1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20 #include "alloca-conf.h"
27 #include "elf64-hppa.h"
30 #define PLT_ENTRY_SIZE 0x10
31 #define DLT_ENTRY_SIZE 0x8
32 #define OPD_ENTRY_SIZE 0x20
34 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36 /* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
42 LDD PLTOFF+8(%r27),%r27
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
49 struct elf64_hppa_dyn_hash_entry
51 struct bfd_hash_entry root;
53 /* Offsets for this symbol in various linker sections. */
59 /* The symbol table entry, if any, that this was derived from. */
60 struct elf_link_hash_entry *h;
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 unsigned long sym_indx;
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
84 /* The type of the relocation. */
87 /* The input section of the relocation. */
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
94 /* The offset within the input section of the relocation. */
97 /* The addend for the relocation. */
102 /* Nonzero if this symbol needs an entry in one of the linker
110 struct elf64_hppa_dyn_hash_table
112 struct bfd_hash_table root;
115 struct elf64_hppa_link_hash_table
117 struct elf_link_hash_table root;
119 /* Shortcuts to get to the various linker defined sections. */
121 asection *dlt_rel_sec;
123 asection *plt_rel_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
146 bfd *section_syms_bfd;
148 /* Array of symbol numbers for each input section attached to the
153 #define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156 typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
159 static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 boolean create, boolean copy));
170 static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
172 boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
175 static const char *get_dyn_name
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
179 /* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181 #include "elf-hppa.h"
183 static boolean elf64_hppa_object_p
186 static boolean elf64_hppa_section_from_shdr
187 PARAMS ((bfd *, Elf64_Internal_Shdr *, char *));
189 static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
192 static boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
195 static boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
198 static boolean elf64_hppa_size_dynamic_sections
199 PARAMS ((bfd *, struct bfd_link_info *));
201 static boolean elf64_hppa_finish_dynamic_symbol
202 PARAMS ((bfd *, struct bfd_link_info *,
203 struct elf_link_hash_entry *, Elf_Internal_Sym *));
205 static boolean elf64_hppa_finish_dynamic_sections
206 PARAMS ((bfd *, struct bfd_link_info *));
208 static boolean elf64_hppa_check_relocs
209 PARAMS ((bfd *, struct bfd_link_info *,
210 asection *, const Elf_Internal_Rela *));
212 static boolean elf64_hppa_dynamic_symbol_p
213 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
215 static boolean elf64_hppa_mark_exported_functions
216 PARAMS ((struct elf_link_hash_entry *, PTR));
218 static boolean elf64_hppa_finalize_opd
219 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
221 static boolean elf64_hppa_finalize_dlt
222 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
224 static boolean allocate_global_data_dlt
225 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
227 static boolean allocate_global_data_plt
228 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
230 static boolean allocate_global_data_stub
231 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
233 static boolean allocate_global_data_opd
234 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
236 static boolean get_reloc_section
237 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
239 static boolean count_dyn_reloc
240 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
241 int, asection *, int, bfd_vma, bfd_vma));
243 static boolean allocate_dynrel_entries
244 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
246 static boolean elf64_hppa_finalize_dynreloc
247 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
249 static boolean get_opd
250 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
252 static boolean get_plt
253 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
255 static boolean get_dlt
256 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
258 static boolean get_stub
259 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
261 static int elf64_hppa_elf_get_symbol_type
262 PARAMS ((Elf_Internal_Sym *, int));
265 elf64_hppa_dyn_hash_table_init (ht, abfd, new)
266 struct elf64_hppa_dyn_hash_table *ht;
267 bfd *abfd ATTRIBUTE_UNUSED;
268 new_hash_entry_func new;
270 memset (ht, 0, sizeof (*ht));
271 return bfd_hash_table_init (&ht->root, new);
274 static struct bfd_hash_entry*
275 elf64_hppa_new_dyn_hash_entry (entry, table, string)
276 struct bfd_hash_entry *entry;
277 struct bfd_hash_table *table;
280 struct elf64_hppa_dyn_hash_entry *ret;
281 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
283 /* Allocate the structure if it has not already been allocated by a
286 ret = bfd_hash_allocate (table, sizeof (*ret));
291 /* Initialize our local data. All zeros, and definitely easier
292 than setting 8 bit fields. */
293 memset (ret, 0, sizeof (*ret));
295 /* Call the allocation method of the superclass. */
296 ret = ((struct elf64_hppa_dyn_hash_entry *)
297 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
302 /* Create the derived linker hash table. The PA64 ELF port uses this
303 derived hash table to keep information specific to the PA ElF
304 linker (without using static variables). */
306 static struct bfd_link_hash_table*
307 elf64_hppa_hash_table_create (abfd)
310 struct elf64_hppa_link_hash_table *ret;
312 ret = bfd_zalloc (abfd, sizeof (*ret));
315 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
316 _bfd_elf_link_hash_newfunc))
318 bfd_release (abfd, ret);
322 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
323 elf64_hppa_new_dyn_hash_entry))
325 return &ret->root.root;
328 /* Look up an entry in a PA64 ELF linker hash table. */
330 static struct elf64_hppa_dyn_hash_entry *
331 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
332 struct elf64_hppa_dyn_hash_table *table;
334 boolean create, copy;
336 return ((struct elf64_hppa_dyn_hash_entry *)
337 bfd_hash_lookup (&table->root, string, create, copy));
340 /* Traverse a PA64 ELF linker hash table. */
343 elf64_hppa_dyn_hash_traverse (table, func, info)
344 struct elf64_hppa_dyn_hash_table *table;
345 boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
350 (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
354 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
356 Additionally we set the default architecture and machine. */
358 elf64_hppa_object_p (abfd)
361 Elf_Internal_Ehdr * i_ehdrp;
364 i_ehdrp = elf_elfheader (abfd);
365 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
367 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
372 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
376 flags = i_ehdrp->e_flags;
377 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
380 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
382 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
384 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
385 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
386 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
388 /* Don't be fussy. */
392 /* Given section type (hdr->sh_type), return a boolean indicating
393 whether or not the section is an elf64-hppa specific section. */
395 elf64_hppa_section_from_shdr (abfd, hdr, name)
397 Elf64_Internal_Shdr *hdr;
402 switch (hdr->sh_type)
405 if (strcmp (name, ".PARISC.archext") != 0)
408 case SHT_PARISC_UNWIND:
409 if (strcmp (name, ".PARISC.unwind") != 0)
413 case SHT_PARISC_ANNOT:
418 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
420 newsect = hdr->bfd_section;
425 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
426 name describes what was once potentially anonymous memory. We
427 allocate memory as necessary, possibly reusing PBUF/PLEN. */
430 get_dyn_name (sec, h, rel, pbuf, plen)
432 struct elf_link_hash_entry *h;
433 const Elf_Internal_Rela *rel;
441 if (h && rel->r_addend == 0)
442 return h->root.root.string;
445 nlen = strlen (h->root.root.string);
447 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
448 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
456 *pbuf = buf = malloc (tlen);
464 memcpy (buf, h->root.root.string, nlen);
466 sprintf_vma (buf + nlen, rel->r_addend);
470 nlen = sprintf (buf, "%x:%lx",
471 sec->id & 0xffffffff,
472 (long) ELF64_R_SYM (rel->r_info));
476 sprintf_vma (buf + nlen, rel->r_addend);
483 /* SEC is a section containing relocs for an input BFD when linking; return
484 a suitable section for holding relocs in the output BFD for a link. */
487 get_reloc_section (abfd, hppa_info, sec)
489 struct elf64_hppa_link_hash_table *hppa_info;
492 const char *srel_name;
496 srel_name = (bfd_elf_string_from_elf_section
497 (abfd, elf_elfheader(abfd)->e_shstrndx,
498 elf_section_data(sec)->rel_hdr.sh_name));
499 if (srel_name == NULL)
502 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
503 && strcmp (bfd_get_section_name (abfd, sec),
505 || (strncmp (srel_name, ".rel", 4) == 0
506 && strcmp (bfd_get_section_name (abfd, sec),
509 dynobj = hppa_info->root.dynobj;
511 hppa_info->root.dynobj = dynobj = abfd;
513 srel = bfd_get_section_by_name (dynobj, srel_name);
516 srel = bfd_make_section (dynobj, srel_name);
518 || !bfd_set_section_flags (dynobj, srel,
525 || !bfd_set_section_alignment (dynobj, srel, 3))
529 hppa_info->other_rel_sec = srel;
533 /* Add a new entry to the list of dynamic relocations against DYN_H.
