1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 #include "opcode/sparc.h"
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
32 #include "elf/sparc.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
54 static boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63 static boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
65 const char **, flagword *, asection **, bfd_vma *));
66 static boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
69 static void sparc64_elf_symbol_processing
70 PARAMS ((bfd *, asymbol *));
72 static boolean sparc64_elf_copy_private_bfd_data
73 PARAMS ((bfd *, bfd *));
74 static boolean sparc64_elf_merge_private_bfd_data
75 PARAMS ((bfd *, bfd *));
77 static const char *sparc64_elf_print_symbol_all
78 PARAMS ((bfd *, PTR, asymbol *));
79 static boolean sparc64_elf_relax_section
80 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
81 static boolean sparc64_elf_relocate_section
82 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
83 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
84 static boolean sparc64_elf_finish_dynamic_symbol
85 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
87 static boolean sparc64_elf_finish_dynamic_sections
88 PARAMS ((bfd *, struct bfd_link_info *));
89 static boolean sparc64_elf_object_p PARAMS ((bfd *));
90 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
91 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
92 static boolean sparc64_elf_slurp_one_reloc_table
93 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
94 static boolean sparc64_elf_slurp_reloc_table
95 PARAMS ((bfd *, asection *, asymbol **, boolean));
96 static long sparc64_elf_canonicalize_dynamic_reloc
97 PARAMS ((bfd *, arelent **, asymbol **));
98 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
99 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
100 PARAMS ((const Elf_Internal_Rela *));
102 /* The relocation "howto" table. */
104 static bfd_reloc_status_type sparc_elf_notsup_reloc
105 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
106 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
107 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
108 static bfd_reloc_status_type sparc_elf_hix22_reloc
109 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
110 static bfd_reloc_status_type sparc_elf_lox10_reloc
111 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
113 static reloc_howto_type sparc64_elf_howto_table[] =
115 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
116 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
117 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
118 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
119 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
120 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
121 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
122 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
123 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
124 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
125 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
126 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
127 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
128 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
129 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
130 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
131 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
132 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
133 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
134 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
135 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
136 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
137 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
138 HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
139 #ifndef SPARC64_OLD_RELOCS
140 /* These aren't implemented yet. */
141 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
142 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
143 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
144 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
145 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
146 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
148 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
149 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
150 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
151 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
152 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
153 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
154 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
155 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
156 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
157 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
158 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
159 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
160 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
161 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
162 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
163 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
164 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
165 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false),
166 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
167 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
168 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
169 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
170 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
171 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
172 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
173 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
176 struct elf_reloc_map {
177 bfd_reloc_code_real_type bfd_reloc_val;
178 unsigned char elf_reloc_val;
181 static const struct elf_reloc_map sparc_reloc_map[] =
183 { BFD_RELOC_NONE, R_SPARC_NONE, },
184 { BFD_RELOC_16, R_SPARC_16, },
185 { BFD_RELOC_8, R_SPARC_8 },
186 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
187 { BFD_RELOC_CTOR, R_SPARC_64 },
188 { BFD_RELOC_32, R_SPARC_32 },
189 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
190 { BFD_RELOC_HI22, R_SPARC_HI22 },
191 { BFD_RELOC_LO10, R_SPARC_LO10, },
192 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
193 { BFD_RELOC_SPARC22, R_SPARC_22 },
194 { BFD_RELOC_SPARC13, R_SPARC_13 },
195 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
196 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
197 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
198 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
199 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
200 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
201 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
202 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
203 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
204 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
205 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
206 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
207 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
208 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
209 { BFD_RELOC_SPARC_10, R_SPARC_10 },
210 { BFD_RELOC_SPARC_11, R_SPARC_11 },
211 { BFD_RELOC_SPARC_64, R_SPARC_64 },
212 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
213 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
214 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
215 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
216 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
217 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
218 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
219 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
220 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
221 { BFD_RELOC_SPARC_7, R_SPARC_7 },
222 { BFD_RELOC_SPARC_5, R_SPARC_5 },
223 { BFD_RELOC_SPARC_6, R_SPARC_6 },
224 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
225 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
226 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
227 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
228 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
229 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
230 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
231 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
234 static reloc_howto_type *
235 sparc64_elf_reloc_type_lookup (abfd, code)
236 bfd *abfd ATTRIBUTE_UNUSED;
237 bfd_reloc_code_real_type code;
240 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
242 if (sparc_reloc_map[i].bfd_reloc_val == code)
243 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
249 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
250 bfd *abfd ATTRIBUTE_UNUSED;
252 Elf64_Internal_Rela *dst;
254 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
255 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
258 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
259 section can represent up to two relocs, we must tell the user to allocate
263 sparc64_elf_get_reloc_upper_bound (abfd, sec)
264 bfd *abfd ATTRIBUTE_UNUSED;
267 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
271 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
274 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
277 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
278 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
279 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
280 for the same location, R_SPARC_LO10 and R_SPARC_13. */
283 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
286 Elf_Internal_Shdr *rel_hdr;
290 PTR allocated = NULL;
291 bfd_byte *native_relocs;
298 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
299 if (allocated == NULL)
302 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
303 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
306 native_relocs = (bfd_byte *) allocated;
308 relents = asect->relocation + asect->reloc_count;
310 entsize = rel_hdr->sh_entsize;
311 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
313 count = rel_hdr->sh_size / entsize;
315 for (i = 0, relent = relents; i < count;
316 i++, relent++, native_relocs += entsize)
318 Elf_Internal_Rela rela;
320 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
322 /* The address of an ELF reloc is section relative for an object
323 file, and absolute for an executable file or shared library.
324 The address of a normal BFD reloc is always section relative,
325 and the address of a dynamic reloc is absolute.. */
326 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
327 relent->address = rela.r_offset;
329 relent->address = rela.r_offset - asect->vma;
331 if (ELF64_R_SYM (rela.r_info) == 0)
332 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
337 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
340 /* Canonicalize ELF section symbols. FIXME: Why? */
341 if ((s->flags & BSF_SECTION_SYM) == 0)
342 relent->sym_ptr_ptr = ps;
344 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
347 relent->addend = rela.r_addend;
349 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
350 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
352 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
353 relent[1].address = relent->address;
355 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
356 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
357 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
360 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
363 asect->reloc_count += relent - relents;
365 if (allocated != NULL)
371 if (allocated != NULL)
376 /* Read in and swap the external relocs. */
379 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
385 struct bfd_elf_section_data * const d = elf_section_data (asect);
386 Elf_Internal_Shdr *rel_hdr;
387 Elf_Internal_Shdr *rel_hdr2;
390 if (asect->relocation != NULL)
395 if ((asect->flags & SEC_RELOC) == 0
396 || asect->reloc_count == 0)
399 rel_hdr = &d->rel_hdr;
400 rel_hdr2 = d->rel_hdr2;
402 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
403 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
407 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
408 case because relocations against this section may use the
409 dynamic symbol table, and in that case bfd_section_from_shdr
410 in elf.c does not update the RELOC_COUNT. */
411 if (asect->_raw_size == 0)
414 rel_hdr = &d->this_hdr;
415 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
419 amt = asect->reloc_count;
420 amt *= 2 * sizeof (arelent);
421 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
422 if (asect->relocation == NULL)
425 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
426 asect->reloc_count = 0;
428 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
433 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
440 /* Canonicalize the dynamic relocation entries. Note that we return
441 the dynamic relocations as a single block, although they are
442 actually associated with particular sections; the interface, which
443 was designed for SunOS style shared libraries, expects that there
444 is only one set of dynamic relocs. Any section that was actually
445 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
446 the dynamic symbol table, is considered to be a dynamic reloc
450 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
458 if (elf_dynsymtab (abfd) == 0)
460 bfd_set_error (bfd_error_invalid_operation);
465 for (s = abfd->sections; s != NULL; s = s->next)
467 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
468 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
473 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
475 count = s->reloc_count;
477 for (i = 0; i < count; i++)
488 /* Write out the relocs. */
491 sparc64_elf_write_relocs (abfd, sec, data)
496 boolean *failedp = (boolean *) data;
497 Elf_Internal_Shdr *rela_hdr;
498 Elf64_External_Rela *outbound_relocas, *src_rela;
499 unsigned int idx, count;
500 asymbol *last_sym = 0;
501 int last_sym_idx = 0;
503 /* If we have already failed, don't do anything. */
507 if ((sec->flags & SEC_RELOC) == 0)
510 /* The linker backend writes the relocs out itself, and sets the
511 reloc_count field to zero to inhibit writing them here. Also,
512 sometimes the SEC_RELOC flag gets set even when there aren't any
514 if (sec->reloc_count == 0)
517 /* We can combine two relocs that refer to the same address
518 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
519 latter is R_SPARC_13 with no associated symbol. */
521 for (idx = 0; idx < sec->reloc_count; idx++)
527 addr = sec->orelocation[idx]->address;
528 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
529 && idx < sec->reloc_count - 1)
531 arelent *r = sec->orelocation[idx + 1];
533 if (r->howto->type == R_SPARC_13
534 && r->address == addr
535 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
536 && (*r->sym_ptr_ptr)->value == 0)
541 rela_hdr = &elf_section_data (sec)->rel_hdr;
543 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
544 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
545 if (rela_hdr->contents == NULL)
551 /* Figure out whether the relocations are RELA or REL relocations. */
552 if (rela_hdr->sh_type != SHT_RELA)
555 /* orelocation has the data, reloc_count has the count... */
556 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
557 src_rela = outbound_relocas;
559 for (idx = 0; idx < sec->reloc_count; idx++)
561 Elf_Internal_Rela dst_rela;
566 ptr = sec->orelocation[idx];
568 /* The address of an ELF reloc is section relative for an object
569 file, and absolute for an executable file or shared library.
