1 /* ELF linking support for BFD.
2 Copyright 1995-2013 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
27 #include "safe-ctype.h"
28 #include "libiberty.h"
31 /* This struct is used to pass information to routines called via
32 elf_link_hash_traverse which must return failure. */
34 struct elf_info_failed
36 struct bfd_link_info *info;
40 /* This structure is used to pass information to
41 _bfd_elf_link_find_version_dependencies. */
43 struct elf_find_verdep_info
45 /* General link information. */
46 struct bfd_link_info *info;
47 /* The number of dependencies. */
49 /* Whether we had a failure. */
53 static bfd_boolean _bfd_elf_fix_symbol_flags
54 (struct elf_link_hash_entry *, struct elf_info_failed *);
56 /* Define a symbol in a dynamic linkage section. */
58 struct elf_link_hash_entry *
59 _bfd_elf_define_linkage_sym (bfd *abfd,
60 struct bfd_link_info *info,
64 struct elf_link_hash_entry *h;
65 struct bfd_link_hash_entry *bh;
66 const struct elf_backend_data *bed;
68 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 /* Zap symbol defined in an as-needed lib that wasn't linked.
72 This is a symptom of a larger problem: Absolute symbols
73 defined in shared libraries can't be overridden, because we
74 lose the link to the bfd which is via the symbol section. */
75 h->root.type = bfd_link_hash_new;
79 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
81 get_elf_backend_data (abfd)->collect,
84 h = (struct elf_link_hash_entry *) bh;
88 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
89 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91 bed = get_elf_backend_data (abfd);
92 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
97 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
101 struct elf_link_hash_entry *h;
102 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
103 struct elf_link_hash_table *htab = elf_hash_table (info);
105 /* This function may be called more than once. */
106 s = bfd_get_linker_section (abfd, ".got");
110 flags = bed->dynamic_sec_flags;
112 s = bfd_make_section_anyway_with_flags (abfd,
113 (bed->rela_plts_and_copies_p
114 ? ".rela.got" : ".rel.got"),
115 (bed->dynamic_sec_flags
118 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
122 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
128 if (bed->want_got_plt)
130 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 || !bfd_set_section_alignment (abfd, s,
133 bed->s->log_file_align))
138 /* The first bit of the global offset table is the header. */
139 s->size += bed->got_header_size;
141 if (bed->want_got_sym)
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h = _bfd_elf_define_linkage_sym (abfd, info, s,
148 "_GLOBAL_OFFSET_TABLE_");
149 elf_hash_table (info)->hgot = h;
157 /* Create a strtab to hold the dynamic symbol names. */
159 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 struct elf_link_hash_table *hash_table;
163 hash_table = elf_hash_table (info);
164 if (hash_table->dynobj == NULL)
165 hash_table->dynobj = abfd;
167 if (hash_table->dynstr == NULL)
169 hash_table->dynstr = _bfd_elf_strtab_init ();
170 if (hash_table->dynstr == NULL)
176 /* Create some sections which will be filled in with dynamic linking
177 information. ABFD is an input file which requires dynamic sections
178 to be created. The dynamic sections take up virtual memory space
179 when the final executable is run, so we need to create them before
180 addresses are assigned to the output sections. We work out the
181 actual contents and size of these sections later. */
184 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
188 const struct elf_backend_data *bed;
189 struct elf_link_hash_entry *h;
191 if (! is_elf_hash_table (info->hash))
194 if (elf_hash_table (info)->dynamic_sections_created)
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
203 flags = bed->dynamic_sec_flags;
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
209 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
226 || ! bfd_set_section_alignment (abfd, s, 1))
229 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
235 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
241 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
246 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
258 elf_hash_table (info)->hdynamic = h;
264 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
265 flags | SEC_READONLY);
267 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
272 if (info->emit_gnu_hash)
274 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
275 flags | SEC_READONLY);
277 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
280 4 32-bit words followed by variable count of 64-bit words, then
281 variable count of 32-bit words. */
282 if (bed->s->arch_size == 64)
283 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 elf_section_data (s)->this_hdr.sh_entsize = 4;
288 /* Let the backend create the rest of the sections. This lets the
289 backend set the right flags. The backend will normally create
290 the .got and .plt sections. */
291 if (bed->elf_backend_create_dynamic_sections == NULL
292 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
295 elf_hash_table (info)->dynamic_sections_created = TRUE;
300 /* Create dynamic sections when linking against a dynamic object. */
303 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 flagword flags, pltflags;
306 struct elf_link_hash_entry *h;
308 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
309 struct elf_link_hash_table *htab = elf_hash_table (info);
311 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
312 .rel[a].bss sections. */
313 flags = bed->dynamic_sec_flags;
316 if (bed->plt_not_loaded)
317 /* We do not clear SEC_ALLOC here because we still want the OS to
318 allocate space for the section; it's just that there's nothing
319 to read in from the object file. */
320 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
323 if (bed->plt_readonly)
324 pltflags |= SEC_READONLY;
326 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
332 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 if (bed->want_plt_sym)
336 h = _bfd_elf_define_linkage_sym (abfd, info, s,
337 "_PROCEDURE_LINKAGE_TABLE_");
338 elf_hash_table (info)->hplt = h;
343 s = bfd_make_section_anyway_with_flags (abfd,
344 (bed->rela_plts_and_copies_p
345 ? ".rela.plt" : ".rel.plt"),
346 flags | SEC_READONLY);
348 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
352 if (! _bfd_elf_create_got_section (abfd, info))
355 if (bed->want_dynbss)
357 /* The .dynbss section is a place to put symbols which are defined
358 by dynamic objects, are referenced by regular objects, and are
359 not functions. We must allocate space for them in the process
360 image and use a R_*_COPY reloc to tell the dynamic linker to
361 initialize them at run time. The linker script puts the .dynbss
362 section into the .bss section of the final image. */
363 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
364 (SEC_ALLOC | SEC_LINKER_CREATED));
368 /* The .rel[a].bss section holds copy relocs. This section is not
369 normally needed. We need to create it here, though, so that the
370 linker will map it to an output section. We can't just create it
371 only if we need it, because we will not know whether we need it
372 until we have seen all the input files, and the first time the
373 main linker code calls BFD after examining all the input files
374 (size_dynamic_sections) the input sections have already been
375 mapped to the output sections. If the section turns out not to
376 be needed, we can discard it later. We will never need this
377 section when generating a shared object, since they do not use
381 s = bfd_make_section_anyway_with_flags (abfd,
382 (bed->rela_plts_and_copies_p
383 ? ".rela.bss" : ".rel.bss"),
384 flags | SEC_READONLY);
386 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
394 /* Record a new dynamic symbol. We record the dynamic symbols as we
395 read the input files, since we need to have a list of all of them
396 before we can determine the final sizes of the output sections.
397 Note that we may actually call this function even though we are not
398 going to output any dynamic symbols; in some cases we know that a
399 symbol should be in the dynamic symbol table, but only if there is
403 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
404 struct elf_link_hash_entry *h)
406 if (h->dynindx == -1)
408 struct elf_strtab_hash *dynstr;
413 /* XXX: The ABI draft says the linker must turn hidden and
414 internal symbols into STB_LOCAL symbols when producing the
415 DSO. However, if ld.so honors st_other in the dynamic table,
416 this would not be necessary. */
417 switch (ELF_ST_VISIBILITY (h->other))
421 if (h->root.type != bfd_link_hash_undefined
422 && h->root.type != bfd_link_hash_undefweak)
425 if (!elf_hash_table (info)->is_relocatable_executable)
433 h->dynindx = elf_hash_table (info)->dynsymcount;
434 ++elf_hash_table (info)->dynsymcount;
436 dynstr = elf_hash_table (info)->dynstr;
439 /* Create a strtab to hold the dynamic symbol names. */
440 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
445 /* We don't put any version information in the dynamic string
447 name = h->root.root.string;
448 p = strchr (name, ELF_VER_CHR);
450 /* We know that the p points into writable memory. In fact,
451 there are only a few symbols that have read-only names, being
452 those like _GLOBAL_OFFSET_TABLE_ that are created specially
453 by the backends. Most symbols will have names pointing into
454 an ELF string table read from a file, or to objalloc memory. */
457 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
462 if (indx == (bfd_size_type) -1)
464 h->dynstr_index = indx;
470 /* Mark a symbol dynamic. */
473 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
474 struct elf_link_hash_entry *h,
475 Elf_Internal_Sym *sym)
477 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479 /* It may be called more than once on the same H. */
480 if(h->dynamic || info->relocatable)
483 if ((info->dynamic_data
484 && (h->type == STT_OBJECT
486 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 && h->root.type == bfd_link_hash_new
489 && (*d->match) (&d->head, NULL, h->root.root.string)))
493 /* Record an assignment to a symbol made by a linker script. We need
494 this in case some dynamic object refers to this symbol. */
497 bfd_elf_record_link_assignment (bfd *output_bfd,
498 struct bfd_link_info *info,
503 struct elf_link_hash_entry *h, *hv;
504 struct elf_link_hash_table *htab;
505 const struct elf_backend_data *bed;
507 if (!is_elf_hash_table (info->hash))
510 htab = elf_hash_table (info);
511 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
515 switch (h->root.type)
517 case bfd_link_hash_defined:
518 case bfd_link_hash_defweak:
519 case bfd_link_hash_common:
521 case bfd_link_hash_undefweak:
522 case bfd_link_hash_undefined:
523 /* Since we're defining the symbol, don't let it seem to have not
524 been defined. record_dynamic_symbol and size_dynamic_sections
525 may depend on this. */
526 h->root.type = bfd_link_hash_new;
527 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
528 bfd_link_repair_undef_list (&htab->root);
530 case bfd_link_hash_new:
531 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
534 case bfd_link_hash_indirect:
535 /* We had a versioned symbol in a dynamic library. We make the
536 the versioned symbol point to this one. */
537 bed = get_elf_backend_data (output_bfd);
539 while (hv->root.type == bfd_link_hash_indirect
540 || hv->root.type == bfd_link_hash_warning)
541 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
542 /* We don't need to update h->root.u since linker will set them
544 h->root.type = bfd_link_hash_undefined;
545 hv->root.type = bfd_link_hash_indirect;
546 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
547 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 case bfd_link_hash_warning:
554 /* If this symbol is being provided by the linker script, and it is
555 currently defined by a dynamic object, but not by a regular
556 object, then mark it as undefined so that the generic linker will
557 force the correct value. */
561 h->root.type = bfd_link_hash_undefined;
563 /* If this symbol is not being provided by the linker script, and it is
564 currently defined by a dynamic object, but not by a regular object,
565 then clear out any version information because the symbol will not be
566 associated with the dynamic object any more. */
570 h->verinfo.verdef = NULL;
576 bed = get_elf_backend_data (output_bfd);
577 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
584 if (!info->relocatable
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
631 if (! is_elf_hash_table (info->hash))
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
648 bfd_release (input_bfd, entry);
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
671 dynstr = elf_hash_table (info)->dynstr;
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
683 entry->isym.st_name = dynstr_index;
685 eht = elf_hash_table (info);
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
693 /* Whatever binding the symbol had before, it's now local. */
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
697 /* The dynindx will be set at the end of size_dynamic_sections. */
702 /* Return the dynindex of a local dynamic symbol. */
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
709 struct elf_link_local_dynamic_entry *e;
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
725 size_t *count = (size_t *) data;
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
744 size_t *count = (size_t *) data;
746 if (!h->forced_local)
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
762 struct elf_link_hash_table *htab;
764 switch (elf_section_data (p)->this_hdr.sh_type)
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
791 /* There shouldn't be section relative relocations
792 against any other section. */
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
809 unsigned long dynsymcount = 0;
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
821 elf_section_data (p)->dynindx = 0;
823 *section_sym_count = dynsymcount;
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
829 if (elf_hash_table (info)->dynlocal)
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
846 elf_hash_table (info)->dynsymcount = dynsymcount;
850 /* Merge st_other field. */
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
878 unsigned char hvis, symvis, other, nvis;
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
892 nvis = hvis < symvis ? hvis : symvis;
894 h->other = other | nvis;
898 /* This function is called when we want to merge a new symbol with an
899 existing symbol. It handles the various cases which arise when we
900 find a definition in a dynamic object, or when there is already a
901 definition in a dynamic object. The new symbol is described by
902 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
903 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
904 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
905 of an old common symbol. We set OVERRIDE if the old symbol is
906 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
907 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
908 to change. By OK to change, we mean that we shouldn't warn if the
909 type or size does change. */
912 _bfd_elf_merge_symbol (bfd *abfd,
913 struct bfd_link_info *info,
915 Elf_Internal_Sym *sym,
918 struct elf_link_hash_entry **sym_hash,
920 bfd_boolean *pold_weak,
921 unsigned int *pold_alignment,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *hi;
930 struct elf_link_hash_entry *flip;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
941 bind = ELF_ST_BIND (sym->st_info);
943 if (! bfd_is_und_section (sec))
944 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
946 h = ((struct elf_link_hash_entry *)
947 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
952 bed = get_elf_backend_data (abfd);
954 /* For merging, we only care about real symbols. But we need to make
955 sure that indirect symbol dynamic flags are updated. */
957 while (h->root.type == bfd_link_hash_indirect
958 || h->root.type == bfd_link_hash_warning)
959 h = (struct elf_link_hash_entry *) h->root.u.i.link;
961 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
966 switch (h->root.type)
971 case bfd_link_hash_undefined:
972 case bfd_link_hash_undefweak:
973 oldbfd = h->root.u.undef.abfd;
976 case bfd_link_hash_defined:
977 case bfd_link_hash_defweak:
978 oldbfd = h->root.u.def.section->owner;
979 oldsec = h->root.u.def.section;
982 case bfd_link_hash_common:
983 oldbfd = h->root.u.c.p->section->owner;
984 oldsec = h->root.u.c.p->section;
986 *pold_alignment = h->root.u.c.p->alignment_power;
989 if (poldbfd && *poldbfd == NULL)
992 /* Differentiate strong and weak symbols. */
993 newweak = bind == STB_WEAK;
994 oldweak = (h->root.type == bfd_link_hash_defweak
995 || h->root.type == bfd_link_hash_undefweak);
997 *pold_weak = oldweak;
999 /* This code is for coping with dynamic objects, and is only useful
1000 if we are doing an ELF link. */
1001 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1004 /* We have to check it for every instance since the first few may be
1005 references and not all compilers emit symbol type for undefined
1007 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1009 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1010 respectively, is from a dynamic object. */
1012 newdyn = (abfd->flags & DYNAMIC) != 0;
1014 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1015 syms and defined syms in dynamic libraries respectively.
1016 ref_dynamic on the other hand can be set for a symbol defined in
1017 a dynamic library, and def_dynamic may not be set; When the
1018 definition in a dynamic lib is overridden by a definition in the
1019 executable use of the symbol in the dynamic lib becomes a
1020 reference to the executable symbol. */
1023 if (bfd_is_und_section (sec))
1025 if (bind != STB_WEAK)
1027 h->ref_dynamic_nonweak = 1;
1028 hi->ref_dynamic_nonweak = 1;
1034 hi->dynamic_def = 1;
1038 /* If we just created the symbol, mark it as being an ELF symbol.
1039 Other than that, there is nothing to do--there is no merge issue
1040 with a newly defined symbol--so we just return. */
1042 if (h->root.type == bfd_link_hash_new)
1048 /* In cases involving weak versioned symbols, we may wind up trying
1049 to merge a symbol with itself. Catch that here, to avoid the
1050 confusion that results if we try to override a symbol with
1051 itself. The additional tests catch cases like
1052 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1053 dynamic object, which we do want to handle here. */
1055 && (newweak || oldweak)
1056 && ((abfd->flags & DYNAMIC) == 0
1057 || !h->def_regular))
1062 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1063 else if (oldsec != NULL)
1065 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1066 indices used by MIPS ELF. */
1067 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1070 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1071 respectively, appear to be a definition rather than reference. */
1073 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1075 olddef = (h->root.type != bfd_link_hash_undefined
1076 && h->root.type != bfd_link_hash_undefweak
1077 && h->root.type != bfd_link_hash_common);
1079 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1080 respectively, appear to be a function. */
1082 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1083 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1085 oldfunc = (h->type != STT_NOTYPE
1086 && bed->is_function_type (h->type));
1088 /* When we try to create a default indirect symbol from the dynamic
1089 definition with the default version, we skip it if its type and
1090 the type of existing regular definition mismatch. */
1091 if (pold_alignment == NULL
1095 && (((olddef || h->root.type == bfd_link_hash_common)
1096 && ELF_ST_TYPE (sym->st_info) != h->type
1097 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1098 && h->type != STT_NOTYPE
1099 && !(newfunc && oldfunc))
1101 && ((h->type == STT_GNU_IFUNC)
1102 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1108 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1109 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1110 *type_change_ok = TRUE;
1112 /* Check TLS symbol. We don't check undefined symbol introduced by
1114 else if (oldbfd != NULL
1115 && ELF_ST_TYPE (sym->st_info) != h->type
1116 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1119 bfd_boolean ntdef, tdef;
1120 asection *ntsec, *tsec;
1122 if (h->type == STT_TLS)
1142 (*_bfd_error_handler)
1143 (_("%s: TLS definition in %B section %A "
1144 "mismatches non-TLS definition in %B section %A"),
1145 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1146 else if (!tdef && !ntdef)
1147 (*_bfd_error_handler)
1148 (_("%s: TLS reference in %B "
1149 "mismatches non-TLS reference in %B"),
1150 tbfd, ntbfd, h->root.root.string);
1152 (*_bfd_error_handler)
1153 (_("%s: TLS definition in %B section %A "
1154 "mismatches non-TLS reference in %B"),
1155 tbfd, tsec, ntbfd, h->root.root.string);
1157 (*_bfd_error_handler)
1158 (_("%s: TLS reference in %B "
1159 "mismatches non-TLS definition in %B section %A"),
1160 tbfd, ntbfd, ntsec, h->root.root.string);
1162 bfd_set_error (bfd_error_bad_value);
1166 /* If the old symbol has non-default visibility, we ignore the new
1167 definition from a dynamic object. */
1169 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1170 && !bfd_is_und_section (sec))
1173 /* Make sure this symbol is dynamic. */
1175 hi->ref_dynamic = 1;
1176 /* A protected symbol has external availability. Make sure it is
1177 recorded as dynamic.
1179 FIXME: Should we check type and size for protected symbol? */
1180 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1181 return bfd_elf_link_record_dynamic_symbol (info, h);
1186 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1189 /* If the new symbol with non-default visibility comes from a
1190 relocatable file and the old definition comes from a dynamic
1191 object, we remove the old definition. */
1192 if (hi->root.type == bfd_link_hash_indirect)
1194 /* Handle the case where the old dynamic definition is
1195 default versioned. We need to copy the symbol info from
1196 the symbol with default version to the normal one if it
1197 was referenced before. */
1200 hi->root.type = h->root.type;
1201 h->root.type = bfd_link_hash_indirect;
1202 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1204 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1205 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1207 /* If the new symbol is hidden or internal, completely undo
1208 any dynamic link state. */
1209 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1210 h->forced_local = 0;
1217 /* FIXME: Should we check type and size for protected symbol? */
1227 /* If the old symbol was undefined before, then it will still be
1228 on the undefs list. If the new symbol is undefined or
1229 common, we can't make it bfd_link_hash_new here, because new
1230 undefined or common symbols will be added to the undefs list
1231 by _bfd_generic_link_add_one_symbol. Symbols may not be
1232 added twice to the undefs list. Also, if the new symbol is
1233 undefweak then we don't want to lose the strong undef. */
1234 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1236 h->root.type = bfd_link_hash_undefined;
1237 h->root.u.undef.abfd = abfd;
1241 h->root.type = bfd_link_hash_new;
1242 h->root.u.undef.abfd = NULL;
1245 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1247 /* If the new symbol is hidden or internal, completely undo
1248 any dynamic link state. */
1249 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1250 h->forced_local = 0;
1256 /* FIXME: Should we check type and size for protected symbol? */
1262 /* If a new weak symbol definition comes from a regular file and the
1263 old symbol comes from a dynamic library, we treat the new one as
1264 strong. Similarly, an old weak symbol definition from a regular
1265 file is treated as strong when the new symbol comes from a dynamic
1266 library. Further, an old weak symbol from a dynamic library is
1267 treated as strong if the new symbol is from a dynamic library.
1268 This reflects the way glibc's ld.so works.
1270 Do this before setting *type_change_ok or *size_change_ok so that
1271 we warn properly when dynamic library symbols are overridden. */
1273 if (newdef && !newdyn && olddyn)
1275 if (olddef && newdyn)
1278 /* Allow changes between different types of function symbol. */
1279 if (newfunc && oldfunc)
1280 *type_change_ok = TRUE;
1282 /* It's OK to change the type if either the existing symbol or the
1283 new symbol is weak. A type change is also OK if the old symbol
1284 is undefined and the new symbol is defined. */
1289 && h->root.type == bfd_link_hash_undefined))
1290 *type_change_ok = TRUE;
1292 /* It's OK to change the size if either the existing symbol or the
1293 new symbol is weak, or if the old symbol is undefined. */
1296 || h->root.type == bfd_link_hash_undefined)
1297 *size_change_ok = TRUE;
1299 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1300 symbol, respectively, appears to be a common symbol in a dynamic
1301 object. If a symbol appears in an uninitialized section, and is
1302 not weak, and is not a function, then it may be a common symbol
1303 which was resolved when the dynamic object was created. We want
1304 to treat such symbols specially, because they raise special
1305 considerations when setting the symbol size: if the symbol
1306 appears as a common symbol in a regular object, and the size in
1307 the regular object is larger, we must make sure that we use the
1308 larger size. This problematic case can always be avoided in C,
1309 but it must be handled correctly when using Fortran shared
1312 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1313 likewise for OLDDYNCOMMON and OLDDEF.
1315 Note that this test is just a heuristic, and that it is quite
1316 possible to have an uninitialized symbol in a shared object which
1317 is really a definition, rather than a common symbol. This could
1318 lead to some minor confusion when the symbol really is a common
1319 symbol in some regular object. However, I think it will be
1325 && (sec->flags & SEC_ALLOC) != 0
1326 && (sec->flags & SEC_LOAD) == 0
1329 newdyncommon = TRUE;
1331 newdyncommon = FALSE;
1335 && h->root.type == bfd_link_hash_defined
1337 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1338 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1341 olddyncommon = TRUE;
1343 olddyncommon = FALSE;
1345 /* We now know everything about the old and new symbols. We ask the
1346 backend to check if we can merge them. */
1347 if (bed->merge_symbol != NULL)
1349 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1354 /* If both the old and the new symbols look like common symbols in a
1355 dynamic object, set the size of the symbol to the larger of the
1360 && sym->st_size != h->size)
1362 /* Since we think we have two common symbols, issue a multiple
1363 common warning if desired. Note that we only warn if the
1364 size is different. If the size is the same, we simply let
1365 the old symbol override the new one as normally happens with
1366 symbols defined in dynamic objects. */
1368 if (! ((*info->callbacks->multiple_common)
1369 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1372 if (sym->st_size > h->size)
1373 h->size = sym->st_size;
1375 *size_change_ok = TRUE;
1378 /* If we are looking at a dynamic object, and we have found a
1379 definition, we need to see if the symbol was already defined by
1380 some other object. If so, we want to use the existing
1381 definition, and we do not want to report a multiple symbol
1382 definition error; we do this by clobbering *PSEC to be
1383 bfd_und_section_ptr.
1385 We treat a common symbol as a definition if the symbol in the
1386 shared library is a function, since common symbols always
1387 represent variables; this can cause confusion in principle, but
1388 any such confusion would seem to indicate an erroneous program or
1389 shared library. We also permit a common symbol in a regular
1390 object to override a weak symbol in a shared object. */
1395 || (h->root.type == bfd_link_hash_common
1396 && (newweak || newfunc))))
1400 newdyncommon = FALSE;
1402 *psec = sec = bfd_und_section_ptr;
1403 *size_change_ok = TRUE;
1405 /* If we get here when the old symbol is a common symbol, then
1406 we are explicitly letting it override a weak symbol or
1407 function in a dynamic object, and we don't want to warn about
1408 a type change. If the old symbol is a defined symbol, a type
1409 change warning may still be appropriate. */
1411 if (h->root.type == bfd_link_hash_common)
1412 *type_change_ok = TRUE;
1415 /* Handle the special case of an old common symbol merging with a
1416 new symbol which looks like a common symbol in a shared object.
1417 We change *PSEC and *PVALUE to make the new symbol look like a
1418 common symbol, and let _bfd_generic_link_add_one_symbol do the
1422 && h->root.type == bfd_link_hash_common)
1426 newdyncommon = FALSE;
1427 *pvalue = sym->st_size;
1428 *psec = sec = bed->common_section (oldsec);
1429 *size_change_ok = TRUE;
1432 /* Skip weak definitions of symbols that are already defined. */
1433 if (newdef && olddef && newweak)
1435 /* Don't skip new non-IR weak syms. */
1436 if (!(oldbfd != NULL
1437 && (oldbfd->flags & BFD_PLUGIN) != 0
1438 && (abfd->flags & BFD_PLUGIN) == 0))
1444 /* Merge st_other. If the symbol already has a dynamic index,
1445 but visibility says it should not be visible, turn it into a
1447 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1448 if (h->dynindx != -1)
1449 switch (ELF_ST_VISIBILITY (h->other))
1453 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1458 /* If the old symbol is from a dynamic object, and the new symbol is
1459 a definition which is not from a dynamic object, then the new
1460 symbol overrides the old symbol. Symbols from regular files
1461 always take precedence over symbols from dynamic objects, even if
1462 they are defined after the dynamic object in the link.
1464 As above, we again permit a common symbol in a regular object to
1465 override a definition in a shared object if the shared object
1466 symbol is a function or is weak. */
1471 || (bfd_is_com_section (sec)
1472 && (oldweak || oldfunc)))
1477 /* Change the hash table entry to undefined, and let
1478 _bfd_generic_link_add_one_symbol do the right thing with the
1481 h->root.type = bfd_link_hash_undefined;
1482 h->root.u.undef.abfd = h->root.u.def.section->owner;
1483 *size_change_ok = TRUE;
1486 olddyncommon = FALSE;
1488 /* We again permit a type change when a common symbol may be
1489 overriding a function. */
1491 if (bfd_is_com_section (sec))
1495 /* If a common symbol overrides a function, make sure
1496 that it isn't defined dynamically nor has type
1499 h->type = STT_NOTYPE;
1501 *type_change_ok = TRUE;
1504 if (hi->root.type == bfd_link_hash_indirect)
1507 /* This union may have been set to be non-NULL when this symbol
1508 was seen in a dynamic object. We must force the union to be
1509 NULL, so that it is correct for a regular symbol. */
1510 h->verinfo.vertree = NULL;
1513 /* Handle the special case of a new common symbol merging with an
1514 old symbol that looks like it might be a common symbol defined in
1515 a shared object. Note that we have already handled the case in
1516 which a new common symbol should simply override the definition
1517 in the shared library. */
1520 && bfd_is_com_section (sec)
1523 /* It would be best if we could set the hash table entry to a
1524 common symbol, but we don't know what to use for the section
1525 or the alignment. */
1526 if (! ((*info->callbacks->multiple_common)
1527 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1530 /* If the presumed common symbol in the dynamic object is
1531 larger, pretend that the new symbol has its size. */
1533 if (h->size > *pvalue)
1536 /* We need to remember the alignment required by the symbol
1537 in the dynamic object. */
1538 BFD_ASSERT (pold_alignment);
1539 *pold_alignment = h->root.u.def.section->alignment_power;
1542 olddyncommon = FALSE;
1544 h->root.type = bfd_link_hash_undefined;
1545 h->root.u.undef.abfd = h->root.u.def.section->owner;
1547 *size_change_ok = TRUE;
1548 *type_change_ok = TRUE;
1550 if (hi->root.type == bfd_link_hash_indirect)
1553 h->verinfo.vertree = NULL;
1558 /* Handle the case where we had a versioned symbol in a dynamic
1559 library and now find a definition in a normal object. In this
1560 case, we make the versioned symbol point to the normal one. */
1561 flip->root.type = h->root.type;
1562 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1563 h->root.type = bfd_link_hash_indirect;
1564 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1565 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1569 flip->ref_dynamic = 1;
1576 /* This function is called to create an indirect symbol from the
1577 default for the symbol with the default version if needed. The
1578 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1579 set DYNSYM if the new indirect symbol is dynamic. */
1582 _bfd_elf_add_default_symbol (bfd *abfd,
1583 struct bfd_link_info *info,
1584 struct elf_link_hash_entry *h,
1586 Elf_Internal_Sym *sym,
1590 bfd_boolean *dynsym)
1592 bfd_boolean type_change_ok;
1593 bfd_boolean size_change_ok;
1596 struct elf_link_hash_entry *hi;
1597 struct bfd_link_hash_entry *bh;
1598 const struct elf_backend_data *bed;
1599 bfd_boolean collect;
1600 bfd_boolean dynamic;
1601 bfd_boolean override;
1603 size_t len, shortlen;
1606 /* If this symbol has a version, and it is the default version, we
1607 create an indirect symbol from the default name to the fully
1608 decorated name. This will cause external references which do not
1609 specify a version to be bound to this version of the symbol. */
1610 p = strchr (name, ELF_VER_CHR);
1611 if (p == NULL || p[1] != ELF_VER_CHR)
1614 bed = get_elf_backend_data (abfd);
1615 collect = bed->collect;
1616 dynamic = (abfd->flags & DYNAMIC) != 0;
1618 shortlen = p - name;
1619 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1620 if (shortname == NULL)
1622 memcpy (shortname, name, shortlen);
1623 shortname[shortlen] = '\0';
1625 /* We are going to create a new symbol. Merge it with any existing
1626 symbol with this name. For the purposes of the merge, act as
1627 though we were defining the symbol we just defined, although we
1628 actually going to define an indirect symbol. */
1629 type_change_ok = FALSE;
1630 size_change_ok = FALSE;
1632 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1633 &hi, poldbfd, NULL, NULL, &skip, &override,
1634 &type_change_ok, &size_change_ok))
1643 if (! (_bfd_generic_link_add_one_symbol
1644 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1645 0, name, FALSE, collect, &bh)))
1647 hi = (struct elf_link_hash_entry *) bh;
1651 /* In this case the symbol named SHORTNAME is overriding the
1652 indirect symbol we want to add. We were planning on making
1653 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1654 is the name without a version. NAME is the fully versioned
1655 name, and it is the default version.
1657 Overriding means that we already saw a definition for the
1658 symbol SHORTNAME in a regular object, and it is overriding
1659 the symbol defined in the dynamic object.
1661 When this happens, we actually want to change NAME, the
1662 symbol we just added, to refer to SHORTNAME. This will cause
1663 references to NAME in the shared object to become references
1664 to SHORTNAME in the regular object. This is what we expect
1665 when we override a function in a shared object: that the
1666 references in the shared object will be mapped to the
1667 definition in the regular object. */
1669 while (hi->root.type == bfd_link_hash_indirect
1670 || hi->root.type == bfd_link_hash_warning)
1671 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1673 h->root.type = bfd_link_hash_indirect;
1674 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1678 hi->ref_dynamic = 1;
1682 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1687 /* Now set HI to H, so that the following code will set the
1688 other fields correctly. */
1692 /* Check if HI is a warning symbol. */
1693 if (hi->root.type == bfd_link_hash_warning)
1694 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1696 /* If there is a duplicate definition somewhere, then HI may not
1697 point to an indirect symbol. We will have reported an error to
1698 the user in that case. */
1700 if (hi->root.type == bfd_link_hash_indirect)
1702 struct elf_link_hash_entry *ht;
1704 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1705 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1707 /* A reference to the SHORTNAME symbol from a dynamic library
1708 will be satisfied by the versioned symbol at runtime. In
1709 effect, we have a reference to the versioned symbol. */
1710 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1711 hi->dynamic_def |= ht->dynamic_def;
1713 /* See if the new flags lead us to realize that the symbol must
1719 if (! info->executable
1726 if (hi->ref_regular)
1732 /* We also need to define an indirection from the nondefault version
1736 len = strlen (name);
1737 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1738 if (shortname == NULL)
1740 memcpy (shortname, name, shortlen);
1741 memcpy (shortname + shortlen, p + 1, len - shortlen);
1743 /* Once again, merge with any existing symbol. */
1744 type_change_ok = FALSE;
1745 size_change_ok = FALSE;
1747 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1748 &hi, NULL, NULL, NULL, &skip, &override,
1749 &type_change_ok, &size_change_ok))
1757 /* Here SHORTNAME is a versioned name, so we don't expect to see
1758 the type of override we do in the case above unless it is
1759 overridden by a versioned definition. */
1760 if (hi->root.type != bfd_link_hash_defined
1761 && hi->root.type != bfd_link_hash_defweak)
1762 (*_bfd_error_handler)
1763 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1769 if (! (_bfd_generic_link_add_one_symbol
1770 (info, abfd, shortname, BSF_INDIRECT,
1771 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1773 hi = (struct elf_link_hash_entry *) bh;
1775 /* If there is a duplicate definition somewhere, then HI may not
1776 point to an indirect symbol. We will have reported an error
1777 to the user in that case. */
1779 if (hi->root.type == bfd_link_hash_indirect)
1781 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1782 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1783 hi->dynamic_def |= h->dynamic_def;
1785 /* See if the new flags lead us to realize that the symbol
1791 if (! info->executable
1797 if (hi->ref_regular)
1807 /* This routine is used to export all defined symbols into the dynamic
1808 symbol table. It is called via elf_link_hash_traverse. */
1811 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1813 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1815 /* Ignore indirect symbols. These are added by the versioning code. */
1816 if (h->root.type == bfd_link_hash_indirect)
1819 /* Ignore this if we won't export it. */
1820 if (!eif->info->export_dynamic && !h->dynamic)
1823 if (h->dynindx == -1
1824 && (h->def_regular || h->ref_regular)
1825 && ! bfd_hide_sym_by_version (eif->info->version_info,
1826 h->root.root.string))
1828 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1838 /* Look through the symbols which are defined in other shared
1839 libraries and referenced here. Update the list of version
1840 dependencies. This will be put into the .gnu.version_r section.
