1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
25 #include "elf/sparc.h"
26 #include "opcode/sparc.h"
27 #include "elfxx-sparc.h"
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30 #define MINUS_ONE (~ (bfd_vma) 0)
32 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
33 section can represent up to two relocs, we must tell the user to allocate
37 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
39 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
43 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
45 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
48 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
49 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
50 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
51 for the same location, R_SPARC_LO10 and R_SPARC_13. */
54 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
55 Elf_Internal_Shdr *rel_hdr,
56 asymbol **symbols, bfd_boolean dynamic)
58 void * allocated = NULL;
59 bfd_byte *native_relocs;
66 allocated = bfd_malloc (rel_hdr->sh_size);
67 if (allocated == NULL)
70 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
71 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
74 native_relocs = (bfd_byte *) allocated;
76 relents = asect->relocation + canon_reloc_count (asect);
78 entsize = rel_hdr->sh_entsize;
79 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
81 count = rel_hdr->sh_size / entsize;
83 for (i = 0, relent = relents; i < count;
84 i++, relent++, native_relocs += entsize)
86 Elf_Internal_Rela rela;
89 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
91 /* The address of an ELF reloc is section relative for an object
92 file, and absolute for an executable file or shared library.
93 The address of a normal BFD reloc is always section relative,
94 and the address of a dynamic reloc is absolute.. */
95 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
96 relent->address = rela.r_offset;
98 relent->address = rela.r_offset - asect->vma;
100 if (ELF64_R_SYM (rela.r_info) == STN_UNDEF)
101 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
106 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
109 /* Canonicalize ELF section symbols. FIXME: Why? */
110 if ((s->flags & BSF_SECTION_SYM) == 0)
111 relent->sym_ptr_ptr = ps;
113 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
116 relent->addend = rela.r_addend;
118 r_type = ELF64_R_TYPE_ID (rela.r_info);
119 if (r_type == R_SPARC_OLO10)
121 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
122 relent[1].address = relent->address;
124 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
125 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
126 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
129 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
132 canon_reloc_count (asect) += relent - relents;
134 if (allocated != NULL)
140 if (allocated != NULL)
145 /* Read in and swap the external relocs. */
148 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
149 asymbol **symbols, bfd_boolean dynamic)
151 struct bfd_elf_section_data * const d = elf_section_data (asect);
152 Elf_Internal_Shdr *rel_hdr;
153 Elf_Internal_Shdr *rel_hdr2;
156 if (asect->relocation != NULL)
161 if ((asect->flags & SEC_RELOC) == 0
162 || asect->reloc_count == 0)
165 rel_hdr = d->rel.hdr;
166 rel_hdr2 = d->rela.hdr;
168 BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
169 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
173 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
174 case because relocations against this section may use the
175 dynamic symbol table, and in that case bfd_section_from_shdr
176 in elf.c does not update the RELOC_COUNT. */
177 if (asect->size == 0)
180 rel_hdr = &d->this_hdr;
181 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
185 amt = asect->reloc_count;
186 amt *= 2 * sizeof (arelent);
187 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
188 if (asect->relocation == NULL)
191 /* The elf64_sparc_slurp_one_reloc_table routine increments
192 canon_reloc_count. */
193 canon_reloc_count (asect) = 0;
196 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
201 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
208 /* Canonicalize the relocs. */
211 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
212 arelent **relptr, asymbol **symbols)
216 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
218 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
221 tblptr = section->relocation;
222 for (i = 0; i < canon_reloc_count (section); i++)
223 *relptr++ = tblptr++;
227 return canon_reloc_count (section);
231 /* Canonicalize the dynamic relocation entries. Note that we return
232 the dynamic relocations as a single block, although they are
233 actually associated with particular sections; the interface, which
