1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26 /* This is defined if one wants to build upward compatible binaries
27 with the original sparc64-elf toolchain. The support is kept in for
28 now but is turned off by default. dje 970930 */
29 /*#define SPARC64_OLD_RELOCS*/
31 #include "elf/sparc.h"
33 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
34 #define MINUS_ONE (~ (bfd_vma) 0)
36 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 static reloc_howto_type *sparc64_elf_reloc_type_lookup
39 PARAMS ((bfd *, bfd_reloc_code_real_type));
40 static void sparc64_elf_info_to_howto
41 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
43 static void sparc64_elf_build_plt
44 PARAMS((bfd *, unsigned char *, int));
45 static bfd_vma sparc64_elf_plt_entry_offset
47 static bfd_vma sparc64_elf_plt_ptr_offset
50 static boolean sparc64_elf_check_relocs
51 PARAMS((bfd *, struct bfd_link_info *, asection *sec,
52 const Elf_Internal_Rela *));
53 static boolean sparc64_elf_adjust_dynamic_symbol
54 PARAMS((struct bfd_link_info *, struct elf_link_hash_entry *));
55 static boolean sparc64_elf_size_dynamic_sections
56 PARAMS((bfd *, struct bfd_link_info *));
57 static int sparc64_elf_get_symbol_type
58 PARAMS (( Elf_Internal_Sym *, int));
59 static boolean sparc64_elf_add_symbol_hook
60 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
61 const char **, flagword *, asection **, bfd_vma *));
62 static void sparc64_elf_symbol_processing
63 PARAMS ((bfd *, asymbol *));
65 static boolean sparc64_elf_merge_private_bfd_data
66 PARAMS ((bfd *, bfd *));
68 static boolean sparc64_elf_relocate_section
69 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
70 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
71 static boolean sparc64_elf_object_p PARAMS ((bfd *));
72 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
73 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
74 static boolean sparc64_elf_slurp_one_reloc_table
75 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
76 static boolean sparc64_elf_slurp_reloc_table
77 PARAMS ((bfd *, asection *, asymbol **, boolean));
78 static long sparc64_elf_canonicalize_dynamic_reloc
79 PARAMS ((bfd *, arelent **, asymbol **));
80 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
82 /* The relocation "howto" table. */
84 static bfd_reloc_status_type sparc_elf_notsup_reloc
85 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
86 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
87 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
88 static bfd_reloc_status_type sparc_elf_hix22_reloc
89 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
90 static bfd_reloc_status_type sparc_elf_lox10_reloc
91 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
93 static reloc_howto_type sparc64_elf_howto_table[] =
95 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
96 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
97 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
98 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
99 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
100 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
101 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
102 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
103 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
104 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
105 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
106 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
107 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
108 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
109 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
110 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
111 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
112 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
113 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
114 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
115 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
116 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
117 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
118 HOWTO(R_SPARC_UA32, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0x00000000,true),
119 #ifndef SPARC64_OLD_RELOCS
120 /* These aren't implemented yet. */
121 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
122 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
123 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
124 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
125 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
126 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
128 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
129 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
130 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
131 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
132 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
133 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
134 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
135 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
136 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
137 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
138 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
139 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
140 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
141 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
142 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
143 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
144 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
145 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false),
146 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
147 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
148 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
149 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
150 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
151 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
152 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
153 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
156 struct elf_reloc_map {
157 bfd_reloc_code_real_type bfd_reloc_val;
158 unsigned char elf_reloc_val;
161 static CONST struct elf_reloc_map sparc_reloc_map[] =
163 { BFD_RELOC_NONE, R_SPARC_NONE, },
164 { BFD_RELOC_16, R_SPARC_16, },
165 { BFD_RELOC_8, R_SPARC_8 },
166 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
167 { BFD_RELOC_CTOR, R_SPARC_64 },
168 { BFD_RELOC_32, R_SPARC_32 },
169 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
170 { BFD_RELOC_HI22, R_SPARC_HI22 },
171 { BFD_RELOC_LO10, R_SPARC_LO10, },
172 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
173 { BFD_RELOC_SPARC22, R_SPARC_22 },
174 { BFD_RELOC_SPARC13, R_SPARC_13 },
175 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
176 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
177 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
178 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
179 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
180 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
181 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
182 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
183 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
184 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
185 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
186 /* ??? Doesn't dwarf use this? */
187 /*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
188 {BFD_RELOC_SPARC_10, R_SPARC_10},
189 {BFD_RELOC_SPARC_11, R_SPARC_11},
190 {BFD_RELOC_SPARC_64, R_SPARC_64},
191 {BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10},
192 {BFD_RELOC_SPARC_HH22, R_SPARC_HH22},
193 {BFD_RELOC_SPARC_HM10, R_SPARC_HM10},
194 {BFD_RELOC_SPARC_LM22, R_SPARC_LM22},
195 {BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22},
196 {BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10},
197 {BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22},
198 {BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16},
199 {BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19},
200 {BFD_RELOC_SPARC_7, R_SPARC_7},
201 {BFD_RELOC_SPARC_5, R_SPARC_5},
202 {BFD_RELOC_SPARC_6, R_SPARC_6},
203 {BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64},
204 {BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64},
205 {BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22},
206 {BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10},
207 {BFD_RELOC_SPARC_H44, R_SPARC_H44},
208 {BFD_RELOC_SPARC_M44, R_SPARC_M44},
209 {BFD_RELOC_SPARC_L44, R_SPARC_L44},
210 {BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER}
213 static reloc_howto_type *
214 sparc64_elf_reloc_type_lookup (abfd, code)
216 bfd_reloc_code_real_type code;
219 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
221 if (sparc_reloc_map[i].bfd_reloc_val == code)
222 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
228 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
231 Elf64_Internal_Rela *dst;
233 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
234 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
237 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
238 section can represent up to two relocs, we must tell the user to allocate
242 sparc64_elf_get_reloc_upper_bound (abfd, sec)
246 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
250 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
253 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
256 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
257 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
258 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
259 for the same location, R_SPARC_LO10 and R_SPARC_13. */
262 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
265 Elf_Internal_Shdr *rel_hdr;
269 struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
270 PTR allocated = NULL;
271 bfd_byte *native_relocs;
278 allocated = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
279 if (allocated == NULL)
282 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
283 || (bfd_read (allocated, 1, rel_hdr->sh_size, abfd)
284 != rel_hdr->sh_size))
287 native_relocs = (bfd_byte *) allocated;
289 relents = asect->relocation + asect->reloc_count;
291 entsize = rel_hdr->sh_entsize;
292 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
294 count = rel_hdr->sh_size / entsize;
296 for (i = 0, relent = relents; i < count;
297 i++, relent++, native_relocs += entsize)
299 Elf_Internal_Rela rela;
301 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
303 /* The address of an ELF reloc is section relative for an object
304 file, and absolute for an executable file or shared library.
