1 /* MMIX-specific support for 64-bit ELF.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
23 /* No specific ABI or "processor-specific supplement" defined. */
26 - "Traditional" linker relaxation (shrinking whole sections).
27 - Merge reloc stubs jumping to same location.
28 - GETA stub relaxation (call a stub for out of range new
29 R_MMIX_GETA_STUBBABLE). */
36 #include "opcode/mmix.h"
38 #define MINUS_ONE (((bfd_vma) 0) - 1)
40 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
42 /* Put these everywhere in new code. */
44 _bfd_abort (__FILE__, __LINE__, \
45 "Internal: Non-debugged code (test-case missing)")
48 _bfd_abort (__FILE__, __LINE__, \
51 struct _mmix_elf_section_data
53 struct bfd_elf_section_data elf;
56 struct bpo_reloc_section_info *reloc;
57 struct bpo_greg_section_info *greg;
60 struct pushj_stub_info
62 /* Maximum number of stubs needed for this section. */
63 bfd_size_type n_pushj_relocs;
65 /* Size of stubs after a mmix_elf_relax_section round. */
66 bfd_size_type stubs_size_sum;
68 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
69 of these. Allocated in mmix_elf_check_common_relocs. */
70 bfd_size_type *stub_size;
72 /* Offset of next stub during relocation. Somewhat redundant with the
73 above: error coverage is easier and we don't have to reset the
74 stubs_size_sum for relocation. */
75 bfd_size_type stub_offset;
78 /* Whether there has been a warning that this section could not be
79 linked due to a specific cause. FIXME: a way to access the
80 linker info or output section, then stuff the limiter guard
82 bfd_boolean has_warned_bpo;
83 bfd_boolean has_warned_pushj;
86 #define mmix_elf_section_data(sec) \
87 ((struct _mmix_elf_section_data *) elf_section_data (sec))
89 /* For each section containing a base-plus-offset (BPO) reloc, we attach
90 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
92 struct bpo_reloc_section_info
94 /* The base is 1; this is the first number in this section. */
95 size_t first_base_plus_offset_reloc;
97 /* Number of BPO-relocs in this section. */
98 size_t n_bpo_relocs_this_section;
100 /* Running index, used at relocation time. */
103 /* We don't have access to the bfd_link_info struct in
104 mmix_final_link_relocate. What we really want to get at is the
105 global single struct greg_relocation, so we stash it here. */
106 asection *bpo_greg_section;
109 /* Helper struct (in global context) for the one below.
110 There's one of these created for every BPO reloc. */
111 struct bpo_reloc_request
115 /* Valid after relaxation. The base is 0; the first register number
116 must be added. The offset is in range 0..255. */
120 /* The order number for this BPO reloc, corresponding to the order in
121 which BPO relocs were found. Used to create an index after reloc
122 requests are sorted. */
125 /* Set when the value is computed. Better than coding "guard values"
126 into the other members. Is FALSE only for BPO relocs in a GC:ed
131 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
132 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
133 which is linked into the register contents section
134 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
135 linker; using the same hook as for usual with BPO relocs does not
137 struct bpo_greg_section_info
139 /* After GC, this reflects the number of remaining, non-excluded
143 /* This is the number of allocated bpo_reloc_requests; the size of
144 sorted_indexes. Valid after the check.*relocs functions are called
145 for all incoming sections. It includes the number of BPO relocs in
146 sections that were GC:ed. */
147 size_t n_max_bpo_relocs;
149 /* A counter used to find out when to fold the BPO gregs, since we
150 don't have a single "after-relaxation" hook. */
151 size_t n_remaining_bpo_relocs_this_relaxation_round;
153 /* The number of linker-allocated GREGs resulting from BPO relocs.
154 This is an approximation after _bfd_mmix_before_linker_allocation
155 and supposedly accurate after mmix_elf_relax_section is called for
156 all incoming non-collected sections. */
157 size_t n_allocated_bpo_gregs;
159 /* Index into reloc_request[], sorted on increasing "value", secondary
160 by increasing index for strict sorting order. */
161 size_t *bpo_reloc_indexes;
163 /* An array of all relocations, with the "value" member filled in by
164 the relaxation function. */
165 struct bpo_reloc_request *reloc_request;
169 extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *);
171 extern void mmix_elf_symbol_processing (bfd *, asymbol *);
173 /* Only intended to be called from a debugger. */
174 extern void mmix_dump_bpo_gregs
175 (struct bfd_link_info *, void (*) (const char *, ...));
178 mmix_set_relaxable_size (bfd *, asection *, void *);
179 static bfd_reloc_status_type
180 mmix_elf_reloc (bfd *, arelent *, asymbol *, void *,
181 asection *, bfd *, char **);
182 static bfd_reloc_status_type
183 mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma,
184 bfd_signed_vma, bfd_vma, const char *, asection *,
188 /* Watch out: this currently needs to have elements with the same index as
189 their R_MMIX_ number. */
190 static reloc_howto_type elf_mmix_howto_table[] =
192 /* This reloc does nothing. */
193 HOWTO (R_MMIX_NONE, /* type */
195 3, /* size (0 = byte, 1 = short, 2 = long) */
197 FALSE, /* pc_relative */
199 complain_overflow_dont, /* complain_on_overflow */
200 bfd_elf_generic_reloc, /* special_function */
201 "R_MMIX_NONE", /* name */
202 FALSE, /* partial_inplace */
205 FALSE), /* pcrel_offset */
207 /* An 8 bit absolute relocation. */
208 HOWTO (R_MMIX_8, /* type */
210 0, /* size (0 = byte, 1 = short, 2 = long) */
212 FALSE, /* pc_relative */
214 complain_overflow_bitfield, /* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_MMIX_8", /* name */
217 FALSE, /* partial_inplace */
220 FALSE), /* pcrel_offset */
222 /* An 16 bit absolute relocation. */
223 HOWTO (R_MMIX_16, /* type */
225 1, /* size (0 = byte, 1 = short, 2 = long) */
227 FALSE, /* pc_relative */
229 complain_overflow_bitfield, /* complain_on_overflow */
230 bfd_elf_generic_reloc, /* special_function */
231 "R_MMIX_16", /* name */
232 FALSE, /* partial_inplace */
234 0xffff, /* dst_mask */
235 FALSE), /* pcrel_offset */
237 /* An 24 bit absolute relocation. */
238 HOWTO (R_MMIX_24, /* type */
240 2, /* size (0 = byte, 1 = short, 2 = long) */
242 FALSE, /* pc_relative */
244 complain_overflow_bitfield, /* complain_on_overflow */
245 bfd_elf_generic_reloc, /* special_function */
246 "R_MMIX_24", /* name */
247 FALSE, /* partial_inplace */
248 ~0xffffff, /* src_mask */
249 0xffffff, /* dst_mask */
250 FALSE), /* pcrel_offset */
252 /* A 32 bit absolute relocation. */
253 HOWTO (R_MMIX_32, /* type */
255 2, /* size (0 = byte, 1 = short, 2 = long) */
257 FALSE, /* pc_relative */
259 complain_overflow_bitfield, /* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_MMIX_32", /* name */
262 FALSE, /* partial_inplace */
264 0xffffffff, /* dst_mask */
265 FALSE), /* pcrel_offset */
267 /* 64 bit relocation. */
268 HOWTO (R_MMIX_64, /* type */
270 4, /* size (0 = byte, 1 = short, 2 = long) */
272 FALSE, /* pc_relative */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_MMIX_64", /* name */
277 FALSE, /* partial_inplace */
279 MINUS_ONE, /* dst_mask */
280 FALSE), /* pcrel_offset */
282 /* An 8 bit PC-relative relocation. */
283 HOWTO (R_MMIX_PC_8, /* type */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
287 TRUE, /* pc_relative */
289 complain_overflow_bitfield, /* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_MMIX_PC_8", /* name */
292 FALSE, /* partial_inplace */
295 TRUE), /* pcrel_offset */
297 /* An 16 bit PC-relative relocation. */
298 HOWTO (R_MMIX_PC_16, /* type */
300 1, /* size (0 = byte, 1 = short, 2 = long) */
302 TRUE, /* pc_relative */
304 complain_overflow_bitfield, /* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_MMIX_PC_16", /* name */
307 FALSE, /* partial_inplace */
309 0xffff, /* dst_mask */
310 TRUE), /* pcrel_offset */
312 /* An 24 bit PC-relative relocation. */
313 HOWTO (R_MMIX_PC_24, /* type */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
317 TRUE, /* pc_relative */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_MMIX_PC_24", /* name */
322 FALSE, /* partial_inplace */
323 ~0xffffff, /* src_mask */
324 0xffffff, /* dst_mask */
325 TRUE), /* pcrel_offset */
327 /* A 32 bit absolute PC-relative relocation. */
328 HOWTO (R_MMIX_PC_32, /* type */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
332 TRUE, /* pc_relative */
334 complain_overflow_bitfield, /* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_MMIX_PC_32", /* name */
337 FALSE, /* partial_inplace */
339 0xffffffff, /* dst_mask */
340 TRUE), /* pcrel_offset */
342 /* 64 bit PC-relative relocation. */
343 HOWTO (R_MMIX_PC_64, /* type */
345 4, /* size (0 = byte, 1 = short, 2 = long) */
347 TRUE, /* pc_relative */
349 complain_overflow_bitfield, /* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_MMIX_PC_64", /* name */
352 FALSE, /* partial_inplace */
354 MINUS_ONE, /* dst_mask */
355 TRUE), /* pcrel_offset */
357 /* GNU extension to record C++ vtable hierarchy. */
358 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
360 0, /* size (0 = byte, 1 = short, 2 = long) */
362 FALSE, /* pc_relative */
364 complain_overflow_dont, /* complain_on_overflow */
365 NULL, /* special_function */
366 "R_MMIX_GNU_VTINHERIT", /* name */
367 FALSE, /* partial_inplace */
370 TRUE), /* pcrel_offset */
372 /* GNU extension to record C++ vtable member usage. */
373 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
