1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 #include "elf/x86-64.h"
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30 #define MINUS_ONE (~ (bfd_vma) 0)
32 /* The relocation "howto" table. Order of fields:
33 type, size, bitsize, pc_relative, complain_on_overflow,
34 special_function, name, partial_inplace, src_mask, dst_pack, pcrel_offset. */
35 static reloc_howto_type x86_64_elf_howto_table[] =
37 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
38 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
40 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
41 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
43 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
44 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
46 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
47 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
49 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
50 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
52 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
53 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
55 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
56 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
58 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
59 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
61 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
64 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
65 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
67 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
68 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
70 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
71 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
73 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
74 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
75 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
77 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
78 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
79 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
80 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
81 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
84 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
85 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
87 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
90 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
91 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
93 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
94 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
96 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
97 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
99 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
102 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
103 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
106 /* GNU extension to record C++ vtable hierarchy. */
107 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
108 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
110 /* GNU extension to record C++ vtable member usage. */
111 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
112 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
116 /* Map BFD relocs to the x86_64 elf relocs. */
119 bfd_reloc_code_real_type bfd_reloc_val;
120 unsigned char elf_reloc_val;
123 static const struct elf_reloc_map x86_64_reloc_map[] =
125 { BFD_RELOC_NONE, R_X86_64_NONE, },
126 { BFD_RELOC_64, R_X86_64_64, },
127 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
128 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
129 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
130 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
131 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
132 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
133 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
134 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
135 { BFD_RELOC_32, R_X86_64_32, },
136 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
137 { BFD_RELOC_16, R_X86_64_16, },
138 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
139 { BFD_RELOC_8, R_X86_64_8, },
140 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
141 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
142 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
143 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
144 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
145 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
146 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
147 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
148 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
149 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
150 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
154 /* Given a BFD reloc type, return a HOWTO structure. */
155 static reloc_howto_type *
156 elf64_x86_64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
157 bfd_reloc_code_real_type code)
161 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
164 if (x86_64_reloc_map[i].bfd_reloc_val == code)
165 return &x86_64_elf_howto_table[i];
170 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
173 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
174 Elf_Internal_Rela *dst)
178 r_type = ELF64_R_TYPE (dst->r_info);
179 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT)
181 BFD_ASSERT (r_type <= (unsigned int) R_X86_64_TPOFF32);
186 BFD_ASSERT (r_type < (unsigned int) R_X86_64_max);
187 i = r_type - ((unsigned int) R_X86_64_GNU_VTINHERIT - R_X86_64_TPOFF32 - 1);
189 cache_ptr->howto = &x86_64_elf_howto_table[i];
190 BFD_ASSERT (r_type == cache_ptr->howto->type);
193 /* Support for core dump NOTE sections. */
195 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
200 switch (note->descsz)
205 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
207 elf_tdata (abfd)->core_signal
208 = bfd_get_16 (abfd, note->descdata + 12);
211 elf_tdata (abfd)->core_pid
212 = bfd_get_32 (abfd, note->descdata + 32);
221 /* Make a ".reg/999" section. */
222 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
223 size, note->descpos + offset);
227 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
229 switch (note->descsz)
234 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
235 elf_tdata (abfd)->core_program
236 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
237 elf_tdata (abfd)->core_command
238 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
241 /* Note that for some reason, a spurious space is tacked
242 onto the end of the args in some (at least one anyway)
243 implementations, so strip it off if it exists. */
246 char *command = elf_tdata (abfd)->core_command;
247 int n = strlen (command);
249 if (0 < n && command[n - 1] == ' ')
250 command[n - 1] = '\0';
256 /* Functions for the x86-64 ELF linker. */
258 /* The name of the dynamic interpreter. This is put in the .interp
261 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
263 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
264 copying dynamic variables from a shared lib into an app's dynbss
265 section, and instead use a dynamic relocation to point into the
267 #define ELIMINATE_COPY_RELOCS 1
269 /* The size in bytes of an entry in the global offset table. */
271 #define GOT_ENTRY_SIZE 8
273 /* The size in bytes of an entry in the procedure linkage table. */
275 #define PLT_ENTRY_SIZE 16
277 /* The first entry in a procedure linkage table looks like this. See the
278 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
280 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
282 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
283 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
284 0x90, 0x90, 0x90, 0x90 /* pad out to 16 bytes with nops. */
287 /* Subsequent entries in a procedure linkage table look like this. */
289 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
291 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
292 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
293 0x68, /* pushq immediate */
294 0, 0, 0, 0, /* replaced with index into relocation table. */
295 0xe9, /* jmp relative */
296 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
299 /* The x86-64 linker needs to keep track of the number of relocs that
300 it decides to copy as dynamic relocs in check_relocs for each symbol.
301 This is so that it can later discard them if they are found to be
302 unnecessary. We store the information in a field extending the
303 regular ELF linker hash table. */
305 struct elf64_x86_64_dyn_relocs
308 struct elf64_x86_64_dyn_relocs *next;
310 /* The input section of the reloc. */
313 /* Total number of relocs copied for the input section. */
316 /* Number of pc-relative relocs copied for the input section. */
317 bfd_size_type pc_count;
320 /* x86-64 ELF linker hash entry. */
322 struct elf64_x86_64_link_hash_entry
324 struct elf_link_hash_entry elf;
326 /* Track dynamic relocs copied for this symbol. */
327 struct elf64_x86_64_dyn_relocs *dyn_relocs;
329 #define GOT_UNKNOWN 0
333 unsigned char tls_type;
336 #define elf64_x86_64_hash_entry(ent) \
337 ((struct elf64_x86_64_link_hash_entry *)(ent))
339 struct elf64_x86_64_obj_tdata
341 struct elf_obj_tdata root;
343 /* tls_type for each local got entry. */
344 char *local_got_tls_type;
347 #define elf64_x86_64_tdata(abfd) \
348 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
350 #define elf64_x86_64_local_got_tls_type(abfd) \
351 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
354 /* x86-64 ELF linker hash table. */
356 struct elf64_x86_64_link_hash_table
358 struct elf_link_hash_table elf;