535 We use this to keep a record of all the FPTR relocations against a
536 particular symbol so that we can create FPTR relocations in the
540 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
542 struct elf64_hppa_dyn_hash_entry *dyn_h;
549 struct elf64_hppa_dyn_reloc_entry *rent;
551 rent = (struct elf64_hppa_dyn_reloc_entry *)
552 bfd_alloc (abfd, sizeof (*rent));
556 rent->next = dyn_h->reloc_entries;
559 rent->sec_symndx = sec_symndx;
560 rent->offset = offset;
561 rent->addend = addend;
562 dyn_h->reloc_entries = rent;
567 /* Scan the RELOCS and record the type of dynamic entries that each
568 referenced symbol needs. */
571 elf64_hppa_check_relocs (abfd, info, sec, relocs)
573 struct bfd_link_info *info;
575 const Elf_Internal_Rela *relocs;
577 struct elf64_hppa_link_hash_table *hppa_info;
578 const Elf_Internal_Rela *relend;
579 Elf_Internal_Shdr *symtab_hdr;
580 const Elf_Internal_Rela *rel;
581 asection *dlt, *plt, *stubs;
586 if (info->relocateable)
589 /* If this is the first dynamic object found in the link, create
590 the special sections required for dynamic linking. */
591 if (! elf_hash_table (info)->dynamic_sections_created)
593 if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
597 hppa_info = elf64_hppa_hash_table (info);
598 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
600 /* If necessary, build a new table holding section symbols indices
601 for this BFD. This is disgusting. */
603 if (info->shared && hppa_info->section_syms_bfd != abfd)
607 Elf_Internal_Sym *local_syms, *isym;
608 Elf64_External_Sym *ext_syms, *esym;
610 /* We're done with the old cache of section index to section symbol
611 index information. Free it.
613 ?!? Note we leak the last section_syms array. Presumably we
614 could free it in one of the later routines in this file. */
615 if (hppa_info->section_syms)
616 free (hppa_info->section_syms);
618 /* Allocate memory for the internal and external symbols. */
620 = (Elf_Internal_Sym *) bfd_malloc (symtab_hdr->sh_info
621 * sizeof (Elf_Internal_Sym));
622 if (local_syms == NULL)
626 = (Elf64_External_Sym *) bfd_malloc (symtab_hdr->sh_info
627 * sizeof (Elf64_External_Sym));
628 if (ext_syms == NULL)
634 /* Read in the local symbols. */
635 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
636 || bfd_read (ext_syms, 1,
638 * sizeof (Elf64_External_Sym)), abfd)
639 != (symtab_hdr->sh_info * sizeof (Elf64_External_Sym)))
646 /* Swap in the local symbols, also record the highest section index
647 referenced by the local symbols. */
651 for (i = 0; i < symtab_hdr->sh_info; i++, esym++, isym++)
653 bfd_elf64_swap_symbol_in (abfd, esym, isym);
654 if (isym->st_shndx > highest_shndx)
655 highest_shndx = isym->st_shndx;
658 /* Now we can free the external symbols. */
661 /* Allocate an array to hold the section index to section symbol index
662 mapping. Bump by one since we start counting at zero. */
664 hppa_info->section_syms = (int *) bfd_malloc (highest_shndx
667 /* Now walk the local symbols again. If we find a section symbol,
668 record the index of the symbol into the section_syms array. */
669 for (isym = local_syms, i = 0; i < symtab_hdr->sh_info; i++, isym++)
671 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
672 hppa_info->section_syms[isym->st_shndx] = i;
675 /* We are finished with the local symbols. Get rid of them. */
678 /* Record which BFD we built the section_syms mapping for. */
679 hppa_info->section_syms_bfd = abfd;
682 /* Record the symbol index for this input section. We may need it for
683 relocations when building shared libraries. When not building shared
684 libraries this value is never really used, but assign it to zero to
685 prevent out of bounds memory accesses in other routines. */
688 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
690 /* If we did not find a section symbol for this section, then
691 something went terribly wrong above. */
692 if (sec_symndx == -1)
695 sec_symndx = hppa_info->section_syms[sec_symndx];
700 dlt = plt = stubs = NULL;
704 relend = relocs + sec->reloc_count;
705 for (rel = relocs; rel < relend; ++rel)
715 struct elf_link_hash_entry *h = NULL;
716 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
717 struct elf64_hppa_dyn_hash_entry *dyn_h;
719 const char *addr_name;
720 boolean maybe_dynamic;
721 int dynrel_type = R_PARISC_NONE;
722 static reloc_howto_type *howto;
724 if (r_symndx >= symtab_hdr->sh_info)
726 /* We're dealing with a global symbol -- find its hash entry
727 and mark it as being referenced. */
728 long indx = r_symndx - symtab_hdr->sh_info;
729 h = elf_sym_hashes (abfd)[indx];
730 while (h->root.type == bfd_link_hash_indirect
731 || h->root.type == bfd_link_hash_warning)
732 h = (struct elf_link_hash_entry *) h->root.u.i.link;
734 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
737 /* We can only get preliminary data on whether a symbol is
738 locally or externally defined, as not all of the input files
739 have yet been processed. Do something with what we know, as
740 this may help reduce memory usage and processing time later. */
741 maybe_dynamic = false;
742 if (h && ((info->shared && ! info->symbolic)
743 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
744 || h->root.type == bfd_link_hash_defweak))
745 maybe_dynamic = true;
747 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
751 /* These are simple indirect references to symbols through the
752 DLT. We need to create a DLT entry for any symbols which
753 appears in a DLTIND relocation. */
754 case R_PARISC_DLTIND21L:
755 case R_PARISC_DLTIND14R:
756 case R_PARISC_DLTIND14F:
757 case R_PARISC_DLTIND14WR:
758 case R_PARISC_DLTIND14DR:
759 need_entry = NEED_DLT;
762 /* ?!? These need a DLT entry. But I have no idea what to do with
763 the "link time TP value. */
764 case R_PARISC_LTOFF_TP21L:
765 case R_PARISC_LTOFF_TP14R:
766 case R_PARISC_LTOFF_TP14F:
767 case R_PARISC_LTOFF_TP64:
768 case R_PARISC_LTOFF_TP14WR:
769 case R_PARISC_LTOFF_TP14DR:
770 case R_PARISC_LTOFF_TP16F:
771 case R_PARISC_LTOFF_TP16WF:
772 case R_PARISC_LTOFF_TP16DF:
773 need_entry = NEED_DLT;
776 /* These are function calls. Depending on their precise target we
777 may need to make a stub for them. The stub uses the PLT, so we
778 need to create PLT entries for these symbols too. */
779 case R_PARISC_PCREL12F:
780 case R_PARISC_PCREL17F:
781 case R_PARISC_PCREL22F:
782 case R_PARISC_PCREL32:
783 case R_PARISC_PCREL64:
784 case R_PARISC_PCREL21L:
785 case R_PARISC_PCREL17R:
786 case R_PARISC_PCREL17C:
787 case R_PARISC_PCREL14R:
788 case R_PARISC_PCREL14F:
789 case R_PARISC_PCREL22C:
790 case R_PARISC_PCREL14WR:
791 case R_PARISC_PCREL14DR:
792 case R_PARISC_PCREL16F:
793 case R_PARISC_PCREL16WF:
794 case R_PARISC_PCREL16DF:
795 need_entry = (NEED_PLT | NEED_STUB);
798 case R_PARISC_PLTOFF21L:
799 case R_PARISC_PLTOFF14R:
800 case R_PARISC_PLTOFF14F:
801 case R_PARISC_PLTOFF14WR:
802 case R_PARISC_PLTOFF14DR:
803 case R_PARISC_PLTOFF16F:
804 case R_PARISC_PLTOFF16WF:
805 case R_PARISC_PLTOFF16DF:
806 need_entry = (NEED_PLT);
810 if (info->shared || maybe_dynamic)
811 need_entry = (NEED_DYNREL);
812 dynrel_type = R_PARISC_DIR64;
815 /* This is an indirect reference through the DLT to get the address
816 of a OPD descriptor. Thus we need to make a DLT entry that points
818 case R_PARISC_LTOFF_FPTR21L:
819 case R_PARISC_LTOFF_FPTR14R:
820 case R_PARISC_LTOFF_FPTR14WR:
821 case R_PARISC_LTOFF_FPTR14DR:
822 case R_PARISC_LTOFF_FPTR32:
823 case R_PARISC_LTOFF_FPTR64:
824 case R_PARISC_LTOFF_FPTR16F:
825 case R_PARISC_LTOFF_FPTR16WF:
826 case R_PARISC_LTOFF_FPTR16DF:
827 if (info->shared || maybe_dynamic)
828 need_entry = (NEED_DLT | NEED_OPD);
830 need_entry = (NEED_DLT | NEED_OPD);
831 dynrel_type = R_PARISC_FPTR64;
834 /* This is a simple OPD entry. */
835 case R_PARISC_FPTR64:
836 if (info->shared || maybe_dynamic)
837 need_entry = (NEED_OPD | NEED_DYNREL);
839 need_entry = (NEED_OPD);
840 dynrel_type = R_PARISC_FPTR64;
843 /* Add more cases as needed. */
