1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 #include "elf/x86-64.h"
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30 #define MINUS_ONE (~ (bfd_vma) 0)
32 /* The relocation "howto" table. Order of fields:
33 type, size, bitsize, pc_relative, complain_on_overflow,
34 special_function, name, partial_inplace, src_mask, dst_pack, pcrel_offset. */
35 static reloc_howto_type x86_64_elf_howto_table[] =
37 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
38 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
40 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
41 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
43 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
44 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
46 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
47 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
49 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
50 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
52 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
53 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
55 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
56 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
58 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
59 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
61 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
64 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
65 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
67 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
68 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
70 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
71 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
73 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
74 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
75 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
77 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
78 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
79 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
80 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
81 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
84 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
85 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
87 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
90 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
91 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
93 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
94 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
96 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
97 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
99 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
102 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
103 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
106 /* GNU extension to record C++ vtable hierarchy. */
107 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
108 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
110 /* GNU extension to record C++ vtable member usage. */
111 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
112 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
116 /* Map BFD relocs to the x86_64 elf relocs. */
119 bfd_reloc_code_real_type bfd_reloc_val;
120 unsigned char elf_reloc_val;
123 static const struct elf_reloc_map x86_64_reloc_map[] =
125 { BFD_RELOC_NONE, R_X86_64_NONE, },
126 { BFD_RELOC_64, R_X86_64_64, },
127 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
128 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
129 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
130 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
131 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
132 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
133 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
134 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
135 { BFD_RELOC_32, R_X86_64_32, },
136 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
137 { BFD_RELOC_16, R_X86_64_16, },
138 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
139 { BFD_RELOC_8, R_X86_64_8, },
140 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
141 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
142 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
143 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
144 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
145 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
146 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
147 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
148 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
149 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
150 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
154 /* Given a BFD reloc type, return a HOWTO structure. */
155 static reloc_howto_type *
156 elf64_x86_64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
157 bfd_reloc_code_real_type code)
161 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
164 if (x86_64_reloc_map[i].bfd_reloc_val == code)
165 return &x86_64_elf_howto_table[i];
170 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
173 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
174 Elf_Internal_Rela *dst)
178 r_type = ELF64_R_TYPE (dst->r_info);
179 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT)
181 BFD_ASSERT (r_type <= (unsigned int) R_X86_64_TPOFF32);
186 BFD_ASSERT (r_type < (unsigned int) R_X86_64_max);
187 i = r_type - ((unsigned int) R_X86_64_GNU_VTINHERIT - R_X86_64_TPOFF32 - 1);
189 cache_ptr->howto = &x86_64_elf_howto_table[i];
190 BFD_ASSERT (r_type == cache_ptr->howto->type);
193 /* Support for core dump NOTE sections. */
195 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
200 switch (note->descsz)
205 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
207 elf_tdata (abfd)->core_signal
208 = bfd_get_16 (abfd, note->descdata + 12);
211 elf_tdata (abfd)->core_pid
212 = bfd_get_32 (abfd, note->descdata + 32);
221 /* Make a ".reg/999" section. */
222 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
223 raw_size, note->descpos + offset);
227 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
229 switch (note->descsz)
234 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
235 elf_tdata (abfd)->core_program
236 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
237 elf_tdata (abfd)->core_command
238 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
241 /* Note that for some reason, a spurious space is tacked
242 onto the end of the args in some (at least one anyway)
243 implementations, so strip it off if it exists. */
246 char *command = elf_tdata (abfd)->core_command;
247 int n = strlen (command);
249 if (0 < n && command[n - 1] == ' ')
250 command[n - 1] = '\0';
256 /* Functions for the x86-64 ELF linker. */
258 /* The name of the dynamic interpreter. This is put in the .interp
261 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
263 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
264 copying dynamic variables from a shared lib into an app's dynbss
265 section, and instead use a dynamic relocation to point into the
267 #define ELIMINATE_COPY_RELOCS 1
269 /* The size in bytes of an entry in the global offset table. */
271 #define GOT_ENTRY_SIZE 8
273 /* The size in bytes of an entry in the procedure linkage table. */
275 #define PLT_ENTRY_SIZE 16
277 /* The first entry in a procedure linkage table looks like this. See the
278 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
280 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
282 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
283 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
284 0x90, 0x90, 0x90, 0x90 /* pad out to 16 bytes with nops. */
287 /* Subsequent entries in a procedure linkage table look like this. */
289 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
291 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
292 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
293 0x68, /* pushq immediate */
294 0, 0, 0, 0, /* replaced with index into relocation table. */
295 0xe9, /* jmp relative */
296 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
299 /* The x86-64 linker needs to keep track of the number of relocs that
300 it decides to copy as dynamic relocs in check_relocs for each symbol.
301 This is so that it can later discard them if they are found to be
302 unnecessary. We store the information in a field extending the
303 regular ELF linker hash table. */
305 struct elf64_x86_64_dyn_relocs
308 struct elf64_x86_64_dyn_relocs *next;
310 /* The input section of the reloc. */
313 /* Total number of relocs copied for the input section. */
316 /* Number of pc-relative relocs copied for the input section. */
317 bfd_size_type pc_count;
320 /* x86-64 ELF linker hash entry. */
322 struct elf64_x86_64_link_hash_entry
324 struct elf_link_hash_entry elf;
326 /* Track dynamic relocs copied for this symbol. */
327 struct elf64_x86_64_dyn_relocs *dyn_relocs;
329 #define GOT_UNKNOWN 0
333 unsigned char tls_type;
336 #define elf64_x86_64_hash_entry(ent) \
337 ((struct elf64_x86_64_link_hash_entry *)(ent))
339 struct elf64_x86_64_obj_tdata
341 struct elf_obj_tdata root;
343 /* tls_type for each local got entry. */
344 char *local_got_tls_type;
347 #define elf64_x86_64_tdata(abfd) \
348 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
350 #define elf64_x86_64_local_got_tls_type(abfd) \
351 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
354 /* x86-64 ELF linker hash table. */
356 struct elf64_x86_64_link_hash_table
358 struct elf_link_hash_table elf;
360 /* Short-cuts to get to dynamic linker sections. */
370 bfd_signed_vma refcount;
374 /* Small local sym to section mapping cache. */
375 struct sym_sec_cache sym_sec;
378 /* Get the x86-64 ELF linker hash table from a link_info structure. */
380 #define elf64_x86_64_hash_table(p) \
381 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
383 /* Create an entry in an x86-64 ELF linker hash table. */
385 static struct bfd_hash_entry *
386 link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
389 /* Allocate the structure if it has not already been allocated by a
393 entry = bfd_hash_allocate (table,
394 sizeof (struct elf64_x86_64_link_hash_entry));
399 /* Call the allocation method of the superclass. */
400 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
403 struct elf64_x86_64_link_hash_entry *eh;
405 eh = (struct elf64_x86_64_link_hash_entry *) entry;
406 eh->dyn_relocs = NULL;
407 eh->tls_type = GOT_UNKNOWN;
413 /* Create an X86-64 ELF linker hash table. */
415 static struct bfd_link_hash_table *
416 elf64_x86_64_link_hash_table_create (bfd *abfd)
418 struct elf64_x86_64_link_hash_table *ret;
419 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
421 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
425 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
438 ret->sym_sec.abfd = NULL;
439 ret->tls_ld_got.refcount = 0;
441 return &ret->elf.root;
444 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
445 shortcuts to them in our hash table. */
448 create_got_section (bfd *dynobj, struct bfd_link_info *info)
450 struct elf64_x86_64_link_hash_table *htab;
452 if (! _bfd_elf_create_got_section (dynobj, info))
455 htab = elf64_x86_64_hash_table (info);
456 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
457 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
458 if (!htab->sgot || !htab->sgotplt)
461 htab->srelgot = bfd_make_section (dynobj, ".rela.got");
462 if (htab->srelgot == NULL
463 || ! bfd_set_section_flags (dynobj, htab->srelgot,
464 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
465 | SEC_IN_MEMORY | SEC_LINKER_CREATED
467 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
472 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
473 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
477 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
479 struct elf64_x86_64_link_hash_table *htab;
481 htab = elf64_x86_64_hash_table (info);
482 if (!htab->sgot && !create_got_section (dynobj, info))
485 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
488 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
489 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
490 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
492 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
494 if (!htab->splt || !htab->srelplt || !htab->sdynbss
495 || (!info->shared && !htab->srelbss))
501 /* Copy the extra info we tack onto an elf_link_hash_entry. */
504 elf64_x86_64_copy_indirect_symbol (const struct elf_backend_data *bed,
505 struct elf_link_hash_entry *dir,
506 struct elf_link_hash_entry *ind)
508 struct elf64_x86_64_link_hash_entry *edir, *eind;
510 edir = (struct elf64_x86_64_link_hash_entry *) dir;
511 eind = (struct elf64_x86_64_link_hash_entry *) ind;
513 if (eind->dyn_relocs != NULL)
515 if (edir->dyn_relocs != NULL)
517 struct elf64_x86_64_dyn_relocs **pp;
518 struct elf64_x86_64_dyn_relocs *p;
520 if (ind->root.type == bfd_link_hash_indirect)
523 /* Add reloc counts against the weak sym to the strong sym
524 list. Merge any entries against the same section. */
525 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
527 struct elf64_x86_64_dyn_relocs *q;
529 for (q = edir->dyn_relocs; q != NULL; q = q->next)
530 if (q->sec == p->sec)
532 q->pc_count += p->pc_count;
533 q->count += p->count;
540 *pp = edir->dyn_relocs;
543 edir->dyn_relocs = eind->dyn_relocs;
544 eind->dyn_relocs = NULL;
547 if (ind->root.type == bfd_link_hash_indirect
548 && dir->got.refcount <= 0)
550 edir->tls_type = eind->tls_type;
551 eind->tls_type = GOT_UNKNOWN;
554 if (ELIMINATE_COPY_RELOCS
555 && ind->root.type != bfd_link_hash_indirect
556 && (dir->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
557 /* If called to transfer flags for a weakdef during processing
558 of elf_adjust_dynamic_symbol, don't copy ELF_LINK_NON_GOT_REF.