360 /* Short-cuts to get to dynamic linker sections. */
370 bfd_signed_vma refcount;
374 /* Small local sym to section mapping cache. */
375 struct sym_sec_cache sym_sec;
378 /* Get the x86-64 ELF linker hash table from a link_info structure. */
380 #define elf64_x86_64_hash_table(p) \
381 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
383 /* Create an entry in an x86-64 ELF linker hash table. */
385 static struct bfd_hash_entry *
386 link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
389 /* Allocate the structure if it has not already been allocated by a
393 entry = bfd_hash_allocate (table,
394 sizeof (struct elf64_x86_64_link_hash_entry));
399 /* Call the allocation method of the superclass. */
400 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
403 struct elf64_x86_64_link_hash_entry *eh;
405 eh = (struct elf64_x86_64_link_hash_entry *) entry;
406 eh->dyn_relocs = NULL;
407 eh->tls_type = GOT_UNKNOWN;
413 /* Create an X86-64 ELF linker hash table. */
415 static struct bfd_link_hash_table *
416 elf64_x86_64_link_hash_table_create (bfd *abfd)
418 struct elf64_x86_64_link_hash_table *ret;
419 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
421 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
425 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
438 ret->sym_sec.abfd = NULL;
439 ret->tls_ld_got.refcount = 0;
441 return &ret->elf.root;
444 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
445 shortcuts to them in our hash table. */
448 create_got_section (bfd *dynobj, struct bfd_link_info *info)
450 struct elf64_x86_64_link_hash_table *htab;
452 if (! _bfd_elf_create_got_section (dynobj, info))
455 htab = elf64_x86_64_hash_table (info);
456 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
457 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
458 if (!htab->sgot || !htab->sgotplt)
461 htab->srelgot = bfd_make_section (dynobj, ".rela.got");
462 if (htab->srelgot == NULL
463 || ! bfd_set_section_flags (dynobj, htab->srelgot,
464 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
465 | SEC_IN_MEMORY | SEC_LINKER_CREATED
467 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
472 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
473 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
477 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
479 struct elf64_x86_64_link_hash_table *htab;
481 htab = elf64_x86_64_hash_table (info);
482 if (!htab->sgot && !create_got_section (dynobj, info))
485 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
488 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
489 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
490 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
492 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
494 if (!htab->splt || !htab->srelplt || !htab->sdynbss
495 || (!info->shared && !htab->srelbss))
501 /* Copy the extra info we tack onto an elf_link_hash_entry. */
504 elf64_x86_64_copy_indirect_symbol (const struct elf_backend_data *bed,
505 struct elf_link_hash_entry *dir,
506 struct elf_link_hash_entry *ind)
508 struct elf64_x86_64_link_hash_entry *edir, *eind;
510 edir = (struct elf64_x86_64_link_hash_entry *) dir;
511 eind = (struct elf64_x86_64_link_hash_entry *) ind;
513 if (eind->dyn_relocs != NULL)
515 if (edir->dyn_relocs != NULL)
517 struct elf64_x86_64_dyn_relocs **pp;
518 struct elf64_x86_64_dyn_relocs *p;
520 if (ind->root.type == bfd_link_hash_indirect)
523 /* Add reloc counts against the weak sym to the strong sym
524 list. Merge any entries against the same section. */
525 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
527 struct elf64_x86_64_dyn_relocs *q;
529 for (q = edir->dyn_relocs; q != NULL; q = q->next)
530 if (q->sec == p->sec)
532 q->pc_count += p->pc_count;
533 q->count += p->count;
540 *pp = edir->dyn_relocs;
543 edir->dyn_relocs = eind->dyn_relocs;
544 eind->dyn_relocs = NULL;
547 if (ind->root.type == bfd_link_hash_indirect
548 && dir->got.refcount <= 0)
550 edir->tls_type = eind->tls_type;
551 eind->tls_type = GOT_UNKNOWN;
554 if (ELIMINATE_COPY_RELOCS
555 && ind->root.type != bfd_link_hash_indirect
556 && dir->dynamic_adjusted)
558 /* If called to transfer flags for a weakdef during processing
559 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
560 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
561 dir->ref_dynamic |= ind->ref_dynamic;
562 dir->ref_regular |= ind->ref_regular;
563 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
564 dir->needs_plt |= ind->needs_plt;
565 dir->pointer_equality_needed |= ind->pointer_equality_needed;
568 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
572 elf64_x86_64_mkobject (bfd *abfd)
574 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
575 abfd->tdata.any = bfd_zalloc (abfd, amt);
576 if (abfd->tdata.any == NULL)
582 elf64_x86_64_elf_object_p (bfd *abfd)
584 /* Set the right machine number for an x86-64 elf64 file. */
585 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
590 elf64_x86_64_tls_transition (struct bfd_link_info *info, int r_type, int is_local)
598 case R_X86_64_GOTTPOFF:
600 return R_X86_64_TPOFF32;
601 return R_X86_64_GOTTPOFF;
603 return R_X86_64_TPOFF32;
609 /* Look through the relocs for a section during the first phase, and
610 calculate needed space in the global offset table, procedure
611 linkage table, and dynamic reloc sections. */
614 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec,
615 const Elf_Internal_Rela *relocs)
617 struct elf64_x86_64_link_hash_table *htab;
618 Elf_Internal_Shdr *symtab_hdr;
619 struct elf_link_hash_entry **sym_hashes;
620 const Elf_Internal_Rela *rel;
621 const Elf_Internal_Rela *rel_end;
624 if (info->relocatable)
627 htab = elf64_x86_64_hash_table (info);
628 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
629 sym_hashes = elf_sym_hashes (abfd);
633 rel_end = relocs + sec->reloc_count;
634 for (rel = relocs; rel < rel_end; rel++)
637 unsigned long r_symndx;
638 struct elf_link_hash_entry *h;
640 r_symndx = ELF64_R_SYM (rel->r_info);
641 r_type = ELF64_R_TYPE (rel->r_info);
643 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
645 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
650 if (r_symndx < symtab_hdr->sh_info)
653 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
655 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
659 htab->tls_ld_got.refcount += 1;
662 case R_X86_64_TPOFF32:
665 (*_bfd_error_handler)
666 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
668 x86_64_elf_howto_table[r_type].name,
669 (h) ? h->root.root.string : "a local symbol");
670 bfd_set_error (bfd_error_bad_value);
675 case R_X86_64_GOTTPOFF:
677 info->flags |= DF_STATIC_TLS;
681 case R_X86_64_GOTPCREL:
683 /* This symbol requires a global offset table entry. */
685 int tls_type, old_tls_type;
689 default: tls_type = GOT_NORMAL; break;
690 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
691 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
696 h->got.refcount += 1;
697 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
701 bfd_signed_vma *local_got_refcounts;
703 /* This is a global offset table entry for a local symbol. */
704 local_got_refcounts = elf_local_got_refcounts (abfd);
705 if (local_got_refcounts == NULL)
709 size = symtab_hdr->sh_info;
710 size *= sizeof (bfd_signed_vma) + sizeof (char);
711 local_got_refcounts = ((bfd_signed_vma *)
712 bfd_zalloc (abfd, size));
713 if (local_got_refcounts == NULL)
715 elf_local_got_refcounts (abfd) = local_got_refcounts;
716 elf64_x86_64_local_got_tls_type (abfd)
717 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
719 local_got_refcounts[r_symndx] += 1;
721 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
724 /* If a TLS symbol is accessed using IE at least once,
725 there is no point to use dynamic model for it. */
726 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
727 && (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE))
729 if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD)
730 tls_type = old_tls_type;
733 (*_bfd_error_handler)
734 (_("%B: %s' accessed both as normal and thread local symbol"),
735 abfd, h ? h->root.root.string : "<local>");
740 if (old_tls_type != tls_type)
743 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
745 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
750 //case R_X86_64_GOTPCREL:
752 if (htab->sgot == NULL)
754 if (htab->elf.dynobj == NULL)
755 htab->elf.dynobj = abfd;
756 if (!create_got_section (htab->elf.dynobj, info))
762 /* This symbol requires a procedure linkage table entry. We
763 actually build the entry in adjust_dynamic_symbol,
764 because this might be a case of linking PIC code which is
765 never referenced by a dynamic object, in which case we
766 don't need to generate a procedure linkage table entry
769 /* If this is a local symbol, we resolve it directly without
770 creating a procedure linkage table entry. */
775 h->plt.refcount += 1;
782 /* Let's help debug shared library creation. These relocs
783 cannot be used in shared libs. Don't error out for
784 sections we don't care about, such as debug sections or
785 non-constant sections. */
787 && (sec->flags & SEC_ALLOC) != 0
788 && (sec->flags & SEC_READONLY) != 0)
790 (*_bfd_error_handler)
791 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
793 x86_64_elf_howto_table[r_type].name,
794 (h) ? h->root.root.string : "a local symbol");
795 bfd_set_error (bfd_error_bad_value);
804 if (h != NULL && !info->shared)
806 /* If this reloc is in a read-only section, we might
807 need a copy reloc. We can't check reliably at this
808 stage whether the section is read-only, as input
809 sections have not yet been mapped to output sections.