570 The address of a BFD reloc is always section relative. */
571 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
572 dst_rela.r_offset = ptr->address;
574 dst_rela.r_offset = ptr->address + sec->vma;
576 sym = *ptr->sym_ptr_ptr;
579 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
584 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
593 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
594 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
595 && ! _bfd_elf_validate_reloc (abfd, ptr))
601 if (ptr->howto->type == R_SPARC_LO10
602 && idx < sec->reloc_count - 1)
604 arelent *r = sec->orelocation[idx + 1];
606 if (r->howto->type == R_SPARC_13
607 && r->address == ptr->address
608 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
609 && (*r->sym_ptr_ptr)->value == 0)
613 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
617 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
620 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
622 dst_rela.r_addend = ptr->addend;
623 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
628 /* Sparc64 ELF linker hash table. */
630 struct sparc64_elf_app_reg
633 unsigned short shndx;
638 struct sparc64_elf_link_hash_table
640 struct elf_link_hash_table root;
642 struct sparc64_elf_app_reg app_regs [4];
645 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
647 #define sparc64_elf_hash_table(p) \
648 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
650 /* Create a Sparc64 ELF linker hash table. */
652 static struct bfd_link_hash_table *
653 sparc64_elf_bfd_link_hash_table_create (abfd)
656 struct sparc64_elf_link_hash_table *ret;
657 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
659 ret = (struct sparc64_elf_link_hash_table *) bfd_zalloc (abfd, amt);
660 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
663 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
664 _bfd_elf_link_hash_newfunc))
666 bfd_release (abfd, ret);
670 return &ret->root.root;
673 /* Utility for performing the standard initial work of an instruction
675 *PRELOCATION will contain the relocated item.
676 *PINSN will contain the instruction from the input stream.
677 If the result is `bfd_reloc_other' the caller can continue with
678 performing the relocation. Otherwise it must stop and return the
679 value to its caller. */
681 static bfd_reloc_status_type
682 init_insn_reloc (abfd,
691 arelent *reloc_entry;
694 asection *input_section;
696 bfd_vma *prelocation;
700 reloc_howto_type *howto = reloc_entry->howto;
702 if (output_bfd != (bfd *) NULL
703 && (symbol->flags & BSF_SECTION_SYM) == 0
704 && (! howto->partial_inplace
705 || reloc_entry->addend == 0))
707 reloc_entry->address += input_section->output_offset;
711 /* This works because partial_inplace == false. */
712 if (output_bfd != NULL)
713 return bfd_reloc_continue;
715 if (reloc_entry->address > input_section->_cooked_size)
716 return bfd_reloc_outofrange;
718 relocation = (symbol->value
719 + symbol->section->output_section->vma
720 + symbol->section->output_offset);
721 relocation += reloc_entry->addend;
722 if (howto->pc_relative)
724 relocation -= (input_section->output_section->vma
725 + input_section->output_offset);
726 relocation -= reloc_entry->address;
729 *prelocation = relocation;
730 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
731 return bfd_reloc_other;
734 /* For unsupported relocs. */
736 static bfd_reloc_status_type
737 sparc_elf_notsup_reloc (abfd,
744 bfd *abfd ATTRIBUTE_UNUSED;
745 arelent *reloc_entry ATTRIBUTE_UNUSED;
746 asymbol *symbol ATTRIBUTE_UNUSED;
747 PTR data ATTRIBUTE_UNUSED;
748 asection *input_section ATTRIBUTE_UNUSED;
749 bfd *output_bfd ATTRIBUTE_UNUSED;
750 char **error_message ATTRIBUTE_UNUSED;
752 return bfd_reloc_notsupported;
755 /* Handle the WDISP16 reloc. */
757 static bfd_reloc_status_type
758 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
759 output_bfd, error_message)
761 arelent *reloc_entry;
764 asection *input_section;
766 char **error_message ATTRIBUTE_UNUSED;
770 bfd_reloc_status_type status;
772 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
773 input_section, output_bfd, &relocation, &insn);
774 if (status != bfd_reloc_other)
777 insn &= ~ (bfd_vma) 0x303fff;
778 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
779 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
781 if ((bfd_signed_vma) relocation < - 0x40000
782 || (bfd_signed_vma) relocation > 0x3ffff)
783 return bfd_reloc_overflow;
788 /* Handle the HIX22 reloc. */
790 static bfd_reloc_status_type
791 sparc_elf_hix22_reloc (abfd,
799 arelent *reloc_entry;
802 asection *input_section;
804 char **error_message ATTRIBUTE_UNUSED;
808 bfd_reloc_status_type status;
810 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
811 input_section, output_bfd, &relocation, &insn);
812 if (status != bfd_reloc_other)
815 relocation ^= MINUS_ONE;
816 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
817 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
819 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
820 return bfd_reloc_overflow;
825 /* Handle the LOX10 reloc. */
827 static bfd_reloc_status_type
828 sparc_elf_lox10_reloc (abfd,
836 arelent *reloc_entry;
839 asection *input_section;
841 char **error_message ATTRIBUTE_UNUSED;
845 bfd_reloc_status_type status;
847 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
848 input_section, output_bfd, &relocation, &insn);
849 if (status != bfd_reloc_other)
852 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
853 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
860 /* Both the headers and the entries are icache aligned. */
861 #define PLT_ENTRY_SIZE 32
862 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
863 #define LARGE_PLT_THRESHOLD 32768
864 #define GOT_RESERVED_ENTRIES 1
866 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
868 /* Fill in the .plt section. */
871 sparc64_elf_build_plt (output_bfd, contents, nentries)
873 unsigned char *contents;
876 const unsigned int nop = 0x01000000;
879 /* The first four entries are reserved, and are initially undefined.
