1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
28 #include "elf/x86-64.h"
30 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
31 #define MINUS_ONE (~ (bfd_vma) 0)
33 /* The relocation "howto" table. Order of fields:
34 type, size, bitsize, pc_relative, complain_on_overflow,
35 special_function, name, partial_inplace, src_mask, dst_pack, pcrel_offset. */
36 static reloc_howto_type x86_64_elf_howto_table[] =
38 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
39 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
41 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
42 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
44 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
45 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
47 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
48 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
50 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
51 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
53 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
54 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
56 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
57 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
59 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
60 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
62 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
63 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
65 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
66 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
68 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
69 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
71 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
72 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
74 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
76 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
77 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
78 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
80 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
81 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
82 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
85 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
86 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
88 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
89 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
91 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
92 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
94 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
95 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
97 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
98 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
100 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
101 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
103 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
104 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
106 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
109 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
111 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
112 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
113 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
114 FALSE, 0xffffffff, 0xffffffff, TRUE),
116 /* We have a gap in the reloc numbers here.
117 R_X86_64_standard counts the number up to this point, and
118 R_X86_64_vt_offset is the value to subtract from a reloc type of
119 R_X86_64_GNU_VT* to form an index into this table. */
120 #define R_X86_64_standard (R_X86_64_GOTPC32 + 1)
121 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
123 /* GNU extension to record C++ vtable hierarchy. */
124 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
125 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
127 /* GNU extension to record C++ vtable member usage. */
128 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
129 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
133 /* Map BFD relocs to the x86_64 elf relocs. */
136 bfd_reloc_code_real_type bfd_reloc_val;
137 unsigned char elf_reloc_val;
140 static const struct elf_reloc_map x86_64_reloc_map[] =
142 { BFD_RELOC_NONE, R_X86_64_NONE, },
143 { BFD_RELOC_64, R_X86_64_64, },
144 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
145 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
146 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
147 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
148 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
149 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
150 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
151 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
152 { BFD_RELOC_32, R_X86_64_32, },
153 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
154 { BFD_RELOC_16, R_X86_64_16, },
155 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
156 { BFD_RELOC_8, R_X86_64_8, },
157 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
158 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
159 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
160 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
161 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
162 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
163 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
164 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
165 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
166 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
167 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
168 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
169 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
170 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
174 /* Given a BFD reloc type, return a HOWTO structure. */
175 static reloc_howto_type *
176 elf64_x86_64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
177 bfd_reloc_code_real_type code)
181 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
184 if (x86_64_reloc_map[i].bfd_reloc_val == code)
185 return &x86_64_elf_howto_table[i];
190 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
193 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
194 Elf_Internal_Rela *dst)
198 r_type = ELF64_R_TYPE (dst->r_info);
199 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
200 || r_type >= (unsigned int) R_X86_64_max)
202 if (r_type >= (unsigned int) R_X86_64_standard)
204 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
206 r_type = R_X86_64_NONE;
211 i = r_type - (unsigned int) R_X86_64_vt_offset;
212 cache_ptr->howto = &x86_64_elf_howto_table[i];
213 BFD_ASSERT (r_type == cache_ptr->howto->type);
216 /* Support for core dump NOTE sections. */
218 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
223 switch (note->descsz)
228 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
230 elf_tdata (abfd)->core_signal
231 = bfd_get_16 (abfd, note->descdata + 12);
234 elf_tdata (abfd)->core_pid
235 = bfd_get_32 (abfd, note->descdata + 32);
244 /* Make a ".reg/999" section. */
245 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
246 size, note->descpos + offset);
250 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
252 switch (note->descsz)
257 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
258 elf_tdata (abfd)->core_program
259 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
260 elf_tdata (abfd)->core_command
261 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
264 /* Note that for some reason, a spurious space is tacked
265 onto the end of the args in some (at least one anyway)
266 implementations, so strip it off if it exists. */
269 char *command = elf_tdata (abfd)->core_command;
270 int n = strlen (command);
272 if (0 < n && command[n - 1] == ' ')
273 command[n - 1] = '\0';
279 /* Functions for the x86-64 ELF linker. */
281 /* The name of the dynamic interpreter. This is put in the .interp
284 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
286 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
287 copying dynamic variables from a shared lib into an app's dynbss
288 section, and instead use a dynamic relocation to point into the
290 #define ELIMINATE_COPY_RELOCS 1
292 /* The size in bytes of an entry in the global offset table. */
294 #define GOT_ENTRY_SIZE 8
296 /* The size in bytes of an entry in the procedure linkage table. */
298 #define PLT_ENTRY_SIZE 16
300 /* The first entry in a procedure linkage table looks like this. See the
301 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
303 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
305 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
306 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
307 0x90, 0x90, 0x90, 0x90 /* pad out to 16 bytes with nops. */
310 /* Subsequent entries in a procedure linkage table look like this. */
312 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
314 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
315 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
316 0x68, /* pushq immediate */
317 0, 0, 0, 0, /* replaced with index into relocation table. */
318 0xe9, /* jmp relative */
319 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
322 /* The x86-64 linker needs to keep track of the number of relocs that
323 it decides to copy as dynamic relocs in check_relocs for each symbol.
324 This is so that it can later discard them if they are found to be
325 unnecessary. We store the information in a field extending the
326 regular ELF linker hash table. */
328 struct elf64_x86_64_dyn_relocs
331 struct elf64_x86_64_dyn_relocs *next;
333 /* The input section of the reloc. */
336 /* Total number of relocs copied for the input section. */
339 /* Number of pc-relative relocs copied for the input section. */
340 bfd_size_type pc_count;
343 /* x86-64 ELF linker hash entry. */
345 struct elf64_x86_64_link_hash_entry
347 struct elf_link_hash_entry elf;
349 /* Track dynamic relocs copied for this symbol. */
350 struct elf64_x86_64_dyn_relocs *dyn_relocs;
352 #define GOT_UNKNOWN 0
356 unsigned char tls_type;
359 #define elf64_x86_64_hash_entry(ent) \
360 ((struct elf64_x86_64_link_hash_entry *)(ent))
362 struct elf64_x86_64_obj_tdata
364 struct elf_obj_tdata root;
366 /* tls_type for each local got entry. */
367 char *local_got_tls_type;
370 #define elf64_x86_64_tdata(abfd) \
371 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
373 #define elf64_x86_64_local_got_tls_type(abfd) \
374 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
377 /* x86-64 ELF linker hash table. */
379 struct elf64_x86_64_link_hash_table
381 struct elf_link_hash_table elf;
383 /* Short-cuts to get to dynamic linker sections. */
393 bfd_signed_vma refcount;
397 /* Small local sym to section mapping cache. */
398 struct sym_sec_cache sym_sec;
401 /* Get the x86-64 ELF linker hash table from a link_info structure. */
403 #define elf64_x86_64_hash_table(p) \
404 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
406 /* Create an entry in an x86-64 ELF linker hash table. */
408 static struct bfd_hash_entry *
