1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2019 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
27 #include "safe-ctype.h"
28 #include "libiberty.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
38 struct elf_info_failed
40 struct bfd_link_info *info;
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
47 struct elf_find_verdep_info
49 /* General link information. */
50 struct bfd_link_info *info;
51 /* The number of dependencies. */
53 /* Whether we had a failure. */
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry *, struct elf_info_failed *);
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 unsigned long r_symndx,
65 if (r_symndx >= cookie->locsymcount
66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 struct elf_link_hash_entry *h;
70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72 while (h->root.type == bfd_link_hash_indirect
73 || h->root.type == bfd_link_hash_warning)
74 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76 if ((h->root.type == bfd_link_hash_defined
77 || h->root.type == bfd_link_hash_defweak)
78 && discarded_section (h->root.u.def.section))
79 return h->root.u.def.section;
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
89 Elf_Internal_Sym *isym;
91 /* Need to: get the symbol; get the section. */
92 isym = &cookie->locsyms[r_symndx];
93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 && discard ? discarded_section (isec) : 1)
101 /* Define a symbol in a dynamic linkage section. */
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 struct bfd_link_info *info,
109 struct elf_link_hash_entry *h;
110 struct bfd_link_hash_entry *bh;
111 const struct elf_backend_data *bed;
113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h->root.type = bfd_link_hash_new;
126 bed = get_elf_backend_data (abfd);
127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
128 sec, 0, NULL, FALSE, bed->collect,
131 h = (struct elf_link_hash_entry *) bh;
132 BFD_ASSERT (h != NULL);
135 h->root.linker_def = 1;
136 h->type = STT_OBJECT;
137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
149 struct elf_link_hash_entry *h;
150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
151 struct elf_link_hash_table *htab = elf_hash_table (info);
153 /* This function may be called more than once. */
154 if (htab->sgot != NULL)
157 flags = bed->dynamic_sec_flags;
159 s = bfd_make_section_anyway_with_flags (abfd,
160 (bed->rela_plts_and_copies_p
161 ? ".rela.got" : ".rel.got"),
162 (bed->dynamic_sec_flags
165 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
175 if (bed->want_got_plt)
177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 || !bfd_set_section_alignment (abfd, s,
180 bed->s->log_file_align))
185 /* The first bit of the global offset table is the header. */
186 s->size += bed->got_header_size;
188 if (bed->want_got_sym)
190 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
191 (or .got.plt) section. We don't do this in the linker script
192 because we don't want to define the symbol if we are not creating
193 a global offset table. */
194 h = _bfd_elf_define_linkage_sym (abfd, info, s,
195 "_GLOBAL_OFFSET_TABLE_");
196 elf_hash_table (info)->hgot = h;
204 /* Create a strtab to hold the dynamic symbol names. */
206 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 struct elf_link_hash_table *hash_table;
210 hash_table = elf_hash_table (info);
211 if (hash_table->dynobj == NULL)
213 /* We may not set dynobj, an input file holding linker created
214 dynamic sections to abfd, which may be a dynamic object with
215 its own dynamic sections. We need to find a normal input file
216 to hold linker created sections if possible. */
217 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
221 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
223 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
224 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
225 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
233 hash_table->dynobj = abfd;
236 if (hash_table->dynstr == NULL)
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
260 if (! is_elf_hash_table (info->hash))
263 if (elf_hash_table (info)->dynamic_sections_created)
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
272 flags = bed->dynamic_sec_flags;
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
295 || ! bfd_set_section_alignment (abfd, s, 1))
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
309 elf_hash_table (info)->dynsym = s;
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
342 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
370 /* Create dynamic sections when linking against a dynamic object. */
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
404 if (bed->want_plt_sym)
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
422 if (! _bfd_elf_create_got_section (abfd, info))
425 if (bed->want_dynbss)
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
439 if (bed->want_dynrelro)
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
462 if (bfd_link_executable (info))
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
473 if (bed->want_dynrelro)
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
483 htab->sreldynrelro = s;
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
503 if (h->dynindx == -1)
505 struct elf_strtab_hash *dynstr;
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
522 if (!elf_hash_table (info)->is_relocatable_executable)
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
533 dynstr = elf_hash_table (info)->dynstr;
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
542 /* We don't put any version information in the dynamic string
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
559 if (indx == (size_t) -1)
561 h->dynstr_index = indx;
567 /* Mark a symbol dynamic. */
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
591 /* NB: If a symbol is made dynamic by --dynamic-list, it has
593 h->root.non_ir_ref_dynamic = 1;
597 /* Record an assignment to a symbol made by a linker script. We need
598 this in case some dynamic object refers to this symbol. */
601 bfd_elf_record_link_assignment (bfd *output_bfd,
602 struct bfd_link_info *info,
607 struct elf_link_hash_entry *h, *hv;
608 struct elf_link_hash_table *htab;
609 const struct elf_backend_data *bed;
611 if (!is_elf_hash_table (info->hash))
614 htab = elf_hash_table (info);
615 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
619 if (h->root.type == bfd_link_hash_warning)
620 h = (struct elf_link_hash_entry *) h->root.u.i.link;
622 if (h->versioned == unknown)
624 /* Set versioned if symbol version is unknown. */
625 char *version = strrchr (name, ELF_VER_CHR);
628 if (version > name && version[-1] != ELF_VER_CHR)
629 h->versioned = versioned_hidden;
631 h->versioned = versioned;
635 /* Symbols defined in a linker script but not referenced anywhere
636 else will have non_elf set. */
639 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
643 switch (h->root.type)
645 case bfd_link_hash_defined:
646 case bfd_link_hash_defweak:
647 case bfd_link_hash_common:
649 case bfd_link_hash_undefweak:
650 case bfd_link_hash_undefined:
651 /* Since we're defining the symbol, don't let it seem to have not
652 been defined. record_dynamic_symbol and size_dynamic_sections
653 may depend on this. */
654 h->root.type = bfd_link_hash_new;
655 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
656 bfd_link_repair_undef_list (&htab->root);
658 case bfd_link_hash_new:
660 case bfd_link_hash_indirect:
661 /* We had a versioned symbol in a dynamic library. We make the
662 the versioned symbol point to this one. */
663 bed = get_elf_backend_data (output_bfd);
665 while (hv->root.type == bfd_link_hash_indirect
666 || hv->root.type == bfd_link_hash_warning)
667 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
668 /* We don't need to update h->root.u since linker will set them
670 h->root.type = bfd_link_hash_undefined;
671 hv->root.type = bfd_link_hash_indirect;
672 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
673 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
680 /* If this symbol is being provided by the linker script, and it is
681 currently defined by a dynamic object, but not by a regular
682 object, then mark it as undefined so that the generic linker will
683 force the correct value. */
687 h->root.type = bfd_link_hash_undefined;
689 /* If this symbol is currently defined by a dynamic object, but not
690 by a regular object, then clear out any version information because
691 the symbol will not be associated with the dynamic object any
693 if (h->def_dynamic && !h->def_regular)
694 h->verinfo.verdef = NULL;
696 /* Make sure this symbol is not garbage collected. */
703 bed = get_elf_backend_data (output_bfd);
704 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
705 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
706 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
709 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
711 if (!bfd_link_relocatable (info)
713 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
714 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
719 || bfd_link_dll (info)
720 || elf_hash_table (info)->is_relocatable_executable)
724 if (! bfd_elf_link_record_dynamic_symbol (info, h))
727 /* If this is a weak defined symbol, and we know a corresponding
728 real symbol from the same dynamic object, make sure the real
729 symbol is also made into a dynamic symbol. */
732 struct elf_link_hash_entry *def = weakdef (h);
734 if (def->dynindx == -1
735 && !bfd_elf_link_record_dynamic_symbol (info, def))
743 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
744 success, and 2 on a failure caused by attempting to record a symbol
745 in a discarded section, eg. a discarded link-once section symbol. */
748 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
753 struct elf_link_local_dynamic_entry *entry;
754 struct elf_link_hash_table *eht;
755 struct elf_strtab_hash *dynstr;
758 Elf_External_Sym_Shndx eshndx;
759 char esym[sizeof (Elf64_External_Sym)];
761 if (! is_elf_hash_table (info->hash))
764 /* See if the entry exists already. */
765 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
766 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
769 amt = sizeof (*entry);
770 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
774 /* Go find the symbol, so that we can find it's name. */
775 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
776 1, input_indx, &entry->isym, esym, &eshndx))
778 bfd_release (input_bfd, entry);
782 if (entry->isym.st_shndx != SHN_UNDEF
783 && entry->isym.st_shndx < SHN_LORESERVE)
787 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
788 if (s == NULL || bfd_is_abs_section (s->output_section))
790 /* We can still bfd_release here as nothing has done another
791 bfd_alloc. We can't do this later in this function. */
792 bfd_release (input_bfd, entry);
797 name = (bfd_elf_string_from_elf_section
798 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
799 entry->isym.st_name));
801 dynstr = elf_hash_table (info)->dynstr;
804 /* Create a strtab to hold the dynamic symbol names. */
805 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
810 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
811 if (dynstr_index == (size_t) -1)
813 entry->isym.st_name = dynstr_index;
815 eht = elf_hash_table (info);
817 entry->next = eht->dynlocal;
818 eht->dynlocal = entry;
819 entry->input_bfd = input_bfd;
820 entry->input_indx = input_indx;
823 /* Whatever binding the symbol had before, it's now local. */
825 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
827 /* The dynindx will be set at the end of size_dynamic_sections. */
832 /* Return the dynindex of a local dynamic symbol. */
835 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
839 struct elf_link_local_dynamic_entry *e;
841 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
842 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
847 /* This function is used to renumber the dynamic symbols, if some of
848 them are removed because they are marked as local. This is called
849 via elf_link_hash_traverse. */
852 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
855 size_t *count = (size_t *) data;
860 if (h->dynindx != -1)
861 h->dynindx = ++(*count);
867 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
868 STB_LOCAL binding. */
871 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
874 size_t *count = (size_t *) data;
876 if (!h->forced_local)
879 if (h->dynindx != -1)
880 h->dynindx = ++(*count);
885 /* Return true if the dynamic symbol for a given section should be
886 omitted when creating a shared library. */
888 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
889 struct bfd_link_info *info,
892 struct elf_link_hash_table *htab;
895 switch (elf_section_data (p)->this_hdr.sh_type)
899 /* If sh_type is yet undecided, assume it could be
900 SHT_PROGBITS/SHT_NOBITS. */
902 htab = elf_hash_table (info);
903 if (htab->text_index_section != NULL)
904 return p != htab->text_index_section && p != htab->data_index_section;
906 return (htab->dynobj != NULL
907 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
908 && ip->output_section == p);
910 /* There shouldn't be section relative relocations
911 against any other section. */
918 _bfd_elf_omit_section_dynsym_all
919 (bfd *output_bfd ATTRIBUTE_UNUSED,
920 struct bfd_link_info *info ATTRIBUTE_UNUSED,
921 asection *p ATTRIBUTE_UNUSED)
926 /* Assign dynsym indices. In a shared library we generate a section
927 symbol for each output section, which come first. Next come symbols
928 which have been forced to local binding. Then all of the back-end
929 allocated local dynamic syms, followed by the rest of the global
930 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
931 (This prevents the early call before elf_backend_init_index_section
932 and strip_excluded_output_sections setting dynindx for sections
933 that are stripped.) */
936 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
937 struct bfd_link_info *info,
938 unsigned long *section_sym_count)
940 unsigned long dynsymcount = 0;
941 bfd_boolean do_sec = section_sym_count != NULL;
943 if (bfd_link_pic (info)
944 || elf_hash_table (info)->is_relocatable_executable)
946 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
948 for (p = output_bfd->sections; p ; p = p->next)
949 if ((p->flags & SEC_EXCLUDE) == 0
950 && (p->flags & SEC_ALLOC) != 0
951 && elf_hash_table (info)->dynamic_relocs
952 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
956 elf_section_data (p)->dynindx = dynsymcount;
959 elf_section_data (p)->dynindx = 0;
962 *section_sym_count = dynsymcount;
964 elf_link_hash_traverse (elf_hash_table (info),
965 elf_link_renumber_local_hash_table_dynsyms,
968 if (elf_hash_table (info)->dynlocal)
970 struct elf_link_local_dynamic_entry *p;
971 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
972 p->dynindx = ++dynsymcount;
974 elf_hash_table (info)->local_dynsymcount = dynsymcount;
976 elf_link_hash_traverse (elf_hash_table (info),
977 elf_link_renumber_hash_table_dynsyms,
980 /* There is an unused NULL entry at the head of the table which we
981 must account for in our count even if the table is empty since it
982 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
986 elf_hash_table (info)->dynsymcount = dynsymcount;
990 /* Merge st_other field. */
993 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
994 const Elf_Internal_Sym *isym, asection *sec,
995 bfd_boolean definition, bfd_boolean dynamic)
997 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
999 /* If st_other has a processor-specific meaning, specific
1000 code might be needed here. */
1001 if (bed->elf_backend_merge_symbol_attribute)
1002 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1007 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1008 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1010 /* Keep the most constraining visibility. Leave the remainder
1011 of the st_other field to elf_backend_merge_symbol_attribute. */
1012 if (symvis - 1 < hvis - 1)
1013 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1016 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1017 && (sec->flags & SEC_READONLY) == 0)
1018 h->protected_def = 1;
1021 /* This function is called when we want to merge a new symbol with an
1022 existing symbol. It handles the various cases which arise when we
1023 find a definition in a dynamic object, or when there is already a
1024 definition in a dynamic object. The new symbol is described by
1025 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1026 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1027 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1028 of an old common symbol. We set OVERRIDE if the old symbol is
1029 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1030 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1031 to change. By OK to change, we mean that we shouldn't warn if the
1032 type or size does change. */
1035 _bfd_elf_merge_symbol (bfd *abfd,
1036 struct bfd_link_info *info,
1038 Elf_Internal_Sym *sym,
1041 struct elf_link_hash_entry **sym_hash,
1043 bfd_boolean *pold_weak,
1044 unsigned int *pold_alignment,
1046 bfd_boolean *override,
1047 bfd_boolean *type_change_ok,
1048 bfd_boolean *size_change_ok,
1049 bfd_boolean *matched)
1051 asection *sec, *oldsec;
1052 struct elf_link_hash_entry *h;
1053 struct elf_link_hash_entry *hi;
1054 struct elf_link_hash_entry *flip;
1057 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1058 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1059 const struct elf_backend_data *bed;
1061 bfd_boolean default_sym = *matched;
1067 bind = ELF_ST_BIND (sym->st_info);
1069 if (! bfd_is_und_section (sec))
1070 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1072 h = ((struct elf_link_hash_entry *)
1073 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1078 bed = get_elf_backend_data (abfd);
1080 /* NEW_VERSION is the symbol version of the new symbol. */
1081 if (h->versioned != unversioned)
1083 /* Symbol version is unknown or versioned. */
1084 new_version = strrchr (name, ELF_VER_CHR);
1087 if (h->versioned == unknown)
1089 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1090 h->versioned = versioned_hidden;
1092 h->versioned = versioned;
1095 if (new_version[0] == '\0')
1099 h->versioned = unversioned;
1104 /* For merging, we only care about real symbols. But we need to make
1105 sure that indirect symbol dynamic flags are updated. */
1107 while (h->root.type == bfd_link_hash_indirect
1108 || h->root.type == bfd_link_hash_warning)
1109 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1113 if (hi == h || h->root.type == bfd_link_hash_new)
1117 /* OLD_HIDDEN is true if the existing symbol is only visible
1118 to the symbol with the same symbol version. NEW_HIDDEN is
1119 true if the new symbol is only visible to the symbol with
1120 the same symbol version. */
1121 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1122 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1123 if (!old_hidden && !new_hidden)
1124 /* The new symbol matches the existing symbol if both
1129 /* OLD_VERSION is the symbol version of the existing
1133 if (h->versioned >= versioned)
1134 old_version = strrchr (h->root.root.string,
1139 /* The new symbol matches the existing symbol if they
1140 have the same symbol version. */
1141 *matched = (old_version == new_version
1142 || (old_version != NULL
1143 && new_version != NULL
1144 && strcmp (old_version, new_version) == 0));
1149 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1154 switch (h->root.type)
1159 case bfd_link_hash_undefined:
1160 case bfd_link_hash_undefweak:
1161 oldbfd = h->root.u.undef.abfd;
1164 case bfd_link_hash_defined:
1165 case bfd_link_hash_defweak:
1166 oldbfd = h->root.u.def.section->owner;
1167 oldsec = h->root.u.def.section;
1170 case bfd_link_hash_common:
1171 oldbfd = h->root.u.c.p->section->owner;
1172 oldsec = h->root.u.c.p->section;
1174 *pold_alignment = h->root.u.c.p->alignment_power;
1177 if (poldbfd && *poldbfd == NULL)
1180 /* Differentiate strong and weak symbols. */
1181 newweak = bind == STB_WEAK;
1182 oldweak = (h->root.type == bfd_link_hash_defweak
1183 || h->root.type == bfd_link_hash_undefweak);
1185 *pold_weak = oldweak;
1187 /* We have to check it for every instance since the first few may be
1188 references and not all compilers emit symbol type for undefined
1190 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1192 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1193 respectively, is from a dynamic object. */
1195 newdyn = (abfd->flags & DYNAMIC) != 0;
1197 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1198 syms and defined syms in dynamic libraries respectively.
1199 ref_dynamic on the other hand can be set for a symbol defined in
1200 a dynamic library, and def_dynamic may not be set; When the
1201 definition in a dynamic lib is overridden by a definition in the
1202 executable use of the symbol in the dynamic lib becomes a
1203 reference to the executable symbol. */
1206 if (bfd_is_und_section (sec))
1208 if (bind != STB_WEAK)
1210 h->ref_dynamic_nonweak = 1;
1211 hi->ref_dynamic_nonweak = 1;
1216 /* Update the existing symbol only if they match. */
1219 hi->dynamic_def = 1;
1223 /* If we just created the symbol, mark it as being an ELF symbol.
1224 Other than that, there is nothing to do--there is no merge issue
1225 with a newly defined symbol--so we just return. */
1227 if (h->root.type == bfd_link_hash_new)
1233 /* In cases involving weak versioned symbols, we may wind up trying
1234 to merge a symbol with itself. Catch that here, to avoid the
1235 confusion that results if we try to override a symbol with
1236 itself. The additional tests catch cases like
1237 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1238 dynamic object, which we do want to handle here. */
1240 && (newweak || oldweak)
1241 && ((abfd->flags & DYNAMIC) == 0
1242 || !h->def_regular))
1247 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1248 else if (oldsec != NULL)
1250 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1251 indices used by MIPS ELF. */
1252 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1255 /* Handle a case where plugin_notice won't be called and thus won't
1256 set the non_ir_ref flags on the first pass over symbols. */
1258 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1259 && newdyn != olddyn)
1261 h->root.non_ir_ref_dynamic = TRUE;
1262 hi->root.non_ir_ref_dynamic = TRUE;
1265 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1266 respectively, appear to be a definition rather than reference. */
1268 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1270 olddef = (h->root.type != bfd_link_hash_undefined
1271 && h->root.type != bfd_link_hash_undefweak
1272 && h->root.type != bfd_link_hash_common);
1274 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1275 respectively, appear to be a function. */
1277 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1278 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1280 oldfunc = (h->type != STT_NOTYPE
1281 && bed->is_function_type (h->type));
1283 if (!(newfunc && oldfunc)
1284 && ELF_ST_TYPE (sym->st_info) != h->type
1285 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1286 && h->type != STT_NOTYPE
1287 && (newdef || bfd_is_com_section (sec))
1288 && (olddef || h->root.type == bfd_link_hash_common))
1290 /* If creating a default indirect symbol ("foo" or "foo@") from
1291 a dynamic versioned definition ("foo@@") skip doing so if
1292 there is an existing regular definition with a different
1293 type. We don't want, for example, a "time" variable in the
1294 executable overriding a "time" function in a shared library. */
1302 /* When adding a symbol from a regular object file after we have
1303 created indirect symbols, undo the indirection and any
1310 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1311 h->forced_local = 0;
1315 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1317 h->root.type = bfd_link_hash_undefined;
1318 h->root.u.undef.abfd = abfd;
1322 h->root.type = bfd_link_hash_new;
1323 h->root.u.undef.abfd = NULL;
1329 /* Check TLS symbols. We don't check undefined symbols introduced
1330 by "ld -u" which have no type (and oldbfd NULL), and we don't
1331 check symbols from plugins because they also have no type. */
1333 && (oldbfd->flags & BFD_PLUGIN) == 0
1334 && (abfd->flags & BFD_PLUGIN) == 0
1335 && ELF_ST_TYPE (sym->st_info) != h->type
1336 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1339 bfd_boolean ntdef, tdef;
1340 asection *ntsec, *tsec;
1342 if (h->type == STT_TLS)
1363 /* xgettext:c-format */
1364 (_("%s: TLS definition in %pB section %pA "
1365 "mismatches non-TLS definition in %pB section %pA"),
1366 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1367 else if (!tdef && !ntdef)
1369 /* xgettext:c-format */
1370 (_("%s: TLS reference in %pB "
1371 "mismatches non-TLS reference in %pB"),
1372 h->root.root.string, tbfd, ntbfd);
1375 /* xgettext:c-format */
1376 (_("%s: TLS definition in %pB section %pA "
1377 "mismatches non-TLS reference in %pB"),
1378 h->root.root.string, tbfd, tsec, ntbfd);
1381 /* xgettext:c-format */
1382 (_("%s: TLS reference in %pB "
1383 "mismatches non-TLS definition in %pB section %pA"),
1384 h->root.root.string, tbfd, ntbfd, ntsec);
1386 bfd_set_error (bfd_error_bad_value);
1390 /* If the old symbol has non-default visibility, we ignore the new
1391 definition from a dynamic object. */
1393 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1394 && !bfd_is_und_section (sec))
1397 /* Make sure this symbol is dynamic. */
1399 hi->ref_dynamic = 1;
1400 /* A protected symbol has external availability. Make sure it is
1401 recorded as dynamic.
1403 FIXME: Should we check type and size for protected symbol? */
1404 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1405 return bfd_elf_link_record_dynamic_symbol (info, h);
1410 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1413 /* If the new symbol with non-default visibility comes from a
1414 relocatable file and the old definition comes from a dynamic
1415 object, we remove the old definition. */
1416 if (hi->root.type == bfd_link_hash_indirect)
1418 /* Handle the case where the old dynamic definition is
1419 default versioned. We need to copy the symbol info from
1420 the symbol with default version to the normal one if it
1421 was referenced before. */
1424 hi->root.type = h->root.type;
1425 h->root.type = bfd_link_hash_indirect;
1426 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1428 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1429 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1431 /* If the new symbol is hidden or internal, completely undo
1432 any dynamic link state. */
1433 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1434 h->forced_local = 0;
1441 /* FIXME: Should we check type and size for protected symbol? */
1451 /* If the old symbol was undefined before, then it will still be
1452 on the undefs list. If the new symbol is undefined or
1453 common, we can't make it bfd_link_hash_new here, because new
1454 undefined or common symbols will be added to the undefs list
1455 by _bfd_generic_link_add_one_symbol. Symbols may not be
1456 added twice to the undefs list. Also, if the new symbol is
1457 undefweak then we don't want to lose the strong undef. */
1458 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1460 h->root.type = bfd_link_hash_undefined;
1461 h->root.u.undef.abfd = abfd;
1465 h->root.type = bfd_link_hash_new;
1466 h->root.u.undef.abfd = NULL;
1469 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1471 /* If the new symbol is hidden or internal, completely undo
1472 any dynamic link state. */
1473 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1474 h->forced_local = 0;
1480 /* FIXME: Should we check type and size for protected symbol? */
1486 /* If a new weak symbol definition comes from a regular file and the
1487 old symbol comes from a dynamic library, we treat the new one as
1488 strong. Similarly, an old weak symbol definition from a regular
1489 file is treated as strong when the new symbol comes from a dynamic
1490 library. Further, an old weak symbol from a dynamic library is
1491 treated as strong if the new symbol is from a dynamic library.
1492 This reflects the way glibc's ld.so works.
1494 Also allow a weak symbol to override a linker script symbol
1495 defined by an early pass over the script. This is done so the
1496 linker knows the symbol is defined in an object file, for the
1497 DEFINED script function.
1499 Do this before setting *type_change_ok or *size_change_ok so that
1500 we warn properly when dynamic library symbols are overridden. */
1502 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1504 if (olddef && newdyn)
1507 /* Allow changes between different types of function symbol. */
1508 if (newfunc && oldfunc)
1509 *type_change_ok = TRUE;
1511 /* It's OK to change the type if either the existing symbol or the
1512 new symbol is weak. A type change is also OK if the old symbol
1513 is undefined and the new symbol is defined. */
1518 && h->root.type == bfd_link_hash_undefined))
1519 *type_change_ok = TRUE;
1521 /* It's OK to change the size if either the existing symbol or the
1522 new symbol is weak, or if the old symbol is undefined. */
1525 || h->root.type == bfd_link_hash_undefined)
1526 *size_change_ok = TRUE;
1528 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1529 symbol, respectively, appears to be a common symbol in a dynamic
1530 object. If a symbol appears in an uninitialized section, and is
1531 not weak, and is not a function, then it may be a common symbol
1532 which was resolved when the dynamic object was created. We want
1533 to treat such symbols specially, because they raise special
1534 considerations when setting the symbol size: if the symbol
1535 appears as a common symbol in a regular object, and the size in
1536 the regular object is larger, we must make sure that we use the
1537 larger size. This problematic case can always be avoided in C,
1538 but it must be handled correctly when using Fortran shared
1541 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1542 likewise for OLDDYNCOMMON and OLDDEF.
1544 Note that this test is just a heuristic, and that it is quite
1545 possible to have an uninitialized symbol in a shared object which
1546 is really a definition, rather than a common symbol. This could
1547 lead to some minor confusion when the symbol really is a common
1548 symbol in some regular object. However, I think it will be
1554 && (sec->flags & SEC_ALLOC) != 0
1555 && (sec->flags & SEC_LOAD) == 0
1558 newdyncommon = TRUE;
1560 newdyncommon = FALSE;
1564 && h->root.type == bfd_link_hash_defined
1566 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1567 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1570 olddyncommon = TRUE;
1572 olddyncommon = FALSE;
1574 /* We now know everything about the old and new symbols. We ask the
1575 backend to check if we can merge them. */
1576 if (bed->merge_symbol != NULL)
1578 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1583 /* There are multiple definitions of a normal symbol. Skip the
1584 default symbol as well as definition from an IR object. */
1585 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1586 && !default_sym && h->def_regular
1588 && (oldbfd->flags & BFD_PLUGIN) != 0
1589 && (abfd->flags & BFD_PLUGIN) == 0))
1591 /* Handle a multiple definition. */
1592 (*info->callbacks->multiple_definition) (info, &h->root,
1593 abfd, sec, *pvalue);
1598 /* If both the old and the new symbols look like common symbols in a
1599 dynamic object, set the size of the symbol to the larger of the
1604 && sym->st_size != h->size)
1606 /* Since we think we have two common symbols, issue a multiple
1607 common warning if desired. Note that we only warn if the
1608 size is different. If the size is the same, we simply let
1609 the old symbol override the new one as normally happens with
1610 symbols defined in dynamic objects. */
1612 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1613 bfd_link_hash_common, sym->st_size);
1614 if (sym->st_size > h->size)
1615 h->size = sym->st_size;
1617 *size_change_ok = TRUE;
1620 /* If we are looking at a dynamic object, and we have found a
1621 definition, we need to see if the symbol was already defined by
1622 some other object. If so, we want to use the existing
1623 definition, and we do not want to report a multiple symbol
1624 definition error; we do this by clobbering *PSEC to be
1625 bfd_und_section_ptr.
1627 We treat a common symbol as a definition if the symbol in the
1628 shared library is a function, since common symbols always
1629 represent variables; this can cause confusion in principle, but
1630 any such confusion would seem to indicate an erroneous program or
1631 shared library. We also permit a common symbol in a regular
1632 object to override a weak symbol in a shared object. */
1637 || (h->root.type == bfd_link_hash_common
1638 && (newweak || newfunc))))
1642 newdyncommon = FALSE;
1644 *psec = sec = bfd_und_section_ptr;
1645 *size_change_ok = TRUE;
1647 /* If we get here when the old symbol is a common symbol, then
1648 we are explicitly letting it override a weak symbol or
1649 function in a dynamic object, and we don't want to warn about
1650 a type change. If the old symbol is a defined symbol, a type
1651 change warning may still be appropriate. */
1653 if (h->root.type == bfd_link_hash_common)
1654 *type_change_ok = TRUE;
1657 /* Handle the special case of an old common symbol merging with a
1658 new symbol which looks like a common symbol in a shared object.
1659 We change *PSEC and *PVALUE to make the new symbol look like a
1660 common symbol, and let _bfd_generic_link_add_one_symbol do the
1664 && h->root.type == bfd_link_hash_common)
1668 newdyncommon = FALSE;
1669 *pvalue = sym->st_size;
1670 *psec = sec = bed->common_section (oldsec);
1671 *size_change_ok = TRUE;
1674 /* Skip weak definitions of symbols that are already defined. */
1675 if (newdef && olddef && newweak)
1677 /* Don't skip new non-IR weak syms. */
1678 if (!(oldbfd != NULL
1679 && (oldbfd->flags & BFD_PLUGIN) != 0
1680 && (abfd->flags & BFD_PLUGIN) == 0))
1686 /* Merge st_other. If the symbol already has a dynamic index,
1687 but visibility says it should not be visible, turn it into a
1689 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1690 if (h->dynindx != -1)
1691 switch (ELF_ST_VISIBILITY (h->other))
1695 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1700 /* If the old symbol is from a dynamic object, and the new symbol is
1701 a definition which is not from a dynamic object, then the new
1702 symbol overrides the old symbol. Symbols from regular files
1703 always take precedence over symbols from dynamic objects, even if
1704 they are defined after the dynamic object in the link.
1706 As above, we again permit a common symbol in a regular object to
1707 override a definition in a shared object if the shared object
1708 symbol is a function or is weak. */
1713 || (bfd_is_com_section (sec)
1714 && (oldweak || oldfunc)))
1719 /* Change the hash table entry to undefined, and let
1720 _bfd_generic_link_add_one_symbol do the right thing with the
1723 h->root.type = bfd_link_hash_undefined;
1724 h->root.u.undef.abfd = h->root.u.def.section->owner;
1725 *size_change_ok = TRUE;
1728 olddyncommon = FALSE;
1730 /* We again permit a type change when a common symbol may be
1731 overriding a function. */
1733 if (bfd_is_com_section (sec))
1737 /* If a common symbol overrides a function, make sure
1738 that it isn't defined dynamically nor has type
1741 h->type = STT_NOTYPE;
1743 *type_change_ok = TRUE;
1746 if (hi->root.type == bfd_link_hash_indirect)
1749 /* This union may have been set to be non-NULL when this symbol
1750 was seen in a dynamic object. We must force the union to be
1751 NULL, so that it is correct for a regular symbol. */
1752 h->verinfo.vertree = NULL;
1755 /* Handle the special case of a new common symbol merging with an
1756 old symbol that looks like it might be a common symbol defined in
1757 a shared object. Note that we have already handled the case in
1758 which a new common symbol should simply override the definition
1759 in the shared library. */
1762 && bfd_is_com_section (sec)
1765 /* It would be best if we could set the hash table entry to a
1766 common symbol, but we don't know what to use for the section
1767 or the alignment. */
1768 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1769 bfd_link_hash_common, sym->st_size);
1771 /* If the presumed common symbol in the dynamic object is
1772 larger, pretend that the new symbol has its size. */
1774 if (h->size > *pvalue)
1777 /* We need to remember the alignment required by the symbol
1778 in the dynamic object. */
1779 BFD_ASSERT (pold_alignment);
1780 *pold_alignment = h->root.u.def.section->alignment_power;
1783 olddyncommon = FALSE;
1785 h->root.type = bfd_link_hash_undefined;
1786 h->root.u.undef.abfd = h->root.u.def.section->owner;
1788 *size_change_ok = TRUE;
1789 *type_change_ok = TRUE;
1791 if (hi->root.type == bfd_link_hash_indirect)
1794 h->verinfo.vertree = NULL;
1799 /* Handle the case where we had a versioned symbol in a dynamic
1800 library and now find a definition in a normal object. In this
1801 case, we make the versioned symbol point to the normal one. */
1802 flip->root.type = h->root.type;
1803 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1804 h->root.type = bfd_link_hash_indirect;
1805 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1806 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1810 flip->ref_dynamic = 1;
1817 /* This function is called to create an indirect symbol from the
1818 default for the symbol with the default version if needed. The
1819 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1820 set DYNSYM if the new indirect symbol is dynamic. */
1823 _bfd_elf_add_default_symbol (bfd *abfd,
1824 struct bfd_link_info *info,
1825 struct elf_link_hash_entry *h,
1827 Elf_Internal_Sym *sym,
1831 bfd_boolean *dynsym)
1833 bfd_boolean type_change_ok;
1834 bfd_boolean size_change_ok;
1837 struct elf_link_hash_entry *hi;
1838 struct bfd_link_hash_entry *bh;
1839 const struct elf_backend_data *bed;
1840 bfd_boolean collect;
1841 bfd_boolean dynamic;
1842 bfd_boolean override;
1844 size_t len, shortlen;
1846 bfd_boolean matched;
1848 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1851 /* If this symbol has a version, and it is the default version, we
1852 create an indirect symbol from the default name to the fully
1853 decorated name. This will cause external references which do not
1854 specify a version to be bound to this version of the symbol. */
1855 p = strchr (name, ELF_VER_CHR);
1856 if (h->versioned == unknown)
1860 h->versioned = unversioned;
1865 if (p[1] != ELF_VER_CHR)
1867 h->versioned = versioned_hidden;
1871 h->versioned = versioned;
1876 /* PR ld/19073: We may see an unversioned definition after the
1882 bed = get_elf_backend_data (abfd);
1883 collect = bed->collect;
1884 dynamic = (abfd->flags & DYNAMIC) != 0;
1886 shortlen = p - name;
1887 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1888 if (shortname == NULL)
1890 memcpy (shortname, name, shortlen);
1891 shortname[shortlen] = '\0';
1893 /* We are going to create a new symbol. Merge it with any existing
1894 symbol with this name. For the purposes of the merge, act as
1895 though we were defining the symbol we just defined, although we
1896 actually going to define an indirect symbol. */
1897 type_change_ok = FALSE;
1898 size_change_ok = FALSE;
1901 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1902 &hi, poldbfd, NULL, NULL, &skip, &override,
1903 &type_change_ok, &size_change_ok, &matched))
1909 if (hi->def_regular)
1911 /* If the undecorated symbol will have a version added by a
1912 script different to H, then don't indirect to/from the
1913 undecorated symbol. This isn't ideal because we may not yet
1914 have seen symbol versions, if given by a script on the
1915 command line rather than via --version-script. */
1916 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1921 = bfd_find_version_for_sym (info->version_info,
1922 hi->root.root.string, &hide);
1923 if (hi->verinfo.vertree != NULL && hide)
1925 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1929 if (hi->verinfo.vertree != NULL
1930 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1936 /* Add the default symbol if not performing a relocatable link. */
1937 if (! bfd_link_relocatable (info))
1940 if (bh->type == bfd_link_hash_defined
1941 && bh->u.def.section->owner != NULL
1942 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1944 /* Mark the previous definition from IR object as
1945 undefined so that the generic linker will override
1947 bh->type = bfd_link_hash_undefined;
1948 bh->u.undef.abfd = bh->u.def.section->owner;
1950 if (! (_bfd_generic_link_add_one_symbol
1951 (info, abfd, shortname, BSF_INDIRECT,
1952 bfd_ind_section_ptr,
1953 0, name, FALSE, collect, &bh)))
1955 hi = (struct elf_link_hash_entry *) bh;
1960 /* In this case the symbol named SHORTNAME is overriding the
1961 indirect symbol we want to add. We were planning on making
1962 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1963 is the name without a version. NAME is the fully versioned
1964 name, and it is the default version.
1966 Overriding means that we already saw a definition for the
1967 symbol SHORTNAME in a regular object, and it is overriding
1968 the symbol defined in the dynamic object.
1970 When this happens, we actually want to change NAME, the
1971 symbol we just added, to refer to SHORTNAME. This will cause
1972 references to NAME in the shared object to become references
1973 to SHORTNAME in the regular object. This is what we expect
1974 when we override a function in a shared object: that the
1975 references in the shared object will be mapped to the
1976 definition in the regular object. */
1978 while (hi->root.type == bfd_link_hash_indirect
1979 || hi->root.type == bfd_link_hash_warning)
1980 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1982 h->root.type = bfd_link_hash_indirect;
1983 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1987 hi->ref_dynamic = 1;
1991 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1996 /* Now set HI to H, so that the following code will set the
1997 other fields correctly. */
2001 /* Check if HI is a warning symbol. */
2002 if (hi->root.type == bfd_link_hash_warning)
2003 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2005 /* If there is a duplicate definition somewhere, then HI may not
2006 point to an indirect symbol. We will have reported an error to
2007 the user in that case. */
2009 if (hi->root.type == bfd_link_hash_indirect)
2011 struct elf_link_hash_entry *ht;
2013 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2014 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2016 /* A reference to the SHORTNAME symbol from a dynamic library
2017 will be satisfied by the versioned symbol at runtime. In
2018 effect, we have a reference to the versioned symbol. */
2019 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2020 hi->dynamic_def |= ht->dynamic_def;
2022 /* See if the new flags lead us to realize that the symbol must
2028 if (! bfd_link_executable (info)
2035 if (hi->ref_regular)
2041 /* We also need to define an indirection from the nondefault version
2045 len = strlen (name);
2046 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2047 if (shortname == NULL)
2049 memcpy (shortname, name, shortlen);
2050 memcpy (shortname + shortlen, p + 1, len - shortlen);
2052 /* Once again, merge with any existing symbol. */
2053 type_change_ok = FALSE;
2054 size_change_ok = FALSE;
2056 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2057 &hi, poldbfd, NULL, NULL, &skip, &override,
2058 &type_change_ok, &size_change_ok, &matched))
2066 /* Here SHORTNAME is a versioned name, so we don't expect to see
2067 the type of override we do in the case above unless it is
2068 overridden by a versioned definition. */
2069 if (hi->root.type != bfd_link_hash_defined
2070 && hi->root.type != bfd_link_hash_defweak)
2072 /* xgettext:c-format */
2073 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2079 if (! (_bfd_generic_link_add_one_symbol
2080 (info, abfd, shortname, BSF_INDIRECT,
2081 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2083 hi = (struct elf_link_hash_entry *) bh;
2085 /* If there is a duplicate definition somewhere, then HI may not
2086 point to an indirect symbol. We will have reported an error
2087 to the user in that case. */
2089 if (hi->root.type == bfd_link_hash_indirect)
2091 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2092 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2093 hi->dynamic_def |= h->dynamic_def;
2095 /* See if the new flags lead us to realize that the symbol
2101 if (! bfd_link_executable (info)
2107 if (hi->ref_regular)
2117 /* This routine is used to export all defined symbols into the dynamic
2118 symbol table. It is called via elf_link_hash_traverse. */
2121 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2123 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2125 /* Ignore indirect symbols. These are added by the versioning code. */
2126 if (h->root.type == bfd_link_hash_indirect)
2129 /* Ignore this if we won't export it. */
2130 if (!eif->info->export_dynamic && !h->dynamic)
2133 if (h->dynindx == -1
2134 && (h->def_regular || h->ref_regular)
2135 && ! bfd_hide_sym_by_version (eif->info->version_info,
2136 h->root.root.string))
2138 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2148 /* Look through the symbols which are defined in other shared
2149 libraries and referenced here. Update the list of version
2150 dependencies. This will be put into the .gnu.version_r section.