849 /* Collect a canonical name for this address. */
850 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
852 /* Collect the canonical entry data for this address. */
853 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
854 addr_name, true, true);
857 /* Stash away enough information to be able to find this symbol
858 regardless of whether or not it is local or global. */
861 dyn_h->sym_indx = r_symndx;
863 /* ?!? We may need to do some error checking in here. */
864 /* Create what's needed. */
865 if (need_entry & NEED_DLT)
867 if (! hppa_info->dlt_sec
868 && ! get_dlt (abfd, info, hppa_info))
873 if (need_entry & NEED_PLT)
875 if (! hppa_info->plt_sec
876 && ! get_plt (abfd, info, hppa_info))
881 if (need_entry & NEED_STUB)
883 if (! hppa_info->stub_sec
884 && ! get_stub (abfd, info, hppa_info))
886 dyn_h->want_stub = 1;
889 if (need_entry & NEED_OPD)
891 if (! hppa_info->opd_sec
892 && ! get_opd (abfd, info, hppa_info))
897 /* FPTRs are not allocated by the dynamic linker for PA64, though
898 it is possible that will change in the future. */
900 /* This could be a local function that had its address taken, in
901 which case H will be NULL. */
903 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
906 /* Add a new dynamic relocation to the chain of dynamic
907 relocations for this symbol. */
908 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
910 if (! hppa_info->other_rel_sec
911 && ! get_reloc_section (abfd, hppa_info, sec))
914 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
915 sec_symndx, rel->r_offset, rel->r_addend))
918 /* If we are building a shared library and we just recorded
919 a dynamic R_PARISC_FPTR64 relocation, then make sure the
920 section symbol for this section ends up in the dynamic
922 if (info->shared && dynrel_type == R_PARISC_FPTR64
923 && ! (_bfd_elf64_link_record_local_dynamic_symbol
924 (info, abfd, sec_symndx)))
939 struct elf64_hppa_allocate_data
941 struct bfd_link_info *info;
945 /* Should we do dynamic things to this symbol? */
948 elf64_hppa_dynamic_symbol_p (h, info)
949 struct elf_link_hash_entry *h;
950 struct bfd_link_info *info;
955 while (h->root.type == bfd_link_hash_indirect
956 || h->root.type == bfd_link_hash_warning)
957 h = (struct elf_link_hash_entry *) h->root.u.i.link;
959 if (h->dynindx == -1)
962 if (h->root.type == bfd_link_hash_undefweak
963 || h->root.type == bfd_link_hash_defweak)
966 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
969 if ((info->shared && !info->symbolic)
970 || ((h->elf_link_hash_flags
971 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
972 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
978 /* Mark all funtions exported by this file so that we can later allocate
979 entries in .opd for them. */
982 elf64_hppa_mark_exported_functions (h, data)
983 struct elf_link_hash_entry *h;
986 struct bfd_link_info *info = (struct bfd_link_info *)data;
987 struct elf64_hppa_link_hash_table *hppa_info;
989 hppa_info = elf64_hppa_hash_table (info);
992 && (h->root.type == bfd_link_hash_defined
993 || h->root.type == bfd_link_hash_defweak)
994 && h->root.u.def.section->output_section != NULL
995 && h->type == STT_FUNC)
997 struct elf64_hppa_dyn_hash_entry *dyn_h;
999 /* Add this symbol to the PA64 linker hash table. */
1000 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1001 h->root.root.string, true, true);
1005 if (! hppa_info->opd_sec
1006 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1009 dyn_h->want_opd = 1;
1010 /* Put a flag here for output_symbol_hook. */
1011 dyn_h->st_shndx = -1;
1012 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1018 /* Allocate space for a DLT entry. */
1021 allocate_global_data_dlt (dyn_h, data)
1022 struct elf64_hppa_dyn_hash_entry *dyn_h;
1025 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1027 if (dyn_h->want_dlt)
1029 struct elf_link_hash_entry *h = dyn_h->h;
1031 if (x->info->shared)
1033 /* Possibly add the symbol to the local dynamic symbol
1034 table since we might need to create a dynamic relocation
1037 || (h && h->dynindx == -1))
1040 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1042 if (!_bfd_elf64_link_record_local_dynamic_symbol
1043 (x->info, owner, dyn_h->sym_indx))
1048 dyn_h->dlt_offset = x->ofs;
1049 x->ofs += DLT_ENTRY_SIZE;
1054 /* Allocate space for a DLT.PLT entry. */
1057 allocate_global_data_plt (dyn_h, data)
1058 struct elf64_hppa_dyn_hash_entry *dyn_h;
1061 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1064 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1065 && !((dyn_h->h->root.type == bfd_link_hash_defined
1066 || dyn_h->h->root.type == bfd_link_hash_defweak)
1067 && dyn_h->h->root.u.def.section->output_section != NULL))
1069 dyn_h->plt_offset = x->ofs;
1070 x->ofs += PLT_ENTRY_SIZE;
1071 if (dyn_h->plt_offset < 0x2000)
1072 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1075 dyn_h->want_plt = 0;
1080 /* Allocate space for a STUB entry. */
1083 allocate_global_data_stub (dyn_h, data)
1084 struct elf64_hppa_dyn_hash_entry *dyn_h;
1087 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1089 if (dyn_h->want_stub
1090 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1091 && !((dyn_h->h->root.type == bfd_link_hash_defined
1092 || dyn_h->h->root.type == bfd_link_hash_defweak)
1093 && dyn_h->h->root.u.def.section->output_section != NULL))
1095 dyn_h->stub_offset = x->ofs;
1096 x->ofs += sizeof (plt_stub);
1099 dyn_h->want_stub = 0;
1103 /* Allocate space for a FPTR entry. */
1106 allocate_global_data_opd (dyn_h, data)
1107 struct elf64_hppa_dyn_hash_entry *dyn_h;
1110 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1112 if (dyn_h->want_opd)
1114 struct elf_link_hash_entry *h = dyn_h->h;
1117 while (h->root.type == bfd_link_hash_indirect
1118 || h->root.type == bfd_link_hash_warning)
1119 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1121 /* We never need an opd entry for a symbol which is not
1122 defined by this output file. */
1123 if (h && h->root.type == bfd_link_hash_undefined)
1124 dyn_h->want_opd = 0;
1126 /* If we are creating a shared library, took the address of a local
1127 function or might export this function from this object file, then
1128 we have to create an opd descriptor. */
1129 else if (x->info->shared
1132 || ((h->root.type == bfd_link_hash_defined
1133 || h->root.type == bfd_link_hash_defweak)
1134 && h->root.u.def.section->output_section != NULL))
1136 /* If we are creating a shared library, then we will have to
1137 create a runtime relocation for the symbol to properly
1138 initialize the .opd entry. Make sure the symbol gets
1139 added to the dynamic symbol table. */
1141 && (h == NULL || (h->dynindx == -1)))
1144 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1146 if (!_bfd_elf64_link_record_local_dynamic_symbol
1147 (x->info, owner, dyn_h->sym_indx))
1151 /* This may not be necessary or desirable anymore now that
1152 we have some support for dealing with section symbols
1153 in dynamic relocs. But name munging does make the result
1154 much easier to debug. ie, the EPLT reloc will reference
1155 a symbol like .foobar, instead of .text + offset. */
1156 if (x->info->shared && h)
1159 struct elf_link_hash_entry *nh;
1161 new_name = alloca (strlen (h->root.root.string) + 2);
1163 strcpy (new_name + 1, h->root.root.string);
1165 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1166 new_name, true, true, true);
1168 nh->root.type = h->root.type;
1169 nh->root.u.def.value = h->root.u.def.value;
1170 nh->root.u.def.section = h->root.u.def.section;
1172 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1176 dyn_h->opd_offset = x->ofs;
1177 x->ofs += OPD_ENTRY_SIZE;
1180 /* Otherwise we do not need an opd entry. */
1182 dyn_h->want_opd = 0;
1187 /* HP requires the EI_OSABI field to be filled in. The assignment to
1188 EI_ABIVERSION may not be strictly necessary. */
1191 elf64_hppa_post_process_headers (abfd, link_info)
1193 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1195 Elf_Internal_Ehdr * i_ehdrp;