810 Tentatively set the flag for now, and correct in
811 adjust_dynamic_symbol. */
814 /* We may need a .plt entry if the function this reloc
815 refers to is in a shared lib. */
816 h->plt.refcount += 1;
817 if (r_type != R_X86_64_PC32)
818 h->pointer_equality_needed = 1;
821 /* If we are creating a shared library, and this is a reloc
822 against a global symbol, or a non PC relative reloc
823 against a local symbol, then we need to copy the reloc
824 into the shared library. However, if we are linking with
825 -Bsymbolic, we do not need to copy a reloc against a
826 global symbol which is defined in an object we are
827 including in the link (i.e., DEF_REGULAR is set). At
828 this point we have not seen all the input files, so it is
829 possible that DEF_REGULAR is not set now but will be set
830 later (it is never cleared). In case of a weak definition,
831 DEF_REGULAR may be cleared later by a strong definition in
832 a shared library. We account for that possibility below by
833 storing information in the relocs_copied field of the hash
834 table entry. A similar situation occurs when creating
835 shared libraries and symbol visibility changes render the
838 If on the other hand, we are creating an executable, we
839 may need to keep relocations for symbols satisfied by a
840 dynamic library if we manage to avoid copy relocs for the
843 && (sec->flags & SEC_ALLOC) != 0
844 && (((r_type != R_X86_64_PC8)
845 && (r_type != R_X86_64_PC16)
846 && (r_type != R_X86_64_PC32))
849 || h->root.type == bfd_link_hash_defweak
850 || !h->def_regular))))
851 || (ELIMINATE_COPY_RELOCS
853 && (sec->flags & SEC_ALLOC) != 0
855 && (h->root.type == bfd_link_hash_defweak
856 || !h->def_regular)))
858 struct elf64_x86_64_dyn_relocs *p;
859 struct elf64_x86_64_dyn_relocs **head;
861 /* We must copy these reloc types into the output file.
862 Create a reloc section in dynobj and make room for
869 name = (bfd_elf_string_from_elf_section
871 elf_elfheader (abfd)->e_shstrndx,
872 elf_section_data (sec)->rel_hdr.sh_name));
876 if (strncmp (name, ".rela", 5) != 0
877 || strcmp (bfd_get_section_name (abfd, sec),
880 (*_bfd_error_handler)
881 (_("%B: bad relocation section name `%s\'"),
885 if (htab->elf.dynobj == NULL)
886 htab->elf.dynobj = abfd;
888 dynobj = htab->elf.dynobj;
890 sreloc = bfd_get_section_by_name (dynobj, name);
895 sreloc = bfd_make_section (dynobj, name);
896 flags = (SEC_HAS_CONTENTS | SEC_READONLY
897 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
898 if ((sec->flags & SEC_ALLOC) != 0)
899 flags |= SEC_ALLOC | SEC_LOAD;
901 || ! bfd_set_section_flags (dynobj, sreloc, flags)
902 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
905 elf_section_data (sec)->sreloc = sreloc;
908 /* If this is a global symbol, we count the number of
909 relocations we need for this symbol. */
912 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
916 /* Track dynamic relocs needed for local syms too.
917 We really need local syms available to do this
921 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
926 head = ((struct elf64_x86_64_dyn_relocs **)
927 &elf_section_data (s)->local_dynrel);
931 if (p == NULL || p->sec != sec)
933 bfd_size_type amt = sizeof *p;
934 p = ((struct elf64_x86_64_dyn_relocs *)
935 bfd_alloc (htab->elf.dynobj, amt));
946 if (r_type == R_X86_64_PC8
947 || r_type == R_X86_64_PC16
948 || r_type == R_X86_64_PC32)
953 /* This relocation describes the C++ object vtable hierarchy.
954 Reconstruct it for later use during GC. */
955 case R_X86_64_GNU_VTINHERIT:
956 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
960 /* This relocation describes which C++ vtable entries are actually
961 used. Record for later use during GC. */
962 case R_X86_64_GNU_VTENTRY:
963 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
975 /* Return the section that should be marked against GC for a given
979 elf64_x86_64_gc_mark_hook (asection *sec,
980 struct bfd_link_info *info ATTRIBUTE_UNUSED,
981 Elf_Internal_Rela *rel,
982 struct elf_link_hash_entry *h,
983 Elf_Internal_Sym *sym)
987 switch (ELF64_R_TYPE (rel->r_info))
989 case R_X86_64_GNU_VTINHERIT:
990 case R_X86_64_GNU_VTENTRY:
994 switch (h->root.type)
996 case bfd_link_hash_defined:
997 case bfd_link_hash_defweak:
998 return h->root.u.def.section;
1000 case bfd_link_hash_common:
1001 return h->root.u.c.p->section;
1009 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1014 /* Update the got entry reference counts for the section being removed. */
1017 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1018 asection *sec, const Elf_Internal_Rela *relocs)
1020 Elf_Internal_Shdr *symtab_hdr;
1021 struct elf_link_hash_entry **sym_hashes;
1022 bfd_signed_vma *local_got_refcounts;
1023 const Elf_Internal_Rela *rel, *relend;
1025 elf_section_data (sec)->local_dynrel = NULL;
1027 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1028 sym_hashes = elf_sym_hashes (abfd);
1029 local_got_refcounts = elf_local_got_refcounts (abfd);
1031 relend = relocs + sec->reloc_count;
1032 for (rel = relocs; rel < relend; rel++)
1034 unsigned long r_symndx;
1035 unsigned int r_type;
1036 struct elf_link_hash_entry *h = NULL;
1038 r_symndx = ELF64_R_SYM (rel->r_info);
1039 if (r_symndx >= symtab_hdr->sh_info)
1041 struct elf64_x86_64_link_hash_entry *eh;
1042 struct elf64_x86_64_dyn_relocs **pp;
1043 struct elf64_x86_64_dyn_relocs *p;
1045 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1046 eh = (struct elf64_x86_64_link_hash_entry *) h;
1048 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1051 /* Everything must go for SEC. */
1057 r_type = ELF64_R_TYPE (rel->r_info);
1058 r_type = elf64_x86_64_tls_transition (info, r_type, h != NULL);
1061 case R_X86_64_TLSLD:
1062 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1063 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1066 case R_X86_64_TLSGD:
1067 case R_X86_64_GOTTPOFF:
1068 case R_X86_64_GOT32:
1069 case R_X86_64_GOTPCREL:
1072 if (h->got.refcount > 0)
1073 h->got.refcount -= 1;
1075 else if (local_got_refcounts != NULL)
1077 if (local_got_refcounts[r_symndx] > 0)
1078 local_got_refcounts[r_symndx] -= 1;
1094 case R_X86_64_PLT32:
1097 if (h->plt.refcount > 0)
1098 h->plt.refcount -= 1;
1110 /* Adjust a symbol defined by a dynamic object and referenced by a
1111 regular object. The current definition is in some section of the
1112 dynamic object, but we're not including those sections. We have to
1113 change the definition to something the rest of the link can
1117 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1118 struct elf_link_hash_entry *h)
1120 struct elf64_x86_64_link_hash_table *htab;
1122 unsigned int power_of_two;
1124 /* If this is a function, put it in the procedure linkage table. We
1125 will fill in the contents of the procedure linkage table later,
1126 when we know the address of the .got section. */
1127 if (h->type == STT_FUNC
1130 if (h->plt.refcount <= 0
1131 || SYMBOL_CALLS_LOCAL (info, h)
1132 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1133 && h->root.type == bfd_link_hash_undefweak))
1135 /* This case can occur if we saw a PLT32 reloc in an input
1136 file, but the symbol was never referred to by a dynamic
1137 object, or if all references were garbage collected. In
1138 such a case, we don't actually need to build a procedure
1139 linkage table, and we can just do a PC32 reloc instead. */
1140 h->plt.offset = (bfd_vma) -1;
1147 /* It's possible that we incorrectly decided a .plt reloc was
1148 needed for an R_X86_64_PC32 reloc to a non-function sym in
1149 check_relocs. We can't decide accurately between function and
1150 non-function syms in check-relocs; Objects loaded later in
1151 the link may change h->type. So fix it now. */
1152 h->plt.offset = (bfd_vma) -1;
1154 /* If this is a weak symbol, and there is a real definition, the
1155 processor independent code will have arranged for us to see the
1156 real definition first, and we can just use the same value. */
1157 if (h->u.weakdef != NULL)
1159 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1160 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1161 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1162 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1163 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1164 h->non_got_ref = h->u.weakdef->non_got_ref;
1168 /* This is a reference to a symbol defined by a dynamic object which
1169 is not a function. */
1171 /* If we are creating a shared library, we must presume that the
1172 only references to the symbol are via the global offset table.
