1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26 #include "elf/x86-64.h"
28 /* We use only the RELA entries. */
31 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
32 #define MINUS_ONE (~ (bfd_vma) 0)
34 /* The relocation "howto" table. Order of fields:
35 type, size, bitsize, pc_relative, complain_on_overflow,
36 special_function, name, partial_inplace, src_mask, dst_pack, pcrel_offset. */
37 static reloc_howto_type x86_64_elf_howto_table[] =
39 HOWTO(R_X86_64_NONE, 0, 0, 0, false, 0, complain_overflow_dont,
40 bfd_elf_generic_reloc, "R_X86_64_NONE", false, 0x00000000, 0x00000000,
42 HOWTO(R_X86_64_64, 0, 4, 64, false, 0, complain_overflow_bitfield,
43 bfd_elf_generic_reloc, "R_X86_64_64", false, MINUS_ONE, MINUS_ONE,
45 HOWTO(R_X86_64_PC32, 0, 4, 32, true, 0, complain_overflow_signed,
46 bfd_elf_generic_reloc, "R_X86_64_PC32", false, 0xffffffff, 0xffffffff,
48 HOWTO(R_X86_64_GOT32, 0, 4, 32, false, 0, complain_overflow_signed,
49 bfd_elf_generic_reloc, "R_X86_64_GOT32", false, 0xffffffff, 0xffffffff,
51 HOWTO(R_X86_64_PLT32, 0, 4, 32, true, 0, complain_overflow_signed,
52 bfd_elf_generic_reloc, "R_X86_64_PLT32", false, 0xffffffff, 0xffffffff,
54 HOWTO(R_X86_64_COPY, 0, 4, 32, false, 0, complain_overflow_bitfield,
55 bfd_elf_generic_reloc, "R_X86_64_COPY", false, 0xffffffff, 0xffffffff,
57 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, false, 0, complain_overflow_bitfield,
58 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", false, MINUS_ONE,
60 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, false, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", false, MINUS_ONE,
63 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, false, 0, complain_overflow_bitfield,
64 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", false, MINUS_ONE,
66 HOWTO(R_X86_64_GOTPCREL, 0, 4, 32, true,0 , complain_overflow_signed,
67 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", false, 0xffffffff,
69 HOWTO(R_X86_64_32, 0, 4, 32, false, 0, complain_overflow_unsigned,
70 bfd_elf_generic_reloc, "R_X86_64_32", false, 0xffffffff, 0xffffffff,
72 HOWTO(R_X86_64_32S, 0, 4, 32, false, 0, complain_overflow_signed,
73 bfd_elf_generic_reloc, "R_X86_64_32S", false, 0xffffffff, 0xffffffff,
75 HOWTO(R_X86_64_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_16", false, 0xffff, 0xffff, false),
77 HOWTO(R_X86_64_PC16,0, 1, 16, true, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_X86_64_PC16", false, 0xffff, 0xffff, true),
79 HOWTO(R_X86_64_8, 0, 0, 8, false, 0, complain_overflow_signed,
80 bfd_elf_generic_reloc, "R_X86_64_8", false, 0xff, 0xff, false),
81 HOWTO(R_X86_64_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
82 bfd_elf_generic_reloc, "R_X86_64_PC8", false, 0xff, 0xff, true),
84 /* GNU extension to record C++ vtable hierarchy. */
85 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, false, 0, complain_overflow_dont,
86 NULL, "R_X86_64_GNU_VTINHERIT", false, 0, 0, false),
88 /* GNU extension to record C++ vtable member usage. */
89 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, false, 0, complain_overflow_dont,
90 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", false, 0, 0,
94 /* Map BFD relocs to the x86_64 elf relocs. */
97 bfd_reloc_code_real_type bfd_reloc_val;
98 unsigned char elf_reloc_val;
101 static const struct elf_reloc_map x86_64_reloc_map[] =
103 { BFD_RELOC_NONE, R_X86_64_NONE, },
104 { BFD_RELOC_64, R_X86_64_64, },
105 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
106 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
107 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
108 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
109 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
110 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
111 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
112 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
113 { BFD_RELOC_32, R_X86_64_32, },
114 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
115 { BFD_RELOC_16, R_X86_64_16, },
116 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
117 { BFD_RELOC_8, R_X86_64_8, },
118 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
119 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
120 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
123 static reloc_howto_type *elf64_x86_64_reloc_type_lookup
124 PARAMS ((bfd *, bfd_reloc_code_real_type));
125 static void elf64_x86_64_info_to_howto
126 PARAMS ((bfd *, arelent *, Elf64_Internal_Rela *));
127 static struct bfd_link_hash_table *elf64_x86_64_link_hash_table_create
129 static boolean elf64_x86_64_elf_object_p PARAMS ((bfd *abfd));
130 static boolean elf64_x86_64_check_relocs
131 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
132 const Elf_Internal_Rela *));
133 static asection *elf64_x86_64_gc_mark_hook
134 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
135 struct elf_link_hash_entry *, Elf_Internal_Sym *));
137 static boolean elf64_x86_64_gc_sweep_hook
138 PARAMS ((bfd *, struct bfd_link_info *, asection *,
139 const Elf_Internal_Rela *));
141 static struct bfd_hash_entry *elf64_x86_64_link_hash_newfunc
142 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
143 static boolean elf64_x86_64_adjust_dynamic_symbol
144 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
146 static boolean elf64_x86_64_size_dynamic_sections
147 PARAMS ((bfd *, struct bfd_link_info *));
148 static boolean elf64_x86_64_relocate_section
149 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
150 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
151 static boolean elf64_x86_64_finish_dynamic_symbol
152 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
153 Elf_Internal_Sym *sym));
154 static boolean elf64_x86_64_finish_dynamic_sections
155 PARAMS ((bfd *, struct bfd_link_info *));
