1 /* MMIX-specific support for 64-bit ELF.
2 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 /* No specific ABI or "processor-specific supplement" defined. */
24 - "Traditional" linker relaxation (shrinking whole sections).
25 - Merge reloc stubs jumping to same location.
26 - GETA stub relaxation (call a stub for out of range new
27 R_MMIX_GETA_STUBBABLE). */
34 #include "opcode/mmix.h"
36 #define MINUS_ONE (((bfd_vma) 0) - 1)
38 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
40 /* Put these everywhere in new code. */
42 _bfd_abort (__FILE__, __LINE__, \
43 "Internal: Non-debugged code (test-case missing)")
46 _bfd_abort (__FILE__, __LINE__, \
49 struct _mmix_elf_section_data
51 struct bfd_elf_section_data elf;
54 struct bpo_reloc_section_info *reloc;
55 struct bpo_greg_section_info *greg;
58 struct pushj_stub_info
60 /* Maximum number of stubs needed for this section. */
61 bfd_size_type n_pushj_relocs;
63 /* Size of stubs after a mmix_elf_relax_section round. */
64 bfd_size_type stubs_size_sum;
66 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
67 of these. Allocated in mmix_elf_check_common_relocs. */
68 bfd_size_type *stub_size;
70 /* Offset of next stub during relocation. Somewhat redundant with the
71 above: error coverage is easier and we don't have to reset the
72 stubs_size_sum for relocation. */
73 bfd_size_type stub_offset;
77 #define mmix_elf_section_data(sec) \
78 ((struct _mmix_elf_section_data *) elf_section_data (sec))
80 /* For each section containing a base-plus-offset (BPO) reloc, we attach
81 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
83 struct bpo_reloc_section_info
85 /* The base is 1; this is the first number in this section. */
86 size_t first_base_plus_offset_reloc;
88 /* Number of BPO-relocs in this section. */
89 size_t n_bpo_relocs_this_section;
91 /* Running index, used at relocation time. */
94 /* We don't have access to the bfd_link_info struct in
95 mmix_final_link_relocate. What we really want to get at is the
96 global single struct greg_relocation, so we stash it here. */
97 asection *bpo_greg_section;
100 /* Helper struct (in global context) for the one below.
101 There's one of these created for every BPO reloc. */
102 struct bpo_reloc_request
106 /* Valid after relaxation. The base is 0; the first register number
107 must be added. The offset is in range 0..255. */
111 /* The order number for this BPO reloc, corresponding to the order in
112 which BPO relocs were found. Used to create an index after reloc
113 requests are sorted. */
116 /* Set when the value is computed. Better than coding "guard values"
117 into the other members. Is FALSE only for BPO relocs in a GC:ed
122 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
123 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
124 which is linked into the register contents section
125 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
126 linker; using the same hook as for usual with BPO relocs does not
128 struct bpo_greg_section_info
130 /* After GC, this reflects the number of remaining, non-excluded
134 /* This is the number of allocated bpo_reloc_requests; the size of
135 sorted_indexes. Valid after the check.*relocs functions are called
136 for all incoming sections. It includes the number of BPO relocs in
137 sections that were GC:ed. */
138 size_t n_max_bpo_relocs;
140 /* A counter used to find out when to fold the BPO gregs, since we
141 don't have a single "after-relaxation" hook. */
142 size_t n_remaining_bpo_relocs_this_relaxation_round;
144 /* The number of linker-allocated GREGs resulting from BPO relocs.
145 This is an approximation after _bfd_mmix_before_linker_allocation
146 and supposedly accurate after mmix_elf_relax_section is called for
147 all incoming non-collected sections. */
148 size_t n_allocated_bpo_gregs;
150 /* Index into reloc_request[], sorted on increasing "value", secondary
151 by increasing index for strict sorting order. */
152 size_t *bpo_reloc_indexes;
154 /* An array of all relocations, with the "value" member filled in by
155 the relaxation function. */
156 struct bpo_reloc_request *reloc_request;
159 static bfd_boolean mmix_elf_link_output_symbol_hook
160 PARAMS ((bfd *, struct bfd_link_info *, const char *,
161 Elf_Internal_Sym *, asection *));
163 static bfd_reloc_status_type mmix_elf_reloc
164 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
166 static reloc_howto_type *bfd_elf64_bfd_reloc_type_lookup
167 PARAMS ((bfd *, bfd_reloc_code_real_type));
169 static void mmix_info_to_howto_rela
170 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
172 static int mmix_elf_sort_relocs PARAMS ((const PTR, const PTR));
174 static bfd_boolean mmix_elf_new_section_hook
175 PARAMS ((bfd *, asection *));
177 static bfd_boolean mmix_elf_check_relocs
178 PARAMS ((bfd *, struct bfd_link_info *, asection *,
179 const Elf_Internal_Rela *));
181 static bfd_boolean mmix_elf_check_common_relocs
182 PARAMS ((bfd *, struct bfd_link_info *, asection *,
183 const Elf_Internal_Rela *));
185 static bfd_boolean mmix_elf_relocate_section
186 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
187 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
189 static asection * mmix_elf_gc_mark_hook
190 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
191 struct elf_link_hash_entry *, Elf_Internal_Sym *));
193 static bfd_boolean mmix_elf_gc_sweep_hook
194 PARAMS ((bfd *, struct bfd_link_info *, asection *,
195 const Elf_Internal_Rela *));
197 static bfd_reloc_status_type mmix_final_link_relocate
198 PARAMS ((reloc_howto_type *, asection *, bfd_byte *,
199 bfd_vma, bfd_signed_vma, bfd_vma, const char *, asection *));
201 static bfd_reloc_status_type mmix_elf_perform_relocation
202 PARAMS ((asection *, reloc_howto_type *, PTR, bfd_vma, bfd_vma));
204 static bfd_boolean mmix_elf_section_from_bfd_section
205 PARAMS ((bfd *, asection *, int *));
207 static bfd_boolean mmix_elf_add_symbol_hook
208 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
209 const char **, flagword *, asection **, bfd_vma *));
211 static bfd_boolean mmix_elf_is_local_label_name
212 PARAMS ((bfd *, const char *));
214 static int bpo_reloc_request_sort_fn PARAMS ((const PTR, const PTR));
216 static bfd_boolean mmix_elf_relax_section
217 PARAMS ((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
218 bfd_boolean *again));
220 extern bfd_boolean mmix_elf_final_link PARAMS ((bfd *, struct bfd_link_info *));
222 extern void mmix_elf_symbol_processing PARAMS ((bfd *, asymbol *));
224 /* Only intended to be called from a debugger. */
225 extern void mmix_dump_bpo_gregs
226 PARAMS ((struct bfd_link_info *, bfd_error_handler_type));
229 mmix_set_relaxable_size
230 PARAMS ((bfd *, asection *, void *));
233 mmix_elf_get_section_contents
234 PARAMS ((bfd *, sec_ptr, void *, file_ptr, bfd_size_type));
237 /* Watch out: this currently needs to have elements with the same index as
238 their R_MMIX_ number. */
239 static reloc_howto_type elf_mmix_howto_table[] =
241 /* This reloc does nothing. */
242 HOWTO (R_MMIX_NONE, /* type */
244 2, /* size (0 = byte, 1 = short, 2 = long) */
246 FALSE, /* pc_relative */
248 complain_overflow_bitfield, /* complain_on_overflow */
249 bfd_elf_generic_reloc, /* special_function */
250 "R_MMIX_NONE", /* name */
251 FALSE, /* partial_inplace */
254 FALSE), /* pcrel_offset */
256 /* An 8 bit absolute relocation. */
257 HOWTO (R_MMIX_8, /* type */
259 0, /* size (0 = byte, 1 = short, 2 = long) */
261 FALSE, /* pc_relative */
263 complain_overflow_bitfield, /* complain_on_overflow */
264 bfd_elf_generic_reloc, /* special_function */
265 "R_MMIX_8", /* name */
266 FALSE, /* partial_inplace */
269 FALSE), /* pcrel_offset */
271 /* An 16 bit absolute relocation. */
272 HOWTO (R_MMIX_16, /* type */
274 1, /* size (0 = byte, 1 = short, 2 = long) */
276 FALSE, /* pc_relative */
278 complain_overflow_bitfield, /* complain_on_overflow */
279 bfd_elf_generic_reloc, /* special_function */
280 "R_MMIX_16", /* name */
281 FALSE, /* partial_inplace */
283 0xffff, /* dst_mask */
284 FALSE), /* pcrel_offset */
286 /* An 24 bit absolute relocation. */
287 HOWTO (R_MMIX_24, /* type */
289 2, /* size (0 = byte, 1 = short, 2 = long) */
291 FALSE, /* pc_relative */
293 complain_overflow_bitfield, /* complain_on_overflow */
294 bfd_elf_generic_reloc, /* special_function */
295 "R_MMIX_24", /* name */
296 FALSE, /* partial_inplace */
297 ~0xffffff, /* src_mask */
298 0xffffff, /* dst_mask */
299 FALSE), /* pcrel_offset */
301 /* A 32 bit absolute relocation. */
302 HOWTO (R_MMIX_32, /* type */
304 2, /* size (0 = byte, 1 = short, 2 = long) */
306 FALSE, /* pc_relative */
308 complain_overflow_bitfield, /* complain_on_overflow */
309 bfd_elf_generic_reloc, /* special_function */
