1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993, 95, 96, 97, 98, 1999 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 /* This is defined if one wants to build upward compatible binaries
26 with the original sparc64-elf toolchain. The support is kept in for
27 now but is turned off by default. dje 970930 */
28 /*#define SPARC64_OLD_RELOCS*/
30 #include "elf/sparc.h"
32 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
33 #define MINUS_ONE (~ (bfd_vma) 0)
35 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
37 static reloc_howto_type *sparc64_elf_reloc_type_lookup
38 PARAMS ((bfd *, bfd_reloc_code_real_type));
39 static void sparc64_elf_info_to_howto
40 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
42 static void sparc64_elf_build_plt
43 PARAMS((bfd *, unsigned char *, int));
44 static bfd_vma sparc64_elf_plt_entry_offset
46 static bfd_vma sparc64_elf_plt_ptr_offset
49 static boolean sparc64_elf_check_relocs
50 PARAMS((bfd *, struct bfd_link_info *, asection *sec,
51 const Elf_Internal_Rela *));
52 static boolean sparc64_elf_adjust_dynamic_symbol
53 PARAMS((struct bfd_link_info *, struct elf_link_hash_entry *));
54 static boolean sparc64_elf_size_dynamic_sections
55 PARAMS((bfd *, struct bfd_link_info *));
56 static int sparc64_elf_get_symbol_type
57 PARAMS (( Elf_Internal_Sym *, int));
58 static boolean sparc64_elf_add_symbol_hook
59 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
60 const char **, flagword *, asection **, bfd_vma *));
61 static void sparc64_elf_symbol_processing
62 PARAMS ((bfd *, asymbol *));
64 static boolean sparc64_elf_merge_private_bfd_data
65 PARAMS ((bfd *, bfd *));
67 static boolean sparc64_elf_relocate_section
68 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
69 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
70 static boolean sparc64_elf_object_p PARAMS ((bfd *));
71 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
72 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
73 static boolean sparc64_elf_slurp_one_reloc_table
74 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
75 static boolean sparc64_elf_slurp_reloc_table
76 PARAMS ((bfd *, asection *, asymbol **, boolean));
77 static long sparc64_elf_canonicalize_dynamic_reloc
78 PARAMS ((bfd *, arelent **, asymbol **));
79 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
81 /* The relocation "howto" table. */
83 static bfd_reloc_status_type sparc_elf_notsup_reloc
84 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
85 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
86 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
87 static bfd_reloc_status_type sparc_elf_hix22_reloc
88 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
89 static bfd_reloc_status_type sparc_elf_lox10_reloc
90 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
92 static reloc_howto_type sparc64_elf_howto_table[] =
94 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
95 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
96 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
97 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
98 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
99 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
100 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
101 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
102 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
103 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
104 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
105 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
106 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
107 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
108 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
109 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
110 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
111 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
112 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
113 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
114 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
115 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
116 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
117 HOWTO(R_SPARC_UA32, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0x00000000,true),
118 #ifndef SPARC64_OLD_RELOCS
119 /* These aren't implemented yet. */
120 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
121 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
122 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
123 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
124 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
125 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
127 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
128 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
129 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
130 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
131 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
132 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
133 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
134 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
135 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
136 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
137 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
138 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
139 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
140 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
141 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
142 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
143 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
144 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false),
145 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
146 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
147 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
148 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
149 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
150 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
151 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
152 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
155 struct elf_reloc_map {
156 bfd_reloc_code_real_type bfd_reloc_val;
157 unsigned char elf_reloc_val;
160 static CONST struct elf_reloc_map sparc_reloc_map[] =
162 { BFD_RELOC_NONE, R_SPARC_NONE, },
163 { BFD_RELOC_16, R_SPARC_16, },
164 { BFD_RELOC_8, R_SPARC_8 },
165 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
166 { BFD_RELOC_CTOR, R_SPARC_64 },
167 { BFD_RELOC_32, R_SPARC_32 },
168 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
169 { BFD_RELOC_HI22, R_SPARC_HI22 },
170 { BFD_RELOC_LO10, R_SPARC_LO10, },
171 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
172 { BFD_RELOC_SPARC22, R_SPARC_22 },
173 { BFD_RELOC_SPARC13, R_SPARC_13 },
174 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
175 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
176 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
177 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
178 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
179 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
180 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
181 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
182 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
183 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
184 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
185 /* ??? Doesn't dwarf use this? */
186 /*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
187 {BFD_RELOC_SPARC_10, R_SPARC_10},
188 {BFD_RELOC_SPARC_11, R_SPARC_11},
189 {BFD_RELOC_SPARC_64, R_SPARC_64},
190 {BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10},
191 {BFD_RELOC_SPARC_HH22, R_SPARC_HH22},
192 {BFD_RELOC_SPARC_HM10, R_SPARC_HM10},
193 {BFD_RELOC_SPARC_LM22, R_SPARC_LM22},
194 {BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22},
195 {BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10},
196 {BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22},
197 {BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16},
198 {BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19},
199 {BFD_RELOC_SPARC_7, R_SPARC_7},
200 {BFD_RELOC_SPARC_5, R_SPARC_5},
201 {BFD_RELOC_SPARC_6, R_SPARC_6},
202 {BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64},
203 {BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64},
204 {BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22},
205 {BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10},
206 {BFD_RELOC_SPARC_H44, R_SPARC_H44},
207 {BFD_RELOC_SPARC_M44, R_SPARC_M44},
208 {BFD_RELOC_SPARC_L44, R_SPARC_L44},
209 {BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER}
212 static reloc_howto_type *
213 sparc64_elf_reloc_type_lookup (abfd, code)
215 bfd_reloc_code_real_type code;
218 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
220 if (sparc_reloc_map[i].bfd_reloc_val == code)
221 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
227 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
230 Elf64_Internal_Rela *dst;
232 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
233 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
236 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
237 section can represent up to two relocs, we must tell the user to allocate
241 sparc64_elf_get_reloc_upper_bound (abfd, sec)
245 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
249 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
252 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
255 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
256 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
257 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
258 for the same location, R_SPARC_LO10 and R_SPARC_13. */
261 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
264 Elf_Internal_Shdr *rel_hdr;
268 struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
269 PTR allocated = NULL;
270 bfd_byte *native_relocs;
277 allocated = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
278 if (allocated == NULL)
281 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
282 || (bfd_read (allocated, 1, rel_hdr->sh_size, abfd)
283 != rel_hdr->sh_size))
286 native_relocs = (bfd_byte *) allocated;
288 relents = asect->relocation + asect->reloc_count;
290 entsize = rel_hdr->sh_entsize;
291 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
293 count = rel_hdr->sh_size / entsize;
295 for (i = 0, relent = relents; i < count;
296 i++, relent++, native_relocs += entsize)
298 Elf_Internal_Rela rela;
300 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
302 /* The address of an ELF reloc is section relative for an object
303 file, and absolute for an executable file or shared library.
