1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 #include "elf/x86-64.h"
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30 #define MINUS_ONE (~ (bfd_vma) 0)
32 /* The relocation "howto" table. Order of fields:
33 type, size, bitsize, pc_relative, complain_on_overflow,
34 special_function, name, partial_inplace, src_mask, dst_pack, pcrel_offset. */
35 static reloc_howto_type x86_64_elf_howto_table[] =
37 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
38 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
40 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
41 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
43 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
44 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
46 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
47 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
49 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
50 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
52 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
53 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
55 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
56 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
58 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
59 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
61 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
64 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
65 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
67 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
68 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
70 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
71 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
73 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
74 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
75 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
77 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
78 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
79 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
80 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
81 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
84 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
85 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
87 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
90 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
91 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
93 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
94 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
96 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
97 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
99 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
102 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
103 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
106 /* GNU extension to record C++ vtable hierarchy. */
107 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
108 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
110 /* GNU extension to record C++ vtable member usage. */
111 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
112 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
116 /* Map BFD relocs to the x86_64 elf relocs. */
119 bfd_reloc_code_real_type bfd_reloc_val;
120 unsigned char elf_reloc_val;
123 static const struct elf_reloc_map x86_64_reloc_map[] =
125 { BFD_RELOC_NONE, R_X86_64_NONE, },
126 { BFD_RELOC_64, R_X86_64_64, },
127 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
128 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
129 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
130 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
131 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
132 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
133 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
134 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
135 { BFD_RELOC_32, R_X86_64_32, },
136 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
137 { BFD_RELOC_16, R_X86_64_16, },
138 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
139 { BFD_RELOC_8, R_X86_64_8, },
140 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
141 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
142 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
143 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
144 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
145 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
146 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
147 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
148 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
149 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
150 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
153 static reloc_howto_type *elf64_x86_64_reloc_type_lookup
154 PARAMS ((bfd *, bfd_reloc_code_real_type));
155 static void elf64_x86_64_info_to_howto
156 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
157 static bfd_boolean elf64_x86_64_grok_prstatus
158 PARAMS ((bfd *, Elf_Internal_Note *));
159 static bfd_boolean elf64_x86_64_grok_psinfo
160 PARAMS ((bfd *, Elf_Internal_Note *));
161 static struct bfd_link_hash_table *elf64_x86_64_link_hash_table_create
163 static int elf64_x86_64_tls_transition
164 PARAMS ((struct bfd_link_info *, int, int));
165 static bfd_boolean elf64_x86_64_mkobject
167 static bfd_boolean elf64_x86_64_elf_object_p PARAMS ((bfd *abfd));
168 static bfd_boolean create_got_section
169 PARAMS((bfd *, struct bfd_link_info *));
170 static bfd_boolean elf64_x86_64_create_dynamic_sections
171 PARAMS((bfd *, struct bfd_link_info *));
172 static void elf64_x86_64_copy_indirect_symbol
173 PARAMS ((struct elf_backend_data *, struct elf_link_hash_entry *,
174 struct elf_link_hash_entry *));
175 static bfd_boolean elf64_x86_64_check_relocs
176 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
177 const Elf_Internal_Rela *));
178 static asection *elf64_x86_64_gc_mark_hook
179 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
180 struct elf_link_hash_entry *, Elf_Internal_Sym *));
182 static bfd_boolean elf64_x86_64_gc_sweep_hook
183 PARAMS ((bfd *, struct bfd_link_info *, asection *,
184 const Elf_Internal_Rela *));
186 static struct bfd_hash_entry *link_hash_newfunc
187 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
188 static bfd_boolean elf64_x86_64_adjust_dynamic_symbol
189 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
191 static bfd_boolean allocate_dynrelocs
192 PARAMS ((struct elf_link_hash_entry *, PTR));
193 static bfd_boolean readonly_dynrelocs
194 PARAMS ((struct elf_link_hash_entry *, PTR));
195 static bfd_boolean elf64_x86_64_size_dynamic_sections
196 PARAMS ((bfd *, struct bfd_link_info *));
197 static bfd_vma dtpoff_base
198 PARAMS ((struct bfd_link_info *));
200 PARAMS ((struct bfd_link_info *, bfd_vma));
201 static bfd_boolean elf64_x86_64_relocate_section
202 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
203 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
204 static bfd_boolean elf64_x86_64_finish_dynamic_symbol
205 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
206 Elf_Internal_Sym *sym));
207 static bfd_boolean elf64_x86_64_finish_dynamic_sections
208 PARAMS ((bfd *, struct bfd_link_info *));
209 static enum elf_reloc_type_class elf64_x86_64_reloc_type_class
210 PARAMS ((const Elf_Internal_Rela *));
212 /* Given a BFD reloc type, return a HOWTO structure. */
213 static reloc_howto_type *
214 elf64_x86_64_reloc_type_lookup (abfd, code)
215 bfd *abfd ATTRIBUTE_UNUSED;
216 bfd_reloc_code_real_type code;
219 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
222 if (x86_64_reloc_map[i].bfd_reloc_val == code)
223 return &x86_64_elf_howto_table[i];
228 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
231 elf64_x86_64_info_to_howto (abfd, cache_ptr, dst)
232 bfd *abfd ATTRIBUTE_UNUSED;
234 Elf_Internal_Rela *dst;
238 r_type = ELF64_R_TYPE (dst->r_info);
239 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT)
241 BFD_ASSERT (r_type <= (unsigned int) R_X86_64_TPOFF32);
246 BFD_ASSERT (r_type < (unsigned int) R_X86_64_max);
247 i = r_type - ((unsigned int) R_X86_64_GNU_VTINHERIT - R_X86_64_TPOFF32 - 1);
249 cache_ptr->howto = &x86_64_elf_howto_table[i];
250 BFD_ASSERT (r_type == cache_ptr->howto->type);
253 /* Support for core dump NOTE sections. */
255 elf64_x86_64_grok_prstatus (abfd, note)
257 Elf_Internal_Note *note;
262 switch (note->descsz)
267 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
269 elf_tdata (abfd)->core_signal
270 = bfd_get_16 (abfd, note->descdata + 12);
273 elf_tdata (abfd)->core_pid
274 = bfd_get_32 (abfd, note->descdata + 32);
283 /* Make a ".reg/999" section. */
284 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
285 raw_size, note->descpos + offset);
289 elf64_x86_64_grok_psinfo (abfd, note)
291 Elf_Internal_Note *note;
293 switch (note->descsz)
298 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
299 elf_tdata (abfd)->core_program
300 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
301 elf_tdata (abfd)->core_command
302 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
305 /* Note that for some reason, a spurious space is tacked
306 onto the end of the args in some (at least one anyway)
307 implementations, so strip it off if it exists. */
310 char *command = elf_tdata (abfd)->core_command;
311 int n = strlen (command);
313 if (0 < n && command[n - 1] == ' ')
314 command[n - 1] = '\0';
320 /* Functions for the x86-64 ELF linker. */
322 /* The name of the dynamic interpreter. This is put in the .interp
325 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
327 /* The size in bytes of an entry in the global offset table. */
329 #define GOT_ENTRY_SIZE 8
331 /* The size in bytes of an entry in the procedure linkage table. */
333 #define PLT_ENTRY_SIZE 16
335 /* The first entry in a procedure linkage table looks like this. See the
336 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
338 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
340 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
341 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
342 0x90, 0x90, 0x90, 0x90 /* pad out to 16 bytes with nops. */
345 /* Subsequent entries in a procedure linkage table look like this. */
347 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
349 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
350 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
351 0x68, /* pushq immediate */
352 0, 0, 0, 0, /* replaced with index into relocation table. */
353 0xe9, /* jmp relative */
354 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
357 /* The x86-64 linker needs to keep track of the number of relocs that
358 it decides to copy as dynamic relocs in check_relocs for each symbol.