2151 This function is called via elf_link_hash_traverse. */
2154 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2157 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2158 Elf_Internal_Verneed *t;
2159 Elf_Internal_Vernaux *a;
2162 /* We only care about symbols defined in shared objects with version
2167 || h->verinfo.verdef == NULL
2168 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2169 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2172 /* See if we already know about this version. */
2173 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2177 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2180 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2181 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2187 /* This is a new version. Add it to tree we are building. */
2192 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2195 rinfo->failed = TRUE;
2199 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2200 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2201 elf_tdata (rinfo->info->output_bfd)->verref = t;
2205 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2208 rinfo->failed = TRUE;
2212 /* Note that we are copying a string pointer here, and testing it
2213 above. If bfd_elf_string_from_elf_section is ever changed to
2214 discard the string data when low in memory, this will have to be
2216 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2218 a->vna_flags = h->verinfo.verdef->vd_flags;
2219 a->vna_nextptr = t->vn_auxptr;
2221 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2224 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2231 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2232 hidden. Set *T_P to NULL if there is no match. */
2235 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2236 struct elf_link_hash_entry *h,
2237 const char *version_p,
2238 struct bfd_elf_version_tree **t_p,
2241 struct bfd_elf_version_tree *t;
2243 /* Look for the version. If we find it, it is no longer weak. */
2244 for (t = info->version_info; t != NULL; t = t->next)
2246 if (strcmp (t->name, version_p) == 0)
2250 struct bfd_elf_version_expr *d;
2252 len = version_p - h->root.root.string;
2253 alc = (char *) bfd_malloc (len);
2256 memcpy (alc, h->root.root.string, len - 1);
2257 alc[len - 1] = '\0';
2258 if (alc[len - 2] == ELF_VER_CHR)
2259 alc[len - 2] = '\0';
2261 h->verinfo.vertree = t;
2265 if (t->globals.list != NULL)
2266 d = (*t->match) (&t->globals, NULL, alc);
2268 /* See if there is anything to force this symbol to
2270 if (d == NULL && t->locals.list != NULL)
2272 d = (*t->match) (&t->locals, NULL, alc);
2275 && ! info->export_dynamic)
2289 /* Return TRUE if the symbol H is hidden by version script. */
2292 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2293 struct elf_link_hash_entry *h)
2296 bfd_boolean hide = FALSE;
2297 const struct elf_backend_data *bed
2298 = get_elf_backend_data (info->output_bfd);
2300 /* Version script only hides symbols defined in regular objects. */
2301 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2304 p = strchr (h->root.root.string, ELF_VER_CHR);
2305 if (p != NULL && h->verinfo.vertree == NULL)
2307 struct bfd_elf_version_tree *t;
2310 if (*p == ELF_VER_CHR)
2314 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2318 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2323 /* If we don't have a version for this symbol, see if we can find
2325 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2328 = bfd_find_version_for_sym (info->version_info,
2329 h->root.root.string, &hide);
2330 if (h->verinfo.vertree != NULL && hide)
2332 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2340 /* Figure out appropriate versions for all the symbols. We may not
2341 have the version number script until we have read all of the input
2342 files, so until that point we don't know which symbols should be
2343 local. This function is called via elf_link_hash_traverse. */
2346 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2348 struct elf_info_failed *sinfo;
2349 struct bfd_link_info *info;
2350 const struct elf_backend_data *bed;
2351 struct elf_info_failed eif;
2355 sinfo = (struct elf_info_failed *) data;
2358 /* Fix the symbol flags. */
2361 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2364 sinfo->failed = TRUE;
2368 bed = get_elf_backend_data (info->output_bfd);
2370 /* We only need version numbers for symbols defined in regular
2372 if (!h->def_regular)
2374 /* Hide symbols defined in discarded input sections. */
2375 if ((h->root.type == bfd_link_hash_defined
2376 || h->root.type == bfd_link_hash_defweak)
2377 && discarded_section (h->root.u.def.section))
2378 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2383 p = strchr (h->root.root.string, ELF_VER_CHR);
2384 if (p != NULL && h->verinfo.vertree == NULL)
2386 struct bfd_elf_version_tree *t;
2389 if (*p == ELF_VER_CHR)
2392 /* If there is no version string, we can just return out. */
2396 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2398 sinfo->failed = TRUE;
2403 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2405 /* If we are building an application, we need to create a
2406 version node for this version. */
2407 if (t == NULL && bfd_link_executable (info))
2409 struct bfd_elf_version_tree **pp;
2412 /* If we aren't going to export this symbol, we don't need
2413 to worry about it. */
2414 if (h->dynindx == -1)
2417 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2421 sinfo->failed = TRUE;
2426 t->name_indx = (unsigned int) -1;
2430 /* Don't count anonymous version tag. */
2431 if (sinfo->info->version_info != NULL
2432 && sinfo->info->version_info->vernum == 0)
2434 for (pp = &sinfo->info->version_info;
2438 t->vernum = version_index;
2442 h->verinfo.vertree = t;
2446 /* We could not find the version for a symbol when
2447 generating a shared archive. Return an error. */
2449 /* xgettext:c-format */
2450 (_("%pB: version node not found for symbol %s"),
2451 info->output_bfd, h->root.root.string);
2452 bfd_set_error (bfd_error_bad_value);
2453 sinfo->failed = TRUE;
2458 /* If we don't have a version for this symbol, see if we can find
2461 && h->verinfo.vertree == NULL
2462 && sinfo->info->version_info != NULL)
2465 = bfd_find_version_for_sym (sinfo->info->version_info,
2466 h->root.root.string, &hide);
2467 if (h->verinfo.vertree != NULL && hide)
2468 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2474 /* Read and swap the relocs from the section indicated by SHDR. This
2475 may be either a REL or a RELA section. The relocations are
2476 translated into RELA relocations and stored in INTERNAL_RELOCS,
2477 which should have already been allocated to contain enough space.
2478 The EXTERNAL_RELOCS are a buffer where the external form of the
2479 relocations should be stored.
2481 Returns FALSE if something goes wrong. */
2484 elf_link_read_relocs_from_section (bfd *abfd,
2486 Elf_Internal_Shdr *shdr,
2487 void *external_relocs,
2488 Elf_Internal_Rela *internal_relocs)
2490 const struct elf_backend_data *bed;
2491 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2492 const bfd_byte *erela;
2493 const bfd_byte *erelaend;
2494 Elf_Internal_Rela *irela;
2495 Elf_Internal_Shdr *symtab_hdr;
2498 /* Position ourselves at the start of the section. */
2499 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2502 /* Read the relocations. */
2503 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2506 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2507 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2509 bed = get_elf_backend_data (abfd);
2511 /* Convert the external relocations to the internal format. */
2512 if (shdr->sh_entsize == bed->s->sizeof_rel)
2513 swap_in = bed->s->swap_reloc_in;
2514 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2515 swap_in = bed->s->swap_reloca_in;
2518 bfd_set_error (bfd_error_wrong_format);
2522 erela = (const bfd_byte *) external_relocs;
2523 /* Setting erelaend like this and comparing with <= handles case of
2524 a fuzzed object with sh_size not a multiple of sh_entsize. */
2525 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2526 irela = internal_relocs;
2527 while (erela <= erelaend)
2531 (*swap_in) (abfd, erela, irela);
2532 r_symndx = ELF32_R_SYM (irela->r_info);
2533 if (bed->s->arch_size == 64)
2537 if ((size_t) r_symndx >= nsyms)
2540 /* xgettext:c-format */
2541 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2542 " for offset %#" PRIx64 " in section `%pA'"),
2543 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2544 (uint64_t) irela->r_offset, sec);
2545 bfd_set_error (bfd_error_bad_value);
2549 else if (r_symndx != STN_UNDEF)
2552 /* xgettext:c-format */
2553 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2554 " for offset %#" PRIx64 " in section `%pA'"
2555 " when the object file has no symbol table"),
2556 abfd, (uint64_t) r_symndx,
2557 (uint64_t) irela->r_offset, sec);
2558 bfd_set_error (bfd_error_bad_value);
2561 irela += bed->s->int_rels_per_ext_rel;
2562 erela += shdr->sh_entsize;
2568 /* Read and swap the relocs for a section O. They may have been
2569 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2570 not NULL, they are used as buffers to read into. They are known to
2571 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2572 the return value is allocated using either malloc or bfd_alloc,
2573 according to the KEEP_MEMORY argument. If O has two relocation
2574 sections (both REL and RELA relocations), then the REL_HDR
2575 relocations will appear first in INTERNAL_RELOCS, followed by the
2576 RELA_HDR relocations. */
2579 _bfd_elf_link_read_relocs (bfd *abfd,
2581 void *external_relocs,
2582 Elf_Internal_Rela *internal_relocs,
2583 bfd_boolean keep_memory)
2585 void *alloc1 = NULL;
2586 Elf_Internal_Rela *alloc2 = NULL;
2587 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2588 struct bfd_elf_section_data *esdo = elf_section_data (o);
2589 Elf_Internal_Rela *internal_rela_relocs;
2591 if (esdo->relocs != NULL)
2592 return esdo->relocs;
2594 if (o->reloc_count == 0)
2597 if (internal_relocs == NULL)
2601 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2603 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2605 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2606 if (internal_relocs == NULL)
2610 if (external_relocs == NULL)
2612 bfd_size_type size = 0;
2615 size += esdo->rel.hdr->sh_size;
2617 size += esdo->rela.hdr->sh_size;
2619 alloc1 = bfd_malloc (size);
2622 external_relocs = alloc1;
2625 internal_rela_relocs = internal_relocs;
2628 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2632 external_relocs = (((bfd_byte *) external_relocs)
2633 + esdo->rel.hdr->sh_size);
2634 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2635 * bed->s->int_rels_per_ext_rel);
2639 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2641 internal_rela_relocs)))
2644 /* Cache the results for next time, if we can. */
2646 esdo->relocs = internal_relocs;
2651 /* Don't free alloc2, since if it was allocated we are passing it
2652 back (under the name of internal_relocs). */
2654 return internal_relocs;
2662 bfd_release (abfd, alloc2);
2669 /* Compute the size of, and allocate space for, REL_HDR which is the
2670 section header for a section containing relocations for O. */
2673 _bfd_elf_link_size_reloc_section (bfd *abfd,
2674 struct bfd_elf_section_reloc_data *reldata)
2676 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2678 /* That allows us to calculate the size of the section. */
2679 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2681 /* The contents field must last into write_object_contents, so we
2682 allocate it with bfd_alloc rather than malloc. Also since we
2683 cannot be sure that the contents will actually be filled in,
2684 we zero the allocated space. */
2685 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2686 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2689 if (reldata->hashes == NULL && reldata->count)
2691 struct elf_link_hash_entry **p;
2693 p = ((struct elf_link_hash_entry **)
2694 bfd_zmalloc (reldata->count * sizeof (*p)));
2698 reldata->hashes = p;
2704 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2705 originated from the section given by INPUT_REL_HDR) to the
2709 _bfd_elf_link_output_relocs (bfd *output_bfd,
2710 asection *input_section,
2711 Elf_Internal_Shdr *input_rel_hdr,
2712 Elf_Internal_Rela *internal_relocs,
2713 struct elf_link_hash_entry **rel_hash
2716 Elf_Internal_Rela *irela;
2717 Elf_Internal_Rela *irelaend;
2719 struct bfd_elf_section_reloc_data *output_reldata;
2720 asection *output_section;
2721 const struct elf_backend_data *bed;
2722 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2723 struct bfd_elf_section_data *esdo;
2725 output_section = input_section->output_section;
2727 bed = get_elf_backend_data (output_bfd);
2728 esdo = elf_section_data (output_section);
2729 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2731 output_reldata = &esdo->rel;
2732 swap_out = bed->s->swap_reloc_out;
2734 else if (esdo->rela.hdr
2735 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2737 output_reldata = &esdo->rela;
2738 swap_out = bed->s->swap_reloca_out;
2743 /* xgettext:c-format */
2744 (_("%pB: relocation size mismatch in %pB section %pA"),
2745 output_bfd, input_section->owner, input_section);
2746 bfd_set_error (bfd_error_wrong_format);
2750 erel = output_reldata->hdr->contents;
2751 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2752 irela = internal_relocs;
2753 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2754 * bed->s->int_rels_per_ext_rel);
2755 while (irela < irelaend)
2757 (*swap_out) (output_bfd, irela, erel);
2758 irela += bed->s->int_rels_per_ext_rel;
2759 erel += input_rel_hdr->sh_entsize;
2762 /* Bump the counter, so that we know where to add the next set of
2764 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2769 /* Make weak undefined symbols in PIE dynamic. */
2772 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2773 struct elf_link_hash_entry *h)
2775 if (bfd_link_pie (info)
2777 && h->root.type == bfd_link_hash_undefweak)
2778 return bfd_elf_link_record_dynamic_symbol (info, h);
2783 /* Fix up the flags for a symbol. This handles various cases which
2784 can only be fixed after all the input files are seen. This is
2785 currently called by both adjust_dynamic_symbol and
2786 assign_sym_version, which is unnecessary but perhaps more robust in
2787 the face of future changes. */
2790 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2791 struct elf_info_failed *eif)
2793 const struct elf_backend_data *bed;
2795 /* If this symbol was mentioned in a non-ELF file, try to set
2796 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2797 permit a non-ELF file to correctly refer to a symbol defined in
2798 an ELF dynamic object. */
2801 while (h->root.type == bfd_link_hash_indirect)
2802 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2804 if (h->root.type != bfd_link_hash_defined
2805 && h->root.type != bfd_link_hash_defweak)
2808 h->ref_regular_nonweak = 1;
2812 if (h->root.u.def.section->owner != NULL
2813 && (bfd_get_flavour (h->root.u.def.section->owner)
2814 == bfd_target_elf_flavour))
2817 h->ref_regular_nonweak = 1;
2823 if (h->dynindx == -1
2827 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2836 /* Unfortunately, NON_ELF is only correct if the symbol
2837 was first seen in a non-ELF file. Fortunately, if the symbol
2838 was first seen in an ELF file, we're probably OK unless the
2839 symbol was defined in a non-ELF file. Catch that case here.
2840 FIXME: We're still in trouble if the symbol was first seen in
2841 a dynamic object, and then later in a non-ELF regular object. */
2842 if ((h->root.type == bfd_link_hash_defined
2843 || h->root.type == bfd_link_hash_defweak)
2845 && (h->root.u.def.section->owner != NULL
2846 ? (bfd_get_flavour (h->root.u.def.section->owner)
2847 != bfd_target_elf_flavour)
2848 : (bfd_is_abs_section (h->root.u.def.section)
2849 && !h->def_dynamic)))
2853 /* Backend specific symbol fixup. */
2854 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2855 if (bed->elf_backend_fixup_symbol
2856 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2859 /* If this is a final link, and the symbol was defined as a common
2860 symbol in a regular object file, and there was no definition in
2861 any dynamic object, then the linker will have allocated space for
2862 the symbol in a common section but the DEF_REGULAR
2863 flag will not have been set. */
2864 if (h->root.type == bfd_link_hash_defined
2868 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2871 /* Symbols defined in discarded sections shouldn't be dynamic. */
2872 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2873 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2875 /* If a weak undefined symbol has non-default visibility, we also
2876 hide it from the dynamic linker. */
2877 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2878 && h->root.type == bfd_link_hash_undefweak)
2879 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2881 /* A hidden versioned symbol in executable should be forced local if
2882 it is is locally defined, not referenced by shared library and not
2884 else if (bfd_link_executable (eif->info)
2885 && h->versioned == versioned_hidden
2886 && !eif->info->export_dynamic
2890 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2892 /* If -Bsymbolic was used (which means to bind references to global
2893 symbols to the definition within the shared object), and this
2894 symbol was defined in a regular object, then it actually doesn't
2895 need a PLT entry. Likewise, if the symbol has non-default
2896 visibility. If the symbol has hidden or internal visibility, we
2897 will force it local. */
2898 else if (h->needs_plt
2899 && bfd_link_pic (eif->info)
2900 && is_elf_hash_table (eif->info->hash)
2901 && (SYMBOLIC_BIND (eif->info, h)
2902 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2905 bfd_boolean force_local;
2907 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2908 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2909 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2912 /* If this is a weak defined symbol in a dynamic object, and we know
2913 the real definition in the dynamic object, copy interesting flags
2914 over to the real definition. */
2915 if (h->is_weakalias)
2917 struct elf_link_hash_entry *def = weakdef (h);
2919 /* If the real definition is defined by a regular object file,
2920 don't do anything special. See the longer description in
2921 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2922 bfd_link_hash_defined as it was when put on the alias list
2923 then it must have originally been a versioned symbol (for
2924 which a non-versioned indirect symbol is created) and later
2925 a definition for the non-versioned symbol is found. In that
2926 case the indirection is flipped with the versioned symbol
2927 becoming an indirect pointing at the non-versioned symbol.
2928 Thus, not an alias any more. */
2929 if (def->def_regular
2930 || def->root.type != bfd_link_hash_defined)
2933 while ((h = h->u.alias) != def)
2934 h->is_weakalias = 0;
2938 while (h->root.type == bfd_link_hash_indirect)
2939 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2940 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2941 || h->root.type == bfd_link_hash_defweak);
2942 BFD_ASSERT (def->def_dynamic);
2943 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2950 /* Make the backend pick a good value for a dynamic symbol. This is
2951 called via elf_link_hash_traverse, and also calls itself
2955 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2957 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2958 struct elf_link_hash_table *htab;
2959 const struct elf_backend_data *bed;
2961 if (! is_elf_hash_table (eif->info->hash))
2964 /* Ignore indirect symbols. These are added by the versioning code. */
2965 if (h->root.type == bfd_link_hash_indirect)
2968 /* Fix the symbol flags. */
2969 if (! _bfd_elf_fix_symbol_flags (h, eif))
2972 htab = elf_hash_table (eif->info);
2973 bed = get_elf_backend_data (htab->dynobj);
2975 if (h->root.type == bfd_link_hash_undefweak)
2977 if (eif->info->dynamic_undefined_weak == 0)
2978 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2979 else if (eif->info->dynamic_undefined_weak > 0
2981 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2982 && !bfd_hide_sym_by_version (eif->info->version_info,
2983 h->root.root.string))
2985 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2993 /* If this symbol does not require a PLT entry, and it is not
2994 defined by a dynamic object, or is not referenced by a regular
2995 object, ignore it. We do have to handle a weak defined symbol,
2996 even if no regular object refers to it, if we decided to add it
2997 to the dynamic symbol table. FIXME: Do we normally need to worry
2998 about symbols which are defined by one dynamic object and
2999 referenced by another one? */
3001 && h->type != STT_GNU_IFUNC
3005 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3007 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3011 /* If we've already adjusted this symbol, don't do it again. This
3012 can happen via a recursive call. */
3013 if (h->dynamic_adjusted)
3016 /* Don't look at this symbol again. Note that we must set this
3017 after checking the above conditions, because we may look at a
3018 symbol once, decide not to do anything, and then get called
3019 recursively later after REF_REGULAR is set below. */
3020 h->dynamic_adjusted = 1;
3022 /* If this is a weak definition, and we know a real definition, and
3023 the real symbol is not itself defined by a regular object file,
3024 then get a good value for the real definition. We handle the
3025 real symbol first, for the convenience of the backend routine.
3027 Note that there is a confusing case here. If the real definition
3028 is defined by a regular object file, we don't get the real symbol
3029 from the dynamic object, but we do get the weak symbol. If the
3030 processor backend uses a COPY reloc, then if some routine in the
3031 dynamic object changes the real symbol, we will not see that
3032 change in the corresponding weak symbol. This is the way other
3033 ELF linkers work as well, and seems to be a result of the shared
3036 I will clarify this issue. Most SVR4 shared libraries define the
3037 variable _timezone and define timezone as a weak synonym. The
3038 tzset call changes _timezone. If you write
3039 extern int timezone;
3041 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3042 you might expect that, since timezone is a synonym for _timezone,
3043 the same number will print both times. However, if the processor
3044 backend uses a COPY reloc, then actually timezone will be copied
3045 into your process image, and, since you define _timezone
3046 yourself, _timezone will not. Thus timezone and _timezone will
3047 wind up at different memory locations. The tzset call will set
3048 _timezone, leaving timezone unchanged. */
3050 if (h->is_weakalias)
3052 struct elf_link_hash_entry *def = weakdef (h);
3054 /* If we get to this point, there is an implicit reference to
3055 the alias by a regular object file via the weak symbol H. */
3056 def->ref_regular = 1;
3058 /* Ensure that the backend adjust_dynamic_symbol function sees
3059 the strong alias before H by recursively calling ourselves. */
3060 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3064 /* If a symbol has no type and no size and does not require a PLT
3065 entry, then we are probably about to do the wrong thing here: we
3066 are probably going to create a COPY reloc for an empty object.
3067 This case can arise when a shared object is built with assembly
3068 code, and the assembly code fails to set the symbol type. */
3070 && h->type == STT_NOTYPE
3073 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3074 h->root.root.string);
3076 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3085 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3089 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3090 struct elf_link_hash_entry *h,
3093 unsigned int power_of_two;
3095 asection *sec = h->root.u.def.section;
3097 /* The section alignment of the definition is the maximum alignment
3098 requirement of symbols defined in the section. Since we don't
3099 know the symbol alignment requirement, we start with the
3100 maximum alignment and check low bits of the symbol address
3101 for the minimum alignment. */
3102 power_of_two = bfd_get_section_alignment (sec->owner, sec);
3103 mask = ((bfd_vma) 1 << power_of_two) - 1;
3104 while ((h->root.u.def.value & mask) != 0)
3110 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
3113 /* Adjust the section alignment if needed. */
3114 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
3119 /* We make sure that the symbol will be aligned properly. */
3120 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3122 /* Define the symbol as being at this point in DYNBSS. */
3123 h->root.u.def.section = dynbss;
3124 h->root.u.def.value = dynbss->size;
3126 /* Increment the size of DYNBSS to make room for the symbol. */
3127 dynbss->size += h->size;
3129 /* No error if extern_protected_data is true. */
3130 if (h->protected_def
3131 && (!info->extern_protected_data
3132 || (info->extern_protected_data < 0
3133 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3134 info->callbacks->einfo
3135 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3136 h->root.root.string);
3141 /* Adjust all external symbols pointing into SEC_MERGE sections
3142 to reflect the object merging within the sections. */
3145 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3149 if ((h->root.type == bfd_link_hash_defined
3150 || h->root.type == bfd_link_hash_defweak)
3151 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3152 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3154 bfd *output_bfd = (bfd *) data;
3156 h->root.u.def.value =
3157 _bfd_merged_section_offset (output_bfd,
3158 &h->root.u.def.section,
3159 elf_section_data (sec)->sec_info,
3160 h->root.u.def.value);
3166 /* Returns false if the symbol referred to by H should be considered
3167 to resolve local to the current module, and true if it should be
3168 considered to bind dynamically. */
3171 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3172 struct bfd_link_info *info,
3173 bfd_boolean not_local_protected)
3175 bfd_boolean binding_stays_local_p;
3176 const struct elf_backend_data *bed;
3177 struct elf_link_hash_table *hash_table;
3182 while (h->root.type == bfd_link_hash_indirect
3183 || h->root.type == bfd_link_hash_warning)
3184 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3186 /* If it was forced local, then clearly it's not dynamic. */
3187 if (h->dynindx == -1)
3189 if (h->forced_local)
3192 /* Identify the cases where name binding rules say that a
3193 visible symbol resolves locally. */
3194 binding_stays_local_p = (bfd_link_executable (info)
3195 || SYMBOLIC_BIND (info, h));
3197 switch (ELF_ST_VISIBILITY (h->other))
3204 hash_table = elf_hash_table (info);
3205 if (!is_elf_hash_table (hash_table))
3208 bed = get_elf_backend_data (hash_table->dynobj);
3210 /* Proper resolution for function pointer equality may require
3211 that these symbols perhaps be resolved dynamically, even though
3212 we should be resolving them to the current module. */
3213 if (!not_local_protected || !bed->is_function_type (h->type))
3214 binding_stays_local_p = TRUE;
3221 /* If it isn't defined locally, then clearly it's dynamic. */
3222 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3225 /* Otherwise, the symbol is dynamic if binding rules don't tell
3226 us that it remains local. */
3227 return !binding_stays_local_p;
3230 /* Return true if the symbol referred to by H should be considered
3231 to resolve local to the current module, and false otherwise. Differs
3232 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3233 undefined symbols. The two functions are virtually identical except
3234 for the place where dynindx == -1 is tested. If that test is true,
3235 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3236 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3238 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3239 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3240 treatment of undefined weak symbols. For those that do not make
3241 undefined weak symbols dynamic, both functions may return false. */
3244 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3245 struct bfd_link_info *info,
3246 bfd_boolean local_protected)
3248 const struct elf_backend_data *bed;
3249 struct elf_link_hash_table *hash_table;
3251 /* If it's a local sym, of course we resolve locally. */
3255 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3256 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3257 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3260 /* Forced local symbols resolve locally. */
3261 if (h->forced_local)
3264 /* Common symbols that become definitions don't get the DEF_REGULAR
3265 flag set, so test it first, and don't bail out. */
3266 if (ELF_COMMON_DEF_P (h))
3268 /* If we don't have a definition in a regular file, then we can't
3269 resolve locally. The sym is either undefined or dynamic. */
3270 else if (!h->def_regular)
3273 /* Non-dynamic symbols resolve locally. */
3274 if (h->dynindx == -1)
3277 /* At this point, we know the symbol is defined and dynamic. In an
3278 executable it must resolve locally, likewise when building symbolic
3279 shared libraries. */
3280 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3283 /* Now deal with defined dynamic symbols in shared libraries. Ones
3284 with default visibility might not resolve locally. */
3285 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3288 hash_table = elf_hash_table (info);
3289 if (!is_elf_hash_table (hash_table))
3292 bed = get_elf_backend_data (hash_table->dynobj);
3294 /* If extern_protected_data is false, STV_PROTECTED non-function
3295 symbols are local. */
3296 if ((!info->extern_protected_data
3297 || (info->extern_protected_data < 0
3298 && !bed->extern_protected_data))
3299 && !bed->is_function_type (h->type))
3302 /* Function pointer equality tests may require that STV_PROTECTED
3303 symbols be treated as dynamic symbols. If the address of a
3304 function not defined in an executable is set to that function's
3305 plt entry in the executable, then the address of the function in
3306 a shared library must also be the plt entry in the executable. */
3307 return local_protected;
3310 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3311 aligned. Returns the first TLS output section. */
3313 struct bfd_section *
3314 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3316 struct bfd_section *sec, *tls;
3317 unsigned int align = 0;
3319 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3320 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3324 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3325 if (sec->alignment_power > align)
3326 align = sec->alignment_power;
3328 elf_hash_table (info)->tls_sec = tls;
3330 /* Ensure the alignment of the first section is the largest alignment,
3331 so that the tls segment starts aligned. */
3333 tls->alignment_power = align;
3338 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3340 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3341 Elf_Internal_Sym *sym)
3343 const struct elf_backend_data *bed;
3345 /* Local symbols do not count, but target specific ones might. */
3346 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3347 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3350 bed = get_elf_backend_data (abfd);
3351 /* Function symbols do not count. */
3352 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3355 /* If the section is undefined, then so is the symbol. */
3356 if (sym->st_shndx == SHN_UNDEF)
3359 /* If the symbol is defined in the common section, then
3360 it is a common definition and so does not count. */
3361 if (bed->common_definition (sym))
3364 /* If the symbol is in a target specific section then we
3365 must rely upon the backend to tell us what it is. */
3366 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3367 /* FIXME - this function is not coded yet:
3369 return _bfd_is_global_symbol_definition (abfd, sym);
3371 Instead for now assume that the definition is not global,
3372 Even if this is wrong, at least the linker will behave
3373 in the same way that it used to do. */
3379 /* Search the symbol table of the archive element of the archive ABFD
3380 whose archive map contains a mention of SYMDEF, and determine if
3381 the symbol is defined in this element. */
3383 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3385 Elf_Internal_Shdr * hdr;
3389 Elf_Internal_Sym *isymbuf;
3390 Elf_Internal_Sym *isym;
3391 Elf_Internal_Sym *isymend;
3394 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3398 if (! bfd_check_format (abfd, bfd_object))
3401 /* Select the appropriate symbol table. If we don't know if the
3402 object file is an IR object, give linker LTO plugin a chance to
3403 get the correct symbol table. */
3404 if (abfd->plugin_format == bfd_plugin_yes
3405 #if BFD_SUPPORTS_PLUGINS
3406 || (abfd->plugin_format == bfd_plugin_unknown
3407 && bfd_link_plugin_object_p (abfd))
3411 /* Use the IR symbol table if the object has been claimed by
3413 abfd = abfd->plugin_dummy_bfd;
3414 hdr = &elf_tdata (abfd)->symtab_hdr;
3416 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3417 hdr = &elf_tdata (abfd)->symtab_hdr;
3419 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3421 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3423 /* The sh_info field of the symtab header tells us where the
3424 external symbols start. We don't care about the local symbols. */
3425 if (elf_bad_symtab (abfd))
3427 extsymcount = symcount;
3432 extsymcount = symcount - hdr->sh_info;
3433 extsymoff = hdr->sh_info;
3436 if (extsymcount == 0)
3439 /* Read in the symbol table. */
3440 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3442 if (isymbuf == NULL)
3445 /* Scan the symbol table looking for SYMDEF. */
3447 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3451 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3456 if (strcmp (name, symdef->name) == 0)
3458 result = is_global_data_symbol_definition (abfd, isym);
3468 /* Add an entry to the .dynamic table. */
3471 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3475 struct elf_link_hash_table *hash_table;
3476 const struct elf_backend_data *bed;
3478 bfd_size_type newsize;
3479 bfd_byte *newcontents;
3480 Elf_Internal_Dyn dyn;
3482 hash_table = elf_hash_table (info);
3483 if (! is_elf_hash_table (hash_table))
3486 if (tag == DT_RELA || tag == DT_REL)
3487 hash_table->dynamic_relocs = TRUE;
3489 bed = get_elf_backend_data (hash_table->dynobj);
3490 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3491 BFD_ASSERT (s != NULL);
3493 newsize = s->size + bed->s->sizeof_dyn;
3494 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3495 if (newcontents == NULL)
3499 dyn.d_un.d_val = val;
3500 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3503 s->contents = newcontents;
3508 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3509 otherwise just check whether one already exists. Returns -1 on error,
3510 1 if a DT_NEEDED tag already exists, and 0 on success. */
3513 elf_add_dt_needed_tag (bfd *abfd,
3514 struct bfd_link_info *info,
3518 struct elf_link_hash_table *hash_table;
3521 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3524 hash_table = elf_hash_table (info);
3525 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3526 if (strindex == (size_t) -1)
3529 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3532 const struct elf_backend_data *bed;
3535 bed = get_elf_backend_data (hash_table->dynobj);
3536 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3538 for (extdyn = sdyn->contents;
3539 extdyn < sdyn->contents + sdyn->size;
3540 extdyn += bed->s->sizeof_dyn)
3542 Elf_Internal_Dyn dyn;
3544 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3545 if (dyn.d_tag == DT_NEEDED
3546 && dyn.d_un.d_val == strindex)
3548 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3556 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3559 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3563 /* We were just checking for existence of the tag. */
3564 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3569 /* Return true if SONAME is on the needed list between NEEDED and STOP
3570 (or the end of list if STOP is NULL), and needed by a library that
3574 on_needed_list (const char *soname,
3575 struct bfd_link_needed_list *needed,
3576 struct bfd_link_needed_list *stop)
3578 struct bfd_link_needed_list *look;
3579 for (look = needed; look != stop; look = look->next)
3580 if (strcmp (soname, look->name) == 0
3581 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3582 /* If needed by a library that itself is not directly
3583 needed, recursively check whether that library is
3584 indirectly needed. Since we add DT_NEEDED entries to
3585 the end of the list, library dependencies appear after
3586 the library. Therefore search prior to the current
3587 LOOK, preventing possible infinite recursion. */
3588 || on_needed_list (elf_dt_name (look->by), needed, look)))
3594 /* Sort symbol by value, section, and size. */
3596 elf_sort_symbol (const void *arg1, const void *arg2)
3598 const struct elf_link_hash_entry *h1;
3599 const struct elf_link_hash_entry *h2;
3600 bfd_signed_vma vdiff;
3602 h1 = *(const struct elf_link_hash_entry **) arg1;
3603 h2 = *(const struct elf_link_hash_entry **) arg2;
3604 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3606 return vdiff > 0 ? 1 : -1;
3609 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3611 return sdiff > 0 ? 1 : -1;
3613 vdiff = h1->size - h2->size;
3614 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3617 /* This function is used to adjust offsets into .dynstr for
3618 dynamic symbols. This is called via elf_link_hash_traverse. */
3621 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3623 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3625 if (h->dynindx != -1)
3626 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3630 /* Assign string offsets in .dynstr, update all structures referencing
3634 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3636 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3637 struct elf_link_local_dynamic_entry *entry;
3638 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3639 bfd *dynobj = hash_table->dynobj;
3642 const struct elf_backend_data *bed;
3645 _bfd_elf_strtab_finalize (dynstr);
3646 size = _bfd_elf_strtab_size (dynstr);
3648 bed = get_elf_backend_data (dynobj);
3649 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3650 BFD_ASSERT (sdyn != NULL);
3652 /* Update all .dynamic entries referencing .dynstr strings. */
3653 for (extdyn = sdyn->contents;
3654 extdyn < sdyn->contents + sdyn->size;
3655 extdyn += bed->s->sizeof_dyn)
3657 Elf_Internal_Dyn dyn;
3659 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3663 dyn.d_un.d_val = size;
3673 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3678 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3681 /* Now update local dynamic symbols. */
3682 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3683 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3684 entry->isym.st_name);
3686 /* And the rest of dynamic symbols. */
3687 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3689 /* Adjust version definitions. */
3690 if (elf_tdata (output_bfd)->cverdefs)
3695 Elf_Internal_Verdef def;
3696 Elf_Internal_Verdaux defaux;
3698 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3702 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3704 p += sizeof (Elf_External_Verdef);
3705 if (def.vd_aux != sizeof (Elf_External_Verdef))
3707 for (i = 0; i < def.vd_cnt; ++i)
3709 _bfd_elf_swap_verdaux_in (output_bfd,
3710 (Elf_External_Verdaux *) p, &defaux);
3711 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3713 _bfd_elf_swap_verdaux_out (output_bfd,
3714 &defaux, (Elf_External_Verdaux *) p);
3715 p += sizeof (Elf_External_Verdaux);
3718 while (def.vd_next);
3721 /* Adjust version references. */
3722 if (elf_tdata (output_bfd)->verref)
3727 Elf_Internal_Verneed need;
3728 Elf_Internal_Vernaux needaux;
3730 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3734 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3736 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3737 _bfd_elf_swap_verneed_out (output_bfd, &need,
3738 (Elf_External_Verneed *) p);
3739 p += sizeof (Elf_External_Verneed);
3740 for (i = 0; i < need.vn_cnt; ++i)
3742 _bfd_elf_swap_vernaux_in (output_bfd,
3743 (Elf_External_Vernaux *) p, &needaux);
3744 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3746 _bfd_elf_swap_vernaux_out (output_bfd,
3748 (Elf_External_Vernaux *) p);
3749 p += sizeof (Elf_External_Vernaux);
3752 while (need.vn_next);
3758 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3759 The default is to only match when the INPUT and OUTPUT are exactly
3763 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3764 const bfd_target *output)
3766 return input == output;
3769 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3770 This version is used when different targets for the same architecture
3771 are virtually identical. */
3774 _bfd_elf_relocs_compatible (const bfd_target *input,
3775 const bfd_target *output)
3777 const struct elf_backend_data *obed, *ibed;
3779 if (input == output)
3782 ibed = xvec_get_elf_backend_data (input);
3783 obed = xvec_get_elf_backend_data (output);
3785 if (ibed->arch != obed->arch)
3788 /* If both backends are using this function, deem them compatible. */
3789 return ibed->relocs_compatible == obed->relocs_compatible;
3792 /* Make a special call to the linker "notice" function to tell it that
3793 we are about to handle an as-needed lib, or have finished
3794 processing the lib. */
3797 _bfd_elf_notice_as_needed (bfd *ibfd,
3798 struct bfd_link_info *info,
3799 enum notice_asneeded_action act)
3801 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3804 /* Check relocations an ELF object file. */
3807 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3809 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3810 struct elf_link_hash_table *htab = elf_hash_table (info);
3812 /* If this object is the same format as the output object, and it is
3813 not a shared library, then let the backend look through the
3816 This is required to build global offset table entries and to
3817 arrange for dynamic relocs. It is not required for the
3818 particular common case of linking non PIC code, even when linking
3819 against shared libraries, but unfortunately there is no way of
3820 knowing whether an object file has been compiled PIC or not.
3821 Looking through the relocs is not particularly time consuming.
3822 The problem is that we must either (1) keep the relocs in memory,
3823 which causes the linker to require additional runtime memory or
3824 (2) read the relocs twice from the input file, which wastes time.
3825 This would be a good case for using mmap.
3827 I have no idea how to handle linking PIC code into a file of a
3828 different format. It probably can't be done. */
3829 if ((abfd->flags & DYNAMIC) == 0
3830 && is_elf_hash_table (htab)
3831 && bed->check_relocs != NULL
3832 && elf_object_id (abfd) == elf_hash_table_id (htab)
3833 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3837 for (o = abfd->sections; o != NULL; o = o->next)
3839 Elf_Internal_Rela *internal_relocs;
3842 /* Don't check relocations in excluded sections. */
3843 if ((o->flags & SEC_RELOC) == 0
3844 || (o->flags & SEC_EXCLUDE) != 0
3845 || o->reloc_count == 0
3846 || ((info->strip == strip_all || info->strip == strip_debugger)
3847 && (o->flags & SEC_DEBUGGING) != 0)
3848 || bfd_is_abs_section (o->output_section))
3851 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3853 if (internal_relocs == NULL)
3856 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3858 if (elf_section_data (o)->relocs != internal_relocs)
3859 free (internal_relocs);
3869 /* Add symbols from an ELF object file to the linker hash table. */
3872 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3874 Elf_Internal_Ehdr *ehdr;
3875 Elf_Internal_Shdr *hdr;
3879 struct elf_link_hash_entry **sym_hash;
3880 bfd_boolean dynamic;
3881 Elf_External_Versym *extversym = NULL;
3882 Elf_External_Versym *extversym_end = NULL;
3883 Elf_External_Versym *ever;
3884 struct elf_link_hash_entry *weaks;
3885 struct elf_link_hash_entry **nondeflt_vers = NULL;
3886 size_t nondeflt_vers_cnt = 0;
3887 Elf_Internal_Sym *isymbuf = NULL;
3888 Elf_Internal_Sym *isym;
3889 Elf_Internal_Sym *isymend;
3890 const struct elf_backend_data *bed;
3891 bfd_boolean add_needed;
3892 struct elf_link_hash_table *htab;
3894 void *alloc_mark = NULL;
3895 struct bfd_hash_entry **old_table = NULL;
3896 unsigned int old_size = 0;
3897 unsigned int old_count = 0;
3898 void *old_tab = NULL;
3900 struct bfd_link_hash_entry *old_undefs = NULL;
3901 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3902 void *old_strtab = NULL;
3905 bfd_boolean just_syms;
3907 htab = elf_hash_table (info);
3908 bed = get_elf_backend_data (abfd);
3910 if ((abfd->flags & DYNAMIC) == 0)
3916 /* You can't use -r against a dynamic object. Also, there's no
3917 hope of using a dynamic object which does not exactly match
3918 the format of the output file. */
3919 if (bfd_link_relocatable (info)
3920 || !is_elf_hash_table (htab)
3921 || info->output_bfd->xvec != abfd->xvec)
3923 if (bfd_link_relocatable (info))
3924 bfd_set_error (bfd_error_invalid_operation);
3926 bfd_set_error (bfd_error_wrong_format);
3931 ehdr = elf_elfheader (abfd);
3932 if (info->warn_alternate_em
3933 && bed->elf_machine_code != ehdr->e_machine
3934 && ((bed->elf_machine_alt1 != 0
3935 && ehdr->e_machine == bed->elf_machine_alt1)
3936 || (bed->elf_machine_alt2 != 0
3937 && ehdr->e_machine == bed->elf_machine_alt2)))
3939 /* xgettext:c-format */
3940 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3941 ehdr->e_machine, abfd, bed->elf_machine_code);
3943 /* As a GNU extension, any input sections which are named
3944 .gnu.warning.SYMBOL are treated as warning symbols for the given
3945 symbol. This differs from .gnu.warning sections, which generate
3946 warnings when they are included in an output file. */
3947 /* PR 12761: Also generate this warning when building shared libraries. */
3948 for (s = abfd->sections; s != NULL; s = s->next)
3952 name = bfd_get_section_name (abfd, s);
3953 if (CONST_STRNEQ (name, ".gnu.warning."))