880 We fill them with `illtrap 0' to force ld.so to do something. */
882 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
883 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
885 /* The first 32768 entries are close enough to plt1 to get there via
886 a straight branch. */
888 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
890 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
891 unsigned int sethi, ba;
893 /* sethi (. - plt0), %g1 */
894 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
896 /* ba,a,pt %xcc, plt1 */
897 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
899 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
900 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
901 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
902 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
903 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
904 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
905 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
906 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
909 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
910 160: 160 entries and 160 pointers. This is to separate code from data,
911 which is much friendlier on the cache. */
913 for (; i < nentries; i += 160)
915 int block = (i + 160 <= nentries ? 160 : nentries - i);
916 for (j = 0; j < block; ++j)
918 unsigned char *entry, *ptr;
921 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
922 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
924 /* ldx [%o7 + ptr - entry+4], %g1 */
925 ldx = 0xc25be000 | ((ptr - entry+4) & 0x1fff);
933 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
934 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
935 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
936 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
937 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
938 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
940 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
945 /* Return the offset of a particular plt entry within the .plt section. */
948 sparc64_elf_plt_entry_offset (index)
953 if (index < LARGE_PLT_THRESHOLD)
954 return index * PLT_ENTRY_SIZE;
956 /* See above for details. */
958 block = (index - LARGE_PLT_THRESHOLD) / 160;
959 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
961 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
965 sparc64_elf_plt_ptr_offset (index, max)
969 bfd_vma block, ofs, last;
971 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
973 /* See above for details. */
975 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
977 if (block + 160 > max)
978 last = (max - LARGE_PLT_THRESHOLD) % 160;
982 return (block * PLT_ENTRY_SIZE
987 /* Look through the relocs for a section during the first phase, and
988 allocate space in the global offset table or procedure linkage
992 sparc64_elf_check_relocs (abfd, info, sec, relocs)
994 struct bfd_link_info *info;
996 const Elf_Internal_Rela *relocs;
999 Elf_Internal_Shdr *symtab_hdr;
1000 struct elf_link_hash_entry **sym_hashes;
1001 bfd_vma *local_got_offsets;
1002 const Elf_Internal_Rela *rel;
1003 const Elf_Internal_Rela *rel_end;
1008 if (info->relocateable || !(sec->flags & SEC_ALLOC))
1011 dynobj = elf_hash_table (info)->dynobj;
1012 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1013 sym_hashes = elf_sym_hashes (abfd);
1014 local_got_offsets = elf_local_got_offsets (abfd);
1020 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1021 for (rel = relocs; rel < rel_end; rel++)
1023 unsigned long r_symndx;
1024 struct elf_link_hash_entry *h;
1026 r_symndx = ELF64_R_SYM (rel->r_info);
1027 if (r_symndx < symtab_hdr->sh_info)
1030 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1032 switch (ELF64_R_TYPE_ID (rel->r_info))
1037 /* This symbol requires a global offset table entry. */
1041 /* Create the .got section. */
1042 elf_hash_table (info)->dynobj = dynobj = abfd;
1043 if (! _bfd_elf_create_got_section (dynobj, info))
1049 sgot = bfd_get_section_by_name (dynobj, ".got");
1050 BFD_ASSERT (sgot != NULL);
1053 if (srelgot == NULL && (h != NULL || info->shared))
1055 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1056 if (srelgot == NULL)
1058 srelgot = bfd_make_section (dynobj, ".rela.got");
1060 || ! bfd_set_section_flags (dynobj, srelgot,
1065 | SEC_LINKER_CREATED
1067 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1074 if (h->got.offset != (bfd_vma) -1)
1076 /* We have already allocated space in the .got. */
1079 h->got.offset = sgot->_raw_size;
1081 /* Make sure this symbol is output as a dynamic symbol. */
1082 if (h->dynindx == -1)
1084 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1088 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1092 /* This is a global offset table entry for a local
1094 if (local_got_offsets == NULL)
1097 register unsigned int i;
1099 size = symtab_hdr->sh_info;
1100 size *= sizeof (bfd_vma);
1101 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1102 if (local_got_offsets == NULL)
1104 elf_local_got_offsets (abfd) = local_got_offsets;
1105 for (i = 0; i < symtab_hdr->sh_info; i++)
1106 local_got_offsets[i] = (bfd_vma) -1;
1108 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1110 /* We have already allocated space in the .got. */
1113 local_got_offsets[r_symndx] = sgot->_raw_size;
1117 /* If we are generating a shared object, we need to
1118 output a R_SPARC_RELATIVE reloc so that the
1119 dynamic linker can adjust this GOT entry. */
1120 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1124 sgot->_raw_size += 8;
1127 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1128 unsigned numbers. If we permit ourselves to modify
1129 code so we get sethi/xor, this could work.
1130 Question: do we consider conditionally re-enabling
1131 this for -fpic, once we know about object code models? */
1132 /* If the .got section is more than 0x1000 bytes, we add
1133 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1134 bit relocations have a greater chance of working. */
1135 if (sgot->_raw_size >= 0x1000
1136 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1137 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1142 case R_SPARC_WPLT30:
1144 case R_SPARC_HIPLT22:
1145 case R_SPARC_LOPLT10:
1146 case R_SPARC_PCPLT32:
1147 case R_SPARC_PCPLT22:
1148 case R_SPARC_PCPLT10:
1150 /* This symbol requires a procedure linkage table entry. We
1151 actually build the entry in adjust_dynamic_symbol,
1152 because this might be a case of linking PIC code without
1153 linking in any dynamic objects, in which case we don't
1154 need to generate a procedure linkage table after all. */
1158 /* It does not make sense to have a procedure linkage
1159 table entry for a local symbol. */
1160 bfd_set_error (bfd_error_bad_value);
1164 /* Make sure this symbol is output as a dynamic symbol. */
1165 if (h->dynindx == -1)
1167 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1171 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1176 case R_SPARC_PC_HH22:
1177 case R_SPARC_PC_HM10:
1178 case R_SPARC_PC_LM22:
1180 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1184 case R_SPARC_DISP16:
1185 case R_SPARC_DISP32:
1186 case R_SPARC_DISP64:
1187 case R_SPARC_WDISP30:
1188 case R_SPARC_WDISP22:
1189 case R_SPARC_WDISP19:
1190 case R_SPARC_WDISP16:
1219 /* When creating a shared object, we must copy these relocs
1220 into the output file. We create a reloc section in
1221 dynobj and make room for the reloc.
1223 But don't do this for debugging sections -- this shows up
1224 with DWARF2 -- first because they are not loaded, and
1225 second because DWARF sez the debug info is not to be
1226 biased by the load address. */
1227 if (info->shared && (sec->flags & SEC_ALLOC))
1233 name = (bfd_elf_string_from_elf_section
1235 elf_elfheader (abfd)->e_shstrndx,
1236 elf_section_data (sec)->rel_hdr.sh_name));
1240 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1241 && strcmp (bfd_get_section_name (abfd, sec),
1244 sreloc = bfd_get_section_by_name (dynobj, name);
1249 sreloc = bfd_make_section (dynobj, name);
1250 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1251 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1252 if ((sec->flags & SEC_ALLOC) != 0)
1253 flags |= SEC_ALLOC | SEC_LOAD;
1255 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1256 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1259 if (sec->flags & SEC_READONLY)
1260 info->flags |= DF_TEXTREL;
1263 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1267 case R_SPARC_REGISTER:
1268 /* Nothing to do. */
1272 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1273 bfd_archive_filename (abfd),
1274 ELF64_R_TYPE_ID (rel->r_info));
1282 /* Hook called by the linker routine which adds symbols from an object
1283 file. We use it for STT_REGISTER symbols. */
1286 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1288 struct bfd_link_info *info;
1289 const Elf_Internal_Sym *sym;
1291 flagword *flagsp ATTRIBUTE_UNUSED;
1292 asection **secp ATTRIBUTE_UNUSED;
1293 bfd_vma *valp ATTRIBUTE_UNUSED;
1295 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1297 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1300 struct sparc64_elf_app_reg *p;
1302 reg = (int)sym->st_value;
1305 case 2: reg -= 2; break;
1306 case 6: reg -= 4; break;
1308 (*_bfd_error_handler)
1309 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1310 bfd_archive_filename (abfd));
1314 if (info->hash->creator != abfd->xvec
1315 || (abfd->flags & DYNAMIC) != 0)
1317 /* STT_REGISTER only works when linking an elf64_sparc object.
