1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
34 #define XTENSA_NO_NOP_REMOVAL 0
36 /* Local helper functions. */
38 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
47 /* Local functions to handle Xtensa configurability. */
49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52 static xtensa_opcode get_const16_opcode (void);
53 static xtensa_opcode get_l32r_opcode (void);
54 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55 static int get_relocation_opnd (xtensa_opcode, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
59 static bfd_boolean is_l32r_relocation
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61 static bfd_boolean is_alt_relocation (int);
62 static bfd_boolean is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte *, bfd_size_type, bfd_size_type);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte *, bfd_size_type, bfd_size_type);
75 /* Functions for link-time code simplifications. */
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte *, bfd_vma, bfd_vma, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
84 /* Access to internal relocations, section contents and symbols. */
86 static Elf_Internal_Rela *retrieve_internal_relocs
87 (bfd *, asection *, bfd_boolean);
88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91 static void pin_contents (asection *, bfd_byte *);
92 static void release_contents (asection *, bfd_byte *);
93 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
95 /* Miscellaneous utility functions. */
97 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
99 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
101 (bfd *, unsigned long);
102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105 static bfd_boolean xtensa_is_property_section (asection *);
106 static bfd_boolean xtensa_is_insntable_section (asection *);
107 static bfd_boolean xtensa_is_littable_section (asection *);
108 static bfd_boolean xtensa_is_proptable_section (asection *);
109 static int internal_reloc_compare (const void *, const void *);
110 static int internal_reloc_matches (const void *, const void *);
111 extern asection *xtensa_get_property_section (asection *, const char *);
112 static flagword xtensa_get_property_predef_flags (asection *);
114 /* Other functions called directly by the linker. */
116 typedef void (*deps_callback_t)
117 (asection *, bfd_vma, asection *, bfd_vma, void *);
118 extern bfd_boolean xtensa_callback_required_dependence
119 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
122 /* Globally visible flag for choosing size optimization of NOP removal
123 instead of branch-target-aware minimization for NOP removal.
124 When nonzero, narrow all instructions and remove all NOPs possible
125 around longcall expansions. */
127 int elf32xtensa_size_opt;
130 /* The "new_section_hook" is used to set up a per-section
131 "xtensa_relax_info" data structure with additional information used
132 during relaxation. */
134 typedef struct xtensa_relax_info_struct xtensa_relax_info;
137 /* The GNU tools do not easily allow extending interfaces to pass around
138 the pointer to the Xtensa ISA information, so instead we add a global
139 variable here (in BFD) that can be used by any of the tools that need
142 xtensa_isa xtensa_default_isa;
145 /* When this is true, relocations may have been modified to refer to
146 symbols from other input files. The per-section list of "fix"
147 records needs to be checked when resolving relocations. */
149 static bfd_boolean relaxing_section = FALSE;
151 /* When this is true, during final links, literals that cannot be
152 coalesced and their relocations may be moved to other sections. */
154 int elf32xtensa_no_literal_movement = 1;
157 static reloc_howto_type elf_howto_table[] =
159 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
160 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
162 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
163 bfd_elf_xtensa_reloc, "R_XTENSA_32",
164 TRUE, 0xffffffff, 0xffffffff, FALSE),
166 /* Replace a 32-bit value with a value from the runtime linker (only
167 used by linker-generated stub functions). The r_addend value is
168 special: 1 means to substitute a pointer to the runtime linker's
169 dynamic resolver function; 2 means to substitute the link map for
170 the shared object. */
171 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
172 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
174 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
175 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
176 FALSE, 0, 0xffffffff, FALSE),
177 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
178 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
179 FALSE, 0, 0xffffffff, FALSE),
180 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
182 FALSE, 0, 0xffffffff, FALSE),
183 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
185 FALSE, 0, 0xffffffff, FALSE),
189 /* Old relocations for backward compatibility. */
190 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
191 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
192 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
193 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
194 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
197 /* Assembly auto-expansion. */
198 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
199 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
200 /* Relax assembly auto-expansion. */
201 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
202 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
206 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
207 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
208 FALSE, 0, 0xffffffff, TRUE),
210 /* GNU extension to record C++ vtable hierarchy. */
211 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
212 NULL, "R_XTENSA_GNU_VTINHERIT",
214 /* GNU extension to record C++ vtable member usage. */
215 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
216 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
219 /* Relocations for supporting difference of symbols. */
220 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
221 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
222 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
223 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
224 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
225 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
227 /* General immediate operand relocations. */
228 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
229 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
230 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
231 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
232 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
233 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
234 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
236 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
237 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
238 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
240 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
242 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
244 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
246 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
248 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
250 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
252 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
254 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
256 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
259 /* "Alternate" relocations. The meaning of these is opcode-specific. */
260 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
262 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
264 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
266 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
268 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
270 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
272 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
274 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
276 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
278 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
280 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
282 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
284 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
286 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
288 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
294 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
299 static reloc_howto_type *
300 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
301 bfd_reloc_code_real_type code)
306 TRACE ("BFD_RELOC_NONE");
307 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
310 TRACE ("BFD_RELOC_32");
311 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
313 case BFD_RELOC_32_PCREL:
314 TRACE ("BFD_RELOC_32_PCREL");
315 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
317 case BFD_RELOC_XTENSA_DIFF8:
318 TRACE ("BFD_RELOC_XTENSA_DIFF8");
319 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
321 case BFD_RELOC_XTENSA_DIFF16:
322 TRACE ("BFD_RELOC_XTENSA_DIFF16");
323 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
325 case BFD_RELOC_XTENSA_DIFF32:
326 TRACE ("BFD_RELOC_XTENSA_DIFF32");
327 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
329 case BFD_RELOC_XTENSA_RTLD:
330 TRACE ("BFD_RELOC_XTENSA_RTLD");
331 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
333 case BFD_RELOC_XTENSA_GLOB_DAT:
334 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
335 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
337 case BFD_RELOC_XTENSA_JMP_SLOT:
338 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
339 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
341 case BFD_RELOC_XTENSA_RELATIVE:
342 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
343 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
345 case BFD_RELOC_XTENSA_PLT:
346 TRACE ("BFD_RELOC_XTENSA_PLT");
347 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
349 case BFD_RELOC_XTENSA_OP0:
350 TRACE ("BFD_RELOC_XTENSA_OP0");
351 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
353 case BFD_RELOC_XTENSA_OP1:
354 TRACE ("BFD_RELOC_XTENSA_OP1");
355 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
357 case BFD_RELOC_XTENSA_OP2:
358 TRACE ("BFD_RELOC_XTENSA_OP2");
359 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
361 case BFD_RELOC_XTENSA_ASM_EXPAND:
362 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
363 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
365 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
366 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
367 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
369 case BFD_RELOC_VTABLE_INHERIT:
370 TRACE ("BFD_RELOC_VTABLE_INHERIT");
371 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
373 case BFD_RELOC_VTABLE_ENTRY:
374 TRACE ("BFD_RELOC_VTABLE_ENTRY");
375 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
378 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
379 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
381 unsigned n = (R_XTENSA_SLOT0_OP +
382 (code - BFD_RELOC_XTENSA_SLOT0_OP));
383 return &elf_howto_table[n];
386 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
387 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
389 unsigned n = (R_XTENSA_SLOT0_ALT +
390 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
391 return &elf_howto_table[n];
401 static reloc_howto_type *
402 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
407 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
408 if (elf_howto_table[i].name != NULL
409 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
410 return &elf_howto_table[i];
416 /* Given an ELF "rela" relocation, find the corresponding howto and record
417 it in the BFD internal arelent representation of the relocation. */
420 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
422 Elf_Internal_Rela *dst)
424 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
426 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
427 cache_ptr->howto = &elf_howto_table[r_type];
431 /* Functions for the Xtensa ELF linker. */
433 /* The name of the dynamic interpreter. This is put in the .interp
436 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
438 /* The size in bytes of an entry in the procedure linkage table.
439 (This does _not_ include the space for the literals associated with
442 #define PLT_ENTRY_SIZE 16
444 /* For _really_ large PLTs, we may need to alternate between literals
445 and code to keep the literals within the 256K range of the L32R
446 instructions in the code. It's unlikely that anyone would ever need
447 such a big PLT, but an arbitrary limit on the PLT size would be bad.
448 Thus, we split the PLT into chunks. Since there's very little
449 overhead (2 extra literals) for each chunk, the chunk size is kept
450 small so that the code for handling multiple chunks get used and
451 tested regularly. With 254 entries, there are 1K of literals for
452 each chunk, and that seems like a nice round number. */
454 #define PLT_ENTRIES_PER_CHUNK 254
456 /* PLT entries are actually used as stub functions for lazy symbol
457 resolution. Once the symbol is resolved, the stub function is never
458 invoked. Note: the 32-byte frame size used here cannot be changed
459 without a corresponding change in the runtime linker. */
461 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
463 0x6c, 0x10, 0x04, /* entry sp, 32 */
464 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
465 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
466 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
467 0x0a, 0x80, 0x00, /* jx a8 */
471 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
473 0x36, 0x41, 0x00, /* entry sp, 32 */
474 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
475 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
476 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
477 0xa0, 0x08, 0x00, /* jx a8 */
481 /* Xtensa ELF linker hash table. */
483 struct elf_xtensa_link_hash_table
485 struct elf_link_hash_table elf;
487 /* Short-cuts to get to dynamic linker sections. */
494 asection *spltlittbl;
496 /* Total count of PLT relocations seen during check_relocs.
497 The actual PLT code must be split into multiple sections and all
498 the sections have to be created before size_dynamic_sections,
499 where we figure out the exact number of PLT entries that will be
500 needed. It is OK if this count is an overestimate, e.g., some
501 relocations may be removed by GC. */
505 /* Get the Xtensa ELF linker hash table from a link_info structure. */
507 #define elf_xtensa_hash_table(p) \
508 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
510 /* Create an Xtensa ELF linker hash table. */
512 static struct bfd_link_hash_table *
513 elf_xtensa_link_hash_table_create (bfd *abfd)
515 struct elf_xtensa_link_hash_table *ret;
516 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
518 ret = bfd_malloc (amt);
522 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
523 _bfd_elf_link_hash_newfunc,
524 sizeof (struct elf_link_hash_entry)))
536 ret->spltlittbl = NULL;
538 ret->plt_reloc_count = 0;
540 return &ret->elf.root;
543 static inline bfd_boolean
544 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
545 struct bfd_link_info *info)
547 /* Check if we should do dynamic things to this symbol. The
548 "ignore_protected" argument need not be set, because Xtensa code
549 does not require special handling of STV_PROTECTED to make function
550 pointer comparisons work properly. The PLT addresses are never
551 used for function pointers. */
553 return _bfd_elf_dynamic_symbol_p (h, info, 0);
558 property_table_compare (const void *ap, const void *bp)
560 const property_table_entry *a = (const property_table_entry *) ap;
561 const property_table_entry *b = (const property_table_entry *) bp;
563 if (a->address == b->address)
565 if (a->size != b->size)
566 return (a->size - b->size);
568 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
569 return ((b->flags & XTENSA_PROP_ALIGN)
570 - (a->flags & XTENSA_PROP_ALIGN));
572 if ((a->flags & XTENSA_PROP_ALIGN)
573 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
574 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
575 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
576 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
578 if ((a->flags & XTENSA_PROP_UNREACHABLE)
579 != (b->flags & XTENSA_PROP_UNREACHABLE))
580 return ((b->flags & XTENSA_PROP_UNREACHABLE)
581 - (a->flags & XTENSA_PROP_UNREACHABLE));
583 return (a->flags - b->flags);
586 return (a->address - b->address);
591 property_table_matches (const void *ap, const void *bp)
593 const property_table_entry *a = (const property_table_entry *) ap;
594 const property_table_entry *b = (const property_table_entry *) bp;
596 /* Check if one entry overlaps with the other. */
597 if ((b->address >= a->address && b->address < (a->address + a->size))
598 || (a->address >= b->address && a->address < (b->address + b->size)))
601 return (a->address - b->address);
605 /* Get the literal table or property table entries for the given
606 section. Sets TABLE_P and returns the number of entries. On
607 error, returns a negative value. */
610 xtensa_read_table_entries (bfd *abfd,
612 property_table_entry **table_p,
613 const char *sec_name,
614 bfd_boolean output_addr)
616 asection *table_section;
617 bfd_size_type table_size = 0;
618 bfd_byte *table_data;
619 property_table_entry *blocks;
620 int blk, block_count;
621 bfd_size_type num_records;
622 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
623 bfd_vma section_addr, off;
624 flagword predef_flags;
625 bfd_size_type table_entry_size, section_limit;
628 || !(section->flags & SEC_ALLOC)
629 || (section->flags & SEC_DEBUGGING))
635 table_section = xtensa_get_property_section (section, sec_name);
637 table_size = table_section->size;
645 predef_flags = xtensa_get_property_predef_flags (table_section);
646 table_entry_size = 12;
648 table_entry_size -= 4;
650 num_records = table_size / table_entry_size;
651 table_data = retrieve_contents (abfd, table_section, TRUE);
652 blocks = (property_table_entry *)
653 bfd_malloc (num_records * sizeof (property_table_entry));
657 section_addr = section->output_section->vma + section->output_offset;
659 section_addr = section->vma;
661 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
662 if (internal_relocs && !table_section->reloc_done)
664 qsort (internal_relocs, table_section->reloc_count,
665 sizeof (Elf_Internal_Rela), internal_reloc_compare);
666 irel = internal_relocs;
671 section_limit = bfd_get_section_limit (abfd, section);
672 rel_end = internal_relocs + table_section->reloc_count;
674 for (off = 0; off < table_size; off += table_entry_size)
676 bfd_vma address = bfd_get_32 (abfd, table_data + off);
678 /* Skip any relocations before the current offset. This should help
679 avoid confusion caused by unexpected relocations for the preceding
682 (irel->r_offset < off
683 || (irel->r_offset == off
684 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
691 if (irel && irel->r_offset == off)
694 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
695 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
697 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
700 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
701 BFD_ASSERT (sym_off == 0);
702 address += (section_addr + sym_off + irel->r_addend);
706 if (address < section_addr
707 || address >= section_addr + section_limit)
711 blocks[block_count].address = address;
712 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
714 blocks[block_count].flags = predef_flags;
716 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
720 release_contents (table_section, table_data);
721 release_internal_relocs (table_section, internal_relocs);
725 /* Now sort them into address order for easy reference. */
726 qsort (blocks, block_count, sizeof (property_table_entry),
727 property_table_compare);
729 /* Check that the table contents are valid. Problems may occur,
730 for example, if an unrelocated object file is stripped. */
731 for (blk = 1; blk < block_count; blk++)
733 /* The only circumstance where two entries may legitimately
734 have the same address is when one of them is a zero-size
735 placeholder to mark a place where fill can be inserted.
736 The zero-size entry should come first. */
737 if (blocks[blk - 1].address == blocks[blk].address &&
738 blocks[blk - 1].size != 0)
740 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
742 bfd_set_error (bfd_error_bad_value);
754 static property_table_entry *
755 elf_xtensa_find_property_entry (property_table_entry *property_table,
756 int property_table_size,
759 property_table_entry entry;
760 property_table_entry *rv;
762 if (property_table_size == 0)
765 entry.address = addr;
769 rv = bsearch (&entry, property_table, property_table_size,
770 sizeof (property_table_entry), property_table_matches);
776 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
780 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
787 /* Look through the relocs for a section during the first phase, and
788 calculate needed space in the dynamic reloc sections. */
791 elf_xtensa_check_relocs (bfd *abfd,
792 struct bfd_link_info *info,
794 const Elf_Internal_Rela *relocs)
796 struct elf_xtensa_link_hash_table *htab;
797 Elf_Internal_Shdr *symtab_hdr;
798 struct elf_link_hash_entry **sym_hashes;
799 const Elf_Internal_Rela *rel;
800 const Elf_Internal_Rela *rel_end;
802 if (info->relocatable)
805 htab = elf_xtensa_hash_table (info);
806 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
807 sym_hashes = elf_sym_hashes (abfd);
809 rel_end = relocs + sec->reloc_count;
810 for (rel = relocs; rel < rel_end; rel++)
813 unsigned long r_symndx;
814 struct elf_link_hash_entry *h;
816 r_symndx = ELF32_R_SYM (rel->r_info);
817 r_type = ELF32_R_TYPE (rel->r_info);
819 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
821 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
826 if (r_symndx < symtab_hdr->sh_info)
830 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
831 while (h->root.type == bfd_link_hash_indirect
832 || h->root.type == bfd_link_hash_warning)
833 h = (struct elf_link_hash_entry *) h->root.u.i.link;
842 if ((sec->flags & SEC_ALLOC) != 0)
844 if (h->got.refcount <= 0)
847 h->got.refcount += 1;
852 /* If this relocation is against a local symbol, then it's
853 exactly the same as a normal local GOT entry. */
857 if ((sec->flags & SEC_ALLOC) != 0)
859 if (h->plt.refcount <= 0)
865 h->plt.refcount += 1;
867 /* Keep track of the total PLT relocation count even if we
868 don't yet know whether the dynamic sections will be
870 htab->plt_reloc_count += 1;
872 if (elf_hash_table (info)->dynamic_sections_created)
874 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
881 if ((sec->flags & SEC_ALLOC) != 0)
883 bfd_signed_vma *local_got_refcounts;
885 /* This is a global offset table entry for a local symbol. */
886 local_got_refcounts = elf_local_got_refcounts (abfd);
887 if (local_got_refcounts == NULL)
891 size = symtab_hdr->sh_info;
892 size *= sizeof (bfd_signed_vma);
893 local_got_refcounts =
894 (bfd_signed_vma *) bfd_zalloc (abfd, size);
895 if (local_got_refcounts == NULL)
897 elf_local_got_refcounts (abfd) = local_got_refcounts;
899 local_got_refcounts[r_symndx] += 1;
903 case R_XTENSA_GNU_VTINHERIT:
904 /* This relocation describes the C++ object vtable hierarchy.