409 link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
412 /* Allocate the structure if it has not already been allocated by a
416 entry = bfd_hash_allocate (table,
417 sizeof (struct elf64_x86_64_link_hash_entry));
422 /* Call the allocation method of the superclass. */
423 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
426 struct elf64_x86_64_link_hash_entry *eh;
428 eh = (struct elf64_x86_64_link_hash_entry *) entry;
429 eh->dyn_relocs = NULL;
430 eh->tls_type = GOT_UNKNOWN;
436 /* Create an X86-64 ELF linker hash table. */
438 static struct bfd_link_hash_table *
439 elf64_x86_64_link_hash_table_create (bfd *abfd)
441 struct elf64_x86_64_link_hash_table *ret;
442 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
444 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
448 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
461 ret->sym_sec.abfd = NULL;
462 ret->tls_ld_got.refcount = 0;
464 return &ret->elf.root;
467 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
468 shortcuts to them in our hash table. */
471 create_got_section (bfd *dynobj, struct bfd_link_info *info)
473 struct elf64_x86_64_link_hash_table *htab;
475 if (! _bfd_elf_create_got_section (dynobj, info))
478 htab = elf64_x86_64_hash_table (info);
479 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
480 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
481 if (!htab->sgot || !htab->sgotplt)
484 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got",
485 (SEC_ALLOC | SEC_LOAD
490 if (htab->srelgot == NULL
491 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
496 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
497 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
501 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
503 struct elf64_x86_64_link_hash_table *htab;
505 htab = elf64_x86_64_hash_table (info);
506 if (!htab->sgot && !create_got_section (dynobj, info))
509 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
512 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
513 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
514 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
516 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
518 if (!htab->splt || !htab->srelplt || !htab->sdynbss
519 || (!info->shared && !htab->srelbss))
525 /* Copy the extra info we tack onto an elf_link_hash_entry. */
528 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
529 struct elf_link_hash_entry *dir,
530 struct elf_link_hash_entry *ind)
532 struct elf64_x86_64_link_hash_entry *edir, *eind;
534 edir = (struct elf64_x86_64_link_hash_entry *) dir;
535 eind = (struct elf64_x86_64_link_hash_entry *) ind;
537 if (eind->dyn_relocs != NULL)
539 if (edir->dyn_relocs != NULL)
541 struct elf64_x86_64_dyn_relocs **pp;
542 struct elf64_x86_64_dyn_relocs *p;
544 /* Add reloc counts against the indirect sym to the direct sym
545 list. Merge any entries against the same section. */
546 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
548 struct elf64_x86_64_dyn_relocs *q;
550 for (q = edir->dyn_relocs; q != NULL; q = q->next)
551 if (q->sec == p->sec)
553 q->pc_count += p->pc_count;
554 q->count += p->count;
561 *pp = edir->dyn_relocs;
564 edir->dyn_relocs = eind->dyn_relocs;
565 eind->dyn_relocs = NULL;
568 if (ind->root.type == bfd_link_hash_indirect
569 && dir->got.refcount <= 0)
571 edir->tls_type = eind->tls_type;
572 eind->tls_type = GOT_UNKNOWN;
575 if (ELIMINATE_COPY_RELOCS
576 && ind->root.type != bfd_link_hash_indirect
577 && dir->dynamic_adjusted)
579 /* If called to transfer flags for a weakdef during processing
580 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
581 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
582 dir->ref_dynamic |= ind->ref_dynamic;
583 dir->ref_regular |= ind->ref_regular;
584 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
585 dir->needs_plt |= ind->needs_plt;
586 dir->pointer_equality_needed |= ind->pointer_equality_needed;
589 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
593 elf64_x86_64_mkobject (bfd *abfd)
595 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
596 abfd->tdata.any = bfd_zalloc (abfd, amt);
597 if (abfd->tdata.any == NULL)
603 elf64_x86_64_elf_object_p (bfd *abfd)
605 /* Set the right machine number for an x86-64 elf64 file. */
606 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
611 elf64_x86_64_tls_transition (struct bfd_link_info *info, int r_type, int is_local)
619 case R_X86_64_GOTTPOFF:
621 return R_X86_64_TPOFF32;
622 return R_X86_64_GOTTPOFF;
624 return R_X86_64_TPOFF32;
630 /* Look through the relocs for a section during the first phase, and
631 calculate needed space in the global offset table, procedure
632 linkage table, and dynamic reloc sections. */
635 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec,
636 const Elf_Internal_Rela *relocs)
638 struct elf64_x86_64_link_hash_table *htab;
639 Elf_Internal_Shdr *symtab_hdr;
640 struct elf_link_hash_entry **sym_hashes;
641 const Elf_Internal_Rela *rel;
642 const Elf_Internal_Rela *rel_end;
645 if (info->relocatable)
648 htab = elf64_x86_64_hash_table (info);
649 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
650 sym_hashes = elf_sym_hashes (abfd);
654 rel_end = relocs + sec->reloc_count;
655 for (rel = relocs; rel < rel_end; rel++)
658 unsigned long r_symndx;
659 struct elf_link_hash_entry *h;
661 r_symndx = ELF64_R_SYM (rel->r_info);
662 r_type = ELF64_R_TYPE (rel->r_info);
664 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
666 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
671 if (r_symndx < symtab_hdr->sh_info)
675 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
676 while (h->root.type == bfd_link_hash_indirect
677 || h->root.type == bfd_link_hash_warning)
678 h = (struct elf_link_hash_entry *) h->root.u.i.link;
681 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
685 htab->tls_ld_got.refcount += 1;
688 case R_X86_64_TPOFF32:
691 (*_bfd_error_handler)
692 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
694 x86_64_elf_howto_table[r_type].name,
695 (h) ? h->root.root.string : "a local symbol");
696 bfd_set_error (bfd_error_bad_value);
701 case R_X86_64_GOTTPOFF:
703 info->flags |= DF_STATIC_TLS;
707 case R_X86_64_GOTPCREL:
709 /* This symbol requires a global offset table entry. */
711 int tls_type, old_tls_type;
715 default: tls_type = GOT_NORMAL; break;
716 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
717 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
722 h->got.refcount += 1;
723 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
727 bfd_signed_vma *local_got_refcounts;
729 /* This is a global offset table entry for a local symbol. */
730 local_got_refcounts = elf_local_got_refcounts (abfd);
731 if (local_got_refcounts == NULL)
735 size = symtab_hdr->sh_info;
736 size *= sizeof (bfd_signed_vma) + sizeof (char);
737 local_got_refcounts = ((bfd_signed_vma *)
738 bfd_zalloc (abfd, size));
739 if (local_got_refcounts == NULL)
741 elf_local_got_refcounts (abfd) = local_got_refcounts;
742 elf64_x86_64_local_got_tls_type (abfd)
743 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
745 local_got_refcounts[r_symndx] += 1;
747 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
750 /* If a TLS symbol is accessed using IE at least once,
751 there is no point to use dynamic model for it. */
752 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
753 && (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE))
755 if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD)
756 tls_type = old_tls_type;
759 (*_bfd_error_handler)
760 (_("%B: %s' accessed both as normal and thread local symbol"),
761 abfd, h ? h->root.root.string : "<local>");
766 if (old_tls_type != tls_type)
769 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
771 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
776 case R_X86_64_GOTOFF64:
777 case R_X86_64_GOTPC32:
779 if (htab->sgot == NULL)
781 if (htab->elf.dynobj == NULL)
782 htab->elf.dynobj = abfd;
783 if (!create_got_section (htab->elf.dynobj, info))
789 /* This symbol requires a procedure linkage table entry. We
790 actually build the entry in adjust_dynamic_symbol,
791 because this might be a case of linking PIC code which is
792 never referenced by a dynamic object, in which case we
793 don't need to generate a procedure linkage table entry
796 /* If this is a local symbol, we resolve it directly without
797 creating a procedure linkage table entry. */
802 h->plt.refcount += 1;
809 /* Let's help debug shared library creation. These relocs
810 cannot be used in shared libs. Don't error out for
811 sections we don't care about, such as debug sections or
812 non-constant sections. */
814 && (sec->flags & SEC_ALLOC) != 0
815 && (sec->flags & SEC_READONLY) != 0)
817 (*_bfd_error_handler)
818 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
820 x86_64_elf_howto_table[r_type].name,
821 (h) ? h->root.root.string : "a local symbol");
822 bfd_set_error (bfd_error_bad_value);
832 if (h != NULL && !info->shared)
834 /* If this reloc is in a read-only section, we might
835 need a copy reloc. We can't check reliably at this
836 stage whether the section is read-only, as input
837 sections have not yet been mapped to output sections.
838 Tentatively set the flag for now, and correct in
839 adjust_dynamic_symbol. */
842 /* We may need a .plt entry if the function this reloc
843 refers to is in a shared lib. */
844 h->plt.refcount += 1;
845 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
846 h->pointer_equality_needed = 1;
849 /* If we are creating a shared library, and this is a reloc
850 against a global symbol, or a non PC relative reloc
851 against a local symbol, then we need to copy the reloc
852 into the shared library. However, if we are linking with
853 -Bsymbolic, we do not need to copy a reloc against a
854 global symbol which is defined in an object we are
855 including in the link (i.e., DEF_REGULAR is set). At
856 this point we have not seen all the input files, so it is
857 possible that DEF_REGULAR is not set now but will be set
858 later (it is never cleared). In case of a weak definition,
859 DEF_REGULAR may be cleared later by a strong definition in
860 a shared library. We account for that possibility below by
861 storing information in the relocs_copied field of the hash
862 table entry. A similar situation occurs when creating
863 shared libraries and symbol visibility changes render the
866 If on the other hand, we are creating an executable, we
867 may need to keep relocations for symbols satisfied by a
868 dynamic library if we manage to avoid copy relocs for the
871 && (sec->flags & SEC_ALLOC) != 0
872 && (((r_type != R_X86_64_PC8)
873 && (r_type != R_X86_64_PC16)
874 && (r_type != R_X86_64_PC32)
875 && (r_type != R_X86_64_PC64))
878 || h->root.type == bfd_link_hash_defweak
879 || !h->def_regular))))
880 || (ELIMINATE_COPY_RELOCS
882 && (sec->flags & SEC_ALLOC) != 0
884 && (h->root.type == bfd_link_hash_defweak
885 || !h->def_regular)))
887 struct elf64_x86_64_dyn_relocs *p;
888 struct elf64_x86_64_dyn_relocs **head;
890 /* We must copy these reloc types into the output file.
