /* If we just created the symbol, mark it as being an ELF symbol.
1006 Other than that, there is nothing to do--there is no merge issue
1007 with a newly defined symbol--so we just return. */
1009 if (h->root.type == bfd_link_hash_new)
1015 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1018 switch (h->root.type)
1025 case bfd_link_hash_undefined:
1026 case bfd_link_hash_undefweak:
1027 oldbfd = h->root.u.undef.abfd;
1031 case bfd_link_hash_defined:
1032 case bfd_link_hash_defweak:
1033 oldbfd = h->root.u.def.section->owner;
1034 oldsec = h->root.u.def.section;
1037 case bfd_link_hash_common:
1038 oldbfd = h->root.u.c.p->section->owner;
1039 oldsec = h->root.u.c.p->section;
1043 /* Differentiate strong and weak symbols. */
1044 newweak = bind == STB_WEAK;
1045 oldweak = (h->root.type == bfd_link_hash_defweak
1046 || h->root.type == bfd_link_hash_undefweak);
1048 *pold_weak = oldweak;
1050 /* In cases involving weak versioned symbols, we may wind up trying
1051 to merge a symbol with itself. Catch that here, to avoid the
1052 confusion that results if we try to override a symbol with
1053 itself. The additional tests catch cases like
1054 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1055 dynamic object, which we do want to handle here. */
1057 && (newweak || oldweak)
1058 && ((abfd->flags & DYNAMIC) == 0
1059 || !h->def_regular))
1062 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1063 respectively, is from a dynamic object. */
1065 newdyn = (abfd->flags & DYNAMIC) != 0;
1069 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1070 else if (oldsec != NULL)
1072 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1073 indices used by MIPS ELF. */
1074 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1077 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1078 respectively, appear to be a definition rather than reference. */
1080 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1082 olddef = (h->root.type != bfd_link_hash_undefined
1083 && h->root.type != bfd_link_hash_undefweak
1084 && h->root.type != bfd_link_hash_common);
1086 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1087 respectively, appear to be a function. */
1089 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1090 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1092 oldfunc = (h->type != STT_NOTYPE
1093 && bed->is_function_type (h->type));
1095 /* When we try to create a default indirect symbol from the dynamic
1096 definition with the default version, we skip it if its type and
1097 the type of existing regular definition mismatch. We only do it
1098 if the existing regular definition won't be dynamic. */
1099 if (pold_alignment == NULL
1101 && !info->export_dynamic
1106 && (olddef || h->root.type == bfd_link_hash_common)
1107 && ELF_ST_TYPE (sym->st_info) != h->type
1108 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1109 && h->type != STT_NOTYPE
1110 && !(newfunc && oldfunc))
1116 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1117 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1118 *type_change_ok = TRUE;
1120 /* Check TLS symbol. We don't check undefined symbol introduced by
1122 else if (oldbfd != NULL
1123 && ELF_ST_TYPE (sym->st_info) != h->type
1124 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1127 bfd_boolean ntdef, tdef;
1128 asection *ntsec, *tsec;
1130 if (h->type == STT_TLS)
1150 (*_bfd_error_handler)
1151 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1152 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1153 else if (!tdef && !ntdef)
1154 (*_bfd_error_handler)
1155 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1156 tbfd, ntbfd, h->root.root.string);
1158 (*_bfd_error_handler)
1159 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1160 tbfd, tsec, ntbfd, h->root.root.string);
1162 (*_bfd_error_handler)
1163 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1164 tbfd, ntbfd, ntsec, h->root.root.string);
1166 bfd_set_error (bfd_error_bad_value);
1170 /* We need to remember if a symbol has a definition in a dynamic
1171 object or is weak in all dynamic objects. Internal and hidden
1172 visibility will make it unavailable to dynamic objects. */
1175 _bfd_elf_mark_dynamic_def_weak (h, sec, bind);
1177 _bfd_elf_mark_dynamic_def_weak (hi, sec, bind);
1180 /* If the old symbol has non-default visibility, we ignore the new
1181 definition from a dynamic object. */
1183 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1184 && !bfd_is_und_section (sec))
1187 /* Make sure this symbol is dynamic. */
1189 hi->ref_dynamic = 1;
1190 /* A protected symbol has external availability. Make sure it is
1191 recorded as dynamic.
1193 FIXME: Should we check type and size for protected symbol? */
1194 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1195 return bfd_elf_link_record_dynamic_symbol (info, h);
1200 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1203 /* If the new symbol with non-default visibility comes from a
1204 relocatable file and the old definition comes from a dynamic
1205 object, we remove the old definition. */
1206 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1208 /* Handle the case where the old dynamic definition is
1209 default versioned. We need to copy the symbol info from
1210 the symbol with default version to the normal one if it
1211 was referenced before. */
1214 struct elf_link_hash_entry *vh = *sym_hash;
1216 vh->root.type = h->root.type;
1217 h->root.type = bfd_link_hash_indirect;
1218 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1220 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1221 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1223 /* If the new symbol is hidden or internal, completely undo
1224 any dynamic link state. */
1225 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1226 h->forced_local = 0;
1234 /* FIXME: Should we check type and size for protected symbol? */
1244 /* If the old symbol was undefined before, then it will still be
1245 on the undefs list. If the new symbol is undefined or
1246 common, we can't make it bfd_link_hash_new here, because new
1247 undefined or common symbols will be added to the undefs list
1248 by _bfd_generic_link_add_one_symbol. Symbols may not be
1249 added twice to the undefs list. Also, if the new symbol is
1250 undefweak then we don't want to lose the strong undef. */
1251 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1253 h->root.type = bfd_link_hash_undefined;
1254 h->root.u.undef.abfd = abfd;
1258 h->root.type = bfd_link_hash_new;
1259 h->root.u.undef.abfd = NULL;
1262 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1264 /* If the new symbol is hidden or internal, completely undo
1265 any dynamic link state. */
1266 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1267 h->forced_local = 0;
1274 /* FIXME: Should we check type and size for protected symbol? */
1280 if (bind == STB_GNU_UNIQUE)
1281 h->unique_global = 1;
1283 /* If a new weak symbol definition comes from a regular file and the
1284 old symbol comes from a dynamic library, we treat the new one as
1285 strong. Similarly, an old weak symbol definition from a regular
1286 file is treated as strong when the new symbol comes from a dynamic
1287 library. Further, an old weak symbol from a dynamic library is
1288 treated as strong if the new symbol is from a dynamic library.
1289 This reflects the way glibc's ld.so works.
1291 Do this before setting *type_change_ok or *size_change_ok so that
1292 we warn properly when dynamic library symbols are overridden. */
1294 if (newdef && !newdyn && olddyn)
1296 if (olddef && newdyn)
1299 /* Allow changes between different types of function symbol. */
1300 if (newfunc && oldfunc)
1301 *type_change_ok = TRUE;
1303 /* It's OK to change the type if either the existing symbol or the
1304 new symbol is weak. A type change is also OK if the old symbol
1305 is undefined and the new symbol is defined. */
1310 && h->root.type == bfd_link_hash_undefined))
1311 *type_change_ok = TRUE;
1313 /* It's OK to change the size if either the existing symbol or the
1314 new symbol is weak, or if the old symbol is undefined. */
1317 || h->root.type == bfd_link_hash_undefined)
1318 *size_change_ok = TRUE;
1320 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1321 symbol, respectively, appears to be a common symbol in a dynamic
1322 object. If a symbol appears in an uninitialized section, and is
1323 not weak, and is not a function, then it may be a common symbol
1324 which was resolved when the dynamic object was created. We want
1325 to treat such symbols specially, because they raise special
1326 considerations when setting the symbol size: if the symbol
1327 appears as a common symbol in a regular object, and the size in
1328 the regular object is larger, we must make sure that we use the
1329 larger size. This problematic case can always be avoided in C,
1330 but it must be handled correctly when using Fortran shared
1333 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1334 likewise for OLDDYNCOMMON and OLDDEF.
1336 Note that this test is just a heuristic, and that it is quite
1337 possible to have an uninitialized symbol in a shared object which
1338 is really a definition, rather than a common symbol. This could
1339 lead to some minor confusion when the symbol really is a common
1340 symbol in some regular object. However, I think it will be
1346 && (sec->flags & SEC_ALLOC) != 0
1347 && (sec->flags & SEC_LOAD) == 0
1350 newdyncommon = TRUE;
1352 newdyncommon = FALSE;
1356 && h->root.type == bfd_link_hash_defined
1358 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1359 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1362 olddyncommon = TRUE;
1364 olddyncommon = FALSE;
1366 /* We now know everything about the old and new symbols. We ask the
1367 backend to check if we can merge them. */
1368 if (bed->merge_symbol
1369 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1370 pold_alignment, skip, override,
1371 type_change_ok, size_change_ok,
1372 &newdyn, &newdef, &newdyncommon, &newweak,
1374 &olddyn, &olddef, &olddyncommon, &oldweak,
1378 /* If both the old and the new symbols look like common symbols in a
1379 dynamic object, set the size of the symbol to the larger of the
1384 && sym->st_size != h->size)
1386 /* Since we think we have two common symbols, issue a multiple
1387 common warning if desired. Note that we only warn if the
1388 size is different. If the size is the same, we simply let
1389 the old symbol override the new one as normally happens with
1390 symbols defined in dynamic objects. */
1392 if (! ((*info->callbacks->multiple_common)
1393 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1396 if (sym->st_size > h->size)
1397 h->size = sym->st_size;
1399 *size_change_ok = TRUE;
1402 /* If we are looking at a dynamic object, and we have found a
1403 definition, we need to see if the symbol was already defined by
1404 some other object. If so, we want to use the existing
1405 definition, and we do not want to report a multiple symbol
1406 definition error; we do this by clobbering *PSEC to be
1407 bfd_und_section_ptr.
1409 We treat a common symbol as a definition if the symbol in the
1410 shared library is a function, since common symbols always
1411 represent variables; this can cause confusion in principle, but
1412 any such confusion would seem to indicate an erroneous program or
1413 shared library. We also permit a common symbol in a regular
1414 object to override a weak symbol in a shared object. */
1419 || (h->root.type == bfd_link_hash_common
1420 && (newweak || newfunc))))
1424 newdyncommon = FALSE;
1426 *psec = sec = bfd_und_section_ptr;
1427 *size_change_ok = TRUE;
1429 /* If we get here when the old symbol is a common symbol, then
1430 we are explicitly letting it override a weak symbol or
1431 function in a dynamic object, and we don't want to warn about
1432 a type change. If the old symbol is a defined symbol, a type
1433 change warning may still be appropriate. */
1435 if (h->root.type == bfd_link_hash_common)
1436 *type_change_ok = TRUE;
1439 /* Handle the special case of an old common symbol merging with a
1440 new symbol which looks like a common symbol in a shared object.
1441 We change *PSEC and *PVALUE to make the new symbol look like a
1442 common symbol, and let _bfd_generic_link_add_one_symbol do the
1446 && h->root.type == bfd_link_hash_common)
1450 newdyncommon = FALSE;
1451 *pvalue = sym->st_size;
1452 *psec = sec = bed->common_section (oldsec);
1453 *size_change_ok = TRUE;
1456 /* Skip weak definitions of symbols that are already defined. */
1457 if (newdef && olddef && newweak)
1459 /* Don't skip new non-IR weak syms. */
1460 if (!(oldbfd != NULL
1461 && (oldbfd->flags & BFD_PLUGIN) != 0
1462 && (abfd->flags & BFD_PLUGIN) == 0))
1465 /* Merge st_other. If the symbol already has a dynamic index,
1466 but visibility says it should not be visible, turn it into a
1468 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1469 if (h->dynindx != -1)
1470 switch (ELF_ST_VISIBILITY (h->other))
1474 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1479 /* If the old symbol is from a dynamic object, and the new symbol is
1480 a definition which is not from a dynamic object, then the new
1481 symbol overrides the old symbol. Symbols from regular files
1482 always take precedence over symbols from dynamic objects, even if
1483 they are defined after the dynamic object in the link.
1485 As above, we again permit a common symbol in a regular object to
1486 override a definition in a shared object if the shared object
1487 symbol is a function or is weak. */
1492 || (bfd_is_com_section (sec)
1493 && (oldweak || oldfunc)))
1498 /* Change the hash table entry to undefined, and let
1499 _bfd_generic_link_add_one_symbol do the right thing with the
1502 h->root.type = bfd_link_hash_undefined;
1503 h->root.u.undef.abfd = h->root.u.def.section->owner;
1504 *size_change_ok = TRUE;
1507 olddyncommon = FALSE;
1509 /* We again permit a type change when a common symbol may be
1510 overriding a function. */
1512 if (bfd_is_com_section (sec))
1516 /* If a common symbol overrides a function, make sure
1517 that it isn't defined dynamically nor has type
1520 h->type = STT_NOTYPE;
1522 *type_change_ok = TRUE;
1525 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1528 /* This union may have been set to be non-NULL when this symbol
1529 was seen in a dynamic object. We must force the union to be
1530 NULL, so that it is correct for a regular symbol. */
1531 h->verinfo.vertree = NULL;
1534 /* Handle the special case of a new common symbol merging with an
1535 old symbol that looks like it might be a common symbol defined in
1536 a shared object. Note that we have already handled the case in
1537 which a new common symbol should simply override the definition
1538 in the shared library. */
1541 && bfd_is_com_section (sec)
1544 /* It would be best if we could set the hash table entry to a
1545 common symbol, but we don't know what to use for the section
1546 or the alignment. */
1547 if (! ((*info->callbacks->multiple_common)
1548 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1551 /* If the presumed common symbol in the dynamic object is
1552 larger, pretend that the new symbol has its size. */
1554 if (h->size > *pvalue)
1557 /* We need to remember the alignment required by the symbol
1558 in the dynamic object. */
1559 BFD_ASSERT (pold_alignment);
1560 *pold_alignment = h->root.u.def.section->alignment_power;
1563 olddyncommon = FALSE;
1565 h->root.type = bfd_link_hash_undefined;
1566 h->root.u.undef.abfd = h->root.u.def.section->owner;
1568 *size_change_ok = TRUE;
1569 *type_change_ok = TRUE;
1571 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1574 h->verinfo.vertree = NULL;
1579 /* Handle the case where we had a versioned symbol in a dynamic
1580 library and now find a definition in a normal object. In this
1581 case, we make the versioned symbol point to the normal one. */
1582 flip->root.type = h->root.type;
1583 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1584 h->root.type = bfd_link_hash_indirect;
1585 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1586 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1590 flip->ref_dynamic = 1;
1597 /* This function is called to create an indirect symbol from the
1598 default for the symbol with the default version if needed. The
1599 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1600 set DYNSYM if the new indirect symbol is dynamic. */
1603 _bfd_elf_add_default_symbol (bfd *abfd,
1604 struct bfd_link_info *info,
1605 struct elf_link_hash_entry *h,
1607 Elf_Internal_Sym *sym,
1610 bfd_boolean *dynsym,
1611 bfd_boolean override)
1613 bfd_boolean type_change_ok;
1614 bfd_boolean size_change_ok;
1617 struct elf_link_hash_entry *hi;
1618 struct bfd_link_hash_entry *bh;
1619 const struct elf_backend_data *bed;
1620 bfd_boolean collect;
1621 bfd_boolean dynamic;
1623 size_t len, shortlen;
1626 /* If this symbol has a version, and it is the default version, we
1627 create an indirect symbol from the default name to the fully
1628 decorated name. This will cause external references which do not
1629 specify a version to be bound to this version of the symbol. */
1630 p = strchr (name, ELF_VER_CHR);
1631 if (p == NULL || p[1] != ELF_VER_CHR)
1636 /* We are overridden by an old definition. We need to check if we
1637 need to create the indirect symbol from the default name. */
1638 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1640 BFD_ASSERT (hi != NULL);
1643 while (hi->root.type == bfd_link_hash_indirect
1644 || hi->root.type == bfd_link_hash_warning)
1646 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1652 bed = get_elf_backend_data (abfd);
1653 collect = bed->collect;
1654 dynamic = (abfd->flags & DYNAMIC) != 0;
1656 shortlen = p - name;
1657 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1658 if (shortname == NULL)
1660 memcpy (shortname, name, shortlen);
1661 shortname[shortlen] = '\0';
1663 /* We are going to create a new symbol. Merge it with any existing
1664 symbol with this name. For the purposes of the merge, act as
1665 though we were defining the symbol we just defined, although we
1666 actually going to define an indirect symbol. */
1667 type_change_ok = FALSE;
1668 size_change_ok = FALSE;
1670 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1671 NULL, NULL, &hi, &skip, &override,
1672 &type_change_ok, &size_change_ok))
1681 if (! (_bfd_generic_link_add_one_symbol
1682 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1683 0, name, FALSE, collect, &bh)))
1685 hi = (struct elf_link_hash_entry *) bh;
1689 /* In this case the symbol named SHORTNAME is overriding the
1690 indirect symbol we want to add. We were planning on making
1691 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1692 is the name without a version. NAME is the fully versioned
1693 name, and it is the default version.
1695 Overriding means that we already saw a definition for the
1696 symbol SHORTNAME in a regular object, and it is overriding
1697 the symbol defined in the dynamic object.
1699 When this happens, we actually want to change NAME, the
1700 symbol we just added, to refer to SHORTNAME. This will cause
1701 references to NAME in the shared object to become references
1702 to SHORTNAME in the regular object. This is what we expect
1703 when we override a function in a shared object: that the
1704 references in the shared object will be mapped to the
1705 definition in the regular object. */
1707 while (hi->root.type == bfd_link_hash_indirect
1708 || hi->root.type == bfd_link_hash_warning)
1709 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1711 h->root.type = bfd_link_hash_indirect;
1712 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1716 hi->ref_dynamic = 1;
1720 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1725 /* Now set HI to H, so that the following code will set the
1726 other fields correctly. */
1730 /* Check if HI is a warning symbol. */
1731 if (hi->root.type == bfd_link_hash_warning)
1732 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1734 /* If there is a duplicate definition somewhere, then HI may not
1735 point to an indirect symbol. We will have reported an error to
1736 the user in that case. */
1738 if (hi->root.type == bfd_link_hash_indirect)
1740 struct elf_link_hash_entry *ht;
1742 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1743 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1745 /* See if the new flags lead us to realize that the symbol must
1751 if (! info->executable
1758 if (hi->ref_regular)
1764 /* We also need to define an indirection from the nondefault version
1768 len = strlen (name);
1769 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1770 if (shortname == NULL)
1772 memcpy (shortname, name, shortlen);
1773 memcpy (shortname + shortlen, p + 1, len - shortlen);
1775 /* Once again, merge with any existing symbol. */
1776 type_change_ok = FALSE;
1777 size_change_ok = FALSE;
1779 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1780 NULL, NULL, &hi, &skip, &override,
1781 &type_change_ok, &size_change_ok))
1789 /* Here SHORTNAME is a versioned name, so we don't expect to see
1790 the type of override we do in the case above unless it is
1791 overridden by a versioned definition. */
1792 if (hi->root.type != bfd_link_hash_defined
1793 && hi->root.type != bfd_link_hash_defweak)
1794 (*_bfd_error_handler)
1795 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1801 if (! (_bfd_generic_link_add_one_symbol
1802 (info, abfd, shortname, BSF_INDIRECT,
1803 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1805 hi = (struct elf_link_hash_entry *) bh;
1807 /* If there is a duplicate definition somewhere, then HI may not
1808 point to an indirect symbol. We will have reported an error
1809 to the user in that case. */
1811 if (hi->root.type == bfd_link_hash_indirect)
1813 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1815 /* See if the new flags lead us to realize that the symbol
1821 if (! info->executable
1827 if (hi->ref_regular)
1837 /* This routine is used to export all defined symbols into the dynamic
1838 symbol table. It is called via elf_link_hash_traverse. */
1841 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1843 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1845 /* Ignore indirect symbols. These are added by the versioning code. */
1846 if (h->root.type == bfd_link_hash_indirect)
1849 /* Ignore this if we won't export it. */
1850 if (!eif->info->export_dynamic && !h->dynamic)
1853 if (h->dynindx == -1
1854 && (h->def_regular || h->ref_regular)
1855 && ! bfd_hide_sym_by_version (eif->info->version_info,
1856 h->root.root.string))
1858 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1868 /* Look through the symbols which are defined in other shared
1869 libraries and referenced here. Update the list of version
1870 dependencies. This will be put into the .gnu.version_r section.
1871 This function is called via elf_link_hash_traverse. */
1874 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1877 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1878 Elf_Internal_Verneed *t;
1879 Elf_Internal_Vernaux *a;
1882 /* We only care about symbols defined in shared objects with version
1887 || h->verinfo.verdef == NULL)
1890 /* See if we already know about this version. */
1891 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1895 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1898 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1899 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1905 /* This is a new version. Add it to tree we are building. */
1910 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1913 rinfo->failed = TRUE;
1917 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1918 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1919 elf_tdata (rinfo->info->output_bfd)->verref = t;
1923 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1926 rinfo->failed = TRUE;
1930 /* Note that we are copying a string pointer here, and testing it
1931 above. If bfd_elf_string_from_elf_section is ever changed to
1932 discard the string data when low in memory, this will have to be
1934 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1936 a->vna_flags = h->verinfo.verdef->vd_flags;
1937 a->vna_nextptr = t->vn_auxptr;
1939 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1942 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1949 /* Figure out appropriate versions for all the symbols. We may not
1950 have the version number script until we have read all of the input
1951 files, so until that point we don't know which symbols should be
1952 local. This function is called via elf_link_hash_traverse. */
1955 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1957 struct elf_info_failed *sinfo;
1958 struct bfd_link_info *info;
1959 const struct elf_backend_data *bed;
1960 struct elf_info_failed eif;
1964 sinfo = (struct elf_info_failed *) data;
1967 /* Fix the symbol flags. */
1970 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1973 sinfo->failed = TRUE;
1977 /* We only need version numbers for symbols defined in regular
1979 if (!h->def_regular)
1982 bed = get_elf_backend_data (info->output_bfd);
1983 p = strchr (h->root.root.string, ELF_VER_CHR);
1984 if (p != NULL && h->verinfo.vertree == NULL)
1986 struct bfd_elf_version_tree *t;
1991 /* There are two consecutive ELF_VER_CHR characters if this is
1992 not a hidden symbol. */
1994 if (*p == ELF_VER_CHR)
2000 /* If there is no version string, we can just return out. */
2008 /* Look for the version. If we find it, it is no longer weak. */
2009 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2011 if (strcmp (t->name, p) == 0)
2015 struct bfd_elf_version_expr *d;
2017 len = p - h->root.root.string;
2018 alc = (char *) bfd_malloc (len);
2021 sinfo->failed = TRUE;
2024 memcpy (alc, h->root.root.string, len - 1);
2025 alc[len - 1] = '\0';
2026 if (alc[len - 2] == ELF_VER_CHR)
2027 alc[len - 2] = '\0';
2029 h->verinfo.vertree = t;
2033 if (t->globals.list != NULL)
2034 d = (*t->match) (&t->globals, NULL, alc);
2036 /* See if there is anything to force this symbol to
2038 if (d == NULL && t->locals.list != NULL)
2040 d = (*t->match) (&t->locals, NULL, alc);
2043 && ! info->export_dynamic)
2044 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2052 /* If we are building an application, we need to create a
2053 version node for this version. */
2054 if (t == NULL && info->executable)
2056 struct bfd_elf_version_tree **pp;
2059 /* If we aren't going to export this symbol, we don't need
2060 to worry about it. */
2061 if (h->dynindx == -1)
2065 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2068 sinfo->failed = TRUE;
2073 t->name_indx = (unsigned int) -1;
2077 /* Don't count anonymous version tag. */
2078 if (sinfo->info->version_info != NULL
2079 && sinfo->info->version_info->vernum == 0)
2081 for (pp = &sinfo->info->version_info;
2085 t->vernum = version_index;
2089 h->verinfo.vertree = t;
2093 /* We could not find the version for a symbol when
2094 generating a shared archive. Return an error. */
2095 (*_bfd_error_handler)
2096 (_("%B: version node not found for symbol %s"),
2097 info->output_bfd, h->root.root.string);
2098 bfd_set_error (bfd_error_bad_value);
2099 sinfo->failed = TRUE;
2107 /* If we don't have a version for this symbol, see if we can find
2109 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2114 = bfd_find_version_for_sym (sinfo->info->version_info,
2115 h->root.root.string, &hide);
2116 if (h->verinfo.vertree != NULL && hide)
2117 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2123 /* Read and swap the relocs from the section indicated by SHDR. This
2124 may be either a REL or a RELA section. The relocations are
2125 translated into RELA relocations and stored in INTERNAL_RELOCS,
2126 which should have already been allocated to contain enough space.
2127 The EXTERNAL_RELOCS are a buffer where the external form of the
2128 relocations should be stored.
2130 Returns FALSE if something goes wrong. */
2133 elf_link_read_relocs_from_section (bfd *abfd,
2135 Elf_Internal_Shdr *shdr,
2136 void *external_relocs,
2137 Elf_Internal_Rela *internal_relocs)
2139 const struct elf_backend_data *bed;
2140 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2141 const bfd_byte *erela;
2142 const bfd_byte *erelaend;
2143 Elf_Internal_Rela *irela;
2144 Elf_Internal_Shdr *symtab_hdr;
2147 /* Position ourselves at the start of the section. */
2148 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2151 /* Read the relocations. */
2152 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2155 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2156 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2158 bed = get_elf_backend_data (abfd);
2160 /* Convert the external relocations to the internal format. */
2161 if (shdr->sh_entsize == bed->s->sizeof_rel)
2162 swap_in = bed->s->swap_reloc_in;
2163 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2164 swap_in = bed->s->swap_reloca_in;
2167 bfd_set_error (bfd_error_wrong_format);
2171 erela = (const bfd_byte *) external_relocs;
2172 erelaend = erela + shdr->sh_size;
2173 irela = internal_relocs;
2174 while (erela < erelaend)
2178 (*swap_in) (abfd, erela, irela);
2179 r_symndx = ELF32_R_SYM (irela->r_info);
2180 if (bed->s->arch_size == 64)
2184 if ((size_t) r_symndx >= nsyms)
2186 (*_bfd_error_handler)
2187 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2188 " for offset 0x%lx in section `%A'"),
2190 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2191 bfd_set_error (bfd_error_bad_value);
2195 else if (r_symndx != STN_UNDEF)
2197 (*_bfd_error_handler)
2198 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2199 " when the object file has no symbol table"),
2201 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2202 bfd_set_error (bfd_error_bad_value);
2205 irela += bed->s->int_rels_per_ext_rel;
2206 erela += shdr->sh_entsize;
2212 /* Read and swap the relocs for a section O. They may have been
2213 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2214 not NULL, they are used as buffers to read into. They are known to
2215 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2216 the return value is allocated using either malloc or bfd_alloc,
2217 according to the KEEP_MEMORY argument. If O has two relocation
2218 sections (both REL and RELA relocations), then the REL_HDR
2219 relocations will appear first in INTERNAL_RELOCS, followed by the
2220 RELA_HDR relocations. */
2223 _bfd_elf_link_read_relocs (bfd *abfd,
2225 void *external_relocs,
2226 Elf_Internal_Rela *internal_relocs,
2227 bfd_boolean keep_memory)
2229 void *alloc1 = NULL;
2230 Elf_Internal_Rela *alloc2 = NULL;
2231 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2232 struct bfd_elf_section_data *esdo = elf_section_data (o);
2233 Elf_Internal_Rela *internal_rela_relocs;
2235 if (esdo->relocs != NULL)
2236 return esdo->relocs;
2238 if (o->reloc_count == 0)
2241 if (internal_relocs == NULL)
2245 size = o->reloc_count;
2246 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2248 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2250 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2251 if (internal_relocs == NULL)
2255 if (external_relocs == NULL)
2257 bfd_size_type size = 0;
2260 size += esdo->rel.hdr->sh_size;
2262 size += esdo->rela.hdr->sh_size;
2264 alloc1 = bfd_malloc (size);
2267 external_relocs = alloc1;
2270 internal_rela_relocs = internal_relocs;
2273 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2277 external_relocs = (((bfd_byte *) external_relocs)
2278 + esdo->rel.hdr->sh_size);
2279 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2280 * bed->s->int_rels_per_ext_rel);
2284 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2286 internal_rela_relocs)))
2289 /* Cache the results for next time, if we can. */
2291 esdo->relocs = internal_relocs;
2296 /* Don't free alloc2, since if it was allocated we are passing it
2297 back (under the name of internal_relocs). */
2299 return internal_relocs;
2307 bfd_release (abfd, alloc2);
2314 /* Compute the size of, and allocate space for, REL_HDR which is the
2315 section header for a section containing relocations for O. */
2318 _bfd_elf_link_size_reloc_section (bfd *abfd,
2319 struct bfd_elf_section_reloc_data *reldata)
2321 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2323 /* That allows us to calculate the size of the section. */
2324 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2326 /* The contents field must last into write_object_contents, so we
2327 allocate it with bfd_alloc rather than malloc. Also since we
2328 cannot be sure that the contents will actually be filled in,
2329 we zero the allocated space. */
2330 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2331 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2334 if (reldata->hashes == NULL && reldata->count)
2336 struct elf_link_hash_entry **p;
2338 p = (struct elf_link_hash_entry **)
2339 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2343 reldata->hashes = p;
2349 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2350 originated from the section given by INPUT_REL_HDR) to the
2354 _bfd_elf_link_output_relocs (bfd *output_bfd,
2355 asection *input_section,
2356 Elf_Internal_Shdr *input_rel_hdr,
2357 Elf_Internal_Rela *internal_relocs,
2358 struct elf_link_hash_entry **rel_hash
2361 Elf_Internal_Rela *irela;
2362 Elf_Internal_Rela *irelaend;
2364 struct bfd_elf_section_reloc_data *output_reldata;
2365 asection *output_section;
2366 const struct elf_backend_data *bed;
2367 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2368 struct bfd_elf_section_data *esdo;
2370 output_section = input_section->output_section;
2372 bed = get_elf_backend_data (output_bfd);
2373 esdo = elf_section_data (output_section);
2374 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2376 output_reldata = &esdo->rel;
2377 swap_out = bed->s->swap_reloc_out;
2379 else if (esdo->rela.hdr
2380 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2382 output_reldata = &esdo->rela;
2383 swap_out = bed->s->swap_reloca_out;
2387 (*_bfd_error_handler)
2388 (_("%B: relocation size mismatch in %B section %A"),
2389 output_bfd, input_section->owner, input_section);
2390 bfd_set_error (bfd_error_wrong_format);
2394 erel = output_reldata->hdr->contents;
2395 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2396 irela = internal_relocs;
2397 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2398 * bed->s->int_rels_per_ext_rel);
2399 while (irela < irelaend)
2401 (*swap_out) (output_bfd, irela, erel);
2402 irela += bed->s->int_rels_per_ext_rel;
2403 erel += input_rel_hdr->sh_entsize;
2406 /* Bump the counter, so that we know where to add the next set of
2408 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2413 /* Make weak undefined symbols in PIE dynamic. */
2416 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2417 struct elf_link_hash_entry *h)
2421 && h->root.type == bfd_link_hash_undefweak)
2422 return bfd_elf_link_record_dynamic_symbol (info, h);
2427 /* Fix up the flags for a symbol. This handles various cases which
2428 can only be fixed after all the input files are seen. This is
2429 currently called by both adjust_dynamic_symbol and
2430 assign_sym_version, which is unnecessary but perhaps more robust in
2431 the face of future changes. */
2434 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2435 struct elf_info_failed *eif)
2437 const struct elf_backend_data *bed;
2439 /* If this symbol was mentioned in a non-ELF file, try to set
2440 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2441 permit a non-ELF file to correctly refer to a symbol defined in
2442 an ELF dynamic object. */
2445 while (h->root.type == bfd_link_hash_indirect)
2446 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2448 if (h->root.type != bfd_link_hash_defined
2449 && h->root.type != bfd_link_hash_defweak)
2452 h->ref_regular_nonweak = 1;
2456 if (h->root.u.def.section->owner != NULL
2457 && (bfd_get_flavour (h->root.u.def.section->owner)
2458 == bfd_target_elf_flavour))
2461 h->ref_regular_nonweak = 1;
2467 if (h->dynindx == -1
2471 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2480 /* Unfortunately, NON_ELF is only correct if the symbol
2481 was first seen in a non-ELF file. Fortunately, if the symbol
2482 was first seen in an ELF file, we're probably OK unless the
2483 symbol was defined in a non-ELF file. Catch that case here.