1841 This function is called via elf_link_hash_traverse. */
1844 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1847 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1848 Elf_Internal_Verneed *t;
1849 Elf_Internal_Vernaux *a;
1852 /* We only care about symbols defined in shared objects with version
1857 || h->verinfo.verdef == NULL)
1860 /* See if we already know about this version. */
1861 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1865 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1868 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1869 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1875 /* This is a new version. Add it to tree we are building. */
1880 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1883 rinfo->failed = TRUE;
1887 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1888 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1889 elf_tdata (rinfo->info->output_bfd)->verref = t;
1893 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1896 rinfo->failed = TRUE;
1900 /* Note that we are copying a string pointer here, and testing it
1901 above. If bfd_elf_string_from_elf_section is ever changed to
1902 discard the string data when low in memory, this will have to be
1904 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1906 a->vna_flags = h->verinfo.verdef->vd_flags;
1907 a->vna_nextptr = t->vn_auxptr;
1909 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1912 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1919 /* Figure out appropriate versions for all the symbols. We may not
1920 have the version number script until we have read all of the input
1921 files, so until that point we don't know which symbols should be
1922 local. This function is called via elf_link_hash_traverse. */
1925 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1927 struct elf_info_failed *sinfo;
1928 struct bfd_link_info *info;
1929 const struct elf_backend_data *bed;
1930 struct elf_info_failed eif;
1934 sinfo = (struct elf_info_failed *) data;
1937 /* Fix the symbol flags. */
1940 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1943 sinfo->failed = TRUE;
1947 /* We only need version numbers for symbols defined in regular
1949 if (!h->def_regular)
1952 bed = get_elf_backend_data (info->output_bfd);
1953 p = strchr (h->root.root.string, ELF_VER_CHR);
1954 if (p != NULL && h->verinfo.vertree == NULL)
1956 struct bfd_elf_version_tree *t;
1961 /* There are two consecutive ELF_VER_CHR characters if this is
1962 not a hidden symbol. */
1964 if (*p == ELF_VER_CHR)
1970 /* If there is no version string, we can just return out. */
1978 /* Look for the version. If we find it, it is no longer weak. */
1979 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1981 if (strcmp (t->name, p) == 0)
1985 struct bfd_elf_version_expr *d;
1987 len = p - h->root.root.string;
1988 alc = (char *) bfd_malloc (len);
1991 sinfo->failed = TRUE;
1994 memcpy (alc, h->root.root.string, len - 1);
1995 alc[len - 1] = '\0';
1996 if (alc[len - 2] == ELF_VER_CHR)
1997 alc[len - 2] = '\0';
1999 h->verinfo.vertree = t;
2003 if (t->globals.list != NULL)
2004 d = (*t->match) (&t->globals, NULL, alc);
2006 /* See if there is anything to force this symbol to
2008 if (d == NULL && t->locals.list != NULL)
2010 d = (*t->match) (&t->locals, NULL, alc);
2013 && ! info->export_dynamic)
2014 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2022 /* If we are building an application, we need to create a
2023 version node for this version. */
2024 if (t == NULL && info->executable)
2026 struct bfd_elf_version_tree **pp;
2029 /* If we aren't going to export this symbol, we don't need
2030 to worry about it. */
2031 if (h->dynindx == -1)
2035 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2038 sinfo->failed = TRUE;
2043 t->name_indx = (unsigned int) -1;
2047 /* Don't count anonymous version tag. */
2048 if (sinfo->info->version_info != NULL
2049 && sinfo->info->version_info->vernum == 0)
2051 for (pp = &sinfo->info->version_info;
2055 t->vernum = version_index;
2059 h->verinfo.vertree = t;
2063 /* We could not find the version for a symbol when
2064 generating a shared archive. Return an error. */
2065 (*_bfd_error_handler)
2066 (_("%B: version node not found for symbol %s"),
2067 info->output_bfd, h->root.root.string);
2068 bfd_set_error (bfd_error_bad_value);
2069 sinfo->failed = TRUE;
2077 /* If we don't have a version for this symbol, see if we can find
2079 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2084 = bfd_find_version_for_sym (sinfo->info->version_info,
2085 h->root.root.string, &hide);
2086 if (h->verinfo.vertree != NULL && hide)
2087 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2093 /* Read and swap the relocs from the section indicated by SHDR. This
2094 may be either a REL or a RELA section. The relocations are
2095 translated into RELA relocations and stored in INTERNAL_RELOCS,
2096 which should have already been allocated to contain enough space.
2097 The EXTERNAL_RELOCS are a buffer where the external form of the
2098 relocations should be stored.
2100 Returns FALSE if something goes wrong. */
2103 elf_link_read_relocs_from_section (bfd *abfd,
2105 Elf_Internal_Shdr *shdr,
2106 void *external_relocs,
2107 Elf_Internal_Rela *internal_relocs)
2109 const struct elf_backend_data *bed;
2110 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2111 const bfd_byte *erela;
2112 const bfd_byte *erelaend;
2113 Elf_Internal_Rela *irela;
2114 Elf_Internal_Shdr *symtab_hdr;
2117 /* Position ourselves at the start of the section. */
2118 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2121 /* Read the relocations. */
2122 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2125 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2126 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2128 bed = get_elf_backend_data (abfd);
2130 /* Convert the external relocations to the internal format. */
2131 if (shdr->sh_entsize == bed->s->sizeof_rel)
2132 swap_in = bed->s->swap_reloc_in;
2133 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2134 swap_in = bed->s->swap_reloca_in;
2137 bfd_set_error (bfd_error_wrong_format);
2141 erela = (const bfd_byte *) external_relocs;
2142 erelaend = erela + shdr->sh_size;
2143 irela = internal_relocs;
2144 while (erela < erelaend)
2148 (*swap_in) (abfd, erela, irela);
2149 r_symndx = ELF32_R_SYM (irela->r_info);
2150 if (bed->s->arch_size == 64)
2154 if ((size_t) r_symndx >= nsyms)
2156 (*_bfd_error_handler)
2157 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2158 " for offset 0x%lx in section `%A'"),
2160 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2161 bfd_set_error (bfd_error_bad_value);
2165 else if (r_symndx != STN_UNDEF)
2167 (*_bfd_error_handler)
2168 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2169 " when the object file has no symbol table"),
2171 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2172 bfd_set_error (bfd_error_bad_value);
2175 irela += bed->s->int_rels_per_ext_rel;
2176 erela += shdr->sh_entsize;
2182 /* Read and swap the relocs for a section O. They may have been
2183 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2184 not NULL, they are used as buffers to read into. They are known to
2185 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2186 the return value is allocated using either malloc or bfd_alloc,
2187 according to the KEEP_MEMORY argument. If O has two relocation
2188 sections (both REL and RELA relocations), then the REL_HDR
2189 relocations will appear first in INTERNAL_RELOCS, followed by the
2190 RELA_HDR relocations. */
2193 _bfd_elf_link_read_relocs (bfd *abfd,
2195 void *external_relocs,
2196 Elf_Internal_Rela *internal_relocs,
2197 bfd_boolean keep_memory)
2199 void *alloc1 = NULL;
2200 Elf_Internal_Rela *alloc2 = NULL;
2201 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2202 struct bfd_elf_section_data *esdo = elf_section_data (o);
2203 Elf_Internal_Rela *internal_rela_relocs;
2205 if (esdo->relocs != NULL)
2206 return esdo->relocs;
2208 if (o->reloc_count == 0)
2211 if (internal_relocs == NULL)
2215 size = o->reloc_count;
2216 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2218 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2220 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2221 if (internal_relocs == NULL)
2225 if (external_relocs == NULL)
2227 bfd_size_type size = 0;
2230 size += esdo->rel.hdr->sh_size;
2232 size += esdo->rela.hdr->sh_size;
2234 alloc1 = bfd_malloc (size);
2237 external_relocs = alloc1;
2240 internal_rela_relocs = internal_relocs;
2243 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2247 external_relocs = (((bfd_byte *) external_relocs)
2248 + esdo->rel.hdr->sh_size);
2249 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2250 * bed->s->int_rels_per_ext_rel);
2254 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2256 internal_rela_relocs)))
2259 /* Cache the results for next time, if we can. */
2261 esdo->relocs = internal_relocs;
2266 /* Don't free alloc2, since if it was allocated we are passing it
2267 back (under the name of internal_relocs). */
2269 return internal_relocs;
2277 bfd_release (abfd, alloc2);
2284 /* Compute the size of, and allocate space for, REL_HDR which is the
2285 section header for a section containing relocations for O. */
2288 _bfd_elf_link_size_reloc_section (bfd *abfd,
2289 struct bfd_elf_section_reloc_data *reldata)
2291 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2293 /* That allows us to calculate the size of the section. */
2294 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2296 /* The contents field must last into write_object_contents, so we
2297 allocate it with bfd_alloc rather than malloc. Also since we
2298 cannot be sure that the contents will actually be filled in,
2299 we zero the allocated space. */
2300 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2301 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2304 if (reldata->hashes == NULL && reldata->count)
2306 struct elf_link_hash_entry **p;
2308 p = (struct elf_link_hash_entry **)
2309 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2313 reldata->hashes = p;
2319 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2320 originated from the section given by INPUT_REL_HDR) to the
2324 _bfd_elf_link_output_relocs (bfd *output_bfd,
2325 asection *input_section,
2326 Elf_Internal_Shdr *input_rel_hdr,
2327 Elf_Internal_Rela *internal_relocs,
2328 struct elf_link_hash_entry **rel_hash
2331 Elf_Internal_Rela *irela;
2332 Elf_Internal_Rela *irelaend;
2334 struct bfd_elf_section_reloc_data *output_reldata;
2335 asection *output_section;
2336 const struct elf_backend_data *bed;
2337 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2338 struct bfd_elf_section_data *esdo;
2340 output_section = input_section->output_section;
2342 bed = get_elf_backend_data (output_bfd);
2343 esdo = elf_section_data (output_section);
2344 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2346 output_reldata = &esdo->rel;
2347 swap_out = bed->s->swap_reloc_out;
2349 else if (esdo->rela.hdr
2350 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2352 output_reldata = &esdo->rela;
2353 swap_out = bed->s->swap_reloca_out;
2357 (*_bfd_error_handler)
2358 (_("%B: relocation size mismatch in %B section %A"),
2359 output_bfd, input_section->owner, input_section);
2360 bfd_set_error (bfd_error_wrong_format);
2364 erel = output_reldata->hdr->contents;
2365 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2366 irela = internal_relocs;
2367 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2368 * bed->s->int_rels_per_ext_rel);
2369 while (irela < irelaend)
2371 (*swap_out) (output_bfd, irela, erel);
2372 irela += bed->s->int_rels_per_ext_rel;
2373 erel += input_rel_hdr->sh_entsize;
2376 /* Bump the counter, so that we know where to add the next set of
2378 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2383 /* Make weak undefined symbols in PIE dynamic. */
2386 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2387 struct elf_link_hash_entry *h)
2391 && h->root.type == bfd_link_hash_undefweak)
2392 return bfd_elf_link_record_dynamic_symbol (info, h);
2397 /* Fix up the flags for a symbol. This handles various cases which
2398 can only be fixed after all the input files are seen. This is
2399 currently called by both adjust_dynamic_symbol and
2400 assign_sym_version, which is unnecessary but perhaps more robust in
2401 the face of future changes. */
2404 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2405 struct elf_info_failed *eif)
2407 const struct elf_backend_data *bed;
2409 /* If this symbol was mentioned in a non-ELF file, try to set
2410 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2411 permit a non-ELF file to correctly refer to a symbol defined in
2412 an ELF dynamic object. */
2415 while (h->root.type == bfd_link_hash_indirect)
2416 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2418 if (h->root.type != bfd_link_hash_defined
2419 && h->root.type != bfd_link_hash_defweak)
2422 h->ref_regular_nonweak = 1;
2426 if (h->root.u.def.section->owner != NULL
2427 && (bfd_get_flavour (h->root.u.def.section->owner)
2428 == bfd_target_elf_flavour))
2431 h->ref_regular_nonweak = 1;
2437 if (h->dynindx == -1
2441 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2450 /* Unfortunately, NON_ELF is only correct if the symbol
2451 was first seen in a non-ELF file. Fortunately, if the symbol
2452 was first seen in an ELF file, we're probably OK unless the
2453 symbol was defined in a non-ELF file. Catch that case here.
2454 FIXME: We're still in trouble if the symbol was first seen in
2455 a dynamic object, and then later in a non-ELF regular object. */
2456 if ((h->root.type == bfd_link_hash_defined
2457 || h->root.type == bfd_link_hash_defweak)
2459 && (h->root.u.def.section->owner != NULL
2460 ? (bfd_get_flavour (h->root.u.def.section->owner)
2461 != bfd_target_elf_flavour)
2462 : (bfd_is_abs_section (h->root.u.def.section)
2463 && !h->def_dynamic)))
2467 /* Backend specific symbol fixup. */
2468 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2469 if (bed->elf_backend_fixup_symbol
2470 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2473 /* If this is a final link, and the symbol was defined as a common
2474 symbol in a regular object file, and there was no definition in
2475 any dynamic object, then the linker will have allocated space for
2476 the symbol in a common section but the DEF_REGULAR
2477 flag will not have been set. */
2478 if (h->root.type == bfd_link_hash_defined
2482 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2485 /* If -Bsymbolic was used (which means to bind references to global
2486 symbols to the definition within the shared object), and this
2487 symbol was defined in a regular object, then it actually doesn't
2488 need a PLT entry. Likewise, if the symbol has non-default
2489 visibility. If the symbol has hidden or internal visibility, we
2490 will force it local. */
2492 && eif->info->shared
2493 && is_elf_hash_table (eif->info->hash)
2494 && (SYMBOLIC_BIND (eif->info, h)
2495 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2498 bfd_boolean force_local;
2500 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2501 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2502 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2505 /* If a weak undefined symbol has non-default visibility, we also
2506 hide it from the dynamic linker. */
2507 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2508 && h->root.type == bfd_link_hash_undefweak)
2509 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2511 /* If this is a weak defined symbol in a dynamic object, and we know
2512 the real definition in the dynamic object, copy interesting flags
2513 over to the real definition. */
2514 if (h->u.weakdef != NULL)
2516 /* If the real definition is defined by a regular object file,
2517 don't do anything special. See the longer description in
2518 _bfd_elf_adjust_dynamic_symbol, below. */
2519 if (h->u.weakdef->def_regular)
2520 h->u.weakdef = NULL;
2523 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2525 while (h->root.type == bfd_link_hash_indirect)
2526 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2528 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2529 || h->root.type == bfd_link_hash_defweak);
2530 BFD_ASSERT (weakdef->def_dynamic);
2531 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2532 || weakdef->root.type == bfd_link_hash_defweak);
2533 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2540 /* Make the backend pick a good value for a dynamic symbol. This is
2541 called via elf_link_hash_traverse, and also calls itself
2545 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2547 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2549 const struct elf_backend_data *bed;
2551 if (! is_elf_hash_table (eif->info->hash))
2554 /* Ignore indirect symbols. These are added by the versioning code. */
2555 if (h->root.type == bfd_link_hash_indirect)
2558 /* Fix the symbol flags. */
2559 if (! _bfd_elf_fix_symbol_flags (h, eif))
2562 /* If this symbol does not require a PLT entry, and it is not
2563 defined by a dynamic object, or is not referenced by a regular
2564 object, ignore it. We do have to handle a weak defined symbol,
2565 even if no regular object refers to it, if we decided to add it
2566 to the dynamic symbol table. FIXME: Do we normally need to worry
2567 about symbols which are defined by one dynamic object and
2568 referenced by another one? */
2570 && h->type != STT_GNU_IFUNC
2574 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2576 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2580 /* If we've already adjusted this symbol, don't do it again. This
2581 can happen via a recursive call. */
2582 if (h->dynamic_adjusted)
2585 /* Don't look at this symbol again. Note that we must set this
2586 after checking the above conditions, because we may look at a
2587 symbol once, decide not to do anything, and then get called
2588 recursively later after REF_REGULAR is set below. */
2589 h->dynamic_adjusted = 1;
2591 /* If this is a weak definition, and we know a real definition, and
2592 the real symbol is not itself defined by a regular object file,
2593 then get a good value for the real definition. We handle the
2594 real symbol first, for the convenience of the backend routine.
2596 Note that there is a confusing case here. If the real definition
2597 is defined by a regular object file, we don't get the real symbol
2598 from the dynamic object, but we do get the weak symbol. If the
2599 processor backend uses a COPY reloc, then if some routine in the
2600 dynamic object changes the real symbol, we will not see that
2601 change in the corresponding weak symbol. This is the way other
2602 ELF linkers work as well, and seems to be a result of the shared
2605 I will clarify this issue. Most SVR4 shared libraries define the
2606 variable _timezone and define timezone as a weak synonym. The
2607 tzset call changes _timezone. If you write
2608 extern int timezone;
2610 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2611 you might expect that, since timezone is a synonym for _timezone,
2612 the same number will print both times. However, if the processor
2613 backend uses a COPY reloc, then actually timezone will be copied
2614 into your process image, and, since you define _timezone
2615 yourself, _timezone will not. Thus timezone and _timezone will
2616 wind up at different memory locations. The tzset call will set
2617 _timezone, leaving timezone unchanged. */
2619 if (h->u.weakdef != NULL)
2621 /* If we get to this point, there is an implicit reference to
2622 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2623 h->u.weakdef->ref_regular = 1;
2625 /* Ensure that the backend adjust_dynamic_symbol function sees
2626 H->U.WEAKDEF before H by recursively calling ourselves. */
2627 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2631 /* If a symbol has no type and no size and does not require a PLT
2632 entry, then we are probably about to do the wrong thing here: we
2633 are probably going to create a COPY reloc for an empty object.
2634 This case can arise when a shared object is built with assembly
2635 code, and the assembly code fails to set the symbol type. */
2637 && h->type == STT_NOTYPE
2639 (*_bfd_error_handler)
2640 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2641 h->root.root.string);
2643 dynobj = elf_hash_table (eif->info)->dynobj;
2644 bed = get_elf_backend_data (dynobj);
2646 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2655 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2659 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2662 unsigned int power_of_two;
2664 asection *sec = h->root.u.def.section;
2666 /* The section aligment of definition is the maximum alignment
2667 requirement of symbols defined in the section. Since we don't
2668 know the symbol alignment requirement, we start with the
2669 maximum alignment and check low bits of the symbol address
2670 for the minimum alignment. */
2671 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2672 mask = ((bfd_vma) 1 << power_of_two) - 1;
2673 while ((h->root.u.def.value & mask) != 0)
2679 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2682 /* Adjust the section alignment if needed. */
2683 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2688 /* We make sure that the symbol will be aligned properly. */
2689 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2691 /* Define the symbol as being at this point in DYNBSS. */
2692 h->root.u.def.section = dynbss;
2693 h->root.u.def.value = dynbss->size;
2695 /* Increment the size of DYNBSS to make room for the symbol. */
2696 dynbss->size += h->size;
2701 /* Adjust all external symbols pointing into SEC_MERGE sections
2702 to reflect the object merging within the sections. */
2705 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2709 if ((h->root.type == bfd_link_hash_defined
2710 || h->root.type == bfd_link_hash_defweak)
2711 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2712 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2714 bfd *output_bfd = (bfd *) data;
2716 h->root.u.def.value =
2717 _bfd_merged_section_offset (output_bfd,
2718 &h->root.u.def.section,
2719 elf_section_data (sec)->sec_info,
2720 h->root.u.def.value);
2726 /* Returns false if the symbol referred to by H should be considered
2727 to resolve local to the current module, and true if it should be
2728 considered to bind dynamically. */
2731 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2732 struct bfd_link_info *info,
2733 bfd_boolean not_local_protected)
2735 bfd_boolean binding_stays_local_p;
2736 const struct elf_backend_data *bed;
2737 struct elf_link_hash_table *hash_table;
2742 while (h->root.type == bfd_link_hash_indirect
2743 || h->root.type == bfd_link_hash_warning)
2744 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2746 /* If it was forced local, then clearly it's not dynamic. */
2747 if (h->dynindx == -1)
2749 if (h->forced_local)
2752 /* Identify the cases where name binding rules say that a
2753 visible symbol resolves locally. */
2754 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2756 switch (ELF_ST_VISIBILITY (h->other))
2763 hash_table = elf_hash_table (info);
2764 if (!is_elf_hash_table (hash_table))
2767 bed = get_elf_backend_data (hash_table->dynobj);
2769 /* Proper resolution for function pointer equality may require
2770 that these symbols perhaps be resolved dynamically, even though
2771 we should be resolving them to the current module. */
2772 if (!not_local_protected || !bed->is_function_type (h->type))
2773 binding_stays_local_p = TRUE;
2780 /* If it isn't defined locally, then clearly it's dynamic. */
2781 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2784 /* Otherwise, the symbol is dynamic if binding rules don't tell
2785 us that it remains local. */
2786 return !binding_stays_local_p;
2789 /* Return true if the symbol referred to by H should be considered
2790 to resolve local to the current module, and false otherwise. Differs
2791 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2792 undefined symbols. The two functions are virtually identical except
2793 for the place where forced_local and dynindx == -1 are tested. If
2794 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2795 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2796 the symbol is local only for defined symbols.
2797 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2798 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2799 treatment of undefined weak symbols. For those that do not make
2800 undefined weak symbols dynamic, both functions may return false. */
2803 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2804 struct bfd_link_info *info,
2805 bfd_boolean local_protected)
2807 const struct elf_backend_data *bed;
2808 struct elf_link_hash_table *hash_table;
2810 /* If it's a local sym, of course we resolve locally. */
2814 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2815 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2816 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2819 /* Common symbols that become definitions don't get the DEF_REGULAR
2820 flag set, so test it first, and don't bail out. */
2821 if (ELF_COMMON_DEF_P (h))
2823 /* If we don't have a definition in a regular file, then we can't
2824 resolve locally. The sym is either undefined or dynamic. */
2825 else if (!h->def_regular)
2828 /* Forced local symbols resolve locally. */
2829 if (h->forced_local)
2832 /* As do non-dynamic symbols. */
2833 if (h->dynindx == -1)
2836 /* At this point, we know the symbol is defined and dynamic. In an
2837 executable it must resolve locally, likewise when building symbolic
2838 shared libraries. */
2839 if (info->executable || SYMBOLIC_BIND (info, h))
2842 /* Now deal with defined dynamic symbols in shared libraries. Ones
2843 with default visibility might not resolve locally. */
2844 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2847 hash_table = elf_hash_table (info);
2848 if (!is_elf_hash_table (hash_table))
2851 bed = get_elf_backend_data (hash_table->dynobj);
2853 /* STV_PROTECTED non-function symbols are local. */
2854 if (!bed->is_function_type (h->type))
2857 /* Function pointer equality tests may require that STV_PROTECTED
2858 symbols be treated as dynamic symbols. If the address of a
2859 function not defined in an executable is set to that function's
2860 plt entry in the executable, then the address of the function in
2861 a shared library must also be the plt entry in the executable. */
2862 return local_protected;
2865 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2866 aligned. Returns the first TLS output section. */
2868 struct bfd_section *
2869 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2871 struct bfd_section *sec, *tls;
2872 unsigned int align = 0;
2874 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2875 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2879 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2880 if (sec->alignment_power > align)
2881 align = sec->alignment_power;
2883 elf_hash_table (info)->tls_sec = tls;
2885 /* Ensure the alignment of the first section is the largest alignment,
2886 so that the tls segment starts aligned. */
2888 tls->alignment_power = align;
2893 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2895 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2896 Elf_Internal_Sym *sym)
2898 const struct elf_backend_data *bed;
2900 /* Local symbols do not count, but target specific ones might. */
2901 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2902 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2905 bed = get_elf_backend_data (abfd);
2906 /* Function symbols do not count. */
2907 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2910 /* If the section is undefined, then so is the symbol. */
2911 if (sym->st_shndx == SHN_UNDEF)
2914 /* If the symbol is defined in the common section, then
2915 it is a common definition and so does not count. */
2916 if (bed->common_definition (sym))
2919 /* If the symbol is in a target specific section then we
2920 must rely upon the backend to tell us what it is. */
2921 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2922 /* FIXME - this function is not coded yet:
2924 return _bfd_is_global_symbol_definition (abfd, sym);
2926 Instead for now assume that the definition is not global,
2927 Even if this is wrong, at least the linker will behave
2928 in the same way that it used to do. */
2934 /* Search the symbol table of the archive element of the archive ABFD
2935 whose archive map contains a mention of SYMDEF, and determine if
2936 the symbol is defined in this element. */
2938 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2940 Elf_Internal_Shdr * hdr;
2941 bfd_size_type symcount;
2942 bfd_size_type extsymcount;
2943 bfd_size_type extsymoff;
2944 Elf_Internal_Sym *isymbuf;
2945 Elf_Internal_Sym *isym;
2946 Elf_Internal_Sym *isymend;
2949 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2953 if (! bfd_check_format (abfd, bfd_object))
2956 /* If we have already included the element containing this symbol in the
2957 link then we do not need to include it again. Just claim that any symbol
2958 it contains is not a definition, so that our caller will not decide to
2959 (re)include this element. */
2960 if (abfd->archive_pass)
2963 /* Select the appropriate symbol table. */
2964 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2965 hdr = &elf_tdata (abfd)->symtab_hdr;
2967 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2969 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2971 /* The sh_info field of the symtab header tells us where the
2972 external symbols start. We don't care about the local symbols. */
2973 if (elf_bad_symtab (abfd))
2975 extsymcount = symcount;
2980 extsymcount = symcount - hdr->sh_info;
2981 extsymoff = hdr->sh_info;
2984 if (extsymcount == 0)
2987 /* Read in the symbol table. */
2988 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2990 if (isymbuf == NULL)
2993 /* Scan the symbol table looking for SYMDEF. */
2995 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2999 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3004 if (strcmp (name, symdef->name) == 0)
3006 result = is_global_data_symbol_definition (abfd, isym);
3016 /* Add an entry to the .dynamic table. */
3019 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3023 struct elf_link_hash_table *hash_table;
3024 const struct elf_backend_data *bed;
3026 bfd_size_type newsize;
3027 bfd_byte *newcontents;
3028 Elf_Internal_Dyn dyn;
3030 hash_table = elf_hash_table (info);
3031 if (! is_elf_hash_table (hash_table))
3034 bed = get_elf_backend_data (hash_table->dynobj);
3035 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3036 BFD_ASSERT (s != NULL);
3038 newsize = s->size + bed->s->sizeof_dyn;
3039 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3040 if (newcontents == NULL)
3044 dyn.d_un.d_val = val;
3045 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3048 s->contents = newcontents;
3053 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3054 otherwise just check whether one already exists. Returns -1 on error,
3055 1 if a DT_NEEDED tag already exists, and 0 on success. */
3058 elf_add_dt_needed_tag (bfd *abfd,
3059 struct bfd_link_info *info,
3063 struct elf_link_hash_table *hash_table;
3064 bfd_size_type strindex;
3066 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3069 hash_table = elf_hash_table (info);
3070 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3071 if (strindex == (bfd_size_type) -1)
3074 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3077 const struct elf_backend_data *bed;
3080 bed = get_elf_backend_data (hash_table->dynobj);
3081 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3083 for (extdyn = sdyn->contents;
3084 extdyn < sdyn->contents + sdyn->size;
3085 extdyn += bed->s->sizeof_dyn)
3087 Elf_Internal_Dyn dyn;
3089 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3090 if (dyn.d_tag == DT_NEEDED
3091 && dyn.d_un.d_val == strindex)
3093 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3101 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3104 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3108 /* We were just checking for existence of the tag. */
3109 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3115 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3117 for (; needed != NULL; needed = needed->next)
3118 if (strcmp (soname, needed->name) == 0)
3124 /* Sort symbol by value, section, and size. */
3126 elf_sort_symbol (const void *arg1, const void *arg2)
3128 const struct elf_link_hash_entry *h1;
3129 const struct elf_link_hash_entry *h2;
3130 bfd_signed_vma vdiff;
3132 h1 = *(const struct elf_link_hash_entry **) arg1;
3133 h2 = *(const struct elf_link_hash_entry **) arg2;
3134 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3136 return vdiff > 0 ? 1 : -1;
3139 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3141 return sdiff > 0 ? 1 : -1;
3143 vdiff = h1->size - h2->size;
3144 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3147 /* This function is used to adjust offsets into .dynstr for
3148 dynamic symbols. This is called via elf_link_hash_traverse. */
3151 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3153 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3155 if (h->dynindx != -1)
3156 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3160 /* Assign string offsets in .dynstr, update all structures referencing
3164 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3166 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3167 struct elf_link_local_dynamic_entry *entry;
3168 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3169 bfd *dynobj = hash_table->dynobj;
3172 const struct elf_backend_data *bed;
3175 _bfd_elf_strtab_finalize (dynstr);
3176 size = _bfd_elf_strtab_size (dynstr);
3178 bed = get_elf_backend_data (dynobj);
3179 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3180 BFD_ASSERT (sdyn != NULL);
3182 /* Update all .dynamic entries referencing .dynstr strings. */
3183 for (extdyn = sdyn->contents;
3184 extdyn < sdyn->contents + sdyn->size;
3185 extdyn += bed->s->sizeof_dyn)
3187 Elf_Internal_Dyn dyn;
3189 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3193 dyn.d_un.d_val = size;
3203 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3208 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3211 /* Now update local dynamic symbols. */
3212 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3213 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3214 entry->isym.st_name);
3216 /* And the rest of dynamic symbols. */
3217 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3219 /* Adjust version definitions. */
3220 if (elf_tdata (output_bfd)->cverdefs)
3225 Elf_Internal_Verdef def;
3226 Elf_Internal_Verdaux defaux;
3228 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3232 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3234 p += sizeof (Elf_External_Verdef);
3235 if (def.vd_aux != sizeof (Elf_External_Verdef))
3237 for (i = 0; i < def.vd_cnt; ++i)
3239 _bfd_elf_swap_verdaux_in (output_bfd,
3240 (Elf_External_Verdaux *) p, &defaux);
3241 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3243 _bfd_elf_swap_verdaux_out (output_bfd,
3244 &defaux, (Elf_External_Verdaux *) p);
3245 p += sizeof (Elf_External_Verdaux);
3248 while (def.vd_next);
3251 /* Adjust version references. */
3252 if (elf_tdata (output_bfd)->verref)
3257 Elf_Internal_Verneed need;
3258 Elf_Internal_Vernaux needaux;
3260 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3264 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3266 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3267 _bfd_elf_swap_verneed_out (output_bfd, &need,
3268 (Elf_External_Verneed *) p);
3269 p += sizeof (Elf_External_Verneed);
3270 for (i = 0; i < need.vn_cnt; ++i)
3272 _bfd_elf_swap_vernaux_in (output_bfd,
3273 (Elf_External_Vernaux *) p, &needaux);
3274 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3276 _bfd_elf_swap_vernaux_out (output_bfd,
3278 (Elf_External_Vernaux *) p);
3279 p += sizeof (Elf_External_Vernaux);
3282 while (need.vn_next);
3288 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3289 The default is to only match when the INPUT and OUTPUT are exactly
3293 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3294 const bfd_target *output)
3296 return input == output;
3299 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3300 This version is used when different targets for the same architecture
3301 are virtually identical. */
3304 _bfd_elf_relocs_compatible (const bfd_target *input,
3305 const bfd_target *output)
3307 const struct elf_backend_data *obed, *ibed;
3309 if (input == output)
3312 ibed = xvec_get_elf_backend_data (input);
3313 obed = xvec_get_elf_backend_data (output);
3315 if (ibed->arch != obed->arch)
3318 /* If both backends are using this function, deem them compatible. */
3319 return ibed->relocs_compatible == obed->relocs_compatible;
3322 /* Make a special call to the linker "notice" function to tell it that
3323 we are about to handle an as-needed lib, or have finished
3324 processing the lib. */
3327 _bfd_elf_notice_as_needed (bfd *ibfd,
3328 struct bfd_link_info *info,
3329 enum notice_asneeded_action act)
3331 return (*info->callbacks->notice) (info, NULL, ibfd, NULL, act, 0, NULL);
3334 /* Add symbols from an ELF object file to the linker hash table. */
3337 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3339 Elf_Internal_Ehdr *ehdr;
3340 Elf_Internal_Shdr *hdr;
3341 bfd_size_type symcount;
3342 bfd_size_type extsymcount;
3343 bfd_size_type extsymoff;
3344 struct elf_link_hash_entry **sym_hash;
3345 bfd_boolean dynamic;
3346 Elf_External_Versym *extversym = NULL;
3347 Elf_External_Versym *ever;
3348 struct elf_link_hash_entry *weaks;
3349 struct elf_link_hash_entry **nondeflt_vers = NULL;
3350 bfd_size_type nondeflt_vers_cnt = 0;
3351 Elf_Internal_Sym *isymbuf = NULL;
3352 Elf_Internal_Sym *isym;
3353 Elf_Internal_Sym *isymend;
3354 const struct elf_backend_data *bed;
3355 bfd_boolean add_needed;
3356 struct elf_link_hash_table *htab;
3358 void *alloc_mark = NULL;
3359 struct bfd_hash_entry **old_table = NULL;
3360 unsigned int old_size = 0;
3361 unsigned int old_count = 0;
3362 void *old_tab = NULL;
3364 struct bfd_link_hash_entry *old_undefs = NULL;
3365 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3366 long old_dynsymcount = 0;
3367 bfd_size_type old_dynstr_size = 0;
3371 htab = elf_hash_table (info);
3372 bed = get_elf_backend_data (abfd);
3374 if ((abfd->flags & DYNAMIC) == 0)
3380 /* You can't use -r against a dynamic object. Also, there's no
3381 hope of using a dynamic object which does not exactly match
3382 the format of the output file. */
3383 if (info->relocatable
3384 || !is_elf_hash_table (htab)
3385 || info->output_bfd->xvec != abfd->xvec)
3387 if (info->relocatable)
3388 bfd_set_error (bfd_error_invalid_operation);
3390 bfd_set_error (bfd_error_wrong_format);
3395 ehdr = elf_elfheader (abfd);
3396 if (info->warn_alternate_em
3397 && bed->elf_machine_code != ehdr->e_machine
3398 && ((bed->elf_machine_alt1 != 0
3399 && ehdr->e_machine == bed->elf_machine_alt1)
3400 || (bed->elf_machine_alt2 != 0
3401 && ehdr->e_machine == bed->elf_machine_alt2)))
3402 info->callbacks->einfo
3403 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3404 ehdr->e_machine, abfd, bed->elf_machine_code);
3406 /* As a GNU extension, any input sections which are named
3407 .gnu.warning.SYMBOL are treated as warning symbols for the given
3408 symbol. This differs from .gnu.warning sections, which generate
3409 warnings when they are included in an output file. */
3410 /* PR 12761: Also generate this warning when building shared libraries. */
3411 for (s = abfd->sections; s != NULL; s = s->next)
3415 name = bfd_get_section_name (abfd, s);
3416 if (CONST_STRNEQ (name, ".gnu.warning."))
3421 name += sizeof ".gnu.warning." - 1;
3423 /* If this is a shared object, then look up the symbol
3424 in the hash table. If it is there, and it is already
3425 been defined, then we will not be using the entry
3426 from this shared object, so we don't need to warn.
3427 FIXME: If we see the definition in a regular object
3428 later on, we will warn, but we shouldn't. The only
3429 fix is to keep track of what warnings we are supposed
3430 to emit, and then handle them all at the end of the
3434 struct elf_link_hash_entry *h;
3436 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3438 /* FIXME: What about bfd_link_hash_common? */
3440 && (h->root.type == bfd_link_hash_defined
3441 || h->root.type == bfd_link_hash_defweak))
3446 msg = (char *) bfd_alloc (abfd, sz + 1);
3450 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3455 if (! (_bfd_generic_link_add_one_symbol
3456 (info, abfd, name, BSF_WARNING, s, 0, msg,
3457 FALSE, bed->collect, NULL)))
3460 if (!info->relocatable && info->executable)
3462 /* Clobber the section size so that the warning does
3463 not get copied into the output file. */
3466 /* Also set SEC_EXCLUDE, so that symbols defined in
3467 the warning section don't get copied to the output. */
3468 s->flags |= SEC_EXCLUDE;
3476 /* If we are creating a shared library, create all the dynamic
3477 sections immediately. We need to attach them to something,
3478 so we attach them to this BFD, provided it is the right
3479 format. FIXME: If there are no input BFD's of the same
3480 format as the output, we can't make a shared library. */
3482 && is_elf_hash_table (htab)
3483 && info->output_bfd->xvec == abfd->xvec
3484 && !htab->dynamic_sections_created)
3486 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3490 else if (!is_elf_hash_table (htab))
3494 const char *soname = NULL;
3496 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3499 /* ld --just-symbols and dynamic objects don't mix very well.