304 The address of a normal BFD reloc is always section relative,
305 and the address of a dynamic reloc is absolute.. */
306 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
307 relent->address = rela.r_offset;
309 relent->address = rela.r_offset - asect->vma;
311 if (ELF64_R_SYM (rela.r_info) == 0)
312 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
317 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
320 /* Canonicalize ELF section symbols. FIXME: Why? */
321 if ((s->flags & BSF_SECTION_SYM) == 0)
322 relent->sym_ptr_ptr = ps;
324 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
327 relent->addend = rela.r_addend;
329 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
330 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
332 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
333 relent[1].address = relent->address;
335 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
336 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
337 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
340 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
343 asect->reloc_count += relent - relents;
345 if (allocated != NULL)
351 if (allocated != NULL)
356 /* Read in and swap the external relocs. */
359 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
365 struct bfd_elf_section_data * const d = elf_section_data (asect);
366 Elf_Internal_Shdr *rel_hdr;
367 Elf_Internal_Shdr *rel_hdr2;
369 if (asect->relocation != NULL)
374 if ((asect->flags & SEC_RELOC) == 0
375 || asect->reloc_count == 0)
378 rel_hdr = &d->rel_hdr;
379 rel_hdr2 = d->rel_hdr2;
381 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
382 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
386 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
387 case because relocations against this section may use the
388 dynamic symbol table, and in that case bfd_section_from_shdr
389 in elf.c does not update the RELOC_COUNT. */
390 if (asect->_raw_size == 0)
393 rel_hdr = &d->this_hdr;
394 asect->reloc_count = rel_hdr->sh_size / rel_hdr->sh_entsize;
398 asect->relocation = ((arelent *)
400 asect->reloc_count * 2 * sizeof (arelent)));
401 if (asect->relocation == NULL)
404 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
405 asect->reloc_count = 0;
407 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
412 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
419 /* Canonicalize the dynamic relocation entries. Note that we return
420 the dynamic relocations as a single block, although they are
421 actually associated with particular sections; the interface, which
422 was designed for SunOS style shared libraries, expects that there
423 is only one set of dynamic relocs. Any section that was actually
424 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
425 the dynamic symbol table, is considered to be a dynamic reloc
429 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
437 if (elf_dynsymtab (abfd) == 0)
439 bfd_set_error (bfd_error_invalid_operation);
444 for (s = abfd->sections; s != NULL; s = s->next)
446 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
447 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
452 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
454 count = s->reloc_count;
456 for (i = 0; i < count; i++)
467 /* Write out the relocs. */
470 sparc64_elf_write_relocs (abfd, sec, data)
475 boolean *failedp = (boolean *) data;
476 Elf_Internal_Shdr *rela_hdr;
477 Elf64_External_Rela *outbound_relocas;
478 unsigned int idx, count;
479 asymbol *last_sym = 0;
480 int last_sym_idx = 0;
482 /* If we have already failed, don't do anything. */
486 if ((sec->flags & SEC_RELOC) == 0)
489 /* The linker backend writes the relocs out itself, and sets the
490 reloc_count field to zero to inhibit writing them here. Also,
491 sometimes the SEC_RELOC flag gets set even when there aren't any
493 if (sec->reloc_count == 0)
496 /* We can combine two relocs that refer to the same address
497 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
498 latter is R_SPARC_13 with no associated symbol. */
500 for (idx = 0; idx < sec->reloc_count; idx++)
507 addr = sec->orelocation[idx]->address;
508 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
509 && idx < sec->reloc_count - 1)
511 arelent *r = sec->orelocation[idx + 1];
513 if (r->howto->type == R_SPARC_13
514 && r->address == addr
515 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
516 && (*r->sym_ptr_ptr)->value == 0)
521 rela_hdr = &elf_section_data (sec)->rel_hdr;
523 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
524 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
525 if (rela_hdr->contents == NULL)
531 /* Figure out whether the relocations are RELA or REL relocations. */
532 if (rela_hdr->sh_type != SHT_RELA)
535 /* orelocation has the data, reloc_count has the count... */
536 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
538 for (idx = 0; idx < sec->reloc_count; idx++)
540 Elf_Internal_Rela dst_rela;
541 Elf64_External_Rela *src_rela;
546 ptr = sec->orelocation[idx];
547 src_rela = outbound_relocas + idx;
549 /* The address of an ELF reloc is section relative for an object
550 file, and absolute for an executable file or shared library.
551 The address of a BFD reloc is always section relative. */
552 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
553 dst_rela.r_offset = ptr->address;
555 dst_rela.r_offset = ptr->address + sec->vma;
557 sym = *ptr->sym_ptr_ptr;
560 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
565 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
574 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
575 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
576 && ! _bfd_elf_validate_reloc (abfd, ptr))
582 if (ptr->howto->type == R_SPARC_LO10
583 && idx < sec->reloc_count - 1)
585 arelent *r = sec->orelocation[idx + 1];
587 if (r->howto->type == R_SPARC_13
588 && r->address == ptr->address
589 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
590 && (*r->sym_ptr_ptr)->value == 0)
594 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
598 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
601 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
603 dst_rela.r_addend = ptr->addend;
604 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
608 /* Sparc64 ELF linker hash table. */
610 struct sparc64_elf_app_reg
613 unsigned short shndx;
618 struct sparc64_elf_link_hash_table
620 struct elf_link_hash_table root;
622 struct sparc64_elf_app_reg app_regs [4];
625 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
627 #define sparc64_elf_hash_table(p) \
628 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
630 /* Create a Sparc64 ELF linker hash table. */
632 static struct bfd_link_hash_table *
633 sparc64_elf_bfd_link_hash_table_create (abfd)
636 struct sparc64_elf_link_hash_table *ret;
638 ret = ((struct sparc64_elf_link_hash_table *)
639 bfd_zalloc (abfd, sizeof (struct sparc64_elf_link_hash_table)));
640 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
643 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
644 _bfd_elf_link_hash_newfunc))
646 bfd_release (abfd, ret);
650 return &ret->root.root;
654 /* Utility for performing the standard initial work of an instruction
656 *PRELOCATION will contain the relocated item.
657 *PINSN will contain the instruction from the input stream.
658 If the result is `bfd_reloc_other' the caller can continue with
659 performing the relocation. Otherwise it must stop and return the
660 value to its caller. */
662 static bfd_reloc_status_type
663 init_insn_reloc (abfd,
672 arelent *reloc_entry;
675 asection *input_section;
677 bfd_vma *prelocation;
681 reloc_howto_type *howto = reloc_entry->howto;
683 if (output_bfd != (bfd *) NULL
684 && (symbol->flags & BSF_SECTION_SYM) == 0
685 && (! howto->partial_inplace
686 || reloc_entry->addend == 0))
688 reloc_entry->address += input_section->output_offset;
692 /* This works because partial_inplace == false. */
693 if (output_bfd != NULL)
694 return bfd_reloc_continue;
696 if (reloc_entry->address > input_section->_cooked_size)
697 return bfd_reloc_outofrange;
699 relocation = (symbol->value
700 + symbol->section->output_section->vma
701 + symbol->section->output_offset);
702 relocation += reloc_entry->addend;
703 if (howto->pc_relative)
705 relocation -= (input_section->output_section->vma
706 + input_section->output_offset);
707 relocation -= reloc_entry->address;
710 *prelocation = relocation;
711 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
712 return bfd_reloc_other;
715 /* For unsupported relocs. */
717 static bfd_reloc_status_type
718 sparc_elf_notsup_reloc (abfd,
726 arelent *reloc_entry;
729 asection *input_section;
731 char **error_message;
733 return bfd_reloc_notsupported;
736 /* Handle the WDISP16 reloc. */
738 static bfd_reloc_status_type
739 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
740 output_bfd, error_message)
742 arelent *reloc_entry;
745 asection *input_section;
747 char **error_message;
751 bfd_reloc_status_type status;
753 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
754 input_section, output_bfd, &relocation, &insn);
755 if (status != bfd_reloc_other)
758 insn = (insn & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
759 | ((relocation >> 2) & 0x3fff));
760 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
762 if ((bfd_signed_vma) relocation < - 0x40000
763 || (bfd_signed_vma) relocation > 0x3ffff)
764 return bfd_reloc_overflow;
769 /* Handle the HIX22 reloc. */
771 static bfd_reloc_status_type
772 sparc_elf_hix22_reloc (abfd,
780 arelent *reloc_entry;
783 asection *input_section;
785 char **error_message;
789 bfd_reloc_status_type status;
791 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
792 input_section, output_bfd, &relocation, &insn);
793 if (status != bfd_reloc_other)
796 relocation ^= MINUS_ONE;
797 insn = (insn & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
798 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
800 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
801 return bfd_reloc_overflow;
806 /* Handle the LOX10 reloc. */
808 static bfd_reloc_status_type
809 sparc_elf_lox10_reloc (abfd,
817 arelent *reloc_entry;
820 asection *input_section;
822 char **error_message;
826 bfd_reloc_status_type status;
828 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
829 input_section, output_bfd, &relocation, &insn);
830 if (status != bfd_reloc_other)
833 insn = (insn & ~0x1fff) | 0x1c00 | (relocation & 0x3ff);
834 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
841 /* Both the headers and the entries are icache aligned. */
842 #define PLT_ENTRY_SIZE 32
843 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
844 #define LARGE_PLT_THRESHOLD 32768
845 #define GOT_RESERVED_ENTRIES 1
847 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
850 /* Fill in the .plt section. */
853 sparc64_elf_build_plt (output_bfd, contents, nentries)
855 unsigned char *contents;
858 const unsigned int nop = 0x01000000;
861 /* The first four entries are reserved, and are initially undefined.