2484 FIXME: We're still in trouble if the symbol was first seen in
2485 a dynamic object, and then later in a non-ELF regular object. */
2486 if ((h->root.type == bfd_link_hash_defined
2487 || h->root.type == bfd_link_hash_defweak)
2489 && (h->root.u.def.section->owner != NULL
2490 ? (bfd_get_flavour (h->root.u.def.section->owner)
2491 != bfd_target_elf_flavour)
2492 : (bfd_is_abs_section (h->root.u.def.section)
2493 && !h->def_dynamic)))
2497 /* Backend specific symbol fixup. */
2498 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2499 if (bed->elf_backend_fixup_symbol
2500 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2503 /* If this is a final link, and the symbol was defined as a common
2504 symbol in a regular object file, and there was no definition in
2505 any dynamic object, then the linker will have allocated space for
2506 the symbol in a common section but the DEF_REGULAR
2507 flag will not have been set. */
2508 if (h->root.type == bfd_link_hash_defined
2512 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2515 /* If -Bsymbolic was used (which means to bind references to global
2516 symbols to the definition within the shared object), and this
2517 symbol was defined in a regular object, then it actually doesn't
2518 need a PLT entry. Likewise, if the symbol has non-default
2519 visibility. If the symbol has hidden or internal visibility, we
2520 will force it local. */
2522 && eif->info->shared
2523 && is_elf_hash_table (eif->info->hash)
2524 && (SYMBOLIC_BIND (eif->info, h)
2525 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2528 bfd_boolean force_local;
2530 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2531 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2532 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2535 /* If a weak undefined symbol has non-default visibility, we also
2536 hide it from the dynamic linker. */
2537 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2538 && h->root.type == bfd_link_hash_undefweak)
2539 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2541 /* If this is a weak defined symbol in a dynamic object, and we know
2542 the real definition in the dynamic object, copy interesting flags
2543 over to the real definition. */
2544 if (h->u.weakdef != NULL)
2546 /* If the real definition is defined by a regular object file,
2547 don't do anything special. See the longer description in
2548 _bfd_elf_adjust_dynamic_symbol, below. */
2549 if (h->u.weakdef->def_regular)
2550 h->u.weakdef = NULL;
2553 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2555 while (h->root.type == bfd_link_hash_indirect)
2556 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2558 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2559 || h->root.type == bfd_link_hash_defweak);
2560 BFD_ASSERT (weakdef->def_dynamic);
2561 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2562 || weakdef->root.type == bfd_link_hash_defweak);
2563 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2570 /* Make the backend pick a good value for a dynamic symbol. This is
2571 called via elf_link_hash_traverse, and also calls itself
2575 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2577 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2579 const struct elf_backend_data *bed;
2581 if (! is_elf_hash_table (eif->info->hash))
2584 /* Ignore indirect symbols. These are added by the versioning code. */
2585 if (h->root.type == bfd_link_hash_indirect)
2588 /* Fix the symbol flags. */
2589 if (! _bfd_elf_fix_symbol_flags (h, eif))
2592 /* If this symbol does not require a PLT entry, and it is not
2593 defined by a dynamic object, or is not referenced by a regular
2594 object, ignore it. We do have to handle a weak defined symbol,
2595 even if no regular object refers to it, if we decided to add it
2596 to the dynamic symbol table. FIXME: Do we normally need to worry
2597 about symbols which are defined by one dynamic object and
2598 referenced by another one? */
2600 && h->type != STT_GNU_IFUNC
2604 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2606 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2610 /* If we've already adjusted this symbol, don't do it again. This
2611 can happen via a recursive call. */
2612 if (h->dynamic_adjusted)
2615 /* Don't look at this symbol again. Note that we must set this
2616 after checking the above conditions, because we may look at a
2617 symbol once, decide not to do anything, and then get called
2618 recursively later after REF_REGULAR is set below. */
2619 h->dynamic_adjusted = 1;
2621 /* If this is a weak definition, and we know a real definition, and
2622 the real symbol is not itself defined by a regular object file,
2623 then get a good value for the real definition. We handle the
2624 real symbol first, for the convenience of the backend routine.
2626 Note that there is a confusing case here. If the real definition
2627 is defined by a regular object file, we don't get the real symbol
2628 from the dynamic object, but we do get the weak symbol. If the
2629 processor backend uses a COPY reloc, then if some routine in the
2630 dynamic object changes the real symbol, we will not see that
2631 change in the corresponding weak symbol. This is the way other
2632 ELF linkers work as well, and seems to be a result of the shared
2635 I will clarify this issue. Most SVR4 shared libraries define the
2636 variable _timezone and define timezone as a weak synonym. The
2637 tzset call changes _timezone. If you write
2638 extern int timezone;
2640 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2641 you might expect that, since timezone is a synonym for _timezone,
2642 the same number will print both times. However, if the processor
2643 backend uses a COPY reloc, then actually timezone will be copied
2644 into your process image, and, since you define _timezone
2645 yourself, _timezone will not. Thus timezone and _timezone will
2646 wind up at different memory locations. The tzset call will set
2647 _timezone, leaving timezone unchanged. */
2649 if (h->u.weakdef != NULL)
2651 /* If we get to this point, there is an implicit reference to
2652 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2653 h->u.weakdef->ref_regular = 1;
2655 /* Ensure that the backend adjust_dynamic_symbol function sees
2656 H->U.WEAKDEF before H by recursively calling ourselves. */
2657 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2661 /* If a symbol has no type and no size and does not require a PLT
2662 entry, then we are probably about to do the wrong thing here: we
2663 are probably going to create a COPY reloc for an empty object.
2664 This case can arise when a shared object is built with assembly
2665 code, and the assembly code fails to set the symbol type. */
2667 && h->type == STT_NOTYPE
2669 (*_bfd_error_handler)
2670 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2671 h->root.root.string);
2673 dynobj = elf_hash_table (eif->info)->dynobj;
2674 bed = get_elf_backend_data (dynobj);
2676 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2685 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2689 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2692 unsigned int power_of_two;
2694 asection *sec = h->root.u.def.section;
2696 /* The section aligment of definition is the maximum alignment
2697 requirement of symbols defined in the section. Since we don't
2698 know the symbol alignment requirement, we start with the
2699 maximum alignment and check low bits of the symbol address
2700 for the minimum alignment. */
2701 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2702 mask = ((bfd_vma) 1 << power_of_two) - 1;
2703 while ((h->root.u.def.value & mask) != 0)
2709 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2712 /* Adjust the section alignment if needed. */
2713 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2718 /* We make sure that the symbol will be aligned properly. */
2719 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2721 /* Define the symbol as being at this point in DYNBSS. */
2722 h->root.u.def.section = dynbss;
2723 h->root.u.def.value = dynbss->size;
2725 /* Increment the size of DYNBSS to make room for the symbol. */
2726 dynbss->size += h->size;
2731 /* Adjust all external symbols pointing into SEC_MERGE sections
2732 to reflect the object merging within the sections. */
2735 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2739 if ((h->root.type == bfd_link_hash_defined
2740 || h->root.type == bfd_link_hash_defweak)
2741 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2742 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2744 bfd *output_bfd = (bfd *) data;
2746 h->root.u.def.value =
2747 _bfd_merged_section_offset (output_bfd,
2748 &h->root.u.def.section,
2749 elf_section_data (sec)->sec_info,
2750 h->root.u.def.value);
2756 /* Returns false if the symbol referred to by H should be considered
2757 to resolve local to the current module, and true if it should be
2758 considered to bind dynamically. */
2761 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2762 struct bfd_link_info *info,
2763 bfd_boolean not_local_protected)
2765 bfd_boolean binding_stays_local_p;
2766 const struct elf_backend_data *bed;
2767 struct elf_link_hash_table *hash_table;
2772 while (h->root.type == bfd_link_hash_indirect
2773 || h->root.type == bfd_link_hash_warning)
2774 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2776 /* If it was forced local, then clearly it's not dynamic. */
2777 if (h->dynindx == -1)
2779 if (h->forced_local)
2782 /* Identify the cases where name binding rules say that a
2783 visible symbol resolves locally. */
2784 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2786 switch (ELF_ST_VISIBILITY (h->other))
2793 hash_table = elf_hash_table (info);
2794 if (!is_elf_hash_table (hash_table))
2797 bed = get_elf_backend_data (hash_table->dynobj);
2799 /* Proper resolution for function pointer equality may require
2800 that these symbols perhaps be resolved dynamically, even though
2801 we should be resolving them to the current module. */
2802 if (!not_local_protected || !bed->is_function_type (h->type))
2803 binding_stays_local_p = TRUE;
2810 /* If it isn't defined locally, then clearly it's dynamic. */
2811 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2814 /* Otherwise, the symbol is dynamic if binding rules don't tell
2815 us that it remains local. */
2816 return !binding_stays_local_p;
2819 /* Return true if the symbol referred to by H should be considered
2820 to resolve local to the current module, and false otherwise. Differs
2821 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2822 undefined symbols. The two functions are virtually identical except
2823 for the place where forced_local and dynindx == -1 are tested. If
2824 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2825 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2826 the symbol is local only for defined symbols.
2827 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2828 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2829 treatment of undefined weak symbols. For those that do not make
2830 undefined weak symbols dynamic, both functions may return false. */
2833 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2834 struct bfd_link_info *info,
2835 bfd_boolean local_protected)
2837 const struct elf_backend_data *bed;
2838 struct elf_link_hash_table *hash_table;
2840 /* If it's a local sym, of course we resolve locally. */
2844 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2845 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2846 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2849 /* Common symbols that become definitions don't get the DEF_REGULAR
2850 flag set, so test it first, and don't bail out. */
2851 if (ELF_COMMON_DEF_P (h))
2853 /* If we don't have a definition in a regular file, then we can't
2854 resolve locally. The sym is either undefined or dynamic. */
2855 else if (!h->def_regular)
2858 /* Forced local symbols resolve locally. */
2859 if (h->forced_local)
2862 /* As do non-dynamic symbols. */
2863 if (h->dynindx == -1)
2866 /* At this point, we know the symbol is defined and dynamic. In an
2867 executable it must resolve locally, likewise when building symbolic
2868 shared libraries. */
2869 if (info->executable || SYMBOLIC_BIND (info, h))
2872 /* Now deal with defined dynamic symbols in shared libraries. Ones
2873 with default visibility might not resolve locally. */
2874 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2877 hash_table = elf_hash_table (info);
2878 if (!is_elf_hash_table (hash_table))
2881 bed = get_elf_backend_data (hash_table->dynobj);
2883 /* STV_PROTECTED non-function symbols are local. */
2884 if (!bed->is_function_type (h->type))
2887 /* Function pointer equality tests may require that STV_PROTECTED
2888 symbols be treated as dynamic symbols. If the address of a
2889 function not defined in an executable is set to that function's
2890 plt entry in the executable, then the address of the function in
2891 a shared library must also be the plt entry in the executable. */
2892 return local_protected;
2895 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2896 aligned. Returns the first TLS output section. */
2898 struct bfd_section *
2899 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2901 struct bfd_section *sec, *tls;
2902 unsigned int align = 0;
2904 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2905 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2909 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2910 if (sec->alignment_power > align)
2911 align = sec->alignment_power;
2913 elf_hash_table (info)->tls_sec = tls;
2915 /* Ensure the alignment of the first section is the largest alignment,
2916 so that the tls segment starts aligned. */
2918 tls->alignment_power = align;
2923 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2925 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2926 Elf_Internal_Sym *sym)
2928 const struct elf_backend_data *bed;
2930 /* Local symbols do not count, but target specific ones might. */
2931 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2932 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2935 bed = get_elf_backend_data (abfd);
2936 /* Function symbols do not count. */
2937 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2940 /* If the section is undefined, then so is the symbol. */
2941 if (sym->st_shndx == SHN_UNDEF)
2944 /* If the symbol is defined in the common section, then
2945 it is a common definition and so does not count. */
2946 if (bed->common_definition (sym))
2949 /* If the symbol is in a target specific section then we
2950 must rely upon the backend to tell us what it is. */
2951 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2952 /* FIXME - this function is not coded yet:
2954 return _bfd_is_global_symbol_definition (abfd, sym);
2956 Instead for now assume that the definition is not global,
2957 Even if this is wrong, at least the linker will behave
2958 in the same way that it used to do. */
2964 /* Search the symbol table of the archive element of the archive ABFD
2965 whose archive map contains a mention of SYMDEF, and determine if
2966 the symbol is defined in this element. */
2968 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2970 Elf_Internal_Shdr * hdr;
2971 bfd_size_type symcount;
2972 bfd_size_type extsymcount;
2973 bfd_size_type extsymoff;
2974 Elf_Internal_Sym *isymbuf;
2975 Elf_Internal_Sym *isym;
2976 Elf_Internal_Sym *isymend;
2979 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2983 if (! bfd_check_format (abfd, bfd_object))
2986 /* If we have already included the element containing this symbol in the
2987 link then we do not need to include it again. Just claim that any symbol
2988 it contains is not a definition, so that our caller will not decide to
2989 (re)include this element. */
2990 if (abfd->archive_pass)
2993 /* Select the appropriate symbol table. */
2994 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2995 hdr = &elf_tdata (abfd)->symtab_hdr;
2997 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2999 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3001 /* The sh_info field of the symtab header tells us where the
3002 external symbols start. We don't care about the local symbols. */
3003 if (elf_bad_symtab (abfd))
3005 extsymcount = symcount;
3010 extsymcount = symcount - hdr->sh_info;
3011 extsymoff = hdr->sh_info;
3014 if (extsymcount == 0)
3017 /* Read in the symbol table. */
3018 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3020 if (isymbuf == NULL)
3023 /* Scan the symbol table looking for SYMDEF. */
3025 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3029 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3034 if (strcmp (name, symdef->name) == 0)
3036 result = is_global_data_symbol_definition (abfd, isym);
3046 /* Add an entry to the .dynamic table. */
3049 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3053 struct elf_link_hash_table *hash_table;
3054 const struct elf_backend_data *bed;
3056 bfd_size_type newsize;
3057 bfd_byte *newcontents;
3058 Elf_Internal_Dyn dyn;
3060 hash_table = elf_hash_table (info);
3061 if (! is_elf_hash_table (hash_table))
3064 bed = get_elf_backend_data (hash_table->dynobj);
3065 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3066 BFD_ASSERT (s != NULL);
3068 newsize = s->size + bed->s->sizeof_dyn;
3069 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3070 if (newcontents == NULL)
3074 dyn.d_un.d_val = val;
3075 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3078 s->contents = newcontents;
3083 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3084 otherwise just check whether one already exists. Returns -1 on error,
3085 1 if a DT_NEEDED tag already exists, and 0 on success. */
3088 elf_add_dt_needed_tag (bfd *abfd,
3089 struct bfd_link_info *info,
3093 struct elf_link_hash_table *hash_table;
3094 bfd_size_type oldsize;
3095 bfd_size_type strindex;
3097 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3100 hash_table = elf_hash_table (info);
3101 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3102 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3103 if (strindex == (bfd_size_type) -1)
3106 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3109 const struct elf_backend_data *bed;
3112 bed = get_elf_backend_data (hash_table->dynobj);
3113 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3115 for (extdyn = sdyn->contents;
3116 extdyn < sdyn->contents + sdyn->size;
3117 extdyn += bed->s->sizeof_dyn)
3119 Elf_Internal_Dyn dyn;
3121 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3122 if (dyn.d_tag == DT_NEEDED
3123 && dyn.d_un.d_val == strindex)
3125 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3133 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3136 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3140 /* We were just checking for existence of the tag. */
3141 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3147 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3149 for (; needed != NULL; needed = needed->next)
3150 if (strcmp (soname, needed->name) == 0)
3156 /* Sort symbol by value, section, and size. */
3158 elf_sort_symbol (const void *arg1, const void *arg2)
3160 const struct elf_link_hash_entry *h1;
3161 const struct elf_link_hash_entry *h2;
3162 bfd_signed_vma vdiff;
3164 h1 = *(const struct elf_link_hash_entry **) arg1;
3165 h2 = *(const struct elf_link_hash_entry **) arg2;
3166 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3168 return vdiff > 0 ? 1 : -1;
3171 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3173 return sdiff > 0 ? 1 : -1;
3175 vdiff = h1->size - h2->size;
3176 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3179 /* This function is used to adjust offsets into .dynstr for
3180 dynamic symbols. This is called via elf_link_hash_traverse. */
3183 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3185 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3187 if (h->dynindx != -1)
3188 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3192 /* Assign string offsets in .dynstr, update all structures referencing
3196 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3198 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3199 struct elf_link_local_dynamic_entry *entry;
3200 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3201 bfd *dynobj = hash_table->dynobj;
3204 const struct elf_backend_data *bed;
3207 _bfd_elf_strtab_finalize (dynstr);
3208 size = _bfd_elf_strtab_size (dynstr);
3210 bed = get_elf_backend_data (dynobj);
3211 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3212 BFD_ASSERT (sdyn != NULL);
3214 /* Update all .dynamic entries referencing .dynstr strings. */
3215 for (extdyn = sdyn->contents;
3216 extdyn < sdyn->contents + sdyn->size;
3217 extdyn += bed->s->sizeof_dyn)
3219 Elf_Internal_Dyn dyn;
3221 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3225 dyn.d_un.d_val = size;
3235 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3240 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3243 /* Now update local dynamic symbols. */
3244 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3245 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3246 entry->isym.st_name);
3248 /* And the rest of dynamic symbols. */
3249 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3251 /* Adjust version definitions. */
3252 if (elf_tdata (output_bfd)->cverdefs)
3257 Elf_Internal_Verdef def;
3258 Elf_Internal_Verdaux defaux;
3260 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3264 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3266 p += sizeof (Elf_External_Verdef);
3267 if (def.vd_aux != sizeof (Elf_External_Verdef))
3269 for (i = 0; i < def.vd_cnt; ++i)
3271 _bfd_elf_swap_verdaux_in (output_bfd,
3272 (Elf_External_Verdaux *) p, &defaux);
3273 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3275 _bfd_elf_swap_verdaux_out (output_bfd,
3276 &defaux, (Elf_External_Verdaux *) p);
3277 p += sizeof (Elf_External_Verdaux);
3280 while (def.vd_next);
3283 /* Adjust version references. */
3284 if (elf_tdata (output_bfd)->verref)
3289 Elf_Internal_Verneed need;
3290 Elf_Internal_Vernaux needaux;
3292 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3296 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3298 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3299 _bfd_elf_swap_verneed_out (output_bfd, &need,
3300 (Elf_External_Verneed *) p);
3301 p += sizeof (Elf_External_Verneed);
3302 for (i = 0; i < need.vn_cnt; ++i)
3304 _bfd_elf_swap_vernaux_in (output_bfd,
3305 (Elf_External_Vernaux *) p, &needaux);
3306 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3308 _bfd_elf_swap_vernaux_out (output_bfd,
3310 (Elf_External_Vernaux *) p);
3311 p += sizeof (Elf_External_Vernaux);
3314 while (need.vn_next);
3320 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3321 The default is to only match when the INPUT and OUTPUT are exactly
3325 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3326 const bfd_target *output)
3328 return input == output;
3331 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3332 This version is used when different targets for the same architecture
3333 are virtually identical. */
3336 _bfd_elf_relocs_compatible (const bfd_target *input,
3337 const bfd_target *output)
3339 const struct elf_backend_data *obed, *ibed;
3341 if (input == output)
3344 ibed = xvec_get_elf_backend_data (input);
3345 obed = xvec_get_elf_backend_data (output);
3347 if (ibed->arch != obed->arch)
3350 /* If both backends are using this function, deem them compatible. */
3351 return ibed->relocs_compatible == obed->relocs_compatible;
3354 /* Add symbols from an ELF object file to the linker hash table. */
3357 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3359 Elf_Internal_Ehdr *ehdr;
3360 Elf_Internal_Shdr *hdr;
3361 bfd_size_type symcount;
3362 bfd_size_type extsymcount;
3363 bfd_size_type extsymoff;
3364 struct elf_link_hash_entry **sym_hash;
3365 bfd_boolean dynamic;
3366 Elf_External_Versym *extversym = NULL;
3367 Elf_External_Versym *ever;
3368 struct elf_link_hash_entry *weaks;
3369 struct elf_link_hash_entry **nondeflt_vers = NULL;
3370 bfd_size_type nondeflt_vers_cnt = 0;
3371 Elf_Internal_Sym *isymbuf = NULL;
3372 Elf_Internal_Sym *isym;
3373 Elf_Internal_Sym *isymend;
3374 const struct elf_backend_data *bed;
3375 bfd_boolean add_needed;
3376 struct elf_link_hash_table *htab;
3378 void *alloc_mark = NULL;
3379 struct bfd_hash_entry **old_table = NULL;
3380 unsigned int old_size = 0;
3381 unsigned int old_count = 0;
3382 void *old_tab = NULL;
3385 struct bfd_link_hash_entry *old_undefs = NULL;
3386 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3387 long old_dynsymcount = 0;
3389 size_t hashsize = 0;
3391 htab = elf_hash_table (info);
3392 bed = get_elf_backend_data (abfd);
3394 if ((abfd->flags & DYNAMIC) == 0)
3400 /* You can't use -r against a dynamic object. Also, there's no
3401 hope of using a dynamic object which does not exactly match
3402 the format of the output file. */
3403 if (info->relocatable
3404 || !is_elf_hash_table (htab)
3405 || info->output_bfd->xvec != abfd->xvec)
3407 if (info->relocatable)
3408 bfd_set_error (bfd_error_invalid_operation);
3410 bfd_set_error (bfd_error_wrong_format);
3415 ehdr = elf_elfheader (abfd);
3416 if (info->warn_alternate_em
3417 && bed->elf_machine_code != ehdr->e_machine
3418 && ((bed->elf_machine_alt1 != 0
3419 && ehdr->e_machine == bed->elf_machine_alt1)
3420 || (bed->elf_machine_alt2 != 0
3421 && ehdr->e_machine == bed->elf_machine_alt2)))
3422 info->callbacks->einfo
3423 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3424 ehdr->e_machine, abfd, bed->elf_machine_code);
3426 /* As a GNU extension, any input sections which are named
3427 .gnu.warning.SYMBOL are treated as warning symbols for the given
3428 symbol. This differs from .gnu.warning sections, which generate
3429 warnings when they are included in an output file. */
3430 /* PR 12761: Also generate this warning when building shared libraries. */
3431 if (info->executable || info->shared)
3435 for (s = abfd->sections; s != NULL; s = s->next)
3439 name = bfd_get_section_name (abfd, s);
3440 if (CONST_STRNEQ (name, ".gnu.warning."))
3445 name += sizeof ".gnu.warning." - 1;
3447 /* If this is a shared object, then look up the symbol
3448 in the hash table. If it is there, and it is already
3449 been defined, then we will not be using the entry
3450 from this shared object, so we don't need to warn.
3451 FIXME: If we see the definition in a regular object
3452 later on, we will warn, but we shouldn't. The only
3453 fix is to keep track of what warnings we are supposed
3454 to emit, and then handle them all at the end of the
3458 struct elf_link_hash_entry *h;
3460 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3462 /* FIXME: What about bfd_link_hash_common? */
3464 && (h->root.type == bfd_link_hash_defined
3465 || h->root.type == bfd_link_hash_defweak))
3467 /* We don't want to issue this warning. Clobber
3468 the section size so that the warning does not
3469 get copied into the output file. */
3476 msg = (char *) bfd_alloc (abfd, sz + 1);
3480 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3485 if (! (_bfd_generic_link_add_one_symbol
3486 (info, abfd, name, BSF_WARNING, s, 0, msg,
3487 FALSE, bed->collect, NULL)))
3490 if (! info->relocatable)
3492 /* Clobber the section size so that the warning does
3493 not get copied into the output file. */
3496 /* Also set SEC_EXCLUDE, so that symbols defined in
3497 the warning section don't get copied to the output. */
3498 s->flags |= SEC_EXCLUDE;
3507 /* If we are creating a shared library, create all the dynamic
3508 sections immediately. We need to attach them to something,
3509 so we attach them to this BFD, provided it is the right
3510 format. FIXME: If there are no input BFD's of the same
3511 format as the output, we can't make a shared library. */
3513 && is_elf_hash_table (htab)
3514 && info->output_bfd->xvec == abfd->xvec
3515 && !htab->dynamic_sections_created)
3517 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3521 else if (!is_elf_hash_table (htab))
3526 const char *soname = NULL;
3528 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3531 /* ld --just-symbols and dynamic objects don't mix very well.
3532 ld shouldn't allow it. */
3533 if ((s = abfd->sections) != NULL
3534 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3537 /* If this dynamic lib was specified on the command line with
3538 --as-needed in effect, then we don't want to add a DT_NEEDED
3539 tag unless the lib is actually used. Similary for libs brought
3540 in by another lib's DT_NEEDED. When --no-add-needed is used
3541 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3542 any dynamic library in DT_NEEDED tags in the dynamic lib at
3544 add_needed = (elf_dyn_lib_class (abfd)
3545 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3546 | DYN_NO_NEEDED)) == 0;
3548 s = bfd_get_section_by_name (abfd, ".dynamic");
3553 unsigned int elfsec;
3554 unsigned long shlink;
3556 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3563 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3564 if (elfsec == SHN_BAD)
3565 goto error_free_dyn;
3566 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3568 for (extdyn = dynbuf;
3569 extdyn < dynbuf + s->size;
3570 extdyn += bed->s->sizeof_dyn)
3572 Elf_Internal_Dyn dyn;
3574 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3575 if (dyn.d_tag == DT_SONAME)
3577 unsigned int tagv = dyn.d_un.d_val;
3578 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3580 goto error_free_dyn;
3582 if (dyn.d_tag == DT_NEEDED)
3584 struct bfd_link_needed_list *n, **pn;
3586 unsigned int tagv = dyn.d_un.d_val;
3588 amt = sizeof (struct bfd_link_needed_list);
3589 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3590 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3591 if (n == NULL || fnm == NULL)
3592 goto error_free_dyn;
3593 amt = strlen (fnm) + 1;
3594 anm = (char *) bfd_alloc (abfd, amt);
3596 goto error_free_dyn;
3597 memcpy (anm, fnm, amt);
3601 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3605 if (dyn.d_tag == DT_RUNPATH)
3607 struct bfd_link_needed_list *n, **pn;
3609 unsigned int tagv = dyn.d_un.d_val;
3611 amt = sizeof (struct bfd_link_needed_list);
3612 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3613 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3614 if (n == NULL || fnm == NULL)
3615 goto error_free_dyn;
3616 amt = strlen (fnm) + 1;
3617 anm = (char *) bfd_alloc (abfd, amt);
3619 goto error_free_dyn;
3620 memcpy (anm, fnm, amt);
3624 for (pn = & runpath;
3630 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3631 if (!runpath && dyn.d_tag == DT_RPATH)
3633 struct bfd_link_needed_list *n, **pn;
3635 unsigned int tagv = dyn.d_un.d_val;
3637 amt = sizeof (struct bfd_link_needed_list);
3638 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3639 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3640 if (n == NULL || fnm == NULL)
3641 goto error_free_dyn;
3642 amt = strlen (fnm) + 1;
3643 anm = (char *) bfd_alloc (abfd, amt);
3645 goto error_free_dyn;
3646 memcpy (anm, fnm, amt);
3656 if (dyn.d_tag == DT_AUDIT)
3658 unsigned int tagv = dyn.d_un.d_val;
3659 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3666 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3667 frees all more recently bfd_alloc'd blocks as well. */
3673 struct bfd_link_needed_list **pn;
3674 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3679 /* We do not want to include any of the sections in a dynamic
3680 object in the output file. We hack by simply clobbering the
3681 list of sections in the BFD. This could be handled more
3682 cleanly by, say, a new section flag; the existing
3683 SEC_NEVER_LOAD flag is not the one we want, because that one
3684 still implies that the section takes up space in the output
3686 bfd_section_list_clear (abfd);
3688 /* Find the name to use in a DT_NEEDED entry that refers to this
3689 object. If the object has a DT_SONAME entry, we use it.
3690 Otherwise, if the generic linker stuck something in
3691 elf_dt_name, we use that. Otherwise, we just use the file
3693 if (soname == NULL || *soname == '\0')
3695 soname = elf_dt_name (abfd);
3696 if (soname == NULL || *soname == '\0')
3697 soname = bfd_get_filename (abfd);
3700 /* Save the SONAME because sometimes the linker emulation code
3701 will need to know it. */
3702 elf_dt_name (abfd) = soname;
3704 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3708 /* If we have already included this dynamic object in the
3709 link, just ignore it. There is no reason to include a
3710 particular dynamic object more than once. */
3714 /* Save the DT_AUDIT entry for the linker emulation code. */
3715 elf_dt_audit (abfd) = audit;
3718 /* If this is a dynamic object, we always link against the .dynsym
3719 symbol table, not the .symtab symbol table. The dynamic linker
3720 will only see the .dynsym symbol table, so there is no reason to
3721 look at .symtab for a dynamic object. */
3723 if (! dynamic || elf_dynsymtab (abfd) == 0)
3724 hdr = &elf_tdata (abfd)->symtab_hdr;
3726 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3728 symcount = hdr->sh_size / bed->s->sizeof_sym;
3730 /* The sh_info field of the symtab header tells us where the
3731 external symbols start. We don't care about the local symbols at
3733 if (elf_bad_symtab (abfd))
3735 extsymcount = symcount;
3740 extsymcount = symcount - hdr->sh_info;
3741 extsymoff = hdr->sh_info;
3745 if (extsymcount != 0)
3747 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3749 if (isymbuf == NULL)
3752 /* We store a pointer to the hash table entry for each external
3754 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3755 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3756 if (sym_hash == NULL)
3757 goto error_free_sym;
3758 elf_sym_hashes (abfd) = sym_hash;
3763 /* Read in any version definitions. */
3764 if (!_bfd_elf_slurp_version_tables (abfd,
3765 info->default_imported_symver))
3766 goto error_free_sym;
3768 /* Read in the symbol versions, but don't bother to convert them
3769 to internal format. */
3770 if (elf_dynversym (abfd) != 0)
3772 Elf_Internal_Shdr *versymhdr;
3774 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3775 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3776 if (extversym == NULL)
3777 goto error_free_sym;
3778 amt = versymhdr->sh_size;
3779 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3780 || bfd_bread (extversym, amt, abfd) != amt)
3781 goto error_free_vers;
3785 /* If we are loading an as-needed shared lib, save the symbol table
3786 state before we start adding symbols. If the lib turns out
3787 to be unneeded, restore the state. */
3788 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3793 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3795 struct bfd_hash_entry *p;
3796 struct elf_link_hash_entry *h;
3798 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3800 h = (struct elf_link_hash_entry *) p;
3801 entsize += htab->root.table.entsize;
3802 if (h->root.type == bfd_link_hash_warning)
3803 entsize += htab->root.table.entsize;
3807 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3808 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3809 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3810 if (old_tab == NULL)
3811 goto error_free_vers;
3813 /* Remember the current objalloc pointer, so that all mem for
3814 symbols added can later be reclaimed. */
3815 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3816 if (alloc_mark == NULL)
3817 goto error_free_vers;
3819 /* Make a special call to the linker "notice" function to
3820 tell it that we are about to handle an as-needed lib. */
3821 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3822 notice_as_needed, 0, NULL))
3823 goto error_free_vers;
3825 /* Clone the symbol table and sym hashes. Remember some
3826 pointers into the symbol table, and dynamic symbol count. */
3827 old_hash = (char *) old_tab + tabsize;
3828 old_ent = (char *) old_hash + hashsize;
3829 memcpy (old_tab, htab->root.table.table, tabsize);
3830 memcpy (old_hash, sym_hash, hashsize);
3831 old_undefs = htab->root.undefs;
3832 old_undefs_tail = htab->root.undefs_tail;
3833 old_table = htab->root.table.table;
3834 old_size = htab->root.table.size;
3835 old_count = htab->root.table.count;
3836 old_dynsymcount = htab->dynsymcount;
3838 for (i = 0; i < htab->root.table.size; i++)
3840 struct bfd_hash_entry *p;
3841 struct elf_link_hash_entry *h;
3843 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3845 memcpy (old_ent, p, htab->root.table.entsize);
3846 old_ent = (char *) old_ent + htab->root.table.entsize;
3847 h = (struct elf_link_hash_entry *) p;
3848 if (h->root.type == bfd_link_hash_warning)
3850 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3851 old_ent = (char *) old_ent + htab->root.table.entsize;
3858 ever = extversym != NULL ? extversym + extsymoff : NULL;
3859 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3861 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3865 asection *sec, *new_sec;
3868 struct elf_link_hash_entry *h;
3869 struct elf_link_hash_entry *hi;
3870 bfd_boolean definition;
3871 bfd_boolean size_change_ok;
3872 bfd_boolean type_change_ok;
3873 bfd_boolean new_weakdef;
3874 bfd_boolean new_weak;
3875 bfd_boolean old_weak;
3876 bfd_boolean override;
3878 unsigned int old_alignment;
3880 bfd * undef_bfd = NULL;
3884 flags = BSF_NO_FLAGS;
3886 value = isym->st_value;
3888 common = bed->common_definition (isym);
3890 bind = ELF_ST_BIND (isym->st_info);
3894 /* This should be impossible, since ELF requires that all
3895 global symbols follow all local symbols, and that sh_info
3896 point to the first global symbol. Unfortunately, Irix 5
3901 if (isym->st_shndx != SHN_UNDEF && !common)
3909 case STB_GNU_UNIQUE:
3910 flags = BSF_GNU_UNIQUE;
3914 /* Leave it up to the processor backend. */
3918 if (isym->st_shndx == SHN_UNDEF)
3919 sec = bfd_und_section_ptr;
3920 else if (isym->st_shndx == SHN_ABS)
3921 sec = bfd_abs_section_ptr;
3922 else if (isym->st_shndx == SHN_COMMON)
3924 sec = bfd_com_section_ptr;
3925 /* What ELF calls the size we call the value. What ELF
3926 calls the value we call the alignment. */
3927 value = isym->st_size;
3931 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3933 sec = bfd_abs_section_ptr;
3934 else if (discarded_section (sec))
3936 /* Symbols from discarded section are undefined. We keep
3938 sec = bfd_und_section_ptr;
3939 isym->st_shndx = SHN_UNDEF;
3941 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3945 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3948 goto error_free_vers;
3950 if (isym->st_shndx == SHN_COMMON
3951 && (abfd->flags & BFD_PLUGIN) != 0)
3953 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3957 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3959 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3961 goto error_free_vers;
3965 else if (isym->st_shndx == SHN_COMMON
3966 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3967 && !info->relocatable)
3969 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3973 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3974 | SEC_LINKER_CREATED);
3975 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3977 goto error_free_vers;
3981 else if (bed->elf_add_symbol_hook)
3983 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3985 goto error_free_vers;
3987 /* The hook function sets the name to NULL if this symbol
3988 should be skipped for some reason. */
3993 /* Sanity check that all possibilities were handled. */
3996 bfd_set_error (bfd_error_bad_value);
3997 goto error_free_vers;
4000 if (bfd_is_und_section (sec)
4001 || bfd_is_com_section (sec))
4006 size_change_ok = FALSE;
4007 type_change_ok = bed->type_change_ok;
4013 if (is_elf_hash_table (htab))
4015 Elf_Internal_Versym iver;
4016 unsigned int vernum = 0;
4019 /* If this is a definition of a symbol which was previously
4020 referenced in a non-weak manner then make a note of the bfd
4021 that contained the reference. This is used if we need to
4022 refer to the source of the reference later on. */
4023 if (! bfd_is_und_section (sec))
4025 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4028 && h->root.type == bfd_link_hash_undefined
4029 && h->root.u.undef.abfd)
4030 undef_bfd = h->root.u.undef.abfd;
4035 if (info->default_imported_symver)
4036 /* Use the default symbol version created earlier. */
4037 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4042 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4044 vernum = iver.vs_vers & VERSYM_VERSION;
4046 /* If this is a hidden symbol, or if it is not version
4047 1, we append the version name to the symbol name.