905 Reconstruct it for later use during GC. */
906 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
910 case R_XTENSA_GNU_VTENTRY:
911 /* This relocation describes which C++ vtable entries are actually
912 used. Record for later use during GC. */
913 BFD_ASSERT (h != NULL);
915 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
929 elf_xtensa_make_sym_local (struct bfd_link_info *info,
930 struct elf_link_hash_entry *h)
934 if (h->plt.refcount > 0)
936 /* For shared objects, there's no need for PLT entries for local
937 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
938 if (h->got.refcount < 0)
940 h->got.refcount += h->plt.refcount;
946 /* Don't need any dynamic relocations at all. */
954 elf_xtensa_hide_symbol (struct bfd_link_info *info,
955 struct elf_link_hash_entry *h,
956 bfd_boolean force_local)
958 /* For a shared link, move the plt refcount to the got refcount to leave
959 space for RELATIVE relocs. */
960 elf_xtensa_make_sym_local (info, h);
962 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
966 /* Return the section that should be marked against GC for a given
970 elf_xtensa_gc_mark_hook (asection *sec,
971 struct bfd_link_info *info,
972 Elf_Internal_Rela *rel,
973 struct elf_link_hash_entry *h,
974 Elf_Internal_Sym *sym)
976 /* Property sections are marked "KEEP" in the linker scripts, but they
977 should not cause other sections to be marked. (This approach relies
978 on elf_xtensa_discard_info to remove property table entries that
979 describe discarded sections. Alternatively, it might be more
980 efficient to avoid using "KEEP" in the linker scripts and instead use
981 the gc_mark_extra_sections hook to mark only the property sections
982 that describe marked sections. That alternative does not work well
983 with the current property table sections, which do not correspond
984 one-to-one with the sections they describe, but that should be fixed
986 if (xtensa_is_property_section (sec))
990 switch (ELF32_R_TYPE (rel->r_info))
992 case R_XTENSA_GNU_VTINHERIT:
993 case R_XTENSA_GNU_VTENTRY:
997 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1001 /* Update the GOT & PLT entry reference counts
1002 for the section being removed. */
1005 elf_xtensa_gc_sweep_hook (bfd *abfd,
1006 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1008 const Elf_Internal_Rela *relocs)
1010 Elf_Internal_Shdr *symtab_hdr;
1011 struct elf_link_hash_entry **sym_hashes;
1012 bfd_signed_vma *local_got_refcounts;
1013 const Elf_Internal_Rela *rel, *relend;
1015 if (info->relocatable)
1018 if ((sec->flags & SEC_ALLOC) == 0)
1021 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1022 sym_hashes = elf_sym_hashes (abfd);
1023 local_got_refcounts = elf_local_got_refcounts (abfd);
1025 relend = relocs + sec->reloc_count;
1026 for (rel = relocs; rel < relend; rel++)
1028 unsigned long r_symndx;
1029 unsigned int r_type;
1030 struct elf_link_hash_entry *h = NULL;
1032 r_symndx = ELF32_R_SYM (rel->r_info);
1033 if (r_symndx >= symtab_hdr->sh_info)
1035 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1036 while (h->root.type == bfd_link_hash_indirect
1037 || h->root.type == bfd_link_hash_warning)
1038 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1041 r_type = ELF32_R_TYPE (rel->r_info);
1047 if (h->got.refcount > 0)
1054 if (h->plt.refcount > 0)
1059 if (local_got_refcounts[r_symndx] > 0)
1060 local_got_refcounts[r_symndx] -= 1;
1072 /* Create all the dynamic sections. */
1075 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1077 struct elf_xtensa_link_hash_table *htab;
1078 flagword flags, noalloc_flags;
1080 htab = elf_xtensa_hash_table (info);
1082 /* First do all the standard stuff. */
1083 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1085 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1086 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1087 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1088 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
1090 /* Create any extra PLT sections in case check_relocs has already
1091 been called on all the non-dynamic input files. */
1092 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1095 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1096 | SEC_LINKER_CREATED | SEC_READONLY);
1097 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1099 /* Mark the ".got.plt" section READONLY. */
1100 if (htab->sgotplt == NULL
1101 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1104 /* Create ".rela.got". */
1105 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1106 if (htab->srelgot == NULL
1107 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
1110 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1111 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1112 if (htab->sgotloc == NULL
1113 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1116 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1117 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1119 if (htab->spltlittbl == NULL
1120 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1128 add_extra_plt_sections (struct bfd_link_info *info, int count)
1130 bfd *dynobj = elf_hash_table (info)->dynobj;
1133 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1134 ".got.plt" sections. */
1135 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1141 /* Stop when we find a section has already been created. */
1142 if (elf_xtensa_get_plt_section (info, chunk))
1145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1146 | SEC_LINKER_CREATED | SEC_READONLY);
1148 sname = (char *) bfd_malloc (10);
1149 sprintf (sname, ".plt.%u", chunk);
1150 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
1152 || ! bfd_set_section_alignment (dynobj, s, 2))
1155 sname = (char *) bfd_malloc (14);
1156 sprintf (sname, ".got.plt.%u", chunk);
1157 s = bfd_make_section_with_flags (dynobj, sname, flags);
1159 || ! bfd_set_section_alignment (dynobj, s, 2))
1167 /* Adjust a symbol defined by a dynamic object and referenced by a
1168 regular object. The current definition is in some section of the
1169 dynamic object, but we're not including those sections. We have to
1170 change the definition to something the rest of the link can
1174 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1175 struct elf_link_hash_entry *h)
1177 /* If this is a weak symbol, and there is a real definition, the
1178 processor independent code will have arranged for us to see the
1179 real definition first, and we can just use the same value. */
1182 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1183 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1184 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1185 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1189 /* This is a reference to a symbol defined by a dynamic object. The
1190 reference must go through the GOT, so there's no need for COPY relocs,
1198 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1200 struct bfd_link_info *info;
1201 struct elf_xtensa_link_hash_table *htab;
1202 bfd_boolean is_dynamic;
1204 if (h->root.type == bfd_link_hash_indirect)
1207 if (h->root.type == bfd_link_hash_warning)
1208 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1210 info = (struct bfd_link_info *) arg;
1211 htab = elf_xtensa_hash_table (info);
1213 is_dynamic = elf_xtensa_dynamic_symbol_p (h, info);
1216 elf_xtensa_make_sym_local (info, h);
1218 if (h->plt.refcount > 0)
1219 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1221 if (h->got.refcount > 0)
1222 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1229 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1231 struct elf_xtensa_link_hash_table *htab;
1234 htab = elf_xtensa_hash_table (info);
1236 for (i = info->input_bfds; i; i = i->link_next)
1238 bfd_signed_vma *local_got_refcounts;
1239 bfd_size_type j, cnt;
1240 Elf_Internal_Shdr *symtab_hdr;
1242 local_got_refcounts = elf_local_got_refcounts (i);
1243 if (!local_got_refcounts)
1246 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1247 cnt = symtab_hdr->sh_info;
1249 for (j = 0; j < cnt; ++j)
1251 if (local_got_refcounts[j] > 0)
1252 htab->srelgot->size += (local_got_refcounts[j]
1253 * sizeof (Elf32_External_Rela));
1259 /* Set the sizes of the dynamic sections. */
1262 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1263 struct bfd_link_info *info)
1265 struct elf_xtensa_link_hash_table *htab;
1267 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1268 bfd_boolean relplt, relgot;
1269 int plt_entries, plt_chunks, chunk;
1274 htab = elf_xtensa_hash_table (info);
1275 dynobj = elf_hash_table (info)->dynobj;
1278 srelgot = htab->srelgot;
1279 srelplt = htab->srelplt;
1281 if (elf_hash_table (info)->dynamic_sections_created)
1283 BFD_ASSERT (htab->srelgot != NULL
1284 && htab->srelplt != NULL
1285 && htab->sgot != NULL
1286 && htab->spltlittbl != NULL
1287 && htab->sgotloc != NULL);
1289 /* Set the contents of the .interp section to the interpreter. */
1290 if (info->executable)
1292 s = bfd_get_section_by_name (dynobj, ".interp");
1295 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1296 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1299 /* Allocate room for one word in ".got". */
1300 htab->sgot->size = 4;
1302 /* Allocate space in ".rela.got" for literals that reference global
1303 symbols and space in ".rela.plt" for literals that have PLT
1305 elf_link_hash_traverse (elf_hash_table (info),
1306 elf_xtensa_allocate_dynrelocs,
1309 /* If we are generating a shared object, we also need space in
1310 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1311 reference local symbols. */
1313 elf_xtensa_allocate_local_got_size (info);
1315 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1316 each PLT entry, we need the PLT code plus a 4-byte literal.
1317 For each chunk of ".plt", we also need two more 4-byte
1318 literals, two corresponding entries in ".rela.got", and an
1319 8-byte entry in ".xt.lit.plt". */
1320 spltlittbl = htab->spltlittbl;
1321 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1323 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1325 /* Iterate over all the PLT chunks, including any extra sections
1326 created earlier because the initial count of PLT relocations
1327 was an overestimate. */
1329 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1334 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1335 BFD_ASSERT (sgotplt != NULL);
1337 if (chunk < plt_chunks - 1)
1338 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1339 else if (chunk == plt_chunks - 1)
1340 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1344 if (chunk_entries != 0)
1346 sgotplt->size = 4 * (chunk_entries + 2);
1347 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1348 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1349 spltlittbl->size += 8;
1358 /* Allocate space in ".got.loc" to match the total size of all the
1360 sgotloc = htab->sgotloc;
1361 sgotloc->size = spltlittbl->size;
1362 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1364 if (abfd->flags & DYNAMIC)
1366 for (s = abfd->sections; s != NULL; s = s->next)
1368 if (! elf_discarded_section (s)
1369 && xtensa_is_littable_section (s)
1371 sgotloc->size += s->size;
1376 /* Allocate memory for dynamic sections. */
1379 for (s = dynobj->sections; s != NULL; s = s->next)
1383 if ((s->flags & SEC_LINKER_CREATED) == 0)
1386 /* It's OK to base decisions on the section name, because none
1387 of the dynobj section names depend upon the input files. */
1388 name = bfd_get_section_name (dynobj, s);
1390 if (CONST_STRNEQ (name, ".rela"))
1394 if (strcmp (name, ".rela.plt") == 0)
1396 else if (strcmp (name, ".rela.got") == 0)
1399 /* We use the reloc_count field as a counter if we need
1400 to copy relocs into the output file. */
1404 else if (! CONST_STRNEQ (name, ".plt.")
1405 && ! CONST_STRNEQ (name, ".got.plt.")
1406 && strcmp (name, ".got") != 0
1407 && strcmp (name, ".plt") != 0
1408 && strcmp (name, ".got.plt") != 0
1409 && strcmp (name, ".xt.lit.plt") != 0
1410 && strcmp (name, ".got.loc") != 0)
1412 /* It's not one of our sections, so don't allocate space. */
1418 /* If we don't need this section, strip it from the output
1419 file. We must create the ".plt*" and ".got.plt*"
1420 sections in create_dynamic_sections and/or check_relocs
1421 based on a conservative estimate of the PLT relocation
1422 count, because the sections must be created before the
1423 linker maps input sections to output sections. The
1424 linker does that before size_dynamic_sections, where we
1425 compute the exact size of the PLT, so there may be more
1426 of these sections than are actually needed. */
1427 s->flags |= SEC_EXCLUDE;
1429 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1431 /* Allocate memory for the section contents. */
1432 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1433 if (s->contents == NULL)
1438 if (elf_hash_table (info)->dynamic_sections_created)
1440 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1441 known until finish_dynamic_sections, but we need to get the relocs
1442 in place before they are sorted. */
1443 for (chunk = 0; chunk < plt_chunks; chunk++)
1445 Elf_Internal_Rela irela;
1449 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1452 loc = (srelgot->contents
1453 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1454 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1455 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1456 loc + sizeof (Elf32_External_Rela));
1457 srelgot->reloc_count += 2;
1460 /* Add some entries to the .dynamic section. We fill in the
1461 values later, in elf_xtensa_finish_dynamic_sections, but we
1462 must add the entries now so that we get the correct size for
1463 the .dynamic section. The DT_DEBUG entry is filled in by the
1464 dynamic linker and used by the debugger. */
1465 #define add_dynamic_entry(TAG, VAL) \
1466 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1468 if (info->executable)
1470 if (!add_dynamic_entry (DT_DEBUG, 0))
1476 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1477 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1478 || !add_dynamic_entry (DT_JMPREL, 0))
1484 if (!add_dynamic_entry (DT_RELA, 0)
1485 || !add_dynamic_entry (DT_RELASZ, 0)
1486 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1490 if (!add_dynamic_entry (DT_PLTGOT, 0)
1491 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1492 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1495 #undef add_dynamic_entry
1501 /* Perform the specified relocation. The instruction at (contents + address)
1502 is modified to set one operand to represent the value in "relocation". The
1503 operand position is determined by the relocation type recorded in the
1506 #define CALL_SEGMENT_BITS (30)
1507 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1509 static bfd_reloc_status_type
1510 elf_xtensa_do_reloc (reloc_howto_type *howto,
1512 asection *input_section,
1516 bfd_boolean is_weak_undef,
1517 char **error_message)
1520 xtensa_opcode opcode;
1521 xtensa_isa isa = xtensa_default_isa;
1522 static xtensa_insnbuf ibuff = NULL;
1523 static xtensa_insnbuf sbuff = NULL;
1524 bfd_vma self_address;
1525 bfd_size_type input_size;
1531 ibuff = xtensa_insnbuf_alloc (isa);
1532 sbuff = xtensa_insnbuf_alloc (isa);
1535 input_size = bfd_get_section_limit (abfd, input_section);
1537 /* Calculate the PC address for this instruction. */
1538 self_address = (input_section->output_section->vma
1539 + input_section->output_offset
1542 switch (howto->type)
1545 case R_XTENSA_DIFF8:
1546 case R_XTENSA_DIFF16:
1547 case R_XTENSA_DIFF32:
1548 return bfd_reloc_ok;
1550 case R_XTENSA_ASM_EXPAND:
1553 /* Check for windowed CALL across a 1GB boundary. */
1554 xtensa_opcode opcode =
1555 get_expanded_call_opcode (contents + address,
1556 input_size - address, 0);
1557 if (is_windowed_call_opcode (opcode))
1559 if ((self_address >> CALL_SEGMENT_BITS)
1560 != (relocation >> CALL_SEGMENT_BITS))
1562 *error_message = "windowed longcall crosses 1GB boundary; "
1564 return bfd_reloc_dangerous;
1568 return bfd_reloc_ok;
1570 case R_XTENSA_ASM_SIMPLIFY:
1572 /* Convert the L32R/CALLX to CALL. */
1573 bfd_reloc_status_type retval =
1574 elf_xtensa_do_asm_simplify (contents, address, input_size,
1576 if (retval != bfd_reloc_ok)
1577 return bfd_reloc_dangerous;
1579 /* The CALL needs to be relocated. Continue below for that part. */
1582 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1590 x = bfd_get_32 (abfd, contents + address);
1592 bfd_put_32 (abfd, x, contents + address);
1594 return bfd_reloc_ok;
1596 case R_XTENSA_32_PCREL:
1597 bfd_put_32 (abfd, relocation - self_address, contents + address);
1598 return bfd_reloc_ok;
1601 /* Only instruction slot-specific relocations handled below.... */
1602 slot = get_relocation_slot (howto->type);
1603 if (slot == XTENSA_UNDEFINED)
1605 *error_message = "unexpected relocation";
1606 return bfd_reloc_dangerous;
1609 /* Read the instruction into a buffer and decode the opcode. */
1610 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1611 input_size - address);
1612 fmt = xtensa_format_decode (isa, ibuff);
1613 if (fmt == XTENSA_UNDEFINED)
1615 *error_message = "cannot decode instruction format";
1616 return bfd_reloc_dangerous;
1619 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1621 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1622 if (opcode == XTENSA_UNDEFINED)
1624 *error_message = "cannot decode instruction opcode";
1625 return bfd_reloc_dangerous;
1628 /* Check for opcode-specific "alternate" relocations. */
1629 if (is_alt_relocation (howto->type))
1631 if (opcode == get_l32r_opcode ())
1633 /* Handle the special-case of non-PC-relative L32R instructions. */
1634 bfd *output_bfd = input_section->output_section->owner;
1635 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1638 *error_message = "relocation references missing .lit4 section";
1639 return bfd_reloc_dangerous;
1641 self_address = ((lit4_sec->vma & ~0xfff)
1642 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1643 newval = relocation;
1646 else if (opcode == get_const16_opcode ())
1648 /* ALT used for high 16 bits. */
1649 newval = relocation >> 16;
1654 /* No other "alternate" relocations currently defined. */
1655 *error_message = "unexpected relocation";
1656 return bfd_reloc_dangerous;
1659 else /* Not an "alternate" relocation.... */
1661 if (opcode == get_const16_opcode ())
1663 newval = relocation & 0xffff;
1668 /* ...normal PC-relative relocation.... */
1670 /* Determine which operand is being relocated. */
1671 opnd = get_relocation_opnd (opcode, howto->type);
1672 if (opnd == XTENSA_UNDEFINED)
1674 *error_message = "unexpected relocation";
1675 return bfd_reloc_dangerous;
1678 if (!howto->pc_relative)
1680 *error_message = "expected PC-relative relocation";
1681 return bfd_reloc_dangerous;
1684 newval = relocation;
1688 /* Apply the relocation. */
1689 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1690 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1691 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1694 const char *opname = xtensa_opcode_name (isa, opcode);
1697 msg = "cannot encode";
1698 if (is_direct_call_opcode (opcode))
1700 if ((relocation & 0x3) != 0)
1701 msg = "misaligned call target";
1703 msg = "call target out of range";
1705 else if (opcode == get_l32r_opcode ())
1707 if ((relocation & 0x3) != 0)
1708 msg = "misaligned literal target";
1709 else if (is_alt_relocation (howto->type))
1710 msg = "literal target out of range (too many literals)";
1711 else if (self_address > relocation)
1712 msg = "literal target out of range (try using text-section-literals)";
1714 msg = "literal placed after use";
1717 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
1718 return bfd_reloc_dangerous;
1721 /* Check for calls across 1GB boundaries. */
1722 if (is_direct_call_opcode (opcode)
1723 && is_windowed_call_opcode (opcode))
1725 if ((self_address >> CALL_SEGMENT_BITS)
1726 != (relocation >> CALL_SEGMENT_BITS))
1729 "windowed call crosses 1GB boundary; return may fail";
1730 return bfd_reloc_dangerous;
1734 /* Write the modified instruction back out of the buffer. */
1735 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1736 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1737 input_size - address);
1738 return bfd_reloc_ok;
1743 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
1745 /* To reduce the size of the memory leak,
1746 we only use a single message buffer. */
1747 static bfd_size_type alloc_size = 0;
1748 static char *message = NULL;
1749 bfd_size_type orig_len, len = 0;
1750 bfd_boolean is_append;
1752 VA_OPEN (ap, arglen);
1753 VA_FIXEDARG (ap, const char *, origmsg);
1755 is_append = (origmsg == message);
1757 orig_len = strlen (origmsg);
1758 len = orig_len + strlen (fmt) + arglen + 20;
1759 if (len > alloc_size)
1761 message = (char *) bfd_realloc (message, len);
1765 memcpy (message, origmsg, orig_len);
1766 vsprintf (message + orig_len, fmt, ap);