310 "R_MMIX_32", /* name */
311 FALSE, /* partial_inplace */
313 0xffffffff, /* dst_mask */
314 FALSE), /* pcrel_offset */
316 /* 64 bit relocation. */
317 HOWTO (R_MMIX_64, /* type */
319 4, /* size (0 = byte, 1 = short, 2 = long) */
321 FALSE, /* pc_relative */
323 complain_overflow_bitfield, /* complain_on_overflow */
324 bfd_elf_generic_reloc, /* special_function */
325 "R_MMIX_64", /* name */
326 FALSE, /* partial_inplace */
328 MINUS_ONE, /* dst_mask */
329 FALSE), /* pcrel_offset */
331 /* An 8 bit PC-relative relocation. */
332 HOWTO (R_MMIX_PC_8, /* type */
334 0, /* size (0 = byte, 1 = short, 2 = long) */
336 TRUE, /* pc_relative */
338 complain_overflow_bitfield, /* complain_on_overflow */
339 bfd_elf_generic_reloc, /* special_function */
340 "R_MMIX_PC_8", /* name */
341 FALSE, /* partial_inplace */
344 TRUE), /* pcrel_offset */
346 /* An 16 bit PC-relative relocation. */
347 HOWTO (R_MMIX_PC_16, /* type */
349 1, /* size (0 = byte, 1 = short, 2 = long) */
351 TRUE, /* pc_relative */
353 complain_overflow_bitfield, /* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_MMIX_PC_16", /* name */
356 FALSE, /* partial_inplace */
358 0xffff, /* dst_mask */
359 TRUE), /* pcrel_offset */
361 /* An 24 bit PC-relative relocation. */
362 HOWTO (R_MMIX_PC_24, /* type */
364 2, /* size (0 = byte, 1 = short, 2 = long) */
366 TRUE, /* pc_relative */
368 complain_overflow_bitfield, /* complain_on_overflow */
369 bfd_elf_generic_reloc, /* special_function */
370 "R_MMIX_PC_24", /* name */
371 FALSE, /* partial_inplace */
372 ~0xffffff, /* src_mask */
373 0xffffff, /* dst_mask */
374 TRUE), /* pcrel_offset */
376 /* A 32 bit absolute PC-relative relocation. */
377 HOWTO (R_MMIX_PC_32, /* type */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
381 TRUE, /* pc_relative */
383 complain_overflow_bitfield, /* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_MMIX_PC_32", /* name */
386 FALSE, /* partial_inplace */
388 0xffffffff, /* dst_mask */
389 TRUE), /* pcrel_offset */
391 /* 64 bit PC-relative relocation. */
392 HOWTO (R_MMIX_PC_64, /* type */
394 4, /* size (0 = byte, 1 = short, 2 = long) */
396 TRUE, /* pc_relative */
398 complain_overflow_bitfield, /* complain_on_overflow */
399 bfd_elf_generic_reloc, /* special_function */
400 "R_MMIX_PC_64", /* name */
401 FALSE, /* partial_inplace */
403 MINUS_ONE, /* dst_mask */
404 TRUE), /* pcrel_offset */
406 /* GNU extension to record C++ vtable hierarchy. */
407 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
409 0, /* size (0 = byte, 1 = short, 2 = long) */
411 FALSE, /* pc_relative */
413 complain_overflow_dont, /* complain_on_overflow */
414 NULL, /* special_function */
415 "R_MMIX_GNU_VTINHERIT", /* name */
416 FALSE, /* partial_inplace */
419 TRUE), /* pcrel_offset */
421 /* GNU extension to record C++ vtable member usage. */
422 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
424 0, /* size (0 = byte, 1 = short, 2 = long) */
426 FALSE, /* pc_relative */
428 complain_overflow_dont, /* complain_on_overflow */
429 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
430 "R_MMIX_GNU_VTENTRY", /* name */
431 FALSE, /* partial_inplace */
434 FALSE), /* pcrel_offset */
436 /* The GETA relocation is supposed to get any address that could
437 possibly be reached by the GETA instruction. It can silently expand
438 to get a 64-bit operand, but will complain if any of the two least
439 significant bits are set. The howto members reflect a simple GETA. */
440 HOWTO (R_MMIX_GETA, /* type */
442 2, /* size (0 = byte, 1 = short, 2 = long) */
444 TRUE, /* pc_relative */
446 complain_overflow_signed, /* complain_on_overflow */
447 mmix_elf_reloc, /* special_function */
448 "R_MMIX_GETA", /* name */
449 FALSE, /* partial_inplace */
450 ~0x0100ffff, /* src_mask */
451 0x0100ffff, /* dst_mask */
452 TRUE), /* pcrel_offset */
454 HOWTO (R_MMIX_GETA_1, /* type */
456 2, /* size (0 = byte, 1 = short, 2 = long) */
458 TRUE, /* pc_relative */
460 complain_overflow_signed, /* complain_on_overflow */
461 mmix_elf_reloc, /* special_function */
462 "R_MMIX_GETA_1", /* name */
463 FALSE, /* partial_inplace */
464 ~0x0100ffff, /* src_mask */
465 0x0100ffff, /* dst_mask */
466 TRUE), /* pcrel_offset */
468 HOWTO (R_MMIX_GETA_2, /* type */
470 2, /* size (0 = byte, 1 = short, 2 = long) */
472 TRUE, /* pc_relative */
474 complain_overflow_signed, /* complain_on_overflow */
475 mmix_elf_reloc, /* special_function */
476 "R_MMIX_GETA_2", /* name */
477 FALSE, /* partial_inplace */
478 ~0x0100ffff, /* src_mask */
479 0x0100ffff, /* dst_mask */
480 TRUE), /* pcrel_offset */
482 HOWTO (R_MMIX_GETA_3, /* type */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
486 TRUE, /* pc_relative */
488 complain_overflow_signed, /* complain_on_overflow */
489 mmix_elf_reloc, /* special_function */
490 "R_MMIX_GETA_3", /* name */
491 FALSE, /* partial_inplace */
492 ~0x0100ffff, /* src_mask */
493 0x0100ffff, /* dst_mask */
494 TRUE), /* pcrel_offset */
496 /* The conditional branches are supposed to reach any (code) address.
497 It can silently expand to a 64-bit operand, but will emit an error if
498 any of the two least significant bits are set. The howto members
499 reflect a simple branch. */
500 HOWTO (R_MMIX_CBRANCH, /* type */
502 2, /* size (0 = byte, 1 = short, 2 = long) */
504 TRUE, /* pc_relative */
506 complain_overflow_signed, /* complain_on_overflow */
507 mmix_elf_reloc, /* special_function */
508 "R_MMIX_CBRANCH", /* name */
509 FALSE, /* partial_inplace */
510 ~0x0100ffff, /* src_mask */
511 0x0100ffff, /* dst_mask */
512 TRUE), /* pcrel_offset */
514 HOWTO (R_MMIX_CBRANCH_J, /* type */
516 2, /* size (0 = byte, 1 = short, 2 = long) */
518 TRUE, /* pc_relative */
520 complain_overflow_signed, /* complain_on_overflow */
521 mmix_elf_reloc, /* special_function */
522 "R_MMIX_CBRANCH_J", /* name */
523 FALSE, /* partial_inplace */
524 ~0x0100ffff, /* src_mask */
525 0x0100ffff, /* dst_mask */
526 TRUE), /* pcrel_offset */
528 HOWTO (R_MMIX_CBRANCH_1, /* type */
530 2, /* size (0 = byte, 1 = short, 2 = long) */
532 TRUE, /* pc_relative */
534 complain_overflow_signed, /* complain_on_overflow */
535 mmix_elf_reloc, /* special_function */
536 "R_MMIX_CBRANCH_1", /* name */
537 FALSE, /* partial_inplace */
538 ~0x0100ffff, /* src_mask */
539 0x0100ffff, /* dst_mask */
540 TRUE), /* pcrel_offset */
542 HOWTO (R_MMIX_CBRANCH_2, /* type */
544 2, /* size (0 = byte, 1 = short, 2 = long) */
546 TRUE, /* pc_relative */
548 complain_overflow_signed, /* complain_on_overflow */
549 mmix_elf_reloc, /* special_function */
550 "R_MMIX_CBRANCH_2", /* name */
551 FALSE, /* partial_inplace */
552 ~0x0100ffff, /* src_mask */
553 0x0100ffff, /* dst_mask */
554 TRUE), /* pcrel_offset */
556 HOWTO (R_MMIX_CBRANCH_3, /* type */
558 2, /* size (0 = byte, 1 = short, 2 = long) */
560 TRUE, /* pc_relative */
562 complain_overflow_signed, /* complain_on_overflow */
563 mmix_elf_reloc, /* special_function */
564 "R_MMIX_CBRANCH_3", /* name */
565 FALSE, /* partial_inplace */
566 ~0x0100ffff, /* src_mask */
567 0x0100ffff, /* dst_mask */
568 TRUE), /* pcrel_offset */
570 /* The PUSHJ instruction can reach any (code) address, as long as it's
571 the beginning of a function (no usable restriction). It can silently
572 expand to a 64-bit operand, but will emit an error if any of the two
573 least significant bits are set. It can also expand into a call to a
574 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
576 HOWTO (R_MMIX_PUSHJ, /* type */
578 2, /* size (0 = byte, 1 = short, 2 = long) */
580 TRUE, /* pc_relative */
582 complain_overflow_signed, /* complain_on_overflow */
583 mmix_elf_reloc, /* special_function */
584 "R_MMIX_PUSHJ", /* name */
585 FALSE, /* partial_inplace */
586 ~0x0100ffff, /* src_mask */
587 0x0100ffff, /* dst_mask */
588 TRUE), /* pcrel_offset */
590 HOWTO (R_MMIX_PUSHJ_1, /* type */
592 2, /* size (0 = byte, 1 = short, 2 = long) */
594 TRUE, /* pc_relative */
596 complain_overflow_signed, /* complain_on_overflow */
597 mmix_elf_reloc, /* special_function */
598 "R_MMIX_PUSHJ_1", /* name */
599 FALSE, /* partial_inplace */
600 ~0x0100ffff, /* src_mask */
601 0x0100ffff, /* dst_mask */
602 TRUE), /* pcrel_offset */
604 HOWTO (R_MMIX_PUSHJ_2, /* type */
606 2, /* size (0 = byte, 1 = short, 2 = long) */
608 TRUE, /* pc_relative */
610 complain_overflow_signed, /* complain_on_overflow */
611 mmix_elf_reloc, /* special_function */
612 "R_MMIX_PUSHJ_2", /* name */
613 FALSE, /* partial_inplace */
614 ~0x0100ffff, /* src_mask */
615 0x0100ffff, /* dst_mask */
616 TRUE), /* pcrel_offset */
618 HOWTO (R_MMIX_PUSHJ_3, /* type */
620 2, /* size (0 = byte, 1 = short, 2 = long) */
622 TRUE, /* pc_relative */
624 complain_overflow_signed, /* complain_on_overflow */