891 Create a reloc section in dynobj and make room for
898 name = (bfd_elf_string_from_elf_section
900 elf_elfheader (abfd)->e_shstrndx,
901 elf_section_data (sec)->rel_hdr.sh_name));
905 if (strncmp (name, ".rela", 5) != 0
906 || strcmp (bfd_get_section_name (abfd, sec),
909 (*_bfd_error_handler)
910 (_("%B: bad relocation section name `%s\'"),
914 if (htab->elf.dynobj == NULL)
915 htab->elf.dynobj = abfd;
917 dynobj = htab->elf.dynobj;
919 sreloc = bfd_get_section_by_name (dynobj, name);
924 flags = (SEC_HAS_CONTENTS | SEC_READONLY
925 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
926 if ((sec->flags & SEC_ALLOC) != 0)
927 flags |= SEC_ALLOC | SEC_LOAD;
928 sreloc = bfd_make_section_with_flags (dynobj,
932 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
935 elf_section_data (sec)->sreloc = sreloc;
938 /* If this is a global symbol, we count the number of
939 relocations we need for this symbol. */
942 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
947 /* Track dynamic relocs needed for local syms too.
948 We really need local syms available to do this
952 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
957 /* Beware of type punned pointers vs strict aliasing
959 vpp = &(elf_section_data (s)->local_dynrel);
960 head = (struct elf64_x86_64_dyn_relocs **)vpp;
964 if (p == NULL || p->sec != sec)
966 bfd_size_type amt = sizeof *p;
967 p = ((struct elf64_x86_64_dyn_relocs *)
968 bfd_alloc (htab->elf.dynobj, amt));
979 if (r_type == R_X86_64_PC8
980 || r_type == R_X86_64_PC16
981 || r_type == R_X86_64_PC32
982 || r_type == R_X86_64_PC64)
987 /* This relocation describes the C++ object vtable hierarchy.
988 Reconstruct it for later use during GC. */
989 case R_X86_64_GNU_VTINHERIT:
990 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
994 /* This relocation describes which C++ vtable entries are actually
995 used. Record for later use during GC. */
996 case R_X86_64_GNU_VTENTRY:
997 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1009 /* Return the section that should be marked against GC for a given
1013 elf64_x86_64_gc_mark_hook (asection *sec,
1014 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1015 Elf_Internal_Rela *rel,
1016 struct elf_link_hash_entry *h,
1017 Elf_Internal_Sym *sym)
1021 switch (ELF64_R_TYPE (rel->r_info))
1023 case R_X86_64_GNU_VTINHERIT:
1024 case R_X86_64_GNU_VTENTRY:
1028 switch (h->root.type)
1030 case bfd_link_hash_defined:
1031 case bfd_link_hash_defweak:
1032 return h->root.u.def.section;
1034 case bfd_link_hash_common:
1035 return h->root.u.c.p->section;
1043 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1048 /* Update the got entry reference counts for the section being removed. */
1051 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1052 asection *sec, const Elf_Internal_Rela *relocs)
1054 Elf_Internal_Shdr *symtab_hdr;
1055 struct elf_link_hash_entry **sym_hashes;
1056 bfd_signed_vma *local_got_refcounts;
1057 const Elf_Internal_Rela *rel, *relend;
1059 elf_section_data (sec)->local_dynrel = NULL;
1061 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1062 sym_hashes = elf_sym_hashes (abfd);
1063 local_got_refcounts = elf_local_got_refcounts (abfd);
1065 relend = relocs + sec->reloc_count;
1066 for (rel = relocs; rel < relend; rel++)
1068 unsigned long r_symndx;
1069 unsigned int r_type;
1070 struct elf_link_hash_entry *h = NULL;
1072 r_symndx = ELF64_R_SYM (rel->r_info);
1073 if (r_symndx >= symtab_hdr->sh_info)
1075 struct elf64_x86_64_link_hash_entry *eh;
1076 struct elf64_x86_64_dyn_relocs **pp;
1077 struct elf64_x86_64_dyn_relocs *p;
1079 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1080 while (h->root.type == bfd_link_hash_indirect
1081 || h->root.type == bfd_link_hash_warning)
1082 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1083 eh = (struct elf64_x86_64_link_hash_entry *) h;
1085 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1088 /* Everything must go for SEC. */
1094 r_type = ELF64_R_TYPE (rel->r_info);
1095 r_type = elf64_x86_64_tls_transition (info, r_type, h != NULL);
1098 case R_X86_64_TLSLD:
1099 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1100 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1103 case R_X86_64_TLSGD:
1104 case R_X86_64_GOTTPOFF:
1105 case R_X86_64_GOT32:
1106 case R_X86_64_GOTPCREL:
1109 if (h->got.refcount > 0)
1110 h->got.refcount -= 1;
1112 else if (local_got_refcounts != NULL)
1114 if (local_got_refcounts[r_symndx] > 0)
1115 local_got_refcounts[r_symndx] -= 1;
1132 case R_X86_64_PLT32:
1135 if (h->plt.refcount > 0)
1136 h->plt.refcount -= 1;
1148 /* Adjust a symbol defined by a dynamic object and referenced by a
1149 regular object. The current definition is in some section of the
1150 dynamic object, but we're not including those sections. We have to
1151 change the definition to something the rest of the link can
1155 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1156 struct elf_link_hash_entry *h)
1158 struct elf64_x86_64_link_hash_table *htab;
1160 unsigned int power_of_two;
1162 /* If this is a function, put it in the procedure linkage table. We
1163 will fill in the contents of the procedure linkage table later,
1164 when we know the address of the .got section. */
1165 if (h->type == STT_FUNC
1168 if (h->plt.refcount <= 0
1169 || SYMBOL_CALLS_LOCAL (info, h)
1170 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1171 && h->root.type == bfd_link_hash_undefweak))
1173 /* This case can occur if we saw a PLT32 reloc in an input
1174 file, but the symbol was never referred to by a dynamic
1175 object, or if all references were garbage collected. In
1176 such a case, we don't actually need to build a procedure
1177 linkage table, and we can just do a PC32 reloc instead. */
1178 h->plt.offset = (bfd_vma) -1;
1185 /* It's possible that we incorrectly decided a .plt reloc was
1186 needed for an R_X86_64_PC32 reloc to a non-function sym in
1187 check_relocs. We can't decide accurately between function and
1188 non-function syms in check-relocs; Objects loaded later in
1189 the link may change h->type. So fix it now. */
1190 h->plt.offset = (bfd_vma) -1;
1192 /* If this is a weak symbol, and there is a real definition, the
1193 processor independent code will have arranged for us to see the
1194 real definition first, and we can just use the same value. */
1195 if (h->u.weakdef != NULL)
1197 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1198 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1199 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1200 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1201 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1202 h->non_got_ref = h->u.weakdef->non_got_ref;
1206 /* This is a reference to a symbol defined by a dynamic object which
1207 is not a function. */
1209 /* If we are creating a shared library, we must presume that the
1210 only references to the symbol are via the global offset table.
1211 For such cases we need not do anything here; the relocations will
1212 be handled correctly by relocate_section. */
1216 /* If there are no references to this symbol that do not use the
1217 GOT, we don't need to generate a copy reloc. */
1218 if (!h->non_got_ref)
1221 /* If -z nocopyreloc was given, we won't generate them either. */
1222 if (info->nocopyreloc)
1228 if (ELIMINATE_COPY_RELOCS)
1230 struct elf64_x86_64_link_hash_entry * eh;
1231 struct elf64_x86_64_dyn_relocs *p;
1233 eh = (struct elf64_x86_64_link_hash_entry *) h;
1234 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1236 s = p->sec->output_section;
1237 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1241 /* If we didn't find any dynamic relocs in read-only sections, then
1242 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1252 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1253 h->root.root.string);
1257 /* We must allocate the symbol in our .dynbss section, which will
1258 become part of the .bss section of the executable. There will be
1259 an entry for this symbol in the .dynsym section. The dynamic
1260 object will contain position independent code, so all references
1261 from the dynamic object to this symbol will go through the global
1262 offset table. The dynamic linker will use the .dynsym entry to
1263 determine the address it must put in the global offset table, so
1264 both the dynamic object and the regular object will refer to the
1265 same memory location for the variable. */
1267 htab = elf64_x86_64_hash_table (info);
1269 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1270 to copy the initial value out of the dynamic object and into the
1271 runtime process image. */
1272 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1274 htab->srelbss->size += sizeof (Elf64_External_Rela);
1278 /* We need to figure out the alignment required for this symbol. I
1279 have no idea how ELF linkers handle this. 16-bytes is the size
1280 of the largest type that requires hard alignment -- long double. */
1281 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
1283 power_of_two = bfd_log2 (h->size);
1284 if (power_of_two > 4)
1287 /* Apply the required alignment. */
1289 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1290 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1292 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1296 /* Define the symbol as being at this point in the section. */
1297 h->root.u.def.section = s;
1298 h->root.u.def.value = s->size;
1300 /* Increment the section size to make room for the symbol. */
1306 /* Allocate space in .plt, .got and associated reloc sections for
1310 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1312 struct bfd_link_info *info;
1313 struct elf64_x86_64_link_hash_table *htab;
1314 struct elf64_x86_64_link_hash_entry *eh;
1315 struct elf64_x86_64_dyn_relocs *p;
1317 if (h->root.type == bfd_link_hash_indirect)
1320 if (h->root.type == bfd_link_hash_warning)
1321 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1323 info = (struct bfd_link_info *) inf;
1324 htab = elf64_x86_64_hash_table (info);
1326 if (htab->elf.dynamic_sections_created
1327 && h->plt.refcount > 0)
1329 /* Make sure this symbol is output as a dynamic symbol.
