1 /* Support for HPPA 64-bit ELF
2 Copyright (C) 1999-2016 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
22 #include "alloca-conf.h"
28 #include "elf64-hppa.h"
29 #include "libiberty.h"
33 #define PLT_ENTRY_SIZE 0x10
34 #define DLT_ENTRY_SIZE 0x8
35 #define OPD_ENTRY_SIZE 0x20
37 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
39 /* The stub is supposed to load the target address and target's DP
40 value out of the PLT, then do an external branch to the target
45 LDD PLTOFF+8(%r27),%r27
47 Note that we must use the LDD with a 14 bit displacement, not the one
48 with a 5 bit displacement. */
49 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
50 0x53, 0x7b, 0x00, 0x00 };
52 struct elf64_hppa_link_hash_entry
54 struct elf_link_hash_entry eh;
56 /* Offsets for this symbol in various linker sections. */
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
84 /* The type of the relocation. */
87 /* The input section of the relocation. */
90 /* Number of relocs copied in this section. */
93 /* The index of the section symbol for the input section of
94 the relocation. Only needed when building shared libraries. */
97 /* The offset within the input section of the relocation. */
100 /* The addend for the relocation. */
105 /* Nonzero if this symbol needs an entry in one of the linker
113 struct elf64_hppa_link_hash_table
115 struct elf_link_hash_table root;
117 /* Shortcuts to get to the various linker defined sections. */
119 asection *dlt_rel_sec;
121 asection *plt_rel_sec;
123 asection *opd_rel_sec;
124 asection *other_rel_sec;
126 /* Offset of __gp within .plt section. When the PLT gets large we want
127 to slide __gp into the PLT section so that we can continue to use
128 single DP relative instructions to load values out of the PLT. */
131 /* Note this is not strictly correct. We should create a stub section for
132 each input section with calls. The stub section should be placed before
133 the section with the call. */
136 bfd_vma text_segment_base;
137 bfd_vma data_segment_base;
139 /* We build tables to map from an input section back to its
140 symbol index. This is the BFD for which we currently have
142 bfd *section_syms_bfd;
144 /* Array of symbol numbers for each input section attached to the
149 #define hppa_link_hash_table(p) \
150 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
151 == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
153 #define hppa_elf_hash_entry(ent) \
154 ((struct elf64_hppa_link_hash_entry *)(ent))
156 #define eh_name(eh) \
157 (eh ? eh->root.root.string : "<undef>")
159 typedef struct bfd_hash_entry *(*new_hash_entry_func)
160 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
162 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
165 /* This must follow the definitions of the various derived linker
166 hash tables and shared functions. */
167 #include "elf-hppa.h"
169 static bfd_boolean elf64_hppa_object_p
172 static void elf64_hppa_post_process_headers
173 (bfd *, struct bfd_link_info *);
175 static bfd_boolean elf64_hppa_create_dynamic_sections
176 (bfd *, struct bfd_link_info *);
178 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
179 (struct bfd_link_info *, struct elf_link_hash_entry *);
181 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
182 (struct elf_link_hash_entry *, void *);
184 static bfd_boolean elf64_hppa_size_dynamic_sections
185 (bfd *, struct bfd_link_info *);
187 static int elf64_hppa_link_output_symbol_hook
188 (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
189 asection *, struct elf_link_hash_entry *);
191 static bfd_boolean elf64_hppa_finish_dynamic_symbol
192 (bfd *, struct bfd_link_info *,
193 struct elf_link_hash_entry *, Elf_Internal_Sym *);
195 static bfd_boolean elf64_hppa_finish_dynamic_sections
196 (bfd *, struct bfd_link_info *);
198 static bfd_boolean elf64_hppa_check_relocs
199 (bfd *, struct bfd_link_info *,
200 asection *, const Elf_Internal_Rela *);
202 static bfd_boolean elf64_hppa_dynamic_symbol_p
203 (struct elf_link_hash_entry *, struct bfd_link_info *);
205 static bfd_boolean elf64_hppa_mark_exported_functions
206 (struct elf_link_hash_entry *, void *);
208 static bfd_boolean elf64_hppa_finalize_opd
209 (struct elf_link_hash_entry *, void *);
211 static bfd_boolean elf64_hppa_finalize_dlt
212 (struct elf_link_hash_entry *, void *);
214 static bfd_boolean allocate_global_data_dlt
215 (struct elf_link_hash_entry *, void *);
217 static bfd_boolean allocate_global_data_plt
218 (struct elf_link_hash_entry *, void *);
220 static bfd_boolean allocate_global_data_stub
221 (struct elf_link_hash_entry *, void *);
223 static bfd_boolean allocate_global_data_opd
224 (struct elf_link_hash_entry *, void *);
226 static bfd_boolean get_reloc_section
227 (bfd *, struct elf64_hppa_link_hash_table *, asection *);
229 static bfd_boolean count_dyn_reloc
230 (bfd *, struct elf64_hppa_link_hash_entry *,
231 int, asection *, int, bfd_vma, bfd_vma);
233 static bfd_boolean allocate_dynrel_entries
234 (struct elf_link_hash_entry *, void *);
236 static bfd_boolean elf64_hppa_finalize_dynreloc
237 (struct elf_link_hash_entry *, void *);
239 static bfd_boolean get_opd
240 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
242 static bfd_boolean get_plt
243 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
245 static bfd_boolean get_dlt
246 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
248 static bfd_boolean get_stub
249 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
251 static int elf64_hppa_elf_get_symbol_type
252 (Elf_Internal_Sym *, int);
254 /* Initialize an entry in the link hash table. */
256 static struct bfd_hash_entry *
257 hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
258 struct bfd_hash_table *table,
261 /* Allocate the structure if it has not already been allocated by a
265 entry = bfd_hash_allocate (table,
266 sizeof (struct elf64_hppa_link_hash_entry));
271 /* Call the allocation method of the superclass. */
272 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
275 struct elf64_hppa_link_hash_entry *hh;
277 /* Initialize our local data. All zeros. */
278 hh = hppa_elf_hash_entry (entry);
279 memset (&hh->dlt_offset, 0,
280 (sizeof (struct elf64_hppa_link_hash_entry)
281 - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
287 /* Create the derived linker hash table. The PA64 ELF port uses this
288 derived hash table to keep information specific to the PA ElF
289 linker (without using static variables). */
291 static struct bfd_link_hash_table*
292 elf64_hppa_hash_table_create (bfd *abfd)
294 struct elf64_hppa_link_hash_table *htab;
295 bfd_size_type amt = sizeof (*htab);
297 htab = bfd_zmalloc (amt);
301 if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
302 hppa64_link_hash_newfunc,
303 sizeof (struct elf64_hppa_link_hash_entry),
310 htab->text_segment_base = (bfd_vma) -1;
311 htab->data_segment_base = (bfd_vma) -1;
313 return &htab->root.root;
316 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
318 Additionally we set the default architecture and machine. */
320 elf64_hppa_object_p (bfd *abfd)
322 Elf_Internal_Ehdr * i_ehdrp;
325 i_ehdrp = elf_elfheader (abfd);
326 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
328 /* GCC on hppa-linux produces binaries with OSABI=GNU,
329 but the kernel produces corefiles with OSABI=SysV. */
330 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
331 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
336 /* HPUX produces binaries with OSABI=HPUX,
337 but the kernel produces corefiles with OSABI=SysV. */
338 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
339 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
343 flags = i_ehdrp->e_flags;
344 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
347 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
349 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
351 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
352 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
354 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
355 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
356 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
358 /* Don't be fussy. */
362 /* Given section type (hdr->sh_type), return a boolean indicating
363 whether or not the section is an elf64-hppa specific section. */
365 elf64_hppa_section_from_shdr (bfd *abfd,
366 Elf_Internal_Shdr *hdr,
370 switch (hdr->sh_type)
373 if (strcmp (name, ".PARISC.archext") != 0)
376 case SHT_PARISC_UNWIND:
377 if (strcmp (name, ".PARISC.unwind") != 0)
381 case SHT_PARISC_ANNOT:
386 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
392 /* SEC is a section containing relocs for an input BFD when linking; return
393 a suitable section for holding relocs in the output BFD for a link. */
396 get_reloc_section (bfd *abfd,
397 struct elf64_hppa_link_hash_table *hppa_info,
400 const char *srel_name;
404 srel_name = (bfd_elf_string_from_elf_section
405 (abfd, elf_elfheader(abfd)->e_shstrndx,
406 _bfd_elf_single_rel_hdr(sec)->sh_name));
407 if (srel_name == NULL)
410 dynobj = hppa_info->root.dynobj;
412 hppa_info->root.dynobj = dynobj = abfd;
414 srel = bfd_get_linker_section (dynobj, srel_name);
417 srel = bfd_make_section_anyway_with_flags (dynobj, srel_name,
425 || !bfd_set_section_alignment (dynobj, srel, 3))
429 hppa_info->other_rel_sec = srel;
433 /* Add a new entry to the list of dynamic relocations against DYN_H.
435 We use this to keep a record of all the FPTR relocations against a
436 particular symbol so that we can create FPTR relocations in the
440 count_dyn_reloc (bfd *abfd,
441 struct elf64_hppa_link_hash_entry *hh,
448 struct elf64_hppa_dyn_reloc_entry *rent;
450 rent = (struct elf64_hppa_dyn_reloc_entry *)
451 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
455 rent->next = hh->reloc_entries;
458 rent->sec_symndx = sec_symndx;
459 rent->offset = offset;
460 rent->addend = addend;
461 hh->reloc_entries = rent;
466 /* Return a pointer to the local DLT, PLT and OPD reference counts
467 for ABFD. Returns NULL if the storage allocation fails. */
469 static bfd_signed_vma *
470 hppa64_elf_local_refcounts (bfd *abfd)
472 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
473 bfd_signed_vma *local_refcounts;
475 local_refcounts = elf_local_got_refcounts (abfd);
476 if (local_refcounts == NULL)
480 /* Allocate space for local DLT, PLT and OPD reference
481 counts. Done this way to save polluting elf_obj_tdata
482 with another target specific pointer. */
483 size = symtab_hdr->sh_info;
484 size *= 3 * sizeof (bfd_signed_vma);
485 local_refcounts = bfd_zalloc (abfd, size);
486 elf_local_got_refcounts (abfd) = local_refcounts;
488 return local_refcounts;
491 /* Scan the RELOCS and record the type of dynamic entries that each
492 referenced symbol needs. */
495 elf64_hppa_check_relocs (bfd *abfd,
496 struct bfd_link_info *info,
498 const Elf_Internal_Rela *relocs)
500 struct elf64_hppa_link_hash_table *hppa_info;
501 const Elf_Internal_Rela *relend;
502 Elf_Internal_Shdr *symtab_hdr;
503 const Elf_Internal_Rela *rel;
504 unsigned int sec_symndx;
506 if (bfd_link_relocatable (info))
509 /* If this is the first dynamic object found in the link, create
510 the special sections required for dynamic linking. */
511 if (! elf_hash_table (info)->dynamic_sections_created)
513 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
517 hppa_info = hppa_link_hash_table (info);
518 if (hppa_info == NULL)
520 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
522 /* If necessary, build a new table holding section symbols indices
525 if (bfd_link_pic (info) && hppa_info->section_syms_bfd != abfd)
528 unsigned int highest_shndx;
529 Elf_Internal_Sym *local_syms = NULL;
530 Elf_Internal_Sym *isym, *isymend;
533 /* We're done with the old cache of section index to section symbol
534 index information. Free it.
