Convert indirect calls to direct when possible.
[external/binutils.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2    Copyright (C) 1993-2016 Free Software Foundation, Inc.
3
4    This file is part of BFD, the Binary File Descriptor library.
5
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19    MA 02110-1301, USA.  */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/sparc.h"
26 #include "opcode/sparc.h"
27 #include "elfxx-sparc.h"
28
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
30 #define MINUS_ONE (~ (bfd_vma) 0)
31
32 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
33    section can represent up to two relocs, we must tell the user to allocate
34    more space.  */
35
36 static long
37 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
38 {
39   return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
40 }
41
42 static long
43 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
44 {
45   return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
46 }
47
48 /* Read  relocations for ASECT from REL_HDR.  There are RELOC_COUNT of
49    them.  We cannot use generic elf routines for this,  because R_SPARC_OLO10
50    has secondary addend in ELF64_R_TYPE_DATA.  We handle it as two relocations
51    for the same location,  R_SPARC_LO10 and R_SPARC_13.  */
52
53 static bfd_boolean
54 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
55                                    Elf_Internal_Shdr *rel_hdr,
56                                    asymbol **symbols, bfd_boolean dynamic)
57 {
58   void * allocated = NULL;
59   bfd_byte *native_relocs;
60   arelent *relent;
61   unsigned int i;
62   int entsize;
63   bfd_size_type count;
64   arelent *relents;
65
66   allocated = bfd_malloc (rel_hdr->sh_size);
67   if (allocated == NULL)
68     goto error_return;
69
70   if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
71       || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
72     goto error_return;
73
74   native_relocs = (bfd_byte *) allocated;
75
76   relents = asect->relocation + canon_reloc_count (asect);
77
78   entsize = rel_hdr->sh_entsize;
79   BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
80
81   count = rel_hdr->sh_size / entsize;
82
83   for (i = 0, relent = relents; i < count;
84        i++, relent++, native_relocs += entsize)
85     {
86       Elf_Internal_Rela rela;
87       unsigned int r_type;
88
89       bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
90
91       /* The address of an ELF reloc is section relative for an object
92          file, and absolute for an executable file or shared library.
93          The address of a normal BFD reloc is always section relative,
94          and the address of a dynamic reloc is absolute..  */
95       if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
96         relent->address = rela.r_offset;
97       else
98         relent->address = rela.r_offset - asect->vma;
99
100       if (ELF64_R_SYM (rela.r_info) == STN_UNDEF
101           /* PR 17512: file: 996185f8.  */
102           || ELF64_R_SYM (rela.r_info) > bfd_get_symcount (abfd))
103         relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
104       else
105         {
106           asymbol **ps, *s;
107
108           ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
109           s = *ps;
110
111           /* Canonicalize ELF section symbols.  FIXME: Why?  */
112           if ((s->flags & BSF_SECTION_SYM) == 0)
113             relent->sym_ptr_ptr = ps;
114           else
115             relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
116         }
117
118       relent->addend = rela.r_addend;
119
120       r_type = ELF64_R_TYPE_ID (rela.r_info);
121       if (r_type == R_SPARC_OLO10)
122         {
123           relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
124           relent[1].address = relent->address;
125           relent++;
126           relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
127           relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
128           relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
129         }
130       else
131         relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
132     }
133
134   canon_reloc_count (asect) += relent - relents;
135
136   if (allocated != NULL)
137     free (allocated);
138
139   return TRUE;
140
141  error_return:
142   if (allocated != NULL)
143     free (allocated);
144   return FALSE;
145 }
146
147 /* Read in and swap the external relocs.  */
148
149 static bfd_boolean
150 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
151                                asymbol **symbols, bfd_boolean dynamic)
152 {
153   struct bfd_elf_section_data * const d = elf_section_data (asect);
154   Elf_Internal_Shdr *rel_hdr;
155   Elf_Internal_Shdr *rel_hdr2;
156   bfd_size_type amt;
157
158   if (asect->relocation != NULL)
159     return TRUE;
160
161   if (! dynamic)
162     {
163       if ((asect->flags & SEC_RELOC) == 0
164           || asect->reloc_count == 0)
165         return TRUE;
166
167       rel_hdr = d->rel.hdr;
168       rel_hdr2 = d->rela.hdr;
169
170       BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
171                   || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
172     }
173   else
174     {
175       /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