234 was designed for SunOS style shared libraries, expects that there
235 is only one set of dynamic relocs. Any section that was actually
236 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
237 the dynamic symbol table, is considered to be a dynamic reloc
241 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
247 if (elf_dynsymtab (abfd) == 0)
249 bfd_set_error (bfd_error_invalid_operation);
254 for (s = abfd->sections; s != NULL; s = s->next)
256 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
257 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
262 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
264 count = canon_reloc_count (s);
266 for (i = 0; i < count; i++)
277 /* Write out the relocs. */
280 elf64_sparc_write_relocs (bfd *abfd, asection *sec, void * data)
282 bfd_boolean *failedp = (bfd_boolean *) data;
283 Elf_Internal_Shdr *rela_hdr;
285 Elf64_External_Rela *outbound_relocas, *src_rela;
286 unsigned int idx, count;
287 asymbol *last_sym = 0;
288 int last_sym_idx = 0;
290 /* If we have already failed, don't do anything. */
294 if ((sec->flags & SEC_RELOC) == 0)
297 /* The linker backend writes the relocs out itself, and sets the
298 reloc_count field to zero to inhibit writing them here. Also,
299 sometimes the SEC_RELOC flag gets set even when there aren't any
301 if (sec->reloc_count == 0)
304 /* We can combine two relocs that refer to the same address
305 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
306 latter is R_SPARC_13 with no associated symbol. */
308 for (idx = 0; idx < sec->reloc_count; idx++)
314 addr = sec->orelocation[idx]->address;
315 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
316 && idx < sec->reloc_count - 1)
318 arelent *r = sec->orelocation[idx + 1];
320 if (r->howto->type == R_SPARC_13
321 && r->address == addr
322 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
323 && (*r->sym_ptr_ptr)->value == 0)
328 rela_hdr = elf_section_data (sec)->rela.hdr;
330 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
331 rela_hdr->contents = bfd_alloc (abfd, rela_hdr->sh_size);
332 if (rela_hdr->contents == NULL)
338 /* Figure out whether the relocations are RELA or REL relocations. */
339 if (rela_hdr->sh_type != SHT_RELA)
342 /* The address of an ELF reloc is section relative for an object
343 file, and absolute for an executable file or shared library.
344 The address of a BFD reloc is always section relative. */
346 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
347 addr_offset = sec->vma;
349 /* orelocation has the data, reloc_count has the count... */
350 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
351 src_rela = outbound_relocas;
353 for (idx = 0; idx < sec->reloc_count; idx++)
355 Elf_Internal_Rela dst_rela;
360 ptr = sec->orelocation[idx];
361 sym = *ptr->sym_ptr_ptr;
364 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
369 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
378 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
379 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
380 && ! _bfd_elf_validate_reloc (abfd, ptr))
386 if (ptr->howto->type == R_SPARC_LO10
387 && idx < sec->reloc_count - 1)
389 arelent *r = sec->orelocation[idx + 1];
391 if (r->howto->type == R_SPARC_13
392 && r->address == ptr->address
393 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
394 && (*r->sym_ptr_ptr)->value == 0)
398 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
402 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
405 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
407 dst_rela.r_offset = ptr->address + addr_offset;
408 dst_rela.r_addend = ptr->addend;
410 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
415 /* Hook called by the linker routine which adds symbols from an object
416 file. We use it for STT_REGISTER symbols. */
419 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
420 Elf_Internal_Sym *sym, const char **namep,
421 flagword *flagsp ATTRIBUTE_UNUSED,
422 asection **secp ATTRIBUTE_UNUSED,
423 bfd_vma *valp ATTRIBUTE_UNUSED)
425 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
427 if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
428 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)
429 && (abfd->flags & DYNAMIC) == 0
430 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
431 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
433 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
436 struct _bfd_sparc_elf_app_reg *p;
438 reg = (int)sym->st_value;
441 case 2: reg -= 2; break;
442 case 6: reg -= 4; break;
444 (*_bfd_error_handler)
445 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
450 if (info->output_bfd->xvec != abfd->xvec
451 || (abfd->flags & DYNAMIC) != 0)
453 /* STT_REGISTER only works when linking an elf64_sparc object.