375 0, /* size (0 = byte, 1 = short, 2 = long) */
377 FALSE, /* pc_relative */
379 complain_overflow_dont, /* complain_on_overflow */
380 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
381 "R_MMIX_GNU_VTENTRY", /* name */
382 FALSE, /* partial_inplace */
385 FALSE), /* pcrel_offset */
387 /* The GETA relocation is supposed to get any address that could
388 possibly be reached by the GETA instruction. It can silently expand
389 to get a 64-bit operand, but will complain if any of the two least
390 significant bits are set. The howto members reflect a simple GETA. */
391 HOWTO (R_MMIX_GETA, /* type */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
395 TRUE, /* pc_relative */
397 complain_overflow_signed, /* complain_on_overflow */
398 mmix_elf_reloc, /* special_function */
399 "R_MMIX_GETA", /* name */
400 FALSE, /* partial_inplace */
401 ~0x0100ffff, /* src_mask */
402 0x0100ffff, /* dst_mask */
403 TRUE), /* pcrel_offset */
405 HOWTO (R_MMIX_GETA_1, /* type */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
409 TRUE, /* pc_relative */
411 complain_overflow_signed, /* complain_on_overflow */
412 mmix_elf_reloc, /* special_function */
413 "R_MMIX_GETA_1", /* name */
414 FALSE, /* partial_inplace */
415 ~0x0100ffff, /* src_mask */
416 0x0100ffff, /* dst_mask */
417 TRUE), /* pcrel_offset */
419 HOWTO (R_MMIX_GETA_2, /* type */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
423 TRUE, /* pc_relative */
425 complain_overflow_signed, /* complain_on_overflow */
426 mmix_elf_reloc, /* special_function */
427 "R_MMIX_GETA_2", /* name */
428 FALSE, /* partial_inplace */
429 ~0x0100ffff, /* src_mask */
430 0x0100ffff, /* dst_mask */
431 TRUE), /* pcrel_offset */
433 HOWTO (R_MMIX_GETA_3, /* type */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
437 TRUE, /* pc_relative */
439 complain_overflow_signed, /* complain_on_overflow */
440 mmix_elf_reloc, /* special_function */
441 "R_MMIX_GETA_3", /* name */
442 FALSE, /* partial_inplace */
443 ~0x0100ffff, /* src_mask */
444 0x0100ffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
447 /* The conditional branches are supposed to reach any (code) address.
448 It can silently expand to a 64-bit operand, but will emit an error if
449 any of the two least significant bits are set. The howto members
450 reflect a simple branch. */
451 HOWTO (R_MMIX_CBRANCH, /* type */
453 2, /* size (0 = byte, 1 = short, 2 = long) */
455 TRUE, /* pc_relative */
457 complain_overflow_signed, /* complain_on_overflow */
458 mmix_elf_reloc, /* special_function */
459 "R_MMIX_CBRANCH", /* name */
460 FALSE, /* partial_inplace */
461 ~0x0100ffff, /* src_mask */
462 0x0100ffff, /* dst_mask */
463 TRUE), /* pcrel_offset */
465 HOWTO (R_MMIX_CBRANCH_J, /* type */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
469 TRUE, /* pc_relative */
471 complain_overflow_signed, /* complain_on_overflow */
472 mmix_elf_reloc, /* special_function */
473 "R_MMIX_CBRANCH_J", /* name */
474 FALSE, /* partial_inplace */
475 ~0x0100ffff, /* src_mask */
476 0x0100ffff, /* dst_mask */
477 TRUE), /* pcrel_offset */
479 HOWTO (R_MMIX_CBRANCH_1, /* type */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
483 TRUE, /* pc_relative */
485 complain_overflow_signed, /* complain_on_overflow */
486 mmix_elf_reloc, /* special_function */
487 "R_MMIX_CBRANCH_1", /* name */
488 FALSE, /* partial_inplace */
489 ~0x0100ffff, /* src_mask */
490 0x0100ffff, /* dst_mask */
491 TRUE), /* pcrel_offset */
493 HOWTO (R_MMIX_CBRANCH_2, /* type */
495 2, /* size (0 = byte, 1 = short, 2 = long) */
497 TRUE, /* pc_relative */
499 complain_overflow_signed, /* complain_on_overflow */
500 mmix_elf_reloc, /* special_function */
501 "R_MMIX_CBRANCH_2", /* name */
502 FALSE, /* partial_inplace */
503 ~0x0100ffff, /* src_mask */
504 0x0100ffff, /* dst_mask */
505 TRUE), /* pcrel_offset */
507 HOWTO (R_MMIX_CBRANCH_3, /* type */
509 2, /* size (0 = byte, 1 = short, 2 = long) */
511 TRUE, /* pc_relative */
513 complain_overflow_signed, /* complain_on_overflow */
514 mmix_elf_reloc, /* special_function */
515 "R_MMIX_CBRANCH_3", /* name */
516 FALSE, /* partial_inplace */
517 ~0x0100ffff, /* src_mask */
518 0x0100ffff, /* dst_mask */
519 TRUE), /* pcrel_offset */
521 /* The PUSHJ instruction can reach any (code) address, as long as it's
522 the beginning of a function (no usable restriction). It can silently
523 expand to a 64-bit operand, but will emit an error if any of the two
524 least significant bits are set. It can also expand into a call to a
525 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
527 HOWTO (R_MMIX_PUSHJ, /* type */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
531 TRUE, /* pc_relative */
533 complain_overflow_signed, /* complain_on_overflow */
534 mmix_elf_reloc, /* special_function */
535 "R_MMIX_PUSHJ", /* name */
536 FALSE, /* partial_inplace */
537 ~0x0100ffff, /* src_mask */
538 0x0100ffff, /* dst_mask */
539 TRUE), /* pcrel_offset */
541 HOWTO (R_MMIX_PUSHJ_1, /* type */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
545 TRUE, /* pc_relative */
547 complain_overflow_signed, /* complain_on_overflow */
548 mmix_elf_reloc, /* special_function */
549 "R_MMIX_PUSHJ_1", /* name */
550 FALSE, /* partial_inplace */
551 ~0x0100ffff, /* src_mask */
552 0x0100ffff, /* dst_mask */
553 TRUE), /* pcrel_offset */
555 HOWTO (R_MMIX_PUSHJ_2, /* type */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
559 TRUE, /* pc_relative */
561 complain_overflow_signed, /* complain_on_overflow */
562 mmix_elf_reloc, /* special_function */
563 "R_MMIX_PUSHJ_2", /* name */
564 FALSE, /* partial_inplace */
565 ~0x0100ffff, /* src_mask */
566 0x0100ffff, /* dst_mask */
567 TRUE), /* pcrel_offset */
569 HOWTO (R_MMIX_PUSHJ_3, /* type */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
573 TRUE, /* pc_relative */
575 complain_overflow_signed, /* complain_on_overflow */
576 mmix_elf_reloc, /* special_function */
577 "R_MMIX_PUSHJ_3", /* name */
578 FALSE, /* partial_inplace */
579 ~0x0100ffff, /* src_mask */
580 0x0100ffff, /* dst_mask */
581 TRUE), /* pcrel_offset */
583 /* A JMP is supposed to reach any (code) address. By itself, it can
584 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
585 limit is soon reached if you link the program in wildly different
586 memory segments. The howto members reflect a trivial JMP. */
587 HOWTO (R_MMIX_JMP, /* type */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
591 TRUE, /* pc_relative */
593 complain_overflow_signed, /* complain_on_overflow */
594 mmix_elf_reloc, /* special_function */
595 "R_MMIX_JMP", /* name */
596 FALSE, /* partial_inplace */
597 ~0x1ffffff, /* src_mask */
598 0x1ffffff, /* dst_mask */
599 TRUE), /* pcrel_offset */
601 HOWTO (R_MMIX_JMP_1, /* type */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
605 TRUE, /* pc_relative */
607 complain_overflow_signed, /* complain_on_overflow */
608 mmix_elf_reloc, /* special_function */
609 "R_MMIX_JMP_1", /* name */
610 FALSE, /* partial_inplace */
611 ~0x1ffffff, /* src_mask */
612 0x1ffffff, /* dst_mask */
613 TRUE), /* pcrel_offset */
615 HOWTO (R_MMIX_JMP_2, /* type */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
619 TRUE, /* pc_relative */
621 complain_overflow_signed, /* complain_on_overflow */
622 mmix_elf_reloc, /* special_function */
623 "R_MMIX_JMP_2", /* name */
624 FALSE, /* partial_inplace */
625 ~0x1ffffff, /* src_mask */
626 0x1ffffff, /* dst_mask */
627 TRUE), /* pcrel_offset */
629 HOWTO (R_MMIX_JMP_3, /* type */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
633 TRUE, /* pc_relative */
635 complain_overflow_signed, /* complain_on_overflow */
636 mmix_elf_reloc, /* special_function */
637 "R_MMIX_JMP_3", /* name */
638 FALSE, /* partial_inplace */
639 ~0x1ffffff, /* src_mask */
640 0x1ffffff, /* dst_mask */
641 TRUE), /* pcrel_offset */
643 /* When we don't emit link-time-relaxable code from the assembler, or
644 when relaxation has done all it can do, these relocs are used. For
645 GETA/PUSHJ/branches. */
646 HOWTO (R_MMIX_ADDR19, /* type */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
650 TRUE, /* pc_relative */
652 complain_overflow_signed, /* complain_on_overflow */
653 mmix_elf_reloc, /* special_function */
654 "R_MMIX_ADDR19", /* name */
655 FALSE, /* partial_inplace */
656 ~0x0100ffff, /* src_mask */
657 0x0100ffff, /* dst_mask */
658 TRUE), /* pcrel_offset */
661 HOWTO (R_MMIX_ADDR27, /* type */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
665 TRUE, /* pc_relative */
667 complain_overflow_signed, /* complain_on_overflow */
668 mmix_elf_reloc, /* special_function */
669 "R_MMIX_ADDR27", /* name */
670 FALSE, /* partial_inplace */
671 ~0x1ffffff, /* src_mask */
672 0x1ffffff, /* dst_mask */
673 TRUE), /* pcrel_offset */
675 /* A general register or the value 0..255. If a value, then the
676 instruction (offset -3) needs adjusting. */
677 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
681 FALSE, /* pc_relative */
683 complain_overflow_bitfield, /* complain_on_overflow */
684 mmix_elf_reloc, /* special_function */
685 "R_MMIX_REG_OR_BYTE", /* name */
686 FALSE, /* partial_inplace */
689 FALSE), /* pcrel_offset */
691 /* A general register. */
692 HOWTO (R_MMIX_REG, /* type */
694 1, /* size (0 = byte, 1 = short, 2 = long) */
696 FALSE, /* pc_relative */
698 complain_overflow_bitfield, /* complain_on_overflow */
699 mmix_elf_reloc, /* special_function */
700 "R_MMIX_REG", /* name */
701 FALSE, /* partial_inplace */
704 FALSE), /* pcrel_offset */
706 /* A register plus an index, corresponding to the relocation expression.
