1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 #include "opcode/sparc.h"
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
32 #include "elf/sparc.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
54 static bfd_boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static bfd_boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63 static bfd_boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
65 const char **, flagword *, asection **, bfd_vma *));
66 static bfd_boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 bfd_boolean (*) (PTR, const char *, Elf_Internal_Sym *,
69 asection *, struct elf_link_hash_entry *)));
70 static void sparc64_elf_symbol_processing
71 PARAMS ((bfd *, asymbol *));
73 static bfd_boolean sparc64_elf_merge_private_bfd_data
74 PARAMS ((bfd *, bfd *));
76 static bfd_boolean sparc64_elf_fake_sections
77 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
79 static const char *sparc64_elf_print_symbol_all
80 PARAMS ((bfd *, PTR, asymbol *));
81 static bfd_boolean sparc64_elf_new_section_hook
82 PARAMS ((bfd *, asection *));
83 static bfd_boolean sparc64_elf_relax_section
84 PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
85 static bfd_boolean sparc64_elf_relocate_section
86 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
87 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
88 static bfd_boolean sparc64_elf_finish_dynamic_symbol
89 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
91 static bfd_boolean sparc64_elf_finish_dynamic_sections
92 PARAMS ((bfd *, struct bfd_link_info *));
93 static bfd_boolean sparc64_elf_object_p PARAMS ((bfd *));
94 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
95 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
96 static bfd_boolean sparc64_elf_slurp_one_reloc_table
97 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, bfd_boolean));
98 static bfd_boolean sparc64_elf_slurp_reloc_table
99 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
100 static long sparc64_elf_canonicalize_reloc
101 PARAMS ((bfd *, asection *, arelent **, asymbol **));
102 static long sparc64_elf_canonicalize_dynamic_reloc
103 PARAMS ((bfd *, arelent **, asymbol **));
104 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
105 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
106 PARAMS ((const Elf_Internal_Rela *));
108 /* The relocation "howto" table. */
110 static bfd_reloc_status_type sparc_elf_notsup_reloc
111 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
112 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
113 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
114 static bfd_reloc_status_type sparc_elf_hix22_reloc
115 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
116 static bfd_reloc_status_type sparc_elf_lox10_reloc
117 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
119 static reloc_howto_type sparc64_elf_howto_table[] =
121 HOWTO(R_SPARC_NONE, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", FALSE,0,0x00000000,TRUE),
122 HOWTO(R_SPARC_8, 0,0, 8,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", FALSE,0,0x000000ff,TRUE),
123 HOWTO(R_SPARC_16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", FALSE,0,0x0000ffff,TRUE),
124 HOWTO(R_SPARC_32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", FALSE,0,0xffffffff,TRUE),
125 HOWTO(R_SPARC_DISP8, 0,0, 8,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", FALSE,0,0x000000ff,TRUE),
126 HOWTO(R_SPARC_DISP16, 0,1,16,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", FALSE,0,0x0000ffff,TRUE),
127 HOWTO(R_SPARC_DISP32, 0,2,32,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", FALSE,0,0xffffffff,TRUE),
128 HOWTO(R_SPARC_WDISP30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", FALSE,0,0x3fffffff,TRUE),
129 HOWTO(R_SPARC_WDISP22, 2,2,22,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", FALSE,0,0x003fffff,TRUE),
130 HOWTO(R_SPARC_HI22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", FALSE,0,0x003fffff,TRUE),
131 HOWTO(R_SPARC_22, 0,2,22,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", FALSE,0,0x003fffff,TRUE),
132 HOWTO(R_SPARC_13, 0,2,13,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", FALSE,0,0x00001fff,TRUE),
133 HOWTO(R_SPARC_LO10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", FALSE,0,0x000003ff,TRUE),
134 HOWTO(R_SPARC_GOT10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", FALSE,0,0x000003ff,TRUE),
135 HOWTO(R_SPARC_GOT13, 0,2,13,FALSE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", FALSE,0,0x00001fff,TRUE),
136 HOWTO(R_SPARC_GOT22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", FALSE,0,0x003fffff,TRUE),
137 HOWTO(R_SPARC_PC10, 0,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", FALSE,0,0x000003ff,TRUE),
138 HOWTO(R_SPARC_PC22, 10,2,22,TRUE, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", FALSE,0,0x003fffff,TRUE),
139 HOWTO(R_SPARC_WPLT30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", FALSE,0,0x3fffffff,TRUE),
140 HOWTO(R_SPARC_COPY, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", FALSE,0,0x00000000,TRUE),
141 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",FALSE,0,0x00000000,TRUE),
142 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",FALSE,0,0x00000000,TRUE),
143 HOWTO(R_SPARC_RELATIVE, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",FALSE,0,0x00000000,TRUE),
144 HOWTO(R_SPARC_UA32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", FALSE,0,0xffffffff,TRUE),
145 #ifndef SPARC64_OLD_RELOCS
146 HOWTO(R_SPARC_PLT32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", FALSE,0,0xffffffff,TRUE),
147 /* These aren't implemented yet. */
148 HOWTO(R_SPARC_HIPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", FALSE,0,0x00000000,TRUE),
149 HOWTO(R_SPARC_LOPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", FALSE,0,0x00000000,TRUE),
150 HOWTO(R_SPARC_PCPLT32, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", FALSE,0,0x00000000,TRUE),
151 HOWTO(R_SPARC_PCPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", FALSE,0,0x00000000,TRUE),
152 HOWTO(R_SPARC_PCPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", FALSE,0,0x00000000,TRUE),
154 HOWTO(R_SPARC_10, 0,2,10,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", FALSE,0,0x000003ff,TRUE),
155 HOWTO(R_SPARC_11, 0,2,11,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", FALSE,0,0x000007ff,TRUE),
156 HOWTO(R_SPARC_64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", FALSE,0,MINUS_ONE, TRUE),
157 HOWTO(R_SPARC_OLO10, 0,2,13,FALSE,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", FALSE,0,0x00001fff,TRUE),
158 HOWTO(R_SPARC_HH22, 42,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", FALSE,0,0x003fffff,TRUE),
159 HOWTO(R_SPARC_HM10, 32,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", FALSE,0,0x000003ff,TRUE),
160 HOWTO(R_SPARC_LM22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", FALSE,0,0x003fffff,TRUE),
161 HOWTO(R_SPARC_PC_HH22, 42,2,22,TRUE, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", FALSE,0,0x003fffff,TRUE),
162 HOWTO(R_SPARC_PC_HM10, 32,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", FALSE,0,0x000003ff,TRUE),
163 HOWTO(R_SPARC_PC_LM22, 10,2,22,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", FALSE,0,0x003fffff,TRUE),
164 HOWTO(R_SPARC_WDISP16, 2,2,16,TRUE, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", FALSE,0,0x00000000,TRUE),
165 HOWTO(R_SPARC_WDISP19, 2,2,19,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", FALSE,0,0x0007ffff,TRUE),
166 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",FALSE,0,0x00000000,TRUE),
167 HOWTO(R_SPARC_7, 0,2, 7,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", FALSE,0,0x0000007f,TRUE),
168 HOWTO(R_SPARC_5, 0,2, 5,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", FALSE,0,0x0000001f,TRUE),
169 HOWTO(R_SPARC_6, 0,2, 6,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", FALSE,0,0x0000003f,TRUE),
170 HOWTO(R_SPARC_DISP64, 0,4,64,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", FALSE,0,MINUS_ONE, TRUE),
171 HOWTO(R_SPARC_PLT64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", FALSE,0,MINUS_ONE, TRUE),
172 HOWTO(R_SPARC_HIX22, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", FALSE,0,MINUS_ONE, FALSE),
173 HOWTO(R_SPARC_LOX10, 0,4, 0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", FALSE,0,MINUS_ONE, FALSE),
174 HOWTO(R_SPARC_H44, 22,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", FALSE,0,0x003fffff,FALSE),
175 HOWTO(R_SPARC_M44, 12,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", FALSE,0,0x000003ff,FALSE),
176 HOWTO(R_SPARC_L44, 0,2,13,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", FALSE,0,0x00000fff,FALSE),
177 HOWTO(R_SPARC_REGISTER, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",FALSE,0,MINUS_ONE, FALSE),
178 HOWTO(R_SPARC_UA64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", FALSE,0,MINUS_ONE, TRUE),
179 HOWTO(R_SPARC_UA16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", FALSE,0,0x0000ffff,TRUE),
180 HOWTO(R_SPARC_TLS_GD_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_HI22",FALSE,0,0x003fffff,TRUE),
181 HOWTO(R_SPARC_TLS_GD_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_LO10",FALSE,0,0x000003ff,TRUE),