559 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
560 dir->elf_link_hash_flags |=
561 (ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
562 | ELF_LINK_HASH_REF_REGULAR
563 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
564 | ELF_LINK_HASH_NEEDS_PLT));
566 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
570 elf64_x86_64_mkobject (bfd *abfd)
572 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
573 abfd->tdata.any = bfd_zalloc (abfd, amt);
574 if (abfd->tdata.any == NULL)
580 elf64_x86_64_elf_object_p (bfd *abfd)
582 /* Set the right machine number for an x86-64 elf64 file. */
583 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
588 elf64_x86_64_tls_transition (struct bfd_link_info *info, int r_type, int is_local)
596 case R_X86_64_GOTTPOFF:
598 return R_X86_64_TPOFF32;
599 return R_X86_64_GOTTPOFF;
601 return R_X86_64_TPOFF32;
607 /* Look through the relocs for a section during the first phase, and
608 calculate needed space in the global offset table, procedure
609 linkage table, and dynamic reloc sections. */
612 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec,
613 const Elf_Internal_Rela *relocs)
615 struct elf64_x86_64_link_hash_table *htab;
616 Elf_Internal_Shdr *symtab_hdr;
617 struct elf_link_hash_entry **sym_hashes;
618 const Elf_Internal_Rela *rel;
619 const Elf_Internal_Rela *rel_end;
622 if (info->relocatable)
625 htab = elf64_x86_64_hash_table (info);
626 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
627 sym_hashes = elf_sym_hashes (abfd);
631 rel_end = relocs + sec->reloc_count;
632 for (rel = relocs; rel < rel_end; rel++)
635 unsigned long r_symndx;
636 struct elf_link_hash_entry *h;
638 r_symndx = ELF64_R_SYM (rel->r_info);
639 r_type = ELF64_R_TYPE (rel->r_info);
641 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
643 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
644 bfd_archive_filename (abfd),
649 if (r_symndx < symtab_hdr->sh_info)
652 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
654 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
658 htab->tls_ld_got.refcount += 1;
661 case R_X86_64_TPOFF32:
664 (*_bfd_error_handler)
665 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
666 bfd_archive_filename (abfd),
667 x86_64_elf_howto_table[r_type].name);
668 bfd_set_error (bfd_error_bad_value);
673 case R_X86_64_GOTTPOFF:
675 info->flags |= DF_STATIC_TLS;
679 case R_X86_64_GOTPCREL:
681 /* This symbol requires a global offset table entry. */
683 int tls_type, old_tls_type;
687 default: tls_type = GOT_NORMAL; break;
688 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
689 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
694 h->got.refcount += 1;
695 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
699 bfd_signed_vma *local_got_refcounts;
701 /* This is a global offset table entry for a local symbol. */
702 local_got_refcounts = elf_local_got_refcounts (abfd);
703 if (local_got_refcounts == NULL)
707 size = symtab_hdr->sh_info;
708 size *= sizeof (bfd_signed_vma) + sizeof (char);
709 local_got_refcounts = ((bfd_signed_vma *)
710 bfd_zalloc (abfd, size));
711 if (local_got_refcounts == NULL)
713 elf_local_got_refcounts (abfd) = local_got_refcounts;
714 elf64_x86_64_local_got_tls_type (abfd)
715 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
717 local_got_refcounts[r_symndx] += 1;
719 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
722 /* If a TLS symbol is accessed using IE at least once,
723 there is no point to use dynamic model for it. */
724 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
725 && (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE))
727 if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD)
728 tls_type = old_tls_type;
731 (*_bfd_error_handler)
732 (_("%s: %s' accessed both as normal and thread local symbol"),
733 bfd_archive_filename (abfd),
734 h ? h->root.root.string : "<local>");
739 if (old_tls_type != tls_type)
742 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
744 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
749 //case R_X86_64_GOTPCREL:
751 if (htab->sgot == NULL)
753 if (htab->elf.dynobj == NULL)
754 htab->elf.dynobj = abfd;
755 if (!create_got_section (htab->elf.dynobj, info))
761 /* This symbol requires a procedure linkage table entry. We
762 actually build the entry in adjust_dynamic_symbol,
763 because this might be a case of linking PIC code which is
764 never referenced by a dynamic object, in which case we
765 don't need to generate a procedure linkage table entry
768 /* If this is a local symbol, we resolve it directly without
769 creating a procedure linkage table entry. */
773 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
774 h->plt.refcount += 1;
781 /* Let's help debug shared library creation. These relocs
782 cannot be used in shared libs. Don't error out for
783 sections we don't care about, such as debug sections or
784 non-constant sections. */
786 && (sec->flags & SEC_ALLOC) != 0
787 && (sec->flags & SEC_READONLY) != 0)
789 (*_bfd_error_handler)
790 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
791 bfd_archive_filename (abfd),
792 x86_64_elf_howto_table[r_type].name);
793 bfd_set_error (bfd_error_bad_value);
802 if (h != NULL && !info->shared)
804 /* If this reloc is in a read-only section, we might
805 need a copy reloc. We can't check reliably at this
806 stage whether the section is read-only, as input
807 sections have not yet been mapped to output sections.