536 ?!? Note we leak the last section_syms array. Presumably we
537 could free it in one of the later routines in this file. */
538 if (hppa_info->section_syms)
539 free (hppa_info->section_syms);
541 /* Read this BFD's local symbols. */
542 if (symtab_hdr->sh_info != 0)
544 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
545 if (local_syms == NULL)
546 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
547 symtab_hdr->sh_info, 0,
549 if (local_syms == NULL)
553 /* Record the highest section index referenced by the local symbols. */
555 isymend = local_syms + symtab_hdr->sh_info;
556 for (isym = local_syms; isym < isymend; isym++)
558 if (isym->st_shndx > highest_shndx
559 && isym->st_shndx < SHN_LORESERVE)
560 highest_shndx = isym->st_shndx;
563 /* Allocate an array to hold the section index to section symbol index
564 mapping. Bump by one since we start counting at zero. */
568 hppa_info->section_syms = (int *) bfd_malloc (amt);
570 /* Now walk the local symbols again. If we find a section symbol,
571 record the index of the symbol into the section_syms array. */
572 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
574 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
575 hppa_info->section_syms[isym->st_shndx] = i;
578 /* We are finished with the local symbols. */
579 if (local_syms != NULL
580 && symtab_hdr->contents != (unsigned char *) local_syms)
582 if (! info->keep_memory)
586 /* Cache the symbols for elf_link_input_bfd. */
587 symtab_hdr->contents = (unsigned char *) local_syms;
591 /* Record which BFD we built the section_syms mapping for. */
592 hppa_info->section_syms_bfd = abfd;
595 /* Record the symbol index for this input section. We may need it for
596 relocations when building shared libraries. When not building shared
597 libraries this value is never really used, but assign it to zero to
598 prevent out of bounds memory accesses in other routines. */
599 if (bfd_link_pic (info))
601 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
603 /* If we did not find a section symbol for this section, then
604 something went terribly wrong above. */
605 if (sec_symndx == SHN_BAD)
608 if (sec_symndx < SHN_LORESERVE)
609 sec_symndx = hppa_info->section_syms[sec_symndx];
616 relend = relocs + sec->reloc_count;
617 for (rel = relocs; rel < relend; ++rel)
628 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
629 struct elf64_hppa_link_hash_entry *hh;
631 bfd_boolean maybe_dynamic;
632 int dynrel_type = R_PARISC_NONE;
633 static reloc_howto_type *howto;
635 if (r_symndx >= symtab_hdr->sh_info)
637 /* We're dealing with a global symbol -- find its hash entry
638 and mark it as being referenced. */
639 long indx = r_symndx - symtab_hdr->sh_info;
640 hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
641 while (hh->eh.root.type == bfd_link_hash_indirect
642 || hh->eh.root.type == bfd_link_hash_warning)
643 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
645 /* PR15323, ref flags aren't set for references in the same
647 hh->eh.root.non_ir_ref = 1;
648 hh->eh.ref_regular = 1;
653 /* We can only get preliminary data on whether a symbol is
654 locally or externally defined, as not all of the input files
655 have yet been processed. Do something with what we know, as
656 this may help reduce memory usage and processing time later. */
657 maybe_dynamic = FALSE;
658 if (hh && ((bfd_link_pic (info)
660 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
661 || !hh->eh.def_regular
662 || hh->eh.root.type == bfd_link_hash_defweak))
663 maybe_dynamic = TRUE;
665 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
669 /* These are simple indirect references to symbols through the
670 DLT. We need to create a DLT entry for any symbols which
671 appears in a DLTIND relocation. */
672 case R_PARISC_DLTIND21L:
673 case R_PARISC_DLTIND14R:
674 case R_PARISC_DLTIND14F:
675 case R_PARISC_DLTIND14WR:
676 case R_PARISC_DLTIND14DR:
677 need_entry = NEED_DLT;
680 /* ?!? These need a DLT entry. But I have no idea what to do with
681 the "link time TP value. */
682 case R_PARISC_LTOFF_TP21L:
683 case R_PARISC_LTOFF_TP14R:
684 case R_PARISC_LTOFF_TP14F:
685 case R_PARISC_LTOFF_TP64:
686 case R_PARISC_LTOFF_TP14WR:
687 case R_PARISC_LTOFF_TP14DR:
688 case R_PARISC_LTOFF_TP16F:
689 case R_PARISC_LTOFF_TP16WF:
690 case R_PARISC_LTOFF_TP16DF:
691 need_entry = NEED_DLT;
694 /* These are function calls. Depending on their precise target we
695 may need to make a stub for them. The stub uses the PLT, so we
696 need to create PLT entries for these symbols too. */
697 case R_PARISC_PCREL12F:
698 case R_PARISC_PCREL17F:
699 case R_PARISC_PCREL22F:
700 case R_PARISC_PCREL32:
701 case R_PARISC_PCREL64:
702 case R_PARISC_PCREL21L:
703 case R_PARISC_PCREL17R:
704 case R_PARISC_PCREL17C:
705 case R_PARISC_PCREL14R:
706 case R_PARISC_PCREL14F:
707 case R_PARISC_PCREL22C:
708 case R_PARISC_PCREL14WR:
709 case R_PARISC_PCREL14DR:
710 case R_PARISC_PCREL16F:
711 case R_PARISC_PCREL16WF:
712 case R_PARISC_PCREL16DF:
713 /* Function calls might need to go through the .plt, and
714 might need a long branch stub. */
715 if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
716 need_entry = (NEED_PLT | NEED_STUB);
721 case R_PARISC_PLTOFF21L:
722 case R_PARISC_PLTOFF14R:
723 case R_PARISC_PLTOFF14F:
724 case R_PARISC_PLTOFF14WR:
725 case R_PARISC_PLTOFF14DR:
726 case R_PARISC_PLTOFF16F:
727 case R_PARISC_PLTOFF16WF:
728 case R_PARISC_PLTOFF16DF:
729 need_entry = (NEED_PLT);
733 if (bfd_link_pic (info) || maybe_dynamic)
734 need_entry = (NEED_DYNREL);
735 dynrel_type = R_PARISC_DIR64;
738 /* This is an indirect reference through the DLT to get the address
739 of a OPD descriptor. Thus we need to make a DLT entry that points
741 case R_PARISC_LTOFF_FPTR21L:
742 case R_PARISC_LTOFF_FPTR14R:
743 case R_PARISC_LTOFF_FPTR14WR:
744 case R_PARISC_LTOFF_FPTR14DR:
745 case R_PARISC_LTOFF_FPTR32:
746 case R_PARISC_LTOFF_FPTR64:
747 case R_PARISC_LTOFF_FPTR16F:
748 case R_PARISC_LTOFF_FPTR16WF:
749 case R_PARISC_LTOFF_FPTR16DF:
750 if (bfd_link_pic (info) || maybe_dynamic)
751 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
753 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
754 dynrel_type = R_PARISC_FPTR64;
757 /* This is a simple OPD entry. */
758 case R_PARISC_FPTR64:
759 if (bfd_link_pic (info) || maybe_dynamic)
760 need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
762 need_entry = (NEED_OPD | NEED_PLT);
763 dynrel_type = R_PARISC_FPTR64;
766 /* Add more cases as needed. */
774 /* Stash away enough information to be able to find this symbol
775 regardless of whether or not it is local or global. */
777 hh->sym_indx = r_symndx;
780 /* Create what's needed. */
781 if (need_entry & NEED_DLT)
783 /* Allocate space for a DLT entry, as well as a dynamic
784 relocation for this entry. */
785 if (! hppa_info->dlt_sec
786 && ! get_dlt (abfd, info, hppa_info))
792 hh->eh.got.refcount += 1;
796 bfd_signed_vma *local_dlt_refcounts;
798 /* This is a DLT entry for a local symbol. */
799 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
800 if (local_dlt_refcounts == NULL)
802 local_dlt_refcounts[r_symndx] += 1;
806 if (need_entry & NEED_PLT)
808 if (! hppa_info->plt_sec
809 && ! get_plt (abfd, info, hppa_info))
815 hh->eh.needs_plt = 1;
816 hh->eh.plt.refcount += 1;
820 bfd_signed_vma *local_dlt_refcounts;
821 bfd_signed_vma *local_plt_refcounts;
823 /* This is a PLT entry for a local symbol. */
824 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
825 if (local_dlt_refcounts == NULL)
827 local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
828 local_plt_refcounts[r_symndx] += 1;
832 if (need_entry & NEED_STUB)
834 if (! hppa_info->stub_sec
835 && ! get_stub (abfd, info, hppa_info))
841 if (need_entry & NEED_OPD)
843 if (! hppa_info->opd_sec
844 && ! get_opd (abfd, info, hppa_info))
847 /* FPTRs are not allocated by the dynamic linker for PA64,
848 though it is possible that will change in the future. */
854 bfd_signed_vma *local_dlt_refcounts;
855 bfd_signed_vma *local_opd_refcounts;
857 /* This is a OPD for a local symbol. */
858 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
859 if (local_dlt_refcounts == NULL)
861 local_opd_refcounts = (local_dlt_refcounts
862 + 2 * symtab_hdr->sh_info);
863 local_opd_refcounts[r_symndx] += 1;
867 /* Add a new dynamic relocation to the chain of dynamic
868 relocations for this symbol. */
869 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
871 if (! hppa_info->other_rel_sec
872 && ! get_reloc_section (abfd, hppa_info, sec))
875 /* Count dynamic relocations against global symbols. */
877 && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
878 sec_symndx, rel->r_offset, rel->r_addend))
881 /* If we are building a shared library and we just recorded
882 a dynamic R_PARISC_FPTR64 relocation, then make sure the
883 section symbol for this section ends up in the dynamic
885 if (bfd_link_pic (info) && dynrel_type == R_PARISC_FPTR64
886 && ! (bfd_elf_link_record_local_dynamic_symbol
887 (info, abfd, sec_symndx)))
898 struct elf64_hppa_allocate_data
900 struct bfd_link_info *info;
904 /* Should we do dynamic things to this symbol? */
907 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
908 struct bfd_link_info *info)
910 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
911 and relocations that retrieve a function descriptor? Assume the
913 if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
915 /* ??? Why is this here and not elsewhere is_local_label_name. */
916 if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
925 /* Mark all functions exported by this file so that we can later allocate
926 entries in .opd for them. */
929 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
931 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
932 struct bfd_link_info *info = (struct bfd_link_info *)data;
933 struct elf64_hppa_link_hash_table *hppa_info;
935 hppa_info = hppa_link_hash_table (info);
936 if (hppa_info == NULL)
940 && (eh->root.type == bfd_link_hash_defined
941 || eh->root.type == bfd_link_hash_defweak)
942 && eh->root.u.def.section->output_section != NULL
943 && eh->type == STT_FUNC)
945 if (! hppa_info->opd_sec
946 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
951 /* Put a flag here for output_symbol_hook. */
959 /* Allocate space for a DLT entry. */
962 allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
964 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
965 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
969 if (bfd_link_pic (x->info))
971 /* Possibly add the symbol to the local dynamic symbol
972 table since we might need to create a dynamic relocation
974 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
976 bfd *owner = eh->root.u.def.section->owner;
978 if (! (bfd_elf_link_record_local_dynamic_symbol
979 (x->info, owner, hh->sym_indx)))
984 hh->dlt_offset = x->ofs;
985 x->ofs += DLT_ENTRY_SIZE;
990 /* Allocate space for a DLT.PLT entry. */
993 allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
995 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
996 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
999 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1000 && !((eh->root.type == bfd_link_hash_defined
1001 || eh->root.type == bfd_link_hash_defweak)
1002 && eh->root.u.def.section->output_section != NULL))
1004 hh->plt_offset = x->ofs;
1005 x->ofs += PLT_ENTRY_SIZE;
1006 if (hh->plt_offset < 0x2000)
1008 struct elf64_hppa_link_hash_table *hppa_info;
1010 hppa_info = hppa_link_hash_table (x->info);
1011 if (hppa_info == NULL)
1014 hppa_info->gp_offset = hh->plt_offset;
1023 /* Allocate space for a STUB entry. */
1026 allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
1028 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1029 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1032 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1033 && !((eh->root.type == bfd_link_hash_defined
1034 || eh->root.type == bfd_link_hash_defweak)
1035 && eh->root.u.def.section->output_section != NULL))
1037 hh->stub_offset = x->ofs;
1038 x->ofs += sizeof (plt_stub);
1045 /* Allocate space for a FPTR entry. */
1048 allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
1050 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1051 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1053 if (hh && hh->want_opd)
1055 /* We never need an opd entry for a symbol which is not
1056 defined by this output file. */
1057 if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1058 || hh->eh.root.type == bfd_link_hash_undefweak
1059 || hh->eh.root.u.def.section->output_section == NULL))
1062 /* If we are creating a shared library, took the address of a local
1063 function or might export this function from this object file, then
1064 we have to create an opd descriptor. */
1065 else if (bfd_link_pic (x->info)
1067 || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1068 || (hh->eh.root.type == bfd_link_hash_defined
1069 || hh->eh.root.type == bfd_link_hash_defweak))
1071 /* If we are creating a shared library, then we will have to
1072 create a runtime relocation for the symbol to properly
1073 initialize the .opd entry. Make sure the symbol gets
1074 added to the dynamic symbol table. */
1075 if (bfd_link_pic (x->info)
1076 && (hh == NULL || (hh->eh.dynindx == -1)))
1079 /* PR 6511: Default to using the dynamic symbol table. */
1080 owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
1082 if (!bfd_elf_link_record_local_dynamic_symbol
1083 (x->info, owner, hh->sym_indx))
1087 /* This may not be necessary or desirable anymore now that
1088 we have some support for dealing with section symbols
1089 in dynamic relocs. But name munging does make the result
1090 much easier to debug. ie, the EPLT reloc will reference
1091 a symbol like .foobar, instead of .text + offset. */
1092 if (bfd_link_pic (x->info) && eh)
1095 struct elf_link_hash_entry *nh;
1097 new_name = concat (".", eh->root.root.string, NULL);
1099 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1100 new_name, TRUE, TRUE, TRUE);
1103 nh->root.type = eh->root.type;
1104 nh->root.u.def.value = eh->root.u.def.value;
1105 nh->root.u.def.section = eh->root.u.def.section;
1107 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1110 hh->opd_offset = x->ofs;
1111 x->ofs += OPD_ENTRY_SIZE;
1114 /* Otherwise we do not need an opd entry. */
1121 /* HP requires the EI_OSABI field to be filled in. The assignment to
1122 EI_ABIVERSION may not be strictly necessary. */
1125 elf64_hppa_post_process_headers (bfd *abfd,
1126 struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
1128 Elf_Internal_Ehdr * i_ehdrp;
1130 i_ehdrp = elf_elfheader (abfd);
1132 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1133 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1136 /* Create function descriptor section (.opd). This section is called .opd
1137 because it contains "official procedure descriptors". The "official"
1138 refers to the fact that these descriptors are used when taking the address
1139 of a procedure, thus ensuring a unique address for each procedure. */
1143 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1144 struct elf64_hppa_link_hash_table *hppa_info)
1149 opd = hppa_info->opd_sec;
1152 dynobj = hppa_info->root.dynobj;
1154 hppa_info->root.dynobj = dynobj = abfd;
1156 opd = bfd_make_section_anyway_with_flags (dynobj, ".opd",
1161 | SEC_LINKER_CREATED));
1163 || !bfd_set_section_alignment (abfd, opd, 3))
1169 hppa_info->opd_sec = opd;
1175 /* Create the PLT section. */
1179 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1180 struct elf64_hppa_link_hash_table *hppa_info)
1185 plt = hppa_info->plt_sec;
1188 dynobj = hppa_info->root.dynobj;
1190 hppa_info->root.dynobj = dynobj = abfd;
1192 plt = bfd_make_section_anyway_with_flags (dynobj, ".plt",
1197 | SEC_LINKER_CREATED));
1199 || !bfd_set_section_alignment (abfd, plt, 3))
1205 hppa_info->plt_sec = plt;
1211 /* Create the DLT section. */
1215 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1216 struct elf64_hppa_link_hash_table *hppa_info)
1221 dlt = hppa_info->dlt_sec;
1224 dynobj = hppa_info->root.dynobj;
1226 hppa_info->root.dynobj = dynobj = abfd;
1228 dlt = bfd_make_section_anyway_with_flags (dynobj, ".dlt",
1233 | SEC_LINKER_CREATED));
1235 || !bfd_set_section_alignment (abfd, dlt, 3))
1241 hppa_info->dlt_sec = dlt;
1247 /* Create the stubs section. */
1250 get_stub (bfd *abfd,
1251 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1252 struct elf64_hppa_link_hash_table *hppa_info)
1257 stub = hppa_info->stub_sec;
1260 dynobj = hppa_info->root.dynobj;
1262 hppa_info->root.dynobj = dynobj = abfd;
1264 stub = bfd_make_section_anyway_with_flags (dynobj, ".stub",
1265 (SEC_ALLOC | SEC_LOAD
1269 | SEC_LINKER_CREATED));
1271 || !bfd_set_section_alignment (abfd, stub, 3))
1277 hppa_info->stub_sec = stub;
1283 /* Create sections necessary for dynamic linking. This is only a rough
1284 cut and will likely change as we learn more about the somewhat
1285 unusual dynamic linking scheme HP uses.