1772 /* This function is registered as the "special_function" in the
1773 Xtensa howto for handling simplify operations.
1774 bfd_perform_relocation / bfd_install_relocation use it to
1775 perform (install) the specified relocation. Since this replaces the code
1776 in bfd_perform_relocation, it is basically an Xtensa-specific,
1777 stripped-down version of bfd_perform_relocation. */
1779 static bfd_reloc_status_type
1780 bfd_elf_xtensa_reloc (bfd *abfd,
1781 arelent *reloc_entry,
1784 asection *input_section,
1786 char **error_message)
1789 bfd_reloc_status_type flag;
1790 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1791 bfd_vma output_base = 0;
1792 reloc_howto_type *howto = reloc_entry->howto;
1793 asection *reloc_target_output_section;
1794 bfd_boolean is_weak_undef;
1796 if (!xtensa_default_isa)
1797 xtensa_default_isa = xtensa_isa_init (0, 0);
1799 /* ELF relocs are against symbols. If we are producing relocatable
1800 output, and the reloc is against an external symbol, the resulting
1801 reloc will also be against the same symbol. In such a case, we
1802 don't want to change anything about the way the reloc is handled,
1803 since it will all be done at final link time. This test is similar
1804 to what bfd_elf_generic_reloc does except that it lets relocs with
1805 howto->partial_inplace go through even if the addend is non-zero.
1806 (The real problem is that partial_inplace is set for XTENSA_32
1807 relocs to begin with, but that's a long story and there's little we
1808 can do about it now....) */
1810 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
1812 reloc_entry->address += input_section->output_offset;
1813 return bfd_reloc_ok;
1816 /* Is the address of the relocation really within the section? */
1817 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1818 return bfd_reloc_outofrange;
1820 /* Work out which section the relocation is targeted at and the
1821 initial relocation command value. */
1823 /* Get symbol value. (Common symbols are special.) */
1824 if (bfd_is_com_section (symbol->section))
1827 relocation = symbol->value;
1829 reloc_target_output_section = symbol->section->output_section;
1831 /* Convert input-section-relative symbol value to absolute. */
1832 if ((output_bfd && !howto->partial_inplace)
1833 || reloc_target_output_section == NULL)
1836 output_base = reloc_target_output_section->vma;
1838 relocation += output_base + symbol->section->output_offset;
1840 /* Add in supplied addend. */
1841 relocation += reloc_entry->addend;
1843 /* Here the variable relocation holds the final address of the
1844 symbol we are relocating against, plus any addend. */
1847 if (!howto->partial_inplace)
1849 /* This is a partial relocation, and we want to apply the relocation
1850 to the reloc entry rather than the raw data. Everything except
1851 relocations against section symbols has already been handled
1854 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1855 reloc_entry->addend = relocation;
1856 reloc_entry->address += input_section->output_offset;
1857 return bfd_reloc_ok;
1861 reloc_entry->address += input_section->output_offset;
1862 reloc_entry->addend = 0;
1866 is_weak_undef = (bfd_is_und_section (symbol->section)
1867 && (symbol->flags & BSF_WEAK) != 0);
1868 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1869 (bfd_byte *) data, (bfd_vma) octets,
1870 is_weak_undef, error_message);
1872 if (flag == bfd_reloc_dangerous)
1874 /* Add the symbol name to the error message. */
1875 if (! *error_message)
1876 *error_message = "";
1877 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1878 strlen (symbol->name) + 17,
1880 (unsigned long) reloc_entry->addend);
1887 /* Set up an entry in the procedure linkage table. */
1890 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
1892 unsigned reloc_index)
1894 asection *splt, *sgotplt;
1895 bfd_vma plt_base, got_base;
1896 bfd_vma code_offset, lit_offset;
1899 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1900 splt = elf_xtensa_get_plt_section (info, chunk);
1901 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1902 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1904 plt_base = splt->output_section->vma + splt->output_offset;
1905 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1907 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1908 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1910 /* Fill in the literal entry. This is the offset of the dynamic
1911 relocation entry. */
1912 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1913 sgotplt->contents + lit_offset);
1915 /* Fill in the entry in the procedure linkage table. */
1916 memcpy (splt->contents + code_offset,
1917 (bfd_big_endian (output_bfd)
1918 ? elf_xtensa_be_plt_entry
1919 : elf_xtensa_le_plt_entry),
1921 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1922 plt_base + code_offset + 3),
1923 splt->contents + code_offset + 4);
1924 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1925 plt_base + code_offset + 6),
1926 splt->contents + code_offset + 7);
1927 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1928 plt_base + code_offset + 9),
1929 splt->contents + code_offset + 10);
1931 return plt_base + code_offset;
1935 /* Relocate an Xtensa ELF section. This is invoked by the linker for
1936 both relocatable and final links. */
1939 elf_xtensa_relocate_section (bfd *output_bfd,
1940 struct bfd_link_info *info,
1942 asection *input_section,
1944 Elf_Internal_Rela *relocs,
1945 Elf_Internal_Sym *local_syms,
1946 asection **local_sections)
1948 struct elf_xtensa_link_hash_table *htab;
1949 Elf_Internal_Shdr *symtab_hdr;
1950 Elf_Internal_Rela *rel;
1951 Elf_Internal_Rela *relend;
1952 struct elf_link_hash_entry **sym_hashes;
1953 property_table_entry *lit_table = 0;
1955 char *error_message = NULL;
1956 bfd_size_type input_size;
1958 if (!xtensa_default_isa)
1959 xtensa_default_isa = xtensa_isa_init (0, 0);
1961 htab = elf_xtensa_hash_table (info);
1962 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1963 sym_hashes = elf_sym_hashes (input_bfd);
1965 if (elf_hash_table (info)->dynamic_sections_created)
1967 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
1968 &lit_table, XTENSA_LIT_SEC_NAME,
1974 input_size = bfd_get_section_limit (input_bfd, input_section);
1977 relend = relocs + input_section->reloc_count;
1978 for (; rel < relend; rel++)
1981 reloc_howto_type *howto;
1982 unsigned long r_symndx;
1983 struct elf_link_hash_entry *h;
1984 Elf_Internal_Sym *sym;
1987 bfd_reloc_status_type r;
1988 bfd_boolean is_weak_undef;
1989 bfd_boolean unresolved_reloc;
1992 r_type = ELF32_R_TYPE (rel->r_info);
1993 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
1994 || r_type == (int) R_XTENSA_GNU_VTENTRY)
1997 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
1999 bfd_set_error (bfd_error_bad_value);
2002 howto = &elf_howto_table[r_type];
2004 r_symndx = ELF32_R_SYM (rel->r_info);
2009 is_weak_undef = FALSE;
2010 unresolved_reloc = FALSE;
2013 if (howto->partial_inplace && !info->relocatable)
2015 /* Because R_XTENSA_32 was made partial_inplace to fix some
2016 problems with DWARF info in partial links, there may be
2017 an addend stored in the contents. Take it out of there
2018 and move it back into the addend field of the reloc. */
2019 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2020 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2023 if (r_symndx < symtab_hdr->sh_info)
2025 sym = local_syms + r_symndx;
2026 sec = local_sections[r_symndx];
2027 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2031 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2032 r_symndx, symtab_hdr, sym_hashes,
2034 unresolved_reloc, warned);
2037 && !unresolved_reloc
2038 && h->root.type == bfd_link_hash_undefweak)
2039 is_weak_undef = TRUE;
2042 if (sec != NULL && elf_discarded_section (sec))
2044 /* For relocs against symbols from removed linkonce sections,
2045 or sections discarded by a linker script, we just want the
2046 section contents zeroed. Avoid any special processing. */
2047 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2053 if (info->relocatable)
2055 /* This is a relocatable link.
2056 1) If the reloc is against a section symbol, adjust
2057 according to the output section.
2058 2) If there is a new target for this relocation,
2059 the new target will be in the same output section.
2060 We adjust the relocation by the output section
2063 if (relaxing_section)
2065 /* Check if this references a section in another input file. */
2066 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2071 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2073 char *error_message = NULL;
2074 /* Convert ASM_SIMPLIFY into the simpler relocation
2075 so that they never escape a relaxing link. */
2076 r = contract_asm_expansion (contents, input_size, rel,
2078 if (r != bfd_reloc_ok)
2080 if (!((*info->callbacks->reloc_dangerous)
2081 (info, error_message, input_bfd, input_section,
2085 r_type = ELF32_R_TYPE (rel->r_info);
2088 /* This is a relocatable link, so we don't have to change
2089 anything unless the reloc is against a section symbol,
2090 in which case we have to adjust according to where the
2091 section symbol winds up in the output section. */
2092 if (r_symndx < symtab_hdr->sh_info)
2094 sym = local_syms + r_symndx;
2095 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2097 sec = local_sections[r_symndx];
2098 rel->r_addend += sec->output_offset + sym->st_value;
2102 /* If there is an addend with a partial_inplace howto,
2103 then move the addend to the contents. This is a hack
2104 to work around problems with DWARF in relocatable links
2105 with some previous version of BFD. Now we can't easily get
2106 rid of the hack without breaking backward compatibility.... */
2109 howto = &elf_howto_table[r_type];
2110 if (howto->partial_inplace)
2112 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2113 rel->r_addend, contents,
2114 rel->r_offset, FALSE,
2116 if (r != bfd_reloc_ok)
2118 if (!((*info->callbacks->reloc_dangerous)
2119 (info, error_message, input_bfd, input_section,
2127 /* Done with work for relocatable link; continue with next reloc. */
2131 /* This is a final link. */
2133 if (relaxing_section)
2135 /* Check if this references a section in another input file. */
2136 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2140 /* Sanity check the address. */
2141 if (rel->r_offset >= input_size
2142 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2144 (*_bfd_error_handler)
2145 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2146 input_bfd, input_section, rel->r_offset, input_size);
2147 bfd_set_error (bfd_error_bad_value);
2151 /* Generate dynamic relocations. */
2152 if (elf_hash_table (info)->dynamic_sections_created)
2154 bfd_boolean dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2156 if (dynamic_symbol && (is_operand_relocation (r_type)
2157 || r_type == R_XTENSA_32_PCREL))
2159 const char *name = h->root.root.string;
2161 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2162 strlen (name) + 2, name);
2163 if (!((*info->callbacks->reloc_dangerous)
2164 (info, error_message, input_bfd, input_section,
2169 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2170 && (input_section->flags & SEC_ALLOC) != 0
2171 && (dynamic_symbol || info->shared))
2173 Elf_Internal_Rela outrel;
2177 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2178 srel = htab->srelplt;
2180 srel = htab->srelgot;
2182 BFD_ASSERT (srel != NULL);
2185 _bfd_elf_section_offset (output_bfd, info,
2186 input_section, rel->r_offset);
2188 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2189 memset (&outrel, 0, sizeof outrel);
2192 outrel.r_offset += (input_section->output_section->vma
2193 + input_section->output_offset);
2195 /* Complain if the relocation is in a read-only section
2196 and not in a literal pool. */
2197 if ((input_section->flags & SEC_READONLY) != 0
2198 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2202 _("dynamic relocation in read-only section");
2203 if (!((*info->callbacks->reloc_dangerous)
2204 (info, error_message, input_bfd, input_section,
2211 outrel.r_addend = rel->r_addend;
2214 if (r_type == R_XTENSA_32)
2217 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2220 else /* r_type == R_XTENSA_PLT */
2223 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2225 /* Create the PLT entry and set the initial
2226 contents of the literal entry to the address of
2229 elf_xtensa_create_plt_entry (info, output_bfd,
2232 unresolved_reloc = FALSE;
2236 /* Generate a RELATIVE relocation. */
2237 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2238 outrel.r_addend = 0;
2242 loc = (srel->contents
2243 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2244 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2245 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2248 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2250 /* This should only happen for non-PIC code, which is not
2251 supposed to be used on systems with dynamic linking.
2252 Just ignore these relocations. */
2257 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2258 because such sections are not SEC_ALLOC and thus ld.so will
2259 not process them. */
2260 if (unresolved_reloc
2261 && !((input_section->flags & SEC_DEBUGGING) != 0
2264 (*_bfd_error_handler)
2265 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2268 (long) rel->r_offset,
2270 h->root.root.string);
2274 /* There's no point in calling bfd_perform_relocation here.
2275 Just go directly to our "special function". */
2276 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2277 relocation + rel->r_addend,
2278 contents, rel->r_offset, is_weak_undef,
2281 if (r != bfd_reloc_ok && !warned)
2285 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2286 BFD_ASSERT (error_message != NULL);
2289 name = h->root.root.string;
2292 name = bfd_elf_string_from_elf_section
2293 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2294 if (name && *name == '\0')
2295 name = bfd_section_name (input_bfd, sec);
2299 if (rel->r_addend == 0)
2300 error_message = vsprint_msg (error_message, ": %s",
2301 strlen (name) + 2, name);
2303 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2305 name, (int)rel->r_addend);
2308 if (!((*info->callbacks->reloc_dangerous)
2309 (info, error_message, input_bfd, input_section,
2318 input_section->reloc_done = TRUE;
2324 /* Finish up dynamic symbol handling. There's not much to do here since
2325 the PLT and GOT entries are all set up by relocate_section. */
2328 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2329 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2330 struct elf_link_hash_entry *h,
2331 Elf_Internal_Sym *sym)
2333 if (h->needs_plt && !h->def_regular)
2335 /* Mark the symbol as undefined, rather than as defined in
2336 the .plt section. Leave the value alone. */
2337 sym->st_shndx = SHN_UNDEF;
2338 /* If the symbol is weak, we do need to clear the value.
2339 Otherwise, the PLT entry would provide a definition for
2340 the symbol even if the symbol wasn't defined anywhere,
2341 and so the symbol would never be NULL. */
2342 if (!h->ref_regular_nonweak)
2346 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2347 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2348 || h == elf_hash_table (info)->hgot)
2349 sym->st_shndx = SHN_ABS;
2355 /* Combine adjacent literal table entries in the output. Adjacent
2356 entries within each input section may have been removed during
2357 relaxation, but we repeat the process here, even though it's too late
2358 to shrink the output section, because it's important to minimize the
2359 number of literal table entries to reduce the start-up work for the
2360 runtime linker. Returns the number of remaining table entries or -1
2364 elf_xtensa_combine_prop_entries (bfd *output_bfd,
2369 property_table_entry *table;
2370 bfd_size_type section_size, sgotloc_size;
2374 section_size = sxtlit->size;
2375 BFD_ASSERT (section_size % 8 == 0);
2376 num = section_size / 8;
2378 sgotloc_size = sgotloc->size;
2379 if (sgotloc_size != section_size)
2381 (*_bfd_error_handler)
2382 (_("internal inconsistency in size of .got.loc section"));
2386 table = bfd_malloc (num * sizeof (property_table_entry));
2390 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2391 propagates to the output section, where it doesn't really apply and
2392 where it breaks the following call to bfd_malloc_and_get_section. */
2393 sxtlit->flags &= ~SEC_IN_MEMORY;
2395 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2403 /* There should never be any relocations left at this point, so this
2404 is quite a bit easier than what is done during relaxation. */
2406 /* Copy the raw contents into a property table array and sort it. */
2408 for (n = 0; n < num; n++)
2410 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2411 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2414 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2416 for (n = 0; n < num; n++)
2418 bfd_boolean remove = FALSE;
2420 if (table[n].size == 0)
2423 (table[n-1].address + table[n-1].size == table[n].address))
2425 table[n-1].size += table[n].size;
2431 for (m = n; m < num - 1; m++)
2433 table[m].address = table[m+1].address;
2434 table[m].size = table[m+1].size;
2442 /* Copy the data back to the raw contents. */
2444 for (n = 0; n < num; n++)
2446 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2447 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2451 /* Clear the removed bytes. */
2452 if ((bfd_size_type) (num * 8) < section_size)
2453 memset (&contents[num * 8], 0, section_size - num * 8);
2455 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2459 /* Copy the contents to ".got.loc". */
2460 memcpy (sgotloc->contents, contents, section_size);
2468 /* Finish up the dynamic sections. */
2471 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2472 struct bfd_link_info *info)
2474 struct elf_xtensa_link_hash_table *htab;
2476 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
2477 Elf32_External_Dyn *dyncon, *dynconend;
2478 int num_xtlit_entries = 0;
2480 if (! elf_hash_table (info)->dynamic_sections_created)
2483 htab = elf_xtensa_hash_table (info);
2484 dynobj = elf_hash_table (info)->dynobj;
2485 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2486 BFD_ASSERT (sdyn != NULL);
2488 /* Set the first entry in the global offset table to the address of
2489 the dynamic section. */
2493 BFD_ASSERT (sgot->size == 4);
2495 bfd_put_32 (output_bfd, 0, sgot->contents);
2497 bfd_put_32 (output_bfd,
2498 sdyn->output_section->vma + sdyn->output_offset,
2502 srelplt = htab->srelplt;
2503 if (srelplt && srelplt->size != 0)
2505 asection *sgotplt, *srelgot, *spltlittbl;
2506 int chunk, plt_chunks, plt_entries;
2507 Elf_Internal_Rela irela;
2509 unsigned rtld_reloc;
2511 srelgot = htab->srelgot;
2512 spltlittbl = htab->spltlittbl;
2513 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
2515 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2516 of them follow immediately after.... */
2517 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2519 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2520 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2521 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2524 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2526 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
2528 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2530 for (chunk = 0; chunk < plt_chunks; chunk++)
2532 int chunk_entries = 0;
2534 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2535 BFD_ASSERT (sgotplt != NULL);
2537 /* Emit special RTLD relocations for the first two entries in
2538 each chunk of the .got.plt section. */
2540 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2541 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2542 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2543 irela.r_offset = (sgotplt->output_section->vma
2544 + sgotplt->output_offset);
2545 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2546 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2548 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2550 /* Next literal immediately follows the first. */
2551 loc += sizeof (Elf32_External_Rela);
2552 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2553 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2554 irela.r_offset = (sgotplt->output_section->vma
2555 + sgotplt->output_offset + 4);
2556 /* Tell rtld to set value to object's link map. */
2558 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2560 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2562 /* Fill in the literal table. */
2563 if (chunk < plt_chunks - 1)
2564 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2566 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2568 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
2569 bfd_put_32 (output_bfd,
2570 sgotplt->output_section->vma + sgotplt->output_offset,
2571 spltlittbl->contents + (chunk * 8) + 0);
2572 bfd_put_32 (output_bfd,
2573 8 + (chunk_entries * 4),
2574 spltlittbl->contents + (chunk * 8) + 4);
2577 /* All the dynamic relocations have been emitted at this point.