454 If STT_REGISTER comes from a dynamic object, don't put it into
455 the output bfd. The dynamic linker will recheck it. */
460 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
462 if (p->name != NULL && strcmp (p->name, *namep))
464 (*_bfd_error_handler)
465 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
466 abfd, p->abfd, (int) sym->st_value,
467 **namep ? *namep : "#scratch",
468 *p->name ? p->name : "#scratch");
476 struct elf_link_hash_entry *h;
478 h = (struct elf_link_hash_entry *)
479 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
483 unsigned char type = h->type;
487 (*_bfd_error_handler)
488 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
489 abfd, p->abfd, *namep, stt_types[type]);
493 p->name = bfd_hash_allocate (&info->hash->table,
494 strlen (*namep) + 1);
498 strcpy (p->name, *namep);
502 p->bind = ELF_ST_BIND (sym->st_info);
504 p->shndx = sym->st_shndx;
508 if (p->bind == STB_WEAK
509 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
511 p->bind = STB_GLOBAL;
518 else if (*namep && **namep
519 && info->output_bfd->xvec == abfd->xvec)
522 struct _bfd_sparc_elf_app_reg *p;
524 p = _bfd_sparc_elf_hash_table(info)->app_regs;
525 for (i = 0; i < 4; i++, p++)
526 if (p->name != NULL && ! strcmp (p->name, *namep))
528 unsigned char type = ELF_ST_TYPE (sym->st_info);
532 (*_bfd_error_handler)
533 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
534 abfd, p->abfd, *namep, stt_types[type]);
541 /* This function takes care of emitting STT_REGISTER symbols
542 which we cannot easily keep in the symbol hash table. */
545 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
546 struct bfd_link_info *info,
548 int (*func) (void *, const char *,
551 struct elf_link_hash_entry *))
554 struct _bfd_sparc_elf_app_reg *app_regs =
555 _bfd_sparc_elf_hash_table(info)->app_regs;
556 Elf_Internal_Sym sym;
558 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
559 at the end of the dynlocal list, so they came at the end of the local
560 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
561 to back up symtab->sh_info. */
562 if (elf_hash_table (info)->dynlocal)
564 bfd * dynobj = elf_hash_table (info)->dynobj;
565 asection *dynsymsec = bfd_get_linker_section (dynobj, ".dynsym");
566 struct elf_link_local_dynamic_entry *e;
568 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
569 if (e->input_indx == -1)
573 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
578 if (info->strip == strip_all)
581 for (reg = 0; reg < 4; reg++)
582 if (app_regs [reg].name != NULL)
584 if (info->strip == strip_some
585 && bfd_hash_lookup (info->keep_hash,
587 FALSE, FALSE) == NULL)
590 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
593 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
594 sym.st_shndx = app_regs [reg].shndx;
595 sym.st_target_internal = 0;
596 if ((*func) (flaginfo, app_regs [reg].name, &sym,
597 sym.st_shndx == SHN_ABS
598 ? bfd_abs_section_ptr : bfd_und_section_ptr,
607 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
609 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
615 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
616 even in SHN_UNDEF section. */
619 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
621 elf_symbol_type *elfsym;
623 elfsym = (elf_symbol_type *) asym;
624 if (elfsym->internal_elf_sym.st_info
625 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
627 asym->flags |= BSF_GLOBAL;
632 /* Functions for dealing with the e_flags field. */
634 /* Merge backend specific data from an object file to the output
635 object file when linking. */
638 elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
641 flagword new_flags, old_flags;
644 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
645 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
648 new_flags = elf_elfheader (ibfd)->e_flags;
649 old_flags = elf_elfheader (obfd)->e_flags;
651 if (!elf_flags_init (obfd)) /* First call, no flags set */
653 elf_flags_init (obfd) = TRUE;
654 elf_elfheader (obfd)->e_flags = new_flags;
657 else if (new_flags == old_flags) /* Compatible flags are ok */