3500 ld shouldn't allow it. */
3501 if ((s = abfd->sections) != NULL
3502 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3505 /* If this dynamic lib was specified on the command line with
3506 --as-needed in effect, then we don't want to add a DT_NEEDED
3507 tag unless the lib is actually used. Similary for libs brought
3508 in by another lib's DT_NEEDED. When --no-add-needed is used
3509 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3510 any dynamic library in DT_NEEDED tags in the dynamic lib at
3512 add_needed = (elf_dyn_lib_class (abfd)
3513 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3514 | DYN_NO_NEEDED)) == 0;
3516 s = bfd_get_section_by_name (abfd, ".dynamic");
3521 unsigned int elfsec;
3522 unsigned long shlink;
3524 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3531 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3532 if (elfsec == SHN_BAD)
3533 goto error_free_dyn;
3534 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3536 for (extdyn = dynbuf;
3537 extdyn < dynbuf + s->size;
3538 extdyn += bed->s->sizeof_dyn)
3540 Elf_Internal_Dyn dyn;
3542 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3543 if (dyn.d_tag == DT_SONAME)
3545 unsigned int tagv = dyn.d_un.d_val;
3546 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3548 goto error_free_dyn;
3550 if (dyn.d_tag == DT_NEEDED)
3552 struct bfd_link_needed_list *n, **pn;
3554 unsigned int tagv = dyn.d_un.d_val;
3556 amt = sizeof (struct bfd_link_needed_list);
3557 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3558 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3559 if (n == NULL || fnm == NULL)
3560 goto error_free_dyn;
3561 amt = strlen (fnm) + 1;
3562 anm = (char *) bfd_alloc (abfd, amt);
3564 goto error_free_dyn;
3565 memcpy (anm, fnm, amt);
3569 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3573 if (dyn.d_tag == DT_RUNPATH)
3575 struct bfd_link_needed_list *n, **pn;
3577 unsigned int tagv = dyn.d_un.d_val;
3579 amt = sizeof (struct bfd_link_needed_list);
3580 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3581 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3582 if (n == NULL || fnm == NULL)
3583 goto error_free_dyn;
3584 amt = strlen (fnm) + 1;
3585 anm = (char *) bfd_alloc (abfd, amt);
3587 goto error_free_dyn;
3588 memcpy (anm, fnm, amt);
3592 for (pn = & runpath;
3598 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3599 if (!runpath && dyn.d_tag == DT_RPATH)
3601 struct bfd_link_needed_list *n, **pn;
3603 unsigned int tagv = dyn.d_un.d_val;
3605 amt = sizeof (struct bfd_link_needed_list);
3606 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3607 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3608 if (n == NULL || fnm == NULL)
3609 goto error_free_dyn;
3610 amt = strlen (fnm) + 1;
3611 anm = (char *) bfd_alloc (abfd, amt);
3613 goto error_free_dyn;
3614 memcpy (anm, fnm, amt);
3624 if (dyn.d_tag == DT_AUDIT)
3626 unsigned int tagv = dyn.d_un.d_val;
3627 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3634 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3635 frees all more recently bfd_alloc'd blocks as well. */
3641 struct bfd_link_needed_list **pn;
3642 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3647 /* We do not want to include any of the sections in a dynamic
3648 object in the output file. We hack by simply clobbering the
3649 list of sections in the BFD. This could be handled more
3650 cleanly by, say, a new section flag; the existing
3651 SEC_NEVER_LOAD flag is not the one we want, because that one
3652 still implies that the section takes up space in the output
3654 bfd_section_list_clear (abfd);
3656 /* Find the name to use in a DT_NEEDED entry that refers to this
3657 object. If the object has a DT_SONAME entry, we use it.
3658 Otherwise, if the generic linker stuck something in
3659 elf_dt_name, we use that. Otherwise, we just use the file
3661 if (soname == NULL || *soname == '\0')
3663 soname = elf_dt_name (abfd);
3664 if (soname == NULL || *soname == '\0')
3665 soname = bfd_get_filename (abfd);
3668 /* Save the SONAME because sometimes the linker emulation code
3669 will need to know it. */
3670 elf_dt_name (abfd) = soname;
3672 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3676 /* If we have already included this dynamic object in the
3677 link, just ignore it. There is no reason to include a
3678 particular dynamic object more than once. */
3682 /* Save the DT_AUDIT entry for the linker emulation code. */
3683 elf_dt_audit (abfd) = audit;
3686 /* If this is a dynamic object, we always link against the .dynsym
3687 symbol table, not the .symtab symbol table. The dynamic linker
3688 will only see the .dynsym symbol table, so there is no reason to
3689 look at .symtab for a dynamic object. */
3691 if (! dynamic || elf_dynsymtab (abfd) == 0)
3692 hdr = &elf_tdata (abfd)->symtab_hdr;
3694 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3696 symcount = hdr->sh_size / bed->s->sizeof_sym;
3698 /* The sh_info field of the symtab header tells us where the
3699 external symbols start. We don't care about the local symbols at
3701 if (elf_bad_symtab (abfd))
3703 extsymcount = symcount;
3708 extsymcount = symcount - hdr->sh_info;
3709 extsymoff = hdr->sh_info;
3712 sym_hash = elf_sym_hashes (abfd);
3713 if (extsymcount != 0)
3715 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3717 if (isymbuf == NULL)
3720 if (sym_hash == NULL)
3722 /* We store a pointer to the hash table entry for each
3724 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3725 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3726 if (sym_hash == NULL)
3727 goto error_free_sym;
3728 elf_sym_hashes (abfd) = sym_hash;
3734 /* Read in any version definitions. */
3735 if (!_bfd_elf_slurp_version_tables (abfd,
3736 info->default_imported_symver))
3737 goto error_free_sym;
3739 /* Read in the symbol versions, but don't bother to convert them
3740 to internal format. */
3741 if (elf_dynversym (abfd) != 0)
3743 Elf_Internal_Shdr *versymhdr;
3745 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3746 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3747 if (extversym == NULL)
3748 goto error_free_sym;
3749 amt = versymhdr->sh_size;
3750 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3751 || bfd_bread (extversym, amt, abfd) != amt)
3752 goto error_free_vers;
3756 /* If we are loading an as-needed shared lib, save the symbol table
3757 state before we start adding symbols. If the lib turns out
3758 to be unneeded, restore the state. */
3759 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3764 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3766 struct bfd_hash_entry *p;
3767 struct elf_link_hash_entry *h;
3769 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3771 h = (struct elf_link_hash_entry *) p;
3772 entsize += htab->root.table.entsize;
3773 if (h->root.type == bfd_link_hash_warning)
3774 entsize += htab->root.table.entsize;
3778 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3779 old_tab = bfd_malloc (tabsize + entsize);
3780 if (old_tab == NULL)
3781 goto error_free_vers;
3783 /* Remember the current objalloc pointer, so that all mem for
3784 symbols added can later be reclaimed. */
3785 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3786 if (alloc_mark == NULL)
3787 goto error_free_vers;
3789 /* Make a special call to the linker "notice" function to
3790 tell it that we are about to handle an as-needed lib. */
3791 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3792 goto error_free_vers;
3794 /* Clone the symbol table. Remember some pointers into the
3795 symbol table, and dynamic symbol count. */
3796 old_ent = (char *) old_tab + tabsize;
3797 memcpy (old_tab, htab->root.table.table, tabsize);
3798 old_undefs = htab->root.undefs;
3799 old_undefs_tail = htab->root.undefs_tail;
3800 old_table = htab->root.table.table;
3801 old_size = htab->root.table.size;
3802 old_count = htab->root.table.count;
3803 old_dynsymcount = htab->dynsymcount;
3804 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3806 for (i = 0; i < htab->root.table.size; i++)
3808 struct bfd_hash_entry *p;
3809 struct elf_link_hash_entry *h;
3811 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3813 memcpy (old_ent, p, htab->root.table.entsize);
3814 old_ent = (char *) old_ent + htab->root.table.entsize;
3815 h = (struct elf_link_hash_entry *) p;
3816 if (h->root.type == bfd_link_hash_warning)
3818 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3819 old_ent = (char *) old_ent + htab->root.table.entsize;
3826 ever = extversym != NULL ? extversym + extsymoff : NULL;
3827 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3829 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3833 asection *sec, *new_sec;
3836 struct elf_link_hash_entry *h;
3837 struct elf_link_hash_entry *hi;
3838 bfd_boolean definition;
3839 bfd_boolean size_change_ok;
3840 bfd_boolean type_change_ok;
3841 bfd_boolean new_weakdef;
3842 bfd_boolean new_weak;
3843 bfd_boolean old_weak;
3844 bfd_boolean override;
3846 unsigned int old_alignment;
3851 flags = BSF_NO_FLAGS;
3853 value = isym->st_value;
3854 common = bed->common_definition (isym);
3856 bind = ELF_ST_BIND (isym->st_info);
3860 /* This should be impossible, since ELF requires that all
3861 global symbols follow all local symbols, and that sh_info
3862 point to the first global symbol. Unfortunately, Irix 5
3867 if (isym->st_shndx != SHN_UNDEF && !common)
3875 case STB_GNU_UNIQUE:
3876 flags = BSF_GNU_UNIQUE;
3880 /* Leave it up to the processor backend. */
3884 if (isym->st_shndx == SHN_UNDEF)
3885 sec = bfd_und_section_ptr;
3886 else if (isym->st_shndx == SHN_ABS)
3887 sec = bfd_abs_section_ptr;
3888 else if (isym->st_shndx == SHN_COMMON)
3890 sec = bfd_com_section_ptr;
3891 /* What ELF calls the size we call the value. What ELF
3892 calls the value we call the alignment. */
3893 value = isym->st_size;
3897 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3899 sec = bfd_abs_section_ptr;
3900 else if (discarded_section (sec))
3902 /* Symbols from discarded section are undefined. We keep
3904 sec = bfd_und_section_ptr;
3905 isym->st_shndx = SHN_UNDEF;
3907 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3911 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3914 goto error_free_vers;
3916 if (isym->st_shndx == SHN_COMMON
3917 && (abfd->flags & BFD_PLUGIN) != 0)
3919 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3923 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3925 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3927 goto error_free_vers;
3931 else if (isym->st_shndx == SHN_COMMON
3932 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3933 && !info->relocatable)
3935 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3939 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3940 | SEC_LINKER_CREATED);
3941 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3943 goto error_free_vers;
3947 else if (bed->elf_add_symbol_hook)
3949 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3951 goto error_free_vers;
3953 /* The hook function sets the name to NULL if this symbol
3954 should be skipped for some reason. */
3959 /* Sanity check that all possibilities were handled. */
3962 bfd_set_error (bfd_error_bad_value);
3963 goto error_free_vers;
3966 /* Silently discard TLS symbols from --just-syms. There's
3967 no way to combine a static TLS block with a new TLS block
3968 for this executable. */
3969 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3970 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3973 if (bfd_is_und_section (sec)
3974 || bfd_is_com_section (sec))
3979 size_change_ok = FALSE;
3980 type_change_ok = bed->type_change_ok;
3986 if (is_elf_hash_table (htab))
3988 Elf_Internal_Versym iver;
3989 unsigned int vernum = 0;
3994 if (info->default_imported_symver)
3995 /* Use the default symbol version created earlier. */
3996 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4001 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4003 vernum = iver.vs_vers & VERSYM_VERSION;
4005 /* If this is a hidden symbol, or if it is not version
4006 1, we append the version name to the symbol name.
4007 However, we do not modify a non-hidden absolute symbol
4008 if it is not a function, because it might be the version
4009 symbol itself. FIXME: What if it isn't? */
4010 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4012 && (!bfd_is_abs_section (sec)
4013 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4016 size_t namelen, verlen, newlen;
4019 if (isym->st_shndx != SHN_UNDEF)
4021 if (vernum > elf_tdata (abfd)->cverdefs)
4023 else if (vernum > 1)
4025 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4031 (*_bfd_error_handler)
4032 (_("%B: %s: invalid version %u (max %d)"),
4034 elf_tdata (abfd)->cverdefs);
4035 bfd_set_error (bfd_error_bad_value);
4036 goto error_free_vers;
4041 /* We cannot simply test for the number of
4042 entries in the VERNEED section since the
4043 numbers for the needed versions do not start
4045 Elf_Internal_Verneed *t;
4048 for (t = elf_tdata (abfd)->verref;
4052 Elf_Internal_Vernaux *a;
4054 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4056 if (a->vna_other == vernum)
4058 verstr = a->vna_nodename;
4067 (*_bfd_error_handler)
4068 (_("%B: %s: invalid needed version %d"),
4069 abfd, name, vernum);
4070 bfd_set_error (bfd_error_bad_value);
4071 goto error_free_vers;
4075 namelen = strlen (name);
4076 verlen = strlen (verstr);
4077 newlen = namelen + verlen + 2;
4078 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4079 && isym->st_shndx != SHN_UNDEF)
4082 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4083 if (newname == NULL)
4084 goto error_free_vers;
4085 memcpy (newname, name, namelen);
4086 p = newname + namelen;
4088 /* If this is a defined non-hidden version symbol,
4089 we add another @ to the name. This indicates the
4090 default version of the symbol. */
4091 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4092 && isym->st_shndx != SHN_UNDEF)
4094 memcpy (p, verstr, verlen + 1);
4099 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4100 sym_hash, &old_bfd, &old_weak,
4101 &old_alignment, &skip, &override,
4102 &type_change_ok, &size_change_ok))
4103 goto error_free_vers;
4112 while (h->root.type == bfd_link_hash_indirect
4113 || h->root.type == bfd_link_hash_warning)
4114 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4116 if (elf_tdata (abfd)->verdef != NULL
4119 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4122 if (! (_bfd_generic_link_add_one_symbol
4123 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4124 (struct bfd_link_hash_entry **) sym_hash)))
4125 goto error_free_vers;
4128 /* We need to make sure that indirect symbol dynamic flags are
4131 while (h->root.type == bfd_link_hash_indirect
4132 || h->root.type == bfd_link_hash_warning)
4133 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4137 new_weak = (flags & BSF_WEAK) != 0;
4138 new_weakdef = FALSE;
4142 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4143 && is_elf_hash_table (htab)
4144 && h->u.weakdef == NULL)
4146 /* Keep a list of all weak defined non function symbols from
4147 a dynamic object, using the weakdef field. Later in this
4148 function we will set the weakdef field to the correct
4149 value. We only put non-function symbols from dynamic
4150 objects on this list, because that happens to be the only
4151 time we need to know the normal symbol corresponding to a
4152 weak symbol, and the information is time consuming to
4153 figure out. If the weakdef field is not already NULL,
4154 then this symbol was already defined by some previous
4155 dynamic object, and we will be using that previous
4156 definition anyhow. */
4158 h->u.weakdef = weaks;
4163 /* Set the alignment of a common symbol. */
4164 if ((common || bfd_is_com_section (sec))
4165 && h->root.type == bfd_link_hash_common)
4170 align = bfd_log2 (isym->st_value);
4173 /* The new symbol is a common symbol in a shared object.
4174 We need to get the alignment from the section. */
4175 align = new_sec->alignment_power;
4177 if (align > old_alignment)
4178 h->root.u.c.p->alignment_power = align;
4180 h->root.u.c.p->alignment_power = old_alignment;
4183 if (is_elf_hash_table (htab))
4185 /* Set a flag in the hash table entry indicating the type of
4186 reference or definition we just found. A dynamic symbol
4187 is one which is referenced or defined by both a regular
4188 object and a shared object. */
4189 bfd_boolean dynsym = FALSE;
4191 /* Plugin symbols aren't normal. Don't set def_regular or
4192 ref_regular for them, or make them dynamic. */
4193 if ((abfd->flags & BFD_PLUGIN) != 0)
4200 if (bind != STB_WEAK)
4201 h->ref_regular_nonweak = 1;
4213 /* If the indirect symbol has been forced local, don't
4214 make the real symbol dynamic. */
4215 if ((h == hi || !hi->forced_local)
4216 && (! info->executable
4226 hi->ref_dynamic = 1;
4231 hi->def_dynamic = 1;
4234 /* If the indirect symbol has been forced local, don't
4235 make the real symbol dynamic. */
4236 if ((h == hi || !hi->forced_local)
4239 || (h->u.weakdef != NULL
4241 && h->u.weakdef->dynindx != -1)))
4245 /* Check to see if we need to add an indirect symbol for
4246 the default name. */
4248 || (!override && h->root.type == bfd_link_hash_common))
4249 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4250 sec, value, &old_bfd, &dynsym))
4251 goto error_free_vers;
4253 /* Check the alignment when a common symbol is involved. This
4254 can change when a common symbol is overridden by a normal
4255 definition or a common symbol is ignored due to the old
4256 normal definition. We need to make sure the maximum
4257 alignment is maintained. */
4258 if ((old_alignment || common)
4259 && h->root.type != bfd_link_hash_common)
4261 unsigned int common_align;
4262 unsigned int normal_align;
4263 unsigned int symbol_align;
4267 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4268 || h->root.type == bfd_link_hash_defweak);
4270 symbol_align = ffs (h->root.u.def.value) - 1;
4271 if (h->root.u.def.section->owner != NULL
4272 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4274 normal_align = h->root.u.def.section->alignment_power;
4275 if (normal_align > symbol_align)
4276 normal_align = symbol_align;
4279 normal_align = symbol_align;
4283 common_align = old_alignment;
4284 common_bfd = old_bfd;
4289 common_align = bfd_log2 (isym->st_value);
4291 normal_bfd = old_bfd;
4294 if (normal_align < common_align)
4296 /* PR binutils/2735 */
4297 if (normal_bfd == NULL)
4298 (*_bfd_error_handler)
4299 (_("Warning: alignment %u of common symbol `%s' in %B is"
4300 " greater than the alignment (%u) of its section %A"),
4301 common_bfd, h->root.u.def.section,
4302 1 << common_align, name, 1 << normal_align);
4304 (*_bfd_error_handler)
4305 (_("Warning: alignment %u of symbol `%s' in %B"
4306 " is smaller than %u in %B"),
4307 normal_bfd, common_bfd,
4308 1 << normal_align, name, 1 << common_align);
4312 /* Remember the symbol size if it isn't undefined. */
4313 if (isym->st_size != 0
4314 && isym->st_shndx != SHN_UNDEF
4315 && (definition || h->size == 0))
4318 && h->size != isym->st_size
4319 && ! size_change_ok)
4320 (*_bfd_error_handler)
4321 (_("Warning: size of symbol `%s' changed"
4322 " from %lu in %B to %lu in %B"),
4324 name, (unsigned long) h->size,
4325 (unsigned long) isym->st_size);
4327 h->size = isym->st_size;
4330 /* If this is a common symbol, then we always want H->SIZE
4331 to be the size of the common symbol. The code just above
4332 won't fix the size if a common symbol becomes larger. We
4333 don't warn about a size change here, because that is
4334 covered by --warn-common. Allow changes between different
4336 if (h->root.type == bfd_link_hash_common)
4337 h->size = h->root.u.c.size;
4339 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4340 && ((definition && !new_weak)
4341 || (old_weak && h->root.type == bfd_link_hash_common)
4342 || h->type == STT_NOTYPE))
4344 unsigned int type = ELF_ST_TYPE (isym->st_info);
4346 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4348 if (type == STT_GNU_IFUNC
4349 && (abfd->flags & DYNAMIC) != 0)
4352 if (h->type != type)
4354 if (h->type != STT_NOTYPE && ! type_change_ok)
4355 (*_bfd_error_handler)
4356 (_("Warning: type of symbol `%s' changed"
4357 " from %d to %d in %B"),
4358 abfd, name, h->type, type);
4364 /* Merge st_other field. */
4365 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4367 /* We don't want to make debug symbol dynamic. */
4368 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4371 /* Nor should we make plugin symbols dynamic. */
4372 if ((abfd->flags & BFD_PLUGIN) != 0)
4377 h->target_internal = isym->st_target_internal;
4378 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4381 if (definition && !dynamic)
4383 char *p = strchr (name, ELF_VER_CHR);
4384 if (p != NULL && p[1] != ELF_VER_CHR)
4386 /* Queue non-default versions so that .symver x, x@FOO
4387 aliases can be checked. */
4390 amt = ((isymend - isym + 1)
4391 * sizeof (struct elf_link_hash_entry *));
4393 (struct elf_link_hash_entry **) bfd_malloc (amt);
4395 goto error_free_vers;
4397 nondeflt_vers[nondeflt_vers_cnt++] = h;
4401 if (dynsym && h->dynindx == -1)
4403 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4404 goto error_free_vers;
4405 if (h->u.weakdef != NULL
4407 && h->u.weakdef->dynindx == -1)
4409 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4410 goto error_free_vers;
4413 else if (dynsym && h->dynindx != -1)
4414 /* If the symbol already has a dynamic index, but
4415 visibility says it should not be visible, turn it into
4417 switch (ELF_ST_VISIBILITY (h->other))
4421 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4426 /* Don't add DT_NEEDED for references from the dummy bfd. */
4430 && h->ref_regular_nonweak
4432 || (old_bfd->flags & BFD_PLUGIN) == 0))
4433 || (h->ref_dynamic_nonweak
4434 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4435 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4438 const char *soname = elf_dt_name (abfd);
4440 info->callbacks->minfo ("%!", soname, old_bfd,
4441 h->root.root.string);
4443 /* A symbol from a library loaded via DT_NEEDED of some
4444 other library is referenced by a regular object.
4445 Add a DT_NEEDED entry for it. Issue an error if
4446 --no-add-needed is used and the reference was not
4449 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4451 (*_bfd_error_handler)
4452 (_("%B: undefined reference to symbol '%s'"),
4454 bfd_set_error (bfd_error_missing_dso);
4455 goto error_free_vers;
4458 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4459 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4462 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4464 goto error_free_vers;
4466 BFD_ASSERT (ret == 0);
4471 if (extversym != NULL)
4477 if (isymbuf != NULL)
4483 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4487 /* Restore the symbol table. */
4488 old_ent = (char *) old_tab + tabsize;
4489 memset (elf_sym_hashes (abfd), 0,
4490 extsymcount * sizeof (struct elf_link_hash_entry *));
4491 htab->root.table.table = old_table;
4492 htab->root.table.size = old_size;
4493 htab->root.table.count = old_count;
4494 memcpy (htab->root.table.table, old_tab, tabsize);
4495 htab->root.undefs = old_undefs;
4496 htab->root.undefs_tail = old_undefs_tail;
4497 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4498 for (i = 0; i < htab->root.table.size; i++)
4500 struct bfd_hash_entry *p;
4501 struct elf_link_hash_entry *h;
4503 unsigned int alignment_power;
4505 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4507 h = (struct elf_link_hash_entry *) p;
4508 if (h->root.type == bfd_link_hash_warning)
4509 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4510 if (h->dynindx >= old_dynsymcount
4511 && h->dynstr_index < old_dynstr_size)
4512 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4514 /* Preserve the maximum alignment and size for common
4515 symbols even if this dynamic lib isn't on DT_NEEDED
4516 since it can still be loaded at run time by another
4518 if (h->root.type == bfd_link_hash_common)
4520 size = h->root.u.c.size;
4521 alignment_power = h->root.u.c.p->alignment_power;
4526 alignment_power = 0;
4528 memcpy (p, old_ent, htab->root.table.entsize);
4529 old_ent = (char *) old_ent + htab->root.table.entsize;
4530 h = (struct elf_link_hash_entry *) p;
4531 if (h->root.type == bfd_link_hash_warning)
4533 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4534 old_ent = (char *) old_ent + htab->root.table.entsize;
4535 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4537 if (h->root.type == bfd_link_hash_common)
4539 if (size > h->root.u.c.size)
4540 h->root.u.c.size = size;
4541 if (alignment_power > h->root.u.c.p->alignment_power)
4542 h->root.u.c.p->alignment_power = alignment_power;
4547 /* Make a special call to the linker "notice" function to
4548 tell it that symbols added for crefs may need to be removed. */
4549 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4550 goto error_free_vers;
4553 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4555 if (nondeflt_vers != NULL)
4556 free (nondeflt_vers);
4560 if (old_tab != NULL)
4562 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4563 goto error_free_vers;
4568 /* Now that all the symbols from this input file are created, handle
4569 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4570 if (nondeflt_vers != NULL)
4572 bfd_size_type cnt, symidx;
4574 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4576 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4577 char *shortname, *p;
4579 p = strchr (h->root.root.string, ELF_VER_CHR);
4581 || (h->root.type != bfd_link_hash_defined
4582 && h->root.type != bfd_link_hash_defweak))
4585 amt = p - h->root.root.string;
4586 shortname = (char *) bfd_malloc (amt + 1);
4588 goto error_free_vers;
4589 memcpy (shortname, h->root.root.string, amt);
4590 shortname[amt] = '\0';
4592 hi = (struct elf_link_hash_entry *)
4593 bfd_link_hash_lookup (&htab->root, shortname,
4594 FALSE, FALSE, FALSE);
4596 && hi->root.type == h->root.type
4597 && hi->root.u.def.value == h->root.u.def.value
4598 && hi->root.u.def.section == h->root.u.def.section)
4600 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4601 hi->root.type = bfd_link_hash_indirect;
4602 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4603 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4604 sym_hash = elf_sym_hashes (abfd);
4606 for (symidx = 0; symidx < extsymcount; ++symidx)
4607 if (sym_hash[symidx] == hi)
4609 sym_hash[symidx] = h;
4615 free (nondeflt_vers);
4616 nondeflt_vers = NULL;
4619 /* Now set the weakdefs field correctly for all the weak defined
4620 symbols we found. The only way to do this is to search all the
4621 symbols. Since we only need the information for non functions in
4622 dynamic objects, that's the only time we actually put anything on
4623 the list WEAKS. We need this information so that if a regular
4624 object refers to a symbol defined weakly in a dynamic object, the
4625 real symbol in the dynamic object is also put in the dynamic
4626 symbols; we also must arrange for both symbols to point to the
4627 same memory location. We could handle the general case of symbol
4628 aliasing, but a general symbol alias can only be generated in
4629 assembler code, handling it correctly would be very time
4630 consuming, and other ELF linkers don't handle general aliasing
4634 struct elf_link_hash_entry **hpp;
4635 struct elf_link_hash_entry **hppend;
4636 struct elf_link_hash_entry **sorted_sym_hash;
4637 struct elf_link_hash_entry *h;
4640 /* Since we have to search the whole symbol list for each weak
4641 defined symbol, search time for N weak defined symbols will be
4642 O(N^2). Binary search will cut it down to O(NlogN). */
4643 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4644 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4645 if (sorted_sym_hash == NULL)
4647 sym_hash = sorted_sym_hash;
4648 hpp = elf_sym_hashes (abfd);
4649 hppend = hpp + extsymcount;
4651 for (; hpp < hppend; hpp++)
4655 && h->root.type == bfd_link_hash_defined
4656 && !bed->is_function_type (h->type))
4664 qsort (sorted_sym_hash, sym_count,
4665 sizeof (struct elf_link_hash_entry *),
4668 while (weaks != NULL)
4670 struct elf_link_hash_entry *hlook;
4673 size_t i, j, idx = 0;
4676 weaks = hlook->u.weakdef;
4677 hlook->u.weakdef = NULL;
4679 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4680 || hlook->root.type == bfd_link_hash_defweak
4681 || hlook->root.type == bfd_link_hash_common
4682 || hlook->root.type == bfd_link_hash_indirect);
4683 slook = hlook->root.u.def.section;
4684 vlook = hlook->root.u.def.value;
4690 bfd_signed_vma vdiff;
4692 h = sorted_sym_hash[idx];
4693 vdiff = vlook - h->root.u.def.value;
4700 long sdiff = slook->id - h->root.u.def.section->id;
4710 /* We didn't find a value/section match. */
4714 /* With multiple aliases, or when the weak symbol is already
4715 strongly defined, we have multiple matching symbols and
4716 the binary search above may land on any of them. Step
4717 one past the matching symbol(s). */
4720 h = sorted_sym_hash[idx];
4721 if (h->root.u.def.section != slook
4722 || h->root.u.def.value != vlook)
4726 /* Now look back over the aliases. Since we sorted by size
4727 as well as value and section, we'll choose the one with
4728 the largest size. */
4731 h = sorted_sym_hash[idx];
4733 /* Stop if value or section doesn't match. */
4734 if (h->root.u.def.section != slook
4735 || h->root.u.def.value != vlook)
4737 else if (h != hlook)
4739 hlook->u.weakdef = h;
4741 /* If the weak definition is in the list of dynamic
4742 symbols, make sure the real definition is put
4744 if (hlook->dynindx != -1 && h->dynindx == -1)
4746 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4749 free (sorted_sym_hash);
4754 /* If the real definition is in the list of dynamic
4755 symbols, make sure the weak definition is put
4756 there as well. If we don't do this, then the
4757 dynamic loader might not merge the entries for the
4758 real definition and the weak definition. */
4759 if (h->dynindx != -1 && hlook->dynindx == -1)
4761 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4762 goto err_free_sym_hash;
4769 free (sorted_sym_hash);
4772 if (bed->check_directives
4773 && !(*bed->check_directives) (abfd, info))
4776 /* If this object is the same format as the output object, and it is
4777 not a shared library, then let the backend look through the
4780 This is required to build global offset table entries and to
4781 arrange for dynamic relocs. It is not required for the
4782 particular common case of linking non PIC code, even when linking
4783 against shared libraries, but unfortunately there is no way of
4784 knowing whether an object file has been compiled PIC or not.
4785 Looking through the relocs is not particularly time consuming.
4786 The problem is that we must either (1) keep the relocs in memory,
4787 which causes the linker to require additional runtime memory or
4788 (2) read the relocs twice from the input file, which wastes time.
4789 This would be a good case for using mmap.
4791 I have no idea how to handle linking PIC code into a file of a
4792 different format. It probably can't be done. */
4794 && is_elf_hash_table (htab)
4795 && bed->check_relocs != NULL
4796 && elf_object_id (abfd) == elf_hash_table_id (htab)
4797 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4801 for (o = abfd->sections; o != NULL; o = o->next)
4803 Elf_Internal_Rela *internal_relocs;
4806 if ((o->flags & SEC_RELOC) == 0
4807 || o->reloc_count == 0
4808 || ((info->strip == strip_all || info->strip == strip_debugger)
4809 && (o->flags & SEC_DEBUGGING) != 0)
4810 || bfd_is_abs_section (o->output_section))
4813 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4815 if (internal_relocs == NULL)
4818 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4820 if (elf_section_data (o)->relocs != internal_relocs)
4821 free (internal_relocs);
4828 /* If this is a non-traditional link, try to optimize the handling
4829 of the .stab/.stabstr sections. */
4831 && ! info->traditional_format
4832 && is_elf_hash_table (htab)
4833 && (info->strip != strip_all && info->strip != strip_debugger))
4837 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4838 if (stabstr != NULL)
4840 bfd_size_type string_offset = 0;
4843 for (stab = abfd->sections; stab; stab = stab->next)
4844 if (CONST_STRNEQ (stab->name, ".stab")
4845 && (!stab->name[5] ||
4846 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4847 && (stab->flags & SEC_MERGE) == 0
4848 && !bfd_is_abs_section (stab->output_section))
4850 struct bfd_elf_section_data *secdata;
4852 secdata = elf_section_data (stab);
4853 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4854 stabstr, &secdata->sec_info,
4857 if (secdata->sec_info)
4858 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4863 if (is_elf_hash_table (htab) && add_needed)
4865 /* Add this bfd to the loaded list. */
4866 struct elf_link_loaded_list *n;
4868 n = (struct elf_link_loaded_list *)
4869 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4873 n->next = htab->loaded;
4880 if (old_tab != NULL)
4882 if (nondeflt_vers != NULL)
4883 free (nondeflt_vers);
4884 if (extversym != NULL)
4887 if (isymbuf != NULL)
4893 /* Return the linker hash table entry of a symbol that might be
4894 satisfied by an archive symbol. Return -1 on error. */
4896 struct elf_link_hash_entry *
4897 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4898 struct bfd_link_info *info,
4901 struct elf_link_hash_entry *h;
4905 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4909 /* If this is a default version (the name contains @@), look up the
4910 symbol again with only one `@' as well as without the version.
4911 The effect is that references to the symbol with and without the
4912 version will be matched by the default symbol in the archive. */
4914 p = strchr (name, ELF_VER_CHR);
4915 if (p == NULL || p[1] != ELF_VER_CHR)
4918 /* First check with only one `@'. */
4919 len = strlen (name);
4920 copy = (char *) bfd_alloc (abfd, len);
4922 return (struct elf_link_hash_entry *) 0 - 1;
4924 first = p - name + 1;
4925 memcpy (copy, name, first);
4926 memcpy (copy + first, name + first + 1, len - first);
4928 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4931 /* We also need to check references to the symbol without the
4933 copy[first - 1] = '\0';
4934 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4935 FALSE, FALSE, TRUE);
4938 bfd_release (abfd, copy);
4942 /* Add symbols from an ELF archive file to the linker hash table. We
4943 don't use _bfd_generic_link_add_archive_symbols because of a
4944 problem which arises on UnixWare. The UnixWare libc.so is an
4945 archive which includes an entry libc.so.1 which defines a bunch of
4946 symbols. The libc.so archive also includes a number of other
4947 object files, which also define symbols, some of which are the same
4948 as those defined in libc.so.1. Correct linking requires that we
4949 consider each object file in turn, and include it if it defines any
4950 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4951 this; it looks through the list of undefined symbols, and includes
4952 any object file which defines them. When this algorithm is used on
4953 UnixWare, it winds up pulling in libc.so.1 early and defining a
4954 bunch of symbols. This means that some of the other objects in the
4955 archive are not included in the link, which is incorrect since they
4956 precede libc.so.1 in the archive.