2578 Make sure the relocation sections are the correct size. */
2579 if (srelgot->size != (sizeof (Elf32_External_Rela)
2580 * srelgot->reloc_count)
2581 || srelplt->size != (sizeof (Elf32_External_Rela)
2582 * srelplt->reloc_count))
2585 /* The .xt.lit.plt section has just been modified. This must
2586 happen before the code below which combines adjacent literal
2587 table entries, and the .xt.lit.plt contents have to be forced to
2589 if (! bfd_set_section_contents (output_bfd,
2590 spltlittbl->output_section,
2591 spltlittbl->contents,
2592 spltlittbl->output_offset,
2595 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2596 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2599 /* Combine adjacent literal table entries. */
2600 BFD_ASSERT (! info->relocatable);
2601 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2602 sgotloc = htab->sgotloc;
2603 BFD_ASSERT (sgotloc);
2607 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
2608 if (num_xtlit_entries < 0)
2612 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2613 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
2614 for (; dyncon < dynconend; dyncon++)
2616 Elf_Internal_Dyn dyn;
2618 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2625 case DT_XTENSA_GOT_LOC_SZ:
2626 dyn.d_un.d_val = num_xtlit_entries;
2629 case DT_XTENSA_GOT_LOC_OFF:
2630 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
2634 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2638 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2642 dyn.d_un.d_val = htab->srelplt->output_section->size;
2646 /* Adjust RELASZ to not include JMPREL. This matches what
2647 glibc expects and what is done for several other ELF
2648 targets (e.g., i386, alpha), but the "correct" behavior
2649 seems to be unresolved. Since the linker script arranges
2650 for .rela.plt to follow all other relocation sections, we
2651 don't have to worry about changing the DT_RELA entry. */
2653 dyn.d_un.d_val -= htab->srelplt->output_section->size;
2657 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2664 /* Functions for dealing with the e_flags field. */
2666 /* Merge backend specific data from an object file to the output
2667 object file when linking. */
2670 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2672 unsigned out_mach, in_mach;
2673 flagword out_flag, in_flag;
2675 /* Check if we have the same endianess. */
2676 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2679 /* Don't even pretend to support mixed-format linking. */
2680 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2681 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2684 out_flag = elf_elfheader (obfd)->e_flags;
2685 in_flag = elf_elfheader (ibfd)->e_flags;
2687 out_mach = out_flag & EF_XTENSA_MACH;
2688 in_mach = in_flag & EF_XTENSA_MACH;
2689 if (out_mach != in_mach)
2691 (*_bfd_error_handler)
2692 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
2693 ibfd, out_mach, in_mach);
2694 bfd_set_error (bfd_error_wrong_format);
2698 if (! elf_flags_init (obfd))
2700 elf_flags_init (obfd) = TRUE;
2701 elf_elfheader (obfd)->e_flags = in_flag;
2703 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2704 && bfd_get_arch_info (obfd)->the_default)
2705 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2706 bfd_get_mach (ibfd));
2711 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2712 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
2714 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2715 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
2722 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
2724 BFD_ASSERT (!elf_flags_init (abfd)
2725 || elf_elfheader (abfd)->e_flags == flags);
2727 elf_elfheader (abfd)->e_flags |= flags;
2728 elf_flags_init (abfd) = TRUE;
2735 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
2737 FILE *f = (FILE *) farg;
2738 flagword e_flags = elf_elfheader (abfd)->e_flags;
2740 fprintf (f, "\nXtensa header:\n");
2741 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
2742 fprintf (f, "\nMachine = Base\n");
2744 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2746 fprintf (f, "Insn tables = %s\n",
2747 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2749 fprintf (f, "Literal tables = %s\n",
2750 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2752 return _bfd_elf_print_private_bfd_data (abfd, farg);
2756 /* Set the right machine number for an Xtensa ELF file. */
2759 elf_xtensa_object_p (bfd *abfd)
2762 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2767 mach = bfd_mach_xtensa;
2773 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2778 /* The final processing done just before writing out an Xtensa ELF object
2779 file. This gets the Xtensa architecture right based on the machine
2783 elf_xtensa_final_write_processing (bfd *abfd,
2784 bfd_boolean linker ATTRIBUTE_UNUSED)
2789 switch (mach = bfd_get_mach (abfd))
2791 case bfd_mach_xtensa:
2792 val = E_XTENSA_MACH;
2798 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2799 elf_elfheader (abfd)->e_flags |= val;
2803 static enum elf_reloc_type_class
2804 elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
2806 switch ((int) ELF32_R_TYPE (rela->r_info))
2808 case R_XTENSA_RELATIVE:
2809 return reloc_class_relative;
2810 case R_XTENSA_JMP_SLOT:
2811 return reloc_class_plt;
2813 return reloc_class_normal;
2819 elf_xtensa_discard_info_for_section (bfd *abfd,
2820 struct elf_reloc_cookie *cookie,
2821 struct bfd_link_info *info,
2825 bfd_vma offset, actual_offset;
2826 bfd_size_type removed_bytes = 0;
2827 bfd_size_type entry_size;
2829 if (sec->output_section
2830 && bfd_is_abs_section (sec->output_section))
2833 if (xtensa_is_proptable_section (sec))
2838 if (sec->size == 0 || sec->size % entry_size != 0)
2841 contents = retrieve_contents (abfd, sec, info->keep_memory);
2845 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2848 release_contents (sec, contents);
2852 /* Sort the relocations. They should already be in order when
2853 relaxation is enabled, but it might not be. */
2854 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
2855 internal_reloc_compare);
2857 cookie->rel = cookie->rels;
2858 cookie->relend = cookie->rels + sec->reloc_count;
2860 for (offset = 0; offset < sec->size; offset += entry_size)
2862 actual_offset = offset - removed_bytes;
2864 /* The ...symbol_deleted_p function will skip over relocs but it
2865 won't adjust their offsets, so do that here. */
2866 while (cookie->rel < cookie->relend
2867 && cookie->rel->r_offset < offset)
2869 cookie->rel->r_offset -= removed_bytes;
2873 while (cookie->rel < cookie->relend
2874 && cookie->rel->r_offset == offset)
2876 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
2878 /* Remove the table entry. (If the reloc type is NONE, then
2879 the entry has already been merged with another and deleted
2880 during relaxation.) */
2881 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2883 /* Shift the contents up. */
2884 if (offset + entry_size < sec->size)
2885 memmove (&contents[actual_offset],
2886 &contents[actual_offset + entry_size],
2887 sec->size - offset - entry_size);
2888 removed_bytes += entry_size;
2891 /* Remove this relocation. */
2892 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2895 /* Adjust the relocation offset for previous removals. This
2896 should not be done before calling ...symbol_deleted_p
2897 because it might mess up the offset comparisons there.
2898 Make sure the offset doesn't underflow in the case where
2899 the first entry is removed. */
2900 if (cookie->rel->r_offset >= removed_bytes)
2901 cookie->rel->r_offset -= removed_bytes;
2903 cookie->rel->r_offset = 0;
2909 if (removed_bytes != 0)
2911 /* Adjust any remaining relocs (shouldn't be any). */
2912 for (; cookie->rel < cookie->relend; cookie->rel++)
2914 if (cookie->rel->r_offset >= removed_bytes)
2915 cookie->rel->r_offset -= removed_bytes;
2917 cookie->rel->r_offset = 0;
2920 /* Clear the removed bytes. */
2921 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
2923 pin_contents (sec, contents);
2924 pin_internal_relocs (sec, cookie->rels);
2927 if (sec->rawsize == 0)
2928 sec->rawsize = sec->size;
2929 sec->size -= removed_bytes;
2931 if (xtensa_is_littable_section (sec))
2933 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
2935 sgotloc->size -= removed_bytes;
2940 release_contents (sec, contents);
2941 release_internal_relocs (sec, cookie->rels);
2944 return (removed_bytes != 0);
2949 elf_xtensa_discard_info (bfd *abfd,
2950 struct elf_reloc_cookie *cookie,
2951 struct bfd_link_info *info)
2954 bfd_boolean changed = FALSE;
2956 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2958 if (xtensa_is_property_section (sec))
2960 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2970 elf_xtensa_ignore_discarded_relocs (asection *sec)
2972 return xtensa_is_property_section (sec);
2977 elf_xtensa_action_discarded (asection *sec)
2979 if (strcmp (".xt_except_table", sec->name) == 0)
2982 if (strcmp (".xt_except_desc", sec->name) == 0)
2985 return _bfd_elf_default_action_discarded (sec);
2989 /* Support for core dump NOTE sections. */
2992 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2997 /* The size for Xtensa is variable, so don't try to recognize the format
2998 based on the size. Just assume this is GNU/Linux. */
3001 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3004 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3008 size = note->descsz - offset - 4;
3010 /* Make a ".reg/999" section. */
3011 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3012 size, note->descpos + offset);
3017 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3019 switch (note->descsz)
3024 case 128: /* GNU/Linux elf_prpsinfo */
3025 elf_tdata (abfd)->core_program
3026 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3027 elf_tdata (abfd)->core_command
3028 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3031 /* Note that for some reason, a spurious space is tacked
3032 onto the end of the args in some (at least one anyway)
3033 implementations, so strip it off if it exists. */
3036 char *command = elf_tdata (abfd)->core_command;
3037 int n = strlen (command);
3039 if (0 < n && command[n - 1] == ' ')
3040 command[n - 1] = '\0';
3047 /* Generic Xtensa configurability stuff. */
3049 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3050 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3051 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3052 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3053 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3054 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3055 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3056 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3059 init_call_opcodes (void)
3061 if (callx0_op == XTENSA_UNDEFINED)
3063 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3064 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3065 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3066 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3067 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3068 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3069 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3070 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3076 is_indirect_call_opcode (xtensa_opcode opcode)
3078 init_call_opcodes ();
3079 return (opcode == callx0_op
3080 || opcode == callx4_op
3081 || opcode == callx8_op
3082 || opcode == callx12_op);
3087 is_direct_call_opcode (xtensa_opcode opcode)
3089 init_call_opcodes ();
3090 return (opcode == call0_op
3091 || opcode == call4_op
3092 || opcode == call8_op
3093 || opcode == call12_op);
3098 is_windowed_call_opcode (xtensa_opcode opcode)
3100 init_call_opcodes ();
3101 return (opcode == call4_op
3102 || opcode == call8_op
3103 || opcode == call12_op
3104 || opcode == callx4_op
3105 || opcode == callx8_op
3106 || opcode == callx12_op);
3110 static xtensa_opcode
3111 get_const16_opcode (void)
3113 static bfd_boolean done_lookup = FALSE;
3114 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3117 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3120 return const16_opcode;
3124 static xtensa_opcode
3125 get_l32r_opcode (void)
3127 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3128 static bfd_boolean done_lookup = FALSE;
3132 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3140 l32r_offset (bfd_vma addr, bfd_vma pc)
3144 offset = addr - ((pc+3) & -4);
3145 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3146 offset = (signed int) offset >> 2;
3147 BFD_ASSERT ((signed int) offset >> 16 == -1);
3153 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3155 xtensa_isa isa = xtensa_default_isa;
3156 int last_immed, last_opnd, opi;
3158 if (opcode == XTENSA_UNDEFINED)
3159 return XTENSA_UNDEFINED;
3161 /* Find the last visible PC-relative immediate operand for the opcode.
3162 If there are no PC-relative immediates, then choose the last visible
3163 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3164 last_immed = XTENSA_UNDEFINED;
3165 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3166 for (opi = last_opnd - 1; opi >= 0; opi--)
3168 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3170 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3175 if (last_immed == XTENSA_UNDEFINED
3176 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3180 return XTENSA_UNDEFINED;
3182 /* If the operand number was specified in an old-style relocation,
3183 check for consistency with the operand computed above. */
3184 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3186 int reloc_opnd = r_type - R_XTENSA_OP0;
3187 if (reloc_opnd != last_immed)
3188 return XTENSA_UNDEFINED;
3196 get_relocation_slot (int r_type)
3206 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3207 return r_type - R_XTENSA_SLOT0_OP;
3208 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3209 return r_type - R_XTENSA_SLOT0_ALT;
3213 return XTENSA_UNDEFINED;
3217 /* Get the opcode for a relocation. */
3219 static xtensa_opcode
3220 get_relocation_opcode (bfd *abfd,
3223 Elf_Internal_Rela *irel)
3225 static xtensa_insnbuf ibuff = NULL;
3226 static xtensa_insnbuf sbuff = NULL;
3227 xtensa_isa isa = xtensa_default_isa;
3231 if (contents == NULL)
3232 return XTENSA_UNDEFINED;
3234 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3235 return XTENSA_UNDEFINED;
3239 ibuff = xtensa_insnbuf_alloc (isa);
3240 sbuff = xtensa_insnbuf_alloc (isa);
3243 /* Decode the instruction. */
3244 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3245 sec->size - irel->r_offset);
3246 fmt = xtensa_format_decode (isa, ibuff);
3247 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3248 if (slot == XTENSA_UNDEFINED)
3249 return XTENSA_UNDEFINED;
3250 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3251 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3256 is_l32r_relocation (bfd *abfd,
3259 Elf_Internal_Rela *irel)
3261 xtensa_opcode opcode;
3262 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
3264 opcode = get_relocation_opcode (abfd, sec, contents, irel);
3265 return (opcode == get_l32r_opcode ());
3269 static bfd_size_type
3270 get_asm_simplify_size (bfd_byte *contents,
3271 bfd_size_type content_len,
3272 bfd_size_type offset)
3274 bfd_size_type insnlen, size = 0;
3276 /* Decode the size of the next two instructions. */
3277 insnlen = insn_decode_len (contents, content_len, offset);
3283 insnlen = insn_decode_len (contents, content_len, offset + size);
3293 is_alt_relocation (int r_type)
3295 return (r_type >= R_XTENSA_SLOT0_ALT
3296 && r_type <= R_XTENSA_SLOT14_ALT);
3301 is_operand_relocation (int r_type)
3311 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3313 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3322 #define MIN_INSN_LENGTH 2
3324 /* Return 0 if it fails to decode. */
3327 insn_decode_len (bfd_byte *contents,
3328 bfd_size_type content_len,
3329 bfd_size_type offset)
3332 xtensa_isa isa = xtensa_default_isa;
3334 static xtensa_insnbuf ibuff = NULL;
3336 if (offset + MIN_INSN_LENGTH > content_len)
3340 ibuff = xtensa_insnbuf_alloc (isa);
3341 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3342 content_len - offset);
3343 fmt = xtensa_format_decode (isa, ibuff);
3344 if (fmt == XTENSA_UNDEFINED)
3346 insn_len = xtensa_format_length (isa, fmt);
3347 if (insn_len == XTENSA_UNDEFINED)
3353 /* Decode the opcode for a single slot instruction.
3354 Return 0 if it fails to decode or the instruction is multi-slot. */
3357 insn_decode_opcode (bfd_byte *contents,
3358 bfd_size_type content_len,
3359 bfd_size_type offset,
3362 xtensa_isa isa = xtensa_default_isa;
3364 static xtensa_insnbuf insnbuf = NULL;
3365 static xtensa_insnbuf slotbuf = NULL;
3367 if (offset + MIN_INSN_LENGTH > content_len)
3368 return XTENSA_UNDEFINED;
3370 if (insnbuf == NULL)
3372 insnbuf = xtensa_insnbuf_alloc (isa);
3373 slotbuf = xtensa_insnbuf_alloc (isa);
3376 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3377 content_len - offset);
3378 fmt = xtensa_format_decode (isa, insnbuf);
3379 if (fmt == XTENSA_UNDEFINED)
3380 return XTENSA_UNDEFINED;
3382 if (slot >= xtensa_format_num_slots (isa, fmt))
3383 return XTENSA_UNDEFINED;
3385 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3386 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3390 /* The offset is the offset in the contents.