305 The address of a normal BFD reloc is always section relative,
306 and the address of a dynamic reloc is absolute.. */
307 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
308 relent->address = rela.r_offset;
310 relent->address = rela.r_offset - asect->vma;
312 if (ELF64_R_SYM (rela.r_info) == 0)
313 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
318 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
321 /* Canonicalize ELF section symbols. FIXME: Why? */
322 if ((s->flags & BSF_SECTION_SYM) == 0)
323 relent->sym_ptr_ptr = ps;
325 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
328 relent->addend = rela.r_addend;
330 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
331 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
333 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
334 relent[1].address = relent->address;
336 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
337 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
338 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
341 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
344 asect->reloc_count += relent - relents;
346 if (allocated != NULL)
352 if (allocated != NULL)
357 /* Read in and swap the external relocs. */
360 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
366 struct bfd_elf_section_data * const d = elf_section_data (asect);
367 Elf_Internal_Shdr *rel_hdr;
368 Elf_Internal_Shdr *rel_hdr2;
370 if (asect->relocation != NULL)
375 if ((asect->flags & SEC_RELOC) == 0
376 || asect->reloc_count == 0)
379 rel_hdr = &d->rel_hdr;
380 rel_hdr2 = d->rel_hdr2;
382 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
383 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
387 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
388 case because relocations against this section may use the
389 dynamic symbol table, and in that case bfd_section_from_shdr
390 in elf.c does not update the RELOC_COUNT. */
391 if (asect->_raw_size == 0)
394 rel_hdr = &d->this_hdr;
395 asect->reloc_count = rel_hdr->sh_size / rel_hdr->sh_entsize;
399 asect->relocation = ((arelent *)
401 asect->reloc_count * 2 * sizeof (arelent)));
402 if (asect->relocation == NULL)
405 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
406 asect->reloc_count = 0;
408 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
413 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
420 /* Canonicalize the dynamic relocation entries. Note that we return
421 the dynamic relocations as a single block, although they are
422 actually associated with particular sections; the interface, which
423 was designed for SunOS style shared libraries, expects that there
424 is only one set of dynamic relocs. Any section that was actually
425 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
426 the dynamic symbol table, is considered to be a dynamic reloc
430 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
438 if (elf_dynsymtab (abfd) == 0)
440 bfd_set_error (bfd_error_invalid_operation);
445 for (s = abfd->sections; s != NULL; s = s->next)
447 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
448 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
453 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
455 count = s->reloc_count;
457 for (i = 0; i < count; i++)
468 /* Write out the relocs. */
471 sparc64_elf_write_relocs (abfd, sec, data)
476 boolean *failedp = (boolean *) data;
477 Elf_Internal_Shdr *rela_hdr;
478 Elf64_External_Rela *outbound_relocas, *src_rela;
479 unsigned int idx, count;
480 asymbol *last_sym = 0;
481 int last_sym_idx = 0;
483 /* If we have already failed, don't do anything. */
487 if ((sec->flags & SEC_RELOC) == 0)
490 /* The linker backend writes the relocs out itself, and sets the
491 reloc_count field to zero to inhibit writing them here. Also,
492 sometimes the SEC_RELOC flag gets set even when there aren't any
494 if (sec->reloc_count == 0)
497 /* We can combine two relocs that refer to the same address
498 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
499 latter is R_SPARC_13 with no associated symbol. */
501 for (idx = 0; idx < sec->reloc_count; idx++)
508 addr = sec->orelocation[idx]->address;
509 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
510 && idx < sec->reloc_count - 1)
512 arelent *r = sec->orelocation[idx + 1];
514 if (r->howto->type == R_SPARC_13
515 && r->address == addr
516 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
517 && (*r->sym_ptr_ptr)->value == 0)
522 rela_hdr = &elf_section_data (sec)->rel_hdr;
524 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
525 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
526 if (rela_hdr->contents == NULL)
532 /* Figure out whether the relocations are RELA or REL relocations. */
533 if (rela_hdr->sh_type != SHT_RELA)
536 /* orelocation has the data, reloc_count has the count... */
537 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
538 src_rela = outbound_relocas;
540 for (idx = 0; idx < sec->reloc_count; idx++)
542 Elf_Internal_Rela dst_rela;
547 ptr = sec->orelocation[idx];
549 /* The address of an ELF reloc is section relative for an object
550 file, and absolute for an executable file or shared library.
551 The address of a BFD reloc is always section relative. */
552 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
553 dst_rela.r_offset = ptr->address;
555 dst_rela.r_offset = ptr->address + sec->vma;
557 sym = *ptr->sym_ptr_ptr;
560 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
565 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
574 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
575 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
576 && ! _bfd_elf_validate_reloc (abfd, ptr))
582 if (ptr->howto->type == R_SPARC_LO10
583 && idx < sec->reloc_count - 1)
585 arelent *r = sec->orelocation[idx + 1];
587 if (r->howto->type == R_SPARC_13
588 && r->address == ptr->address
589 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
590 && (*r->sym_ptr_ptr)->value == 0)
594 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
598 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
601 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
603 dst_rela.r_addend = ptr->addend;
604 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
609 /* Sparc64 ELF linker hash table. */
611 struct sparc64_elf_app_reg
614 unsigned short shndx;
619 struct sparc64_elf_link_hash_table
621 struct elf_link_hash_table root;
623 struct sparc64_elf_app_reg app_regs [4];
626 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
628 #define sparc64_elf_hash_table(p) \
629 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
631 /* Create a Sparc64 ELF linker hash table. */
633 static struct bfd_link_hash_table *
634 sparc64_elf_bfd_link_hash_table_create (abfd)
637 struct sparc64_elf_link_hash_table *ret;
639 ret = ((struct sparc64_elf_link_hash_table *)
640 bfd_zalloc (abfd, sizeof (struct sparc64_elf_link_hash_table)));
641 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
644 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
645 _bfd_elf_link_hash_newfunc))
647 bfd_release (abfd, ret);
651 return &ret->root.root;
655 /* Utility for performing the standard initial work of an instruction
657 *PRELOCATION will contain the relocated item.
658 *PINSN will contain the instruction from the input stream.
659 If the result is `bfd_reloc_other' the caller can continue with
660 performing the relocation. Otherwise it must stop and return the
661 value to its caller. */
663 static bfd_reloc_status_type
664 init_insn_reloc (abfd,
673 arelent *reloc_entry;
676 asection *input_section;
678 bfd_vma *prelocation;
682 reloc_howto_type *howto = reloc_entry->howto;
684 if (output_bfd != (bfd *) NULL
685 && (symbol->flags & BSF_SECTION_SYM) == 0
686 && (! howto->partial_inplace
687 || reloc_entry->addend == 0))
689 reloc_entry->address += input_section->output_offset;
693 /* This works because partial_inplace == false. */
694 if (output_bfd != NULL)
695 return bfd_reloc_continue;
697 if (reloc_entry->address > input_section->_cooked_size)
698 return bfd_reloc_outofrange;
700 relocation = (symbol->value
701 + symbol->section->output_section->vma
702 + symbol->section->output_offset);
703 relocation += reloc_entry->addend;
704 if (howto->pc_relative)
706 relocation -= (input_section->output_section->vma
707 + input_section->output_offset);
708 relocation -= reloc_entry->address;
711 *prelocation = relocation;
712 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
713 return bfd_reloc_other;
716 /* For unsupported relocs. */
718 static bfd_reloc_status_type
719 sparc_elf_notsup_reloc (abfd,
727 arelent *reloc_entry;
730 asection *input_section;
732 char **error_message;
734 return bfd_reloc_notsupported;
737 /* Handle the WDISP16 reloc. */
739 static bfd_reloc_status_type
740 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
741 output_bfd, error_message)
743 arelent *reloc_entry;
746 asection *input_section;
748 char **error_message;
752 bfd_reloc_status_type status;
754 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
755 input_section, output_bfd, &relocation, &insn);
756 if (status != bfd_reloc_other)
759 insn = (insn & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
760 | ((relocation >> 2) & 0x3fff));
761 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
763 if ((bfd_signed_vma) relocation < - 0x40000
764 || (bfd_signed_vma) relocation > 0x3ffff)
765 return bfd_reloc_overflow;
770 /* Handle the HIX22 reloc. */
772 static bfd_reloc_status_type
773 sparc_elf_hix22_reloc (abfd,
781 arelent *reloc_entry;
784 asection *input_section;
786 char **error_message;
790 bfd_reloc_status_type status;
792 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
793 input_section, output_bfd, &relocation, &insn);
794 if (status != bfd_reloc_other)
797 relocation ^= MINUS_ONE;
798 insn = (insn & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
799 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
801 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
802 return bfd_reloc_overflow;
807 /* Handle the LOX10 reloc. */
809 static bfd_reloc_status_type
810 sparc_elf_lox10_reloc (abfd,
818 arelent *reloc_entry;
821 asection *input_section;
823 char **error_message;
827 bfd_reloc_status_type status;
829 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
830 input_section, output_bfd, &relocation, &insn);
831 if (status != bfd_reloc_other)
834 insn = (insn & ~0x1fff) | 0x1c00 | (relocation & 0x3ff);
835 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
842 /* Both the headers and the entries are icache aligned. */
843 #define PLT_ENTRY_SIZE 32
844 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
845 #define LARGE_PLT_THRESHOLD 32768
846 #define GOT_RESERVED_ENTRIES 1
848 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
851 /* Fill in the .plt section. */
854 sparc64_elf_build_plt (output_bfd, contents, nentries)
856 unsigned char *contents;
859 const unsigned int nop = 0x01000000;
862 /* The first four entries are reserved, and are initially undefined.