182 HOWTO(R_SPARC_TLS_GD_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_ADD",FALSE,0,0x00000000,TRUE),
183 HOWTO(R_SPARC_TLS_GD_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_CALL",FALSE,0,0x3fffffff,TRUE),
184 HOWTO(R_SPARC_TLS_LDM_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_HI22",FALSE,0,0x003fffff,TRUE),
185 HOWTO(R_SPARC_TLS_LDM_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_LO10",FALSE,0,0x000003ff,TRUE),
186 HOWTO(R_SPARC_TLS_LDM_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_ADD",FALSE,0,0x00000000,TRUE),
187 HOWTO(R_SPARC_TLS_LDM_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_CALL",FALSE,0,0x3fffffff,TRUE),
188 HOWTO(R_SPARC_TLS_LDO_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_TLS_LDO_HIX22",FALSE,0,0x003fffff, FALSE),
189 HOWTO(R_SPARC_TLS_LDO_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LDO_LOX10",FALSE,0,0x000003ff, FALSE),
190 HOWTO(R_SPARC_TLS_LDO_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDO_ADD",FALSE,0,0x00000000,TRUE),
191 HOWTO(R_SPARC_TLS_IE_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_HI22",FALSE,0,0x003fffff,TRUE),
192 HOWTO(R_SPARC_TLS_IE_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LO10",FALSE,0,0x000003ff,TRUE),
193 HOWTO(R_SPARC_TLS_IE_LD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LD",FALSE,0,0x00000000,TRUE),
194 HOWTO(R_SPARC_TLS_IE_LDX,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LDX",FALSE,0,0x00000000,TRUE),
195 HOWTO(R_SPARC_TLS_IE_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_ADD",FALSE,0,0x00000000,TRUE),
196 HOWTO(R_SPARC_TLS_LE_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_TLS_LE_HIX22",FALSE,0,0x003fffff, FALSE),
197 HOWTO(R_SPARC_TLS_LE_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LE_LOX10",FALSE,0,0x000003ff, FALSE),
198 HOWTO(R_SPARC_TLS_DTPMOD32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD32",FALSE,0,0x00000000,TRUE),
199 HOWTO(R_SPARC_TLS_DTPMOD64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD64",FALSE,0,0x00000000,TRUE),
200 HOWTO(R_SPARC_TLS_DTPOFF32,0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF32",FALSE,0,0xffffffff,TRUE),
201 HOWTO(R_SPARC_TLS_DTPOFF64,0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF64",FALSE,0,MINUS_ONE,TRUE),
202 HOWTO(R_SPARC_TLS_TPOFF32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF32",FALSE,0,0x00000000,TRUE),
203 HOWTO(R_SPARC_TLS_TPOFF64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF64",FALSE,0,0x00000000,TRUE)
206 struct elf_reloc_map {
207 bfd_reloc_code_real_type bfd_reloc_val;
208 unsigned char elf_reloc_val;
211 static const struct elf_reloc_map sparc_reloc_map[] =
213 { BFD_RELOC_NONE, R_SPARC_NONE, },
214 { BFD_RELOC_16, R_SPARC_16, },
215 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
216 { BFD_RELOC_8, R_SPARC_8 },
217 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
218 { BFD_RELOC_CTOR, R_SPARC_64 },
219 { BFD_RELOC_32, R_SPARC_32 },
220 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
221 { BFD_RELOC_HI22, R_SPARC_HI22 },
222 { BFD_RELOC_LO10, R_SPARC_LO10, },
223 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
224 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
225 { BFD_RELOC_SPARC22, R_SPARC_22 },
226 { BFD_RELOC_SPARC13, R_SPARC_13 },
227 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
228 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
229 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
230 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
231 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
232 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
233 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
234 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
235 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
236 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
237 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
238 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
239 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
240 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
241 { BFD_RELOC_SPARC_10, R_SPARC_10 },
242 { BFD_RELOC_SPARC_11, R_SPARC_11 },
243 { BFD_RELOC_SPARC_64, R_SPARC_64 },
244 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
245 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
246 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
247 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
248 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
249 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
250 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
251 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
252 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
253 { BFD_RELOC_SPARC_7, R_SPARC_7 },
254 { BFD_RELOC_SPARC_5, R_SPARC_5 },
255 { BFD_RELOC_SPARC_6, R_SPARC_6 },
256 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
257 { BFD_RELOC_SPARC_TLS_GD_HI22, R_SPARC_TLS_GD_HI22 },
258 { BFD_RELOC_SPARC_TLS_GD_LO10, R_SPARC_TLS_GD_LO10 },
259 { BFD_RELOC_SPARC_TLS_GD_ADD, R_SPARC_TLS_GD_ADD },
260 { BFD_RELOC_SPARC_TLS_GD_CALL, R_SPARC_TLS_GD_CALL },
261 { BFD_RELOC_SPARC_TLS_LDM_HI22, R_SPARC_TLS_LDM_HI22 },
262 { BFD_RELOC_SPARC_TLS_LDM_LO10, R_SPARC_TLS_LDM_LO10 },
263 { BFD_RELOC_SPARC_TLS_LDM_ADD, R_SPARC_TLS_LDM_ADD },
264 { BFD_RELOC_SPARC_TLS_LDM_CALL, R_SPARC_TLS_LDM_CALL },
265 { BFD_RELOC_SPARC_TLS_LDO_HIX22, R_SPARC_TLS_LDO_HIX22 },
266 { BFD_RELOC_SPARC_TLS_LDO_LOX10, R_SPARC_TLS_LDO_LOX10 },
267 { BFD_RELOC_SPARC_TLS_LDO_ADD, R_SPARC_TLS_LDO_ADD },
268 { BFD_RELOC_SPARC_TLS_IE_HI22, R_SPARC_TLS_IE_HI22 },
269 { BFD_RELOC_SPARC_TLS_IE_LO10, R_SPARC_TLS_IE_LO10 },
270 { BFD_RELOC_SPARC_TLS_IE_LD, R_SPARC_TLS_IE_LD },
271 { BFD_RELOC_SPARC_TLS_IE_LDX, R_SPARC_TLS_IE_LDX },
272 { BFD_RELOC_SPARC_TLS_IE_ADD, R_SPARC_TLS_IE_ADD },
273 { BFD_RELOC_SPARC_TLS_LE_HIX22, R_SPARC_TLS_LE_HIX22 },
274 { BFD_RELOC_SPARC_TLS_LE_LOX10, R_SPARC_TLS_LE_LOX10 },
275 { BFD_RELOC_SPARC_TLS_DTPMOD32, R_SPARC_TLS_DTPMOD32 },
276 { BFD_RELOC_SPARC_TLS_DTPMOD64, R_SPARC_TLS_DTPMOD64 },
277 { BFD_RELOC_SPARC_TLS_DTPOFF32, R_SPARC_TLS_DTPOFF32 },
278 { BFD_RELOC_SPARC_TLS_DTPOFF64, R_SPARC_TLS_DTPOFF64 },
279 { BFD_RELOC_SPARC_TLS_TPOFF32, R_SPARC_TLS_TPOFF32 },
280 { BFD_RELOC_SPARC_TLS_TPOFF64, R_SPARC_TLS_TPOFF64 },
281 #ifndef SPARC64_OLD_RELOCS
282 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
284 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
285 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
286 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
287 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
288 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
289 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
290 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
293 static reloc_howto_type *
294 sparc64_elf_reloc_type_lookup (abfd, code)
295 bfd *abfd ATTRIBUTE_UNUSED;
296 bfd_reloc_code_real_type code;
299 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
301 if (sparc_reloc_map[i].bfd_reloc_val == code)
302 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
308 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
309 bfd *abfd ATTRIBUTE_UNUSED;
311 Elf_Internal_Rela *dst;
313 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
314 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
317 struct sparc64_elf_section_data
319 struct bfd_elf_section_data elf;
320 unsigned int do_relax, reloc_count;
323 #define sec_do_relax(sec) \
324 ((struct sparc64_elf_section_data *) elf_section_data (sec))->do_relax
325 #define canon_reloc_count(sec) \
326 ((struct sparc64_elf_section_data *) elf_section_data (sec))->reloc_count
328 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
329 section can represent up to two relocs, we must tell the user to allocate
333 sparc64_elf_get_reloc_upper_bound (abfd, sec)
334 bfd *abfd ATTRIBUTE_UNUSED;
337 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
341 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
344 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
347 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
348 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
349 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
350 for the same location, R_SPARC_LO10 and R_SPARC_13. */
353 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
356 Elf_Internal_Shdr *rel_hdr;
360 PTR allocated = NULL;
361 bfd_byte *native_relocs;
368 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
369 if (allocated == NULL)
372 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
373 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
376 native_relocs = (bfd_byte *) allocated;
378 relents = asect->relocation + canon_reloc_count (asect);
380 entsize = rel_hdr->sh_entsize;
381 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
383 count = rel_hdr->sh_size / entsize;
385 for (i = 0, relent = relents; i < count;
386 i++, relent++, native_relocs += entsize)
388 Elf_Internal_Rela rela;
390 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
392 /* The address of an ELF reloc is section relative for an object
393 file, and absolute for an executable file or shared library.