359 This is so that it can later discard them if they are found to be
360 unnecessary. We store the information in a field extending the
361 regular ELF linker hash table. */
363 struct elf64_x86_64_dyn_relocs
366 struct elf64_x86_64_dyn_relocs *next;
368 /* The input section of the reloc. */
371 /* Total number of relocs copied for the input section. */
374 /* Number of pc-relative relocs copied for the input section. */
375 bfd_size_type pc_count;
378 /* x86-64 ELF linker hash entry. */
380 struct elf64_x86_64_link_hash_entry
382 struct elf_link_hash_entry elf;
384 /* Track dynamic relocs copied for this symbol. */
385 struct elf64_x86_64_dyn_relocs *dyn_relocs;
387 #define GOT_UNKNOWN 0
391 unsigned char tls_type;
394 #define elf64_x86_64_hash_entry(ent) \
395 ((struct elf64_x86_64_link_hash_entry *)(ent))
397 struct elf64_x86_64_obj_tdata
399 struct elf_obj_tdata root;
401 /* tls_type for each local got entry. */
402 char *local_got_tls_type;
405 #define elf64_x86_64_tdata(abfd) \
406 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
408 #define elf64_x86_64_local_got_tls_type(abfd) \
409 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
412 /* x86-64 ELF linker hash table. */
414 struct elf64_x86_64_link_hash_table
416 struct elf_link_hash_table elf;
418 /* Short-cuts to get to dynamic linker sections. */
428 bfd_signed_vma refcount;
432 /* Small local sym to section mapping cache. */
433 struct sym_sec_cache sym_sec;
436 /* Get the x86-64 ELF linker hash table from a link_info structure. */
438 #define elf64_x86_64_hash_table(p) \
439 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
441 /* Create an entry in an x86-64 ELF linker hash table. */
443 static struct bfd_hash_entry *
444 link_hash_newfunc (entry, table, string)
445 struct bfd_hash_entry *entry;
446 struct bfd_hash_table *table;
449 /* Allocate the structure if it has not already been allocated by a
453 entry = bfd_hash_allocate (table,
454 sizeof (struct elf64_x86_64_link_hash_entry));
459 /* Call the allocation method of the superclass. */
460 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
463 struct elf64_x86_64_link_hash_entry *eh;
465 eh = (struct elf64_x86_64_link_hash_entry *) entry;
466 eh->dyn_relocs = NULL;
467 eh->tls_type = GOT_UNKNOWN;
473 /* Create an X86-64 ELF linker hash table. */
475 static struct bfd_link_hash_table *
476 elf64_x86_64_link_hash_table_create (abfd)
479 struct elf64_x86_64_link_hash_table *ret;
480 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
482 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
486 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
499 ret->sym_sec.abfd = NULL;
500 ret->tls_ld_got.refcount = 0;
502 return &ret->elf.root;
505 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
506 shortcuts to them in our hash table. */
509 create_got_section (dynobj, info)
511 struct bfd_link_info *info;
513 struct elf64_x86_64_link_hash_table *htab;
515 if (! _bfd_elf_create_got_section (dynobj, info))
518 htab = elf64_x86_64_hash_table (info);
519 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
520 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
521 if (!htab->sgot || !htab->sgotplt)
524 htab->srelgot = bfd_make_section (dynobj, ".rela.got");
525 if (htab->srelgot == NULL
526 || ! bfd_set_section_flags (dynobj, htab->srelgot,
527 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
528 | SEC_IN_MEMORY | SEC_LINKER_CREATED
530 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
535 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
536 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
540 elf64_x86_64_create_dynamic_sections (dynobj, info)
542 struct bfd_link_info *info;
544 struct elf64_x86_64_link_hash_table *htab;
546 htab = elf64_x86_64_hash_table (info);
547 if (!htab->sgot && !create_got_section (dynobj, info))
550 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
553 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
554 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
555 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
557 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
559 if (!htab->splt || !htab->srelplt || !htab->sdynbss
560 || (!info->shared && !htab->srelbss))
566 /* Copy the extra info we tack onto an elf_link_hash_entry. */
569 elf64_x86_64_copy_indirect_symbol (bed, dir, ind)
570 struct elf_backend_data *bed;
571 struct elf_link_hash_entry *dir, *ind;
573 struct elf64_x86_64_link_hash_entry *edir, *eind;
575 edir = (struct elf64_x86_64_link_hash_entry *) dir;
576 eind = (struct elf64_x86_64_link_hash_entry *) ind;
578 if (eind->dyn_relocs != NULL)
580 if (edir->dyn_relocs != NULL)
582 struct elf64_x86_64_dyn_relocs **pp;
583 struct elf64_x86_64_dyn_relocs *p;
585 if (ind->root.type == bfd_link_hash_indirect)
588 /* Add reloc counts against the weak sym to the strong sym
589 list. Merge any entries against the same section. */
590 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
592 struct elf64_x86_64_dyn_relocs *q;
594 for (q = edir->dyn_relocs; q != NULL; q = q->next)
595 if (q->sec == p->sec)
597 q->pc_count += p->pc_count;
598 q->count += p->count;
605 *pp = edir->dyn_relocs;
608 edir->dyn_relocs = eind->dyn_relocs;
609 eind->dyn_relocs = NULL;
612 if (ind->root.type == bfd_link_hash_indirect
613 && dir->got.refcount <= 0)
615 edir->tls_type = eind->tls_type;
616 eind->tls_type = GOT_UNKNOWN;
619 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
623 elf64_x86_64_mkobject (abfd)
626 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
627 abfd->tdata.any = bfd_zalloc (abfd, amt);
628 if (abfd->tdata.any == NULL)
634 elf64_x86_64_elf_object_p (abfd)
637 /* Allocate our special target data. */
638 struct elf64_x86_64_obj_tdata *new_tdata;
639 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
640 new_tdata = bfd_zalloc (abfd, amt);
641 if (new_tdata == NULL)
643 new_tdata->root = *abfd->tdata.elf_obj_data;
644 abfd->tdata.any = new_tdata;
645 /* Set the right machine number for an x86-64 elf64 file. */
646 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
651 elf64_x86_64_tls_transition (info, r_type, is_local)
652 struct bfd_link_info *info;
662 case R_X86_64_GOTTPOFF:
664 return R_X86_64_TPOFF32;
665 return R_X86_64_GOTTPOFF;
667 return R_X86_64_TPOFF32;
673 /* Look through the relocs for a section during the first phase, and
674 calculate needed space in the global offset table, procedure
675 linkage table, and dynamic reloc sections. */
678 elf64_x86_64_check_relocs (abfd, info, sec, relocs)
680 struct bfd_link_info *info;
682 const Elf_Internal_Rela *relocs;
684 struct elf64_x86_64_link_hash_table *htab;
685 Elf_Internal_Shdr *symtab_hdr;
686 struct elf_link_hash_entry **sym_hashes;
687 const Elf_Internal_Rela *rel;
688 const Elf_Internal_Rela *rel_end;
691 if (info->relocateable)
694 htab = elf64_x86_64_hash_table (info);
695 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
696 sym_hashes = elf_sym_hashes (abfd);
700 rel_end = relocs + sec->reloc_count;
701 for (rel = relocs; rel < rel_end; rel++)
704 unsigned long r_symndx;
705 struct elf_link_hash_entry *h;
707 r_symndx = ELF64_R_SYM (rel->r_info);
708 r_type = ELF64_R_TYPE (rel->r_info);
710 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
712 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
713 bfd_archive_filename (abfd),
718 if (r_symndx < symtab_hdr->sh_info)
721 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
723 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
727 htab->tls_ld_got.refcount += 1;
730 case R_X86_64_TPOFF32:
733 (*_bfd_error_handler)
734 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
735 bfd_archive_filename (abfd),
736 x86_64_elf_howto_table[r_type].name);
737 bfd_set_error (bfd_error_bad_value);
742 case R_X86_64_GOTTPOFF:
744 info->flags |= DF_STATIC_TLS;
748 case R_X86_64_GOTPCREL:
750 /* This symbol requires a global offset table entry. */
752 int tls_type, old_tls_type;
756 default: tls_type = GOT_NORMAL; break;
757 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
758 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
763 h->got.refcount += 1;
764 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
768 bfd_signed_vma *local_got_refcounts;
770 /* This is a global offset table entry for a local symbol. */
771 local_got_refcounts = elf_local_got_refcounts (abfd);
772 if (local_got_refcounts == NULL)
776 size = symtab_hdr->sh_info;
777 size *= sizeof (bfd_signed_vma) + sizeof (char);
778 local_got_refcounts = ((bfd_signed_vma *)
779 bfd_zalloc (abfd, size));
780 if (local_got_refcounts == NULL)
782 elf_local_got_refcounts (abfd) = local_got_refcounts;
783 elf64_x86_64_local_got_tls_type (abfd)
784 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
786 local_got_refcounts[r_symndx] += 1;
788 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
791 /* If a TLS symbol is accessed using IE at least once,
792 there is no point to use dynamic model for it. */
793 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
794 && (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE))
796 if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD)
797 tls_type = old_tls_type;
800 (*_bfd_error_handler)
801 (_("%s: %s' accessed both as normal and thread local symbol"),
802 bfd_archive_filename (abfd),
803 h ? h->root.root.string : "<local>");
808 if (old_tls_type != tls_type)
811 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
813 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
818 //case R_X86_64_GOTPCREL:
820 if (htab->sgot == NULL)
822 if (htab->elf.dynobj == NULL)
823 htab->elf.dynobj = abfd;
824 if (!create_got_section (htab->elf.dynobj, info))
830 /* This symbol requires a procedure linkage table entry. We
831 actually build the entry in adjust_dynamic_symbol,
832 because this might be a case of linking PIC code which is
833 never referenced by a dynamic object, in which case we
834 don't need to generate a procedure linkage table entry
837 /* If this is a local symbol, we resolve it directly without
838 creating a procedure linkage table entry. */
842 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
843 h->plt.refcount += 1;
850 /* Let's help debug shared library creation. These relocs
851 cannot be used in shared libs. Don't error out for
852 sections we don't care about, such as debug sections or
853 non-constant sections. */
855 && (sec->flags & SEC_ALLOC) != 0
856 && (sec->flags & SEC_READONLY) != 0)
858 (*_bfd_error_handler)
859 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
860 bfd_archive_filename (abfd),
861 x86_64_elf_howto_table[r_type].name);
862 bfd_set_error (bfd_error_bad_value);
871 if (h != NULL && !info->shared)
873 /* If this reloc is in a read-only section, we might
874 need a copy reloc. We can't check reliably at this
875 stage whether the section is read-only, as input
876 sections have not yet been mapped to output sections.