1197 i_ehdrp = elf_elfheader (abfd);
1199 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1201 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1205 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1206 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1210 /* Create function descriptor section (.opd). This section is called .opd
1211 because it contains "official prodecure descriptors". The "official"
1212 refers to the fact that these descriptors are used when taking the address
1213 of a procedure, thus ensuring a unique address for each procedure. */
1216 get_opd (abfd, info, hppa_info)
1218 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1219 struct elf64_hppa_link_hash_table *hppa_info;
1224 opd = hppa_info->opd_sec;
1227 dynobj = hppa_info->root.dynobj;
1229 hppa_info->root.dynobj = dynobj = abfd;
1231 opd = bfd_make_section (dynobj, ".opd");
1233 || !bfd_set_section_flags (dynobj, opd,
1238 | SEC_LINKER_CREATED))
1239 || !bfd_set_section_alignment (abfd, opd, 3))
1245 hppa_info->opd_sec = opd;
1251 /* Create the PLT section. */
1254 get_plt (abfd, info, hppa_info)
1256 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1257 struct elf64_hppa_link_hash_table *hppa_info;
1262 plt = hppa_info->plt_sec;
1265 dynobj = hppa_info->root.dynobj;
1267 hppa_info->root.dynobj = dynobj = abfd;
1269 plt = bfd_make_section (dynobj, ".plt");
1271 || !bfd_set_section_flags (dynobj, plt,
1276 | SEC_LINKER_CREATED))
1277 || !bfd_set_section_alignment (abfd, plt, 3))
1283 hppa_info->plt_sec = plt;
1289 /* Create the DLT section. */
1292 get_dlt (abfd, info, hppa_info)
1294 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1295 struct elf64_hppa_link_hash_table *hppa_info;
1300 dlt = hppa_info->dlt_sec;
1303 dynobj = hppa_info->root.dynobj;
1305 hppa_info->root.dynobj = dynobj = abfd;
1307 dlt = bfd_make_section (dynobj, ".dlt");
1309 || !bfd_set_section_flags (dynobj, dlt,
1314 | SEC_LINKER_CREATED))
1315 || !bfd_set_section_alignment (abfd, dlt, 3))
1321 hppa_info->dlt_sec = dlt;
1327 /* Create the stubs section. */
1330 get_stub (abfd, info, hppa_info)
1332 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1333 struct elf64_hppa_link_hash_table *hppa_info;
1338 stub = hppa_info->stub_sec;
1341 dynobj = hppa_info->root.dynobj;
1343 hppa_info->root.dynobj = dynobj = abfd;
1345 stub = bfd_make_section (dynobj, ".stub");
1347 || !bfd_set_section_flags (dynobj, stub,
1353 | SEC_LINKER_CREATED))
1354 || !bfd_set_section_alignment (abfd, stub, 3))
1360 hppa_info->stub_sec = stub;
1366 /* Create sections necessary for dynamic linking. This is only a rough
1367 cut and will likely change as we learn more about the somewhat
1368 unusual dynamic linking scheme HP uses.
1371 Contains code to implement cross-space calls. The first time one
1372 of the stubs is used it will call into the dynamic linker, later
1373 calls will go straight to the target.
1375 The only stub we support right now looks like
1379 ldd OFFSET+8(%dp),%dp
1381 Other stubs may be needed in the future. We may want the remove
1382 the break/nop instruction. It is only used right now to keep the
1383 offset of a .plt entry and a .stub entry in sync.
1386 This is what most people call the .got. HP used a different name.
1390 Relocations for the DLT.
1393 Function pointers as address,gp pairs.
1396 Should contain dynamic IPLT (and EPLT?) relocations.
1402 EPLT relocations for symbols exported from shared libraries. */
1405 elf64_hppa_create_dynamic_sections (abfd, info)
1407 struct bfd_link_info *info;
1411 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1414 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1417 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1420 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1423 s = bfd_make_section(abfd, ".rela.dlt");
1425 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1429 | SEC_LINKER_CREATED))
1430 || !bfd_set_section_alignment (abfd, s, 3))
1432 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1434 s = bfd_make_section(abfd, ".rela.plt");
1436 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1440 | SEC_LINKER_CREATED))
1441 || !bfd_set_section_alignment (abfd, s, 3))
1443 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1445 s = bfd_make_section(abfd, ".rela.data");
1447 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1451 | SEC_LINKER_CREATED))
1452 || !bfd_set_section_alignment (abfd, s, 3))
1454 elf64_hppa_hash_table (info)->other_rel_sec = s;
1456 s = bfd_make_section(abfd, ".rela.opd");
1458 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1462 | SEC_LINKER_CREATED))
1463 || !bfd_set_section_alignment (abfd, s, 3))
1465 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1470 /* Allocate dynamic relocations for those symbols that turned out
1474 allocate_dynrel_entries (dyn_h, data)
1475 struct elf64_hppa_dyn_hash_entry *dyn_h;
1478 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1479 struct elf64_hppa_link_hash_table *hppa_info;
1480 struct elf64_hppa_dyn_reloc_entry *rent;
1481 boolean dynamic_symbol, shared;
1483 hppa_info = elf64_hppa_hash_table (x->info);
1484 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1485 shared = x->info->shared;
1487 /* We may need to allocate relocations for a non-dynamic symbol
1488 when creating a shared library. */
1489 if (!dynamic_symbol && !shared)
1492 /* Take care of the normal data relocations. */
1494 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1498 case R_PARISC_FPTR64:
1499 /* Allocate one iff we are not building a shared library and
1500 !want_opd, which by this point will be true only if we're
1501 actually allocating one statically in the main executable. */
1502 if (!x->info->shared && dyn_h->want_opd)
1506 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1508 /* Make sure this symbol gets into the dynamic symbol table if it is
1509 not already recorded. ?!? This should not be in the loop since
1510 the symbol need only be added once. */
1511 if (dyn_h->h == 0 || dyn_h->h->dynindx == -1)
1512 if (!_bfd_elf64_link_record_local_dynamic_symbol
1513 (x->info, rent->sec->owner, dyn_h->sym_indx))
1517 /* Take care of the GOT and PLT relocations. */
1519 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1520 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1522 /* If we are building a shared library, then every symbol that has an
1523 opd entry will need an EPLT relocation to relocate the symbol's address
1524 and __gp value based on the runtime load address. */
1525 if (shared && dyn_h->want_opd)
1526 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1528 if (dyn_h->want_plt && dynamic_symbol)
1530 bfd_size_type t = 0;
1532 /* Dynamic symbols get one IPLT relocation. Local symbols in
1533 shared libraries get two REL relocations. Local symbols in
1534 main applications get nothing. */
1536 t = sizeof (Elf64_External_Rela);
1538 t = 2 * sizeof (Elf64_External_Rela);
1540 hppa_info->plt_rel_sec->_raw_size += t;
1546 /* Adjust a symbol defined by a dynamic object and referenced by a
1550 elf64_hppa_adjust_dynamic_symbol (info, h)
1551 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1552 struct elf_link_hash_entry *h;
1554 /* ??? Undefined symbols with PLT entries should be re-defined
1555 to be the PLT entry. */
1557 /* If this is a weak symbol, and there is a real definition, the
1558 processor independent code will have arranged for us to see the
1559 real definition first, and we can just use the same value. */
1560 if (h->weakdef != NULL)
1562 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1563 || h->weakdef->root.type == bfd_link_hash_defweak);
1564 h->root.u.def.section = h->weakdef->root.u.def.section;
1565 h->root.u.def.value = h->weakdef->root.u.def.value;
1569 /* If this is a reference to a symbol defined by a dynamic object which
1570 is not a function, we might allocate the symbol in our .dynbss section
1571 and allocate a COPY dynamic relocation.