4958 Fortunately, ELF archive handling is simpler than that done by
4959 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4960 oddities. In ELF, if we find a symbol in the archive map, and the
4961 symbol is currently undefined, we know that we must pull in that
4964 Unfortunately, we do have to make multiple passes over the symbol
4965 table until nothing further is resolved. */
4968 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4971 bfd_boolean *defined = NULL;
4972 bfd_boolean *included = NULL;
4976 const struct elf_backend_data *bed;
4977 struct elf_link_hash_entry * (*archive_symbol_lookup)
4978 (bfd *, struct bfd_link_info *, const char *);
4980 if (! bfd_has_map (abfd))
4982 /* An empty archive is a special case. */
4983 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4985 bfd_set_error (bfd_error_no_armap);
4989 /* Keep track of all symbols we know to be already defined, and all
4990 files we know to be already included. This is to speed up the
4991 second and subsequent passes. */
4992 c = bfd_ardata (abfd)->symdef_count;
4996 amt *= sizeof (bfd_boolean);
4997 defined = (bfd_boolean *) bfd_zmalloc (amt);
4998 included = (bfd_boolean *) bfd_zmalloc (amt);
4999 if (defined == NULL || included == NULL)
5002 symdefs = bfd_ardata (abfd)->symdefs;
5003 bed = get_elf_backend_data (abfd);
5004 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5017 symdefend = symdef + c;
5018 for (i = 0; symdef < symdefend; symdef++, i++)
5020 struct elf_link_hash_entry *h;
5022 struct bfd_link_hash_entry *undefs_tail;
5025 if (defined[i] || included[i])
5027 if (symdef->file_offset == last)
5033 h = archive_symbol_lookup (abfd, info, symdef->name);
5034 if (h == (struct elf_link_hash_entry *) 0 - 1)
5040 if (h->root.type == bfd_link_hash_common)
5042 /* We currently have a common symbol. The archive map contains
5043 a reference to this symbol, so we may want to include it. We
5044 only want to include it however, if this archive element
5045 contains a definition of the symbol, not just another common
5048 Unfortunately some archivers (including GNU ar) will put
5049 declarations of common symbols into their archive maps, as
5050 well as real definitions, so we cannot just go by the archive
5051 map alone. Instead we must read in the element's symbol
5052 table and check that to see what kind of symbol definition
5054 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5057 else if (h->root.type != bfd_link_hash_undefined)
5059 if (h->root.type != bfd_link_hash_undefweak)
5064 /* We need to include this archive member. */
5065 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5066 if (element == NULL)
5069 if (! bfd_check_format (element, bfd_object))
5072 /* Doublecheck that we have not included this object
5073 already--it should be impossible, but there may be
5074 something wrong with the archive. */
5075 if (element->archive_pass != 0)
5077 bfd_set_error (bfd_error_bad_value);
5080 element->archive_pass = 1;
5082 undefs_tail = info->hash->undefs_tail;
5084 if (!(*info->callbacks
5085 ->add_archive_element) (info, element, symdef->name, &element))
5087 if (!bfd_link_add_symbols (element, info))
5090 /* If there are any new undefined symbols, we need to make
5091 another pass through the archive in order to see whether
5092 they can be defined. FIXME: This isn't perfect, because
5093 common symbols wind up on undefs_tail and because an
5094 undefined symbol which is defined later on in this pass
5095 does not require another pass. This isn't a bug, but it
5096 does make the code less efficient than it could be. */
5097 if (undefs_tail != info->hash->undefs_tail)
5100 /* Look backward to mark all symbols from this object file
5101 which we have already seen in this pass. */
5105 included[mark] = TRUE;
5110 while (symdefs[mark].file_offset == symdef->file_offset);
5112 /* We mark subsequent symbols from this object file as we go
5113 on through the loop. */
5114 last = symdef->file_offset;
5125 if (defined != NULL)
5127 if (included != NULL)
5132 /* Given an ELF BFD, add symbols to the global hash table as
5136 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5138 switch (bfd_get_format (abfd))
5141 return elf_link_add_object_symbols (abfd, info);
5143 return elf_link_add_archive_symbols (abfd, info);
5145 bfd_set_error (bfd_error_wrong_format);
5150 struct hash_codes_info
5152 unsigned long *hashcodes;
5156 /* This function will be called though elf_link_hash_traverse to store
5157 all hash value of the exported symbols in an array. */
5160 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5162 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5168 /* Ignore indirect symbols. These are added by the versioning code. */
5169 if (h->dynindx == -1)
5172 name = h->root.root.string;
5173 p = strchr (name, ELF_VER_CHR);
5176 alc = (char *) bfd_malloc (p - name + 1);
5182 memcpy (alc, name, p - name);
5183 alc[p - name] = '\0';
5187 /* Compute the hash value. */
5188 ha = bfd_elf_hash (name);
5190 /* Store the found hash value in the array given as the argument. */
5191 *(inf->hashcodes)++ = ha;
5193 /* And store it in the struct so that we can put it in the hash table
5195 h->u.elf_hash_value = ha;
5203 struct collect_gnu_hash_codes
5206 const struct elf_backend_data *bed;
5207 unsigned long int nsyms;
5208 unsigned long int maskbits;
5209 unsigned long int *hashcodes;
5210 unsigned long int *hashval;
5211 unsigned long int *indx;
5212 unsigned long int *counts;
5215 long int min_dynindx;
5216 unsigned long int bucketcount;
5217 unsigned long int symindx;
5218 long int local_indx;
5219 long int shift1, shift2;
5220 unsigned long int mask;
5224 /* This function will be called though elf_link_hash_traverse to store
5225 all hash value of the exported symbols in an array. */
5228 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5230 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5236 /* Ignore indirect symbols. These are added by the versioning code. */
5237 if (h->dynindx == -1)
5240 /* Ignore also local symbols and undefined symbols. */
5241 if (! (*s->bed->elf_hash_symbol) (h))
5244 name = h->root.root.string;
5245 p = strchr (name, ELF_VER_CHR);
5248 alc = (char *) bfd_malloc (p - name + 1);
5254 memcpy (alc, name, p - name);
5255 alc[p - name] = '\0';
5259 /* Compute the hash value. */
5260 ha = bfd_elf_gnu_hash (name);
5262 /* Store the found hash value in the array for compute_bucket_count,
5263 and also for .dynsym reordering purposes. */
5264 s->hashcodes[s->nsyms] = ha;
5265 s->hashval[h->dynindx] = ha;
5267 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5268 s->min_dynindx = h->dynindx;
5276 /* This function will be called though elf_link_hash_traverse to do
5277 final dynaminc symbol renumbering. */
5280 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5282 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5283 unsigned long int bucket;
5284 unsigned long int val;
5286 /* Ignore indirect symbols. */
5287 if (h->dynindx == -1)
5290 /* Ignore also local symbols and undefined symbols. */
5291 if (! (*s->bed->elf_hash_symbol) (h))
5293 if (h->dynindx >= s->min_dynindx)
5294 h->dynindx = s->local_indx++;
5298 bucket = s->hashval[h->dynindx] % s->bucketcount;
5299 val = (s->hashval[h->dynindx] >> s->shift1)
5300 & ((s->maskbits >> s->shift1) - 1);
5301 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5303 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5304 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5305 if (s->counts[bucket] == 1)
5306 /* Last element terminates the chain. */
5308 bfd_put_32 (s->output_bfd, val,
5309 s->contents + (s->indx[bucket] - s->symindx) * 4);
5310 --s->counts[bucket];
5311 h->dynindx = s->indx[bucket]++;
5315 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5318 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5320 return !(h->forced_local
5321 || h->root.type == bfd_link_hash_undefined
5322 || h->root.type == bfd_link_hash_undefweak
5323 || ((h->root.type == bfd_link_hash_defined
5324 || h->root.type == bfd_link_hash_defweak)
5325 && h->root.u.def.section->output_section == NULL));
5328 /* Array used to determine the number of hash table buckets to use
5329 based on the number of symbols there are. If there are fewer than
5330 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5331 fewer than 37 we use 17 buckets, and so forth. We never use more
5332 than 32771 buckets. */
5334 static const size_t elf_buckets[] =
5336 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5340 /* Compute bucket count for hashing table. We do not use a static set
5341 of possible tables sizes anymore. Instead we determine for all
5342 possible reasonable sizes of the table the outcome (i.e., the
5343 number of collisions etc) and choose the best solution. The
5344 weighting functions are not too simple to allow the table to grow
5345 without bounds. Instead one of the weighting factors is the size.
5346 Therefore the result is always a good payoff between few collisions
5347 (= short chain lengths) and table size. */
5349 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5350 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5351 unsigned long int nsyms,
5354 size_t best_size = 0;
5355 unsigned long int i;
5357 /* We have a problem here. The following code to optimize the table
5358 size requires an integer type with more the 32 bits. If
5359 BFD_HOST_U_64_BIT is set we know about such a type. */
5360 #ifdef BFD_HOST_U_64_BIT
5365 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5366 bfd *dynobj = elf_hash_table (info)->dynobj;
5367 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5368 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5369 unsigned long int *counts;
5371 unsigned int no_improvement_count = 0;
5373 /* Possible optimization parameters: if we have NSYMS symbols we say
5374 that the hashing table must at least have NSYMS/4 and at most
5376 minsize = nsyms / 4;
5379 best_size = maxsize = nsyms * 2;
5384 if ((best_size & 31) == 0)
5388 /* Create array where we count the collisions in. We must use bfd_malloc
5389 since the size could be large. */
5391 amt *= sizeof (unsigned long int);
5392 counts = (unsigned long int *) bfd_malloc (amt);
5396 /* Compute the "optimal" size for the hash table. The criteria is a
5397 minimal chain length. The minor criteria is (of course) the size
5399 for (i = minsize; i < maxsize; ++i)
5401 /* Walk through the array of hashcodes and count the collisions. */
5402 BFD_HOST_U_64_BIT max;
5403 unsigned long int j;
5404 unsigned long int fact;
5406 if (gnu_hash && (i & 31) == 0)
5409 memset (counts, '\0', i * sizeof (unsigned long int));
5411 /* Determine how often each hash bucket is used. */
5412 for (j = 0; j < nsyms; ++j)
5413 ++counts[hashcodes[j] % i];
5415 /* For the weight function we need some information about the
5416 pagesize on the target. This is information need not be 100%
5417 accurate. Since this information is not available (so far) we
5418 define it here to a reasonable default value. If it is crucial
5419 to have a better value some day simply define this value. */
5420 # ifndef BFD_TARGET_PAGESIZE
5421 # define BFD_TARGET_PAGESIZE (4096)
5424 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5426 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5429 /* Variant 1: optimize for short chains. We add the squares
5430 of all the chain lengths (which favors many small chain
5431 over a few long chains). */
5432 for (j = 0; j < i; ++j)
5433 max += counts[j] * counts[j];
5435 /* This adds penalties for the overall size of the table. */
5436 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5439 /* Variant 2: Optimize a lot more for small table. Here we
5440 also add squares of the size but we also add penalties for
5441 empty slots (the +1 term). */
5442 for (j = 0; j < i; ++j)
5443 max += (1 + counts[j]) * (1 + counts[j]);
5445 /* The overall size of the table is considered, but not as
5446 strong as in variant 1, where it is squared. */
5447 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5451 /* Compare with current best results. */
5452 if (max < best_chlen)
5456 no_improvement_count = 0;
5458 /* PR 11843: Avoid futile long searches for the best bucket size
5459 when there are a large number of symbols. */
5460 else if (++no_improvement_count == 100)
5467 #endif /* defined (BFD_HOST_U_64_BIT) */
5469 /* This is the fallback solution if no 64bit type is available or if we
5470 are not supposed to spend much time on optimizations. We select the
5471 bucket count using a fixed set of numbers. */
5472 for (i = 0; elf_buckets[i] != 0; i++)
5474 best_size = elf_buckets[i];
5475 if (nsyms < elf_buckets[i + 1])
5478 if (gnu_hash && best_size < 2)
5485 /* Size any SHT_GROUP section for ld -r. */
5488 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5492 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5493 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5494 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5499 /* Set a default stack segment size. The value in INFO wins. If it
5500 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5501 undefined it is initialized. */
5504 bfd_elf_stack_segment_size (bfd *output_bfd,
5505 struct bfd_link_info *info,
5506 const char *legacy_symbol,
5507 bfd_vma default_size)
5509 struct elf_link_hash_entry *h = NULL;
5511 /* Look for legacy symbol. */
5513 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5514 FALSE, FALSE, FALSE);
5515 if (h && (h->root.type == bfd_link_hash_defined
5516 || h->root.type == bfd_link_hash_defweak)
5518 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5520 /* The symbol has no type if specified on the command line. */
5521 h->type = STT_OBJECT;
5522 if (info->stacksize)
5523 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5524 output_bfd, legacy_symbol);
5525 else if (h->root.u.def.section != bfd_abs_section_ptr)
5526 (*_bfd_error_handler) (_("%B: %s not absolute"),
5527 output_bfd, legacy_symbol);
5529 info->stacksize = h->root.u.def.value;
5532 if (!info->stacksize)
5533 /* If the user didn't set a size, or explicitly inhibit the
5534 size, set it now. */
5535 info->stacksize = default_size;
5537 /* Provide the legacy symbol, if it is referenced. */
5538 if (h && (h->root.type == bfd_link_hash_undefined
5539 || h->root.type == bfd_link_hash_undefweak))
5541 struct bfd_link_hash_entry *bh = NULL;
5543 if (!(_bfd_generic_link_add_one_symbol
5544 (info, output_bfd, legacy_symbol,
5545 BSF_GLOBAL, bfd_abs_section_ptr,
5546 info->stacksize >= 0 ? info->stacksize : 0,
5547 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5550 h = (struct elf_link_hash_entry *) bh;
5552 h->type = STT_OBJECT;
5558 /* Set up the sizes and contents of the ELF dynamic sections. This is
5559 called by the ELF linker emulation before_allocation routine. We
5560 must set the sizes of the sections before the linker sets the
5561 addresses of the various sections. */
5564 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5567 const char *filter_shlib,
5569 const char *depaudit,
5570 const char * const *auxiliary_filters,
5571 struct bfd_link_info *info,
5572 asection **sinterpptr)
5574 bfd_size_type soname_indx;
5576 const struct elf_backend_data *bed;
5577 struct elf_info_failed asvinfo;
5581 soname_indx = (bfd_size_type) -1;
5583 if (!is_elf_hash_table (info->hash))
5586 bed = get_elf_backend_data (output_bfd);
5588 /* Any syms created from now on start with -1 in
5589 got.refcount/offset and plt.refcount/offset. */
5590 elf_hash_table (info)->init_got_refcount
5591 = elf_hash_table (info)->init_got_offset;
5592 elf_hash_table (info)->init_plt_refcount
5593 = elf_hash_table (info)->init_plt_offset;
5595 if (info->relocatable
5596 && !_bfd_elf_size_group_sections (info))
5599 /* The backend may have to create some sections regardless of whether
5600 we're dynamic or not. */
5601 if (bed->elf_backend_always_size_sections
5602 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5605 /* Determine any GNU_STACK segment requirements, after the backend
5606 has had a chance to set a default segment size. */
5607 if (info->execstack)
5608 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5609 else if (info->noexecstack)
5610 elf_stack_flags (output_bfd) = PF_R | PF_W;
5614 asection *notesec = NULL;
5617 for (inputobj = info->input_bfds;
5619 inputobj = inputobj->link_next)
5624 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5626 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5629 if (s->flags & SEC_CODE)
5633 else if (bed->default_execstack)
5636 if (notesec || info->stacksize > 0)
5637 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5638 if (notesec && exec && info->relocatable
5639 && notesec->output_section != bfd_abs_section_ptr)
5640 notesec->output_section->flags |= SEC_CODE;
5643 dynobj = elf_hash_table (info)->dynobj;
5645 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5647 struct elf_info_failed eif;
5648 struct elf_link_hash_entry *h;
5650 struct bfd_elf_version_tree *t;
5651 struct bfd_elf_version_expr *d;
5653 bfd_boolean all_defined;
5655 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5656 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5660 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5662 if (soname_indx == (bfd_size_type) -1
5663 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5669 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5671 info->flags |= DF_SYMBOLIC;
5679 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5681 if (indx == (bfd_size_type) -1)
5684 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5685 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5689 if (filter_shlib != NULL)
5693 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5694 filter_shlib, TRUE);
5695 if (indx == (bfd_size_type) -1
5696 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5700 if (auxiliary_filters != NULL)
5702 const char * const *p;
5704 for (p = auxiliary_filters; *p != NULL; p++)
5708 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5710 if (indx == (bfd_size_type) -1
5711 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5720 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5722 if (indx == (bfd_size_type) -1
5723 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5727 if (depaudit != NULL)
5731 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5733 if (indx == (bfd_size_type) -1
5734 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5741 /* If we are supposed to export all symbols into the dynamic symbol
5742 table (this is not the normal case), then do so. */
5743 if (info->export_dynamic
5744 || (info->executable && info->dynamic))
5746 elf_link_hash_traverse (elf_hash_table (info),
5747 _bfd_elf_export_symbol,
5753 /* Make all global versions with definition. */
5754 for (t = info->version_info; t != NULL; t = t->next)
5755 for (d = t->globals.list; d != NULL; d = d->next)
5756 if (!d->symver && d->literal)
5758 const char *verstr, *name;
5759 size_t namelen, verlen, newlen;
5760 char *newname, *p, leading_char;
5761 struct elf_link_hash_entry *newh;
5763 leading_char = bfd_get_symbol_leading_char (output_bfd);
5765 namelen = strlen (name) + (leading_char != '\0');
5767 verlen = strlen (verstr);
5768 newlen = namelen + verlen + 3;
5770 newname = (char *) bfd_malloc (newlen);
5771 if (newname == NULL)
5773 newname[0] = leading_char;
5774 memcpy (newname + (leading_char != '\0'), name, namelen);
5776 /* Check the hidden versioned definition. */
5777 p = newname + namelen;
5779 memcpy (p, verstr, verlen + 1);
5780 newh = elf_link_hash_lookup (elf_hash_table (info),
5781 newname, FALSE, FALSE,
5784 || (newh->root.type != bfd_link_hash_defined
5785 && newh->root.type != bfd_link_hash_defweak))
5787 /* Check the default versioned definition. */
5789 memcpy (p, verstr, verlen + 1);
5790 newh = elf_link_hash_lookup (elf_hash_table (info),
5791 newname, FALSE, FALSE,
5796 /* Mark this version if there is a definition and it is
5797 not defined in a shared object. */
5799 && !newh->def_dynamic
5800 && (newh->root.type == bfd_link_hash_defined
5801 || newh->root.type == bfd_link_hash_defweak))
5805 /* Attach all the symbols to their version information. */
5806 asvinfo.info = info;
5807 asvinfo.failed = FALSE;
5809 elf_link_hash_traverse (elf_hash_table (info),
5810 _bfd_elf_link_assign_sym_version,
5815 if (!info->allow_undefined_version)
5817 /* Check if all global versions have a definition. */
5819 for (t = info->version_info; t != NULL; t = t->next)
5820 for (d = t->globals.list; d != NULL; d = d->next)
5821 if (d->literal && !d->symver && !d->script)
5823 (*_bfd_error_handler)
5824 (_("%s: undefined version: %s"),
5825 d->pattern, t->name);
5826 all_defined = FALSE;
5831 bfd_set_error (bfd_error_bad_value);
5836 /* Find all symbols which were defined in a dynamic object and make
5837 the backend pick a reasonable value for them. */
5838 elf_link_hash_traverse (elf_hash_table (info),
5839 _bfd_elf_adjust_dynamic_symbol,
5844 /* Add some entries to the .dynamic section. We fill in some of the
5845 values later, in bfd_elf_final_link, but we must add the entries
5846 now so that we know the final size of the .dynamic section. */
5848 /* If there are initialization and/or finalization functions to
5849 call then add the corresponding DT_INIT/DT_FINI entries. */
5850 h = (info->init_function
5851 ? elf_link_hash_lookup (elf_hash_table (info),
5852 info->init_function, FALSE,
5859 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5862 h = (info->fini_function
5863 ? elf_link_hash_lookup (elf_hash_table (info),
5864 info->fini_function, FALSE,
5871 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5875 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5876 if (s != NULL && s->linker_has_input)
5878 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5879 if (! info->executable)
5884 for (sub = info->input_bfds; sub != NULL;
5885 sub = sub->link_next)
5886 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5887 for (o = sub->sections; o != NULL; o = o->next)
5888 if (elf_section_data (o)->this_hdr.sh_type
5889 == SHT_PREINIT_ARRAY)
5891 (*_bfd_error_handler)
5892 (_("%B: .preinit_array section is not allowed in DSO"),
5897 bfd_set_error (bfd_error_nonrepresentable_section);
5901 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5902 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5905 s = bfd_get_section_by_name (output_bfd, ".init_array");
5906 if (s != NULL && s->linker_has_input)
5908 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5909 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5912 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5913 if (s != NULL && s->linker_has_input)
5915 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5916 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5920 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5921 /* If .dynstr is excluded from the link, we don't want any of
5922 these tags. Strictly, we should be checking each section
5923 individually; This quick check covers for the case where
5924 someone does a /DISCARD/ : { *(*) }. */
5925 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5927 bfd_size_type strsize;
5929 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5930 if ((info->emit_hash
5931 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5932 || (info->emit_gnu_hash
5933 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5934 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5935 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5936 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5937 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5938 bed->s->sizeof_sym))
5943 /* The backend must work out the sizes of all the other dynamic
5946 && bed->elf_backend_size_dynamic_sections != NULL
5947 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5950 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5953 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5955 unsigned long section_sym_count;
5956 struct bfd_elf_version_tree *verdefs;
5959 /* Set up the version definition section. */
5960 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5961 BFD_ASSERT (s != NULL);
5963 /* We may have created additional version definitions if we are
5964 just linking a regular application. */
5965 verdefs = info->version_info;
5967 /* Skip anonymous version tag. */
5968 if (verdefs != NULL && verdefs->vernum == 0)
5969 verdefs = verdefs->next;
5971 if (verdefs == NULL && !info->create_default_symver)
5972 s->flags |= SEC_EXCLUDE;
5977 struct bfd_elf_version_tree *t;
5979 Elf_Internal_Verdef def;
5980 Elf_Internal_Verdaux defaux;
5981 struct bfd_link_hash_entry *bh;
5982 struct elf_link_hash_entry *h;
5988 /* Make space for the base version. */
5989 size += sizeof (Elf_External_Verdef);
5990 size += sizeof (Elf_External_Verdaux);
5993 /* Make space for the default version. */
5994 if (info->create_default_symver)
5996 size += sizeof (Elf_External_Verdef);
6000 for (t = verdefs; t != NULL; t = t->next)
6002 struct bfd_elf_version_deps *n;
6004 /* Don't emit base version twice. */
6008 size += sizeof (Elf_External_Verdef);
6009 size += sizeof (Elf_External_Verdaux);
6012 for (n = t->deps; n != NULL; n = n->next)
6013 size += sizeof (Elf_External_Verdaux);
6017 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6018 if (s->contents == NULL && s->size != 0)
6021 /* Fill in the version definition section. */
6025 def.vd_version = VER_DEF_CURRENT;
6026 def.vd_flags = VER_FLG_BASE;
6029 if (info->create_default_symver)
6031 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6032 def.vd_next = sizeof (Elf_External_Verdef);
6036 def.vd_aux = sizeof (Elf_External_Verdef);
6037 def.vd_next = (sizeof (Elf_External_Verdef)
6038 + sizeof (Elf_External_Verdaux));
6041 if (soname_indx != (bfd_size_type) -1)
6043 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6045 def.vd_hash = bfd_elf_hash (soname);
6046 defaux.vda_name = soname_indx;
6053 name = lbasename (output_bfd->filename);
6054 def.vd_hash = bfd_elf_hash (name);
6055 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6057 if (indx == (bfd_size_type) -1)
6059 defaux.vda_name = indx;
6061 defaux.vda_next = 0;
6063 _bfd_elf_swap_verdef_out (output_bfd, &def,
6064 (Elf_External_Verdef *) p);
6065 p += sizeof (Elf_External_Verdef);
6066 if (info->create_default_symver)
6068 /* Add a symbol representing this version. */
6070 if (! (_bfd_generic_link_add_one_symbol
6071 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6073 get_elf_backend_data (dynobj)->collect, &bh)))
6075 h = (struct elf_link_hash_entry *) bh;
6078 h->type = STT_OBJECT;
6079 h->verinfo.vertree = NULL;
6081 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6084 /* Create a duplicate of the base version with the same
6085 aux block, but different flags. */
6088 def.vd_aux = sizeof (Elf_External_Verdef);
6090 def.vd_next = (sizeof (Elf_External_Verdef)
6091 + sizeof (Elf_External_Verdaux));
6094 _bfd_elf_swap_verdef_out (output_bfd, &def,
6095 (Elf_External_Verdef *) p);
6096 p += sizeof (Elf_External_Verdef);
6098 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6099 (Elf_External_Verdaux *) p);
6100 p += sizeof (Elf_External_Verdaux);
6102 for (t = verdefs; t != NULL; t = t->next)
6105 struct bfd_elf_version_deps *n;
6107 /* Don't emit the base version twice. */
6112 for (n = t->deps; n != NULL; n = n->next)
6115 /* Add a symbol representing this version. */
6117 if (! (_bfd_generic_link_add_one_symbol
6118 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6120 get_elf_backend_data (dynobj)->collect, &bh)))
6122 h = (struct elf_link_hash_entry *) bh;
6125 h->type = STT_OBJECT;
6126 h->verinfo.vertree = t;
6128 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6131 def.vd_version = VER_DEF_CURRENT;
6133 if (t->globals.list == NULL
6134 && t->locals.list == NULL
6136 def.vd_flags |= VER_FLG_WEAK;
6137 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6138 def.vd_cnt = cdeps + 1;
6139 def.vd_hash = bfd_elf_hash (t->name);
6140 def.vd_aux = sizeof (Elf_External_Verdef);
6143 /* If a basever node is next, it *must* be the last node in
6144 the chain, otherwise Verdef construction breaks. */
6145 if (t->next != NULL && t->next->vernum == 0)
6146 BFD_ASSERT (t->next->next == NULL);
6148 if (t->next != NULL && t->next->vernum != 0)
6149 def.vd_next = (sizeof (Elf_External_Verdef)
6150 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6152 _bfd_elf_swap_verdef_out (output_bfd, &def,
6153 (Elf_External_Verdef *) p);
6154 p += sizeof (Elf_External_Verdef);
6156 defaux.vda_name = h->dynstr_index;
6157 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6159 defaux.vda_next = 0;
6160 if (t->deps != NULL)
6161 defaux.vda_next = sizeof (Elf_External_Verdaux);
6162 t->name_indx = defaux.vda_name;
6164 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6165 (Elf_External_Verdaux *) p);
6166 p += sizeof (Elf_External_Verdaux);
6168 for (n = t->deps; n != NULL; n = n->next)
6170 if (n->version_needed == NULL)
6172 /* This can happen if there was an error in the
6174 defaux.vda_name = 0;
6178 defaux.vda_name = n->version_needed->name_indx;
6179 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6182 if (n->next == NULL)
6183 defaux.vda_next = 0;
6185 defaux.vda_next = sizeof (Elf_External_Verdaux);
6187 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6188 (Elf_External_Verdaux *) p);
6189 p += sizeof (Elf_External_Verdaux);
6193 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6194 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6197 elf_tdata (output_bfd)->cverdefs = cdefs;
6200 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6202 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6205 else if (info->flags & DF_BIND_NOW)
6207 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6213 if (info->executable)
6214 info->flags_1 &= ~ (DF_1_INITFIRST
6217 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6221 /* Work out the size of the version reference section. */
6223 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6224 BFD_ASSERT (s != NULL);
6226 struct elf_find_verdep_info sinfo;
6229 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6230 if (sinfo.vers == 0)
6232 sinfo.failed = FALSE;
6234 elf_link_hash_traverse (elf_hash_table (info),
6235 _bfd_elf_link_find_version_dependencies,
6240 if (elf_tdata (output_bfd)->verref == NULL)
6241 s->flags |= SEC_EXCLUDE;
6244 Elf_Internal_Verneed *t;
6249 /* Build the version dependency section. */
6252 for (t = elf_tdata (output_bfd)->verref;
6256 Elf_Internal_Vernaux *a;
6258 size += sizeof (Elf_External_Verneed);
6260 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6261 size += sizeof (Elf_External_Vernaux);
6265 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6266 if (s->contents == NULL)
6270 for (t = elf_tdata (output_bfd)->verref;
6275 Elf_Internal_Vernaux *a;
6279 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6282 t->vn_version = VER_NEED_CURRENT;
6284 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6285 elf_dt_name (t->vn_bfd) != NULL
6286 ? elf_dt_name (t->vn_bfd)
6287 : lbasename (t->vn_bfd->filename),
6289 if (indx == (bfd_size_type) -1)
6292 t->vn_aux = sizeof (Elf_External_Verneed);
6293 if (t->vn_nextref == NULL)
6296 t->vn_next = (sizeof (Elf_External_Verneed)
6297 + caux * sizeof (Elf_External_Vernaux));
6299 _bfd_elf_swap_verneed_out (output_bfd, t,
6300 (Elf_External_Verneed *) p);
6301 p += sizeof (Elf_External_Verneed);
6303 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6305 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6306 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6307 a->vna_nodename, FALSE);
6308 if (indx == (bfd_size_type) -1)
6311 if (a->vna_nextptr == NULL)
6314 a->vna_next = sizeof (Elf_External_Vernaux);
6316 _bfd_elf_swap_vernaux_out (output_bfd, a,
6317 (Elf_External_Vernaux *) p);
6318 p += sizeof (Elf_External_Vernaux);
6322 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6323 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6326 elf_tdata (output_bfd)->cverrefs = crefs;
6330 if ((elf_tdata (output_bfd)->cverrefs == 0
6331 && elf_tdata (output_bfd)->cverdefs == 0)
6332 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6333 §ion_sym_count) == 0)
6335 s = bfd_get_linker_section (dynobj, ".gnu.version");
6336 s->flags |= SEC_EXCLUDE;
6342 /* Find the first non-excluded output section. We'll use its
6343 section symbol for some emitted relocs. */
6345 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6349 for (s = output_bfd->sections; s != NULL; s = s->next)
6350 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6351 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6353 elf_hash_table (info)->text_index_section = s;
6358 /* Find two non-excluded output sections, one for code, one for data.
6359 We'll use their section symbols for some emitted relocs. */
6361 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6365 /* Data first, since setting text_index_section changes
6366 _bfd_elf_link_omit_section_dynsym. */
6367 for (s = output_bfd->sections; s != NULL; s = s->next)
6368 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6369 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6371 elf_hash_table (info)->data_index_section = s;
6375 for (s = output_bfd->sections; s != NULL; s = s->next)
6376 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6377 == (SEC_ALLOC | SEC_READONLY))
6378 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6380 elf_hash_table (info)->text_index_section = s;
6384 if (elf_hash_table (info)->text_index_section == NULL)
6385 elf_hash_table (info)->text_index_section
6386 = elf_hash_table (info)->data_index_section;
6390 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6392 const struct elf_backend_data *bed;
6394 if (!is_elf_hash_table (info->hash))
6397 bed = get_elf_backend_data (output_bfd);
6398 (*bed->elf_backend_init_index_section) (output_bfd, info);
6400 if (elf_hash_table (info)->dynamic_sections_created)
6404 bfd_size_type dynsymcount;
6405 unsigned long section_sym_count;
6406 unsigned int dtagcount;
6408 dynobj = elf_hash_table (info)->dynobj;
6410 /* Assign dynsym indicies. In a shared library we generate a
6411 section symbol for each output section, which come first.
6412 Next come all of the back-end allocated local dynamic syms,
6413 followed by the rest of the global symbols. */
6415 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6416 §ion_sym_count);
6418 /* Work out the size of the symbol version section. */
6419 s = bfd_get_linker_section (dynobj, ".gnu.version");
6420 BFD_ASSERT (s != NULL);
6421 if (dynsymcount != 0
6422 && (s->flags & SEC_EXCLUDE) == 0)
6424 s->size = dynsymcount * sizeof (Elf_External_Versym);
6425 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6426 if (s->contents == NULL)
6429 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6433 /* Set the size of the .dynsym and .hash sections. We counted
6434 the number of dynamic symbols in elf_link_add_object_symbols.
6435 We will build the contents of .dynsym and .hash when we build
6436 the final symbol table, because until then we do not know the
6437 correct value to give the symbols. We built the .dynstr
6438 section as we went along in elf_link_add_object_symbols. */
6439 s = bfd_get_linker_section (dynobj, ".dynsym");
6440 BFD_ASSERT (s != NULL);
6441 s->size = dynsymcount * bed->s->sizeof_sym;
6443 if (dynsymcount != 0)
6445 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6446 if (s->contents == NULL)
6449 /* The first entry in .dynsym is a dummy symbol.
6450 Clear all the section syms, in case we don't output them all. */
6451 ++section_sym_count;
6452 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6455 elf_hash_table (info)->bucketcount = 0;
6457 /* Compute the size of the hashing table. As a side effect this
6458 computes the hash values for all the names we export. */
6459 if (info->emit_hash)
6461 unsigned long int *hashcodes;
6462 struct hash_codes_info hashinf;
6464 unsigned long int nsyms;
6466 size_t hash_entry_size;
6468 /* Compute the hash values for all exported symbols. At the same
6469 time store the values in an array so that we could use them for
6471 amt = dynsymcount * sizeof (unsigned long int);
6472 hashcodes = (unsigned long int *) bfd_malloc (amt);
6473 if (hashcodes == NULL)
6475 hashinf.hashcodes = hashcodes;
6476 hashinf.error = FALSE;
6478 /* Put all hash values in HASHCODES. */
6479 elf_link_hash_traverse (elf_hash_table (info),
6480 elf_collect_hash_codes, &hashinf);
6487 nsyms = hashinf.hashcodes - hashcodes;
6489 = compute_bucket_count (info, hashcodes, nsyms, 0);
6492 if (bucketcount == 0)
6495 elf_hash_table (info)->bucketcount = bucketcount;
6497 s = bfd_get_linker_section (dynobj, ".hash");
6498 BFD_ASSERT (s != NULL);
6499 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6500 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6501 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6502 if (s->contents == NULL)
6505 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6506 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6507 s->contents + hash_entry_size);
6510 if (info->emit_gnu_hash)
6513 unsigned char *contents;
6514 struct collect_gnu_hash_codes cinfo;
6518 memset (&cinfo, 0, sizeof (cinfo));
6520 /* Compute the hash values for all exported symbols. At the same
6521 time store the values in an array so that we could use them for
6523 amt = dynsymcount * 2 * sizeof (unsigned long int);
6524 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6525 if (cinfo.hashcodes == NULL)
6528 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6529 cinfo.min_dynindx = -1;
6530 cinfo.output_bfd = output_bfd;
6533 /* Put all hash values in HASHCODES. */
6534 elf_link_hash_traverse (elf_hash_table (info),
6535 elf_collect_gnu_hash_codes, &cinfo);
6538 free (cinfo.hashcodes);
6543 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6545 if (bucketcount == 0)
6547 free (cinfo.hashcodes);
6551 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6552 BFD_ASSERT (s != NULL);
6554 if (cinfo.nsyms == 0)
6556 /* Empty .gnu.hash section is special. */
6557 BFD_ASSERT (cinfo.min_dynindx == -1);
6558 free (cinfo.hashcodes);
6559 s->size = 5 * 4 + bed->s->arch_size / 8;
6560 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6561 if (contents == NULL)
6563 s->contents = contents;
6564 /* 1 empty bucket. */
6565 bfd_put_32 (output_bfd, 1, contents);
6566 /* SYMIDX above the special symbol 0. */
6567 bfd_put_32 (output_bfd, 1, contents + 4);
6568 /* Just one word for bitmask. */
6569 bfd_put_32 (output_bfd, 1, contents + 8);
6570 /* Only hash fn bloom filter. */
6571 bfd_put_32 (output_bfd, 0, contents + 12);
6572 /* No hashes are valid - empty bitmask. */
6573 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6574 /* No hashes in the only bucket. */
6575 bfd_put_32 (output_bfd, 0,
6576 contents + 16 + bed->s->arch_size / 8);
6580 unsigned long int maskwords, maskbitslog2, x;
6581 BFD_ASSERT (cinfo.min_dynindx != -1);
6585 while ((x >>= 1) != 0)
6587 if (maskbitslog2 < 3)
6589 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6590 maskbitslog2 = maskbitslog2 + 3;
6592 maskbitslog2 = maskbitslog2 + 2;
6593 if (bed->s->arch_size == 64)
6595 if (maskbitslog2 == 5)
6601 cinfo.mask = (1 << cinfo.shift1) - 1;
6602 cinfo.shift2 = maskbitslog2;
6603 cinfo.maskbits = 1 << maskbitslog2;
6604 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6605 amt = bucketcount * sizeof (unsigned long int) * 2;
6606 amt += maskwords * sizeof (bfd_vma);
6607 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6608 if (cinfo.bitmask == NULL)
6610 free (cinfo.hashcodes);
6614 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6615 cinfo.indx = cinfo.counts + bucketcount;
6616 cinfo.symindx = dynsymcount - cinfo.nsyms;
6617 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6619 /* Determine how often each hash bucket is used. */
6620 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6621 for (i = 0; i < cinfo.nsyms; ++i)
6622 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6624 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6625 if (cinfo.counts[i] != 0)
6627 cinfo.indx[i] = cnt;
6628 cnt += cinfo.counts[i];
6630 BFD_ASSERT (cnt == dynsymcount);
6631 cinfo.bucketcount = bucketcount;
6632 cinfo.local_indx = cinfo.min_dynindx;
6634 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6635 s->size += cinfo.maskbits / 8;
6636 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6637 if (contents == NULL)
6639 free (cinfo.bitmask);
6640 free (cinfo.hashcodes);
6644 s->contents = contents;
6645 bfd_put_32 (output_bfd, bucketcount, contents);
6646 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6647 bfd_put_32 (output_bfd, maskwords, contents + 8);
6648 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6649 contents += 16 + cinfo.maskbits / 8;
6651 for (i = 0; i < bucketcount; ++i)
6653 if (cinfo.counts[i] == 0)
6654 bfd_put_32 (output_bfd, 0, contents);
6656 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6660 cinfo.contents = contents;
6662 /* Renumber dynamic symbols, populate .gnu.hash section. */
6663 elf_link_hash_traverse (elf_hash_table (info),
6664 elf_renumber_gnu_hash_syms, &cinfo);
6666 contents = s->contents + 16;
6667 for (i = 0; i < maskwords; ++i)
6669 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6671 contents += bed->s->arch_size / 8;
6674 free (cinfo.bitmask);
6675 free (cinfo.hashcodes);
6679 s = bfd_get_linker_section (dynobj, ".dynstr");
6680 BFD_ASSERT (s != NULL);
6682 elf_finalize_dynstr (output_bfd, info);
6684 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6686 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6687 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6694 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6697 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6700 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6701 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6704 /* Finish SHF_MERGE section merging. */
6707 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6712 if (!is_elf_hash_table (info->hash))
6715 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6716 if ((ibfd->flags & DYNAMIC) == 0)
6717 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6718 if ((sec->flags & SEC_MERGE) != 0
6719 && !bfd_is_abs_section (sec->output_section))
6721 struct bfd_elf_section_data *secdata;
6723 secdata = elf_section_data (sec);
6724 if (! _bfd_add_merge_section (abfd,
6725 &elf_hash_table (info)->merge_info,
6726 sec, &secdata->sec_info))
6728 else if (secdata->sec_info)
6729 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6732 if (elf_hash_table (info)->merge_info != NULL)
6733 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6734 merge_sections_remove_hook);
6738 /* Create an entry in an ELF linker hash table. */
6740 struct bfd_hash_entry *
6741 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6742 struct bfd_hash_table *table,
6745 /* Allocate the structure if it has not already been allocated by a
6749 entry = (struct bfd_hash_entry *)
6750 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6755 /* Call the allocation method of the superclass. */
6756 entry = _bfd_link_hash_newfunc (entry, table, string);
6759 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6760 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6762 /* Set local fields. */
6765 ret->got = htab->init_got_refcount;
6766 ret->plt = htab->init_plt_refcount;
6767 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6768 - offsetof (struct elf_link_hash_entry, size)));
6769 /* Assume that we have been called by a non-ELF symbol reader.