877 Tentatively set the flag for now, and correct in
878 adjust_dynamic_symbol. */
879 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
881 /* We may need a .plt entry if the function this reloc
882 refers to is in a shared lib. */
883 h->plt.refcount += 1;
886 /* If we are creating a shared library, and this is a reloc
887 against a global symbol, or a non PC relative reloc
888 against a local symbol, then we need to copy the reloc
889 into the shared library. However, if we are linking with
890 -Bsymbolic, we do not need to copy a reloc against a
891 global symbol which is defined in an object we are
892 including in the link (i.e., DEF_REGULAR is set). At
893 this point we have not seen all the input files, so it is
894 possible that DEF_REGULAR is not set now but will be set
895 later (it is never cleared). In case of a weak definition,
896 DEF_REGULAR may be cleared later by a strong definition in
897 a shared library. We account for that possibility below by
898 storing information in the relocs_copied field of the hash
899 table entry. A similar situation occurs when creating
900 shared libraries and symbol visibility changes render the
903 If on the other hand, we are creating an executable, we
904 may need to keep relocations for symbols satisfied by a
905 dynamic library if we manage to avoid copy relocs for the
908 && (sec->flags & SEC_ALLOC) != 0
909 && (((r_type != R_X86_64_PC8)
910 && (r_type != R_X86_64_PC16)
911 && (r_type != R_X86_64_PC32))
914 || h->root.type == bfd_link_hash_defweak
915 || (h->elf_link_hash_flags
916 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
918 && (sec->flags & SEC_ALLOC) != 0
920 && (h->root.type == bfd_link_hash_defweak
921 || (h->elf_link_hash_flags
922 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
924 struct elf64_x86_64_dyn_relocs *p;
925 struct elf64_x86_64_dyn_relocs **head;
927 /* We must copy these reloc types into the output file.
928 Create a reloc section in dynobj and make room for
935 name = (bfd_elf_string_from_elf_section
937 elf_elfheader (abfd)->e_shstrndx,
938 elf_section_data (sec)->rel_hdr.sh_name));
942 if (strncmp (name, ".rela", 5) != 0
943 || strcmp (bfd_get_section_name (abfd, sec),
946 (*_bfd_error_handler)
947 (_("%s: bad relocation section name `%s\'"),
948 bfd_archive_filename (abfd), name);
951 if (htab->elf.dynobj == NULL)
952 htab->elf.dynobj = abfd;
954 dynobj = htab->elf.dynobj;
956 sreloc = bfd_get_section_by_name (dynobj, name);
961 sreloc = bfd_make_section (dynobj, name);
962 flags = (SEC_HAS_CONTENTS | SEC_READONLY
963 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
964 if ((sec->flags & SEC_ALLOC) != 0)
965 flags |= SEC_ALLOC | SEC_LOAD;
967 || ! bfd_set_section_flags (dynobj, sreloc, flags)
968 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
971 elf_section_data (sec)->sreloc = sreloc;
974 /* If this is a global symbol, we count the number of
975 relocations we need for this symbol. */
978 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
982 /* Track dynamic relocs needed for local syms too.
983 We really need local syms available to do this
987 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
992 head = ((struct elf64_x86_64_dyn_relocs **)
993 &elf_section_data (s)->local_dynrel);
997 if (p == NULL || p->sec != sec)
999 bfd_size_type amt = sizeof *p;
1000 p = ((struct elf64_x86_64_dyn_relocs *)
1001 bfd_alloc (htab->elf.dynobj, amt));
1012 if (r_type == R_X86_64_PC8
1013 || r_type == R_X86_64_PC16
1014 || r_type == R_X86_64_PC32)
1019 /* This relocation describes the C++ object vtable hierarchy.
1020 Reconstruct it for later use during GC. */
1021 case R_X86_64_GNU_VTINHERIT:
1022 if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1026 /* This relocation describes which C++ vtable entries are actually
1027 used. Record for later use during GC. */
1028 case R_X86_64_GNU_VTENTRY:
1029 if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1041 /* Return the section that should be marked against GC for a given
1045 elf64_x86_64_gc_mark_hook (sec, info, rel, h, sym)
1047 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1048 Elf_Internal_Rela *rel;
1049 struct elf_link_hash_entry *h;
1050 Elf_Internal_Sym *sym;
1054 switch (ELF64_R_TYPE (rel->r_info))
1056 case R_X86_64_GNU_VTINHERIT:
1057 case R_X86_64_GNU_VTENTRY:
1061 switch (h->root.type)
1063 case bfd_link_hash_defined:
1064 case bfd_link_hash_defweak:
1065 return h->root.u.def.section;
1067 case bfd_link_hash_common:
1068 return h->root.u.c.p->section;
1076 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1081 /* Update the got entry reference counts for the section being removed. */
1084 elf64_x86_64_gc_sweep_hook (abfd, info, sec, relocs)
1086 struct bfd_link_info *info;
1088 const Elf_Internal_Rela *relocs;
1090 Elf_Internal_Shdr *symtab_hdr;
1091 struct elf_link_hash_entry **sym_hashes;
1092 bfd_signed_vma *local_got_refcounts;
1093 const Elf_Internal_Rela *rel, *relend;
1095 elf_section_data (sec)->local_dynrel = NULL;
1097 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1098 sym_hashes = elf_sym_hashes (abfd);
1099 local_got_refcounts = elf_local_got_refcounts (abfd);
1101 relend = relocs + sec->reloc_count;
1102 for (rel = relocs; rel < relend; rel++)
1104 unsigned long r_symndx;
1105 unsigned int r_type;
1106 struct elf_link_hash_entry *h = NULL;
1108 r_symndx = ELF64_R_SYM (rel->r_info);
1109 if (r_symndx >= symtab_hdr->sh_info)
1111 struct elf64_x86_64_link_hash_entry *eh;
1112 struct elf64_x86_64_dyn_relocs **pp;
1113 struct elf64_x86_64_dyn_relocs *p;
1115 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1116 eh = (struct elf64_x86_64_link_hash_entry *) h;
1118 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1121 /* Everything must go for SEC. */
1127 r_type = ELF64_R_TYPE (rel->r_info);
1128 r_type = elf64_x86_64_tls_transition (info, r_type, h != NULL);
1131 case R_X86_64_TLSLD:
1132 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1133 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1136 case R_X86_64_TLSGD:
1137 case R_X86_64_GOTTPOFF:
1138 case R_X86_64_GOT32:
1139 case R_X86_64_GOTPCREL:
1142 if (h->got.refcount > 0)
1143 h->got.refcount -= 1;
1145 else if (local_got_refcounts != NULL)
1147 if (local_got_refcounts[r_symndx] > 0)
1148 local_got_refcounts[r_symndx] -= 1;
1164 case R_X86_64_PLT32:
1167 if (h->plt.refcount > 0)
1168 h->plt.refcount -= 1;
1180 /* Adjust a symbol defined by a dynamic object and referenced by a
1181 regular object. The current definition is in some section of the
1182 dynamic object, but we're not including those sections. We have to
1183 change the definition to something the rest of the link can
1187 elf64_x86_64_adjust_dynamic_symbol (info, h)
1188 struct bfd_link_info *info;
1189 struct elf_link_hash_entry *h;
1191 struct elf64_x86_64_link_hash_table *htab;
1192 struct elf64_x86_64_link_hash_entry * eh;
1193 struct elf64_x86_64_dyn_relocs *p;
1195 unsigned int power_of_two;
1197 /* If this is a function, put it in the procedure linkage table. We
1198 will fill in the contents of the procedure linkage table later,
1199 when we know the address of the .got section. */
1200 if (h->type == STT_FUNC
1201 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1203 if (h->plt.refcount <= 0
1205 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1206 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0
1207 && h->root.type != bfd_link_hash_undefweak
1208 && h->root.type != bfd_link_hash_undefined))
1210 /* This case can occur if we saw a PLT32 reloc in an input
1211 file, but the symbol was never referred to by a dynamic
1212 object, or if all references were garbage collected. In
1213 such a case, we don't actually need to build a procedure
1214 linkage table, and we can just do a PC32 reloc instead. */
1215 h->plt.offset = (bfd_vma) -1;
1216 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1222 /* It's possible that we incorrectly decided a .plt reloc was
1223 needed for an R_X86_64_PC32 reloc to a non-function sym in
1224 check_relocs. We can't decide accurately between function and
1225 non-function syms in check-relocs; Objects loaded later in
1226 the link may change h->type. So fix it now. */
1227 h->plt.offset = (bfd_vma) -1;
1229 /* If this is a weak symbol, and there is a real definition, the
1230 processor independent code will have arranged for us to see the
1231 real definition first, and we can just use the same value. */
1232 if (h->weakdef != NULL)
1234 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1235 || h->weakdef->root.type == bfd_link_hash_defweak);
1236 h->root.u.def.section = h->weakdef->root.u.def.section;
1237 h->root.u.def.value = h->weakdef->root.u.def.value;
1241 /* This is a reference to a symbol defined by a dynamic object which
1242 is not a function. */
1244 /* If we are creating a shared library, we must presume that the
1245 only references to the symbol are via the global offset table.