156 static enum elf_reloc_type_class elf64_x86_64_reloc_type_class
157 PARAMS ((const Elf_Internal_Rela *));
159 /* Given a BFD reloc type, return a HOWTO structure. */
160 static reloc_howto_type *
161 elf64_x86_64_reloc_type_lookup (abfd, code)
162 bfd *abfd ATTRIBUTE_UNUSED;
163 bfd_reloc_code_real_type code;
166 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
169 if (x86_64_reloc_map[i].bfd_reloc_val == code)
170 return &x86_64_elf_howto_table[i];
175 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
178 elf64_x86_64_info_to_howto (abfd, cache_ptr, dst)
179 bfd *abfd ATTRIBUTE_UNUSED;
181 Elf64_Internal_Rela *dst;
185 r_type = ELF64_R_TYPE (dst->r_info);
186 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT)
188 BFD_ASSERT (r_type <= (unsigned int) R_X86_64_PC8);
193 BFD_ASSERT (r_type < (unsigned int) R_X86_64_max);
194 i = r_type - ((unsigned int) R_X86_64_GNU_VTINHERIT - R_X86_64_PC8 - 1);
196 cache_ptr->howto = &x86_64_elf_howto_table[i];
197 BFD_ASSERT (r_type == cache_ptr->howto->type);
200 /* Functions for the x86-64 ELF linker. */
202 /* The name of the dynamic interpreter. This is put in the .interp
205 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
207 /* The size in bytes of an entry in the global offset table. */
209 #define GOT_ENTRY_SIZE 8
211 /* The size in bytes of an entry in the procedure linkage table. */
213 #define PLT_ENTRY_SIZE 16
215 /* The first entry in a procedure linkage table looks like this. See the
216 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
218 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
220 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
221 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
222 0x90, 0x90, 0x90, 0x90 /* pad out to 16 bytes with nops. */
225 /* Subsequent entries in a procedure linkage table look like this. */
227 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
229 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
230 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
231 0x68, /* pushq immediate */
232 0, 0, 0, 0, /* replaced with index into relocation table. */
233 0xe9, /* jmp relative */
234 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
237 /* The x86-64 linker needs to keep track of the number of relocs that
238 it decides to copy in check_relocs for each symbol. This is so
239 that it can discard PC relative relocs if it doesn't need them when
240 linking with -Bsymbolic. We store the information in a field
241 extending the regular ELF linker hash table. */
243 /* This structure keeps track of the number of PC relative relocs we
244 have copied for a given symbol. */
246 struct elf64_x86_64_pcrel_relocs_copied
249 struct elf64_x86_64_pcrel_relocs_copied *next;
250 /* A section in dynobj. */
252 /* Number of relocs copied in this section. */
256 /* x86-64 ELF linker hash entry. */
258 struct elf64_x86_64_link_hash_entry
260 struct elf_link_hash_entry root;
262 /* Number of PC relative relocs copied for this symbol. */
263 struct elf64_x86_64_pcrel_relocs_copied *pcrel_relocs_copied;
266 /* x86-64 ELF linker hash table. */
268 struct elf64_x86_64_link_hash_table
270 struct elf_link_hash_table root;
273 /* Declare this now that the above structures are defined. */
275 static boolean elf64_x86_64_discard_copies
276 PARAMS ((struct elf64_x86_64_link_hash_entry *, PTR));
278 /* Traverse an x86-64 ELF linker hash table. */
280 #define elf64_x86_64_link_hash_traverse(table, func, info) \
281 (elf_link_hash_traverse \
283 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
286 /* Get the x86-64 ELF linker hash table from a link_info structure. */
288 #define elf64_x86_64_hash_table(p) \
289 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
291 /* Create an entry in an x86-64 ELF linker hash table. */
293 static struct bfd_hash_entry *
294 elf64_x86_64_link_hash_newfunc (entry, table, string)
295 struct bfd_hash_entry *entry;
296 struct bfd_hash_table *table;
299 struct elf64_x86_64_link_hash_entry *ret =
300 (struct elf64_x86_64_link_hash_entry *) entry;
302 /* Allocate the structure if it has not already been allocated by a
304 if (ret == (struct elf64_x86_64_link_hash_entry *) NULL)
305 ret = ((struct elf64_x86_64_link_hash_entry *)
306 bfd_hash_allocate (table,
307 sizeof (struct elf64_x86_64_link_hash_entry)));
308 if (ret == (struct elf64_x86_64_link_hash_entry *) NULL)
309 return (struct bfd_hash_entry *) ret;
311 /* Call the allocation method of the superclass. */
312 ret = ((struct elf64_x86_64_link_hash_entry *)
313 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
315 if (ret != (struct elf64_x86_64_link_hash_entry *) NULL)
317 ret->pcrel_relocs_copied = NULL;
320 return (struct bfd_hash_entry *) ret;
323 /* Create an X86-64 ELF linker hash table. */
325 static struct bfd_link_hash_table *
326 elf64_x86_64_link_hash_table_create (abfd)
329 struct elf64_x86_64_link_hash_table *ret;
330 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
332 ret = ((struct elf64_x86_64_link_hash_table *) bfd_alloc (abfd, amt));
333 if (ret == (struct elf64_x86_64_link_hash_table *) NULL)
336 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
337 elf64_x86_64_link_hash_newfunc))
339 bfd_release (abfd, ret);
343 return &ret->root.root;
347 elf64_x86_64_elf_object_p (abfd)
350 /* Set the right machine number for an x86-64 elf64 file. */
351 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
355 /* Look through the relocs for a section during the first phase, and
356 allocate space in the global offset table or procedure linkage
360 elf64_x86_64_check_relocs (abfd, info, sec, relocs)
362 struct bfd_link_info *info;
364 const Elf_Internal_Rela *relocs;
367 Elf_Internal_Shdr *symtab_hdr;
368 struct elf_link_hash_entry **sym_hashes;
369 bfd_signed_vma *local_got_refcounts;
370 const Elf_Internal_Rela *rel;