1173 For such cases we need not do anything here; the relocations will
1174 be handled correctly by relocate_section. */
1178 /* If there are no references to this symbol that do not use the
1179 GOT, we don't need to generate a copy reloc. */
1180 if (!h->non_got_ref)
1183 /* If -z nocopyreloc was given, we won't generate them either. */
1184 if (info->nocopyreloc)
1190 if (ELIMINATE_COPY_RELOCS)
1192 struct elf64_x86_64_link_hash_entry * eh;
1193 struct elf64_x86_64_dyn_relocs *p;
1195 eh = (struct elf64_x86_64_link_hash_entry *) h;
1196 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1198 s = p->sec->output_section;
1199 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1203 /* If we didn't find any dynamic relocs in read-only sections, then
1204 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1212 /* We must allocate the symbol in our .dynbss section, which will
1213 become part of the .bss section of the executable. There will be
1214 an entry for this symbol in the .dynsym section. The dynamic
1215 object will contain position independent code, so all references
1216 from the dynamic object to this symbol will go through the global
1217 offset table. The dynamic linker will use the .dynsym entry to
1218 determine the address it must put in the global offset table, so
1219 both the dynamic object and the regular object will refer to the
1220 same memory location for the variable. */
1222 htab = elf64_x86_64_hash_table (info);
1224 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1225 to copy the initial value out of the dynamic object and into the
1226 runtime process image. */
1227 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1229 htab->srelbss->size += sizeof (Elf64_External_Rela);
1233 /* We need to figure out the alignment required for this symbol. I
1234 have no idea how ELF linkers handle this. 16-bytes is the size
1235 of the largest type that requires hard alignment -- long double. */
1236 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
1238 power_of_two = bfd_log2 (h->size);
1239 if (power_of_two > 4)
1242 /* Apply the required alignment. */
1244 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1245 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1247 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1251 /* Define the symbol as being at this point in the section. */
1252 h->root.u.def.section = s;
1253 h->root.u.def.value = s->size;
1255 /* Increment the section size to make room for the symbol. */
1261 /* Allocate space in .plt, .got and associated reloc sections for
1265 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1267 struct bfd_link_info *info;
1268 struct elf64_x86_64_link_hash_table *htab;
1269 struct elf64_x86_64_link_hash_entry *eh;
1270 struct elf64_x86_64_dyn_relocs *p;
1272 if (h->root.type == bfd_link_hash_indirect)
1275 if (h->root.type == bfd_link_hash_warning)
1276 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1278 info = (struct bfd_link_info *) inf;
1279 htab = elf64_x86_64_hash_table (info);
1281 if (htab->elf.dynamic_sections_created
1282 && h->plt.refcount > 0)
1284 /* Make sure this symbol is output as a dynamic symbol.
1285 Undefined weak syms won't yet be marked as dynamic. */
1286 if (h->dynindx == -1
1287 && !h->forced_local)
1289 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1294 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1296 asection *s = htab->splt;
1298 /* If this is the first .plt entry, make room for the special
1301 s->size += PLT_ENTRY_SIZE;
1303 h->plt.offset = s->size;
1305 /* If this symbol is not defined in a regular file, and we are
1306 not generating a shared library, then set the symbol to this
1307 location in the .plt. This is required to make function
1308 pointers compare as equal between the normal executable and
1309 the shared library. */
1313 h->root.u.def.section = s;
1314 h->root.u.def.value = h->plt.offset;
1317 /* Make room for this entry. */
1318 s->size += PLT_ENTRY_SIZE;
1320 /* We also need to make an entry in the .got.plt section, which
1321 will be placed in the .got section by the linker script. */
1322 htab->sgotplt->size += GOT_ENTRY_SIZE;
1324 /* We also need to make an entry in the .rela.plt section. */
1325 htab->srelplt->size += sizeof (Elf64_External_Rela);
1329 h->plt.offset = (bfd_vma) -1;
1335 h->plt.offset = (bfd_vma) -1;
1339 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1340 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1341 if (h->got.refcount > 0
1344 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1345 h->got.offset = (bfd_vma) -1;
1346 else if (h->got.refcount > 0)
1350 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1352 /* Make sure this symbol is output as a dynamic symbol.
1353 Undefined weak syms won't yet be marked as dynamic. */
1354 if (h->dynindx == -1
1355 && !h->forced_local)
1357 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1362 h->got.offset = s->size;
1363 s->size += GOT_ENTRY_SIZE;
1364 /* R_X86_64_TLSGD needs 2 consecutive GOT slots. */
1365 if (tls_type == GOT_TLS_GD)
1366 s->size += GOT_ENTRY_SIZE;
1367 dyn = htab->elf.dynamic_sections_created;
1368 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1370 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1371 if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
1372 || tls_type == GOT_TLS_IE)
1373 htab->srelgot->size += sizeof (Elf64_External_Rela);
1374 else if (tls_type == GOT_TLS_GD)
1375 htab->srelgot->size += 2 * sizeof (Elf64_External_Rela);
1376 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1377 || h->root.type != bfd_link_hash_undefweak)
1379 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1380 htab->srelgot->size += sizeof (Elf64_External_Rela);
1383 h->got.offset = (bfd_vma) -1;
1385 eh = (struct elf64_x86_64_link_hash_entry *) h;
1386 if (eh->dyn_relocs == NULL)
1389 /* In the shared -Bsymbolic case, discard space allocated for
1390 dynamic pc-relative relocs against symbols which turn out to be
1391 defined in regular objects. For the normal shared case, discard
1392 space for pc-relative relocs that have become local due to symbol
1393 visibility changes. */
1397 /* Relocs that use pc_count are those that appear on a call
1398 insn, or certain REL relocs that can generated via assembly.
1399 We want calls to protected symbols to resolve directly to the
1400 function rather than going via the plt. If people want
1401 function pointer comparisons to work as expected then they
1402 should avoid writing weird assembly. */
1403 if (SYMBOL_CALLS_LOCAL (info, h))
1405 struct elf64_x86_64_dyn_relocs **pp;
1407 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1409 p->count -= p->pc_count;
1418 /* Also discard relocs on undefined weak syms with non-default
1420 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1421 && h->root.type == bfd_link_hash_undefweak)
1422 eh->dyn_relocs = NULL;
1424 else if (ELIMINATE_COPY_RELOCS)
1426 /* For the non-shared case, discard space for relocs against
1427 symbols which turn out to need copy relocs or are not
1433 || (htab->elf.dynamic_sections_created
1434 && (h->root.type == bfd_link_hash_undefweak
1435 || h->root.type == bfd_link_hash_undefined))))
1437 /* Make sure this symbol is output as a dynamic symbol.