176          case because relocations against this section may use the
177          dynamic symbol table, and in that case bfd_section_from_shdr
178          in elf.c does not update the RELOC_COUNT.  */
179       if (asect->size == 0)
180         return TRUE;
181
182       rel_hdr = &d->this_hdr;
183       asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
184       rel_hdr2 = NULL;
185     }
186
187   amt = asect->reloc_count;
188   amt *= 2 * sizeof (arelent);
189   asect->relocation = (arelent *) bfd_alloc (abfd, amt);
190   if (asect->relocation == NULL)
191     return FALSE;
192
193   /* The elf64_sparc_slurp_one_reloc_table routine increments
194      canon_reloc_count.  */
195   canon_reloc_count (asect) = 0;
196
197   if (rel_hdr
198       && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
199                                              dynamic))
200     return FALSE;
201
202   if (rel_hdr2
203       && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
204                                              dynamic))
205     return FALSE;
206
207   return TRUE;
208 }
209
210 /* Canonicalize the relocs.  */
211
212 static long
213 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
214                                 arelent **relptr, asymbol **symbols)
215 {
216   arelent *tblptr;
217   unsigned int i;
218   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
219
220   if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
221     return -1;
222
223   tblptr = section->relocation;
224   for (i = 0; i < canon_reloc_count (section); i++)
225     *relptr++ = tblptr++;
226
227   *relptr = NULL;
228
229   return canon_reloc_count (section);
230 }
231
232
233 /* Canonicalize the dynamic relocation entries.  Note that we return
234    the dynamic relocations as a single block, although they are
235    actually associated with particular sections; the interface, which
236    was designed for SunOS style shared libraries, expects that there
237    is only one set of dynamic relocs.  Any section that was actually
238    installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
239    the dynamic symbol table, is considered to be a dynamic reloc
240    section.  */
241
242 static long
243 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
244                                         asymbol **syms)
245 {
246   asection *s;
247   long ret;
248
249   if (elf_dynsymtab (abfd) == 0)
250     {
251       bfd_set_error (bfd_error_invalid_operation);
252       return -1;
253     }
254
255   ret = 0;
256   for (s = abfd->sections; s != NULL; s = s->next)
257     {
258       if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
259           && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
260         {
261           arelent *p;
262           long count, i;
263
264           if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
265             return -1;
266           count = canon_reloc_count (s);
267           p = s->relocation;
268           for (i = 0; i < count; i++)
269             *storage++ = p++;
270           ret += count;
271         }
272     }
273
274   *storage = NULL;
275
276   return ret;
277 }
278
279 /* Write out the relocs.  */
280
281 static void
282 elf64_sparc_write_relocs (bfd *abfd, asection *sec, void * data)
283 {
284   bfd_boolean *failedp = (bfd_boolean *) data;
285   Elf_Internal_Shdr *rela_hdr;
286   bfd_vma addr_offset;
287   Elf64_External_Rela *outbound_relocas, *src_rela;
288   unsigned int idx, count;
289   asymbol *last_sym = 0;
290   int last_sym_idx = 0;
291
292   /* If we have already failed, don't do anything.  */
293   if (*failedp)
294     return;
295
296   if ((sec->flags & SEC_RELOC) == 0)
297     return;
298
299   /* The linker backend writes the relocs out itself, and sets the
300      reloc_count field to zero to inhibit writing them here.  Also,
301      sometimes the SEC_RELOC flag gets set even when there aren't any
302      relocs.  */
303   if (sec->reloc_count == 0)
304     return;
305
306   /* We can combine two relocs that refer to the same address
307      into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
308      latter is R_SPARC_13 with no associated symbol.  */
309   count = 0;
310   for (idx = 0; idx < sec->reloc_count; idx++)
311     {
312       bfd_vma addr;
313
314       ++count;
315
316       addr = sec->orelocation[idx]->address;
317       if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
318           && idx < sec->reloc_count - 1)
319         {
320           arelent *r = sec->orelocation[idx + 1];
321
322           if (r->howto->type == R_SPARC_13
323               && r->address == addr
324               && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
325               && (*r->sym_ptr_ptr)->value == 0)
326             ++idx;
327         }
328     }
329
330   rela_hdr = elf_section_data (sec)->rela.hdr;
331
332   rela_hdr->sh_size = rela_hdr->sh_entsize * count;
333   rela_hdr->contents = bfd_alloc (abfd, rela_hdr->sh_size);
334   if (rela_hdr->contents == NULL)
335     {
336       *failedp = TRUE;
337       return;
338     }
339
340   /* Figure out whether the relocations are RELA or REL relocations.  */
341   if (rela_hdr->sh_type != SHT_RELA)
342     abort ();
343
344   /* The address of an ELF reloc is section relative for an object
345      file, and absolute for an executable file or shared library.