1573 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1579 /* Set the final sizes of the dynamic sections and allocate memory for
1580 the contents of our special sections. */
1583 elf64_hppa_size_dynamic_sections (output_bfd, info)
1585 struct bfd_link_info *info;
1592 struct elf64_hppa_allocate_data data;
1593 struct elf64_hppa_link_hash_table *hppa_info;
1595 hppa_info = elf64_hppa_hash_table (info);
1597 dynobj = elf_hash_table (info)->dynobj;
1598 BFD_ASSERT (dynobj != NULL);
1600 if (elf_hash_table (info)->dynamic_sections_created)
1602 /* Set the contents of the .interp section to the interpreter. */
1605 s = bfd_get_section_by_name (dynobj, ".interp");
1606 BFD_ASSERT (s != NULL);
1607 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1608 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1613 /* We may have created entries in the .rela.got section.
1614 However, if we are not creating the dynamic sections, we will
1615 not actually use these entries. Reset the size of .rela.dlt,
1616 which will cause it to get stripped from the output file
1618 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1623 /* Allocate the GOT entries. */
1626 if (elf64_hppa_hash_table (info)->dlt_sec)
1629 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1630 allocate_global_data_dlt, &data);
1631 hppa_info->dlt_sec->_raw_size = data.ofs;
1634 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1635 allocate_global_data_plt, &data);
1636 hppa_info->plt_sec->_raw_size = data.ofs;
1639 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1640 allocate_global_data_stub, &data);
1641 hppa_info->stub_sec->_raw_size = data.ofs;
1644 /* Mark each function this program exports so that we will allocate
1645 space in the .opd section for each function's FPTR.
1647 We have to traverse the main linker hash table since we have to
1648 find functions which may not have been mentioned in any relocs. */
1649 elf_link_hash_traverse (elf_hash_table (info),
1650 elf64_hppa_mark_exported_functions,
1653 /* Allocate space for entries in the .opd section. */
1654 if (elf64_hppa_hash_table (info)->opd_sec)
1657 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1658 allocate_global_data_opd, &data);
1659 hppa_info->opd_sec->_raw_size = data.ofs;
1662 /* Now allocate space for dynamic relocations, if necessary. */
1663 if (hppa_info->root.dynamic_sections_created)
1664 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1665 allocate_dynrel_entries, &data);
1667 /* The sizes of all the sections are set. Allocate memory for them. */
1671 for (s = dynobj->sections; s != NULL; s = s->next)
1676 if ((s->flags & SEC_LINKER_CREATED) == 0)
1679 /* It's OK to base decisions on the section name, because none
1680 of the dynobj section names depend upon the input files. */
1681 name = bfd_get_section_name (dynobj, s);
1685 if (strcmp (name, ".plt") == 0)
1687 if (s->_raw_size == 0)
1689 /* Strip this section if we don't need it; see the
1695 /* Remember whether there is a PLT. */
1699 else if (strcmp (name, ".dlt") == 0)
1701 if (s->_raw_size == 0)
1703 /* Strip this section if we don't need it; see the
1708 else if (strcmp (name, ".opd") == 0)
1710 if (s->_raw_size == 0)
1712 /* Strip this section if we don't need it; see the
1717 else if (strncmp (name, ".rela", 4) == 0)
1719 if (s->_raw_size == 0)
1721 /* If we don't need this section, strip it from the
1722 output file. This is mostly to handle .rela.bss and
1723 .rela.plt. We must create both sections in
1724 create_dynamic_sections, because they must be created
1725 before the linker maps input sections to output
1726 sections. The linker does that before
1727 adjust_dynamic_symbol is called, and it is that
1728 function which decides whether anything needs to go
1729 into these sections. */
1736 /* Remember whether there are any reloc sections other
1738 if (strcmp (name, ".rela.plt") != 0)
1740 const char *outname;
1744 /* If this relocation section applies to a read only
1745 section, then we probably need a DT_TEXTREL
1746 entry. The entries in the .rela.plt section
1747 really apply to the .got section, which we
1748 created ourselves and so know is not readonly. */
1749 outname = bfd_get_section_name (output_bfd,
1751 target = bfd_get_section_by_name (output_bfd, outname + 4);
1753 && (target->flags & SEC_READONLY) != 0
1754 && (target->flags & SEC_ALLOC) != 0)
1758 /* We use the reloc_count field as a counter if we need
1759 to copy relocs into the output file. */
1763 else if (strncmp (name, ".dlt", 4) != 0
1764 && strcmp (name, ".stub") != 0
1765 && strcmp (name, ".got") != 0)
1767 /* It's not one of our sections, so don't allocate space. */
1773 _bfd_strip_section_from_output (info, s);
1777 /* Allocate memory for the section contents if it has not
1778 been allocated already. We use bfd_zalloc here in case
1779 unused entries are not reclaimed before the section's
1780 contents are written out. This should not happen, but this
1781 way if it does, we get a R_PARISC_NONE reloc instead of
1783 if (s->contents == NULL)
1785 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1786 if (s->contents == NULL && s->_raw_size != 0)
1791 if (elf_hash_table (info)->dynamic_sections_created)
1793 /* Always create a DT_PLTGOT. It actually has nothing to do with
1794 the PLT, it is how we communicate the __gp value of a load
1795 module to the dynamic linker. */
1796 if (! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_FLAGS, 0)
1797 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0))
1800 /* Add some entries to the .dynamic section. We fill in the
1801 values later, in elf64_hppa_finish_dynamic_sections, but we
1802 must add the entries now so that we get the correct size for
1803 the .dynamic section. The DT_DEBUG entry is filled in by the
1804 dynamic linker and used by the debugger. */
1807 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0)
1808 || ! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_HOOK, 0)
1809 || ! bfd_elf64_add_dynamic_entry (info, DT_HP_LOAD_MAP, 0))
1815 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1816 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1817 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1823 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1824 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1825 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1826 sizeof (Elf64_External_Rela)))
1832 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1834 info->flags |= DF_TEXTREL;
1841 /* Called after we have output the symbol into the dynamic symbol
1842 table, but before we output the symbol into the normal symbol
1845 For some symbols we had to change their address when outputting
1846 the dynamic symbol table. We undo that change here so that
1847 the symbols have their expected value in the normal symbol
1851 elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
1852 bfd *abfd ATTRIBUTE_UNUSED;
1853 struct bfd_link_info *info;
1855 Elf_Internal_Sym *sym;
1856 asection *input_sec ATTRIBUTE_UNUSED;
1858 struct elf64_hppa_link_hash_table *hppa_info;
1859 struct elf64_hppa_dyn_hash_entry *dyn_h;
1861 /* We may be called with the file symbol or section symbols.