1438 Undefined weak syms won't yet be marked as dynamic. */
1439 if (h->dynindx == -1
1440 && !h->forced_local)
1442 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1446 /* If that succeeded, we know we'll be keeping all the
1448 if (h->dynindx != -1)
1452 eh->dyn_relocs = NULL;
1457 /* Finally, allocate space. */
1458 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1460 asection *sreloc = elf_section_data (p->sec)->sreloc;
1461 sreloc->size += p->count * sizeof (Elf64_External_Rela);
1467 /* Find any dynamic relocs that apply to read-only sections. */
1470 readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1472 struct elf64_x86_64_link_hash_entry *eh;
1473 struct elf64_x86_64_dyn_relocs *p;
1475 if (h->root.type == bfd_link_hash_warning)
1476 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1478 eh = (struct elf64_x86_64_link_hash_entry *) h;
1479 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1481 asection *s = p->sec->output_section;
1483 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1485 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1487 info->flags |= DF_TEXTREL;
1489 /* Not an error, just cut short the traversal. */
1496 /* Set the sizes of the dynamic sections. */
1499 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1500 struct bfd_link_info *info)
1502 struct elf64_x86_64_link_hash_table *htab;
1508 htab = elf64_x86_64_hash_table (info);
1509 dynobj = htab->elf.dynobj;
1513 if (htab->elf.dynamic_sections_created)
1515 /* Set the contents of the .interp section to the interpreter. */
1516 if (info->executable)
1518 s = bfd_get_section_by_name (dynobj, ".interp");
1521 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1522 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1526 /* Set up .got offsets for local syms, and space for local dynamic
1528 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1530 bfd_signed_vma *local_got;
1531 bfd_signed_vma *end_local_got;
1532 char *local_tls_type;
1533 bfd_size_type locsymcount;
1534 Elf_Internal_Shdr *symtab_hdr;
1537 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1540 for (s = ibfd->sections; s != NULL; s = s->next)
1542 struct elf64_x86_64_dyn_relocs *p;
1544 for (p = *((struct elf64_x86_64_dyn_relocs **)
1545 &elf_section_data (s)->local_dynrel);
1549 if (!bfd_is_abs_section (p->sec)
1550 && bfd_is_abs_section (p->sec->output_section))
1552 /* Input section has been discarded, either because
1553 it is a copy of a linkonce section or due to
1554 linker script /DISCARD/, so we'll be discarding
1557 else if (p->count != 0)
1559 srel = elf_section_data (p->sec)->sreloc;
1560 srel->size += p->count * sizeof (Elf64_External_Rela);
1561 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1562 info->flags |= DF_TEXTREL;
1568 local_got = elf_local_got_refcounts (ibfd);
1572 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1573 locsymcount = symtab_hdr->sh_info;
1574 end_local_got = local_got + locsymcount;
1575 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
1577 srel = htab->srelgot;
1578 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1582 *local_got = s->size;
1583 s->size += GOT_ENTRY_SIZE;
1584 if (*local_tls_type == GOT_TLS_GD)
1585 s->size += GOT_ENTRY_SIZE;
1587 || *local_tls_type == GOT_TLS_GD
1588 || *local_tls_type == GOT_TLS_IE)
1589 srel->size += sizeof (Elf64_External_Rela);
1592 *local_got = (bfd_vma) -1;
1596 if (htab->tls_ld_got.refcount > 0)
1598 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
1600 htab->tls_ld_got.offset = htab->sgot->size;
1601 htab->sgot->size += 2 * GOT_ENTRY_SIZE;
1602 htab->srelgot->size += sizeof (Elf64_External_Rela);
1605 htab->tls_ld_got.offset = -1;
1607 /* Allocate global sym .plt and .got entries, and space for global
1608 sym dynamic relocs. */
1609 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1611 /* We now have determined the sizes of the various dynamic sections.
1612 Allocate memory for them. */
1614 for (s = dynobj->sections; s != NULL; s = s->next)
1616 if ((s->flags & SEC_LINKER_CREATED) == 0)
1621 || s == htab->sgotplt)
1623 /* Strip this section if we don't need it; see the
1626 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
1628 if (s->size != 0 && s != htab->srelplt)
1631 /* We use the reloc_count field as a counter if we need
1632 to copy relocs into the output file. */
1637 /* It's not one of our sections, so don't allocate space. */
1643 /* If we don't need this section, strip it from the
1644 output file. This is mostly to handle .rela.bss and
1645 .rela.plt. We must create both sections in
1646 create_dynamic_sections, because they must be created
1647 before the linker maps input sections to output
1648 sections. The linker does that before
1649 adjust_dynamic_symbol is called, and it is that
1650 function which decides whether anything needs to go
1651 into these sections. */
1653 _bfd_strip_section_from_output (info, s);
1657 /* Allocate memory for the section contents. We use bfd_zalloc
1658 here in case unused entries are not reclaimed before the
1659 section's contents are written out. This should not happen,
1660 but this way if it does, we get a R_X86_64_NONE reloc instead
1662 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1663 if (s->contents == NULL)
1667 if (htab->elf.dynamic_sections_created)
1669 /* Add some entries to the .dynamic section. We fill in the
1670 values later, in elf64_x86_64_finish_dynamic_sections, but we
1671 must add the entries now so that we get the correct size for
1672 the .dynamic section. The DT_DEBUG entry is filled in by the
1673 dynamic linker and used by the debugger. */
1674 #define add_dynamic_entry(TAG, VAL) \
1675 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1677 if (info->executable)
1679 if (!add_dynamic_entry (DT_DEBUG, 0))
1683 if (htab->splt->size != 0)
1685 if (!add_dynamic_entry (DT_PLTGOT, 0)
1686 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1687 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1688 || !add_dynamic_entry (DT_JMPREL, 0))
1694 if (!add_dynamic_entry (DT_RELA, 0)
1695 || !add_dynamic_entry (DT_RELASZ, 0)
1696 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1699 /* If any dynamic relocs apply to a read-only section,
1700 then we need a DT_TEXTREL entry. */
1701 if ((info->flags & DF_TEXTREL) == 0)
1702 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1705 if ((info->flags & DF_TEXTREL) != 0)
1707 if (!add_dynamic_entry (DT_TEXTREL, 0))
1712 #undef add_dynamic_entry
1717 /* Return the base VMA address which should be subtracted from real addresses
1718 when resolving @dtpoff relocation.
1719 This is PT_TLS segment p_vaddr. */
1722 dtpoff_base (struct bfd_link_info *info)
1724 /* If tls_sec is NULL, we should have signalled an error already. */
1725 if (elf_hash_table (info)->tls_sec == NULL)
1727 return elf_hash_table (info)->tls_sec->vma;
1730 /* Return the relocation value for @tpoff relocation
1731 if STT_TLS virtual address is ADDRESS. */
1734 tpoff (struct bfd_link_info *info, bfd_vma address)
1736 struct elf_link_hash_table *htab = elf_hash_table (info);
1738 /* If tls_segment is NULL, we should have signalled an error already. */
1739 if (htab->tls_sec == NULL)
1741 return address - htab->tls_size - htab->tls_sec->vma;
1744 /* Relocate an x86_64 ELF section. */
1747 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
1748 bfd *input_bfd, asection *input_section,
1749 bfd_byte *contents, Elf_Internal_Rela *relocs,
1750 Elf_Internal_Sym *local_syms,
1751 asection **local_sections)
1753 struct elf64_x86_64_link_hash_table *htab;
1754 Elf_Internal_Shdr *symtab_hdr;
1755 struct elf_link_hash_entry **sym_hashes;
1756 bfd_vma *local_got_offsets;
1757 Elf_Internal_Rela *rel;
1758 Elf_Internal_Rela *relend;
1760 if (info->relocatable)
1763 htab = elf64_x86_64_hash_table (info);
1764 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1765 sym_hashes = elf_sym_hashes (input_bfd);
1766 local_got_offsets = elf_local_got_offsets (input_bfd);
1769 relend = relocs + input_section->reloc_count;
1770 for (; rel < relend; rel++)
1772 unsigned int r_type;
1773 reloc_howto_type *howto;
1774 unsigned long r_symndx;
1775 struct elf_link_hash_entry *h;
1776 Elf_Internal_Sym *sym;
1780 bfd_boolean unresolved_reloc;
1781 bfd_reloc_status_type r;
1784 r_type = ELF64_R_TYPE (rel->r_info);
1785 if (r_type == (int) R_X86_64_GNU_VTINHERIT
1786 || r_type == (int) R_X86_64_GNU_VTENTRY)
1789 if (r_type >= R_X86_64_max)
1791 bfd_set_error (bfd_error_bad_value);
1795 howto = x86_64_elf_howto_table + r_type;
1796 r_symndx = ELF64_R_SYM (rel->r_info);
1800 unresolved_reloc = FALSE;
1801 if (r_symndx < symtab_hdr->sh_info)
1803 sym = local_syms + r_symndx;
1804 sec = local_sections[r_symndx];
1806 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1812 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1813 r_symndx, symtab_hdr, sym_hashes,
1815 unresolved_reloc, warned);
1817 /* When generating a shared object, the relocations handled here are
1818 copied into the output file to be resolved at run time. */
1821 case R_X86_64_GOT32:
1822 /* Relocation is to the entry for this symbol in the global
1824 case R_X86_64_GOTPCREL:
1825 /* Use global offset table as symbol value. */
1826 if (htab->sgot == NULL)
1833 off = h->got.offset;
1834 dyn = htab->elf.dynamic_sections_created;
1836 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1838 && SYMBOL_REFERENCES_LOCAL (info, h))
1839 || (ELF_ST_VISIBILITY (h->other)
1840 && h->root.type == bfd_link_hash_undefweak))
1842 /* This is actually a static link, or it is a -Bsymbolic
1843 link and the symbol is defined locally, or the symbol
1844 was forced to be local because of a version file. We
1845 must initialize this entry in the global offset table.