1288 Contains code to implement cross-space calls. The first time one
1289 of the stubs is used it will call into the dynamic linker, later
1290 calls will go straight to the target.
1292 The only stub we support right now looks like
1296 ldd OFFSET+8(%dp),%dp
1298 Other stubs may be needed in the future. We may want the remove
1299 the break/nop instruction. It is only used right now to keep the
1300 offset of a .plt entry and a .stub entry in sync.
1303 This is what most people call the .got. HP used a different name.
1307 Relocations for the DLT.
1310 Function pointers as address,gp pairs.
1313 Should contain dynamic IPLT (and EPLT?) relocations.
1319 EPLT relocations for symbols exported from shared libraries. */
1322 elf64_hppa_create_dynamic_sections (bfd *abfd,
1323 struct bfd_link_info *info)
1326 struct elf64_hppa_link_hash_table *hppa_info;
1328 hppa_info = hppa_link_hash_table (info);
1329 if (hppa_info == NULL)
1332 if (! get_stub (abfd, info, hppa_info))
1335 if (! get_dlt (abfd, info, hppa_info))
1338 if (! get_plt (abfd, info, hppa_info))
1341 if (! get_opd (abfd, info, hppa_info))
1344 s = bfd_make_section_anyway_with_flags (abfd, ".rela.dlt",
1345 (SEC_ALLOC | SEC_LOAD
1349 | SEC_LINKER_CREATED));
1351 || !bfd_set_section_alignment (abfd, s, 3))
1353 hppa_info->dlt_rel_sec = s;
1355 s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt",
1356 (SEC_ALLOC | SEC_LOAD
1360 | SEC_LINKER_CREATED));
1362 || !bfd_set_section_alignment (abfd, s, 3))
1364 hppa_info->plt_rel_sec = s;
1366 s = bfd_make_section_anyway_with_flags (abfd, ".rela.data",
1367 (SEC_ALLOC | SEC_LOAD
1371 | SEC_LINKER_CREATED));
1373 || !bfd_set_section_alignment (abfd, s, 3))
1375 hppa_info->other_rel_sec = s;
1377 s = bfd_make_section_anyway_with_flags (abfd, ".rela.opd",
1378 (SEC_ALLOC | SEC_LOAD
1382 | SEC_LINKER_CREATED));
1384 || !bfd_set_section_alignment (abfd, s, 3))
1386 hppa_info->opd_rel_sec = s;
1391 /* Allocate dynamic relocations for those symbols that turned out
1395 allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
1397 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1398 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1399 struct elf64_hppa_link_hash_table *hppa_info;
1400 struct elf64_hppa_dyn_reloc_entry *rent;
1401 bfd_boolean dynamic_symbol, shared;
1403 hppa_info = hppa_link_hash_table (x->info);
1404 if (hppa_info == NULL)
1407 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
1408 shared = bfd_link_pic (x->info);
1410 /* We may need to allocate relocations for a non-dynamic symbol
1411 when creating a shared library. */
1412 if (!dynamic_symbol && !shared)
1415 /* Take care of the normal data relocations. */
1417 for (rent = hh->reloc_entries; rent; rent = rent->next)
1419 /* Allocate one iff we are building a shared library, the relocation
1420 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1421 if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
1424 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1426 /* Make sure this symbol gets into the dynamic symbol table if it is
1427 not already recorded. ?!? This should not be in the loop since
1428 the symbol need only be added once. */
1429 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
1430 if (!bfd_elf_link_record_local_dynamic_symbol
1431 (x->info, rent->sec->owner, hh->sym_indx))
1435 /* Take care of the GOT and PLT relocations. */
1437 if ((dynamic_symbol || shared) && hh->want_dlt)
1438 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1440 /* If we are building a shared library, then every symbol that has an
1441 opd entry will need an EPLT relocation to relocate the symbol's address
1442 and __gp value based on the runtime load address. */
1443 if (shared && hh->want_opd)
1444 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1446 if (hh->want_plt && dynamic_symbol)
1448 bfd_size_type t = 0;
1450 /* Dynamic symbols get one IPLT relocation. Local symbols in
1451 shared libraries get two REL relocations. Local symbols in
1452 main applications get nothing. */
1454 t = sizeof (Elf64_External_Rela);
1456 t = 2 * sizeof (Elf64_External_Rela);
1458 hppa_info->plt_rel_sec->size += t;
1464 /* Adjust a symbol defined by a dynamic object and referenced by a
1468 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1469 struct elf_link_hash_entry *eh)
1471 /* ??? Undefined symbols with PLT entries should be re-defined
1472 to be the PLT entry. */
1474 /* If this is a weak symbol, and there is a real definition, the
1475 processor independent code will have arranged for us to see the
1476 real definition first, and we can just use the same value. */
1477 if (eh->u.weakdef != NULL)
1479 BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined
1480 || eh->u.weakdef->root.type == bfd_link_hash_defweak);
1481 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1482 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1486 /* If this is a reference to a symbol defined by a dynamic object which
1487 is not a function, we might allocate the symbol in our .dynbss section
1488 and allocate a COPY dynamic relocation.
1490 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1496 /* This function is called via elf_link_hash_traverse to mark millicode
1497 symbols with a dynindx of -1 and to remove the string table reference
1498 from the dynamic symbol table. If the symbol is not a millicode symbol,
1499 elf64_hppa_mark_exported_functions is called. */
1502 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
1505 struct bfd_link_info *info = (struct bfd_link_info *) data;
1507 if (eh->type == STT_PARISC_MILLI)
1509 if (eh->dynindx != -1)
1512 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1518 return elf64_hppa_mark_exported_functions (eh, data);
1521 /* Set the final sizes of the dynamic sections and allocate memory for
1522 the contents of our special sections. */
1525 elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1527 struct elf64_hppa_link_hash_table *hppa_info;
1528 struct elf64_hppa_allocate_data data;
1534 bfd_boolean reltext;
1536 hppa_info = hppa_link_hash_table (info);
1537 if (hppa_info == NULL)
1540 dynobj = elf_hash_table (info)->dynobj;
1541 BFD_ASSERT (dynobj != NULL);
1543 /* Mark each function this program exports so that we will allocate
1544 space in the .opd section for each function's FPTR. If we are
1545 creating dynamic sections, change the dynamic index of millicode
1546 symbols to -1 and remove them from the string table for .dynstr.
1548 We have to traverse the main linker hash table since we have to
1549 find functions which may not have been mentioned in any relocs. */
1550 elf_link_hash_traverse (elf_hash_table (info),
1551 (elf_hash_table (info)->dynamic_sections_created
1552 ? elf64_hppa_mark_milli_and_exported_functions
1553 : elf64_hppa_mark_exported_functions),
1556 if (elf_hash_table (info)->dynamic_sections_created)
1558 /* Set the contents of the .interp section to the interpreter. */
1559 if (bfd_link_executable (info) && !info->nointerp)
1561 sec = bfd_get_linker_section (dynobj, ".interp");
1562 BFD_ASSERT (sec != NULL);
1563 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1564 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1569 /* We may have created entries in the .rela.got section.
1570 However, if we are not creating the dynamic sections, we will
1571 not actually use these entries. Reset the size of .rela.dlt,
1572 which will cause it to get stripped from the output file
1574 sec = bfd_get_linker_section (dynobj, ".rela.dlt");
1579 /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1581 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1583 bfd_signed_vma *local_dlt;
1584 bfd_signed_vma *end_local_dlt;
1585 bfd_signed_vma *local_plt;
1586 bfd_signed_vma *end_local_plt;
1587 bfd_signed_vma *local_opd;
1588 bfd_signed_vma *end_local_opd;
1589 bfd_size_type locsymcount;
1590 Elf_Internal_Shdr *symtab_hdr;
1593 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1596 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1598 struct elf64_hppa_dyn_reloc_entry *hdh_p;
1600 for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1601 elf_section_data (sec)->local_dynrel);
1603 hdh_p = hdh_p->next)
1605 if (!bfd_is_abs_section (hdh_p->sec)
1606 && bfd_is_abs_section (hdh_p->sec->output_section))
1608 /* Input section has been discarded, either because
1609 it is a copy of a linkonce section or due to
1610 linker script /DISCARD/, so we'll be discarding
1613 else if (hdh_p->count != 0)
1615 srel = elf_section_data (hdh_p->sec)->sreloc;
1616 srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1617 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1618 info->flags |= DF_TEXTREL;
1623 local_dlt = elf_local_got_refcounts (ibfd);
1627 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1628 locsymcount = symtab_hdr->sh_info;
1629 end_local_dlt = local_dlt + locsymcount;
1630 sec = hppa_info->dlt_sec;
1631 srel = hppa_info->dlt_rel_sec;
1632 for (; local_dlt < end_local_dlt; ++local_dlt)
1636 *local_dlt = sec->size;
1637 sec->size += DLT_ENTRY_SIZE;
1638 if (bfd_link_pic (info))
1640 srel->size += sizeof (Elf64_External_Rela);
1644 *local_dlt = (bfd_vma) -1;
1647 local_plt = end_local_dlt;
1648 end_local_plt = local_plt + locsymcount;
1649 if (! hppa_info->root.dynamic_sections_created)
1651 /* Won't be used, but be safe. */
1652 for (; local_plt < end_local_plt; ++local_plt)
1653 *local_plt = (bfd_vma) -1;
1657 sec = hppa_info->plt_sec;
1658 srel = hppa_info->plt_rel_sec;
1659 for (; local_plt < end_local_plt; ++local_plt)
1663 *local_plt = sec->size;
1664 sec->size += PLT_ENTRY_SIZE;
1665 if (bfd_link_pic (info))
1666 srel->size += sizeof (Elf64_External_Rela);
1669 *local_plt = (bfd_vma) -1;
1673 local_opd = end_local_plt;
1674 end_local_opd = local_opd + locsymcount;
1675 if (! hppa_info->root.dynamic_sections_created)
1677 /* Won't be used, but be safe. */
1678 for (; local_opd < end_local_opd; ++local_opd)
1679 *local_opd = (bfd_vma) -1;
1683 sec = hppa_info->opd_sec;
1684 srel = hppa_info->opd_rel_sec;
1685 for (; local_opd < end_local_opd; ++local_opd)
1689 *local_opd = sec->size;
1690 sec->size += OPD_ENTRY_SIZE;
1691 if (bfd_link_pic (info))
1692 srel->size += sizeof (Elf64_External_Rela);
1695 *local_opd = (bfd_vma) -1;
1700 /* Allocate the GOT entries. */
1703 if (hppa_info->dlt_sec)
1705 data.ofs = hppa_info->dlt_sec->size;
1706 elf_link_hash_traverse (elf_hash_table (info),
1707 allocate_global_data_dlt, &data);
1708 hppa_info->dlt_sec->size = data.ofs;
1711 if (hppa_info->plt_sec)
1713 data.ofs = hppa_info->plt_sec->size;
1714 elf_link_hash_traverse (elf_hash_table (info),
1715 allocate_global_data_plt, &data);
1716 hppa_info->plt_sec->size = data.ofs;
1719 if (hppa_info->stub_sec)
1722 elf_link_hash_traverse (elf_hash_table (info),
1723 allocate_global_data_stub, &data);
1724 hppa_info->stub_sec->size = data.ofs;
1727 /* Allocate space for entries in the .opd section. */
1728 if (hppa_info->opd_sec)
1730 data.ofs = hppa_info->opd_sec->size;
1731 elf_link_hash_traverse (elf_hash_table (info),
1732 allocate_global_data_opd, &data);
1733 hppa_info->opd_sec->size = data.ofs;
1736 /* Now allocate space for dynamic relocations, if necessary. */
1737 if (hppa_info->root.dynamic_sections_created)
1738 elf_link_hash_traverse (elf_hash_table (info),
1739 allocate_dynrel_entries, &data);
1741 /* The sizes of all the sections are set. Allocate memory for them. */
1745 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
1749 if ((sec->flags & SEC_LINKER_CREATED) == 0)
1752 /* It's OK to base decisions on the section name, because none
1753 of the dynobj section names depend upon the input files. */
1754 name = bfd_get_section_name (dynobj, sec);
1756 if (strcmp (name, ".plt") == 0)
1758 /* Remember whether there is a PLT. */
1759 plt = sec->size != 0;
1761 else if (strcmp (name, ".opd") == 0
1762 || CONST_STRNEQ (name, ".dlt")
1763 || strcmp (name, ".stub") == 0
1764 || strcmp (name, ".got") == 0)
1766 /* Strip this section if we don't need it; see the comment below. */
1768 else if (CONST_STRNEQ (name, ".rela"))
1774 /* Remember whether there are any reloc sections other
1776 if (strcmp (name, ".rela.plt") != 0)
1778 const char *outname;
1782 /* If this relocation section applies to a read only
1783 section, then we probably need a DT_TEXTREL
1784 entry. The entries in the .rela.plt section
1785 really apply to the .got section, which we
1786 created ourselves and so know is not readonly. */
1787 outname = bfd_get_section_name (output_bfd,
1788 sec->output_section);
1789 target = bfd_get_section_by_name (output_bfd, outname + 4);
1791 && (target->flags & SEC_READONLY) != 0
1792 && (target->flags & SEC_ALLOC) != 0)
1796 /* We use the reloc_count field as a counter if we need
1797 to copy relocs into the output file. */
1798 sec->reloc_count = 0;
1803 /* It's not one of our sections, so don't allocate space. */
1809 /* If we don't need this section, strip it from the
1810 output file. This is mostly to handle .rela.bss and
1811 .rela.plt. We must create both sections in
1812 create_dynamic_sections, because they must be created
1813 before the linker maps input sections to output
1814 sections. The linker does that before
1815 adjust_dynamic_symbol is called, and it is that
1816 function which decides whether anything needs to go
1817 into these sections. */
1818 sec->flags |= SEC_EXCLUDE;
1822 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
1825 /* Allocate memory for the section contents if it has not
1826 been allocated already. We use bfd_zalloc here in case
1827 unused entries are not reclaimed before the section's
1828 contents are written out. This should not happen, but this
1829 way if it does, we get a R_PARISC_NONE reloc instead of
1831 if (sec->contents == NULL)
1833 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1834 if (sec->contents == NULL)
1839 if (elf_hash_table (info)->dynamic_sections_created)
1841 /* Always create a DT_PLTGOT. It actually has nothing to do with
1842 the PLT, it is how we communicate the __gp value of a load
1843 module to the dynamic linker. */
1844 #define add_dynamic_entry(TAG, VAL) \
1845 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1847 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1848 || !add_dynamic_entry (DT_PLTGOT, 0))
1851 /* Add some entries to the .dynamic section. We fill in the
1852 values later, in elf64_hppa_finish_dynamic_sections, but we
1853 must add the entries now so that we get the correct size for
1854 the .dynamic section. The DT_DEBUG entry is filled in by the
1855 dynamic linker and used by the debugger. */
1856 if (! bfd_link_pic (info))
1858 if (!add_dynamic_entry (DT_DEBUG, 0)
1859 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1860 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1864 /* Force DT_FLAGS to always be set.