3958 name += sizeof ".gnu.warning." - 1;
3960 /* If this is a shared object, then look up the symbol
3961 in the hash table. If it is there, and it is already
3962 been defined, then we will not be using the entry
3963 from this shared object, so we don't need to warn.
3964 FIXME: If we see the definition in a regular object
3965 later on, we will warn, but we shouldn't. The only
3966 fix is to keep track of what warnings we are supposed
3967 to emit, and then handle them all at the end of the
3971 struct elf_link_hash_entry *h;
3973 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3975 /* FIXME: What about bfd_link_hash_common? */
3977 && (h->root.type == bfd_link_hash_defined
3978 || h->root.type == bfd_link_hash_defweak))
3983 msg = (char *) bfd_alloc (abfd, sz + 1);
3987 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3992 if (! (_bfd_generic_link_add_one_symbol
3993 (info, abfd, name, BSF_WARNING, s, 0, msg,
3994 FALSE, bed->collect, NULL)))
3997 if (bfd_link_executable (info))
3999 /* Clobber the section size so that the warning does
4000 not get copied into the output file. */
4003 /* Also set SEC_EXCLUDE, so that symbols defined in
4004 the warning section don't get copied to the output. */
4005 s->flags |= SEC_EXCLUDE;
4010 just_syms = ((s = abfd->sections) != NULL
4011 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4016 /* If we are creating a shared library, create all the dynamic
4017 sections immediately. We need to attach them to something,
4018 so we attach them to this BFD, provided it is the right
4019 format and is not from ld --just-symbols. Always create the
4020 dynamic sections for -E/--dynamic-list. FIXME: If there
4021 are no input BFD's of the same format as the output, we can't
4022 make a shared library. */
4024 && (bfd_link_pic (info)
4025 || (!bfd_link_relocatable (info)
4027 && (info->export_dynamic || info->dynamic)))
4028 && is_elf_hash_table (htab)
4029 && info->output_bfd->xvec == abfd->xvec
4030 && !htab->dynamic_sections_created)
4032 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4036 else if (!is_elf_hash_table (htab))
4040 const char *soname = NULL;
4042 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4043 const Elf_Internal_Phdr *phdr;
4046 /* ld --just-symbols and dynamic objects don't mix very well.
4047 ld shouldn't allow it. */
4051 /* If this dynamic lib was specified on the command line with
4052 --as-needed in effect, then we don't want to add a DT_NEEDED
4053 tag unless the lib is actually used. Similary for libs brought
4054 in by another lib's DT_NEEDED. When --no-add-needed is used
4055 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4056 any dynamic library in DT_NEEDED tags in the dynamic lib at
4058 add_needed = (elf_dyn_lib_class (abfd)
4059 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4060 | DYN_NO_NEEDED)) == 0;
4062 s = bfd_get_section_by_name (abfd, ".dynamic");
4067 unsigned int elfsec;
4068 unsigned long shlink;
4070 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4077 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4078 if (elfsec == SHN_BAD)
4079 goto error_free_dyn;
4080 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4082 for (extdyn = dynbuf;
4083 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4084 extdyn += bed->s->sizeof_dyn)
4086 Elf_Internal_Dyn dyn;
4088 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4089 if (dyn.d_tag == DT_SONAME)
4091 unsigned int tagv = dyn.d_un.d_val;
4092 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4094 goto error_free_dyn;
4096 if (dyn.d_tag == DT_NEEDED)
4098 struct bfd_link_needed_list *n, **pn;
4100 unsigned int tagv = dyn.d_un.d_val;
4102 amt = sizeof (struct bfd_link_needed_list);
4103 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4104 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4105 if (n == NULL || fnm == NULL)
4106 goto error_free_dyn;
4107 amt = strlen (fnm) + 1;
4108 anm = (char *) bfd_alloc (abfd, amt);
4110 goto error_free_dyn;
4111 memcpy (anm, fnm, amt);
4115 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4119 if (dyn.d_tag == DT_RUNPATH)
4121 struct bfd_link_needed_list *n, **pn;
4123 unsigned int tagv = dyn.d_un.d_val;
4125 amt = sizeof (struct bfd_link_needed_list);
4126 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4127 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4128 if (n == NULL || fnm == NULL)
4129 goto error_free_dyn;
4130 amt = strlen (fnm) + 1;
4131 anm = (char *) bfd_alloc (abfd, amt);
4133 goto error_free_dyn;
4134 memcpy (anm, fnm, amt);
4138 for (pn = & runpath;
4144 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4145 if (!runpath && dyn.d_tag == DT_RPATH)
4147 struct bfd_link_needed_list *n, **pn;
4149 unsigned int tagv = dyn.d_un.d_val;
4151 amt = sizeof (struct bfd_link_needed_list);
4152 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4153 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4154 if (n == NULL || fnm == NULL)
4155 goto error_free_dyn;
4156 amt = strlen (fnm) + 1;
4157 anm = (char *) bfd_alloc (abfd, amt);
4159 goto error_free_dyn;
4160 memcpy (anm, fnm, amt);
4170 if (dyn.d_tag == DT_AUDIT)
4172 unsigned int tagv = dyn.d_un.d_val;
4173 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4180 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4181 frees all more recently bfd_alloc'd blocks as well. */
4187 struct bfd_link_needed_list **pn;
4188 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4193 /* If we have a PT_GNU_RELRO program header, mark as read-only
4194 all sections contained fully therein. This makes relro
4195 shared library sections appear as they will at run-time. */
4196 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4197 while (phdr-- > elf_tdata (abfd)->phdr)
4198 if (phdr->p_type == PT_GNU_RELRO)
4200 for (s = abfd->sections; s != NULL; s = s->next)
4201 if ((s->flags & SEC_ALLOC) != 0
4202 && s->vma >= phdr->p_vaddr
4203 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4204 s->flags |= SEC_READONLY;
4208 /* We do not want to include any of the sections in a dynamic
4209 object in the output file. We hack by simply clobbering the
4210 list of sections in the BFD. This could be handled more
4211 cleanly by, say, a new section flag; the existing
4212 SEC_NEVER_LOAD flag is not the one we want, because that one
4213 still implies that the section takes up space in the output
4215 bfd_section_list_clear (abfd);
4217 /* Find the name to use in a DT_NEEDED entry that refers to this
4218 object. If the object has a DT_SONAME entry, we use it.
4219 Otherwise, if the generic linker stuck something in
4220 elf_dt_name, we use that. Otherwise, we just use the file
4222 if (soname == NULL || *soname == '\0')
4224 soname = elf_dt_name (abfd);
4225 if (soname == NULL || *soname == '\0')
4226 soname = bfd_get_filename (abfd);
4229 /* Save the SONAME because sometimes the linker emulation code
4230 will need to know it. */
4231 elf_dt_name (abfd) = soname;
4233 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4237 /* If we have already included this dynamic object in the
4238 link, just ignore it. There is no reason to include a
4239 particular dynamic object more than once. */
4243 /* Save the DT_AUDIT entry for the linker emulation code. */
4244 elf_dt_audit (abfd) = audit;
4247 /* If this is a dynamic object, we always link against the .dynsym
4248 symbol table, not the .symtab symbol table. The dynamic linker
4249 will only see the .dynsym symbol table, so there is no reason to
4250 look at .symtab for a dynamic object. */
4252 if (! dynamic || elf_dynsymtab (abfd) == 0)
4253 hdr = &elf_tdata (abfd)->symtab_hdr;
4255 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4257 symcount = hdr->sh_size / bed->s->sizeof_sym;
4259 /* The sh_info field of the symtab header tells us where the
4260 external symbols start. We don't care about the local symbols at
4262 if (elf_bad_symtab (abfd))
4264 extsymcount = symcount;
4269 extsymcount = symcount - hdr->sh_info;
4270 extsymoff = hdr->sh_info;
4273 sym_hash = elf_sym_hashes (abfd);
4274 if (extsymcount != 0)
4276 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4278 if (isymbuf == NULL)
4281 if (sym_hash == NULL)
4283 /* We store a pointer to the hash table entry for each
4286 amt *= sizeof (struct elf_link_hash_entry *);
4287 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4288 if (sym_hash == NULL)
4289 goto error_free_sym;
4290 elf_sym_hashes (abfd) = sym_hash;
4296 /* Read in any version definitions. */
4297 if (!_bfd_elf_slurp_version_tables (abfd,
4298 info->default_imported_symver))
4299 goto error_free_sym;
4301 /* Read in the symbol versions, but don't bother to convert them
4302 to internal format. */
4303 if (elf_dynversym (abfd) != 0)
4305 Elf_Internal_Shdr *versymhdr;
4307 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4308 amt = versymhdr->sh_size;
4309 extversym = (Elf_External_Versym *) bfd_malloc (amt);
4310 if (extversym == NULL)
4311 goto error_free_sym;
4312 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4313 || bfd_bread (extversym, amt, abfd) != amt)
4314 goto error_free_vers;
4315 extversym_end = extversym + (amt / sizeof (* extversym));
4319 /* If we are loading an as-needed shared lib, save the symbol table
4320 state before we start adding symbols. If the lib turns out
4321 to be unneeded, restore the state. */
4322 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4327 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4329 struct bfd_hash_entry *p;
4330 struct elf_link_hash_entry *h;
4332 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4334 h = (struct elf_link_hash_entry *) p;
4335 entsize += htab->root.table.entsize;
4336 if (h->root.type == bfd_link_hash_warning)
4337 entsize += htab->root.table.entsize;
4341 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4342 old_tab = bfd_malloc (tabsize + entsize);
4343 if (old_tab == NULL)
4344 goto error_free_vers;
4346 /* Remember the current objalloc pointer, so that all mem for
4347 symbols added can later be reclaimed. */
4348 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4349 if (alloc_mark == NULL)
4350 goto error_free_vers;
4352 /* Make a special call to the linker "notice" function to
4353 tell it that we are about to handle an as-needed lib. */
4354 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4355 goto error_free_vers;
4357 /* Clone the symbol table. Remember some pointers into the
4358 symbol table, and dynamic symbol count. */
4359 old_ent = (char *) old_tab + tabsize;
4360 memcpy (old_tab, htab->root.table.table, tabsize);
4361 old_undefs = htab->root.undefs;
4362 old_undefs_tail = htab->root.undefs_tail;
4363 old_table = htab->root.table.table;
4364 old_size = htab->root.table.size;
4365 old_count = htab->root.table.count;
4366 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4367 if (old_strtab == NULL)
4368 goto error_free_vers;
4370 for (i = 0; i < htab->root.table.size; i++)
4372 struct bfd_hash_entry *p;
4373 struct elf_link_hash_entry *h;
4375 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4377 memcpy (old_ent, p, htab->root.table.entsize);
4378 old_ent = (char *) old_ent + htab->root.table.entsize;
4379 h = (struct elf_link_hash_entry *) p;
4380 if (h->root.type == bfd_link_hash_warning)
4382 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4383 old_ent = (char *) old_ent + htab->root.table.entsize;
4390 if (extversym == NULL)
4392 else if (extversym + extsymoff < extversym_end)
4393 ever = extversym + extsymoff;
4396 /* xgettext:c-format */
4397 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4398 abfd, (long) extsymoff,
4399 (long) (extversym_end - extversym) / sizeof (* extversym));
4400 bfd_set_error (bfd_error_bad_value);
4401 goto error_free_vers;
4404 if (!bfd_link_relocatable (info)
4405 && abfd->lto_slim_object)
4408 (_("%pB: plugin needed to handle lto object"), abfd);
4411 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4413 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4417 asection *sec, *new_sec;
4420 struct elf_link_hash_entry *h;
4421 struct elf_link_hash_entry *hi;
4422 bfd_boolean definition;
4423 bfd_boolean size_change_ok;
4424 bfd_boolean type_change_ok;
4425 bfd_boolean new_weak;
4426 bfd_boolean old_weak;
4427 bfd_boolean override;
4429 bfd_boolean discarded;
4430 unsigned int old_alignment;
4431 unsigned int shindex;
4433 bfd_boolean matched;
4437 flags = BSF_NO_FLAGS;
4439 value = isym->st_value;
4440 common = bed->common_definition (isym);
4441 if (common && info->inhibit_common_definition)
4443 /* Treat common symbol as undefined for --no-define-common. */
4444 isym->st_shndx = SHN_UNDEF;
4449 bind = ELF_ST_BIND (isym->st_info);
4453 /* This should be impossible, since ELF requires that all
4454 global symbols follow all local symbols, and that sh_info
4455 point to the first global symbol. Unfortunately, Irix 5
4457 if (elf_bad_symtab (abfd))
4460 /* If we aren't prepared to handle locals within the globals
4461 then we'll likely segfault on a NULL symbol hash if the
4462 symbol is ever referenced in relocations. */
4463 shindex = elf_elfheader (abfd)->e_shstrndx;
4464 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4465 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4466 " (>= sh_info of %lu)"),
4467 abfd, name, (long) (isym - isymbuf + extsymoff),
4470 /* Dynamic object relocations are not processed by ld, so
4471 ld won't run into the problem mentioned above. */
4474 bfd_set_error (bfd_error_bad_value);
4475 goto error_free_vers;
4478 if (isym->st_shndx != SHN_UNDEF && !common)
4486 case STB_GNU_UNIQUE:
4487 flags = BSF_GNU_UNIQUE;
4491 /* Leave it up to the processor backend. */
4495 if (isym->st_shndx == SHN_UNDEF)
4496 sec = bfd_und_section_ptr;
4497 else if (isym->st_shndx == SHN_ABS)
4498 sec = bfd_abs_section_ptr;
4499 else if (isym->st_shndx == SHN_COMMON)
4501 sec = bfd_com_section_ptr;
4502 /* What ELF calls the size we call the value. What ELF
4503 calls the value we call the alignment. */
4504 value = isym->st_size;
4508 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4510 sec = bfd_abs_section_ptr;
4511 else if (discarded_section (sec))
4513 /* Symbols from discarded section are undefined. We keep
4515 sec = bfd_und_section_ptr;
4517 isym->st_shndx = SHN_UNDEF;
4519 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4523 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4526 goto error_free_vers;
4528 if (isym->st_shndx == SHN_COMMON
4529 && (abfd->flags & BFD_PLUGIN) != 0)
4531 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4535 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4537 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4539 goto error_free_vers;
4543 else if (isym->st_shndx == SHN_COMMON
4544 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4545 && !bfd_link_relocatable (info))
4547 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4551 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4552 | SEC_LINKER_CREATED);
4553 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4555 goto error_free_vers;
4559 else if (bed->elf_add_symbol_hook)
4561 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4563 goto error_free_vers;
4565 /* The hook function sets the name to NULL if this symbol
4566 should be skipped for some reason. */
4571 /* Sanity check that all possibilities were handled. */
4575 /* Silently discard TLS symbols from --just-syms. There's
4576 no way to combine a static TLS block with a new TLS block
4577 for this executable. */
4578 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4579 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4582 if (bfd_is_und_section (sec)
4583 || bfd_is_com_section (sec))
4588 size_change_ok = FALSE;
4589 type_change_ok = bed->type_change_ok;
4596 if (is_elf_hash_table (htab))
4598 Elf_Internal_Versym iver;
4599 unsigned int vernum = 0;
4604 if (info->default_imported_symver)
4605 /* Use the default symbol version created earlier. */
4606 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4610 else if (ever >= extversym_end)
4612 /* xgettext:c-format */
4613 _bfd_error_handler (_("%pB: not enough version information"),
4615 bfd_set_error (bfd_error_bad_value);
4616 goto error_free_vers;
4619 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4621 vernum = iver.vs_vers & VERSYM_VERSION;
4623 /* If this is a hidden symbol, or if it is not version
4624 1, we append the version name to the symbol name.
4625 However, we do not modify a non-hidden absolute symbol
4626 if it is not a function, because it might be the version
4627 symbol itself. FIXME: What if it isn't? */
4628 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4630 && (!bfd_is_abs_section (sec)
4631 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4634 size_t namelen, verlen, newlen;
4637 if (isym->st_shndx != SHN_UNDEF)
4639 if (vernum > elf_tdata (abfd)->cverdefs)
4641 else if (vernum > 1)
4643 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4650 /* xgettext:c-format */
4651 (_("%pB: %s: invalid version %u (max %d)"),
4653 elf_tdata (abfd)->cverdefs);
4654 bfd_set_error (bfd_error_bad_value);
4655 goto error_free_vers;
4660 /* We cannot simply test for the number of
4661 entries in the VERNEED section since the
4662 numbers for the needed versions do not start
4664 Elf_Internal_Verneed *t;
4667 for (t = elf_tdata (abfd)->verref;
4671 Elf_Internal_Vernaux *a;
4673 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4675 if (a->vna_other == vernum)
4677 verstr = a->vna_nodename;
4687 /* xgettext:c-format */
4688 (_("%pB: %s: invalid needed version %d"),
4689 abfd, name, vernum);
4690 bfd_set_error (bfd_error_bad_value);
4691 goto error_free_vers;
4695 namelen = strlen (name);
4696 verlen = strlen (verstr);
4697 newlen = namelen + verlen + 2;
4698 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4699 && isym->st_shndx != SHN_UNDEF)
4702 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4703 if (newname == NULL)
4704 goto error_free_vers;
4705 memcpy (newname, name, namelen);
4706 p = newname + namelen;
4708 /* If this is a defined non-hidden version symbol,
4709 we add another @ to the name. This indicates the
4710 default version of the symbol. */
4711 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4712 && isym->st_shndx != SHN_UNDEF)
4714 memcpy (p, verstr, verlen + 1);
4719 /* If this symbol has default visibility and the user has
4720 requested we not re-export it, then mark it as hidden. */
4721 if (!bfd_is_und_section (sec)
4724 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4725 isym->st_other = (STV_HIDDEN
4726 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4728 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4729 sym_hash, &old_bfd, &old_weak,
4730 &old_alignment, &skip, &override,
4731 &type_change_ok, &size_change_ok,
4733 goto error_free_vers;
4738 /* Override a definition only if the new symbol matches the
4740 if (override && matched)
4744 while (h->root.type == bfd_link_hash_indirect
4745 || h->root.type == bfd_link_hash_warning)
4746 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4748 if (elf_tdata (abfd)->verdef != NULL
4751 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4754 if (! (_bfd_generic_link_add_one_symbol
4755 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4756 (struct bfd_link_hash_entry **) sym_hash)))
4757 goto error_free_vers;
4760 /* We need to make sure that indirect symbol dynamic flags are
4763 while (h->root.type == bfd_link_hash_indirect
4764 || h->root.type == bfd_link_hash_warning)
4765 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4767 /* Setting the index to -3 tells elf_link_output_extsym that
4768 this symbol is defined in a discarded section. */
4774 new_weak = (flags & BSF_WEAK) != 0;
4778 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4779 && is_elf_hash_table (htab)
4780 && h->u.alias == NULL)
4782 /* Keep a list of all weak defined non function symbols from
4783 a dynamic object, using the alias field. Later in this
4784 function we will set the alias field to the correct
4785 value. We only put non-function symbols from dynamic
4786 objects on this list, because that happens to be the only
4787 time we need to know the normal symbol corresponding to a
4788 weak symbol, and the information is time consuming to
4789 figure out. If the alias field is not already NULL,
4790 then this symbol was already defined by some previous
4791 dynamic object, and we will be using that previous
4792 definition anyhow. */
4798 /* Set the alignment of a common symbol. */
4799 if ((common || bfd_is_com_section (sec))
4800 && h->root.type == bfd_link_hash_common)
4805 align = bfd_log2 (isym->st_value);
4808 /* The new symbol is a common symbol in a shared object.
4809 We need to get the alignment from the section. */
4810 align = new_sec->alignment_power;
4812 if (align > old_alignment)
4813 h->root.u.c.p->alignment_power = align;
4815 h->root.u.c.p->alignment_power = old_alignment;
4818 if (is_elf_hash_table (htab))
4820 /* Set a flag in the hash table entry indicating the type of
4821 reference or definition we just found. A dynamic symbol
4822 is one which is referenced or defined by both a regular
4823 object and a shared object. */
4824 bfd_boolean dynsym = FALSE;
4826 /* Plugin symbols aren't normal. Don't set def_regular or
4827 ref_regular for them, or make them dynamic. */
4828 if ((abfd->flags & BFD_PLUGIN) != 0)
4835 if (bind != STB_WEAK)
4836 h->ref_regular_nonweak = 1;
4848 /* If the indirect symbol has been forced local, don't
4849 make the real symbol dynamic. */
4850 if ((h == hi || !hi->forced_local)
4851 && (bfd_link_dll (info)
4861 hi->ref_dynamic = 1;
4866 hi->def_dynamic = 1;
4869 /* If the indirect symbol has been forced local, don't
4870 make the real symbol dynamic. */
4871 if ((h == hi || !hi->forced_local)
4875 && weakdef (h)->dynindx != -1)))
4879 /* Check to see if we need to add an indirect symbol for
4880 the default name. */
4882 || (!override && h->root.type == bfd_link_hash_common))
4883 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4884 sec, value, &old_bfd, &dynsym))
4885 goto error_free_vers;
4887 /* Check the alignment when a common symbol is involved. This
4888 can change when a common symbol is overridden by a normal
4889 definition or a common symbol is ignored due to the old
4890 normal definition. We need to make sure the maximum
4891 alignment is maintained. */
4892 if ((old_alignment || common)
4893 && h->root.type != bfd_link_hash_common)
4895 unsigned int common_align;
4896 unsigned int normal_align;
4897 unsigned int symbol_align;
4901 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4902 || h->root.type == bfd_link_hash_defweak);
4904 symbol_align = ffs (h->root.u.def.value) - 1;
4905 if (h->root.u.def.section->owner != NULL
4906 && (h->root.u.def.section->owner->flags
4907 & (DYNAMIC | BFD_PLUGIN)) == 0)
4909 normal_align = h->root.u.def.section->alignment_power;
4910 if (normal_align > symbol_align)
4911 normal_align = symbol_align;
4914 normal_align = symbol_align;
4918 common_align = old_alignment;
4919 common_bfd = old_bfd;
4924 common_align = bfd_log2 (isym->st_value);
4926 normal_bfd = old_bfd;
4929 if (normal_align < common_align)
4931 /* PR binutils/2735 */
4932 if (normal_bfd == NULL)
4934 /* xgettext:c-format */
4935 (_("warning: alignment %u of common symbol `%s' in %pB is"
4936 " greater than the alignment (%u) of its section %pA"),
4937 1 << common_align, name, common_bfd,
4938 1 << normal_align, h->root.u.def.section);
4941 /* xgettext:c-format */
4942 (_("warning: alignment %u of symbol `%s' in %pB"
4943 " is smaller than %u in %pB"),
4944 1 << normal_align, name, normal_bfd,
4945 1 << common_align, common_bfd);
4949 /* Remember the symbol size if it isn't undefined. */
4950 if (isym->st_size != 0
4951 && isym->st_shndx != SHN_UNDEF
4952 && (definition || h->size == 0))
4955 && h->size != isym->st_size
4956 && ! size_change_ok)
4958 /* xgettext:c-format */
4959 (_("warning: size of symbol `%s' changed"
4960 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4961 name, (uint64_t) h->size, old_bfd,
4962 (uint64_t) isym->st_size, abfd);
4964 h->size = isym->st_size;
4967 /* If this is a common symbol, then we always want H->SIZE
4968 to be the size of the common symbol. The code just above
4969 won't fix the size if a common symbol becomes larger. We
4970 don't warn about a size change here, because that is
4971 covered by --warn-common. Allow changes between different
4973 if (h->root.type == bfd_link_hash_common)
4974 h->size = h->root.u.c.size;
4976 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4977 && ((definition && !new_weak)
4978 || (old_weak && h->root.type == bfd_link_hash_common)
4979 || h->type == STT_NOTYPE))
4981 unsigned int type = ELF_ST_TYPE (isym->st_info);
4983 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4985 if (type == STT_GNU_IFUNC
4986 && (abfd->flags & DYNAMIC) != 0)
4989 if (h->type != type)
4991 if (h->type != STT_NOTYPE && ! type_change_ok)
4992 /* xgettext:c-format */
4994 (_("warning: type of symbol `%s' changed"
4995 " from %d to %d in %pB"),
4996 name, h->type, type, abfd);
5002 /* Merge st_other field. */
5003 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
5005 /* We don't want to make debug symbol dynamic. */
5007 && (sec->flags & SEC_DEBUGGING)
5008 && !bfd_link_relocatable (info))
5011 /* Nor should we make plugin symbols dynamic. */
5012 if ((abfd->flags & BFD_PLUGIN) != 0)
5017 h->target_internal = isym->st_target_internal;
5018 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5021 if (definition && !dynamic)
5023 char *p = strchr (name, ELF_VER_CHR);
5024 if (p != NULL && p[1] != ELF_VER_CHR)
5026 /* Queue non-default versions so that .symver x, x@FOO
5027 aliases can be checked. */
5030 amt = ((isymend - isym + 1)
5031 * sizeof (struct elf_link_hash_entry *));
5033 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5035 goto error_free_vers;
5037 nondeflt_vers[nondeflt_vers_cnt++] = h;
5041 if (dynsym && h->dynindx == -1)
5043 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5044 goto error_free_vers;
5046 && weakdef (h)->dynindx == -1)
5048 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5049 goto error_free_vers;
5052 else if (h->dynindx != -1)
5053 /* If the symbol already has a dynamic index, but
5054 visibility says it should not be visible, turn it into
5056 switch (ELF_ST_VISIBILITY (h->other))
5060 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5065 /* Don't add DT_NEEDED for references from the dummy bfd nor
5066 for unmatched symbol. */
5071 && h->ref_regular_nonweak
5073 || (old_bfd->flags & BFD_PLUGIN) == 0))
5074 || (h->ref_dynamic_nonweak
5075 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5076 && !on_needed_list (elf_dt_name (abfd),
5077 htab->needed, NULL))))
5080 const char *soname = elf_dt_name (abfd);
5082 info->callbacks->minfo ("%!", soname, old_bfd,
5083 h->root.root.string);
5085 /* A symbol from a library loaded via DT_NEEDED of some
5086 other library is referenced by a regular object.
5087 Add a DT_NEEDED entry for it. Issue an error if
5088 --no-add-needed is used and the reference was not
5091 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5094 /* xgettext:c-format */
5095 (_("%pB: undefined reference to symbol '%s'"),
5097 bfd_set_error (bfd_error_missing_dso);
5098 goto error_free_vers;
5101 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5102 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5105 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
5107 goto error_free_vers;
5109 BFD_ASSERT (ret == 0);
5114 if (info->lto_plugin_active
5115 && !bfd_link_relocatable (info)
5116 && (abfd->flags & BFD_PLUGIN) == 0
5122 if (bed->s->arch_size == 32)
5127 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5128 referenced in regular objects so that linker plugin will get
5129 the correct symbol resolution. */
5131 sym_hash = elf_sym_hashes (abfd);
5132 for (s = abfd->sections; s != NULL; s = s->next)
5134 Elf_Internal_Rela *internal_relocs;
5135 Elf_Internal_Rela *rel, *relend;
5137 /* Don't check relocations in excluded sections. */
5138 if ((s->flags & SEC_RELOC) == 0
5139 || s->reloc_count == 0
5140 || (s->flags & SEC_EXCLUDE) != 0
5141 || ((info->strip == strip_all
5142 || info->strip == strip_debugger)
5143 && (s->flags & SEC_DEBUGGING) != 0))
5146 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5149 if (internal_relocs == NULL)
5150 goto error_free_vers;
5152 rel = internal_relocs;
5153 relend = rel + s->reloc_count;
5154 for ( ; rel < relend; rel++)
5156 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5157 struct elf_link_hash_entry *h;
5159 /* Skip local symbols. */
5160 if (r_symndx < extsymoff)
5163 h = sym_hash[r_symndx - extsymoff];
5165 h->root.non_ir_ref_regular = 1;
5168 if (elf_section_data (s)->relocs != internal_relocs)
5169 free (internal_relocs);
5173 if (extversym != NULL)
5179 if (isymbuf != NULL)
5185 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5189 /* Restore the symbol table. */
5190 old_ent = (char *) old_tab + tabsize;
5191 memset (elf_sym_hashes (abfd), 0,
5192 extsymcount * sizeof (struct elf_link_hash_entry *));
5193 htab->root.table.table = old_table;
5194 htab->root.table.size = old_size;
5195 htab->root.table.count = old_count;
5196 memcpy (htab->root.table.table, old_tab, tabsize);
5197 htab->root.undefs = old_undefs;
5198 htab->root.undefs_tail = old_undefs_tail;
5199 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5202 for (i = 0; i < htab->root.table.size; i++)
5204 struct bfd_hash_entry *p;
5205 struct elf_link_hash_entry *h;
5207 unsigned int alignment_power;
5208 unsigned int non_ir_ref_dynamic;
5210 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5212 h = (struct elf_link_hash_entry *) p;
5213 if (h->root.type == bfd_link_hash_warning)
5214 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5216 /* Preserve the maximum alignment and size for common
5217 symbols even if this dynamic lib isn't on DT_NEEDED
5218 since it can still be loaded at run time by another
5220 if (h->root.type == bfd_link_hash_common)
5222 size = h->root.u.c.size;
5223 alignment_power = h->root.u.c.p->alignment_power;
5228 alignment_power = 0;
5230 /* Preserve non_ir_ref_dynamic so that this symbol
5231 will be exported when the dynamic lib becomes needed
5232 in the second pass. */
5233 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5234 memcpy (p, old_ent, htab->root.table.entsize);
5235 old_ent = (char *) old_ent + htab->root.table.entsize;
5236 h = (struct elf_link_hash_entry *) p;
5237 if (h->root.type == bfd_link_hash_warning)
5239 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5240 old_ent = (char *) old_ent + htab->root.table.entsize;
5241 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5243 if (h->root.type == bfd_link_hash_common)
5245 if (size > h->root.u.c.size)
5246 h->root.u.c.size = size;
5247 if (alignment_power > h->root.u.c.p->alignment_power)
5248 h->root.u.c.p->alignment_power = alignment_power;
5250 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5254 /* Make a special call to the linker "notice" function to
5255 tell it that symbols added for crefs may need to be removed. */
5256 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5257 goto error_free_vers;
5260 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5262 if (nondeflt_vers != NULL)
5263 free (nondeflt_vers);
5267 if (old_tab != NULL)
5269 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5270 goto error_free_vers;
5275 /* Now that all the symbols from this input file are created, if
5276 not performing a relocatable link, handle .symver foo, foo@BAR
5277 such that any relocs against foo become foo@BAR. */
5278 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5282 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5284 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5285 char *shortname, *p;
5287 p = strchr (h->root.root.string, ELF_VER_CHR);
5289 || (h->root.type != bfd_link_hash_defined
5290 && h->root.type != bfd_link_hash_defweak))
5293 amt = p - h->root.root.string;
5294 shortname = (char *) bfd_malloc (amt + 1);
5296 goto error_free_vers;
5297 memcpy (shortname, h->root.root.string, amt);
5298 shortname[amt] = '\0';
5300 hi = (struct elf_link_hash_entry *)
5301 bfd_link_hash_lookup (&htab->root, shortname,
5302 FALSE, FALSE, FALSE);
5304 && hi->root.type == h->root.type
5305 && hi->root.u.def.value == h->root.u.def.value
5306 && hi->root.u.def.section == h->root.u.def.section)
5308 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5309 hi->root.type = bfd_link_hash_indirect;
5310 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5311 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5312 sym_hash = elf_sym_hashes (abfd);
5314 for (symidx = 0; symidx < extsymcount; ++symidx)
5315 if (sym_hash[symidx] == hi)
5317 sym_hash[symidx] = h;
5323 free (nondeflt_vers);
5324 nondeflt_vers = NULL;
5327 /* Now set the alias field correctly for all the weak defined
5328 symbols we found. The only way to do this is to search all the
5329 symbols. Since we only need the information for non functions in
5330 dynamic objects, that's the only time we actually put anything on
5331 the list WEAKS. We need this information so that if a regular
5332 object refers to a symbol defined weakly in a dynamic object, the
5333 real symbol in the dynamic object is also put in the dynamic
5334 symbols; we also must arrange for both symbols to point to the
5335 same memory location. We could handle the general case of symbol
5336 aliasing, but a general symbol alias can only be generated in
5337 assembler code, handling it correctly would be very time
5338 consuming, and other ELF linkers don't handle general aliasing
5342 struct elf_link_hash_entry **hpp;
5343 struct elf_link_hash_entry **hppend;
5344 struct elf_link_hash_entry **sorted_sym_hash;
5345 struct elf_link_hash_entry *h;
5348 /* Since we have to search the whole symbol list for each weak
5349 defined symbol, search time for N weak defined symbols will be
5350 O(N^2). Binary search will cut it down to O(NlogN). */
5352 amt *= sizeof (struct elf_link_hash_entry *);
5353 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5354 if (sorted_sym_hash == NULL)
5356 sym_hash = sorted_sym_hash;
5357 hpp = elf_sym_hashes (abfd);
5358 hppend = hpp + extsymcount;
5360 for (; hpp < hppend; hpp++)
5364 && h->root.type == bfd_link_hash_defined
5365 && !bed->is_function_type (h->type))
5373 qsort (sorted_sym_hash, sym_count,
5374 sizeof (struct elf_link_hash_entry *),
5377 while (weaks != NULL)
5379 struct elf_link_hash_entry *hlook;
5382 size_t i, j, idx = 0;
5385 weaks = hlook->u.alias;
5386 hlook->u.alias = NULL;
5388 if (hlook->root.type != bfd_link_hash_defined
5389 && hlook->root.type != bfd_link_hash_defweak)
5392 slook = hlook->root.u.def.section;
5393 vlook = hlook->root.u.def.value;
5399 bfd_signed_vma vdiff;
5401 h = sorted_sym_hash[idx];
5402 vdiff = vlook - h->root.u.def.value;
5409 int sdiff = slook->id - h->root.u.def.section->id;
5419 /* We didn't find a value/section match. */
5423 /* With multiple aliases, or when the weak symbol is already
5424 strongly defined, we have multiple matching symbols and
5425 the binary search above may land on any of them. Step
5426 one past the matching symbol(s). */
5429 h = sorted_sym_hash[idx];
5430 if (h->root.u.def.section != slook
5431 || h->root.u.def.value != vlook)
5435 /* Now look back over the aliases. Since we sorted by size
5436 as well as value and section, we'll choose the one with
5437 the largest size. */
5440 h = sorted_sym_hash[idx];
5442 /* Stop if value or section doesn't match. */
5443 if (h->root.u.def.section != slook
5444 || h->root.u.def.value != vlook)
5446 else if (h != hlook)
5448 struct elf_link_hash_entry *t;
5451 hlook->is_weakalias = 1;
5453 if (t->u.alias != NULL)
5454 while (t->u.alias != h)
5458 /* If the weak definition is in the list of dynamic
5459 symbols, make sure the real definition is put
5461 if (hlook->dynindx != -1 && h->dynindx == -1)
5463 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5466 free (sorted_sym_hash);
5471 /* If the real definition is in the list of dynamic
5472 symbols, make sure the weak definition is put
5473 there as well. If we don't do this, then the
5474 dynamic loader might not merge the entries for the
5475 real definition and the weak definition. */
5476 if (h->dynindx != -1 && hlook->dynindx == -1)
5478 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5479 goto err_free_sym_hash;
5486 free (sorted_sym_hash);
5489 if (bed->check_directives
5490 && !(*bed->check_directives) (abfd, info))
5493 /* If this is a non-traditional link, try to optimize the handling
5494 of the .stab/.stabstr sections. */
5496 && ! info->traditional_format
5497 && is_elf_hash_table (htab)
5498 && (info->strip != strip_all && info->strip != strip_debugger))
5502 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5503 if (stabstr != NULL)
5505 bfd_size_type string_offset = 0;
5508 for (stab = abfd->sections; stab; stab = stab->next)
5509 if (CONST_STRNEQ (stab->name, ".stab")
5510 && (!stab->name[5] ||
5511 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5512 && (stab->flags & SEC_MERGE) == 0
5513 && !bfd_is_abs_section (stab->output_section))
5515 struct bfd_elf_section_data *secdata;
5517 secdata = elf_section_data (stab);
5518 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5519 stabstr, &secdata->sec_info,
5522 if (secdata->sec_info)
5523 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5528 if (is_elf_hash_table (htab) && add_needed)
5530 /* Add this bfd to the loaded list. */
5531 struct elf_link_loaded_list *n;
5533 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5537 n->next = htab->loaded;
5544 if (old_tab != NULL)
5546 if (old_strtab != NULL)
5548 if (nondeflt_vers != NULL)
5549 free (nondeflt_vers);
5550 if (extversym != NULL)
5553 if (isymbuf != NULL)
5559 /* Return the linker hash table entry of a symbol that might be
5560 satisfied by an archive symbol. Return -1 on error. */
5562 struct elf_link_hash_entry *
5563 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5564 struct bfd_link_info *info,
5567 struct elf_link_hash_entry *h;
5571 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5575 /* If this is a default version (the name contains @@), look up the
5576 symbol again with only one `@' as well as without the version.
5577 The effect is that references to the symbol with and without the
5578 version will be matched by the default symbol in the archive. */
5580 p = strchr (name, ELF_VER_CHR);
5581 if (p == NULL || p[1] != ELF_VER_CHR)
5584 /* First check with only one `@'. */
5585 len = strlen (name);
5586 copy = (char *) bfd_alloc (abfd, len);
5588 return (struct elf_link_hash_entry *) -1;
5590 first = p - name + 1;
5591 memcpy (copy, name, first);
5592 memcpy (copy + first, name + first + 1, len - first);
5594 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5597 /* We also need to check references to the symbol without the
5599 copy[first - 1] = '\0';
5600 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5601 FALSE, FALSE, TRUE);
5604 bfd_release (abfd, copy);
5608 /* Add symbols from an ELF archive file to the linker hash table. We
5609 don't use _bfd_generic_link_add_archive_symbols because we need to
5610 handle versioned symbols.