808 Tentatively set the flag for now, and correct in
809 adjust_dynamic_symbol. */
810 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
812 /* We may need a .plt entry if the function this reloc
813 refers to is in a shared lib. */
814 h->plt.refcount += 1;
817 /* If we are creating a shared library, and this is a reloc
818 against a global symbol, or a non PC relative reloc
819 against a local symbol, then we need to copy the reloc
820 into the shared library. However, if we are linking with
821 -Bsymbolic, we do not need to copy a reloc against a
822 global symbol which is defined in an object we are
823 including in the link (i.e., DEF_REGULAR is set). At
824 this point we have not seen all the input files, so it is
825 possible that DEF_REGULAR is not set now but will be set
826 later (it is never cleared). In case of a weak definition,
827 DEF_REGULAR may be cleared later by a strong definition in
828 a shared library. We account for that possibility below by
829 storing information in the relocs_copied field of the hash
830 table entry. A similar situation occurs when creating
831 shared libraries and symbol visibility changes render the
834 If on the other hand, we are creating an executable, we
835 may need to keep relocations for symbols satisfied by a
836 dynamic library if we manage to avoid copy relocs for the
839 && (sec->flags & SEC_ALLOC) != 0
840 && (((r_type != R_X86_64_PC8)
841 && (r_type != R_X86_64_PC16)
842 && (r_type != R_X86_64_PC32))
845 || h->root.type == bfd_link_hash_defweak
846 || (h->elf_link_hash_flags
847 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
848 || (ELIMINATE_COPY_RELOCS
850 && (sec->flags & SEC_ALLOC) != 0
852 && (h->root.type == bfd_link_hash_defweak
853 || (h->elf_link_hash_flags
854 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
856 struct elf64_x86_64_dyn_relocs *p;
857 struct elf64_x86_64_dyn_relocs **head;
859 /* We must copy these reloc types into the output file.
860 Create a reloc section in dynobj and make room for
867 name = (bfd_elf_string_from_elf_section
869 elf_elfheader (abfd)->e_shstrndx,
870 elf_section_data (sec)->rel_hdr.sh_name));
874 if (strncmp (name, ".rela", 5) != 0
875 || strcmp (bfd_get_section_name (abfd, sec),
878 (*_bfd_error_handler)
879 (_("%s: bad relocation section name `%s\'"),
880 bfd_archive_filename (abfd), name);
883 if (htab->elf.dynobj == NULL)
884 htab->elf.dynobj = abfd;
886 dynobj = htab->elf.dynobj;
888 sreloc = bfd_get_section_by_name (dynobj, name);
893 sreloc = bfd_make_section (dynobj, name);
894 flags = (SEC_HAS_CONTENTS | SEC_READONLY
895 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
896 if ((sec->flags & SEC_ALLOC) != 0)
897 flags |= SEC_ALLOC | SEC_LOAD;
899 || ! bfd_set_section_flags (dynobj, sreloc, flags)
900 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
903 elf_section_data (sec)->sreloc = sreloc;
906 /* If this is a global symbol, we count the number of
907 relocations we need for this symbol. */
910 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
914 /* Track dynamic relocs needed for local syms too.
915 We really need local syms available to do this
919 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
924 head = ((struct elf64_x86_64_dyn_relocs **)
925 &elf_section_data (s)->local_dynrel);
929 if (p == NULL || p->sec != sec)
931 bfd_size_type amt = sizeof *p;
932 p = ((struct elf64_x86_64_dyn_relocs *)
933 bfd_alloc (htab->elf.dynobj, amt));
944 if (r_type == R_X86_64_PC8
945 || r_type == R_X86_64_PC16
946 || r_type == R_X86_64_PC32)
951 /* This relocation describes the C++ object vtable hierarchy.
952 Reconstruct it for later use during GC. */
953 case R_X86_64_GNU_VTINHERIT:
954 if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
958 /* This relocation describes which C++ vtable entries are actually
959 used. Record for later use during GC. */
960 case R_X86_64_GNU_VTENTRY:
961 if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_addend))
973 /* Return the section that should be marked against GC for a given
977 elf64_x86_64_gc_mark_hook (asection *sec,
978 struct bfd_link_info *info ATTRIBUTE_UNUSED,
979 Elf_Internal_Rela *rel,
980 struct elf_link_hash_entry *h,
981 Elf_Internal_Sym *sym)
985 switch (ELF64_R_TYPE (rel->r_info))
987 case R_X86_64_GNU_VTINHERIT:
988 case R_X86_64_GNU_VTENTRY:
992 switch (h->root.type)
994 case bfd_link_hash_defined:
995 case bfd_link_hash_defweak:
996 return h->root.u.def.section;
998 case bfd_link_hash_common:
999 return h->root.u.c.p->section;
1007 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1012 /* Update the got entry reference counts for the section being removed. */
1015 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1016 asection *sec, const Elf_Internal_Rela *relocs)
1018 Elf_Internal_Shdr *symtab_hdr;
1019 struct elf_link_hash_entry **sym_hashes;
1020 bfd_signed_vma *local_got_refcounts;
1021 const Elf_Internal_Rela *rel, *relend;
1023 elf_section_data (sec)->local_dynrel = NULL;
1025 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1026 sym_hashes = elf_sym_hashes (abfd);
1027 local_got_refcounts = elf_local_got_refcounts (abfd);
1029 relend = relocs + sec->reloc_count;
1030 for (rel = relocs; rel < relend; rel++)
1032 unsigned long r_symndx;
1033 unsigned int r_type;
1034 struct elf_link_hash_entry *h = NULL;
1036 r_symndx = ELF64_R_SYM (rel->r_info);
1037 if (r_symndx >= symtab_hdr->sh_info)
1039 struct elf64_x86_64_link_hash_entry *eh;
1040 struct elf64_x86_64_dyn_relocs **pp;
1041 struct elf64_x86_64_dyn_relocs *p;
1043 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1044 eh = (struct elf64_x86_64_link_hash_entry *) h;
1046 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1049 /* Everything must go for SEC. */
1055 r_type = ELF64_R_TYPE (rel->r_info);
1056 r_type = elf64_x86_64_tls_transition (info, r_type, h != NULL);
1059 case R_X86_64_TLSLD:
1060 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1061 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1064 case R_X86_64_TLSGD:
1065 case R_X86_64_GOTTPOFF:
1066 case R_X86_64_GOT32:
1067 case R_X86_64_GOTPCREL:
1070 if (h->got.refcount > 0)
1071 h->got.refcount -= 1;
1073 else if (local_got_refcounts != NULL)
1075 if (local_got_refcounts[r_symndx] > 0)
1076 local_got_refcounts[r_symndx] -= 1;
1092 case R_X86_64_PLT32:
1095 if (h->plt.refcount > 0)
1096 h->plt.refcount -= 1;
1108 /* Adjust a symbol defined by a dynamic object and referenced by a
1109 regular object. The current definition is in some section of the
1110 dynamic object, but we're not including those sections. We have to
1111 change the definition to something the rest of the link can
1115 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1116 struct elf_link_hash_entry *h)
1118 struct elf64_x86_64_link_hash_table *htab;
1120 unsigned int power_of_two;
1122 /* If this is a function, put it in the procedure linkage table. We
1123 will fill in the contents of the procedure linkage table later,
1124 when we know the address of the .got section. */
1125 if (h->type == STT_FUNC
1126 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1128 if (h->plt.refcount <= 0
1129 || SYMBOL_CALLS_LOCAL (info, h)
1130 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1131 && h->root.type == bfd_link_hash_undefweak))
1133 /* This case can occur if we saw a PLT32 reloc in an input
1134 file, but the symbol was never referred to by a dynamic
1135 object, or if all references were garbage collected. In
1136 such a case, we don't actually need to build a procedure
1137 linkage table, and we can just do a PC32 reloc instead. */
1138 h->plt.offset = (bfd_vma) -1;
1139 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1145 /* It's possible that we incorrectly decided a .plt reloc was
1146 needed for an R_X86_64_PC32 reloc to a non-function sym in
1147 check_relocs. We can't decide accurately between function and
1148 non-function syms in check-relocs; Objects loaded later in
1149 the link may change h->type. So fix it now. */
1150 h->plt.offset = (bfd_vma) -1;
1152 /* If this is a weak symbol, and there is a real definition, the
1153 processor independent code will have arranged for us to see the
1154 real definition first, and we can just use the same value. */
1155 if (h->weakdef != NULL)
1157 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1158 || h->weakdef->root.type == bfd_link_hash_defweak);
1159 h->root.u.def.section = h->weakdef->root.u.def.section;
1160 h->root.u.def.value = h->weakdef->root.u.def.value;
1161 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1162 h->elf_link_hash_flags
1163 = ((h->elf_link_hash_flags & ~ELF_LINK_NON_GOT_REF)
1164 | (h->weakdef->elf_link_hash_flags & ELF_LINK_NON_GOT_REF));
1168 /* This is a reference to a symbol defined by a dynamic object which
1169 is not a function. */
1171 /* If we are creating a shared library, we must presume that the
1172 only references to the symbol are via the global offset table.