863 We fill them with `illtrap 0' to force ld.so to do something. */
865 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
866 bfd_put_32 (output_bfd, 0, contents+i*4);
868 /* The first 32768 entries are close enough to plt1 to get there via
869 a straight branch. */
871 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
873 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
874 unsigned int sethi, ba;
876 /* sethi (. - plt0), %g1 */
877 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
879 /* ba,a,pt %xcc, plt1 */
880 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
882 bfd_put_32 (output_bfd, sethi, entry);
883 bfd_put_32 (output_bfd, ba, entry+4);
884 bfd_put_32 (output_bfd, nop, entry+8);
885 bfd_put_32 (output_bfd, nop, entry+12);
886 bfd_put_32 (output_bfd, nop, entry+16);
887 bfd_put_32 (output_bfd, nop, entry+20);
888 bfd_put_32 (output_bfd, nop, entry+24);
889 bfd_put_32 (output_bfd, nop, entry+28);
892 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
893 160: 160 entries and 160 pointers. This is to separate code from data,
894 which is much friendlier on the cache. */
896 for (; i < nentries; i += 160)
898 int block = (i + 160 <= nentries ? 160 : nentries - i);
899 for (j = 0; j < block; ++j)
901 unsigned char *entry, *ptr;
904 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
905 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
907 /* ldx [%o7 + ptr - entry+4], %g1 */
908 ldx = 0xc25be000 | ((ptr - entry+4) & 0x1fff);
910 bfd_put_32 (output_bfd, 0x8a10000f, entry); /* mov %o7,%g5 */
911 bfd_put_32 (output_bfd, 0x40000002, entry+4); /* call .+8 */
912 bfd_put_32 (output_bfd, nop, entry+8); /* nop */
913 bfd_put_32 (output_bfd, ldx, entry+12); /* ldx [%o7+P],%g1 */
914 bfd_put_32 (output_bfd, 0x83c3c001, entry+16); /* jmpl %o7+%g1,%g1 */
915 bfd_put_32 (output_bfd, 0x9e100005, entry+20); /* mov %g5,%o7 */
917 bfd_put_64 (output_bfd, contents - (entry+4), ptr);
922 /* Return the offset of a particular plt entry within the .plt section. */
925 sparc64_elf_plt_entry_offset (index)
930 if (index < LARGE_PLT_THRESHOLD)
931 return index * PLT_ENTRY_SIZE;
933 /* See above for details. */
935 block = (index - LARGE_PLT_THRESHOLD) / 160;
936 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
938 return ((bfd_vma)(LARGE_PLT_THRESHOLD + block*160) * PLT_ENTRY_SIZE
943 sparc64_elf_plt_ptr_offset (index, max)
946 int block, ofs, last;
948 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
950 /* See above for details. */
952 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160)
953 + LARGE_PLT_THRESHOLD;
955 if (block + 160 > max)
956 last = (max - LARGE_PLT_THRESHOLD) % 160;
960 return (block * PLT_ENTRY_SIZE
967 /* Look through the relocs for a section during the first phase, and
968 allocate space in the global offset table or procedure linkage
972 sparc64_elf_check_relocs (abfd, info, sec, relocs)
974 struct bfd_link_info *info;
976 const Elf_Internal_Rela *relocs;
979 Elf_Internal_Shdr *symtab_hdr;
980 struct elf_link_hash_entry **sym_hashes;
981 bfd_vma *local_got_offsets;
982 const Elf_Internal_Rela *rel;
983 const Elf_Internal_Rela *rel_end;
988 if (info->relocateable || !(sec->flags & SEC_ALLOC))
991 dynobj = elf_hash_table (info)->dynobj;
992 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
993 sym_hashes = elf_sym_hashes (abfd);
994 local_got_offsets = elf_local_got_offsets (abfd);
1000 rel_end = relocs + sec->reloc_count;
1001 for (rel = relocs; rel < rel_end; rel++)
1003 unsigned long r_symndx;
1004 struct elf_link_hash_entry *h;
1006 r_symndx = ELF64_R_SYM (rel->r_info);
1007 if (r_symndx < symtab_hdr->sh_info)
1010 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1012 switch (ELF64_R_TYPE_ID (rel->r_info))
1017 /* This symbol requires a global offset table entry. */
1021 /* Create the .got section. */
1022 elf_hash_table (info)->dynobj = dynobj = abfd;
1023 if (! _bfd_elf_create_got_section (dynobj, info))
1029 sgot = bfd_get_section_by_name (dynobj, ".got");
1030 BFD_ASSERT (sgot != NULL);
1033 if (srelgot == NULL && (h != NULL || info->shared))
1035 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1036 if (srelgot == NULL)
1038 srelgot = bfd_make_section (dynobj, ".rela.got");
1040 || ! bfd_set_section_flags (dynobj, srelgot,
1045 | SEC_LINKER_CREATED
1047 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1054 if (h->got.offset != (bfd_vma) -1)
1056 /* We have already allocated space in the .got. */
1059 h->got.offset = sgot->_raw_size;
1061 /* Make sure this symbol is output as a dynamic symbol. */
1062 if (h->dynindx == -1)
1064 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1068 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1072 /* This is a global offset table entry for a local
1074 if (local_got_offsets == NULL)
1077 register unsigned int i;
1079 size = symtab_hdr->sh_info * sizeof (bfd_vma);
1080 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1081 if (local_got_offsets == NULL)
1083 elf_local_got_offsets (abfd) = local_got_offsets;
1084 for (i = 0; i < symtab_hdr->sh_info; i++)
1085 local_got_offsets[i] = (bfd_vma) -1;
1087 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1089 /* We have already allocated space in the .got. */
1092 local_got_offsets[r_symndx] = sgot->_raw_size;
1096 /* If we are generating a shared object, we need to
1097 output a R_SPARC_RELATIVE reloc so that the
1098 dynamic linker can adjust this GOT entry. */
1099 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1103 sgot->_raw_size += 8;
1106 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1107 unsigned numbers. If we permit ourselves to modify
1108 code so we get sethi/xor, this could work.
1109 Question: do we consider conditionally re-enabling
1110 this for -fpic, once we know about object code models? */
1111 /* If the .got section is more than 0x1000 bytes, we add
1112 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1113 bit relocations have a greater chance of working. */
1114 if (sgot->_raw_size >= 0x1000
1115 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1116 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1121 case R_SPARC_WPLT30:
1123 case R_SPARC_HIPLT22:
1124 case R_SPARC_LOPLT10:
1125 case R_SPARC_PCPLT32:
1126 case R_SPARC_PCPLT22:
1127 case R_SPARC_PCPLT10:
1129 /* This symbol requires a procedure linkage table entry. We
1130 actually build the entry in adjust_dynamic_symbol,
1131 because this might be a case of linking PIC code without
1132 linking in any dynamic objects, in which case we don't
1133 need to generate a procedure linkage table after all. */
1137 /* It does not make sense to have a procedure linkage
1138 table entry for a local symbol. */
1139 bfd_set_error (bfd_error_bad_value);
1143 /* Make sure this symbol is output as a dynamic symbol. */
1144 if (h->dynindx == -1)
1146 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1150 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1155 case R_SPARC_PC_HH22:
1156 case R_SPARC_PC_HM10:
1157 case R_SPARC_PC_LM22:
1159 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1163 case R_SPARC_DISP16:
1164 case R_SPARC_DISP32:
1165 case R_SPARC_DISP64:
1166 case R_SPARC_WDISP30:
1167 case R_SPARC_WDISP22:
1168 case R_SPARC_WDISP19:
1169 case R_SPARC_WDISP16:
1198 /* When creating a shared object, we must copy these relocs
1199 into the output file. We create a reloc section in
1200 dynobj and make room for the reloc.