1330 Undefined weak syms won't yet be marked as dynamic. */
1331 if (h->dynindx == -1
1332 && !h->forced_local)
1334 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1339 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1341 asection *s = htab->splt;
1343 /* If this is the first .plt entry, make room for the special
1346 s->size += PLT_ENTRY_SIZE;
1348 h->plt.offset = s->size;
1350 /* If this symbol is not defined in a regular file, and we are
1351 not generating a shared library, then set the symbol to this
1352 location in the .plt. This is required to make function
1353 pointers compare as equal between the normal executable and
1354 the shared library. */
1358 h->root.u.def.section = s;
1359 h->root.u.def.value = h->plt.offset;
1362 /* Make room for this entry. */
1363 s->size += PLT_ENTRY_SIZE;
1365 /* We also need to make an entry in the .got.plt section, which
1366 will be placed in the .got section by the linker script. */
1367 htab->sgotplt->size += GOT_ENTRY_SIZE;
1369 /* We also need to make an entry in the .rela.plt section. */
1370 htab->srelplt->size += sizeof (Elf64_External_Rela);
1374 h->plt.offset = (bfd_vma) -1;
1380 h->plt.offset = (bfd_vma) -1;
1384 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1385 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1386 if (h->got.refcount > 0
1389 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1390 h->got.offset = (bfd_vma) -1;
1391 else if (h->got.refcount > 0)
1395 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1397 /* Make sure this symbol is output as a dynamic symbol.
1398 Undefined weak syms won't yet be marked as dynamic. */
1399 if (h->dynindx == -1
1400 && !h->forced_local)
1402 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1407 h->got.offset = s->size;
1408 s->size += GOT_ENTRY_SIZE;
1409 /* R_X86_64_TLSGD needs 2 consecutive GOT slots. */
1410 if (tls_type == GOT_TLS_GD)
1411 s->size += GOT_ENTRY_SIZE;
1412 dyn = htab->elf.dynamic_sections_created;
1413 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1415 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1416 if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
1417 || tls_type == GOT_TLS_IE)
1418 htab->srelgot->size += sizeof (Elf64_External_Rela);
1419 else if (tls_type == GOT_TLS_GD)
1420 htab->srelgot->size += 2 * sizeof (Elf64_External_Rela);
1421 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1422 || h->root.type != bfd_link_hash_undefweak)
1424 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1425 htab->srelgot->size += sizeof (Elf64_External_Rela);
1428 h->got.offset = (bfd_vma) -1;
1430 eh = (struct elf64_x86_64_link_hash_entry *) h;
1431 if (eh->dyn_relocs == NULL)
1434 /* In the shared -Bsymbolic case, discard space allocated for
1435 dynamic pc-relative relocs against symbols which turn out to be
1436 defined in regular objects. For the normal shared case, discard
1437 space for pc-relative relocs that have become local due to symbol
1438 visibility changes. */
1442 /* Relocs that use pc_count are those that appear on a call
1443 insn, or certain REL relocs that can generated via assembly.
1444 We want calls to protected symbols to resolve directly to the
1445 function rather than going via the plt. If people want
1446 function pointer comparisons to work as expected then they
1447 should avoid writing weird assembly. */
1448 if (SYMBOL_CALLS_LOCAL (info, h))
1450 struct elf64_x86_64_dyn_relocs **pp;
1452 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1454 p->count -= p->pc_count;
1463 /* Also discard relocs on undefined weak syms with non-default
1465 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1466 && h->root.type == bfd_link_hash_undefweak)
1467 eh->dyn_relocs = NULL;
1469 else if (ELIMINATE_COPY_RELOCS)
1471 /* For the non-shared case, discard space for relocs against
1472 symbols which turn out to need copy relocs or are not
1478 || (htab->elf.dynamic_sections_created
1479 && (h->root.type == bfd_link_hash_undefweak
1480 || h->root.type == bfd_link_hash_undefined))))
1482 /* Make sure this symbol is output as a dynamic symbol.
1483 Undefined weak syms won't yet be marked as dynamic. */
1484 if (h->dynindx == -1
1485 && !h->forced_local)
1487 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1491 /* If that succeeded, we know we'll be keeping all the
1493 if (h->dynindx != -1)
1497 eh->dyn_relocs = NULL;
1502 /* Finally, allocate space. */
1503 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1505 asection *sreloc = elf_section_data (p->sec)->sreloc;
1506 sreloc->size += p->count * sizeof (Elf64_External_Rela);
1512 /* Find any dynamic relocs that apply to read-only sections. */
1515 readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1517 struct elf64_x86_64_link_hash_entry *eh;
1518 struct elf64_x86_64_dyn_relocs *p;
1520 if (h->root.type == bfd_link_hash_warning)
1521 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1523 eh = (struct elf64_x86_64_link_hash_entry *) h;
1524 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1526 asection *s = p->sec->output_section;
1528 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1530 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1532 info->flags |= DF_TEXTREL;
1534 /* Not an error, just cut short the traversal. */
1541 /* Set the sizes of the dynamic sections. */
1544 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1545 struct bfd_link_info *info)
1547 struct elf64_x86_64_link_hash_table *htab;
1553 htab = elf64_x86_64_hash_table (info);
1554 dynobj = htab->elf.dynobj;
1558 if (htab->elf.dynamic_sections_created)
1560 /* Set the contents of the .interp section to the interpreter. */
1561 if (info->executable)
1563 s = bfd_get_section_by_name (dynobj, ".interp");
1566 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1567 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1571 /* Set up .got offsets for local syms, and space for local dynamic
1573 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1575 bfd_signed_vma *local_got;
1576 bfd_signed_vma *end_local_got;
1577 char *local_tls_type;
1578 bfd_size_type locsymcount;
1579 Elf_Internal_Shdr *symtab_hdr;
1582 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1585 for (s = ibfd->sections; s != NULL; s = s->next)
1587 struct elf64_x86_64_dyn_relocs *p;
1589 for (p = (struct elf64_x86_64_dyn_relocs *)
1590 (elf_section_data (s)->local_dynrel);
1594 if (!bfd_is_abs_section (p->sec)
1595 && bfd_is_abs_section (p->sec->output_section))
1597 /* Input section has been discarded, either because
1598 it is a copy of a linkonce section or due to
1599 linker script /DISCARD/, so we'll be discarding
1602 else if (p->count != 0)
1604 srel = elf_section_data (p->sec)->sreloc;
1605 srel->size += p->count * sizeof (Elf64_External_Rela);
1606 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1607 info->flags |= DF_TEXTREL;
1613 local_got = elf_local_got_refcounts (ibfd);
1617 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1618 locsymcount = symtab_hdr->sh_info;
1619 end_local_got = local_got + locsymcount;
1620 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
1622 srel = htab->srelgot;
1623 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1627 *local_got = s->size;
1628 s->size += GOT_ENTRY_SIZE;
1629 if (*local_tls_type == GOT_TLS_GD)
1630 s->size += GOT_ENTRY_SIZE;
1632 || *local_tls_type == GOT_TLS_GD
1633 || *local_tls_type == GOT_TLS_IE)
1634 srel->size += sizeof (Elf64_External_Rela);
1637 *local_got = (bfd_vma) -1;
1641 if (htab->tls_ld_got.refcount > 0)
1643 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
1645 htab->tls_ld_got.offset = htab->sgot->size;
1646 htab->sgot->size += 2 * GOT_ENTRY_SIZE;
1647 htab->srelgot->size += sizeof (Elf64_External_Rela);
1650 htab->tls_ld_got.offset = -1;
1652 /* Allocate global sym .plt and .got entries, and space for global
1653 sym dynamic relocs. */
1654 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1656 /* We now have determined the sizes of the various dynamic sections.