394 The address of a normal BFD reloc is always section relative,
395 and the address of a dynamic reloc is absolute.. */
396 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
397 relent->address = rela.r_offset;
399 relent->address = rela.r_offset - asect->vma;
401 if (ELF64_R_SYM (rela.r_info) == 0)
402 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
407 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
410 /* Canonicalize ELF section symbols. FIXME: Why? */
411 if ((s->flags & BSF_SECTION_SYM) == 0)
412 relent->sym_ptr_ptr = ps;
414 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
417 relent->addend = rela.r_addend;
419 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
420 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
422 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
423 relent[1].address = relent->address;
425 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
426 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
427 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
430 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
433 canon_reloc_count (asect) += relent - relents;
435 if (allocated != NULL)
441 if (allocated != NULL)
446 /* Read in and swap the external relocs. */
449 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
455 struct bfd_elf_section_data * const d = elf_section_data (asect);
456 Elf_Internal_Shdr *rel_hdr;
457 Elf_Internal_Shdr *rel_hdr2;
460 if (asect->relocation != NULL)
465 if ((asect->flags & SEC_RELOC) == 0
466 || asect->reloc_count == 0)
469 rel_hdr = &d->rel_hdr;
470 rel_hdr2 = d->rel_hdr2;
472 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
473 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
477 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
478 case because relocations against this section may use the
479 dynamic symbol table, and in that case bfd_section_from_shdr
480 in elf.c does not update the RELOC_COUNT. */
481 if (asect->size == 0)
484 rel_hdr = &d->this_hdr;
485 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
489 amt = asect->reloc_count;
490 amt *= 2 * sizeof (arelent);
491 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
492 if (asect->relocation == NULL)
495 /* The sparc64_elf_slurp_one_reloc_table routine increments
496 canon_reloc_count. */
497 canon_reloc_count (asect) = 0;
499 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
504 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
511 /* Canonicalize the relocs. */
514 sparc64_elf_canonicalize_reloc (abfd, section, relptr, symbols)
522 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
524 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
527 tblptr = section->relocation;
528 for (i = 0; i < canon_reloc_count (section); i++)
529 *relptr++ = tblptr++;
533 return canon_reloc_count (section);
537 /* Canonicalize the dynamic relocation entries. Note that we return
538 the dynamic relocations as a single block, although they are
539 actually associated with particular sections; the interface, which
540 was designed for SunOS style shared libraries, expects that there
541 is only one set of dynamic relocs. Any section that was actually
542 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
543 the dynamic symbol table, is considered to be a dynamic reloc
547 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
555 if (elf_dynsymtab (abfd) == 0)
557 bfd_set_error (bfd_error_invalid_operation);
562 for (s = abfd->sections; s != NULL; s = s->next)
564 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
565 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
570 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, TRUE))
572 count = canon_reloc_count (s);
574 for (i = 0; i < count; i++)
585 /* Write out the relocs. */
588 sparc64_elf_write_relocs (abfd, sec, data)
593 bfd_boolean *failedp = (bfd_boolean *) data;
594 Elf_Internal_Shdr *rela_hdr;
595 Elf64_External_Rela *outbound_relocas, *src_rela;
596 unsigned int idx, count;
597 asymbol *last_sym = 0;
598 int last_sym_idx = 0;
600 /* If we have already failed, don't do anything. */
604 if ((sec->flags & SEC_RELOC) == 0)
607 /* The linker backend writes the relocs out itself, and sets the
608 reloc_count field to zero to inhibit writing them here. Also,
609 sometimes the SEC_RELOC flag gets set even when there aren't any
611 if (sec->reloc_count == 0)
614 /* We can combine two relocs that refer to the same address
615 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
616 latter is R_SPARC_13 with no associated symbol. */
618 for (idx = 0; idx < sec->reloc_count; idx++)
624 addr = sec->orelocation[idx]->address;
625 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
626 && idx < sec->reloc_count - 1)
628 arelent *r = sec->orelocation[idx + 1];
630 if (r->howto->type == R_SPARC_13
631 && r->address == addr
632 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
633 && (*r->sym_ptr_ptr)->value == 0)
638 rela_hdr = &elf_section_data (sec)->rel_hdr;
640 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
641 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
642 if (rela_hdr->contents == NULL)
648 /* Figure out whether the relocations are RELA or REL relocations. */
649 if (rela_hdr->sh_type != SHT_RELA)
652 /* orelocation has the data, reloc_count has the count... */
653 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
654 src_rela = outbound_relocas;
656 for (idx = 0; idx < sec->reloc_count; idx++)
658 Elf_Internal_Rela dst_rela;
663 ptr = sec->orelocation[idx];
665 /* The address of an ELF reloc is section relative for an object
666 file, and absolute for an executable file or shared library.
667 The address of a BFD reloc is always section relative. */
668 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
669 dst_rela.r_offset = ptr->address;
671 dst_rela.r_offset = ptr->address + sec->vma;
673 sym = *ptr->sym_ptr_ptr;
676 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
681 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
690 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
691 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
692 && ! _bfd_elf_validate_reloc (abfd, ptr))
698 if (ptr->howto->type == R_SPARC_LO10
699 && idx < sec->reloc_count - 1)
701 arelent *r = sec->orelocation[idx + 1];
703 if (r->howto->type == R_SPARC_13
704 && r->address == ptr->address
705 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
706 && (*r->sym_ptr_ptr)->value == 0)
710 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
714 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
717 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
719 dst_rela.r_addend = ptr->addend;
720 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
725 /* Sparc64 ELF linker hash table. */
727 struct sparc64_elf_app_reg
730 unsigned short shndx;
735 struct sparc64_elf_link_hash_table
737 struct elf_link_hash_table root;
739 struct sparc64_elf_app_reg app_regs [4];
742 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
744 #define sparc64_elf_hash_table(p) \
745 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
747 /* Create a Sparc64 ELF linker hash table. */
749 static struct bfd_link_hash_table *
750 sparc64_elf_bfd_link_hash_table_create (abfd)
753 struct sparc64_elf_link_hash_table *ret;
754 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
756 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
757 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
760 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
761 _bfd_elf_link_hash_newfunc))
767 return &ret->root.root;
770 /* Utility for performing the standard initial work of an instruction
772 *PRELOCATION will contain the relocated item.
773 *PINSN will contain the instruction from the input stream.
774 If the result is `bfd_reloc_other' the caller can continue with
775 performing the relocation. Otherwise it must stop and return the
776 value to its caller. */
778 static bfd_reloc_status_type
779 init_insn_reloc (abfd,
788 arelent *reloc_entry;
791 asection *input_section;
793 bfd_vma *prelocation;
798 reloc_howto_type *howto = reloc_entry->howto;
800 if (output_bfd != (bfd *) NULL
801 && (symbol->flags & BSF_SECTION_SYM) == 0
802 && (! howto->partial_inplace
803 || reloc_entry->addend == 0))
805 reloc_entry->address += input_section->output_offset;
809 /* This works because partial_inplace is FALSE. */
810 if (output_bfd != NULL)
811 return bfd_reloc_continue;
813 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
814 if (reloc_entry->address > sz)
815 return bfd_reloc_outofrange;
817 relocation = (symbol->value
818 + symbol->section->output_section->vma
819 + symbol->section->output_offset);
820 relocation += reloc_entry->addend;
821 if (howto->pc_relative)
823 relocation -= (input_section->output_section->vma
824 + input_section->output_offset);
825 relocation -= reloc_entry->address;
828 *prelocation = relocation;
829 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
830 return bfd_reloc_other;
833 /* For unsupported relocs. */
835 static bfd_reloc_status_type
836 sparc_elf_notsup_reloc (abfd,
843 bfd *abfd ATTRIBUTE_UNUSED;
844 arelent *reloc_entry ATTRIBUTE_UNUSED;
845 asymbol *symbol ATTRIBUTE_UNUSED;
846 PTR data ATTRIBUTE_UNUSED;
847 asection *input_section ATTRIBUTE_UNUSED;
848 bfd *output_bfd ATTRIBUTE_UNUSED;
849 char **error_message ATTRIBUTE_UNUSED;
851 return bfd_reloc_notsupported;
854 /* Handle the WDISP16 reloc. */
856 static bfd_reloc_status_type
857 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
858 output_bfd, error_message)
860 arelent *reloc_entry;
863 asection *input_section;
865 char **error_message ATTRIBUTE_UNUSED;
869 bfd_reloc_status_type status;
871 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
872 input_section, output_bfd, &relocation, &insn);
873 if (status != bfd_reloc_other)
876 insn &= ~ (bfd_vma) 0x303fff;
877 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
878 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
880 if ((bfd_signed_vma) relocation < - 0x40000
881 || (bfd_signed_vma) relocation > 0x3ffff)
882 return bfd_reloc_overflow;
887 /* Handle the HIX22 reloc. */
889 static bfd_reloc_status_type
890 sparc_elf_hix22_reloc (abfd,
898 arelent *reloc_entry;
901 asection *input_section;
903 char **error_message ATTRIBUTE_UNUSED;
907 bfd_reloc_status_type status;
909 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
910 input_section, output_bfd, &relocation, &insn);
911 if (status != bfd_reloc_other)
914 relocation ^= MINUS_ONE;
915 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
916 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
918 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
919 return bfd_reloc_overflow;
924 /* Handle the LOX10 reloc. */
926 static bfd_reloc_status_type
927 sparc_elf_lox10_reloc (abfd,
935 arelent *reloc_entry;
938 asection *input_section;
940 char **error_message ATTRIBUTE_UNUSED;
944 bfd_reloc_status_type status;
946 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
947 input_section, output_bfd, &relocation, &insn);
948 if (status != bfd_reloc_other)
951 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
952 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
959 /* Both the headers and the entries are icache aligned. */
960 #define PLT_ENTRY_SIZE 32
961 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
962 #define LARGE_PLT_THRESHOLD 32768
963 #define GOT_RESERVED_ENTRIES 1
965 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
967 /* Fill in the .plt section. */
970 sparc64_elf_build_plt (output_bfd, contents, nentries)
972 unsigned char *contents;
975 const unsigned int nop = 0x01000000;
978 /* The first four entries are reserved, and are initially undefined.