6770 This flag is then reset by the code which reads an ELF input
6771 file. This ensures that a symbol created by a non-ELF symbol
6772 reader will have the flag set correctly. */
6779 /* Copy data from an indirect symbol to its direct symbol, hiding the
6780 old indirect symbol. Also used for copying flags to a weakdef. */
6783 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6784 struct elf_link_hash_entry *dir,
6785 struct elf_link_hash_entry *ind)
6787 struct elf_link_hash_table *htab;
6789 /* Copy down any references that we may have already seen to the
6790 symbol which just became indirect. */
6792 dir->ref_dynamic |= ind->ref_dynamic;
6793 dir->ref_regular |= ind->ref_regular;
6794 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6795 dir->non_got_ref |= ind->non_got_ref;
6796 dir->needs_plt |= ind->needs_plt;
6797 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6799 if (ind->root.type != bfd_link_hash_indirect)
6802 /* Copy over the global and procedure linkage table refcount entries.
6803 These may have been already set up by a check_relocs routine. */
6804 htab = elf_hash_table (info);
6805 if (ind->got.refcount > htab->init_got_refcount.refcount)
6807 if (dir->got.refcount < 0)
6808 dir->got.refcount = 0;
6809 dir->got.refcount += ind->got.refcount;
6810 ind->got.refcount = htab->init_got_refcount.refcount;
6813 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6815 if (dir->plt.refcount < 0)
6816 dir->plt.refcount = 0;
6817 dir->plt.refcount += ind->plt.refcount;
6818 ind->plt.refcount = htab->init_plt_refcount.refcount;
6821 if (ind->dynindx != -1)
6823 if (dir->dynindx != -1)
6824 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6825 dir->dynindx = ind->dynindx;
6826 dir->dynstr_index = ind->dynstr_index;
6828 ind->dynstr_index = 0;
6833 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6834 struct elf_link_hash_entry *h,
6835 bfd_boolean force_local)
6837 /* STT_GNU_IFUNC symbol must go through PLT. */
6838 if (h->type != STT_GNU_IFUNC)
6840 h->plt = elf_hash_table (info)->init_plt_offset;
6845 h->forced_local = 1;
6846 if (h->dynindx != -1)
6849 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6855 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6859 _bfd_elf_link_hash_table_init
6860 (struct elf_link_hash_table *table,
6862 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6863 struct bfd_hash_table *,
6865 unsigned int entsize,
6866 enum elf_target_id target_id)
6869 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6871 table->init_got_refcount.refcount = can_refcount - 1;
6872 table->init_plt_refcount.refcount = can_refcount - 1;
6873 table->init_got_offset.offset = -(bfd_vma) 1;
6874 table->init_plt_offset.offset = -(bfd_vma) 1;
6875 /* The first dynamic symbol is a dummy. */
6876 table->dynsymcount = 1;
6878 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6880 table->root.type = bfd_link_elf_hash_table;
6881 table->hash_table_id = target_id;
6886 /* Create an ELF linker hash table. */
6888 struct bfd_link_hash_table *
6889 _bfd_elf_link_hash_table_create (bfd *abfd)
6891 struct elf_link_hash_table *ret;
6892 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6894 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6898 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6899 sizeof (struct elf_link_hash_entry),
6909 /* Destroy an ELF linker hash table. */
6912 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6914 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6915 if (htab->dynstr != NULL)
6916 _bfd_elf_strtab_free (htab->dynstr);
6917 _bfd_merge_sections_free (htab->merge_info);
6918 _bfd_generic_link_hash_table_free (hash);
6921 /* This is a hook for the ELF emulation code in the generic linker to
6922 tell the backend linker what file name to use for the DT_NEEDED
6923 entry for a dynamic object. */
6926 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6928 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6929 && bfd_get_format (abfd) == bfd_object)
6930 elf_dt_name (abfd) = name;
6934 bfd_elf_get_dyn_lib_class (bfd *abfd)
6937 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6938 && bfd_get_format (abfd) == bfd_object)
6939 lib_class = elf_dyn_lib_class (abfd);
6946 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6948 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6949 && bfd_get_format (abfd) == bfd_object)
6950 elf_dyn_lib_class (abfd) = lib_class;
6953 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6954 the linker ELF emulation code. */
6956 struct bfd_link_needed_list *
6957 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6958 struct bfd_link_info *info)
6960 if (! is_elf_hash_table (info->hash))
6962 return elf_hash_table (info)->needed;
6965 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6966 hook for the linker ELF emulation code. */
6968 struct bfd_link_needed_list *
6969 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6970 struct bfd_link_info *info)
6972 if (! is_elf_hash_table (info->hash))
6974 return elf_hash_table (info)->runpath;
6977 /* Get the name actually used for a dynamic object for a link. This
6978 is the SONAME entry if there is one. Otherwise, it is the string
6979 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6982 bfd_elf_get_dt_soname (bfd *abfd)
6984 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6985 && bfd_get_format (abfd) == bfd_object)
6986 return elf_dt_name (abfd);
6990 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6991 the ELF linker emulation code. */
6994 bfd_elf_get_bfd_needed_list (bfd *abfd,
6995 struct bfd_link_needed_list **pneeded)
6998 bfd_byte *dynbuf = NULL;
6999 unsigned int elfsec;
7000 unsigned long shlink;
7001 bfd_byte *extdyn, *extdynend;
7003 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7007 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7008 || bfd_get_format (abfd) != bfd_object)
7011 s = bfd_get_section_by_name (abfd, ".dynamic");
7012 if (s == NULL || s->size == 0)
7015 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7018 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7019 if (elfsec == SHN_BAD)
7022 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7024 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7025 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7028 extdynend = extdyn + s->size;
7029 for (; extdyn < extdynend; extdyn += extdynsize)
7031 Elf_Internal_Dyn dyn;
7033 (*swap_dyn_in) (abfd, extdyn, &dyn);
7035 if (dyn.d_tag == DT_NULL)
7038 if (dyn.d_tag == DT_NEEDED)
7041 struct bfd_link_needed_list *l;
7042 unsigned int tagv = dyn.d_un.d_val;
7045 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7050 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7071 struct elf_symbuf_symbol
7073 unsigned long st_name; /* Symbol name, index in string tbl */
7074 unsigned char st_info; /* Type and binding attributes */
7075 unsigned char st_other; /* Visibilty, and target specific */
7078 struct elf_symbuf_head
7080 struct elf_symbuf_symbol *ssym;
7081 bfd_size_type count;
7082 unsigned int st_shndx;
7089 Elf_Internal_Sym *isym;
7090 struct elf_symbuf_symbol *ssym;
7095 /* Sort references to symbols by ascending section number. */
7098 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7100 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7101 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7103 return s1->st_shndx - s2->st_shndx;
7107 elf_sym_name_compare (const void *arg1, const void *arg2)
7109 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7110 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7111 return strcmp (s1->name, s2->name);
7114 static struct elf_symbuf_head *
7115 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7117 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7118 struct elf_symbuf_symbol *ssym;
7119 struct elf_symbuf_head *ssymbuf, *ssymhead;
7120 bfd_size_type i, shndx_count, total_size;
7122 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7126 for (ind = indbuf, i = 0; i < symcount; i++)
7127 if (isymbuf[i].st_shndx != SHN_UNDEF)
7128 *ind++ = &isymbuf[i];
7131 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7132 elf_sort_elf_symbol);
7135 if (indbufend > indbuf)
7136 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7137 if (ind[0]->st_shndx != ind[1]->st_shndx)
7140 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7141 + (indbufend - indbuf) * sizeof (*ssym));
7142 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7143 if (ssymbuf == NULL)
7149 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7150 ssymbuf->ssym = NULL;
7151 ssymbuf->count = shndx_count;
7152 ssymbuf->st_shndx = 0;
7153 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7155 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7158 ssymhead->ssym = ssym;
7159 ssymhead->count = 0;
7160 ssymhead->st_shndx = (*ind)->st_shndx;
7162 ssym->st_name = (*ind)->st_name;
7163 ssym->st_info = (*ind)->st_info;
7164 ssym->st_other = (*ind)->st_other;
7167 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7168 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7175 /* Check if 2 sections define the same set of local and global
7179 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7180 struct bfd_link_info *info)
7183 const struct elf_backend_data *bed1, *bed2;
7184 Elf_Internal_Shdr *hdr1, *hdr2;
7185 bfd_size_type symcount1, symcount2;
7186 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7187 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7188 Elf_Internal_Sym *isym, *isymend;
7189 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7190 bfd_size_type count1, count2, i;
7191 unsigned int shndx1, shndx2;
7197 /* Both sections have to be in ELF. */
7198 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7199 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7202 if (elf_section_type (sec1) != elf_section_type (sec2))
7205 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7206 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7207 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7210 bed1 = get_elf_backend_data (bfd1);
7211 bed2 = get_elf_backend_data (bfd2);
7212 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7213 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7214 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7215 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7217 if (symcount1 == 0 || symcount2 == 0)
7223 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7224 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7226 if (ssymbuf1 == NULL)
7228 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7230 if (isymbuf1 == NULL)
7233 if (!info->reduce_memory_overheads)
7234 elf_tdata (bfd1)->symbuf = ssymbuf1
7235 = elf_create_symbuf (symcount1, isymbuf1);
7238 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7240 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7242 if (isymbuf2 == NULL)
7245 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7246 elf_tdata (bfd2)->symbuf = ssymbuf2
7247 = elf_create_symbuf (symcount2, isymbuf2);
7250 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7252 /* Optimized faster version. */
7253 bfd_size_type lo, hi, mid;
7254 struct elf_symbol *symp;
7255 struct elf_symbuf_symbol *ssym, *ssymend;
7258 hi = ssymbuf1->count;
7263 mid = (lo + hi) / 2;
7264 if (shndx1 < ssymbuf1[mid].st_shndx)
7266 else if (shndx1 > ssymbuf1[mid].st_shndx)
7270 count1 = ssymbuf1[mid].count;
7277 hi = ssymbuf2->count;
7282 mid = (lo + hi) / 2;
7283 if (shndx2 < ssymbuf2[mid].st_shndx)
7285 else if (shndx2 > ssymbuf2[mid].st_shndx)
7289 count2 = ssymbuf2[mid].count;
7295 if (count1 == 0 || count2 == 0 || count1 != count2)
7298 symtable1 = (struct elf_symbol *)
7299 bfd_malloc (count1 * sizeof (struct elf_symbol));
7300 symtable2 = (struct elf_symbol *)
7301 bfd_malloc (count2 * sizeof (struct elf_symbol));
7302 if (symtable1 == NULL || symtable2 == NULL)
7306 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7307 ssym < ssymend; ssym++, symp++)
7309 symp->u.ssym = ssym;
7310 symp->name = bfd_elf_string_from_elf_section (bfd1,
7316 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7317 ssym < ssymend; ssym++, symp++)
7319 symp->u.ssym = ssym;
7320 symp->name = bfd_elf_string_from_elf_section (bfd2,
7325 /* Sort symbol by name. */
7326 qsort (symtable1, count1, sizeof (struct elf_symbol),
7327 elf_sym_name_compare);
7328 qsort (symtable2, count1, sizeof (struct elf_symbol),
7329 elf_sym_name_compare);
7331 for (i = 0; i < count1; i++)
7332 /* Two symbols must have the same binding, type and name. */
7333 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7334 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7335 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7342 symtable1 = (struct elf_symbol *)
7343 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7344 symtable2 = (struct elf_symbol *)
7345 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7346 if (symtable1 == NULL || symtable2 == NULL)
7349 /* Count definitions in the section. */
7351 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7352 if (isym->st_shndx == shndx1)
7353 symtable1[count1++].u.isym = isym;
7356 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7357 if (isym->st_shndx == shndx2)
7358 symtable2[count2++].u.isym = isym;
7360 if (count1 == 0 || count2 == 0 || count1 != count2)
7363 for (i = 0; i < count1; i++)
7365 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7366 symtable1[i].u.isym->st_name);
7368 for (i = 0; i < count2; i++)
7370 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7371 symtable2[i].u.isym->st_name);
7373 /* Sort symbol by name. */
7374 qsort (symtable1, count1, sizeof (struct elf_symbol),
7375 elf_sym_name_compare);
7376 qsort (symtable2, count1, sizeof (struct elf_symbol),
7377 elf_sym_name_compare);
7379 for (i = 0; i < count1; i++)
7380 /* Two symbols must have the same binding, type and name. */
7381 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7382 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7383 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7401 /* Return TRUE if 2 section types are compatible. */
7404 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7405 bfd *bbfd, const asection *bsec)
7409 || abfd->xvec->flavour != bfd_target_elf_flavour
7410 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7413 return elf_section_type (asec) == elf_section_type (bsec);
7416 /* Final phase of ELF linker. */
7418 /* A structure we use to avoid passing large numbers of arguments. */
7420 struct elf_final_link_info
7422 /* General link information. */
7423 struct bfd_link_info *info;
7426 /* Symbol string table. */
7427 struct bfd_strtab_hash *symstrtab;
7428 /* .dynsym section. */
7429 asection *dynsym_sec;
7430 /* .hash section. */
7432 /* symbol version section (.gnu.version). */
7433 asection *symver_sec;
7434 /* Buffer large enough to hold contents of any section. */
7436 /* Buffer large enough to hold external relocs of any section. */
7437 void *external_relocs;
7438 /* Buffer large enough to hold internal relocs of any section. */
7439 Elf_Internal_Rela *internal_relocs;
7440 /* Buffer large enough to hold external local symbols of any input
7442 bfd_byte *external_syms;
7443 /* And a buffer for symbol section indices. */
7444 Elf_External_Sym_Shndx *locsym_shndx;
7445 /* Buffer large enough to hold internal local symbols of any input
7447 Elf_Internal_Sym *internal_syms;
7448 /* Array large enough to hold a symbol index for each local symbol
7449 of any input BFD. */
7451 /* Array large enough to hold a section pointer for each local
7452 symbol of any input BFD. */
7453 asection **sections;
7454 /* Buffer to hold swapped out symbols. */
7456 /* And one for symbol section indices. */
7457 Elf_External_Sym_Shndx *symshndxbuf;
7458 /* Number of swapped out symbols in buffer. */
7459 size_t symbuf_count;
7460 /* Number of symbols which fit in symbuf. */
7462 /* And same for symshndxbuf. */
7463 size_t shndxbuf_size;
7464 /* Number of STT_FILE syms seen. */
7465 size_t filesym_count;
7468 /* This struct is used to pass information to elf_link_output_extsym. */
7470 struct elf_outext_info
7473 bfd_boolean localsyms;
7474 bfd_boolean need_second_pass;
7475 bfd_boolean second_pass;
7476 bfd_boolean file_sym_done;
7477 struct elf_final_link_info *flinfo;
7481 /* Support for evaluating a complex relocation.
7483 Complex relocations are generalized, self-describing relocations. The
7484 implementation of them consists of two parts: complex symbols, and the
7485 relocations themselves.
7487 The relocations are use a reserved elf-wide relocation type code (R_RELC
7488 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7489 information (start bit, end bit, word width, etc) into the addend. This
7490 information is extracted from CGEN-generated operand tables within gas.
7492 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7493 internal) representing prefix-notation expressions, including but not
7494 limited to those sorts of expressions normally encoded as addends in the
7495 addend field. The symbol mangling format is:
7498 | <unary-operator> ':' <node>
7499 | <binary-operator> ':' <node> ':' <node>
7502 <literal> := 's' <digits=N> ':' <N character symbol name>
7503 | 'S' <digits=N> ':' <N character section name>
7507 <binary-operator> := as in C
7508 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7511 set_symbol_value (bfd *bfd_with_globals,
7512 Elf_Internal_Sym *isymbuf,
7517 struct elf_link_hash_entry **sym_hashes;
7518 struct elf_link_hash_entry *h;
7519 size_t extsymoff = locsymcount;
7521 if (symidx < locsymcount)
7523 Elf_Internal_Sym *sym;
7525 sym = isymbuf + symidx;
7526 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7528 /* It is a local symbol: move it to the
7529 "absolute" section and give it a value. */
7530 sym->st_shndx = SHN_ABS;
7531 sym->st_value = val;
7534 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7538 /* It is a global symbol: set its link type
7539 to "defined" and give it a value. */
7541 sym_hashes = elf_sym_hashes (bfd_with_globals);
7542 h = sym_hashes [symidx - extsymoff];
7543 while (h->root.type == bfd_link_hash_indirect
7544 || h->root.type == bfd_link_hash_warning)
7545 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7546 h->root.type = bfd_link_hash_defined;
7547 h->root.u.def.value = val;
7548 h->root.u.def.section = bfd_abs_section_ptr;
7552 resolve_symbol (const char *name,
7554 struct elf_final_link_info *flinfo,
7556 Elf_Internal_Sym *isymbuf,
7559 Elf_Internal_Sym *sym;
7560 struct bfd_link_hash_entry *global_entry;
7561 const char *candidate = NULL;
7562 Elf_Internal_Shdr *symtab_hdr;
7565 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7567 for (i = 0; i < locsymcount; ++ i)
7571 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7574 candidate = bfd_elf_string_from_elf_section (input_bfd,
7575 symtab_hdr->sh_link,
7578 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7579 name, candidate, (unsigned long) sym->st_value);
7581 if (candidate && strcmp (candidate, name) == 0)
7583 asection *sec = flinfo->sections [i];
7585 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7586 *result += sec->output_offset + sec->output_section->vma;
7588 printf ("Found symbol with value %8.8lx\n",
7589 (unsigned long) *result);
7595 /* Hmm, haven't found it yet. perhaps it is a global. */
7596 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7597 FALSE, FALSE, TRUE);
7601 if (global_entry->type == bfd_link_hash_defined
7602 || global_entry->type == bfd_link_hash_defweak)
7604 *result = (global_entry->u.def.value
7605 + global_entry->u.def.section->output_section->vma
7606 + global_entry->u.def.section->output_offset);
7608 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7609 global_entry->root.string, (unsigned long) *result);
7618 resolve_section (const char *name,
7625 for (curr = sections; curr; curr = curr->next)
7626 if (strcmp (curr->name, name) == 0)
7628 *result = curr->vma;
7632 /* Hmm. still haven't found it. try pseudo-section names. */
7633 for (curr = sections; curr; curr = curr->next)
7635 len = strlen (curr->name);
7636 if (len > strlen (name))
7639 if (strncmp (curr->name, name, len) == 0)
7641 if (strncmp (".end", name + len, 4) == 0)
7643 *result = curr->vma + curr->size;
7647 /* Insert more pseudo-section names here, if you like. */
7655 undefined_reference (const char *reftype, const char *name)
7657 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7662 eval_symbol (bfd_vma *result,
7665 struct elf_final_link_info *flinfo,
7667 Elf_Internal_Sym *isymbuf,
7676 const char *sym = *symp;
7678 bfd_boolean symbol_is_section = FALSE;
7683 if (len < 1 || len > sizeof (symbuf))
7685 bfd_set_error (bfd_error_invalid_operation);
7698 *result = strtoul (sym, (char **) symp, 16);
7702 symbol_is_section = TRUE;
7705 symlen = strtol (sym, (char **) symp, 10);
7706 sym = *symp + 1; /* Skip the trailing ':'. */
7708 if (symend < sym || symlen + 1 > sizeof (symbuf))
7710 bfd_set_error (bfd_error_invalid_operation);
7714 memcpy (symbuf, sym, symlen);
7715 symbuf[symlen] = '\0';
7716 *symp = sym + symlen;
7718 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7719 the symbol as a section, or vice-versa. so we're pretty liberal in our
7720 interpretation here; section means "try section first", not "must be a
7721 section", and likewise with symbol. */
7723 if (symbol_is_section)
7725 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7726 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7727 isymbuf, locsymcount))
7729 undefined_reference ("section", symbuf);
7735 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7736 isymbuf, locsymcount)
7737 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7740 undefined_reference ("symbol", symbuf);
7747 /* All that remains are operators. */
7749 #define UNARY_OP(op) \
7750 if (strncmp (sym, #op, strlen (#op)) == 0) \
7752 sym += strlen (#op); \
7756 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7757 isymbuf, locsymcount, signed_p)) \
7760 *result = op ((bfd_signed_vma) a); \
7766 #define BINARY_OP(op) \
7767 if (strncmp (sym, #op, strlen (#op)) == 0) \
7769 sym += strlen (#op); \
7773 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7774 isymbuf, locsymcount, signed_p)) \
7777 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7778 isymbuf, locsymcount, signed_p)) \
7781 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7811 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7812 bfd_set_error (bfd_error_invalid_operation);
7818 put_value (bfd_vma size,
7819 unsigned long chunksz,
7824 location += (size - chunksz);
7826 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7834 bfd_put_8 (input_bfd, x, location);
7837 bfd_put_16 (input_bfd, x, location);
7840 bfd_put_32 (input_bfd, x, location);
7844 bfd_put_64 (input_bfd, x, location);
7854 get_value (bfd_vma size,
7855 unsigned long chunksz,
7862 /* Sanity checks. */
7863 BFD_ASSERT (chunksz <= sizeof (x)
7866 && (size % chunksz) == 0
7867 && input_bfd != NULL
7868 && location != NULL);
7870 if (chunksz == sizeof (x))
7872 BFD_ASSERT (size == chunksz);
7874 /* Make sure that we do not perform an undefined shift operation.
7875 We know that size == chunksz so there will only be one iteration
7876 of the loop below. */
7880 shift = 8 * chunksz;
7882 for (; size; size -= chunksz, location += chunksz)
7887 x = (x << shift) | bfd_get_8 (input_bfd, location);
7890 x = (x << shift) | bfd_get_16 (input_bfd, location);
7893 x = (x << shift) | bfd_get_32 (input_bfd, location);
7897 x = (x << shift) | bfd_get_64 (input_bfd, location);
7908 decode_complex_addend (unsigned long *start, /* in bits */
7909 unsigned long *oplen, /* in bits */
7910 unsigned long *len, /* in bits */
7911 unsigned long *wordsz, /* in bytes */
7912 unsigned long *chunksz, /* in bytes */
7913 unsigned long *lsb0_p,
7914 unsigned long *signed_p,
7915 unsigned long *trunc_p,
7916 unsigned long encoded)
7918 * start = encoded & 0x3F;
7919 * len = (encoded >> 6) & 0x3F;
7920 * oplen = (encoded >> 12) & 0x3F;
7921 * wordsz = (encoded >> 18) & 0xF;
7922 * chunksz = (encoded >> 22) & 0xF;
7923 * lsb0_p = (encoded >> 27) & 1;
7924 * signed_p = (encoded >> 28) & 1;
7925 * trunc_p = (encoded >> 29) & 1;
7928 bfd_reloc_status_type
7929 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7930 asection *input_section ATTRIBUTE_UNUSED,
7932 Elf_Internal_Rela *rel,
7935 bfd_vma shift, x, mask;
7936 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7937 bfd_reloc_status_type r;
7939 /* Perform this reloc, since it is complex.
7940 (this is not to say that it necessarily refers to a complex
7941 symbol; merely that it is a self-describing CGEN based reloc.
7942 i.e. the addend has the complete reloc information (bit start, end,
7943 word size, etc) encoded within it.). */
7945 decode_complex_addend (&start, &oplen, &len, &wordsz,
7946 &chunksz, &lsb0_p, &signed_p,
7947 &trunc_p, rel->r_addend);
7949 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7952 shift = (start + 1) - len;
7954 shift = (8 * wordsz) - (start + len);
7956 /* FIXME: octets_per_byte. */
7957 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7960 printf ("Doing complex reloc: "
7961 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7962 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7963 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7964 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7965 oplen, (unsigned long) x, (unsigned long) mask,
7966 (unsigned long) relocation);
7971 /* Now do an overflow check. */
7972 r = bfd_check_overflow ((signed_p
7973 ? complain_overflow_signed
7974 : complain_overflow_unsigned),
7975 len, 0, (8 * wordsz),
7979 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7982 printf (" relocation: %8.8lx\n"
7983 " shifted mask: %8.8lx\n"
7984 " shifted/masked reloc: %8.8lx\n"
7985 " result: %8.8lx\n",
7986 (unsigned long) relocation, (unsigned long) (mask << shift),
7987 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7989 /* FIXME: octets_per_byte. */
7990 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7994 /* When performing a relocatable link, the input relocations are
7995 preserved. But, if they reference global symbols, the indices
7996 referenced must be updated. Update all the relocations found in
8000 elf_link_adjust_relocs (bfd *abfd,
8001 struct bfd_elf_section_reloc_data *reldata)
8004 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8006 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8007 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8008 bfd_vma r_type_mask;
8010 unsigned int count = reldata->count;
8011 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8013 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8015 swap_in = bed->s->swap_reloc_in;
8016 swap_out = bed->s->swap_reloc_out;
8018 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8020 swap_in = bed->s->swap_reloca_in;
8021 swap_out = bed->s->swap_reloca_out;
8026 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8029 if (bed->s->arch_size == 32)
8036 r_type_mask = 0xffffffff;
8040 erela = reldata->hdr->contents;
8041 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8043 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8046 if (*rel_hash == NULL)
8049 BFD_ASSERT ((*rel_hash)->indx >= 0);
8051 (*swap_in) (abfd, erela, irela);
8052 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8053 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8054 | (irela[j].r_info & r_type_mask));
8055 (*swap_out) (abfd, irela, erela);
8059 struct elf_link_sort_rela
8065 enum elf_reloc_type_class type;
8066 /* We use this as an array of size int_rels_per_ext_rel. */
8067 Elf_Internal_Rela rela[1];
8071 elf_link_sort_cmp1 (const void *A, const void *B)
8073 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8074 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8075 int relativea, relativeb;
8077 relativea = a->type == reloc_class_relative;
8078 relativeb = b->type == reloc_class_relative;
8080 if (relativea < relativeb)
8082 if (relativea > relativeb)
8084 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8086 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8088 if (a->rela->r_offset < b->rela->r_offset)
8090 if (a->rela->r_offset > b->rela->r_offset)
8096 elf_link_sort_cmp2 (const void *A, const void *B)
8098 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8099 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8101 if (a->type < b->type)
8103 if (a->type > b->type)
8105 if (a->u.offset < b->u.offset)
8107 if (a->u.offset > b->u.offset)
8109 if (a->rela->r_offset < b->rela->r_offset)
8111 if (a->rela->r_offset > b->rela->r_offset)
8117 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8119 asection *dynamic_relocs;
8122 bfd_size_type count, size;
8123 size_t i, ret, sort_elt, ext_size;
8124 bfd_byte *sort, *s_non_relative, *p;
8125 struct elf_link_sort_rela *sq;
8126 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8127 int i2e = bed->s->int_rels_per_ext_rel;
8128 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8129 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8130 struct bfd_link_order *lo;
8132 bfd_boolean use_rela;
8134 /* Find a dynamic reloc section. */
8135 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8136 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8137 if (rela_dyn != NULL && rela_dyn->size > 0
8138 && rel_dyn != NULL && rel_dyn->size > 0)
8140 bfd_boolean use_rela_initialised = FALSE;
8142 /* This is just here to stop gcc from complaining.
8143 It's initialization checking code is not perfect. */
8146 /* Both sections are present. Examine the sizes
8147 of the indirect sections to help us choose. */
8148 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8149 if (lo->type == bfd_indirect_link_order)
8151 asection *o = lo->u.indirect.section;
8153 if ((o->size % bed->s->sizeof_rela) == 0)
8155 if ((o->size % bed->s->sizeof_rel) == 0)
8156 /* Section size is divisible by both rel and rela sizes.
8157 It is of no help to us. */
8161 /* Section size is only divisible by rela. */
8162 if (use_rela_initialised && (use_rela == FALSE))
8165 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8166 bfd_set_error (bfd_error_invalid_operation);
8172 use_rela_initialised = TRUE;
8176 else if ((o->size % bed->s->sizeof_rel) == 0)
8178 /* Section size is only divisible by rel. */
8179 if (use_rela_initialised && (use_rela == TRUE))
8182 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8183 bfd_set_error (bfd_error_invalid_operation);
8189 use_rela_initialised = TRUE;
8194 /* The section size is not divisible by either - something is wrong. */
8196 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8197 bfd_set_error (bfd_error_invalid_operation);
8202 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8203 if (lo->type == bfd_indirect_link_order)
8205 asection *o = lo->u.indirect.section;
8207 if ((o->size % bed->s->sizeof_rela) == 0)
8209 if ((o->size % bed->s->sizeof_rel) == 0)
8210 /* Section size is divisible by both rel and rela sizes.
8211 It is of no help to us. */
8215 /* Section size is only divisible by rela. */
8216 if (use_rela_initialised && (use_rela == FALSE))
8219 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8220 bfd_set_error (bfd_error_invalid_operation);
8226 use_rela_initialised = TRUE;
8230 else if ((o->size % bed->s->sizeof_rel) == 0)
8232 /* Section size is only divisible by rel. */
8233 if (use_rela_initialised && (use_rela == TRUE))
8236 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8237 bfd_set_error (bfd_error_invalid_operation);
8243 use_rela_initialised = TRUE;
8248 /* The section size is not divisible by either - something is wrong. */
8250 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8251 bfd_set_error (bfd_error_invalid_operation);
8256 if (! use_rela_initialised)
8260 else if (rela_dyn != NULL && rela_dyn->size > 0)
8262 else if (rel_dyn != NULL && rel_dyn->size > 0)
8269 dynamic_relocs = rela_dyn;
8270 ext_size = bed->s->sizeof_rela;
8271 swap_in = bed->s->swap_reloca_in;
8272 swap_out = bed->s->swap_reloca_out;
8276 dynamic_relocs = rel_dyn;
8277 ext_size = bed->s->sizeof_rel;
8278 swap_in = bed->s->swap_reloc_in;
8279 swap_out = bed->s->swap_reloc_out;
8283 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8284 if (lo->type == bfd_indirect_link_order)
8285 size += lo->u.indirect.section->size;
8287 if (size != dynamic_relocs->size)
8290 sort_elt = (sizeof (struct elf_link_sort_rela)
8291 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8293 count = dynamic_relocs->size / ext_size;
8296 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8300 (*info->callbacks->warning)
8301 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8305 if (bed->s->arch_size == 32)
8306 r_sym_mask = ~(bfd_vma) 0xff;
8308 r_sym_mask = ~(bfd_vma) 0xffffffff;
8310 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8311 if (lo->type == bfd_indirect_link_order)
8313 bfd_byte *erel, *erelend;
8314 asection *o = lo->u.indirect.section;
8316 if (o->contents == NULL && o->size != 0)
8318 /* This is a reloc section that is being handled as a normal
8319 section. See bfd_section_from_shdr. We can't combine
8320 relocs in this case. */
8325 erelend = o->contents + o->size;
8326 /* FIXME: octets_per_byte. */
8327 p = sort + o->output_offset / ext_size * sort_elt;
8329 while (erel < erelend)
8331 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8333 (*swap_in) (abfd, erel, s->rela);
8334 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8335 s->u.sym_mask = r_sym_mask;
8341 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8343 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8345 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8346 if (s->type != reloc_class_relative)
8352 sq = (struct elf_link_sort_rela *) s_non_relative;
8353 for (; i < count; i++, p += sort_elt)
8355 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8356 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8358 sp->u.offset = sq->rela->r_offset;
8361 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8363 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8364 if (lo->type == bfd_indirect_link_order)
8366 bfd_byte *erel, *erelend;
8367 asection *o = lo->u.indirect.section;
8370 erelend = o->contents + o->size;
8371 /* FIXME: octets_per_byte. */
8372 p = sort + o->output_offset / ext_size * sort_elt;
8373 while (erel < erelend)
8375 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8376 (*swap_out) (abfd, s->rela, erel);
8383 *psec = dynamic_relocs;
8387 /* Flush the output symbols to the file. */
8390 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8391 const struct elf_backend_data *bed)
8393 if (flinfo->symbuf_count > 0)
8395 Elf_Internal_Shdr *hdr;
8399 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8400 pos = hdr->sh_offset + hdr->sh_size;
8401 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8402 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8403 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8406 hdr->sh_size += amt;
8407 flinfo->symbuf_count = 0;
8413 /* Add a symbol to the output symbol table. */
8416 elf_link_output_sym (struct elf_final_link_info *flinfo,
8418 Elf_Internal_Sym *elfsym,
8419 asection *input_sec,
8420 struct elf_link_hash_entry *h)
8423 Elf_External_Sym_Shndx *destshndx;
8424 int (*output_symbol_hook)
8425 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8426 struct elf_link_hash_entry *);
8427 const struct elf_backend_data *bed;
8429 bed = get_elf_backend_data (flinfo->output_bfd);
8430 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8431 if (output_symbol_hook != NULL)
8433 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8438 if (name == NULL || *name == '\0')
8439 elfsym->st_name = 0;
8440 else if (input_sec->flags & SEC_EXCLUDE)
8441 elfsym->st_name = 0;
8444 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8446 if (elfsym->st_name == (unsigned long) -1)
8450 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8452 if (! elf_link_flush_output_syms (flinfo, bed))
8456 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8457 destshndx = flinfo->symshndxbuf;
8458 if (destshndx != NULL)
8460 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8464 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8465 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8467 if (destshndx == NULL)
8469 flinfo->symshndxbuf = destshndx;
8470 memset ((char *) destshndx + amt, 0, amt);
8471 flinfo->shndxbuf_size *= 2;
8473 destshndx += bfd_get_symcount (flinfo->output_bfd);
8476 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8477 flinfo->symbuf_count += 1;
8478 bfd_get_symcount (flinfo->output_bfd) += 1;
8483 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8486 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8488 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8489 && sym->st_shndx < SHN_LORESERVE)
8491 /* The gABI doesn't support dynamic symbols in output sections
8493 (*_bfd_error_handler)
8494 (_("%B: Too many sections: %d (>= %d)"),
8495 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8496 bfd_set_error (bfd_error_nonrepresentable_section);
8502 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8503 allowing an unsatisfied unversioned symbol in the DSO to match a
8504 versioned symbol that would normally require an explicit version.