346      The address of a BFD reloc is always section relative.  */
347   addr_offset = 0;
348   if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
349     addr_offset = sec->vma;
350
351   /* orelocation has the data, reloc_count has the count...  */
352   outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
353   src_rela = outbound_relocas;
354
355   for (idx = 0; idx < sec->reloc_count; idx++)
356     {
357       Elf_Internal_Rela dst_rela;
358       arelent *ptr;
359       asymbol *sym;
360       int n;
361
362       ptr = sec->orelocation[idx];
363       sym = *ptr->sym_ptr_ptr;
364       if (sym == last_sym)
365         n = last_sym_idx;
366       else if (bfd_is_abs_section (sym->section) && sym->value == 0)
367         n = STN_UNDEF;
368       else
369         {
370           last_sym = sym;
371           n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
372           if (n < 0)
373             {
374               *failedp = TRUE;
375               return;
376             }
377           last_sym_idx = n;
378         }
379
380       if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
381           && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
382           && ! _bfd_elf_validate_reloc (abfd, ptr))
383         {
384           *failedp = TRUE;
385           return;
386         }
387
388       if (ptr->howto->type == R_SPARC_LO10
389           && idx < sec->reloc_count - 1)
390         {
391           arelent *r = sec->orelocation[idx + 1];
392
393           if (r->howto->type == R_SPARC_13
394               && r->address == ptr->address
395               && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
396               && (*r->sym_ptr_ptr)->value == 0)
397             {
398               idx++;
399               dst_rela.r_info
400                 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
401                                                       R_SPARC_OLO10));
402             }
403           else
404             dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
405         }
406       else
407         dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
408
409       dst_rela.r_offset = ptr->address + addr_offset;
410       dst_rela.r_addend = ptr->addend;
411
412       bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
413       ++src_rela;
414     }
415 }
416 \f
417 /* Hook called by the linker routine which adds symbols from an object
418    file.  We use it for STT_REGISTER symbols.  */
419
420 static bfd_boolean
421 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
422                              Elf_Internal_Sym *sym, const char **namep,
423                              flagword *flagsp ATTRIBUTE_UNUSED,
424                              asection **secp ATTRIBUTE_UNUSED,
425                              bfd_vma *valp ATTRIBUTE_UNUSED)
426 {
427   static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
428
429   if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
430       && (abfd->flags & DYNAMIC) == 0
431       && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
432     elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
433
434   if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
435     {
436       int reg;
437       struct _bfd_sparc_elf_app_reg *p;
438
439       reg = (int)sym->st_value;
440       switch (reg & ~1)
441         {
442         case 2: reg -= 2; break;
443         case 6: reg -= 4; break;
444         default:
445           (*_bfd_error_handler)
446             (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
447              abfd);
448           return FALSE;
449         }
450
451       if (info->output_bfd->xvec != abfd->xvec
452           || (abfd->flags & DYNAMIC) != 0)
453         {
454           /* STT_REGISTER only works when linking an elf64_sparc object.