979 We fill them with `illtrap 0' to force ld.so to do something. */
981 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
982 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
984 /* The first 32768 entries are close enough to plt1 to get there via
985 a straight branch. */
987 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
989 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
990 unsigned int sethi, ba;
992 /* sethi (. - plt0), %g1 */
993 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
995 /* ba,a,pt %xcc, plt1 */
996 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
998 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
999 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
1000 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
1001 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
1002 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
1003 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
1004 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
1005 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
1008 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
1009 160: 160 entries and 160 pointers. This is to separate code from data,
1010 which is much friendlier on the cache. */
1012 for (; i < nentries; i += 160)
1014 int block = (i + 160 <= nentries ? 160 : nentries - i);
1015 for (j = 0; j < block; ++j)
1017 unsigned char *entry, *ptr;
1020 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
1021 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
1023 /* ldx [%o7 + ptr - (entry+4)], %g1 */
1024 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
1032 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
1033 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
1034 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
1035 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
1036 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
1037 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
1039 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
1044 /* Return the offset of a particular plt entry within the .plt section. */
1047 sparc64_elf_plt_entry_offset (index)
1052 if (index < LARGE_PLT_THRESHOLD)
1053 return index * PLT_ENTRY_SIZE;
1055 /* See above for details. */
1057 block = (index - LARGE_PLT_THRESHOLD) / 160;
1058 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
1060 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
1064 sparc64_elf_plt_ptr_offset (index, max)
1068 bfd_vma block, ofs, last;
1070 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
1072 /* See above for details. */
1074 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
1075 ofs = index - block;
1076 if (block + 160 > max)
1077 last = (max - LARGE_PLT_THRESHOLD) % 160;
1081 return (block * PLT_ENTRY_SIZE
1086 /* Look through the relocs for a section during the first phase, and
1087 allocate space in the global offset table or procedure linkage
1091 sparc64_elf_check_relocs (abfd, info, sec, relocs)
1093 struct bfd_link_info *info;
1095 const Elf_Internal_Rela *relocs;
1098 Elf_Internal_Shdr *symtab_hdr;
1099 struct elf_link_hash_entry **sym_hashes;
1100 bfd_vma *local_got_offsets;
1101 const Elf_Internal_Rela *rel;
1102 const Elf_Internal_Rela *rel_end;
1107 if (info->relocatable || !(sec->flags & SEC_ALLOC))
1110 dynobj = elf_hash_table (info)->dynobj;
1111 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1112 sym_hashes = elf_sym_hashes (abfd);
1113 local_got_offsets = elf_local_got_offsets (abfd);
1119 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1120 for (rel = relocs; rel < rel_end; rel++)
1122 unsigned long r_symndx;
1123 struct elf_link_hash_entry *h;
1125 r_symndx = ELF64_R_SYM (rel->r_info);
1126 if (r_symndx < symtab_hdr->sh_info)
1129 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1131 switch (ELF64_R_TYPE_ID (rel->r_info))
1136 /* This symbol requires a global offset table entry. */
1140 /* Create the .got section. */
1141 elf_hash_table (info)->dynobj = dynobj = abfd;
1142 if (! _bfd_elf_create_got_section (dynobj, info))
1148 sgot = bfd_get_section_by_name (dynobj, ".got");
1149 BFD_ASSERT (sgot != NULL);
1152 if (srelgot == NULL && (h != NULL || info->shared))
1154 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1155 if (srelgot == NULL)
1157 srelgot = bfd_make_section (dynobj, ".rela.got");
1159 || ! bfd_set_section_flags (dynobj, srelgot,
1164 | SEC_LINKER_CREATED
1166 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1173 if (h->got.offset != (bfd_vma) -1)
1175 /* We have already allocated space in the .got. */
1178 h->got.offset = sgot->size;
1180 /* Make sure this symbol is output as a dynamic symbol. */
1181 if (h->dynindx == -1)
1183 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1187 srelgot->size += sizeof (Elf64_External_Rela);
1191 /* This is a global offset table entry for a local
1193 if (local_got_offsets == NULL)
1196 register unsigned int i;
1198 size = symtab_hdr->sh_info;
1199 size *= sizeof (bfd_vma);
1200 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1201 if (local_got_offsets == NULL)
1203 elf_local_got_offsets (abfd) = local_got_offsets;
1204 for (i = 0; i < symtab_hdr->sh_info; i++)
1205 local_got_offsets[i] = (bfd_vma) -1;
1207 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1209 /* We have already allocated space in the .got. */
1212 local_got_offsets[r_symndx] = sgot->size;
1216 /* If we are generating a shared object, we need to
1217 output a R_SPARC_RELATIVE reloc so that the
1218 dynamic linker can adjust this GOT entry. */
1219 srelgot->size += sizeof (Elf64_External_Rela);
1226 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1227 unsigned numbers. If we permit ourselves to modify
1228 code so we get sethi/xor, this could work.
1229 Question: do we consider conditionally re-enabling
1230 this for -fpic, once we know about object code models? */
1231 /* If the .got section is more than 0x1000 bytes, we add
1232 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1233 bit relocations have a greater chance of working. */
1234 if (sgot->size >= 0x1000
1235 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1236 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1241 case R_SPARC_WPLT30:
1243 case R_SPARC_HIPLT22:
1244 case R_SPARC_LOPLT10:
1245 case R_SPARC_PCPLT32:
1246 case R_SPARC_PCPLT22:
1247 case R_SPARC_PCPLT10:
1249 /* This symbol requires a procedure linkage table entry. We
1250 actually build the entry in adjust_dynamic_symbol,
1251 because this might be a case of linking PIC code without
1252 linking in any dynamic objects, in which case we don't
1253 need to generate a procedure linkage table after all. */
1257 /* It does not make sense to have a procedure linkage
1258 table entry for a local symbol. */
1259 bfd_set_error (bfd_error_bad_value);
1263 /* Make sure this symbol is output as a dynamic symbol. */
1264 if (h->dynindx == -1)
1266 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1270 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1271 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1272 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1277 case R_SPARC_PC_HH22:
1278 case R_SPARC_PC_HM10:
1279 case R_SPARC_PC_LM22:
1281 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1285 case R_SPARC_DISP16:
1286 case R_SPARC_DISP32:
1287 case R_SPARC_DISP64:
1288 case R_SPARC_WDISP30:
1289 case R_SPARC_WDISP22:
1290 case R_SPARC_WDISP19:
1291 case R_SPARC_WDISP16:
1320 /* When creating a shared object, we must copy these relocs
1321 into the output file. We create a reloc section in
1322 dynobj and make room for the reloc.
1324 But don't do this for debugging sections -- this shows up
1325 with DWARF2 -- first because they are not loaded, and
1326 second because DWARF sez the debug info is not to be
1327 biased by the load address. */
1328 if (info->shared && (sec->flags & SEC_ALLOC))
1334 name = (bfd_elf_string_from_elf_section
1336 elf_elfheader (abfd)->e_shstrndx,
1337 elf_section_data (sec)->rel_hdr.sh_name));
1341 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1342 && strcmp (bfd_get_section_name (abfd, sec),
1345 sreloc = bfd_get_section_by_name (dynobj, name);
1350 sreloc = bfd_make_section (dynobj, name);
1351 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1352 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1353 if ((sec->flags & SEC_ALLOC) != 0)
1354 flags |= SEC_ALLOC | SEC_LOAD;
1356 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1357 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1360 if (sec->flags & SEC_READONLY)
1361 info->flags |= DF_TEXTREL;
1364 sreloc->size += sizeof (Elf64_External_Rela);
1368 case R_SPARC_REGISTER:
1369 /* Nothing to do. */
1373 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1374 bfd_archive_filename (abfd),
1375 ELF64_R_TYPE_ID (rel->r_info));
1383 /* Hook called by the linker routine which adds symbols from an object
1384 file. We use it for STT_REGISTER symbols. */
1387 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1389 struct bfd_link_info *info;
1390 Elf_Internal_Sym *sym;
1392 flagword *flagsp ATTRIBUTE_UNUSED;
1393 asection **secp ATTRIBUTE_UNUSED;
1394 bfd_vma *valp ATTRIBUTE_UNUSED;
1396 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1398 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1401 struct sparc64_elf_app_reg *p;
1403 reg = (int)sym->st_value;
1406 case 2: reg -= 2; break;
1407 case 6: reg -= 4; break;
1409 (*_bfd_error_handler)
1410 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1411 bfd_archive_filename (abfd));
1415 if (info->hash->creator != abfd->xvec
1416 || (abfd->flags & DYNAMIC) != 0)
1418 /* STT_REGISTER only works when linking an elf64_sparc object.
1419 If STT_REGISTER comes from a dynamic object, don't put it into
1420 the output bfd. The dynamic linker will recheck it. */
1425 p = sparc64_elf_hash_table(info)->app_regs + reg;
1427 if (p->name != NULL && strcmp (p->name, *namep))
1429 (*_bfd_error_handler)
1430 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1431 (int) sym->st_value,
1432 **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
1433 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1437 if (p->name == NULL)
1441 struct elf_link_hash_entry *h;
1443 h = (struct elf_link_hash_entry *)
1444 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
1448 unsigned char type = h->type;
1450 if (type > STT_FUNC)
1452 (*_bfd_error_handler)
1453 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1454 *namep, bfd_archive_filename (abfd),
1455 stt_types[type], bfd_archive_filename (p->abfd));
1459 p->name = bfd_hash_allocate (&info->hash->table,
1460 strlen (*namep) + 1);
1464 strcpy (p->name, *namep);
1468 p->bind = ELF_ST_BIND (sym->st_info);
1470 p->shndx = sym->st_shndx;
1474 if (p->bind == STB_WEAK
1475 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1477 p->bind = STB_GLOBAL;
1484 else if (*namep && **namep
1485 && info->hash->creator == abfd->xvec)
1488 struct sparc64_elf_app_reg *p;
1490 p = sparc64_elf_hash_table(info)->app_regs;
1491 for (i = 0; i < 4; i++, p++)
1492 if (p->name != NULL && ! strcmp (p->name, *namep))
1494 unsigned char type = ELF_ST_TYPE (sym->st_info);
1496 if (type > STT_FUNC)
1498 (*_bfd_error_handler)
1499 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1500 *namep, stt_types[type], bfd_archive_filename (abfd),
1501 bfd_archive_filename (p->abfd));
1508 /* This function takes care of emitting STT_REGISTER symbols
1509 which we cannot easily keep in the symbol hash table. */
1512 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1513 bfd *output_bfd ATTRIBUTE_UNUSED;
1514 struct bfd_link_info *info;
1517 PARAMS ((PTR, const char *, Elf_Internal_Sym *, asection *,
1518 struct elf_link_hash_entry *));
1521 struct sparc64_elf_app_reg *app_regs =
1522 sparc64_elf_hash_table(info)->app_regs;
1523 Elf_Internal_Sym sym;
1525 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1526 at the end of the dynlocal list, so they came at the end of the local
1527 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1528 to back up symtab->sh_info. */
1529 if (elf_hash_table (info)->dynlocal)
1531 bfd * dynobj = elf_hash_table (info)->dynobj;
1532 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1533 struct elf_link_local_dynamic_entry *e;
1535 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1536 if (e->input_indx == -1)
1540 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1545 if (info->strip == strip_all)
1548 for (reg = 0; reg < 4; reg++)
1549 if (app_regs [reg].name != NULL)
1551 if (info->strip == strip_some
1552 && bfd_hash_lookup (info->keep_hash,
1553 app_regs [reg].name,
1554 FALSE, FALSE) == NULL)
1557 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1560 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1561 sym.st_shndx = app_regs [reg].shndx;
1562 if (! (*func) (finfo, app_regs [reg].name, &sym,
1563 sym.st_shndx == SHN_ABS
1564 ? bfd_abs_section_ptr : bfd_und_section_ptr,
1573 sparc64_elf_get_symbol_type (elf_sym, type)
1574 Elf_Internal_Sym * elf_sym;
1577 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1578 return STT_REGISTER;
1583 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1584 even in SHN_UNDEF section. */
1587 sparc64_elf_symbol_processing (abfd, asym)
1588 bfd *abfd ATTRIBUTE_UNUSED;
1591 elf_symbol_type *elfsym;
1593 elfsym = (elf_symbol_type *) asym;
1594 if (elfsym->internal_elf_sym.st_info
1595 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1597 asym->flags |= BSF_GLOBAL;
1601 /* Adjust a symbol defined by a dynamic object and referenced by a
1602 regular object. The current definition is in some section of the
1603 dynamic object, but we're not including those sections. We have to
1604 change the definition to something the rest of the link can
1608 sparc64_elf_adjust_dynamic_symbol (info, h)
1609 struct bfd_link_info *info;
1610 struct elf_link_hash_entry *h;
1614 unsigned int power_of_two;
1616 dynobj = elf_hash_table (info)->dynobj;
1618 /* Make sure we know what is going on here. */
1619 BFD_ASSERT (dynobj != NULL
1620 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1621 || h->weakdef != NULL
1622 || ((h->elf_link_hash_flags
1623 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1624 && (h->elf_link_hash_flags
1625 & ELF_LINK_HASH_REF_REGULAR) != 0
1626 && (h->elf_link_hash_flags
1627 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1629 /* If this is a function, put it in the procedure linkage table. We
1630 will fill in the contents of the procedure linkage table later
1631 (although we could actually do it here). The STT_NOTYPE
1632 condition is a hack specifically for the Oracle libraries
1633 delivered for Solaris; for some inexplicable reason, they define
1634 some of their functions as STT_NOTYPE when they really should be
1636 if (h->type == STT_FUNC
1637 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1638 || (h->type == STT_NOTYPE
1639 && (h->root.type == bfd_link_hash_defined
1640 || h->root.type == bfd_link_hash_defweak)
1641 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1643 if (! elf_hash_table (info)->dynamic_sections_created)
1645 /* This case can occur if we saw a WPLT30 reloc in an input
1646 file, but none of the input files were dynamic objects.