3391 The address is the address of that offset. */
3394 check_branch_target_aligned (bfd_byte *contents,
3395 bfd_size_type content_length,
3399 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3402 return check_branch_target_aligned_address (address, insn_len);
3407 check_loop_aligned (bfd_byte *contents,
3408 bfd_size_type content_length,
3412 bfd_size_type loop_len, insn_len;
3413 xtensa_opcode opcode;
3415 opcode = insn_decode_opcode (contents, content_length, offset, 0);
3416 if (opcode == XTENSA_UNDEFINED
3417 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
3423 loop_len = insn_decode_len (contents, content_length, offset);
3424 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
3425 if (loop_len == 0 || insn_len == 0)
3431 return check_branch_target_aligned_address (address + loop_len, insn_len);
3436 check_branch_target_aligned_address (bfd_vma addr, int len)
3439 return (addr % 8 == 0);
3440 return ((addr >> 2) == ((addr + len - 1) >> 2));
3444 /* Instruction widening and narrowing. */
3446 /* When FLIX is available we need to access certain instructions only
3447 when they are 16-bit or 24-bit instructions. This table caches
3448 information about such instructions by walking through all the
3449 opcodes and finding the smallest single-slot format into which each
3452 static xtensa_format *op_single_fmt_table = NULL;
3456 init_op_single_format_table (void)
3458 xtensa_isa isa = xtensa_default_isa;
3459 xtensa_insnbuf ibuf;
3460 xtensa_opcode opcode;
3464 if (op_single_fmt_table)
3467 ibuf = xtensa_insnbuf_alloc (isa);
3468 num_opcodes = xtensa_isa_num_opcodes (isa);
3470 op_single_fmt_table = (xtensa_format *)
3471 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3472 for (opcode = 0; opcode < num_opcodes; opcode++)
3474 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3475 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3477 if (xtensa_format_num_slots (isa, fmt) == 1
3478 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3480 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3481 int fmt_length = xtensa_format_length (isa, fmt);
3482 if (old_fmt == XTENSA_UNDEFINED
3483 || fmt_length < xtensa_format_length (isa, old_fmt))
3484 op_single_fmt_table[opcode] = fmt;
3488 xtensa_insnbuf_free (isa, ibuf);
3492 static xtensa_format
3493 get_single_format (xtensa_opcode opcode)
3495 init_op_single_format_table ();
3496 return op_single_fmt_table[opcode];
3500 /* For the set of narrowable instructions we do NOT include the
3501 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3502 involved during linker relaxation that may require these to
3503 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3504 requires special case code to ensure it only works when op1 == op2. */
3512 struct string_pair narrowable[] =
3515 { "addi", "addi.n" },
3516 { "addmi", "addi.n" },
3517 { "l32i", "l32i.n" },
3518 { "movi", "movi.n" },
3520 { "retw", "retw.n" },
3521 { "s32i", "s32i.n" },
3522 { "or", "mov.n" } /* special case only when op1 == op2 */
3525 struct string_pair widenable[] =
3528 { "addi", "addi.n" },
3529 { "addmi", "addi.n" },
3530 { "beqz", "beqz.n" },
3531 { "bnez", "bnez.n" },
3532 { "l32i", "l32i.n" },
3533 { "movi", "movi.n" },
3535 { "retw", "retw.n" },
3536 { "s32i", "s32i.n" },
3537 { "or", "mov.n" } /* special case only when op1 == op2 */
3541 /* Check if an instruction can be "narrowed", i.e., changed from a standard
3542 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3543 return the instruction buffer holding the narrow instruction. Otherwise,
3544 return 0. The set of valid narrowing are specified by a string table
3545 but require some special case operand checks in some cases. */
3547 static xtensa_insnbuf
3548 can_narrow_instruction (xtensa_insnbuf slotbuf,
3550 xtensa_opcode opcode)
3552 xtensa_isa isa = xtensa_default_isa;
3553 xtensa_format o_fmt;
3556 static xtensa_insnbuf o_insnbuf = NULL;
3557 static xtensa_insnbuf o_slotbuf = NULL;
3559 if (o_insnbuf == NULL)
3561 o_insnbuf = xtensa_insnbuf_alloc (isa);
3562 o_slotbuf = xtensa_insnbuf_alloc (isa);
3565 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
3567 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
3569 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3571 uint32 value, newval;
3572 int i, operand_count, o_operand_count;
3573 xtensa_opcode o_opcode;
3575 /* Address does not matter in this case. We might need to
3576 fix it to handle branches/jumps. */
3577 bfd_vma self_address = 0;
3579 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3580 if (o_opcode == XTENSA_UNDEFINED)
3582 o_fmt = get_single_format (o_opcode);
3583 if (o_fmt == XTENSA_UNDEFINED)
3586 if (xtensa_format_length (isa, fmt) != 3
3587 || xtensa_format_length (isa, o_fmt) != 2)
3590 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3591 operand_count = xtensa_opcode_num_operands (isa, opcode);
3592 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3594 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3599 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3604 uint32 rawval0, rawval1, rawval2;
3606 if (o_operand_count + 1 != operand_count
3607 || xtensa_operand_get_field (isa, opcode, 0,
3608 fmt, 0, slotbuf, &rawval0) != 0
3609 || xtensa_operand_get_field (isa, opcode, 1,
3610 fmt, 0, slotbuf, &rawval1) != 0
3611 || xtensa_operand_get_field (isa, opcode, 2,
3612 fmt, 0, slotbuf, &rawval2) != 0
3613 || rawval1 != rawval2
3614 || rawval0 == rawval1 /* it is a nop */)
3618 for (i = 0; i < o_operand_count; ++i)
3620 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3622 || xtensa_operand_decode (isa, opcode, i, &value))
3625 /* PC-relative branches need adjustment, but
3626 the PC-rel operand will always have a relocation. */
3628 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3630 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3631 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3636 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3646 /* Attempt to narrow an instruction. If the narrowing is valid, perform
3647 the action in-place directly into the contents and return TRUE. Otherwise,
3648 the return value is FALSE and the contents are not modified. */
3651 narrow_instruction (bfd_byte *contents,
3652 bfd_size_type content_length,
3653 bfd_size_type offset)
3655 xtensa_opcode opcode;
3656 bfd_size_type insn_len;
3657 xtensa_isa isa = xtensa_default_isa;
3659 xtensa_insnbuf o_insnbuf;
3661 static xtensa_insnbuf insnbuf = NULL;
3662 static xtensa_insnbuf slotbuf = NULL;
3664 if (insnbuf == NULL)
3666 insnbuf = xtensa_insnbuf_alloc (isa);
3667 slotbuf = xtensa_insnbuf_alloc (isa);
3670 BFD_ASSERT (offset < content_length);
3672 if (content_length < 2)
3675 /* We will hand-code a few of these for a little while.
3676 These have all been specified in the assembler aleady. */
3677 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3678 content_length - offset);
3679 fmt = xtensa_format_decode (isa, insnbuf);
3680 if (xtensa_format_num_slots (isa, fmt) != 1)
3683 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3686 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3687 if (opcode == XTENSA_UNDEFINED)
3689 insn_len = xtensa_format_length (isa, fmt);
3690 if (insn_len > content_length)
3693 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
3696 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3697 content_length - offset);
3705 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
3706 "density" instruction to a standard 3-byte instruction. If it is valid,
3707 return the instruction buffer holding the wide instruction. Otherwise,
3708 return 0. The set of valid widenings are specified by a string table
3709 but require some special case operand checks in some cases. */
3711 static xtensa_insnbuf
3712 can_widen_instruction (xtensa_insnbuf slotbuf,
3714 xtensa_opcode opcode)
3716 xtensa_isa isa = xtensa_default_isa;
3717 xtensa_format o_fmt;
3720 static xtensa_insnbuf o_insnbuf = NULL;
3721 static xtensa_insnbuf o_slotbuf = NULL;
3723 if (o_insnbuf == NULL)
3725 o_insnbuf = xtensa_insnbuf_alloc (isa);
3726 o_slotbuf = xtensa_insnbuf_alloc (isa);
3729 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
3731 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3732 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3733 || strcmp ("bnez", widenable[opi].wide) == 0);
3735 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3737 uint32 value, newval;
3738 int i, operand_count, o_operand_count, check_operand_count;
3739 xtensa_opcode o_opcode;
3741 /* Address does not matter in this case. We might need to fix it
3742 to handle branches/jumps. */
3743 bfd_vma self_address = 0;
3745 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3746 if (o_opcode == XTENSA_UNDEFINED)
3748 o_fmt = get_single_format (o_opcode);
3749 if (o_fmt == XTENSA_UNDEFINED)
3752 if (xtensa_format_length (isa, fmt) != 2
3753 || xtensa_format_length (isa, o_fmt) != 3)
3756 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3757 operand_count = xtensa_opcode_num_operands (isa, opcode);
3758 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3759 check_operand_count = o_operand_count;
3761 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3766 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3771 uint32 rawval0, rawval1;
3773 if (o_operand_count != operand_count + 1
3774 || xtensa_operand_get_field (isa, opcode, 0,
3775 fmt, 0, slotbuf, &rawval0) != 0
3776 || xtensa_operand_get_field (isa, opcode, 1,
3777 fmt, 0, slotbuf, &rawval1) != 0
3778 || rawval0 == rawval1 /* it is a nop */)
3782 check_operand_count--;
3784 for (i = 0; i < check_operand_count; i++)
3787 if (is_or && i == o_operand_count - 1)
3789 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3791 || xtensa_operand_decode (isa, opcode, new_i, &value))
3794 /* PC-relative branches need adjustment, but
3795 the PC-rel operand will always have a relocation. */
3797 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3799 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3800 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3805 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3815 /* Attempt to widen an instruction. If the widening is valid, perform
3816 the action in-place directly into the contents and return TRUE. Otherwise,
3817 the return value is FALSE and the contents are not modified. */
3820 widen_instruction (bfd_byte *contents,
3821 bfd_size_type content_length,
3822 bfd_size_type offset)
3824 xtensa_opcode opcode;
3825 bfd_size_type insn_len;
3826 xtensa_isa isa = xtensa_default_isa;
3828 xtensa_insnbuf o_insnbuf;
3830 static xtensa_insnbuf insnbuf = NULL;
3831 static xtensa_insnbuf slotbuf = NULL;
3833 if (insnbuf == NULL)
3835 insnbuf = xtensa_insnbuf_alloc (isa);
3836 slotbuf = xtensa_insnbuf_alloc (isa);
3839 BFD_ASSERT (offset < content_length);
3841 if (content_length < 2)
3844 /* We will hand-code a few of these for a little while.
3845 These have all been specified in the assembler aleady. */
3846 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3847 content_length - offset);
3848 fmt = xtensa_format_decode (isa, insnbuf);
3849 if (xtensa_format_num_slots (isa, fmt) != 1)
3852 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3855 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3856 if (opcode == XTENSA_UNDEFINED)
3858 insn_len = xtensa_format_length (isa, fmt);
3859 if (insn_len > content_length)
3862 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
3865 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3866 content_length - offset);
3873 /* Code for transforming CALLs at link-time. */
3875 static bfd_reloc_status_type
3876 elf_xtensa_do_asm_simplify (bfd_byte *contents,
3878 bfd_vma content_length,
3879 char **error_message)
3881 static xtensa_insnbuf insnbuf = NULL;
3882 static xtensa_insnbuf slotbuf = NULL;
3883 xtensa_format core_format = XTENSA_UNDEFINED;
3884 xtensa_opcode opcode;
3885 xtensa_opcode direct_call_opcode;
3886 xtensa_isa isa = xtensa_default_isa;
3887 bfd_byte *chbuf = contents + address;
3890 if (insnbuf == NULL)
3892 insnbuf = xtensa_insnbuf_alloc (isa);
3893 slotbuf = xtensa_insnbuf_alloc (isa);
3896 if (content_length < address)
3898 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3899 return bfd_reloc_other;
3902 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3903 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3904 if (direct_call_opcode == XTENSA_UNDEFINED)
3906 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3907 return bfd_reloc_other;
3910 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3911 core_format = xtensa_format_lookup (isa, "x24");
3912 opcode = xtensa_opcode_lookup (isa, "or");
3913 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3914 for (opn = 0; opn < 3; opn++)
3917 xtensa_operand_encode (isa, opcode, opn, ®no);
3918 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3921 xtensa_format_encode (isa, core_format, insnbuf);
3922 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3923 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
3925 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3926 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3927 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
3929 xtensa_format_encode (isa, core_format, insnbuf);
3930 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3931 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3932 content_length - address - 3);
3934 return bfd_reloc_ok;
3938 static bfd_reloc_status_type
3939 contract_asm_expansion (bfd_byte *contents,
3940 bfd_vma content_length,
3941 Elf_Internal_Rela *irel,
3942 char **error_message)
3944 bfd_reloc_status_type retval =
3945 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3948 if (retval != bfd_reloc_ok)
3949 return bfd_reloc_dangerous;
3951 /* Update the irel->r_offset field so that the right immediate and
3952 the right instruction are modified during the relocation. */
3953 irel->r_offset += 3;
3954 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3955 return bfd_reloc_ok;
3959 static xtensa_opcode
3960 swap_callx_for_call_opcode (xtensa_opcode opcode)
3962 init_call_opcodes ();
3964 if (opcode == callx0_op) return call0_op;
3965 if (opcode == callx4_op) return call4_op;
3966 if (opcode == callx8_op) return call8_op;
3967 if (opcode == callx12_op) return call12_op;
3969 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3970 return XTENSA_UNDEFINED;
3974 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3975 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3976 If not, return XTENSA_UNDEFINED. */
3978 #define L32R_TARGET_REG_OPERAND 0
3979 #define CONST16_TARGET_REG_OPERAND 0
3980 #define CALLN_SOURCE_OPERAND 0
3982 static xtensa_opcode
3983 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
3985 static xtensa_insnbuf insnbuf = NULL;
3986 static xtensa_insnbuf slotbuf = NULL;
3988 xtensa_opcode opcode;
3989 xtensa_isa isa = xtensa_default_isa;
3990 uint32 regno, const16_regno, call_regno;
3993 if (insnbuf == NULL)
3995 insnbuf = xtensa_insnbuf_alloc (isa);
3996 slotbuf = xtensa_insnbuf_alloc (isa);
3999 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4000 fmt = xtensa_format_decode (isa, insnbuf);
4001 if (fmt == XTENSA_UNDEFINED
4002 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4003 return XTENSA_UNDEFINED;
4005 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4006 if (opcode == XTENSA_UNDEFINED)
4007 return XTENSA_UNDEFINED;
4009 if (opcode == get_l32r_opcode ())
4012 *p_uses_l32r = TRUE;
4013 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4014 fmt, 0, slotbuf, ®no)
4015 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4017 return XTENSA_UNDEFINED;
4019 else if (opcode == get_const16_opcode ())
4022 *p_uses_l32r = FALSE;
4023 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4024 fmt, 0, slotbuf, ®no)
4025 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4027 return XTENSA_UNDEFINED;
4029 /* Check that the next instruction is also CONST16. */
4030 offset += xtensa_format_length (isa, fmt);
4031 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4032 fmt = xtensa_format_decode (isa, insnbuf);
4033 if (fmt == XTENSA_UNDEFINED
4034 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4035 return XTENSA_UNDEFINED;
4036 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4037 if (opcode != get_const16_opcode ())
4038 return XTENSA_UNDEFINED;
4040 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4041 fmt, 0, slotbuf, &const16_regno)
4042 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4044 || const16_regno != regno)
4045 return XTENSA_UNDEFINED;
4048 return XTENSA_UNDEFINED;
4050 /* Next instruction should be an CALLXn with operand 0 == regno. */
4051 offset += xtensa_format_length (isa, fmt);
4052 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4053 fmt = xtensa_format_decode (isa, insnbuf);
4054 if (fmt == XTENSA_UNDEFINED
4055 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4056 return XTENSA_UNDEFINED;
4057 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4058 if (opcode == XTENSA_UNDEFINED
4059 || !is_indirect_call_opcode (opcode))
4060 return XTENSA_UNDEFINED;
4062 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4063 fmt, 0, slotbuf, &call_regno)
4064 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4066 return XTENSA_UNDEFINED;
4068 if (call_regno != regno)
4069 return XTENSA_UNDEFINED;
4075 /* Data structures used during relaxation. */
4077 /* r_reloc: relocation values. */
4079 /* Through the relaxation process, we need to keep track of the values
4080 that will result from evaluating relocations. The standard ELF
4081 relocation structure is not sufficient for this purpose because we're
4082 operating on multiple input files at once, so we need to know which
4083 input file a relocation refers to. The r_reloc structure thus
4084 records both the input file (bfd) and ELF relocation.