1865 Required by HPUX 11.00 patch PHSS_26559. */
1866 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1871 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1872 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1873 || !add_dynamic_entry (DT_JMPREL, 0))
1879 if (!add_dynamic_entry (DT_RELA, 0)
1880 || !add_dynamic_entry (DT_RELASZ, 0)
1881 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1887 if (!add_dynamic_entry (DT_TEXTREL, 0))
1889 info->flags |= DF_TEXTREL;
1892 #undef add_dynamic_entry
1897 /* Called after we have output the symbol into the dynamic symbol
1898 table, but before we output the symbol into the normal symbol
1901 For some symbols we had to change their address when outputting
1902 the dynamic symbol table. We undo that change here so that
1903 the symbols have their expected value in the normal symbol
1907 elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1909 Elf_Internal_Sym *sym,
1910 asection *input_sec ATTRIBUTE_UNUSED,
1911 struct elf_link_hash_entry *eh)
1913 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1915 /* We may be called with the file symbol or section symbols.
1916 They never need munging, so it is safe to ignore them. */
1920 /* Function symbols for which we created .opd entries *may* have been
1921 munged by finish_dynamic_symbol and have to be un-munged here.
1923 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1924 into non-dynamic ones, so we initialize st_shndx to -1 in
1925 mark_exported_functions and check to see if it was overwritten
1926 here instead of just checking eh->dynindx. */
1927 if (hh->want_opd && hh->st_shndx != -1)
1929 /* Restore the saved value and section index. */
1930 sym->st_value = hh->st_value;
1931 sym->st_shndx = hh->st_shndx;
1937 /* Finish up dynamic symbol handling. We set the contents of various
1938 dynamic sections here. */
1941 elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1942 struct bfd_link_info *info,
1943 struct elf_link_hash_entry *eh,
1944 Elf_Internal_Sym *sym)
1946 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1947 asection *stub, *splt, *sopd, *spltrel;
1948 struct elf64_hppa_link_hash_table *hppa_info;
1950 hppa_info = hppa_link_hash_table (info);
1951 if (hppa_info == NULL)
1954 stub = hppa_info->stub_sec;
1955 splt = hppa_info->plt_sec;
1956 sopd = hppa_info->opd_sec;
1957 spltrel = hppa_info->plt_rel_sec;
1959 /* Incredible. It is actually necessary to NOT use the symbol's real
1960 value when building the dynamic symbol table for a shared library.
1961 At least for symbols that refer to functions.
1963 We will store a new value and section index into the symbol long
1964 enough to output it into the dynamic symbol table, then we restore
1965 the original values (in elf64_hppa_link_output_symbol_hook). */
1968 BFD_ASSERT (sopd != NULL);
1970 /* Save away the original value and section index so that we
1971 can restore them later. */
1972 hh->st_value = sym->st_value;
1973 hh->st_shndx = sym->st_shndx;
1975 /* For the dynamic symbol table entry, we want the value to be
1976 address of this symbol's entry within the .opd section. */
1977 sym->st_value = (hh->opd_offset
1978 + sopd->output_offset
1979 + sopd->output_section->vma);
1980 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1981 sopd->output_section);
1984 /* Initialize a .plt entry if requested. */
1986 && elf64_hppa_dynamic_symbol_p (eh, info))
1989 Elf_Internal_Rela rel;
1992 BFD_ASSERT (splt != NULL && spltrel != NULL);
1994 /* We do not actually care about the value in the PLT entry
1995 if we are creating a shared library and the symbol is
1996 still undefined, we create a dynamic relocation to fill
1997 in the correct value. */
1998 if (bfd_link_pic (info) && eh->root.type == bfd_link_hash_undefined)
2001 value = (eh->root.u.def.value + eh->root.u.def.section->vma);
2003 /* Fill in the entry in the procedure linkage table.
2005 The format of a plt entry is
2008 plt_offset is the offset within the PLT section at which to
2009 install the PLT entry.
2011 We are modifying the in-memory PLT contents here, so we do not add
2012 in the output_offset of the PLT section. */
2014 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
2015 value = _bfd_get_gp_value (splt->output_section->owner);
2016 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
2018 /* Create a dynamic IPLT relocation for this entry.
2020 We are creating a relocation in the output file's PLT section,
2021 which is included within the DLT secton. So we do need to include
2022 the PLT's output_offset in the computation of the relocation's
2024 rel.r_offset = (hh->plt_offset + splt->output_offset
2025 + splt->output_section->vma);
2026 rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
2029 loc = spltrel->contents;
2030 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2031 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2034 /* Initialize an external call stub entry if requested. */
2036 && elf64_hppa_dynamic_symbol_p (eh, info))
2040 unsigned int max_offset;
2042 BFD_ASSERT (stub != NULL);
2044 /* Install the generic stub template.
2046 We are modifying the contents of the stub section, so we do not
2047 need to include the stub section's output_offset here. */
2048 memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
2050 /* Fix up the first ldd instruction.
2052 We are modifying the contents of the STUB section in memory,
2053 so we do not need to include its output offset in this computation.
2055 Note the plt_offset value is the value of the PLT entry relative to
2056 the start of the PLT section. These instructions will reference
2057 data relative to the value of __gp, which may not necessarily have
2058 the same address as the start of the PLT section.
2060 gp_offset contains the offset of __gp within the PLT section. */
2061 value = hh->plt_offset - hppa_info->gp_offset;
2063 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
2064 if (output_bfd->arch_info->mach >= 25)
2066 /* Wide mode allows 16 bit offsets. */
2069 insn |= re_assemble_16 ((int) value);
2075 insn |= re_assemble_14 ((int) value);
2078 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2080 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2081 hh->eh.root.root.string,
2086 bfd_put_32 (stub->owner, (bfd_vma) insn,
2087 stub->contents + hh->stub_offset);
2089 /* Fix up the second ldd instruction. */
2091 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
2092 if (output_bfd->arch_info->mach >= 25)
2095 insn |= re_assemble_16 ((int) value);
2100 insn |= re_assemble_14 ((int) value);
2102 bfd_put_32 (stub->owner, (bfd_vma) insn,
2103 stub->contents + hh->stub_offset + 8);
2109 /* The .opd section contains FPTRs for each function this file
2110 exports. Initialize the FPTR entries. */
2113 elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
2115 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2116 struct bfd_link_info *info = (struct bfd_link_info *)data;
2117 struct elf64_hppa_link_hash_table *hppa_info;
2121 hppa_info = hppa_link_hash_table (info);
2122 if (hppa_info == NULL)
2125 sopd = hppa_info->opd_sec;
2126 sopdrel = hppa_info->opd_rel_sec;
2132 /* The first two words of an .opd entry are zero.
2134 We are modifying the contents of the OPD section in memory, so we
2135 do not need to include its output offset in this computation. */
2136 memset (sopd->contents + hh->opd_offset, 0, 16);
2138 value = (eh->root.u.def.value
2139 + eh->root.u.def.section->output_section->vma
2140 + eh->root.u.def.section->output_offset);
2142 /* The next word is the address of the function. */
2143 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
2145 /* The last word is our local __gp value. */
2146 value = _bfd_get_gp_value (sopd->output_section->owner);
2147 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
2150 /* If we are generating a shared library, we must generate EPLT relocations
2151 for each entry in the .opd, even for static functions (they may have
2152 had their address taken). */
2153 if (bfd_link_pic (info) && hh->want_opd)
2155 Elf_Internal_Rela rel;
2159 /* We may need to do a relocation against a local symbol, in
2160 which case we have to look up it's dynamic symbol index off
2161 the local symbol hash table. */
2162 if (eh->dynindx != -1)
2163 dynindx = eh->dynindx;
2166 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2169 /* The offset of this relocation is the absolute address of the
2170 .opd entry for this symbol. */
2171 rel.r_offset = (hh->opd_offset + sopd->output_offset
2172 + sopd->output_section->vma);
2174 /* If H is non-null, then we have an external symbol.
2176 It is imperative that we use a different dynamic symbol for the
2177 EPLT relocation if the symbol has global scope.
2179 In the dynamic symbol table, the function symbol will have a value
2180 which is address of the function's .opd entry.
2182 Thus, we can not use that dynamic symbol for the EPLT relocation
2183 (if we did, the data in the .opd would reference itself rather
2184 than the actual address of the function). Instead we have to use
2185 a new dynamic symbol which has the same value as the original global
2188 We prefix the original symbol with a "." and use the new symbol in
2189 the EPLT relocation. This new symbol has already been recorded in
2190 the symbol table, we just have to look it up and use it.
2192 We do not have such problems with static functions because we do
2193 not make their addresses in the dynamic symbol table point to
2194 the .opd entry. Ultimately this should be safe since a static
2195 function can not be directly referenced outside of its shared
2198 We do have to play similar games for FPTR relocations in shared
2199 libraries, including those for static symbols. See the FPTR
2200 handling in elf64_hppa_finalize_dynreloc. */
2204 struct elf_link_hash_entry *nh;
2206 new_name = concat (".", eh->root.root.string, NULL);
2208 nh = elf_link_hash_lookup (elf_hash_table (info),
2209 new_name, TRUE, TRUE, FALSE);
2211 /* All we really want from the new symbol is its dynamic
2214 dynindx = nh->dynindx;
2219 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2221 loc = sopdrel->contents;
2222 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2223 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2228 /* The .dlt section contains addresses for items referenced through the
2229 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2230 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2233 elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
2235 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2236 struct bfd_link_info *info = (struct bfd_link_info *)data;
2237 struct elf64_hppa_link_hash_table *hppa_info;
2238 asection *sdlt, *sdltrel;
2240 hppa_info = hppa_link_hash_table (info);
2241 if (hppa_info == NULL)
2244 sdlt = hppa_info->dlt_sec;
2245 sdltrel = hppa_info->dlt_rel_sec;
2247 /* H/DYN_H may refer to a local variable and we know it's
2248 address, so there is no need to create a relocation. Just install
2249 the proper value into the DLT, note this shortcut can not be
2250 skipped when building a shared library. */
2251 if (! bfd_link_pic (info) && hh && hh->want_dlt)
2255 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2256 to point to the FPTR entry in the .opd section.