1647 In such a case, we don't actually need to build a
1648 procedure linkage table, and we can just do a WDISP30
1650 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1654 s = bfd_get_section_by_name (dynobj, ".plt");
1655 BFD_ASSERT (s != NULL);
1657 /* The first four bit in .plt is reserved. */
1659 s->size = PLT_HEADER_SIZE;
1661 /* To simplify matters later, just store the plt index here. */
1662 h->plt.offset = s->size / PLT_ENTRY_SIZE;
1664 /* If this symbol is not defined in a regular file, and we are
1665 not generating a shared library, then set the symbol to this
1666 location in the .plt. This is required to make function
1667 pointers compare as equal between the normal executable and
1668 the shared library. */
1670 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1672 h->root.u.def.section = s;
1673 h->root.u.def.value = sparc64_elf_plt_entry_offset (h->plt.offset);
1676 /* Make room for this entry. */
1677 s->size += PLT_ENTRY_SIZE;
1679 /* We also need to make an entry in the .rela.plt section. */
1681 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1682 BFD_ASSERT (s != NULL);
1684 s->size += sizeof (Elf64_External_Rela);
1686 /* The procedure linkage table size is bounded by the magnitude
1687 of the offset we can describe in the entry. */
1688 if (s->size >= (bfd_vma)1 << 32)
1690 bfd_set_error (bfd_error_bad_value);
1697 /* If this is a weak symbol, and there is a real definition, the
1698 processor independent code will have arranged for us to see the
1699 real definition first, and we can just use the same value. */
1700 if (h->weakdef != NULL)
1702 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1703 || h->weakdef->root.type == bfd_link_hash_defweak);
1704 h->root.u.def.section = h->weakdef->root.u.def.section;
1705 h->root.u.def.value = h->weakdef->root.u.def.value;
1709 /* This is a reference to a symbol defined by a dynamic object which
1710 is not a function. */
1712 /* If we are creating a shared library, we must presume that the
1713 only references to the symbol are via the global offset table.
1714 For such cases we need not do anything here; the relocations will
1715 be handled correctly by relocate_section. */
1719 /* We must allocate the symbol in our .dynbss section, which will
1720 become part of the .bss section of the executable. There will be
1721 an entry for this symbol in the .dynsym section. The dynamic
1722 object will contain position independent code, so all references
1723 from the dynamic object to this symbol will go through the global
1724 offset table. The dynamic linker will use the .dynsym entry to
1725 determine the address it must put in the global offset table, so
1726 both the dynamic object and the regular object will refer to the
1727 same memory location for the variable. */
1729 s = bfd_get_section_by_name (dynobj, ".dynbss");
1730 BFD_ASSERT (s != NULL);
1732 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1733 to copy the initial value out of the dynamic object and into the
1734 runtime process image. We need to remember the offset into the
1735 .rel.bss section we are going to use. */
1736 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1740 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1741 BFD_ASSERT (srel != NULL);
1742 srel->size += sizeof (Elf64_External_Rela);
1743 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1746 /* We need to figure out the alignment required for this symbol. I
1747 have no idea how ELF linkers handle this. 16-bytes is the size
1748 of the largest type that requires hard alignment -- long double. */
1749 power_of_two = bfd_log2 (h->size);
1750 if (power_of_two > 4)
1753 /* Apply the required alignment. */
1754 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1755 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1757 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1761 /* Define the symbol as being at this point in the section. */
1762 h->root.u.def.section = s;
1763 h->root.u.def.value = s->size;
1765 /* Increment the section size to make room for the symbol. */
1771 /* Set the sizes of the dynamic sections. */
1774 sparc64_elf_size_dynamic_sections (output_bfd, info)
1776 struct bfd_link_info *info;
1782 dynobj = elf_hash_table (info)->dynobj;
1783 BFD_ASSERT (dynobj != NULL);
1785 if (elf_hash_table (info)->dynamic_sections_created)
1787 /* Set the contents of the .interp section to the interpreter. */
1788 if (info->executable)
1790 s = bfd_get_section_by_name (dynobj, ".interp");
1791 BFD_ASSERT (s != NULL);
1792 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1793 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1798 /* We may have created entries in the .rela.got section.
1799 However, if we are not creating the dynamic sections, we will
1800 not actually use these entries. Reset the size of .rela.got,
1801 which will cause it to get stripped from the output file
1803 s = bfd_get_section_by_name (dynobj, ".rela.got");
1808 /* The check_relocs and adjust_dynamic_symbol entry points have
1809 determined the sizes of the various dynamic sections. Allocate
1812 for (s = dynobj->sections; s != NULL; s = s->next)
1817 if ((s->flags & SEC_LINKER_CREATED) == 0)
1820 /* It's OK to base decisions on the section name, because none
1821 of the dynobj section names depend upon the input files. */
1822 name = bfd_get_section_name (dynobj, s);
1826 if (strncmp (name, ".rela", 5) == 0)
1830 /* If we don't need this section, strip it from the
1831 output file. This is to handle .rela.bss and
1832 .rel.plt. We must create it in
1833 create_dynamic_sections, because it must be created
1834 before the linker maps input sections to output
1835 sections. The linker does that before
1836 adjust_dynamic_symbol is called, and it is that
1837 function which decides whether anything needs to go
1838 into these sections. */
1843 if (strcmp (name, ".rela.plt") == 0)
1846 /* We use the reloc_count field as a counter if we need
1847 to copy relocs into the output file. */
1851 else if (strcmp (name, ".plt") != 0
1852 && strncmp (name, ".got", 4) != 0)
1854 /* It's not one of our sections, so don't allocate space. */
1860 _bfd_strip_section_from_output (info, s);
1864 /* Allocate memory for the section contents. Zero the memory
1865 for the benefit of .rela.plt, which has 4 unused entries
1866 at the beginning, and we don't want garbage. */
1867 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1868 if (s->contents == NULL && s->size != 0)
1872 if (elf_hash_table (info)->dynamic_sections_created)
1874 /* Add some entries to the .dynamic section. We fill in the
1875 values later, in sparc64_elf_finish_dynamic_sections, but we
1876 must add the entries now so that we get the correct size for
1877 the .dynamic section. The DT_DEBUG entry is filled in by the
1878 dynamic linker and used by the debugger. */
1879 #define add_dynamic_entry(TAG, VAL) \
1880 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1883 struct sparc64_elf_app_reg * app_regs;
1884 struct elf_strtab_hash *dynstr;
1885 struct elf_link_hash_table *eht = elf_hash_table (info);
1887 if (info->executable)
1889 if (!add_dynamic_entry (DT_DEBUG, 0))
1895 if (!add_dynamic_entry (DT_PLTGOT, 0)
1896 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1897 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1898 || !add_dynamic_entry (DT_JMPREL, 0))
1902 if (!add_dynamic_entry (DT_RELA, 0)
1903 || !add_dynamic_entry (DT_RELASZ, 0)
1904 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1907 if (info->flags & DF_TEXTREL)
1909 if (!add_dynamic_entry (DT_TEXTREL, 0))
1913 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1914 entries if needed. */
1915 app_regs = sparc64_elf_hash_table (info)->app_regs;
1916 dynstr = eht->dynstr;
1918 for (reg = 0; reg < 4; reg++)
1919 if (app_regs [reg].name != NULL)
1921 struct elf_link_local_dynamic_entry *entry, *e;
1923 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1926 entry = (struct elf_link_local_dynamic_entry *)
1927 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1931 /* We cheat here a little bit: the symbol will not be local, so we
1932 put it at the end of the dynlocal linked list. We will fix it
1933 later on, as we have to fix other fields anyway. */
1934 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1935 entry->isym.st_size = 0;
1936 if (*app_regs [reg].name != '\0')