1318 If STT_REGISTER comes from a dynamic object, don't put it into
1319 the output bfd. The dynamic linker will recheck it. */
1324 p = sparc64_elf_hash_table(info)->app_regs + reg;
1326 if (p->name != NULL && strcmp (p->name, *namep))
1328 (*_bfd_error_handler)
1329 (_("Register %%g%d used incompatibly: %s in %s"),
1330 (int) sym->st_value,
1331 **namep ? *namep : "#scratch", bfd_archive_filename (abfd));
1332 (*_bfd_error_handler)
1333 (_(" previously %s in %s"),
1334 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1338 if (p->name == NULL)
1342 struct elf_link_hash_entry *h;
1344 h = (struct elf_link_hash_entry *)
1345 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1349 unsigned char type = h->type;
1351 if (type > STT_FUNC)
1353 (*_bfd_error_handler)
1354 (_("Symbol `%s' has differing types: %s in %s"),
1355 *namep, "REGISTER", bfd_archive_filename (abfd));
1356 (*_bfd_error_handler)
1357 (_(" previously %s in %s"),
1358 stt_types[type], bfd_archive_filename (p->abfd));
1362 p->name = bfd_hash_allocate (&info->hash->table,
1363 strlen (*namep) + 1);
1367 strcpy (p->name, *namep);
1371 p->bind = ELF_ST_BIND (sym->st_info);
1373 p->shndx = sym->st_shndx;
1377 if (p->bind == STB_WEAK
1378 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1380 p->bind = STB_GLOBAL;
1387 else if (! *namep || ! **namep)
1392 struct sparc64_elf_app_reg *p;
1394 p = sparc64_elf_hash_table(info)->app_regs;
1395 for (i = 0; i < 4; i++, p++)
1396 if (p->name != NULL && ! strcmp (p->name, *namep))
1398 unsigned char type = ELF_ST_TYPE (sym->st_info);
1400 if (type > STT_FUNC)
1402 (*_bfd_error_handler)
1403 (_("Symbol `%s' has differing types: %s in %s"),
1404 *namep, stt_types[type], bfd_archive_filename (abfd));
1405 (*_bfd_error_handler)
1406 (_(" previously %s in %s"),
1407 "REGISTER", bfd_archive_filename (p->abfd));
1414 /* This function takes care of emiting STT_REGISTER symbols
1415 which we cannot easily keep in the symbol hash table. */
1418 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1419 bfd *output_bfd ATTRIBUTE_UNUSED;
1420 struct bfd_link_info *info;
1422 boolean (*func) PARAMS ((PTR, const char *,
1423 Elf_Internal_Sym *, asection *));
1426 struct sparc64_elf_app_reg *app_regs =
1427 sparc64_elf_hash_table(info)->app_regs;
1428 Elf_Internal_Sym sym;
1430 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1431 at the end of the dynlocal list, so they came at the end of the local
1432 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1433 to back up symtab->sh_info. */
1434 if (elf_hash_table (info)->dynlocal)
1436 bfd * dynobj = elf_hash_table (info)->dynobj;
1437 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1438 struct elf_link_local_dynamic_entry *e;
1440 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1441 if (e->input_indx == -1)
1445 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1450 if (info->strip == strip_all)
1453 for (reg = 0; reg < 4; reg++)
1454 if (app_regs [reg].name != NULL)
1456 if (info->strip == strip_some
1457 && bfd_hash_lookup (info->keep_hash,
1458 app_regs [reg].name,
1459 false, false) == NULL)
1462 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1465 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1466 sym.st_shndx = app_regs [reg].shndx;
1467 if (! (*func) (finfo, app_regs [reg].name, &sym,
1468 sym.st_shndx == SHN_ABS
1469 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1477 sparc64_elf_get_symbol_type (elf_sym, type)
1478 Elf_Internal_Sym * elf_sym;
1481 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1482 return STT_REGISTER;
1487 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1488 even in SHN_UNDEF section. */
1491 sparc64_elf_symbol_processing (abfd, asym)
1492 bfd *abfd ATTRIBUTE_UNUSED;
1495 elf_symbol_type *elfsym;
1497 elfsym = (elf_symbol_type *) asym;
1498 if (elfsym->internal_elf_sym.st_info
1499 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1501 asym->flags |= BSF_GLOBAL;
1505 /* Adjust a symbol defined by a dynamic object and referenced by a
1506 regular object. The current definition is in some section of the
1507 dynamic object, but we're not including those sections. We have to
1508 change the definition to something the rest of the link can
1512 sparc64_elf_adjust_dynamic_symbol (info, h)
1513 struct bfd_link_info *info;
1514 struct elf_link_hash_entry *h;
1518 unsigned int power_of_two;
1520 dynobj = elf_hash_table (info)->dynobj;
1522 /* Make sure we know what is going on here. */
1523 BFD_ASSERT (dynobj != NULL
1524 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1525 || h->weakdef != NULL
1526 || ((h->elf_link_hash_flags
1527 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1528 && (h->elf_link_hash_flags
1529 & ELF_LINK_HASH_REF_REGULAR) != 0
1530 && (h->elf_link_hash_flags
1531 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1533 /* If this is a function, put it in the procedure linkage table. We
1534 will fill in the contents of the procedure linkage table later
1535 (although we could actually do it here). The STT_NOTYPE
1536 condition is a hack specifically for the Oracle libraries
1537 delivered for Solaris; for some inexplicable reason, they define
1538 some of their functions as STT_NOTYPE when they really should be
1540 if (h->type == STT_FUNC
1541 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1542 || (h->type == STT_NOTYPE
1543 && (h->root.type == bfd_link_hash_defined
1544 || h->root.type == bfd_link_hash_defweak)
1545 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1547 if (! elf_hash_table (info)->dynamic_sections_created)
1549 /* This case can occur if we saw a WPLT30 reloc in an input
1550 file, but none of the input files were dynamic objects.
1551 In such a case, we don't actually need to build a
1552 procedure linkage table, and we can just do a WDISP30
1554 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1558 s = bfd_get_section_by_name (dynobj, ".plt");
1559 BFD_ASSERT (s != NULL);
1561 /* The first four bit in .plt is reserved. */
1562 if (s->_raw_size == 0)
1563 s->_raw_size = PLT_HEADER_SIZE;
1565 /* If this symbol is not defined in a regular file, and we are
1566 not generating a shared library, then set the symbol to this
1567 location in the .plt. This is required to make function
1568 pointers compare as equal between the normal executable and
1569 the shared library. */
1571 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1573 h->root.u.def.section = s;
1574 h->root.u.def.value = s->_raw_size;
1577 /* To simplify matters later, just store the plt index here. */
1578 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1580 /* Make room for this entry. */
1581 s->_raw_size += PLT_ENTRY_SIZE;
1583 /* We also need to make an entry in the .rela.plt section. */
1585 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1586 BFD_ASSERT (s != NULL);
1588 s->_raw_size += sizeof (Elf64_External_Rela);
1590 /* The procedure linkage table size is bounded by the magnitude
1591 of the offset we can describe in the entry. */
1592 if (s->_raw_size >= (bfd_vma)1 << 32)
1594 bfd_set_error (bfd_error_bad_value);
1601 /* If this is a weak symbol, and there is a real definition, the
1602 processor independent code will have arranged for us to see the
1603 real definition first, and we can just use the same value. */
1604 if (h->weakdef != NULL)
1606 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1607 || h->weakdef->root.type == bfd_link_hash_defweak);
1608 h->root.u.def.section = h->weakdef->root.u.def.section;
1609 h->root.u.def.value = h->weakdef->root.u.def.value;
1613 /* This is a reference to a symbol defined by a dynamic object which
1614 is not a function. */
1616 /* If we are creating a shared library, we must presume that the
1617 only references to the symbol are via the global offset table.
1618 For such cases we need not do anything here; the relocations will
1619 be handled correctly by relocate_section. */
1623 /* We must allocate the symbol in our .dynbss section, which will
1624 become part of the .bss section of the executable. There will be
1625 an entry for this symbol in the .dynsym section. The dynamic
1626 object will contain position independent code, so all references
1627 from the dynamic object to this symbol will go through the global
1628 offset table. The dynamic linker will use the .dynsym entry to
1629 determine the address it must put in the global offset table, so
1630 both the dynamic object and the regular object will refer to the
1631 same memory location for the variable. */
1633 s = bfd_get_section_by_name (dynobj, ".dynbss");
1634 BFD_ASSERT (s != NULL);
1636 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1637 to copy the initial value out of the dynamic object and into the
1638 runtime process image. We need to remember the offset into the
1639 .rel.bss section we are going to use. */
1640 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1644 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1645 BFD_ASSERT (srel != NULL);
1646 srel->_raw_size += sizeof (Elf64_External_Rela);
1647 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1650 /* We need to figure out the alignment required for this symbol. I
1651 have no idea how ELF linkers handle this. 16-bytes is the size
1652 of the largest type that requires hard alignment -- long double. */
1653 power_of_two = bfd_log2 (h->size);
1654 if (power_of_two > 4)
1657 /* Apply the required alignment. */
1658 s->_raw_size = BFD_ALIGN (s->_raw_size,
1659 (bfd_size_type) (1 << power_of_two));
1660 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1662 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1666 /* Define the symbol as being at this point in the section. */
1667 h->root.u.def.section = s;
1668 h->root.u.def.value = s->_raw_size;
1670 /* Increment the section size to make room for the symbol. */
1671 s->_raw_size += h->size;
1676 /* Set the sizes of the dynamic sections. */
1679 sparc64_elf_size_dynamic_sections (output_bfd, info)
1681 struct bfd_link_info *info;
1687 dynobj = elf_hash_table (info)->dynobj;
1688 BFD_ASSERT (dynobj != NULL);
1690 if (elf_hash_table (info)->dynamic_sections_created)
1692 /* Set the contents of the .interp section to the interpreter. */
1695 s = bfd_get_section_by_name (dynobj, ".interp");
1696 BFD_ASSERT (s != NULL);
1697 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1698 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1703 /* We may have created entries in the .rela.got section.