1246 For such cases we need not do anything here; the relocations will
1247 be handled correctly by relocate_section. */
1251 /* If there are no references to this symbol that do not use the
1252 GOT, we don't need to generate a copy reloc. */
1253 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1256 /* If -z nocopyreloc was given, we won't generate them either. */
1257 if (info->nocopyreloc)
1259 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1263 eh = (struct elf64_x86_64_link_hash_entry *) h;
1264 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1266 s = p->sec->output_section;
1267 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1271 /* If we didn't find any dynamic relocs in read-only sections, then
1272 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1275 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1279 /* We must allocate the symbol in our .dynbss section, which will
1280 become part of the .bss section of the executable. There will be
1281 an entry for this symbol in the .dynsym section. The dynamic
1282 object will contain position independent code, so all references
1283 from the dynamic object to this symbol will go through the global
1284 offset table. The dynamic linker will use the .dynsym entry to
1285 determine the address it must put in the global offset table, so
1286 both the dynamic object and the regular object will refer to the
1287 same memory location for the variable. */
1289 htab = elf64_x86_64_hash_table (info);
1291 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1292 to copy the initial value out of the dynamic object and into the
1293 runtime process image. */
1294 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1296 htab->srelbss->_raw_size += sizeof (Elf64_External_Rela);
1297 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1300 /* We need to figure out the alignment required for this symbol. I
1301 have no idea how ELF linkers handle this. 16-bytes is the size
1302 of the largest type that requires hard alignment -- long double. */
1303 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
1305 power_of_two = bfd_log2 (h->size);
1306 if (power_of_two > 4)
1309 /* Apply the required alignment. */
1311 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
1312 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1314 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1318 /* Define the symbol as being at this point in the section. */
1319 h->root.u.def.section = s;
1320 h->root.u.def.value = s->_raw_size;
1322 /* Increment the section size to make room for the symbol. */
1323 s->_raw_size += h->size;
1328 /* This is the condition under which elf64_x86_64_finish_dynamic_symbol
1329 will be called from elflink.h. If elflink.h doesn't call our
1330 finish_dynamic_symbol routine, we'll need to do something about
1331 initializing any .plt and .got entries in elf64_x86_64_relocate_section. */
1332 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1334 && ((INFO)->shared \
1335 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1336 && ((H)->dynindx != -1 \
1337 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1339 /* Allocate space in .plt, .got and associated reloc sections for
1343 allocate_dynrelocs (h, inf)
1344 struct elf_link_hash_entry *h;
1347 struct bfd_link_info *info;
1348 struct elf64_x86_64_link_hash_table *htab;
1349 struct elf64_x86_64_link_hash_entry *eh;
1350 struct elf64_x86_64_dyn_relocs *p;
1352 if (h->root.type == bfd_link_hash_indirect)
1355 if (h->root.type == bfd_link_hash_warning)
1356 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1358 info = (struct bfd_link_info *) inf;
1359 htab = elf64_x86_64_hash_table (info);
1361 if (htab->elf.dynamic_sections_created
1362 && h->plt.refcount > 0)
1364 /* Make sure this symbol is output as a dynamic symbol.
1365 Undefined weak syms won't yet be marked as dynamic. */
1366 if (h->dynindx == -1
1367 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1369 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1373 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1375 asection *s = htab->splt;
1377 /* If this is the first .plt entry, make room for the special
1379 if (s->_raw_size == 0)
1380 s->_raw_size += PLT_ENTRY_SIZE;
1382 h->plt.offset = s->_raw_size;
1384 /* If this symbol is not defined in a regular file, and we are
1385 not generating a shared library, then set the symbol to this
1386 location in the .plt. This is required to make function
1387 pointers compare as equal between the normal executable and
1388 the shared library. */
1390 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1392 h->root.u.def.section = s;
1393 h->root.u.def.value = h->plt.offset;
1396 /* Make room for this entry. */
1397 s->_raw_size += PLT_ENTRY_SIZE;
1399 /* We also need to make an entry in the .got.plt section, which
1400 will be placed in the .got section by the linker script. */
1401 htab->sgotplt->_raw_size += GOT_ENTRY_SIZE;
1403 /* We also need to make an entry in the .rela.plt section. */
1404 htab->srelplt->_raw_size += sizeof (Elf64_External_Rela);
1408 h->plt.offset = (bfd_vma) -1;
1409 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1414 h->plt.offset = (bfd_vma) -1;
1415 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1418 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1419 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1420 if (h->got.refcount > 0
1423 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1424 h->got.offset = (bfd_vma) -1;
1425 else if (h->got.refcount > 0)
1429 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1431 /* Make sure this symbol is output as a dynamic symbol.
1432 Undefined weak syms won't yet be marked as dynamic. */
1433 if (h->dynindx == -1
1434 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1436 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1441 h->got.offset = s->_raw_size;
1442 s->_raw_size += GOT_ENTRY_SIZE;
1443 /* R_X86_64_TLSGD needs 2 consecutive GOT slots. */
1444 if (tls_type == GOT_TLS_GD)
1445 s->_raw_size += GOT_ENTRY_SIZE;
1446 dyn = htab->elf.dynamic_sections_created;
1447 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1449 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1450 if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
1451 || tls_type == GOT_TLS_IE)
1452 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1453 else if (tls_type == GOT_TLS_GD)
1454 htab->srelgot->_raw_size += 2 * sizeof (Elf64_External_Rela);
1455 else if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1456 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1459 h->got.offset = (bfd_vma) -1;
1461 eh = (struct elf64_x86_64_link_hash_entry *) h;
1462 if (eh->dyn_relocs == NULL)
1465 /* In the shared -Bsymbolic case, discard space allocated for
1466 dynamic pc-relative relocs against symbols which turn out to be
1467 defined in regular objects. For the normal shared case, discard
1468 space for pc-relative relocs that have become local due to symbol
1469 visibility changes. */
1473 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1474 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1477 struct elf64_x86_64_dyn_relocs **pp;
1479 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1481 p->count -= p->pc_count;
1492 /* For the non-shared case, discard space for relocs against
1493 symbols which turn out to need copy relocs or are not
1496 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1497 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1498 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1499 || (htab->elf.dynamic_sections_created
1500 && (h->root.type == bfd_link_hash_undefweak
1501 || h->root.type == bfd_link_hash_undefined))))
1503 /* Make sure this symbol is output as a dynamic symbol.