1938 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, FALSE);
1940 entry->isym.st_name = 0;
1941 entry->isym.st_other = 0;
1942 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1944 entry->isym.st_shndx = app_regs [reg].shndx;
1946 entry->input_bfd = output_bfd;
1947 entry->input_indx = -1;
1949 if (eht->dynlocal == NULL)
1950 eht->dynlocal = entry;
1953 for (e = eht->dynlocal; e->next; e = e->next)
1960 #undef add_dynamic_entry
1966 sparc64_elf_new_section_hook (abfd, sec)
1970 struct sparc64_elf_section_data *sdata;
1971 bfd_size_type amt = sizeof (*sdata);
1973 sdata = (struct sparc64_elf_section_data *) bfd_zalloc (abfd, amt);
1976 sec->used_by_bfd = (PTR) sdata;
1978 return _bfd_elf_new_section_hook (abfd, sec);
1982 sparc64_elf_relax_section (abfd, section, link_info, again)
1983 bfd *abfd ATTRIBUTE_UNUSED;
1984 asection *section ATTRIBUTE_UNUSED;
1985 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1989 sec_do_relax (section) = 1;
1993 /* Relocate a SPARC64 ELF section. */
1996 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1997 contents, relocs, local_syms, local_sections)
1999 struct bfd_link_info *info;
2001 asection *input_section;
2003 Elf_Internal_Rela *relocs;
2004 Elf_Internal_Sym *local_syms;
2005 asection **local_sections;
2008 Elf_Internal_Shdr *symtab_hdr;
2009 struct elf_link_hash_entry **sym_hashes;
2010 bfd_vma *local_got_offsets;
2015 Elf_Internal_Rela *rel;
2016 Elf_Internal_Rela *relend;
2018 if (info->relocatable)
2021 dynobj = elf_hash_table (info)->dynobj;
2022 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2023 sym_hashes = elf_sym_hashes (input_bfd);
2024 local_got_offsets = elf_local_got_offsets (input_bfd);
2026 if (elf_hash_table(info)->hgot == NULL)
2029 got_base = elf_hash_table (info)->hgot->root.u.def.value;
2031 sgot = splt = sreloc = NULL;
2033 splt = bfd_get_section_by_name (dynobj, ".plt");
2036 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
2037 for (; rel < relend; rel++)
2040 reloc_howto_type *howto;
2041 unsigned long r_symndx;
2042 struct elf_link_hash_entry *h;
2043 Elf_Internal_Sym *sym;
2045 bfd_vma relocation, off;
2046 bfd_reloc_status_type r;
2047 bfd_boolean is_plt = FALSE;
2048 bfd_boolean unresolved_reloc;
2050 r_type = ELF64_R_TYPE_ID (rel->r_info);
2051 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
2053 bfd_set_error (bfd_error_bad_value);
2056 howto = sparc64_elf_howto_table + r_type;
2058 /* This is a final link. */
2059 r_symndx = ELF64_R_SYM (rel->r_info);
2063 unresolved_reloc = FALSE;
2064 if (r_symndx < symtab_hdr->sh_info)
2066 sym = local_syms + r_symndx;
2067 sec = local_sections[r_symndx];
2068 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2074 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2075 r_symndx, symtab_hdr, sym_hashes,
2077 unresolved_reloc, warned);
2080 /* To avoid generating warning messages about truncated
2081 relocations, set the relocation's address to be the same as
2082 the start of this section. */
2083 if (input_section->output_section != NULL)
2084 relocation = input_section->output_section->vma;
2091 /* When generating a shared object, these relocations are copied
2092 into the output file to be resolved at run time. */
2093 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2099 case R_SPARC_PC_HH22:
2100 case R_SPARC_PC_HM10:
2101 case R_SPARC_PC_LM22:
2103 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2107 case R_SPARC_DISP16:
2108 case R_SPARC_DISP32:
2109 case R_SPARC_DISP64:
2110 case R_SPARC_WDISP30:
2111 case R_SPARC_WDISP22:
2112 case R_SPARC_WDISP19:
2113 case R_SPARC_WDISP16:
2143 Elf_Internal_Rela outrel;
2145 bfd_boolean skip, relocate;
2150 (bfd_elf_string_from_elf_section
2152 elf_elfheader (input_bfd)->e_shstrndx,
2153 elf_section_data (input_section)->rel_hdr.sh_name));
2158 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2159 && strcmp (bfd_get_section_name(input_bfd,
2163 sreloc = bfd_get_section_by_name (dynobj, name);
2164 BFD_ASSERT (sreloc != NULL);
2171 _bfd_elf_section_offset (output_bfd, info, input_section,
2173 if (outrel.r_offset == (bfd_vma) -1)
2175 else if (outrel.r_offset == (bfd_vma) -2)
2176 skip = TRUE, relocate = TRUE;
2178 outrel.r_offset += (input_section->output_section->vma
2179 + input_section->output_offset);
2181 /* Optimize unaligned reloc usage now that we know where
2182 it finally resides. */
2186 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2189 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2192 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2195 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2198 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2201 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2204 case R_SPARC_DISP16:
2205 case R_SPARC_DISP32:
2206 case R_SPARC_DISP64:
2207 /* If the symbol is not dynamic, we should not keep
2208 a dynamic relocation. But an .rela.* slot has been
2209 allocated for it, output R_SPARC_NONE.
2210 FIXME: Add code tracking needed dynamic relocs as
2212 if (h->dynindx == -1)
2213 skip = TRUE, relocate = TRUE;
2217 /* FIXME: Dynamic reloc handling really needs to be rewritten. */
2220 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2221 && h->root.type == bfd_link_hash_undefweak)
2222 skip = TRUE, relocate = TRUE;
2225 memset (&outrel, 0, sizeof outrel);
2226 /* h->dynindx may be -1 if the symbol was marked to
2228 else if (h != NULL && ! is_plt
2229 && ((! info->symbolic && h->dynindx != -1)
2230 || (h->elf_link_hash_flags
2231 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2233 BFD_ASSERT (h->dynindx != -1);
2235 = ELF64_R_INFO (h->dynindx,
2237 ELF64_R_TYPE_DATA (rel->r_info),
2239 outrel.r_addend = rel->r_addend;
2243 outrel.r_addend = relocation + rel->r_addend;
2244 if (r_type == R_SPARC_64)
2245 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2253 if (bfd_is_abs_section (sec))
2255 else if (sec == NULL || sec->owner == NULL)
2257 bfd_set_error (bfd_error_bad_value);
2264 osec = sec->output_section;
2265 indx = elf_section_data (osec)->dynindx;
2267 /* We are turning this relocation into one
2268 against a section symbol, so subtract out
2269 the output section's address but not the
2270 offset of the input section in the output
2272 outrel.r_addend -= osec->vma;
2274 /* FIXME: we really should be able to link non-pic
2275 shared libraries. */
2279 (*_bfd_error_handler)
2280 (_("%s: probably compiled without -fPIC?"),
2281 bfd_archive_filename (input_bfd));
2282 bfd_set_error (bfd_error_bad_value);
2288 = ELF64_R_INFO (indx,
2290 ELF64_R_TYPE_DATA (rel->r_info),
2295 loc = sreloc->contents;
2296 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2297 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2299 /* This reloc will be computed at runtime, so there's no
2300 need to do anything now. */
2313 /* Relocation is to the entry for this symbol in the global
2317 sgot = bfd_get_section_by_name (dynobj, ".got");
2318 BFD_ASSERT (sgot != NULL);
2325 off = h->got.offset;
2326 BFD_ASSERT (off != (bfd_vma) -1);
2327 dyn = elf_hash_table (info)->dynamic_sections_created;
2329 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2333 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2334 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2336 /* This is actually a static link, or it is a -Bsymbolic
2337 link and the symbol is defined locally, or the symbol
2338 was forced to be local because of a version file. We
2339 must initialize this entry in the global offset table.
2340 Since the offset must always be a multiple of 8, we
2341 use the least significant bit to record whether we
2342 have initialized it already.
2344 When doing a dynamic link, we create a .rela.got
2345 relocation entry to initialize the value. This is
2346 done in the finish_dynamic_symbol routine. */
2352 bfd_put_64 (output_bfd, relocation,
2353 sgot->contents + off);
2358 unresolved_reloc = FALSE;
2362 BFD_ASSERT (local_got_offsets != NULL);
2363 off = local_got_offsets[r_symndx];
2364 BFD_ASSERT (off != (bfd_vma) -1);
2366 /* The offset must always be a multiple of 8. We use
2367 the least significant bit to record whether we have
2368 already processed this entry. */
2373 local_got_offsets[r_symndx] |= 1;
2378 Elf_Internal_Rela outrel;
2381 /* The Solaris 2.7 64-bit linker adds the contents
2382 of the location to the value of the reloc.