625 mmix_elf_reloc, /* special_function */
626 "R_MMIX_PUSHJ_3", /* name */
627 FALSE, /* partial_inplace */
628 ~0x0100ffff, /* src_mask */
629 0x0100ffff, /* dst_mask */
630 TRUE), /* pcrel_offset */
632 /* A JMP is supposed to reach any (code) address. By itself, it can
633 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
634 limit is soon reached if you link the program in wildly different
635 memory segments. The howto members reflect a trivial JMP. */
636 HOWTO (R_MMIX_JMP, /* type */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
640 TRUE, /* pc_relative */
642 complain_overflow_signed, /* complain_on_overflow */
643 mmix_elf_reloc, /* special_function */
644 "R_MMIX_JMP", /* name */
645 FALSE, /* partial_inplace */
646 ~0x1ffffff, /* src_mask */
647 0x1ffffff, /* dst_mask */
648 TRUE), /* pcrel_offset */
650 HOWTO (R_MMIX_JMP_1, /* type */
652 2, /* size (0 = byte, 1 = short, 2 = long) */
654 TRUE, /* pc_relative */
656 complain_overflow_signed, /* complain_on_overflow */
657 mmix_elf_reloc, /* special_function */
658 "R_MMIX_JMP_1", /* name */
659 FALSE, /* partial_inplace */
660 ~0x1ffffff, /* src_mask */
661 0x1ffffff, /* dst_mask */
662 TRUE), /* pcrel_offset */
664 HOWTO (R_MMIX_JMP_2, /* type */
666 2, /* size (0 = byte, 1 = short, 2 = long) */
668 TRUE, /* pc_relative */
670 complain_overflow_signed, /* complain_on_overflow */
671 mmix_elf_reloc, /* special_function */
672 "R_MMIX_JMP_2", /* name */
673 FALSE, /* partial_inplace */
674 ~0x1ffffff, /* src_mask */
675 0x1ffffff, /* dst_mask */
676 TRUE), /* pcrel_offset */
678 HOWTO (R_MMIX_JMP_3, /* type */
680 2, /* size (0 = byte, 1 = short, 2 = long) */
682 TRUE, /* pc_relative */
684 complain_overflow_signed, /* complain_on_overflow */
685 mmix_elf_reloc, /* special_function */
686 "R_MMIX_JMP_3", /* name */
687 FALSE, /* partial_inplace */
688 ~0x1ffffff, /* src_mask */
689 0x1ffffff, /* dst_mask */
690 TRUE), /* pcrel_offset */
692 /* When we don't emit link-time-relaxable code from the assembler, or
693 when relaxation has done all it can do, these relocs are used. For
694 GETA/PUSHJ/branches. */
695 HOWTO (R_MMIX_ADDR19, /* type */
697 2, /* size (0 = byte, 1 = short, 2 = long) */
699 TRUE, /* pc_relative */
701 complain_overflow_signed, /* complain_on_overflow */
702 mmix_elf_reloc, /* special_function */
703 "R_MMIX_ADDR19", /* name */
704 FALSE, /* partial_inplace */
705 ~0x0100ffff, /* src_mask */
706 0x0100ffff, /* dst_mask */
707 TRUE), /* pcrel_offset */
710 HOWTO (R_MMIX_ADDR27, /* type */
712 2, /* size (0 = byte, 1 = short, 2 = long) */
714 TRUE, /* pc_relative */
716 complain_overflow_signed, /* complain_on_overflow */
717 mmix_elf_reloc, /* special_function */
718 "R_MMIX_ADDR27", /* name */
719 FALSE, /* partial_inplace */
720 ~0x1ffffff, /* src_mask */
721 0x1ffffff, /* dst_mask */
722 TRUE), /* pcrel_offset */
724 /* A general register or the value 0..255. If a value, then the
725 instruction (offset -3) needs adjusting. */
726 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
728 1, /* size (0 = byte, 1 = short, 2 = long) */
730 FALSE, /* pc_relative */
732 complain_overflow_bitfield, /* complain_on_overflow */
733 mmix_elf_reloc, /* special_function */
734 "R_MMIX_REG_OR_BYTE", /* name */
735 FALSE, /* partial_inplace */
738 FALSE), /* pcrel_offset */
740 /* A general register. */
741 HOWTO (R_MMIX_REG, /* type */
743 1, /* size (0 = byte, 1 = short, 2 = long) */
745 FALSE, /* pc_relative */
747 complain_overflow_bitfield, /* complain_on_overflow */
748 mmix_elf_reloc, /* special_function */
749 "R_MMIX_REG", /* name */
750 FALSE, /* partial_inplace */
753 FALSE), /* pcrel_offset */
755 /* A register plus an index, corresponding to the relocation expression.
756 The sizes must correspond to the valid range of the expression, while
757 the bitmasks correspond to what we store in the image. */
758 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
760 4, /* size (0 = byte, 1 = short, 2 = long) */
762 FALSE, /* pc_relative */
764 complain_overflow_bitfield, /* complain_on_overflow */
765 mmix_elf_reloc, /* special_function */
766 "R_MMIX_BASE_PLUS_OFFSET", /* name */
767 FALSE, /* partial_inplace */
769 0xffff, /* dst_mask */
770 FALSE), /* pcrel_offset */
772 /* A "magic" relocation for a LOCAL expression, asserting that the
773 expression is less than the number of global registers. No actual
774 modification of the contents is done. Implementing this as a
775 relocation was less intrusive than e.g. putting such expressions in a
776 section to discard *after* relocation. */
777 HOWTO (R_MMIX_LOCAL, /* type */
779 0, /* size (0 = byte, 1 = short, 2 = long) */
781 FALSE, /* pc_relative */
783 complain_overflow_dont, /* complain_on_overflow */
784 mmix_elf_reloc, /* special_function */
785 "R_MMIX_LOCAL", /* name */
786 FALSE, /* partial_inplace */
789 FALSE), /* pcrel_offset */
791 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
793 2, /* size (0 = byte, 1 = short, 2 = long) */
795 TRUE, /* pc_relative */
797 complain_overflow_signed, /* complain_on_overflow */
798 mmix_elf_reloc, /* special_function */
799 "R_MMIX_PUSHJ_STUBBABLE", /* name */
800 FALSE, /* partial_inplace */
801 ~0x0100ffff, /* src_mask */
802 0x0100ffff, /* dst_mask */
803 TRUE) /* pcrel_offset */
807 /* Map BFD reloc types to MMIX ELF reloc types. */
809 struct mmix_reloc_map
811 bfd_reloc_code_real_type bfd_reloc_val;
812 enum elf_mmix_reloc_type elf_reloc_val;
816 static const struct mmix_reloc_map mmix_reloc_map[] =
818 {BFD_RELOC_NONE, R_MMIX_NONE},
819 {BFD_RELOC_8, R_MMIX_8},
820 {BFD_RELOC_16, R_MMIX_16},
821 {BFD_RELOC_24, R_MMIX_24},
822 {BFD_RELOC_32, R_MMIX_32},
823 {BFD_RELOC_64, R_MMIX_64},
824 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
825 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
826 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
827 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
828 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
829 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
830 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
831 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
832 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
833 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
834 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
835 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
836 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
837 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
838 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
839 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
840 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
841 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
844 static reloc_howto_type *
845 bfd_elf64_bfd_reloc_type_lookup (abfd, code)
846 bfd *abfd ATTRIBUTE_UNUSED;
847 bfd_reloc_code_real_type code;
852 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
855 if (mmix_reloc_map[i].bfd_reloc_val == code)
856 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
863 mmix_elf_new_section_hook (abfd, sec)
867 struct _mmix_elf_section_data *sdata;
868 bfd_size_type amt = sizeof (*sdata);
870 sdata = (struct _mmix_elf_section_data *) bfd_zalloc (abfd, amt);
873 sec->used_by_bfd = (PTR) sdata;
875 return _bfd_elf_new_section_hook (abfd, sec);
879 /* This function performs the actual bitfiddling and sanity check for a
880 final relocation. Each relocation gets its *worst*-case expansion
881 in size when it arrives here; any reduction in size should have been
882 caught in linker relaxation earlier. When we get here, the relocation
883 looks like the smallest instruction with SWYM:s (nop:s) appended to the
884 max size. We fill in those nop:s.
886 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
890 INCML $N,(foo >> 16) & 0xffff
891 INCMH $N,(foo >> 32) & 0xffff
892 INCH $N,(foo >> 48) & 0xffff
894 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
895 condbranches needing relaxation might be rare enough to not be
906 R_MMIX_PUSHJ: (FIXME: Relaxation...)
915 R_MMIX_JMP: (FIXME: Relaxation...)
924 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
926 static bfd_reloc_status_type
927 mmix_elf_perform_relocation (isec, howto, datap, addr, value)
929 reloc_howto_type *howto;
934 bfd *abfd = isec->owner;
935 bfd_reloc_status_type flag = bfd_reloc_ok;
936 bfd_reloc_status_type r;
940 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
941 We handle the differences here and the common sequence later. */
946 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
948 /* We change to an absolute value. */
954 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
956 /* Invert the condition and prediction bit, and set the offset
957 to five instructions ahead.