5612 Fortunately, ELF archive handling is simpler than that done by
5613 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5614 oddities. In ELF, if we find a symbol in the archive map, and the
5615 symbol is currently undefined, we know that we must pull in that
5618 Unfortunately, we do have to make multiple passes over the symbol
5619 table until nothing further is resolved. */
5622 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5625 unsigned char *included = NULL;
5629 const struct elf_backend_data *bed;
5630 struct elf_link_hash_entry * (*archive_symbol_lookup)
5631 (bfd *, struct bfd_link_info *, const char *);
5633 if (! bfd_has_map (abfd))
5635 /* An empty archive is a special case. */
5636 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5638 bfd_set_error (bfd_error_no_armap);
5642 /* Keep track of all symbols we know to be already defined, and all
5643 files we know to be already included. This is to speed up the
5644 second and subsequent passes. */
5645 c = bfd_ardata (abfd)->symdef_count;
5649 amt *= sizeof (*included);
5650 included = (unsigned char *) bfd_zmalloc (amt);
5651 if (included == NULL)
5654 symdefs = bfd_ardata (abfd)->symdefs;
5655 bed = get_elf_backend_data (abfd);
5656 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5669 symdefend = symdef + c;
5670 for (i = 0; symdef < symdefend; symdef++, i++)
5672 struct elf_link_hash_entry *h;
5674 struct bfd_link_hash_entry *undefs_tail;
5679 if (symdef->file_offset == last)
5685 h = archive_symbol_lookup (abfd, info, symdef->name);
5686 if (h == (struct elf_link_hash_entry *) -1)
5692 if (h->root.type == bfd_link_hash_common)
5694 /* We currently have a common symbol. The archive map contains
5695 a reference to this symbol, so we may want to include it. We
5696 only want to include it however, if this archive element
5697 contains a definition of the symbol, not just another common
5700 Unfortunately some archivers (including GNU ar) will put
5701 declarations of common symbols into their archive maps, as
5702 well as real definitions, so we cannot just go by the archive
5703 map alone. Instead we must read in the element's symbol
5704 table and check that to see what kind of symbol definition
5706 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5709 else if (h->root.type != bfd_link_hash_undefined)
5711 if (h->root.type != bfd_link_hash_undefweak)
5712 /* Symbol must be defined. Don't check it again. */
5717 /* We need to include this archive member. */
5718 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5719 if (element == NULL)
5722 if (! bfd_check_format (element, bfd_object))
5725 undefs_tail = info->hash->undefs_tail;
5727 if (!(*info->callbacks
5728 ->add_archive_element) (info, element, symdef->name, &element))
5730 if (!bfd_link_add_symbols (element, info))
5733 /* If there are any new undefined symbols, we need to make
5734 another pass through the archive in order to see whether
5735 they can be defined. FIXME: This isn't perfect, because
5736 common symbols wind up on undefs_tail and because an
5737 undefined symbol which is defined later on in this pass
5738 does not require another pass. This isn't a bug, but it
5739 does make the code less efficient than it could be. */
5740 if (undefs_tail != info->hash->undefs_tail)
5743 /* Look backward to mark all symbols from this object file
5744 which we have already seen in this pass. */
5748 included[mark] = TRUE;
5753 while (symdefs[mark].file_offset == symdef->file_offset);
5755 /* We mark subsequent symbols from this object file as we go
5756 on through the loop. */
5757 last = symdef->file_offset;
5767 if (included != NULL)
5772 /* Given an ELF BFD, add symbols to the global hash table as
5776 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5778 switch (bfd_get_format (abfd))
5781 return elf_link_add_object_symbols (abfd, info);
5783 return elf_link_add_archive_symbols (abfd, info);
5785 bfd_set_error (bfd_error_wrong_format);
5790 struct hash_codes_info
5792 unsigned long *hashcodes;
5796 /* This function will be called though elf_link_hash_traverse to store
5797 all hash value of the exported symbols in an array. */
5800 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5802 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5807 /* Ignore indirect symbols. These are added by the versioning code. */
5808 if (h->dynindx == -1)
5811 name = h->root.root.string;
5812 if (h->versioned >= versioned)
5814 char *p = strchr (name, ELF_VER_CHR);
5817 alc = (char *) bfd_malloc (p - name + 1);
5823 memcpy (alc, name, p - name);
5824 alc[p - name] = '\0';
5829 /* Compute the hash value. */
5830 ha = bfd_elf_hash (name);
5832 /* Store the found hash value in the array given as the argument. */
5833 *(inf->hashcodes)++ = ha;
5835 /* And store it in the struct so that we can put it in the hash table
5837 h->u.elf_hash_value = ha;
5845 struct collect_gnu_hash_codes
5848 const struct elf_backend_data *bed;
5849 unsigned long int nsyms;
5850 unsigned long int maskbits;
5851 unsigned long int *hashcodes;
5852 unsigned long int *hashval;
5853 unsigned long int *indx;
5854 unsigned long int *counts;
5858 long int min_dynindx;
5859 unsigned long int bucketcount;
5860 unsigned long int symindx;
5861 long int local_indx;
5862 long int shift1, shift2;
5863 unsigned long int mask;
5867 /* This function will be called though elf_link_hash_traverse to store
5868 all hash value of the exported symbols in an array. */
5871 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5873 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5878 /* Ignore indirect symbols. These are added by the versioning code. */
5879 if (h->dynindx == -1)
5882 /* Ignore also local symbols and undefined symbols. */
5883 if (! (*s->bed->elf_hash_symbol) (h))
5886 name = h->root.root.string;
5887 if (h->versioned >= versioned)
5889 char *p = strchr (name, ELF_VER_CHR);
5892 alc = (char *) bfd_malloc (p - name + 1);
5898 memcpy (alc, name, p - name);
5899 alc[p - name] = '\0';
5904 /* Compute the hash value. */
5905 ha = bfd_elf_gnu_hash (name);
5907 /* Store the found hash value in the array for compute_bucket_count,
5908 and also for .dynsym reordering purposes. */
5909 s->hashcodes[s->nsyms] = ha;
5910 s->hashval[h->dynindx] = ha;
5912 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5913 s->min_dynindx = h->dynindx;
5921 /* This function will be called though elf_link_hash_traverse to do
5922 final dynamic symbol renumbering in case of .gnu.hash.
5923 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
5924 to the translation table. */
5927 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
5929 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5930 unsigned long int bucket;
5931 unsigned long int val;
5933 /* Ignore indirect symbols. */
5934 if (h->dynindx == -1)
5937 /* Ignore also local symbols and undefined symbols. */
5938 if (! (*s->bed->elf_hash_symbol) (h))
5940 if (h->dynindx >= s->min_dynindx)
5942 if (s->bed->record_xhash_symbol != NULL)
5944 (*s->bed->record_xhash_symbol) (h, 0);
5948 h->dynindx = s->local_indx++;
5953 bucket = s->hashval[h->dynindx] % s->bucketcount;
5954 val = (s->hashval[h->dynindx] >> s->shift1)
5955 & ((s->maskbits >> s->shift1) - 1);
5956 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5958 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5959 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5960 if (s->counts[bucket] == 1)
5961 /* Last element terminates the chain. */
5963 bfd_put_32 (s->output_bfd, val,
5964 s->contents + (s->indx[bucket] - s->symindx) * 4);
5965 --s->counts[bucket];
5966 if (s->bed->record_xhash_symbol != NULL)
5968 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
5970 (*s->bed->record_xhash_symbol) (h, xlat_loc);
5973 h->dynindx = s->indx[bucket]++;
5977 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5980 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5982 return !(h->forced_local
5983 || h->root.type == bfd_link_hash_undefined
5984 || h->root.type == bfd_link_hash_undefweak
5985 || ((h->root.type == bfd_link_hash_defined
5986 || h->root.type == bfd_link_hash_defweak)
5987 && h->root.u.def.section->output_section == NULL));
5990 /* Array used to determine the number of hash table buckets to use
5991 based on the number of symbols there are. If there are fewer than
5992 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5993 fewer than 37 we use 17 buckets, and so forth. We never use more
5994 than 32771 buckets. */
5996 static const size_t elf_buckets[] =
5998 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6002 /* Compute bucket count for hashing table. We do not use a static set
6003 of possible tables sizes anymore. Instead we determine for all
6004 possible reasonable sizes of the table the outcome (i.e., the
6005 number of collisions etc) and choose the best solution. The
6006 weighting functions are not too simple to allow the table to grow
6007 without bounds. Instead one of the weighting factors is the size.
6008 Therefore the result is always a good payoff between few collisions
6009 (= short chain lengths) and table size. */
6011 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6012 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6013 unsigned long int nsyms,
6016 size_t best_size = 0;
6017 unsigned long int i;
6019 /* We have a problem here. The following code to optimize the table
6020 size requires an integer type with more the 32 bits. If
6021 BFD_HOST_U_64_BIT is set we know about such a type. */
6022 #ifdef BFD_HOST_U_64_BIT
6027 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6028 bfd *dynobj = elf_hash_table (info)->dynobj;
6029 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6030 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6031 unsigned long int *counts;
6033 unsigned int no_improvement_count = 0;
6035 /* Possible optimization parameters: if we have NSYMS symbols we say
6036 that the hashing table must at least have NSYMS/4 and at most
6038 minsize = nsyms / 4;
6041 best_size = maxsize = nsyms * 2;
6046 if ((best_size & 31) == 0)
6050 /* Create array where we count the collisions in. We must use bfd_malloc
6051 since the size could be large. */
6053 amt *= sizeof (unsigned long int);
6054 counts = (unsigned long int *) bfd_malloc (amt);
6058 /* Compute the "optimal" size for the hash table. The criteria is a
6059 minimal chain length. The minor criteria is (of course) the size
6061 for (i = minsize; i < maxsize; ++i)
6063 /* Walk through the array of hashcodes and count the collisions. */
6064 BFD_HOST_U_64_BIT max;
6065 unsigned long int j;
6066 unsigned long int fact;
6068 if (gnu_hash && (i & 31) == 0)
6071 memset (counts, '\0', i * sizeof (unsigned long int));
6073 /* Determine how often each hash bucket is used. */
6074 for (j = 0; j < nsyms; ++j)
6075 ++counts[hashcodes[j] % i];
6077 /* For the weight function we need some information about the
6078 pagesize on the target. This is information need not be 100%
6079 accurate. Since this information is not available (so far) we
6080 define it here to a reasonable default value. If it is crucial
6081 to have a better value some day simply define this value. */
6082 # ifndef BFD_TARGET_PAGESIZE
6083 # define BFD_TARGET_PAGESIZE (4096)
6086 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6088 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6091 /* Variant 1: optimize for short chains. We add the squares
6092 of all the chain lengths (which favors many small chain
6093 over a few long chains). */
6094 for (j = 0; j < i; ++j)
6095 max += counts[j] * counts[j];
6097 /* This adds penalties for the overall size of the table. */
6098 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6101 /* Variant 2: Optimize a lot more for small table. Here we
6102 also add squares of the size but we also add penalties for
6103 empty slots (the +1 term). */
6104 for (j = 0; j < i; ++j)
6105 max += (1 + counts[j]) * (1 + counts[j]);
6107 /* The overall size of the table is considered, but not as
6108 strong as in variant 1, where it is squared. */
6109 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6113 /* Compare with current best results. */
6114 if (max < best_chlen)
6118 no_improvement_count = 0;
6120 /* PR 11843: Avoid futile long searches for the best bucket size
6121 when there are a large number of symbols. */
6122 else if (++no_improvement_count == 100)
6129 #endif /* defined (BFD_HOST_U_64_BIT) */
6131 /* This is the fallback solution if no 64bit type is available or if we
6132 are not supposed to spend much time on optimizations. We select the
6133 bucket count using a fixed set of numbers. */
6134 for (i = 0; elf_buckets[i] != 0; i++)
6136 best_size = elf_buckets[i];
6137 if (nsyms < elf_buckets[i + 1])
6140 if (gnu_hash && best_size < 2)
6147 /* Size any SHT_GROUP section for ld -r. */
6150 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6155 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6156 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6157 && (s = ibfd->sections) != NULL
6158 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6159 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6164 /* Set a default stack segment size. The value in INFO wins. If it
6165 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6166 undefined it is initialized. */
6169 bfd_elf_stack_segment_size (bfd *output_bfd,
6170 struct bfd_link_info *info,
6171 const char *legacy_symbol,
6172 bfd_vma default_size)
6174 struct elf_link_hash_entry *h = NULL;
6176 /* Look for legacy symbol. */
6178 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6179 FALSE, FALSE, FALSE);
6180 if (h && (h->root.type == bfd_link_hash_defined
6181 || h->root.type == bfd_link_hash_defweak)
6183 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6185 /* The symbol has no type if specified on the command line. */
6186 h->type = STT_OBJECT;
6187 if (info->stacksize)
6188 /* xgettext:c-format */
6189 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6190 output_bfd, legacy_symbol);
6191 else if (h->root.u.def.section != bfd_abs_section_ptr)
6192 /* xgettext:c-format */
6193 _bfd_error_handler (_("%pB: %s not absolute"),
6194 output_bfd, legacy_symbol);
6196 info->stacksize = h->root.u.def.value;
6199 if (!info->stacksize)
6200 /* If the user didn't set a size, or explicitly inhibit the
6201 size, set it now. */
6202 info->stacksize = default_size;
6204 /* Provide the legacy symbol, if it is referenced. */
6205 if (h && (h->root.type == bfd_link_hash_undefined
6206 || h->root.type == bfd_link_hash_undefweak))
6208 struct bfd_link_hash_entry *bh = NULL;
6210 if (!(_bfd_generic_link_add_one_symbol
6211 (info, output_bfd, legacy_symbol,
6212 BSF_GLOBAL, bfd_abs_section_ptr,
6213 info->stacksize >= 0 ? info->stacksize : 0,
6214 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6217 h = (struct elf_link_hash_entry *) bh;
6219 h->type = STT_OBJECT;
6225 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6227 struct elf_gc_sweep_symbol_info
6229 struct bfd_link_info *info;
6230 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6235 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6238 && (((h->root.type == bfd_link_hash_defined
6239 || h->root.type == bfd_link_hash_defweak)
6240 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6241 && h->root.u.def.section->gc_mark))
6242 || h->root.type == bfd_link_hash_undefined
6243 || h->root.type == bfd_link_hash_undefweak))
6245 struct elf_gc_sweep_symbol_info *inf;
6247 inf = (struct elf_gc_sweep_symbol_info *) data;
6248 (*inf->hide_symbol) (inf->info, h, TRUE);
6251 h->ref_regular_nonweak = 0;
6257 /* Set up the sizes and contents of the ELF dynamic sections. This is
6258 called by the ELF linker emulation before_allocation routine. We
6259 must set the sizes of the sections before the linker sets the
6260 addresses of the various sections. */
6263 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6266 const char *filter_shlib,
6268 const char *depaudit,
6269 const char * const *auxiliary_filters,
6270 struct bfd_link_info *info,
6271 asection **sinterpptr)
6274 const struct elf_backend_data *bed;
6278 if (!is_elf_hash_table (info->hash))
6281 dynobj = elf_hash_table (info)->dynobj;
6283 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6285 struct bfd_elf_version_tree *verdefs;
6286 struct elf_info_failed asvinfo;
6287 struct bfd_elf_version_tree *t;
6288 struct bfd_elf_version_expr *d;
6292 /* If we are supposed to export all symbols into the dynamic symbol
6293 table (this is not the normal case), then do so. */
6294 if (info->export_dynamic
6295 || (bfd_link_executable (info) && info->dynamic))
6297 struct elf_info_failed eif;
6301 elf_link_hash_traverse (elf_hash_table (info),
6302 _bfd_elf_export_symbol,
6310 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6312 if (soname_indx == (size_t) -1
6313 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6317 soname_indx = (size_t) -1;
6319 /* Make all global versions with definition. */
6320 for (t = info->version_info; t != NULL; t = t->next)
6321 for (d = t->globals.list; d != NULL; d = d->next)
6322 if (!d->symver && d->literal)
6324 const char *verstr, *name;
6325 size_t namelen, verlen, newlen;
6326 char *newname, *p, leading_char;
6327 struct elf_link_hash_entry *newh;
6329 leading_char = bfd_get_symbol_leading_char (output_bfd);
6331 namelen = strlen (name) + (leading_char != '\0');
6333 verlen = strlen (verstr);
6334 newlen = namelen + verlen + 3;
6336 newname = (char *) bfd_malloc (newlen);
6337 if (newname == NULL)
6339 newname[0] = leading_char;
6340 memcpy (newname + (leading_char != '\0'), name, namelen);
6342 /* Check the hidden versioned definition. */
6343 p = newname + namelen;
6345 memcpy (p, verstr, verlen + 1);
6346 newh = elf_link_hash_lookup (elf_hash_table (info),
6347 newname, FALSE, FALSE,
6350 || (newh->root.type != bfd_link_hash_defined
6351 && newh->root.type != bfd_link_hash_defweak))
6353 /* Check the default versioned definition. */
6355 memcpy (p, verstr, verlen + 1);
6356 newh = elf_link_hash_lookup (elf_hash_table (info),
6357 newname, FALSE, FALSE,
6362 /* Mark this version if there is a definition and it is
6363 not defined in a shared object. */
6365 && !newh->def_dynamic
6366 && (newh->root.type == bfd_link_hash_defined
6367 || newh->root.type == bfd_link_hash_defweak))
6371 /* Attach all the symbols to their version information. */
6372 asvinfo.info = info;
6373 asvinfo.failed = FALSE;
6375 elf_link_hash_traverse (elf_hash_table (info),
6376 _bfd_elf_link_assign_sym_version,
6381 if (!info->allow_undefined_version)
6383 /* Check if all global versions have a definition. */
6384 bfd_boolean all_defined = TRUE;
6385 for (t = info->version_info; t != NULL; t = t->next)
6386 for (d = t->globals.list; d != NULL; d = d->next)
6387 if (d->literal && !d->symver && !d->script)
6390 (_("%s: undefined version: %s"),
6391 d->pattern, t->name);
6392 all_defined = FALSE;
6397 bfd_set_error (bfd_error_bad_value);
6402 /* Set up the version definition section. */
6403 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6404 BFD_ASSERT (s != NULL);
6406 /* We may have created additional version definitions if we are
6407 just linking a regular application. */
6408 verdefs = info->version_info;
6410 /* Skip anonymous version tag. */
6411 if (verdefs != NULL && verdefs->vernum == 0)
6412 verdefs = verdefs->next;
6414 if (verdefs == NULL && !info->create_default_symver)
6415 s->flags |= SEC_EXCLUDE;
6421 Elf_Internal_Verdef def;
6422 Elf_Internal_Verdaux defaux;
6423 struct bfd_link_hash_entry *bh;
6424 struct elf_link_hash_entry *h;
6430 /* Make space for the base version. */
6431 size += sizeof (Elf_External_Verdef);
6432 size += sizeof (Elf_External_Verdaux);
6435 /* Make space for the default version. */
6436 if (info->create_default_symver)
6438 size += sizeof (Elf_External_Verdef);
6442 for (t = verdefs; t != NULL; t = t->next)
6444 struct bfd_elf_version_deps *n;
6446 /* Don't emit base version twice. */
6450 size += sizeof (Elf_External_Verdef);
6451 size += sizeof (Elf_External_Verdaux);
6454 for (n = t->deps; n != NULL; n = n->next)
6455 size += sizeof (Elf_External_Verdaux);
6459 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6460 if (s->contents == NULL && s->size != 0)
6463 /* Fill in the version definition section. */
6467 def.vd_version = VER_DEF_CURRENT;
6468 def.vd_flags = VER_FLG_BASE;
6471 if (info->create_default_symver)
6473 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6474 def.vd_next = sizeof (Elf_External_Verdef);
6478 def.vd_aux = sizeof (Elf_External_Verdef);
6479 def.vd_next = (sizeof (Elf_External_Verdef)
6480 + sizeof (Elf_External_Verdaux));
6483 if (soname_indx != (size_t) -1)
6485 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6487 def.vd_hash = bfd_elf_hash (soname);
6488 defaux.vda_name = soname_indx;
6495 name = lbasename (output_bfd->filename);
6496 def.vd_hash = bfd_elf_hash (name);
6497 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6499 if (indx == (size_t) -1)
6501 defaux.vda_name = indx;
6503 defaux.vda_next = 0;
6505 _bfd_elf_swap_verdef_out (output_bfd, &def,
6506 (Elf_External_Verdef *) p);
6507 p += sizeof (Elf_External_Verdef);
6508 if (info->create_default_symver)
6510 /* Add a symbol representing this version. */
6512 if (! (_bfd_generic_link_add_one_symbol
6513 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6515 get_elf_backend_data (dynobj)->collect, &bh)))
6517 h = (struct elf_link_hash_entry *) bh;
6520 h->type = STT_OBJECT;
6521 h->verinfo.vertree = NULL;
6523 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6526 /* Create a duplicate of the base version with the same
6527 aux block, but different flags. */
6530 def.vd_aux = sizeof (Elf_External_Verdef);
6532 def.vd_next = (sizeof (Elf_External_Verdef)
6533 + sizeof (Elf_External_Verdaux));
6536 _bfd_elf_swap_verdef_out (output_bfd, &def,
6537 (Elf_External_Verdef *) p);
6538 p += sizeof (Elf_External_Verdef);
6540 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6541 (Elf_External_Verdaux *) p);
6542 p += sizeof (Elf_External_Verdaux);
6544 for (t = verdefs; t != NULL; t = t->next)
6547 struct bfd_elf_version_deps *n;
6549 /* Don't emit the base version twice. */
6554 for (n = t->deps; n != NULL; n = n->next)
6557 /* Add a symbol representing this version. */
6559 if (! (_bfd_generic_link_add_one_symbol
6560 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6562 get_elf_backend_data (dynobj)->collect, &bh)))
6564 h = (struct elf_link_hash_entry *) bh;
6567 h->type = STT_OBJECT;
6568 h->verinfo.vertree = t;
6570 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6573 def.vd_version = VER_DEF_CURRENT;
6575 if (t->globals.list == NULL
6576 && t->locals.list == NULL
6578 def.vd_flags |= VER_FLG_WEAK;
6579 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6580 def.vd_cnt = cdeps + 1;
6581 def.vd_hash = bfd_elf_hash (t->name);
6582 def.vd_aux = sizeof (Elf_External_Verdef);
6585 /* If a basever node is next, it *must* be the last node in
6586 the chain, otherwise Verdef construction breaks. */
6587 if (t->next != NULL && t->next->vernum == 0)
6588 BFD_ASSERT (t->next->next == NULL);
6590 if (t->next != NULL && t->next->vernum != 0)
6591 def.vd_next = (sizeof (Elf_External_Verdef)
6592 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6594 _bfd_elf_swap_verdef_out (output_bfd, &def,
6595 (Elf_External_Verdef *) p);
6596 p += sizeof (Elf_External_Verdef);
6598 defaux.vda_name = h->dynstr_index;
6599 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6601 defaux.vda_next = 0;
6602 if (t->deps != NULL)
6603 defaux.vda_next = sizeof (Elf_External_Verdaux);
6604 t->name_indx = defaux.vda_name;
6606 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6607 (Elf_External_Verdaux *) p);
6608 p += sizeof (Elf_External_Verdaux);
6610 for (n = t->deps; n != NULL; n = n->next)
6612 if (n->version_needed == NULL)
6614 /* This can happen if there was an error in the
6616 defaux.vda_name = 0;
6620 defaux.vda_name = n->version_needed->name_indx;
6621 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6624 if (n->next == NULL)
6625 defaux.vda_next = 0;
6627 defaux.vda_next = sizeof (Elf_External_Verdaux);
6629 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6630 (Elf_External_Verdaux *) p);
6631 p += sizeof (Elf_External_Verdaux);
6635 elf_tdata (output_bfd)->cverdefs = cdefs;
6639 bed = get_elf_backend_data (output_bfd);
6641 if (info->gc_sections && bed->can_gc_sections)
6643 struct elf_gc_sweep_symbol_info sweep_info;
6645 /* Remove the symbols that were in the swept sections from the
6646 dynamic symbol table. */
6647 sweep_info.info = info;
6648 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6649 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6653 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6656 struct elf_find_verdep_info sinfo;
6658 /* Work out the size of the version reference section. */
6660 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6661 BFD_ASSERT (s != NULL);
6664 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6665 if (sinfo.vers == 0)
6667 sinfo.failed = FALSE;
6669 elf_link_hash_traverse (elf_hash_table (info),
6670 _bfd_elf_link_find_version_dependencies,
6675 if (elf_tdata (output_bfd)->verref == NULL)
6676 s->flags |= SEC_EXCLUDE;
6679 Elf_Internal_Verneed *vn;
6684 /* Build the version dependency section. */
6687 for (vn = elf_tdata (output_bfd)->verref;
6689 vn = vn->vn_nextref)
6691 Elf_Internal_Vernaux *a;
6693 size += sizeof (Elf_External_Verneed);
6695 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6696 size += sizeof (Elf_External_Vernaux);
6700 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6701 if (s->contents == NULL)
6705 for (vn = elf_tdata (output_bfd)->verref;
6707 vn = vn->vn_nextref)
6710 Elf_Internal_Vernaux *a;
6714 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6717 vn->vn_version = VER_NEED_CURRENT;
6719 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6720 elf_dt_name (vn->vn_bfd) != NULL
6721 ? elf_dt_name (vn->vn_bfd)
6722 : lbasename (vn->vn_bfd->filename),
6724 if (indx == (size_t) -1)
6727 vn->vn_aux = sizeof (Elf_External_Verneed);
6728 if (vn->vn_nextref == NULL)
6731 vn->vn_next = (sizeof (Elf_External_Verneed)
6732 + caux * sizeof (Elf_External_Vernaux));
6734 _bfd_elf_swap_verneed_out (output_bfd, vn,
6735 (Elf_External_Verneed *) p);
6736 p += sizeof (Elf_External_Verneed);
6738 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6740 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6741 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6742 a->vna_nodename, FALSE);
6743 if (indx == (size_t) -1)
6746 if (a->vna_nextptr == NULL)
6749 a->vna_next = sizeof (Elf_External_Vernaux);
6751 _bfd_elf_swap_vernaux_out (output_bfd, a,
6752 (Elf_External_Vernaux *) p);
6753 p += sizeof (Elf_External_Vernaux);
6757 elf_tdata (output_bfd)->cverrefs = crefs;
6761 /* Any syms created from now on start with -1 in
6762 got.refcount/offset and plt.refcount/offset. */
6763 elf_hash_table (info)->init_got_refcount
6764 = elf_hash_table (info)->init_got_offset;
6765 elf_hash_table (info)->init_plt_refcount
6766 = elf_hash_table (info)->init_plt_offset;
6768 if (bfd_link_relocatable (info)
6769 && !_bfd_elf_size_group_sections (info))
6772 /* The backend may have to create some sections regardless of whether
6773 we're dynamic or not. */
6774 if (bed->elf_backend_always_size_sections
6775 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6778 /* Determine any GNU_STACK segment requirements, after the backend
6779 has had a chance to set a default segment size. */
6780 if (info->execstack)
6781 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6782 else if (info->noexecstack)
6783 elf_stack_flags (output_bfd) = PF_R | PF_W;
6787 asection *notesec = NULL;
6790 for (inputobj = info->input_bfds;
6792 inputobj = inputobj->link.next)
6797 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6799 s = inputobj->sections;
6800 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6803 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6806 if (s->flags & SEC_CODE)
6810 else if (bed->default_execstack)
6813 if (notesec || info->stacksize > 0)
6814 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6815 if (notesec && exec && bfd_link_relocatable (info)
6816 && notesec->output_section != bfd_abs_section_ptr)
6817 notesec->output_section->flags |= SEC_CODE;
6820 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6822 struct elf_info_failed eif;
6823 struct elf_link_hash_entry *h;
6827 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6828 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6832 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6834 info->flags |= DF_SYMBOLIC;
6842 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6844 if (indx == (size_t) -1)
6847 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6848 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6852 if (filter_shlib != NULL)
6856 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6857 filter_shlib, TRUE);
6858 if (indx == (size_t) -1
6859 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6863 if (auxiliary_filters != NULL)
6865 const char * const *p;
6867 for (p = auxiliary_filters; *p != NULL; p++)
6871 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6873 if (indx == (size_t) -1
6874 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6883 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6885 if (indx == (size_t) -1
6886 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6890 if (depaudit != NULL)
6894 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6896 if (indx == (size_t) -1
6897 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6904 /* Find all symbols which were defined in a dynamic object and make
6905 the backend pick a reasonable value for them. */
6906 elf_link_hash_traverse (elf_hash_table (info),
6907 _bfd_elf_adjust_dynamic_symbol,
6912 /* Add some entries to the .dynamic section. We fill in some of the
6913 values later, in bfd_elf_final_link, but we must add the entries
6914 now so that we know the final size of the .dynamic section. */
6916 /* If there are initialization and/or finalization functions to
6917 call then add the corresponding DT_INIT/DT_FINI entries. */
6918 h = (info->init_function
6919 ? elf_link_hash_lookup (elf_hash_table (info),
6920 info->init_function, FALSE,
6927 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6930 h = (info->fini_function
6931 ? elf_link_hash_lookup (elf_hash_table (info),
6932 info->fini_function, FALSE,
6939 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6943 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6944 if (s != NULL && s->linker_has_input)
6946 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6947 if (! bfd_link_executable (info))
6952 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6953 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6954 && (o = sub->sections) != NULL
6955 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6956 for (o = sub->sections; o != NULL; o = o->next)
6957 if (elf_section_data (o)->this_hdr.sh_type
6958 == SHT_PREINIT_ARRAY)
6961 (_("%pB: .preinit_array section is not allowed in DSO"),
6966 bfd_set_error (bfd_error_nonrepresentable_section);
6970 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6971 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6974 s = bfd_get_section_by_name (output_bfd, ".init_array");
6975 if (s != NULL && s->linker_has_input)
6977 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6978 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6981 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6982 if (s != NULL && s->linker_has_input)
6984 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6985 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6989 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6990 /* If .dynstr is excluded from the link, we don't want any of
6991 these tags. Strictly, we should be checking each section
6992 individually; This quick check covers for the case where
6993 someone does a /DISCARD/ : { *(*) }. */
6994 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6996 bfd_size_type strsize;
6998 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6999 if ((info->emit_hash
7000 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7001 || (info->emit_gnu_hash
7002 && (bed->record_xhash_symbol == NULL
7003 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7004 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7005 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7006 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7007 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7008 bed->s->sizeof_sym))
7013 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7016 /* The backend must work out the sizes of all the other dynamic
7019 && bed->elf_backend_size_dynamic_sections != NULL
7020 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7023 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7025 if (elf_tdata (output_bfd)->cverdefs)
7027 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7029 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7030 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7034 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7036 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7039 else if (info->flags & DF_BIND_NOW)
7041 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7047 if (bfd_link_executable (info))
7048 info->flags_1 &= ~ (DF_1_INITFIRST
7051 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7055 if (elf_tdata (output_bfd)->cverrefs)
7057 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7059 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7060 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7064 if ((elf_tdata (output_bfd)->cverrefs == 0
7065 && elf_tdata (output_bfd)->cverdefs == 0)
7066 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7070 s = bfd_get_linker_section (dynobj, ".gnu.version");
7071 s->flags |= SEC_EXCLUDE;
7077 /* Find the first non-excluded output section. We'll use its
7078 section symbol for some emitted relocs. */
7080 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7083 asection *found = NULL;
7085 for (s = output_bfd->sections; s != NULL; s = s->next)
7086 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7087 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7090 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7093 elf_hash_table (info)->text_index_section = found;
7096 /* Find two non-excluded output sections, one for code, one for data.
7097 We'll use their section symbols for some emitted relocs. */
7099 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7102 asection *found = NULL;
7104 /* Data first, since setting text_index_section changes
7105 _bfd_elf_omit_section_dynsym_default. */
7106 for (s = output_bfd->sections; s != NULL; s = s->next)
7107 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7108 && !(s->flags & SEC_READONLY)
7109 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7112 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7115 elf_hash_table (info)->data_index_section = found;
7117 for (s = output_bfd->sections; s != NULL; s = s->next)
7118 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7119 && (s->flags & SEC_READONLY)
7120 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7125 elf_hash_table (info)->text_index_section = found;
7128 #define GNU_HASH_SECTION_NAME(bed) \
7129 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7132 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7134 const struct elf_backend_data *bed;
7135 unsigned long section_sym_count;
7136 bfd_size_type dynsymcount = 0;
7138 if (!is_elf_hash_table (info->hash))
7141 bed = get_elf_backend_data (output_bfd);
7142 (*bed->elf_backend_init_index_section) (output_bfd, info);
7144 /* Assign dynsym indices. In a shared library we generate a section
7145 symbol for each output section, which come first. Next come all
7146 of the back-end allocated local dynamic syms, followed by the rest
7147 of the global symbols.
7149 This is usually not needed for static binaries, however backends
7150 can request to always do it, e.g. the MIPS backend uses dynamic
7151 symbol counts to lay out GOT, which will be produced in the
7152 presence of GOT relocations even in static binaries (holding fixed
7153 data in that case, to satisfy those relocations). */
7155 if (elf_hash_table (info)->dynamic_sections_created
7156 || bed->always_renumber_dynsyms)
7157 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7158 §ion_sym_count);
7160 if (elf_hash_table (info)->dynamic_sections_created)
7164 unsigned int dtagcount;
7166 dynobj = elf_hash_table (info)->dynobj;
7168 /* Work out the size of the symbol version section. */
7169 s = bfd_get_linker_section (dynobj, ".gnu.version");
7170 BFD_ASSERT (s != NULL);
7171 if ((s->flags & SEC_EXCLUDE) == 0)
7173 s->size = dynsymcount * sizeof (Elf_External_Versym);
7174 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7175 if (s->contents == NULL)
7178 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7182 /* Set the size of the .dynsym and .hash sections. We counted
7183 the number of dynamic symbols in elf_link_add_object_symbols.
7184 We will build the contents of .dynsym and .hash when we build
7185 the final symbol table, because until then we do not know the
7186 correct value to give the symbols. We built the .dynstr
7187 section as we went along in elf_link_add_object_symbols. */
7188 s = elf_hash_table (info)->dynsym;
7189 BFD_ASSERT (s != NULL);
7190 s->size = dynsymcount * bed->s->sizeof_sym;
7192 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7193 if (s->contents == NULL)
7196 /* The first entry in .dynsym is a dummy symbol. Clear all the
7197 section syms, in case we don't output them all. */
7198 ++section_sym_count;
7199 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7201 elf_hash_table (info)->bucketcount = 0;
7203 /* Compute the size of the hashing table. As a side effect this
7204 computes the hash values for all the names we export. */
7205 if (info->emit_hash)
7207 unsigned long int *hashcodes;
7208 struct hash_codes_info hashinf;
7210 unsigned long int nsyms;
7212 size_t hash_entry_size;
7214 /* Compute the hash values for all exported symbols. At the same
7215 time store the values in an array so that we could use them for
7217 amt = dynsymcount * sizeof (unsigned long int);
7218 hashcodes = (unsigned long int *) bfd_malloc (amt);
7219 if (hashcodes == NULL)
7221 hashinf.hashcodes = hashcodes;
7222 hashinf.error = FALSE;
7224 /* Put all hash values in HASHCODES. */
7225 elf_link_hash_traverse (elf_hash_table (info),
7226 elf_collect_hash_codes, &hashinf);
7233 nsyms = hashinf.hashcodes - hashcodes;
7235 = compute_bucket_count (info, hashcodes, nsyms, 0);
7238 if (bucketcount == 0 && nsyms > 0)
7241 elf_hash_table (info)->bucketcount = bucketcount;
7243 s = bfd_get_linker_section (dynobj, ".hash");
7244 BFD_ASSERT (s != NULL);
7245 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7246 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7247 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7248 if (s->contents == NULL)
7251 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7252 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7253 s->contents + hash_entry_size);
7256 if (info->emit_gnu_hash)
7259 unsigned char *contents;
7260 struct collect_gnu_hash_codes cinfo;
7264 memset (&cinfo, 0, sizeof (cinfo));
7266 /* Compute the hash values for all exported symbols. At the same
7267 time store the values in an array so that we could use them for
7269 amt = dynsymcount * 2 * sizeof (unsigned long int);
7270 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7271 if (cinfo.hashcodes == NULL)
7274 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7275 cinfo.min_dynindx = -1;
7276 cinfo.output_bfd = output_bfd;
7279 /* Put all hash values in HASHCODES. */
7280 elf_link_hash_traverse (elf_hash_table (info),
7281 elf_collect_gnu_hash_codes, &cinfo);
7284 free (cinfo.hashcodes);
7289 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7291 if (bucketcount == 0)
7293 free (cinfo.hashcodes);
7297 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7298 BFD_ASSERT (s != NULL);
7300 if (cinfo.nsyms == 0)
7302 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7303 BFD_ASSERT (cinfo.min_dynindx == -1);
7304 free (cinfo.hashcodes);
7305 s->size = 5 * 4 + bed->s->arch_size / 8;
7306 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7307 if (contents == NULL)
7309 s->contents = contents;
7310 /* 1 empty bucket. */
7311 bfd_put_32 (output_bfd, 1, contents);
7312 /* SYMIDX above the special symbol 0. */
7313 bfd_put_32 (output_bfd, 1, contents + 4);
7314 /* Just one word for bitmask. */
7315 bfd_put_32 (output_bfd, 1, contents + 8);
7316 /* Only hash fn bloom filter. */
7317 bfd_put_32 (output_bfd, 0, contents + 12);
7318 /* No hashes are valid - empty bitmask. */
7319 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7320 /* No hashes in the only bucket. */
7321 bfd_put_32 (output_bfd, 0,
7322 contents + 16 + bed->s->arch_size / 8);
7326 unsigned long int maskwords, maskbitslog2, x;
7327 BFD_ASSERT (cinfo.min_dynindx != -1);
7331 while ((x >>= 1) != 0)
7333 if (maskbitslog2 < 3)
7335 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7336 maskbitslog2 = maskbitslog2 + 3;
7338 maskbitslog2 = maskbitslog2 + 2;
7339 if (bed->s->arch_size == 64)
7341 if (maskbitslog2 == 5)
7347 cinfo.mask = (1 << cinfo.shift1) - 1;
7348 cinfo.shift2 = maskbitslog2;
7349 cinfo.maskbits = 1 << maskbitslog2;
7350 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7351 amt = bucketcount * sizeof (unsigned long int) * 2;
7352 amt += maskwords * sizeof (bfd_vma);
7353 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7354 if (cinfo.bitmask == NULL)
7356 free (cinfo.hashcodes);
7360 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7361 cinfo.indx = cinfo.counts + bucketcount;
7362 cinfo.symindx = dynsymcount - cinfo.nsyms;
7363 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7365 /* Determine how often each hash bucket is used. */
7366 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7367 for (i = 0; i < cinfo.nsyms; ++i)
7368 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7370 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7371 if (cinfo.counts[i] != 0)
7373 cinfo.indx[i] = cnt;
7374 cnt += cinfo.counts[i];
7376 BFD_ASSERT (cnt == dynsymcount);
7377 cinfo.bucketcount = bucketcount;
7378 cinfo.local_indx = cinfo.min_dynindx;
7380 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7381 s->size += cinfo.maskbits / 8;
7382 if (bed->record_xhash_symbol != NULL)
7383 s->size += cinfo.nsyms * 4;
7384 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7385 if (contents == NULL)
7387 free (cinfo.bitmask);
7388 free (cinfo.hashcodes);
7392 s->contents = contents;
7393 bfd_put_32 (output_bfd, bucketcount, contents);
7394 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7395 bfd_put_32 (output_bfd, maskwords, contents + 8);
7396 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7397 contents += 16 + cinfo.maskbits / 8;
7399 for (i = 0; i < bucketcount; ++i)
7401 if (cinfo.counts[i] == 0)
7402 bfd_put_32 (output_bfd, 0, contents);
7404 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7408 cinfo.contents = contents;
7410 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7411 /* Renumber dynamic symbols, if populating .gnu.hash section.