2383 Note this is different behaviour to the
2384 32-bit linker, which both adds the contents
2385 and ignores the addend. So clear the location. */
2386 bfd_put_64 (output_bfd, (bfd_vma) 0,
2387 sgot->contents + off);
2389 /* We need to generate a R_SPARC_RELATIVE reloc
2390 for the dynamic linker. */
2391 s = bfd_get_section_by_name(dynobj, ".rela.got");
2392 BFD_ASSERT (s != NULL);
2394 outrel.r_offset = (sgot->output_section->vma
2395 + sgot->output_offset
2397 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2398 outrel.r_addend = relocation;
2400 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2401 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2404 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2407 relocation = sgot->output_offset + off - got_base;
2410 case R_SPARC_WPLT30:
2412 case R_SPARC_HIPLT22:
2413 case R_SPARC_LOPLT10:
2414 case R_SPARC_PCPLT32:
2415 case R_SPARC_PCPLT22:
2416 case R_SPARC_PCPLT10:
2418 /* Relocation is to the entry for this symbol in the
2419 procedure linkage table. */
2420 BFD_ASSERT (h != NULL);
2422 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
2424 /* We didn't make a PLT entry for this symbol. This
2425 happens when statically linking PIC code, or when
2426 using -Bsymbolic. */
2430 relocation = (splt->output_section->vma
2431 + splt->output_offset
2432 + sparc64_elf_plt_entry_offset (h->plt.offset));
2433 unresolved_reloc = FALSE;
2434 if (r_type == R_SPARC_WPLT30)
2436 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2438 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2448 relocation += rel->r_addend;
2449 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2451 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2452 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2453 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2455 r = bfd_check_overflow (howto->complain_on_overflow,
2456 howto->bitsize, howto->rightshift,
2457 bfd_arch_bits_per_address (input_bfd),
2462 case R_SPARC_WDISP16:
2466 relocation += rel->r_addend;
2467 /* Adjust for pc-relative-ness. */
2468 relocation -= (input_section->output_section->vma
2469 + input_section->output_offset);
2470 relocation -= rel->r_offset;
2472 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2473 x &= ~(bfd_vma) 0x303fff;
2474 x |= ((((relocation >> 2) & 0xc000) << 6)
2475 | ((relocation >> 2) & 0x3fff));
2476 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2478 r = bfd_check_overflow (howto->complain_on_overflow,
2479 howto->bitsize, howto->rightshift,
2480 bfd_arch_bits_per_address (input_bfd),
2489 relocation += rel->r_addend;
2490 relocation = relocation ^ MINUS_ONE;
2492 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2493 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2494 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2496 r = bfd_check_overflow (howto->complain_on_overflow,
2497 howto->bitsize, howto->rightshift,
2498 bfd_arch_bits_per_address (input_bfd),
2507 relocation += rel->r_addend;
2508 relocation = (relocation & 0x3ff) | 0x1c00;
2510 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2511 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2512 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2518 case R_SPARC_WDISP30:
2520 if (sec_do_relax (input_section)
2521 && rel->r_offset + 4 < input_section->size)
2525 #define XCC (2 << 20)
2526 #define COND(x) (((x)&0xf)<<25)
2527 #define CONDA COND(0x8)
2528 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2529 #define INSN_BA (F2(0,2) | CONDA)
2530 #define INSN_OR F3(2, 0x2, 0)
2531 #define INSN_NOP F2(0,4)
2535 /* If the instruction is a call with either:
2537 arithmetic instruction with rd == %o7
2538 where rs1 != %o7 and rs2 if it is register != %o7
2539 then we can optimize if the call destination is near
2540 by changing the call into a branch always. */
2541 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2542 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2543 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2545 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2546 || ((y & OP3(0x28)) == 0 /* arithmetic */
2547 && (y & RD(~0)) == RD(O7)))
2548 && (y & RS1(~0)) != RS1(O7)
2550 || (y & RS2(~0)) != RS2(O7)))
2554 reloc = relocation + rel->r_addend - rel->r_offset;
2555 reloc -= (input_section->output_section->vma
2556 + input_section->output_offset);
2560 /* Ensure the branch fits into simm22. */
2561 if ((reloc & ~(bfd_vma)0x7fffff)
2562 && ((reloc | 0x7fffff) != MINUS_ONE))
2566 /* Check whether it fits into simm19. */
2567 if ((reloc & 0x3c0000) == 0
2568 || (reloc & 0x3c0000) == 0x3c0000)
2569 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2571 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2572 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2574 if (rel->r_offset >= 4
2575 && (y & (0xffffffff ^ RS1(~0)))
2576 == (INSN_OR | RD(O7) | RS2(G0)))
2581 z = bfd_get_32 (input_bfd,
2582 contents + rel->r_offset - 4);
2583 if ((z & (0xffffffff ^ RD(~0)))
2584 != (INSN_OR | RS1(O7) | RS2(G0)))
2592 If call foo was replaced with ba, replace
2593 or %rN, %g0, %o7 with nop. */
2595 reg = (y & RS1(~0)) >> 14;
2596 if (reg != ((z & RD(~0)) >> 25)
2597 || reg == G0 || reg == O7)
2600 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2601 contents + rel->r_offset + 4);
2611 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2612 contents, rel->r_offset,
2613 relocation, rel->r_addend);
2617 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2618 because such sections are not SEC_ALLOC and thus ld.so will
2619 not process them. */
2620 if (unresolved_reloc
2621 && !((input_section->flags & SEC_DEBUGGING) != 0
2622 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2623 (*_bfd_error_handler)
2624 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2625 bfd_archive_filename (input_bfd),
2626 bfd_get_section_name (input_bfd, input_section),
2627 (long) rel->r_offset,
2628 h->root.root.string);
2636 case bfd_reloc_outofrange:
2639 case bfd_reloc_overflow:
2643 /* The Solaris native linker silently disregards
2644 overflows. We don't, but this breaks stabs debugging
2645 info, whose relocations are only 32-bits wide. Ignore
2646 overflows for discarded entries. */
2647 if ((r_type == R_SPARC_32 || r_type == R_SPARC_DISP32)
2648 && _bfd_elf_section_offset (output_bfd, info, input_section,
2649 rel->r_offset) == (bfd_vma) -1)
2654 if (h->root.type == bfd_link_hash_undefweak
2655 && howto->pc_relative)
2657 /* Assume this is a call protected by other code that
2658 detect the symbol is undefined. If this is the case,
2659 we can safely ignore the overflow. If not, the
2660 program is hosed anyway, and a little warning isn't
2665 name = h->root.root.string;
2669 name = (bfd_elf_string_from_elf_section
2671 symtab_hdr->sh_link,
2676 name = bfd_section_name (input_bfd, sec);
2678 if (! ((*info->callbacks->reloc_overflow)
2679 (info, name, howto->name, (bfd_vma) 0,
2680 input_bfd, input_section, rel->r_offset)))
2690 /* Finish up dynamic symbol handling. We set the contents of various
2691 dynamic sections here. */
2694 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2696 struct bfd_link_info *info;
2697 struct elf_link_hash_entry *h;
2698 Elf_Internal_Sym *sym;
2702 dynobj = elf_hash_table (info)->dynobj;
2704 if (h->plt.offset != (bfd_vma) -1)
2708 Elf_Internal_Rela rela;
2711 /* This symbol has an entry in the PLT. Set it up. */
2713 BFD_ASSERT (h->dynindx != -1);
2715 splt = bfd_get_section_by_name (dynobj, ".plt");
2716 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2717 BFD_ASSERT (splt != NULL && srela != NULL);
2719 /* Fill in the entry in the .rela.plt section. */
2721 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2723 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2728 bfd_vma max = splt->size / PLT_ENTRY_SIZE;
2729 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2730 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2731 -(splt->output_section->vma + splt->output_offset);
2733 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2734 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2736 /* Adjust for the first 4 reserved elements in the .plt section
2737 when setting the offset in the .rela.plt section.
2738 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2739 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2741 loc = srela->contents;
2742 loc += (h->plt.offset - 4) * sizeof (Elf64_External_Rela);
2743 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2745 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2747 /* Mark the symbol as undefined, rather than as defined in
2748 the .plt section. Leave the value alone. */
2749 sym->st_shndx = SHN_UNDEF;
2750 /* If the symbol is weak, we do need to clear the value.
2751 Otherwise, the PLT entry would provide a definition for
2752 the symbol even if the symbol wasn't defined anywhere,
2753 and so the symbol would never be NULL. */
2754 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2760 if (h->got.offset != (bfd_vma) -1)
2764 Elf_Internal_Rela rela;
2767 /* This symbol has an entry in the GOT. Set it up. */
2769 sgot = bfd_get_section_by_name (dynobj, ".got");
2770 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2771 BFD_ASSERT (sgot != NULL && srela != NULL);
2773 rela.r_offset = (sgot->output_section->vma
2774 + sgot->output_offset
2775 + (h->got.offset &~ (bfd_vma) 1));
2777 /* If this is a -Bsymbolic link, and the symbol is defined
2778 locally, we just want to emit a RELATIVE reloc. Likewise if
2779 the symbol was forced to be local because of a version file.