4086 For efficiency, an r_reloc also contains a "target_offset" field to
4087 cache the target-section-relative offset value that is represented by
4090 The r_reloc also contains a virtual offset that allows multiple
4091 inserted literals to be placed at the same "address" with
4092 different offsets. */
4094 typedef struct r_reloc_struct r_reloc;
4096 struct r_reloc_struct
4099 Elf_Internal_Rela rela;
4100 bfd_vma target_offset;
4101 bfd_vma virtual_offset;
4105 /* The r_reloc structure is included by value in literal_value, but not
4106 every literal_value has an associated relocation -- some are simple
4107 constants. In such cases, we set all the fields in the r_reloc
4108 struct to zero. The r_reloc_is_const function should be used to
4109 detect this case. */
4112 r_reloc_is_const (const r_reloc *r_rel)
4114 return (r_rel->abfd == NULL);
4119 r_reloc_get_target_offset (const r_reloc *r_rel)
4121 bfd_vma target_offset;
4122 unsigned long r_symndx;
4124 BFD_ASSERT (!r_reloc_is_const (r_rel));
4125 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4126 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4127 return (target_offset + r_rel->rela.r_addend);
4131 static struct elf_link_hash_entry *
4132 r_reloc_get_hash_entry (const r_reloc *r_rel)
4134 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4135 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4140 r_reloc_get_section (const r_reloc *r_rel)
4142 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4143 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4148 r_reloc_is_defined (const r_reloc *r_rel)
4154 sec = r_reloc_get_section (r_rel);
4155 if (sec == bfd_abs_section_ptr
4156 || sec == bfd_com_section_ptr
4157 || sec == bfd_und_section_ptr)
4164 r_reloc_init (r_reloc *r_rel,
4166 Elf_Internal_Rela *irel,
4168 bfd_size_type content_length)
4171 reloc_howto_type *howto;
4175 r_rel->rela = *irel;
4177 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4178 r_rel->virtual_offset = 0;
4179 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4180 howto = &elf_howto_table[r_type];
4181 if (howto->partial_inplace)
4183 bfd_vma inplace_val;
4184 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4186 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4187 r_rel->target_offset += inplace_val;
4191 memset (r_rel, 0, sizeof (r_reloc));
4198 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4200 if (r_reloc_is_defined (r_rel))
4202 asection *sec = r_reloc_get_section (r_rel);
4203 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4205 else if (r_reloc_get_hash_entry (r_rel))
4206 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4208 fprintf (fp, " ?? + ");
4210 fprintf_vma (fp, r_rel->target_offset);
4211 if (r_rel->virtual_offset)
4213 fprintf (fp, " + ");
4214 fprintf_vma (fp, r_rel->virtual_offset);
4223 /* source_reloc: relocations that reference literals. */
4225 /* To determine whether literals can be coalesced, we need to first
4226 record all the relocations that reference the literals. The
4227 source_reloc structure below is used for this purpose. The
4228 source_reloc entries are kept in a per-literal-section array, sorted
4229 by offset within the literal section (i.e., target offset).
4231 The source_sec and r_rel.rela.r_offset fields identify the source of
4232 the relocation. The r_rel field records the relocation value, i.e.,
4233 the offset of the literal being referenced. The opnd field is needed
4234 to determine the range of the immediate field to which the relocation
4235 applies, so we can determine whether another literal with the same
4236 value is within range. The is_null field is true when the relocation
4237 is being removed (e.g., when an L32R is being removed due to a CALLX
4238 that is converted to a direct CALL). */
4240 typedef struct source_reloc_struct source_reloc;
4242 struct source_reloc_struct
4244 asection *source_sec;
4246 xtensa_opcode opcode;
4248 bfd_boolean is_null;
4249 bfd_boolean is_abs_literal;
4254 init_source_reloc (source_reloc *reloc,
4255 asection *source_sec,
4256 const r_reloc *r_rel,
4257 xtensa_opcode opcode,
4259 bfd_boolean is_abs_literal)
4261 reloc->source_sec = source_sec;
4262 reloc->r_rel = *r_rel;
4263 reloc->opcode = opcode;
4265 reloc->is_null = FALSE;
4266 reloc->is_abs_literal = is_abs_literal;
4270 /* Find the source_reloc for a particular source offset and relocation
4271 type. Note that the array is sorted by _target_ offset, so this is
4272 just a linear search. */
4274 static source_reloc *
4275 find_source_reloc (source_reloc *src_relocs,
4278 Elf_Internal_Rela *irel)
4282 for (i = 0; i < src_count; i++)
4284 if (src_relocs[i].source_sec == sec
4285 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4286 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4287 == ELF32_R_TYPE (irel->r_info)))
4288 return &src_relocs[i];
4296 source_reloc_compare (const void *ap, const void *bp)
4298 const source_reloc *a = (const source_reloc *) ap;
4299 const source_reloc *b = (const source_reloc *) bp;
4301 if (a->r_rel.target_offset != b->r_rel.target_offset)
4302 return (a->r_rel.target_offset - b->r_rel.target_offset);
4304 /* We don't need to sort on these criteria for correctness,
4305 but enforcing a more strict ordering prevents unstable qsort
4306 from behaving differently with different implementations.
4307 Without the code below we get correct but different results
4308 on Solaris 2.7 and 2.8. We would like to always produce the
4309 same results no matter the host. */
4311 if ((!a->is_null) - (!b->is_null))
4312 return ((!a->is_null) - (!b->is_null));
4313 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
4317 /* Literal values and value hash tables. */
4319 /* Literals with the same value can be coalesced. The literal_value
4320 structure records the value of a literal: the "r_rel" field holds the
4321 information from the relocation on the literal (if there is one) and
4322 the "value" field holds the contents of the literal word itself.
4324 The value_map structure records a literal value along with the
4325 location of a literal holding that value. The value_map hash table
4326 is indexed by the literal value, so that we can quickly check if a
4327 particular literal value has been seen before and is thus a candidate
4330 typedef struct literal_value_struct literal_value;
4331 typedef struct value_map_struct value_map;
4332 typedef struct value_map_hash_table_struct value_map_hash_table;
4334 struct literal_value_struct
4337 unsigned long value;
4338 bfd_boolean is_abs_literal;
4341 struct value_map_struct
4343 literal_value val; /* The literal value. */
4344 r_reloc loc; /* Location of the literal. */
4348 struct value_map_hash_table_struct
4350 unsigned bucket_count;
4351 value_map **buckets;
4353 bfd_boolean has_last_loc;
4359 init_literal_value (literal_value *lit,
4360 const r_reloc *r_rel,
4361 unsigned long value,
4362 bfd_boolean is_abs_literal)
4364 lit->r_rel = *r_rel;
4366 lit->is_abs_literal = is_abs_literal;
4371 literal_value_equal (const literal_value *src1,
4372 const literal_value *src2,
4373 bfd_boolean final_static_link)
4375 struct elf_link_hash_entry *h1, *h2;
4377 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4380 if (r_reloc_is_const (&src1->r_rel))
4381 return (src1->value == src2->value);
4383 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4384 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4387 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4390 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4393 if (src1->value != src2->value)
4396 /* Now check for the same section (if defined) or the same elf_hash
4397 (if undefined or weak). */
4398 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4399 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4400 if (r_reloc_is_defined (&src1->r_rel)
4401 && (final_static_link
4402 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4403 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4405 if (r_reloc_get_section (&src1->r_rel)
4406 != r_reloc_get_section (&src2->r_rel))
4411 /* Require that the hash entries (i.e., symbols) be identical. */
4412 if (h1 != h2 || h1 == 0)
4416 if (src1->is_abs_literal != src2->is_abs_literal)
4423 /* Must be power of 2. */
4424 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
4426 static value_map_hash_table *
4427 value_map_hash_table_init (void)
4429 value_map_hash_table *values;
4431 values = (value_map_hash_table *)
4432 bfd_zmalloc (sizeof (value_map_hash_table));
4433 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4435 values->buckets = (value_map **)
4436 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4437 if (values->buckets == NULL)
4442 values->has_last_loc = FALSE;
4449 value_map_hash_table_delete (value_map_hash_table *table)
4451 free (table->buckets);
4457 hash_bfd_vma (bfd_vma val)
4459 return (val >> 2) + (val >> 10);
4464 literal_value_hash (const literal_value *src)
4468 hash_val = hash_bfd_vma (src->value);
4469 if (!r_reloc_is_const (&src->r_rel))
4473 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4474 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4475 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4477 /* Now check for the same section and the same elf_hash. */
4478 if (r_reloc_is_defined (&src->r_rel))
4479 sec_or_hash = r_reloc_get_section (&src->r_rel);
4481 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
4482 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
4488 /* Check if the specified literal_value has been seen before. */
4491 value_map_get_cached_value (value_map_hash_table *map,
4492 const literal_value *val,
4493 bfd_boolean final_static_link)
4499 idx = literal_value_hash (val);
4500 idx = idx & (map->bucket_count - 1);
4501 bucket = map->buckets[idx];
4502 for (map_e = bucket; map_e; map_e = map_e->next)
4504 if (literal_value_equal (&map_e->val, val, final_static_link))
4511 /* Record a new literal value. It is illegal to call this if VALUE
4512 already has an entry here. */
4515 add_value_map (value_map_hash_table *map,
4516 const literal_value *val,
4518 bfd_boolean final_static_link)
4520 value_map **bucket_p;
4523 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4526 bfd_set_error (bfd_error_no_memory);
4530 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4534 idx = literal_value_hash (val);
4535 idx = idx & (map->bucket_count - 1);
4536 bucket_p = &map->buckets[idx];
4538 val_e->next = *bucket_p;
4541 /* FIXME: Consider resizing the hash table if we get too many entries. */
4547 /* Lists of text actions (ta_) for narrowing, widening, longcall
4548 conversion, space fill, code & literal removal, etc. */
4550 /* The following text actions are generated:
4552 "ta_remove_insn" remove an instruction or instructions
4553 "ta_remove_longcall" convert longcall to call
4554 "ta_convert_longcall" convert longcall to nop/call
4555 "ta_narrow_insn" narrow a wide instruction
4556 "ta_widen" widen a narrow instruction
4557 "ta_fill" add fill or remove fill
4558 removed < 0 is a fill; branches to the fill address will be
4559 changed to address + fill size (e.g., address - removed)
4560 removed >= 0 branches to the fill address will stay unchanged
4561 "ta_remove_literal" remove a literal; this action is
4562 indicated when a literal is removed
4564 "ta_add_literal" insert a new literal; this action is
4565 indicated when a literal has been moved.
4566 It may use a virtual_offset because
4567 multiple literals can be placed at the
4570 For each of these text actions, we also record the number of bytes
4571 removed by performing the text action. In the case of a "ta_widen"
4572 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4574 typedef struct text_action_struct text_action;
4575 typedef struct text_action_list_struct text_action_list;
4576 typedef enum text_action_enum_t text_action_t;
4578 enum text_action_enum_t
4581 ta_remove_insn, /* removed = -size */
4582 ta_remove_longcall, /* removed = -size */
4583 ta_convert_longcall, /* removed = 0 */
4584 ta_narrow_insn, /* removed = -1 */
4585 ta_widen_insn, /* removed = +1 */
4586 ta_fill, /* removed = +size */
4592 /* Structure for a text action record. */
4593 struct text_action_struct
4595 text_action_t action;
4596 asection *sec; /* Optional */
4598 bfd_vma virtual_offset; /* Zero except for adding literals. */
4600 literal_value value; /* Only valid when adding literals. */
4606 /* List of all of the actions taken on a text section. */
4607 struct text_action_list_struct
4613 static text_action *
4614 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
4618 /* It is not necessary to fill at the end of a section. */
4619 if (sec->size == offset)
4622 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4624 text_action *t = *m_p;
4625 /* When the action is another fill at the same address,
4626 just increase the size. */
4627 if (t->offset == offset && t->action == ta_fill)
4635 compute_removed_action_diff (const text_action *ta,
4639 int removable_space)
4642 int current_removed = 0;
4645 current_removed = ta->removed_bytes;
4647 BFD_ASSERT (ta == NULL || ta->offset == offset);
4648 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4650 /* It is not necessary to fill at the end of a section. Clean this up. */
4651 if (sec->size == offset)
4652 new_removed = removable_space - 0;
4656 int added = -removed - current_removed;
4657 /* Ignore multiples of the section alignment. */
4658 added = ((1 << sec->alignment_power) - 1) & added;
4659 new_removed = (-added);
4661 /* Modify for removable. */
4662 space = removable_space - new_removed;
4663 new_removed = (removable_space
4664 - (((1 << sec->alignment_power) - 1) & space));
4666 return (new_removed - current_removed);
4671 adjust_fill_action (text_action *ta, int fill_diff)
4673 ta->removed_bytes += fill_diff;
4677 /* Add a modification action to the text. For the case of adding or
4678 removing space, modify any current fill and assume that
4679 "unreachable_space" bytes can be freely contracted. Note that a
4680 negative removed value is a fill. */
4683 text_action_add (text_action_list *l,
4684 text_action_t action,
4692 /* It is not necessary to fill at the end of a section. */
4693 if (action == ta_fill && sec->size == offset)
4696 /* It is not necessary to fill 0 bytes. */
4697 if (action == ta_fill && removed == 0)
4700 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4702 text_action *t = *m_p;
4703 /* When the action is another fill at the same address,
4704 just increase the size. */
4705 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4707 t->removed_bytes += removed;
4712 /* Create a new record and fill it up. */
4713 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4714 ta->action = action;
4716 ta->offset = offset;
4717 ta->removed_bytes = removed;
4724 text_action_add_literal (text_action_list *l,
4725 text_action_t action,
4727 const literal_value *value,
4732 asection *sec = r_reloc_get_section (loc);
4733 bfd_vma offset = loc->target_offset;
4734 bfd_vma virtual_offset = loc->virtual_offset;
4736 BFD_ASSERT (action == ta_add_literal);
4738 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4740 if ((*m_p)->offset > offset
4741 && ((*m_p)->offset != offset
4742 || (*m_p)->virtual_offset > virtual_offset))
4746 /* Create a new record and fill it up. */
4747 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4748 ta->action = action;
4750 ta->offset = offset;
4751 ta->virtual_offset = virtual_offset;
4753 ta->removed_bytes = removed;
4759 /* Find the total offset adjustment for the relaxations specified by
4760 text_actions, beginning from a particular starting action. This is
4761 typically used from offset_with_removed_text to search an entire list of
4762 actions, but it may also be called directly when adjusting adjacent offsets
4763 so that each search may begin where the previous one left off. */
4766 removed_by_actions (text_action **p_start_action,
4768 bfd_boolean before_fill)
4773 r = *p_start_action;
4776 if (r->offset > offset)
4779 if (r->offset == offset
4780 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
4783 removed += r->removed_bytes;
4788 *p_start_action = r;
4794 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
4796 text_action *r = action_list->head;
4797 return offset - removed_by_actions (&r, offset, FALSE);
4802 action_list_count (text_action_list *action_list)
4804 text_action *r = action_list->head;
4806 for (r = action_list->head; r != NULL; r = r->next)
4814 /* The find_insn_action routine will only find non-fill actions. */
4816 static text_action *
4817 find_insn_action (text_action_list *action_list, bfd_vma offset)
4820 for (t = action_list->head; t; t = t->next)
4822 if (t->offset == offset)
4829 case ta_remove_insn:
4830 case ta_remove_longcall:
4831 case ta_convert_longcall:
4832 case ta_narrow_insn:
4835 case ta_remove_literal:
4836 case ta_add_literal:
4849 print_action_list (FILE *fp, text_action_list *action_list)
4853 fprintf (fp, "Text Action\n");
4854 for (r = action_list->head; r != NULL; r = r->next)
4856 const char *t = "unknown";
4859 case ta_remove_insn:
4860 t = "remove_insn"; break;
4861 case ta_remove_longcall:
4862 t = "remove_longcall"; break;
4863 case ta_convert_longcall:
4864 t = "convert_longcall"; break;
4865 case ta_narrow_insn:
4866 t = "narrow_insn"; break;
4868 t = "widen_insn"; break;
4873 case ta_remove_literal:
4874 t = "remove_literal"; break;
4875 case ta_add_literal:
4876 t = "add_literal"; break;
4879 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4880 r->sec->owner->filename,
4881 r->sec->name, r->offset, t, r->removed_bytes);
4888 /* Lists of literals being coalesced or removed. */
4890 /* In the usual case, the literal identified by "from" is being
4891 coalesced with another literal identified by "to". If the literal is
4892 unused and is being removed altogether, "to.abfd" will be NULL.