707 The sizes must correspond to the valid range of the expression, while
708 the bitmasks correspond to what we store in the image. */
709 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
711 4, /* size (0 = byte, 1 = short, 2 = long) */
713 FALSE, /* pc_relative */
715 complain_overflow_bitfield, /* complain_on_overflow */
716 mmix_elf_reloc, /* special_function */
717 "R_MMIX_BASE_PLUS_OFFSET", /* name */
718 FALSE, /* partial_inplace */
720 0xffff, /* dst_mask */
721 FALSE), /* pcrel_offset */
723 /* A "magic" relocation for a LOCAL expression, asserting that the
724 expression is less than the number of global registers. No actual
725 modification of the contents is done. Implementing this as a
726 relocation was less intrusive than e.g. putting such expressions in a
727 section to discard *after* relocation. */
728 HOWTO (R_MMIX_LOCAL, /* type */
730 0, /* size (0 = byte, 1 = short, 2 = long) */
732 FALSE, /* pc_relative */
734 complain_overflow_dont, /* complain_on_overflow */
735 mmix_elf_reloc, /* special_function */
736 "R_MMIX_LOCAL", /* name */
737 FALSE, /* partial_inplace */
740 FALSE), /* pcrel_offset */
742 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
744 2, /* size (0 = byte, 1 = short, 2 = long) */
746 TRUE, /* pc_relative */
748 complain_overflow_signed, /* complain_on_overflow */
749 mmix_elf_reloc, /* special_function */
750 "R_MMIX_PUSHJ_STUBBABLE", /* name */
751 FALSE, /* partial_inplace */
752 ~0x0100ffff, /* src_mask */
753 0x0100ffff, /* dst_mask */
754 TRUE) /* pcrel_offset */
758 /* Map BFD reloc types to MMIX ELF reloc types. */
760 struct mmix_reloc_map
762 bfd_reloc_code_real_type bfd_reloc_val;
763 enum elf_mmix_reloc_type elf_reloc_val;
767 static const struct mmix_reloc_map mmix_reloc_map[] =
769 {BFD_RELOC_NONE, R_MMIX_NONE},
770 {BFD_RELOC_8, R_MMIX_8},
771 {BFD_RELOC_16, R_MMIX_16},
772 {BFD_RELOC_24, R_MMIX_24},
773 {BFD_RELOC_32, R_MMIX_32},
774 {BFD_RELOC_64, R_MMIX_64},
775 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
776 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
777 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
778 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
779 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
780 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
781 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
782 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
783 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
784 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
785 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
786 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
787 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
788 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
789 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
790 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
791 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
792 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
795 static reloc_howto_type *
796 bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
797 bfd_reloc_code_real_type code)
802 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
805 if (mmix_reloc_map[i].bfd_reloc_val == code)
806 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
812 static reloc_howto_type *
813 bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
819 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
821 if (elf_mmix_howto_table[i].name != NULL
822 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
823 return &elf_mmix_howto_table[i];
829 mmix_elf_new_section_hook (bfd *abfd, asection *sec)
831 if (!sec->used_by_bfd)
833 struct _mmix_elf_section_data *sdata;
834 bfd_size_type amt = sizeof (*sdata);
836 sdata = bfd_zalloc (abfd, amt);
839 sec->used_by_bfd = sdata;
842 return _bfd_elf_new_section_hook (abfd, sec);
846 /* This function performs the actual bitfiddling and sanity check for a
847 final relocation. Each relocation gets its *worst*-case expansion
848 in size when it arrives here; any reduction in size should have been
849 caught in linker relaxation earlier. When we get here, the relocation
850 looks like the smallest instruction with SWYM:s (nop:s) appended to the
851 max size. We fill in those nop:s.
853 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
857 INCML $N,(foo >> 16) & 0xffff
858 INCMH $N,(foo >> 32) & 0xffff
859 INCH $N,(foo >> 48) & 0xffff
861 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
862 condbranches needing relaxation might be rare enough to not be
873 R_MMIX_PUSHJ: (FIXME: Relaxation...)
882 R_MMIX_JMP: (FIXME: Relaxation...)
891 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
893 static bfd_reloc_status_type
894 mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto,
895 void *datap, bfd_vma addr, bfd_vma value,
896 char **error_message)
898 bfd *abfd = isec->owner;
899 bfd_reloc_status_type flag = bfd_reloc_ok;
900 bfd_reloc_status_type r;
904 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
905 We handle the differences here and the common sequence later. */
910 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
912 /* We change to an absolute value. */
918 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
920 /* Invert the condition and prediction bit, and set the offset
921 to five instructions ahead.
923 We *can* do better if we want to. If the branch is found to be
924 within limits, we could leave the branch as is; there'll just
925 be a bunch of NOP:s after it. But we shouldn't see this
926 sequence often enough that it's worth doing it. */
929 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
933 /* Put a "GO $255,$255,0" after the common sequence. */
935 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
936 (bfd_byte *) datap + 20);
938 /* Common sequence starts at offset 4. */
941 /* We change to an absolute value. */
946 case R_MMIX_PUSHJ_STUBBABLE:
947 /* If the address fits, we're fine. */
949 /* Note rightshift 0; see R_MMIX_JMP case below. */
950 && (r = bfd_check_overflow (complain_overflow_signed,
953 bfd_arch_bits_per_address (abfd),
954 value)) == bfd_reloc_ok)
955 goto pcrel_mmix_reloc_fits;
958 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
960 /* We have the bytes at the PUSHJ insn and need to get the
961 position for the stub. There's supposed to be room allocated
963 bfd_byte *stubcontents
964 = ((bfd_byte *) datap
965 - (addr - (isec->output_section->vma + isec->output_offset))
967 + mmix_elf_section_data (isec)->pjs.stub_offset);
970 if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0)
972 /* This shouldn't happen when linking to ELF or mmo, so
973 this is an attempt to link to "binary", right? We
974 can't access the output bfd, so we can't verify that
975 assumption. We only know that the critical
976 mmix_elf_check_common_relocs has not been called,
977 which happens when the output format is different
978 from the input format (and is not mmo). */
979 if (! mmix_elf_section_data (isec)->has_warned_pushj)
981 /* For the first such error per input section, produce
982 a verbose message. */
984 = _("invalid input relocation when producing"
985 " non-ELF, non-mmo format output."