455              If STT_REGISTER comes from a dynamic object, don't put it into
456              the output bfd.  The dynamic linker will recheck it.  */
457           *namep = NULL;
458           return TRUE;
459         }
460
461       p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
462
463       if (p->name != NULL && strcmp (p->name, *namep))
464         {
465           (*_bfd_error_handler)
466             (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
467              abfd, p->abfd, (int) sym->st_value,
468              **namep ? *namep : "#scratch",
469              *p->name ? p->name : "#scratch");
470           return FALSE;
471         }
472
473       if (p->name == NULL)
474         {
475           if (**namep)
476             {
477               struct elf_link_hash_entry *h;
478
479               h = (struct elf_link_hash_entry *)
480                 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
481
482               if (h != NULL)
483                 {
484                   unsigned char type = h->type;
485
486                   if (type > STT_FUNC)
487                     type = 0;
488                   (*_bfd_error_handler)
489                     (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
490                      abfd, p->abfd, *namep, stt_types[type]);
491                   return FALSE;
492                 }
493
494               p->name = bfd_hash_allocate (&info->hash->table,
495                                            strlen (*namep) + 1);
496               if (!p->name)
497                 return FALSE;
498
499               strcpy (p->name, *namep);
500             }
501           else
502             p->name = "";
503           p->bind = ELF_ST_BIND (sym->st_info);
504           p->abfd = abfd;
505           p->shndx = sym->st_shndx;
506         }
507       else
508         {
509           if (p->bind == STB_WEAK
510               && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
511             {
512               p->bind = STB_GLOBAL;
513               p->abfd = abfd;
514             }
515         }
516       *namep = NULL;
517       return TRUE;
518     }
519   else if (*namep && **namep
520            && info->output_bfd->xvec == abfd->xvec)
521     {
522       int i;
523       struct _bfd_sparc_elf_app_reg *p;
524
525       p = _bfd_sparc_elf_hash_table(info)->app_regs;
526       for (i = 0; i < 4; i++, p++)
527         if (p->name != NULL && ! strcmp (p->name, *namep))
528           {
529             unsigned char type = ELF_ST_TYPE (sym->st_info);
530
531             if (type > STT_FUNC)
532               type = 0;
533             (*_bfd_error_handler)
534               (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
535                abfd, p->abfd, *namep, stt_types[type]);
536             return FALSE;
537           }
538     }
539   return TRUE;
540 }
541
542 /* This function takes care of emitting STT_REGISTER symbols
543    which we cannot easily keep in the symbol hash table.  */
544
545 static bfd_boolean
546 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
547                               struct bfd_link_info *info,
548                               void * flaginfo,
549                               int (*func) (void *, const char *,
550                                            Elf_Internal_Sym *,
551                                            asection *,
552                                            struct elf_link_hash_entry *))
553 {
554   int reg;
555   struct _bfd_sparc_elf_app_reg *app_regs =
556     _bfd_sparc_elf_hash_table(info)->app_regs;
557   Elf_Internal_Sym sym;
558
559   /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
560      at the end of the dynlocal list, so they came at the end of the local
561      symbols in the symtab.  Except that they aren't STB_LOCAL, so we need
562      to back up symtab->sh_info.  */
563   if (elf_hash_table (info)->dynlocal)
564     {
565       bfd * dynobj = elf_hash_table (info)->dynobj;
566       asection *dynsymsec = bfd_get_linker_section (dynobj, ".dynsym");
567       struct elf_link_local_dynamic_entry *e;
568
569       for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
570         if (e->input_indx == -1)
571           break;
572       if (e)
573         {
574           elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