1173 For such cases we need not do anything here; the relocations will
1174 be handled correctly by relocate_section. */
1178 /* If there are no references to this symbol that do not use the
1179 GOT, we don't need to generate a copy reloc. */
1180 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1183 /* If -z nocopyreloc was given, we won't generate them either. */
1184 if (info->nocopyreloc)
1186 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1190 if (ELIMINATE_COPY_RELOCS)
1192 struct elf64_x86_64_link_hash_entry * eh;
1193 struct elf64_x86_64_dyn_relocs *p;
1195 eh = (struct elf64_x86_64_link_hash_entry *) h;
1196 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1198 s = p->sec->output_section;
1199 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1203 /* If we didn't find any dynamic relocs in read-only sections, then
1204 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1207 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1212 /* We must allocate the symbol in our .dynbss section, which will
1213 become part of the .bss section of the executable. There will be
1214 an entry for this symbol in the .dynsym section. The dynamic
1215 object will contain position independent code, so all references
1216 from the dynamic object to this symbol will go through the global
1217 offset table. The dynamic linker will use the .dynsym entry to
1218 determine the address it must put in the global offset table, so
1219 both the dynamic object and the regular object will refer to the
1220 same memory location for the variable. */
1222 htab = elf64_x86_64_hash_table (info);
1224 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1225 to copy the initial value out of the dynamic object and into the
1226 runtime process image. */
1227 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1229 htab->srelbss->_raw_size += sizeof (Elf64_External_Rela);
1230 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1233 /* We need to figure out the alignment required for this symbol. I
1234 have no idea how ELF linkers handle this. 16-bytes is the size
1235 of the largest type that requires hard alignment -- long double. */
1236 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
1238 power_of_two = bfd_log2 (h->size);
1239 if (power_of_two > 4)
1242 /* Apply the required alignment. */
1244 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
1245 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1247 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1251 /* Define the symbol as being at this point in the section. */
1252 h->root.u.def.section = s;
1253 h->root.u.def.value = s->_raw_size;
1255 /* Increment the section size to make room for the symbol. */
1256 s->_raw_size += h->size;
1261 /* This is the condition under which elf64_x86_64_finish_dynamic_symbol
1262 will be called from elflink.h. If elflink.h doesn't call our
1263 finish_dynamic_symbol routine, we'll need to do something about
1264 initializing any .plt and .got entries in elf64_x86_64_relocate_section. */
1265 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, SHARED, H) \
1268 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1269 && ((H)->dynindx != -1 \
1270 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1272 /* Allocate space in .plt, .got and associated reloc sections for
1276 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1278 struct bfd_link_info *info;
1279 struct elf64_x86_64_link_hash_table *htab;
1280 struct elf64_x86_64_link_hash_entry *eh;
1281 struct elf64_x86_64_dyn_relocs *p;
1283 if (h->root.type == bfd_link_hash_indirect)
1286 if (h->root.type == bfd_link_hash_warning)
1287 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1289 info = (struct bfd_link_info *) inf;
1290 htab = elf64_x86_64_hash_table (info);
1292 if (htab->elf.dynamic_sections_created
1293 && h->plt.refcount > 0)
1295 /* Make sure this symbol is output as a dynamic symbol.
1296 Undefined weak syms won't yet be marked as dynamic. */
1297 if (h->dynindx == -1
1298 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1300 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1305 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1307 asection *s = htab->splt;
1309 /* If this is the first .plt entry, make room for the special
1311 if (s->_raw_size == 0)
1312 s->_raw_size += PLT_ENTRY_SIZE;
1314 h->plt.offset = s->_raw_size;
1316 /* If this symbol is not defined in a regular file, and we are
1317 not generating a shared library, then set the symbol to this
1318 location in the .plt. This is required to make function
1319 pointers compare as equal between the normal executable and
1320 the shared library. */
1322 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1324 h->root.u.def.section = s;
1325 h->root.u.def.value = h->plt.offset;
1328 /* Make room for this entry. */
1329 s->_raw_size += PLT_ENTRY_SIZE;
1331 /* We also need to make an entry in the .got.plt section, which
1332 will be placed in the .got section by the linker script. */
1333 htab->sgotplt->_raw_size += GOT_ENTRY_SIZE;
1335 /* We also need to make an entry in the .rela.plt section. */
1336 htab->srelplt->_raw_size += sizeof (Elf64_External_Rela);
1340 h->plt.offset = (bfd_vma) -1;
1341 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1346 h->plt.offset = (bfd_vma) -1;
1347 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1350 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1351 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1352 if (h->got.refcount > 0
1355 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1356 h->got.offset = (bfd_vma) -1;
1357 else if (h->got.refcount > 0)
1361 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1363 /* Make sure this symbol is output as a dynamic symbol.
1364 Undefined weak syms won't yet be marked as dynamic. */
1365 if (h->dynindx == -1
1366 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1368 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1373 h->got.offset = s->_raw_size;
1374 s->_raw_size += GOT_ENTRY_SIZE;
1375 /* R_X86_64_TLSGD needs 2 consecutive GOT slots. */
1376 if (tls_type == GOT_TLS_GD)
1377 s->_raw_size += GOT_ENTRY_SIZE;
1378 dyn = htab->elf.dynamic_sections_created;
1379 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1381 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1382 if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
1383 || tls_type == GOT_TLS_IE)
1384 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1385 else if (tls_type == GOT_TLS_GD)
1386 htab->srelgot->_raw_size += 2 * sizeof (Elf64_External_Rela);
1387 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1388 || h->root.type != bfd_link_hash_undefweak)
1390 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1391 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1394 h->got.offset = (bfd_vma) -1;
1396 eh = (struct elf64_x86_64_link_hash_entry *) h;
1397 if (eh->dyn_relocs == NULL)
1400 /* In the shared -Bsymbolic case, discard space allocated for
1401 dynamic pc-relative relocs against symbols which turn out to be
1402 defined in regular objects. For the normal shared case, discard
1403 space for pc-relative relocs that have become local due to symbol
1404 visibility changes. */
1408 /* Relocs that use pc_count are those that appear on a call
1409 insn, or certain REL relocs that can generated via assembly.
1410 We want calls to protected symbols to resolve directly to the
1411 function rather than going via the plt. If people want
1412 function pointer comparisons to work as expected then they
1413 should avoid writing weird assembly. */
1414 if (SYMBOL_CALLS_LOCAL (info, h))
1416 struct elf64_x86_64_dyn_relocs **pp;
1418 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1420 p->count -= p->pc_count;
1429 /* Also discard relocs on undefined weak syms with non-default
1431 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1432 && h->root.type == bfd_link_hash_undefweak)
1433 eh->dyn_relocs = NULL;
1435 else if (ELIMINATE_COPY_RELOCS)
1437 /* For the non-shared case, discard space for relocs against
1438 symbols which turn out to need copy relocs or are not
1441 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1442 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1443 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1444 || (htab->elf.dynamic_sections_created
1445 && (h->root.type == bfd_link_hash_undefweak
1446 || h->root.type == bfd_link_hash_undefined))))
1448 /* Make sure this symbol is output as a dynamic symbol.