1504 Undefined weak syms won't yet be marked as dynamic. */
1505 if (h->dynindx == -1
1506 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1508 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1512 /* If that succeeded, we know we'll be keeping all the
1514 if (h->dynindx != -1)
1518 eh->dyn_relocs = NULL;
1523 /* Finally, allocate space. */
1524 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1526 asection *sreloc = elf_section_data (p->sec)->sreloc;
1527 sreloc->_raw_size += p->count * sizeof (Elf64_External_Rela);
1533 /* Find any dynamic relocs that apply to read-only sections. */
1536 readonly_dynrelocs (h, inf)
1537 struct elf_link_hash_entry *h;
1540 struct elf64_x86_64_link_hash_entry *eh;
1541 struct elf64_x86_64_dyn_relocs *p;
1543 if (h->root.type == bfd_link_hash_warning)
1544 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1546 eh = (struct elf64_x86_64_link_hash_entry *) h;
1547 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1549 asection *s = p->sec->output_section;
1551 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1553 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1555 info->flags |= DF_TEXTREL;
1557 /* Not an error, just cut short the traversal. */
1564 /* Set the sizes of the dynamic sections. */
1567 elf64_x86_64_size_dynamic_sections (output_bfd, info)
1568 bfd *output_bfd ATTRIBUTE_UNUSED;
1569 struct bfd_link_info *info;
1571 struct elf64_x86_64_link_hash_table *htab;
1577 htab = elf64_x86_64_hash_table (info);
1578 dynobj = htab->elf.dynobj;
1582 if (htab->elf.dynamic_sections_created)
1584 /* Set the contents of the .interp section to the interpreter. */
1587 s = bfd_get_section_by_name (dynobj, ".interp");
1590 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1591 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1595 /* Set up .got offsets for local syms, and space for local dynamic
1597 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1599 bfd_signed_vma *local_got;
1600 bfd_signed_vma *end_local_got;
1601 char *local_tls_type;
1602 bfd_size_type locsymcount;
1603 Elf_Internal_Shdr *symtab_hdr;
1606 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1609 for (s = ibfd->sections; s != NULL; s = s->next)
1611 struct elf64_x86_64_dyn_relocs *p;
1613 for (p = *((struct elf64_x86_64_dyn_relocs **)
1614 &elf_section_data (s)->local_dynrel);
1618 if (!bfd_is_abs_section (p->sec)
1619 && bfd_is_abs_section (p->sec->output_section))
1621 /* Input section has been discarded, either because
1622 it is a copy of a linkonce section or due to
1623 linker script /DISCARD/, so we'll be discarding
1626 else if (p->count != 0)
1628 srel = elf_section_data (p->sec)->sreloc;
1629 srel->_raw_size += p->count * sizeof (Elf64_External_Rela);
1630 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1631 info->flags |= DF_TEXTREL;
1637 local_got = elf_local_got_refcounts (ibfd);
1641 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1642 locsymcount = symtab_hdr->sh_info;
1643 end_local_got = local_got + locsymcount;
1644 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
1646 srel = htab->srelgot;
1647 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1651 *local_got = s->_raw_size;
1652 s->_raw_size += GOT_ENTRY_SIZE;
1653 if (*local_tls_type == GOT_TLS_GD)
1654 s->_raw_size += GOT_ENTRY_SIZE;
1656 || *local_tls_type == GOT_TLS_GD
1657 || *local_tls_type == GOT_TLS_IE)
1658 srel->_raw_size += sizeof (Elf64_External_Rela);
1661 *local_got = (bfd_vma) -1;
1665 if (htab->tls_ld_got.refcount > 0)
1667 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
1669 htab->tls_ld_got.offset = htab->sgot->_raw_size;
1670 htab->sgot->_raw_size += 2 * GOT_ENTRY_SIZE;
1671 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1674 htab->tls_ld_got.offset = -1;
1676 /* Allocate global sym .plt and .got entries, and space for global
1677 sym dynamic relocs. */
1678 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1680 /* We now have determined the sizes of the various dynamic sections.
1681 Allocate memory for them. */
1683 for (s = dynobj->sections; s != NULL; s = s->next)
1685 if ((s->flags & SEC_LINKER_CREATED) == 0)
1690 || s == htab->sgotplt)
1692 /* Strip this section if we don't need it; see the
1695 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
1697 if (s->_raw_size != 0 && s != htab->srelplt)
1700 /* We use the reloc_count field as a counter if we need
1701 to copy relocs into the output file. */
1706 /* It's not one of our sections, so don't allocate space. */
1710 if (s->_raw_size == 0)
1712 /* If we don't need this section, strip it from the
1713 output file. This is mostly to handle .rela.bss and
1714 .rela.plt. We must create both sections in
1715 create_dynamic_sections, because they must be created
1716 before the linker maps input sections to output
1717 sections. The linker does that before
1718 adjust_dynamic_symbol is called, and it is that
1719 function which decides whether anything needs to go
1720 into these sections. */
1722 _bfd_strip_section_from_output (info, s);
1726 /* Allocate memory for the section contents. We use bfd_zalloc
1727 here in case unused entries are not reclaimed before the
1728 section's contents are written out. This should not happen,
1729 but this way if it does, we get a R_X86_64_NONE reloc instead
1731 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1732 if (s->contents == NULL)
1736 if (htab->elf.dynamic_sections_created)
1738 /* Add some entries to the .dynamic section. We fill in the
1739 values later, in elf64_x86_64_finish_dynamic_sections, but we
1740 must add the entries now so that we get the correct size for
1741 the .dynamic section. The DT_DEBUG entry is filled in by the
1742 dynamic linker and used by the debugger. */
1743 #define add_dynamic_entry(TAG, VAL) \
1744 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1748 if (!add_dynamic_entry (DT_DEBUG, 0))
1752 if (htab->splt->_raw_size != 0)
1754 if (!add_dynamic_entry (DT_PLTGOT, 0)
1755 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1756 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1757 || !add_dynamic_entry (DT_JMPREL, 0))
1763 if (!add_dynamic_entry (DT_RELA, 0)
1764 || !add_dynamic_entry (DT_RELASZ, 0)
1765 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1768 /* If any dynamic relocs apply to a read-only section,
1769 then we need a DT_TEXTREL entry. */
1770 if ((info->flags & DF_TEXTREL) == 0)
1771 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1774 if ((info->flags & DF_TEXTREL) != 0)
1776 if (!add_dynamic_entry (DT_TEXTREL, 0))
1781 #undef add_dynamic_entry
1786 /* Return the base VMA address which should be subtracted from real addresses
1787 when resolving @dtpoff relocation.
1788 This is PT_TLS segment p_vaddr. */
1792 struct bfd_link_info *info;
1794 /* If tls_segment is NULL, we should have signalled an error already. */
1795 if (elf_hash_table (info)->tls_segment == NULL)
1797 return elf_hash_table (info)->tls_segment->start;
1800 /* Return the relocation value for @tpoff relocation
1801 if STT_TLS virtual address is ADDRESS. */
1804 tpoff (info, address)
1805 struct bfd_link_info *info;
1808 struct elf_link_tls_segment *tls_segment
1809 = elf_hash_table (info)->tls_segment;
1811 /* If tls_segment is NULL, we should have signalled an error already. */
1812 if (tls_segment == NULL)
1814 return address - align_power (tls_segment->size, tls_segment->align)
1815 - tls_segment->start;
1818 /* Relocate an x86_64 ELF section. */
1821 elf64_x86_64_relocate_section (output_bfd, info, input_bfd, input_section,
1822 contents, relocs, local_syms, local_sections)
1824 struct bfd_link_info *info;
1826 asection *input_section;
1828 Elf_Internal_Rela *relocs;
1829 Elf_Internal_Sym *local_syms;
1830 asection **local_sections;
1832 struct elf64_x86_64_link_hash_table *htab;
1833 Elf_Internal_Shdr *symtab_hdr;
1834 struct elf_link_hash_entry **sym_hashes;
1835 bfd_vma *local_got_offsets;
1836 Elf_Internal_Rela *rel;
1837 Elf_Internal_Rela *relend;
1839 if (info->relocateable)
1842 htab = elf64_x86_64_hash_table (info);
1843 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1844 sym_hashes = elf_sym_hashes (input_bfd);
1845 local_got_offsets = elf_local_got_offsets (input_bfd);
1848 relend = relocs + input_section->reloc_count;
1849 for (; rel < relend; rel++)
1851 unsigned int r_type;
1852 reloc_howto_type *howto;
1853 unsigned long r_symndx;
1854 struct elf_link_hash_entry *h;
1855 Elf_Internal_Sym *sym;
1859 bfd_boolean unresolved_reloc;
1860 bfd_reloc_status_type r;
1863 r_type = ELF64_R_TYPE (rel->r_info);
1864 if (r_type == (int) R_X86_64_GNU_VTINHERIT
1865 || r_type == (int) R_X86_64_GNU_VTENTRY)
1868 if (r_type >= R_X86_64_max)
1870 bfd_set_error (bfd_error_bad_value);
1874 howto = x86_64_elf_howto_table + r_type;
1875 r_symndx = ELF64_R_SYM (rel->r_info);
1879 unresolved_reloc = FALSE;
1880 if (r_symndx < symtab_hdr->sh_info)
1882 sym = local_syms + r_symndx;
1883 sec = local_sections[r_symndx];
1885 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1889 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1890 while (h->root.type == bfd_link_hash_indirect
1891 || h->root.type == bfd_link_hash_warning)
1892 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1894 if (h->root.type == bfd_link_hash_defined
1895 || h->root.type == bfd_link_hash_defweak)
1897 sec = h->root.u.def.section;
1898 if (sec->output_section == NULL)
1900 /* Set a flag that will be cleared later if we find a
1901 relocation value for this symbol. output_section
1902 is typically NULL for symbols satisfied by a shared
1904 unresolved_reloc = TRUE;
1908 relocation = (h->root.u.def.value
1909 + sec->output_section->vma
1910 + sec->output_offset);
1912 else if (h->root.type == bfd_link_hash_undefweak)
1914 else if (info->shared
1915 && !info->no_undefined
1916 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1920 if (! ((*info->callbacks->undefined_symbol)
1921 (info, h->root.root.string, input_bfd,
1922 input_section, rel->r_offset,
1923 (!info->shared || info->no_undefined
1924 || ELF_ST_VISIBILITY (h->other)))))
1929 /* When generating a shared object, the relocations handled here are
1930 copied into the output file to be resolved at run time. */
1933 case R_X86_64_GOT32:
1934 /* Relocation is to the entry for this symbol in the global
1936 case R_X86_64_GOTPCREL:
1937 /* Use global offset table as symbol value. */
1938 if (htab->sgot == NULL)
1945 off = h->got.offset;
1946 dyn = htab->elf.dynamic_sections_created;
1948 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1952 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1953 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1955 /* This is actually a static link, or it is a -Bsymbolic
1956 link and the symbol is defined locally, or the symbol
1957 was forced to be local because of a version file. We
1958 must initialize this entry in the global offset table.