1657 Allocate memory for them. */
1659 for (s = dynobj->sections; s != NULL; s = s->next)
1661 if ((s->flags & SEC_LINKER_CREATED) == 0)
1666 || s == htab->sgotplt
1667 || s == htab->sdynbss)
1669 /* Strip this section if we don't need it; see the
1672 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
1674 if (s->size != 0 && s != htab->srelplt)
1677 /* We use the reloc_count field as a counter if we need
1678 to copy relocs into the output file. */
1683 /* It's not one of our sections, so don't allocate space. */
1689 /* If we don't need this section, strip it from the
1690 output file. This is mostly to handle .rela.bss and
1691 .rela.plt. We must create both sections in
1692 create_dynamic_sections, because they must be created
1693 before the linker maps input sections to output
1694 sections. The linker does that before
1695 adjust_dynamic_symbol is called, and it is that
1696 function which decides whether anything needs to go
1697 into these sections. */
1699 s->flags |= SEC_EXCLUDE;
1703 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1706 /* Allocate memory for the section contents. We use bfd_zalloc
1707 here in case unused entries are not reclaimed before the
1708 section's contents are written out. This should not happen,
1709 but this way if it does, we get a R_X86_64_NONE reloc instead
1711 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1712 if (s->contents == NULL)
1716 if (htab->elf.dynamic_sections_created)
1718 /* Add some entries to the .dynamic section. We fill in the
1719 values later, in elf64_x86_64_finish_dynamic_sections, but we
1720 must add the entries now so that we get the correct size for
1721 the .dynamic section. The DT_DEBUG entry is filled in by the
1722 dynamic linker and used by the debugger. */
1723 #define add_dynamic_entry(TAG, VAL) \
1724 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1726 if (info->executable)
1728 if (!add_dynamic_entry (DT_DEBUG, 0))
1732 if (htab->splt->size != 0)
1734 if (!add_dynamic_entry (DT_PLTGOT, 0)
1735 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1736 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1737 || !add_dynamic_entry (DT_JMPREL, 0))
1743 if (!add_dynamic_entry (DT_RELA, 0)
1744 || !add_dynamic_entry (DT_RELASZ, 0)
1745 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1748 /* If any dynamic relocs apply to a read-only section,
1749 then we need a DT_TEXTREL entry. */
1750 if ((info->flags & DF_TEXTREL) == 0)
1751 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1754 if ((info->flags & DF_TEXTREL) != 0)
1756 if (!add_dynamic_entry (DT_TEXTREL, 0))
1761 #undef add_dynamic_entry
1766 /* Return the base VMA address which should be subtracted from real addresses
1767 when resolving @dtpoff relocation.
1768 This is PT_TLS segment p_vaddr. */
1771 dtpoff_base (struct bfd_link_info *info)
1773 /* If tls_sec is NULL, we should have signalled an error already. */
1774 if (elf_hash_table (info)->tls_sec == NULL)
1776 return elf_hash_table (info)->tls_sec->vma;
1779 /* Return the relocation value for @tpoff relocation
1780 if STT_TLS virtual address is ADDRESS. */
1783 tpoff (struct bfd_link_info *info, bfd_vma address)
1785 struct elf_link_hash_table *htab = elf_hash_table (info);
1787 /* If tls_segment is NULL, we should have signalled an error already. */
1788 if (htab->tls_sec == NULL)
1790 return address - htab->tls_size - htab->tls_sec->vma;
1793 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
1797 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
1799 /* Opcode Instruction
1802 0x0f 0x8x conditional jump */
1804 && (contents [offset - 1] == 0xe8
1805 || contents [offset - 1] == 0xe9))
1807 && contents [offset - 2] == 0x0f
1808 && (contents [offset - 1] & 0xf0) == 0x80));
1811 /* Relocate an x86_64 ELF section. */
1814 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
1815 bfd *input_bfd, asection *input_section,
1816 bfd_byte *contents, Elf_Internal_Rela *relocs,
1817 Elf_Internal_Sym *local_syms,
1818 asection **local_sections)
1820 struct elf64_x86_64_link_hash_table *htab;
1821 Elf_Internal_Shdr *symtab_hdr;
1822 struct elf_link_hash_entry **sym_hashes;
1823 bfd_vma *local_got_offsets;
1824 Elf_Internal_Rela *rel;
1825 Elf_Internal_Rela *relend;
1827 if (info->relocatable)
1830 htab = elf64_x86_64_hash_table (info);
1831 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1832 sym_hashes = elf_sym_hashes (input_bfd);
1833 local_got_offsets = elf_local_got_offsets (input_bfd);
1836 relend = relocs + input_section->reloc_count;
1837 for (; rel < relend; rel++)
1839 unsigned int r_type;
1840 reloc_howto_type *howto;
1841 unsigned long r_symndx;
1842 struct elf_link_hash_entry *h;
1843 Elf_Internal_Sym *sym;
1847 bfd_boolean unresolved_reloc;
1848 bfd_reloc_status_type r;
1851 r_type = ELF64_R_TYPE (rel->r_info);
1852 if (r_type == (int) R_X86_64_GNU_VTINHERIT
1853 || r_type == (int) R_X86_64_GNU_VTENTRY)
1856 if (r_type >= R_X86_64_max)
1858 bfd_set_error (bfd_error_bad_value);
1862 howto = x86_64_elf_howto_table + r_type;
1863 r_symndx = ELF64_R_SYM (rel->r_info);
1867 unresolved_reloc = FALSE;
1868 if (r_symndx < symtab_hdr->sh_info)
1870 sym = local_syms + r_symndx;
1871 sec = local_sections[r_symndx];
1873 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1879 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1880 r_symndx, symtab_hdr, sym_hashes,
1882 unresolved_reloc, warned);
1884 /* When generating a shared object, the relocations handled here are
1885 copied into the output file to be resolved at run time. */
1888 case R_X86_64_GOT32:
1889 /* Relocation is to the entry for this symbol in the global
1891 case R_X86_64_GOTPCREL:
1892 /* Use global offset table as symbol value. */
1893 if (htab->sgot == NULL)
1900 off = h->got.offset;
1901 dyn = htab->elf.dynamic_sections_created;
1903 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1905 && SYMBOL_REFERENCES_LOCAL (info, h))
1906 || (ELF_ST_VISIBILITY (h->other)
1907 && h->root.type == bfd_link_hash_undefweak))
1909 /* This is actually a static link, or it is a -Bsymbolic
1910 link and the symbol is defined locally, or the symbol
1911 was forced to be local because of a version file. We
1912 must initialize this entry in the global offset table.
1913 Since the offset must always be a multiple of 8, we
1914 use the least significant bit to record whether we
1915 have initialized it already.
1917 When doing a dynamic link, we create a .rela.got
1918 relocation entry to initialize the value. This is
1919 done in the finish_dynamic_symbol routine. */
1924 bfd_put_64 (output_bfd, relocation,
1925 htab->sgot->contents + off);
1930 unresolved_reloc = FALSE;
1934 if (local_got_offsets == NULL)
1937 off = local_got_offsets[r_symndx];
1939 /* The offset must always be a multiple of 8. We use
1940 the least significant bit to record whether we have
1941 already generated the necessary reloc. */
1946 bfd_put_64 (output_bfd, relocation,
1947 htab->sgot->contents + off);
1952 Elf_Internal_Rela outrel;
1955 /* We need to generate a R_X86_64_RELATIVE reloc
1956 for the dynamic linker. */
1961 outrel.r_offset = (htab->sgot->output_section->vma
1962 + htab->sgot->output_offset
1964 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1965 outrel.r_addend = relocation;
1967 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
1968 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
1971 local_got_offsets[r_symndx] |= 1;
1975 if (off >= (bfd_vma) -2)
1978 relocation = htab->sgot->output_section->vma
1979 + htab->sgot->output_offset + off;
1980 if (r_type != R_X86_64_GOTPCREL)
1981 relocation -= htab->sgotplt->output_section->vma
1982 - htab->sgotplt->output_offset;
1986 case R_X86_64_GOTOFF64:
1987 /* Relocation is relative to the start of the global offset
1990 /* Check to make sure it isn't a protected function symbol
1991 for shared library since it may not be local when used
1992 as function address. */
1996 && h->type == STT_FUNC
1997 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1999 (*_bfd_error_handler)
2000 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2001 input_bfd, h->root.root.string);
2002 bfd_set_error (bfd_error_bad_value);
2006 /* Note that sgot is not involved in this
2007 calculation. We always want the start of .got.plt. If we
2008 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2009 permitted by the ABI, we might have to change this
2011 relocation -= htab->sgotplt->output_section->vma
2012 + htab->sgotplt->output_offset;
2015 case R_X86_64_GOTPC32:
2016 /* Use global offset table as symbol value. */
2017 relocation = htab->sgotplt->output_section->vma
2018 + htab->sgotplt->output_offset;
2019 unresolved_reloc = FALSE;
2022 case R_X86_64_PLT32:
2023 /* Relocation is to the entry for this symbol in the
2024 procedure linkage table. */
2026 /* Resolve a PLT32 reloc against a local symbol directly,
2027 without using the procedure linkage table. */
2031 if (h->plt.offset == (bfd_vma) -1
2032 || htab->splt == NULL)
2034 /* We didn't make a PLT entry for this symbol. This
2035 happens when statically linking PIC code, or when