959 We *can* do better if we want to. If the branch is found to be
960 within limits, we could leave the branch as is; there'll just
961 be a bunch of NOP:s after it. But we shouldn't see this
962 sequence often enough that it's worth doing it. */
965 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
969 /* Put a "GO $255,$255,0" after the common sequence. */
971 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
972 (bfd_byte *) datap + 20);
974 /* Common sequence starts at offset 4. */
977 /* We change to an absolute value. */
982 case R_MMIX_PUSHJ_STUBBABLE:
983 /* If the address fits, we're fine. */
985 /* Note rightshift 0; see R_MMIX_JMP case below. */
986 && (r = bfd_check_overflow (complain_overflow_signed,
989 bfd_arch_bits_per_address (abfd),
990 value)) == bfd_reloc_ok)
991 goto pcrel_mmix_reloc_fits;
994 bfd_size_type raw_size
996 - mmix_elf_section_data (isec)->pjs.n_pushj_relocs
997 * MAX_PUSHJ_STUB_SIZE);
999 /* We have the bytes at the PUSHJ insn and need to get the
1000 position for the stub. There's supposed to be room allocated
1002 bfd_byte *stubcontents
1004 - (addr - (isec->output_section->vma + isec->output_offset))
1006 + mmix_elf_section_data (isec)->pjs.stub_offset);
1009 /* The address doesn't fit, so redirect the PUSHJ to the
1010 location of the stub. */
1011 r = mmix_elf_perform_relocation (isec,
1012 &elf_mmix_howto_table
1016 isec->output_section->vma
1017 + isec->output_offset
1019 + (mmix_elf_section_data (isec)
1022 if (r != bfd_reloc_ok)
1026 = (isec->output_section->vma
1027 + isec->output_offset
1029 + mmix_elf_section_data (isec)->pjs.stub_offset);
1031 /* We generate a simple JMP if that suffices, else the whole 5
1033 if (bfd_check_overflow (complain_overflow_signed,
1034 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1036 bfd_arch_bits_per_address (abfd),
1037 addr + value - stubaddr) == bfd_reloc_ok)
1039 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1040 r = mmix_elf_perform_relocation (isec,
1041 &elf_mmix_howto_table
1045 value + addr - stubaddr);
1046 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1049 + mmix_elf_section_data (isec)->pjs.stub_offset
1050 > isec->_cooked_size)
1057 /* Put a "GO $255,0" after the common sequence. */
1059 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1060 | 0xff00, (bfd_byte *) stubcontents + 16);
1062 /* Prepare for the general code to set the first part of the
1065 datap = stubcontents;
1066 mmix_elf_section_data (isec)->pjs.stub_offset
1067 += MAX_PUSHJ_STUB_SIZE;
1074 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1076 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1078 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1081 (bfd_byte *) datap + 16);
1083 /* We change to an absolute value. */
1089 /* This one is a little special. If we get here on a non-relaxing
1090 link, and the destination is actually in range, we don't need to
1092 If so, we fall through to the bit-fiddling relocs.
1094 FIXME: bfd_check_overflow seems broken; the relocation is
1095 rightshifted before testing, so supply a zero rightshift. */
1097 if (! ((value & 3) == 0
1098 && (r = bfd_check_overflow (complain_overflow_signed,
1101 bfd_arch_bits_per_address (abfd),
1102 value)) == bfd_reloc_ok))
1104 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1105 modified below, and put a "GO $255,$255,0" after the
1106 address-loading sequence. */
1108 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1110 (bfd_byte *) datap + 16);
1112 /* We change to an absolute value. */
1119 pcrel_mmix_reloc_fits:
1120 /* These must be in range, or else we emit an error. */
1121 if ((value & 3) == 0
1122 /* Note rightshift 0; see above. */
1123 && (r = bfd_check_overflow (complain_overflow_signed,
1126 bfd_arch_bits_per_address (abfd),
1127 value)) == bfd_reloc_ok)
1130 = bfd_get_32 (abfd, (bfd_byte *) datap);
1133 if ((bfd_signed_vma) value < 0)
1136 value += (1 << (howto->bitsize - 1));
1144 (in1 & howto->src_mask)
1146 | (value & howto->dst_mask),
1147 (bfd_byte *) datap);
1149 return bfd_reloc_ok;
1152 return bfd_reloc_overflow;
1154 case R_MMIX_BASE_PLUS_OFFSET:
1156 struct bpo_reloc_section_info *bpodata
1157 = mmix_elf_section_data (isec)->bpo.reloc;
1158 asection *bpo_greg_section
1159 = bpodata->bpo_greg_section;
1160 struct bpo_greg_section_info *gregdata
1161 = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1163 = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1165 /* A consistency check: The value we now have in "relocation" must
1166 be the same as the value we stored for that relocation. It
1167 doesn't cost much, so can be left in at all times. */
1168 if (value != gregdata->reloc_request[bpo_index].value)
1170 (*_bfd_error_handler)
1171 (_("%s: Internal inconsistency error for value for\n\
1172 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1173 bfd_get_filename (isec->owner),
1174 (unsigned long) (value >> 32), (unsigned long) value,
1175 (unsigned long) (gregdata->reloc_request[bpo_index].value
1177 (unsigned long) gregdata->reloc_request[bpo_index].value);
1178 bfd_set_error (bfd_error_bad_value);
1179 return bfd_reloc_overflow;
1182 /* Then store the register number and offset for that register
1183 into datap and datap + 1 respectively. */
1185 gregdata->reloc_request[bpo_index].regindex
1186 + bpo_greg_section->output_section->vma / 8,
1189 gregdata->reloc_request[bpo_index].offset,
1190 ((unsigned char *) datap) + 1);
1191 return bfd_reloc_ok;
1194 case R_MMIX_REG_OR_BYTE:
1197 return bfd_reloc_overflow;
1198 bfd_put_8 (abfd, value, datap);
1199 return bfd_reloc_ok;
1202 BAD_CASE (howto->type);
1205 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1208 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1209 everything that looks strange. */
1211 flag = bfd_reloc_overflow;
1214 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1215 (bfd_byte *) datap + offs);
1217 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1218 (bfd_byte *) datap + offs + 4);
1220 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1221 (bfd_byte *) datap + offs + 8);
1223 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1224 (bfd_byte *) datap + offs + 12);
1229 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1232 mmix_info_to_howto_rela (abfd, cache_ptr, dst)
1233 bfd *abfd ATTRIBUTE_UNUSED;
1235 Elf_Internal_Rela *dst;
1237 unsigned int r_type;
1239 r_type = ELF64_R_TYPE (dst->r_info);
1240 BFD_ASSERT (r_type < (unsigned int) R_MMIX_max);
1241 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1244 /* Any MMIX-specific relocation gets here at assembly time or when linking
1245 to other formats (such as mmo); this is the relocation function from
1246 the reloc_table. We don't get here for final pure ELF linking. */
1248 static bfd_reloc_status_type
1249 mmix_elf_reloc (abfd, reloc_entry, symbol, data, input_section,
1250 output_bfd, error_message)
1252 arelent *reloc_entry;
1255 asection *input_section;
1257 char **error_message ATTRIBUTE_UNUSED;
1260 bfd_reloc_status_type r;
1261 asection *reloc_target_output_section;
1262 bfd_reloc_status_type flag = bfd_reloc_ok;
1263 bfd_vma output_base = 0;
1266 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1267 input_section, output_bfd, error_message);
1269 /* If that was all that was needed (i.e. this isn't a final link, only
1270 some segment adjustments), we're done. */
1271 if (r != bfd_reloc_continue)
1274 if (bfd_is_und_section (symbol->section)
1275 && (symbol->flags & BSF_WEAK) == 0
1276 && output_bfd == (bfd *) NULL)
1277 return bfd_reloc_undefined;
1279 /* Is the address of the relocation really within the section? */
1280 if (reloc_entry->address > input_section->_cooked_size)
1281 return bfd_reloc_outofrange;
1283 /* Work out which section the relocation is targeted at and the
1284 initial relocation command value. */
1286 /* Get symbol value. (Common symbols are special.) */
1287 if (bfd_is_com_section (symbol->section))
1290 relocation = symbol->value;
1292 reloc_target_output_section = bfd_get_output_section (symbol);
1294 /* Here the variable relocation holds the final address of the symbol we
1295 are relocating against, plus any addend. */
1299 output_base = reloc_target_output_section->vma;
1301 relocation += output_base + symbol->section->output_offset;
1303 /* Get position of relocation. */
1304 addr = (reloc_entry->address + input_section->output_section->vma
1305 + input_section->output_offset);
1306 if (output_bfd != (bfd *) NULL)
1308 /* Add in supplied addend. */
1309 relocation += reloc_entry->addend;
1311 /* This is a partial relocation, and we want to apply the
1312 relocation to the reloc entry rather than the raw data.
1313 Modify the reloc inplace to reflect what we now know. */
1314 reloc_entry->addend = relocation;
1315 reloc_entry->address += input_section->output_offset;
1319 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1320 data, reloc_entry->address,
1321 reloc_entry->addend, relocation,
1322 bfd_asymbol_name (symbol),
1323 reloc_target_output_section);
1326 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1327 for guidance if you're thinking of copying this. */
1330 mmix_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1331 contents, relocs, local_syms, local_sections)
1332 bfd *output_bfd ATTRIBUTE_UNUSED;
1333 struct bfd_link_info *info;
1335 asection *input_section;
1337 Elf_Internal_Rela *relocs;
1338 Elf_Internal_Sym *local_syms;
1339 asection **local_sections;
1341 Elf_Internal_Shdr *symtab_hdr;
1342 struct elf_link_hash_entry **sym_hashes;
1343 Elf_Internal_Rela *rel;
1344 Elf_Internal_Rela *relend;
1345 bfd_size_type raw_size
1346 = (input_section->_raw_size
1347 - mmix_elf_section_data (input_section)->pjs.n_pushj_relocs
1348 * MAX_PUSHJ_STUB_SIZE);
1351 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1352 sym_hashes = elf_sym_hashes (input_bfd);
1353 relend = relocs + input_section->reloc_count;
1355 for (rel = relocs; rel < relend; rel ++)
1357 reloc_howto_type *howto;
1358 unsigned long r_symndx;
1359 Elf_Internal_Sym *sym;
1361 struct elf_link_hash_entry *h;
1363 bfd_reloc_status_type r;
1364 const char *name = NULL;
1366 bfd_boolean undefined_signalled = FALSE;
1368 r_type = ELF64_R_TYPE (rel->r_info);
1370 if (r_type == R_MMIX_GNU_VTINHERIT
1371 || r_type == R_MMIX_GNU_VTENTRY)
1374 r_symndx = ELF64_R_SYM (rel->r_info);
1376 if (info->relocatable)
1378 /* This is a relocatable link. For most relocs we don't have to
1379 change anything, unless the reloc is against a section
1380 symbol, in which case we have to adjust according to where
1381 the section symbol winds up in the output section. */
1382 if (r_symndx < symtab_hdr->sh_info)
1384 sym = local_syms + r_symndx;
1386 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1388 sec = local_sections [r_symndx];
1389 rel->r_addend += sec->output_offset + sym->st_value;
1393 /* For PUSHJ stub relocs however, we may need to change the
1394 reloc and the section contents, if the reloc doesn't reach
1395 beyond the end of the output section and previous stubs.