862 We fill them with `illtrap 0' to force ld.so to do something. */
864 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
865 bfd_put_32 (output_bfd, 0, contents+i*4);
867 /* The first 32768 entries are close enough to plt1 to get there via
868 a straight branch. */
870 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
872 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
873 unsigned int sethi, ba;
875 /* sethi (. - plt0), %g1 */
876 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
878 /* ba,a,pt %xcc, plt1 */
879 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
881 bfd_put_32 (output_bfd, sethi, entry);
882 bfd_put_32 (output_bfd, ba, entry+4);
883 bfd_put_32 (output_bfd, nop, entry+8);
884 bfd_put_32 (output_bfd, nop, entry+12);
885 bfd_put_32 (output_bfd, nop, entry+16);
886 bfd_put_32 (output_bfd, nop, entry+20);
887 bfd_put_32 (output_bfd, nop, entry+24);
888 bfd_put_32 (output_bfd, nop, entry+28);
891 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
892 160: 160 entries and 160 pointers. This is to separate code from data,
893 which is much friendlier on the cache. */
895 for (; i < nentries; i += 160)
897 int block = (i + 160 <= nentries ? 160 : nentries - i);
898 for (j = 0; j < block; ++j)
900 unsigned char *entry, *ptr;
903 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
904 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
906 /* ldx [%o7 + ptr - entry+4], %g1 */
907 ldx = 0xc25be000 | ((ptr - entry+4) & 0x1fff);
909 bfd_put_32 (output_bfd, 0x8a10000f, entry); /* mov %o7,%g5 */
910 bfd_put_32 (output_bfd, 0x40000002, entry+4); /* call .+8 */
911 bfd_put_32 (output_bfd, nop, entry+8); /* nop */
912 bfd_put_32 (output_bfd, ldx, entry+12); /* ldx [%o7+P],%g1 */
913 bfd_put_32 (output_bfd, 0x83c3c001, entry+16); /* jmpl %o7+%g1,%g1 */
914 bfd_put_32 (output_bfd, 0x9e100005, entry+20); /* mov %g5,%o7 */
916 bfd_put_64 (output_bfd, contents - (entry+4), ptr);
921 /* Return the offset of a particular plt entry within the .plt section. */
924 sparc64_elf_plt_entry_offset (index)
929 if (index < LARGE_PLT_THRESHOLD)
930 return index * PLT_ENTRY_SIZE;
932 /* See above for details. */
934 block = (index - LARGE_PLT_THRESHOLD) / 160;
935 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
937 return ((bfd_vma)(LARGE_PLT_THRESHOLD + block*160) * PLT_ENTRY_SIZE
942 sparc64_elf_plt_ptr_offset (index, max)
945 int block, ofs, last;
947 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
949 /* See above for details. */
951 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160)
952 + LARGE_PLT_THRESHOLD;
954 if (block + 160 > max)
955 last = (max - LARGE_PLT_THRESHOLD) % 160;
959 return (block * PLT_ENTRY_SIZE
966 /* Look through the relocs for a section during the first phase, and
967 allocate space in the global offset table or procedure linkage
971 sparc64_elf_check_relocs (abfd, info, sec, relocs)
973 struct bfd_link_info *info;
975 const Elf_Internal_Rela *relocs;
978 Elf_Internal_Shdr *symtab_hdr;
979 struct elf_link_hash_entry **sym_hashes;
980 bfd_vma *local_got_offsets;
981 const Elf_Internal_Rela *rel;
982 const Elf_Internal_Rela *rel_end;
987 if (info->relocateable || !(sec->flags & SEC_ALLOC))
990 dynobj = elf_hash_table (info)->dynobj;
991 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
992 sym_hashes = elf_sym_hashes (abfd);
993 local_got_offsets = elf_local_got_offsets (abfd);
999 rel_end = relocs + sec->reloc_count;
1000 for (rel = relocs; rel < rel_end; rel++)
1002 unsigned long r_symndx;
1003 struct elf_link_hash_entry *h;
1005 r_symndx = ELF64_R_SYM (rel->r_info);
1006 if (r_symndx < symtab_hdr->sh_info)
1009 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1011 switch (ELF64_R_TYPE_ID (rel->r_info))
1016 /* This symbol requires a global offset table entry. */
1020 /* Create the .got section. */
1021 elf_hash_table (info)->dynobj = dynobj = abfd;
1022 if (! _bfd_elf_create_got_section (dynobj, info))
1028 sgot = bfd_get_section_by_name (dynobj, ".got");
1029 BFD_ASSERT (sgot != NULL);
1032 if (srelgot == NULL && (h != NULL || info->shared))
1034 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1035 if (srelgot == NULL)
1037 srelgot = bfd_make_section (dynobj, ".rela.got");
1039 || ! bfd_set_section_flags (dynobj, srelgot,
1044 | SEC_LINKER_CREATED
1046 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1053 if (h->got.offset != (bfd_vma) -1)
1055 /* We have already allocated space in the .got. */
1058 h->got.offset = sgot->_raw_size;
1060 /* Make sure this symbol is output as a dynamic symbol. */
1061 if (h->dynindx == -1)
1063 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1067 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1071 /* This is a global offset table entry for a local
1073 if (local_got_offsets == NULL)
1076 register unsigned int i;
1078 size = symtab_hdr->sh_info * sizeof (bfd_vma);
1079 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1080 if (local_got_offsets == NULL)
1082 elf_local_got_offsets (abfd) = local_got_offsets;
1083 for (i = 0; i < symtab_hdr->sh_info; i++)
1084 local_got_offsets[i] = (bfd_vma) -1;
1086 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1088 /* We have already allocated space in the .got. */
1091 local_got_offsets[r_symndx] = sgot->_raw_size;
1095 /* If we are generating a shared object, we need to
1096 output a R_SPARC_RELATIVE reloc so that the
1097 dynamic linker can adjust this GOT entry. */
1098 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1102 sgot->_raw_size += 8;
1105 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1106 unsigned numbers. If we permit ourselves to modify
1107 code so we get sethi/xor, this could work.
1108 Question: do we consider conditionally re-enabling
1109 this for -fpic, once we know about object code models? */
1110 /* If the .got section is more than 0x1000 bytes, we add
1111 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1112 bit relocations have a greater chance of working. */
1113 if (sgot->_raw_size >= 0x1000
1114 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1115 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1120 case R_SPARC_WPLT30:
1122 case R_SPARC_HIPLT22:
1123 case R_SPARC_LOPLT10:
1124 case R_SPARC_PCPLT32:
1125 case R_SPARC_PCPLT22:
1126 case R_SPARC_PCPLT10:
1128 /* This symbol requires a procedure linkage table entry. We
1129 actually build the entry in adjust_dynamic_symbol,
1130 because this might be a case of linking PIC code without
1131 linking in any dynamic objects, in which case we don't
1132 need to generate a procedure linkage table after all. */
1136 /* It does not make sense to have a procedure linkage
1137 table entry for a local symbol. */
1138 bfd_set_error (bfd_error_bad_value);
1142 /* Make sure this symbol is output as a dynamic symbol. */
1143 if (h->dynindx == -1)
1145 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1149 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1154 case R_SPARC_PC_HH22:
1155 case R_SPARC_PC_HM10:
1156 case R_SPARC_PC_LM22:
1158 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1162 case R_SPARC_DISP16:
1163 case R_SPARC_DISP32:
1164 case R_SPARC_DISP64:
1165 case R_SPARC_WDISP30:
1166 case R_SPARC_WDISP22:
1167 case R_SPARC_WDISP19:
1168 case R_SPARC_WDISP16:
1197 /* When creating a shared object, we must copy these relocs
1198 into the output file. We create a reloc section in
1199 dynobj and make room for the reloc.