660 else /* Incompatible flags */
664 #define EF_SPARC_ISA_EXTENSIONS \
665 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
667 if ((ibfd->flags & DYNAMIC) != 0)
669 /* We don't want dynamic objects memory ordering and
670 architecture to have any role. That's what dynamic linker
672 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
673 new_flags |= (old_flags
674 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
678 /* Choose the highest architecture requirements. */
679 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
680 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
681 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
682 && (old_flags & EF_SPARC_HAL_R1))
685 (*_bfd_error_handler)
686 (_("%B: linking UltraSPARC specific with HAL specific code"),
689 /* Choose the most restrictive memory ordering. */
690 old_mm = (old_flags & EF_SPARCV9_MM);
691 new_mm = (new_flags & EF_SPARCV9_MM);
692 old_flags &= ~EF_SPARCV9_MM;
693 new_flags &= ~EF_SPARCV9_MM;
700 /* Warn about any other mismatches */
701 if (new_flags != old_flags)
704 (*_bfd_error_handler)
705 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
706 ibfd, (long) new_flags, (long) old_flags);
709 elf_elfheader (obfd)->e_flags = old_flags;
713 bfd_set_error (bfd_error_bad_value);
717 return _bfd_sparc_elf_merge_private_bfd_data (ibfd, obfd);
720 /* MARCO: Set the correct entry size for the .stab section. */
723 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
724 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
729 name = bfd_get_section_name (abfd, sec);
731 if (strcmp (name, ".stab") == 0)
733 /* Even in the 64bit case the stab entries are only 12 bytes long. */
734 elf_section_data (sec)->this_hdr.sh_entsize = 12;
740 /* Print a STT_REGISTER symbol to file FILE. */
743 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, void * filep,
746 FILE *file = (FILE *) filep;
749 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
753 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
754 type = symbol->flags;
755 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
757 ? (type & BSF_GLOBAL) ? '!' : 'l'
758 : (type & BSF_GLOBAL) ? 'g' : ' '),
759 (type & BSF_WEAK) ? 'w' : ' ');
760 if (symbol->name == NULL || symbol->name [0] == '\0')
766 static enum elf_reloc_type_class
767 elf64_sparc_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
768 const asection *rel_sec ATTRIBUTE_UNUSED,
769 const Elf_Internal_Rela *rela)
771 switch ((int) ELF64_R_TYPE (rela->r_info))
773 case R_SPARC_RELATIVE:
774 return reloc_class_relative;
775 case R_SPARC_JMP_SLOT:
776 return reloc_class_plt;
778 return reloc_class_copy;
780 return reloc_class_normal;
784 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
785 standard ELF, because R_SPARC_OLO10 has secondary addend in
786 ELF64_R_TYPE_DATA field. This structure is used to redirect the
787 relocation handling routines. */
789 const struct elf_size_info elf64_sparc_size_info =
791 sizeof (Elf64_External_Ehdr),
792 sizeof (Elf64_External_Phdr),
793 sizeof (Elf64_External_Shdr),
794 sizeof (Elf64_External_Rel),
795 sizeof (Elf64_External_Rela),
796 sizeof (Elf64_External_Sym),
797 sizeof (Elf64_External_Dyn),
798 sizeof (Elf_External_Note),
799 4, /* hash-table entry size. */
800 /* Internal relocations per external relocations.
801 For link purposes we use just 1 internal per
802 1 external, for assembly and slurp symbol table
806 3, /* log_file_align. */
809 bfd_elf64_write_out_phdrs,
810 bfd_elf64_write_shdrs_and_ehdr,
811 bfd_elf64_checksum_contents,
812 elf64_sparc_write_relocs,
813 bfd_elf64_swap_symbol_in,
814 bfd_elf64_swap_symbol_out,
815 elf64_sparc_slurp_reloc_table,
816 bfd_elf64_slurp_symbol_table,
817 bfd_elf64_swap_dyn_in,
818 bfd_elf64_swap_dyn_out,
819 bfd_elf64_swap_reloc_in,
820 bfd_elf64_swap_reloc_out,
821 bfd_elf64_swap_reloca_in,
822 bfd_elf64_swap_reloca_out
825 #define TARGET_BIG_SYM sparc_elf64_vec
826 #define TARGET_BIG_NAME "elf64-sparc"
827 #define ELF_ARCH bfd_arch_sparc
828 #define ELF_MAXPAGESIZE 0x100000
829 #define ELF_COMMONPAGESIZE 0x2000
831 /* This is the official ABI value. */