1396 Then we change the section contents to be a PUSHJ to the end
1397 of the input section plus stubs (we can do that without using
1398 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1399 at the stub location. */
1400 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1402 /* We've already checked whether we need a stub; use that
1404 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1407 Elf_Internal_Rela relcpy;
1409 if (mmix_elf_section_data (input_section)
1410 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1413 /* There's already a PUSHJ insn there, so just fill in
1414 the offset bits to the stub. */
1415 if (mmix_final_link_relocate (elf_mmix_howto_table
1422 ->output_section->vma
1423 + input_section->output_offset
1425 + mmix_elf_section_data (input_section)
1427 NULL, NULL) != bfd_reloc_ok)
1430 /* Put a JMP insn at the stub; it goes with the
1431 R_MMIX_JMP reloc. */
1432 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1435 + mmix_elf_section_data (input_section)
1438 /* Change the reloc to be at the stub, and to a full
1439 R_MMIX_JMP reloc. */
1440 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1443 + mmix_elf_section_data (input_section)
1446 mmix_elf_section_data (input_section)->pjs.stub_offset
1447 += MAX_PUSHJ_STUB_SIZE;
1449 /* Shift this reloc to the end of the relocs to maintain
1450 the r_offset sorted reloc order. */
1452 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1453 relend[-1] = relcpy;
1455 /* Back up one reloc, or else we'd skip the next reloc
1465 /* This is a final link. */
1466 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1471 if (r_symndx < symtab_hdr->sh_info)
1473 sym = local_syms + r_symndx;
1474 sec = local_sections [r_symndx];
1475 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1477 name = bfd_elf_string_from_elf_section
1478 (input_bfd, symtab_hdr->sh_link, sym->st_name);
1479 name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
1483 h = sym_hashes [r_symndx - symtab_hdr->sh_info];
1485 while (h->root.type == bfd_link_hash_indirect
1486 || h->root.type == bfd_link_hash_warning)
1487 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1489 name = h->root.root.string;
1491 if (h->root.type == bfd_link_hash_defined
1492 || h->root.type == bfd_link_hash_defweak)
1494 sec = h->root.u.def.section;
1495 relocation = (h->root.u.def.value
1496 + sec->output_section->vma
1497 + sec->output_offset);
1499 else if (h->root.type == bfd_link_hash_undefweak)
1501 else if (info->shared
1502 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1506 /* The test on undefined_signalled is redundant at the
1507 moment, but kept for symmetry. */
1508 if (! undefined_signalled
1509 && ! ((*info->callbacks->undefined_symbol)
1510 (info, h->root.root.string, input_bfd,
1511 input_section, rel->r_offset, TRUE)))
1513 undefined_signalled = TRUE;
1518 r = mmix_final_link_relocate (howto, input_section,
1519 contents, rel->r_offset,
1520 rel->r_addend, relocation, name, sec);
1522 if (r != bfd_reloc_ok)
1524 bfd_boolean check_ok = TRUE;
1525 const char * msg = (const char *) NULL;
1529 case bfd_reloc_overflow:
1530 check_ok = info->callbacks->reloc_overflow
1531 (info, name, howto->name, (bfd_vma) 0,
1532 input_bfd, input_section, rel->r_offset);
1535 case bfd_reloc_undefined:
1536 /* We may have sent this message above. */
1537 if (! undefined_signalled)
1538 check_ok = info->callbacks->undefined_symbol
1539 (info, name, input_bfd, input_section, rel->r_offset,
1541 undefined_signalled = TRUE;
1544 case bfd_reloc_outofrange:
1545 msg = _("internal error: out of range error");
1548 case bfd_reloc_notsupported:
1549 msg = _("internal error: unsupported relocation error");
1552 case bfd_reloc_dangerous:
1553 msg = _("internal error: dangerous relocation");
1557 msg = _("internal error: unknown error");
1562 check_ok = info->callbacks->warning
1563 (info, msg, name, input_bfd, input_section, rel->r_offset);
1573 /* Perform a single relocation. By default we use the standard BFD
1574 routines. A few relocs we have to do ourselves. */
1576 static bfd_reloc_status_type
1577 mmix_final_link_relocate (howto, input_section, contents,
1578 r_offset, r_addend, relocation, symname, symsec)
1579 reloc_howto_type *howto;
1580 asection *input_section;
1583 bfd_signed_vma r_addend;
1585 const char *symname;
1588 bfd_reloc_status_type r = bfd_reloc_ok;
1590 = (input_section->output_section->vma
1591 + input_section->output_offset
1594 = (bfd_signed_vma) relocation + r_addend;
1596 switch (howto->type)
1598 /* All these are PC-relative. */
1599 case R_MMIX_PUSHJ_STUBBABLE:
1601 case R_MMIX_CBRANCH:
1606 contents += r_offset;
1608 srel -= (input_section->output_section->vma
1609 + input_section->output_offset
1612 r = mmix_elf_perform_relocation (input_section, howto, contents,
1616 case R_MMIX_BASE_PLUS_OFFSET:
1618 return bfd_reloc_undefined;
1620 /* Check that we're not relocating against a register symbol. */
1621 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1622 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1623 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1624 MMIX_REG_SECTION_NAME) == 0)
1626 /* Note: This is separated out into two messages in order
1627 to ease the translation into other languages. */
1628 if (symname == NULL || *symname == 0)
1629 (*_bfd_error_handler)
1630 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1631 bfd_get_filename (input_section->owner),
1632 bfd_get_section_name (symsec->owner, symsec));
1634 (*_bfd_error_handler)
1635 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1636 bfd_get_filename (input_section->owner), symname,
1637 bfd_get_section_name (symsec->owner, symsec));
1638 return bfd_reloc_overflow;
1642 case R_MMIX_REG_OR_BYTE:
1644 /* For now, we handle these alike. They must refer to an register
1645 symbol, which is either relative to the register section and in
1646 the range 0..255, or is in the register contents section with vma
1649 /* FIXME: A better way to check for reg contents section?
1650 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1652 return bfd_reloc_undefined;
1654 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1655 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1657 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1659 /* The bfd_reloc_outofrange return value, though intuitively
1660 a better value, will not get us an error. */
1661 return bfd_reloc_overflow;
1665 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1666 MMIX_REG_SECTION_NAME) == 0)
1668 if (srel < 0 || srel > 255)
1669 /* The bfd_reloc_outofrange return value, though intuitively a
1670 better value, will not get us an error. */
1671 return bfd_reloc_overflow;
1675 /* Note: This is separated out into two messages in order
1676 to ease the translation into other languages. */
1677 if (symname == NULL || *symname == 0)
1678 (*_bfd_error_handler)
1679 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1680 bfd_get_filename (input_section->owner),
1681 bfd_get_section_name (symsec->owner, symsec));
1683 (*_bfd_error_handler)
1684 (_("%s: register relocation against non-register symbol: %s in %s"),
1685 bfd_get_filename (input_section->owner), symname,
1686 bfd_get_section_name (symsec->owner, symsec));
1688 /* The bfd_reloc_outofrange return value, though intuitively a
1689 better value, will not get us an error. */
1690 return bfd_reloc_overflow;
1693 contents += r_offset;
1694 r = mmix_elf_perform_relocation (input_section, howto, contents,
1699 /* This isn't a real relocation, it's just an assertion that the
1700 final relocation value corresponds to a local register. We
1701 ignore the actual relocation; nothing is changed. */
1704 = bfd_get_section_by_name (input_section->output_section->owner,
1705 MMIX_REG_CONTENTS_SECTION_NAME);
1706 bfd_vma first_global;
1708 /* Check that this is an absolute value, or a reference to the
1709 register contents section or the register (symbol) section.