4048 However, we do not modify a non-hidden absolute symbol
4049 if it is not a function, because it might be the version
4050 symbol itself. FIXME: What if it isn't? */
4051 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4053 && (!bfd_is_abs_section (sec)
4054 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4057 size_t namelen, verlen, newlen;
4060 if (isym->st_shndx != SHN_UNDEF)
4062 if (vernum > elf_tdata (abfd)->cverdefs)
4064 else if (vernum > 1)
4066 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4072 (*_bfd_error_handler)
4073 (_("%B: %s: invalid version %u (max %d)"),
4075 elf_tdata (abfd)->cverdefs);
4076 bfd_set_error (bfd_error_bad_value);
4077 goto error_free_vers;
4082 /* We cannot simply test for the number of
4083 entries in the VERNEED section since the
4084 numbers for the needed versions do not start
4086 Elf_Internal_Verneed *t;
4089 for (t = elf_tdata (abfd)->verref;
4093 Elf_Internal_Vernaux *a;
4095 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4097 if (a->vna_other == vernum)
4099 verstr = a->vna_nodename;
4108 (*_bfd_error_handler)
4109 (_("%B: %s: invalid needed version %d"),
4110 abfd, name, vernum);
4111 bfd_set_error (bfd_error_bad_value);
4112 goto error_free_vers;
4116 namelen = strlen (name);
4117 verlen = strlen (verstr);
4118 newlen = namelen + verlen + 2;
4119 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4120 && isym->st_shndx != SHN_UNDEF)
4123 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4124 if (newname == NULL)
4125 goto error_free_vers;
4126 memcpy (newname, name, namelen);
4127 p = newname + namelen;
4129 /* If this is a defined non-hidden version symbol,
4130 we add another @ to the name. This indicates the
4131 default version of the symbol. */
4132 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4133 && isym->st_shndx != SHN_UNDEF)
4135 memcpy (p, verstr, verlen + 1);
4140 /* If necessary, make a second attempt to locate the bfd
4141 containing an unresolved, non-weak reference to the
4143 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4145 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4148 && h->root.type == bfd_link_hash_undefined
4149 && h->root.u.undef.abfd)
4150 undef_bfd = h->root.u.undef.abfd;
4153 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4154 &value, &old_weak, &old_alignment,
4155 sym_hash, &skip, &override,
4156 &type_change_ok, &size_change_ok))
4157 goto error_free_vers;
4166 while (h->root.type == bfd_link_hash_indirect
4167 || h->root.type == bfd_link_hash_warning)
4168 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4170 /* Remember the old alignment if this is a common symbol, so
4171 that we don't reduce the alignment later on. We can't
4172 check later, because _bfd_generic_link_add_one_symbol
4173 will set a default for the alignment which we want to
4174 override. We also remember the old bfd where the existing
4175 definition comes from. */
4176 switch (h->root.type)
4181 case bfd_link_hash_defined:
4182 case bfd_link_hash_defweak:
4183 old_bfd = h->root.u.def.section->owner;
4186 case bfd_link_hash_common:
4187 old_bfd = h->root.u.c.p->section->owner;
4188 old_alignment = h->root.u.c.p->alignment_power;
4192 if (elf_tdata (abfd)->verdef != NULL
4196 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4199 if (! (_bfd_generic_link_add_one_symbol
4200 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4201 (struct bfd_link_hash_entry **) sym_hash)))
4202 goto error_free_vers;
4205 /* We need to make sure that indirect symbol dynamic flags are
4208 while (h->root.type == bfd_link_hash_indirect
4209 || h->root.type == bfd_link_hash_warning)
4210 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4213 if (is_elf_hash_table (htab))
4214 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4216 new_weak = (flags & BSF_WEAK) != 0;
4217 new_weakdef = FALSE;
4221 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4222 && is_elf_hash_table (htab)
4223 && h->u.weakdef == NULL)
4225 /* Keep a list of all weak defined non function symbols from
4226 a dynamic object, using the weakdef field. Later in this
4227 function we will set the weakdef field to the correct
4228 value. We only put non-function symbols from dynamic
4229 objects on this list, because that happens to be the only
4230 time we need to know the normal symbol corresponding to a
4231 weak symbol, and the information is time consuming to
4232 figure out. If the weakdef field is not already NULL,
4233 then this symbol was already defined by some previous
4234 dynamic object, and we will be using that previous
4235 definition anyhow. */
4237 h->u.weakdef = weaks;
4242 /* Set the alignment of a common symbol. */
4243 if ((common || bfd_is_com_section (sec))
4244 && h->root.type == bfd_link_hash_common)
4249 align = bfd_log2 (isym->st_value);
4252 /* The new symbol is a common symbol in a shared object.
4253 We need to get the alignment from the section. */
4254 align = new_sec->alignment_power;
4256 if (align > old_alignment)
4257 h->root.u.c.p->alignment_power = align;
4259 h->root.u.c.p->alignment_power = old_alignment;
4262 if (is_elf_hash_table (htab))
4266 /* Check the alignment when a common symbol is involved. This
4267 can change when a common symbol is overridden by a normal
4268 definition or a common symbol is ignored due to the old
4269 normal definition. We need to make sure the maximum
4270 alignment is maintained. */
4271 if ((old_alignment || common)
4272 && h->root.type != bfd_link_hash_common)
4274 unsigned int common_align;
4275 unsigned int normal_align;
4276 unsigned int symbol_align;
4280 symbol_align = ffs (h->root.u.def.value) - 1;
4281 if (h->root.u.def.section->owner != NULL
4282 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4284 normal_align = h->root.u.def.section->alignment_power;
4285 if (normal_align > symbol_align)
4286 normal_align = symbol_align;
4289 normal_align = symbol_align;
4293 common_align = old_alignment;
4294 common_bfd = old_bfd;
4299 common_align = bfd_log2 (isym->st_value);
4301 normal_bfd = old_bfd;
4304 if (normal_align < common_align)
4306 /* PR binutils/2735 */
4307 if (normal_bfd == NULL)
4308 (*_bfd_error_handler)
4309 (_("Warning: alignment %u of common symbol `%s' in %B"
4310 " is greater than the alignment (%u) of its section %A"),
4311 common_bfd, h->root.u.def.section,
4312 1 << common_align, name, 1 << normal_align);
4314 (*_bfd_error_handler)
4315 (_("Warning: alignment %u of symbol `%s' in %B"
4316 " is smaller than %u in %B"),
4317 normal_bfd, common_bfd,
4318 1 << normal_align, name, 1 << common_align);
4322 /* Remember the symbol size if it isn't undefined. */
4323 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4324 && (definition || h->size == 0))
4327 && h->size != isym->st_size
4328 && ! size_change_ok)
4329 (*_bfd_error_handler)
4330 (_("Warning: size of symbol `%s' changed"
4331 " from %lu in %B to %lu in %B"),
4333 name, (unsigned long) h->size,
4334 (unsigned long) isym->st_size);
4336 h->size = isym->st_size;
4339 /* If this is a common symbol, then we always want H->SIZE
4340 to be the size of the common symbol. The code just above
4341 won't fix the size if a common symbol becomes larger. We
4342 don't warn about a size change here, because that is
4343 covered by --warn-common. Allow changed between different
4345 if (h->root.type == bfd_link_hash_common)
4346 h->size = h->root.u.c.size;
4348 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4349 && ((definition && !new_weak)
4350 || (old_weak && h->root.type == bfd_link_hash_common)
4351 || h->type == STT_NOTYPE))
4353 unsigned int type = ELF_ST_TYPE (isym->st_info);
4355 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4357 if (type == STT_GNU_IFUNC
4358 && (abfd->flags & DYNAMIC) != 0)
4361 if (h->type != type)
4363 if (h->type != STT_NOTYPE && ! type_change_ok)
4364 (*_bfd_error_handler)
4365 (_("Warning: type of symbol `%s' changed"
4366 " from %d to %d in %B"),
4367 abfd, name, h->type, type);
4373 /* Merge st_other field. */
4374 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4376 /* Set a flag in the hash table entry indicating the type of
4377 reference or definition we just found. Keep a count of
4378 the number of dynamic symbols we find. A dynamic symbol
4379 is one which is referenced or defined by both a regular
4380 object and a shared object. */
4387 if (bind != STB_WEAK)
4388 h->ref_regular_nonweak = 1;
4400 /* If the indirect symbol has been forced local, don't
4401 make the real symbol dynamic. */
4402 if ((h == hi || !hi->forced_local)
4403 && (! info->executable
4413 hi->ref_dynamic = 1;
4419 hi->def_dynamic = 1;
4420 hi->dynamic_def = 1;
4423 /* If the indirect symbol has been forced local, don't
4424 make the real symbol dynamic. */
4425 if ((h == hi || !hi->forced_local)
4428 || (h->u.weakdef != NULL
4430 && h->u.weakdef->dynindx != -1)))
4434 /* We don't want to make debug symbol dynamic. */
4435 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4438 /* Nor should we make plugin symbols dynamic. */
4439 if ((abfd->flags & BFD_PLUGIN) != 0)
4443 h->target_internal = isym->st_target_internal;
4445 /* Check to see if we need to add an indirect symbol for
4446 the default name. */
4447 if (definition || h->root.type == bfd_link_hash_common)
4448 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4449 &sec, &value, &dynsym,
4451 goto error_free_vers;
4453 if (definition && !dynamic)
4455 char *p = strchr (name, ELF_VER_CHR);
4456 if (p != NULL && p[1] != ELF_VER_CHR)
4458 /* Queue non-default versions so that .symver x, x@FOO
4459 aliases can be checked. */
4462 amt = ((isymend - isym + 1)
4463 * sizeof (struct elf_link_hash_entry *));
4465 (struct elf_link_hash_entry **) bfd_malloc (amt);
4467 goto error_free_vers;
4469 nondeflt_vers[nondeflt_vers_cnt++] = h;
4473 if (dynsym && h->dynindx == -1)
4475 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4476 goto error_free_vers;
4477 if (h->u.weakdef != NULL
4479 && h->u.weakdef->dynindx == -1)
4481 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4482 goto error_free_vers;
4485 else if (dynsym && h->dynindx != -1)
4486 /* If the symbol already has a dynamic index, but
4487 visibility says it should not be visible, turn it into
4489 switch (ELF_ST_VISIBILITY (h->other))
4493 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4503 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4504 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4507 const char *soname = elf_dt_name (abfd);
4509 /* A symbol from a library loaded via DT_NEEDED of some
4510 other library is referenced by a regular object.
4511 Add a DT_NEEDED entry for it. Issue an error if
4512 --no-add-needed is used and the reference was not
4514 if (undef_bfd != NULL
4515 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4517 (*_bfd_error_handler)
4518 (_("%B: undefined reference to symbol '%s'"),
4520 (*_bfd_error_handler)
4521 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4523 bfd_set_error (bfd_error_invalid_operation);
4524 goto error_free_vers;
4527 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4528 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4531 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4533 goto error_free_vers;
4535 BFD_ASSERT (ret == 0);
4540 if (extversym != NULL)
4546 if (isymbuf != NULL)
4552 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4556 /* Restore the symbol table. */
4557 if (bed->as_needed_cleanup)
4558 (*bed->as_needed_cleanup) (abfd, info);
4559 old_hash = (char *) old_tab + tabsize;
4560 old_ent = (char *) old_hash + hashsize;
4561 sym_hash = elf_sym_hashes (abfd);
4562 htab->root.table.table = old_table;
4563 htab->root.table.size = old_size;
4564 htab->root.table.count = old_count;
4565 memcpy (htab->root.table.table, old_tab, tabsize);
4566 memcpy (sym_hash, old_hash, hashsize);
4567 htab->root.undefs = old_undefs;
4568 htab->root.undefs_tail = old_undefs_tail;
4569 for (i = 0; i < htab->root.table.size; i++)
4571 struct bfd_hash_entry *p;
4572 struct elf_link_hash_entry *h;
4574 unsigned int alignment_power;
4576 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4578 h = (struct elf_link_hash_entry *) p;
4579 if (h->root.type == bfd_link_hash_warning)
4580 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4581 if (h->dynindx >= old_dynsymcount)
4582 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4584 /* Preserve the maximum alignment and size for common
4585 symbols even if this dynamic lib isn't on DT_NEEDED
4586 since it can still be loaded at the run-time by another
4588 if (h->root.type == bfd_link_hash_common)
4590 size = h->root.u.c.size;
4591 alignment_power = h->root.u.c.p->alignment_power;
4596 alignment_power = 0;
4598 memcpy (p, old_ent, htab->root.table.entsize);
4599 old_ent = (char *) old_ent + htab->root.table.entsize;
4600 h = (struct elf_link_hash_entry *) p;
4601 if (h->root.type == bfd_link_hash_warning)
4603 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4604 old_ent = (char *) old_ent + htab->root.table.entsize;
4606 else if (h->root.type == bfd_link_hash_common)
4608 if (size > h->root.u.c.size)
4609 h->root.u.c.size = size;
4610 if (alignment_power > h->root.u.c.p->alignment_power)
4611 h->root.u.c.p->alignment_power = alignment_power;
4616 /* Make a special call to the linker "notice" function to
4617 tell it that symbols added for crefs may need to be removed. */
4618 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4619 notice_not_needed, 0, NULL))
4620 goto error_free_vers;
4623 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4625 if (nondeflt_vers != NULL)
4626 free (nondeflt_vers);
4630 if (old_tab != NULL)
4632 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4633 notice_needed, 0, NULL))
4634 goto error_free_vers;
4639 /* Now that all the symbols from this input file are created, handle
4640 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4641 if (nondeflt_vers != NULL)
4643 bfd_size_type cnt, symidx;
4645 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4647 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4648 char *shortname, *p;
4650 p = strchr (h->root.root.string, ELF_VER_CHR);
4652 || (h->root.type != bfd_link_hash_defined
4653 && h->root.type != bfd_link_hash_defweak))
4656 amt = p - h->root.root.string;
4657 shortname = (char *) bfd_malloc (amt + 1);
4659 goto error_free_vers;
4660 memcpy (shortname, h->root.root.string, amt);
4661 shortname[amt] = '\0';
4663 hi = (struct elf_link_hash_entry *)
4664 bfd_link_hash_lookup (&htab->root, shortname,
4665 FALSE, FALSE, FALSE);
4667 && hi->root.type == h->root.type
4668 && hi->root.u.def.value == h->root.u.def.value
4669 && hi->root.u.def.section == h->root.u.def.section)
4671 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4672 hi->root.type = bfd_link_hash_indirect;
4673 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4674 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4675 sym_hash = elf_sym_hashes (abfd);
4677 for (symidx = 0; symidx < extsymcount; ++symidx)
4678 if (sym_hash[symidx] == hi)
4680 sym_hash[symidx] = h;
4686 free (nondeflt_vers);
4687 nondeflt_vers = NULL;
4690 /* Now set the weakdefs field correctly for all the weak defined
4691 symbols we found. The only way to do this is to search all the
4692 symbols. Since we only need the information for non functions in
4693 dynamic objects, that's the only time we actually put anything on
4694 the list WEAKS. We need this information so that if a regular
4695 object refers to a symbol defined weakly in a dynamic object, the
4696 real symbol in the dynamic object is also put in the dynamic
4697 symbols; we also must arrange for both symbols to point to the
4698 same memory location. We could handle the general case of symbol
4699 aliasing, but a general symbol alias can only be generated in
4700 assembler code, handling it correctly would be very time
4701 consuming, and other ELF linkers don't handle general aliasing
4705 struct elf_link_hash_entry **hpp;
4706 struct elf_link_hash_entry **hppend;
4707 struct elf_link_hash_entry **sorted_sym_hash;
4708 struct elf_link_hash_entry *h;
4711 /* Since we have to search the whole symbol list for each weak
4712 defined symbol, search time for N weak defined symbols will be
4713 O(N^2). Binary search will cut it down to O(NlogN). */
4714 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4715 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4716 if (sorted_sym_hash == NULL)
4718 sym_hash = sorted_sym_hash;
4719 hpp = elf_sym_hashes (abfd);
4720 hppend = hpp + extsymcount;
4722 for (; hpp < hppend; hpp++)
4726 && h->root.type == bfd_link_hash_defined
4727 && !bed->is_function_type (h->type))
4735 qsort (sorted_sym_hash, sym_count,
4736 sizeof (struct elf_link_hash_entry *),
4739 while (weaks != NULL)
4741 struct elf_link_hash_entry *hlook;
4747 weaks = hlook->u.weakdef;
4748 hlook->u.weakdef = NULL;
4750 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4751 || hlook->root.type == bfd_link_hash_defweak
4752 || hlook->root.type == bfd_link_hash_common
4753 || hlook->root.type == bfd_link_hash_indirect);
4754 slook = hlook->root.u.def.section;
4755 vlook = hlook->root.u.def.value;
4761 bfd_signed_vma vdiff;
4763 h = sorted_sym_hash[idx];
4764 vdiff = vlook - h->root.u.def.value;
4771 long sdiff = slook->id - h->root.u.def.section->id;
4781 /* We didn't find a value/section match. */
4785 /* With multiple aliases, or when the weak symbol is already
4786 strongly defined, we have multiple matching symbols and
4787 the binary search above may land on any of them. Step
4788 one past the matching symbol(s). */
4791 h = sorted_sym_hash[idx];
4792 if (h->root.u.def.section != slook
4793 || h->root.u.def.value != vlook)
4797 /* Now look back over the aliases. Since we sorted by size
4798 as well as value and section, we'll choose the one with
4799 the largest size. */
4802 h = sorted_sym_hash[idx];
4804 /* Stop if value or section doesn't match. */
4805 if (h->root.u.def.section != slook
4806 || h->root.u.def.value != vlook)
4808 else if (h != hlook)
4810 hlook->u.weakdef = h;
4812 /* If the weak definition is in the list of dynamic
4813 symbols, make sure the real definition is put
4815 if (hlook->dynindx != -1 && h->dynindx == -1)
4817 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4820 free (sorted_sym_hash);
4825 /* If the real definition is in the list of dynamic
4826 symbols, make sure the weak definition is put
4827 there as well. If we don't do this, then the
4828 dynamic loader might not merge the entries for the
4829 real definition and the weak definition. */
4830 if (h->dynindx != -1 && hlook->dynindx == -1)
4832 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4833 goto err_free_sym_hash;
4840 free (sorted_sym_hash);
4843 if (bed->check_directives
4844 && !(*bed->check_directives) (abfd, info))
4847 /* If this object is the same format as the output object, and it is
4848 not a shared library, then let the backend look through the
4851 This is required to build global offset table entries and to
4852 arrange for dynamic relocs. It is not required for the
4853 particular common case of linking non PIC code, even when linking
4854 against shared libraries, but unfortunately there is no way of
4855 knowing whether an object file has been compiled PIC or not.
4856 Looking through the relocs is not particularly time consuming.
4857 The problem is that we must either (1) keep the relocs in memory,
4858 which causes the linker to require additional runtime memory or
4859 (2) read the relocs twice from the input file, which wastes time.
4860 This would be a good case for using mmap.
4862 I have no idea how to handle linking PIC code into a file of a
4863 different format. It probably can't be done. */
4865 && is_elf_hash_table (htab)
4866 && bed->check_relocs != NULL
4867 && elf_object_id (abfd) == elf_hash_table_id (htab)
4868 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4872 for (o = abfd->sections; o != NULL; o = o->next)
4874 Elf_Internal_Rela *internal_relocs;
4877 if ((o->flags & SEC_RELOC) == 0
4878 || o->reloc_count == 0
4879 || ((info->strip == strip_all || info->strip == strip_debugger)
4880 && (o->flags & SEC_DEBUGGING) != 0)
4881 || bfd_is_abs_section (o->output_section))
4884 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4886 if (internal_relocs == NULL)
4889 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4891 if (elf_section_data (o)->relocs != internal_relocs)
4892 free (internal_relocs);
4899 /* If this is a non-traditional link, try to optimize the handling
4900 of the .stab/.stabstr sections. */
4902 && ! info->traditional_format
4903 && is_elf_hash_table (htab)
4904 && (info->strip != strip_all && info->strip != strip_debugger))
4908 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4909 if (stabstr != NULL)
4911 bfd_size_type string_offset = 0;
4914 for (stab = abfd->sections; stab; stab = stab->next)
4915 if (CONST_STRNEQ (stab->name, ".stab")
4916 && (!stab->name[5] ||
4917 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4918 && (stab->flags & SEC_MERGE) == 0
4919 && !bfd_is_abs_section (stab->output_section))
4921 struct bfd_elf_section_data *secdata;
4923 secdata = elf_section_data (stab);
4924 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4925 stabstr, &secdata->sec_info,
4928 if (secdata->sec_info)
4929 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4934 if (is_elf_hash_table (htab) && add_needed)
4936 /* Add this bfd to the loaded list. */
4937 struct elf_link_loaded_list *n;
4939 n = (struct elf_link_loaded_list *)
4940 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4944 n->next = htab->loaded;
4951 if (old_tab != NULL)
4953 if (nondeflt_vers != NULL)
4954 free (nondeflt_vers);
4955 if (extversym != NULL)
4958 if (isymbuf != NULL)
4964 /* Return the linker hash table entry of a symbol that might be
4965 satisfied by an archive symbol. Return -1 on error. */
4967 struct elf_link_hash_entry *
4968 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4969 struct bfd_link_info *info,
4972 struct elf_link_hash_entry *h;
4976 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4980 /* If this is a default version (the name contains @@), look up the
4981 symbol again with only one `@' as well as without the version.
4982 The effect is that references to the symbol with and without the
4983 version will be matched by the default symbol in the archive. */
4985 p = strchr (name, ELF_VER_CHR);
4986 if (p == NULL || p[1] != ELF_VER_CHR)
4989 /* First check with only one `@'. */
4990 len = strlen (name);
4991 copy = (char *) bfd_alloc (abfd, len);
4993 return (struct elf_link_hash_entry *) 0 - 1;
4995 first = p - name + 1;
4996 memcpy (copy, name, first);
4997 memcpy (copy + first, name + first + 1, len - first);
4999 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5002 /* We also need to check references to the symbol without the
5004 copy[first - 1] = '\0';
5005 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5006 FALSE, FALSE, TRUE);
5009 bfd_release (abfd, copy);
5013 /* Add symbols from an ELF archive file to the linker hash table. We
5014 don't use _bfd_generic_link_add_archive_symbols because of a
5015 problem which arises on UnixWare. The UnixWare libc.so is an
5016 archive which includes an entry libc.so.1 which defines a bunch of
5017 symbols. The libc.so archive also includes a number of other
5018 object files, which also define symbols, some of which are the same
5019 as those defined in libc.so.1. Correct linking requires that we
5020 consider each object file in turn, and include it if it defines any
5021 symbols we need. _bfd_generic_link_add_archive_symbols does not do
5022 this; it looks through the list of undefined symbols, and includes
5023 any object file which defines them. When this algorithm is used on
5024 UnixWare, it winds up pulling in libc.so.1 early and defining a
5025 bunch of symbols. This means that some of the other objects in the
5026 archive are not included in the link, which is incorrect since they
5027 precede libc.so.1 in the archive.
5029 Fortunately, ELF archive handling is simpler than that done by
5030 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5031 oddities. In ELF, if we find a symbol in the archive map, and the
5032 symbol is currently undefined, we know that we must pull in that
5035 Unfortunately, we do have to make multiple passes over the symbol
5036 table until nothing further is resolved. */
5039 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5042 bfd_boolean *defined = NULL;
5043 bfd_boolean *included = NULL;
5047 const struct elf_backend_data *bed;
5048 struct elf_link_hash_entry * (*archive_symbol_lookup)
5049 (bfd *, struct bfd_link_info *, const char *);
5051 if (! bfd_has_map (abfd))
5053 /* An empty archive is a special case. */
5054 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5056 bfd_set_error (bfd_error_no_armap);
5060 /* Keep track of all symbols we know to be already defined, and all
5061 files we know to be already included. This is to speed up the
5062 second and subsequent passes. */
5063 c = bfd_ardata (abfd)->symdef_count;
5067 amt *= sizeof (bfd_boolean);
5068 defined = (bfd_boolean *) bfd_zmalloc (amt);
5069 included = (bfd_boolean *) bfd_zmalloc (amt);
5070 if (defined == NULL || included == NULL)
5073 symdefs = bfd_ardata (abfd)->symdefs;
5074 bed = get_elf_backend_data (abfd);
5075 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5088 symdefend = symdef + c;
5089 for (i = 0; symdef < symdefend; symdef++, i++)
5091 struct elf_link_hash_entry *h;
5093 struct bfd_link_hash_entry *undefs_tail;
5096 if (defined[i] || included[i])
5098 if (symdef->file_offset == last)
5104 h = archive_symbol_lookup (abfd, info, symdef->name);
5105 if (h == (struct elf_link_hash_entry *) 0 - 1)
5111 if (h->root.type == bfd_link_hash_common)
5113 /* We currently have a common symbol. The archive map contains
5114 a reference to this symbol, so we may want to include it. We
5115 only want to include it however, if this archive element
5116 contains a definition of the symbol, not just another common
5119 Unfortunately some archivers (including GNU ar) will put
5120 declarations of common symbols into their archive maps, as
5121 well as real definitions, so we cannot just go by the archive
5122 map alone. Instead we must read in the element's symbol
5123 table and check that to see what kind of symbol definition
5125 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5128 else if (h->root.type != bfd_link_hash_undefined)
5130 if (h->root.type != bfd_link_hash_undefweak)
5135 /* We need to include this archive member. */
5136 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5137 if (element == NULL)
5140 if (! bfd_check_format (element, bfd_object))
5143 /* Doublecheck that we have not included this object
5144 already--it should be impossible, but there may be
5145 something wrong with the archive. */
5146 if (element->archive_pass != 0)
5148 bfd_set_error (bfd_error_bad_value);
5151 element->archive_pass = 1;
5153 undefs_tail = info->hash->undefs_tail;
5155 if (!(*info->callbacks
5156 ->add_archive_element) (info, element, symdef->name, &element))
5158 if (!bfd_link_add_symbols (element, info))
5161 /* If there are any new undefined symbols, we need to make
5162 another pass through the archive in order to see whether
5163 they can be defined. FIXME: This isn't perfect, because
5164 common symbols wind up on undefs_tail and because an
5165 undefined symbol which is defined later on in this pass
5166 does not require another pass. This isn't a bug, but it
5167 does make the code less efficient than it could be. */
5168 if (undefs_tail != info->hash->undefs_tail)
5171 /* Look backward to mark all symbols from this object file
5172 which we have already seen in this pass. */
5176 included[mark] = TRUE;
5181 while (symdefs[mark].file_offset == symdef->file_offset);
5183 /* We mark subsequent symbols from this object file as we go
5184 on through the loop. */
5185 last = symdef->file_offset;
5196 if (defined != NULL)
5198 if (included != NULL)
5203 /* Given an ELF BFD, add symbols to the global hash table as
5207 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5209 switch (bfd_get_format (abfd))
5212 return elf_link_add_object_symbols (abfd, info);
5214 return elf_link_add_archive_symbols (abfd, info);
5216 bfd_set_error (bfd_error_wrong_format);
5221 struct hash_codes_info
5223 unsigned long *hashcodes;
5227 /* This function will be called though elf_link_hash_traverse to store
5228 all hash value of the exported symbols in an array. */
5231 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5233 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5239 /* Ignore indirect symbols. These are added by the versioning code. */
5240 if (h->dynindx == -1)
5243 name = h->root.root.string;
5244 p = strchr (name, ELF_VER_CHR);
5247 alc = (char *) bfd_malloc (p - name + 1);
5253 memcpy (alc, name, p - name);
5254 alc[p - name] = '\0';
5258 /* Compute the hash value. */
5259 ha = bfd_elf_hash (name);
5261 /* Store the found hash value in the array given as the argument. */
5262 *(inf->hashcodes)++ = ha;
5264 /* And store it in the struct so that we can put it in the hash table
5266 h->u.elf_hash_value = ha;
5274 struct collect_gnu_hash_codes
5277 const struct elf_backend_data *bed;
5278 unsigned long int nsyms;
5279 unsigned long int maskbits;
5280 unsigned long int *hashcodes;
5281 unsigned long int *hashval;
5282 unsigned long int *indx;
5283 unsigned long int *counts;
5286 long int min_dynindx;
5287 unsigned long int bucketcount;
5288 unsigned long int symindx;
5289 long int local_indx;
5290 long int shift1, shift2;
5291 unsigned long int mask;
5295 /* This function will be called though elf_link_hash_traverse to store
5296 all hash value of the exported symbols in an array. */
5299 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5301 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5307 /* Ignore indirect symbols. These are added by the versioning code. */
5308 if (h->dynindx == -1)
5311 /* Ignore also local symbols and undefined symbols. */
5312 if (! (*s->bed->elf_hash_symbol) (h))
5315 name = h->root.root.string;
5316 p = strchr (name, ELF_VER_CHR);
5319 alc = (char *) bfd_malloc (p - name + 1);
5325 memcpy (alc, name, p - name);
5326 alc[p - name] = '\0';
5330 /* Compute the hash value. */
5331 ha = bfd_elf_gnu_hash (name);
5333 /* Store the found hash value in the array for compute_bucket_count,
5334 and also for .dynsym reordering purposes. */
5335 s->hashcodes[s->nsyms] = ha;
5336 s->hashval[h->dynindx] = ha;
5338 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5339 s->min_dynindx = h->dynindx;
5347 /* This function will be called though elf_link_hash_traverse to do
5348 final dynaminc symbol renumbering. */
5351 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5353 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5354 unsigned long int bucket;
5355 unsigned long int val;
5357 /* Ignore indirect symbols. */
5358 if (h->dynindx == -1)
5361 /* Ignore also local symbols and undefined symbols. */
5362 if (! (*s->bed->elf_hash_symbol) (h))
5364 if (h->dynindx >= s->min_dynindx)
5365 h->dynindx = s->local_indx++;
5369 bucket = s->hashval[h->dynindx] % s->bucketcount;
5370 val = (s->hashval[h->dynindx] >> s->shift1)
5371 & ((s->maskbits >> s->shift1) - 1);
5372 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5374 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5375 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5376 if (s->counts[bucket] == 1)
5377 /* Last element terminates the chain. */
5379 bfd_put_32 (s->output_bfd, val,
5380 s->contents + (s->indx[bucket] - s->symindx) * 4);
5381 --s->counts[bucket];
5382 h->dynindx = s->indx[bucket]++;
5386 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5389 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5391 return !(h->forced_local
5392 || h->root.type == bfd_link_hash_undefined
5393 || h->root.type == bfd_link_hash_undefweak
5394 || ((h->root.type == bfd_link_hash_defined
5395 || h->root.type == bfd_link_hash_defweak)
5396 && h->root.u.def.section->output_section == NULL));
5399 /* Array used to determine the number of hash table buckets to use
5400 based on the number of symbols there are. If there are fewer than
5401 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5402 fewer than 37 we use 17 buckets, and so forth. We never use more
5403 than 32771 buckets. */
5405 static const size_t elf_buckets[] =
5407 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5411 /* Compute bucket count for hashing table. We do not use a static set
5412 of possible tables sizes anymore. Instead we determine for all
5413 possible reasonable sizes of the table the outcome (i.e., the
5414 number of collisions etc) and choose the best solution. The
5415 weighting functions are not too simple to allow the table to grow
5416 without bounds. Instead one of the weighting factors is the size.