371 const Elf_Internal_Rela *rel_end;
376 if (info->relocateable)
379 dynobj = elf_hash_table (info)->dynobj;
380 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
381 sym_hashes = elf_sym_hashes (abfd);
382 local_got_refcounts = elf_local_got_refcounts (abfd);
384 sgot = srelgot = sreloc = NULL;
385 rel_end = relocs + sec->reloc_count;
386 for (rel = relocs; rel < rel_end; rel++)
388 unsigned long r_symndx;
389 struct elf_link_hash_entry *h;
391 r_symndx = ELF64_R_SYM (rel->r_info);
392 if (r_symndx < symtab_hdr->sh_info)
395 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
397 /* Some relocs require a global offset table. */
400 switch (ELF64_R_TYPE (rel->r_info))
403 case R_X86_64_GOTPCREL:
404 elf_hash_table (info)->dynobj = dynobj = abfd;
405 if (! _bfd_elf_create_got_section (dynobj, info))
411 switch (ELF64_R_TYPE (rel->r_info))
413 case R_X86_64_GOTPCREL:
415 /* This symbol requires a global offset table entry. */
419 sgot = bfd_get_section_by_name (dynobj, ".got");
420 BFD_ASSERT (sgot != NULL);
423 if (srelgot == NULL && (h != NULL || info->shared))
425 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
428 srelgot = bfd_make_section (dynobj, ".rela.got");
430 || ! bfd_set_section_flags (dynobj, srelgot,
437 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
444 if (h->got.refcount == 0)
446 /* Make sure this symbol is output as a dynamic symbol. */
447 if (h->dynindx == -1)
449 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
453 sgot->_raw_size += GOT_ENTRY_SIZE;
454 srelgot->_raw_size += sizeof (Elf64_External_Rela);
456 h->got.refcount += 1;
460 /* This is a global offset table entry for a local symbol. */
461 if (local_got_refcounts == NULL)
465 size = symtab_hdr->sh_info;
466 size *= sizeof (bfd_signed_vma);
467 local_got_refcounts = ((bfd_signed_vma *)
468 bfd_zalloc (abfd, size));
469 if (local_got_refcounts == NULL)
471 elf_local_got_refcounts (abfd) = local_got_refcounts;
473 if (local_got_refcounts[r_symndx] == 0)
475 sgot->_raw_size += GOT_ENTRY_SIZE;
478 /* If we are generating a shared object, we need to
479 output a R_X86_64_RELATIVE reloc so that the dynamic
480 linker can adjust this GOT entry. */
481 srelgot->_raw_size += sizeof (Elf64_External_Rela);
484 local_got_refcounts[r_symndx] += 1;
489 /* This symbol requires a procedure linkage table entry. We
490 actually build the entry in adjust_dynamic_symbol,
491 because this might be a case of linking PIC code which is
492 never referenced by a dynamic object, in which case we
493 don't need to generate a procedure linkage table entry
496 /* If this is a local symbol, we resolve it directly without
497 creating a procedure linkage table entry. */
501 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
502 h->plt.refcount += 1;
512 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
514 /* If we are creating a shared library, and this is a reloc
515 against a global symbol, or a non PC relative reloc
516 against a local symbol, then we need to copy the reloc
517 into the shared library. However, if we are linking with
518 -Bsymbolic, we do not need to copy a reloc against a
519 global symbol which is defined in an object we are
520 including in the link (i.e., DEF_REGULAR is set). At
521 this point we have not seen all the input files, so it is
522 possible that DEF_REGULAR is not set now but will be set
523 later (it is never cleared). We account for that
524 possibility below by storing information in the
525 pcrel_relocs_copied field of the hash table entry.
526 A similar situation occurs when creating shared libraries
527 and symbol visibility changes render the symbol local. */
529 && (sec->flags & SEC_ALLOC) != 0
530 && (((ELF64_R_TYPE (rel->r_info) != R_X86_64_PC8)
531 && (ELF64_R_TYPE (rel->r_info) != R_X86_64_PC16)
532 && (ELF64_R_TYPE (rel->r_info) != R_X86_64_PC32))
535 || (h->elf_link_hash_flags
536 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
538 /* When creating a shared object, we must copy these
539 reloc types into the output file. We create a reloc
540 section in dynobj and make room for this reloc. */
545 name = (bfd_elf_string_from_elf_section
547 elf_elfheader (abfd)->e_shstrndx,
548 elf_section_data (sec)->rel_hdr.sh_name));
552 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
553 && strcmp (bfd_get_section_name (abfd, sec),
556 sreloc = bfd_get_section_by_name (dynobj, name);
561 sreloc = bfd_make_section (dynobj, name);
562 flags = (SEC_HAS_CONTENTS | SEC_READONLY
563 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
564 if ((sec->flags & SEC_ALLOC) != 0)
565 flags |= SEC_ALLOC | SEC_LOAD;
567 || ! bfd_set_section_flags (dynobj, sreloc, flags)
568 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
571 if (sec->flags & SEC_READONLY)
572 info->flags |= DF_TEXTREL;
575 sreloc->_raw_size += sizeof (Elf64_External_Rela);
577 /* If this is a global symbol, we count the number of PC
578 relative relocations we have entered for this symbol,
579 so that we can discard them later as necessary. Note
580 that this function is only called if we are using an
581 elf64_x86_64 linker hash table, which means that h is
582 really a pointer to an elf64_x86_64_link_hash_entry. */
584 && ((ELF64_R_TYPE (rel->r_info) == R_X86_64_PC8)
585 || (ELF64_R_TYPE (rel->r_info) == R_X86_64_PC16)
586 || (ELF64_R_TYPE (rel->r_info) == R_X86_64_PC32)))
588 struct elf64_x86_64_link_hash_entry *eh;
589 struct elf64_x86_64_pcrel_relocs_copied *p;
591 eh = (struct elf64_x86_64_link_hash_entry *) h;
593 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
594 if (p->section == sreloc)
599 p = ((struct elf64_x86_64_pcrel_relocs_copied *)
600 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
603 p->next = eh->pcrel_relocs_copied;
604 eh->pcrel_relocs_copied = p;
614 /* This relocation describes the C++ object vtable hierarchy.