1846 Since the offset must always be a multiple of 8, we
1847 use the least significant bit to record whether we
1848 have initialized it already.
1850 When doing a dynamic link, we create a .rela.got
1851 relocation entry to initialize the value. This is
1852 done in the finish_dynamic_symbol routine. */
1857 bfd_put_64 (output_bfd, relocation,
1858 htab->sgot->contents + off);
1863 unresolved_reloc = FALSE;
1867 if (local_got_offsets == NULL)
1870 off = local_got_offsets[r_symndx];
1872 /* The offset must always be a multiple of 8. We use
1873 the least significant bit to record whether we have
1874 already generated the necessary reloc. */
1879 bfd_put_64 (output_bfd, relocation,
1880 htab->sgot->contents + off);
1885 Elf_Internal_Rela outrel;
1888 /* We need to generate a R_X86_64_RELATIVE reloc
1889 for the dynamic linker. */
1894 outrel.r_offset = (htab->sgot->output_section->vma
1895 + htab->sgot->output_offset
1897 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1898 outrel.r_addend = relocation;
1900 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
1901 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
1904 local_got_offsets[r_symndx] |= 1;
1908 if (off >= (bfd_vma) -2)
1911 relocation = htab->sgot->output_section->vma
1912 + htab->sgot->output_offset + off;
1913 if (r_type != R_X86_64_GOTPCREL)
1914 relocation -= htab->sgotplt->output_section->vma
1915 - htab->sgotplt->output_offset;
1919 case R_X86_64_PLT32:
1920 /* Relocation is to the entry for this symbol in the
1921 procedure linkage table. */
1923 /* Resolve a PLT32 reloc against a local symbol directly,
1924 without using the procedure linkage table. */
1928 if (h->plt.offset == (bfd_vma) -1
1929 || htab->splt == NULL)
1931 /* We didn't make a PLT entry for this symbol. This
1932 happens when statically linking PIC code, or when
1933 using -Bsymbolic. */
1937 relocation = (htab->splt->output_section->vma
1938 + htab->splt->output_offset
1940 unresolved_reloc = FALSE;
1947 && !SYMBOL_REFERENCES_LOCAL (info, h)
1948 && (input_section->flags & SEC_ALLOC) != 0
1949 && (input_section->flags & SEC_READONLY) != 0)
1951 (*_bfd_error_handler)
1952 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1954 x86_64_elf_howto_table[r_type].name,
1955 (h) ? h->root.root.string : "a local symbol");
1956 bfd_set_error (bfd_error_bad_value);
1965 /* FIXME: The ABI says the linker should make sure the value is
1966 the same when it's zeroextended to 64 bit. */
1968 /* r_symndx will be zero only for relocs against symbols
1969 from removed linkonce sections, or sections discarded by
1972 || (input_section->flags & SEC_ALLOC) == 0)
1977 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1978 || h->root.type != bfd_link_hash_undefweak)
1979 && ((r_type != R_X86_64_PC8
1980 && r_type != R_X86_64_PC16
1981 && r_type != R_X86_64_PC32)
1982 || !SYMBOL_CALLS_LOCAL (info, h)))
1983 || (ELIMINATE_COPY_RELOCS
1990 || h->root.type == bfd_link_hash_undefweak
1991 || h->root.type == bfd_link_hash_undefined)))
1993 Elf_Internal_Rela outrel;
1995 bfd_boolean skip, relocate;
1998 /* When generating a shared object, these relocations
1999 are copied into the output file to be resolved at run
2005 _bfd_elf_section_offset (output_bfd, info, input_section,
2007 if (outrel.r_offset == (bfd_vma) -1)
2009 else if (outrel.r_offset == (bfd_vma) -2)
2010 skip = TRUE, relocate = TRUE;
2012 outrel.r_offset += (input_section->output_section->vma
2013 + input_section->output_offset);
2016 memset (&outrel, 0, sizeof outrel);
2018 /* h->dynindx may be -1 if this symbol was marked to
2022 && (r_type == R_X86_64_PC8
2023 || r_type == R_X86_64_PC16
2024 || r_type == R_X86_64_PC32
2027 || !h->def_regular))
2029 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2030 outrel.r_addend = rel->r_addend;
2034 /* This symbol is local, or marked to become local. */
2035 if (r_type == R_X86_64_64)
2038 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2039 outrel.r_addend = relocation + rel->r_addend;
2045 if (bfd_is_abs_section (sec))
2047 else if (sec == NULL || sec->owner == NULL)
2049 bfd_set_error (bfd_error_bad_value);
2056 osec = sec->output_section;
2057 sindx = elf_section_data (osec)->dynindx;
2058 BFD_ASSERT (sindx > 0);
2061 outrel.r_info = ELF64_R_INFO (sindx, r_type);
2062 outrel.r_addend = relocation + rel->r_addend;
2066 sreloc = elf_section_data (input_section)->sreloc;
2070 loc = sreloc->contents;
2071 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2072 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2074 /* If this reloc is against an external symbol, we do
2075 not want to fiddle with the addend. Otherwise, we
2076 need to include the symbol value so that it becomes
2077 an addend for the dynamic reloc. */
2084 case R_X86_64_TLSGD:
2085 case R_X86_64_GOTTPOFF:
2086 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
2087 tls_type = GOT_UNKNOWN;
2088 if (h == NULL && local_got_offsets)
2089 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2092 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2093 if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE)
2094 r_type = R_X86_64_TPOFF32;
2096 if (r_type == R_X86_64_TLSGD)
2098 if (tls_type == GOT_TLS_IE)
2099 r_type = R_X86_64_GOTTPOFF;
2102 if (r_type == R_X86_64_TPOFF32)
2104 BFD_ASSERT (! unresolved_reloc);
2105 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2108 static unsigned char tlsgd[8]
2109 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2111 /* GD->LE transition.