4893 The removed_literal entries are kept on a per-section list, sorted
4894 by the "from" offset field. */
4896 typedef struct removed_literal_struct removed_literal;
4897 typedef struct removed_literal_list_struct removed_literal_list;
4899 struct removed_literal_struct
4903 removed_literal *next;
4906 struct removed_literal_list_struct
4908 removed_literal *head;
4909 removed_literal *tail;
4913 /* Record that the literal at "from" is being removed. If "to" is not
4914 NULL, the "from" literal is being coalesced with the "to" literal. */
4917 add_removed_literal (removed_literal_list *removed_list,
4918 const r_reloc *from,
4921 removed_literal *r, *new_r, *next_r;
4923 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4925 new_r->from = *from;
4929 new_r->to.abfd = NULL;
4932 r = removed_list->head;
4935 removed_list->head = new_r;
4936 removed_list->tail = new_r;
4938 /* Special check for common case of append. */
4939 else if (removed_list->tail->from.target_offset < from->target_offset)
4941 removed_list->tail->next = new_r;
4942 removed_list->tail = new_r;
4946 while (r->from.target_offset < from->target_offset && r->next)
4952 new_r->next = next_r;
4954 removed_list->tail = new_r;
4959 /* Check if the list of removed literals contains an entry for the
4960 given address. Return the entry if found. */
4962 static removed_literal *
4963 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
4965 removed_literal *r = removed_list->head;
4966 while (r && r->from.target_offset < addr)
4968 if (r && r->from.target_offset == addr)
4977 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
4980 r = removed_list->head;
4982 fprintf (fp, "Removed Literals\n");
4983 for (; r != NULL; r = r->next)
4985 print_r_reloc (fp, &r->from);
4986 fprintf (fp, " => ");
4987 if (r->to.abfd == NULL)
4988 fprintf (fp, "REMOVED");
4990 print_r_reloc (fp, &r->to);
4998 /* Per-section data for relaxation. */
5000 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5002 struct xtensa_relax_info_struct
5004 bfd_boolean is_relaxable_literal_section;
5005 bfd_boolean is_relaxable_asm_section;
5006 int visited; /* Number of times visited. */
5008 source_reloc *src_relocs; /* Array[src_count]. */
5010 int src_next; /* Next src_relocs entry to assign. */
5012 removed_literal_list removed_list;
5013 text_action_list action_list;
5015 reloc_bfd_fix *fix_list;
5016 reloc_bfd_fix *fix_array;
5017 unsigned fix_array_count;
5019 /* Support for expanding the reloc array that is stored
5020 in the section structure. If the relocations have been
5021 reallocated, the newly allocated relocations will be referenced
5022 here along with the actual size allocated. The relocation
5023 count will always be found in the section structure. */
5024 Elf_Internal_Rela *allocated_relocs;
5025 unsigned relocs_count;
5026 unsigned allocated_relocs_count;
5029 struct elf_xtensa_section_data
5031 struct bfd_elf_section_data elf;
5032 xtensa_relax_info relax_info;
5037 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5039 if (!sec->used_by_bfd)
5041 struct elf_xtensa_section_data *sdata;
5042 bfd_size_type amt = sizeof (*sdata);
5044 sdata = bfd_zalloc (abfd, amt);
5047 sec->used_by_bfd = sdata;
5050 return _bfd_elf_new_section_hook (abfd, sec);
5054 static xtensa_relax_info *
5055 get_xtensa_relax_info (asection *sec)
5057 struct elf_xtensa_section_data *section_data;
5059 /* No info available if no section or if it is an output section. */
5060 if (!sec || sec == sec->output_section)
5063 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5064 return §ion_data->relax_info;
5069 init_xtensa_relax_info (asection *sec)
5071 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5073 relax_info->is_relaxable_literal_section = FALSE;
5074 relax_info->is_relaxable_asm_section = FALSE;
5075 relax_info->visited = 0;
5077 relax_info->src_relocs = NULL;
5078 relax_info->src_count = 0;
5079 relax_info->src_next = 0;
5081 relax_info->removed_list.head = NULL;
5082 relax_info->removed_list.tail = NULL;
5084 relax_info->action_list.head = NULL;
5086 relax_info->fix_list = NULL;
5087 relax_info->fix_array = NULL;
5088 relax_info->fix_array_count = 0;
5090 relax_info->allocated_relocs = NULL;
5091 relax_info->relocs_count = 0;
5092 relax_info->allocated_relocs_count = 0;
5096 /* Coalescing literals may require a relocation to refer to a section in
5097 a different input file, but the standard relocation information
5098 cannot express that. Instead, the reloc_bfd_fix structures are used
5099 to "fix" the relocations that refer to sections in other input files.
5100 These structures are kept on per-section lists. The "src_type" field
5101 records the relocation type in case there are multiple relocations on
5102 the same location. FIXME: This is ugly; an alternative might be to
5103 add new symbols with the "owner" field to some other input file. */
5105 struct reloc_bfd_fix_struct
5109 unsigned src_type; /* Relocation type. */
5111 asection *target_sec;
5112 bfd_vma target_offset;
5113 bfd_boolean translated;
5115 reloc_bfd_fix *next;
5119 static reloc_bfd_fix *
5120 reloc_bfd_fix_init (asection *src_sec,
5123 asection *target_sec,
5124 bfd_vma target_offset,
5125 bfd_boolean translated)
5129 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5130 fix->src_sec = src_sec;
5131 fix->src_offset = src_offset;
5132 fix->src_type = src_type;
5133 fix->target_sec = target_sec;
5134 fix->target_offset = target_offset;
5135 fix->translated = translated;
5142 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5144 xtensa_relax_info *relax_info;
5146 relax_info = get_xtensa_relax_info (src_sec);
5147 fix->next = relax_info->fix_list;
5148 relax_info->fix_list = fix;
5153 fix_compare (const void *ap, const void *bp)
5155 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5156 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5158 if (a->src_offset != b->src_offset)
5159 return (a->src_offset - b->src_offset);
5160 return (a->src_type - b->src_type);
5165 cache_fix_array (asection *sec)
5167 unsigned i, count = 0;
5169 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5171 if (relax_info == NULL)
5173 if (relax_info->fix_list == NULL)
5176 for (r = relax_info->fix_list; r != NULL; r = r->next)
5179 relax_info->fix_array =
5180 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5181 relax_info->fix_array_count = count;
5183 r = relax_info->fix_list;
5184 for (i = 0; i < count; i++, r = r->next)
5186 relax_info->fix_array[count - 1 - i] = *r;
5187 relax_info->fix_array[count - 1 - i].next = NULL;
5190 qsort (relax_info->fix_array, relax_info->fix_array_count,
5191 sizeof (reloc_bfd_fix), fix_compare);
5195 static reloc_bfd_fix *
5196 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
5198 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5202 if (relax_info == NULL)
5204 if (relax_info->fix_list == NULL)
5207 if (relax_info->fix_array == NULL)
5208 cache_fix_array (sec);
5210 key.src_offset = offset;
5211 key.src_type = type;
5212 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5213 sizeof (reloc_bfd_fix), fix_compare);
5218 /* Section caching. */
5220 typedef struct section_cache_struct section_cache_t;
5222 struct section_cache_struct
5226 bfd_byte *contents; /* Cache of the section contents. */
5227 bfd_size_type content_length;
5229 property_table_entry *ptbl; /* Cache of the section property table. */
5232 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5233 unsigned reloc_count;
5238 init_section_cache (section_cache_t *sec_cache)
5240 memset (sec_cache, 0, sizeof (*sec_cache));
5245 clear_section_cache (section_cache_t *sec_cache)
5249 release_contents (sec_cache->sec, sec_cache->contents);
5250 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5251 if (sec_cache->ptbl)
5252 free (sec_cache->ptbl);
5253 memset (sec_cache, 0, sizeof (sec_cache));
5259 section_cache_section (section_cache_t *sec_cache,
5261 struct bfd_link_info *link_info)
5264 property_table_entry *prop_table = NULL;
5266 bfd_byte *contents = NULL;
5267 Elf_Internal_Rela *internal_relocs = NULL;
5268 bfd_size_type sec_size;
5272 if (sec == sec_cache->sec)
5276 sec_size = bfd_get_section_limit (abfd, sec);
5278 /* Get the contents. */
5279 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5280 if (contents == NULL && sec_size != 0)
5283 /* Get the relocations. */
5284 internal_relocs = retrieve_internal_relocs (abfd, sec,
5285 link_info->keep_memory);
5287 /* Get the entry table. */
5288 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5289 XTENSA_PROP_SEC_NAME, FALSE);
5293 /* Fill in the new section cache. */
5294 clear_section_cache (sec_cache);
5295 memset (sec_cache, 0, sizeof (sec_cache));
5297 sec_cache->sec = sec;
5298 sec_cache->contents = contents;
5299 sec_cache->content_length = sec_size;
5300 sec_cache->relocs = internal_relocs;
5301 sec_cache->reloc_count = sec->reloc_count;
5302 sec_cache->pte_count = ptblsize;
5303 sec_cache->ptbl = prop_table;
5308 release_contents (sec, contents);
5309 release_internal_relocs (sec, internal_relocs);
5316 /* Extended basic blocks. */
5318 /* An ebb_struct represents an Extended Basic Block. Within this
5319 range, we guarantee that all instructions are decodable, the
5320 property table entries are contiguous, and no property table
5321 specifies a segment that cannot have instructions moved. This
5322 structure contains caches of the contents, property table and
5323 relocations for the specified section for easy use. The range is
5324 specified by ranges of indices for the byte offset, property table
5325 offsets and relocation offsets. These must be consistent. */
5327 typedef struct ebb_struct ebb_t;
5333 bfd_byte *contents; /* Cache of the section contents. */
5334 bfd_size_type content_length;
5336 property_table_entry *ptbl; /* Cache of the section property table. */
5339 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5340 unsigned reloc_count;
5342 bfd_vma start_offset; /* Offset in section. */
5343 unsigned start_ptbl_idx; /* Offset in the property table. */
5344 unsigned start_reloc_idx; /* Offset in the relocations. */
5347 unsigned end_ptbl_idx;
5348 unsigned end_reloc_idx;
5350 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5352 /* The unreachable property table at the end of this set of blocks;
5353 NULL if the end is not an unreachable block. */
5354 property_table_entry *ends_unreachable;
5358 enum ebb_target_enum
5361 EBB_DESIRE_TGT_ALIGN,
5362 EBB_REQUIRE_TGT_ALIGN,
5363 EBB_REQUIRE_LOOP_ALIGN,
5368 /* proposed_action_struct is similar to the text_action_struct except
5369 that is represents a potential transformation, not one that will
5370 occur. We build a list of these for an extended basic block
5371 and use them to compute the actual actions desired. We must be
5372 careful that the entire set of actual actions we perform do not
5373 break any relocations that would fit if the actions were not
5376 typedef struct proposed_action_struct proposed_action;
5378 struct proposed_action_struct
5380 enum ebb_target_enum align_type; /* for the target alignment */
5381 bfd_vma alignment_pow;
5382 text_action_t action;
5385 bfd_boolean do_action; /* If false, then we will not perform the action. */
5389 /* The ebb_constraint_struct keeps a set of proposed actions for an
5390 extended basic block. */
5392 typedef struct ebb_constraint_struct ebb_constraint;
5394 struct ebb_constraint_struct
5397 bfd_boolean start_movable;
5399 /* Bytes of extra space at the beginning if movable. */
5400 int start_extra_space;
5402 enum ebb_target_enum start_align;
5404 bfd_boolean end_movable;
5406 /* Bytes of extra space at the end if movable. */
5407 int end_extra_space;
5409 unsigned action_count;
5410 unsigned action_allocated;
5412 /* Array of proposed actions. */
5413 proposed_action *actions;
5415 /* Action alignments -- one for each proposed action. */
5416 enum ebb_target_enum *action_aligns;
5421 init_ebb_constraint (ebb_constraint *c)
5423 memset (c, 0, sizeof (ebb_constraint));
5428 free_ebb_constraint (ebb_constraint *c)
5436 init_ebb (ebb_t *ebb,
5439 bfd_size_type content_length,
5440 property_table_entry *prop_table,
5442 Elf_Internal_Rela *internal_relocs,
5443 unsigned reloc_count)
5445 memset (ebb, 0, sizeof (ebb_t));
5447 ebb->contents = contents;
5448 ebb->content_length = content_length;
5449 ebb->ptbl = prop_table;
5450 ebb->pte_count = ptblsize;
5451 ebb->relocs = internal_relocs;
5452 ebb->reloc_count = reloc_count;
5453 ebb->start_offset = 0;
5454 ebb->end_offset = ebb->content_length - 1;
5455 ebb->start_ptbl_idx = 0;
5456 ebb->end_ptbl_idx = ptblsize;
5457 ebb->start_reloc_idx = 0;
5458 ebb->end_reloc_idx = reloc_count;
5462 /* Extend the ebb to all decodable contiguous sections. The algorithm
5463 for building a basic block around an instruction is to push it
5464 forward until we hit the end of a section, an unreachable block or
5465 a block that cannot be transformed. Then we push it backwards
5466 searching for similar conditions. */
5468 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5469 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5470 static bfd_size_type insn_block_decodable_len
5471 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5474 extend_ebb_bounds (ebb_t *ebb)
5476 if (!extend_ebb_bounds_forward (ebb))
5478 if (!extend_ebb_bounds_backward (ebb))
5485 extend_ebb_bounds_forward (ebb_t *ebb)
5487 property_table_entry *the_entry, *new_entry;
5489 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5491 /* Stop when (1) we cannot decode an instruction, (2) we are at
5492 the end of the property tables, (3) we hit a non-contiguous property
5493 table entry, (4) we hit a NO_TRANSFORM region. */
5498 bfd_size_type insn_block_len;
5500 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5502 insn_block_decodable_len (ebb->contents, ebb->content_length,
5504 entry_end - ebb->end_offset);
5505 if (insn_block_len != (entry_end - ebb->end_offset))
5507 (*_bfd_error_handler)
5508 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5509 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5512 ebb->end_offset += insn_block_len;
5514 if (ebb->end_offset == ebb->sec->size)
5515 ebb->ends_section = TRUE;
5517 /* Update the reloc counter. */
5518 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5519 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5522 ebb->end_reloc_idx++;
5525 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5528 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5529 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5530 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
5531 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5534 if (the_entry->address + the_entry->size != new_entry->address)
5537 the_entry = new_entry;
5538 ebb->end_ptbl_idx++;
5541 /* Quick check for an unreachable or end of file just at the end. */
5542 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5544 if (ebb->end_offset == ebb->content_length)
5545 ebb->ends_section = TRUE;
5549 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5550 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5551 && the_entry->address + the_entry->size == new_entry->address)
5552 ebb->ends_unreachable = new_entry;
5555 /* Any other ending requires exact alignment. */
5561 extend_ebb_bounds_backward (ebb_t *ebb)
5563 property_table_entry *the_entry, *new_entry;
5565 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5567 /* Stop when (1) we cannot decode the instructions in the current entry.