615 Reconstruct it for later use during GC. */
616 case R_X86_64_GNU_VTINHERIT:
617 if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
621 /* This relocation describes which C++ vtable entries are actually
622 used. Record for later use during GC. */
623 case R_X86_64_GNU_VTENTRY:
624 if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_addend))
633 /* Return the section that should be marked against GC for a given
637 elf64_x86_64_gc_mark_hook (abfd, info, rel, h, sym)
639 struct bfd_link_info *info ATTRIBUTE_UNUSED;
640 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED;
641 struct elf_link_hash_entry *h;
642 Elf_Internal_Sym *sym;
646 switch (ELF64_R_TYPE (rel->r_info))
648 case R_X86_64_GNU_VTINHERIT:
649 case R_X86_64_GNU_VTENTRY:
653 switch (h->root.type)
655 case bfd_link_hash_defined:
656 case bfd_link_hash_defweak:
657 return h->root.u.def.section;
659 case bfd_link_hash_common:
660 return h->root.u.c.p->section;
669 return bfd_section_from_elf_index (abfd, sym->st_shndx);
675 /* Update the got entry reference counts for the section being removed. */
678 elf64_x86_64_gc_sweep_hook (abfd, info, sec, relocs)
680 struct bfd_link_info *info ATTRIBUTE_UNUSED;
682 const Elf_Internal_Rela *relocs;
684 Elf_Internal_Shdr *symtab_hdr;
685 struct elf_link_hash_entry **sym_hashes;
686 bfd_signed_vma *local_got_refcounts;
687 const Elf_Internal_Rela *rel, *relend;
688 unsigned long r_symndx;
689 struct elf_link_hash_entry *h;
694 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
695 sym_hashes = elf_sym_hashes (abfd);
696 local_got_refcounts = elf_local_got_refcounts (abfd);
698 dynobj = elf_hash_table (info)->dynobj;
702 sgot = bfd_get_section_by_name (dynobj, ".got");
703 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
705 relend = relocs + sec->reloc_count;
706 for (rel = relocs; rel < relend; rel++)
707 switch (ELF64_R_TYPE (rel->r_info))
710 case R_X86_64_GOTPCREL:
711 r_symndx = ELF64_R_SYM (rel->r_info);
712 if (r_symndx >= symtab_hdr->sh_info)
714 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
715 if (h->got.refcount > 0)
717 h->got.refcount -= 1;
718 if (h->got.refcount == 0)
720 sgot->_raw_size -= GOT_ENTRY_SIZE;
721 srelgot->_raw_size -= sizeof (Elf64_External_Rela);
725 else if (local_got_refcounts != NULL)
727 if (local_got_refcounts[r_symndx] > 0)
729 local_got_refcounts[r_symndx] -= 1;
730 if (local_got_refcounts[r_symndx] == 0)
732 sgot->_raw_size -= GOT_ENTRY_SIZE;
734 srelgot->_raw_size -= sizeof (Elf64_External_Rela);
741 r_symndx = ELF64_R_SYM (rel->r_info);
742 if (r_symndx >= symtab_hdr->sh_info)
744 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
745 if (h->plt.refcount > 0)
746 h->plt.refcount -= 1;
757 /* Adjust a symbol defined by a dynamic object and referenced by a
758 regular object. The current definition is in some section of the
759 dynamic object, but we're not including those sections. We have to
760 change the definition to something the rest of the link can
764 elf64_x86_64_adjust_dynamic_symbol (info, h)
765 struct bfd_link_info *info;
766 struct elf_link_hash_entry *h;
770 unsigned int power_of_two;
772 dynobj = elf_hash_table (info)->dynobj;
774 /* Make sure we know what is going on here. */
775 BFD_ASSERT (dynobj != NULL
776 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
777 || h->weakdef != NULL
778 || ((h->elf_link_hash_flags
779 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
780 && (h->elf_link_hash_flags
781 & ELF_LINK_HASH_REF_REGULAR) != 0
782 && (h->elf_link_hash_flags
783 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
785 /* If this is a function, put it in the procedure linkage table. We
786 will fill in the contents of the procedure linkage table later,
787 when we know the address of the .got section. */
788 if (h->type == STT_FUNC
789 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
792 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
793 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
794 || (info->shared && h->plt.refcount <= 0))
796 /* This case can occur if we saw a PLT32 reloc in an input
797 file, but the symbol was never referred to by a dynamic
798 object, or if all references were garbage collected. In
799 such a case, we don't actually need to build a procedure
800 linkage table, and we can just do a PC32 reloc instead. */
801 h->plt.offset = (bfd_vma) -1;
802 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
806 /* Make sure this symbol is output as a dynamic symbol. */
807 if (h->dynindx == -1)
809 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
813 s = bfd_get_section_by_name (dynobj, ".plt");
814 BFD_ASSERT (s != NULL);
816 /* If this is the first .plt entry, make room for the special
818 if (s->_raw_size == 0)
819 s->_raw_size = PLT_ENTRY_SIZE;
821 /* If this symbol is not defined in a regular file, and we are
822 not generating a shared library, then set the symbol to this
823 location in the .plt. This is required to make function
824 pointers compare as equal between the normal executable and
825 the shared library. */
827 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
829 h->root.u.def.section = s;
830 h->root.u.def.value = s->_raw_size;
833 h->plt.offset = s->_raw_size;
835 /* Make room for this entry. */
836 s->_raw_size += PLT_ENTRY_SIZE;
838 /* We also need to make an entry in the .got.plt section, which
839 will be placed in the .got section by the linker script. */
840 s = bfd_get_section_by_name (dynobj, ".got.plt");
841 BFD_ASSERT (s != NULL);
842 s->_raw_size += GOT_ENTRY_SIZE;
844 /* We also need to make an entry in the .rela.plt section. */
845 s = bfd_get_section_by_name (dynobj, ".rela.plt");
846 BFD_ASSERT (s != NULL);
847 s->_raw_size += sizeof (Elf64_External_Rela);
852 h->plt.offset = (bfd_vma) -1;
854 /* If this is a weak symbol, and there is a real definition, the
855 processor independent code will have arranged for us to see the
856 real definition first, and we can just use the same value. */
857 if (h->weakdef != NULL)
859 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
860 || h->weakdef->root.type == bfd_link_hash_defweak);
861 h->root.u.def.section = h->weakdef->root.u.def.section;
862 h->root.u.def.value = h->weakdef->root.u.def.value;
866 /* This is a reference to a symbol defined by a dynamic object which
867 is not a function. */
869 /* If we are creating a shared library, we must presume that the
870 only references to the symbol are via the global offset table.
871 For such cases we need not do anything here; the relocations will
872 be handled correctly by relocate_section. */
876 /* If there are no references to this symbol that do not use the
877 GOT, we don't need to generate a copy reloc. */
878 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
881 /* We must allocate the symbol in our .dynbss section, which will
882 become part of the .bss section of the executable. There will be
883 an entry for this symbol in the .dynsym section. The dynamic
884 object will contain position independent code, so all references
885 from the dynamic object to this symbol will go through the global
886 offset table. The dynamic linker will use the .dynsym entry to
887 determine the address it must put in the global offset table, so
888 both the dynamic object and the regular object will refer to the
889 same memory location for the variable. */
891 s = bfd_get_section_by_name (dynobj, ".dynbss");
892 BFD_ASSERT (s != NULL);
894 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
895 to copy the initial value out of the dynamic object and into the
896 runtime process image. We need to remember the offset into the
897 .rela.bss section we are going to use. */
898 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
902 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
903 BFD_ASSERT (srel != NULL);
904 srel->_raw_size += sizeof (Elf64_External_Rela);
905 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
908 /* We need to figure out the alignment required for this symbol. I
909 have no idea how ELF linkers handle this. 16-bytes is the size
910 of the largest type that requires hard alignment -- long double. */
911 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
913 power_of_two = bfd_log2 (h->size);
914 if (power_of_two > 4)
917 /* Apply the required alignment. */
918 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
919 if (power_of_two > bfd_get_section_alignment (dynobj, s))
921 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
925 /* Define the symbol as being at this point in the section. */
926 h->root.u.def.section = s;
927 h->root.u.def.value = s->_raw_size;
929 /* Increment the section size to make room for the symbol. */
930 s->_raw_size += h->size;
935 /* Set the sizes of the dynamic sections. */
938 elf64_x86_64_size_dynamic_sections (output_bfd, info)
939 bfd *output_bfd ATTRIBUTE_UNUSED;
940 struct bfd_link_info *info;
947 dynobj = elf_hash_table (info)->dynobj;
948 BFD_ASSERT (dynobj != NULL);
950 if (elf_hash_table (info)->dynamic_sections_created)
952 /* Set the contents of the .interp section to the interpreter. */
955 s = bfd_get_section_by_name (dynobj, ".interp");
956 BFD_ASSERT (s != NULL);
957 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
958 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
963 /* We may have created entries in the .rela.got section.