2036 using -Bsymbolic. */
2040 relocation = (htab->splt->output_section->vma
2041 + htab->splt->output_offset
2043 unresolved_reloc = FALSE;
2050 && !SYMBOL_REFERENCES_LOCAL (info, h)
2051 && (input_section->flags & SEC_ALLOC) != 0
2052 && (input_section->flags & SEC_READONLY) != 0
2054 || r_type != R_X86_64_PC32
2055 || h->type != STT_FUNC
2056 || ELF_ST_VISIBILITY (h->other) != STV_PROTECTED
2057 || !is_32bit_relative_branch (contents,
2061 && r_type == R_X86_64_PC32
2062 && h->type == STT_FUNC
2063 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2064 (*_bfd_error_handler)
2065 (_("%B: relocation R_X86_64_PC32 against protected function `%s' can not be used when making a shared object"),
2066 input_bfd, h->root.root.string);
2068 (*_bfd_error_handler)
2069 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
2070 input_bfd, x86_64_elf_howto_table[r_type].name,
2071 h->root.root.string);
2072 bfd_set_error (bfd_error_bad_value);
2082 /* FIXME: The ABI says the linker should make sure the value is
2083 the same when it's zeroextended to 64 bit. */
2085 /* r_symndx will be zero only for relocs against symbols
2086 from removed linkonce sections, or sections discarded by
2089 || (input_section->flags & SEC_ALLOC) == 0)
2094 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2095 || h->root.type != bfd_link_hash_undefweak)
2096 && ((r_type != R_X86_64_PC8
2097 && r_type != R_X86_64_PC16
2098 && r_type != R_X86_64_PC32
2099 && r_type != R_X86_64_PC64)
2100 || !SYMBOL_CALLS_LOCAL (info, h)))
2101 || (ELIMINATE_COPY_RELOCS
2108 || h->root.type == bfd_link_hash_undefweak
2109 || h->root.type == bfd_link_hash_undefined)))
2111 Elf_Internal_Rela outrel;
2113 bfd_boolean skip, relocate;
2116 /* When generating a shared object, these relocations
2117 are copied into the output file to be resolved at run
2123 _bfd_elf_section_offset (output_bfd, info, input_section,
2125 if (outrel.r_offset == (bfd_vma) -1)
2127 else if (outrel.r_offset == (bfd_vma) -2)
2128 skip = TRUE, relocate = TRUE;
2130 outrel.r_offset += (input_section->output_section->vma
2131 + input_section->output_offset);
2134 memset (&outrel, 0, sizeof outrel);
2136 /* h->dynindx may be -1 if this symbol was marked to
2140 && (r_type == R_X86_64_PC8
2141 || r_type == R_X86_64_PC16
2142 || r_type == R_X86_64_PC32
2143 || r_type == R_X86_64_PC64
2146 || !h->def_regular))
2148 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2149 outrel.r_addend = rel->r_addend;
2153 /* This symbol is local, or marked to become local. */
2154 if (r_type == R_X86_64_64)
2157 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2158 outrel.r_addend = relocation + rel->r_addend;
2164 if (bfd_is_abs_section (sec))
2166 else if (sec == NULL || sec->owner == NULL)
2168 bfd_set_error (bfd_error_bad_value);
2175 osec = sec->output_section;
2176 sindx = elf_section_data (osec)->dynindx;
2177 BFD_ASSERT (sindx > 0);
2180 outrel.r_info = ELF64_R_INFO (sindx, r_type);
2181 outrel.r_addend = relocation + rel->r_addend;
2185 sreloc = elf_section_data (input_section)->sreloc;
2189 loc = sreloc->contents;
2190 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2191 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2193 /* If this reloc is against an external symbol, we do
2194 not want to fiddle with the addend. Otherwise, we
2195 need to include the symbol value so that it becomes
2196 an addend for the dynamic reloc. */
2203 case R_X86_64_TLSGD:
2204 case R_X86_64_GOTTPOFF:
2205 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
2206 tls_type = GOT_UNKNOWN;
2207 if (h == NULL && local_got_offsets)
2208 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2211 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2212 if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE)
2213 r_type = R_X86_64_TPOFF32;
2215 if (r_type == R_X86_64_TLSGD)
2217 if (tls_type == GOT_TLS_IE)
2218 r_type = R_X86_64_GOTTPOFF;
2221 if (r_type == R_X86_64_TPOFF32)
2223 BFD_ASSERT (! unresolved_reloc);
2224 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2227 static unsigned char tlsgd[8]
2228 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2230 /* GD->LE transition.
2231 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2232 .word 0x6666; rex64; call __tls_get_addr@plt
2235 leaq foo@tpoff(%rax), %rax */
2236 BFD_ASSERT (rel->r_offset >= 4);
2237 for (i = 0; i < 4; i++)
2238 BFD_ASSERT (bfd_get_8 (input_bfd,
2239 contents + rel->r_offset - 4 + i)
2241 BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2242 for (i = 0; i < 4; i++)
2243 BFD_ASSERT (bfd_get_8 (input_bfd,
2244 contents + rel->r_offset + 4 + i)
2246 BFD_ASSERT (rel + 1 < relend);
2247 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2248 memcpy (contents + rel->r_offset - 4,
2249 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2251 bfd_put_32 (output_bfd, tpoff (info, relocation),
2252 contents + rel->r_offset + 8);
2253 /* Skip R_X86_64_PLT32. */
2259 unsigned int val, type, reg;
2261 /* IE->LE transition:
2262 Originally it can be one of:
2263 movq foo@gottpoff(%rip), %reg
2264 addq foo@gottpoff(%rip), %reg
2267 leaq foo(%reg), %reg
2269 BFD_ASSERT (rel->r_offset >= 3);
2270 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 3);
2271 BFD_ASSERT (val == 0x48 || val == 0x4c);
2272 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2273 BFD_ASSERT (type == 0x8b || type == 0x03);
2274 reg = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2275 BFD_ASSERT ((reg & 0xc7) == 5);
2277 BFD_ASSERT (rel->r_offset + 4 <= input_section->size);
2282 bfd_put_8 (output_bfd, 0x49,
2283 contents + rel->r_offset - 3);
2284 bfd_put_8 (output_bfd, 0xc7,
2285 contents + rel->r_offset - 2);
2286 bfd_put_8 (output_bfd, 0xc0 | reg,
2287 contents + rel->r_offset - 1);
2291 /* addq -> addq - addressing with %rsp/%r12 is
2294 bfd_put_8 (output_bfd, 0x49,
2295 contents + rel->r_offset - 3);
2296 bfd_put_8 (output_bfd, 0x81,
2297 contents + rel->r_offset - 2);
2298 bfd_put_8 (output_bfd, 0xc0 | reg,
2299 contents + rel->r_offset - 1);
2305 bfd_put_8 (output_bfd, 0x4d,
2306 contents + rel->r_offset - 3);
2307 bfd_put_8 (output_bfd, 0x8d,
2308 contents + rel->r_offset - 2);
2309 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2310 contents + rel->r_offset - 1);
2312 bfd_put_32 (output_bfd, tpoff (info, relocation),
2313 contents + rel->r_offset);
2318 if (htab->sgot == NULL)
2322 off = h->got.offset;
2325 if (local_got_offsets == NULL)
2328 off = local_got_offsets[r_symndx];
2335 Elf_Internal_Rela outrel;
2339 if (htab->srelgot == NULL)
2342 outrel.r_offset = (htab->sgot->output_section->vma
2343 + htab->sgot->output_offset + off);
2345 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2346 if (r_type == R_X86_64_TLSGD)
2347 dr_type = R_X86_64_DTPMOD64;
2349 dr_type = R_X86_64_TPOFF64;
2351 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2352 outrel.r_addend = 0;
2353 if (dr_type == R_X86_64_TPOFF64 && indx == 0)
2354 outrel.r_addend = relocation - dtpoff_base (info);
2355 outrel.r_info = ELF64_R_INFO (indx, dr_type);
2357 loc = htab->srelgot->contents;
2358 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2359 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2361 if (r_type == R_X86_64_TLSGD)
2365 BFD_ASSERT (! unresolved_reloc);
2366 bfd_put_64 (output_bfd,
2367 relocation - dtpoff_base (info),
2368 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2372 bfd_put_64 (output_bfd, 0,
2373 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2374 outrel.r_info = ELF64_R_INFO (indx,
2376 outrel.r_offset += GOT_ENTRY_SIZE;
2377 htab->srelgot->reloc_count++;
2378 loc += sizeof (Elf64_External_Rela);
2379 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2386 local_got_offsets[r_symndx] |= 1;
2389 if (off >= (bfd_vma) -2)
2391 if (r_type == ELF64_R_TYPE (rel->r_info))
2393 relocation = htab->sgot->output_section->vma
2394 + htab->sgot->output_offset + off;
2395 unresolved_reloc = FALSE;
2400 static unsigned char tlsgd[8]
2401 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2403 /* GD->IE transition.
2404 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2405 .word 0x6666; rex64; call __tls_get_addr@plt
2408 addq foo@gottpoff(%rip), %rax */
2409 BFD_ASSERT (rel->r_offset >= 4);
2410 for (i = 0; i < 4; i++)
2411 BFD_ASSERT (bfd_get_8 (input_bfd,
2412 contents + rel->r_offset - 4 + i)
2414 BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2415 for (i = 0; i < 4; i++)
2416 BFD_ASSERT (bfd_get_8 (input_bfd,
2417 contents + rel->r_offset + 4 + i)
2419 BFD_ASSERT (rel + 1 < relend);
2420 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2421 memcpy (contents + rel->r_offset - 4,
2422 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
2425 relocation = (htab->sgot->output_section->vma
2426 + htab->sgot->output_offset + off
2428 - input_section->output_section->vma
2429 - input_section->output_offset
2431 bfd_put_32 (output_bfd, relocation,
2432 contents + rel->r_offset + 8);
2433 /* Skip R_X86_64_PLT32. */
2439 case R_X86_64_TLSLD:
2442 /* LD->LE transition:
2444 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr@plt.