1704 However, if we are not creating the dynamic sections, we will
1705 not actually use these entries. Reset the size of .rela.got,
1706 which will cause it to get stripped from the output file
1708 s = bfd_get_section_by_name (dynobj, ".rela.got");
1713 /* The check_relocs and adjust_dynamic_symbol entry points have
1714 determined the sizes of the various dynamic sections. Allocate
1717 for (s = dynobj->sections; s != NULL; s = s->next)
1722 if ((s->flags & SEC_LINKER_CREATED) == 0)
1725 /* It's OK to base decisions on the section name, because none
1726 of the dynobj section names depend upon the input files. */
1727 name = bfd_get_section_name (dynobj, s);
1731 if (strncmp (name, ".rela", 5) == 0)
1733 if (s->_raw_size == 0)
1735 /* If we don't need this section, strip it from the
1736 output file. This is to handle .rela.bss and
1737 .rel.plt. We must create it in
1738 create_dynamic_sections, because it must be created
1739 before the linker maps input sections to output
1740 sections. The linker does that before
1741 adjust_dynamic_symbol is called, and it is that
1742 function which decides whether anything needs to go
1743 into these sections. */
1748 if (strcmp (name, ".rela.plt") == 0)
1751 /* We use the reloc_count field as a counter if we need
1752 to copy relocs into the output file. */
1756 else if (strcmp (name, ".plt") != 0
1757 && strncmp (name, ".got", 4) != 0)
1759 /* It's not one of our sections, so don't allocate space. */
1765 _bfd_strip_section_from_output (info, s);
1769 /* Allocate memory for the section contents. Zero the memory
1770 for the benefit of .rela.plt, which has 4 unused entries
1771 at the beginning, and we don't want garbage. */
1772 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1773 if (s->contents == NULL && s->_raw_size != 0)
1777 if (elf_hash_table (info)->dynamic_sections_created)
1779 /* Add some entries to the .dynamic section. We fill in the
1780 values later, in sparc64_elf_finish_dynamic_sections, but we
1781 must add the entries now so that we get the correct size for
1782 the .dynamic section. The DT_DEBUG entry is filled in by the
1783 dynamic linker and used by the debugger. */
1784 #define add_dynamic_entry(TAG, VAL) \
1785 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1788 struct sparc64_elf_app_reg * app_regs;
1789 struct bfd_strtab_hash *dynstr;
1790 struct elf_link_hash_table *eht = elf_hash_table (info);
1794 if (!add_dynamic_entry (DT_DEBUG, 0))
1800 if (!add_dynamic_entry (DT_PLTGOT, 0)
1801 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1802 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1803 || !add_dynamic_entry (DT_JMPREL, 0))
1807 if (!add_dynamic_entry (DT_RELA, 0)
1808 || !add_dynamic_entry (DT_RELASZ, 0)
1809 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1812 if (info->flags & DF_TEXTREL)
1814 if (!add_dynamic_entry (DT_TEXTREL, 0))
1818 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1819 entries if needed. */
1820 app_regs = sparc64_elf_hash_table (info)->app_regs;
1821 dynstr = eht->dynstr;
1823 for (reg = 0; reg < 4; reg++)
1824 if (app_regs [reg].name != NULL)
1826 struct elf_link_local_dynamic_entry *entry, *e;
1828 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1831 entry = (struct elf_link_local_dynamic_entry *)
1832 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1836 /* We cheat here a little bit: the symbol will not be local, so we
1837 put it at the end of the dynlocal linked list. We will fix it
1838 later on, as we have to fix other fields anyway. */
1839 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1840 entry->isym.st_size = 0;
1841 if (*app_regs [reg].name != '\0')
1843 = _bfd_stringtab_add (dynstr, app_regs[reg].name, true, false);
1845 entry->isym.st_name = 0;
1846 entry->isym.st_other = 0;
1847 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1849 entry->isym.st_shndx = app_regs [reg].shndx;
1851 entry->input_bfd = output_bfd;
1852 entry->input_indx = -1;
1854 if (eht->dynlocal == NULL)
1855 eht->dynlocal = entry;
1858 for (e = eht->dynlocal; e->next; e = e->next)
1865 #undef add_dynamic_entry
1870 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1871 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1874 sparc64_elf_relax_section (abfd, section, link_info, again)
1875 bfd *abfd ATTRIBUTE_UNUSED;
1876 asection *section ATTRIBUTE_UNUSED;
1877 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1881 SET_SEC_DO_RELAX (section);
1885 /* Relocate a SPARC64 ELF section. */
1888 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1889 contents, relocs, local_syms, local_sections)
1891 struct bfd_link_info *info;
1893 asection *input_section;
1895 Elf_Internal_Rela *relocs;
1896 Elf_Internal_Sym *local_syms;
1897 asection **local_sections;
1900 Elf_Internal_Shdr *symtab_hdr;
1901 struct elf_link_hash_entry **sym_hashes;
1902 bfd_vma *local_got_offsets;
1907 Elf_Internal_Rela *rel;
1908 Elf_Internal_Rela *relend;
1910 dynobj = elf_hash_table (info)->dynobj;
1911 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1912 sym_hashes = elf_sym_hashes (input_bfd);
1913 local_got_offsets = elf_local_got_offsets (input_bfd);
1915 if (elf_hash_table(info)->hgot == NULL)
1918 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1920 sgot = splt = sreloc = NULL;
1923 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
1924 for (; rel < relend; rel++)
1927 reloc_howto_type *howto;
1928 unsigned long r_symndx;
1929 struct elf_link_hash_entry *h;
1930 Elf_Internal_Sym *sym;
1933 bfd_reloc_status_type r;
1935 r_type = ELF64_R_TYPE_ID (rel->r_info);
1936 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1938 bfd_set_error (bfd_error_bad_value);
1941 howto = sparc64_elf_howto_table + r_type;
1943 r_symndx = ELF64_R_SYM (rel->r_info);
1945 if (info->relocateable)
1947 /* This is a relocateable link. We don't have to change
1948 anything, unless the reloc is against a section symbol,
1949 in which case we have to adjust according to where the
1950 section symbol winds up in the output section. */
1951 if (r_symndx < symtab_hdr->sh_info)
1953 sym = local_syms + r_symndx;
1954 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1956 sec = local_sections[r_symndx];
1957 rel->r_addend += sec->output_offset + sym->st_value;
1964 /* This is a final link. */
1968 if (r_symndx < symtab_hdr->sh_info)
1970 sym = local_syms + r_symndx;
1971 sec = local_sections[r_symndx];
1972 relocation = (sec->output_section->vma
1973 + sec->output_offset
1978 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1979 while (h->root.type == bfd_link_hash_indirect
1980 || h->root.type == bfd_link_hash_warning)