1862 They never need munging, so it is safe to ignore them. */
1866 /* Get the PA dyn_symbol (if any) associated with NAME. */
1867 hppa_info = elf64_hppa_hash_table (info);
1868 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1869 name, false, false);
1871 /* Function symbols for which we created .opd entries *may* have been
1872 munged by finish_dynamic_symbol and have to be un-munged here.
1874 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1875 into non-dynamic ones, so we initialize st_shndx to -1 in
1876 mark_exported_functions and check to see if it was overwritten
1877 here instead of just checking dyn_h->h->dynindx. */
1878 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
1880 /* Restore the saved value and section index. */
1881 sym->st_value = dyn_h->st_value;
1882 sym->st_shndx = dyn_h->st_shndx;
1888 /* Finish up dynamic symbol handling. We set the contents of various
1889 dynamic sections here. */
1892 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1894 struct bfd_link_info *info;
1895 struct elf_link_hash_entry *h;
1896 Elf_Internal_Sym *sym;
1898 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1899 struct elf64_hppa_link_hash_table *hppa_info;
1900 struct elf64_hppa_dyn_hash_entry *dyn_h;
1902 hppa_info = elf64_hppa_hash_table (info);
1903 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1904 h->root.root.string, false, false);
1906 stub = hppa_info->stub_sec;
1907 splt = hppa_info->plt_sec;
1908 sdlt = hppa_info->dlt_sec;
1909 sopd = hppa_info->opd_sec;
1910 spltrel = hppa_info->plt_rel_sec;
1911 sdltrel = hppa_info->dlt_rel_sec;
1913 BFD_ASSERT (stub != NULL && splt != NULL
1914 && sopd != NULL && sdlt != NULL)
1916 /* Incredible. It is actually necessary to NOT use the symbol's real
1917 value when building the dynamic symbol table for a shared library.
1918 At least for symbols that refer to functions.
1920 We will store a new value and section index into the symbol long
1921 enough to output it into the dynamic symbol table, then we restore
1922 the original values (in elf64_hppa_link_output_symbol_hook). */
1923 if (dyn_h && dyn_h->want_opd)
1925 /* Save away the original value and section index so that we
1926 can restore them later. */
1927 dyn_h->st_value = sym->st_value;
1928 dyn_h->st_shndx = sym->st_shndx;
1930 /* For the dynamic symbol table entry, we want the value to be
1931 address of this symbol's entry within the .opd section. */
1932 sym->st_value = (dyn_h->opd_offset
1933 + sopd->output_offset
1934 + sopd->output_section->vma);
1935 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1936 sopd->output_section);
1939 /* Initialize a .plt entry if requested. */
1940 if (dyn_h && dyn_h->want_plt
1941 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1944 Elf_Internal_Rela rel;
1946 /* We do not actually care about the value in the PLT entry
1947 if we are creating a shared library and the symbol is
1948 still undefined, we create a dynamic relocation to fill
1949 in the correct value. */
1950 if (info->shared && h->root.type == bfd_link_hash_undefined)
1953 value = (h->root.u.def.value + h->root.u.def.section->vma);
1955 /* Fill in the entry in the procedure linkage table.
1957 The format of a plt entry is
1960 plt_offset is the offset within the PLT section at which to
1961 install the PLT entry.
1963 We are modifying the in-memory PLT contents here, so we do not add
1964 in the output_offset of the PLT section. */
1966 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1967 value = _bfd_get_gp_value (splt->output_section->owner);
1968 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1970 /* Create a dynamic IPLT relocation for this entry.
1972 We are creating a relocation in the output file's PLT section,
1973 which is included within the DLT secton. So we do need to include
1974 the PLT's output_offset in the computation of the relocation's
1976 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1977 + splt->output_section->vma);
1978 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
1981 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
1982 (((Elf64_External_Rela *)
1984 + spltrel->reloc_count));
1985 spltrel->reloc_count++;
1988 /* Initialize an external call stub entry if requested. */
1989 if (dyn_h && dyn_h->want_stub
1990 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1994 unsigned int max_offset;
1996 /* Install the generic stub template.
1998 We are modifying the contents of the stub section, so we do not
1999 need to include the stub section's output_offset here. */
2000 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2002 /* Fix up the first ldd instruction.
2004 We are modifying the contents of the STUB section in memory,
2005 so we do not need to include its output offset in this computation.
2007 Note the plt_offset value is the value of the PLT entry relative to
2008 the start of the PLT section. These instructions will reference
2009 data relative to the value of __gp, which may not necessarily have
2010 the same address as the start of the PLT section.
2012 gp_offset contains the offset of __gp within the PLT section. */
2013 value = dyn_h->plt_offset - hppa_info->gp_offset;
2015 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2016 if (output_bfd->arch_info->mach >= 25)
2018 /* Wide mode allows 16 bit offsets. */
2021 insn |= re_assemble_16 (value);
2027 insn |= re_assemble_14 (value);
2030 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2032 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2038 bfd_put_32 (stub->owner, insn,
2039 stub->contents + dyn_h->stub_offset);
2041 /* Fix up the second ldd instruction. */
2043 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2044 if (output_bfd->arch_info->mach >= 25)
2047 insn |= re_assemble_16 (value);
2052 insn |= re_assemble_14 (value);
2054 bfd_put_32 (stub->owner, insn,
2055 stub->contents + dyn_h->stub_offset + 8);
2058 /* Millicode symbols should not be put in the dynamic
2059 symbol table under any circumstances. */
2060 if (ELF_ST_TYPE (sym->st_info) == STT_PARISC_MILLI)
2066 /* The .opd section contains FPTRs for each function this file
2067 exports. Initialize the FPTR entries. */
2070 elf64_hppa_finalize_opd (dyn_h, data)
2071 struct elf64_hppa_dyn_hash_entry *dyn_h;
2074 struct bfd_link_info *info = (struct bfd_link_info *)data;
2075 struct elf64_hppa_link_hash_table *hppa_info;
2076 struct elf_link_hash_entry *h = dyn_h->h;
2080 hppa_info = elf64_hppa_hash_table (info);
2081 sopd = hppa_info->opd_sec;
2082 sopdrel = hppa_info->opd_rel_sec;
2084 if (h && dyn_h && dyn_h->want_opd)
2088 /* The first two words of an .opd entry are zero.
2090 We are modifying the contents of the OPD section in memory, so we
2091 do not need to include its output offset in this computation. */
2092 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2094 value = (h->root.u.def.value
2095 + h->root.u.def.section->output_section->vma
2096 + h->root.u.def.section->output_offset);
2098 /* The next word is the address of the function. */
2099 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2101 /* The last word is our local __gp value. */
2102 value = _bfd_get_gp_value (sopd->output_section->owner);
2103 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2106 /* If we are generating a shared library, we must generate EPLT relocations
2107 for each entry in the .opd, even for static functions (they may have
2108 had their address taken). */
2109 if (info->shared && dyn_h && dyn_h->want_opd)
2111 Elf64_Internal_Rela rel;
2114 /* We may need to do a relocation against a local symbol, in
2115 which case we have to look up it's dynamic symbol index off
2116 the local symbol hash table. */
2117 if (h && h->dynindx != -1)
2118 dynindx = h->dynindx;
2121 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2124 /* The offset of this relocation is the absolute address of the
2125 .opd entry for this symbol. */
2126 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2127 + sopd->output_section->vma);
2129 /* If H is non-null, then we have an external symbol.