2446 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
2447 BFD_ASSERT (rel->r_offset >= 3);
2448 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3)
2450 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
2452 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 1)
2454 BFD_ASSERT (rel->r_offset + 9 <= input_section->size);
2455 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2457 BFD_ASSERT (rel + 1 < relend);
2458 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2459 memcpy (contents + rel->r_offset - 3,
2460 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
2461 /* Skip R_X86_64_PLT32. */
2466 if (htab->sgot == NULL)
2469 off = htab->tls_ld_got.offset;
2474 Elf_Internal_Rela outrel;
2477 if (htab->srelgot == NULL)
2480 outrel.r_offset = (htab->sgot->output_section->vma
2481 + htab->sgot->output_offset + off);
2483 bfd_put_64 (output_bfd, 0,
2484 htab->sgot->contents + off);
2485 bfd_put_64 (output_bfd, 0,
2486 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2487 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
2488 outrel.r_addend = 0;
2489 loc = htab->srelgot->contents;
2490 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2491 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2492 htab->tls_ld_got.offset |= 1;
2494 relocation = htab->sgot->output_section->vma
2495 + htab->sgot->output_offset + off;
2496 unresolved_reloc = FALSE;
2499 case R_X86_64_DTPOFF32:
2500 if (info->shared || (input_section->flags & SEC_CODE) == 0)
2501 relocation -= dtpoff_base (info);
2503 relocation = tpoff (info, relocation);
2506 case R_X86_64_TPOFF32:
2507 BFD_ASSERT (! info->shared);
2508 relocation = tpoff (info, relocation);
2515 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2516 because such sections are not SEC_ALLOC and thus ld.so will
2517 not process them. */
2518 if (unresolved_reloc
2519 && !((input_section->flags & SEC_DEBUGGING) != 0
2521 (*_bfd_error_handler)
2522 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2525 (long) rel->r_offset,
2527 h->root.root.string);
2529 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2530 contents, rel->r_offset,
2531 relocation, rel->r_addend);
2533 if (r != bfd_reloc_ok)
2538 name = h->root.root.string;
2541 name = bfd_elf_string_from_elf_section (input_bfd,
2542 symtab_hdr->sh_link,
2547 name = bfd_section_name (input_bfd, sec);
2550 if (r == bfd_reloc_overflow)
2553 && h->root.type == bfd_link_hash_undefweak
2554 && howto->pc_relative)
2555 /* Ignore reloc overflow on branches to undefweak syms. */
2558 if (! ((*info->callbacks->reloc_overflow)
2559 (info, (h ? &h->root : NULL), name, howto->name,
2560 (bfd_vma) 0, input_bfd, input_section,
2566 (*_bfd_error_handler)
2567 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
2568 input_bfd, input_section,
2569 (long) rel->r_offset, name, (int) r);
2578 /* Finish up dynamic symbol handling. We set the contents of various
2579 dynamic sections here. */
2582 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
2583 struct bfd_link_info *info,
2584 struct elf_link_hash_entry *h,
2585 Elf_Internal_Sym *sym)
2587 struct elf64_x86_64_link_hash_table *htab;
2589 htab = elf64_x86_64_hash_table (info);
2591 if (h->plt.offset != (bfd_vma) -1)
2595 Elf_Internal_Rela rela;
2598 /* This symbol has an entry in the procedure linkage table. Set
2600 if (h->dynindx == -1
2601 || htab->splt == NULL
2602 || htab->sgotplt == NULL
2603 || htab->srelplt == NULL)
2606 /* Get the index in the procedure linkage table which
2607 corresponds to this symbol. This is the index of this symbol
2608 in all the symbols for which we are making plt entries. The
2609 first entry in the procedure linkage table is reserved. */
2610 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2612 /* Get the offset into the .got table of the entry that
2613 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
2614 bytes. The first three are reserved for the dynamic linker. */
2615 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
2617 /* Fill in the entry in the procedure linkage table. */
2618 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
2621 /* Insert the relocation positions of the plt section. The magic
2622 numbers at the end of the statements are the positions of the
2623 relocations in the plt section. */
2624 /* Put offset for jmp *name@GOTPCREL(%rip), since the
2625 instruction uses 6 bytes, subtract this value. */
2626 bfd_put_32 (output_bfd,
2627 (htab->sgotplt->output_section->vma
2628 + htab->sgotplt->output_offset
2630 - htab->splt->output_section->vma
2631 - htab->splt->output_offset
2634 htab->splt->contents + h->plt.offset + 2);
2635 /* Put relocation index. */
2636 bfd_put_32 (output_bfd, plt_index,
2637 htab->splt->contents + h->plt.offset + 7);
2638 /* Put offset for jmp .PLT0. */
2639 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
2640 htab->splt->contents + h->plt.offset + 12);
2642 /* Fill in the entry in the global offset table, initially this
2643 points to the pushq instruction in the PLT which is at offset 6. */
2644 bfd_put_64 (output_bfd, (htab->splt->output_section->vma
2645 + htab->splt->output_offset
2646 + h->plt.offset + 6),
2647 htab->sgotplt->contents + got_offset);
2649 /* Fill in the entry in the .rela.plt section. */
2650 rela.r_offset = (htab->sgotplt->output_section->vma
2651 + htab->sgotplt->output_offset
2653 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
2655 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
2656 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2658 if (!h->def_regular)
2660 /* Mark the symbol as undefined, rather than as defined in
2661 the .plt section. Leave the value if there were any
2662 relocations where pointer equality matters (this is a clue
2663 for the dynamic linker, to make function pointer
2664 comparisons work between an application and shared
2665 library), otherwise set it to zero. If a function is only
2666 called from a binary, there is no need to slow down
2667 shared libraries because of that. */
2668 sym->st_shndx = SHN_UNDEF;
2669 if (!h->pointer_equality_needed)
2674 if (h->got.offset != (bfd_vma) -1
2675 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_GD
2676 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
2678 Elf_Internal_Rela rela;
2681 /* This symbol has an entry in the global offset table. Set it
2683 if (htab->sgot == NULL || htab->srelgot == NULL)
2686 rela.r_offset = (htab->sgot->output_section->vma
2687 + htab->sgot->output_offset
2688 + (h->got.offset &~ (bfd_vma) 1));
2690 /* If this is a static link, or it is a -Bsymbolic link and the
2691 symbol is defined locally or was forced to be local because
2692 of a version file, we just want to emit a RELATIVE reloc.
2693 The entry in the global offset table will already have been
2694 initialized in the relocate_section function. */
2696 && SYMBOL_REFERENCES_LOCAL (info, h))
2698 BFD_ASSERT((h->got.offset & 1) != 0);
2699 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2700 rela.r_addend = (h->root.u.def.value
2701 + h->root.u.def.section->output_section->vma
2702 + h->root.u.def.section->output_offset);
2706 BFD_ASSERT((h->got.offset & 1) == 0);
2707 bfd_put_64 (output_bfd, (bfd_vma) 0,
2708 htab->sgot->contents + h->got.offset);
2709 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
2713 loc = htab->srelgot->contents;
2714 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2715 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2720 Elf_Internal_Rela rela;
2723 /* This symbol needs a copy reloc. Set it up. */
2725 if (h->dynindx == -1
2726 || (h->root.type != bfd_link_hash_defined
2727 && h->root.type != bfd_link_hash_defweak)
2728 || htab->srelbss == NULL)
2731 rela.r_offset = (h->root.u.def.value
2732 + h->root.u.def.section->output_section->vma
2733 + h->root.u.def.section->output_offset);
2734 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
2736 loc = htab->srelbss->contents;
2737 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
2738 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2741 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2742 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2743 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2744 sym->st_shndx = SHN_ABS;
2749 /* Used to decide how to sort relocs in an optimal manner for the
2750 dynamic linker, before writing them out. */
2752 static enum elf_reloc_type_class
2753 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
2755 switch ((int) ELF64_R_TYPE (rela->r_info))
2757 case R_X86_64_RELATIVE:
2758 return reloc_class_relative;
2759 case R_X86_64_JUMP_SLOT:
2760 return reloc_class_plt;
2762 return reloc_class_copy;
2764 return reloc_class_normal;
2768 /* Finish up the dynamic sections. */
2771 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
2773 struct elf64_x86_64_link_hash_table *htab;
2777 htab = elf64_x86_64_hash_table (info);
2778 dynobj = htab->elf.dynobj;
2779 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2781 if (htab->elf.dynamic_sections_created)
2783 Elf64_External_Dyn *dyncon, *dynconend;
2785 if (sdyn == NULL || htab->sgot == NULL)
2788 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2789 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2790 for (; dyncon < dynconend; dyncon++)
2792 Elf_Internal_Dyn dyn;
2795 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2804 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2808 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2812 s = htab->srelplt->output_section;
2813 dyn.d_un.d_val = s->size;
2817 /* The procedure linkage table relocs (DT_JMPREL) should
2818 not be included in the overall relocs (DT_RELA).