1710 Absolute numbers can get here as undefined section. Undefined
1711 symbols are signalled elsewhere, so there's no conflict in us
1712 accidentally handling it. */
1713 if (!bfd_is_abs_section (symsec)
1714 && !bfd_is_und_section (symsec)
1715 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1716 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1717 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1718 MMIX_REG_SECTION_NAME) != 0)
1720 (*_bfd_error_handler)
1721 (_("%s: directive LOCAL valid only with a register or absolute value"),
1722 bfd_get_filename (input_section->owner));
1724 return bfd_reloc_overflow;
1727 /* If we don't have a register contents section, then $255 is the
1728 first global register. */
1733 first_global = bfd_get_section_vma (abfd, regsec) / 8;
1734 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1735 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1737 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1738 /* The bfd_reloc_outofrange return value, though
1739 intuitively a better value, will not get us an error. */
1740 return bfd_reloc_overflow;
1745 if ((bfd_vma) srel >= first_global)
1747 /* FIXME: Better error message. */
1748 (*_bfd_error_handler)
1749 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1750 bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1752 return bfd_reloc_overflow;
1759 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1761 relocation, r_addend);
1767 /* Return the section that should be marked against GC for a given
1771 mmix_elf_gc_mark_hook (sec, info, rel, h, sym)
1773 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1774 Elf_Internal_Rela *rel;
1775 struct elf_link_hash_entry *h;
1776 Elf_Internal_Sym *sym;
1780 switch (ELF64_R_TYPE (rel->r_info))
1782 case R_MMIX_GNU_VTINHERIT:
1783 case R_MMIX_GNU_VTENTRY:
1787 switch (h->root.type)
1789 case bfd_link_hash_defined:
1790 case bfd_link_hash_defweak:
1791 return h->root.u.def.section;
1793 case bfd_link_hash_common:
1794 return h->root.u.c.p->section;
1802 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1807 /* Update relocation info for a GC-excluded section. We could supposedly
1808 perform the allocation after GC, but there's no suitable hook between
1809 GC (or section merge) and the point when all input sections must be
1810 present. Better to waste some memory and (perhaps) a little time. */
1813 mmix_elf_gc_sweep_hook (abfd, info, sec, relocs)
1814 bfd *abfd ATTRIBUTE_UNUSED;
1815 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1816 asection *sec ATTRIBUTE_UNUSED;
1817 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
1819 struct bpo_reloc_section_info *bpodata
1820 = mmix_elf_section_data (sec)->bpo.reloc;
1821 asection *allocated_gregs_section;
1823 /* If no bpodata here, we have nothing to do. */
1824 if (bpodata == NULL)
1827 allocated_gregs_section = bpodata->bpo_greg_section;
1829 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1830 -= bpodata->n_bpo_relocs_this_section;
1835 /* Sort register relocs to come before expanding relocs. */
1838 mmix_elf_sort_relocs (p1, p2)
1842 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1843 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1844 int r1_is_reg, r2_is_reg;
1846 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1848 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1850 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1854 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1855 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1857 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1858 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1859 if (r1_is_reg != r2_is_reg)
1860 return r2_is_reg - r1_is_reg;
1862 /* Neither or both are register relocs. Then sort on full offset. */
1863 if (r1->r_offset > r2->r_offset)
1865 else if (r1->r_offset < r2->r_offset)
1870 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1873 mmix_elf_check_common_relocs (abfd, info, sec, relocs)
1875 struct bfd_link_info *info;
1877 const Elf_Internal_Rela *relocs;
1879 bfd *bpo_greg_owner = NULL;
1880 asection *allocated_gregs_section = NULL;
1881 struct bpo_greg_section_info *gregdata = NULL;
1882 struct bpo_reloc_section_info *bpodata = NULL;
1883 const Elf_Internal_Rela *rel;
1884 const Elf_Internal_Rela *rel_end;
1886 /* We currently have to abuse this COFF-specific member, since there's
1887 no target-machine-dedicated member. There's no alternative outside
1888 the bfd_link_info struct; we can't specialize a hash-table since
1889 they're different between ELF and mmo. */
1890 bpo_greg_owner = (bfd *) info->base_file;
1892 rel_end = relocs + sec->reloc_count;
1893 for (rel = relocs; rel < rel_end; rel++)
1895 switch (ELF64_R_TYPE (rel->r_info))
1897 /* This relocation causes a GREG allocation. We need to count
1898 them, and we need to create a section for them, so we need an
1899 object to fake as the owner of that section. We can't use
1900 the ELF dynobj for this, since the ELF bits assume lots of
1901 DSO-related stuff if that member is non-NULL. */
1902 case R_MMIX_BASE_PLUS_OFFSET:
1903 /* We don't do anything with this reloc for a relocatable link. */
1904 if (info->relocatable)
1907 if (bpo_greg_owner == NULL)
1909 bpo_greg_owner = abfd;
1910 info->base_file = (PTR) bpo_greg_owner;
1913 if (allocated_gregs_section == NULL)
1914 allocated_gregs_section
1915 = bfd_get_section_by_name (bpo_greg_owner,
1916 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1918 if (allocated_gregs_section == NULL)
1920 allocated_gregs_section
1921 = bfd_make_section (bpo_greg_owner,
1922 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1923 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1924 treated like any other section, and we'd get errors for
1925 address overlap with the text section. Let's set none of
1926 those flags, as that is what currently happens for usual
1927 GREG allocations, and that works. */
1928 if (allocated_gregs_section == NULL
1929 || !bfd_set_section_flags (bpo_greg_owner,
1930 allocated_gregs_section,
1933 | SEC_LINKER_CREATED))
1934 || !bfd_set_section_alignment (bpo_greg_owner,
1935 allocated_gregs_section,
1939 gregdata = (struct bpo_greg_section_info *)
1940 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1941 if (gregdata == NULL)
1943 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1946 else if (gregdata == NULL)
1948 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1950 /* Get ourselves some auxiliary info for the BPO-relocs. */
1951 if (bpodata == NULL)
1953 /* No use doing a separate iteration pass to find the upper
1954 limit - just use the number of relocs. */
1955 bpodata = (struct bpo_reloc_section_info *)
1956 bfd_alloc (bpo_greg_owner,
1957 sizeof (struct bpo_reloc_section_info)
1958 * (sec->reloc_count + 1));
1959 if (bpodata == NULL)
1961 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1962 bpodata->first_base_plus_offset_reloc
1963 = bpodata->bpo_index
1964 = gregdata->n_max_bpo_relocs;
1965 bpodata->bpo_greg_section
1966 = allocated_gregs_section;
1967 bpodata->n_bpo_relocs_this_section = 0;
1970 bpodata->n_bpo_relocs_this_section++;
1971 gregdata->n_max_bpo_relocs++;
1973 /* We don't get another chance to set this before GC; we've not
1974 set up any hook that runs before GC. */
1975 gregdata->n_bpo_relocs
1976 = gregdata->n_max_bpo_relocs;
1979 case R_MMIX_PUSHJ_STUBBABLE:
1980 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1985 /* Allocate per-reloc stub storage and initialize it to the max stub
1987 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1991 mmix_elf_section_data (sec)->pjs.stub_size
1992 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1993 * sizeof (mmix_elf_section_data (sec)
1994 ->pjs.stub_size[0]));
1995 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1998 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1999 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
2005 /* Look through the relocs for a section during the first phase. */
2008 mmix_elf_check_relocs (abfd, info, sec, relocs)
2010 struct bfd_link_info *info;
2012 const Elf_Internal_Rela *relocs;
2014 Elf_Internal_Shdr *symtab_hdr;
2015 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
2016 const Elf_Internal_Rela *rel;
2017 const Elf_Internal_Rela *rel_end;
2019 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2020 sym_hashes = elf_sym_hashes (abfd);
2021 sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf64_External_Sym);
2022 if (!elf_bad_symtab (abfd))
2023 sym_hashes_end -= symtab_hdr->sh_info;
2025 /* First we sort the relocs so that any register relocs come before
2026 expansion-relocs to the same insn. FIXME: Not done for mmo. */
2027 qsort ((PTR) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
2028 mmix_elf_sort_relocs);
2030 /* Do the common part. */
2031 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
2034 if (info->relocatable)
2037 rel_end = relocs + sec->reloc_count;
2038 for (rel = relocs; rel < rel_end; rel++)
2040 struct elf_link_hash_entry *h;
2041 unsigned long r_symndx;
2043 r_symndx = ELF64_R_SYM (rel->r_info);
2044 if (r_symndx < symtab_hdr->sh_info)
2047 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2049 switch (ELF64_R_TYPE (rel->r_info))
2051 /* This relocation describes the C++ object vtable hierarchy.
2052 Reconstruct it for later use during GC. */
2053 case R_MMIX_GNU_VTINHERIT:
2054 if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2058 /* This relocation describes which C++ vtable entries are actually
2059 used. Record for later use during GC. */
2060 case R_MMIX_GNU_VTENTRY:
2061 if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2070 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2071 Copied from elf_link_add_object_symbols. */
2074 _bfd_mmix_check_all_relocs (abfd, info)
2076 struct bfd_link_info *info;
2080 for (o = abfd->sections; o != NULL; o = o->next)
2082 Elf_Internal_Rela *internal_relocs;
2085 if ((o->flags & SEC_RELOC) == 0
2086 || o->reloc_count == 0
2087 || ((info->strip == strip_all || info->strip == strip_debugger)
2088 && (o->flags & SEC_DEBUGGING) != 0)
2089 || bfd_is_abs_section (o->output_section))
2093 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
2094 (Elf_Internal_Rela *) NULL,
2096 if (internal_relocs == NULL)
2099 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2101 if (! info->keep_memory)
2102 free (internal_relocs);
2111 /* Change symbols relative to the reg contents section to instead be to
2112 the register section, and scale them down to correspond to the register
2116 mmix_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
2117 bfd *abfd ATTRIBUTE_UNUSED;
2118 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2119 const char *name ATTRIBUTE_UNUSED;
2120 Elf_Internal_Sym *sym;
2121 asection *input_sec;
2123 if (input_sec != NULL
2124 && input_sec->name != NULL
2125 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2126 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2129 sym->st_shndx = SHN_REGISTER;
2135 /* We fake a register section that holds values that are register numbers.
2136 Having a SHN_REGISTER and register section translates better to other
2137 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2138 This section faking is based on a construct in elf32-mips.c. */
2139 static asection mmix_elf_reg_section;
2140 static asymbol mmix_elf_reg_section_symbol;
2141 static asymbol *mmix_elf_reg_section_symbol_ptr;
2143 /* Handle the special section numbers that a symbol may use. */
2146 mmix_elf_symbol_processing (abfd, asym)
2147 bfd *abfd ATTRIBUTE_UNUSED;
2150 elf_symbol_type *elfsym;
2152 elfsym = (elf_symbol_type *) asym;
2153 switch (elfsym->internal_elf_sym.st_shndx)
2156 if (mmix_elf_reg_section.name == NULL)
2158 /* Initialize the register section. */
2159 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2160 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2161 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2162 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2163 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2164 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2165 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2166 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2167 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2169 asym->section = &mmix_elf_reg_section;
2177 /* Given a BFD section, try to locate the corresponding ELF section
2181 mmix_elf_section_from_bfd_section (abfd, sec, retval)
2182 bfd * abfd ATTRIBUTE_UNUSED;
2186 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2187 *retval = SHN_REGISTER;
2194 /* Hook called by the linker routine which adds symbols from an object
2195 file. We must handle the special SHN_REGISTER section number here.
2197 We also check that we only have *one* each of the section-start
2198 symbols, since otherwise having two with the same value would cause
2199 them to be "merged", but with the contents serialized. */
2202 mmix_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
2204 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2205 const Elf_Internal_Sym *sym;
2206 const char **namep ATTRIBUTE_UNUSED;
2207 flagword *flagsp ATTRIBUTE_UNUSED;
2209 bfd_vma *valp ATTRIBUTE_UNUSED;
2211 if (sym->st_shndx == SHN_REGISTER)
2212 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2213 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2214 && strncmp (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX,
2215 strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) == 0)
2217 /* See if we have another one. */
2218 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2224 if (h != NULL && h->type != bfd_link_hash_undefined)
2226 /* How do we get the asymbol (or really: the filename) from h?