1959 Since the offset must always be a multiple of 8, we
1960 use the least significant bit to record whether we
1961 have initialized it already.
1963 When doing a dynamic link, we create a .rela.got
1964 relocation entry to initialize the value. This is
1965 done in the finish_dynamic_symbol routine. */
1970 bfd_put_64 (output_bfd, relocation,
1971 htab->sgot->contents + off);
1976 unresolved_reloc = FALSE;
1980 if (local_got_offsets == NULL)
1983 off = local_got_offsets[r_symndx];
1985 /* The offset must always be a multiple of 8. We use
1986 the least significant bit to record whether we have
1987 already generated the necessary reloc. */
1992 bfd_put_64 (output_bfd, relocation,
1993 htab->sgot->contents + off);
1998 Elf_Internal_Rela outrel;
2001 /* We need to generate a R_X86_64_RELATIVE reloc
2002 for the dynamic linker. */
2007 outrel.r_offset = (htab->sgot->output_section->vma
2008 + htab->sgot->output_offset
2010 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2011 outrel.r_addend = relocation;
2013 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2014 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2017 local_got_offsets[r_symndx] |= 1;
2021 if (off >= (bfd_vma) -2)
2024 relocation = htab->sgot->output_offset + off;
2025 if (r_type == R_X86_64_GOTPCREL)
2026 relocation += htab->sgot->output_section->vma;
2030 case R_X86_64_PLT32:
2031 /* Relocation is to the entry for this symbol in the
2032 procedure linkage table. */
2034 /* Resolve a PLT32 reloc against a local symbol directly,
2035 without using the procedure linkage table. */
2039 if (h->plt.offset == (bfd_vma) -1
2040 || htab->splt == NULL)
2042 /* We didn't make a PLT entry for this symbol. This
2043 happens when statically linking PIC code, or when
2044 using -Bsymbolic. */
2048 relocation = (htab->splt->output_section->vma
2049 + htab->splt->output_offset
2051 unresolved_reloc = FALSE;
2061 /* FIXME: The ABI says the linker should make sure the value is
2062 the same when it's zeroextended to 64 bit. */
2064 /* r_symndx will be zero only for relocs against symbols
2065 from removed linkonce sections, or sections discarded by
2068 || (input_section->flags & SEC_ALLOC) == 0)
2072 && ((r_type != R_X86_64_PC8
2073 && r_type != R_X86_64_PC16
2074 && r_type != R_X86_64_PC32)
2077 && (! info->symbolic
2078 || (h->elf_link_hash_flags
2079 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2083 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2084 && (((h->elf_link_hash_flags
2085 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2086 && (h->elf_link_hash_flags
2087 & ELF_LINK_HASH_DEF_REGULAR) == 0)
2088 || h->root.type == bfd_link_hash_undefweak
2089 || h->root.type == bfd_link_hash_undefined)))
2091 Elf_Internal_Rela outrel;
2093 bfd_boolean skip, relocate;
2096 /* When generating a shared object, these relocations
2097 are copied into the output file to be resolved at run
2103 _bfd_elf_section_offset (output_bfd, info, input_section,
2105 if (outrel.r_offset == (bfd_vma) -1)
2107 else if (outrel.r_offset == (bfd_vma) -2)
2108 skip = TRUE, relocate = TRUE;
2110 outrel.r_offset += (input_section->output_section->vma
2111 + input_section->output_offset);
2114 memset (&outrel, 0, sizeof outrel);
2116 /* h->dynindx may be -1 if this symbol was marked to
2120 && (r_type == R_X86_64_PC8
2121 || r_type == R_X86_64_PC16
2122 || r_type == R_X86_64_PC32
2125 || (h->elf_link_hash_flags
2126 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2128 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2129 outrel.r_addend = rel->r_addend;
2133 /* This symbol is local, or marked to become local. */
2134 if (r_type == R_X86_64_64)
2137 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2138 outrel.r_addend = relocation + rel->r_addend;
2145 sec = local_sections[r_symndx];
2148 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2150 == bfd_link_hash_defweak));
2151 sec = h->root.u.def.section;
2153 if (sec != NULL && bfd_is_abs_section (sec))
2155 else if (sec == NULL || sec->owner == NULL)
2157 bfd_set_error (bfd_error_bad_value);
2164 osec = sec->output_section;
2165 sindx = elf_section_data (osec)->dynindx;
2166 BFD_ASSERT (sindx > 0);
2169 outrel.r_info = ELF64_R_INFO (sindx, r_type);
2170 outrel.r_addend = relocation + rel->r_addend;
2174 sreloc = elf_section_data (input_section)->sreloc;
2178 loc = sreloc->contents;
2179 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2180 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2182 /* If this reloc is against an external symbol, we do
2183 not want to fiddle with the addend. Otherwise, we
2184 need to include the symbol value so that it becomes
2185 an addend for the dynamic reloc. */
2192 case R_X86_64_TLSGD:
2193 case R_X86_64_GOTTPOFF:
2194 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
2195 tls_type = GOT_UNKNOWN;
2196 if (h == NULL && local_got_offsets)
2197 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2200 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2201 if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE)
2202 r_type = R_X86_64_TPOFF32;
2204 if (r_type == R_X86_64_TLSGD)
2206 if (tls_type == GOT_TLS_IE)
2207 r_type = R_X86_64_GOTTPOFF;
2210 if (r_type == R_X86_64_TPOFF32)
2212 BFD_ASSERT (! unresolved_reloc);
2213 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2216 static unsigned char tlsgd[8]
2217 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2219 /* GD->LE transition.