8505 We also handle the case that a DSO references a hidden symbol
8506 which may be satisfied by a versioned symbol in another DSO. */
8509 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8510 const struct elf_backend_data *bed,
8511 struct elf_link_hash_entry *h)
8514 struct elf_link_loaded_list *loaded;
8516 if (!is_elf_hash_table (info->hash))
8519 /* Check indirect symbol. */
8520 while (h->root.type == bfd_link_hash_indirect)
8521 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8523 switch (h->root.type)
8529 case bfd_link_hash_undefined:
8530 case bfd_link_hash_undefweak:
8531 abfd = h->root.u.undef.abfd;
8532 if ((abfd->flags & DYNAMIC) == 0
8533 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8537 case bfd_link_hash_defined:
8538 case bfd_link_hash_defweak:
8539 abfd = h->root.u.def.section->owner;
8542 case bfd_link_hash_common:
8543 abfd = h->root.u.c.p->section->owner;
8546 BFD_ASSERT (abfd != NULL);
8548 for (loaded = elf_hash_table (info)->loaded;
8550 loaded = loaded->next)
8553 Elf_Internal_Shdr *hdr;
8554 bfd_size_type symcount;
8555 bfd_size_type extsymcount;
8556 bfd_size_type extsymoff;
8557 Elf_Internal_Shdr *versymhdr;
8558 Elf_Internal_Sym *isym;
8559 Elf_Internal_Sym *isymend;
8560 Elf_Internal_Sym *isymbuf;
8561 Elf_External_Versym *ever;
8562 Elf_External_Versym *extversym;
8564 input = loaded->abfd;
8566 /* We check each DSO for a possible hidden versioned definition. */
8568 || (input->flags & DYNAMIC) == 0
8569 || elf_dynversym (input) == 0)
8572 hdr = &elf_tdata (input)->dynsymtab_hdr;
8574 symcount = hdr->sh_size / bed->s->sizeof_sym;
8575 if (elf_bad_symtab (input))
8577 extsymcount = symcount;
8582 extsymcount = symcount - hdr->sh_info;
8583 extsymoff = hdr->sh_info;
8586 if (extsymcount == 0)
8589 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8591 if (isymbuf == NULL)
8594 /* Read in any version definitions. */
8595 versymhdr = &elf_tdata (input)->dynversym_hdr;
8596 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8597 if (extversym == NULL)
8600 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8601 || (bfd_bread (extversym, versymhdr->sh_size, input)
8602 != versymhdr->sh_size))
8610 ever = extversym + extsymoff;
8611 isymend = isymbuf + extsymcount;
8612 for (isym = isymbuf; isym < isymend; isym++, ever++)
8615 Elf_Internal_Versym iver;
8616 unsigned short version_index;
8618 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8619 || isym->st_shndx == SHN_UNDEF)
8622 name = bfd_elf_string_from_elf_section (input,
8625 if (strcmp (name, h->root.root.string) != 0)
8628 _bfd_elf_swap_versym_in (input, ever, &iver);
8630 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8632 && h->forced_local))
8634 /* If we have a non-hidden versioned sym, then it should
8635 have provided a definition for the undefined sym unless
8636 it is defined in a non-shared object and forced local.
8641 version_index = iver.vs_vers & VERSYM_VERSION;
8642 if (version_index == 1 || version_index == 2)
8644 /* This is the base or first version. We can use it. */
8658 /* Add an external symbol to the symbol table. This is called from
8659 the hash table traversal routine. When generating a shared object,
8660 we go through the symbol table twice. The first time we output
8661 anything that might have been forced to local scope in a version
8662 script. The second time we output the symbols that are still
8666 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8668 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8669 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8670 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8672 Elf_Internal_Sym sym;
8673 asection *input_sec;
8674 const struct elf_backend_data *bed;
8678 if (h->root.type == bfd_link_hash_warning)
8680 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8681 if (h->root.type == bfd_link_hash_new)
8685 /* Decide whether to output this symbol in this pass. */
8686 if (eoinfo->localsyms)
8688 if (!h->forced_local)
8690 if (eoinfo->second_pass
8691 && !((h->root.type == bfd_link_hash_defined
8692 || h->root.type == bfd_link_hash_defweak)
8693 && h->root.u.def.section->output_section != NULL))
8696 if (!eoinfo->file_sym_done
8697 && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
8698 : eoinfo->flinfo->filesym_count > 1))
8700 /* Output a FILE symbol so that following locals are not associated
8701 with the wrong input file. */
8702 memset (&sym, 0, sizeof (sym));
8703 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8704 sym.st_shndx = SHN_ABS;
8705 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
8706 bfd_und_section_ptr, NULL))
8709 eoinfo->file_sym_done = TRUE;
8714 if (h->forced_local)
8718 bed = get_elf_backend_data (flinfo->output_bfd);
8720 if (h->root.type == bfd_link_hash_undefined)
8722 /* If we have an undefined symbol reference here then it must have
8723 come from a shared library that is being linked in. (Undefined
8724 references in regular files have already been handled unless
8725 they are in unreferenced sections which are removed by garbage
8727 bfd_boolean ignore_undef = FALSE;
8729 /* Some symbols may be special in that the fact that they're
8730 undefined can be safely ignored - let backend determine that. */
8731 if (bed->elf_backend_ignore_undef_symbol)
8732 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8734 /* If we are reporting errors for this situation then do so now. */
8737 && (!h->ref_regular || flinfo->info->gc_sections)
8738 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8739 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8741 if (!(flinfo->info->callbacks->undefined_symbol
8742 (flinfo->info, h->root.root.string,
8743 h->ref_regular ? NULL : h->root.u.undef.abfd,
8745 (flinfo->info->unresolved_syms_in_shared_libs
8746 == RM_GENERATE_ERROR))))
8748 bfd_set_error (bfd_error_bad_value);
8749 eoinfo->failed = TRUE;
8755 /* We should also warn if a forced local symbol is referenced from
8756 shared libraries. */
8757 if (!flinfo->info->relocatable
8758 && flinfo->info->executable
8763 && h->ref_dynamic_nonweak
8764 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8768 struct elf_link_hash_entry *hi = h;
8770 /* Check indirect symbol. */
8771 while (hi->root.type == bfd_link_hash_indirect)
8772 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8774 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8775 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8776 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8777 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8779 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8780 def_bfd = flinfo->output_bfd;
8781 if (hi->root.u.def.section != bfd_abs_section_ptr)
8782 def_bfd = hi->root.u.def.section->owner;
8783 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8784 h->root.root.string);
8785 bfd_set_error (bfd_error_bad_value);
8786 eoinfo->failed = TRUE;
8790 /* We don't want to output symbols that have never been mentioned by
8791 a regular file, or that we have been told to strip. However, if
8792 h->indx is set to -2, the symbol is used by a reloc and we must
8796 else if ((h->def_dynamic
8798 || h->root.type == bfd_link_hash_new)
8802 else if (flinfo->info->strip == strip_all)
8804 else if (flinfo->info->strip == strip_some
8805 && bfd_hash_lookup (flinfo->info->keep_hash,
8806 h->root.root.string, FALSE, FALSE) == NULL)
8808 else if ((h->root.type == bfd_link_hash_defined
8809 || h->root.type == bfd_link_hash_defweak)
8810 && ((flinfo->info->strip_discarded
8811 && discarded_section (h->root.u.def.section))
8812 || (h->root.u.def.section->owner != NULL
8813 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8815 else if ((h->root.type == bfd_link_hash_undefined
8816 || h->root.type == bfd_link_hash_undefweak)
8817 && h->root.u.undef.abfd != NULL
8818 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8823 /* If we're stripping it, and it's not a dynamic symbol, there's
8824 nothing else to do unless it is a forced local symbol or a
8825 STT_GNU_IFUNC symbol. */
8828 && h->type != STT_GNU_IFUNC
8829 && !h->forced_local)
8833 sym.st_size = h->size;
8834 sym.st_other = h->other;
8835 if (h->forced_local)
8837 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8838 /* Turn off visibility on local symbol. */
8839 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8841 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8842 else if (h->unique_global && h->def_regular)
8843 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8844 else if (h->root.type == bfd_link_hash_undefweak
8845 || h->root.type == bfd_link_hash_defweak)
8846 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8848 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8849 sym.st_target_internal = h->target_internal;
8851 switch (h->root.type)
8854 case bfd_link_hash_new:
8855 case bfd_link_hash_warning:
8859 case bfd_link_hash_undefined:
8860 case bfd_link_hash_undefweak:
8861 input_sec = bfd_und_section_ptr;
8862 sym.st_shndx = SHN_UNDEF;
8865 case bfd_link_hash_defined:
8866 case bfd_link_hash_defweak:
8868 input_sec = h->root.u.def.section;
8869 if (input_sec->output_section != NULL)
8871 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8873 bfd_boolean second_pass_sym
8874 = (input_sec->owner == flinfo->output_bfd
8875 || input_sec->owner == NULL
8876 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8877 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8879 eoinfo->need_second_pass |= second_pass_sym;
8880 if (eoinfo->second_pass != second_pass_sym)
8885 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8886 input_sec->output_section);
8887 if (sym.st_shndx == SHN_BAD)
8889 (*_bfd_error_handler)
8890 (_("%B: could not find output section %A for input section %A"),
8891 flinfo->output_bfd, input_sec->output_section, input_sec);
8892 bfd_set_error (bfd_error_nonrepresentable_section);
8893 eoinfo->failed = TRUE;
8897 /* ELF symbols in relocatable files are section relative,
8898 but in nonrelocatable files they are virtual
8900 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8901 if (!flinfo->info->relocatable)
8903 sym.st_value += input_sec->output_section->vma;
8904 if (h->type == STT_TLS)
8906 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8907 if (tls_sec != NULL)
8908 sym.st_value -= tls_sec->vma;
8911 /* The TLS section may have been garbage collected. */
8912 BFD_ASSERT (flinfo->info->gc_sections
8913 && !input_sec->gc_mark);
8920 BFD_ASSERT (input_sec->owner == NULL
8921 || (input_sec->owner->flags & DYNAMIC) != 0);
8922 sym.st_shndx = SHN_UNDEF;
8923 input_sec = bfd_und_section_ptr;
8928 case bfd_link_hash_common:
8929 input_sec = h->root.u.c.p->section;
8930 sym.st_shndx = bed->common_section_index (input_sec);
8931 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8934 case bfd_link_hash_indirect:
8935 /* These symbols are created by symbol versioning. They point
8936 to the decorated version of the name. For example, if the
8937 symbol foo@@GNU_1.2 is the default, which should be used when
8938 foo is used with no version, then we add an indirect symbol
8939 foo which points to foo@@GNU_1.2. We ignore these symbols,
8940 since the indirected symbol is already in the hash table. */
8944 /* Give the processor backend a chance to tweak the symbol value,
8945 and also to finish up anything that needs to be done for this
8946 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8947 forced local syms when non-shared is due to a historical quirk.
8948 STT_GNU_IFUNC symbol must go through PLT. */
8949 if ((h->type == STT_GNU_IFUNC
8951 && !flinfo->info->relocatable)
8952 || ((h->dynindx != -1
8954 && ((flinfo->info->shared
8955 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8956 || h->root.type != bfd_link_hash_undefweak))
8957 || !h->forced_local)
8958 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8960 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8961 (flinfo->output_bfd, flinfo->info, h, &sym)))
8963 eoinfo->failed = TRUE;
8968 /* If we are marking the symbol as undefined, and there are no
8969 non-weak references to this symbol from a regular object, then
8970 mark the symbol as weak undefined; if there are non-weak
8971 references, mark the symbol as strong. We can't do this earlier,
8972 because it might not be marked as undefined until the
8973 finish_dynamic_symbol routine gets through with it. */
8974 if (sym.st_shndx == SHN_UNDEF
8976 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8977 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8980 unsigned int type = ELF_ST_TYPE (sym.st_info);
8982 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8983 if (type == STT_GNU_IFUNC)
8986 if (h->ref_regular_nonweak)
8987 bindtype = STB_GLOBAL;
8989 bindtype = STB_WEAK;
8990 sym.st_info = ELF_ST_INFO (bindtype, type);
8993 /* If this is a symbol defined in a dynamic library, don't use the
8994 symbol size from the dynamic library. Relinking an executable
8995 against a new library may introduce gratuitous changes in the
8996 executable's symbols if we keep the size. */
8997 if (sym.st_shndx == SHN_UNDEF
9002 /* If a non-weak symbol with non-default visibility is not defined
9003 locally, it is a fatal error. */
9004 if (!flinfo->info->relocatable
9005 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9006 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9007 && h->root.type == bfd_link_hash_undefined
9012 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9013 msg = _("%B: protected symbol `%s' isn't defined");
9014 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9015 msg = _("%B: internal symbol `%s' isn't defined");
9017 msg = _("%B: hidden symbol `%s' isn't defined");
9018 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9019 bfd_set_error (bfd_error_bad_value);
9020 eoinfo->failed = TRUE;
9024 /* If this symbol should be put in the .dynsym section, then put it
9025 there now. We already know the symbol index. We also fill in
9026 the entry in the .hash section. */
9027 if (flinfo->dynsym_sec != NULL
9029 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9033 /* Since there is no version information in the dynamic string,
9034 if there is no version info in symbol version section, we will
9035 have a run-time problem. */
9036 if (h->verinfo.verdef == NULL)
9038 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9040 if (p && p [1] != '\0')
9042 (*_bfd_error_handler)
9043 (_("%B: No symbol version section for versioned symbol `%s'"),
9044 flinfo->output_bfd, h->root.root.string);
9045 eoinfo->failed = TRUE;
9050 sym.st_name = h->dynstr_index;
9051 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9052 if (!check_dynsym (flinfo->output_bfd, &sym))
9054 eoinfo->failed = TRUE;
9057 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9059 if (flinfo->hash_sec != NULL)
9061 size_t hash_entry_size;
9062 bfd_byte *bucketpos;
9067 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9068 bucket = h->u.elf_hash_value % bucketcount;
9071 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9072 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9073 + (bucket + 2) * hash_entry_size);
9074 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9075 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9077 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9078 ((bfd_byte *) flinfo->hash_sec->contents
9079 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9082 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9084 Elf_Internal_Versym iversym;
9085 Elf_External_Versym *eversym;
9087 if (!h->def_regular)
9089 if (h->verinfo.verdef == NULL)
9090 iversym.vs_vers = 0;
9092 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9096 if (h->verinfo.vertree == NULL)
9097 iversym.vs_vers = 1;
9099 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9100 if (flinfo->info->create_default_symver)
9105 iversym.vs_vers |= VERSYM_HIDDEN;
9107 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9108 eversym += h->dynindx;
9109 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9113 /* If we're stripping it, then it was just a dynamic symbol, and
9114 there's nothing else to do. */
9115 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9118 indx = bfd_get_symcount (flinfo->output_bfd);
9119 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9122 eoinfo->failed = TRUE;
9127 else if (h->indx == -2)
9133 /* Return TRUE if special handling is done for relocs in SEC against
9134 symbols defined in discarded sections. */
9137 elf_section_ignore_discarded_relocs (asection *sec)
9139 const struct elf_backend_data *bed;
9141 switch (sec->sec_info_type)
9143 case SEC_INFO_TYPE_STABS:
9144 case SEC_INFO_TYPE_EH_FRAME:
9150 bed = get_elf_backend_data (sec->owner);
9151 if (bed->elf_backend_ignore_discarded_relocs != NULL
9152 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9158 /* Return a mask saying how ld should treat relocations in SEC against
9159 symbols defined in discarded sections. If this function returns
9160 COMPLAIN set, ld will issue a warning message. If this function
9161 returns PRETEND set, and the discarded section was link-once and the
9162 same size as the kept link-once section, ld will pretend that the
9163 symbol was actually defined in the kept section. Otherwise ld will
9164 zero the reloc (at least that is the intent, but some cooperation by
9165 the target dependent code is needed, particularly for REL targets). */
9168 _bfd_elf_default_action_discarded (asection *sec)
9170 if (sec->flags & SEC_DEBUGGING)
9173 if (strcmp (".eh_frame", sec->name) == 0)
9176 if (strcmp (".gcc_except_table", sec->name) == 0)
9179 return COMPLAIN | PRETEND;
9182 /* Find a match between a section and a member of a section group. */
9185 match_group_member (asection *sec, asection *group,
9186 struct bfd_link_info *info)
9188 asection *first = elf_next_in_group (group);
9189 asection *s = first;
9193 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9196 s = elf_next_in_group (s);
9204 /* Check if the kept section of a discarded section SEC can be used
9205 to replace it. Return the replacement if it is OK. Otherwise return
9209 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9213 kept = sec->kept_section;
9216 if ((kept->flags & SEC_GROUP) != 0)
9217 kept = match_group_member (sec, kept, info);
9219 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9220 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9222 sec->kept_section = kept;
9227 /* Link an input file into the linker output file. This function
9228 handles all the sections and relocations of the input file at once.
9229 This is so that we only have to read the local symbols once, and
9230 don't have to keep them in memory. */
9233 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9235 int (*relocate_section)
9236 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9237 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9239 Elf_Internal_Shdr *symtab_hdr;
9242 Elf_Internal_Sym *isymbuf;
9243 Elf_Internal_Sym *isym;
9244 Elf_Internal_Sym *isymend;
9246 asection **ppsection;
9248 const struct elf_backend_data *bed;
9249 struct elf_link_hash_entry **sym_hashes;
9250 bfd_size_type address_size;
9251 bfd_vma r_type_mask;
9253 bfd_boolean have_file_sym = FALSE;
9255 output_bfd = flinfo->output_bfd;
9256 bed = get_elf_backend_data (output_bfd);
9257 relocate_section = bed->elf_backend_relocate_section;
9259 /* If this is a dynamic object, we don't want to do anything here:
9260 we don't want the local symbols, and we don't want the section
9262 if ((input_bfd->flags & DYNAMIC) != 0)
9265 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9266 if (elf_bad_symtab (input_bfd))
9268 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9273 locsymcount = symtab_hdr->sh_info;
9274 extsymoff = symtab_hdr->sh_info;
9277 /* Read the local symbols. */
9278 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9279 if (isymbuf == NULL && locsymcount != 0)
9281 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9282 flinfo->internal_syms,
9283 flinfo->external_syms,
9284 flinfo->locsym_shndx);
9285 if (isymbuf == NULL)
9289 /* Find local symbol sections and adjust values of symbols in
9290 SEC_MERGE sections. Write out those local symbols we know are
9291 going into the output file. */
9292 isymend = isymbuf + locsymcount;
9293 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9295 isym++, pindex++, ppsection++)
9299 Elf_Internal_Sym osym;
9305 if (elf_bad_symtab (input_bfd))
9307 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9314 if (isym->st_shndx == SHN_UNDEF)
9315 isec = bfd_und_section_ptr;
9316 else if (isym->st_shndx == SHN_ABS)
9317 isec = bfd_abs_section_ptr;
9318 else if (isym->st_shndx == SHN_COMMON)
9319 isec = bfd_com_section_ptr;
9322 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9325 /* Don't attempt to output symbols with st_shnx in the
9326 reserved range other than SHN_ABS and SHN_COMMON. */
9330 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9331 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9333 _bfd_merged_section_offset (output_bfd, &isec,
9334 elf_section_data (isec)->sec_info,
9340 /* Don't output the first, undefined, symbol. */
9341 if (ppsection == flinfo->sections)
9344 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9346 /* We never output section symbols. Instead, we use the
9347 section symbol of the corresponding section in the output
9352 /* If we are stripping all symbols, we don't want to output this
9354 if (flinfo->info->strip == strip_all)
9357 /* If we are discarding all local symbols, we don't want to
9358 output this one. If we are generating a relocatable output
9359 file, then some of the local symbols may be required by
9360 relocs; we output them below as we discover that they are
9362 if (flinfo->info->discard == discard_all)
9365 /* If this symbol is defined in a section which we are
9366 discarding, we don't need to keep it. */
9367 if (isym->st_shndx != SHN_UNDEF
9368 && isym->st_shndx < SHN_LORESERVE
9369 && bfd_section_removed_from_list (output_bfd,
9370 isec->output_section))
9373 /* Get the name of the symbol. */
9374 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9379 /* See if we are discarding symbols with this name. */
9380 if ((flinfo->info->strip == strip_some
9381 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9383 || (((flinfo->info->discard == discard_sec_merge
9384 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9385 || flinfo->info->discard == discard_l)
9386 && bfd_is_local_label_name (input_bfd, name)))
9389 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9391 have_file_sym = TRUE;
9392 flinfo->filesym_count += 1;
9396 /* In the absence of debug info, bfd_find_nearest_line uses
9397 FILE symbols to determine the source file for local
9398 function symbols. Provide a FILE symbol here if input
9399 files lack such, so that their symbols won't be
9400 associated with a previous input file. It's not the
9401 source file, but the best we can do. */
9402 have_file_sym = TRUE;
9403 flinfo->filesym_count += 1;
9404 memset (&osym, 0, sizeof (osym));
9405 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9406 osym.st_shndx = SHN_ABS;
9407 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9408 bfd_abs_section_ptr, NULL))
9414 /* Adjust the section index for the output file. */
9415 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9416 isec->output_section);
9417 if (osym.st_shndx == SHN_BAD)
9420 /* ELF symbols in relocatable files are section relative, but
9421 in executable files they are virtual addresses. Note that
9422 this code assumes that all ELF sections have an associated
9423 BFD section with a reasonable value for output_offset; below
9424 we assume that they also have a reasonable value for
9425 output_section. Any special sections must be set up to meet
9426 these requirements. */
9427 osym.st_value += isec->output_offset;
9428 if (!flinfo->info->relocatable)
9430 osym.st_value += isec->output_section->vma;
9431 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9433 /* STT_TLS symbols are relative to PT_TLS segment base. */
9434 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9435 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9439 indx = bfd_get_symcount (output_bfd);
9440 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9447 if (bed->s->arch_size == 32)
9455 r_type_mask = 0xffffffff;
9460 /* Relocate the contents of each section. */
9461 sym_hashes = elf_sym_hashes (input_bfd);
9462 for (o = input_bfd->sections; o != NULL; o = o->next)
9466 if (! o->linker_mark)
9468 /* This section was omitted from the link. */
9472 if (flinfo->info->relocatable
9473 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9475 /* Deal with the group signature symbol. */
9476 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9477 unsigned long symndx = sec_data->this_hdr.sh_info;
9478 asection *osec = o->output_section;
9480 if (symndx >= locsymcount
9481 || (elf_bad_symtab (input_bfd)
9482 && flinfo->sections[symndx] == NULL))
9484 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9485 while (h->root.type == bfd_link_hash_indirect
9486 || h->root.type == bfd_link_hash_warning)
9487 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9488 /* Arrange for symbol to be output. */
9490 elf_section_data (osec)->this_hdr.sh_info = -2;
9492 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9494 /* We'll use the output section target_index. */
9495 asection *sec = flinfo->sections[symndx]->output_section;
9496 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9500 if (flinfo->indices[symndx] == -1)
9502 /* Otherwise output the local symbol now. */
9503 Elf_Internal_Sym sym = isymbuf[symndx];
9504 asection *sec = flinfo->sections[symndx]->output_section;
9509 name = bfd_elf_string_from_elf_section (input_bfd,
9510 symtab_hdr->sh_link,
9515 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9517 if (sym.st_shndx == SHN_BAD)
9520 sym.st_value += o->output_offset;
9522 indx = bfd_get_symcount (output_bfd);
9523 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9527 flinfo->indices[symndx] = indx;
9531 elf_section_data (osec)->this_hdr.sh_info
9532 = flinfo->indices[symndx];
9536 if ((o->flags & SEC_HAS_CONTENTS) == 0
9537 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9540 if ((o->flags & SEC_LINKER_CREATED) != 0)
9542 /* Section was created by _bfd_elf_link_create_dynamic_sections
9547 /* Get the contents of the section. They have been cached by a
9548 relaxation routine. Note that o is a section in an input
9549 file, so the contents field will not have been set by any of
9550 the routines which work on output files. */
9551 if (elf_section_data (o)->this_hdr.contents != NULL)
9553 contents = elf_section_data (o)->this_hdr.contents;
9554 if (bed->caches_rawsize
9556 && o->rawsize < o->size)
9558 memcpy (flinfo->contents, contents, o->rawsize);
9559 contents = flinfo->contents;
9564 contents = flinfo->contents;
9565 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9569 if ((o->flags & SEC_RELOC) != 0)
9571 Elf_Internal_Rela *internal_relocs;
9572 Elf_Internal_Rela *rel, *relend;
9573 int action_discarded;
9576 /* Get the swapped relocs. */
9578 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9579 flinfo->internal_relocs, FALSE);
9580 if (internal_relocs == NULL
9581 && o->reloc_count > 0)
9584 /* We need to reverse-copy input .ctors/.dtors sections if
9585 they are placed in .init_array/.finit_array for output. */
9586 if (o->size > address_size
9587 && ((strncmp (o->name, ".ctors", 6) == 0
9588 && strcmp (o->output_section->name,
9589 ".init_array") == 0)
9590 || (strncmp (o->name, ".dtors", 6) == 0
9591 && strcmp (o->output_section->name,
9592 ".fini_array") == 0))
9593 && (o->name[6] == 0 || o->name[6] == '.'))
9595 if (o->size != o->reloc_count * address_size)
9597 (*_bfd_error_handler)
9598 (_("error: %B: size of section %A is not "
9599 "multiple of address size"),
9601 bfd_set_error (bfd_error_on_input);
9604 o->flags |= SEC_ELF_REVERSE_COPY;
9607 action_discarded = -1;
9608 if (!elf_section_ignore_discarded_relocs (o))
9609 action_discarded = (*bed->action_discarded) (o);
9611 /* Run through the relocs evaluating complex reloc symbols and
9612 looking for relocs against symbols from discarded sections
9613 or section symbols from removed link-once sections.
9614 Complain about relocs against discarded sections. Zero
9615 relocs against removed link-once sections. */
9617 rel = internal_relocs;
9618 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9619 for ( ; rel < relend; rel++)
9621 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9622 unsigned int s_type;
9623 asection **ps, *sec;
9624 struct elf_link_hash_entry *h = NULL;
9625 const char *sym_name;
9627 if (r_symndx == STN_UNDEF)
9630 if (r_symndx >= locsymcount
9631 || (elf_bad_symtab (input_bfd)
9632 && flinfo->sections[r_symndx] == NULL))
9634 h = sym_hashes[r_symndx - extsymoff];
9636 /* Badly formatted input files can contain relocs that
9637 reference non-existant symbols. Check here so that
9638 we do not seg fault. */
9643 sprintf_vma (buffer, rel->r_info);
9644 (*_bfd_error_handler)
9645 (_("error: %B contains a reloc (0x%s) for section %A "
9646 "that references a non-existent global symbol"),
9647 input_bfd, o, buffer);
9648 bfd_set_error (bfd_error_bad_value);
9652 while (h->root.type == bfd_link_hash_indirect
9653 || h->root.type == bfd_link_hash_warning)
9654 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9659 if (h->root.type == bfd_link_hash_defined
9660 || h->root.type == bfd_link_hash_defweak)
9661 ps = &h->root.u.def.section;
9663 sym_name = h->root.root.string;
9667 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9669 s_type = ELF_ST_TYPE (sym->st_info);
9670 ps = &flinfo->sections[r_symndx];
9671 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9675 if ((s_type == STT_RELC || s_type == STT_SRELC)
9676 && !flinfo->info->relocatable)
9679 bfd_vma dot = (rel->r_offset
9680 + o->output_offset + o->output_section->vma);
9682 printf ("Encountered a complex symbol!");
9683 printf (" (input_bfd %s, section %s, reloc %ld\n",
9684 input_bfd->filename, o->name,
9685 (long) (rel - internal_relocs));
9686 printf (" symbol: idx %8.8lx, name %s\n",
9687 r_symndx, sym_name);
9688 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9689 (unsigned long) rel->r_info,
9690 (unsigned long) rel->r_offset);
9692 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9693 isymbuf, locsymcount, s_type == STT_SRELC))
9696 /* Symbol evaluated OK. Update to absolute value. */
9697 set_symbol_value (input_bfd, isymbuf, locsymcount,
9702 if (action_discarded != -1 && ps != NULL)
9704 /* Complain if the definition comes from a
9705 discarded section. */
9706 if ((sec = *ps) != NULL && discarded_section (sec))
9708 BFD_ASSERT (r_symndx != STN_UNDEF);
9709 if (action_discarded & COMPLAIN)
9710 (*flinfo->info->callbacks->einfo)
9711 (_("%X`%s' referenced in section `%A' of %B: "
9712 "defined in discarded section `%A' of %B\n"),
9713 sym_name, o, input_bfd, sec, sec->owner);
9715 /* Try to do the best we can to support buggy old
9716 versions of gcc. Pretend that the symbol is
9717 really defined in the kept linkonce section.
9718 FIXME: This is quite broken. Modifying the
9719 symbol here means we will be changing all later
9720 uses of the symbol, not just in this section. */
9721 if (action_discarded & PRETEND)
9725 kept = _bfd_elf_check_kept_section (sec,
9737 /* Relocate the section by invoking a back end routine.
9739 The back end routine is responsible for adjusting the
9740 section contents as necessary, and (if using Rela relocs
9741 and generating a relocatable output file) adjusting the
9742 reloc addend as necessary.
9744 The back end routine does not have to worry about setting
9745 the reloc address or the reloc symbol index.
9747 The back end routine is given a pointer to the swapped in
9748 internal symbols, and can access the hash table entries
9749 for the external symbols via elf_sym_hashes (input_bfd).
9751 When generating relocatable output, the back end routine
9752 must handle STB_LOCAL/STT_SECTION symbols specially. The
9753 output symbol is going to be a section symbol
9754 corresponding to the output section, which will require
9755 the addend to be adjusted. */
9757 ret = (*relocate_section) (output_bfd, flinfo->info,
9758 input_bfd, o, contents,
9766 || flinfo->info->relocatable
9767 || flinfo->info->emitrelocations)
9769 Elf_Internal_Rela *irela;
9770 Elf_Internal_Rela *irelaend, *irelamid;
9771 bfd_vma last_offset;
9772 struct elf_link_hash_entry **rel_hash;
9773 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9774 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9775 unsigned int next_erel;
9776 bfd_boolean rela_normal;
9777 struct bfd_elf_section_data *esdi, *esdo;
9779 esdi = elf_section_data (o);
9780 esdo = elf_section_data (o->output_section);
9781 rela_normal = FALSE;
9783 /* Adjust the reloc addresses and symbol indices. */
9785 irela = internal_relocs;
9786 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9787 rel_hash = esdo->rel.hashes + esdo->rel.count;
9788 /* We start processing the REL relocs, if any. When we reach
9789 IRELAMID in the loop, we switch to the RELA relocs. */
9791 if (esdi->rel.hdr != NULL)
9792 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9793 * bed->s->int_rels_per_ext_rel);
9794 rel_hash_list = rel_hash;
9795 rela_hash_list = NULL;
9796 last_offset = o->output_offset;
9797 if (!flinfo->info->relocatable)
9798 last_offset += o->output_section->vma;
9799 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9801 unsigned long r_symndx;
9803 Elf_Internal_Sym sym;
9805 if (next_erel == bed->s->int_rels_per_ext_rel)
9811 if (irela == irelamid)
9813 rel_hash = esdo->rela.hashes + esdo->rela.count;
9814 rela_hash_list = rel_hash;
9815 rela_normal = bed->rela_normal;
9818 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9821 if (irela->r_offset >= (bfd_vma) -2)
9823 /* This is a reloc for a deleted entry or somesuch.