832 #define ELF_MACHINE_CODE EM_SPARCV9
834 /* This is the value that we used before the ABI was released. */
835 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
837 #define elf_backend_reloc_type_class \
838 elf64_sparc_reloc_type_class
839 #define bfd_elf64_get_reloc_upper_bound \
840 elf64_sparc_get_reloc_upper_bound
841 #define bfd_elf64_get_dynamic_reloc_upper_bound \
842 elf64_sparc_get_dynamic_reloc_upper_bound
843 #define bfd_elf64_canonicalize_reloc \
844 elf64_sparc_canonicalize_reloc
845 #define bfd_elf64_canonicalize_dynamic_reloc \
846 elf64_sparc_canonicalize_dynamic_reloc
847 #define elf_backend_add_symbol_hook \
848 elf64_sparc_add_symbol_hook
849 #define elf_backend_get_symbol_type \
850 elf64_sparc_get_symbol_type
851 #define elf_backend_symbol_processing \
852 elf64_sparc_symbol_processing
853 #define elf_backend_print_symbol_all \
854 elf64_sparc_print_symbol_all
855 #define elf_backend_output_arch_syms \
856 elf64_sparc_output_arch_syms
857 #define bfd_elf64_bfd_merge_private_bfd_data \
858 elf64_sparc_merge_private_bfd_data
859 #define elf_backend_fake_sections \
860 elf64_sparc_fake_sections
861 #define elf_backend_size_info \
862 elf64_sparc_size_info
864 #define elf_backend_plt_sym_val \
865 _bfd_sparc_elf_plt_sym_val
866 #define bfd_elf64_bfd_link_hash_table_create \
867 _bfd_sparc_elf_link_hash_table_create
868 #define elf_info_to_howto \
869 _bfd_sparc_elf_info_to_howto
870 #define elf_backend_copy_indirect_symbol \
871 _bfd_sparc_elf_copy_indirect_symbol
872 #define bfd_elf64_bfd_reloc_type_lookup \
873 _bfd_sparc_elf_reloc_type_lookup
874 #define bfd_elf64_bfd_reloc_name_lookup \
875 _bfd_sparc_elf_reloc_name_lookup
876 #define bfd_elf64_bfd_relax_section \
877 _bfd_sparc_elf_relax_section
878 #define bfd_elf64_new_section_hook \
879 _bfd_sparc_elf_new_section_hook
881 #define elf_backend_create_dynamic_sections \
882 _bfd_sparc_elf_create_dynamic_sections
883 #define elf_backend_relocs_compatible \
884 _bfd_elf_relocs_compatible
885 #define elf_backend_check_relocs \
886 _bfd_sparc_elf_check_relocs
887 #define elf_backend_adjust_dynamic_symbol \
888 _bfd_sparc_elf_adjust_dynamic_symbol
889 #define elf_backend_omit_section_dynsym \
890 _bfd_sparc_elf_omit_section_dynsym
891 #define elf_backend_size_dynamic_sections \
892 _bfd_sparc_elf_size_dynamic_sections
893 #define elf_backend_relocate_section \
894 _bfd_sparc_elf_relocate_section
895 #define elf_backend_finish_dynamic_symbol \
896 _bfd_sparc_elf_finish_dynamic_symbol
897 #define elf_backend_finish_dynamic_sections \
898 _bfd_sparc_elf_finish_dynamic_sections
900 #define bfd_elf64_mkobject \
901 _bfd_sparc_elf_mkobject
902 #define elf_backend_object_p \
903 _bfd_sparc_elf_object_p
904 #define elf_backend_gc_mark_hook \
905 _bfd_sparc_elf_gc_mark_hook
906 #define elf_backend_gc_sweep_hook \
907 _bfd_sparc_elf_gc_sweep_hook
908 #define elf_backend_init_index_section \
909 _bfd_elf_init_1_index_section
911 #define elf_backend_can_gc_sections 1
912 #define elf_backend_can_refcount 1
913 #define elf_backend_want_got_plt 0
914 #define elf_backend_plt_readonly 0
915 #define elf_backend_want_plt_sym 1
916 #define elf_backend_got_header_size 8
917 #define elf_backend_rela_normal 1
919 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
920 #define elf_backend_plt_alignment 8
922 #include "elf64-target.h"
924 /* FreeBSD support */
925 #undef TARGET_BIG_SYM
926 #define TARGET_BIG_SYM sparc_elf64_fbsd_vec
927 #undef TARGET_BIG_NAME
928 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
930 #define ELF_OSABI ELFOSABI_FREEBSD
933 #define elf64_bed elf64_sparc_fbsd_bed
935 #include "elf64-target.h"
939 #undef TARGET_BIG_SYM
940 #define TARGET_BIG_SYM sparc_elf64_sol2_vec
941 #undef TARGET_BIG_NAME
942 #define TARGET_BIG_NAME "elf64-sparc-sol2"
944 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
945 objects won't be recognized. */
949 #define elf64_bed elf64_sparc_sol2_bed
951 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
953 #undef elf_backend_static_tls_alignment
954 #define elf_backend_static_tls_alignment 16
956 #include "elf64-target.h"