1202 But don't do this for debugging sections -- this shows up
1203 with DWARF2 -- first because they are not loaded, and
1204 second because DWARF sez the debug info is not to be
1205 biased by the load address. */
1206 if (info->shared && (sec->flags & SEC_ALLOC))
1212 name = (bfd_elf_string_from_elf_section
1214 elf_elfheader (abfd)->e_shstrndx,
1215 elf_section_data (sec)->rel_hdr.sh_name));
1219 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1220 && strcmp (bfd_get_section_name (abfd, sec),
1223 sreloc = bfd_get_section_by_name (dynobj, name);
1228 sreloc = bfd_make_section (dynobj, name);
1229 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1230 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1231 if ((sec->flags & SEC_ALLOC) != 0)
1232 flags |= SEC_ALLOC | SEC_LOAD;
1234 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1235 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1240 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1244 case R_SPARC_REGISTER:
1245 /* Nothing to do. */
1249 (*_bfd_error_handler)(_("%s: check_relocs: unhandled reloc type %d"),
1250 bfd_get_filename(abfd),
1251 ELF64_R_TYPE_ID (rel->r_info));
1259 /* Hook called by the linker routine which adds symbols from an object
1260 file. We use it for STT_REGISTER symbols. */
1263 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1265 struct bfd_link_info *info;
1266 const Elf_Internal_Sym *sym;
1272 static char *stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1274 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1277 struct sparc64_elf_app_reg *p;
1279 reg = (int)sym->st_value;
1282 case 2: reg -= 2; break;
1283 case 6: reg -= 4; break;
1285 (*_bfd_error_handler)
1286 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1287 bfd_get_filename (abfd));
1291 if (info->hash->creator != abfd->xvec
1292 || (abfd->flags & DYNAMIC) != 0)
1294 /* STT_REGISTER only works when linking an elf64_sparc object.
1295 If STT_REGISTER comes from a dynamic object, don't put it into
1296 the output bfd. The dynamic linker will recheck it. */
1301 p = sparc64_elf_hash_table(info)->app_regs + reg;
1303 if (p->name != NULL && strcmp (p->name, *namep))
1305 (*_bfd_error_handler)
1306 (_("Register %%g%d used incompatibly: "
1307 "previously declared in %s to %s, in %s redefined to %s"),
1309 bfd_get_filename (p->abfd), *p->name ? p->name : "#scratch",
1310 bfd_get_filename (abfd), **namep ? *namep : "#scratch");
1314 if (p->name == NULL)
1318 struct elf_link_hash_entry *h;
1320 h = (struct elf_link_hash_entry *)
1321 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1325 unsigned char type = h->type;
1327 if (type > STT_FUNC) type = 0;
1328 (*_bfd_error_handler)
1329 (_("Symbol `%s' has differing types: "
1330 "previously %s, REGISTER in %s"),
1331 *namep, stt_types [type], bfd_get_filename (abfd));
1335 p->name = bfd_hash_allocate (&info->hash->table,
1336 strlen (*namep) + 1);
1340 strcpy (p->name, *namep);
1344 p->bind = ELF_ST_BIND (sym->st_info);
1346 p->shndx = sym->st_shndx;
1350 if (p->bind == STB_WEAK
1351 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1353 p->bind = STB_GLOBAL;
1360 else if (! *namep || ! **namep)
1365 struct sparc64_elf_app_reg *p;
1367 p = sparc64_elf_hash_table(info)->app_regs;
1368 for (i = 0; i < 4; i++, p++)
1369 if (p->name != NULL && ! strcmp (p->name, *namep))
1371 unsigned char type = ELF_ST_TYPE (sym->st_info);
1373 if (type > STT_FUNC) type = 0;
1374 (*_bfd_error_handler)
1375 (_("Symbol `%s' has differing types: "
1376 "REGISTER in %s, %s in %s"),
1377 *namep, bfd_get_filename (p->abfd), stt_types [type],
1378 bfd_get_filename (abfd));
1385 /* This function takes care of emiting STT_REGISTER symbols
1386 which we cannot easily keep in the symbol hash table. */
1389 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1391 struct bfd_link_info *info;
1393 boolean (*func) PARAMS ((PTR, const char *,
1394 Elf_Internal_Sym *, asection *));
1397 struct sparc64_elf_app_reg *app_regs =
1398 sparc64_elf_hash_table(info)->app_regs;
1399 Elf_Internal_Sym sym;
1401 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1402 at the end of the dynlocal list, so they came at the end of the local
1403 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1404 to back up symtab->sh_info. */
1405 if (elf_hash_table (info)->dynlocal)
1407 bfd * dynobj = elf_hash_table (info)->dynobj;
1408 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1409 struct elf_link_local_dynamic_entry *e;
1411 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1412 if (e->input_indx == -1)
1416 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1421 if (info->strip == strip_all)
1424 for (reg = 0; reg < 4; reg++)
1425 if (app_regs [reg].name != NULL)
1427 if (info->strip == strip_some
1428 && bfd_hash_lookup (info->keep_hash,
1429 app_regs [reg].name,
1430 false, false) == NULL)
1433 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1436 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1437 sym.st_shndx = app_regs [reg].shndx;
1438 if (! (*func) (finfo, app_regs [reg].name, &sym,
1439 sym.st_shndx == SHN_ABS
1440 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1448 sparc64_elf_get_symbol_type (elf_sym, type)
1449 Elf_Internal_Sym * elf_sym;
1452 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1453 return STT_REGISTER;
1458 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1459 even in SHN_UNDEF section. */
1462 sparc64_elf_symbol_processing (abfd, asym)
1466 elf_symbol_type *elfsym;
1468 elfsym = (elf_symbol_type *) asym;
1469 if (elfsym->internal_elf_sym.st_info
1470 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1472 asym->flags |= BSF_GLOBAL;
1476 /* Adjust a symbol defined by a dynamic object and referenced by a
1477 regular object. The current definition is in some section of the
1478 dynamic object, but we're not including those sections. We have to
1479 change the definition to something the rest of the link can
1483 sparc64_elf_adjust_dynamic_symbol (info, h)
1484 struct bfd_link_info *info;
1485 struct elf_link_hash_entry *h;
1489 unsigned int power_of_two;
1491 dynobj = elf_hash_table (info)->dynobj;
1493 /* Make sure we know what is going on here. */
1494 BFD_ASSERT (dynobj != NULL
1495 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1496 || h->weakdef != NULL
1497 || ((h->elf_link_hash_flags
1498 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1499 && (h->elf_link_hash_flags
1500 & ELF_LINK_HASH_REF_REGULAR) != 0
1501 && (h->elf_link_hash_flags
1502 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1504 /* If this is a function, put it in the procedure linkage table. We
1505 will fill in the contents of the procedure linkage table later
1506 (although we could actually do it here). The STT_NOTYPE
1507 condition is a hack specifically for the Oracle libraries
1508 delivered for Solaris; for some inexplicable reason, they define
1509 some of their functions as STT_NOTYPE when they really should be
1511 if (h->type == STT_FUNC
1512 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1513 || (h->type == STT_NOTYPE
1514 && (h->root.type == bfd_link_hash_defined
1515 || h->root.type == bfd_link_hash_defweak)
1516 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1518 if (! elf_hash_table (info)->dynamic_sections_created)
1520 /* This case can occur if we saw a WPLT30 reloc in an input
1521 file, but none of the input files were dynamic objects.