1201 But don't do this for debugging sections -- this shows up
1202 with DWARF2 -- first because they are not loaded, and
1203 second because DWARF sez the debug info is not to be
1204 biased by the load address. */
1205 if (info->shared && (sec->flags & SEC_ALLOC))
1211 name = (bfd_elf_string_from_elf_section
1213 elf_elfheader (abfd)->e_shstrndx,
1214 elf_section_data (sec)->rel_hdr.sh_name));
1218 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1219 && strcmp (bfd_get_section_name (abfd, sec),
1222 sreloc = bfd_get_section_by_name (dynobj, name);
1227 sreloc = bfd_make_section (dynobj, name);
1228 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1229 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1230 if ((sec->flags & SEC_ALLOC) != 0)
1231 flags |= SEC_ALLOC | SEC_LOAD;
1233 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1234 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1239 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1243 case R_SPARC_REGISTER:
1244 /* Nothing to do. */
1248 (*_bfd_error_handler)(_("%s: check_relocs: unhandled reloc type %d"),
1249 bfd_get_filename(abfd),
1250 ELF64_R_TYPE_ID (rel->r_info));
1258 /* Hook called by the linker routine which adds symbols from an object
1259 file. We use it for STT_REGISTER symbols. */
1262 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1264 struct bfd_link_info *info;
1265 const Elf_Internal_Sym *sym;
1271 static char *stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1273 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1276 struct sparc64_elf_app_reg *p;
1278 reg = (int)sym->st_value;
1281 case 2: reg -= 2; break;
1282 case 6: reg -= 4; break;
1284 (*_bfd_error_handler)
1285 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1286 bfd_get_filename (abfd));
1290 if (info->hash->creator != abfd->xvec
1291 || (abfd->flags & DYNAMIC) != 0)
1293 /* STT_REGISTER only works when linking an elf64_sparc object.
1294 If STT_REGISTER comes from a dynamic object, don't put it into
1295 the output bfd. The dynamic linker will recheck it. */
1300 p = sparc64_elf_hash_table(info)->app_regs + reg;
1302 if (p->name != NULL && strcmp (p->name, *namep))
1304 (*_bfd_error_handler)
1305 (_("Register %%g%d used incompatibly: "
1306 "previously declared in %s to %s, in %s redefined to %s"),
1308 bfd_get_filename (p->abfd), *p->name ? p->name : "#scratch",
1309 bfd_get_filename (abfd), **namep ? *namep : "#scratch");
1313 if (p->name == NULL)
1317 struct elf_link_hash_entry *h;
1319 h = (struct elf_link_hash_entry *)
1320 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1324 unsigned char type = h->type;
1326 if (type > STT_FUNC) type = 0;
1327 (*_bfd_error_handler)
1328 (_("Symbol `%s' has differing types: "
1329 "previously %s, REGISTER in %s"),
1330 *namep, stt_types [type], bfd_get_filename (abfd));
1334 p->name = bfd_hash_allocate (&info->hash->table,
1335 strlen (*namep) + 1);
1339 strcpy (p->name, *namep);
1343 p->bind = ELF_ST_BIND (sym->st_info);
1345 p->shndx = sym->st_shndx;
1349 if (p->bind == STB_WEAK
1350 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1352 p->bind = STB_GLOBAL;
1359 else if (! *namep || ! **namep)
1364 struct sparc64_elf_app_reg *p;
1366 p = sparc64_elf_hash_table(info)->app_regs;
1367 for (i = 0; i < 4; i++, p++)
1368 if (p->name != NULL && ! strcmp (p->name, *namep))
1370 unsigned char type = ELF_ST_TYPE (sym->st_info);
1372 if (type > STT_FUNC) type = 0;
1373 (*_bfd_error_handler)
1374 (_("Symbol `%s' has differing types: "
1375 "REGISTER in %s, %s in %s"),
1376 *namep, bfd_get_filename (p->abfd), stt_types [type],
1377 bfd_get_filename (abfd));
1384 /* This function takes care of emiting STT_REGISTER symbols
1385 which we cannot easily keep in the symbol hash table. */
1388 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1390 struct bfd_link_info *info;
1392 boolean (*func) PARAMS ((PTR, const char *,
1393 Elf_Internal_Sym *, asection *));
1396 struct sparc64_elf_app_reg *app_regs =
1397 sparc64_elf_hash_table(info)->app_regs;
1398 Elf_Internal_Sym sym;
1400 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1401 at the end of the dynlocal list, so they came at the end of the local
1402 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1403 to back up symtab->sh_info. */
1404 if (elf_hash_table (info)->dynlocal)
1406 bfd * dynobj = elf_hash_table (info)->dynobj;
1407 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1408 struct elf_link_local_dynamic_entry *e;
1410 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1411 if (e->input_indx == -1)
1415 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1420 if (info->strip == strip_all)
1423 for (reg = 0; reg < 4; reg++)
1424 if (app_regs [reg].name != NULL)
1426 if (info->strip == strip_some
1427 && bfd_hash_lookup (info->keep_hash,
1428 app_regs [reg].name,
1429 false, false) == NULL)
1432 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1435 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1436 sym.st_shndx = app_regs [reg].shndx;
1437 if (! (*func) (finfo, app_regs [reg].name, &sym,
1438 sym.st_shndx == SHN_ABS
1439 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1447 sparc64_elf_get_symbol_type (elf_sym, type)
1448 Elf_Internal_Sym * elf_sym;
1451 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1452 return STT_REGISTER;
1457 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1458 even in SHN_UNDEF section. */
1461 sparc64_elf_symbol_processing (abfd, asym)
1465 elf_symbol_type *elfsym;
1467 elfsym = (elf_symbol_type *) asym;
1468 if (elfsym->internal_elf_sym.st_info
1469 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1471 asym->flags |= BSF_GLOBAL;
1475 /* Adjust a symbol defined by a dynamic object and referenced by a
1476 regular object. The current definition is in some section of the
1477 dynamic object, but we're not including those sections. We have to
1478 change the definition to something the rest of the link can
1482 sparc64_elf_adjust_dynamic_symbol (info, h)
1483 struct bfd_link_info *info;
1484 struct elf_link_hash_entry *h;
1488 unsigned int power_of_two;
1490 dynobj = elf_hash_table (info)->dynobj;
1492 /* Make sure we know what is going on here. */
1493 BFD_ASSERT (dynobj != NULL
1494 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1495 || h->weakdef != NULL
1496 || ((h->elf_link_hash_flags
1497 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1498 && (h->elf_link_hash_flags
1499 & ELF_LINK_HASH_REF_REGULAR) != 0
1500 && (h->elf_link_hash_flags
1501 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1503 /* If this is a function, put it in the procedure linkage table. We
1504 will fill in the contents of the procedure linkage table later
1505 (although we could actually do it here). The STT_NOTYPE
1506 condition is a hack specifically for the Oracle libraries
1507 delivered for Solaris; for some inexplicable reason, they define
1508 some of their functions as STT_NOTYPE when they really should be
1510 if (h->type == STT_FUNC
1511 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1512 || (h->type == STT_NOTYPE
1513 && (h->root.type == bfd_link_hash_defined
1514 || h->root.type == bfd_link_hash_defweak)
1515 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1517 if (! elf_hash_table (info)->dynamic_sections_created)
1519 /* This case can occur if we saw a WPLT30 reloc in an input
1520 file, but none of the input files were dynamic objects.