2258 We include the OPD's output offset in this computation as
2259 we are referring to an absolute address in the resulting
2263 value = (hh->opd_offset
2264 + hppa_info->opd_sec->output_offset
2265 + hppa_info->opd_sec->output_section->vma);
2267 else if ((eh->root.type == bfd_link_hash_defined
2268 || eh->root.type == bfd_link_hash_defweak)
2269 && eh->root.u.def.section)
2271 value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2272 if (eh->root.u.def.section->output_section)
2273 value += eh->root.u.def.section->output_section->vma;
2275 value += eh->root.u.def.section->vma;
2278 /* We have an undefined function reference. */
2281 /* We do not need to include the output offset of the DLT section
2282 here because we are modifying the in-memory contents. */
2283 bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
2286 /* Create a relocation for the DLT entry associated with this symbol.
2287 When building a shared library the symbol does not have to be dynamic. */
2289 && (elf64_hppa_dynamic_symbol_p (eh, info) || bfd_link_pic (info)))
2291 Elf_Internal_Rela rel;
2295 /* We may need to do a relocation against a local symbol, in
2296 which case we have to look up it's dynamic symbol index off
2297 the local symbol hash table. */
2298 if (eh && eh->dynindx != -1)
2299 dynindx = eh->dynindx;
2302 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2305 /* Create a dynamic relocation for this entry. Do include the output
2306 offset of the DLT entry since we need an absolute address in the
2307 resulting object file. */
2308 rel.r_offset = (hh->dlt_offset + sdlt->output_offset
2309 + sdlt->output_section->vma);
2310 if (eh && eh->type == STT_FUNC)
2311 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2313 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2316 loc = sdltrel->contents;
2317 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2318 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2323 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2324 for dynamic functions used to initialize static data. */
2327 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
2330 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2331 struct bfd_link_info *info = (struct bfd_link_info *)data;
2332 struct elf64_hppa_link_hash_table *hppa_info;
2335 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
2337 if (!dynamic_symbol && !bfd_link_pic (info))
2340 if (hh->reloc_entries)
2342 struct elf64_hppa_dyn_reloc_entry *rent;
2345 hppa_info = hppa_link_hash_table (info);
2346 if (hppa_info == NULL)
2349 /* We may need to do a relocation against a local symbol, in
2350 which case we have to look up it's dynamic symbol index off
2351 the local symbol hash table. */
2352 if (eh->dynindx != -1)
2353 dynindx = eh->dynindx;
2356 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2359 for (rent = hh->reloc_entries; rent; rent = rent->next)
2361 Elf_Internal_Rela rel;
2364 /* Allocate one iff we are building a shared library, the relocation
2365 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2366 if (!bfd_link_pic (info)
2367 && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2370 /* Create a dynamic relocation for this entry.
2372 We need the output offset for the reloc's section because
2373 we are creating an absolute address in the resulting object
2375 rel.r_offset = (rent->offset + rent->sec->output_offset
2376 + rent->sec->output_section->vma);
2378 /* An FPTR64 relocation implies that we took the address of
2379 a function and that the function has an entry in the .opd
2380 section. We want the FPTR64 relocation to reference the
2383 We could munge the symbol value in the dynamic symbol table
2384 (in fact we already do for functions with global scope) to point
2385 to the .opd entry. Then we could use that dynamic symbol in
2388 Or we could do something sensible, not munge the symbol's
2389 address and instead just use a different symbol to reference
2390 the .opd entry. At least that seems sensible until you
2391 realize there's no local dynamic symbols we can use for that
2392 purpose. Thus the hair in the check_relocs routine.
2394 We use a section symbol recorded by check_relocs as the
2395 base symbol for the relocation. The addend is the difference
2396 between the section symbol and the address of the .opd entry. */
2397 if (bfd_link_pic (info)
2398 && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2400 bfd_vma value, value2;
2402 /* First compute the address of the opd entry for this symbol. */
2403 value = (hh->opd_offset
2404 + hppa_info->opd_sec->output_section->vma
2405 + hppa_info->opd_sec->output_offset);
2407 /* Compute the value of the start of the section with
2409 value2 = (rent->sec->output_section->vma
2410 + rent->sec->output_offset);
2412 /* Compute the difference between the start of the section
2413 with the relocation and the opd entry. */
2416 /* The result becomes the addend of the relocation. */
2417 rel.r_addend = value;
2419 /* The section symbol becomes the symbol for the dynamic
2422 = _bfd_elf_link_lookup_local_dynindx (info,
2427 rel.r_addend = rent->addend;
2429 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2431 loc = hppa_info->other_rel_sec->contents;
2432 loc += (hppa_info->other_rel_sec->reloc_count++
2433 * sizeof (Elf64_External_Rela));
2434 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2442 /* Used to decide how to sort relocs in an optimal manner for the
2443 dynamic linker, before writing them out. */
2445 static enum elf_reloc_type_class
2446 elf64_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2447 const asection *rel_sec ATTRIBUTE_UNUSED,
2448 const Elf_Internal_Rela *rela)
2450 if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
2451 return reloc_class_relative;
2453 switch ((int) ELF64_R_TYPE (rela->r_info))
2456 return reloc_class_plt;
2458 return reloc_class_copy;
2460 return reloc_class_normal;
2464 /* Finish up the dynamic sections. */
2467 elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2468 struct bfd_link_info *info)
2472 struct elf64_hppa_link_hash_table *hppa_info;
2474 hppa_info = hppa_link_hash_table (info);
2475 if (hppa_info == NULL)
2478 /* Finalize the contents of the .opd section. */
2479 elf_link_hash_traverse (elf_hash_table (info),
2480 elf64_hppa_finalize_opd,
2483 elf_link_hash_traverse (elf_hash_table (info),
2484 elf64_hppa_finalize_dynreloc,
2487 /* Finalize the contents of the .dlt section. */
2488 dynobj = elf_hash_table (info)->dynobj;
2489 /* Finalize the contents of the .dlt section. */
2490 elf_link_hash_traverse (elf_hash_table (info),
2491 elf64_hppa_finalize_dlt,
2494 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2496 if (elf_hash_table (info)->dynamic_sections_created)
2498 Elf64_External_Dyn *dyncon, *dynconend;
2500 BFD_ASSERT (sdyn != NULL);
2502 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2503 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2504 for (; dyncon < dynconend; dyncon++)
2506 Elf_Internal_Dyn dyn;
2509 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2516 case DT_HP_LOAD_MAP:
2517 /* Compute the absolute address of 16byte scratchpad area
2518 for the dynamic linker.
2520 By convention the linker script will allocate the scratchpad
2521 area at the start of the .data section. So all we have to
2522 to is find the start of the .data section. */
2523 s = bfd_get_section_by_name (output_bfd, ".data");
2526 dyn.d_un.d_ptr = s->vma;
2527 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2531 /* HP's use PLTGOT to set the GOT register. */
2532 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2533 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2537 s = hppa_info->plt_rel_sec;
2538 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2539 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2543 s = hppa_info->plt_rel_sec;
2544 dyn.d_un.d_val = s->size;
2545 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2549 s = hppa_info->other_rel_sec;
2550 if (! s || ! s->size)
2551 s = hppa_info->dlt_rel_sec;
2552 if (! s || ! s->size)
2553 s = hppa_info->opd_rel_sec;
2554 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2555 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2559 s = hppa_info->other_rel_sec;
2560 dyn.d_un.d_val = s->size;
2561 s = hppa_info->dlt_rel_sec;
2562 dyn.d_un.d_val += s->size;
2563 s = hppa_info->opd_rel_sec;
2564 dyn.d_un.d_val += s->size;
2565 /* There is some question about whether or not the size of
2566 the PLT relocs should be included here. HP's tools do
2567 it, so we'll emulate them. */
2568 s = hppa_info->plt_rel_sec;
2569 dyn.d_un.d_val += s->size;
2570 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2580 /* Support for core dump NOTE sections. */
2583 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2588 switch (note->descsz)
2593 case 760: /* Linux/hppa */
2595 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2598 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2607 /* Make a ".reg/999" section. */
2608 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2609 size, note->descpos + offset);
2613 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2618 switch (note->descsz)
2623 case 136: /* Linux/hppa elf_prpsinfo. */
2624 elf_tdata (abfd)->core->program
2625 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2626 elf_tdata (abfd)->core->command
2627 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2630 /* Note that for some reason, a spurious space is tacked
2631 onto the end of the args in some (at least one anyway)
2632 implementations, so strip it off if it exists. */
2633 command = elf_tdata (abfd)->core->command;
2634 n = strlen (command);
2636 if (0 < n && command[n - 1] == ' ')
2637 command[n - 1] = '\0';
2642 /* Return the number of additional phdrs we will need.
2644 The generic ELF code only creates PT_PHDRs for executables. The HP
2645 dynamic linker requires PT_PHDRs for dynamic libraries too.
2647 This routine indicates that the backend needs one additional program
2648 header for that case.
2650 Note we do not have access to the link info structure here, so we have
2651 to guess whether or not we are building a shared library based on the
2652 existence of a .interp section. */
2655 elf64_hppa_additional_program_headers (bfd *abfd,
2656 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2660 /* If we are creating a shared library, then we have to create a
2661 PT_PHDR segment. HP's dynamic linker chokes without it. */
2662 s = bfd_get_section_by_name (abfd, ".interp");
2668 /* Allocate and initialize any program headers required by this
2671 The generic ELF code only creates PT_PHDRs for executables. The HP
2672 dynamic linker requires PT_PHDRs for dynamic libraries too.
2674 This allocates the PT_PHDR and initializes it in a manner suitable
2677 Note we do not have access to the link info structure here, so we have
2678 to guess whether or not we are building a shared library based on the
2679 existence of a .interp section. */
2682 elf64_hppa_modify_segment_map (bfd *abfd,
2683 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2685 struct elf_segment_map *m;
2688 s = bfd_get_section_by_name (abfd, ".interp");
2691 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
2692 if (m->p_type == PT_PHDR)
2696 m = ((struct elf_segment_map *)
2697 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2701 m->p_type = PT_PHDR;
2702 m->p_flags = PF_R | PF_X;
2703 m->p_flags_valid = 1;
2704 m->p_paddr_valid = 1;
2705 m->includes_phdrs = 1;
2707 m->next = elf_seg_map (abfd);
2708 elf_seg_map (abfd) = m;
2712 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
2713 if (m->p_type == PT_LOAD)
2717 for (i = 0; i < m->count; i++)
2719 /* The code "hint" is not really a hint. It is a requirement
2720 for certain versions of the HP dynamic linker. Worse yet,
2721 it must be set even if the shared library does not have
2722 any code in its "text" segment (thus the check for .hash
2723 to catch this situation). */
2724 if (m->sections[i]->flags & SEC_CODE
2725 || (strcmp (m->sections[i]->name, ".hash") == 0))
2726 m->p_flags |= (PF_X | PF_HP_CODE);
2733 /* Called when writing out an object file to decide the type of a
2736 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2739 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2740 return STT_PARISC_MILLI;
2745 /* Support HP specific sections for core files. */
2748 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
2749 const char *typename)
2751 if (hdr->p_type == PT_HP_CORE_KERNEL)
2755 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2758 sect = bfd_make_section_anyway (abfd, ".kernel");
2761 sect->size = hdr->p_filesz;
2762 sect->filepos = hdr->p_offset;
2763 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2767 if (hdr->p_type == PT_HP_CORE_PROC)
2771 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2773 if (bfd_bread (&sig, 4, abfd) != 4)
2776 elf_tdata (abfd)->core->signal = sig;
2778 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2781 /* GDB uses the ".reg" section to read register contents. */
2782 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2786 if (hdr->p_type == PT_HP_CORE_LOADABLE
2787 || hdr->p_type == PT_HP_CORE_STACK
2788 || hdr->p_type == PT_HP_CORE_MMF)
2789 hdr->p_type = PT_LOAD;
2791 return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
2794 /* Hook called by the linker routine which adds symbols from an object
2795 file. HP's libraries define symbols with HP specific section
2796 indices, which we have to handle. */
2799 elf_hppa_add_symbol_hook (bfd *abfd,
2800 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2801 Elf_Internal_Sym *sym,
2802 const char **namep ATTRIBUTE_UNUSED,
2803 flagword *flagsp ATTRIBUTE_UNUSED,
2807 unsigned int sec_index = sym->st_shndx;
2811 case SHN_PARISC_ANSI_COMMON:
2812 *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2813 (*secp)->flags |= SEC_IS_COMMON;
2814 *valp = sym->st_size;
2817 case SHN_PARISC_HUGE_COMMON:
2818 *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2819 (*secp)->flags |= SEC_IS_COMMON;
2820 *valp = sym->st_size;
2828 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2831 struct bfd_link_info *info = data;
2833 /* If we are not creating a shared library, and this symbol is
2834 referenced by a shared library but is not defined anywhere, then
2835 the generic code will warn that it is undefined.
2837 This behavior is undesirable on HPs since the standard shared
2838 libraries contain references to undefined symbols.
2840 So we twiddle the flags associated with such symbols so that they
2841 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2843 Ultimately we should have better controls over the generic ELF BFD
2845 if (! bfd_link_relocatable (info)
2846 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2847 && h->root.type == bfd_link_hash_undefined
2852 h->pointer_equality_needed = 1;
2859 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2862 struct bfd_link_info *info = data;
2864 /* If we are not creating a shared library, and this symbol is
2865 referenced by a shared library but is not defined anywhere, then
2866 the generic code will warn that it is undefined.
2868 This behavior is undesirable on HPs since the standard shared
2869 libraries contain references to undefined symbols.