964 However, if we are not creating the dynamic sections, we will
965 not actually use these entries. Reset the size of .rela.got,
966 which will cause it to get stripped from the output file
968 s = bfd_get_section_by_name (dynobj, ".rela.got");
973 /* If this is a -Bsymbolic shared link, then we need to discard all
974 PC relative relocs against symbols defined in a regular object.
975 We allocated space for them in the check_relocs routine, but we
976 will not fill them in in the relocate_section routine. */
978 elf64_x86_64_link_hash_traverse (elf64_x86_64_hash_table (info),
979 elf64_x86_64_discard_copies,
982 /* The check_relocs and adjust_dynamic_symbol entry points have
983 determined the sizes of the various dynamic sections. Allocate
985 plt = relocs = false;
986 for (s = dynobj->sections; s != NULL; s = s->next)
991 if ((s->flags & SEC_LINKER_CREATED) == 0)
994 /* It's OK to base decisions on the section name, because none
995 of the dynobj section names depend upon the input files. */
996 name = bfd_get_section_name (dynobj, s);
999 if (strcmp (name, ".plt") == 0)
1001 if (s->_raw_size == 0)
1003 /* Strip this section if we don't need it; see the
1009 /* Remember whether there is a PLT. */
1013 else if (strncmp (name, ".rela", 5) == 0)
1015 if (s->_raw_size == 0)
1017 /* If we don't need this section, strip it from the
1018 output file. This is mostly to handle .rela.bss and
1019 .rela.plt. We must create both sections in
1020 create_dynamic_sections, because they must be created
1021 before the linker maps input sections to output
1022 sections. The linker does that before
1023 adjust_dynamic_symbol is called, and it is that
1024 function which decides whether anything needs to go
1025 into these sections. */
1030 if (strcmp (name, ".rela.plt") != 0)
1033 /* We use the reloc_count field as a counter if we need
1034 to copy relocs into the output file. */
1038 else if (strncmp (name, ".got", 4) != 0)
1040 /* It's not one of our sections, so don't allocate space. */
1046 _bfd_strip_section_from_output (info, s);
1050 /* Allocate memory for the section contents. We use bfd_zalloc
1051 here in case unused entries are not reclaimed before the
1052 section's contents are written out. This should not happen,
1053 but this way if it does, we get a R_X86_64_NONE reloc instead
1055 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1056 if (s->contents == NULL && s->_raw_size != 0)
1060 if (elf_hash_table (info)->dynamic_sections_created)
1062 /* Add some entries to the .dynamic section. We fill in the
1063 values later, in elf64_x86_64_finish_dynamic_sections, but we
1064 must add the entries now so that we get the correct size for
1065 the .dynamic section. The DT_DEBUG entry is filled in by the
1066 dynamic linker and used by the debugger. */
1067 #define add_dynamic_entry(TAG, VAL) \
1068 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1072 if (!add_dynamic_entry (DT_DEBUG, 0))
1078 if (!add_dynamic_entry (DT_PLTGOT, 0)
1079 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1080 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1081 || !add_dynamic_entry (DT_JMPREL, 0))
1087 if (!add_dynamic_entry (DT_RELA, 0)
1088 || !add_dynamic_entry (DT_RELASZ, 0)
1089 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1093 if ((info->flags & DF_TEXTREL) != 0)
1095 if (!add_dynamic_entry (DT_TEXTREL, 0))
1099 #undef add_dynamic_entry
1104 /* This function is called via elf64_x86_64_link_hash_traverse if we are
1105 creating a shared object. In the -Bsymbolic case, it discards the
1106 space allocated to copy PC relative relocs against symbols which
1107 are defined in regular objects. For the normal non-symbolic case,
1108 we also discard space for relocs that have become local due to
1109 symbol visibility changes. We allocated space for them in the
1110 check_relocs routine, but we won't fill them in in the
1111 relocate_section routine. */
1114 elf64_x86_64_discard_copies (h, inf)
1115 struct elf64_x86_64_link_hash_entry *h;
1118 struct elf64_x86_64_pcrel_relocs_copied *s;
1119 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1121 /* If a symbol has been forced local or we have found a regular
1122 definition for the symbolic link case, then we won't be needing
1124 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1125 && ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1128 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1129 s->section->_raw_size -= s->count * sizeof (Elf64_External_Rela);
1135 /* Relocate an x86_64 ELF section. */
1138 elf64_x86_64_relocate_section (output_bfd, info, input_bfd, input_section,
1139 contents, relocs, local_syms, local_sections)
1141 struct bfd_link_info *info;
1143 asection *input_section;
1145 Elf_Internal_Rela *relocs;
1146 Elf_Internal_Sym *local_syms;
1147 asection **local_sections;
1150 Elf_Internal_Shdr *symtab_hdr;
1151 struct elf_link_hash_entry **sym_hashes;
1152 bfd_vma *local_got_offsets;
1156 Elf_Internal_Rela *rela;
1157 Elf_Internal_Rela *relend;
1159 dynobj = elf_hash_table (info)->dynobj;
1160 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1161 sym_hashes = elf_sym_hashes (input_bfd);
1162 local_got_offsets = elf_local_got_offsets (input_bfd);
1164 sreloc = splt = sgot = NULL;
1167 splt = bfd_get_section_by_name (dynobj, ".plt");
1168 sgot = bfd_get_section_by_name (dynobj, ".got");
1172 relend = relocs + input_section->reloc_count;
1173 for (; rela < relend; rela++)
1176 reloc_howto_type *howto;
1177 unsigned long r_symndx;
1178 struct elf_link_hash_entry *h;
1179 Elf_Internal_Sym *sym;
1182 bfd_reloc_status_type r;
1185 r_type = ELF64_R_TYPE (rela->r_info);
1186 if (r_type == (int) R_X86_64_GNU_VTINHERIT
1187 || r_type == (int) R_X86_64_GNU_VTENTRY)
1190 if ((indx = (unsigned) r_type) >= R_X86_64_max)
1192 bfd_set_error (bfd_error_bad_value);
1195 howto = x86_64_elf_howto_table + indx;
1197 r_symndx = ELF64_R_SYM (rela->r_info);
1199 if (info->relocateable)
1201 /* This is a relocateable link. We don't have to change
1202 anything, unless the reloc is against a section symbol,
1203 in which case we have to adjust according to where the
1204 section symbol winds up in the output section. */
1205 if (r_symndx < symtab_hdr->sh_info)