2112 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2113 .word 0x6666; rex64; call __tls_get_addr@plt
2116 leaq foo@tpoff(%rax), %rax */
2117 BFD_ASSERT (rel->r_offset >= 4);
2118 for (i = 0; i < 4; i++)
2119 BFD_ASSERT (bfd_get_8 (input_bfd,
2120 contents + rel->r_offset - 4 + i)
2122 BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2123 for (i = 0; i < 4; i++)
2124 BFD_ASSERT (bfd_get_8 (input_bfd,
2125 contents + rel->r_offset + 4 + i)
2127 BFD_ASSERT (rel + 1 < relend);
2128 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2129 memcpy (contents + rel->r_offset - 4,
2130 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2132 bfd_put_32 (output_bfd, tpoff (info, relocation),
2133 contents + rel->r_offset + 8);
2134 /* Skip R_X86_64_PLT32. */
2140 unsigned int val, type, reg;
2142 /* IE->LE transition:
2143 Originally it can be one of:
2144 movq foo@gottpoff(%rip), %reg
2145 addq foo@gottpoff(%rip), %reg
2148 leaq foo(%reg), %reg
2150 BFD_ASSERT (rel->r_offset >= 3);
2151 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 3);
2152 BFD_ASSERT (val == 0x48 || val == 0x4c);
2153 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2154 BFD_ASSERT (type == 0x8b || type == 0x03);
2155 reg = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2156 BFD_ASSERT ((reg & 0xc7) == 5);
2158 BFD_ASSERT (rel->r_offset + 4 <= input_section->size);
2163 bfd_put_8 (output_bfd, 0x49,
2164 contents + rel->r_offset - 3);
2165 bfd_put_8 (output_bfd, 0xc7,
2166 contents + rel->r_offset - 2);
2167 bfd_put_8 (output_bfd, 0xc0 | reg,
2168 contents + rel->r_offset - 1);
2172 /* addq -> addq - addressing with %rsp/%r12 is
2175 bfd_put_8 (output_bfd, 0x49,
2176 contents + rel->r_offset - 3);
2177 bfd_put_8 (output_bfd, 0x81,
2178 contents + rel->r_offset - 2);
2179 bfd_put_8 (output_bfd, 0xc0 | reg,
2180 contents + rel->r_offset - 1);
2186 bfd_put_8 (output_bfd, 0x4d,
2187 contents + rel->r_offset - 3);
2188 bfd_put_8 (output_bfd, 0x8d,
2189 contents + rel->r_offset - 2);
2190 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2191 contents + rel->r_offset - 1);
2193 bfd_put_32 (output_bfd, tpoff (info, relocation),
2194 contents + rel->r_offset);
2199 if (htab->sgot == NULL)
2203 off = h->got.offset;
2206 if (local_got_offsets == NULL)
2209 off = local_got_offsets[r_symndx];
2216 Elf_Internal_Rela outrel;
2220 if (htab->srelgot == NULL)
2223 outrel.r_offset = (htab->sgot->output_section->vma
2224 + htab->sgot->output_offset + off);
2226 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2227 if (r_type == R_X86_64_TLSGD)
2228 dr_type = R_X86_64_DTPMOD64;
2230 dr_type = R_X86_64_TPOFF64;
2232 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2233 outrel.r_addend = 0;
2234 if (dr_type == R_X86_64_TPOFF64 && indx == 0)
2235 outrel.r_addend = relocation - dtpoff_base (info);
2236 outrel.r_info = ELF64_R_INFO (indx, dr_type);
2238 loc = htab->srelgot->contents;
2239 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2240 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2242 if (r_type == R_X86_64_TLSGD)
2246 BFD_ASSERT (! unresolved_reloc);
2247 bfd_put_64 (output_bfd,
2248 relocation - dtpoff_base (info),
2249 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2253 bfd_put_64 (output_bfd, 0,
2254 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2255 outrel.r_info = ELF64_R_INFO (indx,
2257 outrel.r_offset += GOT_ENTRY_SIZE;
2258 htab->srelgot->reloc_count++;
2259 loc += sizeof (Elf64_External_Rela);
2260 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2267 local_got_offsets[r_symndx] |= 1;
2270 if (off >= (bfd_vma) -2)
2272 if (r_type == ELF64_R_TYPE (rel->r_info))
2274 relocation = htab->sgot->output_section->vma
2275 + htab->sgot->output_offset + off;
2276 unresolved_reloc = FALSE;
2281 static unsigned char tlsgd[8]
2282 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2284 /* GD->IE transition.
2285 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2286 .word 0x6666; rex64; call __tls_get_addr@plt
2289 addq foo@gottpoff(%rip), %rax */
2290 BFD_ASSERT (rel->r_offset >= 4);
2291 for (i = 0; i < 4; i++)
2292 BFD_ASSERT (bfd_get_8 (input_bfd,
2293 contents + rel->r_offset - 4 + i)
2295 BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2296 for (i = 0; i < 4; i++)
2297 BFD_ASSERT (bfd_get_8 (input_bfd,
2298 contents + rel->r_offset + 4 + i)
2300 BFD_ASSERT (rel + 1 < relend);
2301 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2302 memcpy (contents + rel->r_offset - 4,
2303 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
2306 relocation = (htab->sgot->output_section->vma
2307 + htab->sgot->output_offset + off
2309 - input_section->output_section->vma
2310 - input_section->output_offset
2312 bfd_put_32 (output_bfd, relocation,
2313 contents + rel->r_offset + 8);
2314 /* Skip R_X86_64_PLT32. */
2320 case R_X86_64_TLSLD:
2323 /* LD->LE transition:
2325 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr@plt.
2327 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
2328 BFD_ASSERT (rel->r_offset >= 3);
2329 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3)
2331 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
2333 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 1)
2335 BFD_ASSERT (rel->r_offset + 9 <= input_section->size);
2336 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2338 BFD_ASSERT (rel + 1 < relend);
2339 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2340 memcpy (contents + rel->r_offset - 3,
2341 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
2342 /* Skip R_X86_64_PLT32. */
2347 if (htab->sgot == NULL)
2350 off = htab->tls_ld_got.offset;
2355 Elf_Internal_Rela outrel;
2358 if (htab->srelgot == NULL)
2361 outrel.r_offset = (htab->sgot->output_section->vma
2362 + htab->sgot->output_offset + off);
2364 bfd_put_64 (output_bfd, 0,
2365 htab->sgot->contents + off);
2366 bfd_put_64 (output_bfd, 0,
2367 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2368 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
2369 outrel.r_addend = 0;
2370 loc = htab->srelgot->contents;
2371 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2372 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2373 htab->tls_ld_got.offset |= 1;
2375 relocation = htab->sgot->output_section->vma
2376 + htab->sgot->output_offset + off;
2377 unresolved_reloc = FALSE;
2380 case R_X86_64_DTPOFF32:
2381 if (info->shared || (input_section->flags & SEC_CODE) == 0)
2382 relocation -= dtpoff_base (info);
2384 relocation = tpoff (info, relocation);
2387 case R_X86_64_TPOFF32:
2388 BFD_ASSERT (! info->shared);
2389 relocation = tpoff (info, relocation);
2396 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2397 because such sections are not SEC_ALLOC and thus ld.so will
2398 not process them. */
2399 if (unresolved_reloc
2400 && !((input_section->flags & SEC_DEBUGGING) != 0
2402 (*_bfd_error_handler)
2403 (_("%B(%A+0x%lx): unresolvable relocation against symbol `%s'"),
2406 (long) rel->r_offset,
2407 h->root.root.string);
2409 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2410 contents, rel->r_offset,
2411 relocation, rel->r_addend);
2413 if (r != bfd_reloc_ok)
2418 name = h->root.root.string;
2421 name = bfd_elf_string_from_elf_section (input_bfd,
2422 symtab_hdr->sh_link,
2427 name = bfd_section_name (input_bfd, sec);
2430 if (r == bfd_reloc_overflow)
2433 && h->root.type == bfd_link_hash_undefweak
2434 && howto->pc_relative)
2435 /* Ignore reloc overflow on branches to undefweak syms. */
2438 if (! ((*info->callbacks->reloc_overflow)
2439 (info, name, howto->name, (bfd_vma) 0,
2440 input_bfd, input_section, rel->r_offset)))
2445 (*_bfd_error_handler)
2446 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
2447 input_bfd, input_section,
2448 (long) rel->r_offset, name, (int) r);
2457 /* Finish up dynamic symbol handling. We set the contents of various
2458 dynamic sections here. */
2461 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
2462 struct bfd_link_info *info,
2463 struct elf_link_hash_entry *h,
2464 Elf_Internal_Sym *sym)
2466 struct elf64_x86_64_link_hash_table *htab;
2468 htab = elf64_x86_64_hash_table (info);
2470 if (h->plt.offset != (bfd_vma) -1)
2474 Elf_Internal_Rela rela;
2477 /* This symbol has an entry in the procedure linkage table. Set
2479 if (h->dynindx == -1
2480 || htab->splt == NULL
2481 || htab->sgotplt == NULL
2482 || htab->srelplt == NULL)
2485 /* Get the index in the procedure linkage table which
2486 corresponds to this symbol. This is the index of this symbol
2487 in all the symbols for which we are making plt entries. The
2488 first entry in the procedure linkage table is reserved. */
2489 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2491 /* Get the offset into the .got table of the entry that
2492 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
2493 bytes. The first three are reserved for the dynamic linker. */
2494 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
2496 /* Fill in the entry in the procedure linkage table. */
2497 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
2500 /* Insert the relocation positions of the plt section. The magic
2501 numbers at the end of the statements are the positions of the
2502 relocations in the plt section. */
2503 /* Put offset for jmp *name@GOTPCREL(%rip), since the
2504 instruction uses 6 bytes, subtract this value. */
2505 bfd_put_32 (output_bfd,
2506 (htab->sgotplt->output_section->vma
2507 + htab->sgotplt->output_offset
2509 - htab->splt->output_section->vma
2510 - htab->splt->output_offset
2513 htab->splt->contents + h->plt.offset + 2);
2514 /* Put relocation index. */
2515 bfd_put_32 (output_bfd, plt_index,
2516 htab->splt->contents + h->plt.offset + 7);
2517 /* Put offset for jmp .PLT0. */
2518 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
2519 htab->splt->contents + h->plt.offset + 12);
2521 /* Fill in the entry in the global offset table, initially this
2522 points to the pushq instruction in the PLT which is at offset 6. */
2523 bfd_put_64 (output_bfd, (htab->splt->output_section->vma
2524 + htab->splt->output_offset
2525 + h->plt.offset + 6),
2526 htab->sgotplt->contents + got_offset);
2528 /* Fill in the entry in the .rela.plt section. */
2529 rela.r_offset = (htab->sgotplt->output_section->vma
2530 + htab->sgotplt->output_offset
2532 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
2534 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
2535 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2537 if (!h->def_regular)
2539 /* Mark the symbol as undefined, rather than as defined in
2540 the .plt section. Leave the value if there were any
2541 relocations where pointer equality matters (this is a clue
2542 for the dynamic linker, to make function pointer
2543 comparisons work between an application and shared
2544 library), otherwise set it to zero. If a function is only
2545 called from a binary, there is no need to slow down
2546 shared libraries because of that. */
2547 sym->st_shndx = SHN_UNDEF;
2548 if (!h->pointer_equality_needed)
2553 if (h->got.offset != (bfd_vma) -1
2554 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_GD
2555 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
2557 Elf_Internal_Rela rela;
2560 /* This symbol has an entry in the global offset table. Set it
2562 if (htab->sgot == NULL || htab->srelgot == NULL)
2565 rela.r_offset = (htab->sgot->output_section->vma
2566 + htab->sgot->output_offset
2567 + (h->got.offset &~ (bfd_vma) 1));
2569 /* If this is a static link, or it is a -Bsymbolic link and the
2570 symbol is defined locally or was forced to be local because
2571 of a version file, we just want to emit a RELATIVE reloc.