5417 Therefore the result is always a good payoff between few collisions
5418 (= short chain lengths) and table size. */
5420 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5421 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5422 unsigned long int nsyms,
5425 size_t best_size = 0;
5426 unsigned long int i;
5428 /* We have a problem here. The following code to optimize the table
5429 size requires an integer type with more the 32 bits. If
5430 BFD_HOST_U_64_BIT is set we know about such a type. */
5431 #ifdef BFD_HOST_U_64_BIT
5436 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5437 bfd *dynobj = elf_hash_table (info)->dynobj;
5438 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5439 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5440 unsigned long int *counts;
5442 unsigned int no_improvement_count = 0;
5444 /* Possible optimization parameters: if we have NSYMS symbols we say
5445 that the hashing table must at least have NSYMS/4 and at most
5447 minsize = nsyms / 4;
5450 best_size = maxsize = nsyms * 2;
5455 if ((best_size & 31) == 0)
5459 /* Create array where we count the collisions in. We must use bfd_malloc
5460 since the size could be large. */
5462 amt *= sizeof (unsigned long int);
5463 counts = (unsigned long int *) bfd_malloc (amt);
5467 /* Compute the "optimal" size for the hash table. The criteria is a
5468 minimal chain length. The minor criteria is (of course) the size
5470 for (i = minsize; i < maxsize; ++i)
5472 /* Walk through the array of hashcodes and count the collisions. */
5473 BFD_HOST_U_64_BIT max;
5474 unsigned long int j;
5475 unsigned long int fact;
5477 if (gnu_hash && (i & 31) == 0)
5480 memset (counts, '\0', i * sizeof (unsigned long int));
5482 /* Determine how often each hash bucket is used. */
5483 for (j = 0; j < nsyms; ++j)
5484 ++counts[hashcodes[j] % i];
5486 /* For the weight function we need some information about the
5487 pagesize on the target. This is information need not be 100%
5488 accurate. Since this information is not available (so far) we
5489 define it here to a reasonable default value. If it is crucial
5490 to have a better value some day simply define this value. */
5491 # ifndef BFD_TARGET_PAGESIZE
5492 # define BFD_TARGET_PAGESIZE (4096)
5495 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5497 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5500 /* Variant 1: optimize for short chains. We add the squares
5501 of all the chain lengths (which favors many small chain
5502 over a few long chains). */
5503 for (j = 0; j < i; ++j)
5504 max += counts[j] * counts[j];
5506 /* This adds penalties for the overall size of the table. */
5507 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5510 /* Variant 2: Optimize a lot more for small table. Here we
5511 also add squares of the size but we also add penalties for
5512 empty slots (the +1 term). */
5513 for (j = 0; j < i; ++j)
5514 max += (1 + counts[j]) * (1 + counts[j]);
5516 /* The overall size of the table is considered, but not as
5517 strong as in variant 1, where it is squared. */
5518 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5522 /* Compare with current best results. */
5523 if (max < best_chlen)
5527 no_improvement_count = 0;
5529 /* PR 11843: Avoid futile long searches for the best bucket size
5530 when there are a large number of symbols. */
5531 else if (++no_improvement_count == 100)
5538 #endif /* defined (BFD_HOST_U_64_BIT) */
5540 /* This is the fallback solution if no 64bit type is available or if we
5541 are not supposed to spend much time on optimizations. We select the
5542 bucket count using a fixed set of numbers. */
5543 for (i = 0; elf_buckets[i] != 0; i++)
5545 best_size = elf_buckets[i];
5546 if (nsyms < elf_buckets[i + 1])
5549 if (gnu_hash && best_size < 2)
5556 /* Size any SHT_GROUP section for ld -r. */
5559 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5563 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5564 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5565 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5570 /* Set a default stack segment size. The value in INFO wins. If it
5571 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5572 undefined it is initialized. */
5575 bfd_elf_stack_segment_size (bfd *output_bfd,
5576 struct bfd_link_info *info,
5577 const char *legacy_symbol,
5578 bfd_vma default_size)
5580 struct elf_link_hash_entry *h = NULL;
5582 /* Look for legacy symbol. */
5584 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5585 FALSE, FALSE, FALSE);
5586 if (h && (h->root.type == bfd_link_hash_defined
5587 || h->root.type == bfd_link_hash_defweak)
5589 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5591 /* The symbol has no type if specified on the command line. */
5592 h->type = STT_OBJECT;
5593 if (info->stacksize)
5594 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5595 output_bfd, legacy_symbol);
5596 else if (h->root.u.def.section != bfd_abs_section_ptr)
5597 (*_bfd_error_handler) (_("%B: %s not absolute"),
5598 output_bfd, legacy_symbol);
5600 info->stacksize = h->root.u.def.value;
5603 if (!info->stacksize)
5604 /* If the user didn't set a size, or explicitly inhibit the
5605 size, set it now. */
5606 info->stacksize = default_size;
5608 /* Provide the legacy symbol, if it is referenced. */
5609 if (h && (h->root.type == bfd_link_hash_undefined
5610 || h->root.type == bfd_link_hash_undefweak))
5612 struct bfd_link_hash_entry *bh = NULL;
5614 if (!(_bfd_generic_link_add_one_symbol
5615 (info, output_bfd, legacy_symbol,
5616 BSF_GLOBAL, bfd_abs_section_ptr,
5617 info->stacksize >= 0 ? info->stacksize : 0,
5618 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5621 h = (struct elf_link_hash_entry *) bh;
5623 h->type = STT_OBJECT;
5629 /* Set up the sizes and contents of the ELF dynamic sections. This is
5630 called by the ELF linker emulation before_allocation routine. We
5631 must set the sizes of the sections before the linker sets the
5632 addresses of the various sections. */
5635 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5638 const char *filter_shlib,
5640 const char *depaudit,
5641 const char * const *auxiliary_filters,
5642 struct bfd_link_info *info,
5643 asection **sinterpptr)
5645 bfd_size_type soname_indx;
5647 const struct elf_backend_data *bed;
5648 struct elf_info_failed asvinfo;
5652 soname_indx = (bfd_size_type) -1;
5654 if (!is_elf_hash_table (info->hash))
5657 bed = get_elf_backend_data (output_bfd);
5659 /* Any syms created from now on start with -1 in
5660 got.refcount/offset and plt.refcount/offset. */
5661 elf_hash_table (info)->init_got_refcount
5662 = elf_hash_table (info)->init_got_offset;
5663 elf_hash_table (info)->init_plt_refcount
5664 = elf_hash_table (info)->init_plt_offset;
5666 if (info->relocatable
5667 && !_bfd_elf_size_group_sections (info))
5670 /* The backend may have to create some sections regardless of whether
5671 we're dynamic or not. */
5672 if (bed->elf_backend_always_size_sections
5673 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5676 /* Determine any GNU_STACK segment requirements, after the backend
5677 has had a chance to set a default segment size. */
5678 if (info->execstack)
5679 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5680 else if (info->noexecstack)
5681 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5685 asection *notesec = NULL;
5688 for (inputobj = info->input_bfds;
5690 inputobj = inputobj->link_next)
5695 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5697 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5700 if (s->flags & SEC_CODE)
5704 else if (bed->default_execstack)
5707 if (notesec || info->stacksize > 0)
5708 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5709 if (notesec && exec && info->relocatable
5710 && notesec->output_section != bfd_abs_section_ptr)
5711 notesec->output_section->flags |= SEC_CODE;
5714 dynobj = elf_hash_table (info)->dynobj;
5716 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5718 struct elf_info_failed eif;
5719 struct elf_link_hash_entry *h;
5721 struct bfd_elf_version_tree *t;
5722 struct bfd_elf_version_expr *d;
5724 bfd_boolean all_defined;
5726 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5727 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5731 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5733 if (soname_indx == (bfd_size_type) -1
5734 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5740 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5742 info->flags |= DF_SYMBOLIC;
5749 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5751 if (indx == (bfd_size_type) -1
5752 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5755 if (info->new_dtags)
5757 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5758 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5763 if (filter_shlib != NULL)
5767 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5768 filter_shlib, TRUE);
5769 if (indx == (bfd_size_type) -1
5770 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5774 if (auxiliary_filters != NULL)
5776 const char * const *p;
5778 for (p = auxiliary_filters; *p != NULL; p++)
5782 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5784 if (indx == (bfd_size_type) -1
5785 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5794 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5796 if (indx == (bfd_size_type) -1
5797 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5801 if (depaudit != NULL)
5805 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5807 if (indx == (bfd_size_type) -1
5808 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5815 /* If we are supposed to export all symbols into the dynamic symbol
5816 table (this is not the normal case), then do so. */
5817 if (info->export_dynamic
5818 || (info->executable && info->dynamic))
5820 elf_link_hash_traverse (elf_hash_table (info),
5821 _bfd_elf_export_symbol,
5827 /* Make all global versions with definition. */
5828 for (t = info->version_info; t != NULL; t = t->next)
5829 for (d = t->globals.list; d != NULL; d = d->next)
5830 if (!d->symver && d->literal)
5832 const char *verstr, *name;
5833 size_t namelen, verlen, newlen;
5834 char *newname, *p, leading_char;
5835 struct elf_link_hash_entry *newh;
5837 leading_char = bfd_get_symbol_leading_char (output_bfd);
5839 namelen = strlen (name) + (leading_char != '\0');
5841 verlen = strlen (verstr);
5842 newlen = namelen + verlen + 3;
5844 newname = (char *) bfd_malloc (newlen);
5845 if (newname == NULL)
5847 newname[0] = leading_char;
5848 memcpy (newname + (leading_char != '\0'), name, namelen);
5850 /* Check the hidden versioned definition. */
5851 p = newname + namelen;
5853 memcpy (p, verstr, verlen + 1);
5854 newh = elf_link_hash_lookup (elf_hash_table (info),
5855 newname, FALSE, FALSE,
5858 || (newh->root.type != bfd_link_hash_defined
5859 && newh->root.type != bfd_link_hash_defweak))
5861 /* Check the default versioned definition. */
5863 memcpy (p, verstr, verlen + 1);
5864 newh = elf_link_hash_lookup (elf_hash_table (info),
5865 newname, FALSE, FALSE,
5870 /* Mark this version if there is a definition and it is
5871 not defined in a shared object. */
5873 && !newh->def_dynamic
5874 && (newh->root.type == bfd_link_hash_defined
5875 || newh->root.type == bfd_link_hash_defweak))
5879 /* Attach all the symbols to their version information. */
5880 asvinfo.info = info;
5881 asvinfo.failed = FALSE;
5883 elf_link_hash_traverse (elf_hash_table (info),
5884 _bfd_elf_link_assign_sym_version,
5889 if (!info->allow_undefined_version)
5891 /* Check if all global versions have a definition. */
5893 for (t = info->version_info; t != NULL; t = t->next)
5894 for (d = t->globals.list; d != NULL; d = d->next)
5895 if (d->literal && !d->symver && !d->script)
5897 (*_bfd_error_handler)
5898 (_("%s: undefined version: %s"),
5899 d->pattern, t->name);
5900 all_defined = FALSE;
5905 bfd_set_error (bfd_error_bad_value);
5910 /* Find all symbols which were defined in a dynamic object and make
5911 the backend pick a reasonable value for them. */
5912 elf_link_hash_traverse (elf_hash_table (info),
5913 _bfd_elf_adjust_dynamic_symbol,
5918 /* Add some entries to the .dynamic section. We fill in some of the
5919 values later, in bfd_elf_final_link, but we must add the entries
5920 now so that we know the final size of the .dynamic section. */
5922 /* If there are initialization and/or finalization functions to
5923 call then add the corresponding DT_INIT/DT_FINI entries. */
5924 h = (info->init_function
5925 ? elf_link_hash_lookup (elf_hash_table (info),
5926 info->init_function, FALSE,
5933 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5936 h = (info->fini_function
5937 ? elf_link_hash_lookup (elf_hash_table (info),
5938 info->fini_function, FALSE,
5945 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5949 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5950 if (s != NULL && s->linker_has_input)
5952 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5953 if (! info->executable)
5958 for (sub = info->input_bfds; sub != NULL;
5959 sub = sub->link_next)
5960 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5961 for (o = sub->sections; o != NULL; o = o->next)
5962 if (elf_section_data (o)->this_hdr.sh_type
5963 == SHT_PREINIT_ARRAY)
5965 (*_bfd_error_handler)
5966 (_("%B: .preinit_array section is not allowed in DSO"),
5971 bfd_set_error (bfd_error_nonrepresentable_section);
5975 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5976 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5979 s = bfd_get_section_by_name (output_bfd, ".init_array");
5980 if (s != NULL && s->linker_has_input)
5982 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5983 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5986 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5987 if (s != NULL && s->linker_has_input)
5989 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5990 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5994 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5995 /* If .dynstr is excluded from the link, we don't want any of
5996 these tags. Strictly, we should be checking each section
5997 individually; This quick check covers for the case where
5998 someone does a /DISCARD/ : { *(*) }. */
5999 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6001 bfd_size_type strsize;
6003 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6004 if ((info->emit_hash
6005 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6006 || (info->emit_gnu_hash
6007 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6008 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6009 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6010 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6011 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6012 bed->s->sizeof_sym))
6017 /* The backend must work out the sizes of all the other dynamic
6020 && bed->elf_backend_size_dynamic_sections != NULL
6021 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6024 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6027 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6029 unsigned long section_sym_count;
6030 struct bfd_elf_version_tree *verdefs;
6033 /* Set up the version definition section. */
6034 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6035 BFD_ASSERT (s != NULL);
6037 /* We may have created additional version definitions if we are
6038 just linking a regular application. */
6039 verdefs = info->version_info;
6041 /* Skip anonymous version tag. */
6042 if (verdefs != NULL && verdefs->vernum == 0)
6043 verdefs = verdefs->next;
6045 if (verdefs == NULL && !info->create_default_symver)
6046 s->flags |= SEC_EXCLUDE;
6051 struct bfd_elf_version_tree *t;
6053 Elf_Internal_Verdef def;
6054 Elf_Internal_Verdaux defaux;
6055 struct bfd_link_hash_entry *bh;
6056 struct elf_link_hash_entry *h;
6062 /* Make space for the base version. */
6063 size += sizeof (Elf_External_Verdef);
6064 size += sizeof (Elf_External_Verdaux);
6067 /* Make space for the default version. */
6068 if (info->create_default_symver)
6070 size += sizeof (Elf_External_Verdef);
6074 for (t = verdefs; t != NULL; t = t->next)
6076 struct bfd_elf_version_deps *n;
6078 /* Don't emit base version twice. */
6082 size += sizeof (Elf_External_Verdef);
6083 size += sizeof (Elf_External_Verdaux);
6086 for (n = t->deps; n != NULL; n = n->next)
6087 size += sizeof (Elf_External_Verdaux);
6091 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6092 if (s->contents == NULL && s->size != 0)
6095 /* Fill in the version definition section. */
6099 def.vd_version = VER_DEF_CURRENT;
6100 def.vd_flags = VER_FLG_BASE;
6103 if (info->create_default_symver)
6105 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6106 def.vd_next = sizeof (Elf_External_Verdef);
6110 def.vd_aux = sizeof (Elf_External_Verdef);
6111 def.vd_next = (sizeof (Elf_External_Verdef)
6112 + sizeof (Elf_External_Verdaux));
6115 if (soname_indx != (bfd_size_type) -1)
6117 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6119 def.vd_hash = bfd_elf_hash (soname);
6120 defaux.vda_name = soname_indx;
6127 name = lbasename (output_bfd->filename);
6128 def.vd_hash = bfd_elf_hash (name);
6129 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6131 if (indx == (bfd_size_type) -1)
6133 defaux.vda_name = indx;
6135 defaux.vda_next = 0;
6137 _bfd_elf_swap_verdef_out (output_bfd, &def,
6138 (Elf_External_Verdef *) p);
6139 p += sizeof (Elf_External_Verdef);
6140 if (info->create_default_symver)
6142 /* Add a symbol representing this version. */
6144 if (! (_bfd_generic_link_add_one_symbol
6145 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6147 get_elf_backend_data (dynobj)->collect, &bh)))
6149 h = (struct elf_link_hash_entry *) bh;
6152 h->type = STT_OBJECT;
6153 h->verinfo.vertree = NULL;
6155 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6158 /* Create a duplicate of the base version with the same
6159 aux block, but different flags. */
6162 def.vd_aux = sizeof (Elf_External_Verdef);
6164 def.vd_next = (sizeof (Elf_External_Verdef)
6165 + sizeof (Elf_External_Verdaux));
6168 _bfd_elf_swap_verdef_out (output_bfd, &def,
6169 (Elf_External_Verdef *) p);
6170 p += sizeof (Elf_External_Verdef);
6172 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6173 (Elf_External_Verdaux *) p);
6174 p += sizeof (Elf_External_Verdaux);
6176 for (t = verdefs; t != NULL; t = t->next)
6179 struct bfd_elf_version_deps *n;
6181 /* Don't emit the base version twice. */
6186 for (n = t->deps; n != NULL; n = n->next)
6189 /* Add a symbol representing this version. */
6191 if (! (_bfd_generic_link_add_one_symbol
6192 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6194 get_elf_backend_data (dynobj)->collect, &bh)))
6196 h = (struct elf_link_hash_entry *) bh;
6199 h->type = STT_OBJECT;
6200 h->verinfo.vertree = t;
6202 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6205 def.vd_version = VER_DEF_CURRENT;
6207 if (t->globals.list == NULL
6208 && t->locals.list == NULL
6210 def.vd_flags |= VER_FLG_WEAK;
6211 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6212 def.vd_cnt = cdeps + 1;
6213 def.vd_hash = bfd_elf_hash (t->name);
6214 def.vd_aux = sizeof (Elf_External_Verdef);
6217 /* If a basever node is next, it *must* be the last node in
6218 the chain, otherwise Verdef construction breaks. */
6219 if (t->next != NULL && t->next->vernum == 0)
6220 BFD_ASSERT (t->next->next == NULL);
6222 if (t->next != NULL && t->next->vernum != 0)
6223 def.vd_next = (sizeof (Elf_External_Verdef)
6224 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6226 _bfd_elf_swap_verdef_out (output_bfd, &def,
6227 (Elf_External_Verdef *) p);
6228 p += sizeof (Elf_External_Verdef);
6230 defaux.vda_name = h->dynstr_index;
6231 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6233 defaux.vda_next = 0;
6234 if (t->deps != NULL)
6235 defaux.vda_next = sizeof (Elf_External_Verdaux);
6236 t->name_indx = defaux.vda_name;
6238 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6239 (Elf_External_Verdaux *) p);
6240 p += sizeof (Elf_External_Verdaux);
6242 for (n = t->deps; n != NULL; n = n->next)
6244 if (n->version_needed == NULL)
6246 /* This can happen if there was an error in the
6248 defaux.vda_name = 0;
6252 defaux.vda_name = n->version_needed->name_indx;
6253 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6256 if (n->next == NULL)
6257 defaux.vda_next = 0;
6259 defaux.vda_next = sizeof (Elf_External_Verdaux);
6261 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6262 (Elf_External_Verdaux *) p);
6263 p += sizeof (Elf_External_Verdaux);
6267 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6268 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6271 elf_tdata (output_bfd)->cverdefs = cdefs;
6274 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6276 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6279 else if (info->flags & DF_BIND_NOW)
6281 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6287 if (info->executable)
6288 info->flags_1 &= ~ (DF_1_INITFIRST
6291 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6295 /* Work out the size of the version reference section. */
6297 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6298 BFD_ASSERT (s != NULL);
6300 struct elf_find_verdep_info sinfo;
6303 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6304 if (sinfo.vers == 0)
6306 sinfo.failed = FALSE;
6308 elf_link_hash_traverse (elf_hash_table (info),
6309 _bfd_elf_link_find_version_dependencies,
6314 if (elf_tdata (output_bfd)->verref == NULL)
6315 s->flags |= SEC_EXCLUDE;
6318 Elf_Internal_Verneed *t;
6323 /* Build the version dependency section. */
6326 for (t = elf_tdata (output_bfd)->verref;
6330 Elf_Internal_Vernaux *a;
6332 size += sizeof (Elf_External_Verneed);
6334 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6335 size += sizeof (Elf_External_Vernaux);
6339 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6340 if (s->contents == NULL)
6344 for (t = elf_tdata (output_bfd)->verref;
6349 Elf_Internal_Vernaux *a;
6353 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6356 t->vn_version = VER_NEED_CURRENT;
6358 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6359 elf_dt_name (t->vn_bfd) != NULL
6360 ? elf_dt_name (t->vn_bfd)
6361 : lbasename (t->vn_bfd->filename),
6363 if (indx == (bfd_size_type) -1)
6366 t->vn_aux = sizeof (Elf_External_Verneed);
6367 if (t->vn_nextref == NULL)
6370 t->vn_next = (sizeof (Elf_External_Verneed)
6371 + caux * sizeof (Elf_External_Vernaux));
6373 _bfd_elf_swap_verneed_out (output_bfd, t,
6374 (Elf_External_Verneed *) p);
6375 p += sizeof (Elf_External_Verneed);
6377 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6379 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6380 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6381 a->vna_nodename, FALSE);
6382 if (indx == (bfd_size_type) -1)
6385 if (a->vna_nextptr == NULL)
6388 a->vna_next = sizeof (Elf_External_Vernaux);
6390 _bfd_elf_swap_vernaux_out (output_bfd, a,
6391 (Elf_External_Vernaux *) p);
6392 p += sizeof (Elf_External_Vernaux);
6396 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6397 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6400 elf_tdata (output_bfd)->cverrefs = crefs;
6404 if ((elf_tdata (output_bfd)->cverrefs == 0
6405 && elf_tdata (output_bfd)->cverdefs == 0)
6406 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6407 §ion_sym_count) == 0)
6409 s = bfd_get_linker_section (dynobj, ".gnu.version");
6410 s->flags |= SEC_EXCLUDE;
6416 /* Find the first non-excluded output section. We'll use its
6417 section symbol for some emitted relocs. */
6419 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6423 for (s = output_bfd->sections; s != NULL; s = s->next)
6424 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6425 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6427 elf_hash_table (info)->text_index_section = s;
6432 /* Find two non-excluded output sections, one for code, one for data.
6433 We'll use their section symbols for some emitted relocs. */
6435 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6439 /* Data first, since setting text_index_section changes
6440 _bfd_elf_link_omit_section_dynsym. */
6441 for (s = output_bfd->sections; s != NULL; s = s->next)
6442 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6443 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6445 elf_hash_table (info)->data_index_section = s;
6449 for (s = output_bfd->sections; s != NULL; s = s->next)
6450 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6451 == (SEC_ALLOC | SEC_READONLY))
6452 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6454 elf_hash_table (info)->text_index_section = s;
6458 if (elf_hash_table (info)->text_index_section == NULL)
6459 elf_hash_table (info)->text_index_section
6460 = elf_hash_table (info)->data_index_section;
6464 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6466 const struct elf_backend_data *bed;
6468 if (!is_elf_hash_table (info->hash))
6471 bed = get_elf_backend_data (output_bfd);
6472 (*bed->elf_backend_init_index_section) (output_bfd, info);
6474 if (elf_hash_table (info)->dynamic_sections_created)
6478 bfd_size_type dynsymcount;
6479 unsigned long section_sym_count;
6480 unsigned int dtagcount;
6482 dynobj = elf_hash_table (info)->dynobj;
6484 /* Assign dynsym indicies. In a shared library we generate a
6485 section symbol for each output section, which come first.
6486 Next come all of the back-end allocated local dynamic syms,
6487 followed by the rest of the global symbols. */
6489 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6490 §ion_sym_count);
6492 /* Work out the size of the symbol version section. */
6493 s = bfd_get_linker_section (dynobj, ".gnu.version");
6494 BFD_ASSERT (s != NULL);
6495 if (dynsymcount != 0
6496 && (s->flags & SEC_EXCLUDE) == 0)
6498 s->size = dynsymcount * sizeof (Elf_External_Versym);
6499 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6500 if (s->contents == NULL)
6503 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6507 /* Set the size of the .dynsym and .hash sections. We counted
6508 the number of dynamic symbols in elf_link_add_object_symbols.
6509 We will build the contents of .dynsym and .hash when we build
6510 the final symbol table, because until then we do not know the
6511 correct value to give the symbols. We built the .dynstr
6512 section as we went along in elf_link_add_object_symbols. */
6513 s = bfd_get_linker_section (dynobj, ".dynsym");
6514 BFD_ASSERT (s != NULL);
6515 s->size = dynsymcount * bed->s->sizeof_sym;
6517 if (dynsymcount != 0)
6519 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6520 if (s->contents == NULL)
6523 /* The first entry in .dynsym is a dummy symbol.
6524 Clear all the section syms, in case we don't output them all. */
6525 ++section_sym_count;
6526 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6529 elf_hash_table (info)->bucketcount = 0;
6531 /* Compute the size of the hashing table. As a side effect this
6532 computes the hash values for all the names we export. */
6533 if (info->emit_hash)
6535 unsigned long int *hashcodes;
6536 struct hash_codes_info hashinf;
6538 unsigned long int nsyms;
6540 size_t hash_entry_size;
6542 /* Compute the hash values for all exported symbols. At the same
6543 time store the values in an array so that we could use them for
6545 amt = dynsymcount * sizeof (unsigned long int);
6546 hashcodes = (unsigned long int *) bfd_malloc (amt);
6547 if (hashcodes == NULL)
6549 hashinf.hashcodes = hashcodes;
6550 hashinf.error = FALSE;
6552 /* Put all hash values in HASHCODES. */
6553 elf_link_hash_traverse (elf_hash_table (info),
6554 elf_collect_hash_codes, &hashinf);
6561 nsyms = hashinf.hashcodes - hashcodes;
6563 = compute_bucket_count (info, hashcodes, nsyms, 0);
6566 if (bucketcount == 0)
6569 elf_hash_table (info)->bucketcount = bucketcount;
6571 s = bfd_get_linker_section (dynobj, ".hash");
6572 BFD_ASSERT (s != NULL);
6573 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6574 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6575 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6576 if (s->contents == NULL)
6579 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6580 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6581 s->contents + hash_entry_size);
6584 if (info->emit_gnu_hash)
6587 unsigned char *contents;
6588 struct collect_gnu_hash_codes cinfo;
6592 memset (&cinfo, 0, sizeof (cinfo));
6594 /* Compute the hash values for all exported symbols. At the same
6595 time store the values in an array so that we could use them for
6597 amt = dynsymcount * 2 * sizeof (unsigned long int);
6598 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6599 if (cinfo.hashcodes == NULL)
6602 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6603 cinfo.min_dynindx = -1;
6604 cinfo.output_bfd = output_bfd;
6607 /* Put all hash values in HASHCODES. */
6608 elf_link_hash_traverse (elf_hash_table (info),
6609 elf_collect_gnu_hash_codes, &cinfo);
6612 free (cinfo.hashcodes);
6617 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6619 if (bucketcount == 0)
6621 free (cinfo.hashcodes);
6625 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6626 BFD_ASSERT (s != NULL);
6628 if (cinfo.nsyms == 0)
6630 /* Empty .gnu.hash section is special. */
6631 BFD_ASSERT (cinfo.min_dynindx == -1);
6632 free (cinfo.hashcodes);
6633 s->size = 5 * 4 + bed->s->arch_size / 8;
6634 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6635 if (contents == NULL)
6637 s->contents = contents;
6638 /* 1 empty bucket. */
6639 bfd_put_32 (output_bfd, 1, contents);
6640 /* SYMIDX above the special symbol 0. */
6641 bfd_put_32 (output_bfd, 1, contents + 4);
6642 /* Just one word for bitmask. */
6643 bfd_put_32 (output_bfd, 1, contents + 8);
6644 /* Only hash fn bloom filter. */
6645 bfd_put_32 (output_bfd, 0, contents + 12);
6646 /* No hashes are valid - empty bitmask. */
6647 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6648 /* No hashes in the only bucket. */
6649 bfd_put_32 (output_bfd, 0,
6650 contents + 16 + bed->s->arch_size / 8);
6654 unsigned long int maskwords, maskbitslog2, x;
6655 BFD_ASSERT (cinfo.min_dynindx != -1);
6659 while ((x >>= 1) != 0)
6661 if (maskbitslog2 < 3)
6663 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6664 maskbitslog2 = maskbitslog2 + 3;
6666 maskbitslog2 = maskbitslog2 + 2;
6667 if (bed->s->arch_size == 64)
6669 if (maskbitslog2 == 5)
6675 cinfo.mask = (1 << cinfo.shift1) - 1;
6676 cinfo.shift2 = maskbitslog2;
6677 cinfo.maskbits = 1 << maskbitslog2;
6678 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6679 amt = bucketcount * sizeof (unsigned long int) * 2;
6680 amt += maskwords * sizeof (bfd_vma);
6681 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6682 if (cinfo.bitmask == NULL)
6684 free (cinfo.hashcodes);
6688 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6689 cinfo.indx = cinfo.counts + bucketcount;
6690 cinfo.symindx = dynsymcount - cinfo.nsyms;
6691 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6693 /* Determine how often each hash bucket is used. */
6694 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6695 for (i = 0; i < cinfo.nsyms; ++i)
6696 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6698 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6699 if (cinfo.counts[i] != 0)
6701 cinfo.indx[i] = cnt;
6702 cnt += cinfo.counts[i];
6704 BFD_ASSERT (cnt == dynsymcount);
6705 cinfo.bucketcount = bucketcount;
6706 cinfo.local_indx = cinfo.min_dynindx;
6708 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6709 s->size += cinfo.maskbits / 8;
6710 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6711 if (contents == NULL)
6713 free (cinfo.bitmask);
6714 free (cinfo.hashcodes);
6718 s->contents = contents;
6719 bfd_put_32 (output_bfd, bucketcount, contents);
6720 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6721 bfd_put_32 (output_bfd, maskwords, contents + 8);
6722 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6723 contents += 16 + cinfo.maskbits / 8;
6725 for (i = 0; i < bucketcount; ++i)
6727 if (cinfo.counts[i] == 0)
6728 bfd_put_32 (output_bfd, 0, contents);
6730 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6734 cinfo.contents = contents;
6736 /* Renumber dynamic symbols, populate .gnu.hash section. */
6737 elf_link_hash_traverse (elf_hash_table (info),
6738 elf_renumber_gnu_hash_syms, &cinfo);
6740 contents = s->contents + 16;
6741 for (i = 0; i < maskwords; ++i)
6743 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6745 contents += bed->s->arch_size / 8;
6748 free (cinfo.bitmask);
6749 free (cinfo.hashcodes);
6753 s = bfd_get_linker_section (dynobj, ".dynstr");
6754 BFD_ASSERT (s != NULL);
6756 elf_finalize_dynstr (output_bfd, info);
6758 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6760 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6761 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6768 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6771 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6774 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6775 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6778 /* Finish SHF_MERGE section merging. */
6781 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6786 if (!is_elf_hash_table (info->hash))
6789 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6790 if ((ibfd->flags & DYNAMIC) == 0)
6791 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6792 if ((sec->flags & SEC_MERGE) != 0
6793 && !bfd_is_abs_section (sec->output_section))
6795 struct bfd_elf_section_data *secdata;
6797 secdata = elf_section_data (sec);
6798 if (! _bfd_add_merge_section (abfd,
6799 &elf_hash_table (info)->merge_info,
6800 sec, &secdata->sec_info))
6802 else if (secdata->sec_info)
6803 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6806 if (elf_hash_table (info)->merge_info != NULL)
6807 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6808 merge_sections_remove_hook);
6812 /* Create an entry in an ELF linker hash table. */
6814 struct bfd_hash_entry *
6815 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6816 struct bfd_hash_table *table,
6819 /* Allocate the structure if it has not already been allocated by a
6823 entry = (struct bfd_hash_entry *)
6824 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6829 /* Call the allocation method of the superclass. */
6830 entry = _bfd_link_hash_newfunc (entry, table, string);
6833 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6834 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6836 /* Set local fields. */
6839 ret->got = htab->init_got_refcount;
6840 ret->plt = htab->init_plt_refcount;
6841 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6842 - offsetof (struct elf_link_hash_entry, size)));
6843 /* Assume that we have been called by a non-ELF symbol reader.
6844 This flag is then reset by the code which reads an ELF input
6845 file. This ensures that a symbol created by a non-ELF symbol
6846 reader will have the flag set correctly. */
6853 /* Copy data from an indirect symbol to its direct symbol, hiding the
6854 old indirect symbol. Also used for copying flags to a weakdef. */
6857 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6858 struct elf_link_hash_entry *dir,
6859 struct elf_link_hash_entry *ind)
6861 struct elf_link_hash_table *htab;
6863 /* Copy down any references that we may have already seen to the
6864 symbol which just became indirect. */
6866 dir->ref_dynamic |= ind->ref_dynamic;
6867 dir->ref_regular |= ind->ref_regular;
6868 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6869 dir->non_got_ref |= ind->non_got_ref;
6870 dir->needs_plt |= ind->needs_plt;
6871 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6873 if (ind->root.type != bfd_link_hash_indirect)
6876 /* Copy over the global and procedure linkage table refcount entries.