2227 h->u.def.section->owner is NULL. */
2228 ((*_bfd_error_handler)
2229 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2230 bfd_get_filename (abfd), *namep,
2231 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2232 bfd_set_error (bfd_error_bad_value);
2240 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2243 mmix_elf_is_local_label_name (abfd, name)
2250 /* Also include the default local-label definition. */
2251 if (_bfd_elf_is_local_label_name (abfd, name))
2257 /* If there's no ":", or more than one, it's not a local symbol. */
2258 colpos = strchr (name, ':');
2259 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2262 /* Check that there are remaining characters and that they are digits. */
2266 digits = strspn (colpos + 1, "0123456789");
2267 return digits != 0 && colpos[1 + digits] == 0;
2270 /* We get rid of the register section here. */
2273 mmix_elf_final_link (abfd, info)
2275 struct bfd_link_info *info;
2277 /* We never output a register section, though we create one for
2278 temporary measures. Check that nobody entered contents into it. */
2279 asection *reg_section;
2282 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2284 if (reg_section != NULL)
2286 /* FIXME: Pass error state gracefully. */
2287 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2288 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2290 /* Really remove the section. */
2291 for (secpp = &abfd->sections;
2292 *secpp != reg_section;
2293 secpp = &(*secpp)->next)
2295 bfd_section_list_remove (abfd, secpp);
2296 --abfd->section_count;
2299 if (! bfd_elf64_bfd_final_link (abfd, info))
2302 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2303 the regular linker machinery. We do it here, like other targets with
2304 special sections. */
2305 if (info->base_file != NULL)
2307 asection *greg_section
2308 = bfd_get_section_by_name ((bfd *) info->base_file,
2309 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2310 if (!bfd_set_section_contents (abfd,
2311 greg_section->output_section,
2312 greg_section->contents,
2313 (file_ptr) greg_section->output_offset,
2314 greg_section->_cooked_size))
2320 /* We need to include the maximum size of PUSHJ-stubs in the initial
2321 section size. This is expected to shrink during linker relaxation.
2323 You might think that we should set *only* _cooked_size, but that won't
2324 work: section contents allocation will be using _raw_size in mixed
2325 format linking and not enough storage will be allocated. FIXME: That's
2326 a major bug, including the name bfd_get_section_size_before_reloc; it
2327 should be bfd_get_section_size_before_relax. The relaxation functions
2328 set _cooked size. Relaxation happens before relocation. All functions
2329 *after relaxation* should be using _cooked size. */
2332 mmix_set_relaxable_size (abfd, sec, ptr)
2333 bfd *abfd ATTRIBUTE_UNUSED;
2337 struct bfd_link_info *info = ptr;
2339 /* Make sure we only do this for section where we know we want this,
2340 otherwise we might end up resetting the size of COMMONs. */
2341 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2346 + mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2347 * MAX_PUSHJ_STUB_SIZE);
2348 sec->_raw_size = sec->_cooked_size;
2350 /* For use in relocatable link, we start with a max stubs size. See
2351 mmix_elf_relax_section. */
2352 if (info->relocatable && sec->output_section)
2353 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2354 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2355 * MAX_PUSHJ_STUB_SIZE);
2358 /* Initialize stuff for the linker-generated GREGs to match
2359 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2362 _bfd_mmix_before_linker_allocation (abfd, info)
2363 bfd *abfd ATTRIBUTE_UNUSED;
2364 struct bfd_link_info *info;
2366 asection *bpo_gregs_section;
2367 bfd *bpo_greg_owner;
2368 struct bpo_greg_section_info *gregdata;
2372 size_t *bpo_reloc_indexes;
2375 /* Set the initial size of sections. */
2376 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2377 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2379 /* The bpo_greg_owner bfd is supposed to have been set by
2380 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2381 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2382 bpo_greg_owner = (bfd *) info->base_file;
2383 if (bpo_greg_owner == NULL)
2387 = bfd_get_section_by_name (bpo_greg_owner,
2388 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2390 if (bpo_gregs_section == NULL)
2393 /* We use the target-data handle in the ELF section data. */
2394 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2395 if (gregdata == NULL)
2398 n_gregs = gregdata->n_bpo_relocs;
2399 gregdata->n_allocated_bpo_gregs = n_gregs;
2401 /* When this reaches zero during relaxation, all entries have been
2402 filled in and the size of the linker gregs can be calculated. */
2403 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2405 /* Set the zeroth-order estimate for the GREGs size. */
2406 gregs_size = n_gregs * 8;
2408 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2411 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2412 time. Note that we must use the max number ever noted for the array,
2413 since the index numbers were created before GC. */
2414 gregdata->reloc_request
2415 = bfd_zalloc (bpo_greg_owner,
2416 sizeof (struct bpo_reloc_request)
2417 * gregdata->n_max_bpo_relocs);
2419 gregdata->bpo_reloc_indexes
2421 = bfd_alloc (bpo_greg_owner,
2422 gregdata->n_max_bpo_relocs
2424 if (bpo_reloc_indexes == NULL)
2427 /* The default order is an identity mapping. */
2428 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2430 bpo_reloc_indexes[i] = i;
2431 gregdata->reloc_request[i].bpo_reloc_no = i;
2437 /* Fill in contents in the linker allocated gregs. Everything is
2438 calculated at this point; we just move the contents into place here. */
2441 _bfd_mmix_after_linker_allocation (abfd, link_info)
2442 bfd *abfd ATTRIBUTE_UNUSED;
2443 struct bfd_link_info *link_info;
2445 asection *bpo_gregs_section;
2446 bfd *bpo_greg_owner;
2447 struct bpo_greg_section_info *gregdata;
2453 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2454 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2455 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2456 bpo_greg_owner = (bfd *) link_info->base_file;
2457 if (bpo_greg_owner == NULL)
2461 = bfd_get_section_by_name (bpo_greg_owner,
2462 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2464 /* This can't happen without DSO handling. When DSOs are handled
2465 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2467 if (bpo_gregs_section == NULL)
2470 /* We use the target-data handle in the ELF section data. */
2472 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2473 if (gregdata == NULL)
2476 n_gregs = gregdata->n_allocated_bpo_gregs;
2478 /* We need to have a _raw_size contents even though there's only
2479 _cooked_size worth of data, since the generic relocation machinery
2480 will allocate and copy that much temporarily. */
2481 bpo_gregs_section->contents
2482 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->_raw_size);
2483 if (contents == NULL)
2486 /* Sanity check: If these numbers mismatch, some relocation has not been
2487 accounted for and the rest of gregdata is probably inconsistent.
2488 It's a bug, but it's more helpful to identify it than segfaulting
2490 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2491 != gregdata->n_bpo_relocs)
2493 (*_bfd_error_handler)
2494 (_("Internal inconsistency: remaining %u != max %u.\n\
2495 Please report this bug."),
2496 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2497 gregdata->n_bpo_relocs);
2501 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2502 if (gregdata->reloc_request[i].regindex != lastreg)
2504 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2506 lastreg = gregdata->reloc_request[i].regindex;
2513 /* Sort valid relocs to come before non-valid relocs, then on increasing
2517 bpo_reloc_request_sort_fn (p1, p2)
2521 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2522 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2524 /* Primary function is validity; non-valid relocs sorted after valid
2526 if (r1->valid != r2->valid)
2527 return r2->valid - r1->valid;
2529 /* Then sort on value. Don't simplify and return just the difference of
2530 the values: the upper bits of the 64-bit value would be truncated on
2531 a host with 32-bit ints. */
2532 if (r1->value != r2->value)
2533 return r1->value > r2->value ? 1 : -1;
2535 /* As a last re-sort, use the relocation number, so we get a stable
2536 sort. The *addresses* aren't stable since items are swapped during
2537 sorting. It depends on the qsort implementation if this actually
2539 return r1->bpo_reloc_no > r2->bpo_reloc_no
2540 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2543 /* For debug use only. Dumps the global register allocations resulting
2544 from base-plus-offset relocs. */
2547 mmix_dump_bpo_gregs (link_info, pf)
2548 struct bfd_link_info *link_info;
2549 bfd_error_handler_type pf;
2551 bfd *bpo_greg_owner;
2552 asection *bpo_gregs_section;
2553 struct bpo_greg_section_info *gregdata;
2556 if (link_info == NULL || link_info->base_file == NULL)
2559 bpo_greg_owner = (bfd *) link_info->base_file;
2562 = bfd_get_section_by_name (bpo_greg_owner,
2563 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2565 if (bpo_gregs_section == NULL)
2568 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2569 if (gregdata == NULL)
2573 pf = _bfd_error_handler;
2575 /* These format strings are not translated. They are for debug purposes
2576 only and never displayed to an end user. Should they escape, we
2577 surely want them in original. */
2578 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2579 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2580 gregdata->n_max_bpo_relocs,
2581 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2582 gregdata->n_allocated_bpo_gregs);
2584 if (gregdata->reloc_request)
2585 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2586 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2588 (gregdata->bpo_reloc_indexes != NULL
2589 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2590 gregdata->reloc_request[i].bpo_reloc_no,
2591 gregdata->reloc_request[i].valid,
2593 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2594 (unsigned long) gregdata->reloc_request[i].value,
2595 gregdata->reloc_request[i].regindex,
2596 gregdata->reloc_request[i].offset);
2599 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2600 when the last such reloc is done, an index-array is sorted according to