1207 sym = local_syms + r_symndx;
1208 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1210 sec = local_sections[r_symndx];
1211 rela->r_addend += sec->output_offset + sym->st_value;
1218 /* This is a final link. */
1222 if (r_symndx < symtab_hdr->sh_info)
1224 sym = local_syms + r_symndx;
1225 sec = local_sections[r_symndx];
1226 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rela);
1230 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1231 while (h->root.type == bfd_link_hash_indirect
1232 || h->root.type == bfd_link_hash_warning)
1233 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1234 if (h->root.type == bfd_link_hash_defined
1235 || h->root.type == bfd_link_hash_defweak)
1237 sec = h->root.u.def.section;
1238 if ((r_type == R_X86_64_PLT32
1240 && h->plt.offset != (bfd_vma) -1)
1241 || ((r_type == R_X86_64_GOT32 || r_type == R_X86_64_GOTPCREL)
1242 && elf_hash_table (info)->dynamic_sections_created
1244 || (! info->symbolic && h->dynindx != -1)
1245 || (h->elf_link_hash_flags
1246 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1248 && ((! info->symbolic && h->dynindx != -1)
1249 || (h->elf_link_hash_flags
1250 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1251 && (r_type == R_X86_64_8
1252 || r_type == R_X86_64_16
1253 || r_type == R_X86_64_32
1254 || r_type == R_X86_64_64
1255 || r_type == R_X86_64_PC8
1256 || r_type == R_X86_64_PC16
1257 || r_type == R_X86_64_PC32)
1258 && ((input_section->flags & SEC_ALLOC) != 0
1259 /* DWARF will emit R_X86_64_32 relocations in its
1260 sections against symbols defined externally
1261 in shared libraries. We can't do anything
1263 || ((input_section->flags & SEC_DEBUGGING) != 0
1264 && (h->elf_link_hash_flags
1265 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))))
1267 /* In these cases, we don't need the relocation
1268 value. We check specially because in some
1269 obscure cases sec->output_section will be NULL. */
1272 else if (sec->output_section == NULL)
1274 (*_bfd_error_handler)
1275 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1276 bfd_archive_filename (input_bfd), h->root.root.string,
1277 bfd_get_section_name (input_bfd, input_section));
1281 relocation = (h->root.u.def.value
1282 + sec->output_section->vma
1283 + sec->output_offset);
1285 else if (h->root.type == bfd_link_hash_undefweak)
1287 else if (info->shared
1288 && (!info->symbolic || info->allow_shlib_undefined)
1289 && !info->no_undefined
1290 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1294 if (! ((*info->callbacks->undefined_symbol)
1295 (info, h->root.root.string, input_bfd,
1296 input_section, rela->r_offset,
1297 (!info->shared || info->no_undefined
1298 || ELF_ST_VISIBILITY (h->other)))))
1304 /* When generating a shared object, the relocations handled here are
1305 copied into the output file to be resolved at run time. */
1308 case R_X86_64_GOT32:
1309 /* Relocation is to the entry for this symbol in the global
1311 case R_X86_64_GOTPCREL:
1312 /* Use global offset table as symbol value. */
1313 BFD_ASSERT (sgot != NULL);
1317 bfd_vma off = h->got.offset;
1318 BFD_ASSERT (off != (bfd_vma) -1);
1320 if (! elf_hash_table (info)->dynamic_sections_created
1322 && (info->symbolic || h->dynindx == -1)
1323 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1325 /* This is actually a static link, or it is a -Bsymbolic
1326 link and the symbol is defined locally, or the symbol
1327 was forced to be local because of a version file. We
1328 must initialize this entry in the global offset table.
1329 Since the offset must always be a multiple of 8, we
1330 use the least significant bit to record whether we
1331 have initialized it already.
1333 When doing a dynamic link, we create a .rela.got
1334 relocation entry to initialize the value. This is
1335 done in the finish_dynamic_symbol routine. */
1340 bfd_put_64 (output_bfd, relocation,
1341 sgot->contents + off);
1345 if (r_type == R_X86_64_GOTPCREL)
1346 relocation = sgot->output_section->vma + sgot->output_offset + off;
1348 relocation = sgot->output_offset + off;
1354 BFD_ASSERT (local_got_offsets != NULL
1355 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1357 off = local_got_offsets[r_symndx];
1359 /* The offset must always be a multiple of 8. We use
1360 the least significant bit to record whether we have
1361 already generated the necessary reloc. */
1366 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
1371 Elf_Internal_Rela outrel;
1373 /* We need to generate a R_X86_64_RELATIVE reloc
1374 for the dynamic linker. */
1375 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1376 BFD_ASSERT (srelgot != NULL);
1378 outrel.r_offset = (sgot->output_section->vma
1379 + sgot->output_offset
1381 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1382 outrel.r_addend = relocation;
1383 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
1384 (((Elf64_External_Rela *)
1386 + srelgot->reloc_count));
1387 ++srelgot->reloc_count;
1390 local_got_offsets[r_symndx] |= 1;
1393 if (r_type == R_X86_64_GOTPCREL)
1394 relocation = sgot->output_section->vma + sgot->output_offset + off;
1396 relocation = sgot->output_offset + off;
1401 case R_X86_64_PLT32:
1402 /* Relocation is to the entry for this symbol in the
1403 procedure linkage table. */
1405 /* Resolve a PLT32 reloc against a local symbol directly,
1406 without using the procedure linkage table. */
1410 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
1412 /* We didn't make a PLT entry for this symbol. This
1413 happens when statically linking PIC code, or when
1414 using -Bsymbolic. */
1418 relocation = (splt->output_section->vma
1419 + splt->output_offset
1426 if (h == NULL || h->dynindx == -1
1428 && h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1435 /* FIXME: The ABI says the linker should make sure the value is
1436 the same when it's zeroextended to 64 bit. */
1439 && (input_section->flags & SEC_ALLOC) != 0)
1441 Elf_Internal_Rela outrel;
1442 boolean skip, relocate;
1444 /* When generating a shared object, these relocations
1445 are copied into the output file to be resolved at run
1452 name = (bfd_elf_string_from_elf_section
1454 elf_elfheader (input_bfd)->e_shstrndx,
1455 elf_section_data (input_section)->rel_hdr.sh_name));