9824 Turn it into an R_*_NONE reloc, at the same
9825 offset as the last reloc. elf_eh_frame.c and
9826 bfd_elf_discard_info rely on reloc offsets
9828 irela->r_offset = last_offset;
9830 irela->r_addend = 0;
9834 irela->r_offset += o->output_offset;
9836 /* Relocs in an executable have to be virtual addresses. */
9837 if (!flinfo->info->relocatable)
9838 irela->r_offset += o->output_section->vma;
9840 last_offset = irela->r_offset;
9842 r_symndx = irela->r_info >> r_sym_shift;
9843 if (r_symndx == STN_UNDEF)
9846 if (r_symndx >= locsymcount
9847 || (elf_bad_symtab (input_bfd)
9848 && flinfo->sections[r_symndx] == NULL))
9850 struct elf_link_hash_entry *rh;
9853 /* This is a reloc against a global symbol. We
9854 have not yet output all the local symbols, so
9855 we do not know the symbol index of any global
9856 symbol. We set the rel_hash entry for this
9857 reloc to point to the global hash table entry
9858 for this symbol. The symbol index is then
9859 set at the end of bfd_elf_final_link. */
9860 indx = r_symndx - extsymoff;
9861 rh = elf_sym_hashes (input_bfd)[indx];
9862 while (rh->root.type == bfd_link_hash_indirect
9863 || rh->root.type == bfd_link_hash_warning)
9864 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9866 /* Setting the index to -2 tells
9867 elf_link_output_extsym that this symbol is
9869 BFD_ASSERT (rh->indx < 0);
9877 /* This is a reloc against a local symbol. */
9880 sym = isymbuf[r_symndx];
9881 sec = flinfo->sections[r_symndx];
9882 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9884 /* I suppose the backend ought to fill in the
9885 section of any STT_SECTION symbol against a
9886 processor specific section. */
9887 r_symndx = STN_UNDEF;
9888 if (bfd_is_abs_section (sec))
9890 else if (sec == NULL || sec->owner == NULL)
9892 bfd_set_error (bfd_error_bad_value);
9897 asection *osec = sec->output_section;
9899 /* If we have discarded a section, the output
9900 section will be the absolute section. In
9901 case of discarded SEC_MERGE sections, use
9902 the kept section. relocate_section should
9903 have already handled discarded linkonce
9905 if (bfd_is_abs_section (osec)
9906 && sec->kept_section != NULL
9907 && sec->kept_section->output_section != NULL)
9909 osec = sec->kept_section->output_section;
9910 irela->r_addend -= osec->vma;
9913 if (!bfd_is_abs_section (osec))
9915 r_symndx = osec->target_index;
9916 if (r_symndx == STN_UNDEF)
9918 irela->r_addend += osec->vma;
9919 osec = _bfd_nearby_section (output_bfd, osec,
9921 irela->r_addend -= osec->vma;
9922 r_symndx = osec->target_index;
9927 /* Adjust the addend according to where the
9928 section winds up in the output section. */
9930 irela->r_addend += sec->output_offset;
9934 if (flinfo->indices[r_symndx] == -1)
9936 unsigned long shlink;
9941 if (flinfo->info->strip == strip_all)
9943 /* You can't do ld -r -s. */
9944 bfd_set_error (bfd_error_invalid_operation);
9948 /* This symbol was skipped earlier, but
9949 since it is needed by a reloc, we
9950 must output it now. */
9951 shlink = symtab_hdr->sh_link;
9952 name = (bfd_elf_string_from_elf_section
9953 (input_bfd, shlink, sym.st_name));
9957 osec = sec->output_section;
9959 _bfd_elf_section_from_bfd_section (output_bfd,
9961 if (sym.st_shndx == SHN_BAD)
9964 sym.st_value += sec->output_offset;
9965 if (!flinfo->info->relocatable)
9967 sym.st_value += osec->vma;
9968 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9970 /* STT_TLS symbols are relative to PT_TLS
9972 BFD_ASSERT (elf_hash_table (flinfo->info)
9974 sym.st_value -= (elf_hash_table (flinfo->info)
9979 indx = bfd_get_symcount (output_bfd);
9980 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9985 flinfo->indices[r_symndx] = indx;
9990 r_symndx = flinfo->indices[r_symndx];
9993 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9994 | (irela->r_info & r_type_mask));
9997 /* Swap out the relocs. */
9998 input_rel_hdr = esdi->rel.hdr;
9999 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10001 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10006 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10007 * bed->s->int_rels_per_ext_rel);
10008 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10011 input_rela_hdr = esdi->rela.hdr;
10012 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10014 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10023 /* Write out the modified section contents. */
10024 if (bed->elf_backend_write_section
10025 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10028 /* Section written out. */
10030 else switch (o->sec_info_type)
10032 case SEC_INFO_TYPE_STABS:
10033 if (! (_bfd_write_section_stabs
10035 &elf_hash_table (flinfo->info)->stab_info,
10036 o, &elf_section_data (o)->sec_info, contents)))
10039 case SEC_INFO_TYPE_MERGE:
10040 if (! _bfd_write_merged_section (output_bfd, o,
10041 elf_section_data (o)->sec_info))
10044 case SEC_INFO_TYPE_EH_FRAME:
10046 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10053 /* FIXME: octets_per_byte. */
10054 if (! (o->flags & SEC_EXCLUDE))
10056 file_ptr offset = (file_ptr) o->output_offset;
10057 bfd_size_type todo = o->size;
10058 if ((o->flags & SEC_ELF_REVERSE_COPY))
10060 /* Reverse-copy input section to output. */
10063 todo -= address_size;
10064 if (! bfd_set_section_contents (output_bfd,
10072 offset += address_size;
10076 else if (! bfd_set_section_contents (output_bfd,
10090 /* Generate a reloc when linking an ELF file. This is a reloc
10091 requested by the linker, and does not come from any input file. This
10092 is used to build constructor and destructor tables when linking
10096 elf_reloc_link_order (bfd *output_bfd,
10097 struct bfd_link_info *info,
10098 asection *output_section,
10099 struct bfd_link_order *link_order)
10101 reloc_howto_type *howto;
10105 struct bfd_elf_section_reloc_data *reldata;
10106 struct elf_link_hash_entry **rel_hash_ptr;
10107 Elf_Internal_Shdr *rel_hdr;
10108 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10109 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10112 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10114 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10117 bfd_set_error (bfd_error_bad_value);
10121 addend = link_order->u.reloc.p->addend;
10124 reldata = &esdo->rel;
10125 else if (esdo->rela.hdr)
10126 reldata = &esdo->rela;
10133 /* Figure out the symbol index. */
10134 rel_hash_ptr = reldata->hashes + reldata->count;
10135 if (link_order->type == bfd_section_reloc_link_order)
10137 indx = link_order->u.reloc.p->u.section->target_index;
10138 BFD_ASSERT (indx != 0);
10139 *rel_hash_ptr = NULL;
10143 struct elf_link_hash_entry *h;
10145 /* Treat a reloc against a defined symbol as though it were
10146 actually against the section. */
10147 h = ((struct elf_link_hash_entry *)
10148 bfd_wrapped_link_hash_lookup (output_bfd, info,
10149 link_order->u.reloc.p->u.name,
10150 FALSE, FALSE, TRUE));
10152 && (h->root.type == bfd_link_hash_defined
10153 || h->root.type == bfd_link_hash_defweak))
10157 section = h->root.u.def.section;
10158 indx = section->output_section->target_index;
10159 *rel_hash_ptr = NULL;
10160 /* It seems that we ought to add the symbol value to the
10161 addend here, but in practice it has already been added
10162 because it was passed to constructor_callback. */
10163 addend += section->output_section->vma + section->output_offset;
10165 else if (h != NULL)
10167 /* Setting the index to -2 tells elf_link_output_extsym that
10168 this symbol is used by a reloc. */
10175 if (! ((*info->callbacks->unattached_reloc)
10176 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10182 /* If this is an inplace reloc, we must write the addend into the
10184 if (howto->partial_inplace && addend != 0)
10186 bfd_size_type size;
10187 bfd_reloc_status_type rstat;
10190 const char *sym_name;
10192 size = (bfd_size_type) bfd_get_reloc_size (howto);
10193 buf = (bfd_byte *) bfd_zmalloc (size);
10196 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10203 case bfd_reloc_outofrange:
10206 case bfd_reloc_overflow:
10207 if (link_order->type == bfd_section_reloc_link_order)
10208 sym_name = bfd_section_name (output_bfd,
10209 link_order->u.reloc.p->u.section);
10211 sym_name = link_order->u.reloc.p->u.name;
10212 if (! ((*info->callbacks->reloc_overflow)
10213 (info, NULL, sym_name, howto->name, addend, NULL,
10214 NULL, (bfd_vma) 0)))
10221 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10222 link_order->offset, size);
10228 /* The address of a reloc is relative to the section in a
10229 relocatable file, and is a virtual address in an executable
10231 offset = link_order->offset;
10232 if (! info->relocatable)
10233 offset += output_section->vma;
10235 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10237 irel[i].r_offset = offset;
10238 irel[i].r_info = 0;
10239 irel[i].r_addend = 0;
10241 if (bed->s->arch_size == 32)
10242 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10244 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10246 rel_hdr = reldata->hdr;
10247 erel = rel_hdr->contents;
10248 if (rel_hdr->sh_type == SHT_REL)
10250 erel += reldata->count * bed->s->sizeof_rel;
10251 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10255 irel[0].r_addend = addend;
10256 erel += reldata->count * bed->s->sizeof_rela;
10257 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10266 /* Get the output vma of the section pointed to by the sh_link field. */
10269 elf_get_linked_section_vma (struct bfd_link_order *p)
10271 Elf_Internal_Shdr **elf_shdrp;
10275 s = p->u.indirect.section;
10276 elf_shdrp = elf_elfsections (s->owner);
10277 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10278 elfsec = elf_shdrp[elfsec]->sh_link;
10280 The Intel C compiler generates SHT_IA_64_UNWIND with
10281 SHF_LINK_ORDER. But it doesn't set the sh_link or
10282 sh_info fields. Hence we could get the situation
10283 where elfsec is 0. */
10286 const struct elf_backend_data *bed
10287 = get_elf_backend_data (s->owner);
10288 if (bed->link_order_error_handler)
10289 bed->link_order_error_handler
10290 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10295 s = elf_shdrp[elfsec]->bfd_section;
10296 return s->output_section->vma + s->output_offset;
10301 /* Compare two sections based on the locations of the sections they are
10302 linked to. Used by elf_fixup_link_order. */
10305 compare_link_order (const void * a, const void * b)
10310 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10311 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10314 return apos > bpos;
10318 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10319 order as their linked sections. Returns false if this could not be done
10320 because an output section includes both ordered and unordered
10321 sections. Ideally we'd do this in the linker proper. */
10324 elf_fixup_link_order (bfd *abfd, asection *o)
10326 int seen_linkorder;
10329 struct bfd_link_order *p;
10331 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10333 struct bfd_link_order **sections;
10334 asection *s, *other_sec, *linkorder_sec;
10338 linkorder_sec = NULL;
10340 seen_linkorder = 0;
10341 for (p = o->map_head.link_order; p != NULL; p = p->next)
10343 if (p->type == bfd_indirect_link_order)
10345 s = p->u.indirect.section;
10347 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10348 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10349 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10350 && elfsec < elf_numsections (sub)
10351 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10352 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10366 if (seen_other && seen_linkorder)
10368 if (other_sec && linkorder_sec)
10369 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10371 linkorder_sec->owner, other_sec,
10374 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10376 bfd_set_error (bfd_error_bad_value);
10381 if (!seen_linkorder)
10384 sections = (struct bfd_link_order **)
10385 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10386 if (sections == NULL)
10388 seen_linkorder = 0;
10390 for (p = o->map_head.link_order; p != NULL; p = p->next)
10392 sections[seen_linkorder++] = p;
10394 /* Sort the input sections in the order of their linked section. */
10395 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10396 compare_link_order);
10398 /* Change the offsets of the sections. */
10400 for (n = 0; n < seen_linkorder; n++)
10402 s = sections[n]->u.indirect.section;
10403 offset &= ~(bfd_vma) 0 << s->alignment_power;
10404 s->output_offset = offset;
10405 sections[n]->offset = offset;
10406 /* FIXME: octets_per_byte. */
10407 offset += sections[n]->size;
10415 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10419 if (flinfo->symstrtab != NULL)
10420 _bfd_stringtab_free (flinfo->symstrtab);
10421 if (flinfo->contents != NULL)
10422 free (flinfo->contents);
10423 if (flinfo->external_relocs != NULL)
10424 free (flinfo->external_relocs);
10425 if (flinfo->internal_relocs != NULL)
10426 free (flinfo->internal_relocs);
10427 if (flinfo->external_syms != NULL)
10428 free (flinfo->external_syms);
10429 if (flinfo->locsym_shndx != NULL)
10430 free (flinfo->locsym_shndx);
10431 if (flinfo->internal_syms != NULL)
10432 free (flinfo->internal_syms);
10433 if (flinfo->indices != NULL)
10434 free (flinfo->indices);
10435 if (flinfo->sections != NULL)
10436 free (flinfo->sections);
10437 if (flinfo->symbuf != NULL)
10438 free (flinfo->symbuf);
10439 if (flinfo->symshndxbuf != NULL)
10440 free (flinfo->symshndxbuf);
10441 for (o = obfd->sections; o != NULL; o = o->next)
10443 struct bfd_elf_section_data *esdo = elf_section_data (o);
10444 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10445 free (esdo->rel.hashes);
10446 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10447 free (esdo->rela.hashes);
10451 /* Do the final step of an ELF link. */
10454 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10456 bfd_boolean dynamic;
10457 bfd_boolean emit_relocs;
10459 struct elf_final_link_info flinfo;
10461 struct bfd_link_order *p;
10463 bfd_size_type max_contents_size;
10464 bfd_size_type max_external_reloc_size;
10465 bfd_size_type max_internal_reloc_count;
10466 bfd_size_type max_sym_count;
10467 bfd_size_type max_sym_shndx_count;
10469 Elf_Internal_Sym elfsym;
10471 Elf_Internal_Shdr *symtab_hdr;
10472 Elf_Internal_Shdr *symtab_shndx_hdr;
10473 Elf_Internal_Shdr *symstrtab_hdr;
10474 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10475 struct elf_outext_info eoinfo;
10476 bfd_boolean merged;
10477 size_t relativecount = 0;
10478 asection *reldyn = 0;
10480 asection *attr_section = NULL;
10481 bfd_vma attr_size = 0;
10482 const char *std_attrs_section;
10484 if (! is_elf_hash_table (info->hash))
10488 abfd->flags |= DYNAMIC;
10490 dynamic = elf_hash_table (info)->dynamic_sections_created;
10491 dynobj = elf_hash_table (info)->dynobj;
10493 emit_relocs = (info->relocatable
10494 || info->emitrelocations);
10496 flinfo.info = info;
10497 flinfo.output_bfd = abfd;
10498 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10499 if (flinfo.symstrtab == NULL)
10504 flinfo.dynsym_sec = NULL;
10505 flinfo.hash_sec = NULL;
10506 flinfo.symver_sec = NULL;
10510 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10511 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10512 /* Note that dynsym_sec can be NULL (on VMS). */
10513 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10514 /* Note that it is OK if symver_sec is NULL. */
10517 flinfo.contents = NULL;
10518 flinfo.external_relocs = NULL;
10519 flinfo.internal_relocs = NULL;
10520 flinfo.external_syms = NULL;
10521 flinfo.locsym_shndx = NULL;
10522 flinfo.internal_syms = NULL;
10523 flinfo.indices = NULL;
10524 flinfo.sections = NULL;
10525 flinfo.symbuf = NULL;
10526 flinfo.symshndxbuf = NULL;
10527 flinfo.symbuf_count = 0;
10528 flinfo.shndxbuf_size = 0;
10529 flinfo.filesym_count = 0;
10531 /* The object attributes have been merged. Remove the input
10532 sections from the link, and set the contents of the output
10534 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10535 for (o = abfd->sections; o != NULL; o = o->next)
10537 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10538 || strcmp (o->name, ".gnu.attributes") == 0)
10540 for (p = o->map_head.link_order; p != NULL; p = p->next)
10542 asection *input_section;
10544 if (p->type != bfd_indirect_link_order)
10546 input_section = p->u.indirect.section;
10547 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10548 elf_link_input_bfd ignores this section. */
10549 input_section->flags &= ~SEC_HAS_CONTENTS;
10552 attr_size = bfd_elf_obj_attr_size (abfd);
10555 bfd_set_section_size (abfd, o, attr_size);
10557 /* Skip this section later on. */
10558 o->map_head.link_order = NULL;
10561 o->flags |= SEC_EXCLUDE;
10565 /* Count up the number of relocations we will output for each output
10566 section, so that we know the sizes of the reloc sections. We
10567 also figure out some maximum sizes. */
10568 max_contents_size = 0;
10569 max_external_reloc_size = 0;
10570 max_internal_reloc_count = 0;
10572 max_sym_shndx_count = 0;
10574 for (o = abfd->sections; o != NULL; o = o->next)
10576 struct bfd_elf_section_data *esdo = elf_section_data (o);
10577 o->reloc_count = 0;
10579 for (p = o->map_head.link_order; p != NULL; p = p->next)
10581 unsigned int reloc_count = 0;
10582 struct bfd_elf_section_data *esdi = NULL;
10584 if (p->type == bfd_section_reloc_link_order
10585 || p->type == bfd_symbol_reloc_link_order)
10587 else if (p->type == bfd_indirect_link_order)
10591 sec = p->u.indirect.section;
10592 esdi = elf_section_data (sec);
10594 /* Mark all sections which are to be included in the
10595 link. This will normally be every section. We need
10596 to do this so that we can identify any sections which
10597 the linker has decided to not include. */
10598 sec->linker_mark = TRUE;
10600 if (sec->flags & SEC_MERGE)
10603 if (esdo->this_hdr.sh_type == SHT_REL
10604 || esdo->this_hdr.sh_type == SHT_RELA)
10605 /* Some backends use reloc_count in relocation sections
10606 to count particular types of relocs. Of course,
10607 reloc sections themselves can't have relocations. */
10609 else if (info->relocatable || info->emitrelocations)
10610 reloc_count = sec->reloc_count;
10611 else if (bed->elf_backend_count_relocs)
10612 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10614 if (sec->rawsize > max_contents_size)
10615 max_contents_size = sec->rawsize;
10616 if (sec->size > max_contents_size)
10617 max_contents_size = sec->size;
10619 /* We are interested in just local symbols, not all
10621 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10622 && (sec->owner->flags & DYNAMIC) == 0)
10626 if (elf_bad_symtab (sec->owner))
10627 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10628 / bed->s->sizeof_sym);
10630 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10632 if (sym_count > max_sym_count)
10633 max_sym_count = sym_count;
10635 if (sym_count > max_sym_shndx_count
10636 && elf_symtab_shndx (sec->owner) != 0)
10637 max_sym_shndx_count = sym_count;
10639 if ((sec->flags & SEC_RELOC) != 0)
10641 size_t ext_size = 0;
10643 if (esdi->rel.hdr != NULL)
10644 ext_size = esdi->rel.hdr->sh_size;
10645 if (esdi->rela.hdr != NULL)
10646 ext_size += esdi->rela.hdr->sh_size;
10648 if (ext_size > max_external_reloc_size)
10649 max_external_reloc_size = ext_size;
10650 if (sec->reloc_count > max_internal_reloc_count)
10651 max_internal_reloc_count = sec->reloc_count;
10656 if (reloc_count == 0)
10659 o->reloc_count += reloc_count;
10661 if (p->type == bfd_indirect_link_order
10662 && (info->relocatable || info->emitrelocations))
10665 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10666 if (esdi->rela.hdr)
10667 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10672 esdo->rela.count += reloc_count;
10674 esdo->rel.count += reloc_count;
10678 if (o->reloc_count > 0)
10679 o->flags |= SEC_RELOC;
10682 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10683 set it (this is probably a bug) and if it is set
10684 assign_section_numbers will create a reloc section. */
10685 o->flags &=~ SEC_RELOC;
10688 /* If the SEC_ALLOC flag is not set, force the section VMA to
10689 zero. This is done in elf_fake_sections as well, but forcing
10690 the VMA to 0 here will ensure that relocs against these
10691 sections are handled correctly. */
10692 if ((o->flags & SEC_ALLOC) == 0
10693 && ! o->user_set_vma)
10697 if (! info->relocatable && merged)
10698 elf_link_hash_traverse (elf_hash_table (info),
10699 _bfd_elf_link_sec_merge_syms, abfd);
10701 /* Figure out the file positions for everything but the symbol table
10702 and the relocs. We set symcount to force assign_section_numbers
10703 to create a symbol table. */
10704 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10705 BFD_ASSERT (! abfd->output_has_begun);
10706 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10709 /* Set sizes, and assign file positions for reloc sections. */
10710 for (o = abfd->sections; o != NULL; o = o->next)
10712 struct bfd_elf_section_data *esdo = elf_section_data (o);
10713 if ((o->flags & SEC_RELOC) != 0)
10716 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10720 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10724 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10725 to count upwards while actually outputting the relocations. */
10726 esdo->rel.count = 0;
10727 esdo->rela.count = 0;
10730 _bfd_elf_assign_file_positions_for_relocs (abfd);
10732 /* We have now assigned file positions for all the sections except
10733 .symtab and .strtab. We start the .symtab section at the current
10734 file position, and write directly to it. We build the .strtab
10735 section in memory. */
10736 bfd_get_symcount (abfd) = 0;
10737 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10738 /* sh_name is set in prep_headers. */
10739 symtab_hdr->sh_type = SHT_SYMTAB;
10740 /* sh_flags, sh_addr and sh_size all start off zero. */
10741 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10742 /* sh_link is set in assign_section_numbers. */
10743 /* sh_info is set below. */
10744 /* sh_offset is set just below. */
10745 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10747 off = elf_next_file_pos (abfd);
10748 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10750 /* Note that at this point elf_next_file_pos (abfd) is
10751 incorrect. We do not yet know the size of the .symtab section.
10752 We correct next_file_pos below, after we do know the size. */
10754 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10755 continuously seeking to the right position in the file. */
10756 if (! info->keep_memory || max_sym_count < 20)
10757 flinfo.symbuf_size = 20;
10759 flinfo.symbuf_size = max_sym_count;
10760 amt = flinfo.symbuf_size;
10761 amt *= bed->s->sizeof_sym;
10762 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10763 if (flinfo.symbuf == NULL)
10765 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10767 /* Wild guess at number of output symbols. realloc'd as needed. */
10768 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10769 flinfo.shndxbuf_size = amt;
10770 amt *= sizeof (Elf_External_Sym_Shndx);
10771 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10772 if (flinfo.symshndxbuf == NULL)
10776 /* Start writing out the symbol table. The first symbol is always a
10778 if (info->strip != strip_all
10781 elfsym.st_value = 0;
10782 elfsym.st_size = 0;
10783 elfsym.st_info = 0;
10784 elfsym.st_other = 0;
10785 elfsym.st_shndx = SHN_UNDEF;
10786 elfsym.st_target_internal = 0;
10787 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10792 /* Output a symbol for each section. We output these even if we are
10793 discarding local symbols, since they are used for relocs. These
10794 symbols have no names. We store the index of each one in the
10795 index field of the section, so that we can find it again when
10796 outputting relocs. */
10797 if (info->strip != strip_all
10800 elfsym.st_size = 0;
10801 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10802 elfsym.st_other = 0;
10803 elfsym.st_value = 0;
10804 elfsym.st_target_internal = 0;
10805 for (i = 1; i < elf_numsections (abfd); i++)
10807 o = bfd_section_from_elf_index (abfd, i);
10810 o->target_index = bfd_get_symcount (abfd);
10811 elfsym.st_shndx = i;
10812 if (!info->relocatable)
10813 elfsym.st_value = o->vma;
10814 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10820 /* Allocate some memory to hold information read in from the input
10822 if (max_contents_size != 0)
10824 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10825 if (flinfo.contents == NULL)
10829 if (max_external_reloc_size != 0)
10831 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10832 if (flinfo.external_relocs == NULL)
10836 if (max_internal_reloc_count != 0)
10838 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10839 amt *= sizeof (Elf_Internal_Rela);
10840 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10841 if (flinfo.internal_relocs == NULL)
10845 if (max_sym_count != 0)
10847 amt = max_sym_count * bed->s->sizeof_sym;
10848 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10849 if (flinfo.external_syms == NULL)
10852 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10853 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10854 if (flinfo.internal_syms == NULL)
10857 amt = max_sym_count * sizeof (long);
10858 flinfo.indices = (long int *) bfd_malloc (amt);
10859 if (flinfo.indices == NULL)
10862 amt = max_sym_count * sizeof (asection *);
10863 flinfo.sections = (asection **) bfd_malloc (amt);
10864 if (flinfo.sections == NULL)
10868 if (max_sym_shndx_count != 0)
10870 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10871 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10872 if (flinfo.locsym_shndx == NULL)
10876 if (elf_hash_table (info)->tls_sec)
10878 bfd_vma base, end = 0;
10881 for (sec = elf_hash_table (info)->tls_sec;
10882 sec && (sec->flags & SEC_THREAD_LOCAL);
10885 bfd_size_type size = sec->size;
10888 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10890 struct bfd_link_order *ord = sec->map_tail.link_order;
10893 size = ord->offset + ord->size;
10895 end = sec->vma + size;
10897 base = elf_hash_table (info)->tls_sec->vma;
10898 /* Only align end of TLS section if static TLS doesn't have special
10899 alignment requirements. */
10900 if (bed->static_tls_alignment == 1)
10901 end = align_power (end,
10902 elf_hash_table (info)->tls_sec->alignment_power);
10903 elf_hash_table (info)->tls_size = end - base;
10906 /* Reorder SHF_LINK_ORDER sections. */
10907 for (o = abfd->sections; o != NULL; o = o->next)
10909 if (!elf_fixup_link_order (abfd, o))
10913 /* Since ELF permits relocations to be against local symbols, we
10914 must have the local symbols available when we do the relocations.
10915 Since we would rather only read the local symbols once, and we
10916 would rather not keep them in memory, we handle all the
10917 relocations for a single input file at the same time.
10919 Unfortunately, there is no way to know the total number of local
10920 symbols until we have seen all of them, and the local symbol
10921 indices precede the global symbol indices. This means that when
10922 we are generating relocatable output, and we see a reloc against
10923 a global symbol, we can not know the symbol index until we have
10924 finished examining all the local symbols to see which ones we are
10925 going to output. To deal with this, we keep the relocations in
10926 memory, and don't output them until the end of the link. This is
10927 an unfortunate waste of memory, but I don't see a good way around
10928 it. Fortunately, it only happens when performing a relocatable
10929 link, which is not the common case. FIXME: If keep_memory is set
10930 we could write the relocs out and then read them again; I don't
10931 know how bad the memory loss will be. */
10933 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10934 sub->output_has_begun = FALSE;
10935 for (o = abfd->sections; o != NULL; o = o->next)
10937 for (p = o->map_head.link_order; p != NULL; p = p->next)
10939 if (p->type == bfd_indirect_link_order
10940 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10941 == bfd_target_elf_flavour)
10942 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10944 if (! sub->output_has_begun)
10946 if (! elf_link_input_bfd (&flinfo, sub))
10948 sub->output_has_begun = TRUE;
10951 else if (p->type == bfd_section_reloc_link_order
10952 || p->type == bfd_symbol_reloc_link_order)
10954 if (! elf_reloc_link_order (abfd, info, o, p))
10959 if (! _bfd_default_link_order (abfd, info, o, p))
10961 if (p->type == bfd_indirect_link_order
10962 && (bfd_get_flavour (sub)
10963 == bfd_target_elf_flavour)
10964 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10965 != bed->s->elfclass))
10967 const char *iclass, *oclass;
10969 if (bed->s->elfclass == ELFCLASS64)
10971 iclass = "ELFCLASS32";
10972 oclass = "ELFCLASS64";
10976 iclass = "ELFCLASS64";
10977 oclass = "ELFCLASS32";
10980 bfd_set_error (bfd_error_wrong_format);
10981 (*_bfd_error_handler)
10982 (_("%B: file class %s incompatible with %s"),
10983 sub, iclass, oclass);
10992 /* Free symbol buffer if needed. */
10993 if (!info->reduce_memory_overheads)
10995 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10996 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10997 && elf_tdata (sub)->symbuf)
10999 free (elf_tdata (sub)->symbuf);
11000 elf_tdata (sub)->symbuf = NULL;
11004 /* Output any global symbols that got converted to local in a
11005 version script or due to symbol visibility. We do this in a
11006 separate step since ELF requires all local symbols to appear
11007 prior to any global symbols. FIXME: We should only do this if
11008 some global symbols were, in fact, converted to become local.
11009 FIXME: Will this work correctly with the Irix 5 linker? */
11010 eoinfo.failed = FALSE;
11011 eoinfo.flinfo = &flinfo;
11012 eoinfo.localsyms = TRUE;
11013 eoinfo.need_second_pass = FALSE;
11014 eoinfo.second_pass = FALSE;
11015 eoinfo.file_sym_done = FALSE;
11016 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11020 if (eoinfo.need_second_pass)
11022 eoinfo.second_pass = TRUE;
11023 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11028 /* If backend needs to output some local symbols not present in the hash
11029 table, do it now. */
11030 if (bed->elf_backend_output_arch_local_syms)
11032 typedef int (*out_sym_func)
11033 (void *, const char *, Elf_Internal_Sym *, asection *,
11034 struct elf_link_hash_entry *);
11036 if (! ((*bed->elf_backend_output_arch_local_syms)
11037 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11041 /* That wrote out all the local symbols. Finish up the symbol table
11042 with the global symbols. Even if we want to strip everything we
11043 can, we still need to deal with those global symbols that got
11044 converted to local in a version script. */
11046 /* The sh_info field records the index of the first non local symbol. */
11047 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11050 && flinfo.dynsym_sec != NULL
11051 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11053 Elf_Internal_Sym sym;
11054 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11055 long last_local = 0;
11057 /* Write out the section symbols for the output sections. */
11058 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11064 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11066 sym.st_target_internal = 0;
11068 for (s = abfd->sections; s != NULL; s = s->next)
11074 dynindx = elf_section_data (s)->dynindx;
11077 indx = elf_section_data (s)->this_idx;
11078 BFD_ASSERT (indx > 0);
11079 sym.st_shndx = indx;
11080 if (! check_dynsym (abfd, &sym))
11082 sym.st_value = s->vma;
11083 dest = dynsym + dynindx * bed->s->sizeof_sym;
11084 if (last_local < dynindx)
11085 last_local = dynindx;
11086 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11090 /* Write out the local dynsyms. */
11091 if (elf_hash_table (info)->dynlocal)
11093 struct elf_link_local_dynamic_entry *e;
11094 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11099 /* Copy the internal symbol and turn off visibility.