986 "\n Please use the objcopy program to convert from"
988 "\n or assemble using"
989 " \"-no-expand\" (for gcc, \"-Wa,-no-expand\"");
990 mmix_elf_section_data (isec)->has_warned_pushj = TRUE;
991 return bfd_reloc_dangerous;
994 /* For subsequent errors, return this one, which is
995 rate-limited but looks a little bit different,
996 hopefully without affecting user-friendliness. */
997 return bfd_reloc_overflow;
1000 /* The address doesn't fit, so redirect the PUSHJ to the
1001 location of the stub. */
1002 r = mmix_elf_perform_relocation (isec,
1003 &elf_mmix_howto_table
1007 isec->output_section->vma
1008 + isec->output_offset
1010 + (mmix_elf_section_data (isec)
1014 if (r != bfd_reloc_ok)
1018 = (isec->output_section->vma
1019 + isec->output_offset
1021 + mmix_elf_section_data (isec)->pjs.stub_offset);
1023 /* We generate a simple JMP if that suffices, else the whole 5
1025 if (bfd_check_overflow (complain_overflow_signed,
1026 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1028 bfd_arch_bits_per_address (abfd),
1029 addr + value - stubaddr) == bfd_reloc_ok)
1031 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1032 r = mmix_elf_perform_relocation (isec,
1033 &elf_mmix_howto_table
1037 value + addr - stubaddr,
1039 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1041 if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1049 /* Put a "GO $255,0" after the common sequence. */
1051 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052 | 0xff00, (bfd_byte *) stubcontents + 16);
1054 /* Prepare for the general code to set the first part of the
1057 datap = stubcontents;
1058 mmix_elf_section_data (isec)->pjs.stub_offset
1059 += MAX_PUSHJ_STUB_SIZE;
1066 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1068 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1070 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1073 (bfd_byte *) datap + 16);
1075 /* We change to an absolute value. */
1081 /* This one is a little special. If we get here on a non-relaxing
1082 link, and the destination is actually in range, we don't need to
1084 If so, we fall through to the bit-fiddling relocs.
1086 FIXME: bfd_check_overflow seems broken; the relocation is
1087 rightshifted before testing, so supply a zero rightshift. */
1089 if (! ((value & 3) == 0
1090 && (r = bfd_check_overflow (complain_overflow_signed,
1093 bfd_arch_bits_per_address (abfd),
1094 value)) == bfd_reloc_ok))
1096 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 modified below, and put a "GO $255,$255,0" after the
1098 address-loading sequence. */
1100 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1102 (bfd_byte *) datap + 16);
1104 /* We change to an absolute value. */
1111 pcrel_mmix_reloc_fits:
1112 /* These must be in range, or else we emit an error. */
1113 if ((value & 3) == 0
1114 /* Note rightshift 0; see above. */
1115 && (r = bfd_check_overflow (complain_overflow_signed,
1118 bfd_arch_bits_per_address (abfd),
1119 value)) == bfd_reloc_ok)
1122 = bfd_get_32 (abfd, (bfd_byte *) datap);
1125 if ((bfd_signed_vma) value < 0)
1128 value += (1 << (howto->bitsize - 1));
1136 (in1 & howto->src_mask)
1138 | (value & howto->dst_mask),
1139 (bfd_byte *) datap);
1141 return bfd_reloc_ok;
1144 return bfd_reloc_overflow;
1146 case R_MMIX_BASE_PLUS_OFFSET:
1148 struct bpo_reloc_section_info *bpodata
1149 = mmix_elf_section_data (isec)->bpo.reloc;
1150 asection *bpo_greg_section;
1151 struct bpo_greg_section_info *gregdata;
1154 if (bpodata == NULL)
1156 /* This shouldn't happen when linking to ELF or mmo, so
1157 this is an attempt to link to "binary", right? We
1158 can't access the output bfd, so we can't verify that
1159 assumption. We only know that the critical
1160 mmix_elf_check_common_relocs has not been called, which
1161 happens when the output format is different from the
1162 input format (and is not mmo). */
1163 if (! mmix_elf_section_data (isec)->has_warned_bpo)
1165 /* For the first such error per input section, produce
1166 a verbose message. */
1168 = _("invalid input relocation when producing"
1169 " non-ELF, non-mmo format output."
1170 "\n Please use the objcopy program to convert from"
1172 "\n or compile using the gcc-option"
1173 " \"-mno-base-addresses\".");
1174 mmix_elf_section_data (isec)->has_warned_bpo = TRUE;
1175 return bfd_reloc_dangerous;
1178 /* For subsequent errors, return this one, which is
1179 rate-limited but looks a little bit different,
1180 hopefully without affecting user-friendliness. */
1181 return bfd_reloc_overflow;
1184 bpo_greg_section = bpodata->bpo_greg_section;
1185 gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1186 bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1188 /* A consistency check: The value we now have in "relocation" must
1189 be the same as the value we stored for that relocation. It
1190 doesn't cost much, so can be left in at all times. */
1191 if (value != gregdata->reloc_request[bpo_index].value)
1194 /* xgettext:c-format */
1195 (_("%B: Internal inconsistency error for value for\n\
1196 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1198 (unsigned long) (value >> 32), (unsigned long) value,
1199 (unsigned long) (gregdata->reloc_request[bpo_index].value
1201 (unsigned long) gregdata->reloc_request[bpo_index].value);
1202 bfd_set_error (bfd_error_bad_value);
1203 return bfd_reloc_overflow;
1206 /* Then store the register number and offset for that register
1207 into datap and datap + 1 respectively. */
1209 gregdata->reloc_request[bpo_index].regindex
1210 + bpo_greg_section->output_section->vma / 8,
1213 gregdata->reloc_request[bpo_index].offset,
1214 ((unsigned char *) datap) + 1);
1215 return bfd_reloc_ok;
1218 case R_MMIX_REG_OR_BYTE:
1221 return bfd_reloc_overflow;
1222 bfd_put_8 (abfd, value, datap);
1223 return bfd_reloc_ok;
1226 BAD_CASE (howto->type);
1229 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1232 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1233 everything that looks strange. */
1235 flag = bfd_reloc_overflow;
1238 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1239 (bfd_byte *) datap + offs);
1241 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1242 (bfd_byte *) datap + offs + 4);
1244 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1245 (bfd_byte *) datap + offs + 8);
1247 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1248 (bfd_byte *) datap + offs + 12);
1253 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1256 mmix_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
1258 Elf_Internal_Rela *dst)
1260 unsigned int r_type;
1262 r_type = ELF64_R_TYPE (dst->r_info);
1263 if (r_type >= (unsigned int) R_MMIX_max)
1265 /* xgettext:c-format */
1266 _bfd_error_handler (_("%B: invalid MMIX reloc number: %d"), abfd, r_type);
1269 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1272 /* Any MMIX-specific relocation gets here at assembly time or when linking
1273 to other formats (such as mmo); this is the relocation function from
1274 the reloc_table. We don't get here for final pure ELF linking. */
1276 static bfd_reloc_status_type
1277 mmix_elf_reloc (bfd *abfd,
1278 arelent *reloc_entry,
1281 asection *input_section,
1283 char **error_message)
1286 bfd_reloc_status_type r;
1287 asection *reloc_target_output_section;
1288 bfd_reloc_status_type flag = bfd_reloc_ok;
1289 bfd_vma output_base = 0;
1291 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1292 input_section, output_bfd, error_message);
1294 /* If that was all that was needed (i.e. this isn't a final link, only
1295 some segment adjustments), we're done. */
1296 if (r != bfd_reloc_continue)
1299 if (bfd_is_und_section (symbol->section)
1300 && (symbol->flags & BSF_WEAK) == 0
1301 && output_bfd == (bfd *) NULL)
1302 return bfd_reloc_undefined;
1304 /* Is the address of the relocation really within the section? */
1305 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1306 return bfd_reloc_outofrange;
1308 /* Work out which section the relocation is targeted at and the
1309 initial relocation command value. */
1311 /* Get symbol value. (Common symbols are special.) */
1312 if (bfd_is_com_section (symbol->section))
1315 relocation = symbol->value;
1317 reloc_target_output_section = bfd_get_output_section (symbol);
1319 /* Here the variable relocation holds the final address of the symbol we
1320 are relocating against, plus any addend. */
1324 output_base = reloc_target_output_section->vma;
1326 relocation += output_base + symbol->section->output_offset;
1328 if (output_bfd != (bfd *) NULL)
1330 /* Add in supplied addend. */
1331 relocation += reloc_entry->addend;
1333 /* This is a partial relocation, and we want to apply the
1334 relocation to the reloc entry rather than the raw data.
1335 Modify the reloc inplace to reflect what we now know. */
1336 reloc_entry->addend = relocation;
1337 reloc_entry->address += input_section->output_offset;
1341 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1342 data, reloc_entry->address,
1343 reloc_entry->addend, relocation,
1344 bfd_asymbol_name (symbol),
1345 reloc_target_output_section,
1349 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1350 for guidance if you're thinking of copying this. */
1353 mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1354 struct bfd_link_info *info,
1356 asection *input_section,
1358 Elf_Internal_Rela *relocs,
1359 Elf_Internal_Sym *local_syms,
1360 asection **local_sections)
1362 Elf_Internal_Shdr *symtab_hdr;
1363 struct elf_link_hash_entry **sym_hashes;
1364 Elf_Internal_Rela *rel;
1365 Elf_Internal_Rela *relend;
1369 size = input_section->rawsize ? input_section->rawsize : input_section->size;
1370 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1371 sym_hashes = elf_sym_hashes (input_bfd);
1372 relend = relocs + input_section->reloc_count;
1374 /* Zero the stub area before we start. */
1375 if (input_section->rawsize != 0
1376 && input_section->size > input_section->rawsize)
1377 memset (contents + input_section->rawsize, 0,
1378 input_section->size - input_section->rawsize);
1380 for (rel = relocs; rel < relend; rel ++)
1382 reloc_howto_type *howto;
1383 unsigned long r_symndx;
1384 Elf_Internal_Sym *sym;
1386 struct elf_link_hash_entry *h;
1388 bfd_reloc_status_type r;
1389 const char *name = NULL;
1391 bfd_boolean undefined_signalled = FALSE;
1393 r_type = ELF64_R_TYPE (rel->r_info);
1395 if (r_type == R_MMIX_GNU_VTINHERIT
1396 || r_type == R_MMIX_GNU_VTENTRY)
1399 r_symndx = ELF64_R_SYM (rel->r_info);
1401 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1406 if (r_symndx < symtab_hdr->sh_info)
1408 sym = local_syms + r_symndx;
1409 sec = local_sections [r_symndx];
1410 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1412 name = bfd_elf_string_from_elf_section (input_bfd,
1413 symtab_hdr->sh_link,
1416 name = bfd_section_name (input_bfd, sec);
1420 bfd_boolean unresolved_reloc, ignored;
1422 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1423 r_symndx, symtab_hdr, sym_hashes,
1425 unresolved_reloc, undefined_signalled,
1427 name = h->root.root.string;
1430 if (sec != NULL && discarded_section (sec))
1431 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1432 rel, 1, relend, howto, 0, contents);
1434 if (bfd_link_relocatable (info))
1436 /* This is a relocatable link. For most relocs we don't have to
1437 change anything, unless the reloc is against a section
1438 symbol, in which case we have to adjust according to where
1439 the section symbol winds up in the output section. */
1440 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1441 rel->r_addend += sec->output_offset;
1443 /* For PUSHJ stub relocs however, we may need to change the
1444 reloc and the section contents, if the reloc doesn't reach
1445 beyond the end of the output section and previous stubs.