2572 The entry in the global offset table will already have been
2573 initialized in the relocate_section function. */
2575 && SYMBOL_REFERENCES_LOCAL (info, h))
2577 BFD_ASSERT((h->got.offset & 1) != 0);
2578 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2579 rela.r_addend = (h->root.u.def.value
2580 + h->root.u.def.section->output_section->vma
2581 + h->root.u.def.section->output_offset);
2585 BFD_ASSERT((h->got.offset & 1) == 0);
2586 bfd_put_64 (output_bfd, (bfd_vma) 0,
2587 htab->sgot->contents + h->got.offset);
2588 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
2592 loc = htab->srelgot->contents;
2593 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2594 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2599 Elf_Internal_Rela rela;
2602 /* This symbol needs a copy reloc. Set it up. */
2604 if (h->dynindx == -1
2605 || (h->root.type != bfd_link_hash_defined
2606 && h->root.type != bfd_link_hash_defweak)
2607 || htab->srelbss == NULL)
2610 rela.r_offset = (h->root.u.def.value
2611 + h->root.u.def.section->output_section->vma
2612 + h->root.u.def.section->output_offset);
2613 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
2615 loc = htab->srelbss->contents;
2616 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
2617 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2620 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2621 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2622 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2623 sym->st_shndx = SHN_ABS;
2628 /* Used to decide how to sort relocs in an optimal manner for the
2629 dynamic linker, before writing them out. */
2631 static enum elf_reloc_type_class
2632 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
2634 switch ((int) ELF64_R_TYPE (rela->r_info))
2636 case R_X86_64_RELATIVE:
2637 return reloc_class_relative;
2638 case R_X86_64_JUMP_SLOT:
2639 return reloc_class_plt;
2641 return reloc_class_copy;
2643 return reloc_class_normal;
2647 /* Finish up the dynamic sections. */
2650 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
2652 struct elf64_x86_64_link_hash_table *htab;
2656 htab = elf64_x86_64_hash_table (info);
2657 dynobj = htab->elf.dynobj;
2658 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2660 if (htab->elf.dynamic_sections_created)
2662 Elf64_External_Dyn *dyncon, *dynconend;
2664 if (sdyn == NULL || htab->sgot == NULL)
2667 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2668 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2669 for (; dyncon < dynconend; dyncon++)
2671 Elf_Internal_Dyn dyn;
2674 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2683 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2687 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2691 s = htab->srelplt->output_section;
2692 dyn.d_un.d_val = s->size;
2696 /* The procedure linkage table relocs (DT_JMPREL) should
2697 not be included in the overall relocs (DT_RELA).
2698 Therefore, we override the DT_RELASZ entry here to
2699 make it not include the JMPREL relocs. Since the
2700 linker script arranges for .rela.plt to follow all
2701 other relocation sections, we don't have to worry
2702 about changing the DT_RELA entry. */
2703 if (htab->srelplt != NULL)
2705 s = htab->srelplt->output_section;
2706 dyn.d_un.d_val -= s->size;
2711 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2714 /* Fill in the special first entry in the procedure linkage table. */
2715 if (htab->splt && htab->splt->size > 0)
2717 /* Fill in the first entry in the procedure linkage table. */
2718 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
2720 /* Add offset for pushq GOT+8(%rip), since the instruction
2721 uses 6 bytes subtract this value. */
2722 bfd_put_32 (output_bfd,
2723 (htab->sgotplt->output_section->vma
2724 + htab->sgotplt->output_offset
2726 - htab->splt->output_section->vma
2727 - htab->splt->output_offset
2729 htab->splt->contents + 2);
2730 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
2731 the end of the instruction. */
2732 bfd_put_32 (output_bfd,
2733 (htab->sgotplt->output_section->vma
2734 + htab->sgotplt->output_offset
2736 - htab->splt->output_section->vma
2737 - htab->splt->output_offset
2739 htab->splt->contents + 8);
2741 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
2748 /* Fill in the first three entries in the global offset table. */
2749 if (htab->sgotplt->size > 0)
2751 /* Set the first entry in the global offset table to the address of
2752 the dynamic section. */
2754 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
2756 bfd_put_64 (output_bfd,
2757 sdyn->output_section->vma + sdyn->output_offset,
2758 htab->sgotplt->contents);
2759 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
2760 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
2761 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
2764 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
2768 if (htab->sgot && htab->sgot->size > 0)
2769 elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize
2775 /* Return address for Ith PLT stub in section PLT, for relocation REL
2776 or (bfd_vma) -1 if it should not be included. */
2779 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
2780 const arelent *rel ATTRIBUTE_UNUSED)
2782 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
2785 /* Handle an x86-64 specific section when reading an object file. This
2786 is called when elfcode.h finds a section with an unknown type. */
2789 elf64_x86_64_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr, const char *name)
2791 if (hdr->sh_type != SHT_X86_64_UNWIND)
2794 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2800 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
2801 #define TARGET_LITTLE_NAME "elf64-x86-64"
2802 #define ELF_ARCH bfd_arch_i386
2803 #define ELF_MACHINE_CODE EM_X86_64
2804 #define ELF_MAXPAGESIZE 0x100000
2806 #define elf_backend_can_gc_sections 1
2807 #define elf_backend_can_refcount 1
2808 #define elf_backend_want_got_plt 1
2809 #define elf_backend_plt_readonly 1
2810 #define elf_backend_want_plt_sym 0
2811 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
2812 #define elf_backend_rela_normal 1
2814 #define elf_info_to_howto elf64_x86_64_info_to_howto
2816 #define bfd_elf64_bfd_link_hash_table_create \
2817 elf64_x86_64_link_hash_table_create
2818 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
2820 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
2821 #define elf_backend_check_relocs elf64_x86_64_check_relocs
2822 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
2823 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
2824 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
2825 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
2826 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
2827 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
2828 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
2829 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
2830 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
2831 #define elf_backend_relocate_section elf64_x86_64_relocate_section
2832 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
2833 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
2834 #define elf_backend_object_p elf64_x86_64_elf_object_p
2835 #define bfd_elf64_mkobject elf64_x86_64_mkobject
2837 #define elf_backend_section_from_shdr \
2838 elf64_x86_64_section_from_shdr
2840 #include "elf64-target.h"