575             = e->dynindx;
576         }
577     }
578
579   if (info->strip == strip_all)
580     return TRUE;
581
582   for (reg = 0; reg < 4; reg++)
583     if (app_regs [reg].name != NULL)
584       {
585         if (info->strip == strip_some
586             && bfd_hash_lookup (info->keep_hash,
587                                 app_regs [reg].name,
588                                 FALSE, FALSE) == NULL)
589           continue;
590
591         sym.st_value = reg < 2 ? reg + 2 : reg + 4;
592         sym.st_size = 0;
593         sym.st_other = 0;
594         sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
595         sym.st_shndx = app_regs [reg].shndx;
596         sym.st_target_internal = 0;
597         if ((*func) (flaginfo, app_regs [reg].name, &sym,
598                      sym.st_shndx == SHN_ABS
599                      ? bfd_abs_section_ptr : bfd_und_section_ptr,
600                      NULL) != 1)
601           return FALSE;
602       }
603
604   return TRUE;
605 }
606
607 static int
608 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
609 {
610   if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
611     return STT_REGISTER;
612   else
613     return type;
614 }
615
616 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
617    even in SHN_UNDEF section.  */
618
619 static void
620 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
621 {
622   elf_symbol_type *elfsym;
623
624   elfsym = (elf_symbol_type *) asym;
625   if (elfsym->internal_elf_sym.st_info
626       == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
627     {
628       asym->flags |= BSF_GLOBAL;
629     }
630 }
631
632 \f
633 /* Functions for dealing with the e_flags field.  */
634
635 /* Merge backend specific data from an object file to the output
636    object file when linking.  */
637
638 static bfd_boolean
639 elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
640 {
641   bfd_boolean error;
642   flagword new_flags, old_flags;
643   int new_mm, old_mm;
644
645   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
646       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
647     return TRUE;
648
649   new_flags = elf_elfheader (ibfd)->e_flags;
650   old_flags = elf_elfheader (obfd)->e_flags;
651
652   if (!elf_flags_init (obfd))   /* First call, no flags set */
653     {
654       elf_flags_init (obfd) = TRUE;
655       elf_elfheader (obfd)->e_flags = new_flags;
656     }
657
658   else if (new_flags == old_flags)      /* Compatible flags are ok */
659     ;
660
661   else                                  /* Incompatible flags */
662     {
663       error = FALSE;
664
665 #define EF_SPARC_ISA_EXTENSIONS \
666   (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
667
668       if ((ibfd->flags & DYNAMIC) != 0)
669         {
670           /* We don't want dynamic objects memory ordering and
671              architecture to have any role. That's what dynamic linker
672              should do.  */
673           new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
674           new_flags |= (old_flags
675                         & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
676         }
677       else
678         {
679           /* Choose the highest architecture requirements.  */
680           old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
681           new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
682           if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
683               && (old_flags & EF_SPARC_HAL_R1))
684             {
685               error = TRUE;
686               (*_bfd_error_handler)
687                 (_("%B: linking UltraSPARC specific with HAL specific code"),
688                  ibfd);
689             }
690           /* Choose the most restrictive memory ordering.  */
691           old_mm = (old_flags & EF_SPARCV9_MM);
692           new_mm = (new_flags & EF_SPARCV9_MM);
693           old_flags &= ~EF_SPARCV9_MM;
694           new_flags &= ~EF_SPARCV9_MM;
695           if (new_mm < old_mm)
696             old_mm = new_mm;
697           old_flags |= old_mm;
698           new_flags |= old_mm;
699         }
700
701       /* Warn about any other mismatches */
702       if (new_flags != old_flags)
703         {
704           error = TRUE;
705           (*_bfd_error_handler)