1459 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1460 && strcmp (bfd_get_section_name (input_bfd,
1464 sreloc = bfd_get_section_by_name (dynobj, name);
1465 BFD_ASSERT (sreloc != NULL);
1472 _bfd_elf_section_offset (output_bfd, info, input_section,
1474 if (outrel.r_offset == (bfd_vma) -1)
1476 else if (outrel.r_offset == (bfd_vma) -1)
1477 skip = true, relocate = true;
1479 outrel.r_offset += (input_section->output_section->vma
1480 + input_section->output_offset);
1483 memset (&outrel, 0, sizeof outrel);
1484 /* h->dynindx may be -1 if this symbol was marked to
1487 && ((! info->symbolic && h->dynindx != -1)
1488 || (h->elf_link_hash_flags
1489 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1491 BFD_ASSERT (h->dynindx != -1);
1492 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
1493 outrel.r_addend = relocation + rela->r_addend;
1497 if (r_type == R_X86_64_64)
1500 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1501 outrel.r_addend = relocation + rela->r_addend;
1508 sec = local_sections[r_symndx];
1511 BFD_ASSERT (h->root.type == bfd_link_hash_defined
1513 == bfd_link_hash_defweak));
1514 sec = h->root.u.def.section;
1516 if (sec != NULL && bfd_is_abs_section (sec))
1518 else if (sec == NULL || sec->owner == NULL)
1520 bfd_set_error (bfd_error_bad_value);
1527 osec = sec->output_section;
1528 sindx = elf_section_data (osec)->dynindx;
1529 BFD_ASSERT (sindx > 0);
1532 outrel.r_info = ELF64_R_INFO (sindx, r_type);
1533 outrel.r_addend = relocation + rela->r_addend;
1538 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
1539 (((Elf64_External_Rela *)
1541 + sreloc->reloc_count));
1542 ++sreloc->reloc_count;
1544 /* If this reloc is against an external symbol, we do
1545 not want to fiddle with the addend. Otherwise, we
1546 need to include the symbol value so that it becomes
1547 an addend for the dynamic reloc. */
1558 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1559 contents, rela->r_offset,
1560 relocation, rela->r_addend);
1562 if (r != bfd_reloc_ok)
1567 case bfd_reloc_outofrange:
1569 case bfd_reloc_overflow:
1574 name = h->root.root.string;
1577 name = bfd_elf_string_from_elf_section (input_bfd,
1578 symtab_hdr->sh_link,
1583 name = bfd_section_name (input_bfd, sec);
1585 if (! ((*info->callbacks->reloc_overflow)
1586 (info, name, howto->name, (bfd_vma) 0,
1587 input_bfd, input_section, rela->r_offset)))
1598 /* Finish up dynamic symbol handling. We set the contents of various
1599 dynamic sections here. */
1602 elf64_x86_64_finish_dynamic_symbol (output_bfd, info, h, sym)
1604 struct bfd_link_info *info;
1605 struct elf_link_hash_entry *h;
1606 Elf_Internal_Sym *sym;
1610 dynobj = elf_hash_table (info)->dynobj;
1612 if (h->plt.offset != (bfd_vma) -1)
1619 Elf_Internal_Rela rela;
1621 /* This symbol has an entry in the procedure linkage table. Set
1624 BFD_ASSERT (h->dynindx != -1);
1626 splt = bfd_get_section_by_name (dynobj, ".plt");
1627 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1628 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
1629 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
1631 /* Get the index in the procedure linkage table which
1632 corresponds to this symbol. This is the index of this symbol
1633 in all the symbols for which we are making plt entries. The
1634 first entry in the procedure linkage table is reserved. */
1635 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1637 /* Get the offset into the .got table of the entry that
1638 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
1639 bytes. The first three are reserved for the dynamic linker. */
1640 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
1642 /* Fill in the entry in the procedure linkage table. */
1643 memcpy (splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
1646 /* Insert the relocation positions of the plt section. The magic
1647 numbers at the end of the statements are the positions of the
1648 relocations in the plt section. */
1649 /* Put offset for jmp *name@GOTPCREL(%rip), since the
1650 instruction uses 6 bytes, subtract this value. */
1651 bfd_put_32 (output_bfd,
1652 (sgot->output_section->vma
1653 + sgot->output_offset
1655 - splt->output_section->vma
1656 - splt->output_offset
1659 splt->contents + h->plt.offset + 2);
1660 /* Put relocation index. */
1661 bfd_put_32 (output_bfd, plt_index,
1662 splt->contents + h->plt.offset + 7);
1663 /* Put offset for jmp .PLT0. */
1664 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1665 splt->contents + h->plt.offset + 12);
1667 /* Fill in the entry in the global offset table, initially this
1668 points to the pushq instruction in the PLT which is at offset 6. */
1669 bfd_put_64 (output_bfd, (splt->output_section->vma + splt->output_offset
1670 + h->plt.offset + 6),
1671 sgot->contents + got_offset);
1673 /* Fill in the entry in the .rela.plt section. */
1674 rela.r_offset = (sgot->output_section->vma
1675 + sgot->output_offset
1677 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
1679 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1680 ((Elf64_External_Rela *) srela->contents
1683 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1685 /* Mark the symbol as undefined, rather than as defined in
1686 the .plt section. Leave the value alone. */
1687 sym->st_shndx = SHN_UNDEF;
1688 /* If the symbol is weak, we do need to clear the value.
1689 Otherwise, the PLT entry would provide a definition for
1690 the symbol even if the symbol wasn't defined anywhere,
1691 and so the symbol would never be NULL. */
1692 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
1698 if (h->got.offset != (bfd_vma) -1)
1702 Elf_Internal_Rela rela;
1704 /* This symbol has an entry in the global offset table. Set it
1707 sgot = bfd_get_section_by_name (dynobj, ".got");
1708 srela = bfd_get_section_by_name (dynobj, ".rela.got");
1709 BFD_ASSERT (sgot != NULL && srela != NULL);
1711 rela.r_offset = (sgot->output_section->vma
1712 + sgot->output_offset
1713 + (h->got.offset &~ (bfd_vma) 1));
1715 /* If this is a static link, or it is a -Bsymbolic link and the
1716 symbol is defined locally or was forced to be local because
1717 of a version file, we just want to emit a RELATIVE reloc.