6877 These may have been already set up by a check_relocs routine. */
6878 htab = elf_hash_table (info);
6879 if (ind->got.refcount > htab->init_got_refcount.refcount)
6881 if (dir->got.refcount < 0)
6882 dir->got.refcount = 0;
6883 dir->got.refcount += ind->got.refcount;
6884 ind->got.refcount = htab->init_got_refcount.refcount;
6887 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6889 if (dir->plt.refcount < 0)
6890 dir->plt.refcount = 0;
6891 dir->plt.refcount += ind->plt.refcount;
6892 ind->plt.refcount = htab->init_plt_refcount.refcount;
6895 if (ind->dynindx != -1)
6897 if (dir->dynindx != -1)
6898 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6899 dir->dynindx = ind->dynindx;
6900 dir->dynstr_index = ind->dynstr_index;
6902 ind->dynstr_index = 0;
6907 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6908 struct elf_link_hash_entry *h,
6909 bfd_boolean force_local)
6911 /* STT_GNU_IFUNC symbol must go through PLT. */
6912 if (h->type != STT_GNU_IFUNC)
6914 h->plt = elf_hash_table (info)->init_plt_offset;
6919 h->forced_local = 1;
6920 if (h->dynindx != -1)
6923 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6929 /* Initialize an ELF linker hash table. */
6932 _bfd_elf_link_hash_table_init
6933 (struct elf_link_hash_table *table,
6935 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6936 struct bfd_hash_table *,
6938 unsigned int entsize,
6939 enum elf_target_id target_id)
6942 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6944 memset (table, 0, sizeof * table);
6945 table->init_got_refcount.refcount = can_refcount - 1;
6946 table->init_plt_refcount.refcount = can_refcount - 1;
6947 table->init_got_offset.offset = -(bfd_vma) 1;
6948 table->init_plt_offset.offset = -(bfd_vma) 1;
6949 /* The first dynamic symbol is a dummy. */
6950 table->dynsymcount = 1;
6952 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6954 table->root.type = bfd_link_elf_hash_table;
6955 table->hash_table_id = target_id;
6960 /* Create an ELF linker hash table. */
6962 struct bfd_link_hash_table *
6963 _bfd_elf_link_hash_table_create (bfd *abfd)
6965 struct elf_link_hash_table *ret;
6966 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6968 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6972 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6973 sizeof (struct elf_link_hash_entry),
6983 /* This is a hook for the ELF emulation code in the generic linker to
6984 tell the backend linker what file name to use for the DT_NEEDED
6985 entry for a dynamic object. */
6988 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6990 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6991 && bfd_get_format (abfd) == bfd_object)
6992 elf_dt_name (abfd) = name;
6996 bfd_elf_get_dyn_lib_class (bfd *abfd)
6999 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7000 && bfd_get_format (abfd) == bfd_object)
7001 lib_class = elf_dyn_lib_class (abfd);
7008 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7010 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7011 && bfd_get_format (abfd) == bfd_object)
7012 elf_dyn_lib_class (abfd) = lib_class;
7015 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7016 the linker ELF emulation code. */
7018 struct bfd_link_needed_list *
7019 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7020 struct bfd_link_info *info)
7022 if (! is_elf_hash_table (info->hash))
7024 return elf_hash_table (info)->needed;
7027 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7028 hook for the linker ELF emulation code. */
7030 struct bfd_link_needed_list *
7031 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7032 struct bfd_link_info *info)
7034 if (! is_elf_hash_table (info->hash))
7036 return elf_hash_table (info)->runpath;
7039 /* Get the name actually used for a dynamic object for a link. This
7040 is the SONAME entry if there is one. Otherwise, it is the string
7041 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7044 bfd_elf_get_dt_soname (bfd *abfd)
7046 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7047 && bfd_get_format (abfd) == bfd_object)
7048 return elf_dt_name (abfd);
7052 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7053 the ELF linker emulation code. */
7056 bfd_elf_get_bfd_needed_list (bfd *abfd,
7057 struct bfd_link_needed_list **pneeded)
7060 bfd_byte *dynbuf = NULL;
7061 unsigned int elfsec;
7062 unsigned long shlink;
7063 bfd_byte *extdyn, *extdynend;
7065 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7069 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7070 || bfd_get_format (abfd) != bfd_object)
7073 s = bfd_get_section_by_name (abfd, ".dynamic");
7074 if (s == NULL || s->size == 0)
7077 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7080 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7081 if (elfsec == SHN_BAD)
7084 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7086 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7087 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7090 extdynend = extdyn + s->size;
7091 for (; extdyn < extdynend; extdyn += extdynsize)
7093 Elf_Internal_Dyn dyn;
7095 (*swap_dyn_in) (abfd, extdyn, &dyn);
7097 if (dyn.d_tag == DT_NULL)
7100 if (dyn.d_tag == DT_NEEDED)
7103 struct bfd_link_needed_list *l;
7104 unsigned int tagv = dyn.d_un.d_val;
7107 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7112 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7133 struct elf_symbuf_symbol
7135 unsigned long st_name; /* Symbol name, index in string tbl */
7136 unsigned char st_info; /* Type and binding attributes */
7137 unsigned char st_other; /* Visibilty, and target specific */
7140 struct elf_symbuf_head
7142 struct elf_symbuf_symbol *ssym;
7143 bfd_size_type count;
7144 unsigned int st_shndx;
7151 Elf_Internal_Sym *isym;
7152 struct elf_symbuf_symbol *ssym;
7157 /* Sort references to symbols by ascending section number. */
7160 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7162 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7163 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7165 return s1->st_shndx - s2->st_shndx;
7169 elf_sym_name_compare (const void *arg1, const void *arg2)
7171 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7172 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7173 return strcmp (s1->name, s2->name);
7176 static struct elf_symbuf_head *
7177 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7179 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7180 struct elf_symbuf_symbol *ssym;
7181 struct elf_symbuf_head *ssymbuf, *ssymhead;
7182 bfd_size_type i, shndx_count, total_size;
7184 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7188 for (ind = indbuf, i = 0; i < symcount; i++)
7189 if (isymbuf[i].st_shndx != SHN_UNDEF)
7190 *ind++ = &isymbuf[i];
7193 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7194 elf_sort_elf_symbol);
7197 if (indbufend > indbuf)
7198 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7199 if (ind[0]->st_shndx != ind[1]->st_shndx)
7202 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7203 + (indbufend - indbuf) * sizeof (*ssym));
7204 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7205 if (ssymbuf == NULL)
7211 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7212 ssymbuf->ssym = NULL;
7213 ssymbuf->count = shndx_count;
7214 ssymbuf->st_shndx = 0;
7215 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7217 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7220 ssymhead->ssym = ssym;
7221 ssymhead->count = 0;
7222 ssymhead->st_shndx = (*ind)->st_shndx;
7224 ssym->st_name = (*ind)->st_name;
7225 ssym->st_info = (*ind)->st_info;
7226 ssym->st_other = (*ind)->st_other;
7229 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7230 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7237 /* Check if 2 sections define the same set of local and global
7241 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7242 struct bfd_link_info *info)
7245 const struct elf_backend_data *bed1, *bed2;
7246 Elf_Internal_Shdr *hdr1, *hdr2;
7247 bfd_size_type symcount1, symcount2;
7248 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7249 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7250 Elf_Internal_Sym *isym, *isymend;
7251 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7252 bfd_size_type count1, count2, i;
7253 unsigned int shndx1, shndx2;
7259 /* Both sections have to be in ELF. */
7260 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7261 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7264 if (elf_section_type (sec1) != elf_section_type (sec2))
7267 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7268 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7269 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7272 bed1 = get_elf_backend_data (bfd1);
7273 bed2 = get_elf_backend_data (bfd2);
7274 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7275 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7276 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7277 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7279 if (symcount1 == 0 || symcount2 == 0)
7285 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7286 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7288 if (ssymbuf1 == NULL)
7290 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7292 if (isymbuf1 == NULL)
7295 if (!info->reduce_memory_overheads)
7296 elf_tdata (bfd1)->symbuf = ssymbuf1
7297 = elf_create_symbuf (symcount1, isymbuf1);
7300 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7302 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7304 if (isymbuf2 == NULL)
7307 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7308 elf_tdata (bfd2)->symbuf = ssymbuf2
7309 = elf_create_symbuf (symcount2, isymbuf2);
7312 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7314 /* Optimized faster version. */
7315 bfd_size_type lo, hi, mid;
7316 struct elf_symbol *symp;
7317 struct elf_symbuf_symbol *ssym, *ssymend;
7320 hi = ssymbuf1->count;
7325 mid = (lo + hi) / 2;
7326 if (shndx1 < ssymbuf1[mid].st_shndx)
7328 else if (shndx1 > ssymbuf1[mid].st_shndx)
7332 count1 = ssymbuf1[mid].count;
7339 hi = ssymbuf2->count;
7344 mid = (lo + hi) / 2;
7345 if (shndx2 < ssymbuf2[mid].st_shndx)
7347 else if (shndx2 > ssymbuf2[mid].st_shndx)
7351 count2 = ssymbuf2[mid].count;
7357 if (count1 == 0 || count2 == 0 || count1 != count2)
7360 symtable1 = (struct elf_symbol *)
7361 bfd_malloc (count1 * sizeof (struct elf_symbol));
7362 symtable2 = (struct elf_symbol *)
7363 bfd_malloc (count2 * sizeof (struct elf_symbol));
7364 if (symtable1 == NULL || symtable2 == NULL)
7368 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7369 ssym < ssymend; ssym++, symp++)
7371 symp->u.ssym = ssym;
7372 symp->name = bfd_elf_string_from_elf_section (bfd1,
7378 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7379 ssym < ssymend; ssym++, symp++)
7381 symp->u.ssym = ssym;
7382 symp->name = bfd_elf_string_from_elf_section (bfd2,
7387 /* Sort symbol by name. */
7388 qsort (symtable1, count1, sizeof (struct elf_symbol),
7389 elf_sym_name_compare);
7390 qsort (symtable2, count1, sizeof (struct elf_symbol),
7391 elf_sym_name_compare);
7393 for (i = 0; i < count1; i++)
7394 /* Two symbols must have the same binding, type and name. */
7395 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7396 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7397 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7404 symtable1 = (struct elf_symbol *)
7405 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7406 symtable2 = (struct elf_symbol *)
7407 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7408 if (symtable1 == NULL || symtable2 == NULL)
7411 /* Count definitions in the section. */
7413 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7414 if (isym->st_shndx == shndx1)
7415 symtable1[count1++].u.isym = isym;
7418 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7419 if (isym->st_shndx == shndx2)
7420 symtable2[count2++].u.isym = isym;
7422 if (count1 == 0 || count2 == 0 || count1 != count2)
7425 for (i = 0; i < count1; i++)
7427 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7428 symtable1[i].u.isym->st_name);
7430 for (i = 0; i < count2; i++)
7432 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7433 symtable2[i].u.isym->st_name);
7435 /* Sort symbol by name. */
7436 qsort (symtable1, count1, sizeof (struct elf_symbol),
7437 elf_sym_name_compare);
7438 qsort (symtable2, count1, sizeof (struct elf_symbol),
7439 elf_sym_name_compare);
7441 for (i = 0; i < count1; i++)
7442 /* Two symbols must have the same binding, type and name. */
7443 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7444 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7445 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7463 /* Return TRUE if 2 section types are compatible. */
7466 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7467 bfd *bbfd, const asection *bsec)
7471 || abfd->xvec->flavour != bfd_target_elf_flavour
7472 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7475 return elf_section_type (asec) == elf_section_type (bsec);
7478 /* Final phase of ELF linker. */
7480 /* A structure we use to avoid passing large numbers of arguments. */
7482 struct elf_final_link_info
7484 /* General link information. */
7485 struct bfd_link_info *info;
7488 /* Symbol string table. */
7489 struct bfd_strtab_hash *symstrtab;
7490 /* .dynsym section. */
7491 asection *dynsym_sec;
7492 /* .hash section. */
7494 /* symbol version section (.gnu.version). */
7495 asection *symver_sec;
7496 /* Buffer large enough to hold contents of any section. */
7498 /* Buffer large enough to hold external relocs of any section. */
7499 void *external_relocs;
7500 /* Buffer large enough to hold internal relocs of any section. */
7501 Elf_Internal_Rela *internal_relocs;
7502 /* Buffer large enough to hold external local symbols of any input
7504 bfd_byte *external_syms;
7505 /* And a buffer for symbol section indices. */
7506 Elf_External_Sym_Shndx *locsym_shndx;
7507 /* Buffer large enough to hold internal local symbols of any input
7509 Elf_Internal_Sym *internal_syms;
7510 /* Array large enough to hold a symbol index for each local symbol
7511 of any input BFD. */
7513 /* Array large enough to hold a section pointer for each local
7514 symbol of any input BFD. */
7515 asection **sections;
7516 /* Buffer to hold swapped out symbols. */
7518 /* And one for symbol section indices. */
7519 Elf_External_Sym_Shndx *symshndxbuf;
7520 /* Number of swapped out symbols in buffer. */
7521 size_t symbuf_count;
7522 /* Number of symbols which fit in symbuf. */
7524 /* And same for symshndxbuf. */
7525 size_t shndxbuf_size;
7526 /* Number of STT_FILE syms seen. */
7527 size_t filesym_count;
7530 /* This struct is used to pass information to elf_link_output_extsym. */
7532 struct elf_outext_info
7535 bfd_boolean localsyms;
7536 bfd_boolean need_second_pass;
7537 bfd_boolean second_pass;
7538 struct elf_final_link_info *flinfo;
7542 /* Support for evaluating a complex relocation.
7544 Complex relocations are generalized, self-describing relocations. The
7545 implementation of them consists of two parts: complex symbols, and the
7546 relocations themselves.
7548 The relocations are use a reserved elf-wide relocation type code (R_RELC
7549 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7550 information (start bit, end bit, word width, etc) into the addend. This
7551 information is extracted from CGEN-generated operand tables within gas.
7553 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7554 internal) representing prefix-notation expressions, including but not
7555 limited to those sorts of expressions normally encoded as addends in the
7556 addend field. The symbol mangling format is:
7559 | <unary-operator> ':' <node>
7560 | <binary-operator> ':' <node> ':' <node>
7563 <literal> := 's' <digits=N> ':' <N character symbol name>
7564 | 'S' <digits=N> ':' <N character section name>
7568 <binary-operator> := as in C
7569 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7572 set_symbol_value (bfd *bfd_with_globals,
7573 Elf_Internal_Sym *isymbuf,
7578 struct elf_link_hash_entry **sym_hashes;
7579 struct elf_link_hash_entry *h;
7580 size_t extsymoff = locsymcount;
7582 if (symidx < locsymcount)
7584 Elf_Internal_Sym *sym;
7586 sym = isymbuf + symidx;
7587 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7589 /* It is a local symbol: move it to the
7590 "absolute" section and give it a value. */
7591 sym->st_shndx = SHN_ABS;
7592 sym->st_value = val;
7595 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7599 /* It is a global symbol: set its link type
7600 to "defined" and give it a value. */
7602 sym_hashes = elf_sym_hashes (bfd_with_globals);
7603 h = sym_hashes [symidx - extsymoff];
7604 while (h->root.type == bfd_link_hash_indirect
7605 || h->root.type == bfd_link_hash_warning)
7606 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7607 h->root.type = bfd_link_hash_defined;
7608 h->root.u.def.value = val;
7609 h->root.u.def.section = bfd_abs_section_ptr;
7613 resolve_symbol (const char *name,
7615 struct elf_final_link_info *flinfo,
7617 Elf_Internal_Sym *isymbuf,
7620 Elf_Internal_Sym *sym;
7621 struct bfd_link_hash_entry *global_entry;
7622 const char *candidate = NULL;
7623 Elf_Internal_Shdr *symtab_hdr;
7626 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7628 for (i = 0; i < locsymcount; ++ i)
7632 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7635 candidate = bfd_elf_string_from_elf_section (input_bfd,
7636 symtab_hdr->sh_link,
7639 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7640 name, candidate, (unsigned long) sym->st_value);
7642 if (candidate && strcmp (candidate, name) == 0)
7644 asection *sec = flinfo->sections [i];
7646 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7647 *result += sec->output_offset + sec->output_section->vma;
7649 printf ("Found symbol with value %8.8lx\n",
7650 (unsigned long) *result);
7656 /* Hmm, haven't found it yet. perhaps it is a global. */
7657 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7658 FALSE, FALSE, TRUE);
7662 if (global_entry->type == bfd_link_hash_defined
7663 || global_entry->type == bfd_link_hash_defweak)
7665 *result = (global_entry->u.def.value
7666 + global_entry->u.def.section->output_section->vma
7667 + global_entry->u.def.section->output_offset);
7669 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7670 global_entry->root.string, (unsigned long) *result);
7679 resolve_section (const char *name,
7686 for (curr = sections; curr; curr = curr->next)
7687 if (strcmp (curr->name, name) == 0)
7689 *result = curr->vma;
7693 /* Hmm. still haven't found it. try pseudo-section names. */
7694 for (curr = sections; curr; curr = curr->next)
7696 len = strlen (curr->name);
7697 if (len > strlen (name))
7700 if (strncmp (curr->name, name, len) == 0)
7702 if (strncmp (".end", name + len, 4) == 0)
7704 *result = curr->vma + curr->size;
7708 /* Insert more pseudo-section names here, if you like. */
7716 undefined_reference (const char *reftype, const char *name)
7718 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7723 eval_symbol (bfd_vma *result,
7726 struct elf_final_link_info *flinfo,
7728 Elf_Internal_Sym *isymbuf,
7737 const char *sym = *symp;
7739 bfd_boolean symbol_is_section = FALSE;
7744 if (len < 1 || len > sizeof (symbuf))
7746 bfd_set_error (bfd_error_invalid_operation);
7759 *result = strtoul (sym, (char **) symp, 16);
7763 symbol_is_section = TRUE;
7766 symlen = strtol (sym, (char **) symp, 10);
7767 sym = *symp + 1; /* Skip the trailing ':'. */
7769 if (symend < sym || symlen + 1 > sizeof (symbuf))
7771 bfd_set_error (bfd_error_invalid_operation);
7775 memcpy (symbuf, sym, symlen);
7776 symbuf[symlen] = '\0';
7777 *symp = sym + symlen;
7779 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7780 the symbol as a section, or vice-versa. so we're pretty liberal in our
7781 interpretation here; section means "try section first", not "must be a
7782 section", and likewise with symbol. */
7784 if (symbol_is_section)
7786 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7787 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7788 isymbuf, locsymcount))
7790 undefined_reference ("section", symbuf);
7796 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7797 isymbuf, locsymcount)
7798 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7801 undefined_reference ("symbol", symbuf);
7808 /* All that remains are operators. */
7810 #define UNARY_OP(op) \
7811 if (strncmp (sym, #op, strlen (#op)) == 0) \
7813 sym += strlen (#op); \
7817 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7818 isymbuf, locsymcount, signed_p)) \
7821 *result = op ((bfd_signed_vma) a); \
7827 #define BINARY_OP(op) \
7828 if (strncmp (sym, #op, strlen (#op)) == 0) \
7830 sym += strlen (#op); \
7834 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7835 isymbuf, locsymcount, signed_p)) \
7838 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7839 isymbuf, locsymcount, signed_p)) \
7842 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7872 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7873 bfd_set_error (bfd_error_invalid_operation);
7879 put_value (bfd_vma size,
7880 unsigned long chunksz,
7885 location += (size - chunksz);
7887 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7895 bfd_put_8 (input_bfd, x, location);
7898 bfd_put_16 (input_bfd, x, location);
7901 bfd_put_32 (input_bfd, x, location);
7905 bfd_put_64 (input_bfd, x, location);
7915 get_value (bfd_vma size,
7916 unsigned long chunksz,
7923 /* Sanity checks. */
7924 BFD_ASSERT (chunksz <= sizeof (x)
7927 && (size % chunksz) == 0
7928 && input_bfd != NULL
7929 && location != NULL);
7931 if (chunksz == sizeof (x))
7933 BFD_ASSERT (size == chunksz);
7935 /* Make sure that we do not perform an undefined shift operation.
7936 We know that size == chunksz so there will only be one iteration
7937 of the loop below. */
7941 shift = 8 * chunksz;
7943 for (; size; size -= chunksz, location += chunksz)
7948 x = (x << shift) | bfd_get_8 (input_bfd, location);
7951 x = (x << shift) | bfd_get_16 (input_bfd, location);
7954 x = (x << shift) | bfd_get_32 (input_bfd, location);
7958 x = (x << shift) | bfd_get_64 (input_bfd, location);
7969 decode_complex_addend (unsigned long *start, /* in bits */
7970 unsigned long *oplen, /* in bits */
7971 unsigned long *len, /* in bits */
7972 unsigned long *wordsz, /* in bytes */
7973 unsigned long *chunksz, /* in bytes */
7974 unsigned long *lsb0_p,
7975 unsigned long *signed_p,
7976 unsigned long *trunc_p,
7977 unsigned long encoded)
7979 * start = encoded & 0x3F;
7980 * len = (encoded >> 6) & 0x3F;
7981 * oplen = (encoded >> 12) & 0x3F;
7982 * wordsz = (encoded >> 18) & 0xF;
7983 * chunksz = (encoded >> 22) & 0xF;
7984 * lsb0_p = (encoded >> 27) & 1;
7985 * signed_p = (encoded >> 28) & 1;
7986 * trunc_p = (encoded >> 29) & 1;
7989 bfd_reloc_status_type
7990 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7991 asection *input_section ATTRIBUTE_UNUSED,
7993 Elf_Internal_Rela *rel,
7996 bfd_vma shift, x, mask;
7997 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7998 bfd_reloc_status_type r;
8000 /* Perform this reloc, since it is complex.
8001 (this is not to say that it necessarily refers to a complex
8002 symbol; merely that it is a self-describing CGEN based reloc.
8003 i.e. the addend has the complete reloc information (bit start, end,
8004 word size, etc) encoded within it.). */
8006 decode_complex_addend (&start, &oplen, &len, &wordsz,
8007 &chunksz, &lsb0_p, &signed_p,
8008 &trunc_p, rel->r_addend);
8010 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8013 shift = (start + 1) - len;
8015 shift = (8 * wordsz) - (start + len);
8017 /* FIXME: octets_per_byte. */
8018 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8021 printf ("Doing complex reloc: "
8022 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8023 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8024 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8025 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8026 oplen, (unsigned long) x, (unsigned long) mask,
8027 (unsigned long) relocation);
8032 /* Now do an overflow check. */
8033 r = bfd_check_overflow ((signed_p
8034 ? complain_overflow_signed
8035 : complain_overflow_unsigned),
8036 len, 0, (8 * wordsz),
8040 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8043 printf (" relocation: %8.8lx\n"
8044 " shifted mask: %8.8lx\n"
8045 " shifted/masked reloc: %8.8lx\n"
8046 " result: %8.8lx\n",
8047 (unsigned long) relocation, (unsigned long) (mask << shift),
8048 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8050 /* FIXME: octets_per_byte. */
8051 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8055 /* When performing a relocatable link, the input relocations are
8056 preserved. But, if they reference global symbols, the indices
8057 referenced must be updated. Update all the relocations found in
8061 elf_link_adjust_relocs (bfd *abfd,
8062 struct bfd_elf_section_reloc_data *reldata)
8065 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8067 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8068 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8069 bfd_vma r_type_mask;
8071 unsigned int count = reldata->count;
8072 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8074 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8076 swap_in = bed->s->swap_reloc_in;
8077 swap_out = bed->s->swap_reloc_out;
8079 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8081 swap_in = bed->s->swap_reloca_in;
8082 swap_out = bed->s->swap_reloca_out;
8087 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8090 if (bed->s->arch_size == 32)
8097 r_type_mask = 0xffffffff;
8101 erela = reldata->hdr->contents;
8102 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8104 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8107 if (*rel_hash == NULL)
8110 BFD_ASSERT ((*rel_hash)->indx >= 0);
8112 (*swap_in) (abfd, erela, irela);
8113 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8114 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8115 | (irela[j].r_info & r_type_mask));
8116 (*swap_out) (abfd, irela, erela);
8120 struct elf_link_sort_rela
8126 enum elf_reloc_type_class type;
8127 /* We use this as an array of size int_rels_per_ext_rel. */
8128 Elf_Internal_Rela rela[1];
8132 elf_link_sort_cmp1 (const void *A, const void *B)
8134 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8135 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8136 int relativea, relativeb;
8138 relativea = a->type == reloc_class_relative;
8139 relativeb = b->type == reloc_class_relative;
8141 if (relativea < relativeb)
8143 if (relativea > relativeb)
8145 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8147 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8149 if (a->rela->r_offset < b->rela->r_offset)
8151 if (a->rela->r_offset > b->rela->r_offset)
8157 elf_link_sort_cmp2 (const void *A, const void *B)
8159 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8160 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8163 if (a->u.offset < b->u.offset)
8165 if (a->u.offset > b->u.offset)
8167 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8168 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8173 if (a->rela->r_offset < b->rela->r_offset)
8175 if (a->rela->r_offset > b->rela->r_offset)
8181 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8183 asection *dynamic_relocs;
8186 bfd_size_type count, size;
8187 size_t i, ret, sort_elt, ext_size;
8188 bfd_byte *sort, *s_non_relative, *p;
8189 struct elf_link_sort_rela *sq;
8190 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8191 int i2e = bed->s->int_rels_per_ext_rel;
8192 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8193 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8194 struct bfd_link_order *lo;
8196 bfd_boolean use_rela;
8198 /* Find a dynamic reloc section. */
8199 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8200 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8201 if (rela_dyn != NULL && rela_dyn->size > 0
8202 && rel_dyn != NULL && rel_dyn->size > 0)
8204 bfd_boolean use_rela_initialised = FALSE;
8206 /* This is just here to stop gcc from complaining.
8207 It's initialization checking code is not perfect. */
8210 /* Both sections are present. Examine the sizes
8211 of the indirect sections to help us choose. */
8212 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8213 if (lo->type == bfd_indirect_link_order)
8215 asection *o = lo->u.indirect.section;
8217 if ((o->size % bed->s->sizeof_rela) == 0)
8219 if ((o->size % bed->s->sizeof_rel) == 0)
8220 /* Section size is divisible by both rel and rela sizes.
8221 It is of no help to us. */
8225 /* Section size is only divisible by rela. */
8226 if (use_rela_initialised && (use_rela == FALSE))
8229 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8230 bfd_set_error (bfd_error_invalid_operation);
8236 use_rela_initialised = TRUE;
8240 else if ((o->size % bed->s->sizeof_rel) == 0)
8242 /* Section size is only divisible by rel. */
8243 if (use_rela_initialised && (use_rela == TRUE))
8246 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8247 bfd_set_error (bfd_error_invalid_operation);
8253 use_rela_initialised = TRUE;
8258 /* The section size is not divisible by either - something is wrong. */
8260 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8261 bfd_set_error (bfd_error_invalid_operation);
8266 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8267 if (lo->type == bfd_indirect_link_order)
8269 asection *o = lo->u.indirect.section;
8271 if ((o->size % bed->s->sizeof_rela) == 0)
8273 if ((o->size % bed->s->sizeof_rel) == 0)
8274 /* Section size is divisible by both rel and rela sizes.
8275 It is of no help to us. */
8279 /* Section size is only divisible by rela. */
8280 if (use_rela_initialised && (use_rela == FALSE))
8283 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8284 bfd_set_error (bfd_error_invalid_operation);
8290 use_rela_initialised = TRUE;
8294 else if ((o->size % bed->s->sizeof_rel) == 0)
8296 /* Section size is only divisible by rel. */
8297 if (use_rela_initialised && (use_rela == TRUE))
8300 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8301 bfd_set_error (bfd_error_invalid_operation);
8307 use_rela_initialised = TRUE;
8312 /* The section size is not divisible by either - something is wrong. */
8314 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8315 bfd_set_error (bfd_error_invalid_operation);
8320 if (! use_rela_initialised)
8324 else if (rela_dyn != NULL && rela_dyn->size > 0)
8326 else if (rel_dyn != NULL && rel_dyn->size > 0)
8333 dynamic_relocs = rela_dyn;
8334 ext_size = bed->s->sizeof_rela;
8335 swap_in = bed->s->swap_reloca_in;
8336 swap_out = bed->s->swap_reloca_out;
8340 dynamic_relocs = rel_dyn;
8341 ext_size = bed->s->sizeof_rel;
8342 swap_in = bed->s->swap_reloc_in;
8343 swap_out = bed->s->swap_reloc_out;
8347 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8348 if (lo->type == bfd_indirect_link_order)
8349 size += lo->u.indirect.section->size;
8351 if (size != dynamic_relocs->size)
8354 sort_elt = (sizeof (struct elf_link_sort_rela)
8355 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8357 count = dynamic_relocs->size / ext_size;
8360 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8364 (*info->callbacks->warning)
8365 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8369 if (bed->s->arch_size == 32)
8370 r_sym_mask = ~(bfd_vma) 0xff;
8372 r_sym_mask = ~(bfd_vma) 0xffffffff;
8374 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8375 if (lo->type == bfd_indirect_link_order)
8377 bfd_byte *erel, *erelend;
8378 asection *o = lo->u.indirect.section;
8380 if (o->contents == NULL && o->size != 0)
8382 /* This is a reloc section that is being handled as a normal
8383 section. See bfd_section_from_shdr. We can't combine
8384 relocs in this case. */
8389 erelend = o->contents + o->size;
8390 /* FIXME: octets_per_byte. */
8391 p = sort + o->output_offset / ext_size * sort_elt;
8393 while (erel < erelend)
8395 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8397 (*swap_in) (abfd, erel, s->rela);
8398 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8399 s->u.sym_mask = r_sym_mask;
8405 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8407 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8409 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8410 if (s->type != reloc_class_relative)
8416 sq = (struct elf_link_sort_rela *) s_non_relative;
8417 for (; i < count; i++, p += sort_elt)
8419 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8420 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8422 sp->u.offset = sq->rela->r_offset;
8425 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8427 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8428 if (lo->type == bfd_indirect_link_order)
8430 bfd_byte *erel, *erelend;
8431 asection *o = lo->u.indirect.section;
8434 erelend = o->contents + o->size;
8435 /* FIXME: octets_per_byte. */
8436 p = sort + o->output_offset / ext_size * sort_elt;
8437 while (erel < erelend)
8439 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8440 (*swap_out) (abfd, s->rela, erel);
8447 *psec = dynamic_relocs;
8451 /* Flush the output symbols to the file. */
8454 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8455 const struct elf_backend_data *bed)
8457 if (flinfo->symbuf_count > 0)
8459 Elf_Internal_Shdr *hdr;
8463 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8464 pos = hdr->sh_offset + hdr->sh_size;
8465 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8466 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8467 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8470 hdr->sh_size += amt;
8471 flinfo->symbuf_count = 0;
8477 /* Add a symbol to the output symbol table. */
8480 elf_link_output_sym (struct elf_final_link_info *flinfo,
8482 Elf_Internal_Sym *elfsym,
8483 asection *input_sec,
8484 struct elf_link_hash_entry *h)
8487 Elf_External_Sym_Shndx *destshndx;
8488 int (*output_symbol_hook)
8489 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8490 struct elf_link_hash_entry *);
8491 const struct elf_backend_data *bed;
8493 bed = get_elf_backend_data (flinfo->output_bfd);
8494 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8495 if (output_symbol_hook != NULL)
8497 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8502 if (name == NULL || *name == '\0')
8503 elfsym->st_name = 0;
8504 else if (input_sec->flags & SEC_EXCLUDE)
8505 elfsym->st_name = 0;
8508 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8510 if (elfsym->st_name == (unsigned long) -1)
8514 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8516 if (! elf_link_flush_output_syms (flinfo, bed))
8520 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8521 destshndx = flinfo->symshndxbuf;
8522 if (destshndx != NULL)
8524 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8528 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8529 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8531 if (destshndx == NULL)
8533 flinfo->symshndxbuf = destshndx;
8534 memset ((char *) destshndx + amt, 0, amt);
8535 flinfo->shndxbuf_size *= 2;
8537 destshndx += bfd_get_symcount (flinfo->output_bfd);
8540 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8541 flinfo->symbuf_count += 1;
8542 bfd_get_symcount (flinfo->output_bfd) += 1;
8547 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8550 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8552 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8553 && sym->st_shndx < SHN_LORESERVE)
8555 /* The gABI doesn't support dynamic symbols in output sections
8557 (*_bfd_error_handler)
8558 (_("%B: Too many sections: %d (>= %d)"),
8559 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8560 bfd_set_error (bfd_error_nonrepresentable_section);
8566 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8567 allowing an unsatisfied unversioned symbol in the DSO to match a
8568 versioned symbol that would normally require an explicit version.
8569 We also handle the case that a DSO references a hidden symbol
8570 which may be satisfied by a versioned symbol in another DSO. */
8573 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8574 const struct elf_backend_data *bed,
8575 struct elf_link_hash_entry *h)
8578 struct elf_link_loaded_list *loaded;
8580 if (!is_elf_hash_table (info->hash))
8583 /* Check indirect symbol. */
8584 while (h->root.type == bfd_link_hash_indirect)
8585 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8587 switch (h->root.type)
8593 case bfd_link_hash_undefined:
8594 case bfd_link_hash_undefweak:
8595 abfd = h->root.u.undef.abfd;
8596 if ((abfd->flags & DYNAMIC) == 0
8597 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8601 case bfd_link_hash_defined:
8602 case bfd_link_hash_defweak:
8603 abfd = h->root.u.def.section->owner;
8606 case bfd_link_hash_common:
8607 abfd = h->root.u.c.p->section->owner;
8610 BFD_ASSERT (abfd != NULL);
8612 for (loaded = elf_hash_table (info)->loaded;
8614 loaded = loaded->next)
8617 Elf_Internal_Shdr *hdr;
8618 bfd_size_type symcount;
8619 bfd_size_type extsymcount;
8620 bfd_size_type extsymoff;
8621 Elf_Internal_Shdr *versymhdr;
8622 Elf_Internal_Sym *isym;
8623 Elf_Internal_Sym *isymend;
8624 Elf_Internal_Sym *isymbuf;
8625 Elf_External_Versym *ever;
8626 Elf_External_Versym *extversym;
8628 input = loaded->abfd;
8630 /* We check each DSO for a possible hidden versioned definition. */
8632 || (input->flags & DYNAMIC) == 0
8633 || elf_dynversym (input) == 0)
8636 hdr = &elf_tdata (input)->dynsymtab_hdr;
8638 symcount = hdr->sh_size / bed->s->sizeof_sym;
8639 if (elf_bad_symtab (input))
8641 extsymcount = symcount;
8646 extsymcount = symcount - hdr->sh_info;
8647 extsymoff = hdr->sh_info;
8650 if (extsymcount == 0)
8653 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8655 if (isymbuf == NULL)
8658 /* Read in any version definitions. */
8659 versymhdr = &elf_tdata (input)->dynversym_hdr;
8660 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8661 if (extversym == NULL)
8664 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8665 || (bfd_bread (extversym, versymhdr->sh_size, input)
8666 != versymhdr->sh_size))
8674 ever = extversym + extsymoff;
8675 isymend = isymbuf + extsymcount;
8676 for (isym = isymbuf; isym < isymend; isym++, ever++)
8679 Elf_Internal_Versym iver;
8680 unsigned short version_index;
8682 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8683 || isym->st_shndx == SHN_UNDEF)
8686 name = bfd_elf_string_from_elf_section (input,
8689 if (strcmp (name, h->root.root.string) != 0)
8692 _bfd_elf_swap_versym_in (input, ever, &iver);
8694 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8696 && h->forced_local))
8698 /* If we have a non-hidden versioned sym, then it should
8699 have provided a definition for the undefined sym unless
8700 it is defined in a non-shared object and forced local.