2220 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2221 .word 0x6666; rex64; call __tls_get_addr@plt
2224 leaq foo@tpoff(%rax), %rax */
2225 BFD_ASSERT (rel->r_offset >= 4);
2226 for (i = 0; i < 4; i++)
2227 BFD_ASSERT (bfd_get_8 (input_bfd,
2228 contents + rel->r_offset - 4 + i)
2230 BFD_ASSERT (rel->r_offset + 12 <= input_section->_raw_size);
2231 for (i = 0; i < 4; i++)
2232 BFD_ASSERT (bfd_get_8 (input_bfd,
2233 contents + rel->r_offset + 4 + i)
2235 BFD_ASSERT (rel + 1 < relend);
2236 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2237 memcpy (contents + rel->r_offset - 4,
2238 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2240 bfd_put_32 (output_bfd, tpoff (info, relocation),
2241 contents + rel->r_offset + 8);
2242 /* Skip R_X86_64_PLT32. */
2248 unsigned int val, type, reg;
2250 /* IE->LE transition:
2251 Originally it can be one of:
2252 movq foo@gottpoff(%rip), %reg
2253 addq foo@gottpoff(%rip), %reg
2256 leaq foo(%reg), %reg
2258 BFD_ASSERT (rel->r_offset >= 3);
2259 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 3);
2260 BFD_ASSERT (val == 0x48 || val == 0x4c);
2261 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2262 BFD_ASSERT (type == 0x8b || type == 0x03);
2263 reg = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2264 BFD_ASSERT ((reg & 0xc7) == 5);
2266 BFD_ASSERT (rel->r_offset + 4 <= input_section->_raw_size);
2271 bfd_put_8 (output_bfd, 0x49,
2272 contents + rel->r_offset - 3);
2273 bfd_put_8 (output_bfd, 0xc7,
2274 contents + rel->r_offset - 2);
2275 bfd_put_8 (output_bfd, 0xc0 | reg,
2276 contents + rel->r_offset - 1);
2280 /* addq -> addq - addressing with %rsp/%r12 is
2283 bfd_put_8 (output_bfd, 0x49,
2284 contents + rel->r_offset - 3);
2285 bfd_put_8 (output_bfd, 0x81,
2286 contents + rel->r_offset - 2);
2287 bfd_put_8 (output_bfd, 0xc0 | reg,
2288 contents + rel->r_offset - 1);
2294 bfd_put_8 (output_bfd, 0x4d,
2295 contents + rel->r_offset - 3);
2296 bfd_put_8 (output_bfd, 0x8d,
2297 contents + rel->r_offset - 2);
2298 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2299 contents + rel->r_offset - 1);
2301 bfd_put_32 (output_bfd, tpoff (info, relocation),
2302 contents + rel->r_offset);
2307 if (htab->sgot == NULL)
2311 off = h->got.offset;
2314 if (local_got_offsets == NULL)
2317 off = local_got_offsets[r_symndx];
2324 Elf_Internal_Rela outrel;
2328 if (htab->srelgot == NULL)
2331 outrel.r_offset = (htab->sgot->output_section->vma
2332 + htab->sgot->output_offset + off);
2334 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2335 if (r_type == R_X86_64_TLSGD)
2336 dr_type = R_X86_64_DTPMOD64;
2338 dr_type = R_X86_64_TPOFF64;
2340 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2341 outrel.r_addend = 0;
2342 if (dr_type == R_X86_64_TPOFF64 && indx == 0)
2343 outrel.r_addend = relocation - dtpoff_base (info);
2344 outrel.r_info = ELF64_R_INFO (indx, dr_type);
2346 loc = htab->srelgot->contents;
2347 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2348 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2350 if (r_type == R_X86_64_TLSGD)
2354 BFD_ASSERT (! unresolved_reloc);
2355 bfd_put_64 (output_bfd,
2356 relocation - dtpoff_base (info),
2357 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2361 bfd_put_64 (output_bfd, 0,
2362 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2363 outrel.r_info = ELF64_R_INFO (indx,
2365 outrel.r_offset += GOT_ENTRY_SIZE;
2366 htab->srelgot->reloc_count++;
2367 loc += sizeof (Elf64_External_Rela);
2368 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2375 local_got_offsets[r_symndx] |= 1;
2378 if (off >= (bfd_vma) -2)
2380 if (r_type == ELF64_R_TYPE (rel->r_info))
2382 relocation = htab->sgot->output_section->vma
2383 + htab->sgot->output_offset + off;
2384 unresolved_reloc = FALSE;
2389 static unsigned char tlsgd[8]
2390 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2392 /* GD->IE transition.
2393 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2394 .word 0x6666; rex64; call __tls_get_addr@plt
2397 addq foo@gottpoff(%rip), %rax */
2398 BFD_ASSERT (rel->r_offset >= 4);
2399 for (i = 0; i < 4; i++)
2400 BFD_ASSERT (bfd_get_8 (input_bfd,
2401 contents + rel->r_offset - 4 + i)
2403 BFD_ASSERT (rel->r_offset + 12 <= input_section->_raw_size);
2404 for (i = 0; i < 4; i++)
2405 BFD_ASSERT (bfd_get_8 (input_bfd,
2406 contents + rel->r_offset + 4 + i)
2408 BFD_ASSERT (rel + 1 < relend);
2409 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2410 memcpy (contents + rel->r_offset - 4,
2411 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
2414 relocation = (htab->sgot->output_section->vma
2415 + htab->sgot->output_offset + off
2417 - input_section->output_section->vma
2418 - input_section->output_offset
2420 bfd_put_32 (output_bfd, relocation,
2421 contents + rel->r_offset + 8);
2422 /* Skip R_X86_64_PLT32. */
2428 case R_X86_64_TLSLD:
2431 /* LD->LE transition:
2433 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr@plt.
2435 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
2436 BFD_ASSERT (rel->r_offset >= 3);
2437 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3)
2439 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
2441 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 1)
2443 BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size);
2444 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2446 BFD_ASSERT (rel + 1 < relend);
2447 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2448 memcpy (contents + rel->r_offset - 3,
2449 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
2450 /* Skip R_X86_64_PLT32. */
2455 if (htab->sgot == NULL)
2458 off = htab->tls_ld_got.offset;
2463 Elf_Internal_Rela outrel;
2466 if (htab->srelgot == NULL)
2469 outrel.r_offset = (htab->sgot->output_section->vma
2470 + htab->sgot->output_offset + off);
2472 bfd_put_64 (output_bfd, 0,
2473 htab->sgot->contents + off);
2474 bfd_put_64 (output_bfd, 0,
2475 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2476 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
2477 outrel.r_addend = 0;
2478 loc = htab->srelgot->contents;
2479 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2480 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2481 htab->tls_ld_got.offset |= 1;
2483 relocation = htab->sgot->output_section->vma
2484 + htab->sgot->output_offset + off;
2485 unresolved_reloc = FALSE;
2488 case R_X86_64_DTPOFF32:
2489 if (info->shared || (input_section->flags & SEC_CODE) == 0)
2490 relocation -= dtpoff_base (info);
2492 relocation = tpoff (info, relocation);
2495 case R_X86_64_TPOFF32:
2496 BFD_ASSERT (! info->shared);
2497 relocation = tpoff (info, relocation);
2504 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2505 because such sections are not SEC_ALLOC and thus ld.so will
2506 not process them. */
2507 if (unresolved_reloc
2508 && !((input_section->flags & SEC_DEBUGGING) != 0
2509 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2510 (*_bfd_error_handler)
2511 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2512 bfd_archive_filename (input_bfd),
2513 bfd_get_section_name (input_bfd, input_section),
2514 (long) rel->r_offset,
2515 h->root.root.string);
2517 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2518 contents, rel->r_offset,
2519 relocation, rel->r_addend);
2521 if (r != bfd_reloc_ok)
2526 name = h->root.root.string;
2529 name = bfd_elf_string_from_elf_section (input_bfd,
2530 symtab_hdr->sh_link,
2535 name = bfd_section_name (input_bfd, sec);
2538 if (r == bfd_reloc_overflow)
2541 if (! ((*info->callbacks->reloc_overflow)
2542 (info, name, howto->name, (bfd_vma) 0,
2543 input_bfd, input_section, rel->r_offset)))
2548 (*_bfd_error_handler)
2549 (_("%s(%s+0x%lx): reloc against `%s': error %d"),
2550 bfd_archive_filename (input_bfd),
2551 bfd_get_section_name (input_bfd, input_section),
2552 (long) rel->r_offset, name, (int) r);
2561 /* Finish up dynamic symbol handling. We set the contents of various
2562 dynamic sections here. */
2565 elf64_x86_64_finish_dynamic_symbol (output_bfd, info, h, sym)
2567 struct bfd_link_info *info;
2568 struct elf_link_hash_entry *h;
2569 Elf_Internal_Sym *sym;
2571 struct elf64_x86_64_link_hash_table *htab;
2573 htab = elf64_x86_64_hash_table (info);
2575 if (h->plt.offset != (bfd_vma) -1)
2579 Elf_Internal_Rela rela;
2582 /* This symbol has an entry in the procedure linkage table. Set
2584 if (h->dynindx == -1
2585 || htab->splt == NULL
2586 || htab->sgotplt == NULL
2587 || htab->srelplt == NULL)
2590 /* Get the index in the procedure linkage table which
2591 corresponds to this symbol. This is the index of this symbol
2592 in all the symbols for which we are making plt entries. The
2593 first entry in the procedure linkage table is reserved. */
2594 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2596 /* Get the offset into the .got table of the entry that
2597 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
2598 bytes. The first three are reserved for the dynamic linker. */
2599 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
2601 /* Fill in the entry in the procedure linkage table. */
2602 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
2605 /* Insert the relocation positions of the plt section. The magic