2601 the values and iterated over to produce register numbers (indexed by 0
2602 from the first allocated register number) and offsets for use in real
2605 PUSHJ stub accounting is also done here.
2607 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2610 mmix_elf_relax_section (abfd, sec, link_info, again)
2613 struct bfd_link_info *link_info;
2616 Elf_Internal_Shdr *symtab_hdr;
2617 Elf_Internal_Rela *internal_relocs;
2618 Elf_Internal_Rela *irel, *irelend;
2619 asection *bpo_gregs_section = NULL;
2620 struct bpo_greg_section_info *gregdata;
2621 struct bpo_reloc_section_info *bpodata
2622 = mmix_elf_section_data (sec)->bpo.reloc;
2623 /* The initialization is to quiet compiler warnings. The value is to
2624 spot a missing actual initialization. */
2625 size_t bpono = (size_t) -1;
2627 bfd *bpo_greg_owner;
2628 Elf_Internal_Sym *isymbuf = NULL;
2629 bfd_size_type raw_size
2631 - mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2632 * MAX_PUSHJ_STUB_SIZE);
2634 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2636 /* Assume nothing changes. */
2639 /* If this is the first time we have been called for this section,
2640 initialize the cooked size. */
2641 if (sec->_cooked_size == 0 && sec->_raw_size != 0)
2644 /* We don't have to do anything if this section does not have relocs, or
2645 if this is not a code section. */
2646 if ((sec->flags & SEC_RELOC) == 0
2647 || sec->reloc_count == 0
2648 || (sec->flags & SEC_CODE) == 0
2649 || (sec->flags & SEC_LINKER_CREATED) != 0
2650 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2651 then nothing to do. */
2653 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2656 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2658 bpo_greg_owner = (bfd *) link_info->base_file;
2660 if (bpodata != NULL)
2662 bpo_gregs_section = bpodata->bpo_greg_section;
2663 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2664 bpono = bpodata->first_base_plus_offset_reloc;
2669 /* Get a copy of the native relocations. */
2671 = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
2672 (Elf_Internal_Rela *) NULL,
2673 link_info->keep_memory);
2674 if (internal_relocs == NULL)
2677 /* Walk through them looking for relaxing opportunities. */
2678 irelend = internal_relocs + sec->reloc_count;
2679 for (irel = internal_relocs; irel < irelend; irel++)
2682 struct elf_link_hash_entry *h = NULL;
2684 /* We only process two relocs. */
2685 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2686 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2689 /* We process relocs in a distinctly different way when this is a
2690 relocatable link (for one, we don't look at symbols), so we avoid
2691 mixing its code with that for the "normal" relaxation. */
2692 if (link_info->relocatable)
2694 /* The only transformation in a relocatable link is to generate
2695 a full stub at the location of the stub calculated for the
2696 input section, if the relocated stub location, the end of the
2697 output section plus earlier stubs, cannot be reached. Thus
2698 relocatable linking can only lead to worse code, but it still
2700 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2702 /* If we can reach the end of the output-section and beyond
2703 any current stubs, then we don't need a stub for this
2704 reloc. The relaxed order of output stub allocation may
2705 not exactly match the straightforward order, so we always
2706 assume presence of output stubs, which will allow
2707 relaxation only on relocations indifferent to the
2708 presence of output stub allocations for other relocations
2709 and thus the order of output stub allocation. */
2710 if (bfd_check_overflow (complain_overflow_signed,
2713 bfd_arch_bits_per_address (abfd),
2714 /* Output-stub location. */
2715 sec->output_section->_cooked_size
2716 + (mmix_elf_section_data (sec
2718 ->pjs.stubs_size_sum)
2719 /* Location of this PUSHJ reloc. */
2720 - (sec->output_offset + irel->r_offset)
2721 /* Don't count *this* stub twice. */
2722 - (mmix_elf_section_data (sec)
2723 ->pjs.stub_size[pjsno]
2724 + MAX_PUSHJ_STUB_SIZE))
2726 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2728 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2729 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2737 /* Get the value of the symbol referred to by the reloc. */
2738 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2740 /* A local symbol. */
2741 Elf_Internal_Sym *isym;
2744 /* Read this BFD's local symbols if we haven't already. */
2745 if (isymbuf == NULL)
2747 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2748 if (isymbuf == NULL)
2749 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2750 symtab_hdr->sh_info, 0,
2756 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2757 if (isym->st_shndx == SHN_UNDEF)
2758 sym_sec = bfd_und_section_ptr;
2759 else if (isym->st_shndx == SHN_ABS)
2760 sym_sec = bfd_abs_section_ptr;
2761 else if (isym->st_shndx == SHN_COMMON)
2762 sym_sec = bfd_com_section_ptr;
2764 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2765 symval = (isym->st_value
2766 + sym_sec->output_section->vma
2767 + sym_sec->output_offset);
2773 /* An external symbol. */
2774 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2775 h = elf_sym_hashes (abfd)[indx];
2776 BFD_ASSERT (h != NULL);
2777 if (h->root.type != bfd_link_hash_defined
2778 && h->root.type != bfd_link_hash_defweak)
2780 /* This appears to be a reference to an undefined symbol. Just
2781 ignore it--it will be caught by the regular reloc processing.
2782 We need to keep BPO reloc accounting consistent, though
2783 else we'll abort instead of emitting an error message. */
2784 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2785 && gregdata != NULL)
2787 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2793 symval = (h->root.u.def.value
2794 + h->root.u.def.section->output_section->vma
2795 + h->root.u.def.section->output_offset);
2798 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2800 bfd_vma value = symval + irel->r_addend;
2802 = (sec->output_section->vma
2803 + sec->output_offset
2806 = (sec->output_section->vma
2807 + sec->output_offset
2809 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2811 if ((value & 3) == 0
2812 && bfd_check_overflow (complain_overflow_signed,
2815 bfd_arch_bits_per_address (abfd),
2818 ? mmix_elf_section_data (sec)
2819 ->pjs.stub_size[pjsno]
2822 /* If the reloc fits, no stub is needed. */
2823 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2825 /* Maybe we can get away with just a JMP insn? */
2826 if ((value & 3) == 0
2827 && bfd_check_overflow (complain_overflow_signed,
2830 bfd_arch_bits_per_address (abfd),
2833 ? mmix_elf_section_data (sec)
2834 ->pjs.stub_size[pjsno] - 4
2837 /* Yep, account for a stub consisting of a single JMP insn. */
2838 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2840 /* Nope, go for the full insn stub. It doesn't seem useful to
2841 emit the intermediate sizes; those will only be useful for
2842 a >64M program assuming contiguous code. */
2843 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2844 = MAX_PUSHJ_STUB_SIZE;
2846 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2847 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2852 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2854 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2855 = symval + irel->r_addend;
2856 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2857 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2860 /* Check if that was the last BPO-reloc. If so, sort the values and
2861 calculate how many registers we need to cover them. Set the size of
2862 the linker gregs, and if the number of registers changed, indicate
2863 that we need to relax some more because we have more work to do. */
2864 if (gregdata != NULL
2865 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2871 /* First, reset the remaining relocs for the next round. */
2872 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2873 = gregdata->n_bpo_relocs;
2875 qsort ((PTR) gregdata->reloc_request,
2876 gregdata->n_max_bpo_relocs,
2877 sizeof (struct bpo_reloc_request),
2878 bpo_reloc_request_sort_fn);
2880 /* Recalculate indexes. When we find a change (however unlikely
2881 after the initial iteration), we know we need to relax again,
2882 since items in the GREG-array are sorted by increasing value and
2883 stored in the relaxation phase. */
2884 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2885 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2888 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2893 /* Allocate register numbers (indexing from 0). Stop at the first
2895 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2896 i < gregdata->n_bpo_relocs;
2899 if (gregdata->reloc_request[i].value > prev_base + 255)
2902 prev_base = gregdata->reloc_request[i].value;
2904 gregdata->reloc_request[i].regindex = regindex;
2905 gregdata->reloc_request[i].offset
2906 = gregdata->reloc_request[i].value - prev_base;
2909 /* If it's not the same as the last time, we need to relax again,
2910 because the size of the section has changed. I'm not sure we
2911 actually need to do any adjustments since the shrinking happens
2912 at the start of this section, but better safe than sorry. */
2913 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2915 gregdata->n_allocated_bpo_gregs = regindex + 1;
2919 bpo_gregs_section->_cooked_size = (regindex + 1) * 8;
2922 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2924 if (! link_info->keep_memory)
2928 /* Cache the symbols for elf_link_input_bfd. */
2929 symtab_hdr->contents = (unsigned char *) isymbuf;
2933 if (internal_relocs != NULL
2934 && elf_section_data (sec)->relocs != internal_relocs)
2935 free (internal_relocs);
2937 if (sec->_cooked_size
2938 < raw_size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2941 if (sec->_cooked_size
2942 > raw_size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2945 = raw_size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2952 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2954 if (internal_relocs != NULL
2955 && elf_section_data (sec)->relocs != internal_relocs)
2956 free (internal_relocs);
2960 /* Because we set _raw_size to include the max size of pushj stubs,
2961 i.e. larger than the actual section input size (see
2962 mmix_set_relaxable_raw_size), we have to take care of that when reading
2966 mmix_elf_get_section_contents (abfd, section, location, offset, count)
2971 bfd_size_type count;
2973 bfd_size_type raw_size
2974 = (section->_raw_size
2975 - mmix_elf_section_data (section)->pjs.n_pushj_relocs
2976 * MAX_PUSHJ_STUB_SIZE);
2978 if (offset + count > section->_raw_size)
2981 bfd_set_error (bfd_error_invalid_operation);
2985 /* Check bounds against the faked raw_size. */
2986 if (offset + count > raw_size)
2988 /* Clear the part in the faked area. */
2989 memset (location + raw_size - offset, 0, count - (raw_size - offset));
2991 /* If there's no initial part within the "real" contents, we're
2993 if ((bfd_size_type) offset >= raw_size)
2996 /* Else adjust the count and fall through to call the generic
2998 count = raw_size - offset;
3002 _bfd_generic_get_section_contents (abfd, section, location, offset,
3007 #define ELF_ARCH bfd_arch_mmix
3008 #define ELF_MACHINE_CODE EM_MMIX
3010 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
3011 However, that's too much for something somewhere in the linker part of
3012 BFD; perhaps the start-address has to be a non-zero multiple of this
3013 number, or larger than this number. The symptom is that the linker
3014 complains: "warning: allocated section `.text' not in segment". We
3015 settle for 64k; the page-size used in examples is 8k.
3016 #define ELF_MAXPAGESIZE 0x10000
3018 Unfortunately, this causes excessive padding in the supposedly small
3019 for-education programs that are the expected usage (where people would
3020 inspect output). We stick to 256 bytes just to have *some* default
3022 #define ELF_MAXPAGESIZE 0x100
3024 #define TARGET_BIG_SYM bfd_elf64_mmix_vec
3025 #define TARGET_BIG_NAME "elf64-mmix"
3027 #define elf_info_to_howto_rel NULL
3028 #define elf_info_to_howto mmix_info_to_howto_rela
3029 #define elf_backend_relocate_section mmix_elf_relocate_section
3030 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
3031 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
3033 #define elf_backend_link_output_symbol_hook \
3034 mmix_elf_link_output_symbol_hook
3035 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
3037 #define elf_backend_check_relocs mmix_elf_check_relocs
3038 #define elf_backend_symbol_processing mmix_elf_symbol_processing
3040 #define bfd_elf64_bfd_is_local_label_name \
3041 mmix_elf_is_local_label_name
3043 #define elf_backend_may_use_rel_p 0
3044 #define elf_backend_may_use_rela_p 1
3045 #define elf_backend_default_use_rela_p 1
3047 #define elf_backend_can_gc_sections 1
3048 #define elf_backend_section_from_bfd_section \
3049 mmix_elf_section_from_bfd_section
3051 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
3052 #define bfd_elf64_bfd_final_link mmix_elf_final_link
3053 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
3054 #define bfd_elf64_get_section_contents mmix_elf_get_section_contents
3056 #include "elf64-target.h"