2131 It is imperative that we use a different dynamic symbol for the
2132 EPLT relocation if the symbol has global scope.
2134 In the dynamic symbol table, the function symbol will have a value
2135 which is address of the function's .opd entry.
2137 Thus, we can not use that dynamic symbol for the EPLT relocation
2138 (if we did, the data in the .opd would reference itself rather
2139 than the actual address of the function). Instead we have to use
2140 a new dynamic symbol which has the same value as the original global
2143 We prefix the original symbol with a "." and use the new symbol in
2144 the EPLT relocation. This new symbol has already been recorded in
2145 the symbol table, we just have to look it up and use it.
2147 We do not have such problems with static functions because we do
2148 not make their addresses in the dynamic symbol table point to
2149 the .opd entry. Ultimately this should be safe since a static
2150 function can not be directly referenced outside of its shared
2153 We do have to play similar games for FPTR relocations in shared
2154 libraries, including those for static symbols. See the FPTR
2155 handling in elf64_hppa_finalize_dynreloc. */
2159 struct elf_link_hash_entry *nh;
2161 new_name = alloca (strlen (h->root.root.string) + 2);
2163 strcpy (new_name + 1, h->root.root.string);
2165 nh = elf_link_hash_lookup (elf_hash_table (info),
2166 new_name, false, false, false);
2168 /* All we really want from the new symbol is its dynamic
2170 dynindx = nh->dynindx;
2174 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2176 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
2177 (((Elf64_External_Rela *)
2179 + sopdrel->reloc_count));
2180 sopdrel->reloc_count++;
2185 /* The .dlt section contains addresses for items referenced through the
2186 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2187 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2190 elf64_hppa_finalize_dlt (dyn_h, data)
2191 struct elf64_hppa_dyn_hash_entry *dyn_h;
2194 struct bfd_link_info *info = (struct bfd_link_info *)data;
2195 struct elf64_hppa_link_hash_table *hppa_info;
2196 asection *sdlt, *sdltrel;
2197 struct elf_link_hash_entry *h = dyn_h->h;
2199 hppa_info = elf64_hppa_hash_table (info);
2201 sdlt = hppa_info->dlt_sec;
2202 sdltrel = hppa_info->dlt_rel_sec;
2204 /* H/DYN_H may refer to a local variable and we know it's
2205 address, so there is no need to create a relocation. Just install
2206 the proper value into the DLT, note this shortcut can not be
2207 skipped when building a shared library. */
2208 if (! info->shared && h && dyn_h && dyn_h->want_dlt)
2212 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2213 to point to the FPTR entry in the .opd section.
2215 We include the OPD's output offset in this computation as
2216 we are referring to an absolute address in the resulting
2218 if (dyn_h->want_opd)
2220 value = (dyn_h->opd_offset
2221 + hppa_info->opd_sec->output_offset
2222 + hppa_info->opd_sec->output_section->vma);
2226 value = (h->root.u.def.value
2227 + h->root.u.def.section->output_offset);
2229 if (h->root.u.def.section->output_section)
2230 value += h->root.u.def.section->output_section->vma;
2232 value += h->root.u.def.section->vma;
2235 /* We do not need to include the output offset of the DLT section
2236 here because we are modifying the in-memory contents. */
2237 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2240 /* Create a relocation for the DLT entry assocated with this symbol.
2241 When building a shared library the symbol does not have to be dynamic. */
2243 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2245 Elf64_Internal_Rela rel;
2248 /* We may need to do a relocation against a local symbol, in
2249 which case we have to look up it's dynamic symbol index off
2250 the local symbol hash table. */
2251 if (h && h->dynindx != -1)
2252 dynindx = h->dynindx;
2255 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2258 /* Create a dynamic relocation for this entry. Do include the output
2259 offset of the DLT entry since we need an absolute address in the
2260 resulting object file. */
2261 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2262 + sdlt->output_section->vma);
2263 if (h && h->type == STT_FUNC)
2264 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2266 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2269 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
2270 (((Elf64_External_Rela *)
2272 + sdltrel->reloc_count));
2273 sdltrel->reloc_count++;
2278 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2279 for dynamic functions used to initialize static data. */
2282 elf64_hppa_finalize_dynreloc (dyn_h, data)
2283 struct elf64_hppa_dyn_hash_entry *dyn_h;
2286 struct bfd_link_info *info = (struct bfd_link_info *)data;
2287 struct elf64_hppa_link_hash_table *hppa_info;
2288 struct elf_link_hash_entry *h;
2291 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2293 if (!dynamic_symbol && !info->shared)
2296 if (dyn_h->reloc_entries)
2298 struct elf64_hppa_dyn_reloc_entry *rent;
2301 hppa_info = elf64_hppa_hash_table (info);
2304 /* We may need to do a relocation against a local symbol, in
2305 which case we have to look up it's dynamic symbol index off
2306 the local symbol hash table. */
2307 if (h && h->dynindx != -1)
2308 dynindx = h->dynindx;
2311 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2314 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2316 Elf64_Internal_Rela rel;
2320 case R_PARISC_FPTR64:
2321 /* Allocate one iff we are not building a shared library and
2322 !want_opd, which by this point will be true only if we're
2323 actually allocating one statically in the main executable. */
2324 if (!info->shared && dyn_h->want_opd)
2329 /* Create a dynamic relocation for this entry.
2331 We need the output offset for the reloc's section because
2332 we are creating an absolute address in the resulting object
2334 rel.r_offset = (rent->offset + rent->sec->output_offset
2335 + rent->sec->output_section->vma);
2337 /* An FPTR64 relocation implies that we took the address of
2338 a function and that the function has an entry in the .opd
2339 section. We want the FPTR64 relocation to reference the
2342 We could munge the symbol value in the dynamic symbol table
2343 (in fact we already do for functions with global scope) to point
2344 to the .opd entry. Then we could use that dynamic symbol in
2347 Or we could do something sensible, not munge the symbol's
2348 address and instead just use a different symbol to reference
2349 the .opd entry. At least that seems sensible until you
2350 realize there's no local dynamic symbols we can use for that
2351 purpose. Thus the hair in the check_relocs routine.
2353 We use a section symbol recorded by check_relocs as the
2354 base symbol for the relocation. The addend is the difference
2355 between the section symbol and the address of the .opd entry. */
2356 if (info->shared && rent->type == R_PARISC_FPTR64)
2358 bfd_vma value, value2;
2360 /* First compute the address of the opd entry for this symbol. */
2361 value = (dyn_h->opd_offset
2362 + hppa_info->opd_sec->output_section->vma
2363 + hppa_info->opd_sec->output_offset);
2365 /* Compute the value of the start of the section with
2367 value2 = (rent->sec->output_section->vma
2368 + rent->sec->output_offset);
2370 /* Compute the difference between the start of the section
2371 with the relocation and the opd entry. */
2374 /* The result becomes the addend of the relocation. */
2375 rel.r_addend = value;
2377 /* The section symbol becomes the symbol for the dynamic
2380 = _bfd_elf_link_lookup_local_dynindx (info,
2385 rel.r_addend = rent->addend;
2387 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2389 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2391 (((Elf64_External_Rela *)
2392 hppa_info->other_rel_sec->contents)
2393 + hppa_info->other_rel_sec->reloc_count));
2394 hppa_info->other_rel_sec->reloc_count++;
2401 /* Finish up the dynamic sections. */
2404 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2406 struct bfd_link_info *info;
2410 struct elf64_hppa_link_hash_table *hppa_info;
2412 hppa_info = elf64_hppa_hash_table (info);
2414 /* Finalize the contents of the .opd section. */
2415 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2416 elf64_hppa_finalize_opd,
2419 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2420 elf64_hppa_finalize_dynreloc,
2423 /* Finalize the contents of the .dlt section. */
2424 dynobj = elf_hash_table (info)->dynobj;
2425 /* Finalize the contents of the .dlt section. */
2426 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2427 elf64_hppa_finalize_dlt,
2430 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2432 if (elf_hash_table (info)->dynamic_sections_created)
2434 Elf64_External_Dyn *dyncon, *dynconend;
2436 BFD_ASSERT (sdyn != NULL);
2438 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2439 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2440 for (; dyncon < dynconend; dyncon++)
2442 Elf_Internal_Dyn dyn;
2445 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2452 case DT_HP_LOAD_MAP:
2453 /* Compute the absolute address of 16byte scratchpad area
2454 for the dynamic linker.