1521 In such a case, we don't actually need to build a
1522 procedure linkage table, and we can just do a WDISP30
1524 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1528 s = bfd_get_section_by_name (dynobj, ".plt");
1529 BFD_ASSERT (s != NULL);
1531 /* The first four bit in .plt is reserved. */
1532 if (s->_raw_size == 0)
1533 s->_raw_size = PLT_HEADER_SIZE;
1535 /* If this symbol is not defined in a regular file, and we are
1536 not generating a shared library, then set the symbol to this
1537 location in the .plt. This is required to make function
1538 pointers compare as equal between the normal executable and
1539 the shared library. */
1541 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1543 h->root.u.def.section = s;
1544 h->root.u.def.value = s->_raw_size;
1547 /* To simplify matters later, just store the plt index here. */
1548 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1550 /* Make room for this entry. */
1551 s->_raw_size += PLT_ENTRY_SIZE;
1553 /* We also need to make an entry in the .rela.plt section. */
1555 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1556 BFD_ASSERT (s != NULL);
1558 /* The first plt entries are reserved, and the relocations must
1560 if (s->_raw_size == 0)
1561 s->_raw_size += (PLT_HEADER_SIZE/PLT_ENTRY_SIZE
1562 * sizeof (Elf64_External_Rela));
1564 s->_raw_size += sizeof (Elf64_External_Rela);
1566 /* The procedure linkage table size is bounded by the magnitude
1567 of the offset we can describe in the entry. */
1568 if (s->_raw_size >= (bfd_vma)1 << 32)
1570 bfd_set_error (bfd_error_bad_value);
1577 /* If this is a weak symbol, and there is a real definition, the
1578 processor independent code will have arranged for us to see the
1579 real definition first, and we can just use the same value. */
1580 if (h->weakdef != NULL)
1582 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1583 || h->weakdef->root.type == bfd_link_hash_defweak);
1584 h->root.u.def.section = h->weakdef->root.u.def.section;
1585 h->root.u.def.value = h->weakdef->root.u.def.value;
1589 /* This is a reference to a symbol defined by a dynamic object which
1590 is not a function. */
1592 /* If we are creating a shared library, we must presume that the
1593 only references to the symbol are via the global offset table.
1594 For such cases we need not do anything here; the relocations will
1595 be handled correctly by relocate_section. */
1599 /* We must allocate the symbol in our .dynbss section, which will
1600 become part of the .bss section of the executable. There will be
1601 an entry for this symbol in the .dynsym section. The dynamic
1602 object will contain position independent code, so all references
1603 from the dynamic object to this symbol will go through the global
1604 offset table. The dynamic linker will use the .dynsym entry to
1605 determine the address it must put in the global offset table, so
1606 both the dynamic object and the regular object will refer to the
1607 same memory location for the variable. */
1609 s = bfd_get_section_by_name (dynobj, ".dynbss");
1610 BFD_ASSERT (s != NULL);
1612 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1613 to copy the initial value out of the dynamic object and into the
1614 runtime process image. We need to remember the offset into the
1615 .rel.bss section we are going to use. */
1616 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1620 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1621 BFD_ASSERT (srel != NULL);
1622 srel->_raw_size += sizeof (Elf64_External_Rela);
1623 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1626 /* We need to figure out the alignment required for this symbol. I
1627 have no idea how ELF linkers handle this. 16-bytes is the size
1628 of the largest type that requires hard alignment -- long double. */
1629 power_of_two = bfd_log2 (h->size);
1630 if (power_of_two > 4)
1633 /* Apply the required alignment. */
1634 s->_raw_size = BFD_ALIGN (s->_raw_size,
1635 (bfd_size_type) (1 << power_of_two));
1636 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1638 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1642 /* Define the symbol as being at this point in the section. */
1643 h->root.u.def.section = s;
1644 h->root.u.def.value = s->_raw_size;
1646 /* Increment the section size to make room for the symbol. */
1647 s->_raw_size += h->size;
1652 /* Set the sizes of the dynamic sections. */
1655 sparc64_elf_size_dynamic_sections (output_bfd, info)
1657 struct bfd_link_info *info;
1664 dynobj = elf_hash_table (info)->dynobj;
1665 BFD_ASSERT (dynobj != NULL);
1667 if (elf_hash_table (info)->dynamic_sections_created)
1669 /* Set the contents of the .interp section to the interpreter. */
1672 s = bfd_get_section_by_name (dynobj, ".interp");
1673 BFD_ASSERT (s != NULL);
1674 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1675 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1680 /* We may have created entries in the .rela.got section.
1681 However, if we are not creating the dynamic sections, we will
1682 not actually use these entries. Reset the size of .rela.got,
1683 which will cause it to get stripped from the output file
1685 s = bfd_get_section_by_name (dynobj, ".rela.got");
1690 /* The check_relocs and adjust_dynamic_symbol entry points have
1691 determined the sizes of the various dynamic sections. Allocate
1695 for (s = dynobj->sections; s != NULL; s = s->next)
1700 if ((s->flags & SEC_LINKER_CREATED) == 0)
1703 /* It's OK to base decisions on the section name, because none
1704 of the dynobj section names depend upon the input files. */
1705 name = bfd_get_section_name (dynobj, s);
1709 if (strncmp (name, ".rela", 5) == 0)
1711 if (s->_raw_size == 0)
1713 /* If we don't need this section, strip it from the
1714 output file. This is to handle .rela.bss and
1715 .rel.plt. We must create it in
1716 create_dynamic_sections, because it must be created
1717 before the linker maps input sections to output
1718 sections. The linker does that before
1719 adjust_dynamic_symbol is called, and it is that
1720 function which decides whether anything needs to go
1721 into these sections. */
1726 const char *outname;
1729 /* If this relocation section applies to a read only
1730 section, then we probably need a DT_TEXTREL entry. */
1731 outname = bfd_get_section_name (output_bfd,
1733 target = bfd_get_section_by_name (output_bfd, outname + 5);
1735 && (target->flags & SEC_READONLY) != 0)
1738 if (strcmp (name, ".rela.plt") == 0)
1741 /* We use the reloc_count field as a counter if we need
1742 to copy relocs into the output file. */
1746 else if (strcmp (name, ".plt") != 0
1747 && strncmp (name, ".got", 4) != 0)
1749 /* It's not one of our sections, so don't allocate space. */
1755 _bfd_strip_section_from_output (s);
1759 /* Allocate memory for the section contents. Zero the memory
1760 for the benefit of .rela.plt, which has 4 unused entries
1761 at the beginning, and we don't want garbage. */
1762 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1763 if (s->contents == NULL && s->_raw_size != 0)
1767 if (elf_hash_table (info)->dynamic_sections_created)
1769 /* Add some entries to the .dynamic section. We fill in the
1770 values later, in sparc64_elf_finish_dynamic_sections, but we
1771 must add the entries now so that we get the correct size for
1772 the .dynamic section. The DT_DEBUG entry is filled in by the
1773 dynamic linker and used by the debugger. */
1775 struct sparc64_elf_app_reg * app_regs;
1776 struct bfd_strtab_hash *dynstr;
1777 struct elf_link_hash_table *eht = elf_hash_table (info);
1781 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0))
1787 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)
1788 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1789 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1790 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1794 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1795 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1796 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1797 sizeof (Elf64_External_Rela)))
1802 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1806 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1807 entries if needed. */
1808 app_regs = sparc64_elf_hash_table (info)->app_regs;
1809 dynstr = eht->dynstr;
1811 for (reg = 0; reg < 4; reg++)
1812 if (app_regs [reg].name != NULL)
1814 struct elf_link_local_dynamic_entry *entry, *e;
1816 if (! bfd_elf64_add_dynamic_entry (info, DT_SPARC_REGISTER, 0))
1819 entry = (struct elf_link_local_dynamic_entry *)
1820 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1824 /* We cheat here a little bit: the symbol will not be local, so we