706             (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
707              ibfd, (long) new_flags, (long) old_flags);
708         }
709
710       elf_elfheader (obfd)->e_flags = old_flags;
711
712       if (error)
713         {
714           bfd_set_error (bfd_error_bad_value);
715           return FALSE;
716         }
717     }
718   return _bfd_sparc_elf_merge_private_bfd_data (ibfd, obfd);
719 }
720
721 /* MARCO: Set the correct entry size for the .stab section.  */
722
723 static bfd_boolean
724 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
725                            Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
726                            asection *sec)
727 {
728   const char *name;
729
730   name = bfd_get_section_name (abfd, sec);
731
732   if (strcmp (name, ".stab") == 0)
733     {
734       /* Even in the 64bit case the stab entries are only 12 bytes long.  */
735       elf_section_data (sec)->this_hdr.sh_entsize = 12;
736     }
737
738   return TRUE;
739 }
740 \f
741 /* Print a STT_REGISTER symbol to file FILE.  */
742
743 static const char *
744 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, void * filep,
745                               asymbol *symbol)
746 {
747   FILE *file = (FILE *) filep;
748   int reg, type;
749
750   if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
751       != STT_REGISTER)
752     return NULL;
753
754   reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
755   type = symbol->flags;
756   fprintf (file, "REG_%c%c%11s%c%c    R", "GOLI" [reg / 8], '0' + (reg & 7), "",
757                  ((type & BSF_LOCAL)
758                   ? (type & BSF_GLOBAL) ? '!' : 'l'
759                   : (type & BSF_GLOBAL) ? 'g' : ' '),
760                  (type & BSF_WEAK) ? 'w' : ' ');
761   if (symbol->name == NULL || symbol->name [0] == '\0')
762     return "#scratch";
763   else
764     return symbol->name;
765 }
766 \f
767 static enum elf_reloc_type_class
768 elf64_sparc_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
769                               const asection *rel_sec ATTRIBUTE_UNUSED,
770                               const Elf_Internal_Rela *rela)
771 {
772   switch ((int) ELF64_R_TYPE (rela->r_info))
773     {
774     case R_SPARC_RELATIVE:
775       return reloc_class_relative;
776     case R_SPARC_JMP_SLOT:
777       return reloc_class_plt;
778     case R_SPARC_COPY:
779       return reloc_class_copy;
780     default:
781       return reloc_class_normal;
782     }
783 }
784
785 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
786    standard ELF, because R_SPARC_OLO10 has secondary addend in
787    ELF64_R_TYPE_DATA field.  This structure is used to redirect the
788    relocation handling routines.  */
789
790 const struct elf_size_info elf64_sparc_size_info =
791 {
792   sizeof (Elf64_External_Ehdr),
793   sizeof (Elf64_External_Phdr),
794   sizeof (Elf64_External_Shdr),
795   sizeof (Elf64_External_Rel),
796   sizeof (Elf64_External_Rela),
797   sizeof (Elf64_External_Sym),
798   sizeof (Elf64_External_Dyn),
799   sizeof (Elf_External_Note),
800   4,            /* hash-table entry size.  */
801   /* Internal relocations per external relocations.
802      For link purposes we use just 1 internal per
803      1 external, for assembly and slurp symbol table
804      we use 2.  */
805   1,
806   64,           /* arch_size.  */
807   3,            /* log_file_align.  */
808   ELFCLASS64,
809   EV_CURRENT,
810   bfd_elf64_write_out_phdrs,
811   bfd_elf64_write_shdrs_and_ehdr,
812   bfd_elf64_checksum_contents,
813   elf64_sparc_write_relocs,
814   bfd_elf64_swap_symbol_in,
815   bfd_elf64_swap_symbol_out,
816   elf64_sparc_slurp_reloc_table,
817   bfd_elf64_slurp_symbol_table,
818   bfd_elf64_swap_dyn_in,
819   bfd_elf64_swap_dyn_out,
820   bfd_elf64_swap_reloc_in,
821   bfd_elf64_swap_reloc_out,
822   bfd_elf64_swap_reloca_in,
823   bfd_elf64_swap_reloca_out
824 };
825
826 #define TARGET_BIG_SYM  sparc_elf64_vec
827 #define TARGET_BIG_NAME "elf64-sparc"
828 #define ELF_ARCH        bfd_arch_sparc
829 #define ELF_MAXPAGESIZE 0x100000
830 #define ELF_COMMONPAGESIZE 0x2000
831
832 /* This is the official ABI value.  */
833 #define ELF_MACHINE_CODE EM_SPARCV9
834
835 /* This is the value that we used before the ABI was released.  */
836 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