1446 Then we change the section contents to be a PUSHJ to the end
1447 of the input section plus stubs (we can do that without using
1448 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1449 at the stub location. */
1450 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1452 /* We've already checked whether we need a stub; use that
1454 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1457 Elf_Internal_Rela relcpy;
1459 if (mmix_elf_section_data (input_section)
1460 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1463 /* There's already a PUSHJ insn there, so just fill in
1464 the offset bits to the stub. */
1465 if (mmix_final_link_relocate (elf_mmix_howto_table
1472 ->output_section->vma
1473 + input_section->output_offset
1475 + mmix_elf_section_data (input_section)
1477 NULL, NULL, NULL) != bfd_reloc_ok)
1480 /* Put a JMP insn at the stub; it goes with the
1481 R_MMIX_JMP reloc. */
1482 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1485 + mmix_elf_section_data (input_section)
1488 /* Change the reloc to be at the stub, and to a full
1489 R_MMIX_JMP reloc. */
1490 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1493 + mmix_elf_section_data (input_section)
1496 mmix_elf_section_data (input_section)->pjs.stub_offset
1497 += MAX_PUSHJ_STUB_SIZE;
1499 /* Shift this reloc to the end of the relocs to maintain
1500 the r_offset sorted reloc order. */
1502 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1503 relend[-1] = relcpy;
1505 /* Back up one reloc, or else we'd skip the next reloc
1515 r = mmix_final_link_relocate (howto, input_section,
1516 contents, rel->r_offset,
1517 rel->r_addend, relocation, name, sec, NULL);
1519 if (r != bfd_reloc_ok)
1521 const char * msg = (const char *) NULL;
1525 case bfd_reloc_overflow:
1526 info->callbacks->reloc_overflow
1527 (info, (h ? &h->root : NULL), name, howto->name,
1528 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1531 case bfd_reloc_undefined:
1532 /* We may have sent this message above. */
1533 if (! undefined_signalled)
1534 info->callbacks->undefined_symbol
1535 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
1536 undefined_signalled = TRUE;
1539 case bfd_reloc_outofrange:
1540 msg = _("internal error: out of range error");
1543 case bfd_reloc_notsupported:
1544 msg = _("internal error: unsupported relocation error");
1547 case bfd_reloc_dangerous:
1548 msg = _("internal error: dangerous relocation");
1552 msg = _("internal error: unknown error");
1557 (*info->callbacks->warning) (info, msg, name, input_bfd,
1558 input_section, rel->r_offset);
1565 /* Perform a single relocation. By default we use the standard BFD
1566 routines. A few relocs we have to do ourselves. */
1568 static bfd_reloc_status_type
1569 mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section,
1570 bfd_byte *contents, bfd_vma r_offset,
1571 bfd_signed_vma r_addend, bfd_vma relocation,
1572 const char *symname, asection *symsec,
1573 char **error_message)
1575 bfd_reloc_status_type r = bfd_reloc_ok;
1577 = (input_section->output_section->vma
1578 + input_section->output_offset
1581 = (bfd_signed_vma) relocation + r_addend;
1583 switch (howto->type)
1585 /* All these are PC-relative. */
1586 case R_MMIX_PUSHJ_STUBBABLE:
1588 case R_MMIX_CBRANCH:
1593 contents += r_offset;
1595 srel -= (input_section->output_section->vma
1596 + input_section->output_offset
1599 r = mmix_elf_perform_relocation (input_section, howto, contents,
1600 addr, srel, error_message);
1603 case R_MMIX_BASE_PLUS_OFFSET:
1605 return bfd_reloc_undefined;
1607 /* Check that we're not relocating against a register symbol. */
1608 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1609 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1610 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1611 MMIX_REG_SECTION_NAME) == 0)
1613 /* Note: This is separated out into two messages in order
1614 to ease the translation into other languages. */
1615 if (symname == NULL || *symname == 0)
1617 /* xgettext:c-format */
1618 (_("%B: base-plus-offset relocation against register symbol:"
1619 " (unknown) in %A"),
1620 input_section->owner, symsec);
1623 /* xgettext:c-format */
1624 (_("%B: base-plus-offset relocation against register symbol:"
1626 input_section->owner, symname, symsec);
1627 return bfd_reloc_overflow;
1631 case R_MMIX_REG_OR_BYTE:
1633 /* For now, we handle these alike. They must refer to an register
1634 symbol, which is either relative to the register section and in
1635 the range 0..255, or is in the register contents section with vma
1638 /* FIXME: A better way to check for reg contents section?
1639 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1641 return bfd_reloc_undefined;
1643 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1644 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1646 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1648 /* The bfd_reloc_outofrange return value, though intuitively
1649 a better value, will not get us an error. */
1650 return bfd_reloc_overflow;
1654 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1655 MMIX_REG_SECTION_NAME) == 0)
1657 if (srel < 0 || srel > 255)
1658 /* The bfd_reloc_outofrange return value, though intuitively a
1659 better value, will not get us an error. */
1660 return bfd_reloc_overflow;
1664 /* Note: This is separated out into two messages in order
1665 to ease the translation into other languages. */
1666 if (symname == NULL || *symname == 0)
1668 /* xgettext:c-format */
1669 (_("%B: register relocation against non-register symbol:"
1670 " (unknown) in %A"),
1671 input_section->owner, symsec);
1674 /* xgettext:c-format */
1675 (_("%B: register relocation against non-register symbol:"
1677 input_section->owner, symname, symsec);
1679 /* The bfd_reloc_outofrange return value, though intuitively a
1680 better value, will not get us an error. */
1681 return bfd_reloc_overflow;
1684 contents += r_offset;
1685 r = mmix_elf_perform_relocation (input_section, howto, contents,
1686 addr, srel, error_message);
1690 /* This isn't a real relocation, it's just an assertion that the
1691 final relocation value corresponds to a local register. We
1692 ignore the actual relocation; nothing is changed. */
1695 = bfd_get_section_by_name (input_section->output_section->owner,
1696 MMIX_REG_CONTENTS_SECTION_NAME);
1697 bfd_vma first_global;
1699 /* Check that this is an absolute value, or a reference to the
1700 register contents section or the register (symbol) section.
1701 Absolute numbers can get here as undefined section. Undefined
1702 symbols are signalled elsewhere, so there's no conflict in us
1703 accidentally handling it. */
1704 if (!bfd_is_abs_section (symsec)
1705 && !bfd_is_und_section (symsec)
1706 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1707 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1708 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1709 MMIX_REG_SECTION_NAME) != 0)
1712 (_("%B: directive LOCAL valid only with a register or absolute value"),
1713 input_section->owner);
1715 return bfd_reloc_overflow;
1718 /* If we don't have a register contents section, then $255 is the
1719 first global register. */
1725 = bfd_get_section_vma (input_section->output_section->owner,
1727 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1728 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1730 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1731 /* The bfd_reloc_outofrange return value, though
1732 intuitively a better value, will not get us an error. */
1733 return bfd_reloc_overflow;
1738 if ((bfd_vma) srel >= first_global)
1740 /* FIXME: Better error message. */
1742 /* xgettext:c-format */
1743 (_("%B: LOCAL directive: Register $%ld is not a local register."