7412 If using .MIPS.xhash, populate the translation table. */
7413 elf_link_hash_traverse (elf_hash_table (info),
7414 elf_gnu_hash_process_symidx, &cinfo);
7416 contents = s->contents + 16;
7417 for (i = 0; i < maskwords; ++i)
7419 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7421 contents += bed->s->arch_size / 8;
7424 free (cinfo.bitmask);
7425 free (cinfo.hashcodes);
7429 s = bfd_get_linker_section (dynobj, ".dynstr");
7430 BFD_ASSERT (s != NULL);
7432 elf_finalize_dynstr (output_bfd, info);
7434 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7436 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7437 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7444 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7447 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7450 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7451 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7454 /* Finish SHF_MERGE section merging. */
7457 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7462 if (!is_elf_hash_table (info->hash))
7465 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7466 if ((ibfd->flags & DYNAMIC) == 0
7467 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7468 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7469 == get_elf_backend_data (obfd)->s->elfclass))
7470 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7471 if ((sec->flags & SEC_MERGE) != 0
7472 && !bfd_is_abs_section (sec->output_section))
7474 struct bfd_elf_section_data *secdata;
7476 secdata = elf_section_data (sec);
7477 if (! _bfd_add_merge_section (obfd,
7478 &elf_hash_table (info)->merge_info,
7479 sec, &secdata->sec_info))
7481 else if (secdata->sec_info)
7482 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7485 if (elf_hash_table (info)->merge_info != NULL)
7486 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7487 merge_sections_remove_hook);
7491 /* Create an entry in an ELF linker hash table. */
7493 struct bfd_hash_entry *
7494 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7495 struct bfd_hash_table *table,
7498 /* Allocate the structure if it has not already been allocated by a
7502 entry = (struct bfd_hash_entry *)
7503 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7508 /* Call the allocation method of the superclass. */
7509 entry = _bfd_link_hash_newfunc (entry, table, string);
7512 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7513 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7515 /* Set local fields. */
7518 ret->got = htab->init_got_refcount;
7519 ret->plt = htab->init_plt_refcount;
7520 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7521 - offsetof (struct elf_link_hash_entry, size)));
7522 /* Assume that we have been called by a non-ELF symbol reader.
7523 This flag is then reset by the code which reads an ELF input
7524 file. This ensures that a symbol created by a non-ELF symbol
7525 reader will have the flag set correctly. */
7532 /* Copy data from an indirect symbol to its direct symbol, hiding the
7533 old indirect symbol. Also used for copying flags to a weakdef. */
7536 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7537 struct elf_link_hash_entry *dir,
7538 struct elf_link_hash_entry *ind)
7540 struct elf_link_hash_table *htab;
7542 /* Copy down any references that we may have already seen to the
7543 symbol which just became indirect. */
7545 if (dir->versioned != versioned_hidden)
7546 dir->ref_dynamic |= ind->ref_dynamic;
7547 dir->ref_regular |= ind->ref_regular;
7548 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7549 dir->non_got_ref |= ind->non_got_ref;
7550 dir->needs_plt |= ind->needs_plt;
7551 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7553 if (ind->root.type != bfd_link_hash_indirect)
7556 /* Copy over the global and procedure linkage table refcount entries.
7557 These may have been already set up by a check_relocs routine. */
7558 htab = elf_hash_table (info);
7559 if (ind->got.refcount > htab->init_got_refcount.refcount)
7561 if (dir->got.refcount < 0)
7562 dir->got.refcount = 0;
7563 dir->got.refcount += ind->got.refcount;
7564 ind->got.refcount = htab->init_got_refcount.refcount;
7567 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7569 if (dir->plt.refcount < 0)
7570 dir->plt.refcount = 0;
7571 dir->plt.refcount += ind->plt.refcount;
7572 ind->plt.refcount = htab->init_plt_refcount.refcount;
7575 if (ind->dynindx != -1)
7577 if (dir->dynindx != -1)
7578 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7579 dir->dynindx = ind->dynindx;
7580 dir->dynstr_index = ind->dynstr_index;
7582 ind->dynstr_index = 0;
7587 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7588 struct elf_link_hash_entry *h,
7589 bfd_boolean force_local)
7591 /* STT_GNU_IFUNC symbol must go through PLT. */
7592 if (h->type != STT_GNU_IFUNC)
7594 h->plt = elf_hash_table (info)->init_plt_offset;
7599 h->forced_local = 1;
7600 if (h->dynindx != -1)
7602 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7605 h->dynstr_index = 0;
7610 /* Hide a symbol. */
7613 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7614 struct bfd_link_info *info,
7615 struct bfd_link_hash_entry *h)
7617 if (is_elf_hash_table (info->hash))
7619 const struct elf_backend_data *bed
7620 = get_elf_backend_data (output_bfd);
7621 struct elf_link_hash_entry *eh
7622 = (struct elf_link_hash_entry *) h;
7623 bed->elf_backend_hide_symbol (info, eh, TRUE);
7624 eh->def_dynamic = 0;
7625 eh->ref_dynamic = 0;
7626 eh->dynamic_def = 0;
7630 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7634 _bfd_elf_link_hash_table_init
7635 (struct elf_link_hash_table *table,
7637 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7638 struct bfd_hash_table *,
7640 unsigned int entsize,
7641 enum elf_target_id target_id)
7644 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7646 table->init_got_refcount.refcount = can_refcount - 1;
7647 table->init_plt_refcount.refcount = can_refcount - 1;
7648 table->init_got_offset.offset = -(bfd_vma) 1;
7649 table->init_plt_offset.offset = -(bfd_vma) 1;
7650 /* The first dynamic symbol is a dummy. */
7651 table->dynsymcount = 1;
7653 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7655 table->root.type = bfd_link_elf_hash_table;
7656 table->hash_table_id = target_id;
7661 /* Create an ELF linker hash table. */
7663 struct bfd_link_hash_table *
7664 _bfd_elf_link_hash_table_create (bfd *abfd)
7666 struct elf_link_hash_table *ret;
7667 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7669 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7673 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7674 sizeof (struct elf_link_hash_entry),
7680 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7685 /* Destroy an ELF linker hash table. */
7688 _bfd_elf_link_hash_table_free (bfd *obfd)
7690 struct elf_link_hash_table *htab;
7692 htab = (struct elf_link_hash_table *) obfd->link.hash;
7693 if (htab->dynstr != NULL)
7694 _bfd_elf_strtab_free (htab->dynstr);
7695 _bfd_merge_sections_free (htab->merge_info);
7696 _bfd_generic_link_hash_table_free (obfd);
7699 /* This is a hook for the ELF emulation code in the generic linker to
7700 tell the backend linker what file name to use for the DT_NEEDED
7701 entry for a dynamic object. */
7704 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7706 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7707 && bfd_get_format (abfd) == bfd_object)
7708 elf_dt_name (abfd) = name;
7712 bfd_elf_get_dyn_lib_class (bfd *abfd)
7715 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7716 && bfd_get_format (abfd) == bfd_object)
7717 lib_class = elf_dyn_lib_class (abfd);
7724 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7726 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7727 && bfd_get_format (abfd) == bfd_object)
7728 elf_dyn_lib_class (abfd) = lib_class;
7731 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7732 the linker ELF emulation code. */
7734 struct bfd_link_needed_list *
7735 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7736 struct bfd_link_info *info)
7738 if (! is_elf_hash_table (info->hash))
7740 return elf_hash_table (info)->needed;
7743 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7744 hook for the linker ELF emulation code. */
7746 struct bfd_link_needed_list *
7747 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7748 struct bfd_link_info *info)
7750 if (! is_elf_hash_table (info->hash))
7752 return elf_hash_table (info)->runpath;
7755 /* Get the name actually used for a dynamic object for a link. This
7756 is the SONAME entry if there is one. Otherwise, it is the string
7757 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7760 bfd_elf_get_dt_soname (bfd *abfd)
7762 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7763 && bfd_get_format (abfd) == bfd_object)
7764 return elf_dt_name (abfd);
7768 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7769 the ELF linker emulation code. */
7772 bfd_elf_get_bfd_needed_list (bfd *abfd,
7773 struct bfd_link_needed_list **pneeded)
7776 bfd_byte *dynbuf = NULL;
7777 unsigned int elfsec;
7778 unsigned long shlink;
7779 bfd_byte *extdyn, *extdynend;
7781 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7785 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7786 || bfd_get_format (abfd) != bfd_object)
7789 s = bfd_get_section_by_name (abfd, ".dynamic");
7790 if (s == NULL || s->size == 0)
7793 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7796 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7797 if (elfsec == SHN_BAD)
7800 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7802 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7803 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7806 extdynend = extdyn + s->size;
7807 for (; extdyn < extdynend; extdyn += extdynsize)
7809 Elf_Internal_Dyn dyn;
7811 (*swap_dyn_in) (abfd, extdyn, &dyn);
7813 if (dyn.d_tag == DT_NULL)
7816 if (dyn.d_tag == DT_NEEDED)
7819 struct bfd_link_needed_list *l;
7820 unsigned int tagv = dyn.d_un.d_val;
7823 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7828 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7849 struct elf_symbuf_symbol
7851 unsigned long st_name; /* Symbol name, index in string tbl */
7852 unsigned char st_info; /* Type and binding attributes */
7853 unsigned char st_other; /* Visibilty, and target specific */
7856 struct elf_symbuf_head
7858 struct elf_symbuf_symbol *ssym;
7860 unsigned int st_shndx;
7867 Elf_Internal_Sym *isym;
7868 struct elf_symbuf_symbol *ssym;
7873 /* Sort references to symbols by ascending section number. */
7876 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7878 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7879 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7881 return s1->st_shndx - s2->st_shndx;
7885 elf_sym_name_compare (const void *arg1, const void *arg2)
7887 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7888 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7889 return strcmp (s1->name, s2->name);
7892 static struct elf_symbuf_head *
7893 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7895 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7896 struct elf_symbuf_symbol *ssym;
7897 struct elf_symbuf_head *ssymbuf, *ssymhead;
7898 size_t i, shndx_count, total_size;
7900 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7904 for (ind = indbuf, i = 0; i < symcount; i++)
7905 if (isymbuf[i].st_shndx != SHN_UNDEF)
7906 *ind++ = &isymbuf[i];
7909 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7910 elf_sort_elf_symbol);
7913 if (indbufend > indbuf)
7914 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7915 if (ind[0]->st_shndx != ind[1]->st_shndx)
7918 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7919 + (indbufend - indbuf) * sizeof (*ssym));
7920 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7921 if (ssymbuf == NULL)
7927 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7928 ssymbuf->ssym = NULL;
7929 ssymbuf->count = shndx_count;
7930 ssymbuf->st_shndx = 0;
7931 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7933 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7936 ssymhead->ssym = ssym;
7937 ssymhead->count = 0;
7938 ssymhead->st_shndx = (*ind)->st_shndx;
7940 ssym->st_name = (*ind)->st_name;
7941 ssym->st_info = (*ind)->st_info;
7942 ssym->st_other = (*ind)->st_other;
7945 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7946 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7953 /* Check if 2 sections define the same set of local and global
7957 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7958 struct bfd_link_info *info)
7961 const struct elf_backend_data *bed1, *bed2;
7962 Elf_Internal_Shdr *hdr1, *hdr2;
7963 size_t symcount1, symcount2;
7964 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7965 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7966 Elf_Internal_Sym *isym, *isymend;
7967 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7968 size_t count1, count2, i;
7969 unsigned int shndx1, shndx2;
7975 /* Both sections have to be in ELF. */
7976 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7977 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7980 if (elf_section_type (sec1) != elf_section_type (sec2))
7983 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7984 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7985 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7988 bed1 = get_elf_backend_data (bfd1);
7989 bed2 = get_elf_backend_data (bfd2);
7990 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7991 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7992 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7993 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7995 if (symcount1 == 0 || symcount2 == 0)
8001 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8002 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8004 if (ssymbuf1 == NULL)
8006 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8008 if (isymbuf1 == NULL)
8011 if (!info->reduce_memory_overheads)
8012 elf_tdata (bfd1)->symbuf = ssymbuf1
8013 = elf_create_symbuf (symcount1, isymbuf1);
8016 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8018 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8020 if (isymbuf2 == NULL)
8023 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
8024 elf_tdata (bfd2)->symbuf = ssymbuf2
8025 = elf_create_symbuf (symcount2, isymbuf2);
8028 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8030 /* Optimized faster version. */
8032 struct elf_symbol *symp;
8033 struct elf_symbuf_symbol *ssym, *ssymend;
8036 hi = ssymbuf1->count;
8041 mid = (lo + hi) / 2;
8042 if (shndx1 < ssymbuf1[mid].st_shndx)
8044 else if (shndx1 > ssymbuf1[mid].st_shndx)
8048 count1 = ssymbuf1[mid].count;
8055 hi = ssymbuf2->count;
8060 mid = (lo + hi) / 2;
8061 if (shndx2 < ssymbuf2[mid].st_shndx)
8063 else if (shndx2 > ssymbuf2[mid].st_shndx)
8067 count2 = ssymbuf2[mid].count;
8073 if (count1 == 0 || count2 == 0 || count1 != count2)
8077 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8079 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8080 if (symtable1 == NULL || symtable2 == NULL)
8084 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8085 ssym < ssymend; ssym++, symp++)
8087 symp->u.ssym = ssym;
8088 symp->name = bfd_elf_string_from_elf_section (bfd1,
8094 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8095 ssym < ssymend; ssym++, symp++)
8097 symp->u.ssym = ssym;
8098 symp->name = bfd_elf_string_from_elf_section (bfd2,
8103 /* Sort symbol by name. */
8104 qsort (symtable1, count1, sizeof (struct elf_symbol),
8105 elf_sym_name_compare);
8106 qsort (symtable2, count1, sizeof (struct elf_symbol),
8107 elf_sym_name_compare);
8109 for (i = 0; i < count1; i++)
8110 /* Two symbols must have the same binding, type and name. */
8111 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8112 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8113 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8120 symtable1 = (struct elf_symbol *)
8121 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8122 symtable2 = (struct elf_symbol *)
8123 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8124 if (symtable1 == NULL || symtable2 == NULL)
8127 /* Count definitions in the section. */
8129 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8130 if (isym->st_shndx == shndx1)
8131 symtable1[count1++].u.isym = isym;
8134 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8135 if (isym->st_shndx == shndx2)
8136 symtable2[count2++].u.isym = isym;
8138 if (count1 == 0 || count2 == 0 || count1 != count2)
8141 for (i = 0; i < count1; i++)
8143 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8144 symtable1[i].u.isym->st_name);
8146 for (i = 0; i < count2; i++)
8148 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8149 symtable2[i].u.isym->st_name);
8151 /* Sort symbol by name. */
8152 qsort (symtable1, count1, sizeof (struct elf_symbol),
8153 elf_sym_name_compare);
8154 qsort (symtable2, count1, sizeof (struct elf_symbol),
8155 elf_sym_name_compare);
8157 for (i = 0; i < count1; i++)
8158 /* Two symbols must have the same binding, type and name. */
8159 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8160 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8161 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8179 /* Return TRUE if 2 section types are compatible. */
8182 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8183 bfd *bbfd, const asection *bsec)
8187 || abfd->xvec->flavour != bfd_target_elf_flavour
8188 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8191 return elf_section_type (asec) == elf_section_type (bsec);
8194 /* Final phase of ELF linker. */
8196 /* A structure we use to avoid passing large numbers of arguments. */
8198 struct elf_final_link_info
8200 /* General link information. */
8201 struct bfd_link_info *info;
8204 /* Symbol string table. */
8205 struct elf_strtab_hash *symstrtab;
8206 /* .hash section. */
8208 /* symbol version section (.gnu.version). */
8209 asection *symver_sec;
8210 /* Buffer large enough to hold contents of any section. */
8212 /* Buffer large enough to hold external relocs of any section. */
8213 void *external_relocs;
8214 /* Buffer large enough to hold internal relocs of any section. */
8215 Elf_Internal_Rela *internal_relocs;
8216 /* Buffer large enough to hold external local symbols of any input
8218 bfd_byte *external_syms;
8219 /* And a buffer for symbol section indices. */
8220 Elf_External_Sym_Shndx *locsym_shndx;
8221 /* Buffer large enough to hold internal local symbols of any input
8223 Elf_Internal_Sym *internal_syms;
8224 /* Array large enough to hold a symbol index for each local symbol
8225 of any input BFD. */
8227 /* Array large enough to hold a section pointer for each local
8228 symbol of any input BFD. */
8229 asection **sections;
8230 /* Buffer for SHT_SYMTAB_SHNDX section. */
8231 Elf_External_Sym_Shndx *symshndxbuf;
8232 /* Number of STT_FILE syms seen. */
8233 size_t filesym_count;
8236 /* This struct is used to pass information to elf_link_output_extsym. */
8238 struct elf_outext_info
8241 bfd_boolean localsyms;
8242 bfd_boolean file_sym_done;
8243 struct elf_final_link_info *flinfo;
8247 /* Support for evaluating a complex relocation.
8249 Complex relocations are generalized, self-describing relocations. The
8250 implementation of them consists of two parts: complex symbols, and the
8251 relocations themselves.
8253 The relocations are use a reserved elf-wide relocation type code (R_RELC
8254 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8255 information (start bit, end bit, word width, etc) into the addend. This
8256 information is extracted from CGEN-generated operand tables within gas.
8258 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8259 internal) representing prefix-notation expressions, including but not
8260 limited to those sorts of expressions normally encoded as addends in the
8261 addend field. The symbol mangling format is:
8264 | <unary-operator> ':' <node>
8265 | <binary-operator> ':' <node> ':' <node>
8268 <literal> := 's' <digits=N> ':' <N character symbol name>
8269 | 'S' <digits=N> ':' <N character section name>
8273 <binary-operator> := as in C
8274 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8277 set_symbol_value (bfd *bfd_with_globals,
8278 Elf_Internal_Sym *isymbuf,
8283 struct elf_link_hash_entry **sym_hashes;
8284 struct elf_link_hash_entry *h;
8285 size_t extsymoff = locsymcount;
8287 if (symidx < locsymcount)
8289 Elf_Internal_Sym *sym;
8291 sym = isymbuf + symidx;
8292 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8294 /* It is a local symbol: move it to the
8295 "absolute" section and give it a value. */
8296 sym->st_shndx = SHN_ABS;
8297 sym->st_value = val;
8300 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8304 /* It is a global symbol: set its link type
8305 to "defined" and give it a value. */
8307 sym_hashes = elf_sym_hashes (bfd_with_globals);
8308 h = sym_hashes [symidx - extsymoff];
8309 while (h->root.type == bfd_link_hash_indirect
8310 || h->root.type == bfd_link_hash_warning)
8311 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8312 h->root.type = bfd_link_hash_defined;
8313 h->root.u.def.value = val;
8314 h->root.u.def.section = bfd_abs_section_ptr;
8318 resolve_symbol (const char *name,
8320 struct elf_final_link_info *flinfo,
8322 Elf_Internal_Sym *isymbuf,
8325 Elf_Internal_Sym *sym;
8326 struct bfd_link_hash_entry *global_entry;
8327 const char *candidate = NULL;
8328 Elf_Internal_Shdr *symtab_hdr;
8331 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8333 for (i = 0; i < locsymcount; ++ i)
8337 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8340 candidate = bfd_elf_string_from_elf_section (input_bfd,
8341 symtab_hdr->sh_link,
8344 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8345 name, candidate, (unsigned long) sym->st_value);
8347 if (candidate && strcmp (candidate, name) == 0)
8349 asection *sec = flinfo->sections [i];
8351 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8352 *result += sec->output_offset + sec->output_section->vma;
8354 printf ("Found symbol with value %8.8lx\n",
8355 (unsigned long) *result);
8361 /* Hmm, haven't found it yet. perhaps it is a global. */
8362 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8363 FALSE, FALSE, TRUE);
8367 if (global_entry->type == bfd_link_hash_defined
8368 || global_entry->type == bfd_link_hash_defweak)
8370 *result = (global_entry->u.def.value
8371 + global_entry->u.def.section->output_section->vma
8372 + global_entry->u.def.section->output_offset);
8374 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8375 global_entry->root.string, (unsigned long) *result);
8383 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8384 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8385 names like "foo.end" which is the end address of section "foo". */
8388 resolve_section (const char *name,
8396 for (curr = sections; curr; curr = curr->next)
8397 if (strcmp (curr->name, name) == 0)
8399 *result = curr->vma;
8403 /* Hmm. still haven't found it. try pseudo-section names. */
8404 /* FIXME: This could be coded more efficiently... */
8405 for (curr = sections; curr; curr = curr->next)
8407 len = strlen (curr->name);
8408 if (len > strlen (name))
8411 if (strncmp (curr->name, name, len) == 0)
8413 if (strncmp (".end", name + len, 4) == 0)
8415 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8419 /* Insert more pseudo-section names here, if you like. */
8427 undefined_reference (const char *reftype, const char *name)
8429 /* xgettext:c-format */
8430 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8435 eval_symbol (bfd_vma *result,
8438 struct elf_final_link_info *flinfo,
8440 Elf_Internal_Sym *isymbuf,
8449 const char *sym = *symp;
8451 bfd_boolean symbol_is_section = FALSE;
8456 if (len < 1 || len > sizeof (symbuf))
8458 bfd_set_error (bfd_error_invalid_operation);
8471 *result = strtoul (sym, (char **) symp, 16);
8475 symbol_is_section = TRUE;
8479 symlen = strtol (sym, (char **) symp, 10);
8480 sym = *symp + 1; /* Skip the trailing ':'. */
8482 if (symend < sym || symlen + 1 > sizeof (symbuf))
8484 bfd_set_error (bfd_error_invalid_operation);
8488 memcpy (symbuf, sym, symlen);
8489 symbuf[symlen] = '\0';
8490 *symp = sym + symlen;
8492 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8493 the symbol as a section, or vice-versa. so we're pretty liberal in our
8494 interpretation here; section means "try section first", not "must be a
8495 section", and likewise with symbol. */
8497 if (symbol_is_section)
8499 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8500 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8501 isymbuf, locsymcount))
8503 undefined_reference ("section", symbuf);
8509 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8510 isymbuf, locsymcount)
8511 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8514 undefined_reference ("symbol", symbuf);
8521 /* All that remains are operators. */
8523 #define UNARY_OP(op) \
8524 if (strncmp (sym, #op, strlen (#op)) == 0) \
8526 sym += strlen (#op); \
8530 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8531 isymbuf, locsymcount, signed_p)) \
8534 *result = op ((bfd_signed_vma) a); \
8540 #define BINARY_OP(op) \
8541 if (strncmp (sym, #op, strlen (#op)) == 0) \
8543 sym += strlen (#op); \
8547 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8548 isymbuf, locsymcount, signed_p)) \
8551 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8552 isymbuf, locsymcount, signed_p)) \
8555 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8585 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8586 bfd_set_error (bfd_error_invalid_operation);
8592 put_value (bfd_vma size,
8593 unsigned long chunksz,
8598 location += (size - chunksz);
8600 for (; size; size -= chunksz, location -= chunksz)
8605 bfd_put_8 (input_bfd, x, location);
8609 bfd_put_16 (input_bfd, x, location);
8613 bfd_put_32 (input_bfd, x, location);
8614 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8620 bfd_put_64 (input_bfd, x, location);
8621 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8634 get_value (bfd_vma size,
8635 unsigned long chunksz,
8642 /* Sanity checks. */
8643 BFD_ASSERT (chunksz <= sizeof (x)
8646 && (size % chunksz) == 0
8647 && input_bfd != NULL
8648 && location != NULL);
8650 if (chunksz == sizeof (x))
8652 BFD_ASSERT (size == chunksz);
8654 /* Make sure that we do not perform an undefined shift operation.
8655 We know that size == chunksz so there will only be one iteration
8656 of the loop below. */
8660 shift = 8 * chunksz;
8662 for (; size; size -= chunksz, location += chunksz)
8667 x = (x << shift) | bfd_get_8 (input_bfd, location);
8670 x = (x << shift) | bfd_get_16 (input_bfd, location);
8673 x = (x << shift) | bfd_get_32 (input_bfd, location);
8677 x = (x << shift) | bfd_get_64 (input_bfd, location);
8688 decode_complex_addend (unsigned long *start, /* in bits */
8689 unsigned long *oplen, /* in bits */
8690 unsigned long *len, /* in bits */
8691 unsigned long *wordsz, /* in bytes */
8692 unsigned long *chunksz, /* in bytes */
8693 unsigned long *lsb0_p,
8694 unsigned long *signed_p,
8695 unsigned long *trunc_p,
8696 unsigned long encoded)
8698 * start = encoded & 0x3F;
8699 * len = (encoded >> 6) & 0x3F;
8700 * oplen = (encoded >> 12) & 0x3F;
8701 * wordsz = (encoded >> 18) & 0xF;
8702 * chunksz = (encoded >> 22) & 0xF;
8703 * lsb0_p = (encoded >> 27) & 1;
8704 * signed_p = (encoded >> 28) & 1;
8705 * trunc_p = (encoded >> 29) & 1;
8708 bfd_reloc_status_type
8709 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8710 asection *input_section ATTRIBUTE_UNUSED,
8712 Elf_Internal_Rela *rel,
8715 bfd_vma shift, x, mask;
8716 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8717 bfd_reloc_status_type r;
8719 /* Perform this reloc, since it is complex.
8720 (this is not to say that it necessarily refers to a complex
8721 symbol; merely that it is a self-describing CGEN based reloc.
8722 i.e. the addend has the complete reloc information (bit start, end,
8723 word size, etc) encoded within it.). */
8725 decode_complex_addend (&start, &oplen, &len, &wordsz,
8726 &chunksz, &lsb0_p, &signed_p,
8727 &trunc_p, rel->r_addend);
8729 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8732 shift = (start + 1) - len;
8734 shift = (8 * wordsz) - (start + len);
8736 x = get_value (wordsz, chunksz, input_bfd,
8737 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8740 printf ("Doing complex reloc: "
8741 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8742 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8743 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8744 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8745 oplen, (unsigned long) x, (unsigned long) mask,
8746 (unsigned long) relocation);
8751 /* Now do an overflow check. */
8752 r = bfd_check_overflow ((signed_p
8753 ? complain_overflow_signed
8754 : complain_overflow_unsigned),
8755 len, 0, (8 * wordsz),
8759 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8762 printf (" relocation: %8.8lx\n"
8763 " shifted mask: %8.8lx\n"
8764 " shifted/masked reloc: %8.8lx\n"
8765 " result: %8.8lx\n",
8766 (unsigned long) relocation, (unsigned long) (mask << shift),
8767 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8769 put_value (wordsz, chunksz, input_bfd, x,
8770 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8774 /* Functions to read r_offset from external (target order) reloc
8775 entry. Faster than bfd_getl32 et al, because we let the compiler
8776 know the value is aligned. */
8779 ext32l_r_offset (const void *p)
8786 const union aligned32 *a
8787 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8789 uint32_t aval = ( (uint32_t) a->c[0]
8790 | (uint32_t) a->c[1] << 8
8791 | (uint32_t) a->c[2] << 16
8792 | (uint32_t) a->c[3] << 24);
8797 ext32b_r_offset (const void *p)
8804 const union aligned32 *a
8805 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8807 uint32_t aval = ( (uint32_t) a->c[0] << 24
8808 | (uint32_t) a->c[1] << 16
8809 | (uint32_t) a->c[2] << 8
8810 | (uint32_t) a->c[3]);
8814 #ifdef BFD_HOST_64_BIT
8816 ext64l_r_offset (const void *p)
8823 const union aligned64 *a
8824 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8826 uint64_t aval = ( (uint64_t) a->c[0]
8827 | (uint64_t) a->c[1] << 8
8828 | (uint64_t) a->c[2] << 16
8829 | (uint64_t) a->c[3] << 24
8830 | (uint64_t) a->c[4] << 32
8831 | (uint64_t) a->c[5] << 40
8832 | (uint64_t) a->c[6] << 48
8833 | (uint64_t) a->c[7] << 56);
8838 ext64b_r_offset (const void *p)
8845 const union aligned64 *a
8846 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8848 uint64_t aval = ( (uint64_t) a->c[0] << 56
8849 | (uint64_t) a->c[1] << 48
8850 | (uint64_t) a->c[2] << 40
8851 | (uint64_t) a->c[3] << 32
8852 | (uint64_t) a->c[4] << 24
8853 | (uint64_t) a->c[5] << 16
8854 | (uint64_t) a->c[6] << 8
8855 | (uint64_t) a->c[7]);
8860 /* When performing a relocatable link, the input relocations are
8861 preserved. But, if they reference global symbols, the indices
8862 referenced must be updated. Update all the relocations found in
8866 elf_link_adjust_relocs (bfd *abfd,
8868 struct bfd_elf_section_reloc_data *reldata,
8870 struct bfd_link_info *info)
8873 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8875 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8876 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8877 bfd_vma r_type_mask;
8879 unsigned int count = reldata->count;
8880 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8882 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8884 swap_in = bed->s->swap_reloc_in;
8885 swap_out = bed->s->swap_reloc_out;
8887 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8889 swap_in = bed->s->swap_reloca_in;
8890 swap_out = bed->s->swap_reloca_out;
8895 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8898 if (bed->s->arch_size == 32)
8905 r_type_mask = 0xffffffff;
8909 erela = reldata->hdr->contents;
8910 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8912 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8915 if (*rel_hash == NULL)
8918 if ((*rel_hash)->indx == -2
8919 && info->gc_sections
8920 && ! info->gc_keep_exported)
8922 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8923 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8925 (*rel_hash)->root.root.string);
8926 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8928 bfd_set_error (bfd_error_invalid_operation);
8931 BFD_ASSERT ((*rel_hash)->indx >= 0);
8933 (*swap_in) (abfd, erela, irela);
8934 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8935 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8936 | (irela[j].r_info & r_type_mask));
8937 (*swap_out) (abfd, irela, erela);
8940 if (bed->elf_backend_update_relocs)
8941 (*bed->elf_backend_update_relocs) (sec, reldata);
8943 if (sort && count != 0)
8945 bfd_vma (*ext_r_off) (const void *);
8948 bfd_byte *base, *end, *p, *loc;
8949 bfd_byte *buf = NULL;
8951 if (bed->s->arch_size == 32)
8953 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8954 ext_r_off = ext32l_r_offset;
8955 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8956 ext_r_off = ext32b_r_offset;
8962 #ifdef BFD_HOST_64_BIT
8963 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8964 ext_r_off = ext64l_r_offset;
8965 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8966 ext_r_off = ext64b_r_offset;
8972 /* Must use a stable sort here. A modified insertion sort,
8973 since the relocs are mostly sorted already. */
8974 elt_size = reldata->hdr->sh_entsize;
8975 base = reldata->hdr->contents;
8976 end = base + count * elt_size;
8977 if (elt_size > sizeof (Elf64_External_Rela))
8980 /* Ensure the first element is lowest. This acts as a sentinel,
8981 speeding the main loop below. */
8982 r_off = (*ext_r_off) (base);
8983 for (p = loc = base; (p += elt_size) < end; )
8985 bfd_vma r_off2 = (*ext_r_off) (p);
8994 /* Don't just swap *base and *loc as that changes the order
8995 of the original base[0] and base[1] if they happen to
8996 have the same r_offset. */
8997 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8998 memcpy (onebuf, loc, elt_size);
8999 memmove (base + elt_size, base, loc - base);
9000 memcpy (base, onebuf, elt_size);
9003 for (p = base + elt_size; (p += elt_size) < end; )
9005 /* base to p is sorted, *p is next to insert. */
9006 r_off = (*ext_r_off) (p);
9007 /* Search the sorted region for location to insert. */
9009 while (r_off < (*ext_r_off) (loc))
9014 /* Chances are there is a run of relocs to insert here,
9015 from one of more input files. Files are not always
9016 linked in order due to the way elf_link_input_bfd is
9017 called. See pr17666. */
9018 size_t sortlen = p - loc;
9019 bfd_vma r_off2 = (*ext_r_off) (loc);
9020 size_t runlen = elt_size;
9021 size_t buf_size = 96 * 1024;
9022 while (p + runlen < end
9023 && (sortlen <= buf_size
9024 || runlen + elt_size <= buf_size)
9025 && r_off2 > (*ext_r_off) (p + runlen))
9029 buf = bfd_malloc (buf_size);
9033 if (runlen < sortlen)
9035 memcpy (buf, p, runlen);
9036 memmove (loc + runlen, loc, sortlen);
9037 memcpy (loc, buf, runlen);
9041 memcpy (buf, loc, sortlen);
9042 memmove (loc, p, runlen);
9043 memcpy (loc + runlen, buf, sortlen);
9045 p += runlen - elt_size;
9048 /* Hashes are no longer valid. */
9049 free (reldata->hashes);
9050 reldata->hashes = NULL;
9056 struct elf_link_sort_rela
9062 enum elf_reloc_type_class type;
9063 /* We use this as an array of size int_rels_per_ext_rel. */
9064 Elf_Internal_Rela rela[1];
9068 elf_link_sort_cmp1 (const void *A, const void *B)
9070 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9071 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9072 int relativea, relativeb;
9074 relativea = a->type == reloc_class_relative;
9075 relativeb = b->type == reloc_class_relative;
9077 if (relativea < relativeb)
9079 if (relativea > relativeb)
9081 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9083 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9085 if (a->rela->r_offset < b->rela->r_offset)
9087 if (a->rela->r_offset > b->rela->r_offset)
9093 elf_link_sort_cmp2 (const void *A, const void *B)
9095 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9096 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9098 if (a->type < b->type)
9100 if (a->type > b->type)
9102 if (a->u.offset < b->u.offset)
9104 if (a->u.offset > b->u.offset)
9106 if (a->rela->r_offset < b->rela->r_offset)
9108 if (a->rela->r_offset > b->rela->r_offset)
9114 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9116 asection *dynamic_relocs;
9119 bfd_size_type count, size;
9120 size_t i, ret, sort_elt, ext_size;
9121 bfd_byte *sort, *s_non_relative, *p;
9122 struct elf_link_sort_rela *sq;
9123 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9124 int i2e = bed->s->int_rels_per_ext_rel;
9125 unsigned int opb = bfd_octets_per_byte (abfd);
9126 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9127 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9128 struct bfd_link_order *lo;
9130 bfd_boolean use_rela;
9132 /* Find a dynamic reloc section. */
9133 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9134 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9135 if (rela_dyn != NULL && rela_dyn->size > 0
9136 && rel_dyn != NULL && rel_dyn->size > 0)
9138 bfd_boolean use_rela_initialised = FALSE;
9140 /* This is just here to stop gcc from complaining.
9141 Its initialization checking code is not perfect. */
9144 /* Both sections are present. Examine the sizes
9145 of the indirect sections to help us choose. */
9146 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9147 if (lo->type == bfd_indirect_link_order)
9149 asection *o = lo->u.indirect.section;
9151 if ((o->size % bed->s->sizeof_rela) == 0)
9153 if ((o->size % bed->s->sizeof_rel) == 0)
9154 /* Section size is divisible by both rel and rela sizes.
9155 It is of no help to us. */
9159 /* Section size is only divisible by rela. */
9160 if (use_rela_initialised && !use_rela)
9162 _bfd_error_handler (_("%pB: unable to sort relocs - "
9163 "they are in more than one size"),
9165 bfd_set_error (bfd_error_invalid_operation);
9171 use_rela_initialised = TRUE;
9175 else if ((o->size % bed->s->sizeof_rel) == 0)
9177 /* Section size is only divisible by rel. */
9178 if (use_rela_initialised && use_rela)
9180 _bfd_error_handler (_("%pB: unable to sort relocs - "
9181 "they are in more than one size"),
9183 bfd_set_error (bfd_error_invalid_operation);
9189 use_rela_initialised = TRUE;
9194 /* The section size is not divisible by either -
9195 something is wrong. */
9196 _bfd_error_handler (_("%pB: unable to sort relocs - "
9197 "they are of an unknown size"), abfd);
9198 bfd_set_error (bfd_error_invalid_operation);
9203 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9204 if (lo->type == bfd_indirect_link_order)
9206 asection *o = lo->u.indirect.section;
9208 if ((o->size % bed->s->sizeof_rela) == 0)
9210 if ((o->size % bed->s->sizeof_rel) == 0)
9211 /* Section size is divisible by both rel and rela sizes.