1981 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1982 if (h->root.type == bfd_link_hash_defined
1983 || h->root.type == bfd_link_hash_defweak)
1985 boolean skip_it = false;
1986 sec = h->root.u.def.section;
1990 case R_SPARC_WPLT30:
1992 case R_SPARC_HIPLT22:
1993 case R_SPARC_LOPLT10:
1994 case R_SPARC_PCPLT32:
1995 case R_SPARC_PCPLT22:
1996 case R_SPARC_PCPLT10:
1998 if (h->plt.offset != (bfd_vma) -1)
2005 if (elf_hash_table(info)->dynamic_sections_created
2007 || (!info->symbolic && h->dynindx != -1)
2008 || !(h->elf_link_hash_flags
2009 & ELF_LINK_HASH_DEF_REGULAR)))
2015 case R_SPARC_PC_HH22:
2016 case R_SPARC_PC_HM10:
2017 case R_SPARC_PC_LM22:
2018 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2026 case R_SPARC_DISP16:
2027 case R_SPARC_DISP32:
2028 case R_SPARC_WDISP30:
2029 case R_SPARC_WDISP22:
2042 case R_SPARC_WDISP19:
2043 case R_SPARC_WDISP16:
2047 case R_SPARC_DISP64:
2056 && ((!info->symbolic && h->dynindx != -1)
2057 || !(h->elf_link_hash_flags
2058 & ELF_LINK_HASH_DEF_REGULAR)))
2065 /* In these cases, we don't need the relocation
2066 value. We check specially because in some
2067 obscure cases sec->output_section will be NULL. */
2072 relocation = (h->root.u.def.value
2073 + sec->output_section->vma
2074 + sec->output_offset);
2077 else if (h->root.type == bfd_link_hash_undefweak)
2079 else if (info->shared
2080 && (!info->symbolic || info->allow_shlib_undefined)
2081 && !info->no_undefined
2082 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2086 if (! ((*info->callbacks->undefined_symbol)
2087 (info, h->root.root.string, input_bfd,
2088 input_section, rel->r_offset,
2089 (!info->shared || info->no_undefined
2090 || ELF_ST_VISIBILITY (h->other)))))
2093 /* To avoid generating warning messages about truncated
2094 relocations, set the relocation's address to be the same as
2095 the start of this section. */
2097 if (input_section->output_section != NULL)
2098 relocation = input_section->output_section->vma;
2104 /* When generating a shared object, these relocations are copied
2105 into the output file to be resolved at run time. */
2106 if (info->shared && (input_section->flags & SEC_ALLOC))
2112 case R_SPARC_PC_HH22:
2113 case R_SPARC_PC_HM10:
2114 case R_SPARC_PC_LM22:
2116 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2120 case R_SPARC_DISP16:
2121 case R_SPARC_DISP32:
2122 case R_SPARC_WDISP30:
2123 case R_SPARC_WDISP22:
2124 case R_SPARC_WDISP19:
2125 case R_SPARC_WDISP16:
2126 case R_SPARC_DISP64:
2156 Elf_Internal_Rela outrel;
2162 (bfd_elf_string_from_elf_section
2164 elf_elfheader (input_bfd)->e_shstrndx,
2165 elf_section_data (input_section)->rel_hdr.sh_name));
2170 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2171 && strcmp (bfd_get_section_name(input_bfd,
2175 sreloc = bfd_get_section_by_name (dynobj, name);
2176 BFD_ASSERT (sreloc != NULL);
2181 if (elf_section_data (input_section)->stab_info == NULL)
2182 outrel.r_offset = rel->r_offset;
2187 off = (_bfd_stab_section_offset
2188 (output_bfd, &elf_hash_table (info)->stab_info,
2190 &elf_section_data (input_section)->stab_info,
2192 if (off == MINUS_ONE)
2194 outrel.r_offset = off;
2197 outrel.r_offset += (input_section->output_section->vma
2198 + input_section->output_offset);
2200 /* Optimize unaligned reloc usage now that we know where
2201 it finally resides. */
2205 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2208 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2211 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2214 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2217 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2220 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2225 memset (&outrel, 0, sizeof outrel);
2226 /* h->dynindx may be -1 if the symbol was marked to
2229 && ((! info->symbolic && h->dynindx != -1)
2230 || (h->elf_link_hash_flags
2231 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2233 BFD_ASSERT (h->dynindx != -1);
2235 = ELF64_R_INFO (h->dynindx,
2237 ELF64_R_TYPE_DATA (rel->r_info),
2239 outrel.r_addend = rel->r_addend;
2243 if (r_type == R_SPARC_64)
2245 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2246 outrel.r_addend = relocation + rel->r_addend;
2253 sec = local_sections[r_symndx];
2256 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2258 == bfd_link_hash_defweak));
2259 sec = h->root.u.def.section;
2261 if (sec != NULL && bfd_is_abs_section (sec))
2263 else if (sec == NULL || sec->owner == NULL)
2265 bfd_set_error (bfd_error_bad_value);
2272 osec = sec->output_section;
2273 indx = elf_section_data (osec)->dynindx;
2275 /* FIXME: we really should be able to link non-pic
2276 shared libraries. */
2280 (*_bfd_error_handler)
2281 (_("%s: probably compiled without -fPIC?"),
2282 bfd_archive_filename (input_bfd));
2283 bfd_set_error (bfd_error_bad_value);
2289 = ELF64_R_INFO (indx,
2291 ELF64_R_TYPE_DATA (rel->r_info),
2293 outrel.r_addend = relocation + rel->r_addend;
2297 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2298 (((Elf64_External_Rela *)
2300 + sreloc->reloc_count));
2301 ++sreloc->reloc_count;
2303 /* This reloc will be computed at runtime, so there's no
2304 need to do anything now. */
2316 /* Relocation is to the entry for this symbol in the global
2320 sgot = bfd_get_section_by_name (dynobj, ".got");
2321 BFD_ASSERT (sgot != NULL);
2326 bfd_vma off = h->got.offset;
2327 BFD_ASSERT (off != (bfd_vma) -1);
2329 if (! elf_hash_table (info)->dynamic_sections_created
2331 && (info->symbolic || h->dynindx == -1)
2332 && (h->elf_link_hash_flags
2333 & ELF_LINK_HASH_DEF_REGULAR)))
2335 /* This is actually a static link, or it is a -Bsymbolic
2336 link and the symbol is defined locally, or the symbol
2337 was forced to be local because of a version file. We
2338 must initialize this entry in the global offset table.
2339 Since the offset must always be a multiple of 8, we
2340 use the least significant bit to record whether we
2341 have initialized it already.
2343 When doing a dynamic link, we create a .rela.got
2344 relocation entry to initialize the value. This is
2345 done in the finish_dynamic_symbol routine. */
2351 bfd_put_64 (output_bfd, relocation,
2352 sgot->contents + off);
2356 relocation = sgot->output_offset + off - got_base;
2362 BFD_ASSERT (local_got_offsets != NULL);
2363 off = local_got_offsets[r_symndx];
2364 BFD_ASSERT (off != (bfd_vma) -1);
2366 /* The offset must always be a multiple of 8. We use
2367 the least significant bit to record whether we have
2368 already processed this entry. */
2373 local_got_offsets[r_symndx] |= 1;
2378 Elf_Internal_Rela outrel;
2380 /* The Solaris 2.7 64-bit linker adds the contents
2381 of the location to the value of the reloc.