1744 " First global register is $%ld."),
1745 input_section->owner, (long) srel, (long) first_global);
1747 return bfd_reloc_overflow;
1754 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1756 relocation, r_addend);
1762 /* Return the section that should be marked against GC for a given
1766 mmix_elf_gc_mark_hook (asection *sec,
1767 struct bfd_link_info *info,
1768 Elf_Internal_Rela *rel,
1769 struct elf_link_hash_entry *h,
1770 Elf_Internal_Sym *sym)
1773 switch (ELF64_R_TYPE (rel->r_info))
1775 case R_MMIX_GNU_VTINHERIT:
1776 case R_MMIX_GNU_VTENTRY:
1780 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1783 /* Update relocation info for a GC-excluded section. We could supposedly
1784 perform the allocation after GC, but there's no suitable hook between
1785 GC (or section merge) and the point when all input sections must be
1786 present. Better to waste some memory and (perhaps) a little time. */
1789 mmix_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
1790 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1792 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
1794 struct bpo_reloc_section_info *bpodata
1795 = mmix_elf_section_data (sec)->bpo.reloc;
1796 asection *allocated_gregs_section;
1798 /* If no bpodata here, we have nothing to do. */
1799 if (bpodata == NULL)
1802 allocated_gregs_section = bpodata->bpo_greg_section;
1804 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1805 -= bpodata->n_bpo_relocs_this_section;
1810 /* Sort register relocs to come before expanding relocs. */
1813 mmix_elf_sort_relocs (const void * p1, const void * p2)
1815 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1816 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1817 int r1_is_reg, r2_is_reg;
1819 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1821 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1823 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1827 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1828 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1830 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1831 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1832 if (r1_is_reg != r2_is_reg)
1833 return r2_is_reg - r1_is_reg;
1835 /* Neither or both are register relocs. Then sort on full offset. */
1836 if (r1->r_offset > r2->r_offset)
1838 else if (r1->r_offset < r2->r_offset)
1843 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1846 mmix_elf_check_common_relocs (bfd *abfd,
1847 struct bfd_link_info *info,
1849 const Elf_Internal_Rela *relocs)
1851 bfd *bpo_greg_owner = NULL;
1852 asection *allocated_gregs_section = NULL;
1853 struct bpo_greg_section_info *gregdata = NULL;
1854 struct bpo_reloc_section_info *bpodata = NULL;
1855 const Elf_Internal_Rela *rel;
1856 const Elf_Internal_Rela *rel_end;
1858 /* We currently have to abuse this COFF-specific member, since there's
1859 no target-machine-dedicated member. There's no alternative outside
1860 the bfd_link_info struct; we can't specialize a hash-table since
1861 they're different between ELF and mmo. */
1862 bpo_greg_owner = (bfd *) info->base_file;
1864 rel_end = relocs + sec->reloc_count;
1865 for (rel = relocs; rel < rel_end; rel++)
1867 switch (ELF64_R_TYPE (rel->r_info))
1869 /* This relocation causes a GREG allocation. We need to count
1870 them, and we need to create a section for them, so we need an
1871 object to fake as the owner of that section. We can't use
1872 the ELF dynobj for this, since the ELF bits assume lots of
1873 DSO-related stuff if that member is non-NULL. */
1874 case R_MMIX_BASE_PLUS_OFFSET:
1875 /* We don't do anything with this reloc for a relocatable link. */
1876 if (bfd_link_relocatable (info))
1879 if (bpo_greg_owner == NULL)
1881 bpo_greg_owner = abfd;
1882 info->base_file = bpo_greg_owner;
1885 if (allocated_gregs_section == NULL)
1886 allocated_gregs_section
1887 = bfd_get_section_by_name (bpo_greg_owner,
1888 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1890 if (allocated_gregs_section == NULL)
1892 allocated_gregs_section
1893 = bfd_make_section_with_flags (bpo_greg_owner,
1894 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1897 | SEC_LINKER_CREATED));
1898 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1899 treated like any other section, and we'd get errors for
1900 address overlap with the text section. Let's set none of
1901 those flags, as that is what currently happens for usual
1902 GREG allocations, and that works. */
1903 if (allocated_gregs_section == NULL
1904 || !bfd_set_section_alignment (bpo_greg_owner,
1905 allocated_gregs_section,
1909 gregdata = (struct bpo_greg_section_info *)
1910 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1911 if (gregdata == NULL)
1913 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1916 else if (gregdata == NULL)
1918 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1920 /* Get ourselves some auxiliary info for the BPO-relocs. */
1921 if (bpodata == NULL)
1923 /* No use doing a separate iteration pass to find the upper
1924 limit - just use the number of relocs. */
1925 bpodata = (struct bpo_reloc_section_info *)
1926 bfd_alloc (bpo_greg_owner,
1927 sizeof (struct bpo_reloc_section_info)
1928 * (sec->reloc_count + 1));
1929 if (bpodata == NULL)
1931 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1932 bpodata->first_base_plus_offset_reloc
1933 = bpodata->bpo_index
1934 = gregdata->n_max_bpo_relocs;
1935 bpodata->bpo_greg_section
1936 = allocated_gregs_section;
1937 bpodata->n_bpo_relocs_this_section = 0;
1940 bpodata->n_bpo_relocs_this_section++;
1941 gregdata->n_max_bpo_relocs++;
1943 /* We don't get another chance to set this before GC; we've not
1944 set up any hook that runs before GC. */
1945 gregdata->n_bpo_relocs
1946 = gregdata->n_max_bpo_relocs;
1949 case R_MMIX_PUSHJ_STUBBABLE:
1950 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1955 /* Allocate per-reloc stub storage and initialize it to the max stub
1957 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1961 mmix_elf_section_data (sec)->pjs.stub_size
1962 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1963 * sizeof (mmix_elf_section_data (sec)
1964 ->pjs.stub_size[0]));
1965 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1968 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1969 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1975 /* Look through the relocs for a section during the first phase. */
1978 mmix_elf_check_relocs (bfd *abfd,
1979 struct bfd_link_info *info,
1981 const Elf_Internal_Rela *relocs)
1983 Elf_Internal_Shdr *symtab_hdr;
1984 struct elf_link_hash_entry **sym_hashes;
1985 const Elf_Internal_Rela *rel;
1986 const Elf_Internal_Rela *rel_end;
1988 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1989 sym_hashes = elf_sym_hashes (abfd);
1991 /* First we sort the relocs so that any register relocs come before
1992 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1993 qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
1994 mmix_elf_sort_relocs);
1996 /* Do the common part. */
1997 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
2000 if (bfd_link_relocatable (info))
2003 rel_end = relocs + sec->reloc_count;
2004 for (rel = relocs; rel < rel_end; rel++)
2006 struct elf_link_hash_entry *h;
2007 unsigned long r_symndx;
2009 r_symndx = ELF64_R_SYM (rel->r_info);
2010 if (r_symndx < symtab_hdr->sh_info)
2014 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2015 while (h->root.type == bfd_link_hash_indirect
2016 || h->root.type == bfd_link_hash_warning)
2017 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2019 /* PR15323, ref flags aren't set for references in the same
2021 h->root.non_ir_ref = 1;
2024 switch (ELF64_R_TYPE (rel->r_info))
2026 /* This relocation describes the C++ object vtable hierarchy.
2027 Reconstruct it for later use during GC. */
2028 case R_MMIX_GNU_VTINHERIT:
2029 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2033 /* This relocation describes which C++ vtable entries are actually
2034 used. Record for later use during GC. */
2035 case R_MMIX_GNU_VTENTRY:
2036 BFD_ASSERT (h != NULL);
2038 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2047 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2048 Copied from elf_link_add_object_symbols. */
2051 _bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info)
2055 for (o = abfd->sections; o != NULL; o = o->next)
2057 Elf_Internal_Rela *internal_relocs;
2060 if ((o->flags & SEC_RELOC) == 0
2061 || o->reloc_count == 0
2062 || ((info->strip == strip_all || info->strip == strip_debugger)
2063 && (o->flags & SEC_DEBUGGING) != 0)
2064 || bfd_is_abs_section (o->output_section))
2068 = _bfd_elf_link_read_relocs (abfd, o, NULL,
2069 (Elf_Internal_Rela *) NULL,
2071 if (internal_relocs == NULL)
2074 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2076 if (! info->keep_memory)
2077 free (internal_relocs);
2086 /* Change symbols relative to the reg contents section to instead be to
2087 the register section, and scale them down to correspond to the register
2091 mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
2092 const char *name ATTRIBUTE_UNUSED,
2093 Elf_Internal_Sym *sym,
2094 asection *input_sec,
2095 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
2097 if (input_sec != NULL
2098 && input_sec->name != NULL
2099 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2100 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2103 sym->st_shndx = SHN_REGISTER;
2109 /* We fake a register section that holds values that are register numbers.
2110 Having a SHN_REGISTER and register section translates better to other
2111 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2112 This section faking is based on a construct in elf32-mips.c. */
2113 static asection mmix_elf_reg_section;
2114 static asymbol mmix_elf_reg_section_symbol;
2115 static asymbol *mmix_elf_reg_section_symbol_ptr;
2117 /* Handle the special section numbers that a symbol may use. */
2120 mmix_elf_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
2122 elf_symbol_type *elfsym;
2124 elfsym = (elf_symbol_type *) asym;
2125 switch (elfsym->internal_elf_sym.st_shndx)
2128 if (mmix_elf_reg_section.name == NULL)
2130 /* Initialize the register section. */
2131 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2132 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2133 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2134 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2135 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2136 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2137 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2138 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2139 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2141 asym->section = &mmix_elf_reg_section;
2149 /* Given a BFD section, try to locate the corresponding ELF section
2153 mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED,
2157 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2158 *retval = SHN_REGISTER;
2165 /* Hook called by the linker routine which adds symbols from an object
2166 file. We must handle the special SHN_REGISTER section number here.
2168 We also check that we only have *one* each of the section-start
2169 symbols, since otherwise having two with the same value would cause
2170 them to be "merged", but with the contents serialized. */
2173 mmix_elf_add_symbol_hook (bfd *abfd,
2174 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2175 Elf_Internal_Sym *sym,
2176 const char **namep ATTRIBUTE_UNUSED,
2177 flagword *flagsp ATTRIBUTE_UNUSED,
2179 bfd_vma *valp ATTRIBUTE_UNUSED)
2181 if (sym->st_shndx == SHN_REGISTER)
2183 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2184 (*secp)->flags |= SEC_LINKER_CREATED;
2186 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2187 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
2189 /* See if we have another one. */
2190 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2196 if (h != NULL && h->type != bfd_link_hash_undefined)
2198 /* How do we get the asymbol (or really: the filename) from h?