2871 So we twiddle the flags associated with such symbols so that they
2872 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2874 Ultimately we should have better controls over the generic ELF BFD
2876 if (! bfd_link_relocatable (info)
2877 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2878 && h->root.type == bfd_link_hash_undefined
2881 && h->pointer_equality_needed)
2884 h->pointer_equality_needed = 0;
2891 elf_hppa_is_dynamic_loader_symbol (const char *name)
2893 return (! strcmp (name, "__CPU_REVISION")
2894 || ! strcmp (name, "__CPU_KEYBITS_1")
2895 || ! strcmp (name, "__SYSTEM_ID_D")
2896 || ! strcmp (name, "__FPU_MODEL")
2897 || ! strcmp (name, "__FPU_REVISION")
2898 || ! strcmp (name, "__ARGC")
2899 || ! strcmp (name, "__ARGV")
2900 || ! strcmp (name, "__ENVP")
2901 || ! strcmp (name, "__TLS_SIZE_D")
2902 || ! strcmp (name, "__LOAD_INFO")
2903 || ! strcmp (name, "__systab"));
2906 /* Record the lowest address for the data and text segments. */
2908 elf_hppa_record_segment_addrs (bfd *abfd,
2912 struct elf64_hppa_link_hash_table *hppa_info = data;
2914 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2917 Elf_Internal_Phdr *p;
2919 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2920 BFD_ASSERT (p != NULL);
2923 if (section->flags & SEC_READONLY)
2925 if (value < hppa_info->text_segment_base)
2926 hppa_info->text_segment_base = value;
2930 if (value < hppa_info->data_segment_base)
2931 hppa_info->data_segment_base = value;
2936 /* Called after we have seen all the input files/sections, but before
2937 final symbol resolution and section placement has been determined.
2939 We use this hook to (possibly) provide a value for __gp, then we
2940 fall back to the generic ELF final link routine. */
2943 elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2946 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2948 if (hppa_info == NULL)
2951 if (! bfd_link_relocatable (info))
2953 struct elf_link_hash_entry *gp;
2956 /* The linker script defines a value for __gp iff it was referenced
2957 by one of the objects being linked. First try to find the symbol
2958 in the hash table. If that fails, just compute the value __gp
2960 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2966 /* Adjust the value of __gp as we may want to slide it into the
2967 .plt section so that the stubs can access PLT entries without
2968 using an addil sequence. */
2969 gp->root.u.def.value += hppa_info->gp_offset;
2971 gp_val = (gp->root.u.def.section->output_section->vma
2972 + gp->root.u.def.section->output_offset
2973 + gp->root.u.def.value);
2979 /* First look for a .plt section. If found, then __gp is the
2980 address of the .plt + gp_offset.
2982 If no .plt is found, then look for .dlt, .opd and .data (in
2983 that order) and set __gp to the base address of whichever
2984 section is found first. */
2986 sec = hppa_info->plt_sec;
2987 if (sec && ! (sec->flags & SEC_EXCLUDE))
2988 gp_val = (sec->output_offset
2989 + sec->output_section->vma
2990 + hppa_info->gp_offset);
2993 sec = hppa_info->dlt_sec;
2994 if (!sec || (sec->flags & SEC_EXCLUDE))
2995 sec = hppa_info->opd_sec;
2996 if (!sec || (sec->flags & SEC_EXCLUDE))
2997 sec = bfd_get_section_by_name (abfd, ".data");
2998 if (!sec || (sec->flags & SEC_EXCLUDE))
3001 gp_val = sec->output_offset + sec->output_section->vma;
3005 /* Install whatever value we found/computed for __gp. */
3006 _bfd_set_gp_value (abfd, gp_val);
3009 /* We need to know the base of the text and data segments so that we
3010 can perform SEGREL relocations. We will record the base addresses
3011 when we encounter the first SEGREL relocation. */
3012 hppa_info->text_segment_base = (bfd_vma)-1;
3013 hppa_info->data_segment_base = (bfd_vma)-1;
3015 /* HP's shared libraries have references to symbols that are not
3016 defined anywhere. The generic ELF BFD linker code will complain
3019 So we detect the losing case and arrange for the flags on the symbol
3020 to indicate that it was never referenced. This keeps the generic
3021 ELF BFD link code happy and appears to not create any secondary
3022 problems. Ultimately we need a way to control the behavior of the
3023 generic ELF BFD link code better. */
3024 elf_link_hash_traverse (elf_hash_table (info),
3025 elf_hppa_unmark_useless_dynamic_symbols,
3028 /* Invoke the regular ELF backend linker to do all the work. */
3029 if (!bfd_elf_final_link (abfd, info))
3032 elf_link_hash_traverse (elf_hash_table (info),
3033 elf_hppa_remark_useless_dynamic_symbols,
3036 /* If we're producing a final executable, sort the contents of the
3038 if (bfd_link_relocatable (info))
3041 /* Do not attempt to sort non-regular files. This is here
3042 especially for configure scripts and kernel builds which run
3043 tests with "ld [...] -o /dev/null". */
3044 if (stat (abfd->filename, &buf) != 0
3045 || !S_ISREG(buf.st_mode))
3048 return elf_hppa_sort_unwind (abfd);
3051 /* Relocate the given INSN. VALUE should be the actual value we want
3052 to insert into the instruction, ie by this point we should not be
3053 concerned with computing an offset relative to the DLT, PC, etc.
3054 Instead this routine is meant to handle the bit manipulations needed
3055 to insert the relocation into the given instruction. */
3058 elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3062 /* This is any 22 bit branch. In PA2.0 syntax it corresponds to
3063 the "B" instruction. */
3064 case R_PARISC_PCREL22F:
3065 case R_PARISC_PCREL22C:
3066 return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3068 /* This is any 12 bit branch. */
3069 case R_PARISC_PCREL12F:
3070 return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3072 /* This is any 17 bit branch. In PA2.0 syntax it also corresponds
3073 to the "B" instruction as well as BE. */
3074 case R_PARISC_PCREL17F:
3075 case R_PARISC_DIR17F:
3076 case R_PARISC_DIR17R:
3077 case R_PARISC_PCREL17C:
3078 case R_PARISC_PCREL17R:
3079 return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3081 /* ADDIL or LDIL instructions. */
3082 case R_PARISC_DLTREL21L:
3083 case R_PARISC_DLTIND21L:
3084 case R_PARISC_LTOFF_FPTR21L:
3085 case R_PARISC_PCREL21L:
3086 case R_PARISC_LTOFF_TP21L:
3087 case R_PARISC_DPREL21L:
3088 case R_PARISC_PLTOFF21L:
3089 case R_PARISC_DIR21L:
3090 return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3092 /* LDO and integer loads/stores with 14 bit displacements. */
3093 case R_PARISC_DLTREL14R:
3094 case R_PARISC_DLTREL14F:
3095 case R_PARISC_DLTIND14R:
3096 case R_PARISC_DLTIND14F:
3097 case R_PARISC_LTOFF_FPTR14R:
3098 case R_PARISC_PCREL14R:
3099 case R_PARISC_PCREL14F:
3100 case R_PARISC_LTOFF_TP14R:
3101 case R_PARISC_LTOFF_TP14F:
3102 case R_PARISC_DPREL14R:
3103 case R_PARISC_DPREL14F:
3104 case R_PARISC_PLTOFF14R:
3105 case R_PARISC_PLTOFF14F:
3106 case R_PARISC_DIR14R:
3107 case R_PARISC_DIR14F:
3108 return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3110 /* PA2.0W LDO and integer loads/stores with 16 bit displacements. */
3111 case R_PARISC_LTOFF_FPTR16F:
3112 case R_PARISC_PCREL16F:
3113 case R_PARISC_LTOFF_TP16F:
3114 case R_PARISC_GPREL16F:
3115 case R_PARISC_PLTOFF16F:
3116 case R_PARISC_DIR16F:
3117 case R_PARISC_LTOFF16F:
3118 return (insn & ~0xffff) | re_assemble_16 (sym_value);
3120 /* Doubleword loads and stores with a 14 bit displacement. */
3121 case R_PARISC_DLTREL14DR:
3122 case R_PARISC_DLTIND14DR:
3123 case R_PARISC_LTOFF_FPTR14DR:
3124 case R_PARISC_LTOFF_FPTR16DF:
3125 case R_PARISC_PCREL14DR:
3126 case R_PARISC_PCREL16DF:
3127 case R_PARISC_LTOFF_TP14DR:
3128 case R_PARISC_LTOFF_TP16DF:
3129 case R_PARISC_DPREL14DR:
3130 case R_PARISC_GPREL16DF:
3131 case R_PARISC_PLTOFF14DR:
3132 case R_PARISC_PLTOFF16DF:
3133 case R_PARISC_DIR14DR:
3134 case R_PARISC_DIR16DF:
3135 case R_PARISC_LTOFF16DF:
3136 return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3137 | ((sym_value & 0x1ff8) << 1));
3139 /* Floating point single word load/store instructions. */
3140 case R_PARISC_DLTREL14WR:
3141 case R_PARISC_DLTIND14WR:
3142 case R_PARISC_LTOFF_FPTR14WR:
3143 case R_PARISC_LTOFF_FPTR16WF:
3144 case R_PARISC_PCREL14WR:
3145 case R_PARISC_PCREL16WF:
3146 case R_PARISC_LTOFF_TP14WR:
3147 case R_PARISC_LTOFF_TP16WF:
3148 case R_PARISC_DPREL14WR:
3149 case R_PARISC_GPREL16WF:
3150 case R_PARISC_PLTOFF14WR:
3151 case R_PARISC_PLTOFF16WF:
3152 case R_PARISC_DIR16WF:
3153 case R_PARISC_DIR14WR:
3154 case R_PARISC_LTOFF16WF:
3155 return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3156 | ((sym_value & 0x1ffc) << 1));
3163 /* Compute the value for a relocation (REL) during a final link stage,
3164 then insert the value into the proper location in CONTENTS.
3166 VALUE is a tentative value for the relocation and may be overridden
3167 and modified here based on the specific relocation to be performed.
3169 For example we do conversions for PC-relative branches in this routine
3170 or redirection of calls to external routines to stubs.
3172 The work of actually applying the relocation is left to a helper
3173 routine in an attempt to reduce the complexity and size of this
3176 static bfd_reloc_status_type
3177 elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3180 asection *input_section,
3183 struct bfd_link_info *info,
3185 struct elf_link_hash_entry *eh)
3187 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3188 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3189 bfd_vma *local_offsets;
3190 Elf_Internal_Shdr *symtab_hdr;
3192 bfd_vma max_branch_offset = 0;
3193 bfd_vma offset = rel->r_offset;
3194 bfd_signed_vma addend = rel->r_addend;
3195 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3196 unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3197 unsigned int r_type = howto->type;
3198 bfd_byte *hit_data = contents + offset;
3200 if (hppa_info == NULL)
3201 return bfd_reloc_notsupported;
3203 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3204 local_offsets = elf_local_got_offsets (input_bfd);
3205 insn = bfd_get_32 (input_bfd, hit_data);
3212 /* Basic function call support.
3214 Note for a call to a function defined in another dynamic library
3215 we want to redirect the call to a stub. */
3217 /* PC relative relocs without an implicit offset. */
3218 case R_PARISC_PCREL21L:
3219 case R_PARISC_PCREL14R:
3220 case R_PARISC_PCREL14F:
3221 case R_PARISC_PCREL14WR:
3222 case R_PARISC_PCREL14DR:
3223 case R_PARISC_PCREL16F:
3224 case R_PARISC_PCREL16WF:
3225 case R_PARISC_PCREL16DF:
3227 /* If this is a call to a function defined in another dynamic
3228 library, then redirect the call to the local stub for this
3230 if (sym_sec == NULL || sym_sec->output_section == NULL)
3231 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3232 + hppa_info->stub_sec->output_section->vma);
3234 /* Turn VALUE into a proper PC relative address. */
3235 value -= (offset + input_section->output_offset
3236 + input_section->output_section->vma);
3238 /* Adjust for any field selectors. */
3239 if (r_type == R_PARISC_PCREL21L)
3240 value = hppa_field_adjust (value, -8 + addend, e_lsel);
3241 else if (r_type == R_PARISC_PCREL14F
3242 || r_type == R_PARISC_PCREL16F
3243 || r_type == R_PARISC_PCREL16WF
3244 || r_type == R_PARISC_PCREL16DF)
3245 value = hppa_field_adjust (value, -8 + addend, e_fsel);
3247 value = hppa_field_adjust (value, -8 + addend, e_rsel);
3249 /* Apply the relocation to the given instruction. */
3250 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3254 case R_PARISC_PCREL12F:
3255 case R_PARISC_PCREL22F:
3256 case R_PARISC_PCREL17F:
3257 case R_PARISC_PCREL22C:
3258 case R_PARISC_PCREL17C:
3259 case R_PARISC_PCREL17R:
3261 /* If this is a call to a function defined in another dynamic
3262 library, then redirect the call to the local stub for this
3264 if (sym_sec == NULL || sym_sec->output_section == NULL)
3265 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3266 + hppa_info->stub_sec->output_section->vma);
3268 /* Turn VALUE into a proper PC relative address. */
3269 value -= (offset + input_section->output_offset
3270 + input_section->output_section->vma);
3273 if (r_type == (unsigned int) R_PARISC_PCREL22F)
3274 max_branch_offset = (1 << (22-1)) << 2;
3275 else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3276 max_branch_offset = (1 << (17-1)) << 2;
3277 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3278 max_branch_offset = (1 << (12-1)) << 2;
3280 /* Make sure we can reach the branch target. */
3281 if (max_branch_offset != 0
3282 && value + addend + max_branch_offset >= 2*max_branch_offset)
3284 (*_bfd_error_handler)
3285 (_("%B(%A+0x%" BFD_VMA_FMT "x): cannot reach %s"),
3289 eh ? eh->root.root.string : "unknown");
3290 bfd_set_error (bfd_error_bad_value);
3291 return bfd_reloc_overflow;
3294 /* Adjust for any field selectors. */
3295 if (r_type == R_PARISC_PCREL17R)
3296 value = hppa_field_adjust (value, addend, e_rsel);
3298 value = hppa_field_adjust (value, addend, e_fsel);
3300 /* All branches are implicitly shifted by 2 places. */
3303 /* Apply the relocation to the given instruction. */
3304 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3308 /* Indirect references to data through the DLT. */
3309 case R_PARISC_DLTIND14R:
3310 case R_PARISC_DLTIND14F:
3311 case R_PARISC_DLTIND14DR:
3312 case R_PARISC_DLTIND14WR:
3313 case R_PARISC_DLTIND21L:
3314 case R_PARISC_LTOFF_FPTR14R:
3315 case R_PARISC_LTOFF_FPTR14DR:
3316 case R_PARISC_LTOFF_FPTR14WR:
3317 case R_PARISC_LTOFF_FPTR21L:
3318 case R_PARISC_LTOFF_FPTR16F:
3319 case R_PARISC_LTOFF_FPTR16WF:
3320 case R_PARISC_LTOFF_FPTR16DF:
3321 case R_PARISC_LTOFF_TP21L:
3322 case R_PARISC_LTOFF_TP14R:
3323 case R_PARISC_LTOFF_TP14F:
3324 case R_PARISC_LTOFF_TP14WR:
3325 case R_PARISC_LTOFF_TP14DR:
3326 case R_PARISC_LTOFF_TP16F:
3327 case R_PARISC_LTOFF_TP16WF:
3328 case R_PARISC_LTOFF_TP16DF:
3329 case R_PARISC_LTOFF16F:
3330 case R_PARISC_LTOFF16WF:
3331 case R_PARISC_LTOFF16DF:
3335 /* If this relocation was against a local symbol, then we still
3336 have not set up the DLT entry (it's not convenient to do so
3337 in the "finalize_dlt" routine because it is difficult to get
3338 to the local symbol's value).