8705 version_index = iver.vs_vers & VERSYM_VERSION;
8706 if (version_index == 1 || version_index == 2)
8708 /* This is the base or first version. We can use it. */
8722 /* Add an external symbol to the symbol table. This is called from
8723 the hash table traversal routine. When generating a shared object,
8724 we go through the symbol table twice. The first time we output
8725 anything that might have been forced to local scope in a version
8726 script. The second time we output the symbols that are still
8730 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8732 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8733 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8734 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8736 Elf_Internal_Sym sym;
8737 asection *input_sec;
8738 const struct elf_backend_data *bed;
8742 if (h->root.type == bfd_link_hash_warning)
8744 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8745 if (h->root.type == bfd_link_hash_new)
8749 /* Decide whether to output this symbol in this pass. */
8750 if (eoinfo->localsyms)
8752 if (!h->forced_local)
8754 if (eoinfo->second_pass
8755 && !((h->root.type == bfd_link_hash_defined
8756 || h->root.type == bfd_link_hash_defweak)
8757 && h->root.u.def.section->output_section != NULL))
8762 if (h->forced_local)
8766 bed = get_elf_backend_data (flinfo->output_bfd);
8768 if (h->root.type == bfd_link_hash_undefined)
8770 /* If we have an undefined symbol reference here then it must have
8771 come from a shared library that is being linked in. (Undefined
8772 references in regular files have already been handled unless
8773 they are in unreferenced sections which are removed by garbage
8775 bfd_boolean ignore_undef = FALSE;
8777 /* Some symbols may be special in that the fact that they're
8778 undefined can be safely ignored - let backend determine that. */
8779 if (bed->elf_backend_ignore_undef_symbol)
8780 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8782 /* If we are reporting errors for this situation then do so now. */
8785 && (!h->ref_regular || flinfo->info->gc_sections)
8786 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8787 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8789 if (!(flinfo->info->callbacks->undefined_symbol
8790 (flinfo->info, h->root.root.string,
8791 h->ref_regular ? NULL : h->root.u.undef.abfd,
8793 (flinfo->info->unresolved_syms_in_shared_libs
8794 == RM_GENERATE_ERROR))))
8796 bfd_set_error (bfd_error_bad_value);
8797 eoinfo->failed = TRUE;
8803 /* We should also warn if a forced local symbol is referenced from
8804 shared libraries. */
8805 if (!flinfo->info->relocatable
8806 && flinfo->info->executable
8812 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8816 struct elf_link_hash_entry *hi = h;
8818 /* Check indirect symbol. */
8819 while (hi->root.type == bfd_link_hash_indirect)
8820 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8822 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8823 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8824 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8825 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8827 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8828 def_bfd = flinfo->output_bfd;
8829 if (hi->root.u.def.section != bfd_abs_section_ptr)
8830 def_bfd = hi->root.u.def.section->owner;
8831 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8832 h->root.root.string);
8833 bfd_set_error (bfd_error_bad_value);
8834 eoinfo->failed = TRUE;
8838 /* We don't want to output symbols that have never been mentioned by
8839 a regular file, or that we have been told to strip. However, if
8840 h->indx is set to -2, the symbol is used by a reloc and we must
8844 else if ((h->def_dynamic
8846 || h->root.type == bfd_link_hash_new)
8850 else if (flinfo->info->strip == strip_all)
8852 else if (flinfo->info->strip == strip_some
8853 && bfd_hash_lookup (flinfo->info->keep_hash,
8854 h->root.root.string, FALSE, FALSE) == NULL)
8856 else if ((h->root.type == bfd_link_hash_defined
8857 || h->root.type == bfd_link_hash_defweak)
8858 && ((flinfo->info->strip_discarded
8859 && discarded_section (h->root.u.def.section))
8860 || (h->root.u.def.section->owner != NULL
8861 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8863 else if ((h->root.type == bfd_link_hash_undefined
8864 || h->root.type == bfd_link_hash_undefweak)
8865 && h->root.u.undef.abfd != NULL
8866 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8871 /* If we're stripping it, and it's not a dynamic symbol, there's
8872 nothing else to do unless it is a forced local symbol or a
8873 STT_GNU_IFUNC symbol. */
8876 && h->type != STT_GNU_IFUNC
8877 && !h->forced_local)
8881 sym.st_size = h->size;
8882 sym.st_other = h->other;
8883 if (h->forced_local)
8885 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8886 /* Turn off visibility on local symbol. */
8887 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8889 else if (h->unique_global)
8890 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8891 else if (h->root.type == bfd_link_hash_undefweak
8892 || h->root.type == bfd_link_hash_defweak)
8893 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8895 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8896 sym.st_target_internal = h->target_internal;
8898 switch (h->root.type)
8901 case bfd_link_hash_new:
8902 case bfd_link_hash_warning:
8906 case bfd_link_hash_undefined:
8907 case bfd_link_hash_undefweak:
8908 input_sec = bfd_und_section_ptr;
8909 sym.st_shndx = SHN_UNDEF;
8912 case bfd_link_hash_defined:
8913 case bfd_link_hash_defweak:
8915 input_sec = h->root.u.def.section;
8916 if (input_sec->output_section != NULL)
8918 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8920 bfd_boolean second_pass_sym
8921 = (input_sec->owner == flinfo->output_bfd
8922 || input_sec->owner == NULL
8923 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8924 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8926 eoinfo->need_second_pass |= second_pass_sym;
8927 if (eoinfo->second_pass != second_pass_sym)
8932 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8933 input_sec->output_section);
8934 if (sym.st_shndx == SHN_BAD)
8936 (*_bfd_error_handler)
8937 (_("%B: could not find output section %A for input section %A"),
8938 flinfo->output_bfd, input_sec->output_section, input_sec);
8939 bfd_set_error (bfd_error_nonrepresentable_section);
8940 eoinfo->failed = TRUE;
8944 /* ELF symbols in relocatable files are section relative,
8945 but in nonrelocatable files they are virtual
8947 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8948 if (!flinfo->info->relocatable)
8950 sym.st_value += input_sec->output_section->vma;
8951 if (h->type == STT_TLS)
8953 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8954 if (tls_sec != NULL)
8955 sym.st_value -= tls_sec->vma;
8958 /* The TLS section may have been garbage collected. */
8959 BFD_ASSERT (flinfo->info->gc_sections
8960 && !input_sec->gc_mark);
8967 BFD_ASSERT (input_sec->owner == NULL
8968 || (input_sec->owner->flags & DYNAMIC) != 0);
8969 sym.st_shndx = SHN_UNDEF;
8970 input_sec = bfd_und_section_ptr;
8975 case bfd_link_hash_common:
8976 input_sec = h->root.u.c.p->section;
8977 sym.st_shndx = bed->common_section_index (input_sec);
8978 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8981 case bfd_link_hash_indirect:
8982 /* These symbols are created by symbol versioning. They point
8983 to the decorated version of the name. For example, if the
8984 symbol foo@@GNU_1.2 is the default, which should be used when
8985 foo is used with no version, then we add an indirect symbol
8986 foo which points to foo@@GNU_1.2. We ignore these symbols,
8987 since the indirected symbol is already in the hash table. */
8991 /* Give the processor backend a chance to tweak the symbol value,
8992 and also to finish up anything that needs to be done for this
8993 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8994 forced local syms when non-shared is due to a historical quirk.
8995 STT_GNU_IFUNC symbol must go through PLT. */
8996 if ((h->type == STT_GNU_IFUNC
8998 && !flinfo->info->relocatable)
8999 || ((h->dynindx != -1
9001 && ((flinfo->info->shared
9002 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9003 || h->root.type != bfd_link_hash_undefweak))
9004 || !h->forced_local)
9005 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9007 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9008 (flinfo->output_bfd, flinfo->info, h, &sym)))
9010 eoinfo->failed = TRUE;
9015 /* If we are marking the symbol as undefined, and there are no
9016 non-weak references to this symbol from a regular object, then
9017 mark the symbol as weak undefined; if there are non-weak
9018 references, mark the symbol as strong. We can't do this earlier,
9019 because it might not be marked as undefined until the
9020 finish_dynamic_symbol routine gets through with it. */
9021 if (sym.st_shndx == SHN_UNDEF
9023 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9024 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9027 unsigned int type = ELF_ST_TYPE (sym.st_info);
9029 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9030 if (type == STT_GNU_IFUNC)
9033 if (h->ref_regular_nonweak)
9034 bindtype = STB_GLOBAL;
9036 bindtype = STB_WEAK;
9037 sym.st_info = ELF_ST_INFO (bindtype, type);
9040 /* If this is a symbol defined in a dynamic library, don't use the
9041 symbol size from the dynamic library. Relinking an executable
9042 against a new library may introduce gratuitous changes in the
9043 executable's symbols if we keep the size. */
9044 if (sym.st_shndx == SHN_UNDEF
9049 /* If a non-weak symbol with non-default visibility is not defined
9050 locally, it is a fatal error. */
9051 if (!flinfo->info->relocatable
9052 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9053 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9054 && h->root.type == bfd_link_hash_undefined
9059 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9060 msg = _("%B: protected symbol `%s' isn't defined");
9061 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9062 msg = _("%B: internal symbol `%s' isn't defined");
9064 msg = _("%B: hidden symbol `%s' isn't defined");
9065 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9066 bfd_set_error (bfd_error_bad_value);
9067 eoinfo->failed = TRUE;
9071 /* If this symbol should be put in the .dynsym section, then put it
9072 there now. We already know the symbol index. We also fill in
9073 the entry in the .hash section. */
9074 if (flinfo->dynsym_sec != NULL
9076 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9080 /* Since there is no version information in the dynamic string,
9081 if there is no version info in symbol version section, we will
9082 have a run-time problem. */
9083 if (h->verinfo.verdef == NULL)
9085 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9087 if (p && p [1] != '\0')
9089 (*_bfd_error_handler)
9090 (_("%B: No symbol version section for versioned symbol `%s'"),
9091 flinfo->output_bfd, h->root.root.string);
9092 eoinfo->failed = TRUE;
9097 sym.st_name = h->dynstr_index;
9098 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9099 if (!check_dynsym (flinfo->output_bfd, &sym))
9101 eoinfo->failed = TRUE;
9104 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9106 if (flinfo->hash_sec != NULL)
9108 size_t hash_entry_size;
9109 bfd_byte *bucketpos;
9114 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9115 bucket = h->u.elf_hash_value % bucketcount;
9118 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9119 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9120 + (bucket + 2) * hash_entry_size);
9121 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9122 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9124 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9125 ((bfd_byte *) flinfo->hash_sec->contents
9126 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9129 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9131 Elf_Internal_Versym iversym;
9132 Elf_External_Versym *eversym;
9134 if (!h->def_regular)
9136 if (h->verinfo.verdef == NULL)
9137 iversym.vs_vers = 0;
9139 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9143 if (h->verinfo.vertree == NULL)
9144 iversym.vs_vers = 1;
9146 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9147 if (flinfo->info->create_default_symver)
9152 iversym.vs_vers |= VERSYM_HIDDEN;
9154 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9155 eversym += h->dynindx;
9156 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9160 /* If we're stripping it, then it was just a dynamic symbol, and
9161 there's nothing else to do. */
9162 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9165 indx = bfd_get_symcount (flinfo->output_bfd);
9166 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9169 eoinfo->failed = TRUE;
9174 else if (h->indx == -2)
9180 /* Return TRUE if special handling is done for relocs in SEC against
9181 symbols defined in discarded sections. */
9184 elf_section_ignore_discarded_relocs (asection *sec)
9186 const struct elf_backend_data *bed;
9188 switch (sec->sec_info_type)
9190 case SEC_INFO_TYPE_STABS:
9191 case SEC_INFO_TYPE_EH_FRAME:
9197 bed = get_elf_backend_data (sec->owner);
9198 if (bed->elf_backend_ignore_discarded_relocs != NULL
9199 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9205 /* Return a mask saying how ld should treat relocations in SEC against
9206 symbols defined in discarded sections. If this function returns
9207 COMPLAIN set, ld will issue a warning message. If this function
9208 returns PRETEND set, and the discarded section was link-once and the
9209 same size as the kept link-once section, ld will pretend that the
9210 symbol was actually defined in the kept section. Otherwise ld will
9211 zero the reloc (at least that is the intent, but some cooperation by
9212 the target dependent code is needed, particularly for REL targets). */
9215 _bfd_elf_default_action_discarded (asection *sec)
9217 if (sec->flags & SEC_DEBUGGING)
9220 if (strcmp (".eh_frame", sec->name) == 0)
9223 if (strcmp (".gcc_except_table", sec->name) == 0)
9226 return COMPLAIN | PRETEND;
9229 /* Find a match between a section and a member of a section group. */
9232 match_group_member (asection *sec, asection *group,
9233 struct bfd_link_info *info)
9235 asection *first = elf_next_in_group (group);
9236 asection *s = first;
9240 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9243 s = elf_next_in_group (s);
9251 /* Check if the kept section of a discarded section SEC can be used
9252 to replace it. Return the replacement if it is OK. Otherwise return
9256 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9260 kept = sec->kept_section;
9263 if ((kept->flags & SEC_GROUP) != 0)
9264 kept = match_group_member (sec, kept, info);
9266 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9267 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9269 sec->kept_section = kept;
9274 /* Link an input file into the linker output file. This function
9275 handles all the sections and relocations of the input file at once.
9276 This is so that we only have to read the local symbols once, and
9277 don't have to keep them in memory. */
9280 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9282 int (*relocate_section)
9283 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9284 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9286 Elf_Internal_Shdr *symtab_hdr;
9289 Elf_Internal_Sym *isymbuf;
9290 Elf_Internal_Sym *isym;
9291 Elf_Internal_Sym *isymend;
9293 asection **ppsection;
9295 const struct elf_backend_data *bed;
9296 struct elf_link_hash_entry **sym_hashes;
9297 bfd_size_type address_size;
9298 bfd_vma r_type_mask;
9300 bfd_boolean have_file_sym = FALSE;
9302 output_bfd = flinfo->output_bfd;
9303 bed = get_elf_backend_data (output_bfd);
9304 relocate_section = bed->elf_backend_relocate_section;
9306 /* If this is a dynamic object, we don't want to do anything here:
9307 we don't want the local symbols, and we don't want the section
9309 if ((input_bfd->flags & DYNAMIC) != 0)
9312 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9313 if (elf_bad_symtab (input_bfd))
9315 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9320 locsymcount = symtab_hdr->sh_info;
9321 extsymoff = symtab_hdr->sh_info;
9324 /* Read the local symbols. */
9325 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9326 if (isymbuf == NULL && locsymcount != 0)
9328 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9329 flinfo->internal_syms,
9330 flinfo->external_syms,
9331 flinfo->locsym_shndx);
9332 if (isymbuf == NULL)
9336 /* Find local symbol sections and adjust values of symbols in
9337 SEC_MERGE sections. Write out those local symbols we know are
9338 going into the output file. */
9339 isymend = isymbuf + locsymcount;
9340 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9342 isym++, pindex++, ppsection++)
9346 Elf_Internal_Sym osym;
9352 if (elf_bad_symtab (input_bfd))
9354 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9361 if (isym->st_shndx == SHN_UNDEF)
9362 isec = bfd_und_section_ptr;
9363 else if (isym->st_shndx == SHN_ABS)
9364 isec = bfd_abs_section_ptr;
9365 else if (isym->st_shndx == SHN_COMMON)
9366 isec = bfd_com_section_ptr;
9369 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9372 /* Don't attempt to output symbols with st_shnx in the
9373 reserved range other than SHN_ABS and SHN_COMMON. */
9377 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9378 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9380 _bfd_merged_section_offset (output_bfd, &isec,
9381 elf_section_data (isec)->sec_info,
9387 /* Don't output the first, undefined, symbol. */
9388 if (ppsection == flinfo->sections)
9391 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9393 /* We never output section symbols. Instead, we use the
9394 section symbol of the corresponding section in the output
9399 /* If we are stripping all symbols, we don't want to output this
9401 if (flinfo->info->strip == strip_all)
9404 /* If we are discarding all local symbols, we don't want to
9405 output this one. If we are generating a relocatable output
9406 file, then some of the local symbols may be required by
9407 relocs; we output them below as we discover that they are
9409 if (flinfo->info->discard == discard_all)
9412 /* If this symbol is defined in a section which we are
9413 discarding, we don't need to keep it. */
9414 if (isym->st_shndx != SHN_UNDEF
9415 && isym->st_shndx < SHN_LORESERVE
9416 && bfd_section_removed_from_list (output_bfd,
9417 isec->output_section))
9420 /* Get the name of the symbol. */
9421 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9426 /* See if we are discarding symbols with this name. */
9427 if ((flinfo->info->strip == strip_some
9428 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9430 || (((flinfo->info->discard == discard_sec_merge
9431 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9432 || flinfo->info->discard == discard_l)
9433 && bfd_is_local_label_name (input_bfd, name)))
9436 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9438 have_file_sym = TRUE;
9439 flinfo->filesym_count += 1;
9443 /* In the absence of debug info, bfd_find_nearest_line uses
9444 FILE symbols to determine the source file for local
9445 function symbols. Provide a FILE symbol here if input
9446 files lack such, so that their symbols won't be
9447 associated with a previous input file. It's not the
9448 source file, but the best we can do. */
9449 have_file_sym = TRUE;
9450 flinfo->filesym_count += 1;
9451 memset (&osym, 0, sizeof (osym));
9452 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9453 osym.st_shndx = SHN_ABS;
9454 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9455 bfd_abs_section_ptr, NULL))
9461 /* Adjust the section index for the output file. */
9462 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9463 isec->output_section);
9464 if (osym.st_shndx == SHN_BAD)
9467 /* ELF symbols in relocatable files are section relative, but
9468 in executable files they are virtual addresses. Note that
9469 this code assumes that all ELF sections have an associated
9470 BFD section with a reasonable value for output_offset; below
9471 we assume that they also have a reasonable value for
9472 output_section. Any special sections must be set up to meet
9473 these requirements. */
9474 osym.st_value += isec->output_offset;
9475 if (!flinfo->info->relocatable)
9477 osym.st_value += isec->output_section->vma;
9478 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9480 /* STT_TLS symbols are relative to PT_TLS segment base. */
9481 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9482 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9486 indx = bfd_get_symcount (output_bfd);
9487 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9494 if (bed->s->arch_size == 32)
9502 r_type_mask = 0xffffffff;
9507 /* Relocate the contents of each section. */
9508 sym_hashes = elf_sym_hashes (input_bfd);
9509 for (o = input_bfd->sections; o != NULL; o = o->next)
9513 if (! o->linker_mark)
9515 /* This section was omitted from the link. */
9519 if (flinfo->info->relocatable
9520 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9522 /* Deal with the group signature symbol. */
9523 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9524 unsigned long symndx = sec_data->this_hdr.sh_info;
9525 asection *osec = o->output_section;
9527 if (symndx >= locsymcount
9528 || (elf_bad_symtab (input_bfd)
9529 && flinfo->sections[symndx] == NULL))
9531 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9532 while (h->root.type == bfd_link_hash_indirect
9533 || h->root.type == bfd_link_hash_warning)
9534 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9535 /* Arrange for symbol to be output. */
9537 elf_section_data (osec)->this_hdr.sh_info = -2;
9539 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9541 /* We'll use the output section target_index. */
9542 asection *sec = flinfo->sections[symndx]->output_section;
9543 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9547 if (flinfo->indices[symndx] == -1)
9549 /* Otherwise output the local symbol now. */
9550 Elf_Internal_Sym sym = isymbuf[symndx];
9551 asection *sec = flinfo->sections[symndx]->output_section;
9556 name = bfd_elf_string_from_elf_section (input_bfd,
9557 symtab_hdr->sh_link,
9562 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9564 if (sym.st_shndx == SHN_BAD)
9567 sym.st_value += o->output_offset;
9569 indx = bfd_get_symcount (output_bfd);
9570 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9574 flinfo->indices[symndx] = indx;
9578 elf_section_data (osec)->this_hdr.sh_info
9579 = flinfo->indices[symndx];
9583 if ((o->flags & SEC_HAS_CONTENTS) == 0
9584 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9587 if ((o->flags & SEC_LINKER_CREATED) != 0)
9589 /* Section was created by _bfd_elf_link_create_dynamic_sections
9594 /* Get the contents of the section. They have been cached by a
9595 relaxation routine. Note that o is a section in an input
9596 file, so the contents field will not have been set by any of
9597 the routines which work on output files. */
9598 if (elf_section_data (o)->this_hdr.contents != NULL)
9599 contents = elf_section_data (o)->this_hdr.contents;
9602 contents = flinfo->contents;
9603 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9607 if ((o->flags & SEC_RELOC) != 0)
9609 Elf_Internal_Rela *internal_relocs;
9610 Elf_Internal_Rela *rel, *relend;
9611 int action_discarded;
9614 /* Get the swapped relocs. */
9616 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9617 flinfo->internal_relocs, FALSE);
9618 if (internal_relocs == NULL
9619 && o->reloc_count > 0)
9622 /* We need to reverse-copy input .ctors/.dtors sections if
9623 they are placed in .init_array/.finit_array for output. */
9624 if (o->size > address_size
9625 && ((strncmp (o->name, ".ctors", 6) == 0
9626 && strcmp (o->output_section->name,
9627 ".init_array") == 0)
9628 || (strncmp (o->name, ".dtors", 6) == 0
9629 && strcmp (o->output_section->name,
9630 ".fini_array") == 0))
9631 && (o->name[6] == 0 || o->name[6] == '.'))
9633 if (o->size != o->reloc_count * address_size)
9635 (*_bfd_error_handler)
9636 (_("error: %B: size of section %A is not "
9637 "multiple of address size"),
9639 bfd_set_error (bfd_error_on_input);
9642 o->flags |= SEC_ELF_REVERSE_COPY;
9645 action_discarded = -1;
9646 if (!elf_section_ignore_discarded_relocs (o))
9647 action_discarded = (*bed->action_discarded) (o);
9649 /* Run through the relocs evaluating complex reloc symbols and
9650 looking for relocs against symbols from discarded sections
9651 or section symbols from removed link-once sections.
9652 Complain about relocs against discarded sections. Zero
9653 relocs against removed link-once sections. */
9655 rel = internal_relocs;
9656 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9657 for ( ; rel < relend; rel++)
9659 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9660 unsigned int s_type;
9661 asection **ps, *sec;
9662 struct elf_link_hash_entry *h = NULL;
9663 const char *sym_name;
9665 if (r_symndx == STN_UNDEF)
9668 if (r_symndx >= locsymcount
9669 || (elf_bad_symtab (input_bfd)
9670 && flinfo->sections[r_symndx] == NULL))
9672 h = sym_hashes[r_symndx - extsymoff];
9674 /* Badly formatted input files can contain relocs that
9675 reference non-existant symbols. Check here so that
9676 we do not seg fault. */
9681 sprintf_vma (buffer, rel->r_info);
9682 (*_bfd_error_handler)
9683 (_("error: %B contains a reloc (0x%s) for section %A "
9684 "that references a non-existent global symbol"),
9685 input_bfd, o, buffer);
9686 bfd_set_error (bfd_error_bad_value);
9690 while (h->root.type == bfd_link_hash_indirect
9691 || h->root.type == bfd_link_hash_warning)
9692 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9697 if (h->root.type == bfd_link_hash_defined
9698 || h->root.type == bfd_link_hash_defweak)
9699 ps = &h->root.u.def.section;
9701 sym_name = h->root.root.string;
9705 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9707 s_type = ELF_ST_TYPE (sym->st_info);
9708 ps = &flinfo->sections[r_symndx];
9709 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9713 if ((s_type == STT_RELC || s_type == STT_SRELC)
9714 && !flinfo->info->relocatable)
9717 bfd_vma dot = (rel->r_offset
9718 + o->output_offset + o->output_section->vma);
9720 printf ("Encountered a complex symbol!");
9721 printf (" (input_bfd %s, section %s, reloc %ld\n",
9722 input_bfd->filename, o->name,
9723 (long) (rel - internal_relocs));
9724 printf (" symbol: idx %8.8lx, name %s\n",
9725 r_symndx, sym_name);
9726 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9727 (unsigned long) rel->r_info,
9728 (unsigned long) rel->r_offset);
9730 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9731 isymbuf, locsymcount, s_type == STT_SRELC))
9734 /* Symbol evaluated OK. Update to absolute value. */
9735 set_symbol_value (input_bfd, isymbuf, locsymcount,
9740 if (action_discarded != -1 && ps != NULL)
9742 /* Complain if the definition comes from a
9743 discarded section. */
9744 if ((sec = *ps) != NULL && discarded_section (sec))
9746 BFD_ASSERT (r_symndx != STN_UNDEF);
9747 if (action_discarded & COMPLAIN)
9748 (*flinfo->info->callbacks->einfo)
9749 (_("%X`%s' referenced in section `%A' of %B: "
9750 "defined in discarded section `%A' of %B\n"),
9751 sym_name, o, input_bfd, sec, sec->owner);
9753 /* Try to do the best we can to support buggy old
9754 versions of gcc. Pretend that the symbol is
9755 really defined in the kept linkonce section.
9756 FIXME: This is quite broken. Modifying the
9757 symbol here means we will be changing all later
9758 uses of the symbol, not just in this section. */
9759 if (action_discarded & PRETEND)
9763 kept = _bfd_elf_check_kept_section (sec,
9775 /* Relocate the section by invoking a back end routine.
9777 The back end routine is responsible for adjusting the
9778 section contents as necessary, and (if using Rela relocs
9779 and generating a relocatable output file) adjusting the
9780 reloc addend as necessary.
9782 The back end routine does not have to worry about setting
9783 the reloc address or the reloc symbol index.
9785 The back end routine is given a pointer to the swapped in
9786 internal symbols, and can access the hash table entries
9787 for the external symbols via elf_sym_hashes (input_bfd).
9789 When generating relocatable output, the back end routine
9790 must handle STB_LOCAL/STT_SECTION symbols specially. The
9791 output symbol is going to be a section symbol
9792 corresponding to the output section, which will require
9793 the addend to be adjusted. */
9795 ret = (*relocate_section) (output_bfd, flinfo->info,
9796 input_bfd, o, contents,
9804 || flinfo->info->relocatable
9805 || flinfo->info->emitrelocations)
9807 Elf_Internal_Rela *irela;
9808 Elf_Internal_Rela *irelaend, *irelamid;
9809 bfd_vma last_offset;
9810 struct elf_link_hash_entry **rel_hash;
9811 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9812 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9813 unsigned int next_erel;
9814 bfd_boolean rela_normal;
9815 struct bfd_elf_section_data *esdi, *esdo;
9817 esdi = elf_section_data (o);
9818 esdo = elf_section_data (o->output_section);
9819 rela_normal = FALSE;
9821 /* Adjust the reloc addresses and symbol indices. */
9823 irela = internal_relocs;
9824 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9825 rel_hash = esdo->rel.hashes + esdo->rel.count;
9826 /* We start processing the REL relocs, if any. When we reach
9827 IRELAMID in the loop, we switch to the RELA relocs. */
9829 if (esdi->rel.hdr != NULL)
9830 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9831 * bed->s->int_rels_per_ext_rel);
9832 rel_hash_list = rel_hash;
9833 rela_hash_list = NULL;
9834 last_offset = o->output_offset;
9835 if (!flinfo->info->relocatable)
9836 last_offset += o->output_section->vma;
9837 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9839 unsigned long r_symndx;
9841 Elf_Internal_Sym sym;
9843 if (next_erel == bed->s->int_rels_per_ext_rel)
9849 if (irela == irelamid)
9851 rel_hash = esdo->rela.hashes + esdo->rela.count;
9852 rela_hash_list = rel_hash;
9853 rela_normal = bed->rela_normal;
9856 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9859 if (irela->r_offset >= (bfd_vma) -2)
9861 /* This is a reloc for a deleted entry or somesuch.