1718 The entry in the global offset table will already have been
1719 initialized in the relocate_section function. */
1720 if (! elf_hash_table (info)->dynamic_sections_created
1722 && (info->symbolic || h->dynindx == -1)
1723 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1725 BFD_ASSERT((h->got.offset & 1) != 0);
1726 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1727 rela.r_addend = (h->root.u.def.value
1728 + h->root.u.def.section->output_section->vma
1729 + h->root.u.def.section->output_offset);
1733 BFD_ASSERT((h->got.offset & 1) == 0);
1734 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
1735 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
1739 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1740 ((Elf64_External_Rela *) srela->contents
1741 + srela->reloc_count));
1742 ++srela->reloc_count;
1745 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1748 Elf_Internal_Rela rela;
1750 /* This symbol needs a copy reloc. Set it up. */
1752 BFD_ASSERT (h->dynindx != -1
1753 && (h->root.type == bfd_link_hash_defined
1754 || h->root.type == bfd_link_hash_defweak));
1756 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1758 BFD_ASSERT (s != NULL);
1760 rela.r_offset = (h->root.u.def.value
1761 + h->root.u.def.section->output_section->vma
1762 + h->root.u.def.section->output_offset);
1763 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
1765 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1766 ((Elf64_External_Rela *) s->contents
1771 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
1772 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
1773 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1774 sym->st_shndx = SHN_ABS;
1779 /* Finish up the dynamic sections. */
1782 elf64_x86_64_finish_dynamic_sections (output_bfd, info)
1784 struct bfd_link_info *info;
1790 dynobj = elf_hash_table (info)->dynobj;
1792 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1793 BFD_ASSERT (sgot != NULL);
1794 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
1796 if (elf_hash_table (info)->dynamic_sections_created)
1799 Elf64_External_Dyn *dyncon, *dynconend;
1801 BFD_ASSERT (sdyn != NULL);
1803 dyncon = (Elf64_External_Dyn *) sdyn->contents;
1804 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
1805 for (; dyncon < dynconend; dyncon++)
1807 Elf_Internal_Dyn dyn;
1811 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
1826 s = bfd_get_section_by_name (output_bfd, name);
1827 BFD_ASSERT (s != NULL);
1828 dyn.d_un.d_ptr = s->vma;
1832 /* FIXME: This comment and code is from elf64-alpha.c: */
1833 /* My interpretation of the TIS v1.1 ELF document indicates
1834 that RELASZ should not include JMPREL. This is not what
1835 the rest of the BFD does. It is, however, what the
1836 glibc ld.so wants. Do this fixup here until we found
1837 out who is right. */
1838 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
1841 /* Subtract JMPREL size from RELASZ. */
1843 (s->_cooked_size ? s->_cooked_size : s->_raw_size);
1848 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
1849 BFD_ASSERT (s != NULL);
1851 (s->_cooked_size != 0 ? s->_cooked_size : s->_raw_size);
1854 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
1857 /* Initialize the contents of the .plt section. */
1858 splt = bfd_get_section_by_name (dynobj, ".plt");
1859 BFD_ASSERT (splt != NULL);
1860 if (splt->_raw_size > 0)
1862 /* Fill in the first entry in the procedure linkage table. */
1863 memcpy (splt->contents, elf64_x86_64_plt0_entry, PLT_ENTRY_SIZE);
1864 /* Add offset for pushq GOT+8(%rip), since the instruction
1865 uses 6 bytes subtract this value. */
1866 bfd_put_32 (output_bfd,
1867 (sgot->output_section->vma
1868 + sgot->output_offset
1870 - splt->output_section->vma
1871 - splt->output_offset
1873 splt->contents + 2);
1874 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
1875 the end of the instruction. */
1876 bfd_put_32 (output_bfd,
1877 (sgot->output_section->vma
1878 + sgot->output_offset
1880 - splt->output_section->vma
1881 - splt->output_offset
1883 splt->contents + 8);
1887 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
1891 /* Set the first entry in the global offset table to the address of
1892 the dynamic section. */
1893 if (sgot->_raw_size > 0)
1896 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
1898 bfd_put_64 (output_bfd,
1899 sdyn->output_section->vma + sdyn->output_offset,
1901 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
1902 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + GOT_ENTRY_SIZE);
1903 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + GOT_ENTRY_SIZE*2);
1906 elf_section_data (sgot->output_section)->this_hdr.sh_entsize =
1912 static enum elf_reloc_type_class
1913 elf64_x86_64_reloc_type_class (rela)
1914 const Elf_Internal_Rela *rela;
1916 switch ((int) ELF64_R_TYPE (rela->r_info))
1918 case R_X86_64_RELATIVE:
1919 return reloc_class_relative;
1920 case R_X86_64_JUMP_SLOT:
1921 return reloc_class_plt;
1923 return reloc_class_copy;
1925 return reloc_class_normal;
1929 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
1930 #define TARGET_LITTLE_NAME "elf64-x86-64"
1931 #define ELF_ARCH bfd_arch_i386
1932 #define ELF_MACHINE_CODE EM_X86_64
1933 #define ELF_MAXPAGESIZE 0x100000
1935 #define elf_backend_can_gc_sections 1
1936 #define elf_backend_can_refcount 1
1937 #define elf_backend_want_got_plt 1
1938 #define elf_backend_plt_readonly 1
1939 #define elf_backend_want_plt_sym 0
1940 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
1941 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
1943 #define elf_info_to_howto elf64_x86_64_info_to_howto
1945 #define bfd_elf64_bfd_final_link _bfd_elf64_gc_common_final_link
1946 #define bfd_elf64_bfd_link_hash_table_create \
1947 elf64_x86_64_link_hash_table_create
1948 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
1950 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
1951 #define elf_backend_check_relocs elf64_x86_64_check_relocs
1952 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
1953 #define elf_backend_finish_dynamic_sections \
1954 elf64_x86_64_finish_dynamic_sections
1955 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
1956 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
1957 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
1958 #define elf_backend_relocate_section elf64_x86_64_relocate_section
1959 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
1960 #define elf_backend_object_p elf64_x86_64_elf_object_p
1961 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
1963 #include "elf64-target.h"