2780 The entry in the global offset table will already have been
2781 initialized in the relocate_section function. */
2783 && (info->symbolic || h->dynindx == -1)
2784 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2786 asection *sec = h->root.u.def.section;
2787 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2788 rela.r_addend = (h->root.u.def.value
2789 + sec->output_section->vma
2790 + sec->output_offset);
2794 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2798 bfd_put_64 (output_bfd, (bfd_vma) 0,
2799 sgot->contents + (h->got.offset &~ (bfd_vma) 1));
2800 loc = srela->contents;
2801 loc += srela->reloc_count++ * sizeof (Elf64_External_Rela);
2802 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2805 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2808 Elf_Internal_Rela rela;
2811 /* This symbols needs a copy reloc. Set it up. */
2812 BFD_ASSERT (h->dynindx != -1);
2814 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2816 BFD_ASSERT (s != NULL);
2818 rela.r_offset = (h->root.u.def.value
2819 + h->root.u.def.section->output_section->vma
2820 + h->root.u.def.section->output_offset);
2821 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2823 loc = s->contents + s->reloc_count++ * sizeof (Elf64_External_Rela);
2824 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2827 /* Mark some specially defined symbols as absolute. */
2828 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2829 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2830 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2831 sym->st_shndx = SHN_ABS;
2836 /* Finish up the dynamic sections. */
2839 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2841 struct bfd_link_info *info;
2844 int stt_regidx = -1;
2848 dynobj = elf_hash_table (info)->dynobj;
2850 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2852 if (elf_hash_table (info)->dynamic_sections_created)
2855 Elf64_External_Dyn *dyncon, *dynconend;
2857 splt = bfd_get_section_by_name (dynobj, ".plt");
2858 BFD_ASSERT (splt != NULL && sdyn != NULL);
2860 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2861 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2862 for (; dyncon < dynconend; dyncon++)
2864 Elf_Internal_Dyn dyn;
2868 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2872 case DT_PLTGOT: name = ".plt"; size = FALSE; break;
2873 case DT_PLTRELSZ: name = ".rela.plt"; size = TRUE; break;
2874 case DT_JMPREL: name = ".rela.plt"; size = FALSE; break;
2875 case DT_SPARC_REGISTER:
2876 if (stt_regidx == -1)
2879 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2880 if (stt_regidx == -1)
2883 dyn.d_un.d_val = stt_regidx++;
2884 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2886 default: name = NULL; size = FALSE; break;
2893 s = bfd_get_section_by_name (output_bfd, name);
2899 dyn.d_un.d_ptr = s->vma;
2901 dyn.d_un.d_val = s->size;
2903 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2907 /* Initialize the contents of the .plt section. */
2909 sparc64_elf_build_plt (output_bfd, splt->contents,
2910 (int) (splt->size / PLT_ENTRY_SIZE));
2912 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2916 /* Set the first entry in the global offset table to the address of
2917 the dynamic section. */
2918 sgot = bfd_get_section_by_name (dynobj, ".got");
2919 BFD_ASSERT (sgot != NULL);
2923 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2925 bfd_put_64 (output_bfd,
2926 sdyn->output_section->vma + sdyn->output_offset,
2930 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2935 static enum elf_reloc_type_class
2936 sparc64_elf_reloc_type_class (rela)
2937 const Elf_Internal_Rela *rela;
2939 switch ((int) ELF64_R_TYPE (rela->r_info))
2941 case R_SPARC_RELATIVE:
2942 return reloc_class_relative;
2943 case R_SPARC_JMP_SLOT:
2944 return reloc_class_plt;
2946 return reloc_class_copy;
2948 return reloc_class_normal;
2952 /* Functions for dealing with the e_flags field. */
2954 /* Merge backend specific data from an object file to the output
2955 object file when linking. */
2958 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2963 flagword new_flags, old_flags;
2966 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2967 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2970 new_flags = elf_elfheader (ibfd)->e_flags;
2971 old_flags = elf_elfheader (obfd)->e_flags;
2973 if (!elf_flags_init (obfd)) /* First call, no flags set */
2975 elf_flags_init (obfd) = TRUE;
2976 elf_elfheader (obfd)->e_flags = new_flags;
2979 else if (new_flags == old_flags) /* Compatible flags are ok */
2982 else /* Incompatible flags */
2986 #define EF_SPARC_ISA_EXTENSIONS \
2987 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2989 if ((ibfd->flags & DYNAMIC) != 0)
2991 /* We don't want dynamic objects memory ordering and
2992 architecture to have any role. That's what dynamic linker
2994 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2995 new_flags |= (old_flags
2996 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
3000 /* Choose the highest architecture requirements. */
3001 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
3002 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
3003 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3004 && (old_flags & EF_SPARC_HAL_R1))
3007 (*_bfd_error_handler)
3008 (_("%s: linking UltraSPARC specific with HAL specific code"),
3009 bfd_archive_filename (ibfd));
3011 /* Choose the most restrictive memory ordering. */
3012 old_mm = (old_flags & EF_SPARCV9_MM);
3013 new_mm = (new_flags & EF_SPARCV9_MM);
3014 old_flags &= ~EF_SPARCV9_MM;
3015 new_flags &= ~EF_SPARCV9_MM;
3016 if (new_mm < old_mm)
3018 old_flags |= old_mm;
3019 new_flags |= old_mm;
3022 /* Warn about any other mismatches */
3023 if (new_flags != old_flags)
3026 (*_bfd_error_handler)
3027 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3028 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
3031 elf_elfheader (obfd)->e_flags = old_flags;
3035 bfd_set_error (bfd_error_bad_value);
3042 /* MARCO: Set the correct entry size for the .stab section. */
3045 sparc64_elf_fake_sections (abfd, hdr, sec)
3046 bfd *abfd ATTRIBUTE_UNUSED;
3047 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3052 name = bfd_get_section_name (abfd, sec);
3054 if (strcmp (name, ".stab") == 0)
3056 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3057 elf_section_data (sec)->this_hdr.sh_entsize = 12;
3063 /* Print a STT_REGISTER symbol to file FILE. */
3066 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3067 bfd *abfd ATTRIBUTE_UNUSED;
3071 FILE *file = (FILE *) filep;
3074 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3078 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3079 type = symbol->flags;
3080 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3082 ? (type & BSF_GLOBAL) ? '!' : 'l'
3083 : (type & BSF_GLOBAL) ? 'g' : ' '),
3084 (type & BSF_WEAK) ? 'w' : ' ');
3085 if (symbol->name == NULL || symbol->name [0] == '\0')
3088 return symbol->name;
3091 /* Set the right machine number for a SPARC64 ELF file. */
3094 sparc64_elf_object_p (abfd)
3097 unsigned long mach = bfd_mach_sparc_v9;
3099 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3100 mach = bfd_mach_sparc_v9b;
3101 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3102 mach = bfd_mach_sparc_v9a;
3103 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3106 /* Return address for Ith PLT stub in section PLT, for relocation REL
3107 or (bfd_vma) -1 if it should not be included. */
3110 sparc64_elf_plt_sym_val (bfd_vma i, const asection *plt,
3111 const arelent *rel ATTRIBUTE_UNUSED)
3115 i += PLT_HEADER_SIZE / PLT_ENTRY_SIZE;
3116 if (i < LARGE_PLT_THRESHOLD)
3117 return plt->vma + i * PLT_ENTRY_SIZE;
3119 j = (i - LARGE_PLT_THRESHOLD) % 160;
3121 return plt->vma + i * PLT_ENTRY_SIZE + j * 4 * 6;
3124 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3125 standard ELF, because R_SPARC_OLO10 has secondary addend in
3126 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3127 relocation handling routines. */
3129 const struct elf_size_info sparc64_elf_size_info =
3131 sizeof (Elf64_External_Ehdr),
3132 sizeof (Elf64_External_Phdr),
3133 sizeof (Elf64_External_Shdr),
3134 sizeof (Elf64_External_Rel),
3135 sizeof (Elf64_External_Rela),
3136 sizeof (Elf64_External_Sym),
3137 sizeof (Elf64_External_Dyn),
3138 sizeof (Elf_External_Note),
3139 4, /* hash-table entry size. */
3140 /* Internal relocations per external relocations.
3141 For link purposes we use just 1 internal per
3142 1 external, for assembly and slurp symbol table
3145 64, /* arch_size. */
3146 3, /* log_file_align. */
3149 bfd_elf64_write_out_phdrs,
3150 bfd_elf64_write_shdrs_and_ehdr,
3151 sparc64_elf_write_relocs,
3152 bfd_elf64_swap_symbol_in,
3153 bfd_elf64_swap_symbol_out,
3154 sparc64_elf_slurp_reloc_table,
3155 bfd_elf64_slurp_symbol_table,
3156 bfd_elf64_swap_dyn_in,
3157 bfd_elf64_swap_dyn_out,
3158 bfd_elf64_swap_reloc_in,
3159 bfd_elf64_swap_reloc_out,
3160 bfd_elf64_swap_reloca_in,
3161 bfd_elf64_swap_reloca_out
3164 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3165 #define TARGET_BIG_NAME "elf64-sparc"
3166 #define ELF_ARCH bfd_arch_sparc
3167 #define ELF_MAXPAGESIZE 0x100000
3169 /* This is the official ABI value. */
3170 #define ELF_MACHINE_CODE EM_SPARCV9
3172 /* This is the value that we used before the ABI was released. */
3173 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3175 #define bfd_elf64_bfd_link_hash_table_create \
3176 sparc64_elf_bfd_link_hash_table_create
3178 #define elf_info_to_howto \
3179 sparc64_elf_info_to_howto
3180 #define bfd_elf64_get_reloc_upper_bound \
3181 sparc64_elf_get_reloc_upper_bound
3182 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3183 sparc64_elf_get_dynamic_reloc_upper_bound
3184 #define bfd_elf64_canonicalize_reloc \
3185 sparc64_elf_canonicalize_reloc
3186 #define bfd_elf64_canonicalize_dynamic_reloc \
3187 sparc64_elf_canonicalize_dynamic_reloc
3188 #define bfd_elf64_bfd_reloc_type_lookup \
3189 sparc64_elf_reloc_type_lookup
3190 #define bfd_elf64_bfd_relax_section \
3191 sparc64_elf_relax_section
3192 #define bfd_elf64_new_section_hook \
3193 sparc64_elf_new_section_hook
3195 #define elf_backend_create_dynamic_sections \
3196 _bfd_elf_create_dynamic_sections
3197 #define elf_backend_add_symbol_hook \
3198 sparc64_elf_add_symbol_hook
3199 #define elf_backend_get_symbol_type \
3200 sparc64_elf_get_symbol_type
3201 #define elf_backend_symbol_processing \
3202 sparc64_elf_symbol_processing
3203 #define elf_backend_check_relocs \
3204 sparc64_elf_check_relocs
3205 #define elf_backend_adjust_dynamic_symbol \
3206 sparc64_elf_adjust_dynamic_symbol
3207 #define elf_backend_size_dynamic_sections \
3208 sparc64_elf_size_dynamic_sections
3209 #define elf_backend_relocate_section \
3210 sparc64_elf_relocate_section
3211 #define elf_backend_finish_dynamic_symbol \
3212 sparc64_elf_finish_dynamic_symbol
3213 #define elf_backend_finish_dynamic_sections \
3214 sparc64_elf_finish_dynamic_sections
3215 #define elf_backend_print_symbol_all \
3216 sparc64_elf_print_symbol_all
3217 #define elf_backend_output_arch_syms \
3218 sparc64_elf_output_arch_syms
3219 #define bfd_elf64_bfd_merge_private_bfd_data \
3220 sparc64_elf_merge_private_bfd_data
3221 #define elf_backend_fake_sections \
3222 sparc64_elf_fake_sections
3223 #define elf_backend_plt_sym_val \
3224 sparc64_elf_plt_sym_val
3226 #define elf_backend_size_info \
3227 sparc64_elf_size_info
3228 #define elf_backend_object_p \
3229 sparc64_elf_object_p
3230 #define elf_backend_reloc_type_class \
3231 sparc64_elf_reloc_type_class
3233 #define elf_backend_want_got_plt 0
3234 #define elf_backend_plt_readonly 0
3235 #define elf_backend_want_plt_sym 1
3236 #define elf_backend_rela_normal 1
3238 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3239 #define elf_backend_plt_alignment 8
3241 #define elf_backend_got_header_size 8
3243 #include "elf64-target.h"