1522 In such a case, we don't actually need to build a
1523 procedure linkage table, and we can just do a WDISP30
1525 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1529 s = bfd_get_section_by_name (dynobj, ".plt");
1530 BFD_ASSERT (s != NULL);
1532 /* The first four bit in .plt is reserved. */
1533 if (s->_raw_size == 0)
1534 s->_raw_size = PLT_HEADER_SIZE;
1536 /* If this symbol is not defined in a regular file, and we are
1537 not generating a shared library, then set the symbol to this
1538 location in the .plt. This is required to make function
1539 pointers compare as equal between the normal executable and
1540 the shared library. */
1542 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1544 h->root.u.def.section = s;
1545 h->root.u.def.value = s->_raw_size;
1548 /* To simplify matters later, just store the plt index here. */
1549 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1551 /* Make room for this entry. */
1552 s->_raw_size += PLT_ENTRY_SIZE;
1554 /* We also need to make an entry in the .rela.plt section. */
1556 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1557 BFD_ASSERT (s != NULL);
1559 /* The first plt entries are reserved, and the relocations must
1561 if (s->_raw_size == 0)
1562 s->_raw_size += (PLT_HEADER_SIZE/PLT_ENTRY_SIZE
1563 * sizeof (Elf64_External_Rela));
1565 s->_raw_size += sizeof (Elf64_External_Rela);
1567 /* The procedure linkage table size is bounded by the magnitude
1568 of the offset we can describe in the entry. */
1569 if (s->_raw_size >= (bfd_vma)1 << 32)
1571 bfd_set_error (bfd_error_bad_value);
1578 /* If this is a weak symbol, and there is a real definition, the
1579 processor independent code will have arranged for us to see the
1580 real definition first, and we can just use the same value. */
1581 if (h->weakdef != NULL)
1583 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1584 || h->weakdef->root.type == bfd_link_hash_defweak);
1585 h->root.u.def.section = h->weakdef->root.u.def.section;
1586 h->root.u.def.value = h->weakdef->root.u.def.value;
1590 /* This is a reference to a symbol defined by a dynamic object which
1591 is not a function. */
1593 /* If we are creating a shared library, we must presume that the
1594 only references to the symbol are via the global offset table.
1595 For such cases we need not do anything here; the relocations will
1596 be handled correctly by relocate_section. */
1600 /* We must allocate the symbol in our .dynbss section, which will
1601 become part of the .bss section of the executable. There will be
1602 an entry for this symbol in the .dynsym section. The dynamic
1603 object will contain position independent code, so all references
1604 from the dynamic object to this symbol will go through the global
1605 offset table. The dynamic linker will use the .dynsym entry to
1606 determine the address it must put in the global offset table, so
1607 both the dynamic object and the regular object will refer to the
1608 same memory location for the variable. */
1610 s = bfd_get_section_by_name (dynobj, ".dynbss");
1611 BFD_ASSERT (s != NULL);
1613 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1614 to copy the initial value out of the dynamic object and into the
1615 runtime process image. We need to remember the offset into the
1616 .rel.bss section we are going to use. */
1617 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1621 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1622 BFD_ASSERT (srel != NULL);
1623 srel->_raw_size += sizeof (Elf64_External_Rela);
1624 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1627 /* We need to figure out the alignment required for this symbol. I
1628 have no idea how ELF linkers handle this. 16-bytes is the size
1629 of the largest type that requires hard alignment -- long double. */
1630 power_of_two = bfd_log2 (h->size);
1631 if (power_of_two > 4)
1634 /* Apply the required alignment. */
1635 s->_raw_size = BFD_ALIGN (s->_raw_size,
1636 (bfd_size_type) (1 << power_of_two));
1637 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1639 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1643 /* Define the symbol as being at this point in the section. */
1644 h->root.u.def.section = s;
1645 h->root.u.def.value = s->_raw_size;
1647 /* Increment the section size to make room for the symbol. */
1648 s->_raw_size += h->size;
1653 /* Set the sizes of the dynamic sections. */
1656 sparc64_elf_size_dynamic_sections (output_bfd, info)
1658 struct bfd_link_info *info;
1665 dynobj = elf_hash_table (info)->dynobj;
1666 BFD_ASSERT (dynobj != NULL);
1668 if (elf_hash_table (info)->dynamic_sections_created)
1670 /* Set the contents of the .interp section to the interpreter. */
1673 s = bfd_get_section_by_name (dynobj, ".interp");
1674 BFD_ASSERT (s != NULL);
1675 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1676 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1681 /* We may have created entries in the .rela.got section.
1682 However, if we are not creating the dynamic sections, we will
1683 not actually use these entries. Reset the size of .rela.got,
1684 which will cause it to get stripped from the output file
1686 s = bfd_get_section_by_name (dynobj, ".rela.got");
1691 /* The check_relocs and adjust_dynamic_symbol entry points have
1692 determined the sizes of the various dynamic sections. Allocate
1696 for (s = dynobj->sections; s != NULL; s = s->next)
1701 if ((s->flags & SEC_LINKER_CREATED) == 0)
1704 /* It's OK to base decisions on the section name, because none
1705 of the dynobj section names depend upon the input files. */
1706 name = bfd_get_section_name (dynobj, s);
1710 if (strncmp (name, ".rela", 5) == 0)
1712 if (s->_raw_size == 0)
1714 /* If we don't need this section, strip it from the
1715 output file. This is to handle .rela.bss and
1716 .rel.plt. We must create it in
1717 create_dynamic_sections, because it must be created
1718 before the linker maps input sections to output
1719 sections. The linker does that before
1720 adjust_dynamic_symbol is called, and it is that
1721 function which decides whether anything needs to go
1722 into these sections. */
1727 const char *outname;
1730 /* If this relocation section applies to a read only
1731 section, then we probably need a DT_TEXTREL entry. */
1732 outname = bfd_get_section_name (output_bfd,
1734 target = bfd_get_section_by_name (output_bfd, outname + 5);
1736 && (target->flags & SEC_READONLY) != 0)
1739 if (strcmp (name, ".rela.plt") == 0)
1742 /* We use the reloc_count field as a counter if we need
1743 to copy relocs into the output file. */
1747 else if (strcmp (name, ".plt") != 0
1748 && strncmp (name, ".got", 4) != 0)
1750 /* It's not one of our sections, so don't allocate space. */
1756 _bfd_strip_section_from_output (info, s);
1760 /* Allocate memory for the section contents. Zero the memory
1761 for the benefit of .rela.plt, which has 4 unused entries
1762 at the beginning, and we don't want garbage. */
1763 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1764 if (s->contents == NULL && s->_raw_size != 0)
1768 if (elf_hash_table (info)->dynamic_sections_created)
1770 /* Add some entries to the .dynamic section. We fill in the
1771 values later, in sparc64_elf_finish_dynamic_sections, but we
1772 must add the entries now so that we get the correct size for
1773 the .dynamic section. The DT_DEBUG entry is filled in by the
1774 dynamic linker and used by the debugger. */
1776 struct sparc64_elf_app_reg * app_regs;
1777 struct bfd_strtab_hash *dynstr;
1778 struct elf_link_hash_table *eht = elf_hash_table (info);
1782 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0))
1788 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)
1789 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1790 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1791 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1795 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1796 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1797 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1798 sizeof (Elf64_External_Rela)))
1803 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1807 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1808 entries if needed. */
1809 app_regs = sparc64_elf_hash_table (info)->app_regs;
1810 dynstr = eht->dynstr;
1812 for (reg = 0; reg < 4; reg++)
1813 if (app_regs [reg].name != NULL)
1815 struct elf_link_local_dynamic_entry *entry, *e;
1817 if (! bfd_elf64_add_dynamic_entry (info, DT_SPARC_REGISTER, 0))
1820 entry = (struct elf_link_local_dynamic_entry *)