9212 It is of no help to us. */
9216 /* Section size is only divisible by rela. */
9217 if (use_rela_initialised && !use_rela)
9219 _bfd_error_handler (_("%pB: unable to sort relocs - "
9220 "they are in more than one size"),
9222 bfd_set_error (bfd_error_invalid_operation);
9228 use_rela_initialised = TRUE;
9232 else if ((o->size % bed->s->sizeof_rel) == 0)
9234 /* Section size is only divisible by rel. */
9235 if (use_rela_initialised && use_rela)
9237 _bfd_error_handler (_("%pB: unable to sort relocs - "
9238 "they are in more than one size"),
9240 bfd_set_error (bfd_error_invalid_operation);
9246 use_rela_initialised = TRUE;
9251 /* The section size is not divisible by either -
9252 something is wrong. */
9253 _bfd_error_handler (_("%pB: unable to sort relocs - "
9254 "they are of an unknown size"), abfd);
9255 bfd_set_error (bfd_error_invalid_operation);
9260 if (! use_rela_initialised)
9264 else if (rela_dyn != NULL && rela_dyn->size > 0)
9266 else if (rel_dyn != NULL && rel_dyn->size > 0)
9273 dynamic_relocs = rela_dyn;
9274 ext_size = bed->s->sizeof_rela;
9275 swap_in = bed->s->swap_reloca_in;
9276 swap_out = bed->s->swap_reloca_out;
9280 dynamic_relocs = rel_dyn;
9281 ext_size = bed->s->sizeof_rel;
9282 swap_in = bed->s->swap_reloc_in;
9283 swap_out = bed->s->swap_reloc_out;
9287 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9288 if (lo->type == bfd_indirect_link_order)
9289 size += lo->u.indirect.section->size;
9291 if (size != dynamic_relocs->size)
9294 sort_elt = (sizeof (struct elf_link_sort_rela)
9295 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9297 count = dynamic_relocs->size / ext_size;
9300 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9304 (*info->callbacks->warning)
9305 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9309 if (bed->s->arch_size == 32)
9310 r_sym_mask = ~(bfd_vma) 0xff;
9312 r_sym_mask = ~(bfd_vma) 0xffffffff;
9314 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9315 if (lo->type == bfd_indirect_link_order)
9317 bfd_byte *erel, *erelend;
9318 asection *o = lo->u.indirect.section;
9320 if (o->contents == NULL && o->size != 0)
9322 /* This is a reloc section that is being handled as a normal
9323 section. See bfd_section_from_shdr. We can't combine
9324 relocs in this case. */
9329 erelend = o->contents + o->size;
9330 p = sort + o->output_offset * opb / ext_size * sort_elt;
9332 while (erel < erelend)
9334 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9336 (*swap_in) (abfd, erel, s->rela);
9337 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9338 s->u.sym_mask = r_sym_mask;
9344 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9346 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9348 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9349 if (s->type != reloc_class_relative)
9355 sq = (struct elf_link_sort_rela *) s_non_relative;
9356 for (; i < count; i++, p += sort_elt)
9358 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9359 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9361 sp->u.offset = sq->rela->r_offset;
9364 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9366 struct elf_link_hash_table *htab = elf_hash_table (info);
9367 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9369 /* We have plt relocs in .rela.dyn. */
9370 sq = (struct elf_link_sort_rela *) sort;
9371 for (i = 0; i < count; i++)
9372 if (sq[count - i - 1].type != reloc_class_plt)
9374 if (i != 0 && htab->srelplt->size == i * ext_size)
9376 struct bfd_link_order **plo;
9377 /* Put srelplt link_order last. This is so the output_offset
9378 set in the next loop is correct for DT_JMPREL. */
9379 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9380 if ((*plo)->type == bfd_indirect_link_order
9381 && (*plo)->u.indirect.section == htab->srelplt)
9387 plo = &(*plo)->next;
9390 dynamic_relocs->map_tail.link_order = lo;
9395 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9396 if (lo->type == bfd_indirect_link_order)
9398 bfd_byte *erel, *erelend;
9399 asection *o = lo->u.indirect.section;
9402 erelend = o->contents + o->size;
9403 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9404 while (erel < erelend)
9406 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9407 (*swap_out) (abfd, s->rela, erel);
9414 *psec = dynamic_relocs;
9418 /* Add a symbol to the output symbol string table. */
9421 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9423 Elf_Internal_Sym *elfsym,
9424 asection *input_sec,
9425 struct elf_link_hash_entry *h)
9427 int (*output_symbol_hook)
9428 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9429 struct elf_link_hash_entry *);
9430 struct elf_link_hash_table *hash_table;
9431 const struct elf_backend_data *bed;
9432 bfd_size_type strtabsize;
9434 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9436 bed = get_elf_backend_data (flinfo->output_bfd);
9437 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9438 if (output_symbol_hook != NULL)
9440 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9445 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9446 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9447 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9448 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9452 || (input_sec->flags & SEC_EXCLUDE))
9453 elfsym->st_name = (unsigned long) -1;
9456 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9457 to get the final offset for st_name. */
9459 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9461 if (elfsym->st_name == (unsigned long) -1)
9465 hash_table = elf_hash_table (flinfo->info);
9466 strtabsize = hash_table->strtabsize;
9467 if (strtabsize <= hash_table->strtabcount)
9469 strtabsize += strtabsize;
9470 hash_table->strtabsize = strtabsize;
9471 strtabsize *= sizeof (*hash_table->strtab);
9473 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9475 if (hash_table->strtab == NULL)
9478 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9479 hash_table->strtab[hash_table->strtabcount].dest_index
9480 = hash_table->strtabcount;
9481 hash_table->strtab[hash_table->strtabcount].destshndx_index
9482 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9484 bfd_get_symcount (flinfo->output_bfd) += 1;
9485 hash_table->strtabcount += 1;
9490 /* Swap symbols out to the symbol table and flush the output symbols to
9494 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9496 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9499 const struct elf_backend_data *bed;
9501 Elf_Internal_Shdr *hdr;
9505 if (!hash_table->strtabcount)
9508 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9510 bed = get_elf_backend_data (flinfo->output_bfd);
9512 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9513 symbuf = (bfd_byte *) bfd_malloc (amt);
9517 if (flinfo->symshndxbuf)
9519 amt = sizeof (Elf_External_Sym_Shndx);
9520 amt *= bfd_get_symcount (flinfo->output_bfd);
9521 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9522 if (flinfo->symshndxbuf == NULL)
9529 for (i = 0; i < hash_table->strtabcount; i++)
9531 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9532 if (elfsym->sym.st_name == (unsigned long) -1)
9533 elfsym->sym.st_name = 0;
9536 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9537 elfsym->sym.st_name);
9538 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9539 ((bfd_byte *) symbuf
9540 + (elfsym->dest_index
9541 * bed->s->sizeof_sym)),
9542 (flinfo->symshndxbuf
9543 + elfsym->destshndx_index));
9546 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9547 pos = hdr->sh_offset + hdr->sh_size;
9548 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9549 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9550 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9552 hdr->sh_size += amt;
9560 free (hash_table->strtab);
9561 hash_table->strtab = NULL;
9566 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9569 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9571 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9572 && sym->st_shndx < SHN_LORESERVE)
9574 /* The gABI doesn't support dynamic symbols in output sections
9577 /* xgettext:c-format */
9578 (_("%pB: too many sections: %d (>= %d)"),
9579 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9580 bfd_set_error (bfd_error_nonrepresentable_section);
9586 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9587 allowing an unsatisfied unversioned symbol in the DSO to match a
9588 versioned symbol that would normally require an explicit version.
9589 We also handle the case that a DSO references a hidden symbol
9590 which may be satisfied by a versioned symbol in another DSO. */
9593 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9594 const struct elf_backend_data *bed,
9595 struct elf_link_hash_entry *h)
9598 struct elf_link_loaded_list *loaded;
9600 if (!is_elf_hash_table (info->hash))
9603 /* Check indirect symbol. */
9604 while (h->root.type == bfd_link_hash_indirect)
9605 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9607 switch (h->root.type)
9613 case bfd_link_hash_undefined:
9614 case bfd_link_hash_undefweak:
9615 abfd = h->root.u.undef.abfd;
9617 || (abfd->flags & DYNAMIC) == 0
9618 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9622 case bfd_link_hash_defined:
9623 case bfd_link_hash_defweak:
9624 abfd = h->root.u.def.section->owner;
9627 case bfd_link_hash_common:
9628 abfd = h->root.u.c.p->section->owner;
9631 BFD_ASSERT (abfd != NULL);
9633 for (loaded = elf_hash_table (info)->loaded;
9635 loaded = loaded->next)
9638 Elf_Internal_Shdr *hdr;
9642 Elf_Internal_Shdr *versymhdr;
9643 Elf_Internal_Sym *isym;
9644 Elf_Internal_Sym *isymend;
9645 Elf_Internal_Sym *isymbuf;
9646 Elf_External_Versym *ever;
9647 Elf_External_Versym *extversym;
9649 input = loaded->abfd;
9651 /* We check each DSO for a possible hidden versioned definition. */
9653 || (input->flags & DYNAMIC) == 0
9654 || elf_dynversym (input) == 0)
9657 hdr = &elf_tdata (input)->dynsymtab_hdr;
9659 symcount = hdr->sh_size / bed->s->sizeof_sym;
9660 if (elf_bad_symtab (input))
9662 extsymcount = symcount;
9667 extsymcount = symcount - hdr->sh_info;
9668 extsymoff = hdr->sh_info;
9671 if (extsymcount == 0)
9674 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9676 if (isymbuf == NULL)
9679 /* Read in any version definitions. */
9680 versymhdr = &elf_tdata (input)->dynversym_hdr;
9681 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9682 if (extversym == NULL)
9685 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9686 || (bfd_bread (extversym, versymhdr->sh_size, input)
9687 != versymhdr->sh_size))
9695 ever = extversym + extsymoff;
9696 isymend = isymbuf + extsymcount;
9697 for (isym = isymbuf; isym < isymend; isym++, ever++)
9700 Elf_Internal_Versym iver;
9701 unsigned short version_index;
9703 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9704 || isym->st_shndx == SHN_UNDEF)
9707 name = bfd_elf_string_from_elf_section (input,
9710 if (strcmp (name, h->root.root.string) != 0)
9713 _bfd_elf_swap_versym_in (input, ever, &iver);
9715 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9717 && h->forced_local))
9719 /* If we have a non-hidden versioned sym, then it should
9720 have provided a definition for the undefined sym unless
9721 it is defined in a non-shared object and forced local.
9726 version_index = iver.vs_vers & VERSYM_VERSION;
9727 if (version_index == 1 || version_index == 2)
9729 /* This is the base or first version. We can use it. */
9743 /* Convert ELF common symbol TYPE. */
9746 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9748 /* Commom symbol can only appear in relocatable link. */
9749 if (!bfd_link_relocatable (info))
9751 switch (info->elf_stt_common)
9755 case elf_stt_common:
9758 case no_elf_stt_common:
9765 /* Add an external symbol to the symbol table. This is called from
9766 the hash table traversal routine. When generating a shared object,
9767 we go through the symbol table twice. The first time we output
9768 anything that might have been forced to local scope in a version
9769 script. The second time we output the symbols that are still
9773 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9775 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9776 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9777 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9779 Elf_Internal_Sym sym;
9780 asection *input_sec;
9781 const struct elf_backend_data *bed;
9786 if (h->root.type == bfd_link_hash_warning)
9788 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9789 if (h->root.type == bfd_link_hash_new)
9793 /* Decide whether to output this symbol in this pass. */
9794 if (eoinfo->localsyms)
9796 if (!h->forced_local)
9801 if (h->forced_local)
9805 bed = get_elf_backend_data (flinfo->output_bfd);
9807 if (h->root.type == bfd_link_hash_undefined)
9809 /* If we have an undefined symbol reference here then it must have
9810 come from a shared library that is being linked in. (Undefined
9811 references in regular files have already been handled unless
9812 they are in unreferenced sections which are removed by garbage
9814 bfd_boolean ignore_undef = FALSE;
9816 /* Some symbols may be special in that the fact that they're
9817 undefined can be safely ignored - let backend determine that. */
9818 if (bed->elf_backend_ignore_undef_symbol)
9819 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9821 /* If we are reporting errors for this situation then do so now. */
9823 && h->ref_dynamic_nonweak
9824 && (!h->ref_regular || flinfo->info->gc_sections)
9825 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9826 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9827 (*flinfo->info->callbacks->undefined_symbol)
9828 (flinfo->info, h->root.root.string,
9829 h->ref_regular ? NULL : h->root.u.undef.abfd,
9831 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9833 /* Strip a global symbol defined in a discarded section. */
9838 /* We should also warn if a forced local symbol is referenced from
9839 shared libraries. */
9840 if (bfd_link_executable (flinfo->info)
9845 && h->ref_dynamic_nonweak
9846 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9850 struct elf_link_hash_entry *hi = h;
9852 /* Check indirect symbol. */
9853 while (hi->root.type == bfd_link_hash_indirect)
9854 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9856 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9857 /* xgettext:c-format */
9858 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9859 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9860 /* xgettext:c-format */
9861 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9863 /* xgettext:c-format */
9864 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9865 def_bfd = flinfo->output_bfd;
9866 if (hi->root.u.def.section != bfd_abs_section_ptr)
9867 def_bfd = hi->root.u.def.section->owner;
9868 _bfd_error_handler (msg, flinfo->output_bfd,
9869 h->root.root.string, def_bfd);
9870 bfd_set_error (bfd_error_bad_value);
9871 eoinfo->failed = TRUE;
9875 /* We don't want to output symbols that have never been mentioned by
9876 a regular file, or that we have been told to strip. However, if
9877 h->indx is set to -2, the symbol is used by a reloc and we must
9882 else if ((h->def_dynamic
9884 || h->root.type == bfd_link_hash_new)
9888 else if (flinfo->info->strip == strip_all)
9890 else if (flinfo->info->strip == strip_some
9891 && bfd_hash_lookup (flinfo->info->keep_hash,
9892 h->root.root.string, FALSE, FALSE) == NULL)
9894 else if ((h->root.type == bfd_link_hash_defined
9895 || h->root.type == bfd_link_hash_defweak)
9896 && ((flinfo->info->strip_discarded
9897 && discarded_section (h->root.u.def.section))
9898 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9899 && h->root.u.def.section->owner != NULL
9900 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9902 else if ((h->root.type == bfd_link_hash_undefined
9903 || h->root.type == bfd_link_hash_undefweak)
9904 && h->root.u.undef.abfd != NULL
9905 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9910 /* If we're stripping it, and it's not a dynamic symbol, there's
9911 nothing else to do. However, if it is a forced local symbol or
9912 an ifunc symbol we need to give the backend finish_dynamic_symbol
9913 function a chance to make it dynamic. */
9916 && type != STT_GNU_IFUNC
9917 && !h->forced_local)
9921 sym.st_size = h->size;
9922 sym.st_other = h->other;
9923 switch (h->root.type)
9926 case bfd_link_hash_new:
9927 case bfd_link_hash_warning:
9931 case bfd_link_hash_undefined:
9932 case bfd_link_hash_undefweak:
9933 input_sec = bfd_und_section_ptr;
9934 sym.st_shndx = SHN_UNDEF;
9937 case bfd_link_hash_defined:
9938 case bfd_link_hash_defweak:
9940 input_sec = h->root.u.def.section;
9941 if (input_sec->output_section != NULL)
9944 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9945 input_sec->output_section);
9946 if (sym.st_shndx == SHN_BAD)
9949 /* xgettext:c-format */
9950 (_("%pB: could not find output section %pA for input section %pA"),
9951 flinfo->output_bfd, input_sec->output_section, input_sec);
9952 bfd_set_error (bfd_error_nonrepresentable_section);
9953 eoinfo->failed = TRUE;
9957 /* ELF symbols in relocatable files are section relative,
9958 but in nonrelocatable files they are virtual
9960 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9961 if (!bfd_link_relocatable (flinfo->info))
9963 sym.st_value += input_sec->output_section->vma;
9964 if (h->type == STT_TLS)
9966 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9967 if (tls_sec != NULL)
9968 sym.st_value -= tls_sec->vma;
9974 BFD_ASSERT (input_sec->owner == NULL
9975 || (input_sec->owner->flags & DYNAMIC) != 0);
9976 sym.st_shndx = SHN_UNDEF;
9977 input_sec = bfd_und_section_ptr;
9982 case bfd_link_hash_common:
9983 input_sec = h->root.u.c.p->section;
9984 sym.st_shndx = bed->common_section_index (input_sec);
9985 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9988 case bfd_link_hash_indirect:
9989 /* These symbols are created by symbol versioning. They point
9990 to the decorated version of the name. For example, if the
9991 symbol foo@@GNU_1.2 is the default, which should be used when
9992 foo is used with no version, then we add an indirect symbol
9993 foo which points to foo@@GNU_1.2. We ignore these symbols,
9994 since the indirected symbol is already in the hash table. */
9998 if (type == STT_COMMON || type == STT_OBJECT)
9999 switch (h->root.type)
10001 case bfd_link_hash_common:
10002 type = elf_link_convert_common_type (flinfo->info, type);
10004 case bfd_link_hash_defined:
10005 case bfd_link_hash_defweak:
10006 if (bed->common_definition (&sym))
10007 type = elf_link_convert_common_type (flinfo->info, type);
10011 case bfd_link_hash_undefined:
10012 case bfd_link_hash_undefweak:
10018 if (h->forced_local)
10020 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10021 /* Turn off visibility on local symbol. */
10022 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10024 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10025 else if (h->unique_global && h->def_regular)
10026 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10027 else if (h->root.type == bfd_link_hash_undefweak
10028 || h->root.type == bfd_link_hash_defweak)
10029 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10031 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10032 sym.st_target_internal = h->target_internal;
10034 /* Give the processor backend a chance to tweak the symbol value,
10035 and also to finish up anything that needs to be done for this
10036 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10037 forced local syms when non-shared is due to a historical quirk.
10038 STT_GNU_IFUNC symbol must go through PLT. */
10039 if ((h->type == STT_GNU_IFUNC
10041 && !bfd_link_relocatable (flinfo->info))
10042 || ((h->dynindx != -1
10043 || h->forced_local)
10044 && ((bfd_link_pic (flinfo->info)
10045 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10046 || h->root.type != bfd_link_hash_undefweak))
10047 || !h->forced_local)
10048 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10050 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10051 (flinfo->output_bfd, flinfo->info, h, &sym)))
10053 eoinfo->failed = TRUE;
10058 /* If we are marking the symbol as undefined, and there are no
10059 non-weak references to this symbol from a regular object, then
10060 mark the symbol as weak undefined; if there are non-weak
10061 references, mark the symbol as strong. We can't do this earlier,
10062 because it might not be marked as undefined until the
10063 finish_dynamic_symbol routine gets through with it. */
10064 if (sym.st_shndx == SHN_UNDEF
10066 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10067 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10070 type = ELF_ST_TYPE (sym.st_info);
10072 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10073 if (type == STT_GNU_IFUNC)
10076 if (h->ref_regular_nonweak)
10077 bindtype = STB_GLOBAL;
10079 bindtype = STB_WEAK;
10080 sym.st_info = ELF_ST_INFO (bindtype, type);
10083 /* If this is a symbol defined in a dynamic library, don't use the
10084 symbol size from the dynamic library. Relinking an executable
10085 against a new library may introduce gratuitous changes in the
10086 executable's symbols if we keep the size. */
10087 if (sym.st_shndx == SHN_UNDEF
10092 /* If a non-weak symbol with non-default visibility is not defined
10093 locally, it is a fatal error. */
10094 if (!bfd_link_relocatable (flinfo->info)
10095 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10096 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10097 && h->root.type == bfd_link_hash_undefined
10098 && !h->def_regular)
10102 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10103 /* xgettext:c-format */
10104 msg = _("%pB: protected symbol `%s' isn't defined");
10105 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10106 /* xgettext:c-format */
10107 msg = _("%pB: internal symbol `%s' isn't defined");
10109 /* xgettext:c-format */
10110 msg = _("%pB: hidden symbol `%s' isn't defined");
10111 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10112 bfd_set_error (bfd_error_bad_value);
10113 eoinfo->failed = TRUE;
10117 /* If this symbol should be put in the .dynsym section, then put it
10118 there now. We already know the symbol index. We also fill in
10119 the entry in the .hash section. */
10120 if (h->dynindx != -1
10121 && elf_hash_table (flinfo->info)->dynamic_sections_created
10122 && elf_hash_table (flinfo->info)->dynsym != NULL
10123 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10127 /* Since there is no version information in the dynamic string,
10128 if there is no version info in symbol version section, we will
10129 have a run-time problem if not linking executable, referenced
10130 by shared library, or not bound locally. */
10131 if (h->verinfo.verdef == NULL
10132 && (!bfd_link_executable (flinfo->info)
10134 || !h->def_regular))
10136 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10138 if (p && p [1] != '\0')
10141 /* xgettext:c-format */
10142 (_("%pB: no symbol version section for versioned symbol `%s'"),
10143 flinfo->output_bfd, h->root.root.string);
10144 eoinfo->failed = TRUE;
10149 sym.st_name = h->dynstr_index;
10150 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10151 + h->dynindx * bed->s->sizeof_sym);
10152 if (!check_dynsym (flinfo->output_bfd, &sym))
10154 eoinfo->failed = TRUE;
10157 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10159 if (flinfo->hash_sec != NULL)
10161 size_t hash_entry_size;
10162 bfd_byte *bucketpos;
10164 size_t bucketcount;
10167 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10168 bucket = h->u.elf_hash_value % bucketcount;
10171 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10172 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10173 + (bucket + 2) * hash_entry_size);
10174 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10175 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10177 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10178 ((bfd_byte *) flinfo->hash_sec->contents
10179 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10182 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10184 Elf_Internal_Versym iversym;
10185 Elf_External_Versym *eversym;
10187 if (!h->def_regular)
10189 if (h->verinfo.verdef == NULL
10190 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10191 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10192 iversym.vs_vers = 0;
10194 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10198 if (h->verinfo.vertree == NULL)
10199 iversym.vs_vers = 1;
10201 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10202 if (flinfo->info->create_default_symver)
10206 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10207 defined locally. */
10208 if (h->versioned == versioned_hidden && h->def_regular)
10209 iversym.vs_vers |= VERSYM_HIDDEN;
10211 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10212 eversym += h->dynindx;
10213 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10217 /* If the symbol is undefined, and we didn't output it to .dynsym,
10218 strip it from .symtab too. Obviously we can't do this for
10219 relocatable output or when needed for --emit-relocs. */
10220 else if (input_sec == bfd_und_section_ptr
10222 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10223 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10224 && !bfd_link_relocatable (flinfo->info))
10227 /* Also strip others that we couldn't earlier due to dynamic symbol
10231 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10234 /* Output a FILE symbol so that following locals are not associated
10235 with the wrong input file. We need one for forced local symbols
10236 if we've seen more than one FILE symbol or when we have exactly
10237 one FILE symbol but global symbols are present in a file other
10238 than the one with the FILE symbol. We also need one if linker
10239 defined symbols are present. In practice these conditions are
10240 always met, so just emit the FILE symbol unconditionally. */
10241 if (eoinfo->localsyms
10242 && !eoinfo->file_sym_done
10243 && eoinfo->flinfo->filesym_count != 0)
10245 Elf_Internal_Sym fsym;
10247 memset (&fsym, 0, sizeof (fsym));
10248 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10249 fsym.st_shndx = SHN_ABS;
10250 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10251 bfd_und_section_ptr, NULL))
10254 eoinfo->file_sym_done = TRUE;
10257 indx = bfd_get_symcount (flinfo->output_bfd);
10258 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10262 eoinfo->failed = TRUE;
10267 else if (h->indx == -2)
10273 /* Return TRUE if special handling is done for relocs in SEC against
10274 symbols defined in discarded sections. */
10277 elf_section_ignore_discarded_relocs (asection *sec)
10279 const struct elf_backend_data *bed;
10281 switch (sec->sec_info_type)
10283 case SEC_INFO_TYPE_STABS:
10284 case SEC_INFO_TYPE_EH_FRAME:
10285 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10291 bed = get_elf_backend_data (sec->owner);
10292 if (bed->elf_backend_ignore_discarded_relocs != NULL
10293 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10299 /* Return a mask saying how ld should treat relocations in SEC against
10300 symbols defined in discarded sections. If this function returns
10301 COMPLAIN set, ld will issue a warning message. If this function
10302 returns PRETEND set, and the discarded section was link-once and the
10303 same size as the kept link-once section, ld will pretend that the
10304 symbol was actually defined in the kept section. Otherwise ld will
10305 zero the reloc (at least that is the intent, but some cooperation by
10306 the target dependent code is needed, particularly for REL targets). */
10309 _bfd_elf_default_action_discarded (asection *sec)
10311 if (sec->flags & SEC_DEBUGGING)
10314 if (strcmp (".eh_frame", sec->name) == 0)
10317 if (strcmp (".gcc_except_table", sec->name) == 0)
10320 return COMPLAIN | PRETEND;
10323 /* Find a match between a section and a member of a section group. */
10326 match_group_member (asection *sec, asection *group,
10327 struct bfd_link_info *info)
10329 asection *first = elf_next_in_group (group);
10330 asection *s = first;
10334 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10337 s = elf_next_in_group (s);
10345 /* Check if the kept section of a discarded section SEC can be used
10346 to replace it. Return the replacement if it is OK. Otherwise return
10350 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10354 kept = sec->kept_section;
10357 if ((kept->flags & SEC_GROUP) != 0)
10358 kept = match_group_member (sec, kept, info);
10360 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10361 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10363 sec->kept_section = kept;
10368 /* Link an input file into the linker output file. This function
10369 handles all the sections and relocations of the input file at once.
10370 This is so that we only have to read the local symbols once, and
10371 don't have to keep them in memory. */
10374 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10376 int (*relocate_section)
10377 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10378 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10380 Elf_Internal_Shdr *symtab_hdr;
10381 size_t locsymcount;
10383 Elf_Internal_Sym *isymbuf;
10384 Elf_Internal_Sym *isym;
10385 Elf_Internal_Sym *isymend;
10387 asection **ppsection;
10389 const struct elf_backend_data *bed;
10390 struct elf_link_hash_entry **sym_hashes;
10391 bfd_size_type address_size;
10392 bfd_vma r_type_mask;
10394 bfd_boolean have_file_sym = FALSE;
10396 output_bfd = flinfo->output_bfd;
10397 bed = get_elf_backend_data (output_bfd);
10398 relocate_section = bed->elf_backend_relocate_section;
10400 /* If this is a dynamic object, we don't want to do anything here:
10401 we don't want the local symbols, and we don't want the section
10403 if ((input_bfd->flags & DYNAMIC) != 0)
10406 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10407 if (elf_bad_symtab (input_bfd))
10409 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10414 locsymcount = symtab_hdr->sh_info;
10415 extsymoff = symtab_hdr->sh_info;
10418 /* Read the local symbols. */
10419 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10420 if (isymbuf == NULL && locsymcount != 0)
10422 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10423 flinfo->internal_syms,
10424 flinfo->external_syms,
10425 flinfo->locsym_shndx);
10426 if (isymbuf == NULL)
10430 /* Find local symbol sections and adjust values of symbols in
10431 SEC_MERGE sections. Write out those local symbols we know are
10432 going into the output file. */
10433 isymend = isymbuf + locsymcount;
10434 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10436 isym++, pindex++, ppsection++)
10440 Elf_Internal_Sym osym;
10446 if (elf_bad_symtab (input_bfd))
10448 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10455 if (isym->st_shndx == SHN_UNDEF)
10456 isec = bfd_und_section_ptr;
10457 else if (isym->st_shndx == SHN_ABS)
10458 isec = bfd_abs_section_ptr;
10459 else if (isym->st_shndx == SHN_COMMON)
10460 isec = bfd_com_section_ptr;
10463 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10466 /* Don't attempt to output symbols with st_shnx in the
10467 reserved range other than SHN_ABS and SHN_COMMON. */
10468 isec = bfd_und_section_ptr;
10470 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10471 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10473 _bfd_merged_section_offset (output_bfd, &isec,
10474 elf_section_data (isec)->sec_info,
10480 /* Don't output the first, undefined, symbol. In fact, don't
10481 output any undefined local symbol. */
10482 if (isec == bfd_und_section_ptr)
10485 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10487 /* We never output section symbols. Instead, we use the
10488 section symbol of the corresponding section in the output
10493 /* If we are stripping all symbols, we don't want to output this
10495 if (flinfo->info->strip == strip_all)
10498 /* If we are discarding all local symbols, we don't want to
10499 output this one. If we are generating a relocatable output
10500 file, then some of the local symbols may be required by
10501 relocs; we output them below as we discover that they are
10503 if (flinfo->info->discard == discard_all)
10506 /* If this symbol is defined in a section which we are
10507 discarding, we don't need to keep it. */
10508 if (isym->st_shndx != SHN_UNDEF
10509 && isym->st_shndx < SHN_LORESERVE
10510 && bfd_section_removed_from_list (output_bfd,
10511 isec->output_section))
10514 /* Get the name of the symbol. */
10515 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10520 /* See if we are discarding symbols with this name. */
10521 if ((flinfo->info->strip == strip_some
10522 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10524 || (((flinfo->info->discard == discard_sec_merge
10525 && (isec->flags & SEC_MERGE)
10526 && !bfd_link_relocatable (flinfo->info))
10527 || flinfo->info->discard == discard_l)
10528 && bfd_is_local_label_name (input_bfd, name)))
10531 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10533 if (input_bfd->lto_output)
10534 /* -flto puts a temp file name here. This means builds
10535 are not reproducible. Discard the symbol. */
10537 have_file_sym = TRUE;
10538 flinfo->filesym_count += 1;
10540 if (!have_file_sym)
10542 /* In the absence of debug info, bfd_find_nearest_line uses
10543 FILE symbols to determine the source file for local
10544 function symbols. Provide a FILE symbol here if input
10545 files lack such, so that their symbols won't be
10546 associated with a previous input file. It's not the
10547 source file, but the best we can do. */
10548 have_file_sym = TRUE;
10549 flinfo->filesym_count += 1;
10550 memset (&osym, 0, sizeof (osym));
10551 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10552 osym.st_shndx = SHN_ABS;
10553 if (!elf_link_output_symstrtab (flinfo,
10554 (input_bfd->lto_output ? NULL
10555 : input_bfd->filename),
10556 &osym, bfd_abs_section_ptr,
10563 /* Adjust the section index for the output file. */
10564 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10565 isec->output_section);
10566 if (osym.st_shndx == SHN_BAD)
10569 /* ELF symbols in relocatable files are section relative, but
10570 in executable files they are virtual addresses. Note that
10571 this code assumes that all ELF sections have an associated
10572 BFD section with a reasonable value for output_offset; below
10573 we assume that they also have a reasonable value for
10574 output_section. Any special sections must be set up to meet
10575 these requirements. */
10576 osym.st_value += isec->output_offset;
10577 if (!bfd_link_relocatable (flinfo->info))
10579 osym.st_value += isec->output_section->vma;
10580 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10582 /* STT_TLS symbols are relative to PT_TLS segment base. */
10583 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10584 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10586 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10591 indx = bfd_get_symcount (output_bfd);
10592 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10599 if (bed->s->arch_size == 32)
10601 r_type_mask = 0xff;
10607 r_type_mask = 0xffffffff;
10612 /* Relocate the contents of each section. */
10613 sym_hashes = elf_sym_hashes (input_bfd);
10614 for (o = input_bfd->sections; o != NULL; o = o->next)
10616 bfd_byte *contents;
10618 if (! o->linker_mark)
10620 /* This section was omitted from the link. */
10624 if (!flinfo->info->resolve_section_groups
10625 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10627 /* Deal with the group signature symbol. */
10628 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10629 unsigned long symndx = sec_data->this_hdr.sh_info;
10630 asection *osec = o->output_section;
10632 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10633 if (symndx >= locsymcount
10634 || (elf_bad_symtab (input_bfd)
10635 && flinfo->sections[symndx] == NULL))
10637 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10638 while (h->root.type == bfd_link_hash_indirect
10639 || h->root.type == bfd_link_hash_warning)
10640 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10641 /* Arrange for symbol to be output. */
10643 elf_section_data (osec)->this_hdr.sh_info = -2;
10645 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10647 /* We'll use the output section target_index. */
10648 asection *sec = flinfo->sections[symndx]->output_section;
10649 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10653 if (flinfo->indices[symndx] == -1)
10655 /* Otherwise output the local symbol now. */
10656 Elf_Internal_Sym sym = isymbuf[symndx];
10657 asection *sec = flinfo->sections[symndx]->output_section;
10662 name = bfd_elf_string_from_elf_section (input_bfd,
10663 symtab_hdr->sh_link,
10668 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10670 if (sym.st_shndx == SHN_BAD)
10673 sym.st_value += o->output_offset;
10675 indx = bfd_get_symcount (output_bfd);
10676 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10681 flinfo->indices[symndx] = indx;
10685 elf_section_data (osec)->this_hdr.sh_info
10686 = flinfo->indices[symndx];
10690 if ((o->flags & SEC_HAS_CONTENTS) == 0
10691 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10694 if ((o->flags & SEC_LINKER_CREATED) != 0)
10696 /* Section was created by _bfd_elf_link_create_dynamic_sections
10701 /* Get the contents of the section. They have been cached by a
10702 relaxation routine. Note that o is a section in an input
10703 file, so the contents field will not have been set by any of
10704 the routines which work on output files. */
10705 if (elf_section_data (o)->this_hdr.contents != NULL)
10707 contents = elf_section_data (o)->this_hdr.contents;
10708 if (bed->caches_rawsize
10710 && o->rawsize < o->size)
10712 memcpy (flinfo->contents, contents, o->rawsize);
10713 contents = flinfo->contents;
10718 contents = flinfo->contents;
10719 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10723 if ((o->flags & SEC_RELOC) != 0)
10725 Elf_Internal_Rela *internal_relocs;
10726 Elf_Internal_Rela *rel, *relend;
10727 int action_discarded;
10730 /* Get the swapped relocs. */
10732 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10733 flinfo->internal_relocs, FALSE);
10734 if (internal_relocs == NULL
10735 && o->reloc_count > 0)
10738 /* We need to reverse-copy input .ctors/.dtors sections if
10739 they are placed in .init_array/.finit_array for output. */
10740 if (o->size > address_size
10741 && ((strncmp (o->name, ".ctors", 6) == 0
10742 && strcmp (o->output_section->name,
10743 ".init_array") == 0)
10744 || (strncmp (o->name, ".dtors", 6) == 0
10745 && strcmp (o->output_section->name,
10746 ".fini_array") == 0))
10747 && (o->name[6] == 0 || o->name[6] == '.'))
10749 if (o->size * bed->s->int_rels_per_ext_rel
10750 != o->reloc_count * address_size)
10753 /* xgettext:c-format */
10754 (_("error: %pB: size of section %pA is not "
10755 "multiple of address size"),
10757 bfd_set_error (bfd_error_bad_value);
10760 o->flags |= SEC_ELF_REVERSE_COPY;
10763 action_discarded = -1;
10764 if (!elf_section_ignore_discarded_relocs (o))
10765 action_discarded = (*bed->action_discarded) (o);
10767 /* Run through the relocs evaluating complex reloc symbols and
10768 looking for relocs against symbols from discarded sections
10769 or section symbols from removed link-once sections.
10770 Complain about relocs against discarded sections. Zero
10771 relocs against removed link-once sections. */
10773 rel = internal_relocs;
10774 relend = rel + o->reloc_count;
10775 for ( ; rel < relend; rel++)
10777 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10778 unsigned int s_type;
10779 asection **ps, *sec;
10780 struct elf_link_hash_entry *h = NULL;
10781 const char *sym_name;
10783 if (r_symndx == STN_UNDEF)
10786 if (r_symndx >= locsymcount
10787 || (elf_bad_symtab (input_bfd)
10788 && flinfo->sections[r_symndx] == NULL))
10790 h = sym_hashes[r_symndx - extsymoff];
10792 /* Badly formatted input files can contain relocs that
10793 reference non-existant symbols. Check here so that
10794 we do not seg fault. */
10798 /* xgettext:c-format */
10799 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10800 "that references a non-existent global symbol"),
10801 input_bfd, (uint64_t) rel->r_info, o);
10802 bfd_set_error (bfd_error_bad_value);
10806 while (h->root.type == bfd_link_hash_indirect
10807 || h->root.type == bfd_link_hash_warning)
10808 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10812 /* If a plugin symbol is referenced from a non-IR file,
10813 mark the symbol as undefined. Note that the
10814 linker may attach linker created dynamic sections
10815 to the plugin bfd. Symbols defined in linker
10816 created sections are not plugin symbols. */
10817 if ((h->root.non_ir_ref_regular
10818 || h->root.non_ir_ref_dynamic)
10819 && (h->root.type == bfd_link_hash_defined
10820 || h->root.type == bfd_link_hash_defweak)
10821 && (h->root.u.def.section->flags
10822 & SEC_LINKER_CREATED) == 0
10823 && h->root.u.def.section->owner != NULL
10824 && (h->root.u.def.section->owner->flags
10825 & BFD_PLUGIN) != 0)
10827 h->root.type = bfd_link_hash_undefined;
10828 h->root.u.undef.abfd = h->root.u.def.section->owner;
10832 if (h->root.type == bfd_link_hash_defined
10833 || h->root.type == bfd_link_hash_defweak)
10834 ps = &h->root.u.def.section;
10836 sym_name = h->root.root.string;
10840 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10842 s_type = ELF_ST_TYPE (sym->st_info);
10843 ps = &flinfo->sections[r_symndx];
10844 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10848 if ((s_type == STT_RELC || s_type == STT_SRELC)
10849 && !bfd_link_relocatable (flinfo->info))
10852 bfd_vma dot = (rel->r_offset
10853 + o->output_offset + o->output_section->vma);
10855 printf ("Encountered a complex symbol!");
10856 printf (" (input_bfd %s, section %s, reloc %ld\n",
10857 input_bfd->filename, o->name,
10858 (long) (rel - internal_relocs));
10859 printf (" symbol: idx %8.8lx, name %s\n",
10860 r_symndx, sym_name);
10861 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10862 (unsigned long) rel->r_info,
10863 (unsigned long) rel->r_offset);
10865 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10866 isymbuf, locsymcount, s_type == STT_SRELC))
10869 /* Symbol evaluated OK. Update to absolute value. */
10870 set_symbol_value (input_bfd, isymbuf, locsymcount,
10875 if (action_discarded != -1 && ps != NULL)
10877 /* Complain if the definition comes from a
10878 discarded section. */
10879 if ((sec = *ps) != NULL && discarded_section (sec))
10881 BFD_ASSERT (r_symndx != STN_UNDEF);
10882 if (action_discarded & COMPLAIN)
10883 (*flinfo->info->callbacks->einfo)
10884 /* xgettext:c-format */
10885 (_("%X`%s' referenced in section `%pA' of %pB: "
10886 "defined in discarded section `%pA' of %pB\n"),
10887 sym_name, o, input_bfd, sec, sec->owner);
10889 /* Try to do the best we can to support buggy old
10890 versions of gcc. Pretend that the symbol is
10891 really defined in the kept linkonce section.
10892 FIXME: This is quite broken. Modifying the
10893 symbol here means we will be changing all later
10894 uses of the symbol, not just in this section. */
10895 if (action_discarded & PRETEND)
10899 kept = _bfd_elf_check_kept_section (sec,
10911 /* Relocate the section by invoking a back end routine.
10913 The back end routine is responsible for adjusting the
10914 section contents as necessary, and (if using Rela relocs
10915 and generating a relocatable output file) adjusting the
10916 reloc addend as necessary.
10918 The back end routine does not have to worry about setting
10919 the reloc address or the reloc symbol index.
10921 The back end routine is given a pointer to the swapped in
10922 internal symbols, and can access the hash table entries
10923 for the external symbols via elf_sym_hashes (input_bfd).
10925 When generating relocatable output, the back end routine
10926 must handle STB_LOCAL/STT_SECTION symbols specially. The
10927 output symbol is going to be a section symbol
10928 corresponding to the output section, which will require
10929 the addend to be adjusted. */
10931 ret = (*relocate_section) (output_bfd, flinfo->info,
10932 input_bfd, o, contents,
10940 || bfd_link_relocatable (flinfo->info)
10941 || flinfo->info->emitrelocations)
10943 Elf_Internal_Rela *irela;
10944 Elf_Internal_Rela *irelaend, *irelamid;
10945 bfd_vma last_offset;
10946 struct elf_link_hash_entry **rel_hash;
10947 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10948 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10949 unsigned int next_erel;
10950 bfd_boolean rela_normal;
10951 struct bfd_elf_section_data *esdi, *esdo;
10953 esdi = elf_section_data (o);
10954 esdo = elf_section_data (o->output_section);
10955 rela_normal = FALSE;
10957 /* Adjust the reloc addresses and symbol indices. */
10959 irela = internal_relocs;
10960 irelaend = irela + o->reloc_count;
10961 rel_hash = esdo->rel.hashes + esdo->rel.count;
10962 /* We start processing the REL relocs, if any. When we reach
10963 IRELAMID in the loop, we switch to the RELA relocs. */
10965 if (esdi->rel.hdr != NULL)
10966 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10967 * bed->s->int_rels_per_ext_rel);
10968 rel_hash_list = rel_hash;
10969 rela_hash_list = NULL;
10970 last_offset = o->output_offset;
10971 if (!bfd_link_relocatable (flinfo->info))
10972 last_offset += o->output_section->vma;
10973 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10975 unsigned long r_symndx;
10977 Elf_Internal_Sym sym;
10979 if (next_erel == bed->s->int_rels_per_ext_rel)
10985 if (irela == irelamid)
10987 rel_hash = esdo->rela.hashes + esdo->rela.count;
10988 rela_hash_list = rel_hash;
10989 rela_normal = bed->rela_normal;
10992 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10995 if (irela->r_offset >= (bfd_vma) -2)
10997 /* This is a reloc for a deleted entry or somesuch.