3340 So, if this is a local symbol (h == NULL), then we need to
3341 fill in its DLT entry.
3343 Similarly we may still need to set up an entry in .opd for
3344 a local function which had its address taken. */
3347 bfd_vma *local_opd_offsets, *local_dlt_offsets;
3349 if (local_offsets == NULL)
3352 /* Now do .opd creation if needed. */
3353 if (r_type == R_PARISC_LTOFF_FPTR14R
3354 || r_type == R_PARISC_LTOFF_FPTR14DR
3355 || r_type == R_PARISC_LTOFF_FPTR14WR
3356 || r_type == R_PARISC_LTOFF_FPTR21L
3357 || r_type == R_PARISC_LTOFF_FPTR16F
3358 || r_type == R_PARISC_LTOFF_FPTR16WF
3359 || r_type == R_PARISC_LTOFF_FPTR16DF)
3361 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3362 off = local_opd_offsets[r_symndx];
3364 /* The last bit records whether we've already initialised
3365 this local .opd entry. */
3368 BFD_ASSERT (off != (bfd_vma) -1);
3373 local_opd_offsets[r_symndx] |= 1;
3375 /* The first two words of an .opd entry are zero. */
3376 memset (hppa_info->opd_sec->contents + off, 0, 16);
3378 /* The next word is the address of the function. */
3379 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3380 (hppa_info->opd_sec->contents + off + 16));
3382 /* The last word is our local __gp value. */
3383 value = _bfd_get_gp_value
3384 (hppa_info->opd_sec->output_section->owner);
3385 bfd_put_64 (hppa_info->opd_sec->owner, value,
3386 (hppa_info->opd_sec->contents + off + 24));
3389 /* The DLT value is the address of the .opd entry. */
3391 + hppa_info->opd_sec->output_offset
3392 + hppa_info->opd_sec->output_section->vma);
3396 local_dlt_offsets = local_offsets;
3397 off = local_dlt_offsets[r_symndx];
3401 BFD_ASSERT (off != (bfd_vma) -1);
3406 local_dlt_offsets[r_symndx] |= 1;
3407 bfd_put_64 (hppa_info->dlt_sec->owner,
3409 hppa_info->dlt_sec->contents + off);
3413 off = hh->dlt_offset;
3415 /* We want the value of the DLT offset for this symbol, not
3416 the symbol's actual address. Note that __gp may not point
3417 to the start of the DLT, so we have to compute the absolute
3418 address, then subtract out the value of __gp. */
3420 + hppa_info->dlt_sec->output_offset
3421 + hppa_info->dlt_sec->output_section->vma);
3422 value -= _bfd_get_gp_value (output_bfd);
3424 /* All DLTIND relocations are basically the same at this point,
3425 except that we need different field selectors for the 21bit
3426 version vs the 14bit versions. */
3427 if (r_type == R_PARISC_DLTIND21L
3428 || r_type == R_PARISC_LTOFF_FPTR21L
3429 || r_type == R_PARISC_LTOFF_TP21L)
3430 value = hppa_field_adjust (value, 0, e_lsel);
3431 else if (r_type == R_PARISC_DLTIND14F
3432 || r_type == R_PARISC_LTOFF_FPTR16F
3433 || r_type == R_PARISC_LTOFF_FPTR16WF
3434 || r_type == R_PARISC_LTOFF_FPTR16DF
3435 || r_type == R_PARISC_LTOFF16F
3436 || r_type == R_PARISC_LTOFF16DF
3437 || r_type == R_PARISC_LTOFF16WF
3438 || r_type == R_PARISC_LTOFF_TP16F
3439 || r_type == R_PARISC_LTOFF_TP16WF
3440 || r_type == R_PARISC_LTOFF_TP16DF)
3441 value = hppa_field_adjust (value, 0, e_fsel);
3443 value = hppa_field_adjust (value, 0, e_rsel);
3445 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3449 case R_PARISC_DLTREL14R:
3450 case R_PARISC_DLTREL14F:
3451 case R_PARISC_DLTREL14DR:
3452 case R_PARISC_DLTREL14WR:
3453 case R_PARISC_DLTREL21L:
3454 case R_PARISC_DPREL21L:
3455 case R_PARISC_DPREL14WR:
3456 case R_PARISC_DPREL14DR:
3457 case R_PARISC_DPREL14R:
3458 case R_PARISC_DPREL14F:
3459 case R_PARISC_GPREL16F:
3460 case R_PARISC_GPREL16WF:
3461 case R_PARISC_GPREL16DF:
3463 /* Subtract out the global pointer value to make value a DLT
3464 relative address. */
3465 value -= _bfd_get_gp_value (output_bfd);
3467 /* All DLTREL relocations are basically the same at this point,
3468 except that we need different field selectors for the 21bit
3469 version vs the 14bit versions. */
3470 if (r_type == R_PARISC_DLTREL21L
3471 || r_type == R_PARISC_DPREL21L)
3472 value = hppa_field_adjust (value, addend, e_lrsel);
3473 else if (r_type == R_PARISC_DLTREL14F
3474 || r_type == R_PARISC_DPREL14F
3475 || r_type == R_PARISC_GPREL16F
3476 || r_type == R_PARISC_GPREL16WF
3477 || r_type == R_PARISC_GPREL16DF)
3478 value = hppa_field_adjust (value, addend, e_fsel);
3480 value = hppa_field_adjust (value, addend, e_rrsel);
3482 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3486 case R_PARISC_DIR21L:
3487 case R_PARISC_DIR17R:
3488 case R_PARISC_DIR17F:
3489 case R_PARISC_DIR14R:
3490 case R_PARISC_DIR14F:
3491 case R_PARISC_DIR14WR:
3492 case R_PARISC_DIR14DR:
3493 case R_PARISC_DIR16F:
3494 case R_PARISC_DIR16WF:
3495 case R_PARISC_DIR16DF:
3497 /* All DIR relocations are basically the same at this point,
3498 except that branch offsets need to be divided by four, and
3499 we need different field selectors. Note that we don't
3500 redirect absolute calls to local stubs. */
3502 if (r_type == R_PARISC_DIR21L)
3503 value = hppa_field_adjust (value, addend, e_lrsel);
3504 else if (r_type == R_PARISC_DIR17F
3505 || r_type == R_PARISC_DIR16F
3506 || r_type == R_PARISC_DIR16WF
3507 || r_type == R_PARISC_DIR16DF
3508 || r_type == R_PARISC_DIR14F)
3509 value = hppa_field_adjust (value, addend, e_fsel);
3511 value = hppa_field_adjust (value, addend, e_rrsel);
3513 if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3514 /* All branches are implicitly shifted by 2 places. */
3517 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3521 case R_PARISC_PLTOFF21L:
3522 case R_PARISC_PLTOFF14R:
3523 case R_PARISC_PLTOFF14F:
3524 case R_PARISC_PLTOFF14WR:
3525 case R_PARISC_PLTOFF14DR:
3526 case R_PARISC_PLTOFF16F:
3527 case R_PARISC_PLTOFF16WF:
3528 case R_PARISC_PLTOFF16DF:
3530 /* We want the value of the PLT offset for this symbol, not
3531 the symbol's actual address. Note that __gp may not point
3532 to the start of the DLT, so we have to compute the absolute
3533 address, then subtract out the value of __gp. */
3534 value = (hh->plt_offset
3535 + hppa_info->plt_sec->output_offset
3536 + hppa_info->plt_sec->output_section->vma);
3537 value -= _bfd_get_gp_value (output_bfd);
3539 /* All PLTOFF relocations are basically the same at this point,
3540 except that we need different field selectors for the 21bit
3541 version vs the 14bit versions. */
3542 if (r_type == R_PARISC_PLTOFF21L)
3543 value = hppa_field_adjust (value, addend, e_lrsel);
3544 else if (r_type == R_PARISC_PLTOFF14F
3545 || r_type == R_PARISC_PLTOFF16F
3546 || r_type == R_PARISC_PLTOFF16WF
3547 || r_type == R_PARISC_PLTOFF16DF)
3548 value = hppa_field_adjust (value, addend, e_fsel);
3550 value = hppa_field_adjust (value, addend, e_rrsel);
3552 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3556 case R_PARISC_LTOFF_FPTR32:
3558 /* We may still need to create the FPTR itself if it was for
3562 /* The first two words of an .opd entry are zero. */
3563 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3565 /* The next word is the address of the function. */
3566 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3567 (hppa_info->opd_sec->contents
3568 + hh->opd_offset + 16));
3570 /* The last word is our local __gp value. */
3571 value = _bfd_get_gp_value
3572 (hppa_info->opd_sec->output_section->owner);
3573 bfd_put_64 (hppa_info->opd_sec->owner, value,
3574 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3576 /* The DLT value is the address of the .opd entry. */
3577 value = (hh->opd_offset
3578 + hppa_info->opd_sec->output_offset
3579 + hppa_info->opd_sec->output_section->vma);
3581 bfd_put_64 (hppa_info->dlt_sec->owner,
3583 hppa_info->dlt_sec->contents + hh->dlt_offset);
3586 /* We want the value of the DLT offset for this symbol, not
3587 the symbol's actual address. Note that __gp may not point
3588 to the start of the DLT, so we have to compute the absolute
3589 address, then subtract out the value of __gp. */
3590 value = (hh->dlt_offset
3591 + hppa_info->dlt_sec->output_offset
3592 + hppa_info->dlt_sec->output_section->vma);
3593 value -= _bfd_get_gp_value (output_bfd);
3594 bfd_put_32 (input_bfd, value, hit_data);
3595 return bfd_reloc_ok;
3598 case R_PARISC_LTOFF_FPTR64:
3599 case R_PARISC_LTOFF_TP64:
3601 /* We may still need to create the FPTR itself if it was for
3603 if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3605 /* The first two words of an .opd entry are zero. */
3606 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3608 /* The next word is the address of the function. */
3609 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3610 (hppa_info->opd_sec->contents
3611 + hh->opd_offset + 16));
3613 /* The last word is our local __gp value. */
3614 value = _bfd_get_gp_value
3615 (hppa_info->opd_sec->output_section->owner);
3616 bfd_put_64 (hppa_info->opd_sec->owner, value,
3617 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3619 /* The DLT value is the address of the .opd entry. */
3620 value = (hh->opd_offset
3621 + hppa_info->opd_sec->output_offset
3622 + hppa_info->opd_sec->output_section->vma);
3624 bfd_put_64 (hppa_info->dlt_sec->owner,
3626 hppa_info->dlt_sec->contents + hh->dlt_offset);
3629 /* We want the value of the DLT offset for this symbol, not
3630 the symbol's actual address. Note that __gp may not point
3631 to the start of the DLT, so we have to compute the absolute
3632 address, then subtract out the value of __gp. */
3633 value = (hh->dlt_offset
3634 + hppa_info->dlt_sec->output_offset
3635 + hppa_info->dlt_sec->output_section->vma);
3636 value -= _bfd_get_gp_value (output_bfd);
3637 bfd_put_64 (input_bfd, value, hit_data);
3638 return bfd_reloc_ok;
3641 case R_PARISC_DIR32:
3642 bfd_put_32 (input_bfd, value + addend, hit_data);
3643 return bfd_reloc_ok;
3645 case R_PARISC_DIR64:
3646 bfd_put_64 (input_bfd, value + addend, hit_data);
3647 return bfd_reloc_ok;
3649 case R_PARISC_GPREL64:
3650 /* Subtract out the global pointer value to make value a DLT
3651 relative address. */
3652 value -= _bfd_get_gp_value (output_bfd);
3654 bfd_put_64 (input_bfd, value + addend, hit_data);
3655 return bfd_reloc_ok;
3657 case R_PARISC_LTOFF64:
3658 /* We want the value of the DLT offset for this symbol, not
3659 the symbol's actual address. Note that __gp may not point
3660 to the start of the DLT, so we have to compute the absolute
3661 address, then subtract out the value of __gp. */
3662 value = (hh->dlt_offset
3663 + hppa_info->dlt_sec->output_offset
3664 + hppa_info->dlt_sec->output_section->vma);
3665 value -= _bfd_get_gp_value (output_bfd);
3667 bfd_put_64 (input_bfd, value + addend, hit_data);
3668 return bfd_reloc_ok;
3670 case R_PARISC_PCREL32:
3672 /* If this is a call to a function defined in another dynamic
3673 library, then redirect the call to the local stub for this
3675 if (sym_sec == NULL || sym_sec->output_section == NULL)
3676 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3677 + hppa_info->stub_sec->output_section->vma);
3679 /* Turn VALUE into a proper PC relative address. */
3680 value -= (offset + input_section->output_offset
3681 + input_section->output_section->vma);
3685 bfd_put_32 (input_bfd, value, hit_data);
3686 return bfd_reloc_ok;
3689 case R_PARISC_PCREL64:
3691 /* If this is a call to a function defined in another dynamic
3692 library, then redirect the call to the local stub for this
3694 if (sym_sec == NULL || sym_sec->output_section == NULL)
3695 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3696 + hppa_info->stub_sec->output_section->vma);
3698 /* Turn VALUE into a proper PC relative address. */
3699 value -= (offset + input_section->output_offset
3700 + input_section->output_section->vma);
3704 bfd_put_64 (input_bfd, value, hit_data);
3705 return bfd_reloc_ok;
3708 case R_PARISC_FPTR64:
3712 /* We may still need to create the FPTR itself if it was for
3716 bfd_vma *local_opd_offsets;
3718 if (local_offsets == NULL)
3721 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3722 off = local_opd_offsets[r_symndx];
3724 /* The last bit records whether we've already initialised
3725 this local .opd entry. */
3728 BFD_ASSERT (off != (bfd_vma) -1);
3733 /* The first two words of an .opd entry are zero. */
3734 memset (hppa_info->opd_sec->contents + off, 0, 16);
3736 /* The next word is the address of the function. */
3737 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3738 (hppa_info->opd_sec->contents + off + 16));
3740 /* The last word is our local __gp value. */
3741 value = _bfd_get_gp_value
3742 (hppa_info->opd_sec->output_section->owner);
3743 bfd_put_64 (hppa_info->opd_sec->owner, value,
3744 hppa_info->opd_sec->contents + off + 24);
3748 off = hh->opd_offset;
3750 if (hh == NULL || hh->want_opd)
3751 /* We want the value of the OPD offset for this symbol. */
3753 + hppa_info->opd_sec->output_offset
3754 + hppa_info->opd_sec->output_section->vma);
3756 /* We want the address of the symbol. */
3759 bfd_put_64 (input_bfd, value, hit_data);
3760 return bfd_reloc_ok;
3763 case R_PARISC_SECREL32:
3765 value -= sym_sec->output_section->vma;
3766 bfd_put_32 (input_bfd, value + addend, hit_data);
3767 return bfd_reloc_ok;
3769 case R_PARISC_SEGREL32:
3770 case R_PARISC_SEGREL64:
3772 /* If this is the first SEGREL relocation, then initialize
3773 the segment base values. */
3774 if (hppa_info->text_segment_base == (bfd_vma) -1)
3775 bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3778 /* VALUE holds the absolute address. We want to include the
3779 addend, then turn it into a segment relative address.