1449 Undefined weak syms won't yet be marked as dynamic. */
1450 if (h->dynindx == -1
1451 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1453 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1457 /* If that succeeded, we know we'll be keeping all the
1459 if (h->dynindx != -1)
1463 eh->dyn_relocs = NULL;
1468 /* Finally, allocate space. */
1469 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1471 asection *sreloc = elf_section_data (p->sec)->sreloc;
1472 sreloc->_raw_size += p->count * sizeof (Elf64_External_Rela);
1478 /* Find any dynamic relocs that apply to read-only sections. */
1481 readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1483 struct elf64_x86_64_link_hash_entry *eh;
1484 struct elf64_x86_64_dyn_relocs *p;
1486 if (h->root.type == bfd_link_hash_warning)
1487 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1489 eh = (struct elf64_x86_64_link_hash_entry *) h;
1490 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1492 asection *s = p->sec->output_section;
1494 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1496 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1498 info->flags |= DF_TEXTREL;
1500 /* Not an error, just cut short the traversal. */
1507 /* Set the sizes of the dynamic sections. */
1510 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1511 struct bfd_link_info *info)
1513 struct elf64_x86_64_link_hash_table *htab;
1519 htab = elf64_x86_64_hash_table (info);
1520 dynobj = htab->elf.dynobj;
1524 if (htab->elf.dynamic_sections_created)
1526 /* Set the contents of the .interp section to the interpreter. */
1527 if (info->executable)
1529 s = bfd_get_section_by_name (dynobj, ".interp");
1532 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1533 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1537 /* Set up .got offsets for local syms, and space for local dynamic
1539 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1541 bfd_signed_vma *local_got;
1542 bfd_signed_vma *end_local_got;
1543 char *local_tls_type;
1544 bfd_size_type locsymcount;
1545 Elf_Internal_Shdr *symtab_hdr;
1548 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1551 for (s = ibfd->sections; s != NULL; s = s->next)
1553 struct elf64_x86_64_dyn_relocs *p;
1555 for (p = *((struct elf64_x86_64_dyn_relocs **)
1556 &elf_section_data (s)->local_dynrel);
1560 if (!bfd_is_abs_section (p->sec)
1561 && bfd_is_abs_section (p->sec->output_section))
1563 /* Input section has been discarded, either because
1564 it is a copy of a linkonce section or due to
1565 linker script /DISCARD/, so we'll be discarding
1568 else if (p->count != 0)
1570 srel = elf_section_data (p->sec)->sreloc;
1571 srel->_raw_size += p->count * sizeof (Elf64_External_Rela);
1572 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1573 info->flags |= DF_TEXTREL;
1579 local_got = elf_local_got_refcounts (ibfd);
1583 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1584 locsymcount = symtab_hdr->sh_info;
1585 end_local_got = local_got + locsymcount;
1586 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
1588 srel = htab->srelgot;
1589 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1593 *local_got = s->_raw_size;
1594 s->_raw_size += GOT_ENTRY_SIZE;
1595 if (*local_tls_type == GOT_TLS_GD)
1596 s->_raw_size += GOT_ENTRY_SIZE;
1598 || *local_tls_type == GOT_TLS_GD
1599 || *local_tls_type == GOT_TLS_IE)
1600 srel->_raw_size += sizeof (Elf64_External_Rela);
1603 *local_got = (bfd_vma) -1;
1607 if (htab->tls_ld_got.refcount > 0)
1609 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
1611 htab->tls_ld_got.offset = htab->sgot->_raw_size;
1612 htab->sgot->_raw_size += 2 * GOT_ENTRY_SIZE;
1613 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1616 htab->tls_ld_got.offset = -1;
1618 /* Allocate global sym .plt and .got entries, and space for global
1619 sym dynamic relocs. */
1620 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1622 /* We now have determined the sizes of the various dynamic sections.
1623 Allocate memory for them. */
1625 for (s = dynobj->sections; s != NULL; s = s->next)
1627 if ((s->flags & SEC_LINKER_CREATED) == 0)
1632 || s == htab->sgotplt)
1634 /* Strip this section if we don't need it; see the
1637 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
1639 if (s->_raw_size != 0 && s != htab->srelplt)
1642 /* We use the reloc_count field as a counter if we need
1643 to copy relocs into the output file. */
1648 /* It's not one of our sections, so don't allocate space. */
1652 if (s->_raw_size == 0)
1654 /* If we don't need this section, strip it from the
1655 output file. This is mostly to handle .rela.bss and
1656 .rela.plt. We must create both sections in
1657 create_dynamic_sections, because they must be created
1658 before the linker maps input sections to output
1659 sections. The linker does that before
1660 adjust_dynamic_symbol is called, and it is that
1661 function which decides whether anything needs to go
1662 into these sections. */
1664 _bfd_strip_section_from_output (info, s);
1668 /* Allocate memory for the section contents. We use bfd_zalloc
1669 here in case unused entries are not reclaimed before the
1670 section's contents are written out. This should not happen,
1671 but this way if it does, we get a R_X86_64_NONE reloc instead
1673 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1674 if (s->contents == NULL)
1678 if (htab->elf.dynamic_sections_created)
1680 /* Add some entries to the .dynamic section. We fill in the
1681 values later, in elf64_x86_64_finish_dynamic_sections, but we
1682 must add the entries now so that we get the correct size for
1683 the .dynamic section. The DT_DEBUG entry is filled in by the
1684 dynamic linker and used by the debugger. */
1685 #define add_dynamic_entry(TAG, VAL) \
1686 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1688 if (info->executable)
1690 if (!add_dynamic_entry (DT_DEBUG, 0))
1694 if (htab->splt->_raw_size != 0)
1696 if (!add_dynamic_entry (DT_PLTGOT, 0)
1697 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1698 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1699 || !add_dynamic_entry (DT_JMPREL, 0))
1705 if (!add_dynamic_entry (DT_RELA, 0)
1706 || !add_dynamic_entry (DT_RELASZ, 0)
1707 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1710 /* If any dynamic relocs apply to a read-only section,
1711 then we need a DT_TEXTREL entry. */
1712 if ((info->flags & DF_TEXTREL) == 0)
1713 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1716 if ((info->flags & DF_TEXTREL) != 0)
1718 if (!add_dynamic_entry (DT_TEXTREL, 0))
1723 #undef add_dynamic_entry
1728 /* Return the base VMA address which should be subtracted from real addresses
1729 when resolving @dtpoff relocation.
1730 This is PT_TLS segment p_vaddr. */
1733 dtpoff_base (struct bfd_link_info *info)
1735 /* If tls_sec is NULL, we should have signalled an error already. */
1736 if (elf_hash_table (info)->tls_sec == NULL)
1738 return elf_hash_table (info)->tls_sec->vma;
1741 /* Return the relocation value for @tpoff relocation
1742 if STT_TLS virtual address is ADDRESS. */
1745 tpoff (struct bfd_link_info *info, bfd_vma address)
1747 struct elf_link_hash_table *htab = elf_hash_table (info);
1749 /* If tls_segment is NULL, we should have signalled an error already. */
1750 if (htab->tls_sec == NULL)
1752 return address - htab->tls_size - htab->tls_sec->vma;
1755 /* Relocate an x86_64 ELF section. */
1758 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
1759 bfd *input_bfd, asection *input_section,
1760 bfd_byte *contents, Elf_Internal_Rela *relocs,
1761 Elf_Internal_Sym *local_syms,
1762 asection **local_sections)
1764 struct elf64_x86_64_link_hash_table *htab;
1765 Elf_Internal_Shdr *symtab_hdr;
1766 struct elf_link_hash_entry **sym_hashes;
1767 bfd_vma *local_got_offsets;
1768 Elf_Internal_Rela *rel;
1769 Elf_Internal_Rela *relend;
1771 if (info->relocatable)
1774 htab = elf64_x86_64_hash_table (info);
1775 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1776 sym_hashes = elf_sym_hashes (input_bfd);
1777 local_got_offsets = elf_local_got_offsets (input_bfd);
1780 relend = relocs + input_section->reloc_count;
1781 for (; rel < relend; rel++)
1783 unsigned int r_type;
1784 reloc_howto_type *howto;
1785 unsigned long r_symndx;
1786 struct elf_link_hash_entry *h;
1787 Elf_Internal_Sym *sym;
1791 bfd_boolean unresolved_reloc;
1792 bfd_reloc_status_type r;
1795 r_type = ELF64_R_TYPE (rel->r_info);
1796 if (r_type == (int) R_X86_64_GNU_VTINHERIT
1797 || r_type == (int) R_X86_64_GNU_VTENTRY)
1800 if (r_type >= R_X86_64_max)
1802 bfd_set_error (bfd_error_bad_value);
1806 howto = x86_64_elf_howto_table + r_type;
1807 r_symndx = ELF64_R_SYM (rel->r_info);
1811 unresolved_reloc = FALSE;
1812 if (r_symndx < symtab_hdr->sh_info)
1814 sym = local_syms + r_symndx;
1815 sec = local_sections[r_symndx];
1817 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1823 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1824 r_symndx, symtab_hdr, sym_hashes,
1826 unresolved_reloc, warned);
1828 /* When generating a shared object, the relocations handled here are
1829 copied into the output file to be resolved at run time. */
1832 case R_X86_64_GOT32:
1833 /* Relocation is to the entry for this symbol in the global
1835 case R_X86_64_GOTPCREL:
1836 /* Use global offset table as symbol value. */
1837 if (htab->sgot == NULL)
1844 off = h->got.offset;
1845 dyn = htab->elf.dynamic_sections_created;
1847 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1849 && SYMBOL_REFERENCES_LOCAL (info, h))
1850 || (ELF_ST_VISIBILITY (h->other)
1851 && h->root.type == bfd_link_hash_undefweak))
1853 /* This is actually a static link, or it is a -Bsymbolic
1854 link and the symbol is defined locally, or the symbol
1855 was forced to be local because of a version file. We
1856 must initialize this entry in the global offset table.