2199 h->u.def.section->owner is NULL. */
2201 /* xgettext:c-format */
2202 (_("%B: Error: multiple definition of `%s'; start of %s "
2203 "is set in a earlier linked file\n"),
2205 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX));
2206 bfd_set_error (bfd_error_bad_value);
2214 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2217 mmix_elf_is_local_label_name (bfd *abfd, const char *name)
2222 /* Also include the default local-label definition. */
2223 if (_bfd_elf_is_local_label_name (abfd, name))
2229 /* If there's no ":", or more than one, it's not a local symbol. */
2230 colpos = strchr (name, ':');
2231 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2234 /* Check that there are remaining characters and that they are digits. */
2238 digits = strspn (colpos + 1, "0123456789");
2239 return digits != 0 && colpos[1 + digits] == 0;
2242 /* We get rid of the register section here. */
2245 mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info)
2247 /* We never output a register section, though we create one for
2248 temporary measures. Check that nobody entered contents into it. */
2249 asection *reg_section;
2251 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2253 if (reg_section != NULL)
2255 /* FIXME: Pass error state gracefully. */
2256 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2257 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2259 /* Really remove the section, if it hasn't already been done. */
2260 if (!bfd_section_removed_from_list (abfd, reg_section))
2262 bfd_section_list_remove (abfd, reg_section);
2263 --abfd->section_count;
2267 if (! bfd_elf_final_link (abfd, info))
2270 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2271 the regular linker machinery. We do it here, like other targets with
2272 special sections. */
2273 if (info->base_file != NULL)
2275 asection *greg_section
2276 = bfd_get_section_by_name ((bfd *) info->base_file,
2277 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2278 if (!bfd_set_section_contents (abfd,
2279 greg_section->output_section,
2280 greg_section->contents,
2281 (file_ptr) greg_section->output_offset,
2282 greg_section->size))
2288 /* We need to include the maximum size of PUSHJ-stubs in the initial
2289 section size. This is expected to shrink during linker relaxation. */
2292 mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED,
2296 struct bfd_link_info *info = ptr;
2298 /* Make sure we only do this for section where we know we want this,
2299 otherwise we might end up resetting the size of COMMONs. */
2300 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2303 sec->rawsize = sec->size;
2304 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2305 * MAX_PUSHJ_STUB_SIZE);
2307 /* For use in relocatable link, we start with a max stubs size. See
2308 mmix_elf_relax_section. */
2309 if (bfd_link_relocatable (info) && sec->output_section)
2310 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2311 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2312 * MAX_PUSHJ_STUB_SIZE);
2315 /* Initialize stuff for the linker-generated GREGs to match
2316 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2319 _bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2320 struct bfd_link_info *info)
2322 asection *bpo_gregs_section;
2323 bfd *bpo_greg_owner;
2324 struct bpo_greg_section_info *gregdata;
2328 size_t *bpo_reloc_indexes;
2331 /* Set the initial size of sections. */
2332 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2333 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2335 /* The bpo_greg_owner bfd is supposed to have been set by
2336 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2337 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2338 bpo_greg_owner = (bfd *) info->base_file;
2339 if (bpo_greg_owner == NULL)
2343 = bfd_get_section_by_name (bpo_greg_owner,
2344 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2346 if (bpo_gregs_section == NULL)
2349 /* We use the target-data handle in the ELF section data. */
2350 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2351 if (gregdata == NULL)
2354 n_gregs = gregdata->n_bpo_relocs;
2355 gregdata->n_allocated_bpo_gregs = n_gregs;
2357 /* When this reaches zero during relaxation, all entries have been
2358 filled in and the size of the linker gregs can be calculated. */
2359 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2361 /* Set the zeroth-order estimate for the GREGs size. */
2362 gregs_size = n_gregs * 8;
2364 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2367 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2368 time. Note that we must use the max number ever noted for the array,
2369 since the index numbers were created before GC. */
2370 gregdata->reloc_request
2371 = bfd_zalloc (bpo_greg_owner,
2372 sizeof (struct bpo_reloc_request)
2373 * gregdata->n_max_bpo_relocs);
2375 gregdata->bpo_reloc_indexes
2377 = bfd_alloc (bpo_greg_owner,
2378 gregdata->n_max_bpo_relocs
2380 if (bpo_reloc_indexes == NULL)
2383 /* The default order is an identity mapping. */
2384 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2386 bpo_reloc_indexes[i] = i;
2387 gregdata->reloc_request[i].bpo_reloc_no = i;
2393 /* Fill in contents in the linker allocated gregs. Everything is
2394 calculated at this point; we just move the contents into place here. */
2397 _bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2398 struct bfd_link_info *link_info)
2400 asection *bpo_gregs_section;
2401 bfd *bpo_greg_owner;
2402 struct bpo_greg_section_info *gregdata;
2408 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2409 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2410 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2411 bpo_greg_owner = (bfd *) link_info->base_file;
2412 if (bpo_greg_owner == NULL)
2416 = bfd_get_section_by_name (bpo_greg_owner,
2417 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2419 /* This can't happen without DSO handling. When DSOs are handled
2420 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2422 if (bpo_gregs_section == NULL)
2425 /* We use the target-data handle in the ELF section data. */
2427 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2428 if (gregdata == NULL)
2431 n_gregs = gregdata->n_allocated_bpo_gregs;
2433 bpo_gregs_section->contents
2434 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
2435 if (contents == NULL)
2438 /* Sanity check: If these numbers mismatch, some relocation has not been
2439 accounted for and the rest of gregdata is probably inconsistent.
2440 It's a bug, but it's more helpful to identify it than segfaulting
2442 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2443 != gregdata->n_bpo_relocs)
2446 /* xgettext:c-format */
2447 (_("Internal inconsistency: remaining %u != max %u.\n\
2448 Please report this bug."),
2449 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2450 gregdata->n_bpo_relocs);
2454 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2455 if (gregdata->reloc_request[i].regindex != lastreg)
2457 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2459 lastreg = gregdata->reloc_request[i].regindex;
2466 /* Sort valid relocs to come before non-valid relocs, then on increasing
2470 bpo_reloc_request_sort_fn (const void * p1, const void * p2)
2472 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2473 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2475 /* Primary function is validity; non-valid relocs sorted after valid
2477 if (r1->valid != r2->valid)
2478 return r2->valid - r1->valid;
2480 /* Then sort on value. Don't simplify and return just the difference of
2481 the values: the upper bits of the 64-bit value would be truncated on
2482 a host with 32-bit ints. */
2483 if (r1->value != r2->value)
2484 return r1->value > r2->value ? 1 : -1;
2486 /* As a last re-sort, use the relocation number, so we get a stable
2487 sort. The *addresses* aren't stable since items are swapped during
2488 sorting. It depends on the qsort implementation if this actually
2490 return r1->bpo_reloc_no > r2->bpo_reloc_no
2491 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2494 /* For debug use only. Dumps the global register allocations resulting
2495 from base-plus-offset relocs. */
2498 mmix_dump_bpo_gregs (struct bfd_link_info *link_info,
2499 void (*pf) (const char *fmt, ...))
2501 bfd *bpo_greg_owner;
2502 asection *bpo_gregs_section;
2503 struct bpo_greg_section_info *gregdata;
2506 if (link_info == NULL || link_info->base_file == NULL)
2509 bpo_greg_owner = (bfd *) link_info->base_file;
2512 = bfd_get_section_by_name (bpo_greg_owner,
2513 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2515 if (bpo_gregs_section == NULL)
2518 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2519 if (gregdata == NULL)
2523 pf = _bfd_error_handler;
2525 /* These format strings are not translated. They are for debug purposes
2526 only and never displayed to an end user. Should they escape, we
2527 surely want them in original. */
2528 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2529 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2530 gregdata->n_max_bpo_relocs,
2531 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2532 gregdata->n_allocated_bpo_gregs);
2534 if (gregdata->reloc_request)
2535 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2536 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2538 (gregdata->bpo_reloc_indexes != NULL
2539 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2540 gregdata->reloc_request[i].bpo_reloc_no,
2541 gregdata->reloc_request[i].valid,
2543 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2544 (unsigned long) gregdata->reloc_request[i].value,
2545 gregdata->reloc_request[i].regindex,
2546 gregdata->reloc_request[i].offset);
2549 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2550 when the last such reloc is done, an index-array is sorted according to
2551 the values and iterated over to produce register numbers (indexed by 0
2552 from the first allocated register number) and offsets for use in real
2553 relocation. (N.B.: Relocatable runs are handled, not just punted.)