10998 Turn it into an R_*_NONE reloc, at the same
10999 offset as the last reloc. elf_eh_frame.c and
11000 bfd_elf_discard_info rely on reloc offsets
11002 irela->r_offset = last_offset;
11004 irela->r_addend = 0;
11008 irela->r_offset += o->output_offset;
11010 /* Relocs in an executable have to be virtual addresses. */
11011 if (!bfd_link_relocatable (flinfo->info))
11012 irela->r_offset += o->output_section->vma;
11014 last_offset = irela->r_offset;
11016 r_symndx = irela->r_info >> r_sym_shift;
11017 if (r_symndx == STN_UNDEF)
11020 if (r_symndx >= locsymcount
11021 || (elf_bad_symtab (input_bfd)
11022 && flinfo->sections[r_symndx] == NULL))
11024 struct elf_link_hash_entry *rh;
11025 unsigned long indx;
11027 /* This is a reloc against a global symbol. We
11028 have not yet output all the local symbols, so
11029 we do not know the symbol index of any global
11030 symbol. We set the rel_hash entry for this
11031 reloc to point to the global hash table entry
11032 for this symbol. The symbol index is then
11033 set at the end of bfd_elf_final_link. */
11034 indx = r_symndx - extsymoff;
11035 rh = elf_sym_hashes (input_bfd)[indx];
11036 while (rh->root.type == bfd_link_hash_indirect
11037 || rh->root.type == bfd_link_hash_warning)
11038 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11040 /* Setting the index to -2 tells
11041 elf_link_output_extsym that this symbol is
11042 used by a reloc. */
11043 BFD_ASSERT (rh->indx < 0);
11050 /* This is a reloc against a local symbol. */
11053 sym = isymbuf[r_symndx];
11054 sec = flinfo->sections[r_symndx];
11055 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11057 /* I suppose the backend ought to fill in the
11058 section of any STT_SECTION symbol against a
11059 processor specific section. */
11060 r_symndx = STN_UNDEF;
11061 if (bfd_is_abs_section (sec))
11063 else if (sec == NULL || sec->owner == NULL)
11065 bfd_set_error (bfd_error_bad_value);
11070 asection *osec = sec->output_section;
11072 /* If we have discarded a section, the output
11073 section will be the absolute section. In
11074 case of discarded SEC_MERGE sections, use
11075 the kept section. relocate_section should
11076 have already handled discarded linkonce
11078 if (bfd_is_abs_section (osec)
11079 && sec->kept_section != NULL
11080 && sec->kept_section->output_section != NULL)
11082 osec = sec->kept_section->output_section;
11083 irela->r_addend -= osec->vma;
11086 if (!bfd_is_abs_section (osec))
11088 r_symndx = osec->target_index;
11089 if (r_symndx == STN_UNDEF)
11091 irela->r_addend += osec->vma;
11092 osec = _bfd_nearby_section (output_bfd, osec,
11094 irela->r_addend -= osec->vma;
11095 r_symndx = osec->target_index;
11100 /* Adjust the addend according to where the
11101 section winds up in the output section. */
11103 irela->r_addend += sec->output_offset;
11107 if (flinfo->indices[r_symndx] == -1)
11109 unsigned long shlink;
11114 if (flinfo->info->strip == strip_all)
11116 /* You can't do ld -r -s. */
11117 bfd_set_error (bfd_error_invalid_operation);
11121 /* This symbol was skipped earlier, but
11122 since it is needed by a reloc, we
11123 must output it now. */
11124 shlink = symtab_hdr->sh_link;
11125 name = (bfd_elf_string_from_elf_section
11126 (input_bfd, shlink, sym.st_name));
11130 osec = sec->output_section;
11132 _bfd_elf_section_from_bfd_section (output_bfd,
11134 if (sym.st_shndx == SHN_BAD)
11137 sym.st_value += sec->output_offset;
11138 if (!bfd_link_relocatable (flinfo->info))
11140 sym.st_value += osec->vma;
11141 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11143 struct elf_link_hash_table *htab
11144 = elf_hash_table (flinfo->info);
11146 /* STT_TLS symbols are relative to PT_TLS
11148 if (htab->tls_sec != NULL)
11149 sym.st_value -= htab->tls_sec->vma;
11152 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11157 indx = bfd_get_symcount (output_bfd);
11158 ret = elf_link_output_symstrtab (flinfo, name,
11164 flinfo->indices[r_symndx] = indx;
11169 r_symndx = flinfo->indices[r_symndx];
11172 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11173 | (irela->r_info & r_type_mask));
11176 /* Swap out the relocs. */
11177 input_rel_hdr = esdi->rel.hdr;
11178 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11180 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11185 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11186 * bed->s->int_rels_per_ext_rel);
11187 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11190 input_rela_hdr = esdi->rela.hdr;
11191 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11193 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11202 /* Write out the modified section contents. */
11203 if (bed->elf_backend_write_section
11204 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11207 /* Section written out. */
11209 else switch (o->sec_info_type)
11211 case SEC_INFO_TYPE_STABS:
11212 if (! (_bfd_write_section_stabs
11214 &elf_hash_table (flinfo->info)->stab_info,
11215 o, &elf_section_data (o)->sec_info, contents)))
11218 case SEC_INFO_TYPE_MERGE:
11219 if (! _bfd_write_merged_section (output_bfd, o,
11220 elf_section_data (o)->sec_info))
11223 case SEC_INFO_TYPE_EH_FRAME:
11225 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11230 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11232 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11240 if (! (o->flags & SEC_EXCLUDE))
11242 file_ptr offset = (file_ptr) o->output_offset;
11243 bfd_size_type todo = o->size;
11245 offset *= bfd_octets_per_byte (output_bfd);
11247 if ((o->flags & SEC_ELF_REVERSE_COPY))
11249 /* Reverse-copy input section to output. */
11252 todo -= address_size;
11253 if (! bfd_set_section_contents (output_bfd,
11261 offset += address_size;
11265 else if (! bfd_set_section_contents (output_bfd,
11279 /* Generate a reloc when linking an ELF file. This is a reloc
11280 requested by the linker, and does not come from any input file. This
11281 is used to build constructor and destructor tables when linking
11285 elf_reloc_link_order (bfd *output_bfd,
11286 struct bfd_link_info *info,
11287 asection *output_section,
11288 struct bfd_link_order *link_order)
11290 reloc_howto_type *howto;
11294 struct bfd_elf_section_reloc_data *reldata;
11295 struct elf_link_hash_entry **rel_hash_ptr;
11296 Elf_Internal_Shdr *rel_hdr;
11297 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11298 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11301 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11303 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11306 bfd_set_error (bfd_error_bad_value);
11310 addend = link_order->u.reloc.p->addend;
11313 reldata = &esdo->rel;
11314 else if (esdo->rela.hdr)
11315 reldata = &esdo->rela;
11322 /* Figure out the symbol index. */
11323 rel_hash_ptr = reldata->hashes + reldata->count;
11324 if (link_order->type == bfd_section_reloc_link_order)
11326 indx = link_order->u.reloc.p->u.section->target_index;
11327 BFD_ASSERT (indx != 0);
11328 *rel_hash_ptr = NULL;
11332 struct elf_link_hash_entry *h;
11334 /* Treat a reloc against a defined symbol as though it were
11335 actually against the section. */
11336 h = ((struct elf_link_hash_entry *)
11337 bfd_wrapped_link_hash_lookup (output_bfd, info,
11338 link_order->u.reloc.p->u.name,
11339 FALSE, FALSE, TRUE));
11341 && (h->root.type == bfd_link_hash_defined
11342 || h->root.type == bfd_link_hash_defweak))
11346 section = h->root.u.def.section;
11347 indx = section->output_section->target_index;
11348 *rel_hash_ptr = NULL;
11349 /* It seems that we ought to add the symbol value to the
11350 addend here, but in practice it has already been added
11351 because it was passed to constructor_callback. */
11352 addend += section->output_section->vma + section->output_offset;
11354 else if (h != NULL)
11356 /* Setting the index to -2 tells elf_link_output_extsym that
11357 this symbol is used by a reloc. */
11364 (*info->callbacks->unattached_reloc)
11365 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11370 /* If this is an inplace reloc, we must write the addend into the
11372 if (howto->partial_inplace && addend != 0)
11374 bfd_size_type size;
11375 bfd_reloc_status_type rstat;
11378 const char *sym_name;
11380 size = (bfd_size_type) bfd_get_reloc_size (howto);
11381 buf = (bfd_byte *) bfd_zmalloc (size);
11382 if (buf == NULL && size != 0)
11384 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11391 case bfd_reloc_outofrange:
11394 case bfd_reloc_overflow:
11395 if (link_order->type == bfd_section_reloc_link_order)
11396 sym_name = bfd_section_name (output_bfd,
11397 link_order->u.reloc.p->u.section);
11399 sym_name = link_order->u.reloc.p->u.name;
11400 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11401 howto->name, addend, NULL, NULL,
11406 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11408 * bfd_octets_per_byte (output_bfd),
11415 /* The address of a reloc is relative to the section in a
11416 relocatable file, and is a virtual address in an executable
11418 offset = link_order->offset;
11419 if (! bfd_link_relocatable (info))
11420 offset += output_section->vma;
11422 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11424 irel[i].r_offset = offset;
11425 irel[i].r_info = 0;
11426 irel[i].r_addend = 0;
11428 if (bed->s->arch_size == 32)
11429 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11431 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11433 rel_hdr = reldata->hdr;
11434 erel = rel_hdr->contents;
11435 if (rel_hdr->sh_type == SHT_REL)
11437 erel += reldata->count * bed->s->sizeof_rel;
11438 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11442 irel[0].r_addend = addend;
11443 erel += reldata->count * bed->s->sizeof_rela;
11444 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11453 /* Get the output vma of the section pointed to by the sh_link field. */
11456 elf_get_linked_section_vma (struct bfd_link_order *p)
11458 Elf_Internal_Shdr **elf_shdrp;
11462 s = p->u.indirect.section;
11463 elf_shdrp = elf_elfsections (s->owner);
11464 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11465 elfsec = elf_shdrp[elfsec]->sh_link;
11467 The Intel C compiler generates SHT_IA_64_UNWIND with
11468 SHF_LINK_ORDER. But it doesn't set the sh_link or
11469 sh_info fields. Hence we could get the situation
11470 where elfsec is 0. */
11473 const struct elf_backend_data *bed
11474 = get_elf_backend_data (s->owner);
11475 if (bed->link_order_error_handler)
11476 bed->link_order_error_handler
11477 /* xgettext:c-format */
11478 (_("%pB: warning: sh_link not set for section `%pA'"), s->owner, s);
11483 s = elf_shdrp[elfsec]->bfd_section;
11484 return s->output_section->vma + s->output_offset;
11489 /* Compare two sections based on the locations of the sections they are
11490 linked to. Used by elf_fixup_link_order. */
11493 compare_link_order (const void * a, const void * b)
11498 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11499 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11502 return apos > bpos;
11506 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11507 order as their linked sections. Returns false if this could not be done
11508 because an output section includes both ordered and unordered
11509 sections. Ideally we'd do this in the linker proper. */
11512 elf_fixup_link_order (bfd *abfd, asection *o)
11514 int seen_linkorder;
11517 struct bfd_link_order *p;
11519 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11521 struct bfd_link_order **sections;
11522 asection *s, *other_sec, *linkorder_sec;
11526 linkorder_sec = NULL;
11528 seen_linkorder = 0;
11529 for (p = o->map_head.link_order; p != NULL; p = p->next)
11531 if (p->type == bfd_indirect_link_order)
11533 s = p->u.indirect.section;
11535 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11536 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11537 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11538 && elfsec < elf_numsections (sub)
11539 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11540 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11554 if (seen_other && seen_linkorder)
11556 if (other_sec && linkorder_sec)
11558 /* xgettext:c-format */
11559 (_("%pA has both ordered [`%pA' in %pB] "
11560 "and unordered [`%pA' in %pB] sections"),
11561 o, linkorder_sec, linkorder_sec->owner,
11562 other_sec, other_sec->owner);
11565 (_("%pA has both ordered and unordered sections"), o);
11566 bfd_set_error (bfd_error_bad_value);
11571 if (!seen_linkorder)
11574 sections = (struct bfd_link_order **)
11575 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11576 if (sections == NULL)
11578 seen_linkorder = 0;
11580 for (p = o->map_head.link_order; p != NULL; p = p->next)
11582 sections[seen_linkorder++] = p;
11584 /* Sort the input sections in the order of their linked section. */
11585 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11586 compare_link_order);
11588 /* Change the offsets of the sections. */
11590 for (n = 0; n < seen_linkorder; n++)
11592 s = sections[n]->u.indirect.section;
11593 offset &= ~(bfd_vma) 0 << s->alignment_power;
11594 s->output_offset = offset / bfd_octets_per_byte (abfd);
11595 sections[n]->offset = offset;
11596 offset += sections[n]->size;
11603 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11604 Returns TRUE upon success, FALSE otherwise. */
11607 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11609 bfd_boolean ret = FALSE;
11611 const struct elf_backend_data *bed;
11613 enum bfd_architecture arch;
11615 asymbol **sympp = NULL;
11619 elf_symbol_type *osymbuf;
11621 implib_bfd = info->out_implib_bfd;
11622 bed = get_elf_backend_data (abfd);
11624 if (!bfd_set_format (implib_bfd, bfd_object))
11627 /* Use flag from executable but make it a relocatable object. */
11628 flags = bfd_get_file_flags (abfd);
11629 flags &= ~HAS_RELOC;
11630 if (!bfd_set_start_address (implib_bfd, 0)
11631 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11634 /* Copy architecture of output file to import library file. */
11635 arch = bfd_get_arch (abfd);
11636 mach = bfd_get_mach (abfd);
11637 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11638 && (abfd->target_defaulted
11639 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11642 /* Get symbol table size. */
11643 symsize = bfd_get_symtab_upper_bound (abfd);
11647 /* Read in the symbol table. */
11648 sympp = (asymbol **) xmalloc (symsize);
11649 symcount = bfd_canonicalize_symtab (abfd, sympp);
11653 /* Allow the BFD backend to copy any private header data it
11654 understands from the output BFD to the import library BFD. */
11655 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11658 /* Filter symbols to appear in the import library. */
11659 if (bed->elf_backend_filter_implib_symbols)
11660 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11663 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11666 bfd_set_error (bfd_error_no_symbols);
11667 _bfd_error_handler (_("%pB: no symbol found for import library"),
11673 /* Make symbols absolute. */
11674 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11675 sizeof (*osymbuf));
11676 for (src_count = 0; src_count < symcount; src_count++)
11678 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11679 sizeof (*osymbuf));
11680 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11681 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11682 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11683 osymbuf[src_count].internal_elf_sym.st_value =
11684 osymbuf[src_count].symbol.value;
11685 sympp[src_count] = &osymbuf[src_count].symbol;
11688 bfd_set_symtab (implib_bfd, sympp, symcount);
11690 /* Allow the BFD backend to copy any private data it understands
11691 from the output BFD to the import library BFD. This is done last
11692 to permit the routine to look at the filtered symbol table. */
11693 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11696 if (!bfd_close (implib_bfd))
11707 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11711 if (flinfo->symstrtab != NULL)
11712 _bfd_elf_strtab_free (flinfo->symstrtab);
11713 if (flinfo->contents != NULL)
11714 free (flinfo->contents);
11715 if (flinfo->external_relocs != NULL)
11716 free (flinfo->external_relocs);
11717 if (flinfo->internal_relocs != NULL)
11718 free (flinfo->internal_relocs);
11719 if (flinfo->external_syms != NULL)
11720 free (flinfo->external_syms);
11721 if (flinfo->locsym_shndx != NULL)
11722 free (flinfo->locsym_shndx);
11723 if (flinfo->internal_syms != NULL)
11724 free (flinfo->internal_syms);
11725 if (flinfo->indices != NULL)
11726 free (flinfo->indices);
11727 if (flinfo->sections != NULL)
11728 free (flinfo->sections);
11729 if (flinfo->symshndxbuf != NULL
11730 && flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11731 free (flinfo->symshndxbuf);
11732 for (o = obfd->sections; o != NULL; o = o->next)
11734 struct bfd_elf_section_data *esdo = elf_section_data (o);
11735 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11736 free (esdo->rel.hashes);
11737 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11738 free (esdo->rela.hashes);
11742 /* Do the final step of an ELF link. */
11745 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11747 bfd_boolean dynamic;
11748 bfd_boolean emit_relocs;
11750 struct elf_final_link_info flinfo;
11752 struct bfd_link_order *p;
11754 bfd_size_type max_contents_size;
11755 bfd_size_type max_external_reloc_size;
11756 bfd_size_type max_internal_reloc_count;
11757 bfd_size_type max_sym_count;
11758 bfd_size_type max_sym_shndx_count;
11759 Elf_Internal_Sym elfsym;
11761 Elf_Internal_Shdr *symtab_hdr;
11762 Elf_Internal_Shdr *symtab_shndx_hdr;
11763 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11764 struct elf_outext_info eoinfo;
11765 bfd_boolean merged;
11766 size_t relativecount = 0;
11767 asection *reldyn = 0;
11769 asection *attr_section = NULL;
11770 bfd_vma attr_size = 0;
11771 const char *std_attrs_section;
11772 struct elf_link_hash_table *htab = elf_hash_table (info);
11774 if (!is_elf_hash_table (htab))
11777 if (bfd_link_pic (info))
11778 abfd->flags |= DYNAMIC;
11780 dynamic = htab->dynamic_sections_created;
11781 dynobj = htab->dynobj;
11783 emit_relocs = (bfd_link_relocatable (info)
11784 || info->emitrelocations);
11786 flinfo.info = info;
11787 flinfo.output_bfd = abfd;
11788 flinfo.symstrtab = _bfd_elf_strtab_init ();
11789 if (flinfo.symstrtab == NULL)
11794 flinfo.hash_sec = NULL;
11795 flinfo.symver_sec = NULL;
11799 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11800 /* Note that dynsym_sec can be NULL (on VMS). */
11801 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11802 /* Note that it is OK if symver_sec is NULL. */
11805 flinfo.contents = NULL;
11806 flinfo.external_relocs = NULL;
11807 flinfo.internal_relocs = NULL;
11808 flinfo.external_syms = NULL;
11809 flinfo.locsym_shndx = NULL;
11810 flinfo.internal_syms = NULL;
11811 flinfo.indices = NULL;
11812 flinfo.sections = NULL;
11813 flinfo.symshndxbuf = NULL;
11814 flinfo.filesym_count = 0;
11816 /* The object attributes have been merged. Remove the input
11817 sections from the link, and set the contents of the output
11819 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11820 for (o = abfd->sections; o != NULL; o = o->next)
11822 bfd_boolean remove_section = FALSE;
11824 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11825 || strcmp (o->name, ".gnu.attributes") == 0)
11827 for (p = o->map_head.link_order; p != NULL; p = p->next)
11829 asection *input_section;
11831 if (p->type != bfd_indirect_link_order)
11833 input_section = p->u.indirect.section;
11834 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11835 elf_link_input_bfd ignores this section. */
11836 input_section->flags &= ~SEC_HAS_CONTENTS;
11839 attr_size = bfd_elf_obj_attr_size (abfd);
11840 bfd_set_section_size (abfd, o, attr_size);
11841 /* Skip this section later on. */
11842 o->map_head.link_order = NULL;
11846 remove_section = TRUE;
11848 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11850 /* Remove empty group section from linker output. */
11851 remove_section = TRUE;
11853 if (remove_section)
11855 o->flags |= SEC_EXCLUDE;
11856 bfd_section_list_remove (abfd, o);
11857 abfd->section_count--;
11861 /* Count up the number of relocations we will output for each output
11862 section, so that we know the sizes of the reloc sections. We
11863 also figure out some maximum sizes. */
11864 max_contents_size = 0;
11865 max_external_reloc_size = 0;
11866 max_internal_reloc_count = 0;
11868 max_sym_shndx_count = 0;
11870 for (o = abfd->sections; o != NULL; o = o->next)
11872 struct bfd_elf_section_data *esdo = elf_section_data (o);
11873 o->reloc_count = 0;
11875 for (p = o->map_head.link_order; p != NULL; p = p->next)
11877 unsigned int reloc_count = 0;
11878 unsigned int additional_reloc_count = 0;
11879 struct bfd_elf_section_data *esdi = NULL;
11881 if (p->type == bfd_section_reloc_link_order
11882 || p->type == bfd_symbol_reloc_link_order)
11884 else if (p->type == bfd_indirect_link_order)
11888 sec = p->u.indirect.section;
11890 /* Mark all sections which are to be included in the
11891 link. This will normally be every section. We need
11892 to do this so that we can identify any sections which
11893 the linker has decided to not include. */
11894 sec->linker_mark = TRUE;
11896 if (sec->flags & SEC_MERGE)
11899 if (sec->rawsize > max_contents_size)
11900 max_contents_size = sec->rawsize;
11901 if (sec->size > max_contents_size)
11902 max_contents_size = sec->size;
11904 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11905 && (sec->owner->flags & DYNAMIC) == 0)
11909 /* We are interested in just local symbols, not all
11911 if (elf_bad_symtab (sec->owner))
11912 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11913 / bed->s->sizeof_sym);
11915 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11917 if (sym_count > max_sym_count)
11918 max_sym_count = sym_count;
11920 if (sym_count > max_sym_shndx_count
11921 && elf_symtab_shndx_list (sec->owner) != NULL)
11922 max_sym_shndx_count = sym_count;
11924 if (esdo->this_hdr.sh_type == SHT_REL
11925 || esdo->this_hdr.sh_type == SHT_RELA)
11926 /* Some backends use reloc_count in relocation sections
11927 to count particular types of relocs. Of course,
11928 reloc sections themselves can't have relocations. */
11930 else if (emit_relocs)
11932 reloc_count = sec->reloc_count;
11933 if (bed->elf_backend_count_additional_relocs)
11936 c = (*bed->elf_backend_count_additional_relocs) (sec);
11937 additional_reloc_count += c;
11940 else if (bed->elf_backend_count_relocs)
11941 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11943 esdi = elf_section_data (sec);
11945 if ((sec->flags & SEC_RELOC) != 0)
11947 size_t ext_size = 0;
11949 if (esdi->rel.hdr != NULL)
11950 ext_size = esdi->rel.hdr->sh_size;
11951 if (esdi->rela.hdr != NULL)
11952 ext_size += esdi->rela.hdr->sh_size;
11954 if (ext_size > max_external_reloc_size)
11955 max_external_reloc_size = ext_size;
11956 if (sec->reloc_count > max_internal_reloc_count)
11957 max_internal_reloc_count = sec->reloc_count;
11962 if (reloc_count == 0)
11965 reloc_count += additional_reloc_count;
11966 o->reloc_count += reloc_count;
11968 if (p->type == bfd_indirect_link_order && emit_relocs)
11972 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11973 esdo->rel.count += additional_reloc_count;
11975 if (esdi->rela.hdr)
11977 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11978 esdo->rela.count += additional_reloc_count;
11984 esdo->rela.count += reloc_count;
11986 esdo->rel.count += reloc_count;
11990 if (o->reloc_count > 0)
11991 o->flags |= SEC_RELOC;
11994 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11995 set it (this is probably a bug) and if it is set
11996 assign_section_numbers will create a reloc section. */
11997 o->flags &=~ SEC_RELOC;
12000 /* If the SEC_ALLOC flag is not set, force the section VMA to
12001 zero. This is done in elf_fake_sections as well, but forcing
12002 the VMA to 0 here will ensure that relocs against these
12003 sections are handled correctly. */
12004 if ((o->flags & SEC_ALLOC) == 0
12005 && ! o->user_set_vma)
12009 if (! bfd_link_relocatable (info) && merged)
12010 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12012 /* Figure out the file positions for everything but the symbol table
12013 and the relocs. We set symcount to force assign_section_numbers
12014 to create a symbol table. */
12015 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
12016 BFD_ASSERT (! abfd->output_has_begun);
12017 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12020 /* Set sizes, and assign file positions for reloc sections. */
12021 for (o = abfd->sections; o != NULL; o = o->next)
12023 struct bfd_elf_section_data *esdo = elf_section_data (o);
12024 if ((o->flags & SEC_RELOC) != 0)
12027 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12031 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12035 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12036 to count upwards while actually outputting the relocations. */
12037 esdo->rel.count = 0;
12038 esdo->rela.count = 0;
12040 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
12042 /* Cache the section contents so that they can be compressed
12043 later. Use bfd_malloc since it will be freed by
12044 bfd_compress_section_contents. */
12045 unsigned char *contents = esdo->this_hdr.contents;
12046 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12049 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12050 if (contents == NULL)
12052 esdo->this_hdr.contents = contents;
12056 /* We have now assigned file positions for all the sections except
12057 .symtab, .strtab, and non-loaded reloc sections. We start the
12058 .symtab section at the current file position, and write directly
12059 to it. We build the .strtab section in memory. */
12060 bfd_get_symcount (abfd) = 0;
12061 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12062 /* sh_name is set in prep_headers. */
12063 symtab_hdr->sh_type = SHT_SYMTAB;
12064 /* sh_flags, sh_addr and sh_size all start off zero. */
12065 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12066 /* sh_link is set in assign_section_numbers. */
12067 /* sh_info is set below. */
12068 /* sh_offset is set just below. */
12069 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12071 if (max_sym_count < 20)
12072 max_sym_count = 20;
12073 htab->strtabsize = max_sym_count;
12074 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12075 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12076 if (htab->strtab == NULL)
12078 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12080 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12081 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12083 if (info->strip != strip_all || emit_relocs)
12085 file_ptr off = elf_next_file_pos (abfd);
12087 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12089 /* Note that at this point elf_next_file_pos (abfd) is
12090 incorrect. We do not yet know the size of the .symtab section.
12091 We correct next_file_pos below, after we do know the size. */
12093 /* Start writing out the symbol table. The first symbol is always a
12095 elfsym.st_value = 0;
12096 elfsym.st_size = 0;
12097 elfsym.st_info = 0;
12098 elfsym.st_other = 0;
12099 elfsym.st_shndx = SHN_UNDEF;
12100 elfsym.st_target_internal = 0;
12101 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12102 bfd_und_section_ptr, NULL) != 1)
12105 /* Output a symbol for each section. We output these even if we are
12106 discarding local symbols, since they are used for relocs. These
12107 symbols have no names. We store the index of each one in the
12108 index field of the section, so that we can find it again when
12109 outputting relocs. */
12111 elfsym.st_size = 0;
12112 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12113 elfsym.st_other = 0;
12114 elfsym.st_value = 0;
12115 elfsym.st_target_internal = 0;
12116 for (i = 1; i < elf_numsections (abfd); i++)
12118 o = bfd_section_from_elf_index (abfd, i);
12121 o->target_index = bfd_get_symcount (abfd);
12122 elfsym.st_shndx = i;
12123 if (!bfd_link_relocatable (info))
12124 elfsym.st_value = o->vma;
12125 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12132 /* Allocate some memory to hold information read in from the input
12134 if (max_contents_size != 0)
12136 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12137 if (flinfo.contents == NULL)
12141 if (max_external_reloc_size != 0)
12143 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12144 if (flinfo.external_relocs == NULL)
12148 if (max_internal_reloc_count != 0)
12150 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12151 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12152 if (flinfo.internal_relocs == NULL)
12156 if (max_sym_count != 0)
12158 amt = max_sym_count * bed->s->sizeof_sym;
12159 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12160 if (flinfo.external_syms == NULL)
12163 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12164 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12165 if (flinfo.internal_syms == NULL)
12168 amt = max_sym_count * sizeof (long);
12169 flinfo.indices = (long int *) bfd_malloc (amt);
12170 if (flinfo.indices == NULL)
12173 amt = max_sym_count * sizeof (asection *);
12174 flinfo.sections = (asection **) bfd_malloc (amt);
12175 if (flinfo.sections == NULL)
12179 if (max_sym_shndx_count != 0)
12181 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12182 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12183 if (flinfo.locsym_shndx == NULL)
12189 bfd_vma base, end = 0;
12192 for (sec = htab->tls_sec;
12193 sec && (sec->flags & SEC_THREAD_LOCAL);
12196 bfd_size_type size = sec->size;
12199 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12201 struct bfd_link_order *ord = sec->map_tail.link_order;
12204 size = ord->offset + ord->size;
12206 end = sec->vma + size;
12208 base = htab->tls_sec->vma;
12209 /* Only align end of TLS section if static TLS doesn't have special
12210 alignment requirements. */
12211 if (bed->static_tls_alignment == 1)
12212 end = align_power (end, htab->tls_sec->alignment_power);
12213 htab->tls_size = end - base;
12216 /* Reorder SHF_LINK_ORDER sections. */
12217 for (o = abfd->sections; o != NULL; o = o->next)
12219 if (!elf_fixup_link_order (abfd, o))
12223 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12226 /* Since ELF permits relocations to be against local symbols, we
12227 must have the local symbols available when we do the relocations.
12228 Since we would rather only read the local symbols once, and we
12229 would rather not keep them in memory, we handle all the
12230 relocations for a single input file at the same time.
12232 Unfortunately, there is no way to know the total number of local
12233 symbols until we have seen all of them, and the local symbol
12234 indices precede the global symbol indices. This means that when
12235 we are generating relocatable output, and we see a reloc against
12236 a global symbol, we can not know the symbol index until we have
12237 finished examining all the local symbols to see which ones we are
12238 going to output. To deal with this, we keep the relocations in
12239 memory, and don't output them until the end of the link. This is
12240 an unfortunate waste of memory, but I don't see a good way around
12241 it. Fortunately, it only happens when performing a relocatable
12242 link, which is not the common case. FIXME: If keep_memory is set
12243 we could write the relocs out and then read them again; I don't
12244 know how bad the memory loss will be. */
12246 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12247 sub->output_has_begun = FALSE;
12248 for (o = abfd->sections; o != NULL; o = o->next)
12250 for (p = o->map_head.link_order; p != NULL; p = p->next)
12252 if (p->type == bfd_indirect_link_order
12253 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12254 == bfd_target_elf_flavour)
12255 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12257 if (! sub->output_has_begun)
12259 if (! elf_link_input_bfd (&flinfo, sub))
12261 sub->output_has_begun = TRUE;
12264 else if (p->type == bfd_section_reloc_link_order
12265 || p->type == bfd_symbol_reloc_link_order)
12267 if (! elf_reloc_link_order (abfd, info, o, p))
12272 if (! _bfd_default_link_order (abfd, info, o, p))
12274 if (p->type == bfd_indirect_link_order
12275 && (bfd_get_flavour (sub)
12276 == bfd_target_elf_flavour)
12277 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12278 != bed->s->elfclass))
12280 const char *iclass, *oclass;
12282 switch (bed->s->elfclass)
12284 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12285 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12286 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12290 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12292 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12293 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12294 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12298 bfd_set_error (bfd_error_wrong_format);
12300 /* xgettext:c-format */
12301 (_("%pB: file class %s incompatible with %s"),
12302 sub, iclass, oclass);
12311 /* Free symbol buffer if needed. */
12312 if (!info->reduce_memory_overheads)
12314 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12315 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12316 && elf_tdata (sub)->symbuf)
12318 free (elf_tdata (sub)->symbuf);
12319 elf_tdata (sub)->symbuf = NULL;
12323 /* Output any global symbols that got converted to local in a
12324 version script or due to symbol visibility. We do this in a
12325 separate step since ELF requires all local symbols to appear
12326 prior to any global symbols. FIXME: We should only do this if
12327 some global symbols were, in fact, converted to become local.
12328 FIXME: Will this work correctly with the Irix 5 linker? */
12329 eoinfo.failed = FALSE;
12330 eoinfo.flinfo = &flinfo;
12331 eoinfo.localsyms = TRUE;
12332 eoinfo.file_sym_done = FALSE;
12333 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12337 /* If backend needs to output some local symbols not present in the hash
12338 table, do it now. */
12339 if (bed->elf_backend_output_arch_local_syms
12340 && (info->strip != strip_all || emit_relocs))
12342 typedef int (*out_sym_func)
12343 (void *, const char *, Elf_Internal_Sym *, asection *,
12344 struct elf_link_hash_entry *);
12346 if (! ((*bed->elf_backend_output_arch_local_syms)
12347 (abfd, info, &flinfo,
12348 (out_sym_func) elf_link_output_symstrtab)))
12352 /* That wrote out all the local symbols. Finish up the symbol table
12353 with the global symbols. Even if we want to strip everything we
12354 can, we still need to deal with those global symbols that got
12355 converted to local in a version script. */
12357 /* The sh_info field records the index of the first non local symbol. */
12358 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12361 && htab->dynsym != NULL
12362 && htab->dynsym->output_section != bfd_abs_section_ptr)
12364 Elf_Internal_Sym sym;
12365 bfd_byte *dynsym = htab->dynsym->contents;
12367 o = htab->dynsym->output_section;
12368 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12370 /* Write out the section symbols for the output sections. */
12371 if (bfd_link_pic (info)
12372 || htab->is_relocatable_executable)
12378 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12380 sym.st_target_internal = 0;
12382 for (s = abfd->sections; s != NULL; s = s->next)
12388 dynindx = elf_section_data (s)->dynindx;
12391 indx = elf_section_data (s)->this_idx;
12392 BFD_ASSERT (indx > 0);
12393 sym.st_shndx = indx;
12394 if (! check_dynsym (abfd, &sym))
12396 sym.st_value = s->vma;
12397 dest = dynsym + dynindx * bed->s->sizeof_sym;
12398 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12402 /* Write out the local dynsyms. */
12403 if (htab->dynlocal)
12405 struct elf_link_local_dynamic_entry *e;
12406 for (e = htab->dynlocal; e ; e = e->next)
12411 /* Copy the internal symbol and turn off visibility.
12412 Note that we saved a word of storage and overwrote
12413 the original st_name with the dynstr_index. */
12415 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12417 s = bfd_section_from_elf_index (e->input_bfd,
12422 elf_section_data (s->output_section)->this_idx;
12423 if (! check_dynsym (abfd, &sym))
12425 sym.st_value = (s->output_section->vma
12427 + e->isym.st_value);
12430 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12431 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12436 /* We get the global symbols from the hash table. */
12437 eoinfo.failed = FALSE;
12438 eoinfo.localsyms = FALSE;
12439 eoinfo.flinfo = &flinfo;
12440 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12444 /* If backend needs to output some symbols not present in the hash
12445 table, do it now. */
12446 if (bed->elf_backend_output_arch_syms
12447 && (info->strip != strip_all || emit_relocs))
12449 typedef int (*out_sym_func)
12450 (void *, const char *, Elf_Internal_Sym *, asection *,
12451 struct elf_link_hash_entry *);
12453 if (! ((*bed->elf_backend_output_arch_syms)
12454 (abfd, info, &flinfo,
12455 (out_sym_func) elf_link_output_symstrtab)))
12459 /* Finalize the .strtab section. */
12460 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12462 /* Swap out the .strtab section. */
12463 if (!elf_link_swap_symbols_out (&flinfo))
12466 /* Now we know the size of the symtab section. */
12467 if (bfd_get_symcount (abfd) > 0)
12469 /* Finish up and write out the symbol string table (.strtab)
12471 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12472 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12474 if (elf_symtab_shndx_list (abfd))
12476 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12478 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12480 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12481 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12482 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12483 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12484 symtab_shndx_hdr->sh_size = amt;
12486 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12489 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12490 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12495 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12496 /* sh_name was set in prep_headers. */
12497 symstrtab_hdr->sh_type = SHT_STRTAB;
12498 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12499 symstrtab_hdr->sh_addr = 0;
12500 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12501 symstrtab_hdr->sh_entsize = 0;
12502 symstrtab_hdr->sh_link = 0;
12503 symstrtab_hdr->sh_info = 0;
12504 /* sh_offset is set just below. */
12505 symstrtab_hdr->sh_addralign = 1;
12507 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12509 elf_next_file_pos (abfd) = off;
12511 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12512 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12516 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12518 _bfd_error_handler (_("%pB: failed to generate import library"),
12519 info->out_implib_bfd);
12523 /* Adjust the relocs to have the correct symbol indices. */
12524 for (o = abfd->sections; o != NULL; o = o->next)
12526 struct bfd_elf_section_data *esdo = elf_section_data (o);
12529 if ((o->flags & SEC_RELOC) == 0)
12532 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12533 if (esdo->rel.hdr != NULL
12534 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12536 if (esdo->rela.hdr != NULL
12537 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12540 /* Set the reloc_count field to 0 to prevent write_relocs from
12541 trying to swap the relocs out itself. */
12542 o->reloc_count = 0;
12545 if (dynamic && info->combreloc && dynobj != NULL)
12546 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12548 /* If we are linking against a dynamic object, or generating a
12549 shared library, finish up the dynamic linking information. */
12552 bfd_byte *dyncon, *dynconend;
12554 /* Fix up .dynamic entries. */
12555 o = bfd_get_linker_section (dynobj, ".dynamic");
12556 BFD_ASSERT (o != NULL);
12558 dyncon = o->contents;
12559 dynconend = o->contents + o->size;
12560 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12562 Elf_Internal_Dyn dyn;
12565 bfd_size_type sh_size;
12568 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12575 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12577 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12579 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12580 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12583 dyn.d_un.d_val = relativecount;
12590 name = info->init_function;
12593 name = info->fini_function;
12596 struct elf_link_hash_entry *h;
12598 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12600 && (h->root.type == bfd_link_hash_defined
12601 || h->root.type == bfd_link_hash_defweak))
12603 dyn.d_un.d_ptr = h->root.u.def.value;
12604 o = h->root.u.def.section;
12605 if (o->output_section != NULL)
12606 dyn.d_un.d_ptr += (o->output_section->vma
12607 + o->output_offset);
12610 /* The symbol is imported from another shared
12611 library and does not apply to this one. */
12612 dyn.d_un.d_ptr = 0;
12619 case DT_PREINIT_ARRAYSZ:
12620 name = ".preinit_array";
12622 case DT_INIT_ARRAYSZ:
12623 name = ".init_array";
12625 case DT_FINI_ARRAYSZ:
12626 name = ".fini_array";
12628 o = bfd_get_section_by_name (abfd, name);
12632 (_("could not find section %s"), name);
12637 (_("warning: %s section has zero size"), name);
12638 dyn.d_un.d_val = o->size;
12641 case DT_PREINIT_ARRAY:
12642 name = ".preinit_array";
12644 case DT_INIT_ARRAY:
12645 name = ".init_array";
12647 case DT_FINI_ARRAY:
12648 name = ".fini_array";
12650 o = bfd_get_section_by_name (abfd, name);
12657 name = ".gnu.hash";
12666 name = ".gnu.version_d";
12669 name = ".gnu.version_r";
12672 name = ".gnu.version";
12674 o = bfd_get_linker_section (dynobj, name);
12676 if (o == NULL || bfd_is_abs_section (o->output_section))
12679 (_("could not find section %s"), name);
12682 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12685 (_("warning: section '%s' is being made into a note"), name);
12686 bfd_set_error (bfd_error_nonrepresentable_section);
12689 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12696 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12702 for (i = 1; i < elf_numsections (abfd); i++)
12704 Elf_Internal_Shdr *hdr;
12706 hdr = elf_elfsections (abfd)[i];
12707 if (hdr->sh_type == type
12708 && (hdr->sh_flags & SHF_ALLOC) != 0)
12710 sh_size += hdr->sh_size;
12712 || sh_addr > hdr->sh_addr)
12713 sh_addr = hdr->sh_addr;
12717 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12719 /* Don't count procedure linkage table relocs in the
12720 overall reloc count. */
12721 sh_size -= htab->srelplt->size;
12723 /* If the size is zero, make the address zero too.