1857 Since the offset must always be a multiple of 8, we
1858 use the least significant bit to record whether we
1859 have initialized it already.
1861 When doing a dynamic link, we create a .rela.got
1862 relocation entry to initialize the value. This is
1863 done in the finish_dynamic_symbol routine. */
1868 bfd_put_64 (output_bfd, relocation,
1869 htab->sgot->contents + off);
1874 unresolved_reloc = FALSE;
1878 if (local_got_offsets == NULL)
1881 off = local_got_offsets[r_symndx];
1883 /* The offset must always be a multiple of 8. We use
1884 the least significant bit to record whether we have
1885 already generated the necessary reloc. */
1890 bfd_put_64 (output_bfd, relocation,
1891 htab->sgot->contents + off);
1896 Elf_Internal_Rela outrel;
1899 /* We need to generate a R_X86_64_RELATIVE reloc
1900 for the dynamic linker. */
1905 outrel.r_offset = (htab->sgot->output_section->vma
1906 + htab->sgot->output_offset
1908 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1909 outrel.r_addend = relocation;
1911 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
1912 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
1915 local_got_offsets[r_symndx] |= 1;
1919 if (off >= (bfd_vma) -2)
1922 relocation = htab->sgot->output_offset + off;
1923 if (r_type == R_X86_64_GOTPCREL)
1924 relocation += htab->sgot->output_section->vma;
1928 case R_X86_64_PLT32:
1929 /* Relocation is to the entry for this symbol in the
1930 procedure linkage table. */
1932 /* Resolve a PLT32 reloc against a local symbol directly,
1933 without using the procedure linkage table. */
1937 if (h->plt.offset == (bfd_vma) -1
1938 || htab->splt == NULL)
1940 /* We didn't make a PLT entry for this symbol. This
1941 happens when statically linking PIC code, or when
1942 using -Bsymbolic. */
1946 relocation = (htab->splt->output_section->vma
1947 + htab->splt->output_offset
1949 unresolved_reloc = FALSE;
1959 /* FIXME: The ABI says the linker should make sure the value is
1960 the same when it's zeroextended to 64 bit. */
1962 /* r_symndx will be zero only for relocs against symbols
1963 from removed linkonce sections, or sections discarded by
1966 || (input_section->flags & SEC_ALLOC) == 0)
1971 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1972 || h->root.type != bfd_link_hash_undefweak)
1973 && ((r_type != R_X86_64_PC8
1974 && r_type != R_X86_64_PC16
1975 && r_type != R_X86_64_PC32)
1976 || !SYMBOL_CALLS_LOCAL (info, h)))
1977 || (ELIMINATE_COPY_RELOCS
1981 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1982 && (((h->elf_link_hash_flags
1983 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1984 && (h->elf_link_hash_flags
1985 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1986 || h->root.type == bfd_link_hash_undefweak
1987 || h->root.type == bfd_link_hash_undefined)))
1989 Elf_Internal_Rela outrel;
1991 bfd_boolean skip, relocate;
1994 /* When generating a shared object, these relocations
1995 are copied into the output file to be resolved at run
2001 _bfd_elf_section_offset (output_bfd, info, input_section,
2003 if (outrel.r_offset == (bfd_vma) -1)
2005 else if (outrel.r_offset == (bfd_vma) -2)
2006 skip = TRUE, relocate = TRUE;
2008 outrel.r_offset += (input_section->output_section->vma
2009 + input_section->output_offset);
2012 memset (&outrel, 0, sizeof outrel);
2014 /* h->dynindx may be -1 if this symbol was marked to
2018 && (r_type == R_X86_64_PC8
2019 || r_type == R_X86_64_PC16
2020 || r_type == R_X86_64_PC32
2023 || (h->elf_link_hash_flags
2024 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2026 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2027 outrel.r_addend = rel->r_addend;
2031 /* This symbol is local, or marked to become local. */
2032 if (r_type == R_X86_64_64)
2035 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2036 outrel.r_addend = relocation + rel->r_addend;
2042 if (bfd_is_abs_section (sec))
2044 else if (sec == NULL || sec->owner == NULL)
2046 bfd_set_error (bfd_error_bad_value);
2053 osec = sec->output_section;
2054 sindx = elf_section_data (osec)->dynindx;
2055 BFD_ASSERT (sindx > 0);
2058 outrel.r_info = ELF64_R_INFO (sindx, r_type);
2059 outrel.r_addend = relocation + rel->r_addend;
2063 sreloc = elf_section_data (input_section)->sreloc;
2067 loc = sreloc->contents;
2068 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2069 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2071 /* If this reloc is against an external symbol, we do
2072 not want to fiddle with the addend. Otherwise, we
2073 need to include the symbol value so that it becomes
2074 an addend for the dynamic reloc. */
2081 case R_X86_64_TLSGD:
2082 case R_X86_64_GOTTPOFF:
2083 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
2084 tls_type = GOT_UNKNOWN;
2085 if (h == NULL && local_got_offsets)
2086 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2089 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2090 if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE)
2091 r_type = R_X86_64_TPOFF32;
2093 if (r_type == R_X86_64_TLSGD)
2095 if (tls_type == GOT_TLS_IE)
2096 r_type = R_X86_64_GOTTPOFF;
2099 if (r_type == R_X86_64_TPOFF32)
2101 BFD_ASSERT (! unresolved_reloc);
2102 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2105 static unsigned char tlsgd[8]
2106 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2108 /* GD->LE transition.