1821 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1825 /* We cheat here a little bit: the symbol will not be local, so we
1826 put it at the end of the dynlocal linked list. We will fix it
1827 later on, as we have to fix other fields anyway. */
1828 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1829 entry->isym.st_size = 0;
1830 if (*app_regs [reg].name != '\0')
1832 = _bfd_stringtab_add (dynstr, app_regs[reg].name, true, false);
1834 entry->isym.st_name = 0;
1835 entry->isym.st_other = 0;
1836 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1838 entry->isym.st_shndx = app_regs [reg].shndx;
1840 entry->input_bfd = output_bfd;
1841 entry->input_indx = -1;
1843 if (eht->dynlocal == NULL)
1844 eht->dynlocal = entry;
1847 for (e = eht->dynlocal; e->next; e = e->next)
1858 /* Relocate a SPARC64 ELF section. */
1861 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1862 contents, relocs, local_syms, local_sections)
1864 struct bfd_link_info *info;
1866 asection *input_section;
1868 Elf_Internal_Rela *relocs;
1869 Elf_Internal_Sym *local_syms;
1870 asection **local_sections;
1873 Elf_Internal_Shdr *symtab_hdr;
1874 struct elf_link_hash_entry **sym_hashes;
1875 bfd_vma *local_got_offsets;
1880 Elf_Internal_Rela *rel;
1881 Elf_Internal_Rela *relend;
1883 dynobj = elf_hash_table (info)->dynobj;
1884 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1885 sym_hashes = elf_sym_hashes (input_bfd);
1886 local_got_offsets = elf_local_got_offsets (input_bfd);
1888 if (elf_hash_table(info)->hgot == NULL)
1891 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1893 sgot = splt = sreloc = NULL;
1896 relend = relocs + input_section->reloc_count;
1897 for (; rel < relend; rel++)
1900 reloc_howto_type *howto;
1902 struct elf_link_hash_entry *h;
1903 Elf_Internal_Sym *sym;
1906 bfd_reloc_status_type r;
1908 r_type = ELF64_R_TYPE_ID (rel->r_info);
1909 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1911 bfd_set_error (bfd_error_bad_value);
1914 howto = sparc64_elf_howto_table + r_type;
1916 r_symndx = ELF64_R_SYM (rel->r_info);
1918 if (info->relocateable)
1920 /* This is a relocateable link. We don't have to change
1921 anything, unless the reloc is against a section symbol,
1922 in which case we have to adjust according to where the
1923 section symbol winds up in the output section. */
1924 if (r_symndx < symtab_hdr->sh_info)
1926 sym = local_syms + r_symndx;
1927 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1929 sec = local_sections[r_symndx];
1930 rel->r_addend += sec->output_offset + sym->st_value;
1937 /* This is a final link. */
1941 if (r_symndx < symtab_hdr->sh_info)
1943 sym = local_syms + r_symndx;
1944 sec = local_sections[r_symndx];
1945 relocation = (sec->output_section->vma
1946 + sec->output_offset
1951 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1952 while (h->root.type == bfd_link_hash_indirect
1953 || h->root.type == bfd_link_hash_warning)
1954 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1955 if (h->root.type == bfd_link_hash_defined
1956 || h->root.type == bfd_link_hash_defweak)
1958 boolean skip_it = false;
1959 sec = h->root.u.def.section;
1963 case R_SPARC_WPLT30:
1965 case R_SPARC_HIPLT22:
1966 case R_SPARC_LOPLT10:
1967 case R_SPARC_PCPLT32:
1968 case R_SPARC_PCPLT22:
1969 case R_SPARC_PCPLT10:
1971 if (h->plt.offset != (bfd_vma) -1)
1978 if (elf_hash_table(info)->dynamic_sections_created
1980 || (!info->symbolic && h->dynindx != -1)
1981 || !(h->elf_link_hash_flags
1982 & ELF_LINK_HASH_DEF_REGULAR)))
1988 case R_SPARC_PC_HH22:
1989 case R_SPARC_PC_HM10:
1990 case R_SPARC_PC_LM22:
1991 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
1999 case R_SPARC_DISP16:
2000 case R_SPARC_DISP32:
2001 case R_SPARC_WDISP30:
2002 case R_SPARC_WDISP22:
2015 case R_SPARC_WDISP19:
2016 case R_SPARC_WDISP16:
2020 case R_SPARC_DISP64:
2029 && ((!info->symbolic && h->dynindx != -1)
2030 || !(h->elf_link_hash_flags
2031 & ELF_LINK_HASH_DEF_REGULAR)))
2038 /* In these cases, we don't need the relocation
2039 value. We check specially because in some
2040 obscure cases sec->output_section will be NULL. */
2045 relocation = (h->root.u.def.value
2046 + sec->output_section->vma
2047 + sec->output_offset);
2050 else if (h->root.type == bfd_link_hash_undefweak)
2052 else if (info->shared && !info->symbolic && !info->no_undefined)
2056 if (! ((*info->callbacks->undefined_symbol)
2057 (info, h->root.root.string, input_bfd,
2058 input_section, rel->r_offset)))
2064 /* When generating a shared object, these relocations are copied
2065 into the output file to be resolved at run time. */
2066 if (info->shared && (input_section->flags & SEC_ALLOC))
2072 case R_SPARC_PC_HH22:
2073 case R_SPARC_PC_HM10:
2074 case R_SPARC_PC_LM22:
2076 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2080 case R_SPARC_DISP16:
2081 case R_SPARC_DISP32:
2082 case R_SPARC_WDISP30:
2083 case R_SPARC_WDISP22:
2084 case R_SPARC_WDISP19:
2085 case R_SPARC_WDISP16:
2086 case R_SPARC_DISP64:
2116 Elf_Internal_Rela outrel;
2122 (bfd_elf_string_from_elf_section
2124 elf_elfheader (input_bfd)->e_shstrndx,
2125 elf_section_data (input_section)->rel_hdr.sh_name));
2130 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2131 && strcmp (bfd_get_section_name(input_bfd,
2135 sreloc = bfd_get_section_by_name (dynobj, name);
2136 BFD_ASSERT (sreloc != NULL);
2141 if (elf_section_data (input_section)->stab_info == NULL)
2142 outrel.r_offset = rel->r_offset;
2147 off = (_bfd_stab_section_offset
2148 (output_bfd, &elf_hash_table (info)->stab_info,
2150 &elf_section_data (input_section)->stab_info,
2152 if (off == MINUS_ONE)
2154 outrel.r_offset = off;
2157 outrel.r_offset += (input_section->output_section->vma
2158 + input_section->output_offset);
2160 /* Optimize unaligned reloc usage now that we know where
2161 it finally resides. */
2165 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2168 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2171 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2174 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2177 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2180 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2185 memset (&outrel, 0, sizeof outrel);
2186 /* h->dynindx may be -1 if the symbol was marked to
2189 && ((! info->symbolic && h->dynindx != -1)
2190 || (h->elf_link_hash_flags
2191 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2193 BFD_ASSERT (h->dynindx != -1);
2195 = ELF64_R_INFO (h->dynindx,
2197 ELF64_R_TYPE_DATA (rel->r_info),
2199 outrel.r_addend = rel->r_addend;
2203 if (r_type == R_SPARC_64)
2205 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2206 outrel.r_addend = relocation + rel->r_addend;
2213 sec = local_sections[r_symndx];
2216 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2218 == bfd_link_hash_defweak));
2219 sec = h->root.u.def.section;
2221 if (sec != NULL && bfd_is_abs_section (sec))
2223 else if (sec == NULL || sec->owner == NULL)
2225 bfd_set_error (bfd_error_bad_value);
2232 osec = sec->output_section;
2233 indx = elf_section_data (osec)->dynindx;
2235 /* FIXME: we really should be able to link non-pic
2236 shared libraries. */
2240 (*_bfd_error_handler)
2241 (_("%s: probably compiled without -fPIC?"),
2242 bfd_get_filename (input_bfd));
2243 bfd_set_error (bfd_error_bad_value);
2249 = ELF64_R_INFO (indx,
2251 ELF64_R_TYPE_DATA (rel->r_info),
2253 outrel.r_addend = relocation + rel->r_addend;
2257 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2258 (((Elf64_External_Rela *)
2260 + sreloc->reloc_count));
2261 ++sreloc->reloc_count;
2263 /* This reloc will be computed at runtime, so there's no
2264 need to do anything now, unless this is a RELATIVE
2265 reloc in an unallocated section. */
2267 || (input_section->flags & SEC_ALLOC) != 0
2268 || ELF64_R_TYPE_ID (outrel.r_info) != R_SPARC_RELATIVE)
2280 /* Relocation is to the entry for this symbol in the global
2284 sgot = bfd_get_section_by_name (dynobj, ".got");
2285 BFD_ASSERT (sgot != NULL);
2290 bfd_vma off = h->got.offset;
2291 BFD_ASSERT (off != (bfd_vma) -1);
2293 if (! elf_hash_table (info)->dynamic_sections_created
2295 && (info->symbolic || h->dynindx == -1)
2296 && (h->elf_link_hash_flags
2297 & ELF_LINK_HASH_DEF_REGULAR)))
2299 /* This is actually a static link, or it is a -Bsymbolic
2300 link and the symbol is defined locally, or the symbol
2301 was forced to be local because of a version file. We
2302 must initialize this entry in the global offset table.
2303 Since the offset must always be a multiple of 8, we
2304 use the least significant bit to record whether we
2305 have initialized it already.