2456 By convention the linker script will allocate the scratchpad
2457 area at the start of the .data section. So all we have to
2458 to is find the start of the .data section. */
2459 s = bfd_get_section_by_name (output_bfd, ".data");
2460 dyn.d_un.d_ptr = s->vma;
2461 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2465 /* HP's use PLTGOT to set the GOT register. */
2466 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2467 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2471 s = hppa_info->plt_rel_sec;
2472 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2473 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2477 s = hppa_info->plt_rel_sec;
2478 dyn.d_un.d_val = s->_raw_size;
2479 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2483 s = hppa_info->other_rel_sec;
2485 s = hppa_info->dlt_rel_sec;
2486 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2487 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2491 s = hppa_info->other_rel_sec;
2492 dyn.d_un.d_val = s->_raw_size;
2493 s = hppa_info->dlt_rel_sec;
2494 dyn.d_un.d_val += s->_raw_size;
2495 s = hppa_info->opd_rel_sec;
2496 dyn.d_un.d_val += s->_raw_size;
2497 /* There is some question about whether or not the size of
2498 the PLT relocs should be included here. HP's tools do
2499 it, so we'll emulate them. */
2500 s = hppa_info->plt_rel_sec;
2501 dyn.d_un.d_val += s->_raw_size;
2502 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2512 /* Return the number of additional phdrs we will need.
2514 The generic ELF code only creates PT_PHDRs for executables. The HP
2515 dynamic linker requires PT_PHDRs for dynamic libraries too.
2517 This routine indicates that the backend needs one additional program
2518 header for that case.
2520 Note we do not have access to the link info structure here, so we have
2521 to guess whether or not we are building a shared library based on the
2522 existence of a .interp section. */
2525 elf64_hppa_additional_program_headers (abfd)
2530 /* If we are creating a shared library, then we have to create a
2531 PT_PHDR segment. HP's dynamic linker chokes without it. */
2532 s = bfd_get_section_by_name (abfd, ".interp");
2538 /* Allocate and initialize any program headers required by this
2541 The generic ELF code only creates PT_PHDRs for executables. The HP
2542 dynamic linker requires PT_PHDRs for dynamic libraries too.
2544 This allocates the PT_PHDR and initializes it in a manner suitable
2547 Note we do not have access to the link info structure here, so we have
2548 to guess whether or not we are building a shared library based on the
2549 existence of a .interp section. */
2552 elf64_hppa_modify_segment_map (abfd)
2555 struct elf_segment_map *m;
2558 s = bfd_get_section_by_name (abfd, ".interp");
2561 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2562 if (m->p_type == PT_PHDR)
2566 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
2570 m->p_type = PT_PHDR;
2571 m->p_flags = PF_R | PF_X;
2572 m->p_flags_valid = 1;
2573 m->p_paddr_valid = 1;
2574 m->includes_phdrs = 1;
2576 m->next = elf_tdata (abfd)->segment_map;
2577 elf_tdata (abfd)->segment_map = m;
2581 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2582 if (m->p_type == PT_LOAD)
2586 for (i = 0; i < m->count; i++)
2588 /* The code "hint" is not really a hint. It is a requirement
2589 for certain versions of the HP dynamic linker. Worse yet,
2590 it must be set even if the shared library does not have
2591 any code in its "text" segment (thus the check for .hash
2592 to catch this situation). */
2593 if (m->sections[i]->flags & SEC_CODE
2594 || (strcmp (m->sections[i]->name, ".hash") == 0))
2595 m->p_flags |= (PF_X | PF_HP_CODE);
2602 /* Called when writing out an object file to decide the type of a
2605 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2606 Elf_Internal_Sym *elf_sym;
2609 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2610 return STT_PARISC_MILLI;
2615 /* The hash bucket size is the standard one, namely 4. */
2617 const struct elf_size_info hppa64_elf_size_info =
2619 sizeof (Elf64_External_Ehdr),
2620 sizeof (Elf64_External_Phdr),
2621 sizeof (Elf64_External_Shdr),
2622 sizeof (Elf64_External_Rel),
2623 sizeof (Elf64_External_Rela),
2624 sizeof (Elf64_External_Sym),
2625 sizeof (Elf64_External_Dyn),
2626 sizeof (Elf_External_Note),
2630 ELFCLASS64, EV_CURRENT,
2631 bfd_elf64_write_out_phdrs,
2632 bfd_elf64_write_shdrs_and_ehdr,
2633 bfd_elf64_write_relocs,
2634 bfd_elf64_swap_symbol_out,
2635 bfd_elf64_slurp_reloc_table,
2636 bfd_elf64_slurp_symbol_table,
2637 bfd_elf64_swap_dyn_in,
2638 bfd_elf64_swap_dyn_out,
2645 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2646 #define TARGET_BIG_NAME "elf64-hppa"
2647 #define ELF_ARCH bfd_arch_hppa
2648 #define ELF_MACHINE_CODE EM_PARISC
2649 /* This is not strictly correct. The maximum page size for PA2.0 is
2650 64M. But everything still uses 4k. */
2651 #define ELF_MAXPAGESIZE 0x1000
2652 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2653 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2654 #define elf_info_to_howto elf_hppa_info_to_howto
2655 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2657 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2658 #define elf_backend_object_p elf64_hppa_object_p
2659 #define elf_backend_final_write_processing \
2660 elf_hppa_final_write_processing
2661 #define elf_backend_fake_sections elf_hppa_fake_sections
2662 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2664 #define elf_backend_relocate_section elf_hppa_relocate_section
2666 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2668 #define elf_backend_create_dynamic_sections \
2669 elf64_hppa_create_dynamic_sections
2670 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2672 #define elf_backend_adjust_dynamic_symbol \
2673 elf64_hppa_adjust_dynamic_symbol
2675 #define elf_backend_size_dynamic_sections \
2676 elf64_hppa_size_dynamic_sections
2678 #define elf_backend_finish_dynamic_symbol \
2679 elf64_hppa_finish_dynamic_symbol
2680 #define elf_backend_finish_dynamic_sections \
2681 elf64_hppa_finish_dynamic_sections
2683 /* Stuff for the BFD linker: */
2684 #define bfd_elf64_bfd_link_hash_table_create \
2685 elf64_hppa_hash_table_create
2687 #define elf_backend_check_relocs \
2688 elf64_hppa_check_relocs
2690 #define elf_backend_size_info \
2691 hppa64_elf_size_info
2693 #define elf_backend_additional_program_headers \
2694 elf64_hppa_additional_program_headers
2696 #define elf_backend_modify_segment_map \
2697 elf64_hppa_modify_segment_map
2699 #define elf_backend_link_output_symbol_hook \
2700 elf64_hppa_link_output_symbol_hook
2702 #define elf_backend_want_got_plt 0
2703 #define elf_backend_plt_readonly 0
2704 #define elf_backend_want_plt_sym 0
2705 #define elf_backend_got_header_size 0
2706 #define elf_backend_plt_header_size 0
2707 #define elf_backend_type_change_ok true
2708 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2710 #include "elf64-target.h"
2712 #undef TARGET_BIG_SYM
2713 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2714 #undef TARGET_BIG_NAME
2715 #define TARGET_BIG_NAME "elf64-hppa-linux"
2717 #define INCLUDED_TARGET_FILE 1
2718 #include "elf64-target.h"