2109 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2110 .word 0x6666; rex64; call __tls_get_addr@plt
2113 leaq foo@tpoff(%rax), %rax */
2114 BFD_ASSERT (rel->r_offset >= 4);
2115 for (i = 0; i < 4; i++)
2116 BFD_ASSERT (bfd_get_8 (input_bfd,
2117 contents + rel->r_offset - 4 + i)
2119 BFD_ASSERT (rel->r_offset + 12 <= input_section->_raw_size);
2120 for (i = 0; i < 4; i++)
2121 BFD_ASSERT (bfd_get_8 (input_bfd,
2122 contents + rel->r_offset + 4 + i)
2124 BFD_ASSERT (rel + 1 < relend);
2125 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2126 memcpy (contents + rel->r_offset - 4,
2127 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2129 bfd_put_32 (output_bfd, tpoff (info, relocation),
2130 contents + rel->r_offset + 8);
2131 /* Skip R_X86_64_PLT32. */
2137 unsigned int val, type, reg;
2139 /* IE->LE transition:
2140 Originally it can be one of:
2141 movq foo@gottpoff(%rip), %reg
2142 addq foo@gottpoff(%rip), %reg
2145 leaq foo(%reg), %reg
2147 BFD_ASSERT (rel->r_offset >= 3);
2148 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 3);
2149 BFD_ASSERT (val == 0x48 || val == 0x4c);
2150 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2151 BFD_ASSERT (type == 0x8b || type == 0x03);
2152 reg = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2153 BFD_ASSERT ((reg & 0xc7) == 5);
2155 BFD_ASSERT (rel->r_offset + 4 <= input_section->_raw_size);
2160 bfd_put_8 (output_bfd, 0x49,
2161 contents + rel->r_offset - 3);
2162 bfd_put_8 (output_bfd, 0xc7,
2163 contents + rel->r_offset - 2);
2164 bfd_put_8 (output_bfd, 0xc0 | reg,
2165 contents + rel->r_offset - 1);
2169 /* addq -> addq - addressing with %rsp/%r12 is
2172 bfd_put_8 (output_bfd, 0x49,
2173 contents + rel->r_offset - 3);
2174 bfd_put_8 (output_bfd, 0x81,
2175 contents + rel->r_offset - 2);
2176 bfd_put_8 (output_bfd, 0xc0 | reg,
2177 contents + rel->r_offset - 1);
2183 bfd_put_8 (output_bfd, 0x4d,
2184 contents + rel->r_offset - 3);
2185 bfd_put_8 (output_bfd, 0x8d,
2186 contents + rel->r_offset - 2);
2187 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2188 contents + rel->r_offset - 1);
2190 bfd_put_32 (output_bfd, tpoff (info, relocation),
2191 contents + rel->r_offset);
2196 if (htab->sgot == NULL)
2200 off = h->got.offset;
2203 if (local_got_offsets == NULL)
2206 off = local_got_offsets[r_symndx];
2213 Elf_Internal_Rela outrel;
2217 if (htab->srelgot == NULL)
2220 outrel.r_offset = (htab->sgot->output_section->vma
2221 + htab->sgot->output_offset + off);
2223 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2224 if (r_type == R_X86_64_TLSGD)
2225 dr_type = R_X86_64_DTPMOD64;
2227 dr_type = R_X86_64_TPOFF64;
2229 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2230 outrel.r_addend = 0;
2231 if (dr_type == R_X86_64_TPOFF64 && indx == 0)
2232 outrel.r_addend = relocation - dtpoff_base (info);
2233 outrel.r_info = ELF64_R_INFO (indx, dr_type);
2235 loc = htab->srelgot->contents;
2236 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2237 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2239 if (r_type == R_X86_64_TLSGD)
2243 BFD_ASSERT (! unresolved_reloc);
2244 bfd_put_64 (output_bfd,
2245 relocation - dtpoff_base (info),
2246 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2250 bfd_put_64 (output_bfd, 0,
2251 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2252 outrel.r_info = ELF64_R_INFO (indx,
2254 outrel.r_offset += GOT_ENTRY_SIZE;
2255 htab->srelgot->reloc_count++;
2256 loc += sizeof (Elf64_External_Rela);
2257 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2264 local_got_offsets[r_symndx] |= 1;
2267 if (off >= (bfd_vma) -2)
2269 if (r_type == ELF64_R_TYPE (rel->r_info))
2271 relocation = htab->sgot->output_section->vma
2272 + htab->sgot->output_offset + off;
2273 unresolved_reloc = FALSE;
2278 static unsigned char tlsgd[8]
2279 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2281 /* GD->IE transition.
2282 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2283 .word 0x6666; rex64; call __tls_get_addr@plt
2286 addq foo@gottpoff(%rip), %rax */
2287 BFD_ASSERT (rel->r_offset >= 4);
2288 for (i = 0; i < 4; i++)
2289 BFD_ASSERT (bfd_get_8 (input_bfd,
2290 contents + rel->r_offset - 4 + i)
2292 BFD_ASSERT (rel->r_offset + 12 <= input_section->_raw_size);
2293 for (i = 0; i < 4; i++)
2294 BFD_ASSERT (bfd_get_8 (input_bfd,
2295 contents + rel->r_offset + 4 + i)
2297 BFD_ASSERT (rel + 1 < relend);
2298 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2299 memcpy (contents + rel->r_offset - 4,
2300 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
2303 relocation = (htab->sgot->output_section->vma
2304 + htab->sgot->output_offset + off
2306 - input_section->output_section->vma
2307 - input_section->output_offset
2309 bfd_put_32 (output_bfd, relocation,
2310 contents + rel->r_offset + 8);
2311 /* Skip R_X86_64_PLT32. */
2317 case R_X86_64_TLSLD:
2320 /* LD->LE transition:
2322 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr@plt.
2324 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
2325 BFD_ASSERT (rel->r_offset >= 3);
2326 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3)
2328 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
2330 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 1)
2332 BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size);
2333 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2335 BFD_ASSERT (rel + 1 < relend);
2336 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2337 memcpy (contents + rel->r_offset - 3,
2338 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
2339 /* Skip R_X86_64_PLT32. */
2344 if (htab->sgot == NULL)
2347 off = htab->tls_ld_got.offset;
2352 Elf_Internal_Rela outrel;
2355 if (htab->srelgot == NULL)
2358 outrel.r_offset = (htab->sgot->output_section->vma
2359 + htab->sgot->output_offset + off);
2361 bfd_put_64 (output_bfd, 0,
2362 htab->sgot->contents + off);
2363 bfd_put_64 (output_bfd, 0,
2364 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2365 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
2366 outrel.r_addend = 0;
2367 loc = htab->srelgot->contents;
2368 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2369 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2370 htab->tls_ld_got.offset |= 1;
2372 relocation = htab->sgot->output_section->vma
2373 + htab->sgot->output_offset + off;
2374 unresolved_reloc = FALSE;
2377 case R_X86_64_DTPOFF32:
2378 if (info->shared || (input_section->flags & SEC_CODE) == 0)
2379 relocation -= dtpoff_base (info);
2381 relocation = tpoff (info, relocation);
2384 case R_X86_64_TPOFF32:
2385 BFD_ASSERT (! info->shared);
2386 relocation = tpoff (info, relocation);
2393 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2394 because such sections are not SEC_ALLOC and thus ld.so will
2395 not process them. */
2396 if (unresolved_reloc
2397 && !((input_section->flags & SEC_DEBUGGING) != 0
2398 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2399 (*_bfd_error_handler)
2400 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2401 bfd_archive_filename (input_bfd),
2402 bfd_get_section_name (input_bfd, input_section),
2403 (long) rel->r_offset,
2404 h->root.root.string);
2406 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2407 contents, rel->r_offset,
2408 relocation, rel->r_addend);
2410 if (r != bfd_reloc_ok)
2415 name = h->root.root.string;
2418 name = bfd_elf_string_from_elf_section (input_bfd,
2419 symtab_hdr->sh_link,
2424 name = bfd_section_name (input_bfd, sec);
2427 if (r == bfd_reloc_overflow)
2430 if (! ((*info->callbacks->reloc_overflow)
2431 (info, name, howto->name, (bfd_vma) 0,
2432 input_bfd, input_section, rel->r_offset)))
2437 (*_bfd_error_handler)
2438 (_("%s(%s+0x%lx): reloc against `%s': error %d"),
2439 bfd_archive_filename (input_bfd),
2440 bfd_get_section_name (input_bfd, input_section),
2441 (long) rel->r_offset, name, (int) r);
2450 /* Finish up dynamic symbol handling. We set the contents of various
2451 dynamic sections here. */
2454 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
2455 struct bfd_link_info *info,
2456 struct elf_link_hash_entry *h,
2457 Elf_Internal_Sym *sym)
2459 struct elf64_x86_64_link_hash_table *htab;
2461 htab = elf64_x86_64_hash_table (info);
2463 if (h->plt.offset != (bfd_vma) -1)
2467 Elf_Internal_Rela rela;
2470 /* This symbol has an entry in the procedure linkage table. Set
2472 if (h->dynindx == -1
2473 || htab->splt == NULL
2474 || htab->sgotplt == NULL
2475 || htab->srelplt == NULL)
2478 /* Get the index in the procedure linkage table which
2479 corresponds to this symbol. This is the index of this symbol
2480 in all the symbols for which we are making plt entries. The
2481 first entry in the procedure linkage table is reserved. */
2482 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2484 /* Get the offset into the .got table of the entry that
2485 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
2486 bytes. The first three are reserved for the dynamic linker. */
2487 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
2489 /* Fill in the entry in the procedure linkage table. */
2490 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
2493 /* Insert the relocation positions of the plt section. The magic
2494 numbers at the end of the statements are the positions of the
2495 relocations in the plt section. */
2496 /* Put offset for jmp *name@GOTPCREL(%rip), since the
2497 instruction uses 6 bytes, subtract this value. */
2498 bfd_put_32 (output_bfd,
2499 (htab->sgotplt->output_section->vma
2500 + htab->sgotplt->output_offset
2502 - htab->splt->output_section->vma
2503 - htab->splt->output_offset
2506 htab->splt->contents + h->plt.offset + 2);
2507 /* Put relocation index. */
2508 bfd_put_32 (output_bfd, plt_index,
2509 htab->splt->contents + h->plt.offset + 7);
2510 /* Put offset for jmp .PLT0. */
2511 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
2512 htab->splt->contents + h->plt.offset + 12);
2514 /* Fill in the entry in the global offset table, initially this
2515 points to the pushq instruction in the PLT which is at offset 6. */
2516 bfd_put_64 (output_bfd, (htab->splt->output_section->vma
2517 + htab->splt->output_offset
2518 + h->plt.offset + 6),
2519 htab->sgotplt->contents + got_offset);
2521 /* Fill in the entry in the .rela.plt section. */
2522 rela.r_offset = (htab->sgotplt->output_section->vma
2523 + htab->sgotplt->output_offset
2525 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
2527 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
2528 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2530 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2532 /* Mark the symbol as undefined, rather than as defined in
2533 the .plt section. Leave the value alone. This is a clue
2534 for the dynamic linker, to make function pointer
2535 comparisons work between an application and shared
2537 sym->st_shndx = SHN_UNDEF;
2541 if (h->got.offset != (bfd_vma) -1
2542 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_GD
2543 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
2545 Elf_Internal_Rela rela;
2548 /* This symbol has an entry in the global offset table. Set it
2550 if (htab->sgot == NULL || htab->srelgot == NULL)
2553 rela.r_offset = (htab->sgot->output_section->vma
2554 + htab->sgot->output_offset
2555 + (h->got.offset &~ (bfd_vma) 1));
2557 /* If this is a static link, or it is a -Bsymbolic link and the
2558 symbol is defined locally or was forced to be local because
2559 of a version file, we just want to emit a RELATIVE reloc.