2382 Note this is different behaviour to the
2383 32-bit linker, which both adds the contents
2384 and ignores the addend. So clear the location. */
2385 bfd_put_64 (output_bfd, (bfd_vma) 0,
2386 sgot->contents + off);
2388 /* We need to generate a R_SPARC_RELATIVE reloc
2389 for the dynamic linker. */
2390 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2391 BFD_ASSERT (srelgot != NULL);
2393 outrel.r_offset = (sgot->output_section->vma
2394 + sgot->output_offset
2396 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2397 outrel.r_addend = relocation;
2398 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2399 (((Elf64_External_Rela *)
2401 + srelgot->reloc_count));
2402 ++srelgot->reloc_count;
2405 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2407 relocation = sgot->output_offset + off - got_base;
2411 case R_SPARC_WPLT30:
2413 case R_SPARC_HIPLT22:
2414 case R_SPARC_LOPLT10:
2415 case R_SPARC_PCPLT32:
2416 case R_SPARC_PCPLT22:
2417 case R_SPARC_PCPLT10:
2419 /* Relocation is to the entry for this symbol in the
2420 procedure linkage table. */
2421 BFD_ASSERT (h != NULL);
2423 if (h->plt.offset == (bfd_vma) -1)
2425 /* We didn't make a PLT entry for this symbol. This
2426 happens when statically linking PIC code, or when
2427 using -Bsymbolic. */
2433 splt = bfd_get_section_by_name (dynobj, ".plt");
2434 BFD_ASSERT (splt != NULL);
2437 relocation = (splt->output_section->vma
2438 + splt->output_offset
2439 + sparc64_elf_plt_entry_offset (h->plt.offset));
2440 if (r_type == R_SPARC_WPLT30)
2448 relocation += rel->r_addend;
2449 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2451 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2452 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2453 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2455 r = bfd_check_overflow (howto->complain_on_overflow,
2456 howto->bitsize, howto->rightshift,
2457 bfd_arch_bits_per_address (input_bfd),
2462 case R_SPARC_WDISP16:
2466 relocation += rel->r_addend;
2467 /* Adjust for pc-relative-ness. */
2468 relocation -= (input_section->output_section->vma
2469 + input_section->output_offset);
2470 relocation -= rel->r_offset;
2472 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2473 x &= ~(bfd_vma) 0x303fff;
2474 x |= ((((relocation >> 2) & 0xc000) << 6)
2475 | ((relocation >> 2) & 0x3fff));
2476 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2478 r = bfd_check_overflow (howto->complain_on_overflow,
2479 howto->bitsize, howto->rightshift,
2480 bfd_arch_bits_per_address (input_bfd),
2489 relocation += rel->r_addend;
2490 relocation = relocation ^ MINUS_ONE;
2492 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2493 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2494 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2496 r = bfd_check_overflow (howto->complain_on_overflow,
2497 howto->bitsize, howto->rightshift,
2498 bfd_arch_bits_per_address (input_bfd),
2507 relocation += rel->r_addend;
2508 relocation = (relocation & 0x3ff) | 0x1c00;
2510 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2511 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2512 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2518 case R_SPARC_WDISP30:
2520 if (SEC_DO_RELAX (input_section)
2521 && rel->r_offset + 4 < input_section->_raw_size)
2525 #define XCC (2 << 20)
2526 #define COND(x) (((x)&0xf)<<25)
2527 #define CONDA COND(0x8)
2528 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2529 #define INSN_BA (F2(0,2) | CONDA)
2530 #define INSN_OR F3(2, 0x2, 0)
2531 #define INSN_NOP F2(0,4)
2535 /* If the instruction is a call with either:
2537 arithmetic instruction with rd == %o7
2538 where rs1 != %o7 and rs2 if it is register != %o7
2539 then we can optimize if the call destination is near
2540 by changing the call into a branch always. */
2541 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2542 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2543 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2545 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2546 || ((y & OP3(0x28)) == 0 /* arithmetic */
2547 && (y & RD(~0)) == RD(O7)))
2548 && (y & RS1(~0)) != RS1(O7)
2550 || (y & RS2(~0)) != RS2(O7)))
2554 reloc = relocation + rel->r_addend - rel->r_offset;
2555 reloc -= (input_section->output_section->vma
2556 + input_section->output_offset);
2560 /* Ensure the branch fits into simm22. */
2561 if ((reloc & ~(bfd_vma)0x7fffff)
2562 && ((reloc | 0x7fffff) != MINUS_ONE))
2566 /* Check whether it fits into simm19. */
2567 if ((reloc & 0x3c0000) == 0
2568 || (reloc & 0x3c0000) == 0x3c0000)
2569 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2571 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2572 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2574 if (rel->r_offset >= 4
2575 && (y & (0xffffffff ^ RS1(~0)))
2576 == (INSN_OR | RD(O7) | RS2(G0)))
2581 z = bfd_get_32 (input_bfd,
2582 contents + rel->r_offset - 4);
2583 if ((z & (0xffffffff ^ RD(~0)))
2584 != (INSN_OR | RS1(O7) | RS2(G0)))
2592 If call foo was replaced with ba, replace
2593 or %rN, %g0, %o7 with nop. */
2595 reg = (y & RS1(~0)) >> 14;
2596 if (reg != ((z & RD(~0)) >> 25)
2597 || reg == G0 || reg == O7)
2600 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2601 contents + rel->r_offset + 4);
2611 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2612 contents, rel->r_offset,
2613 relocation, rel->r_addend);
2623 case bfd_reloc_outofrange:
2626 case bfd_reloc_overflow:
2632 if (h->root.type == bfd_link_hash_undefweak
2633 && howto->pc_relative)
2635 /* Assume this is a call protected by other code that
2636 detect the symbol is undefined. If this is the case,
2637 we can safely ignore the overflow. If not, the
2638 program is hosed anyway, and a little warning isn't
2643 name = h->root.root.string;
2647 name = (bfd_elf_string_from_elf_section
2649 symtab_hdr->sh_link,
2654 name = bfd_section_name (input_bfd, sec);
2656 if (! ((*info->callbacks->reloc_overflow)
2657 (info, name, howto->name, (bfd_vma) 0,
2658 input_bfd, input_section, rel->r_offset)))
2668 /* Finish up dynamic symbol handling. We set the contents of various
2669 dynamic sections here. */
2672 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2674 struct bfd_link_info *info;
2675 struct elf_link_hash_entry *h;
2676 Elf_Internal_Sym *sym;
2680 dynobj = elf_hash_table (info)->dynobj;
2682 if (h->plt.offset != (bfd_vma) -1)
2686 Elf_Internal_Rela rela;
2688 /* This symbol has an entry in the PLT. Set it up. */
2690 BFD_ASSERT (h->dynindx != -1);
2692 splt = bfd_get_section_by_name (dynobj, ".plt");
2693 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2694 BFD_ASSERT (splt != NULL && srela != NULL);
2696 /* Fill in the entry in the .rela.plt section. */
2698 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2700 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2705 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2706 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2707 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2708 -(splt->output_section->vma + splt->output_offset);
2710 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2711 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2713 /* Adjust for the first 4 reserved elements in the .plt section
2714 when setting the offset in the .rela.plt section.
2715 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2716 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2718 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2719 ((Elf64_External_Rela *) srela->contents
2720 + (h->plt.offset - 4)));
2722 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2724 /* Mark the symbol as undefined, rather than as defined in
2725 the .plt section. Leave the value alone. */
2726 sym->st_shndx = SHN_UNDEF;
2727 /* If the symbol is weak, we do need to clear the value.
2728 Otherwise, the PLT entry would provide a definition for
2729 the symbol even if the symbol wasn't defined anywhere,
2730 and so the symbol would never be NULL. */
2731 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2737 if (h->got.offset != (bfd_vma) -1)
2741 Elf_Internal_Rela rela;
2743 /* This symbol has an entry in the GOT. Set it up. */
2745 sgot = bfd_get_section_by_name (dynobj, ".got");
2746 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2747 BFD_ASSERT (sgot != NULL && srela != NULL);
2749 rela.r_offset = (sgot->output_section->vma
2750 + sgot->output_offset
2751 + (h->got.offset &~ (bfd_vma) 1));
2753 /* If this is a -Bsymbolic link, and the symbol is defined
2754 locally, we just want to emit a RELATIVE reloc. Likewise if
2755 the symbol was forced to be local because of a version file.
2756 The entry in the global offset table will already have been
2757 initialized in the relocate_section function. */
2759 && (info->symbolic || h->dynindx == -1)
2760 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2762 asection *sec = h->root.u.def.section;
2763 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2764 rela.r_addend = (h->root.u.def.value
2765 + sec->output_section->vma
2766 + sec->output_offset);
2770 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2771 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2775 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2776 ((Elf64_External_Rela *) srela->contents
2777 + srela->reloc_count));
2778 ++srela->reloc_count;
2781 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2784 Elf_Internal_Rela rela;
2786 /* This symbols needs a copy reloc. Set it up. */
2788 BFD_ASSERT (h->dynindx != -1);
2790 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2792 BFD_ASSERT (s != NULL);
2794 rela.r_offset = (h->root.u.def.value
2795 + h->root.u.def.section->output_section->vma
2796 + h->root.u.def.section->output_offset);
2797 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2799 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2800 ((Elf64_External_Rela *) s->contents