9862 Turn it into an R_*_NONE reloc, at the same
9863 offset as the last reloc. elf_eh_frame.c and
9864 bfd_elf_discard_info rely on reloc offsets
9866 irela->r_offset = last_offset;
9868 irela->r_addend = 0;
9872 irela->r_offset += o->output_offset;
9874 /* Relocs in an executable have to be virtual addresses. */
9875 if (!flinfo->info->relocatable)
9876 irela->r_offset += o->output_section->vma;
9878 last_offset = irela->r_offset;
9880 r_symndx = irela->r_info >> r_sym_shift;
9881 if (r_symndx == STN_UNDEF)
9884 if (r_symndx >= locsymcount
9885 || (elf_bad_symtab (input_bfd)
9886 && flinfo->sections[r_symndx] == NULL))
9888 struct elf_link_hash_entry *rh;
9891 /* This is a reloc against a global symbol. We
9892 have not yet output all the local symbols, so
9893 we do not know the symbol index of any global
9894 symbol. We set the rel_hash entry for this
9895 reloc to point to the global hash table entry
9896 for this symbol. The symbol index is then
9897 set at the end of bfd_elf_final_link. */
9898 indx = r_symndx - extsymoff;
9899 rh = elf_sym_hashes (input_bfd)[indx];
9900 while (rh->root.type == bfd_link_hash_indirect
9901 || rh->root.type == bfd_link_hash_warning)
9902 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9904 /* Setting the index to -2 tells
9905 elf_link_output_extsym that this symbol is
9907 BFD_ASSERT (rh->indx < 0);
9915 /* This is a reloc against a local symbol. */
9918 sym = isymbuf[r_symndx];
9919 sec = flinfo->sections[r_symndx];
9920 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9922 /* I suppose the backend ought to fill in the
9923 section of any STT_SECTION symbol against a
9924 processor specific section. */
9925 r_symndx = STN_UNDEF;
9926 if (bfd_is_abs_section (sec))
9928 else if (sec == NULL || sec->owner == NULL)
9930 bfd_set_error (bfd_error_bad_value);
9935 asection *osec = sec->output_section;
9937 /* If we have discarded a section, the output
9938 section will be the absolute section. In
9939 case of discarded SEC_MERGE sections, use
9940 the kept section. relocate_section should
9941 have already handled discarded linkonce
9943 if (bfd_is_abs_section (osec)
9944 && sec->kept_section != NULL
9945 && sec->kept_section->output_section != NULL)
9947 osec = sec->kept_section->output_section;
9948 irela->r_addend -= osec->vma;
9951 if (!bfd_is_abs_section (osec))
9953 r_symndx = osec->target_index;
9954 if (r_symndx == STN_UNDEF)
9956 irela->r_addend += osec->vma;
9957 osec = _bfd_nearby_section (output_bfd, osec,
9959 irela->r_addend -= osec->vma;
9960 r_symndx = osec->target_index;
9965 /* Adjust the addend according to where the
9966 section winds up in the output section. */
9968 irela->r_addend += sec->output_offset;
9972 if (flinfo->indices[r_symndx] == -1)
9974 unsigned long shlink;
9979 if (flinfo->info->strip == strip_all)
9981 /* You can't do ld -r -s. */
9982 bfd_set_error (bfd_error_invalid_operation);
9986 /* This symbol was skipped earlier, but
9987 since it is needed by a reloc, we
9988 must output it now. */
9989 shlink = symtab_hdr->sh_link;
9990 name = (bfd_elf_string_from_elf_section
9991 (input_bfd, shlink, sym.st_name));
9995 osec = sec->output_section;
9997 _bfd_elf_section_from_bfd_section (output_bfd,
9999 if (sym.st_shndx == SHN_BAD)
10002 sym.st_value += sec->output_offset;
10003 if (!flinfo->info->relocatable)
10005 sym.st_value += osec->vma;
10006 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10008 /* STT_TLS symbols are relative to PT_TLS
10010 BFD_ASSERT (elf_hash_table (flinfo->info)
10011 ->tls_sec != NULL);
10012 sym.st_value -= (elf_hash_table (flinfo->info)
10017 indx = bfd_get_symcount (output_bfd);
10018 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10023 flinfo->indices[r_symndx] = indx;
10028 r_symndx = flinfo->indices[r_symndx];
10031 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10032 | (irela->r_info & r_type_mask));
10035 /* Swap out the relocs. */
10036 input_rel_hdr = esdi->rel.hdr;
10037 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10039 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10044 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10045 * bed->s->int_rels_per_ext_rel);
10046 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10049 input_rela_hdr = esdi->rela.hdr;
10050 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10052 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10061 /* Write out the modified section contents. */
10062 if (bed->elf_backend_write_section
10063 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10066 /* Section written out. */
10068 else switch (o->sec_info_type)
10070 case SEC_INFO_TYPE_STABS:
10071 if (! (_bfd_write_section_stabs
10073 &elf_hash_table (flinfo->info)->stab_info,
10074 o, &elf_section_data (o)->sec_info, contents)))
10077 case SEC_INFO_TYPE_MERGE:
10078 if (! _bfd_write_merged_section (output_bfd, o,
10079 elf_section_data (o)->sec_info))
10082 case SEC_INFO_TYPE_EH_FRAME:
10084 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10091 /* FIXME: octets_per_byte. */
10092 if (! (o->flags & SEC_EXCLUDE))
10094 file_ptr offset = (file_ptr) o->output_offset;
10095 bfd_size_type todo = o->size;
10096 if ((o->flags & SEC_ELF_REVERSE_COPY))
10098 /* Reverse-copy input section to output. */
10101 todo -= address_size;
10102 if (! bfd_set_section_contents (output_bfd,
10110 offset += address_size;
10114 else if (! bfd_set_section_contents (output_bfd,
10128 /* Generate a reloc when linking an ELF file. This is a reloc
10129 requested by the linker, and does not come from any input file. This
10130 is used to build constructor and destructor tables when linking
10134 elf_reloc_link_order (bfd *output_bfd,
10135 struct bfd_link_info *info,
10136 asection *output_section,
10137 struct bfd_link_order *link_order)
10139 reloc_howto_type *howto;
10143 struct bfd_elf_section_reloc_data *reldata;
10144 struct elf_link_hash_entry **rel_hash_ptr;
10145 Elf_Internal_Shdr *rel_hdr;
10146 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10147 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10150 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10152 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10155 bfd_set_error (bfd_error_bad_value);
10159 addend = link_order->u.reloc.p->addend;
10162 reldata = &esdo->rel;
10163 else if (esdo->rela.hdr)
10164 reldata = &esdo->rela;
10171 /* Figure out the symbol index. */
10172 rel_hash_ptr = reldata->hashes + reldata->count;
10173 if (link_order->type == bfd_section_reloc_link_order)
10175 indx = link_order->u.reloc.p->u.section->target_index;
10176 BFD_ASSERT (indx != 0);
10177 *rel_hash_ptr = NULL;
10181 struct elf_link_hash_entry *h;
10183 /* Treat a reloc against a defined symbol as though it were
10184 actually against the section. */
10185 h = ((struct elf_link_hash_entry *)
10186 bfd_wrapped_link_hash_lookup (output_bfd, info,
10187 link_order->u.reloc.p->u.name,
10188 FALSE, FALSE, TRUE));
10190 && (h->root.type == bfd_link_hash_defined
10191 || h->root.type == bfd_link_hash_defweak))
10195 section = h->root.u.def.section;
10196 indx = section->output_section->target_index;
10197 *rel_hash_ptr = NULL;
10198 /* It seems that we ought to add the symbol value to the
10199 addend here, but in practice it has already been added
10200 because it was passed to constructor_callback. */
10201 addend += section->output_section->vma + section->output_offset;
10203 else if (h != NULL)
10205 /* Setting the index to -2 tells elf_link_output_extsym that
10206 this symbol is used by a reloc. */
10213 if (! ((*info->callbacks->unattached_reloc)
10214 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10220 /* If this is an inplace reloc, we must write the addend into the
10222 if (howto->partial_inplace && addend != 0)
10224 bfd_size_type size;
10225 bfd_reloc_status_type rstat;
10228 const char *sym_name;
10230 size = (bfd_size_type) bfd_get_reloc_size (howto);
10231 buf = (bfd_byte *) bfd_zmalloc (size);
10234 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10241 case bfd_reloc_outofrange:
10244 case bfd_reloc_overflow:
10245 if (link_order->type == bfd_section_reloc_link_order)
10246 sym_name = bfd_section_name (output_bfd,
10247 link_order->u.reloc.p->u.section);
10249 sym_name = link_order->u.reloc.p->u.name;
10250 if (! ((*info->callbacks->reloc_overflow)
10251 (info, NULL, sym_name, howto->name, addend, NULL,
10252 NULL, (bfd_vma) 0)))
10259 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10260 link_order->offset, size);
10266 /* The address of a reloc is relative to the section in a
10267 relocatable file, and is a virtual address in an executable
10269 offset = link_order->offset;
10270 if (! info->relocatable)
10271 offset += output_section->vma;
10273 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10275 irel[i].r_offset = offset;
10276 irel[i].r_info = 0;
10277 irel[i].r_addend = 0;
10279 if (bed->s->arch_size == 32)
10280 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10282 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10284 rel_hdr = reldata->hdr;
10285 erel = rel_hdr->contents;
10286 if (rel_hdr->sh_type == SHT_REL)
10288 erel += reldata->count * bed->s->sizeof_rel;
10289 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10293 irel[0].r_addend = addend;
10294 erel += reldata->count * bed->s->sizeof_rela;
10295 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10304 /* Get the output vma of the section pointed to by the sh_link field. */
10307 elf_get_linked_section_vma (struct bfd_link_order *p)
10309 Elf_Internal_Shdr **elf_shdrp;
10313 s = p->u.indirect.section;
10314 elf_shdrp = elf_elfsections (s->owner);
10315 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10316 elfsec = elf_shdrp[elfsec]->sh_link;
10318 The Intel C compiler generates SHT_IA_64_UNWIND with
10319 SHF_LINK_ORDER. But it doesn't set the sh_link or
10320 sh_info fields. Hence we could get the situation
10321 where elfsec is 0. */
10324 const struct elf_backend_data *bed
10325 = get_elf_backend_data (s->owner);
10326 if (bed->link_order_error_handler)
10327 bed->link_order_error_handler
10328 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10333 s = elf_shdrp[elfsec]->bfd_section;
10334 return s->output_section->vma + s->output_offset;
10339 /* Compare two sections based on the locations of the sections they are
10340 linked to. Used by elf_fixup_link_order. */
10343 compare_link_order (const void * a, const void * b)
10348 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10349 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10352 return apos > bpos;
10356 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10357 order as their linked sections. Returns false if this could not be done
10358 because an output section includes both ordered and unordered
10359 sections. Ideally we'd do this in the linker proper. */
10362 elf_fixup_link_order (bfd *abfd, asection *o)
10364 int seen_linkorder;
10367 struct bfd_link_order *p;
10369 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10371 struct bfd_link_order **sections;
10372 asection *s, *other_sec, *linkorder_sec;
10376 linkorder_sec = NULL;
10378 seen_linkorder = 0;
10379 for (p = o->map_head.link_order; p != NULL; p = p->next)
10381 if (p->type == bfd_indirect_link_order)
10383 s = p->u.indirect.section;
10385 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10386 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10387 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10388 && elfsec < elf_numsections (sub)
10389 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10390 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10404 if (seen_other && seen_linkorder)
10406 if (other_sec && linkorder_sec)
10407 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10409 linkorder_sec->owner, other_sec,
10412 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10414 bfd_set_error (bfd_error_bad_value);
10419 if (!seen_linkorder)
10422 sections = (struct bfd_link_order **)
10423 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10424 if (sections == NULL)
10426 seen_linkorder = 0;
10428 for (p = o->map_head.link_order; p != NULL; p = p->next)
10430 sections[seen_linkorder++] = p;
10432 /* Sort the input sections in the order of their linked section. */
10433 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10434 compare_link_order);
10436 /* Change the offsets of the sections. */
10438 for (n = 0; n < seen_linkorder; n++)
10440 s = sections[n]->u.indirect.section;
10441 offset &= ~(bfd_vma) 0 << s->alignment_power;
10442 s->output_offset = offset;
10443 sections[n]->offset = offset;
10444 /* FIXME: octets_per_byte. */
10445 offset += sections[n]->size;
10453 /* Do the final step of an ELF link. */
10456 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10458 bfd_boolean dynamic;
10459 bfd_boolean emit_relocs;
10461 struct elf_final_link_info flinfo;
10463 struct bfd_link_order *p;
10465 bfd_size_type max_contents_size;
10466 bfd_size_type max_external_reloc_size;
10467 bfd_size_type max_internal_reloc_count;
10468 bfd_size_type max_sym_count;
10469 bfd_size_type max_sym_shndx_count;
10471 Elf_Internal_Sym elfsym;
10473 Elf_Internal_Shdr *symtab_hdr;
10474 Elf_Internal_Shdr *symtab_shndx_hdr;
10475 Elf_Internal_Shdr *symstrtab_hdr;
10476 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10477 struct elf_outext_info eoinfo;
10478 bfd_boolean merged;
10479 size_t relativecount = 0;
10480 asection *reldyn = 0;
10482 asection *attr_section = NULL;
10483 bfd_vma attr_size = 0;
10484 const char *std_attrs_section;
10486 if (! is_elf_hash_table (info->hash))
10490 abfd->flags |= DYNAMIC;
10492 dynamic = elf_hash_table (info)->dynamic_sections_created;
10493 dynobj = elf_hash_table (info)->dynobj;
10495 emit_relocs = (info->relocatable
10496 || info->emitrelocations);
10498 flinfo.info = info;
10499 flinfo.output_bfd = abfd;
10500 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10501 if (flinfo.symstrtab == NULL)
10506 flinfo.dynsym_sec = NULL;
10507 flinfo.hash_sec = NULL;
10508 flinfo.symver_sec = NULL;
10512 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10513 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10514 /* Note that dynsym_sec can be NULL (on VMS). */
10515 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10516 /* Note that it is OK if symver_sec is NULL. */
10519 flinfo.contents = NULL;
10520 flinfo.external_relocs = NULL;
10521 flinfo.internal_relocs = NULL;
10522 flinfo.external_syms = NULL;
10523 flinfo.locsym_shndx = NULL;
10524 flinfo.internal_syms = NULL;
10525 flinfo.indices = NULL;
10526 flinfo.sections = NULL;
10527 flinfo.symbuf = NULL;
10528 flinfo.symshndxbuf = NULL;
10529 flinfo.symbuf_count = 0;
10530 flinfo.shndxbuf_size = 0;
10531 flinfo.filesym_count = 0;
10533 /* The object attributes have been merged. Remove the input
10534 sections from the link, and set the contents of the output
10536 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10537 for (o = abfd->sections; o != NULL; o = o->next)
10539 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10540 || strcmp (o->name, ".gnu.attributes") == 0)
10542 for (p = o->map_head.link_order; p != NULL; p = p->next)
10544 asection *input_section;
10546 if (p->type != bfd_indirect_link_order)
10548 input_section = p->u.indirect.section;
10549 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10550 elf_link_input_bfd ignores this section. */
10551 input_section->flags &= ~SEC_HAS_CONTENTS;
10554 attr_size = bfd_elf_obj_attr_size (abfd);
10557 bfd_set_section_size (abfd, o, attr_size);
10559 /* Skip this section later on. */
10560 o->map_head.link_order = NULL;
10563 o->flags |= SEC_EXCLUDE;
10567 /* Count up the number of relocations we will output for each output
10568 section, so that we know the sizes of the reloc sections. We
10569 also figure out some maximum sizes. */
10570 max_contents_size = 0;
10571 max_external_reloc_size = 0;
10572 max_internal_reloc_count = 0;
10574 max_sym_shndx_count = 0;
10576 for (o = abfd->sections; o != NULL; o = o->next)
10578 struct bfd_elf_section_data *esdo = elf_section_data (o);
10579 o->reloc_count = 0;
10581 for (p = o->map_head.link_order; p != NULL; p = p->next)
10583 unsigned int reloc_count = 0;
10584 struct bfd_elf_section_data *esdi = NULL;
10586 if (p->type == bfd_section_reloc_link_order
10587 || p->type == bfd_symbol_reloc_link_order)
10589 else if (p->type == bfd_indirect_link_order)
10593 sec = p->u.indirect.section;
10594 esdi = elf_section_data (sec);
10596 /* Mark all sections which are to be included in the
10597 link. This will normally be every section. We need
10598 to do this so that we can identify any sections which
10599 the linker has decided to not include. */
10600 sec->linker_mark = TRUE;
10602 if (sec->flags & SEC_MERGE)
10605 if (esdo->this_hdr.sh_type == SHT_REL
10606 || esdo->this_hdr.sh_type == SHT_RELA)
10607 /* Some backends use reloc_count in relocation sections
10608 to count particular types of relocs. Of course,
10609 reloc sections themselves can't have relocations. */
10611 else if (info->relocatable || info->emitrelocations)
10612 reloc_count = sec->reloc_count;
10613 else if (bed->elf_backend_count_relocs)
10614 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10616 if (sec->rawsize > max_contents_size)
10617 max_contents_size = sec->rawsize;
10618 if (sec->size > max_contents_size)
10619 max_contents_size = sec->size;
10621 /* We are interested in just local symbols, not all
10623 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10624 && (sec->owner->flags & DYNAMIC) == 0)
10628 if (elf_bad_symtab (sec->owner))
10629 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10630 / bed->s->sizeof_sym);
10632 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10634 if (sym_count > max_sym_count)
10635 max_sym_count = sym_count;
10637 if (sym_count > max_sym_shndx_count
10638 && elf_symtab_shndx (sec->owner) != 0)
10639 max_sym_shndx_count = sym_count;
10641 if ((sec->flags & SEC_RELOC) != 0)
10643 size_t ext_size = 0;
10645 if (esdi->rel.hdr != NULL)
10646 ext_size = esdi->rel.hdr->sh_size;
10647 if (esdi->rela.hdr != NULL)
10648 ext_size += esdi->rela.hdr->sh_size;
10650 if (ext_size > max_external_reloc_size)
10651 max_external_reloc_size = ext_size;
10652 if (sec->reloc_count > max_internal_reloc_count)
10653 max_internal_reloc_count = sec->reloc_count;
10658 if (reloc_count == 0)
10661 o->reloc_count += reloc_count;
10663 if (p->type == bfd_indirect_link_order
10664 && (info->relocatable || info->emitrelocations))
10667 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10668 if (esdi->rela.hdr)
10669 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10674 esdo->rela.count += reloc_count;
10676 esdo->rel.count += reloc_count;
10680 if (o->reloc_count > 0)
10681 o->flags |= SEC_RELOC;
10684 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10685 set it (this is probably a bug) and if it is set
10686 assign_section_numbers will create a reloc section. */
10687 o->flags &=~ SEC_RELOC;
10690 /* If the SEC_ALLOC flag is not set, force the section VMA to
10691 zero. This is done in elf_fake_sections as well, but forcing
10692 the VMA to 0 here will ensure that relocs against these
10693 sections are handled correctly. */
10694 if ((o->flags & SEC_ALLOC) == 0
10695 && ! o->user_set_vma)
10699 if (! info->relocatable && merged)
10700 elf_link_hash_traverse (elf_hash_table (info),
10701 _bfd_elf_link_sec_merge_syms, abfd);
10703 /* Figure out the file positions for everything but the symbol table
10704 and the relocs. We set symcount to force assign_section_numbers
10705 to create a symbol table. */
10706 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10707 BFD_ASSERT (! abfd->output_has_begun);
10708 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10711 /* Set sizes, and assign file positions for reloc sections. */
10712 for (o = abfd->sections; o != NULL; o = o->next)
10714 struct bfd_elf_section_data *esdo = elf_section_data (o);
10715 if ((o->flags & SEC_RELOC) != 0)
10718 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10722 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10726 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10727 to count upwards while actually outputting the relocations. */
10728 esdo->rel.count = 0;
10729 esdo->rela.count = 0;
10732 _bfd_elf_assign_file_positions_for_relocs (abfd);
10734 /* We have now assigned file positions for all the sections except
10735 .symtab and .strtab. We start the .symtab section at the current
10736 file position, and write directly to it. We build the .strtab
10737 section in memory. */
10738 bfd_get_symcount (abfd) = 0;
10739 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10740 /* sh_name is set in prep_headers. */
10741 symtab_hdr->sh_type = SHT_SYMTAB;
10742 /* sh_flags, sh_addr and sh_size all start off zero. */
10743 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10744 /* sh_link is set in assign_section_numbers. */
10745 /* sh_info is set below. */
10746 /* sh_offset is set just below. */
10747 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10749 off = elf_tdata (abfd)->next_file_pos;
10750 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10752 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10753 incorrect. We do not yet know the size of the .symtab section.
10754 We correct next_file_pos below, after we do know the size. */
10756 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10757 continuously seeking to the right position in the file. */
10758 if (! info->keep_memory || max_sym_count < 20)
10759 flinfo.symbuf_size = 20;
10761 flinfo.symbuf_size = max_sym_count;
10762 amt = flinfo.symbuf_size;
10763 amt *= bed->s->sizeof_sym;
10764 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10765 if (flinfo.symbuf == NULL)
10767 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10769 /* Wild guess at number of output symbols. realloc'd as needed. */
10770 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10771 flinfo.shndxbuf_size = amt;
10772 amt *= sizeof (Elf_External_Sym_Shndx);
10773 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10774 if (flinfo.symshndxbuf == NULL)
10778 /* Start writing out the symbol table. The first symbol is always a
10780 if (info->strip != strip_all
10783 elfsym.st_value = 0;
10784 elfsym.st_size = 0;
10785 elfsym.st_info = 0;
10786 elfsym.st_other = 0;
10787 elfsym.st_shndx = SHN_UNDEF;
10788 elfsym.st_target_internal = 0;
10789 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10794 /* Output a symbol for each section. We output these even if we are
10795 discarding local symbols, since they are used for relocs. These
10796 symbols have no names. We store the index of each one in the
10797 index field of the section, so that we can find it again when
10798 outputting relocs. */
10799 if (info->strip != strip_all
10802 elfsym.st_size = 0;
10803 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10804 elfsym.st_other = 0;
10805 elfsym.st_value = 0;
10806 elfsym.st_target_internal = 0;
10807 for (i = 1; i < elf_numsections (abfd); i++)
10809 o = bfd_section_from_elf_index (abfd, i);
10812 o->target_index = bfd_get_symcount (abfd);
10813 elfsym.st_shndx = i;
10814 if (!info->relocatable)
10815 elfsym.st_value = o->vma;
10816 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10822 /* Allocate some memory to hold information read in from the input
10824 if (max_contents_size != 0)
10826 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10827 if (flinfo.contents == NULL)
10831 if (max_external_reloc_size != 0)
10833 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10834 if (flinfo.external_relocs == NULL)
10838 if (max_internal_reloc_count != 0)
10840 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10841 amt *= sizeof (Elf_Internal_Rela);
10842 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10843 if (flinfo.internal_relocs == NULL)
10847 if (max_sym_count != 0)
10849 amt = max_sym_count * bed->s->sizeof_sym;
10850 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10851 if (flinfo.external_syms == NULL)
10854 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10855 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10856 if (flinfo.internal_syms == NULL)
10859 amt = max_sym_count * sizeof (long);
10860 flinfo.indices = (long int *) bfd_malloc (amt);
10861 if (flinfo.indices == NULL)
10864 amt = max_sym_count * sizeof (asection *);
10865 flinfo.sections = (asection **) bfd_malloc (amt);
10866 if (flinfo.sections == NULL)
10870 if (max_sym_shndx_count != 0)
10872 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10873 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10874 if (flinfo.locsym_shndx == NULL)
10878 if (elf_hash_table (info)->tls_sec)
10880 bfd_vma base, end = 0;
10883 for (sec = elf_hash_table (info)->tls_sec;
10884 sec && (sec->flags & SEC_THREAD_LOCAL);
10887 bfd_size_type size = sec->size;
10890 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10892 struct bfd_link_order *ord = sec->map_tail.link_order;
10895 size = ord->offset + ord->size;
10897 end = sec->vma + size;
10899 base = elf_hash_table (info)->tls_sec->vma;
10900 /* Only align end of TLS section if static TLS doesn't have special
10901 alignment requirements. */
10902 if (bed->static_tls_alignment == 1)
10903 end = align_power (end,
10904 elf_hash_table (info)->tls_sec->alignment_power);
10905 elf_hash_table (info)->tls_size = end - base;
10908 /* Reorder SHF_LINK_ORDER sections. */
10909 for (o = abfd->sections; o != NULL; o = o->next)
10911 if (!elf_fixup_link_order (abfd, o))
10915 /* Since ELF permits relocations to be against local symbols, we
10916 must have the local symbols available when we do the relocations.
10917 Since we would rather only read the local symbols once, and we
10918 would rather not keep them in memory, we handle all the
10919 relocations for a single input file at the same time.
10921 Unfortunately, there is no way to know the total number of local
10922 symbols until we have seen all of them, and the local symbol
10923 indices precede the global symbol indices. This means that when
10924 we are generating relocatable output, and we see a reloc against
10925 a global symbol, we can not know the symbol index until we have
10926 finished examining all the local symbols to see which ones we are
10927 going to output. To deal with this, we keep the relocations in
10928 memory, and don't output them until the end of the link. This is
10929 an unfortunate waste of memory, but I don't see a good way around
10930 it. Fortunately, it only happens when performing a relocatable
10931 link, which is not the common case. FIXME: If keep_memory is set
10932 we could write the relocs out and then read them again; I don't
10933 know how bad the memory loss will be. */
10935 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10936 sub->output_has_begun = FALSE;
10937 for (o = abfd->sections; o != NULL; o = o->next)
10939 for (p = o->map_head.link_order; p != NULL; p = p->next)
10941 if (p->type == bfd_indirect_link_order
10942 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10943 == bfd_target_elf_flavour)
10944 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10946 if (! sub->output_has_begun)
10948 if (! elf_link_input_bfd (&flinfo, sub))
10950 sub->output_has_begun = TRUE;
10953 else if (p->type == bfd_section_reloc_link_order
10954 || p->type == bfd_symbol_reloc_link_order)
10956 if (! elf_reloc_link_order (abfd, info, o, p))
10961 if (! _bfd_default_link_order (abfd, info, o, p))
10963 if (p->type == bfd_indirect_link_order
10964 && (bfd_get_flavour (sub)
10965 == bfd_target_elf_flavour)
10966 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10967 != bed->s->elfclass))
10969 const char *iclass, *oclass;
10971 if (bed->s->elfclass == ELFCLASS64)
10973 iclass = "ELFCLASS32";
10974 oclass = "ELFCLASS64";
10978 iclass = "ELFCLASS64";
10979 oclass = "ELFCLASS32";
10982 bfd_set_error (bfd_error_wrong_format);
10983 (*_bfd_error_handler)
10984 (_("%B: file class %s incompatible with %s"),
10985 sub, iclass, oclass);
10994 /* Free symbol buffer if needed. */
10995 if (!info->reduce_memory_overheads)
10997 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10998 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10999 && elf_tdata (sub)->symbuf)
11001 free (elf_tdata (sub)->symbuf);
11002 elf_tdata (sub)->symbuf = NULL;
11006 /* Output a FILE symbol so that following locals are not associated
11007 with the wrong input file. */
11008 memset (&elfsym, 0, sizeof (elfsym));
11009 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
11010 elfsym.st_shndx = SHN_ABS;
11012 if (flinfo.filesym_count > 1
11013 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11014 bfd_und_section_ptr, NULL))
11017 /* Output any global symbols that got converted to local in a
11018 version script or due to symbol visibility. We do this in a
11019 separate step since ELF requires all local symbols to appear
11020 prior to any global symbols. FIXME: We should only do this if
11021 some global symbols were, in fact, converted to become local.
11022 FIXME: Will this work correctly with the Irix 5 linker? */
11023 eoinfo.failed = FALSE;
11024 eoinfo.flinfo = &flinfo;
11025 eoinfo.localsyms = TRUE;
11026 eoinfo.need_second_pass = FALSE;
11027 eoinfo.second_pass = FALSE;
11028 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11032 if (flinfo.filesym_count == 1
11033 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11034 bfd_und_section_ptr, NULL))
11037 if (eoinfo.need_second_pass)
11039 eoinfo.second_pass = TRUE;
11040 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11045 /* If backend needs to output some local symbols not present in the hash
11046 table, do it now. */
11047 if (bed->elf_backend_output_arch_local_syms)
11049 typedef int (*out_sym_func)
11050 (void *, const char *, Elf_Internal_Sym *, asection *,
11051 struct elf_link_hash_entry *);
11053 if (! ((*bed->elf_backend_output_arch_local_syms)
11054 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11058 /* That wrote out all the local symbols. Finish up the symbol table
11059 with the global symbols. Even if we want to strip everything we
11060 can, we still need to deal with those global symbols that got
11061 converted to local in a version script. */
11063 /* The sh_info field records the index of the first non local symbol. */
11064 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11067 && flinfo.dynsym_sec != NULL
11068 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11070 Elf_Internal_Sym sym;
11071 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11072 long last_local = 0;
11074 /* Write out the section symbols for the output sections. */
11075 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11081 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11083 sym.st_target_internal = 0;
11085 for (s = abfd->sections; s != NULL; s = s->next)
11091 dynindx = elf_section_data (s)->dynindx;
11094 indx = elf_section_data (s)->this_idx;
11095 BFD_ASSERT (indx > 0);
11096 sym.st_shndx = indx;
11097 if (! check_dynsym (abfd, &sym))
11099 sym.st_value = s->vma;
11100 dest = dynsym + dynindx * bed->s->sizeof_sym;
11101 if (last_local < dynindx)
11102 last_local = dynindx;
11103 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11107 /* Write out the local dynsyms. */
11108 if (elf_hash_table (info)->dynlocal)
11110 struct elf_link_local_dynamic_entry *e;
11111 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11116 /* Copy the internal symbol and turn off visibility.