2555 PUSHJ stub accounting is also done here.
2557 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2560 mmix_elf_relax_section (bfd *abfd,
2562 struct bfd_link_info *link_info,
2565 Elf_Internal_Shdr *symtab_hdr;
2566 Elf_Internal_Rela *internal_relocs;
2567 Elf_Internal_Rela *irel, *irelend;
2568 asection *bpo_gregs_section = NULL;
2569 struct bpo_greg_section_info *gregdata;
2570 struct bpo_reloc_section_info *bpodata
2571 = mmix_elf_section_data (sec)->bpo.reloc;
2572 /* The initialization is to quiet compiler warnings. The value is to
2573 spot a missing actual initialization. */
2574 size_t bpono = (size_t) -1;
2576 Elf_Internal_Sym *isymbuf = NULL;
2577 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
2579 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2581 /* Assume nothing changes. */
2584 /* We don't have to do anything if this section does not have relocs, or
2585 if this is not a code section. */
2586 if ((sec->flags & SEC_RELOC) == 0
2587 || sec->reloc_count == 0
2588 || (sec->flags & SEC_CODE) == 0
2589 || (sec->flags & SEC_LINKER_CREATED) != 0
2590 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2591 then nothing to do. */
2593 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2596 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2598 if (bpodata != NULL)
2600 bpo_gregs_section = bpodata->bpo_greg_section;
2601 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2602 bpono = bpodata->first_base_plus_offset_reloc;
2607 /* Get a copy of the native relocations. */
2609 = _bfd_elf_link_read_relocs (abfd, sec, NULL,
2610 (Elf_Internal_Rela *) NULL,
2611 link_info->keep_memory);
2612 if (internal_relocs == NULL)
2615 /* Walk through them looking for relaxing opportunities. */
2616 irelend = internal_relocs + sec->reloc_count;
2617 for (irel = internal_relocs; irel < irelend; irel++)
2620 struct elf_link_hash_entry *h = NULL;
2622 /* We only process two relocs. */
2623 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2624 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2627 /* We process relocs in a distinctly different way when this is a
2628 relocatable link (for one, we don't look at symbols), so we avoid
2629 mixing its code with that for the "normal" relaxation. */
2630 if (bfd_link_relocatable (link_info))
2632 /* The only transformation in a relocatable link is to generate
2633 a full stub at the location of the stub calculated for the
2634 input section, if the relocated stub location, the end of the
2635 output section plus earlier stubs, cannot be reached. Thus
2636 relocatable linking can only lead to worse code, but it still
2638 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2640 /* If we can reach the end of the output-section and beyond
2641 any current stubs, then we don't need a stub for this
2642 reloc. The relaxed order of output stub allocation may
2643 not exactly match the straightforward order, so we always
2644 assume presence of output stubs, which will allow
2645 relaxation only on relocations indifferent to the
2646 presence of output stub allocations for other relocations
2647 and thus the order of output stub allocation. */
2648 if (bfd_check_overflow (complain_overflow_signed,
2651 bfd_arch_bits_per_address (abfd),
2652 /* Output-stub location. */
2653 sec->output_section->rawsize
2654 + (mmix_elf_section_data (sec
2656 ->pjs.stubs_size_sum)
2657 /* Location of this PUSHJ reloc. */
2658 - (sec->output_offset + irel->r_offset)
2659 /* Don't count *this* stub twice. */
2660 - (mmix_elf_section_data (sec)
2661 ->pjs.stub_size[pjsno]
2662 + MAX_PUSHJ_STUB_SIZE))
2664 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2666 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2667 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2675 /* Get the value of the symbol referred to by the reloc. */
2676 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2678 /* A local symbol. */
2679 Elf_Internal_Sym *isym;
2682 /* Read this BFD's local symbols if we haven't already. */
2683 if (isymbuf == NULL)
2685 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2686 if (isymbuf == NULL)
2687 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2688 symtab_hdr->sh_info, 0,
2694 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2695 if (isym->st_shndx == SHN_UNDEF)
2696 sym_sec = bfd_und_section_ptr;
2697 else if (isym->st_shndx == SHN_ABS)
2698 sym_sec = bfd_abs_section_ptr;
2699 else if (isym->st_shndx == SHN_COMMON)
2700 sym_sec = bfd_com_section_ptr;
2702 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2703 symval = (isym->st_value
2704 + sym_sec->output_section->vma
2705 + sym_sec->output_offset);
2711 /* An external symbol. */
2712 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2713 h = elf_sym_hashes (abfd)[indx];
2714 BFD_ASSERT (h != NULL);
2715 if (h->root.type != bfd_link_hash_defined
2716 && h->root.type != bfd_link_hash_defweak)
2718 /* This appears to be a reference to an undefined symbol. Just
2719 ignore it--it will be caught by the regular reloc processing.
2720 We need to keep BPO reloc accounting consistent, though
2721 else we'll abort instead of emitting an error message. */
2722 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2723 && gregdata != NULL)
2725 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2731 symval = (h->root.u.def.value
2732 + h->root.u.def.section->output_section->vma
2733 + h->root.u.def.section->output_offset);
2736 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2738 bfd_vma value = symval + irel->r_addend;
2740 = (sec->output_section->vma
2741 + sec->output_offset
2744 = (sec->output_section->vma
2745 + sec->output_offset
2747 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2749 if ((value & 3) == 0
2750 && bfd_check_overflow (complain_overflow_signed,
2753 bfd_arch_bits_per_address (abfd),
2756 ? mmix_elf_section_data (sec)
2757 ->pjs.stub_size[pjsno]
2760 /* If the reloc fits, no stub is needed. */
2761 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2763 /* Maybe we can get away with just a JMP insn? */
2764 if ((value & 3) == 0
2765 && bfd_check_overflow (complain_overflow_signed,
2768 bfd_arch_bits_per_address (abfd),
2771 ? mmix_elf_section_data (sec)
2772 ->pjs.stub_size[pjsno] - 4
2775 /* Yep, account for a stub consisting of a single JMP insn. */
2776 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2778 /* Nope, go for the full insn stub. It doesn't seem useful to
2779 emit the intermediate sizes; those will only be useful for
2780 a >64M program assuming contiguous code. */
2781 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2782 = MAX_PUSHJ_STUB_SIZE;
2784 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2785 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2790 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2792 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2793 = symval + irel->r_addend;
2794 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2795 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2798 /* Check if that was the last BPO-reloc. If so, sort the values and
2799 calculate how many registers we need to cover them. Set the size of
2800 the linker gregs, and if the number of registers changed, indicate
2801 that we need to relax some more because we have more work to do. */
2802 if (gregdata != NULL
2803 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2809 /* First, reset the remaining relocs for the next round. */
2810 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2811 = gregdata->n_bpo_relocs;
2813 qsort (gregdata->reloc_request,
2814 gregdata->n_max_bpo_relocs,
2815 sizeof (struct bpo_reloc_request),
2816 bpo_reloc_request_sort_fn);
2818 /* Recalculate indexes. When we find a change (however unlikely
2819 after the initial iteration), we know we need to relax again,
2820 since items in the GREG-array are sorted by increasing value and
2821 stored in the relaxation phase. */
2822 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2823 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2826 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2831 /* Allocate register numbers (indexing from 0). Stop at the first
2833 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2834 i < gregdata->n_bpo_relocs;
2837 if (gregdata->reloc_request[i].value > prev_base + 255)
2840 prev_base = gregdata->reloc_request[i].value;
2842 gregdata->reloc_request[i].regindex = regindex;
2843 gregdata->reloc_request[i].offset
2844 = gregdata->reloc_request[i].value - prev_base;
2847 /* If it's not the same as the last time, we need to relax again,
2848 because the size of the section has changed. I'm not sure we
2849 actually need to do any adjustments since the shrinking happens
2850 at the start of this section, but better safe than sorry. */
2851 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2853 gregdata->n_allocated_bpo_gregs = regindex + 1;
2857 bpo_gregs_section->size = (regindex + 1) * 8;
2860 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2862 if (! link_info->keep_memory)
2866 /* Cache the symbols for elf_link_input_bfd. */
2867 symtab_hdr->contents = (unsigned char *) isymbuf;
2871 if (internal_relocs != NULL
2872 && elf_section_data (sec)->relocs != internal_relocs)
2873 free (internal_relocs);
2875 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2878 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2880 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2887 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2889 if (internal_relocs != NULL
2890 && elf_section_data (sec)->relocs != internal_relocs)
2891 free (internal_relocs);
2895 #define ELF_ARCH bfd_arch_mmix
2896 #define ELF_MACHINE_CODE EM_MMIX
2898 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2899 However, that's too much for something somewhere in the linker part of
2900 BFD; perhaps the start-address has to be a non-zero multiple of this
2901 number, or larger than this number. The symptom is that the linker
2902 complains: "warning: allocated section `.text' not in segment". We
2903 settle for 64k; the page-size used in examples is 8k.
2904 #define ELF_MAXPAGESIZE 0x10000
2906 Unfortunately, this causes excessive padding in the supposedly small
2907 for-education programs that are the expected usage (where people would
2908 inspect output). We stick to 256 bytes just to have *some* default
2910 #define ELF_MAXPAGESIZE 0x100
2912 #define TARGET_BIG_SYM mmix_elf64_vec
2913 #define TARGET_BIG_NAME "elf64-mmix"
2915 #define elf_info_to_howto_rel NULL
2916 #define elf_info_to_howto mmix_info_to_howto_rela
2917 #define elf_backend_relocate_section mmix_elf_relocate_section
2918 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
2919 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
2921 #define elf_backend_link_output_symbol_hook \
2922 mmix_elf_link_output_symbol_hook
2923 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2925 #define elf_backend_check_relocs mmix_elf_check_relocs
2926 #define elf_backend_symbol_processing mmix_elf_symbol_processing
2927 #define elf_backend_omit_section_dynsym \
2928 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2930 #define bfd_elf64_bfd_is_local_label_name \
2931 mmix_elf_is_local_label_name
2933 #define elf_backend_may_use_rel_p 0
2934 #define elf_backend_may_use_rela_p 1
2935 #define elf_backend_default_use_rela_p 1
2937 #define elf_backend_can_gc_sections 1
2938 #define elf_backend_section_from_bfd_section \
2939 mmix_elf_section_from_bfd_section
2941 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
2942 #define bfd_elf64_bfd_final_link mmix_elf_final_link
2943 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
2945 #include "elf64-target.h"