3781 The segment is derived from SYM_SEC. We assume that there are
3782 only two segments of note in the resulting executable/shlib.
3783 A readonly segment (.text) and a readwrite segment (.data). */
3786 if (sym_sec->flags & SEC_CODE)
3787 value -= hppa_info->text_segment_base;
3789 value -= hppa_info->data_segment_base;
3791 if (r_type == R_PARISC_SEGREL32)
3792 bfd_put_32 (input_bfd, value, hit_data);
3794 bfd_put_64 (input_bfd, value, hit_data);
3795 return bfd_reloc_ok;
3798 /* Something we don't know how to handle. */
3800 return bfd_reloc_notsupported;
3803 /* Update the instruction word. */
3804 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3805 return bfd_reloc_ok;
3808 /* Relocate an HPPA ELF section. */
3811 elf64_hppa_relocate_section (bfd *output_bfd,
3812 struct bfd_link_info *info,
3814 asection *input_section,
3816 Elf_Internal_Rela *relocs,
3817 Elf_Internal_Sym *local_syms,
3818 asection **local_sections)
3820 Elf_Internal_Shdr *symtab_hdr;
3821 Elf_Internal_Rela *rel;
3822 Elf_Internal_Rela *relend;
3823 struct elf64_hppa_link_hash_table *hppa_info;
3825 hppa_info = hppa_link_hash_table (info);
3826 if (hppa_info == NULL)
3829 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3832 relend = relocs + input_section->reloc_count;
3833 for (; rel < relend; rel++)
3836 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3837 unsigned long r_symndx;
3838 struct elf_link_hash_entry *eh;
3839 Elf_Internal_Sym *sym;
3842 bfd_reloc_status_type r;
3844 r_type = ELF_R_TYPE (rel->r_info);
3845 if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3847 bfd_set_error (bfd_error_bad_value);
3850 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3851 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3854 /* This is a final link. */
3855 r_symndx = ELF_R_SYM (rel->r_info);
3859 if (r_symndx < symtab_hdr->sh_info)
3861 /* This is a local symbol, hh defaults to NULL. */
3862 sym = local_syms + r_symndx;
3863 sym_sec = local_sections[r_symndx];
3864 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3868 /* This is not a local symbol. */
3869 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3871 /* It seems this can happen with erroneous or unsupported
3872 input (mixing a.out and elf in an archive, for example.) */
3873 if (sym_hashes == NULL)
3876 eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3878 if (info->wrap_hash != NULL
3879 && (input_section->flags & SEC_DEBUGGING) != 0)
3880 eh = ((struct elf_link_hash_entry *)
3881 unwrap_hash_lookup (info, input_bfd, &eh->root));
3883 while (eh->root.type == bfd_link_hash_indirect
3884 || eh->root.type == bfd_link_hash_warning)
3885 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3888 if (eh->root.type == bfd_link_hash_defined
3889 || eh->root.type == bfd_link_hash_defweak)
3891 sym_sec = eh->root.u.def.section;
3893 && sym_sec->output_section != NULL)
3894 relocation = (eh->root.u.def.value
3895 + sym_sec->output_section->vma
3896 + sym_sec->output_offset);
3898 else if (eh->root.type == bfd_link_hash_undefweak)
3900 else if (info->unresolved_syms_in_objects == RM_IGNORE
3901 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3903 else if (!bfd_link_relocatable (info)
3904 && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3906 else if (!bfd_link_relocatable (info))
3909 err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3910 || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
3911 (*info->callbacks->undefined_symbol) (info,
3912 eh->root.root.string,
3915 rel->r_offset, err);
3918 if (!bfd_link_relocatable (info)
3920 && eh->root.type != bfd_link_hash_defined
3921 && eh->root.type != bfd_link_hash_defweak
3922 && eh->root.type != bfd_link_hash_undefweak)
3924 if (info->unresolved_syms_in_objects == RM_IGNORE
3925 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3926 && eh->type == STT_PARISC_MILLI)
3927 (*info->callbacks->undefined_symbol)
3928 (info, eh_name (eh), input_bfd,
3929 input_section, rel->r_offset, FALSE);
3933 if (sym_sec != NULL && discarded_section (sym_sec))
3934 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3935 rel, 1, relend, howto, 0, contents);
3937 if (bfd_link_relocatable (info))
3940 r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3941 input_section, contents,
3942 relocation, info, sym_sec,
3945 if (r != bfd_reloc_ok)
3951 case bfd_reloc_overflow:
3953 const char *sym_name;
3959 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3960 symtab_hdr->sh_link,
3962 if (sym_name == NULL)
3964 if (*sym_name == '\0')
3965 sym_name = bfd_section_name (input_bfd, sym_sec);
3968 (*info->callbacks->reloc_overflow)
3969 (info, (eh ? &eh->root : NULL), sym_name, howto->name,
3970 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3979 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
3981 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3982 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3983 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3984 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3985 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3986 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3987 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
3988 { NULL, 0, 0, 0, 0 }
3991 /* The hash bucket size is the standard one, namely 4. */
3993 const struct elf_size_info hppa64_elf_size_info =
3995 sizeof (Elf64_External_Ehdr),
3996 sizeof (Elf64_External_Phdr),
3997 sizeof (Elf64_External_Shdr),
3998 sizeof (Elf64_External_Rel),
3999 sizeof (Elf64_External_Rela),
4000 sizeof (Elf64_External_Sym),
4001 sizeof (Elf64_External_Dyn),
4002 sizeof (Elf_External_Note),
4006 ELFCLASS64, EV_CURRENT,
4007 bfd_elf64_write_out_phdrs,
4008 bfd_elf64_write_shdrs_and_ehdr,
4009 bfd_elf64_checksum_contents,
4010 bfd_elf64_write_relocs,
4011 bfd_elf64_swap_symbol_in,
4012 bfd_elf64_swap_symbol_out,
4013 bfd_elf64_slurp_reloc_table,
4014 bfd_elf64_slurp_symbol_table,
4015 bfd_elf64_swap_dyn_in,
4016 bfd_elf64_swap_dyn_out,
4017 bfd_elf64_swap_reloc_in,
4018 bfd_elf64_swap_reloc_out,
4019 bfd_elf64_swap_reloca_in,
4020 bfd_elf64_swap_reloca_out
4023 #define TARGET_BIG_SYM hppa_elf64_vec
4024 #define TARGET_BIG_NAME "elf64-hppa"
4025 #define ELF_ARCH bfd_arch_hppa
4026 #define ELF_TARGET_ID HPPA64_ELF_DATA
4027 #define ELF_MACHINE_CODE EM_PARISC
4028 /* This is not strictly correct. The maximum page size for PA2.0 is
4029 64M. But everything still uses 4k. */
4030 #define ELF_MAXPAGESIZE 0x1000
4031 #define ELF_OSABI ELFOSABI_HPUX
4033 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4034 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4035 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
4036 #define elf_info_to_howto elf_hppa_info_to_howto
4037 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4039 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
4040 #define elf_backend_object_p elf64_hppa_object_p
4041 #define elf_backend_final_write_processing \
4042 elf_hppa_final_write_processing
4043 #define elf_backend_fake_sections elf_hppa_fake_sections
4044 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
4046 #define elf_backend_relocate_section elf_hppa_relocate_section
4048 #define bfd_elf64_bfd_final_link elf_hppa_final_link
4050 #define elf_backend_create_dynamic_sections \
4051 elf64_hppa_create_dynamic_sections
4052 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
4054 #define elf_backend_omit_section_dynsym \
4055 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
4056 #define elf_backend_adjust_dynamic_symbol \
4057 elf64_hppa_adjust_dynamic_symbol
4059 #define elf_backend_size_dynamic_sections \
4060 elf64_hppa_size_dynamic_sections
4062 #define elf_backend_finish_dynamic_symbol \
4063 elf64_hppa_finish_dynamic_symbol
4064 #define elf_backend_finish_dynamic_sections \
4065 elf64_hppa_finish_dynamic_sections
4066 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
4067 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
4069 /* Stuff for the BFD linker: */
4070 #define bfd_elf64_bfd_link_hash_table_create \
4071 elf64_hppa_hash_table_create
4073 #define elf_backend_check_relocs \
4074 elf64_hppa_check_relocs
4076 #define elf_backend_size_info \
4077 hppa64_elf_size_info
4079 #define elf_backend_additional_program_headers \
4080 elf64_hppa_additional_program_headers
4082 #define elf_backend_modify_segment_map \
4083 elf64_hppa_modify_segment_map
4085 #define elf_backend_link_output_symbol_hook \
4086 elf64_hppa_link_output_symbol_hook
4088 #define elf_backend_want_got_plt 0
4089 #define elf_backend_plt_readonly 0
4090 #define elf_backend_want_plt_sym 0
4091 #define elf_backend_got_header_size 0
4092 #define elf_backend_type_change_ok TRUE
4093 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
4094 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
4095 #define elf_backend_rela_normal 1
4096 #define elf_backend_special_sections elf64_hppa_special_sections
4097 #define elf_backend_action_discarded elf_hppa_action_discarded
4098 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
4100 #define elf64_bed elf64_hppa_hpux_bed
4102 #include "elf64-target.h"
4104 #undef TARGET_BIG_SYM
4105 #define TARGET_BIG_SYM hppa_elf64_linux_vec
4106 #undef TARGET_BIG_NAME
4107 #define TARGET_BIG_NAME "elf64-hppa-linux"
4109 #define ELF_OSABI ELFOSABI_GNU
4111 #define elf64_bed elf64_hppa_linux_bed
4113 #include "elf64-target.h"