2560 The entry in the global offset table will already have been
2561 initialized in the relocate_section function. */
2563 && SYMBOL_REFERENCES_LOCAL (info, h))
2565 BFD_ASSERT((h->got.offset & 1) != 0);
2566 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2567 rela.r_addend = (h->root.u.def.value
2568 + h->root.u.def.section->output_section->vma
2569 + h->root.u.def.section->output_offset);
2573 BFD_ASSERT((h->got.offset & 1) == 0);
2574 bfd_put_64 (output_bfd, (bfd_vma) 0,
2575 htab->sgot->contents + h->got.offset);
2576 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
2580 loc = htab->srelgot->contents;
2581 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2582 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2585 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2587 Elf_Internal_Rela rela;
2590 /* This symbol needs a copy reloc. Set it up. */
2592 if (h->dynindx == -1
2593 || (h->root.type != bfd_link_hash_defined
2594 && h->root.type != bfd_link_hash_defweak)
2595 || htab->srelbss == NULL)
2598 rela.r_offset = (h->root.u.def.value
2599 + h->root.u.def.section->output_section->vma
2600 + h->root.u.def.section->output_offset);
2601 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
2603 loc = htab->srelbss->contents;
2604 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
2605 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2608 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2609 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2610 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2611 sym->st_shndx = SHN_ABS;
2616 /* Used to decide how to sort relocs in an optimal manner for the
2617 dynamic linker, before writing them out. */
2619 static enum elf_reloc_type_class
2620 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
2622 switch ((int) ELF64_R_TYPE (rela->r_info))
2624 case R_X86_64_RELATIVE:
2625 return reloc_class_relative;
2626 case R_X86_64_JUMP_SLOT:
2627 return reloc_class_plt;
2629 return reloc_class_copy;
2631 return reloc_class_normal;
2635 /* Finish up the dynamic sections. */
2638 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
2640 struct elf64_x86_64_link_hash_table *htab;
2644 htab = elf64_x86_64_hash_table (info);
2645 dynobj = htab->elf.dynobj;
2646 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2648 if (htab->elf.dynamic_sections_created)
2650 Elf64_External_Dyn *dyncon, *dynconend;
2652 if (sdyn == NULL || htab->sgot == NULL)
2655 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2656 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2657 for (; dyncon < dynconend; dyncon++)
2659 Elf_Internal_Dyn dyn;
2662 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2670 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2674 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2678 s = htab->srelplt->output_section;
2679 if (s->_cooked_size != 0)
2680 dyn.d_un.d_val = s->_cooked_size;
2682 dyn.d_un.d_val = s->_raw_size;
2686 /* The procedure linkage table relocs (DT_JMPREL) should
2687 not be included in the overall relocs (DT_RELA).
2688 Therefore, we override the DT_RELASZ entry here to
2689 make it not include the JMPREL relocs. Since the
2690 linker script arranges for .rela.plt to follow all
2691 other relocation sections, we don't have to worry
2692 about changing the DT_RELA entry. */
2693 if (htab->srelplt != NULL)
2695 s = htab->srelplt->output_section;
2696 if (s->_cooked_size != 0)
2697 dyn.d_un.d_val -= s->_cooked_size;
2699 dyn.d_un.d_val -= s->_raw_size;
2704 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2707 /* Fill in the special first entry in the procedure linkage table. */
2708 if (htab->splt && htab->splt->_raw_size > 0)
2710 /* Fill in the first entry in the procedure linkage table. */
2711 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
2713 /* Add offset for pushq GOT+8(%rip), since the instruction
2714 uses 6 bytes subtract this value. */
2715 bfd_put_32 (output_bfd,
2716 (htab->sgotplt->output_section->vma
2717 + htab->sgotplt->output_offset
2719 - htab->splt->output_section->vma
2720 - htab->splt->output_offset
2722 htab->splt->contents + 2);
2723 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
2724 the end of the instruction. */
2725 bfd_put_32 (output_bfd,
2726 (htab->sgotplt->output_section->vma
2727 + htab->sgotplt->output_offset
2729 - htab->splt->output_section->vma
2730 - htab->splt->output_offset
2732 htab->splt->contents + 8);
2734 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
2741 /* Fill in the first three entries in the global offset table. */
2742 if (htab->sgotplt->_raw_size > 0)
2744 /* Set the first entry in the global offset table to the address of
2745 the dynamic section. */
2747 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
2749 bfd_put_64 (output_bfd,
2750 sdyn->output_section->vma + sdyn->output_offset,
2751 htab->sgotplt->contents);
2752 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
2753 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
2754 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
2757 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
2765 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
2766 #define TARGET_LITTLE_NAME "elf64-x86-64"
2767 #define ELF_ARCH bfd_arch_i386
2768 #define ELF_MACHINE_CODE EM_X86_64
2769 #define ELF_MAXPAGESIZE 0x100000
2771 #define elf_backend_can_gc_sections 1
2772 #define elf_backend_can_refcount 1
2773 #define elf_backend_want_got_plt 1
2774 #define elf_backend_plt_readonly 1
2775 #define elf_backend_want_plt_sym 0
2776 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
2777 #define elf_backend_rela_normal 1
2779 #define elf_info_to_howto elf64_x86_64_info_to_howto
2781 #define bfd_elf64_bfd_link_hash_table_create \
2782 elf64_x86_64_link_hash_table_create
2783 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
2785 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
2786 #define elf_backend_check_relocs elf64_x86_64_check_relocs
2787 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
2788 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
2789 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
2790 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
2791 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
2792 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
2793 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
2794 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
2795 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
2796 #define elf_backend_relocate_section elf64_x86_64_relocate_section
2797 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
2798 #define elf_backend_object_p elf64_x86_64_elf_object_p
2799 #define bfd_elf64_mkobject elf64_x86_64_mkobject
2801 #include "elf64-target.h"