2805 /* Mark some specially defined symbols as absolute. */
2806 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2807 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2808 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2809 sym->st_shndx = SHN_ABS;
2814 /* Finish up the dynamic sections. */
2817 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2819 struct bfd_link_info *info;
2822 int stt_regidx = -1;
2826 dynobj = elf_hash_table (info)->dynobj;
2828 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2830 if (elf_hash_table (info)->dynamic_sections_created)
2833 Elf64_External_Dyn *dyncon, *dynconend;
2835 splt = bfd_get_section_by_name (dynobj, ".plt");
2836 BFD_ASSERT (splt != NULL && sdyn != NULL);
2838 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2839 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2840 for (; dyncon < dynconend; dyncon++)
2842 Elf_Internal_Dyn dyn;
2846 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2850 case DT_PLTGOT: name = ".plt"; size = false; break;
2851 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2852 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2853 case DT_SPARC_REGISTER:
2854 if (stt_regidx == -1)
2857 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2858 if (stt_regidx == -1)
2861 dyn.d_un.d_val = stt_regidx++;
2862 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2864 default: name = NULL; size = false; break;
2871 s = bfd_get_section_by_name (output_bfd, name);
2877 dyn.d_un.d_ptr = s->vma;
2880 if (s->_cooked_size != 0)
2881 dyn.d_un.d_val = s->_cooked_size;
2883 dyn.d_un.d_val = s->_raw_size;
2886 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2890 /* Initialize the contents of the .plt section. */
2891 if (splt->_raw_size > 0)
2893 sparc64_elf_build_plt (output_bfd, splt->contents,
2894 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2897 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2901 /* Set the first entry in the global offset table to the address of
2902 the dynamic section. */
2903 sgot = bfd_get_section_by_name (dynobj, ".got");
2904 BFD_ASSERT (sgot != NULL);
2905 if (sgot->_raw_size > 0)
2908 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2910 bfd_put_64 (output_bfd,
2911 sdyn->output_section->vma + sdyn->output_offset,
2915 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2920 static enum elf_reloc_type_class
2921 sparc64_elf_reloc_type_class (rela)
2922 const Elf_Internal_Rela *rela;
2924 switch ((int) ELF64_R_TYPE (rela->r_info))
2926 case R_SPARC_RELATIVE:
2927 return reloc_class_relative;
2928 case R_SPARC_JMP_SLOT:
2929 return reloc_class_plt;
2931 return reloc_class_copy;
2933 return reloc_class_normal;
2937 /* Functions for dealing with the e_flags field. */
2939 /* Copy backend specific data from one object module to another */
2941 sparc64_elf_copy_private_bfd_data (ibfd, obfd)
2944 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2945 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2948 BFD_ASSERT (!elf_flags_init (obfd)
2949 || (elf_elfheader (obfd)->e_flags
2950 == elf_elfheader (ibfd)->e_flags));
2952 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2953 elf_flags_init (obfd) = true;
2957 /* Merge backend specific data from an object file to the output
2958 object file when linking. */
2961 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2966 flagword new_flags, old_flags;
2969 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2970 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2973 new_flags = elf_elfheader (ibfd)->e_flags;
2974 old_flags = elf_elfheader (obfd)->e_flags;
2976 if (!elf_flags_init (obfd)) /* First call, no flags set */
2978 elf_flags_init (obfd) = true;
2979 elf_elfheader (obfd)->e_flags = new_flags;
2982 else if (new_flags == old_flags) /* Compatible flags are ok */
2985 else /* Incompatible flags */
2989 #define EF_SPARC_ISA_EXTENSIONS \
2990 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2992 if ((ibfd->flags & DYNAMIC) != 0)
2994 /* We don't want dynamic objects memory ordering and
2995 architecture to have any role. That's what dynamic linker
2997 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2998 new_flags |= (old_flags
2999 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
3003 /* Choose the highest architecture requirements. */
3004 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
3005 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
3006 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3007 && (old_flags & EF_SPARC_HAL_R1))
3010 (*_bfd_error_handler)
3011 (_("%s: linking UltraSPARC specific with HAL specific code"),
3012 bfd_archive_filename (ibfd));
3014 /* Choose the most restrictive memory ordering. */
3015 old_mm = (old_flags & EF_SPARCV9_MM);
3016 new_mm = (new_flags & EF_SPARCV9_MM);
3017 old_flags &= ~EF_SPARCV9_MM;
3018 new_flags &= ~EF_SPARCV9_MM;
3019 if (new_mm < old_mm)
3021 old_flags |= old_mm;
3022 new_flags |= old_mm;
3025 /* Warn about any other mismatches */
3026 if (new_flags != old_flags)
3029 (*_bfd_error_handler)
3030 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3031 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
3034 elf_elfheader (obfd)->e_flags = old_flags;
3038 bfd_set_error (bfd_error_bad_value);
3045 /* Print a STT_REGISTER symbol to file FILE. */
3048 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3049 bfd *abfd ATTRIBUTE_UNUSED;
3053 FILE *file = (FILE *) filep;
3056 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3060 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3061 type = symbol->flags;
3062 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3064 ? (type & BSF_GLOBAL) ? '!' : 'l'
3065 : (type & BSF_GLOBAL) ? 'g' : ' '),
3066 (type & BSF_WEAK) ? 'w' : ' ');
3067 if (symbol->name == NULL || symbol->name [0] == '\0')
3070 return symbol->name;
3073 /* Set the right machine number for a SPARC64 ELF file. */
3076 sparc64_elf_object_p (abfd)
3079 unsigned long mach = bfd_mach_sparc_v9;
3081 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3082 mach = bfd_mach_sparc_v9b;
3083 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3084 mach = bfd_mach_sparc_v9a;
3085 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3088 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3089 standard ELF, because R_SPARC_OLO10 has secondary addend in
3090 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3091 relocation handling routines. */
3093 const struct elf_size_info sparc64_elf_size_info =
3095 sizeof (Elf64_External_Ehdr),
3096 sizeof (Elf64_External_Phdr),
3097 sizeof (Elf64_External_Shdr),
3098 sizeof (Elf64_External_Rel),
3099 sizeof (Elf64_External_Rela),
3100 sizeof (Elf64_External_Sym),
3101 sizeof (Elf64_External_Dyn),
3102 sizeof (Elf_External_Note),
3103 4, /* hash-table entry size */
3104 /* internal relocations per external relocations.
3105 For link purposes we use just 1 internal per
3106 1 external, for assembly and slurp symbol table
3113 bfd_elf64_write_out_phdrs,
3114 bfd_elf64_write_shdrs_and_ehdr,
3115 sparc64_elf_write_relocs,
3116 bfd_elf64_swap_symbol_out,
3117 sparc64_elf_slurp_reloc_table,
3118 bfd_elf64_slurp_symbol_table,
3119 bfd_elf64_swap_dyn_in,
3120 bfd_elf64_swap_dyn_out,
3127 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3128 #define TARGET_BIG_NAME "elf64-sparc"
3129 #define ELF_ARCH bfd_arch_sparc
3130 #define ELF_MAXPAGESIZE 0x100000
3132 /* This is the official ABI value. */
3133 #define ELF_MACHINE_CODE EM_SPARCV9
3135 /* This is the value that we used before the ABI was released. */
3136 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3138 #define bfd_elf64_bfd_link_hash_table_create \
3139 sparc64_elf_bfd_link_hash_table_create
3141 #define elf_info_to_howto \
3142 sparc64_elf_info_to_howto
3143 #define bfd_elf64_get_reloc_upper_bound \
3144 sparc64_elf_get_reloc_upper_bound
3145 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3146 sparc64_elf_get_dynamic_reloc_upper_bound
3147 #define bfd_elf64_canonicalize_dynamic_reloc \
3148 sparc64_elf_canonicalize_dynamic_reloc
3149 #define bfd_elf64_bfd_reloc_type_lookup \
3150 sparc64_elf_reloc_type_lookup
3151 #define bfd_elf64_bfd_relax_section \
3152 sparc64_elf_relax_section
3154 #define elf_backend_create_dynamic_sections \
3155 _bfd_elf_create_dynamic_sections
3156 #define elf_backend_add_symbol_hook \
3157 sparc64_elf_add_symbol_hook
3158 #define elf_backend_get_symbol_type \
3159 sparc64_elf_get_symbol_type
3160 #define elf_backend_symbol_processing \
3161 sparc64_elf_symbol_processing
3162 #define elf_backend_check_relocs \
3163 sparc64_elf_check_relocs
3164 #define elf_backend_adjust_dynamic_symbol \
3165 sparc64_elf_adjust_dynamic_symbol
3166 #define elf_backend_size_dynamic_sections \
3167 sparc64_elf_size_dynamic_sections
3168 #define elf_backend_relocate_section \
3169 sparc64_elf_relocate_section
3170 #define elf_backend_finish_dynamic_symbol \
3171 sparc64_elf_finish_dynamic_symbol
3172 #define elf_backend_finish_dynamic_sections \
3173 sparc64_elf_finish_dynamic_sections
3174 #define elf_backend_print_symbol_all \
3175 sparc64_elf_print_symbol_all
3176 #define elf_backend_output_arch_syms \
3177 sparc64_elf_output_arch_syms
3178 #define bfd_elf64_bfd_copy_private_bfd_data \
3179 sparc64_elf_copy_private_bfd_data
3180 #define bfd_elf64_bfd_merge_private_bfd_data \
3181 sparc64_elf_merge_private_bfd_data
3183 #define elf_backend_size_info \
3184 sparc64_elf_size_info
3185 #define elf_backend_object_p \
3186 sparc64_elf_object_p
3187 #define elf_backend_reloc_type_class \
3188 sparc64_elf_reloc_type_class
3190 #define elf_backend_want_got_plt 0
3191 #define elf_backend_plt_readonly 0
3192 #define elf_backend_want_plt_sym 1
3194 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3195 #define elf_backend_plt_alignment 8
3197 #define elf_backend_got_header_size 8
3198 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3200 #include "elf64-target.h"