11100 Note that we saved a word of storage and overwrote
11101 the original st_name with the dynstr_index. */
11103 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11105 s = bfd_section_from_elf_index (e->input_bfd,
11110 elf_section_data (s->output_section)->this_idx;
11111 if (! check_dynsym (abfd, &sym))
11113 sym.st_value = (s->output_section->vma
11115 + e->isym.st_value);
11118 if (last_local < e->dynindx)
11119 last_local = e->dynindx;
11121 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11122 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11126 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11130 /* We get the global symbols from the hash table. */
11131 eoinfo.failed = FALSE;
11132 eoinfo.localsyms = FALSE;
11133 eoinfo.flinfo = &flinfo;
11134 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11138 /* If backend needs to output some symbols not present in the hash
11139 table, do it now. */
11140 if (bed->elf_backend_output_arch_syms)
11142 typedef int (*out_sym_func)
11143 (void *, const char *, Elf_Internal_Sym *, asection *,
11144 struct elf_link_hash_entry *);
11146 if (! ((*bed->elf_backend_output_arch_syms)
11147 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11151 /* Flush all symbols to the file. */
11152 if (! elf_link_flush_output_syms (&flinfo, bed))
11155 /* Now we know the size of the symtab section. */
11156 off += symtab_hdr->sh_size;
11158 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11159 if (symtab_shndx_hdr->sh_name != 0)
11161 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11162 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11163 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11164 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11165 symtab_shndx_hdr->sh_size = amt;
11167 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11170 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11171 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11176 /* Finish up and write out the symbol string table (.strtab)
11178 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11179 /* sh_name was set in prep_headers. */
11180 symstrtab_hdr->sh_type = SHT_STRTAB;
11181 symstrtab_hdr->sh_flags = 0;
11182 symstrtab_hdr->sh_addr = 0;
11183 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11184 symstrtab_hdr->sh_entsize = 0;
11185 symstrtab_hdr->sh_link = 0;
11186 symstrtab_hdr->sh_info = 0;
11187 /* sh_offset is set just below. */
11188 symstrtab_hdr->sh_addralign = 1;
11190 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11191 elf_next_file_pos (abfd) = off;
11193 if (bfd_get_symcount (abfd) > 0)
11195 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11196 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11200 /* Adjust the relocs to have the correct symbol indices. */
11201 for (o = abfd->sections; o != NULL; o = o->next)
11203 struct bfd_elf_section_data *esdo = elf_section_data (o);
11204 if ((o->flags & SEC_RELOC) == 0)
11207 if (esdo->rel.hdr != NULL)
11208 elf_link_adjust_relocs (abfd, &esdo->rel);
11209 if (esdo->rela.hdr != NULL)
11210 elf_link_adjust_relocs (abfd, &esdo->rela);
11212 /* Set the reloc_count field to 0 to prevent write_relocs from
11213 trying to swap the relocs out itself. */
11214 o->reloc_count = 0;
11217 if (dynamic && info->combreloc && dynobj != NULL)
11218 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11220 /* If we are linking against a dynamic object, or generating a
11221 shared library, finish up the dynamic linking information. */
11224 bfd_byte *dyncon, *dynconend;
11226 /* Fix up .dynamic entries. */
11227 o = bfd_get_linker_section (dynobj, ".dynamic");
11228 BFD_ASSERT (o != NULL);
11230 dyncon = o->contents;
11231 dynconend = o->contents + o->size;
11232 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11234 Elf_Internal_Dyn dyn;
11238 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11245 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11247 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11249 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11250 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11253 dyn.d_un.d_val = relativecount;
11260 name = info->init_function;
11263 name = info->fini_function;
11266 struct elf_link_hash_entry *h;
11268 h = elf_link_hash_lookup (elf_hash_table (info), name,
11269 FALSE, FALSE, TRUE);
11271 && (h->root.type == bfd_link_hash_defined
11272 || h->root.type == bfd_link_hash_defweak))
11274 dyn.d_un.d_ptr = h->root.u.def.value;
11275 o = h->root.u.def.section;
11276 if (o->output_section != NULL)
11277 dyn.d_un.d_ptr += (o->output_section->vma
11278 + o->output_offset);
11281 /* The symbol is imported from another shared
11282 library and does not apply to this one. */
11283 dyn.d_un.d_ptr = 0;
11290 case DT_PREINIT_ARRAYSZ:
11291 name = ".preinit_array";
11293 case DT_INIT_ARRAYSZ:
11294 name = ".init_array";
11296 case DT_FINI_ARRAYSZ:
11297 name = ".fini_array";
11299 o = bfd_get_section_by_name (abfd, name);
11302 (*_bfd_error_handler)
11303 (_("%B: could not find output section %s"), abfd, name);
11307 (*_bfd_error_handler)
11308 (_("warning: %s section has zero size"), name);
11309 dyn.d_un.d_val = o->size;
11312 case DT_PREINIT_ARRAY:
11313 name = ".preinit_array";
11315 case DT_INIT_ARRAY:
11316 name = ".init_array";
11318 case DT_FINI_ARRAY:
11319 name = ".fini_array";
11326 name = ".gnu.hash";
11335 name = ".gnu.version_d";
11338 name = ".gnu.version_r";
11341 name = ".gnu.version";
11343 o = bfd_get_section_by_name (abfd, name);
11346 (*_bfd_error_handler)
11347 (_("%B: could not find output section %s"), abfd, name);
11350 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11352 (*_bfd_error_handler)
11353 (_("warning: section '%s' is being made into a note"), name);
11354 bfd_set_error (bfd_error_nonrepresentable_section);
11357 dyn.d_un.d_ptr = o->vma;
11364 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11368 dyn.d_un.d_val = 0;
11369 dyn.d_un.d_ptr = 0;
11370 for (i = 1; i < elf_numsections (abfd); i++)
11372 Elf_Internal_Shdr *hdr;
11374 hdr = elf_elfsections (abfd)[i];
11375 if (hdr->sh_type == type
11376 && (hdr->sh_flags & SHF_ALLOC) != 0)
11378 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11379 dyn.d_un.d_val += hdr->sh_size;
11382 if (dyn.d_un.d_ptr == 0
11383 || hdr->sh_addr < dyn.d_un.d_ptr)
11384 dyn.d_un.d_ptr = hdr->sh_addr;
11390 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11394 /* If we have created any dynamic sections, then output them. */
11395 if (dynobj != NULL)
11397 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11400 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11401 if (((info->warn_shared_textrel && info->shared)
11402 || info->error_textrel)
11403 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11405 bfd_byte *dyncon, *dynconend;
11407 dyncon = o->contents;
11408 dynconend = o->contents + o->size;
11409 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11411 Elf_Internal_Dyn dyn;
11413 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11415 if (dyn.d_tag == DT_TEXTREL)
11417 if (info->error_textrel)
11418 info->callbacks->einfo
11419 (_("%P%X: read-only segment has dynamic relocations.\n"));
11421 info->callbacks->einfo
11422 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11428 for (o = dynobj->sections; o != NULL; o = o->next)
11430 if ((o->flags & SEC_HAS_CONTENTS) == 0
11432 || o->output_section == bfd_abs_section_ptr)
11434 if ((o->flags & SEC_LINKER_CREATED) == 0)
11436 /* At this point, we are only interested in sections
11437 created by _bfd_elf_link_create_dynamic_sections. */
11440 if (elf_hash_table (info)->stab_info.stabstr == o)
11442 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11444 if (strcmp (o->name, ".dynstr") != 0)
11446 /* FIXME: octets_per_byte. */
11447 if (! bfd_set_section_contents (abfd, o->output_section,
11449 (file_ptr) o->output_offset,
11455 /* The contents of the .dynstr section are actually in a
11457 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11458 if (bfd_seek (abfd, off, SEEK_SET) != 0
11459 || ! _bfd_elf_strtab_emit (abfd,
11460 elf_hash_table (info)->dynstr))
11466 if (info->relocatable)
11468 bfd_boolean failed = FALSE;
11470 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11475 /* If we have optimized stabs strings, output them. */
11476 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11478 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11482 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11485 elf_final_link_free (abfd, &flinfo);
11487 elf_linker (abfd) = TRUE;
11491 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11492 if (contents == NULL)
11493 return FALSE; /* Bail out and fail. */
11494 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11495 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11502 elf_final_link_free (abfd, &flinfo);
11506 /* Initialize COOKIE for input bfd ABFD. */
11509 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11510 struct bfd_link_info *info, bfd *abfd)
11512 Elf_Internal_Shdr *symtab_hdr;
11513 const struct elf_backend_data *bed;
11515 bed = get_elf_backend_data (abfd);
11516 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11518 cookie->abfd = abfd;
11519 cookie->sym_hashes = elf_sym_hashes (abfd);
11520 cookie->bad_symtab = elf_bad_symtab (abfd);
11521 if (cookie->bad_symtab)
11523 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11524 cookie->extsymoff = 0;
11528 cookie->locsymcount = symtab_hdr->sh_info;
11529 cookie->extsymoff = symtab_hdr->sh_info;
11532 if (bed->s->arch_size == 32)
11533 cookie->r_sym_shift = 8;
11535 cookie->r_sym_shift = 32;
11537 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11538 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11540 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11541 cookie->locsymcount, 0,
11543 if (cookie->locsyms == NULL)
11545 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11548 if (info->keep_memory)
11549 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11554 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11557 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11559 Elf_Internal_Shdr *symtab_hdr;
11561 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11562 if (cookie->locsyms != NULL
11563 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11564 free (cookie->locsyms);
11567 /* Initialize the relocation information in COOKIE for input section SEC
11568 of input bfd ABFD. */
11571 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11572 struct bfd_link_info *info, bfd *abfd,
11575 const struct elf_backend_data *bed;
11577 if (sec->reloc_count == 0)
11579 cookie->rels = NULL;
11580 cookie->relend = NULL;
11584 bed = get_elf_backend_data (abfd);
11586 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11587 info->keep_memory);
11588 if (cookie->rels == NULL)
11590 cookie->rel = cookie->rels;
11591 cookie->relend = (cookie->rels
11592 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11594 cookie->rel = cookie->rels;
11598 /* Free the memory allocated by init_reloc_cookie_rels,
11602 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11605 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11606 free (cookie->rels);
11609 /* Initialize the whole of COOKIE for input section SEC. */
11612 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11613 struct bfd_link_info *info,
11616 if (!init_reloc_cookie (cookie, info, sec->owner))
11618 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11623 fini_reloc_cookie (cookie, sec->owner);
11628 /* Free the memory allocated by init_reloc_cookie_for_section,
11632 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11635 fini_reloc_cookie_rels (cookie, sec);
11636 fini_reloc_cookie (cookie, sec->owner);
11639 /* Garbage collect unused sections. */
11641 /* Default gc_mark_hook. */
11644 _bfd_elf_gc_mark_hook (asection *sec,
11645 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11646 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11647 struct elf_link_hash_entry *h,
11648 Elf_Internal_Sym *sym)
11650 const char *sec_name;
11654 switch (h->root.type)
11656 case bfd_link_hash_defined:
11657 case bfd_link_hash_defweak:
11658 return h->root.u.def.section;
11660 case bfd_link_hash_common:
11661 return h->root.u.c.p->section;
11663 case bfd_link_hash_undefined:
11664 case bfd_link_hash_undefweak:
11665 /* To work around a glibc bug, keep all XXX input sections
11666 when there is an as yet undefined reference to __start_XXX
11667 or __stop_XXX symbols. The linker will later define such
11668 symbols for orphan input sections that have a name
11669 representable as a C identifier. */
11670 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11671 sec_name = h->root.root.string + 8;
11672 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11673 sec_name = h->root.root.string + 7;
11677 if (sec_name && *sec_name != '\0')
11681 for (i = info->input_bfds; i; i = i->link_next)
11683 sec = bfd_get_section_by_name (i, sec_name);
11685 sec->flags |= SEC_KEEP;
11695 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11700 /* COOKIE->rel describes a relocation against section SEC, which is
11701 a section we've decided to keep. Return the section that contains
11702 the relocation symbol, or NULL if no section contains it. */
11705 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11706 elf_gc_mark_hook_fn gc_mark_hook,
11707 struct elf_reloc_cookie *cookie)
11709 unsigned long r_symndx;
11710 struct elf_link_hash_entry *h;
11712 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11713 if (r_symndx == STN_UNDEF)
11716 if (r_symndx >= cookie->locsymcount
11717 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11719 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11720 while (h->root.type == bfd_link_hash_indirect
11721 || h->root.type == bfd_link_hash_warning)
11722 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11724 /* If this symbol is weak and there is a non-weak definition, we
11725 keep the non-weak definition because many backends put
11726 dynamic reloc info on the non-weak definition for code
11727 handling copy relocs. */
11728 if (h->u.weakdef != NULL)
11729 h->u.weakdef->mark = 1;
11730 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11733 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11734 &cookie->locsyms[r_symndx]);
11737 /* COOKIE->rel describes a relocation against section SEC, which is
11738 a section we've decided to keep. Mark the section that contains
11739 the relocation symbol. */
11742 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11744 elf_gc_mark_hook_fn gc_mark_hook,
11745 struct elf_reloc_cookie *cookie)
11749 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11750 if (rsec && !rsec->gc_mark)
11752 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11753 || (rsec->owner->flags & DYNAMIC) != 0)
11755 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11761 /* The mark phase of garbage collection. For a given section, mark
11762 it and any sections in this section's group, and all the sections
11763 which define symbols to which it refers. */
11766 _bfd_elf_gc_mark (struct bfd_link_info *info,
11768 elf_gc_mark_hook_fn gc_mark_hook)
11771 asection *group_sec, *eh_frame;
11775 /* Mark all the sections in the group. */
11776 group_sec = elf_section_data (sec)->next_in_group;
11777 if (group_sec && !group_sec->gc_mark)
11778 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11781 /* Look through the section relocs. */
11783 eh_frame = elf_eh_frame_section (sec->owner);
11784 if ((sec->flags & SEC_RELOC) != 0
11785 && sec->reloc_count > 0
11786 && sec != eh_frame)
11788 struct elf_reloc_cookie cookie;
11790 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11794 for (; cookie.rel < cookie.relend; cookie.rel++)
11795 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11800 fini_reloc_cookie_for_section (&cookie, sec);
11804 if (ret && eh_frame && elf_fde_list (sec))
11806 struct elf_reloc_cookie cookie;
11808 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11812 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11813 gc_mark_hook, &cookie))
11815 fini_reloc_cookie_for_section (&cookie, eh_frame);
11822 /* Keep debug and special sections. */
11825 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11826 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11830 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11833 bfd_boolean some_kept;
11834 bfd_boolean debug_frag_seen;
11836 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11839 /* Ensure all linker created sections are kept,
11840 see if any other section is already marked,
11841 and note if we have any fragmented debug sections. */
11842 debug_frag_seen = some_kept = FALSE;
11843 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11845 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11847 else if (isec->gc_mark)
11850 if (debug_frag_seen == FALSE
11851 && (isec->flags & SEC_DEBUGGING)
11852 && CONST_STRNEQ (isec->name, ".debug_line."))
11853 debug_frag_seen = TRUE;
11856 /* If no section in this file will be kept, then we can
11857 toss out the debug and special sections. */
11861 /* Keep debug and special sections like .comment when they are
11862 not part of a group, or when we have single-member groups. */
11863 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11864 if ((elf_next_in_group (isec) == NULL
11865 || elf_next_in_group (isec) == isec)
11866 && ((isec->flags & SEC_DEBUGGING) != 0
11867 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11870 if (! debug_frag_seen)
11873 /* Look for CODE sections which are going to be discarded,
11874 and find and discard any fragmented debug sections which
11875 are associated with that code section. */
11876 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11877 if ((isec->flags & SEC_CODE) != 0
11878 && isec->gc_mark == 0)
11883 ilen = strlen (isec->name);
11885 /* Association is determined by the name of the debug section
11886 containing the name of the code section as a suffix. For
11887 example .debug_line.text.foo is a debug section associated
11889 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
11893 if (dsec->gc_mark == 0
11894 || (dsec->flags & SEC_DEBUGGING) == 0)
11897 dlen = strlen (dsec->name);
11900 && strncmp (dsec->name + (dlen - ilen),
11901 isec->name, ilen) == 0)
11912 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11914 struct elf_gc_sweep_symbol_info
11916 struct bfd_link_info *info;
11917 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11922 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11925 && (((h->root.type == bfd_link_hash_defined
11926 || h->root.type == bfd_link_hash_defweak)
11927 && !(h->def_regular
11928 && h->root.u.def.section->gc_mark))
11929 || h->root.type == bfd_link_hash_undefined
11930 || h->root.type == bfd_link_hash_undefweak))
11932 struct elf_gc_sweep_symbol_info *inf;
11934 inf = (struct elf_gc_sweep_symbol_info *) data;
11935 (*inf->hide_symbol) (inf->info, h, TRUE);
11936 h->def_regular = 0;
11937 h->ref_regular = 0;
11938 h->ref_regular_nonweak = 0;
11944 /* The sweep phase of garbage collection. Remove all garbage sections. */
11946 typedef bfd_boolean (*gc_sweep_hook_fn)
11947 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11950 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11953 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11954 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11955 unsigned long section_sym_count;
11956 struct elf_gc_sweep_symbol_info sweep_info;
11958 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11962 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11965 for (o = sub->sections; o != NULL; o = o->next)
11967 /* When any section in a section group is kept, we keep all
11968 sections in the section group. If the first member of
11969 the section group is excluded, we will also exclude the
11971 if (o->flags & SEC_GROUP)
11973 asection *first = elf_next_in_group (o);
11974 o->gc_mark = first->gc_mark;
11980 /* Skip sweeping sections already excluded. */
11981 if (o->flags & SEC_EXCLUDE)
11984 /* Since this is early in the link process, it is simple
11985 to remove a section from the output. */
11986 o->flags |= SEC_EXCLUDE;
11988 if (info->print_gc_sections && o->size != 0)
11989 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11991 /* But we also have to update some of the relocation
11992 info we collected before. */
11994 && (o->flags & SEC_RELOC) != 0
11995 && o->reloc_count != 0
11996 && !((info->strip == strip_all || info->strip == strip_debugger)
11997 && (o->flags & SEC_DEBUGGING) != 0)
11998 && !bfd_is_abs_section (o->output_section))
12000 Elf_Internal_Rela *internal_relocs;
12004 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12005 info->keep_memory);
12006 if (internal_relocs == NULL)
12009 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12011 if (elf_section_data (o)->relocs != internal_relocs)
12012 free (internal_relocs);
12020 /* Remove the symbols that were in the swept sections from the dynamic
12021 symbol table. GCFIXME: Anyone know how to get them out of the
12022 static symbol table as well? */
12023 sweep_info.info = info;
12024 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12025 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12028 _bfd_elf_link_renumber_dynsyms (abfd, info, §ion_sym_count);
12032 /* Propagate collected vtable information. This is called through
12033 elf_link_hash_traverse. */
12036 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12038 /* Those that are not vtables. */
12039 if (h->vtable == NULL || h->vtable->parent == NULL)
12042 /* Those vtables that do not have parents, we cannot merge. */
12043 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12046 /* If we've already been done, exit. */
12047 if (h->vtable->used && h->vtable->used[-1])
12050 /* Make sure the parent's table is up to date. */
12051 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12053 if (h->vtable->used == NULL)
12055 /* None of this table's entries were referenced. Re-use the
12057 h->vtable->used = h->vtable->parent->vtable->used;
12058 h->vtable->size = h->vtable->parent->vtable->size;
12063 bfd_boolean *cu, *pu;
12065 /* Or the parent's entries into ours. */
12066 cu = h->vtable->used;
12068 pu = h->vtable->parent->vtable->used;
12071 const struct elf_backend_data *bed;
12072 unsigned int log_file_align;
12074 bed = get_elf_backend_data (h->root.u.def.section->owner);
12075 log_file_align = bed->s->log_file_align;
12076 n = h->vtable->parent->vtable->size >> log_file_align;
12091 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12094 bfd_vma hstart, hend;
12095 Elf_Internal_Rela *relstart, *relend, *rel;
12096 const struct elf_backend_data *bed;
12097 unsigned int log_file_align;
12099 /* Take care of both those symbols that do not describe vtables as
12100 well as those that are not loaded. */
12101 if (h->vtable == NULL || h->vtable->parent == NULL)
12104 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12105 || h->root.type == bfd_link_hash_defweak);
12107 sec = h->root.u.def.section;
12108 hstart = h->root.u.def.value;
12109 hend = hstart + h->size;
12111 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12113 return *(bfd_boolean *) okp = FALSE;
12114 bed = get_elf_backend_data (sec->owner);
12115 log_file_align = bed->s->log_file_align;
12117 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12119 for (rel = relstart; rel < relend; ++rel)
12120 if (rel->r_offset >= hstart && rel->r_offset < hend)
12122 /* If the entry is in use, do nothing. */
12123 if (h->vtable->used
12124 && (rel->r_offset - hstart) < h->vtable->size)
12126 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12127 if (h->vtable->used[entry])
12130 /* Otherwise, kill it. */
12131 rel->r_offset = rel->r_info = rel->r_addend = 0;
12137 /* Mark sections containing dynamically referenced symbols. When
12138 building shared libraries, we must assume that any visible symbol is
12142 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12144 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12145 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12147 if ((h->root.type == bfd_link_hash_defined
12148 || h->root.type == bfd_link_hash_defweak)
12151 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12152 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12153 && (!info->executable
12154 || info->export_dynamic
12157 && (*d->match) (&d->head, NULL, h->root.root.string)))
12158 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12159 || !bfd_hide_sym_by_version (info->version_info,
12160 h->root.root.string)))))
12161 h->root.u.def.section->flags |= SEC_KEEP;
12166 /* Keep all sections containing symbols undefined on the command-line,
12167 and the section containing the entry symbol. */
12170 _bfd_elf_gc_keep (struct bfd_link_info *info)
12172 struct bfd_sym_chain *sym;
12174 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12176 struct elf_link_hash_entry *h;
12178 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12179 FALSE, FALSE, FALSE);
12182 && (h->root.type == bfd_link_hash_defined
12183 || h->root.type == bfd_link_hash_defweak)
12184 && !bfd_is_abs_section (h->root.u.def.section))
12185 h->root.u.def.section->flags |= SEC_KEEP;
12189 /* Do mark and sweep of unused sections. */
12192 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12194 bfd_boolean ok = TRUE;
12196 elf_gc_mark_hook_fn gc_mark_hook;
12197 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12199 if (!bed->can_gc_sections
12200 || !is_elf_hash_table (info->hash))
12202 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12206 bed->gc_keep (info);
12208 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12209 at the .eh_frame section if we can mark the FDEs individually. */
12210 _bfd_elf_begin_eh_frame_parsing (info);
12211 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12214 struct elf_reloc_cookie cookie;
12216 sec = bfd_get_section_by_name (sub, ".eh_frame");
12217 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12219 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12220 if (elf_section_data (sec)->sec_info
12221 && (sec->flags & SEC_LINKER_CREATED) == 0)
12222 elf_eh_frame_section (sub) = sec;
12223 fini_reloc_cookie_for_section (&cookie, sec);
12224 sec = bfd_get_next_section_by_name (sec);
12227 _bfd_elf_end_eh_frame_parsing (info);
12229 /* Apply transitive closure to the vtable entry usage info. */
12230 elf_link_hash_traverse (elf_hash_table (info),
12231 elf_gc_propagate_vtable_entries_used,
12236 /* Kill the vtable relocations that were not used. */
12237 elf_link_hash_traverse (elf_hash_table (info),
12238 elf_gc_smash_unused_vtentry_relocs,
12243 /* Mark dynamically referenced symbols. */
12244 if (elf_hash_table (info)->dynamic_sections_created)
12245 elf_link_hash_traverse (elf_hash_table (info),
12246 bed->gc_mark_dynamic_ref,
12249 /* Grovel through relocs to find out who stays ... */
12250 gc_mark_hook = bed->gc_mark_hook;
12251 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12255 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12258 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12259 Also treat note sections as a root, if the section is not part
12261 for (o = sub->sections; o != NULL; o = o->next)
12263 && (o->flags & SEC_EXCLUDE) == 0
12264 && ((o->flags & SEC_KEEP) != 0
12265 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12266 && elf_next_in_group (o) == NULL )))
12268 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12273 /* Allow the backend to mark additional target specific sections. */
12274 bed->gc_mark_extra_sections (info, gc_mark_hook);
12276 /* ... and mark SEC_EXCLUDE for those that go. */
12277 return elf_gc_sweep (abfd, info);
12280 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12283 bfd_elf_gc_record_vtinherit (bfd *abfd,
12285 struct elf_link_hash_entry *h,
12288 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12289 struct elf_link_hash_entry **search, *child;
12290 bfd_size_type extsymcount;
12291 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12293 /* The sh_info field of the symtab header tells us where the
12294 external symbols start. We don't care about the local symbols at
12296 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12297 if (!elf_bad_symtab (abfd))
12298 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12300 sym_hashes = elf_sym_hashes (abfd);
12301 sym_hashes_end = sym_hashes + extsymcount;
12303 /* Hunt down the child symbol, which is in this section at the same
12304 offset as the relocation. */
12305 for (search = sym_hashes; search != sym_hashes_end; ++search)
12307 if ((child = *search) != NULL
12308 && (child->root.type == bfd_link_hash_defined
12309 || child->root.type == bfd_link_hash_defweak)
12310 && child->root.u.def.section == sec
12311 && child->root.u.def.value == offset)
12315 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12316 abfd, sec, (unsigned long) offset);
12317 bfd_set_error (bfd_error_invalid_operation);
12321 if (!child->vtable)
12323 child->vtable = (struct elf_link_virtual_table_entry *)
12324 bfd_zalloc (abfd, sizeof (*child->vtable));
12325 if (!child->vtable)
12330 /* This *should* only be the absolute section. It could potentially
12331 be that someone has defined a non-global vtable though, which
12332 would be bad. It isn't worth paging in the local symbols to be
12333 sure though; that case should simply be handled by the assembler. */
12335 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12338 child->vtable->parent = h;
12343 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12346 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12347 asection *sec ATTRIBUTE_UNUSED,
12348 struct elf_link_hash_entry *h,
12351 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12352 unsigned int log_file_align = bed->s->log_file_align;
12356 h->vtable = (struct elf_link_virtual_table_entry *)
12357 bfd_zalloc (abfd, sizeof (*h->vtable));
12362 if (addend >= h->vtable->size)
12364 size_t size, bytes, file_align;
12365 bfd_boolean *ptr = h->vtable->used;
12367 /* While the symbol is undefined, we have to be prepared to handle
12369 file_align = 1 << log_file_align;
12370 if (h->root.type == bfd_link_hash_undefined)
12371 size = addend + file_align;
12375 if (addend >= size)
12377 /* Oops! We've got a reference past the defined end of
12378 the table. This is probably a bug -- shall we warn? */
12379 size = addend + file_align;
12382 size = (size + file_align - 1) & -file_align;
12384 /* Allocate one extra entry for use as a "done" flag for the
12385 consolidation pass. */
12386 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12390 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12396 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12397 * sizeof (bfd_boolean));
12398 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12402 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12407 /* And arrange for that done flag to be at index -1. */
12408 h->vtable->used = ptr + 1;
12409 h->vtable->size = size;
12412 h->vtable->used[addend >> log_file_align] = TRUE;
12417 /* Map an ELF section header flag to its corresponding string. */
12421 flagword flag_value;
12422 } elf_flags_to_name_table;
12424 static elf_flags_to_name_table elf_flags_to_names [] =
12426 { "SHF_WRITE", SHF_WRITE },
12427 { "SHF_ALLOC", SHF_ALLOC },
12428 { "SHF_EXECINSTR", SHF_EXECINSTR },
12429 { "SHF_MERGE", SHF_MERGE },
12430 { "SHF_STRINGS", SHF_STRINGS },
12431 { "SHF_INFO_LINK", SHF_INFO_LINK},
12432 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12433 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12434 { "SHF_GROUP", SHF_GROUP },
12435 { "SHF_TLS", SHF_TLS },
12436 { "SHF_MASKOS", SHF_MASKOS },
12437 { "SHF_EXCLUDE", SHF_EXCLUDE },
12440 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12442 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12443 struct flag_info *flaginfo,
12446 const bfd_vma sh_flags = elf_section_flags (section);
12448 if (!flaginfo->flags_initialized)
12450 bfd *obfd = info->output_bfd;
12451 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12452 struct flag_info_list *tf = flaginfo->flag_list;
12454 int without_hex = 0;
12456 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12459 flagword (*lookup) (char *);
12461 lookup = bed->elf_backend_lookup_section_flags_hook;
12462 if (lookup != NULL)
12464 flagword hexval = (*lookup) ((char *) tf->name);
12468 if (tf->with == with_flags)
12469 with_hex |= hexval;
12470 else if (tf->with == without_flags)
12471 without_hex |= hexval;
12476 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12478 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12480 if (tf->with == with_flags)
12481 with_hex |= elf_flags_to_names[i].flag_value;
12482 else if (tf->with == without_flags)
12483 without_hex |= elf_flags_to_names[i].flag_value;
12490 info->callbacks->einfo
12491 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12495 flaginfo->flags_initialized = TRUE;
12496 flaginfo->only_with_flags |= with_hex;
12497 flaginfo->not_with_flags |= without_hex;
12500 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12503 if ((flaginfo->not_with_flags & sh_flags) != 0)
12509 struct alloc_got_off_arg {
12511 struct bfd_link_info *info;
12514 /* We need a special top-level link routine to convert got reference counts
12515 to real got offsets. */
12518 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12520 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12521 bfd *obfd = gofarg->info->output_bfd;
12522 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12524 if (h->got.refcount > 0)
12526 h->got.offset = gofarg->gotoff;
12527 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12530 h->got.offset = (bfd_vma) -1;
12535 /* And an accompanying bit to work out final got entry offsets once
12536 we're done. Should be called from final_link. */
12539 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12540 struct bfd_link_info *info)
12543 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12545 struct alloc_got_off_arg gofarg;
12547 BFD_ASSERT (abfd == info->output_bfd);
12549 if (! is_elf_hash_table (info->hash))
12552 /* The GOT offset is relative to the .got section, but the GOT header is
12553 put into the .got.plt section, if the backend uses it. */
12554 if (bed->want_got_plt)
12557 gotoff = bed->got_header_size;
12559 /* Do the local .got entries first. */
12560 for (i = info->input_bfds; i; i = i->link_next)
12562 bfd_signed_vma *local_got;
12563 bfd_size_type j, locsymcount;
12564 Elf_Internal_Shdr *symtab_hdr;
12566 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12569 local_got = elf_local_got_refcounts (i);
12573 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12574 if (elf_bad_symtab (i))
12575 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12577 locsymcount = symtab_hdr->sh_info;
12579 for (j = 0; j < locsymcount; ++j)
12581 if (local_got[j] > 0)
12583 local_got[j] = gotoff;
12584 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12587 local_got[j] = (bfd_vma) -1;
12591 /* Then the global .got entries. .plt refcounts are handled by
12592 adjust_dynamic_symbol */
12593 gofarg.gotoff = gotoff;
12594 gofarg.info = info;
12595 elf_link_hash_traverse (elf_hash_table (info),
12596 elf_gc_allocate_got_offsets,
12601 /* Many folk need no more in the way of final link than this, once
12602 got entry reference counting is enabled. */
12605 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12607 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12610 /* Invoke the regular ELF backend linker to do all the work. */
12611 return bfd_elf_final_link (abfd, info);
12615 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12617 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12619 if (rcookie->bad_symtab)
12620 rcookie->rel = rcookie->rels;
12622 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12624 unsigned long r_symndx;
12626 if (! rcookie->bad_symtab)
12627 if (rcookie->rel->r_offset > offset)
12629 if (rcookie->rel->r_offset != offset)
12632 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12633 if (r_symndx == STN_UNDEF)
12636 if (r_symndx >= rcookie->locsymcount
12637 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12639 struct elf_link_hash_entry *h;
12641 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12643 while (h->root.type == bfd_link_hash_indirect
12644 || h->root.type == bfd_link_hash_warning)
12645 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12647 if ((h->root.type == bfd_link_hash_defined
12648 || h->root.type == bfd_link_hash_defweak)
12649 && discarded_section (h->root.u.def.section))
12656 /* It's not a relocation against a global symbol,
12657 but it could be a relocation against a local
12658 symbol for a discarded section. */
12660 Elf_Internal_Sym *isym;
12662 /* Need to: get the symbol; get the section. */
12663 isym = &rcookie->locsyms[r_symndx];
12664 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12665 if (isec != NULL && discarded_section (isec))
12673 /* Discard unneeded references to discarded sections.
12674 Returns TRUE if any section's size was changed. */
12675 /* This function assumes that the relocations are in sorted order,
12676 which is true for all known assemblers. */
12679 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12681 struct elf_reloc_cookie cookie;
12682 asection *stab, *eh;
12683 const struct elf_backend_data *bed;
12685 bfd_boolean ret = FALSE;
12687 if (info->traditional_format
12688 || !is_elf_hash_table (info->hash))
12691 _bfd_elf_begin_eh_frame_parsing (info);
12692 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12694 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12697 bed = get_elf_backend_data (abfd);
12700 if (!info->relocatable)
12702 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12705 || bfd_is_abs_section (eh->output_section)))
12706 eh = bfd_get_next_section_by_name (eh);
12709 stab = bfd_get_section_by_name (abfd, ".stab");
12711 && (stab->size == 0
12712 || bfd_is_abs_section (stab->output_section)
12713 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12718 && bed->elf_backend_discard_info == NULL)
12721 if (!init_reloc_cookie (&cookie, info, abfd))
12725 && stab->reloc_count > 0
12726 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12728 if (_bfd_discard_section_stabs (abfd, stab,
12729 elf_section_data (stab)->sec_info,
12730 bfd_elf_reloc_symbol_deleted_p,
12733 fini_reloc_cookie_rels (&cookie, stab);
12737 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12739 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12740 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12741 bfd_elf_reloc_symbol_deleted_p,
12744 fini_reloc_cookie_rels (&cookie, eh);
12745 eh = bfd_get_next_section_by_name (eh);
12748 if (bed->elf_backend_discard_info != NULL
12749 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12752 fini_reloc_cookie (&cookie, abfd);
12754 _bfd_elf_end_eh_frame_parsing (info);
12756 if (info->eh_frame_hdr
12757 && !info->relocatable
12758 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12765 _bfd_elf_section_already_linked (bfd *abfd,
12767 struct bfd_link_info *info)
12770 const char *name, *key;
12771 struct bfd_section_already_linked *l;
12772 struct bfd_section_already_linked_hash_entry *already_linked_list;
12774 if (sec->output_section == bfd_abs_section_ptr)
12777 flags = sec->flags;
12779 /* Return if it isn't a linkonce section. A comdat group section
12780 also has SEC_LINK_ONCE set. */
12781 if ((flags & SEC_LINK_ONCE) == 0)
12784 /* Don't put group member sections on our list of already linked
12785 sections. They are handled as a group via their group section. */
12786 if (elf_sec_group (sec) != NULL)
12789 /* For a SHT_GROUP section, use the group signature as the key. */
12791 if ((flags & SEC_GROUP) != 0
12792 && elf_next_in_group (sec) != NULL
12793 && elf_group_name (elf_next_in_group (sec)) != NULL)
12794 key = elf_group_name (elf_next_in_group (sec));
12797 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12798 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12799 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12802 /* Must be a user linkonce section that doesn't follow gcc's
12803 naming convention. In this case we won't be matching
12804 single member groups. */
12808 already_linked_list = bfd_section_already_linked_table_lookup (key);
12810 for (l = already_linked_list->entry; l != NULL; l = l->next)
12812 /* We may have 2 different types of sections on the list: group
12813 sections with a signature of <key> (<key> is some string),
12814 and linkonce sections named .gnu.linkonce.<type>.<key>.
12815 Match like sections. LTO plugin sections are an exception.
12816 They are always named .gnu.linkonce.t.<key> and match either
12817 type of section. */
12818 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12819 && ((flags & SEC_GROUP) != 0
12820 || strcmp (name, l->sec->name) == 0))
12821 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12823 /* The section has already been linked. See if we should
12824 issue a warning. */
12825 if (!_bfd_handle_already_linked (sec, l, info))
12828 if (flags & SEC_GROUP)
12830 asection *first = elf_next_in_group (sec);
12831 asection *s = first;
12835 s->output_section = bfd_abs_section_ptr;
12836 /* Record which group discards it. */
12837 s->kept_section = l->sec;
12838 s = elf_next_in_group (s);
12839 /* These lists are circular. */
12849 /* A single member comdat group section may be discarded by a
12850 linkonce section and vice versa. */
12851 if ((flags & SEC_GROUP) != 0)
12853 asection *first = elf_next_in_group (sec);
12855 if (first != NULL && elf_next_in_group (first) == first)
12856 /* Check this single member group against linkonce sections. */
12857 for (l = already_linked_list->entry; l != NULL; l = l->next)
12858 if ((l->sec->flags & SEC_GROUP) == 0
12859 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12861 first->output_section = bfd_abs_section_ptr;
12862 first->kept_section = l->sec;
12863 sec->output_section = bfd_abs_section_ptr;
12868 /* Check this linkonce section against single member groups. */
12869 for (l = already_linked_list->entry; l != NULL; l = l->next)
12870 if (l->sec->flags & SEC_GROUP)
12872 asection *first = elf_next_in_group (l->sec);
12875 && elf_next_in_group (first) == first
12876 && bfd_elf_match_symbols_in_sections (first, sec, info))
12878 sec->output_section = bfd_abs_section_ptr;
12879 sec->kept_section = first;
12884 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12885 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12886 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12887 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12888 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12889 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12890 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12891 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12892 The reverse order cannot happen as there is never a bfd with only the
12893 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12894 matter as here were are looking only for cross-bfd sections. */
12896 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12897 for (l = already_linked_list->entry; l != NULL; l = l->next)
12898 if ((l->sec->flags & SEC_GROUP) == 0
12899 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12901 if (abfd != l->sec->owner)
12902 sec->output_section = bfd_abs_section_ptr;
12906 /* This is the first section with this name. Record it. */
12907 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12908 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12909 return sec->output_section == bfd_abs_section_ptr;
12913 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12915 return sym->st_shndx == SHN_COMMON;
12919 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12925 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12927 return bfd_com_section_ptr;
12931 _bfd_elf_default_got_elt_size (bfd *abfd,
12932 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12933 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12934 bfd *ibfd ATTRIBUTE_UNUSED,
12935 unsigned long symndx ATTRIBUTE_UNUSED)
12937 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12938 return bed->s->arch_size / 8;
12941 /* Routines to support the creation of dynamic relocs. */
12943 /* Returns the name of the dynamic reloc section associated with SEC. */
12945 static const char *
12946 get_dynamic_reloc_section_name (bfd * abfd,
12948 bfd_boolean is_rela)
12951 const char *old_name = bfd_get_section_name (NULL, sec);
12952 const char *prefix = is_rela ? ".rela" : ".rel";
12954 if (old_name == NULL)
12957 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12958 sprintf (name, "%s%s", prefix, old_name);
12963 /* Returns the dynamic reloc section associated with SEC.
12964 If necessary compute the name of the dynamic reloc section based
12965 on SEC's name (looked up in ABFD's string table) and the setting
12969 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12971 bfd_boolean is_rela)
12973 asection * reloc_sec = elf_section_data (sec)->sreloc;
12975 if (reloc_sec == NULL)
12977 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12981 reloc_sec = bfd_get_linker_section (abfd, name);
12983 if (reloc_sec != NULL)
12984 elf_section_data (sec)->sreloc = reloc_sec;
12991 /* Returns the dynamic reloc section associated with SEC. If the
12992 section does not exist it is created and attached to the DYNOBJ
12993 bfd and stored in the SRELOC field of SEC's elf_section_data
12996 ALIGNMENT is the alignment for the newly created section and
12997 IS_RELA defines whether the name should be .rela.<SEC's name>
12998 or .rel.<SEC's name>. The section name is looked up in the
12999 string table associated with ABFD. */
13002 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13004 unsigned int alignment,
13006 bfd_boolean is_rela)
13008 asection * reloc_sec = elf_section_data (sec)->sreloc;
13010 if (reloc_sec == NULL)
13012 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13017 reloc_sec = bfd_get_linker_section (dynobj, name);
13019 if (reloc_sec == NULL)
13021 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13022 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13023 if ((sec->flags & SEC_ALLOC) != 0)
13024 flags |= SEC_ALLOC | SEC_LOAD;
13026 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13027 if (reloc_sec != NULL)
13029 /* _bfd_elf_get_sec_type_attr chooses a section type by
13030 name. Override as it may be wrong, eg. for a user
13031 section named "auto" we'll get ".relauto" which is
13032 seen to be a .rela section. */
13033 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13034 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13039 elf_section_data (sec)->sreloc = reloc_sec;
13045 /* Copy the ELF symbol type associated with a linker hash entry. */
13047 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13048 struct bfd_link_hash_entry * hdest,
13049 struct bfd_link_hash_entry * hsrc)
13051 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13052 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13054 ehdest->type = ehsrc->type;
13055 ehdest->target_internal = ehsrc->target_internal;
13058 /* Append a RELA relocation REL to section S in BFD. */
13061 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13063 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13064 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13065 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13066 bed->s->swap_reloca_out (abfd, rel, loc);
13069 /* Append a REL relocation REL to section S in BFD. */
13072 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13074 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13075 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13076 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13077 bed->s->swap_reloc_out (abfd, rel, loc);