1825 put it at the end of the dynlocal linked list. We will fix it
1826 later on, as we have to fix other fields anyway. */
1827 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1828 entry->isym.st_size = 0;
1829 if (*app_regs [reg].name != '\0')
1831 = _bfd_stringtab_add (dynstr, app_regs[reg].name, true, false);
1833 entry->isym.st_name = 0;
1834 entry->isym.st_other = 0;
1835 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1837 entry->isym.st_shndx = app_regs [reg].shndx;
1839 entry->input_bfd = output_bfd;
1840 entry->input_indx = -1;
1842 if (eht->dynlocal == NULL)
1843 eht->dynlocal = entry;
1846 for (e = eht->dynlocal; e->next; e = e->next)
1857 /* Relocate a SPARC64 ELF section. */
1860 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1861 contents, relocs, local_syms, local_sections)
1863 struct bfd_link_info *info;
1865 asection *input_section;
1867 Elf_Internal_Rela *relocs;
1868 Elf_Internal_Sym *local_syms;
1869 asection **local_sections;
1872 Elf_Internal_Shdr *symtab_hdr;
1873 struct elf_link_hash_entry **sym_hashes;
1874 bfd_vma *local_got_offsets;
1879 Elf_Internal_Rela *rel;
1880 Elf_Internal_Rela *relend;
1882 dynobj = elf_hash_table (info)->dynobj;
1883 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1884 sym_hashes = elf_sym_hashes (input_bfd);
1885 local_got_offsets = elf_local_got_offsets (input_bfd);
1887 if (elf_hash_table(info)->hgot == NULL)
1890 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1892 sgot = splt = sreloc = NULL;
1895 relend = relocs + input_section->reloc_count;
1896 for (; rel < relend; rel++)
1899 reloc_howto_type *howto;
1901 struct elf_link_hash_entry *h;
1902 Elf_Internal_Sym *sym;
1905 bfd_reloc_status_type r;
1907 r_type = ELF64_R_TYPE_ID (rel->r_info);
1908 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1910 bfd_set_error (bfd_error_bad_value);
1913 howto = sparc64_elf_howto_table + r_type;
1915 r_symndx = ELF64_R_SYM (rel->r_info);
1917 if (info->relocateable)
1919 /* This is a relocateable link. We don't have to change
1920 anything, unless the reloc is against a section symbol,
1921 in which case we have to adjust according to where the
1922 section symbol winds up in the output section. */
1923 if (r_symndx < symtab_hdr->sh_info)
1925 sym = local_syms + r_symndx;
1926 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1928 sec = local_sections[r_symndx];
1929 rel->r_addend += sec->output_offset + sym->st_value;
1936 /* This is a final link. */
1940 if (r_symndx < symtab_hdr->sh_info)
1942 sym = local_syms + r_symndx;
1943 sec = local_sections[r_symndx];
1944 relocation = (sec->output_section->vma
1945 + sec->output_offset
1950 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1951 while (h->root.type == bfd_link_hash_indirect
1952 || h->root.type == bfd_link_hash_warning)
1953 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1954 if (h->root.type == bfd_link_hash_defined
1955 || h->root.type == bfd_link_hash_defweak)
1957 boolean skip_it = false;
1958 sec = h->root.u.def.section;
1962 case R_SPARC_WPLT30:
1964 case R_SPARC_HIPLT22:
1965 case R_SPARC_LOPLT10:
1966 case R_SPARC_PCPLT32:
1967 case R_SPARC_PCPLT22:
1968 case R_SPARC_PCPLT10:
1970 if (h->plt.offset != (bfd_vma) -1)
1977 if (elf_hash_table(info)->dynamic_sections_created
1979 || (!info->symbolic && h->dynindx != -1)
1980 || !(h->elf_link_hash_flags
1981 & ELF_LINK_HASH_DEF_REGULAR)))
1987 case R_SPARC_PC_HH22:
1988 case R_SPARC_PC_HM10:
1989 case R_SPARC_PC_LM22:
1990 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
1998 case R_SPARC_DISP16:
1999 case R_SPARC_DISP32:
2000 case R_SPARC_WDISP30:
2001 case R_SPARC_WDISP22:
2014 case R_SPARC_WDISP19:
2015 case R_SPARC_WDISP16:
2019 case R_SPARC_DISP64:
2028 && ((!info->symbolic && h->dynindx != -1)
2029 || !(h->elf_link_hash_flags
2030 & ELF_LINK_HASH_DEF_REGULAR)))
2037 /* In these cases, we don't need the relocation
2038 value. We check specially because in some
2039 obscure cases sec->output_section will be NULL. */
2044 relocation = (h->root.u.def.value
2045 + sec->output_section->vma
2046 + sec->output_offset);
2049 else if (h->root.type == bfd_link_hash_undefweak)
2051 else if (info->shared && !info->symbolic && !info->no_undefined)
2055 if (! ((*info->callbacks->undefined_symbol)
2056 (info, h->root.root.string, input_bfd,
2057 input_section, rel->r_offset)))
2063 /* When generating a shared object, these relocations are copied
2064 into the output file to be resolved at run time. */
2065 if (info->shared && (input_section->flags & SEC_ALLOC))
2071 case R_SPARC_PC_HH22:
2072 case R_SPARC_PC_HM10:
2073 case R_SPARC_PC_LM22:
2075 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2079 case R_SPARC_DISP16:
2080 case R_SPARC_DISP32:
2081 case R_SPARC_WDISP30:
2082 case R_SPARC_WDISP22:
2083 case R_SPARC_WDISP19:
2084 case R_SPARC_WDISP16:
2085 case R_SPARC_DISP64:
2115 Elf_Internal_Rela outrel;
2121 (bfd_elf_string_from_elf_section
2123 elf_elfheader (input_bfd)->e_shstrndx,
2124 elf_section_data (input_section)->rel_hdr.sh_name));
2129 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2130 && strcmp (bfd_get_section_name(input_bfd,
2134 sreloc = bfd_get_section_by_name (dynobj, name);
2135 BFD_ASSERT (sreloc != NULL);
2140 if (elf_section_data (input_section)->stab_info == NULL)
2141 outrel.r_offset = rel->r_offset;
2146 off = (_bfd_stab_section_offset
2147 (output_bfd, &elf_hash_table (info)->stab_info,
2149 &elf_section_data (input_section)->stab_info,
2151 if (off == MINUS_ONE)
2153 outrel.r_offset = off;
2156 outrel.r_offset += (input_section->output_section->vma
2157 + input_section->output_offset);
2159 /* Optimize unaligned reloc usage now that we know where
2160 it finally resides. */
2164 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2167 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2170 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2173 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2176 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2179 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2184 memset (&outrel, 0, sizeof outrel);
2185 /* h->dynindx may be -1 if the symbol was marked to
2188 && ((! info->symbolic && h->dynindx != -1)
2189 || (h->elf_link_hash_flags
2190 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2192 BFD_ASSERT (h->dynindx != -1);
2194 = ELF64_R_INFO (h->dynindx,
2196 ELF64_R_TYPE_DATA (rel->r_info),
2198 outrel.r_addend = rel->r_addend;
2202 if (r_type == R_SPARC_64)
2204 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2205 outrel.r_addend = relocation + rel->r_addend;
2212 sec = local_sections[r_symndx];
2215 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2217 == bfd_link_hash_defweak));
2218 sec = h->root.u.def.section;
2220 if (sec != NULL && bfd_is_abs_section (sec))
2222 else if (sec == NULL || sec->owner == NULL)
2224 bfd_set_error (bfd_error_bad_value);
2231 osec = sec->output_section;
2232 indx = elf_section_data (osec)->dynindx;
2234 /* FIXME: we really should be able to link non-pic
2235 shared libraries. */
2239 (*_bfd_error_handler)
2240 (_("%s: probably compiled without -fPIC?"),
2241 bfd_get_filename (input_bfd));
2242 bfd_set_error (bfd_error_bad_value);
2248 = ELF64_R_INFO (indx,
2250 ELF64_R_TYPE_DATA (rel->r_info),
2253 /* For non-RELATIVE dynamic relocations, we keep the
2254 same symbol, and so generally the same addend. But
2255 we do need to adjust those relocations referencing
2257 outrel.r_addend = rel->r_addend;
2258 if (r_symndx < symtab_hdr->sh_info
2259 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2260 outrel.r_addend += sec->output_offset+sym->st_value;
2264 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2265 (((Elf64_External_Rela *)
2267 + sreloc->reloc_count));
2268 ++sreloc->reloc_count;
2270 /* This reloc will be computed at runtime, so there's no
2271 need to do anything now, unless this is a RELATIVE
2272 reloc in an unallocated section. */
2274 || (input_section->flags & SEC_ALLOC) != 0
2275 || ELF64_R_TYPE_ID (outrel.r_info) != R_SPARC_RELATIVE)
2287 /* Relocation is to the entry for this symbol in the global
2291 sgot = bfd_get_section_by_name (dynobj, ".got");
2292 BFD_ASSERT (sgot != NULL);
2297 bfd_vma off = h->got.offset;
2298 BFD_ASSERT (off != (bfd_vma) -1);
2300 if (! elf_hash_table (info)->dynamic_sections_created
2302 && (info->symbolic || h->dynindx == -1)
2303 && (h->elf_link_hash_flags
2304 & ELF_LINK_HASH_DEF_REGULAR)))
2306 /* This is actually a static link, or it is a -Bsymbolic
2307 link and the symbol is defined locally, or the symbol
2308 was forced to be local because of a version file. We
2309 must initialize this entry in the global offset table.