2819 Therefore, we override the DT_RELASZ entry here to
2820 make it not include the JMPREL relocs. Since the
2821 linker script arranges for .rela.plt to follow all
2822 other relocation sections, we don't have to worry
2823 about changing the DT_RELA entry. */
2824 if (htab->srelplt != NULL)
2826 s = htab->srelplt->output_section;
2827 dyn.d_un.d_val -= s->size;
2832 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2835 /* Fill in the special first entry in the procedure linkage table. */
2836 if (htab->splt && htab->splt->size > 0)
2838 /* Fill in the first entry in the procedure linkage table. */
2839 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
2841 /* Add offset for pushq GOT+8(%rip), since the instruction
2842 uses 6 bytes subtract this value. */
2843 bfd_put_32 (output_bfd,
2844 (htab->sgotplt->output_section->vma
2845 + htab->sgotplt->output_offset
2847 - htab->splt->output_section->vma
2848 - htab->splt->output_offset
2850 htab->splt->contents + 2);
2851 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
2852 the end of the instruction. */
2853 bfd_put_32 (output_bfd,
2854 (htab->sgotplt->output_section->vma
2855 + htab->sgotplt->output_offset
2857 - htab->splt->output_section->vma
2858 - htab->splt->output_offset
2860 htab->splt->contents + 8);
2862 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
2869 /* Fill in the first three entries in the global offset table. */
2870 if (htab->sgotplt->size > 0)
2872 /* Set the first entry in the global offset table to the address of
2873 the dynamic section. */
2875 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
2877 bfd_put_64 (output_bfd,
2878 sdyn->output_section->vma + sdyn->output_offset,
2879 htab->sgotplt->contents);
2880 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
2881 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
2882 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
2885 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
2889 if (htab->sgot && htab->sgot->size > 0)
2890 elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize
2896 /* Return address for Ith PLT stub in section PLT, for relocation REL
2897 or (bfd_vma) -1 if it should not be included. */
2900 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
2901 const arelent *rel ATTRIBUTE_UNUSED)
2903 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
2906 /* Handle an x86-64 specific section when reading an object file. This
2907 is called when elfcode.h finds a section with an unknown type. */
2910 elf64_x86_64_section_from_shdr (bfd *abfd,
2911 Elf_Internal_Shdr *hdr,
2915 if (hdr->sh_type != SHT_X86_64_UNWIND)
2918 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2924 /* Hook called by the linker routine which adds symbols from an object
2925 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
2929 elf64_x86_64_add_symbol_hook (bfd *abfd,
2930 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2931 Elf_Internal_Sym *sym,
2932 const char **namep ATTRIBUTE_UNUSED,
2933 flagword *flagsp ATTRIBUTE_UNUSED,
2934 asection **secp, bfd_vma *valp)
2938 switch (sym->st_shndx)
2940 case SHN_X86_64_LCOMMON:
2941 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
2944 lcomm = bfd_make_section_with_flags (abfd,
2948 | SEC_LINKER_CREATED));
2951 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
2954 *valp = sym->st_size;
2961 /* Given a BFD section, try to locate the corresponding ELF section
2965 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
2966 asection *sec, int *index)
2968 if (sec == &_bfd_elf_large_com_section)
2970 *index = SHN_X86_64_LCOMMON;
2976 /* Process a symbol. */
2979 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
2982 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
2984 switch (elfsym->internal_elf_sym.st_shndx)
2986 case SHN_X86_64_LCOMMON:
2987 asym->section = &_bfd_elf_large_com_section;
2988 asym->value = elfsym->internal_elf_sym.st_size;
2989 /* Common symbol doesn't set BSF_GLOBAL. */
2990 asym->flags &= ~BSF_GLOBAL;
2996 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
2998 return (sym->st_shndx == SHN_COMMON
2999 || sym->st_shndx == SHN_X86_64_LCOMMON);
3003 elf64_x86_64_common_section_index (asection *sec)
3005 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3008 return SHN_X86_64_LCOMMON;
3012 elf64_x86_64_common_section (asection *sec)
3014 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3015 return bfd_com_section_ptr;
3017 return &_bfd_elf_large_com_section;
3021 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3022 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
3023 struct elf_link_hash_entry *h,
3024 Elf_Internal_Sym *sym,
3026 bfd_vma *pvalue ATTRIBUTE_UNUSED,
3027 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
3028 bfd_boolean *skip ATTRIBUTE_UNUSED,
3029 bfd_boolean *override ATTRIBUTE_UNUSED,
3030 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
3031 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
3032 bfd_boolean *newdef ATTRIBUTE_UNUSED,
3033 bfd_boolean *newdyn,
3034 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
3035 bfd_boolean *newweak ATTRIBUTE_UNUSED,
3036 bfd *abfd ATTRIBUTE_UNUSED,
3038 bfd_boolean *olddef ATTRIBUTE_UNUSED,
3039 bfd_boolean *olddyn,
3040 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
3041 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
3045 /* A normal common symbol and a large common symbol result in a
3046 normal common symbol. We turn the large common symbol into a
3049 && h->root.type == bfd_link_hash_common
3051 && bfd_is_com_section (*sec)
3054 if (sym->st_shndx == SHN_COMMON
3055 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
3057 h->root.u.c.p->section
3058 = bfd_make_section_old_way (oldbfd, "COMMON");
3059 h->root.u.c.p->section->flags = SEC_ALLOC;
3061 else if (sym->st_shndx == SHN_X86_64_LCOMMON
3062 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
3063 *psec = *sec = bfd_com_section_ptr;
3070 elf64_x86_64_additional_program_headers (bfd *abfd)
3075 /* Check to see if we need a large readonly segment. */
3076 s = bfd_get_section_by_name (abfd, ".lrodata");
3077 if (s && (s->flags & SEC_LOAD))
3080 /* Check to see if we need a large data segment. Since .lbss sections
3081 is placed right after the .bss section, there should be no need for
3082 a large data segment just because of .lbss. */
3083 s = bfd_get_section_by_name (abfd, ".ldata");
3084 if (s && (s->flags & SEC_LOAD))
3090 static const struct bfd_elf_special_section
3091 elf64_x86_64_special_sections[]=
3093 { ".gnu.linkonce.lb", 16, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3094 { ".gnu.linkonce.lr", 16, -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3095 { ".gnu.linkonce.lt", 16, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
3096 { ".lbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3097 { ".ldata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3098 { ".lrodata", 8, -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3099 { NULL, 0, 0, 0, 0 }
3102 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
3103 #define TARGET_LITTLE_NAME "elf64-x86-64"
3104 #define ELF_ARCH bfd_arch_i386
3105 #define ELF_MACHINE_CODE EM_X86_64
3106 #define ELF_MAXPAGESIZE 0x100000
3108 #define elf_backend_can_gc_sections 1
3109 #define elf_backend_can_refcount 1
3110 #define elf_backend_want_got_plt 1
3111 #define elf_backend_plt_readonly 1
3112 #define elf_backend_want_plt_sym 0
3113 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
3114 #define elf_backend_rela_normal 1
3116 #define elf_info_to_howto elf64_x86_64_info_to_howto
3118 #define bfd_elf64_bfd_link_hash_table_create \
3119 elf64_x86_64_link_hash_table_create
3120 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
3122 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
3123 #define elf_backend_check_relocs elf64_x86_64_check_relocs
3124 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
3125 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
3126 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
3127 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
3128 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
3129 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
3130 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
3131 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
3132 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
3133 #define elf_backend_relocate_section elf64_x86_64_relocate_section
3134 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
3135 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
3136 #define elf_backend_object_p elf64_x86_64_elf_object_p
3137 #define bfd_elf64_mkobject elf64_x86_64_mkobject
3139 #define elf_backend_section_from_shdr \
3140 elf64_x86_64_section_from_shdr
3142 #define elf_backend_section_from_bfd_section \
3143 elf64_x86_64_elf_section_from_bfd_section
3144 #define elf_backend_add_symbol_hook \
3145 elf64_x86_64_add_symbol_hook
3146 #define elf_backend_symbol_processing \
3147 elf64_x86_64_symbol_processing
3148 #define elf_backend_common_section_index \
3149 elf64_x86_64_common_section_index
3150 #define elf_backend_common_section \
3151 elf64_x86_64_common_section
3152 #define elf_backend_common_definition \
3153 elf64_x86_64_common_definition
3154 #define elf_backend_merge_symbol \
3155 elf64_x86_64_merge_symbol
3156 #define elf_backend_special_sections \
3157 elf64_x86_64_special_sections
3158 #define elf_backend_additional_program_headers \
3159 elf64_x86_64_additional_program_headers
3161 #include "elf64-target.h"