11117 Note that we saved a word of storage and overwrote
11118 the original st_name with the dynstr_index. */
11120 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11122 s = bfd_section_from_elf_index (e->input_bfd,
11127 elf_section_data (s->output_section)->this_idx;
11128 if (! check_dynsym (abfd, &sym))
11130 sym.st_value = (s->output_section->vma
11132 + e->isym.st_value);
11135 if (last_local < e->dynindx)
11136 last_local = e->dynindx;
11138 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11139 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11143 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11147 /* We get the global symbols from the hash table. */
11148 eoinfo.failed = FALSE;
11149 eoinfo.localsyms = FALSE;
11150 eoinfo.flinfo = &flinfo;
11151 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11155 /* If backend needs to output some symbols not present in the hash
11156 table, do it now. */
11157 if (bed->elf_backend_output_arch_syms)
11159 typedef int (*out_sym_func)
11160 (void *, const char *, Elf_Internal_Sym *, asection *,
11161 struct elf_link_hash_entry *);
11163 if (! ((*bed->elf_backend_output_arch_syms)
11164 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11168 /* Flush all symbols to the file. */
11169 if (! elf_link_flush_output_syms (&flinfo, bed))
11172 /* Now we know the size of the symtab section. */
11173 off += symtab_hdr->sh_size;
11175 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11176 if (symtab_shndx_hdr->sh_name != 0)
11178 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11179 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11180 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11181 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11182 symtab_shndx_hdr->sh_size = amt;
11184 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11187 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11188 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11193 /* Finish up and write out the symbol string table (.strtab)
11195 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11196 /* sh_name was set in prep_headers. */
11197 symstrtab_hdr->sh_type = SHT_STRTAB;
11198 symstrtab_hdr->sh_flags = 0;
11199 symstrtab_hdr->sh_addr = 0;
11200 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11201 symstrtab_hdr->sh_entsize = 0;
11202 symstrtab_hdr->sh_link = 0;
11203 symstrtab_hdr->sh_info = 0;
11204 /* sh_offset is set just below. */
11205 symstrtab_hdr->sh_addralign = 1;
11207 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11208 elf_tdata (abfd)->next_file_pos = off;
11210 if (bfd_get_symcount (abfd) > 0)
11212 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11213 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11217 /* Adjust the relocs to have the correct symbol indices. */
11218 for (o = abfd->sections; o != NULL; o = o->next)
11220 struct bfd_elf_section_data *esdo = elf_section_data (o);
11221 if ((o->flags & SEC_RELOC) == 0)
11224 if (esdo->rel.hdr != NULL)
11225 elf_link_adjust_relocs (abfd, &esdo->rel);
11226 if (esdo->rela.hdr != NULL)
11227 elf_link_adjust_relocs (abfd, &esdo->rela);
11229 /* Set the reloc_count field to 0 to prevent write_relocs from
11230 trying to swap the relocs out itself. */
11231 o->reloc_count = 0;
11234 if (dynamic && info->combreloc && dynobj != NULL)
11235 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11237 /* If we are linking against a dynamic object, or generating a
11238 shared library, finish up the dynamic linking information. */
11241 bfd_byte *dyncon, *dynconend;
11243 /* Fix up .dynamic entries. */
11244 o = bfd_get_linker_section (dynobj, ".dynamic");
11245 BFD_ASSERT (o != NULL);
11247 dyncon = o->contents;
11248 dynconend = o->contents + o->size;
11249 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11251 Elf_Internal_Dyn dyn;
11255 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11262 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11264 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11266 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11267 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11270 dyn.d_un.d_val = relativecount;
11277 name = info->init_function;
11280 name = info->fini_function;
11283 struct elf_link_hash_entry *h;
11285 h = elf_link_hash_lookup (elf_hash_table (info), name,
11286 FALSE, FALSE, TRUE);
11288 && (h->root.type == bfd_link_hash_defined
11289 || h->root.type == bfd_link_hash_defweak))
11291 dyn.d_un.d_ptr = h->root.u.def.value;
11292 o = h->root.u.def.section;
11293 if (o->output_section != NULL)
11294 dyn.d_un.d_ptr += (o->output_section->vma
11295 + o->output_offset);
11298 /* The symbol is imported from another shared
11299 library and does not apply to this one. */
11300 dyn.d_un.d_ptr = 0;
11307 case DT_PREINIT_ARRAYSZ:
11308 name = ".preinit_array";
11310 case DT_INIT_ARRAYSZ:
11311 name = ".init_array";
11313 case DT_FINI_ARRAYSZ:
11314 name = ".fini_array";
11316 o = bfd_get_section_by_name (abfd, name);
11319 (*_bfd_error_handler)
11320 (_("%B: could not find output section %s"), abfd, name);
11324 (*_bfd_error_handler)
11325 (_("warning: %s section has zero size"), name);
11326 dyn.d_un.d_val = o->size;
11329 case DT_PREINIT_ARRAY:
11330 name = ".preinit_array";
11332 case DT_INIT_ARRAY:
11333 name = ".init_array";
11335 case DT_FINI_ARRAY:
11336 name = ".fini_array";
11343 name = ".gnu.hash";
11352 name = ".gnu.version_d";
11355 name = ".gnu.version_r";
11358 name = ".gnu.version";
11360 o = bfd_get_section_by_name (abfd, name);
11363 (*_bfd_error_handler)
11364 (_("%B: could not find output section %s"), abfd, name);
11367 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11369 (*_bfd_error_handler)
11370 (_("warning: section '%s' is being made into a note"), name);
11371 bfd_set_error (bfd_error_nonrepresentable_section);
11374 dyn.d_un.d_ptr = o->vma;
11381 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11385 dyn.d_un.d_val = 0;
11386 dyn.d_un.d_ptr = 0;
11387 for (i = 1; i < elf_numsections (abfd); i++)
11389 Elf_Internal_Shdr *hdr;
11391 hdr = elf_elfsections (abfd)[i];
11392 if (hdr->sh_type == type
11393 && (hdr->sh_flags & SHF_ALLOC) != 0)
11395 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11396 dyn.d_un.d_val += hdr->sh_size;
11399 if (dyn.d_un.d_ptr == 0
11400 || hdr->sh_addr < dyn.d_un.d_ptr)
11401 dyn.d_un.d_ptr = hdr->sh_addr;
11407 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11411 /* If we have created any dynamic sections, then output them. */
11412 if (dynobj != NULL)
11414 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11417 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11418 if (((info->warn_shared_textrel && info->shared)
11419 || info->error_textrel)
11420 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11422 bfd_byte *dyncon, *dynconend;
11424 dyncon = o->contents;
11425 dynconend = o->contents + o->size;
11426 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11428 Elf_Internal_Dyn dyn;
11430 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11432 if (dyn.d_tag == DT_TEXTREL)
11434 if (info->error_textrel)
11435 info->callbacks->einfo
11436 (_("%P%X: read-only segment has dynamic relocations.\n"));
11438 info->callbacks->einfo
11439 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11445 for (o = dynobj->sections; o != NULL; o = o->next)
11447 if ((o->flags & SEC_HAS_CONTENTS) == 0
11449 || o->output_section == bfd_abs_section_ptr)
11451 if ((o->flags & SEC_LINKER_CREATED) == 0)
11453 /* At this point, we are only interested in sections
11454 created by _bfd_elf_link_create_dynamic_sections. */
11457 if (elf_hash_table (info)->stab_info.stabstr == o)
11459 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11461 if (strcmp (o->name, ".dynstr") != 0)
11463 /* FIXME: octets_per_byte. */
11464 if (! bfd_set_section_contents (abfd, o->output_section,
11466 (file_ptr) o->output_offset,
11472 /* The contents of the .dynstr section are actually in a
11474 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11475 if (bfd_seek (abfd, off, SEEK_SET) != 0
11476 || ! _bfd_elf_strtab_emit (abfd,
11477 elf_hash_table (info)->dynstr))
11483 if (info->relocatable)
11485 bfd_boolean failed = FALSE;
11487 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11492 /* If we have optimized stabs strings, output them. */
11493 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11495 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11499 if (info->eh_frame_hdr)
11501 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11505 if (flinfo.symstrtab != NULL)
11506 _bfd_stringtab_free (flinfo.symstrtab);
11507 if (flinfo.contents != NULL)
11508 free (flinfo.contents);
11509 if (flinfo.external_relocs != NULL)
11510 free (flinfo.external_relocs);
11511 if (flinfo.internal_relocs != NULL)
11512 free (flinfo.internal_relocs);
11513 if (flinfo.external_syms != NULL)
11514 free (flinfo.external_syms);
11515 if (flinfo.locsym_shndx != NULL)
11516 free (flinfo.locsym_shndx);
11517 if (flinfo.internal_syms != NULL)
11518 free (flinfo.internal_syms);
11519 if (flinfo.indices != NULL)
11520 free (flinfo.indices);
11521 if (flinfo.sections != NULL)
11522 free (flinfo.sections);
11523 if (flinfo.symbuf != NULL)
11524 free (flinfo.symbuf);
11525 if (flinfo.symshndxbuf != NULL)
11526 free (flinfo.symshndxbuf);
11527 for (o = abfd->sections; o != NULL; o = o->next)
11529 struct bfd_elf_section_data *esdo = elf_section_data (o);
11530 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11531 free (esdo->rel.hashes);
11532 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11533 free (esdo->rela.hashes);
11536 elf_tdata (abfd)->linker = TRUE;
11540 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11541 if (contents == NULL)
11542 return FALSE; /* Bail out and fail. */
11543 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11544 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11551 if (flinfo.symstrtab != NULL)
11552 _bfd_stringtab_free (flinfo.symstrtab);
11553 if (flinfo.contents != NULL)
11554 free (flinfo.contents);
11555 if (flinfo.external_relocs != NULL)
11556 free (flinfo.external_relocs);
11557 if (flinfo.internal_relocs != NULL)
11558 free (flinfo.internal_relocs);
11559 if (flinfo.external_syms != NULL)
11560 free (flinfo.external_syms);
11561 if (flinfo.locsym_shndx != NULL)
11562 free (flinfo.locsym_shndx);
11563 if (flinfo.internal_syms != NULL)
11564 free (flinfo.internal_syms);
11565 if (flinfo.indices != NULL)
11566 free (flinfo.indices);
11567 if (flinfo.sections != NULL)
11568 free (flinfo.sections);
11569 if (flinfo.symbuf != NULL)
11570 free (flinfo.symbuf);
11571 if (flinfo.symshndxbuf != NULL)
11572 free (flinfo.symshndxbuf);
11573 for (o = abfd->sections; o != NULL; o = o->next)
11575 struct bfd_elf_section_data *esdo = elf_section_data (o);
11576 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11577 free (esdo->rel.hashes);
11578 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11579 free (esdo->rela.hashes);
11585 /* Initialize COOKIE for input bfd ABFD. */
11588 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11589 struct bfd_link_info *info, bfd *abfd)
11591 Elf_Internal_Shdr *symtab_hdr;
11592 const struct elf_backend_data *bed;
11594 bed = get_elf_backend_data (abfd);
11595 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11597 cookie->abfd = abfd;
11598 cookie->sym_hashes = elf_sym_hashes (abfd);
11599 cookie->bad_symtab = elf_bad_symtab (abfd);
11600 if (cookie->bad_symtab)
11602 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11603 cookie->extsymoff = 0;
11607 cookie->locsymcount = symtab_hdr->sh_info;
11608 cookie->extsymoff = symtab_hdr->sh_info;
11611 if (bed->s->arch_size == 32)
11612 cookie->r_sym_shift = 8;
11614 cookie->r_sym_shift = 32;
11616 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11617 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11619 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11620 cookie->locsymcount, 0,
11622 if (cookie->locsyms == NULL)
11624 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11627 if (info->keep_memory)
11628 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11633 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11636 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11638 Elf_Internal_Shdr *symtab_hdr;
11640 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11641 if (cookie->locsyms != NULL
11642 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11643 free (cookie->locsyms);
11646 /* Initialize the relocation information in COOKIE for input section SEC
11647 of input bfd ABFD. */
11650 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11651 struct bfd_link_info *info, bfd *abfd,
11654 const struct elf_backend_data *bed;
11656 if (sec->reloc_count == 0)
11658 cookie->rels = NULL;
11659 cookie->relend = NULL;
11663 bed = get_elf_backend_data (abfd);
11665 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11666 info->keep_memory);
11667 if (cookie->rels == NULL)
11669 cookie->rel = cookie->rels;
11670 cookie->relend = (cookie->rels
11671 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11673 cookie->rel = cookie->rels;
11677 /* Free the memory allocated by init_reloc_cookie_rels,
11681 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11684 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11685 free (cookie->rels);
11688 /* Initialize the whole of COOKIE for input section SEC. */
11691 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11692 struct bfd_link_info *info,
11695 if (!init_reloc_cookie (cookie, info, sec->owner))
11697 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11702 fini_reloc_cookie (cookie, sec->owner);
11707 /* Free the memory allocated by init_reloc_cookie_for_section,
11711 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11714 fini_reloc_cookie_rels (cookie, sec);
11715 fini_reloc_cookie (cookie, sec->owner);
11718 /* Garbage collect unused sections. */
11720 /* Default gc_mark_hook. */
11723 _bfd_elf_gc_mark_hook (asection *sec,
11724 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11725 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11726 struct elf_link_hash_entry *h,
11727 Elf_Internal_Sym *sym)
11729 const char *sec_name;
11733 switch (h->root.type)
11735 case bfd_link_hash_defined:
11736 case bfd_link_hash_defweak:
11737 return h->root.u.def.section;
11739 case bfd_link_hash_common:
11740 return h->root.u.c.p->section;
11742 case bfd_link_hash_undefined:
11743 case bfd_link_hash_undefweak:
11744 /* To work around a glibc bug, keep all XXX input sections
11745 when there is an as yet undefined reference to __start_XXX
11746 or __stop_XXX symbols. The linker will later define such
11747 symbols for orphan input sections that have a name
11748 representable as a C identifier. */
11749 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11750 sec_name = h->root.root.string + 8;
11751 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11752 sec_name = h->root.root.string + 7;
11756 if (sec_name && *sec_name != '\0')
11760 for (i = info->input_bfds; i; i = i->link_next)
11762 sec = bfd_get_section_by_name (i, sec_name);
11764 sec->flags |= SEC_KEEP;
11774 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11779 /* COOKIE->rel describes a relocation against section SEC, which is
11780 a section we've decided to keep. Return the section that contains
11781 the relocation symbol, or NULL if no section contains it. */
11784 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11785 elf_gc_mark_hook_fn gc_mark_hook,
11786 struct elf_reloc_cookie *cookie)
11788 unsigned long r_symndx;
11789 struct elf_link_hash_entry *h;
11791 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11792 if (r_symndx == STN_UNDEF)
11795 if (r_symndx >= cookie->locsymcount
11796 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11798 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11799 while (h->root.type == bfd_link_hash_indirect
11800 || h->root.type == bfd_link_hash_warning)
11801 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11803 /* If this symbol is weak and there is a non-weak definition, we
11804 keep the non-weak definition because many backends put
11805 dynamic reloc info on the non-weak definition for code
11806 handling copy relocs. */
11807 if (h->u.weakdef != NULL)
11808 h->u.weakdef->mark = 1;
11809 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11812 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11813 &cookie->locsyms[r_symndx]);
11816 /* COOKIE->rel describes a relocation against section SEC, which is
11817 a section we've decided to keep. Mark the section that contains
11818 the relocation symbol. */
11821 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11823 elf_gc_mark_hook_fn gc_mark_hook,
11824 struct elf_reloc_cookie *cookie)
11828 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11829 if (rsec && !rsec->gc_mark)
11831 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11832 || (rsec->owner->flags & DYNAMIC) != 0)
11834 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11840 /* The mark phase of garbage collection. For a given section, mark
11841 it and any sections in this section's group, and all the sections
11842 which define symbols to which it refers. */
11845 _bfd_elf_gc_mark (struct bfd_link_info *info,
11847 elf_gc_mark_hook_fn gc_mark_hook)
11850 asection *group_sec, *eh_frame;
11854 /* Mark all the sections in the group. */
11855 group_sec = elf_section_data (sec)->next_in_group;
11856 if (group_sec && !group_sec->gc_mark)
11857 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11860 /* Look through the section relocs. */
11862 eh_frame = elf_eh_frame_section (sec->owner);
11863 if ((sec->flags & SEC_RELOC) != 0
11864 && sec->reloc_count > 0
11865 && sec != eh_frame)
11867 struct elf_reloc_cookie cookie;
11869 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11873 for (; cookie.rel < cookie.relend; cookie.rel++)
11874 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11879 fini_reloc_cookie_for_section (&cookie, sec);
11883 if (ret && eh_frame && elf_fde_list (sec))
11885 struct elf_reloc_cookie cookie;
11887 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11891 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11892 gc_mark_hook, &cookie))
11894 fini_reloc_cookie_for_section (&cookie, eh_frame);
11901 /* Keep debug and special sections. */
11904 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11905 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11909 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11912 bfd_boolean some_kept;
11914 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11917 /* Ensure all linker created sections are kept, and see whether
11918 any other section is already marked. */
11920 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11922 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11924 else if (isec->gc_mark)
11928 /* If no section in this file will be kept, then we can
11929 toss out debug sections. */
11933 /* Keep debug and special sections like .comment when they are
11934 not part of a group, or when we have single-member groups. */
11935 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11936 if ((elf_next_in_group (isec) == NULL
11937 || elf_next_in_group (isec) == isec)
11938 && ((isec->flags & SEC_DEBUGGING) != 0
11939 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11945 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11947 struct elf_gc_sweep_symbol_info
11949 struct bfd_link_info *info;
11950 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11955 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11958 && (((h->root.type == bfd_link_hash_defined
11959 || h->root.type == bfd_link_hash_defweak)
11960 && !(h->def_regular
11961 && h->root.u.def.section->gc_mark))
11962 || h->root.type == bfd_link_hash_undefined
11963 || h->root.type == bfd_link_hash_undefweak))
11965 struct elf_gc_sweep_symbol_info *inf;
11967 inf = (struct elf_gc_sweep_symbol_info *) data;
11968 (*inf->hide_symbol) (inf->info, h, TRUE);
11969 h->def_regular = 0;
11970 h->ref_regular = 0;
11971 h->ref_regular_nonweak = 0;
11977 /* The sweep phase of garbage collection. Remove all garbage sections. */
11979 typedef bfd_boolean (*gc_sweep_hook_fn)
11980 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11983 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11986 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11987 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11988 unsigned long section_sym_count;
11989 struct elf_gc_sweep_symbol_info sweep_info;
11991 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11995 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11998 for (o = sub->sections; o != NULL; o = o->next)
12000 /* When any section in a section group is kept, we keep all
12001 sections in the section group. If the first member of
12002 the section group is excluded, we will also exclude the
12004 if (o->flags & SEC_GROUP)
12006 asection *first = elf_next_in_group (o);
12007 o->gc_mark = first->gc_mark;
12013 /* Skip sweeping sections already excluded. */
12014 if (o->flags & SEC_EXCLUDE)
12017 /* Since this is early in the link process, it is simple
12018 to remove a section from the output. */
12019 o->flags |= SEC_EXCLUDE;
12021 if (info->print_gc_sections && o->size != 0)
12022 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12024 /* But we also have to update some of the relocation
12025 info we collected before. */
12027 && (o->flags & SEC_RELOC) != 0
12028 && o->reloc_count > 0
12029 && !bfd_is_abs_section (o->output_section))
12031 Elf_Internal_Rela *internal_relocs;
12035 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12036 info->keep_memory);
12037 if (internal_relocs == NULL)
12040 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12042 if (elf_section_data (o)->relocs != internal_relocs)
12043 free (internal_relocs);
12051 /* Remove the symbols that were in the swept sections from the dynamic
12052 symbol table. GCFIXME: Anyone know how to get them out of the
12053 static symbol table as well? */
12054 sweep_info.info = info;
12055 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12056 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12059 _bfd_elf_link_renumber_dynsyms (abfd, info, §ion_sym_count);
12063 /* Propagate collected vtable information. This is called through
12064 elf_link_hash_traverse. */
12067 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12069 /* Those that are not vtables. */
12070 if (h->vtable == NULL || h->vtable->parent == NULL)
12073 /* Those vtables that do not have parents, we cannot merge. */
12074 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12077 /* If we've already been done, exit. */
12078 if (h->vtable->used && h->vtable->used[-1])
12081 /* Make sure the parent's table is up to date. */
12082 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12084 if (h->vtable->used == NULL)
12086 /* None of this table's entries were referenced. Re-use the
12088 h->vtable->used = h->vtable->parent->vtable->used;
12089 h->vtable->size = h->vtable->parent->vtable->size;
12094 bfd_boolean *cu, *pu;
12096 /* Or the parent's entries into ours. */
12097 cu = h->vtable->used;
12099 pu = h->vtable->parent->vtable->used;
12102 const struct elf_backend_data *bed;
12103 unsigned int log_file_align;
12105 bed = get_elf_backend_data (h->root.u.def.section->owner);
12106 log_file_align = bed->s->log_file_align;
12107 n = h->vtable->parent->vtable->size >> log_file_align;
12122 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12125 bfd_vma hstart, hend;
12126 Elf_Internal_Rela *relstart, *relend, *rel;
12127 const struct elf_backend_data *bed;
12128 unsigned int log_file_align;
12130 /* Take care of both those symbols that do not describe vtables as
12131 well as those that are not loaded. */
12132 if (h->vtable == NULL || h->vtable->parent == NULL)
12135 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12136 || h->root.type == bfd_link_hash_defweak);
12138 sec = h->root.u.def.section;
12139 hstart = h->root.u.def.value;
12140 hend = hstart + h->size;
12142 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12144 return *(bfd_boolean *) okp = FALSE;
12145 bed = get_elf_backend_data (sec->owner);
12146 log_file_align = bed->s->log_file_align;
12148 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12150 for (rel = relstart; rel < relend; ++rel)
12151 if (rel->r_offset >= hstart && rel->r_offset < hend)
12153 /* If the entry is in use, do nothing. */
12154 if (h->vtable->used
12155 && (rel->r_offset - hstart) < h->vtable->size)
12157 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12158 if (h->vtable->used[entry])
12161 /* Otherwise, kill it. */
12162 rel->r_offset = rel->r_info = rel->r_addend = 0;
12168 /* Mark sections containing dynamically referenced symbols. When
12169 building shared libraries, we must assume that any visible symbol is
12173 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12175 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12177 if ((h->root.type == bfd_link_hash_defined
12178 || h->root.type == bfd_link_hash_defweak)
12180 || ((!info->executable || info->export_dynamic)
12182 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12183 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12184 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12185 || !bfd_hide_sym_by_version (info->version_info,
12186 h->root.root.string)))))
12187 h->root.u.def.section->flags |= SEC_KEEP;
12192 /* Keep all sections containing symbols undefined on the command-line,
12193 and the section containing the entry symbol. */
12196 _bfd_elf_gc_keep (struct bfd_link_info *info)
12198 struct bfd_sym_chain *sym;
12200 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12202 struct elf_link_hash_entry *h;
12204 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12205 FALSE, FALSE, FALSE);
12208 && (h->root.type == bfd_link_hash_defined
12209 || h->root.type == bfd_link_hash_defweak)
12210 && !bfd_is_abs_section (h->root.u.def.section))
12211 h->root.u.def.section->flags |= SEC_KEEP;
12215 /* Do mark and sweep of unused sections. */
12218 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12220 bfd_boolean ok = TRUE;
12222 elf_gc_mark_hook_fn gc_mark_hook;
12223 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12225 if (!bed->can_gc_sections
12226 || !is_elf_hash_table (info->hash))
12228 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12232 bed->gc_keep (info);
12234 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12235 at the .eh_frame section if we can mark the FDEs individually. */
12236 _bfd_elf_begin_eh_frame_parsing (info);
12237 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12240 struct elf_reloc_cookie cookie;
12242 sec = bfd_get_section_by_name (sub, ".eh_frame");
12243 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12245 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12246 if (elf_section_data (sec)->sec_info
12247 && (sec->flags & SEC_LINKER_CREATED) == 0)
12248 elf_eh_frame_section (sub) = sec;
12249 fini_reloc_cookie_for_section (&cookie, sec);
12250 sec = bfd_get_next_section_by_name (sec);
12253 _bfd_elf_end_eh_frame_parsing (info);
12255 /* Apply transitive closure to the vtable entry usage info. */
12256 elf_link_hash_traverse (elf_hash_table (info),
12257 elf_gc_propagate_vtable_entries_used,
12262 /* Kill the vtable relocations that were not used. */
12263 elf_link_hash_traverse (elf_hash_table (info),
12264 elf_gc_smash_unused_vtentry_relocs,
12269 /* Mark dynamically referenced symbols. */
12270 if (elf_hash_table (info)->dynamic_sections_created)
12271 elf_link_hash_traverse (elf_hash_table (info),
12272 bed->gc_mark_dynamic_ref,
12275 /* Grovel through relocs to find out who stays ... */
12276 gc_mark_hook = bed->gc_mark_hook;
12277 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12281 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12284 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12285 Also treat note sections as a root, if the section is not part
12287 for (o = sub->sections; o != NULL; o = o->next)
12289 && (o->flags & SEC_EXCLUDE) == 0
12290 && ((o->flags & SEC_KEEP) != 0
12291 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12292 && elf_next_in_group (o) == NULL )))
12294 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12299 /* Allow the backend to mark additional target specific sections. */
12300 bed->gc_mark_extra_sections (info, gc_mark_hook);
12302 /* ... and mark SEC_EXCLUDE for those that go. */
12303 return elf_gc_sweep (abfd, info);
12306 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12309 bfd_elf_gc_record_vtinherit (bfd *abfd,
12311 struct elf_link_hash_entry *h,
12314 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12315 struct elf_link_hash_entry **search, *child;
12316 bfd_size_type extsymcount;
12317 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12319 /* The sh_info field of the symtab header tells us where the
12320 external symbols start. We don't care about the local symbols at
12322 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12323 if (!elf_bad_symtab (abfd))
12324 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12326 sym_hashes = elf_sym_hashes (abfd);
12327 sym_hashes_end = sym_hashes + extsymcount;
12329 /* Hunt down the child symbol, which is in this section at the same
12330 offset as the relocation. */
12331 for (search = sym_hashes; search != sym_hashes_end; ++search)
12333 if ((child = *search) != NULL
12334 && (child->root.type == bfd_link_hash_defined
12335 || child->root.type == bfd_link_hash_defweak)
12336 && child->root.u.def.section == sec
12337 && child->root.u.def.value == offset)
12341 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12342 abfd, sec, (unsigned long) offset);
12343 bfd_set_error (bfd_error_invalid_operation);
12347 if (!child->vtable)
12349 child->vtable = (struct elf_link_virtual_table_entry *)
12350 bfd_zalloc (abfd, sizeof (*child->vtable));
12351 if (!child->vtable)
12356 /* This *should* only be the absolute section. It could potentially
12357 be that someone has defined a non-global vtable though, which
12358 would be bad. It isn't worth paging in the local symbols to be
12359 sure though; that case should simply be handled by the assembler. */
12361 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12364 child->vtable->parent = h;
12369 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12372 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12373 asection *sec ATTRIBUTE_UNUSED,
12374 struct elf_link_hash_entry *h,
12377 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12378 unsigned int log_file_align = bed->s->log_file_align;
12382 h->vtable = (struct elf_link_virtual_table_entry *)
12383 bfd_zalloc (abfd, sizeof (*h->vtable));
12388 if (addend >= h->vtable->size)
12390 size_t size, bytes, file_align;
12391 bfd_boolean *ptr = h->vtable->used;
12393 /* While the symbol is undefined, we have to be prepared to handle
12395 file_align = 1 << log_file_align;
12396 if (h->root.type == bfd_link_hash_undefined)
12397 size = addend + file_align;
12401 if (addend >= size)
12403 /* Oops! We've got a reference past the defined end of
12404 the table. This is probably a bug -- shall we warn? */
12405 size = addend + file_align;
12408 size = (size + file_align - 1) & -file_align;
12410 /* Allocate one extra entry for use as a "done" flag for the
12411 consolidation pass. */
12412 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12416 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12422 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12423 * sizeof (bfd_boolean));
12424 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12428 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12433 /* And arrange for that done flag to be at index -1. */
12434 h->vtable->used = ptr + 1;
12435 h->vtable->size = size;
12438 h->vtable->used[addend >> log_file_align] = TRUE;
12443 /* Map an ELF section header flag to its corresponding string. */
12447 flagword flag_value;
12448 } elf_flags_to_name_table;
12450 static elf_flags_to_name_table elf_flags_to_names [] =
12452 { "SHF_WRITE", SHF_WRITE },
12453 { "SHF_ALLOC", SHF_ALLOC },
12454 { "SHF_EXECINSTR", SHF_EXECINSTR },
12455 { "SHF_MERGE", SHF_MERGE },
12456 { "SHF_STRINGS", SHF_STRINGS },
12457 { "SHF_INFO_LINK", SHF_INFO_LINK},
12458 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12459 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12460 { "SHF_GROUP", SHF_GROUP },
12461 { "SHF_TLS", SHF_TLS },
12462 { "SHF_MASKOS", SHF_MASKOS },
12463 { "SHF_EXCLUDE", SHF_EXCLUDE },
12466 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12468 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12469 struct flag_info *flaginfo,
12472 const bfd_vma sh_flags = elf_section_flags (section);
12474 if (!flaginfo->flags_initialized)
12476 bfd *obfd = info->output_bfd;
12477 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12478 struct flag_info_list *tf = flaginfo->flag_list;
12480 int without_hex = 0;
12482 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12485 flagword (*lookup) (char *);
12487 lookup = bed->elf_backend_lookup_section_flags_hook;
12488 if (lookup != NULL)
12490 flagword hexval = (*lookup) ((char *) tf->name);
12494 if (tf->with == with_flags)
12495 with_hex |= hexval;
12496 else if (tf->with == without_flags)
12497 without_hex |= hexval;
12502 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12504 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12506 if (tf->with == with_flags)
12507 with_hex |= elf_flags_to_names[i].flag_value;
12508 else if (tf->with == without_flags)
12509 without_hex |= elf_flags_to_names[i].flag_value;
12516 info->callbacks->einfo
12517 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12521 flaginfo->flags_initialized = TRUE;
12522 flaginfo->only_with_flags |= with_hex;
12523 flaginfo->not_with_flags |= without_hex;
12526 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12529 if ((flaginfo->not_with_flags & sh_flags) != 0)
12535 struct alloc_got_off_arg {
12537 struct bfd_link_info *info;
12540 /* We need a special top-level link routine to convert got reference counts
12541 to real got offsets. */
12544 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12546 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12547 bfd *obfd = gofarg->info->output_bfd;
12548 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12550 if (h->got.refcount > 0)
12552 h->got.offset = gofarg->gotoff;
12553 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12556 h->got.offset = (bfd_vma) -1;
12561 /* And an accompanying bit to work out final got entry offsets once
12562 we're done. Should be called from final_link. */
12565 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12566 struct bfd_link_info *info)
12569 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12571 struct alloc_got_off_arg gofarg;
12573 BFD_ASSERT (abfd == info->output_bfd);
12575 if (! is_elf_hash_table (info->hash))
12578 /* The GOT offset is relative to the .got section, but the GOT header is
12579 put into the .got.plt section, if the backend uses it. */
12580 if (bed->want_got_plt)
12583 gotoff = bed->got_header_size;
12585 /* Do the local .got entries first. */
12586 for (i = info->input_bfds; i; i = i->link_next)
12588 bfd_signed_vma *local_got;
12589 bfd_size_type j, locsymcount;
12590 Elf_Internal_Shdr *symtab_hdr;
12592 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12595 local_got = elf_local_got_refcounts (i);
12599 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12600 if (elf_bad_symtab (i))
12601 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12603 locsymcount = symtab_hdr->sh_info;
12605 for (j = 0; j < locsymcount; ++j)
12607 if (local_got[j] > 0)
12609 local_got[j] = gotoff;
12610 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12613 local_got[j] = (bfd_vma) -1;
12617 /* Then the global .got entries. .plt refcounts are handled by
12618 adjust_dynamic_symbol */
12619 gofarg.gotoff = gotoff;
12620 gofarg.info = info;
12621 elf_link_hash_traverse (elf_hash_table (info),
12622 elf_gc_allocate_got_offsets,
12627 /* Many folk need no more in the way of final link than this, once
12628 got entry reference counting is enabled. */
12631 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12633 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12636 /* Invoke the regular ELF backend linker to do all the work. */
12637 return bfd_elf_final_link (abfd, info);
12641 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12643 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12645 if (rcookie->bad_symtab)
12646 rcookie->rel = rcookie->rels;
12648 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12650 unsigned long r_symndx;
12652 if (! rcookie->bad_symtab)
12653 if (rcookie->rel->r_offset > offset)
12655 if (rcookie->rel->r_offset != offset)
12658 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12659 if (r_symndx == STN_UNDEF)
12662 if (r_symndx >= rcookie->locsymcount
12663 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12665 struct elf_link_hash_entry *h;
12667 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12669 while (h->root.type == bfd_link_hash_indirect
12670 || h->root.type == bfd_link_hash_warning)
12671 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12673 if ((h->root.type == bfd_link_hash_defined
12674 || h->root.type == bfd_link_hash_defweak)
12675 && discarded_section (h->root.u.def.section))
12682 /* It's not a relocation against a global symbol,
12683 but it could be a relocation against a local
12684 symbol for a discarded section. */
12686 Elf_Internal_Sym *isym;
12688 /* Need to: get the symbol; get the section. */
12689 isym = &rcookie->locsyms[r_symndx];
12690 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12691 if (isec != NULL && discarded_section (isec))
12699 /* Discard unneeded references to discarded sections.
12700 Returns TRUE if any section's size was changed. */
12701 /* This function assumes that the relocations are in sorted order,
12702 which is true for all known assemblers. */
12705 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12707 struct elf_reloc_cookie cookie;
12708 asection *stab, *eh;
12709 const struct elf_backend_data *bed;
12711 bfd_boolean ret = FALSE;
12713 if (info->traditional_format
12714 || !is_elf_hash_table (info->hash))
12717 _bfd_elf_begin_eh_frame_parsing (info);
12718 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12720 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12723 bed = get_elf_backend_data (abfd);
12726 if (!info->relocatable)
12728 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12731 || bfd_is_abs_section (eh->output_section)))
12732 eh = bfd_get_next_section_by_name (eh);
12735 stab = bfd_get_section_by_name (abfd, ".stab");
12737 && (stab->size == 0
12738 || bfd_is_abs_section (stab->output_section)
12739 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12744 && bed->elf_backend_discard_info == NULL)
12747 if (!init_reloc_cookie (&cookie, info, abfd))
12751 && stab->reloc_count > 0
12752 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12754 if (_bfd_discard_section_stabs (abfd, stab,
12755 elf_section_data (stab)->sec_info,
12756 bfd_elf_reloc_symbol_deleted_p,
12759 fini_reloc_cookie_rels (&cookie, stab);
12763 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12765 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12766 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12767 bfd_elf_reloc_symbol_deleted_p,
12770 fini_reloc_cookie_rels (&cookie, eh);
12771 eh = bfd_get_next_section_by_name (eh);
12774 if (bed->elf_backend_discard_info != NULL
12775 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12778 fini_reloc_cookie (&cookie, abfd);
12780 _bfd_elf_end_eh_frame_parsing (info);
12782 if (info->eh_frame_hdr
12783 && !info->relocatable
12784 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12791 _bfd_elf_section_already_linked (bfd *abfd,
12793 struct bfd_link_info *info)
12796 const char *name, *key;
12797 struct bfd_section_already_linked *l;
12798 struct bfd_section_already_linked_hash_entry *already_linked_list;
12800 if (sec->output_section == bfd_abs_section_ptr)
12803 flags = sec->flags;
12805 /* Return if it isn't a linkonce section. A comdat group section
12806 also has SEC_LINK_ONCE set. */
12807 if ((flags & SEC_LINK_ONCE) == 0)
12810 /* Don't put group member sections on our list of already linked
12811 sections. They are handled as a group via their group section. */
12812 if (elf_sec_group (sec) != NULL)
12815 /* For a SHT_GROUP section, use the group signature as the key. */
12817 if ((flags & SEC_GROUP) != 0
12818 && elf_next_in_group (sec) != NULL
12819 && elf_group_name (elf_next_in_group (sec)) != NULL)
12820 key = elf_group_name (elf_next_in_group (sec));
12823 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12824 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12825 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12828 /* Must be a user linkonce section that doesn't follow gcc's
12829 naming convention. In this case we won't be matching
12830 single member groups. */
12834 already_linked_list = bfd_section_already_linked_table_lookup (key);
12836 for (l = already_linked_list->entry; l != NULL; l = l->next)
12838 /* We may have 2 different types of sections on the list: group
12839 sections with a signature of <key> (<key> is some string),
12840 and linkonce sections named .gnu.linkonce.<type>.<key>.
12841 Match like sections. LTO plugin sections are an exception.
12842 They are always named .gnu.linkonce.t.<key> and match either
12843 type of section. */
12844 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12845 && ((flags & SEC_GROUP) != 0
12846 || strcmp (name, l->sec->name) == 0))
12847 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12849 /* The section has already been linked. See if we should
12850 issue a warning. */
12851 if (!_bfd_handle_already_linked (sec, l, info))
12854 if (flags & SEC_GROUP)
12856 asection *first = elf_next_in_group (sec);
12857 asection *s = first;
12861 s->output_section = bfd_abs_section_ptr;
12862 /* Record which group discards it. */
12863 s->kept_section = l->sec;
12864 s = elf_next_in_group (s);
12865 /* These lists are circular. */
12875 /* A single member comdat group section may be discarded by a
12876 linkonce section and vice versa. */
12877 if ((flags & SEC_GROUP) != 0)
12879 asection *first = elf_next_in_group (sec);
12881 if (first != NULL && elf_next_in_group (first) == first)
12882 /* Check this single member group against linkonce sections. */
12883 for (l = already_linked_list->entry; l != NULL; l = l->next)
12884 if ((l->sec->flags & SEC_GROUP) == 0
12885 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12887 first->output_section = bfd_abs_section_ptr;
12888 first->kept_section = l->sec;
12889 sec->output_section = bfd_abs_section_ptr;
12894 /* Check this linkonce section against single member groups. */
12895 for (l = already_linked_list->entry; l != NULL; l = l->next)
12896 if (l->sec->flags & SEC_GROUP)
12898 asection *first = elf_next_in_group (l->sec);
12901 && elf_next_in_group (first) == first
12902 && bfd_elf_match_symbols_in_sections (first, sec, info))
12904 sec->output_section = bfd_abs_section_ptr;
12905 sec->kept_section = first;
12910 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12911 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12912 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12913 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12914 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12915 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12916 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12917 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12918 The reverse order cannot happen as there is never a bfd with only the
12919 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12920 matter as here were are looking only for cross-bfd sections. */
12922 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12923 for (l = already_linked_list->entry; l != NULL; l = l->next)
12924 if ((l->sec->flags & SEC_GROUP) == 0
12925 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12927 if (abfd != l->sec->owner)
12928 sec->output_section = bfd_abs_section_ptr;
12932 /* This is the first section with this name. Record it. */
12933 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12934 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12935 return sec->output_section == bfd_abs_section_ptr;
12939 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12941 return sym->st_shndx == SHN_COMMON;
12945 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12951 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12953 return bfd_com_section_ptr;
12957 _bfd_elf_default_got_elt_size (bfd *abfd,
12958 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12959 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12960 bfd *ibfd ATTRIBUTE_UNUSED,
12961 unsigned long symndx ATTRIBUTE_UNUSED)
12963 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12964 return bed->s->arch_size / 8;
12967 /* Routines to support the creation of dynamic relocs. */
12969 /* Returns the name of the dynamic reloc section associated with SEC. */
12971 static const char *
12972 get_dynamic_reloc_section_name (bfd * abfd,
12974 bfd_boolean is_rela)
12977 const char *old_name = bfd_get_section_name (NULL, sec);
12978 const char *prefix = is_rela ? ".rela" : ".rel";
12980 if (old_name == NULL)
12983 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12984 sprintf (name, "%s%s", prefix, old_name);
12989 /* Returns the dynamic reloc section associated with SEC.
12990 If necessary compute the name of the dynamic reloc section based
12991 on SEC's name (looked up in ABFD's string table) and the setting
12995 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12997 bfd_boolean is_rela)
12999 asection * reloc_sec = elf_section_data (sec)->sreloc;
13001 if (reloc_sec == NULL)
13003 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13007 reloc_sec = bfd_get_linker_section (abfd, name);
13009 if (reloc_sec != NULL)
13010 elf_section_data (sec)->sreloc = reloc_sec;
13017 /* Returns the dynamic reloc section associated with SEC. If the
13018 section does not exist it is created and attached to the DYNOBJ
13019 bfd and stored in the SRELOC field of SEC's elf_section_data
13022 ALIGNMENT is the alignment for the newly created section and
13023 IS_RELA defines whether the name should be .rela.<SEC's name>
13024 or .rel.<SEC's name>. The section name is looked up in the
13025 string table associated with ABFD. */
13028 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13030 unsigned int alignment,
13032 bfd_boolean is_rela)
13034 asection * reloc_sec = elf_section_data (sec)->sreloc;
13036 if (reloc_sec == NULL)
13038 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13043 reloc_sec = bfd_get_linker_section (dynobj, name);
13045 if (reloc_sec == NULL)
13047 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13048 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13049 if ((sec->flags & SEC_ALLOC) != 0)
13050 flags |= SEC_ALLOC | SEC_LOAD;
13052 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13053 if (reloc_sec != NULL)
13055 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13060 elf_section_data (sec)->sreloc = reloc_sec;
13066 /* Copy the ELF symbol type associated with a linker hash entry. */
13068 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13069 struct bfd_link_hash_entry * hdest,
13070 struct bfd_link_hash_entry * hsrc)
13072 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13073 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13075 ehdest->type = ehsrc->type;
13076 ehdest->target_internal = ehsrc->target_internal;
13079 /* Append a RELA relocation REL to section S in BFD. */
13082 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13084 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13085 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13086 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13087 bed->s->swap_reloca_out (abfd, rel, loc);
13090 /* Append a REL relocation REL to section S in BFD. */
13093 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13095 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13096 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13097 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13098 bed->s->swap_reloc_out (abfd, rel, loc);