2307 When doing a dynamic link, we create a .rela.got
2308 relocation entry to initialize the value. This is
2309 done in the finish_dynamic_symbol routine. */
2315 bfd_put_64 (output_bfd, relocation,
2316 sgot->contents + off);
2320 relocation = sgot->output_offset + off - got_base;
2326 BFD_ASSERT (local_got_offsets != NULL);
2327 off = local_got_offsets[r_symndx];
2328 BFD_ASSERT (off != (bfd_vma) -1);
2330 /* The offset must always be a multiple of 8. We use
2331 the least significant bit to record whether we have
2332 already processed this entry. */
2337 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2338 local_got_offsets[r_symndx] |= 1;
2343 Elf_Internal_Rela outrel;
2345 /* We need to generate a R_SPARC_RELATIVE reloc
2346 for the dynamic linker. */
2347 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2348 BFD_ASSERT (srelgot != NULL);
2350 outrel.r_offset = (sgot->output_section->vma
2351 + sgot->output_offset
2353 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2354 outrel.r_addend = relocation;
2355 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2356 (((Elf64_External_Rela *)
2358 + srelgot->reloc_count));
2359 ++srelgot->reloc_count;
2362 relocation = sgot->output_offset + off - got_base;
2366 case R_SPARC_WPLT30:
2368 case R_SPARC_HIPLT22:
2369 case R_SPARC_LOPLT10:
2370 case R_SPARC_PCPLT32:
2371 case R_SPARC_PCPLT22:
2372 case R_SPARC_PCPLT10:
2374 /* Relocation is to the entry for this symbol in the
2375 procedure linkage table. */
2376 BFD_ASSERT (h != NULL);
2378 if (h->plt.offset == (bfd_vma) -1)
2380 /* We didn't make a PLT entry for this symbol. This
2381 happens when statically linking PIC code, or when
2382 using -Bsymbolic. */
2388 splt = bfd_get_section_by_name (dynobj, ".plt");
2389 BFD_ASSERT (splt != NULL);
2392 relocation = (splt->output_section->vma
2393 + splt->output_offset
2394 + sparc64_elf_plt_entry_offset (h->plt.offset));
2401 relocation += rel->r_addend;
2402 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2404 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2405 x = (x & ~0x1fff) | (relocation & 0x1fff);
2406 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2408 r = bfd_check_overflow (howto->complain_on_overflow,
2409 howto->bitsize, howto->rightshift,
2410 bfd_arch_bits_per_address (input_bfd),
2415 case R_SPARC_WDISP16:
2419 relocation += rel->r_addend;
2420 /* Adjust for pc-relative-ness. */
2421 relocation -= (input_section->output_section->vma
2422 + input_section->output_offset);
2423 relocation -= rel->r_offset;
2425 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2426 x = (x & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
2427 | ((relocation >> 2) & 0x3fff));
2428 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2430 r = bfd_check_overflow (howto->complain_on_overflow,
2431 howto->bitsize, howto->rightshift,
2432 bfd_arch_bits_per_address (input_bfd),
2441 relocation += rel->r_addend;
2442 relocation = relocation ^ MINUS_ONE;
2444 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2445 x = (x & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
2446 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2448 r = bfd_check_overflow (howto->complain_on_overflow,
2449 howto->bitsize, howto->rightshift,
2450 bfd_arch_bits_per_address (input_bfd),
2459 relocation += rel->r_addend;
2460 relocation = (relocation & 0x3ff) | 0x1c00;
2462 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2463 x = (x & ~0x1fff) | relocation;
2464 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2472 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2473 contents, rel->r_offset,
2474 relocation, rel->r_addend);
2484 case bfd_reloc_outofrange:
2487 case bfd_reloc_overflow:
2493 if (h->root.type == bfd_link_hash_undefweak
2494 && howto->pc_relative)
2496 /* Assume this is a call protected by other code that
2497 detect the symbol is undefined. If this is the case,
2498 we can safely ignore the overflow. If not, the
2499 program is hosed anyway, and a little warning isn't
2504 name = h->root.root.string;
2508 name = (bfd_elf_string_from_elf_section
2510 symtab_hdr->sh_link,
2515 name = bfd_section_name (input_bfd, sec);
2517 if (! ((*info->callbacks->reloc_overflow)
2518 (info, name, howto->name, (bfd_vma) 0,
2519 input_bfd, input_section, rel->r_offset)))
2529 /* Finish up dynamic symbol handling. We set the contents of various
2530 dynamic sections here. */
2533 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2535 struct bfd_link_info *info;
2536 struct elf_link_hash_entry *h;
2537 Elf_Internal_Sym *sym;
2541 dynobj = elf_hash_table (info)->dynobj;
2543 if (h->plt.offset != (bfd_vma) -1)
2547 Elf_Internal_Rela rela;
2549 /* This symbol has an entry in the PLT. Set it up. */
2551 BFD_ASSERT (h->dynindx != -1);
2553 splt = bfd_get_section_by_name (dynobj, ".plt");
2554 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2555 BFD_ASSERT (splt != NULL && srela != NULL);
2557 /* Fill in the entry in the .rela.plt section. */
2559 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2561 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2566 int max = splt->_raw_size / PLT_ENTRY_SIZE;
2567 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2568 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2569 -(splt->output_section->vma + splt->output_offset);
2571 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2572 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2574 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2575 ((Elf64_External_Rela *) srela->contents
2578 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2580 /* Mark the symbol as undefined, rather than as defined in
2581 the .plt section. Leave the value alone. */
2582 sym->st_shndx = SHN_UNDEF;
2586 if (h->got.offset != (bfd_vma) -1)
2590 Elf_Internal_Rela rela;
2592 /* This symbol has an entry in the GOT. Set it up. */
2594 sgot = bfd_get_section_by_name (dynobj, ".got");
2595 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2596 BFD_ASSERT (sgot != NULL && srela != NULL);
2598 rela.r_offset = (sgot->output_section->vma
2599 + sgot->output_offset
2600 + (h->got.offset &~ 1));
2602 /* If this is a -Bsymbolic link, and the symbol is defined
2603 locally, we just want to emit a RELATIVE reloc. Likewise if
2604 the symbol was forced to be local because of a version file.