2310 Since the offset must always be a multiple of 8, we
2311 use the least significant bit to record whether we
2312 have initialized it already.
2314 When doing a dynamic link, we create a .rela.got
2315 relocation entry to initialize the value. This is
2316 done in the finish_dynamic_symbol routine. */
2322 bfd_put_64 (output_bfd, relocation,
2323 sgot->contents + off);
2327 relocation = sgot->output_offset + off - got_base;
2333 BFD_ASSERT (local_got_offsets != NULL);
2334 off = local_got_offsets[r_symndx];
2335 BFD_ASSERT (off != (bfd_vma) -1);
2337 /* The offset must always be a multiple of 8. We use
2338 the least significant bit to record whether we have
2339 already processed this entry. */
2344 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2345 local_got_offsets[r_symndx] |= 1;
2350 Elf_Internal_Rela outrel;
2352 /* We need to generate a R_SPARC_RELATIVE reloc
2353 for the dynamic linker. */
2354 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2355 BFD_ASSERT (srelgot != NULL);
2357 outrel.r_offset = (sgot->output_section->vma
2358 + sgot->output_offset
2360 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2361 outrel.r_addend = relocation;
2362 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2363 (((Elf64_External_Rela *)
2365 + srelgot->reloc_count));
2366 ++srelgot->reloc_count;
2369 relocation = sgot->output_offset + off - got_base;
2373 case R_SPARC_WPLT30:
2375 case R_SPARC_HIPLT22:
2376 case R_SPARC_LOPLT10:
2377 case R_SPARC_PCPLT32:
2378 case R_SPARC_PCPLT22:
2379 case R_SPARC_PCPLT10:
2381 /* Relocation is to the entry for this symbol in the
2382 procedure linkage table. */
2383 BFD_ASSERT (h != NULL);
2385 if (h->plt.offset == (bfd_vma) -1)
2387 /* We didn't make a PLT entry for this symbol. This
2388 happens when statically linking PIC code, or when
2389 using -Bsymbolic. */
2395 splt = bfd_get_section_by_name (dynobj, ".plt");
2396 BFD_ASSERT (splt != NULL);
2399 relocation = (splt->output_section->vma
2400 + splt->output_offset
2401 + sparc64_elf_plt_entry_offset (h->plt.offset));
2408 relocation += rel->r_addend;
2409 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2411 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2412 x = (x & ~0x1fff) | (relocation & 0x1fff);
2413 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2415 r = bfd_check_overflow (howto->complain_on_overflow,
2416 howto->bitsize, howto->rightshift,
2417 bfd_arch_bits_per_address (input_bfd),
2422 case R_SPARC_WDISP16:
2426 relocation += rel->r_addend;
2427 /* Adjust for pc-relative-ness. */
2428 relocation -= (input_section->output_section->vma
2429 + input_section->output_offset);
2430 relocation -= rel->r_offset;
2432 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2433 x = (x & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
2434 | ((relocation >> 2) & 0x3fff));
2435 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2437 r = bfd_check_overflow (howto->complain_on_overflow,
2438 howto->bitsize, howto->rightshift,
2439 bfd_arch_bits_per_address (input_bfd),
2448 relocation += rel->r_addend;
2449 relocation = relocation ^ MINUS_ONE;
2451 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2452 x = (x & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
2453 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2455 r = bfd_check_overflow (howto->complain_on_overflow,
2456 howto->bitsize, howto->rightshift,
2457 bfd_arch_bits_per_address (input_bfd),
2466 relocation += rel->r_addend;
2467 relocation = (relocation & 0x3ff) | 0x1c00;
2469 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2470 x = (x & ~0x1fff) | relocation;
2471 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2479 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2480 contents, rel->r_offset,
2481 relocation, rel->r_addend);
2491 case bfd_reloc_outofrange:
2494 case bfd_reloc_overflow:
2500 if (h->root.type == bfd_link_hash_undefweak
2501 && howto->pc_relative)
2503 /* Assume this is a call protected by other code that
2504 detect the symbol is undefined. If this is the case,
2505 we can safely ignore the overflow. If not, the
2506 program is hosed anyway, and a little warning isn't
2511 name = h->root.root.string;
2515 name = (bfd_elf_string_from_elf_section
2517 symtab_hdr->sh_link,
2522 name = bfd_section_name (input_bfd, sec);
2524 if (! ((*info->callbacks->reloc_overflow)
2525 (info, name, howto->name, (bfd_vma) 0,
2526 input_bfd, input_section, rel->r_offset)))
2536 /* Finish up dynamic symbol handling. We set the contents of various
2537 dynamic sections here. */
2540 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2542 struct bfd_link_info *info;
2543 struct elf_link_hash_entry *h;
2544 Elf_Internal_Sym *sym;
2548 dynobj = elf_hash_table (info)->dynobj;
2550 if (h->plt.offset != (bfd_vma) -1)
2554 Elf_Internal_Rela rela;
2556 /* This symbol has an entry in the PLT. Set it up. */
2558 BFD_ASSERT (h->dynindx != -1);
2560 splt = bfd_get_section_by_name (dynobj, ".plt");
2561 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2562 BFD_ASSERT (splt != NULL && srela != NULL);
2564 /* Fill in the entry in the .rela.plt section. */
2566 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2568 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2573 int max = splt->_raw_size / PLT_ENTRY_SIZE;
2574 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2575 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2576 -(splt->output_section->vma + splt->output_offset);
2578 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2579 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2581 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2582 ((Elf64_External_Rela *) srela->contents
2585 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2587 /* Mark the symbol as undefined, rather than as defined in
2588 the .plt section. Leave the value alone. */
2589 sym->st_shndx = SHN_UNDEF;
2593 if (h->got.offset != (bfd_vma) -1)
2597 Elf_Internal_Rela rela;
2599 /* This symbol has an entry in the GOT. Set it up. */
2601 sgot = bfd_get_section_by_name (dynobj, ".got");
2602 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2603 BFD_ASSERT (sgot != NULL && srela != NULL);
2605 rela.r_offset = (sgot->output_section->vma
2606 + sgot->output_offset
2607 + (h->got.offset &~ 1));
2609 /* If this is a -Bsymbolic link, and the symbol is defined
2610 locally, we just want to emit a RELATIVE reloc. Likewise if
2611 the symbol was forced to be local because of a version file.