2606 numbers at the end of the statements are the positions of the
2607 relocations in the plt section. */
2608 /* Put offset for jmp *name@GOTPCREL(%rip), since the
2609 instruction uses 6 bytes, subtract this value. */
2610 bfd_put_32 (output_bfd,
2611 (htab->sgotplt->output_section->vma
2612 + htab->sgotplt->output_offset
2614 - htab->splt->output_section->vma
2615 - htab->splt->output_offset
2618 htab->splt->contents + h->plt.offset + 2);
2619 /* Put relocation index. */
2620 bfd_put_32 (output_bfd, plt_index,
2621 htab->splt->contents + h->plt.offset + 7);
2622 /* Put offset for jmp .PLT0. */
2623 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
2624 htab->splt->contents + h->plt.offset + 12);
2626 /* Fill in the entry in the global offset table, initially this
2627 points to the pushq instruction in the PLT which is at offset 6. */
2628 bfd_put_64 (output_bfd, (htab->splt->output_section->vma
2629 + htab->splt->output_offset
2630 + h->plt.offset + 6),
2631 htab->sgotplt->contents + got_offset);
2633 /* Fill in the entry in the .rela.plt section. */
2634 rela.r_offset = (htab->sgotplt->output_section->vma
2635 + htab->sgotplt->output_offset
2637 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
2639 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
2640 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2642 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2644 /* Mark the symbol as undefined, rather than as defined in
2645 the .plt section. Leave the value alone. This is a clue
2646 for the dynamic linker, to make function pointer
2647 comparisons work between an application and shared
2649 sym->st_shndx = SHN_UNDEF;
2653 if (h->got.offset != (bfd_vma) -1
2654 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_GD
2655 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
2657 Elf_Internal_Rela rela;
2660 /* This symbol has an entry in the global offset table. Set it
2662 if (htab->sgot == NULL || htab->srelgot == NULL)
2665 rela.r_offset = (htab->sgot->output_section->vma
2666 + htab->sgot->output_offset
2667 + (h->got.offset &~ (bfd_vma) 1));
2669 /* If this is a static link, or it is a -Bsymbolic link and the
2670 symbol is defined locally or was forced to be local because
2671 of a version file, we just want to emit a RELATIVE reloc.
2672 The entry in the global offset table will already have been
2673 initialized in the relocate_section function. */
2677 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2678 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2680 BFD_ASSERT((h->got.offset & 1) != 0);
2681 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2682 rela.r_addend = (h->root.u.def.value
2683 + h->root.u.def.section->output_section->vma
2684 + h->root.u.def.section->output_offset);
2688 BFD_ASSERT((h->got.offset & 1) == 0);
2689 bfd_put_64 (output_bfd, (bfd_vma) 0,
2690 htab->sgot->contents + h->got.offset);
2691 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
2695 loc = htab->srelgot->contents;
2696 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2697 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2700 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2702 Elf_Internal_Rela rela;
2705 /* This symbol needs a copy reloc. Set it up. */
2707 if (h->dynindx == -1
2708 || (h->root.type != bfd_link_hash_defined
2709 && h->root.type != bfd_link_hash_defweak)
2710 || htab->srelbss == NULL)
2713 rela.r_offset = (h->root.u.def.value
2714 + h->root.u.def.section->output_section->vma
2715 + h->root.u.def.section->output_offset);
2716 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
2718 loc = htab->srelbss->contents;
2719 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
2720 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2723 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2724 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2725 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2726 sym->st_shndx = SHN_ABS;
2731 /* Used to decide how to sort relocs in an optimal manner for the
2732 dynamic linker, before writing them out. */
2734 static enum elf_reloc_type_class
2735 elf64_x86_64_reloc_type_class (rela)
2736 const Elf_Internal_Rela *rela;
2738 switch ((int) ELF64_R_TYPE (rela->r_info))
2740 case R_X86_64_RELATIVE:
2741 return reloc_class_relative;
2742 case R_X86_64_JUMP_SLOT:
2743 return reloc_class_plt;
2745 return reloc_class_copy;
2747 return reloc_class_normal;
2751 /* Finish up the dynamic sections. */
2754 elf64_x86_64_finish_dynamic_sections (output_bfd, info)
2756 struct bfd_link_info *info;
2758 struct elf64_x86_64_link_hash_table *htab;
2762 htab = elf64_x86_64_hash_table (info);
2763 dynobj = htab->elf.dynobj;
2764 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2766 if (htab->elf.dynamic_sections_created)
2768 Elf64_External_Dyn *dyncon, *dynconend;
2770 if (sdyn == NULL || htab->sgot == NULL)
2773 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2774 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2775 for (; dyncon < dynconend; dyncon++)
2777 Elf_Internal_Dyn dyn;
2780 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2788 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2792 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2796 s = htab->srelplt->output_section;
2797 if (s->_cooked_size != 0)
2798 dyn.d_un.d_val = s->_cooked_size;
2800 dyn.d_un.d_val = s->_raw_size;
2804 /* The procedure linkage table relocs (DT_JMPREL) should
2805 not be included in the overall relocs (DT_RELA).
2806 Therefore, we override the DT_RELASZ entry here to
2807 make it not include the JMPREL relocs. Since the
2808 linker script arranges for .rela.plt to follow all
2809 other relocation sections, we don't have to worry
2810 about changing the DT_RELA entry. */
2811 if (htab->srelplt != NULL)
2813 s = htab->srelplt->output_section;
2814 if (s->_cooked_size != 0)
2815 dyn.d_un.d_val -= s->_cooked_size;
2817 dyn.d_un.d_val -= s->_raw_size;
2822 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2825 /* Fill in the special first entry in the procedure linkage table. */
2826 if (htab->splt && htab->splt->_raw_size > 0)
2828 /* Fill in the first entry in the procedure linkage table. */
2829 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
2831 /* Add offset for pushq GOT+8(%rip), since the instruction
2832 uses 6 bytes subtract this value. */
2833 bfd_put_32 (output_bfd,
2834 (htab->sgotplt->output_section->vma
2835 + htab->sgotplt->output_offset
2837 - htab->splt->output_section->vma
2838 - htab->splt->output_offset
2840 htab->splt->contents + 2);
2841 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
2842 the end of the instruction. */
2843 bfd_put_32 (output_bfd,
2844 (htab->sgotplt->output_section->vma
2845 + htab->sgotplt->output_offset
2847 - htab->splt->output_section->vma
2848 - htab->splt->output_offset
2850 htab->splt->contents + 8);
2852 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
2859 /* Fill in the first three entries in the global offset table. */
2860 if (htab->sgotplt->_raw_size > 0)
2862 /* Set the first entry in the global offset table to the address of
2863 the dynamic section. */
2865 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
2867 bfd_put_64 (output_bfd,
2868 sdyn->output_section->vma + sdyn->output_offset,
2869 htab->sgotplt->contents);
2870 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
2871 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
2872 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
2875 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
2883 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
2884 #define TARGET_LITTLE_NAME "elf64-x86-64"
2885 #define ELF_ARCH bfd_arch_i386
2886 #define ELF_MACHINE_CODE EM_X86_64
2887 #define ELF_MAXPAGESIZE 0x100000
2889 #define elf_backend_can_gc_sections 1
2890 #define elf_backend_can_refcount 1
2891 #define elf_backend_want_got_plt 1
2892 #define elf_backend_plt_readonly 1
2893 #define elf_backend_want_plt_sym 0
2894 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
2895 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2896 #define elf_backend_rela_normal 1
2898 #define elf_info_to_howto elf64_x86_64_info_to_howto
2900 #define bfd_elf64_bfd_link_hash_table_create \
2901 elf64_x86_64_link_hash_table_create
2902 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
2904 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
2905 #define elf_backend_check_relocs elf64_x86_64_check_relocs
2906 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
2907 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
2908 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
2909 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
2910 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
2911 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
2912 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
2913 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
2914 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
2915 #define elf_backend_relocate_section elf64_x86_64_relocate_section
2916 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
2917 #define elf_backend_object_p elf64_x86_64_elf_object_p
2918 #define bfd_elf64_mkobject elf64_x86_64_mkobject
2920 #include "elf64-target.h"