837
838 #define elf_backend_reloc_type_class \
839   elf64_sparc_reloc_type_class
840 #define bfd_elf64_get_reloc_upper_bound \
841   elf64_sparc_get_reloc_upper_bound
842 #define bfd_elf64_get_dynamic_reloc_upper_bound \
843   elf64_sparc_get_dynamic_reloc_upper_bound
844 #define bfd_elf64_canonicalize_reloc \
845   elf64_sparc_canonicalize_reloc
846 #define bfd_elf64_canonicalize_dynamic_reloc \
847   elf64_sparc_canonicalize_dynamic_reloc
848 #define elf_backend_add_symbol_hook \
849   elf64_sparc_add_symbol_hook
850 #define elf_backend_get_symbol_type \
851   elf64_sparc_get_symbol_type
852 #define elf_backend_symbol_processing \
853   elf64_sparc_symbol_processing
854 #define elf_backend_print_symbol_all \
855   elf64_sparc_print_symbol_all
856 #define elf_backend_output_arch_syms \
857   elf64_sparc_output_arch_syms
858 #define bfd_elf64_bfd_merge_private_bfd_data \
859   elf64_sparc_merge_private_bfd_data
860 #define elf_backend_fake_sections \
861   elf64_sparc_fake_sections
862 #define elf_backend_size_info \
863   elf64_sparc_size_info
864
865 #define elf_backend_plt_sym_val \
866   _bfd_sparc_elf_plt_sym_val
867 #define bfd_elf64_bfd_link_hash_table_create \
868   _bfd_sparc_elf_link_hash_table_create
869 #define elf_info_to_howto \
870   _bfd_sparc_elf_info_to_howto
871 #define elf_backend_copy_indirect_symbol \
872   _bfd_sparc_elf_copy_indirect_symbol
873 #define bfd_elf64_bfd_reloc_type_lookup \
874   _bfd_sparc_elf_reloc_type_lookup
875 #define bfd_elf64_bfd_reloc_name_lookup \
876   _bfd_sparc_elf_reloc_name_lookup
877 #define bfd_elf64_bfd_relax_section \
878   _bfd_sparc_elf_relax_section
879 #define bfd_elf64_new_section_hook \
880   _bfd_sparc_elf_new_section_hook
881
882 #define elf_backend_create_dynamic_sections \
883   _bfd_sparc_elf_create_dynamic_sections
884 #define elf_backend_relocs_compatible \
885   _bfd_elf_relocs_compatible
886 #define elf_backend_check_relocs \
887   _bfd_sparc_elf_check_relocs
888 #define elf_backend_adjust_dynamic_symbol \
889   _bfd_sparc_elf_adjust_dynamic_symbol
890 #define elf_backend_omit_section_dynsym \
891   _bfd_sparc_elf_omit_section_dynsym
892 #define elf_backend_size_dynamic_sections \
893   _bfd_sparc_elf_size_dynamic_sections
894 #define elf_backend_relocate_section \
895   _bfd_sparc_elf_relocate_section
896 #define elf_backend_finish_dynamic_symbol \
897   _bfd_sparc_elf_finish_dynamic_symbol
898 #define elf_backend_finish_dynamic_sections \
899   _bfd_sparc_elf_finish_dynamic_sections
900
901 #define bfd_elf64_mkobject \
902   _bfd_sparc_elf_mkobject
903 #define elf_backend_object_p \
904   _bfd_sparc_elf_object_p
905 #define elf_backend_gc_mark_hook \
906   _bfd_sparc_elf_gc_mark_hook
907 #define elf_backend_gc_sweep_hook \
908   _bfd_sparc_elf_gc_sweep_hook
909 #define elf_backend_init_index_section \
910   _bfd_elf_init_1_index_section
911
912 #define elf_backend_can_gc_sections 1
913 #define elf_backend_can_refcount 1
914 #define elf_backend_want_got_plt 0
915 #define elf_backend_plt_readonly 0
916 #define elf_backend_want_plt_sym 1
917 #define elf_backend_got_header_size 8
918 #define elf_backend_rela_normal 1
919
920 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table.  */
921 #define elf_backend_plt_alignment 8
922
923 #include "elf64-target.h"
924
925 /* FreeBSD support */
926 #undef  TARGET_BIG_SYM
927 #define TARGET_BIG_SYM sparc_elf64_fbsd_vec
928 #undef  TARGET_BIG_NAME
929 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
930 #undef  ELF_OSABI
931 #define ELF_OSABI ELFOSABI_FREEBSD
932
933 #undef  elf64_bed
934 #define elf64_bed                               elf64_sparc_fbsd_bed
935
936 #include "elf64-target.h"
937
938 /* Solaris 2.  */
939
940 #undef  TARGET_BIG_SYM
941 #define TARGET_BIG_SYM                          sparc_elf64_sol2_vec
942 #undef  TARGET_BIG_NAME
943 #define TARGET_BIG_NAME                         "elf64-sparc-sol2"
944
945 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
946    objects won't be recognized.  */
947 #undef  ELF_OSABI
948
949 #undef elf64_bed
950 #define elf64_bed                               elf64_sparc_sol2_bed
951
952 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
953    boundary.  */
954 #undef elf_backend_static_tls_alignment
955 #define elf_backend_static_tls_alignment        16
956
957 #include "elf64-target.h"