2612 The entry in the global offset table will already have been
2613 initialized in the relocate_section function. */
2615 && (info->symbolic || h->dynindx == -1)
2616 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2618 asection *sec = h->root.u.def.section;
2619 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2620 rela.r_addend = (h->root.u.def.value
2621 + sec->output_section->vma
2622 + sec->output_offset);
2626 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2627 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2631 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2632 ((Elf64_External_Rela *) srela->contents
2633 + srela->reloc_count));
2634 ++srela->reloc_count;
2637 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2640 Elf_Internal_Rela rela;
2642 /* This symbols needs a copy reloc. Set it up. */
2644 BFD_ASSERT (h->dynindx != -1);
2646 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2648 BFD_ASSERT (s != NULL);
2650 rela.r_offset = (h->root.u.def.value
2651 + h->root.u.def.section->output_section->vma
2652 + h->root.u.def.section->output_offset);
2653 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2655 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2656 ((Elf64_External_Rela *) s->contents
2661 /* Mark some specially defined symbols as absolute. */
2662 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2663 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2664 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2665 sym->st_shndx = SHN_ABS;
2670 /* Finish up the dynamic sections. */
2673 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2675 struct bfd_link_info *info;
2678 int stt_regidx = -1;
2682 dynobj = elf_hash_table (info)->dynobj;
2684 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2686 if (elf_hash_table (info)->dynamic_sections_created)
2689 Elf64_External_Dyn *dyncon, *dynconend;
2691 splt = bfd_get_section_by_name (dynobj, ".plt");
2692 BFD_ASSERT (splt != NULL && sdyn != NULL);
2694 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2695 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2696 for (; dyncon < dynconend; dyncon++)
2698 Elf_Internal_Dyn dyn;
2702 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2706 case DT_PLTGOT: name = ".plt"; size = false; break;
2707 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2708 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2709 case DT_SPARC_REGISTER:
2710 if (stt_regidx == -1)
2713 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2714 if (stt_regidx == -1)
2717 dyn.d_un.d_val = stt_regidx++;
2718 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2720 default: name = NULL; size = false; break;
2727 s = bfd_get_section_by_name (output_bfd, name);
2733 dyn.d_un.d_ptr = s->vma;
2736 if (s->_cooked_size != 0)
2737 dyn.d_un.d_val = s->_cooked_size;
2739 dyn.d_un.d_val = s->_raw_size;
2742 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2746 /* Initialize the contents of the .plt section. */
2747 if (splt->_raw_size > 0)
2749 sparc64_elf_build_plt(output_bfd, splt->contents,
2750 splt->_raw_size / PLT_ENTRY_SIZE);
2753 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2757 /* Set the first entry in the global offset table to the address of
2758 the dynamic section. */
2759 sgot = bfd_get_section_by_name (dynobj, ".got");
2760 BFD_ASSERT (sgot != NULL);
2761 if (sgot->_raw_size > 0)
2764 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2766 bfd_put_64 (output_bfd,
2767 sdyn->output_section->vma + sdyn->output_offset,
2771 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2776 /* Functions for dealing with the e_flags field. */
2778 /* Merge backend specific data from an object file to the output
2779 object file when linking. */
2782 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2787 flagword new_flags, old_flags;
2790 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2791 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2794 new_flags = elf_elfheader (ibfd)->e_flags;
2795 old_flags = elf_elfheader (obfd)->e_flags;
2797 if (!elf_flags_init (obfd)) /* First call, no flags set */
2799 elf_flags_init (obfd) = true;
2800 elf_elfheader (obfd)->e_flags = new_flags;
2803 else if (new_flags == old_flags) /* Compatible flags are ok */
2806 else /* Incompatible flags */
2810 old_flags |= (new_flags & (EF_SPARC_SUN_US1|EF_SPARC_HAL_R1));
2811 new_flags |= (old_flags & (EF_SPARC_SUN_US1|EF_SPARC_HAL_R1));
2812 if ((old_flags & (EF_SPARC_SUN_US1|EF_SPARC_HAL_R1)) ==
2813 (EF_SPARC_SUN_US1|EF_SPARC_HAL_R1))
2816 (*_bfd_error_handler)
2817 (_("%s: linking UltraSPARC specific with HAL specific code"),
2818 bfd_get_filename (ibfd));
2821 /* Choose the most restrictive memory ordering */
2822 old_mm = (old_flags & EF_SPARCV9_MM);
2823 new_mm = (new_flags & EF_SPARCV9_MM);
2824 old_flags &= ~EF_SPARCV9_MM;
2825 new_flags &= ~EF_SPARCV9_MM;
2826 if (new_mm < old_mm) old_mm = new_mm;
2827 old_flags |= old_mm;
2828 new_flags |= old_mm;
2830 /* Warn about any other mismatches */
2831 if (new_flags != old_flags)
2834 (*_bfd_error_handler)
2835 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2836 bfd_get_filename (ibfd), (long)new_flags, (long)old_flags);
2839 elf_elfheader (obfd)->e_flags = old_flags;
2843 bfd_set_error (bfd_error_bad_value);
2850 /* Print a STT_REGISTER symbol to file FILE. */
2853 sparc64_elf_print_symbol_all (abfd, filep, symbol)
2858 FILE *file = (FILE *) filep;
2861 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
2865 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2866 type = symbol->flags;
2867 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
2869 ? (type & BSF_GLOBAL) ? '!' : 'l'
2870 : (type & BSF_GLOBAL) ? 'g' : ' '),
2871 (type & BSF_WEAK) ? 'w' : ' ');
2872 if (symbol->name == NULL || symbol->name [0] == '\0')
2875 return symbol->name;
2878 /* Set the right machine number for a SPARC64 ELF file. */
2881 sparc64_elf_object_p (abfd)
2884 unsigned long mach = bfd_mach_sparc_v9;
2886 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
2887 mach = bfd_mach_sparc_v9a;
2888 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
2891 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
2892 standard ELF, because R_SPARC_OLO10 has secondary addend in
2893 ELF64_R_TYPE_DATA field. This structure is used to redirect the
2894 relocation handling routines. */
2896 const struct elf_size_info sparc64_elf_size_info =
2898 sizeof (Elf64_External_Ehdr),
2899 sizeof (Elf64_External_Phdr),
2900 sizeof (Elf64_External_Shdr),
2901 sizeof (Elf64_External_Rel),
2902 sizeof (Elf64_External_Rela),
2903 sizeof (Elf64_External_Sym),
2904 sizeof (Elf64_External_Dyn),
2905 sizeof (Elf_External_Note),
2906 4, /* hash-table entry size */
2907 /* internal relocations per external relocations.
2908 For link purposes we use just 1 internal per
2909 1 external, for assembly and slurp symbol table
2916 bfd_elf64_write_out_phdrs,
2917 bfd_elf64_write_shdrs_and_ehdr,
2918 sparc64_elf_write_relocs,
2919 bfd_elf64_swap_symbol_out,
2920 sparc64_elf_slurp_reloc_table,
2921 bfd_elf64_slurp_symbol_table,
2922 bfd_elf64_swap_dyn_in,
2923 bfd_elf64_swap_dyn_out,
2930 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
2931 #define TARGET_BIG_NAME "elf64-sparc"
2932 #define ELF_ARCH bfd_arch_sparc
2933 #define ELF_MAXPAGESIZE 0x100000
2935 /* This is the official ABI value. */
2936 #define ELF_MACHINE_CODE EM_SPARCV9
2938 /* This is the value that we used before the ABI was released. */
2939 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
2941 #define bfd_elf64_bfd_link_hash_table_create \
2942 sparc64_elf_bfd_link_hash_table_create
2944 #define elf_info_to_howto \
2945 sparc64_elf_info_to_howto
2946 #define bfd_elf64_get_reloc_upper_bound \
2947 sparc64_elf_get_reloc_upper_bound
2948 #define bfd_elf64_get_dynamic_reloc_upper_bound \
2949 sparc64_elf_get_dynamic_reloc_upper_bound
2950 #define bfd_elf64_canonicalize_dynamic_reloc \
2951 sparc64_elf_canonicalize_dynamic_reloc
2952 #define bfd_elf64_bfd_reloc_type_lookup \
2953 sparc64_elf_reloc_type_lookup
2955 #define elf_backend_create_dynamic_sections \
2956 _bfd_elf_create_dynamic_sections
2957 #define elf_backend_add_symbol_hook \
2958 sparc64_elf_add_symbol_hook
2959 #define elf_backend_get_symbol_type \
2960 sparc64_elf_get_symbol_type
2961 #define elf_backend_symbol_processing \
2962 sparc64_elf_symbol_processing
2963 #define elf_backend_check_relocs \
2964 sparc64_elf_check_relocs
2965 #define elf_backend_adjust_dynamic_symbol \
2966 sparc64_elf_adjust_dynamic_symbol
2967 #define elf_backend_size_dynamic_sections \
2968 sparc64_elf_size_dynamic_sections
2969 #define elf_backend_relocate_section \
2970 sparc64_elf_relocate_section
2971 #define elf_backend_finish_dynamic_symbol \
2972 sparc64_elf_finish_dynamic_symbol
2973 #define elf_backend_finish_dynamic_sections \
2974 sparc64_elf_finish_dynamic_sections
2975 #define elf_backend_print_symbol_all \
2976 sparc64_elf_print_symbol_all
2977 #define elf_backend_output_arch_syms \
2978 sparc64_elf_output_arch_syms
2980 #define bfd_elf64_bfd_merge_private_bfd_data \
2981 sparc64_elf_merge_private_bfd_data
2983 #define elf_backend_size_info \
2984 sparc64_elf_size_info
2985 #define elf_backend_object_p \
2986 sparc64_elf_object_p
2988 #define elf_backend_want_got_plt 0
2989 #define elf_backend_plt_readonly 0
2990 #define elf_backend_want_plt_sym 1
2992 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
2993 #define elf_backend_plt_alignment 8
2995 #define elf_backend_got_header_size 8
2996 #define elf_backend_plt_header_size PLT_HEADER_SIZE
2998 #include "elf64-target.h"