2605 The entry in the global offset table will already have been
2606 initialized in the relocate_section function. */
2608 && (info->symbolic || h->dynindx == -1)
2609 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2611 asection *sec = h->root.u.def.section;
2612 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2613 rela.r_addend = (h->root.u.def.value
2614 + sec->output_section->vma
2615 + sec->output_offset);
2619 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2620 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2624 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2625 ((Elf64_External_Rela *) srela->contents
2626 + srela->reloc_count));
2627 ++srela->reloc_count;
2630 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2633 Elf_Internal_Rela rela;
2635 /* This symbols needs a copy reloc. Set it up. */
2637 BFD_ASSERT (h->dynindx != -1);
2639 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2641 BFD_ASSERT (s != NULL);
2643 rela.r_offset = (h->root.u.def.value
2644 + h->root.u.def.section->output_section->vma
2645 + h->root.u.def.section->output_offset);
2646 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2648 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2649 ((Elf64_External_Rela *) s->contents
2654 /* Mark some specially defined symbols as absolute. */
2655 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2656 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2657 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2658 sym->st_shndx = SHN_ABS;
2663 /* Finish up the dynamic sections. */
2666 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2668 struct bfd_link_info *info;
2671 int stt_regidx = -1;
2675 dynobj = elf_hash_table (info)->dynobj;
2677 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2679 if (elf_hash_table (info)->dynamic_sections_created)
2682 Elf64_External_Dyn *dyncon, *dynconend;
2684 splt = bfd_get_section_by_name (dynobj, ".plt");
2685 BFD_ASSERT (splt != NULL && sdyn != NULL);
2687 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2688 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2689 for (; dyncon < dynconend; dyncon++)
2691 Elf_Internal_Dyn dyn;
2695 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2699 case DT_PLTGOT: name = ".plt"; size = false; break;
2700 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2701 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2702 case DT_SPARC_REGISTER:
2703 if (stt_regidx == -1)
2706 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2707 if (stt_regidx == -1)
2710 dyn.d_un.d_val = stt_regidx++;
2711 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2713 default: name = NULL; size = false; break;
2720 s = bfd_get_section_by_name (output_bfd, name);
2726 dyn.d_un.d_ptr = s->vma;
2729 if (s->_cooked_size != 0)
2730 dyn.d_un.d_val = s->_cooked_size;
2732 dyn.d_un.d_val = s->_raw_size;
2735 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2739 /* Initialize the contents of the .plt section. */
2740 if (splt->_raw_size > 0)
2742 sparc64_elf_build_plt(output_bfd, splt->contents,
2743 splt->_raw_size / PLT_ENTRY_SIZE);
2746 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2750 /* Set the first entry in the global offset table to the address of
2751 the dynamic section. */
2752 sgot = bfd_get_section_by_name (dynobj, ".got");
2753 BFD_ASSERT (sgot != NULL);
2754 if (sgot->_raw_size > 0)
2757 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2759 bfd_put_64 (output_bfd,
2760 sdyn->output_section->vma + sdyn->output_offset,
2764 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2769 /* Functions for dealing with the e_flags field. */
2771 /* Merge backend specific data from an object file to the output
2772 object file when linking. */
2775 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2780 flagword new_flags, old_flags;
2783 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2784 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2787 new_flags = elf_elfheader (ibfd)->e_flags;
2788 old_flags = elf_elfheader (obfd)->e_flags;
2790 if (!elf_flags_init (obfd)) /* First call, no flags set */
2792 elf_flags_init (obfd) = true;
2793 elf_elfheader (obfd)->e_flags = new_flags;
2796 else if (new_flags == old_flags) /* Compatible flags are ok */
2799 else /* Incompatible flags */
2803 if ((ibfd->flags & DYNAMIC) != 0)
2805 /* We don't want dynamic objects memory ordering and
2806 architecture to have any role. That's what dynamic linker
2808 old_flags &= ~(EF_SPARCV9_MM | EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1);
2809 old_flags |= (new_flags
2812 | EF_SPARC_HAL_R1));
2816 /* Choose the highest architecture requirements. */
2817 old_flags |= (new_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1));
2818 new_flags |= (old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1));
2819 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1))
2820 == (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1))
2823 (*_bfd_error_handler)
2824 (_("%s: linking UltraSPARC specific with HAL specific code"),
2825 bfd_get_filename (ibfd));
2827 /* Choose the most restrictive memory ordering. */
2828 old_mm = (old_flags & EF_SPARCV9_MM);
2829 new_mm = (new_flags & EF_SPARCV9_MM);
2830 old_flags &= ~EF_SPARCV9_MM;
2831 new_flags &= ~EF_SPARCV9_MM;
2832 if (new_mm < old_mm)
2834 old_flags |= old_mm;
2835 new_flags |= old_mm;
2838 /* Warn about any other mismatches */
2839 if (new_flags != old_flags)
2842 (*_bfd_error_handler)
2843 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2844 bfd_get_filename (ibfd), (long)new_flags, (long)old_flags);
2847 elf_elfheader (obfd)->e_flags = old_flags;
2851 bfd_set_error (bfd_error_bad_value);
2858 /* Print a STT_REGISTER symbol to file FILE. */
2861 sparc64_elf_print_symbol_all (abfd, filep, symbol)
2866 FILE *file = (FILE *) filep;
2869 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
2873 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2874 type = symbol->flags;
2875 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
2877 ? (type & BSF_GLOBAL) ? '!' : 'l'
2878 : (type & BSF_GLOBAL) ? 'g' : ' '),
2879 (type & BSF_WEAK) ? 'w' : ' ');
2880 if (symbol->name == NULL || symbol->name [0] == '\0')
2883 return symbol->name;
2886 /* Set the right machine number for a SPARC64 ELF file. */
2889 sparc64_elf_object_p (abfd)
2892 unsigned long mach = bfd_mach_sparc_v9;
2894 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
2895 mach = bfd_mach_sparc_v9a;
2896 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
2899 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
2900 standard ELF, because R_SPARC_OLO10 has secondary addend in
2901 ELF64_R_TYPE_DATA field. This structure is used to redirect the
2902 relocation handling routines. */
2904 const struct elf_size_info sparc64_elf_size_info =
2906 sizeof (Elf64_External_Ehdr),
2907 sizeof (Elf64_External_Phdr),
2908 sizeof (Elf64_External_Shdr),
2909 sizeof (Elf64_External_Rel),
2910 sizeof (Elf64_External_Rela),
2911 sizeof (Elf64_External_Sym),
2912 sizeof (Elf64_External_Dyn),
2913 sizeof (Elf_External_Note),
2914 4, /* hash-table entry size */
2915 /* internal relocations per external relocations.
2916 For link purposes we use just 1 internal per
2917 1 external, for assembly and slurp symbol table
2924 bfd_elf64_write_out_phdrs,
2925 bfd_elf64_write_shdrs_and_ehdr,
2926 sparc64_elf_write_relocs,
2927 bfd_elf64_swap_symbol_out,
2928 sparc64_elf_slurp_reloc_table,
2929 bfd_elf64_slurp_symbol_table,
2930 bfd_elf64_swap_dyn_in,
2931 bfd_elf64_swap_dyn_out,
2938 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
2939 #define TARGET_BIG_NAME "elf64-sparc"
2940 #define ELF_ARCH bfd_arch_sparc
2941 #define ELF_MAXPAGESIZE 0x100000
2943 /* This is the official ABI value. */
2944 #define ELF_MACHINE_CODE EM_SPARCV9
2946 /* This is the value that we used before the ABI was released. */
2947 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
2949 #define bfd_elf64_bfd_link_hash_table_create \
2950 sparc64_elf_bfd_link_hash_table_create
2952 #define elf_info_to_howto \
2953 sparc64_elf_info_to_howto
2954 #define bfd_elf64_get_reloc_upper_bound \
2955 sparc64_elf_get_reloc_upper_bound
2956 #define bfd_elf64_get_dynamic_reloc_upper_bound \
2957 sparc64_elf_get_dynamic_reloc_upper_bound
2958 #define bfd_elf64_canonicalize_dynamic_reloc \
2959 sparc64_elf_canonicalize_dynamic_reloc
2960 #define bfd_elf64_bfd_reloc_type_lookup \
2961 sparc64_elf_reloc_type_lookup
2963 #define elf_backend_create_dynamic_sections \
2964 _bfd_elf_create_dynamic_sections
2965 #define elf_backend_add_symbol_hook \
2966 sparc64_elf_add_symbol_hook
2967 #define elf_backend_get_symbol_type \
2968 sparc64_elf_get_symbol_type
2969 #define elf_backend_symbol_processing \
2970 sparc64_elf_symbol_processing
2971 #define elf_backend_check_relocs \
2972 sparc64_elf_check_relocs
2973 #define elf_backend_adjust_dynamic_symbol \
2974 sparc64_elf_adjust_dynamic_symbol
2975 #define elf_backend_size_dynamic_sections \
2976 sparc64_elf_size_dynamic_sections
2977 #define elf_backend_relocate_section \
2978 sparc64_elf_relocate_section
2979 #define elf_backend_finish_dynamic_symbol \
2980 sparc64_elf_finish_dynamic_symbol
2981 #define elf_backend_finish_dynamic_sections \
2982 sparc64_elf_finish_dynamic_sections
2983 #define elf_backend_print_symbol_all \
2984 sparc64_elf_print_symbol_all
2985 #define elf_backend_output_arch_syms \
2986 sparc64_elf_output_arch_syms
2988 #define bfd_elf64_bfd_merge_private_bfd_data \
2989 sparc64_elf_merge_private_bfd_data
2991 #define elf_backend_size_info \
2992 sparc64_elf_size_info
2993 #define elf_backend_object_p \
2994 sparc64_elf_object_p
2996 #define elf_backend_want_got_plt 0
2997 #define elf_backend_plt_readonly 0
2998 #define elf_backend_want_plt_sym 1
3000 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3001 #define elf_backend_plt_alignment 8
3003 #define elf_backend_got_header_size 8
3004 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3006 #include "elf64-target.h"