12724 This is to avoid a glibc bug. If the backend
12725 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12726 zero, then we'll put DT_RELA at the end of
12727 DT_JMPREL. glibc will interpret the end of
12728 DT_RELA matching the end of DT_JMPREL as the
12729 case where DT_RELA includes DT_JMPREL, and for
12730 LD_BIND_NOW will decide that processing DT_RELA
12731 will process the PLT relocs too. Net result:
12732 No PLT relocs applied. */
12735 /* If .rela.plt is the first .rela section, exclude
12736 it from DT_RELA. */
12737 else if (sh_addr == (htab->srelplt->output_section->vma
12738 + htab->srelplt->output_offset))
12739 sh_addr += htab->srelplt->size;
12742 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12743 dyn.d_un.d_val = sh_size;
12745 dyn.d_un.d_ptr = sh_addr;
12748 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12752 /* If we have created any dynamic sections, then output them. */
12753 if (dynobj != NULL)
12755 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12758 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12759 if (((info->warn_shared_textrel && bfd_link_pic (info))
12760 || info->error_textrel)
12761 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12763 bfd_byte *dyncon, *dynconend;
12765 dyncon = o->contents;
12766 dynconend = o->contents + o->size;
12767 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12769 Elf_Internal_Dyn dyn;
12771 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12773 if (dyn.d_tag == DT_TEXTREL)
12775 if (info->error_textrel)
12776 info->callbacks->einfo
12777 (_("%P%X: read-only segment has dynamic relocations\n"));
12779 info->callbacks->einfo
12780 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12786 for (o = dynobj->sections; o != NULL; o = o->next)
12788 if ((o->flags & SEC_HAS_CONTENTS) == 0
12790 || o->output_section == bfd_abs_section_ptr)
12792 if ((o->flags & SEC_LINKER_CREATED) == 0)
12794 /* At this point, we are only interested in sections
12795 created by _bfd_elf_link_create_dynamic_sections. */
12798 if (htab->stab_info.stabstr == o)
12800 if (htab->eh_info.hdr_sec == o)
12802 if (strcmp (o->name, ".dynstr") != 0)
12804 if (! bfd_set_section_contents (abfd, o->output_section,
12806 (file_ptr) o->output_offset
12807 * bfd_octets_per_byte (abfd),
12813 /* The contents of the .dynstr section are actually in a
12817 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12818 if (bfd_seek (abfd, off, SEEK_SET) != 0
12819 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12825 if (!info->resolve_section_groups)
12827 bfd_boolean failed = FALSE;
12829 BFD_ASSERT (bfd_link_relocatable (info));
12830 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12835 /* If we have optimized stabs strings, output them. */
12836 if (htab->stab_info.stabstr != NULL)
12838 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12842 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12845 elf_final_link_free (abfd, &flinfo);
12849 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12850 if (contents == NULL)
12851 return FALSE; /* Bail out and fail. */
12852 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12853 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12860 elf_final_link_free (abfd, &flinfo);
12864 /* Initialize COOKIE for input bfd ABFD. */
12867 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12868 struct bfd_link_info *info, bfd *abfd)
12870 Elf_Internal_Shdr *symtab_hdr;
12871 const struct elf_backend_data *bed;
12873 bed = get_elf_backend_data (abfd);
12874 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12876 cookie->abfd = abfd;
12877 cookie->sym_hashes = elf_sym_hashes (abfd);
12878 cookie->bad_symtab = elf_bad_symtab (abfd);
12879 if (cookie->bad_symtab)
12881 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12882 cookie->extsymoff = 0;
12886 cookie->locsymcount = symtab_hdr->sh_info;
12887 cookie->extsymoff = symtab_hdr->sh_info;
12890 if (bed->s->arch_size == 32)
12891 cookie->r_sym_shift = 8;
12893 cookie->r_sym_shift = 32;
12895 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12896 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12898 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12899 cookie->locsymcount, 0,
12901 if (cookie->locsyms == NULL)
12903 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12906 if (info->keep_memory)
12907 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12912 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12915 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12917 Elf_Internal_Shdr *symtab_hdr;
12919 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12920 if (cookie->locsyms != NULL
12921 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12922 free (cookie->locsyms);
12925 /* Initialize the relocation information in COOKIE for input section SEC
12926 of input bfd ABFD. */
12929 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12930 struct bfd_link_info *info, bfd *abfd,
12933 if (sec->reloc_count == 0)
12935 cookie->rels = NULL;
12936 cookie->relend = NULL;
12940 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12941 info->keep_memory);
12942 if (cookie->rels == NULL)
12944 cookie->rel = cookie->rels;
12945 cookie->relend = cookie->rels + sec->reloc_count;
12947 cookie->rel = cookie->rels;
12951 /* Free the memory allocated by init_reloc_cookie_rels,
12955 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12958 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12959 free (cookie->rels);
12962 /* Initialize the whole of COOKIE for input section SEC. */
12965 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12966 struct bfd_link_info *info,
12969 if (!init_reloc_cookie (cookie, info, sec->owner))
12971 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12976 fini_reloc_cookie (cookie, sec->owner);
12981 /* Free the memory allocated by init_reloc_cookie_for_section,
12985 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12988 fini_reloc_cookie_rels (cookie, sec);
12989 fini_reloc_cookie (cookie, sec->owner);
12992 /* Garbage collect unused sections. */
12994 /* Default gc_mark_hook. */
12997 _bfd_elf_gc_mark_hook (asection *sec,
12998 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12999 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13000 struct elf_link_hash_entry *h,
13001 Elf_Internal_Sym *sym)
13005 switch (h->root.type)
13007 case bfd_link_hash_defined:
13008 case bfd_link_hash_defweak:
13009 return h->root.u.def.section;
13011 case bfd_link_hash_common:
13012 return h->root.u.c.p->section;
13019 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13024 /* Return the debug definition section. */
13027 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13028 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13029 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13030 struct elf_link_hash_entry *h,
13031 Elf_Internal_Sym *sym)
13035 /* Return the global debug definition section. */
13036 if ((h->root.type == bfd_link_hash_defined
13037 || h->root.type == bfd_link_hash_defweak)
13038 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13039 return h->root.u.def.section;
13043 /* Return the local debug definition section. */
13044 asection *isec = bfd_section_from_elf_index (sec->owner,
13046 if ((isec->flags & SEC_DEBUGGING) != 0)
13053 /* COOKIE->rel describes a relocation against section SEC, which is
13054 a section we've decided to keep. Return the section that contains
13055 the relocation symbol, or NULL if no section contains it. */
13058 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13059 elf_gc_mark_hook_fn gc_mark_hook,
13060 struct elf_reloc_cookie *cookie,
13061 bfd_boolean *start_stop)
13063 unsigned long r_symndx;
13064 struct elf_link_hash_entry *h;
13066 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13067 if (r_symndx == STN_UNDEF)
13070 if (r_symndx >= cookie->locsymcount
13071 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13073 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13076 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13080 while (h->root.type == bfd_link_hash_indirect
13081 || h->root.type == bfd_link_hash_warning)
13082 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13084 /* If this symbol is weak and there is a non-weak definition, we
13085 keep the non-weak definition because many backends put
13086 dynamic reloc info on the non-weak definition for code
13087 handling copy relocs. */
13088 if (h->is_weakalias)
13089 weakdef (h)->mark = 1;
13091 if (start_stop != NULL)
13093 /* To work around a glibc bug, mark XXX input sections
13094 when there is a reference to __start_XXX or __stop_XXX
13098 asection *s = h->u2.start_stop_section;
13099 *start_stop = !s->gc_mark;
13104 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13107 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13108 &cookie->locsyms[r_symndx]);
13111 /* COOKIE->rel describes a relocation against section SEC, which is
13112 a section we've decided to keep. Mark the section that contains
13113 the relocation symbol. */
13116 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13118 elf_gc_mark_hook_fn gc_mark_hook,
13119 struct elf_reloc_cookie *cookie)
13122 bfd_boolean start_stop = FALSE;
13124 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13125 while (rsec != NULL)
13127 if (!rsec->gc_mark)
13129 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13130 || (rsec->owner->flags & DYNAMIC) != 0)
13132 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13137 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13142 /* The mark phase of garbage collection. For a given section, mark
13143 it and any sections in this section's group, and all the sections
13144 which define symbols to which it refers. */
13147 _bfd_elf_gc_mark (struct bfd_link_info *info,
13149 elf_gc_mark_hook_fn gc_mark_hook)
13152 asection *group_sec, *eh_frame;
13156 /* Mark all the sections in the group. */
13157 group_sec = elf_section_data (sec)->next_in_group;
13158 if (group_sec && !group_sec->gc_mark)
13159 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13162 /* Look through the section relocs. */
13164 eh_frame = elf_eh_frame_section (sec->owner);
13165 if ((sec->flags & SEC_RELOC) != 0
13166 && sec->reloc_count > 0
13167 && sec != eh_frame)
13169 struct elf_reloc_cookie cookie;
13171 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13175 for (; cookie.rel < cookie.relend; cookie.rel++)
13176 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13181 fini_reloc_cookie_for_section (&cookie, sec);
13185 if (ret && eh_frame && elf_fde_list (sec))
13187 struct elf_reloc_cookie cookie;
13189 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13193 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13194 gc_mark_hook, &cookie))
13196 fini_reloc_cookie_for_section (&cookie, eh_frame);
13200 eh_frame = elf_section_eh_frame_entry (sec);
13201 if (ret && eh_frame && !eh_frame->gc_mark)
13202 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13208 /* Scan and mark sections in a special or debug section group. */
13211 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13213 /* Point to first section of section group. */
13215 /* Used to iterate the section group. */
13218 bfd_boolean is_special_grp = TRUE;
13219 bfd_boolean is_debug_grp = TRUE;
13221 /* First scan to see if group contains any section other than debug
13222 and special section. */
13223 ssec = msec = elf_next_in_group (grp);
13226 if ((msec->flags & SEC_DEBUGGING) == 0)
13227 is_debug_grp = FALSE;
13229 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13230 is_special_grp = FALSE;
13232 msec = elf_next_in_group (msec);
13234 while (msec != ssec);
13236 /* If this is a pure debug section group or pure special section group,
13237 keep all sections in this group. */
13238 if (is_debug_grp || is_special_grp)
13243 msec = elf_next_in_group (msec);
13245 while (msec != ssec);
13249 /* Keep debug and special sections. */
13252 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13253 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
13257 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13260 bfd_boolean some_kept;
13261 bfd_boolean debug_frag_seen;
13262 bfd_boolean has_kept_debug_info;
13264 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13266 isec = ibfd->sections;
13267 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13270 /* Ensure all linker created sections are kept,
13271 see if any other section is already marked,
13272 and note if we have any fragmented debug sections. */
13273 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13274 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13276 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13278 else if (isec->gc_mark
13279 && (isec->flags & SEC_ALLOC) != 0
13280 && elf_section_type (isec) != SHT_NOTE)
13283 if (!debug_frag_seen
13284 && (isec->flags & SEC_DEBUGGING)
13285 && CONST_STRNEQ (isec->name, ".debug_line."))
13286 debug_frag_seen = TRUE;
13289 /* If no non-note alloc section in this file will be kept, then
13290 we can toss out the debug and special sections. */
13294 /* Keep debug and special sections like .comment when they are
13295 not part of a group. Also keep section groups that contain
13296 just debug sections or special sections. */
13297 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13299 if ((isec->flags & SEC_GROUP) != 0)
13300 _bfd_elf_gc_mark_debug_special_section_group (isec);
13301 else if (((isec->flags & SEC_DEBUGGING) != 0
13302 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13303 && elf_next_in_group (isec) == NULL)
13305 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13306 has_kept_debug_info = TRUE;
13309 /* Look for CODE sections which are going to be discarded,
13310 and find and discard any fragmented debug sections which
13311 are associated with that code section. */
13312 if (debug_frag_seen)
13313 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13314 if ((isec->flags & SEC_CODE) != 0
13315 && isec->gc_mark == 0)
13320 ilen = strlen (isec->name);
13322 /* Association is determined by the name of the debug
13323 section containing the name of the code section as
13324 a suffix. For example .debug_line.text.foo is a
13325 debug section associated with .text.foo. */
13326 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13330 if (dsec->gc_mark == 0
13331 || (dsec->flags & SEC_DEBUGGING) == 0)
13334 dlen = strlen (dsec->name);
13337 && strncmp (dsec->name + (dlen - ilen),
13338 isec->name, ilen) == 0)
13343 /* Mark debug sections referenced by kept debug sections. */
13344 if (has_kept_debug_info)
13345 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13347 && (isec->flags & SEC_DEBUGGING) != 0)
13348 if (!_bfd_elf_gc_mark (info, isec,
13349 elf_gc_mark_debug_section))
13356 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13359 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13361 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13365 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13366 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13367 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13370 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13373 for (o = sub->sections; o != NULL; o = o->next)
13375 /* When any section in a section group is kept, we keep all
13376 sections in the section group. If the first member of
13377 the section group is excluded, we will also exclude the
13379 if (o->flags & SEC_GROUP)
13381 asection *first = elf_next_in_group (o);
13382 o->gc_mark = first->gc_mark;
13388 /* Skip sweeping sections already excluded. */
13389 if (o->flags & SEC_EXCLUDE)
13392 /* Since this is early in the link process, it is simple
13393 to remove a section from the output. */
13394 o->flags |= SEC_EXCLUDE;
13396 if (info->print_gc_sections && o->size != 0)
13397 /* xgettext:c-format */
13398 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13406 /* Propagate collected vtable information. This is called through
13407 elf_link_hash_traverse. */
13410 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13412 /* Those that are not vtables. */
13414 || h->u2.vtable == NULL
13415 || h->u2.vtable->parent == NULL)
13418 /* Those vtables that do not have parents, we cannot merge. */
13419 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13422 /* If we've already been done, exit. */
13423 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13426 /* Make sure the parent's table is up to date. */
13427 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13429 if (h->u2.vtable->used == NULL)
13431 /* None of this table's entries were referenced. Re-use the
13433 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13434 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13439 bfd_boolean *cu, *pu;
13441 /* Or the parent's entries into ours. */
13442 cu = h->u2.vtable->used;
13444 pu = h->u2.vtable->parent->u2.vtable->used;
13447 const struct elf_backend_data *bed;
13448 unsigned int log_file_align;
13450 bed = get_elf_backend_data (h->root.u.def.section->owner);
13451 log_file_align = bed->s->log_file_align;
13452 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13467 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13470 bfd_vma hstart, hend;
13471 Elf_Internal_Rela *relstart, *relend, *rel;
13472 const struct elf_backend_data *bed;
13473 unsigned int log_file_align;
13475 /* Take care of both those symbols that do not describe vtables as
13476 well as those that are not loaded. */
13478 || h->u2.vtable == NULL
13479 || h->u2.vtable->parent == NULL)
13482 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13483 || h->root.type == bfd_link_hash_defweak);
13485 sec = h->root.u.def.section;
13486 hstart = h->root.u.def.value;
13487 hend = hstart + h->size;
13489 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13491 return *(bfd_boolean *) okp = FALSE;
13492 bed = get_elf_backend_data (sec->owner);
13493 log_file_align = bed->s->log_file_align;
13495 relend = relstart + sec->reloc_count;
13497 for (rel = relstart; rel < relend; ++rel)
13498 if (rel->r_offset >= hstart && rel->r_offset < hend)
13500 /* If the entry is in use, do nothing. */
13501 if (h->u2.vtable->used
13502 && (rel->r_offset - hstart) < h->u2.vtable->size)
13504 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13505 if (h->u2.vtable->used[entry])
13508 /* Otherwise, kill it. */
13509 rel->r_offset = rel->r_info = rel->r_addend = 0;
13515 /* Mark sections containing dynamically referenced symbols. When
13516 building shared libraries, we must assume that any visible symbol is
13520 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13522 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13523 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13525 if ((h->root.type == bfd_link_hash_defined
13526 || h->root.type == bfd_link_hash_defweak)
13527 && ((h->ref_dynamic && !h->forced_local)
13528 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13529 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13530 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13531 && (!bfd_link_executable (info)
13532 || info->gc_keep_exported
13533 || info->export_dynamic
13536 && (*d->match) (&d->head, NULL, h->root.root.string)))
13537 && (h->versioned >= versioned
13538 || !bfd_hide_sym_by_version (info->version_info,
13539 h->root.root.string)))))
13540 h->root.u.def.section->flags |= SEC_KEEP;
13545 /* Keep all sections containing symbols undefined on the command-line,
13546 and the section containing the entry symbol. */
13549 _bfd_elf_gc_keep (struct bfd_link_info *info)
13551 struct bfd_sym_chain *sym;
13553 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13555 struct elf_link_hash_entry *h;
13557 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13558 FALSE, FALSE, FALSE);
13561 && (h->root.type == bfd_link_hash_defined
13562 || h->root.type == bfd_link_hash_defweak)
13563 && !bfd_is_abs_section (h->root.u.def.section)
13564 && !bfd_is_und_section (h->root.u.def.section))
13565 h->root.u.def.section->flags |= SEC_KEEP;
13570 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13571 struct bfd_link_info *info)
13573 bfd *ibfd = info->input_bfds;
13575 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13578 struct elf_reloc_cookie cookie;
13580 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13582 sec = ibfd->sections;
13583 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13586 if (!init_reloc_cookie (&cookie, info, ibfd))
13589 for (sec = ibfd->sections; sec; sec = sec->next)
13591 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13592 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13594 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13595 fini_reloc_cookie_rels (&cookie, sec);
13602 /* Do mark and sweep of unused sections. */
13605 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13607 bfd_boolean ok = TRUE;
13609 elf_gc_mark_hook_fn gc_mark_hook;
13610 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13611 struct elf_link_hash_table *htab;
13613 if (!bed->can_gc_sections
13614 || !is_elf_hash_table (info->hash))
13616 _bfd_error_handler(_("warning: gc-sections option ignored"));
13620 bed->gc_keep (info);
13621 htab = elf_hash_table (info);
13623 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13624 at the .eh_frame section if we can mark the FDEs individually. */
13625 for (sub = info->input_bfds;
13626 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13627 sub = sub->link.next)
13630 struct elf_reloc_cookie cookie;
13632 sec = sub->sections;
13633 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13635 sec = bfd_get_section_by_name (sub, ".eh_frame");
13636 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13638 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13639 if (elf_section_data (sec)->sec_info
13640 && (sec->flags & SEC_LINKER_CREATED) == 0)
13641 elf_eh_frame_section (sub) = sec;
13642 fini_reloc_cookie_for_section (&cookie, sec);
13643 sec = bfd_get_next_section_by_name (NULL, sec);
13647 /* Apply transitive closure to the vtable entry usage info. */
13648 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13652 /* Kill the vtable relocations that were not used. */
13653 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13657 /* Mark dynamically referenced symbols. */
13658 if (htab->dynamic_sections_created || info->gc_keep_exported)
13659 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13661 /* Grovel through relocs to find out who stays ... */
13662 gc_mark_hook = bed->gc_mark_hook;
13663 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13667 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13668 || elf_object_id (sub) != elf_hash_table_id (htab)
13669 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13673 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13676 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13677 Also treat note sections as a root, if the section is not part
13678 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13679 well as FINI_ARRAY sections for ld -r. */
13680 for (o = sub->sections; o != NULL; o = o->next)
13682 && (o->flags & SEC_EXCLUDE) == 0
13683 && ((o->flags & SEC_KEEP) != 0
13684 || (bfd_link_relocatable (info)
13685 && ((elf_section_data (o)->this_hdr.sh_type
13686 == SHT_PREINIT_ARRAY)
13687 || (elf_section_data (o)->this_hdr.sh_type
13689 || (elf_section_data (o)->this_hdr.sh_type
13690 == SHT_FINI_ARRAY)))
13691 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13692 && elf_next_in_group (o) == NULL )))
13694 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13699 /* Allow the backend to mark additional target specific sections. */
13700 bed->gc_mark_extra_sections (info, gc_mark_hook);
13702 /* ... and mark SEC_EXCLUDE for those that go. */
13703 return elf_gc_sweep (abfd, info);
13706 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13709 bfd_elf_gc_record_vtinherit (bfd *abfd,
13711 struct elf_link_hash_entry *h,
13714 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13715 struct elf_link_hash_entry **search, *child;
13716 size_t extsymcount;
13717 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13719 /* The sh_info field of the symtab header tells us where the
13720 external symbols start. We don't care about the local symbols at
13722 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13723 if (!elf_bad_symtab (abfd))
13724 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13726 sym_hashes = elf_sym_hashes (abfd);
13727 sym_hashes_end = sym_hashes + extsymcount;
13729 /* Hunt down the child symbol, which is in this section at the same
13730 offset as the relocation. */
13731 for (search = sym_hashes; search != sym_hashes_end; ++search)
13733 if ((child = *search) != NULL
13734 && (child->root.type == bfd_link_hash_defined
13735 || child->root.type == bfd_link_hash_defweak)
13736 && child->root.u.def.section == sec
13737 && child->root.u.def.value == offset)
13741 /* xgettext:c-format */
13742 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13743 abfd, sec, (uint64_t) offset);
13744 bfd_set_error (bfd_error_invalid_operation);
13748 if (!child->u2.vtable)
13750 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13751 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13752 if (!child->u2.vtable)
13757 /* This *should* only be the absolute section. It could potentially
13758 be that someone has defined a non-global vtable though, which
13759 would be bad. It isn't worth paging in the local symbols to be
13760 sure though; that case should simply be handled by the assembler. */
13762 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13765 child->u2.vtable->parent = h;
13770 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13773 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
13774 struct elf_link_hash_entry *h,
13777 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13778 unsigned int log_file_align = bed->s->log_file_align;
13782 /* xgettext:c-format */
13783 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
13785 bfd_set_error (bfd_error_bad_value);
13791 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13792 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13797 if (addend >= h->u2.vtable->size)
13799 size_t size, bytes, file_align;
13800 bfd_boolean *ptr = h->u2.vtable->used;
13802 /* While the symbol is undefined, we have to be prepared to handle
13804 file_align = 1 << log_file_align;
13805 if (h->root.type == bfd_link_hash_undefined)
13806 size = addend + file_align;
13810 if (addend >= size)
13812 /* Oops! We've got a reference past the defined end of
13813 the table. This is probably a bug -- shall we warn? */
13814 size = addend + file_align;
13817 size = (size + file_align - 1) & -file_align;
13819 /* Allocate one extra entry for use as a "done" flag for the
13820 consolidation pass. */
13821 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13825 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13831 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13832 * sizeof (bfd_boolean));
13833 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13837 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13842 /* And arrange for that done flag to be at index -1. */
13843 h->u2.vtable->used = ptr + 1;
13844 h->u2.vtable->size = size;
13847 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13852 /* Map an ELF section header flag to its corresponding string. */
13856 flagword flag_value;
13857 } elf_flags_to_name_table;
13859 static elf_flags_to_name_table elf_flags_to_names [] =
13861 { "SHF_WRITE", SHF_WRITE },
13862 { "SHF_ALLOC", SHF_ALLOC },
13863 { "SHF_EXECINSTR", SHF_EXECINSTR },
13864 { "SHF_MERGE", SHF_MERGE },
13865 { "SHF_STRINGS", SHF_STRINGS },
13866 { "SHF_INFO_LINK", SHF_INFO_LINK},
13867 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13868 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13869 { "SHF_GROUP", SHF_GROUP },
13870 { "SHF_TLS", SHF_TLS },
13871 { "SHF_MASKOS", SHF_MASKOS },
13872 { "SHF_EXCLUDE", SHF_EXCLUDE },
13875 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13877 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13878 struct flag_info *flaginfo,
13881 const bfd_vma sh_flags = elf_section_flags (section);
13883 if (!flaginfo->flags_initialized)
13885 bfd *obfd = info->output_bfd;
13886 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13887 struct flag_info_list *tf = flaginfo->flag_list;
13889 int without_hex = 0;
13891 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13894 flagword (*lookup) (char *);
13896 lookup = bed->elf_backend_lookup_section_flags_hook;
13897 if (lookup != NULL)
13899 flagword hexval = (*lookup) ((char *) tf->name);
13903 if (tf->with == with_flags)
13904 with_hex |= hexval;
13905 else if (tf->with == without_flags)
13906 without_hex |= hexval;
13911 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13913 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13915 if (tf->with == with_flags)
13916 with_hex |= elf_flags_to_names[i].flag_value;
13917 else if (tf->with == without_flags)
13918 without_hex |= elf_flags_to_names[i].flag_value;
13925 info->callbacks->einfo
13926 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13930 flaginfo->flags_initialized = TRUE;
13931 flaginfo->only_with_flags |= with_hex;
13932 flaginfo->not_with_flags |= without_hex;
13935 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13938 if ((flaginfo->not_with_flags & sh_flags) != 0)
13944 struct alloc_got_off_arg {
13946 struct bfd_link_info *info;
13949 /* We need a special top-level link routine to convert got reference counts
13950 to real got offsets. */
13953 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13955 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13956 bfd *obfd = gofarg->info->output_bfd;
13957 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13959 if (h->got.refcount > 0)
13961 h->got.offset = gofarg->gotoff;
13962 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13965 h->got.offset = (bfd_vma) -1;
13970 /* And an accompanying bit to work out final got entry offsets once
13971 we're done. Should be called from final_link. */
13974 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13975 struct bfd_link_info *info)
13978 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13980 struct alloc_got_off_arg gofarg;
13982 BFD_ASSERT (abfd == info->output_bfd);
13984 if (! is_elf_hash_table (info->hash))
13987 /* The GOT offset is relative to the .got section, but the GOT header is
13988 put into the .got.plt section, if the backend uses it. */
13989 if (bed->want_got_plt)
13992 gotoff = bed->got_header_size;
13994 /* Do the local .got entries first. */
13995 for (i = info->input_bfds; i; i = i->link.next)
13997 bfd_signed_vma *local_got;
13998 size_t j, locsymcount;
13999 Elf_Internal_Shdr *symtab_hdr;
14001 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14004 local_got = elf_local_got_refcounts (i);
14008 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14009 if (elf_bad_symtab (i))
14010 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14012 locsymcount = symtab_hdr->sh_info;
14014 for (j = 0; j < locsymcount; ++j)
14016 if (local_got[j] > 0)
14018 local_got[j] = gotoff;
14019 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14022 local_got[j] = (bfd_vma) -1;
14026 /* Then the global .got entries. .plt refcounts are handled by
14027 adjust_dynamic_symbol */
14028 gofarg.gotoff = gotoff;
14029 gofarg.info = info;
14030 elf_link_hash_traverse (elf_hash_table (info),
14031 elf_gc_allocate_got_offsets,
14036 /* Many folk need no more in the way of final link than this, once
14037 got entry reference counting is enabled. */
14040 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14042 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14045 /* Invoke the regular ELF backend linker to do all the work. */
14046 return bfd_elf_final_link (abfd, info);
14050 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14052 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14054 if (rcookie->bad_symtab)
14055 rcookie->rel = rcookie->rels;
14057 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14059 unsigned long r_symndx;
14061 if (! rcookie->bad_symtab)
14062 if (rcookie->rel->r_offset > offset)
14064 if (rcookie->rel->r_offset != offset)
14067 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14068 if (r_symndx == STN_UNDEF)
14071 if (r_symndx >= rcookie->locsymcount
14072 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14074 struct elf_link_hash_entry *h;
14076 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14078 while (h->root.type == bfd_link_hash_indirect
14079 || h->root.type == bfd_link_hash_warning)
14080 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14082 if ((h->root.type == bfd_link_hash_defined
14083 || h->root.type == bfd_link_hash_defweak)
14084 && (h->root.u.def.section->owner != rcookie->abfd
14085 || h->root.u.def.section->kept_section != NULL
14086 || discarded_section (h->root.u.def.section)))
14091 /* It's not a relocation against a global symbol,
14092 but it could be a relocation against a local
14093 symbol for a discarded section. */
14095 Elf_Internal_Sym *isym;
14097 /* Need to: get the symbol; get the section. */
14098 isym = &rcookie->locsyms[r_symndx];
14099 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14101 && (isec->kept_section != NULL
14102 || discarded_section (isec)))
14110 /* Discard unneeded references to discarded sections.
14111 Returns -1 on error, 1 if any section's size was changed, 0 if
14112 nothing changed. This function assumes that the relocations are in
14113 sorted order, which is true for all known assemblers. */
14116 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14118 struct elf_reloc_cookie cookie;
14123 if (info->traditional_format
14124 || !is_elf_hash_table (info->hash))
14127 o = bfd_get_section_by_name (output_bfd, ".stab");
14132 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14135 || i->reloc_count == 0
14136 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14140 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14143 if (!init_reloc_cookie_for_section (&cookie, info, i))
14146 if (_bfd_discard_section_stabs (abfd, i,
14147 elf_section_data (i)->sec_info,
14148 bfd_elf_reloc_symbol_deleted_p,
14152 fini_reloc_cookie_for_section (&cookie, i);
14157 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14158 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14162 int eh_changed = 0;
14163 unsigned int eh_alignment;
14165 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14171 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14174 if (!init_reloc_cookie_for_section (&cookie, info, i))
14177 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14178 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14179 bfd_elf_reloc_symbol_deleted_p,
14183 if (i->size != i->rawsize)
14187 fini_reloc_cookie_for_section (&cookie, i);
14190 eh_alignment = 1 << o->alignment_power;
14191 /* Skip over zero terminator, and prevent empty sections from
14192 adding alignment padding at the end. */
14193 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14195 i->flags |= SEC_EXCLUDE;
14196 else if (i->size > 4)
14198 /* The last non-empty eh_frame section doesn't need padding. */
14201 /* Any prior sections must pad the last FDE out to the output
14202 section alignment. Otherwise we might have zero padding
14203 between sections, which would be seen as a terminator. */
14204 for (; i != NULL; i = i->map_tail.s)
14206 /* All but the last zero terminator should have been removed. */
14211 = (i->size + eh_alignment - 1) & -eh_alignment;
14212 if (i->size != size)
14220 elf_link_hash_traverse (elf_hash_table (info),
14221 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14224 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14226 const struct elf_backend_data *bed;
14229 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14231 s = abfd->sections;
14232 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14235 bed = get_elf_backend_data (abfd);
14237 if (bed->elf_backend_discard_info != NULL)
14239 if (!init_reloc_cookie (&cookie, info, abfd))
14242 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14245 fini_reloc_cookie (&cookie, abfd);
14249 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14250 _bfd_elf_end_eh_frame_parsing (info);
14252 if (info->eh_frame_hdr_type
14253 && !bfd_link_relocatable (info)
14254 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14261 _bfd_elf_section_already_linked (bfd *abfd,
14263 struct bfd_link_info *info)
14266 const char *name, *key;
14267 struct bfd_section_already_linked *l;
14268 struct bfd_section_already_linked_hash_entry *already_linked_list;
14270 if (sec->output_section == bfd_abs_section_ptr)
14273 flags = sec->flags;
14275 /* Return if it isn't a linkonce section. A comdat group section
14276 also has SEC_LINK_ONCE set. */
14277 if ((flags & SEC_LINK_ONCE) == 0)
14280 /* Don't put group member sections on our list of already linked
14281 sections. They are handled as a group via their group section. */
14282 if (elf_sec_group (sec) != NULL)
14285 /* For a SHT_GROUP section, use the group signature as the key. */
14287 if ((flags & SEC_GROUP) != 0
14288 && elf_next_in_group (sec) != NULL
14289 && elf_group_name (elf_next_in_group (sec)) != NULL)
14290 key = elf_group_name (elf_next_in_group (sec));
14293 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14294 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14295 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14298 /* Must be a user linkonce section that doesn't follow gcc's
14299 naming convention. In this case we won't be matching
14300 single member groups. */
14304 already_linked_list = bfd_section_already_linked_table_lookup (key);
14306 for (l = already_linked_list->entry; l != NULL; l = l->next)
14308 /* We may have 2 different types of sections on the list: group
14309 sections with a signature of <key> (<key> is some string),
14310 and linkonce sections named .gnu.linkonce.<type>.<key>.
14311 Match like sections. LTO plugin sections are an exception.
14312 They are always named .gnu.linkonce.t.<key> and match either
14313 type of section. */
14314 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14315 && ((flags & SEC_GROUP) != 0
14316 || strcmp (name, l->sec->name) == 0))
14317 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14319 /* The section has already been linked. See if we should
14320 issue a warning. */
14321 if (!_bfd_handle_already_linked (sec, l, info))
14324 if (flags & SEC_GROUP)
14326 asection *first = elf_next_in_group (sec);
14327 asection *s = first;
14331 s->output_section = bfd_abs_section_ptr;
14332 /* Record which group discards it. */
14333 s->kept_section = l->sec;
14334 s = elf_next_in_group (s);
14335 /* These lists are circular. */
14345 /* A single member comdat group section may be discarded by a
14346 linkonce section and vice versa. */
14347 if ((flags & SEC_GROUP) != 0)
14349 asection *first = elf_next_in_group (sec);
14351 if (first != NULL && elf_next_in_group (first) == first)
14352 /* Check this single member group against linkonce sections. */
14353 for (l = already_linked_list->entry; l != NULL; l = l->next)
14354 if ((l->sec->flags & SEC_GROUP) == 0
14355 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14357 first->output_section = bfd_abs_section_ptr;
14358 first->kept_section = l->sec;
14359 sec->output_section = bfd_abs_section_ptr;
14364 /* Check this linkonce section against single member groups. */
14365 for (l = already_linked_list->entry; l != NULL; l = l->next)
14366 if (l->sec->flags & SEC_GROUP)
14368 asection *first = elf_next_in_group (l->sec);
14371 && elf_next_in_group (first) == first
14372 && bfd_elf_match_symbols_in_sections (first, sec, info))
14374 sec->output_section = bfd_abs_section_ptr;
14375 sec->kept_section = first;
14380 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14381 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14382 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14383 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14384 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14385 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14386 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14387 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14388 The reverse order cannot happen as there is never a bfd with only the
14389 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14390 matter as here were are looking only for cross-bfd sections. */
14392 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14393 for (l = already_linked_list->entry; l != NULL; l = l->next)
14394 if ((l->sec->flags & SEC_GROUP) == 0
14395 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14397 if (abfd != l->sec->owner)
14398 sec->output_section = bfd_abs_section_ptr;
14402 /* This is the first section with this name. Record it. */
14403 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14404 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14405 return sec->output_section == bfd_abs_section_ptr;
14409 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14411 return sym->st_shndx == SHN_COMMON;
14415 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14421 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14423 return bfd_com_section_ptr;
14427 _bfd_elf_default_got_elt_size (bfd *abfd,
14428 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14429 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14430 bfd *ibfd ATTRIBUTE_UNUSED,
14431 unsigned long symndx ATTRIBUTE_UNUSED)
14433 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14434 return bed->s->arch_size / 8;
14437 /* Routines to support the creation of dynamic relocs. */
14439 /* Returns the name of the dynamic reloc section associated with SEC. */
14441 static const char *
14442 get_dynamic_reloc_section_name (bfd * abfd,
14444 bfd_boolean is_rela)
14447 const char *old_name = bfd_get_section_name (NULL, sec);
14448 const char *prefix = is_rela ? ".rela" : ".rel";
14450 if (old_name == NULL)
14453 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14454 sprintf (name, "%s%s", prefix, old_name);
14459 /* Returns the dynamic reloc section associated with SEC.
14460 If necessary compute the name of the dynamic reloc section based
14461 on SEC's name (looked up in ABFD's string table) and the setting
14465 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14467 bfd_boolean is_rela)
14469 asection * reloc_sec = elf_section_data (sec)->sreloc;
14471 if (reloc_sec == NULL)
14473 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14477 reloc_sec = bfd_get_linker_section (abfd, name);
14479 if (reloc_sec != NULL)
14480 elf_section_data (sec)->sreloc = reloc_sec;
14487 /* Returns the dynamic reloc section associated with SEC. If the
14488 section does not exist it is created and attached to the DYNOBJ
14489 bfd and stored in the SRELOC field of SEC's elf_section_data
14492 ALIGNMENT is the alignment for the newly created section and
14493 IS_RELA defines whether the name should be .rela.<SEC's name>
14494 or .rel.<SEC's name>. The section name is looked up in the
14495 string table associated with ABFD. */
14498 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14500 unsigned int alignment,
14502 bfd_boolean is_rela)
14504 asection * reloc_sec = elf_section_data (sec)->sreloc;
14506 if (reloc_sec == NULL)
14508 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14513 reloc_sec = bfd_get_linker_section (dynobj, name);
14515 if (reloc_sec == NULL)
14517 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14518 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14519 if ((sec->flags & SEC_ALLOC) != 0)
14520 flags |= SEC_ALLOC | SEC_LOAD;
14522 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14523 if (reloc_sec != NULL)
14525 /* _bfd_elf_get_sec_type_attr chooses a section type by
14526 name. Override as it may be wrong, eg. for a user
14527 section named "auto" we'll get ".relauto" which is
14528 seen to be a .rela section. */
14529 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14530 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14535 elf_section_data (sec)->sreloc = reloc_sec;
14541 /* Copy the ELF symbol type and other attributes for a linker script
14542 assignment from HSRC to HDEST. Generally this should be treated as
14543 if we found a strong non-dynamic definition for HDEST (except that
14544 ld ignores multiple definition errors). */
14546 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14547 struct bfd_link_hash_entry *hdest,
14548 struct bfd_link_hash_entry *hsrc)
14550 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14551 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14552 Elf_Internal_Sym isym;
14554 ehdest->type = ehsrc->type;
14555 ehdest->target_internal = ehsrc->target_internal;
14557 isym.st_other = ehsrc->other;
14558 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14561 /* Append a RELA relocation REL to section S in BFD. */
14564 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14566 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14567 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14568 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14569 bed->s->swap_reloca_out (abfd, rel, loc);
14572 /* Append a REL relocation REL to section S in BFD. */
14575 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14577 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14578 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14579 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14580 bed->s->swap_reloc_out (abfd, rel, loc);
14583 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14585 struct bfd_link_hash_entry *
14586 bfd_elf_define_start_stop (struct bfd_link_info *info,
14587 const char *symbol, asection *sec)
14589 struct elf_link_hash_entry *h;
14591 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14592 FALSE, FALSE, TRUE);
14594 && (h->root.type == bfd_link_hash_undefined
14595 || h->root.type == bfd_link_hash_undefweak
14596 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14598 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14599 h->root.type = bfd_link_hash_defined;
14600 h->root.u.def.section = sec;
14601 h->root.u.def.value = 0;
14602 h->def_regular = 1;
14603 h->def_dynamic = 0;
14605 h->u2.start_stop_section = sec;
14606 if (symbol[0] == '.')
14608 /* .startof. and .sizeof. symbols are local. */
14609 const struct elf_backend_data *bed;
14610 bed = get_elf_backend_data (info->output_bfd);
14611 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14615 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14616 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14618 bfd_elf_link_record_dynamic_symbol (info, h);