5568 (2) we are at the beginning of the property tables, (3) we hit a
5569 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5573 bfd_vma block_begin;
5574 bfd_size_type insn_block_len;
5576 block_begin = the_entry->address - ebb->sec->vma;
5578 insn_block_decodable_len (ebb->contents, ebb->content_length,
5580 ebb->start_offset - block_begin);
5581 if (insn_block_len != ebb->start_offset - block_begin)
5583 (*_bfd_error_handler)
5584 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5585 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5588 ebb->start_offset -= insn_block_len;
5590 /* Update the reloc counter. */
5591 while (ebb->start_reloc_idx > 0
5592 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5593 >= ebb->start_offset))
5595 ebb->start_reloc_idx--;
5598 if (ebb->start_ptbl_idx == 0)
5601 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5602 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5603 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
5604 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5606 if (new_entry->address + new_entry->size != the_entry->address)
5609 the_entry = new_entry;
5610 ebb->start_ptbl_idx--;
5616 static bfd_size_type
5617 insn_block_decodable_len (bfd_byte *contents,
5618 bfd_size_type content_len,
5619 bfd_vma block_offset,
5620 bfd_size_type block_len)
5622 bfd_vma offset = block_offset;
5624 while (offset < block_offset + block_len)
5626 bfd_size_type insn_len = 0;
5628 insn_len = insn_decode_len (contents, content_len, offset);
5630 return (offset - block_offset);
5633 return (offset - block_offset);
5638 ebb_propose_action (ebb_constraint *c,
5639 enum ebb_target_enum align_type,
5640 bfd_vma alignment_pow,
5641 text_action_t action,
5644 bfd_boolean do_action)
5646 proposed_action *act;
5648 if (c->action_allocated <= c->action_count)
5650 unsigned new_allocated, i;
5651 proposed_action *new_actions;
5653 new_allocated = (c->action_count + 2) * 2;
5654 new_actions = (proposed_action *)
5655 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5657 for (i = 0; i < c->action_count; i++)
5658 new_actions[i] = c->actions[i];
5661 c->actions = new_actions;
5662 c->action_allocated = new_allocated;
5665 act = &c->actions[c->action_count];
5666 act->align_type = align_type;
5667 act->alignment_pow = alignment_pow;
5668 act->action = action;
5669 act->offset = offset;
5670 act->removed_bytes = removed_bytes;
5671 act->do_action = do_action;
5677 /* Access to internal relocations, section contents and symbols. */
5679 /* During relaxation, we need to modify relocations, section contents,
5680 and symbol definitions, and we need to keep the original values from
5681 being reloaded from the input files, i.e., we need to "pin" the
5682 modified values in memory. We also want to continue to observe the
5683 setting of the "keep-memory" flag. The following functions wrap the
5684 standard BFD functions to take care of this for us. */
5686 static Elf_Internal_Rela *
5687 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5689 Elf_Internal_Rela *internal_relocs;
5691 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5694 internal_relocs = elf_section_data (sec)->relocs;
5695 if (internal_relocs == NULL)
5696 internal_relocs = (_bfd_elf_link_read_relocs
5697 (abfd, sec, NULL, NULL, keep_memory));
5698 return internal_relocs;
5703 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5705 elf_section_data (sec)->relocs = internal_relocs;
5710 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5713 && elf_section_data (sec)->relocs != internal_relocs)
5714 free (internal_relocs);
5719 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5722 bfd_size_type sec_size;
5724 sec_size = bfd_get_section_limit (abfd, sec);
5725 contents = elf_section_data (sec)->this_hdr.contents;
5727 if (contents == NULL && sec_size != 0)
5729 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5736 elf_section_data (sec)->this_hdr.contents = contents;
5743 pin_contents (asection *sec, bfd_byte *contents)
5745 elf_section_data (sec)->this_hdr.contents = contents;
5750 release_contents (asection *sec, bfd_byte *contents)
5752 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5757 static Elf_Internal_Sym *
5758 retrieve_local_syms (bfd *input_bfd)
5760 Elf_Internal_Shdr *symtab_hdr;
5761 Elf_Internal_Sym *isymbuf;
5764 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5765 locsymcount = symtab_hdr->sh_info;
5767 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5768 if (isymbuf == NULL && locsymcount != 0)
5769 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5772 /* Save the symbols for this input file so they won't be read again. */
5773 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5774 symtab_hdr->contents = (unsigned char *) isymbuf;
5780 /* Code for link-time relaxation. */
5782 /* Initialization for relaxation: */
5783 static bfd_boolean analyze_relocations (struct bfd_link_info *);
5784 static bfd_boolean find_relaxable_sections
5785 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
5786 static bfd_boolean collect_source_relocs
5787 (bfd *, asection *, struct bfd_link_info *);
5788 static bfd_boolean is_resolvable_asm_expansion
5789 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5791 static Elf_Internal_Rela *find_associated_l32r_irel
5792 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
5793 static bfd_boolean compute_text_actions
5794 (bfd *, asection *, struct bfd_link_info *);
5795 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5796 static bfd_boolean compute_ebb_actions (ebb_constraint *);
5797 static bfd_boolean check_section_ebb_pcrels_fit
5798 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5799 const xtensa_opcode *);
5800 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
5801 static void text_action_add_proposed
5802 (text_action_list *, const ebb_constraint *, asection *);
5803 static int compute_fill_extra_space (property_table_entry *);
5806 static bfd_boolean compute_removed_literals
5807 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
5808 static Elf_Internal_Rela *get_irel_at_offset
5809 (asection *, Elf_Internal_Rela *, bfd_vma);
5810 static bfd_boolean is_removable_literal
5811 (const source_reloc *, int, const source_reloc *, int, asection *,
5812 property_table_entry *, int);
5813 static bfd_boolean remove_dead_literal
5814 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5815 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5816 static bfd_boolean identify_literal_placement
5817 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5818 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5819 source_reloc *, property_table_entry *, int, section_cache_t *,
5821 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
5822 static bfd_boolean coalesce_shared_literal
5823 (asection *, source_reloc *, property_table_entry *, int, value_map *);
5824 static bfd_boolean move_shared_literal
5825 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5826 int, const r_reloc *, const literal_value *, section_cache_t *);
5829 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5830 static bfd_boolean translate_section_fixes (asection *);
5831 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5832 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
5833 static void shrink_dynamic_reloc_sections
5834 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
5835 static bfd_boolean move_literal
5836 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5837 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
5838 static bfd_boolean relax_property_section
5839 (bfd *, asection *, struct bfd_link_info *);
5842 static bfd_boolean relax_section_symbols (bfd *, asection *);
5846 elf_xtensa_relax_section (bfd *abfd,
5848 struct bfd_link_info *link_info,
5851 static value_map_hash_table *values = NULL;
5852 static bfd_boolean relocations_analyzed = FALSE;
5853 xtensa_relax_info *relax_info;
5855 if (!relocations_analyzed)
5857 /* Do some overall initialization for relaxation. */
5858 values = value_map_hash_table_init ();
5861 relaxing_section = TRUE;
5862 if (!analyze_relocations (link_info))
5864 relocations_analyzed = TRUE;
5868 /* Don't mess with linker-created sections. */
5869 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5872 relax_info = get_xtensa_relax_info (sec);
5873 BFD_ASSERT (relax_info != NULL);
5875 switch (relax_info->visited)
5878 /* Note: It would be nice to fold this pass into
5879 analyze_relocations, but it is important for this step that the
5880 sections be examined in link order. */
5881 if (!compute_removed_literals (abfd, sec, link_info, values))
5888 value_map_hash_table_delete (values);
5890 if (!relax_section (abfd, sec, link_info))
5896 if (!relax_section_symbols (abfd, sec))
5901 relax_info->visited++;
5906 /* Initialization for relaxation. */
5908 /* This function is called once at the start of relaxation. It scans
5909 all the input sections and marks the ones that are relaxable (i.e.,
5910 literal sections with L32R relocations against them), and then
5911 collects source_reloc information for all the relocations against
5912 those relaxable sections. During this process, it also detects
5913 longcalls, i.e., calls relaxed by the assembler into indirect
5914 calls, that can be optimized back into direct calls. Within each
5915 extended basic block (ebb) containing an optimized longcall, it
5916 computes a set of "text actions" that can be performed to remove
5917 the L32R associated with the longcall while optionally preserving
5918 branch target alignments. */
5921 analyze_relocations (struct bfd_link_info *link_info)
5925 bfd_boolean is_relaxable = FALSE;
5927 /* Initialize the per-section relaxation info. */
5928 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5929 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5931 init_xtensa_relax_info (sec);
5934 /* Mark relaxable sections (and count relocations against each one). */
5935 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5936 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5938 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5942 /* Bail out if there are no relaxable sections. */
5946 /* Allocate space for source_relocs. */
5947 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5948 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5950 xtensa_relax_info *relax_info;
5952 relax_info = get_xtensa_relax_info (sec);
5953 if (relax_info->is_relaxable_literal_section
5954 || relax_info->is_relaxable_asm_section)
5956 relax_info->src_relocs = (source_reloc *)
5957 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5960 relax_info->src_count = 0;
5963 /* Collect info on relocations against each relaxable section. */
5964 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5965 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5967 if (!collect_source_relocs (abfd, sec, link_info))
5971 /* Compute the text actions. */
5972 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5973 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5975 if (!compute_text_actions (abfd, sec, link_info))
5983 /* Find all the sections that might be relaxed. The motivation for
5984 this pass is that collect_source_relocs() needs to record _all_ the
5985 relocations that target each relaxable section. That is expensive
5986 and unnecessary unless the target section is actually going to be
5987 relaxed. This pass identifies all such sections by checking if
5988 they have L32Rs pointing to them. In the process, the total number
5989 of relocations targeting each section is also counted so that we
5990 know how much space to allocate for source_relocs against each
5991 relaxable literal section. */
5994 find_relaxable_sections (bfd *abfd,
5996 struct bfd_link_info *link_info,
5997 bfd_boolean *is_relaxable_p)
5999 Elf_Internal_Rela *internal_relocs;
6001 bfd_boolean ok = TRUE;
6003 xtensa_relax_info *source_relax_info;
6004 bfd_boolean is_l32r_reloc;
6006 internal_relocs = retrieve_internal_relocs (abfd, sec,
6007 link_info->keep_memory);
6008 if (internal_relocs == NULL)
6011 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6012 if (contents == NULL && sec->size != 0)
6018 source_relax_info = get_xtensa_relax_info (sec);
6019 for (i = 0; i < sec->reloc_count; i++)
6021 Elf_Internal_Rela *irel = &internal_relocs[i];
6023 asection *target_sec;
6024 xtensa_relax_info *target_relax_info;
6026 /* If this section has not already been marked as "relaxable", and
6027 if it contains any ASM_EXPAND relocations (marking expanded
6028 longcalls) that can be optimized into direct calls, then mark
6029 the section as "relaxable". */
6030 if (source_relax_info
6031 && !source_relax_info->is_relaxable_asm_section
6032 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6034 bfd_boolean is_reachable = FALSE;
6035 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6036 link_info, &is_reachable)
6039 source_relax_info->is_relaxable_asm_section = TRUE;
6040 *is_relaxable_p = TRUE;
6044 r_reloc_init (&r_rel, abfd, irel, contents,
6045 bfd_get_section_limit (abfd, sec));
6047 target_sec = r_reloc_get_section (&r_rel);
6048 target_relax_info = get_xtensa_relax_info (target_sec);
6049 if (!target_relax_info)
6052 /* Count PC-relative operand relocations against the target section.
6053 Note: The conditions tested here must match the conditions under
6054 which init_source_reloc is called in collect_source_relocs(). */
6055 is_l32r_reloc = FALSE;
6056 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6058 xtensa_opcode opcode =
6059 get_relocation_opcode (abfd, sec, contents, irel);
6060 if (opcode != XTENSA_UNDEFINED)
6062 is_l32r_reloc = (opcode == get_l32r_opcode ());
6063 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6065 target_relax_info->src_count++;
6069 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6071 /* Mark the target section as relaxable. */
6072 target_relax_info->is_relaxable_literal_section = TRUE;
6073 *is_relaxable_p = TRUE;
6078 release_contents (sec, contents);
6079 release_internal_relocs (sec, internal_relocs);
6084 /* Record _all_ the relocations that point to relaxable sections, and
6085 get rid of ASM_EXPAND relocs by either converting them to
6086 ASM_SIMPLIFY or by removing them. */
6089 collect_source_relocs (bfd *abfd,
6091 struct bfd_link_info *link_info)
6093 Elf_Internal_Rela *internal_relocs;
6095 bfd_boolean ok = TRUE;
6097 bfd_size_type sec_size;
6099 internal_relocs = retrieve_internal_relocs (abfd, sec,
6100 link_info->keep_memory);
6101 if (internal_relocs == NULL)
6104 sec_size = bfd_get_section_limit (abfd, sec);
6105 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6106 if (contents == NULL && sec_size != 0)
6112 /* Record relocations against relaxable literal sections. */
6113 for (i = 0; i < sec->reloc_count; i++)
6115 Elf_Internal_Rela *irel = &internal_relocs[i];
6117 asection *target_sec;
6118 xtensa_relax_info *target_relax_info;
6120 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6122 target_sec = r_reloc_get_section (&r_rel);
6123 target_relax_info = get_xtensa_relax_info (target_sec);
6125 if (target_relax_info
6126 && (target_relax_info->is_relaxable_literal_section
6127 || target_relax_info->is_relaxable_asm_section))
6129 xtensa_opcode opcode = XTENSA_UNDEFINED;
6131 bfd_boolean is_abs_literal = FALSE;
6133 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6135 /* None of the current alternate relocs are PC-relative,
6136 and only PC-relative relocs matter here. However, we
6137 still need to record the opcode for literal
6139 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6140 if (opcode == get_l32r_opcode ())
6142 is_abs_literal = TRUE;
6146 opcode = XTENSA_UNDEFINED;
6148 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6150 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6151 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6154 if (opcode != XTENSA_UNDEFINED)
6156 int src_next = target_relax_info->src_next++;
6157 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6159 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6165 /* Now get rid of ASM_EXPAND relocations. At this point, the
6166 src_relocs array for the target literal section may still be
6167 incomplete, but it must at least contain the entries for the L32R
6168 relocations associated with ASM_EXPANDs because they were just
6169 added in the preceding loop over the relocations. */
6171 for (i = 0; i < sec->reloc_count; i++)
6173 Elf_Internal_Rela *irel = &internal_relocs[i];
6174 bfd_boolean is_reachable;
6176 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6182 Elf_Internal_Rela *l32r_irel;
6184 asection *target_sec;
6185 xtensa_relax_info *target_relax_info;
6187 /* Mark the source_reloc for the L32R so that it will be
6188 removed in compute_removed_literals(), along with the
6189 associated literal. */
6190 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6191 irel, internal_relocs);
6192 if (l32r_irel == NULL)
6195 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6197 target_sec = r_reloc_get_section (&r_rel);
6198 target_relax_info = get_xtensa_relax_info (target_sec);
6200 if (target_relax_info
6201 && (target_relax_info->is_relaxable_literal_section
6202 || target_relax_info->is_relaxable_asm_section))
6204 source_reloc *s_reloc;
6206 /* Search the source_relocs for the entry corresponding to
6207 the l32r_irel. Note: The src_relocs array is not yet
6208 sorted, but it wouldn't matter anyway because we're
6209 searching by source offset instead of target offset. */
6210 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6211 target_relax_info->src_next,
6213 BFD_ASSERT (s_reloc);
6214 s_reloc->is_null = TRUE;
6217 /* Convert this reloc to ASM_SIMPLIFY. */
6218 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6219 R_XTENSA_ASM_SIMPLIFY);
6220 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6222 pin_internal_relocs (sec, internal_relocs);
6226 /* It is resolvable but doesn't reach. We resolve now
6227 by eliminating the relocation -- the call will remain
6228 expanded into L32R/CALLX. */
6229 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6230 pin_internal_relocs (sec, internal_relocs);
6235 release_contents (sec, contents);
6236 release_internal_relocs (sec, internal_relocs);
6241 /* Return TRUE if the asm expansion can be resolved. Generally it can
6242 be resolved on a final link or when a partial link locates it in the
6243 same section as the target. Set "is_reachable" flag if the target of
6244 the call is within the range of a direct call, given the current VMA
6245 for this section and the target section. */
6248 is_resolvable_asm_expansion (bfd *abfd,
6251 Elf_Internal_Rela *irel,
6252 struct bfd_link_info *link_info,
6253 bfd_boolean *is_reachable_p)
6255 asection *target_sec;
6256 bfd_vma target_offset;
6258 xtensa_opcode opcode, direct_call_opcode;
6259 bfd_vma self_address;
6260 bfd_vma dest_address;
6261 bfd_boolean uses_l32r;
6262 bfd_size_type sec_size;
6264 *is_reachable_p = FALSE;
6266 if (contents == NULL)
6269 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6272 sec_size = bfd_get_section_limit (abfd, sec);
6273 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6274 sec_size - irel->r_offset, &uses_l32r);
6275 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6279 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6280 if (direct_call_opcode == XTENSA_UNDEFINED)
6283 /* Check and see that the target resolves. */
6284 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6285 if (!r_reloc_is_defined (&r_rel))
6288 target_sec = r_reloc_get_section (&r_rel);
6289 target_offset = r_rel.target_offset;
6291 /* If the target is in a shared library, then it doesn't reach. This
6292 isn't supposed to come up because the compiler should never generate
6293 non-PIC calls on systems that use shared libraries, but the linker
6294 shouldn't crash regardless. */
6295 if (!target_sec->output_section)
6298 /* For relocatable sections, we can only simplify when the output
6299 section of the target is the same as the output section of the
6301 if (link_info->relocatable
6302 && (target_sec->output_section != sec->output_section
6303 || is_reloc_sym_weak (abfd, irel)))
6306 self_address = (sec->output_section->vma
6307 + sec->output_offset + irel->r_offset + 3);
6308 dest_address = (target_sec->output_section->vma
6309 + target_sec->output_offset + target_offset);
6311 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6312 self_address, dest_address);
6314 if ((self_address >> CALL_SEGMENT_BITS) !=
6315 (dest_address >> CALL_SEGMENT_BITS))
6322 static Elf_Internal_Rela *
6323 find_associated_l32r_irel (bfd *abfd,
6326 Elf_Internal_Rela *other_irel,
6327 Elf_Internal_Rela *internal_relocs)
6331 for (i = 0; i < sec->reloc_count; i++)
6333 Elf_Internal_Rela *irel = &internal_relocs[i];
6335 if (irel == other_irel)
6337 if (irel->r_offset != other_irel->r_offset)
6339 if (is_l32r_relocation (abfd, sec, contents, irel))
6347 static xtensa_opcode *
6348 build_reloc_opcodes (bfd *abfd,
6351 Elf_Internal_Rela *internal_relocs)
6354 xtensa_opcode *reloc_opcodes =
6355 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6356 for (i = 0; i < sec->reloc_count; i++)
6358 Elf_Internal_Rela *irel = &internal_relocs[i];
6359 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6361 return reloc_opcodes;
6365 /* The compute_text_actions function will build a list of potential
6366 transformation actions for code in the extended basic block of each
6367 longcall that is optimized to a direct call. From this list we
6368 generate a set of actions to actually perform that optimizes for
6369 space and, if not using size_opt, maintains branch target
6372 These actions to be performed are placed on a per-section list.
6373 The actual changes are performed by relax_section() in the second
6377 compute_text_actions (bfd *abfd,
6379 struct bfd_link_info *link_info)
6381 xtensa_opcode *reloc_opcodes = NULL;
6382 xtensa_relax_info *relax_info;
6384 Elf_Internal_Rela *internal_relocs;
6385 bfd_boolean ok = TRUE;
6387 property_table_entry *prop_table = 0;
6389 bfd_size_type sec_size;
6391 relax_info = get_xtensa_relax_info (sec);
6392 BFD_ASSERT (relax_info);
6393 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
6395 /* Do nothing if the section contains no optimized longcalls. */
6396 if (!relax_info->is_relaxable_asm_section)
6399 internal_relocs = retrieve_internal_relocs (abfd, sec,
6400 link_info->keep_memory);
6402 if (internal_relocs)
6403 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6404 internal_reloc_compare);
6406 sec_size = bfd_get_section_limit (abfd, sec);
6407 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6408 if (contents == NULL && sec_size != 0)
6414 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6415 XTENSA_PROP_SEC_NAME, FALSE);
6422 for (i = 0; i < sec->reloc_count; i++)
6424 Elf_Internal_Rela *irel = &internal_relocs[i];
6426 property_table_entry *the_entry;
6429 ebb_constraint ebb_table;
6430 bfd_size_type simplify_size;
6432 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6434 r_offset = irel->r_offset;
6436 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6437 if (simplify_size == 0)
6439 (*_bfd_error_handler)
6440 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6441 sec->owner, sec, r_offset);
6445 /* If the instruction table is not around, then don't do this
6447 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6448 sec->vma + irel->r_offset);
6449 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6451 text_action_add (&relax_info->action_list,
6452 ta_convert_longcall, sec, r_offset,
6457 /* If the next longcall happens to be at the same address as an
6458 unreachable section of size 0, then skip forward. */
6459 ptbl_idx = the_entry - prop_table;
6460 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6461 && the_entry->size == 0
6462 && ptbl_idx + 1 < ptblsize
6463 && (prop_table[ptbl_idx + 1].address
6464 == prop_table[ptbl_idx].address))
6470 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
6471 /* NO_REORDER is OK */
6474 init_ebb_constraint (&ebb_table);
6475 ebb = &ebb_table.ebb;
6476 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6477 internal_relocs, sec->reloc_count);
6478 ebb->start_offset = r_offset + simplify_size;
6479 ebb->end_offset = r_offset + simplify_size;
6480 ebb->start_ptbl_idx = ptbl_idx;
6481 ebb->end_ptbl_idx = ptbl_idx;
6482 ebb->start_reloc_idx = i;
6483 ebb->end_reloc_idx = i;
6485 /* Precompute the opcode for each relocation. */
6486 if (reloc_opcodes == NULL)
6487 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6490 if (!extend_ebb_bounds (ebb)
6491 || !compute_ebb_proposed_actions (&ebb_table)
6492 || !compute_ebb_actions (&ebb_table)
6493 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
6494 internal_relocs, &ebb_table,
6496 || !check_section_ebb_reduces (&ebb_table))
6498 /* If anything goes wrong or we get unlucky and something does
6499 not fit, with our plan because of expansion between
6500 critical branches, just convert to a NOP. */
6502 text_action_add (&relax_info->action_list,
6503 ta_convert_longcall, sec, r_offset, 0);
6504 i = ebb_table.ebb.end_reloc_idx;
6505 free_ebb_constraint (&ebb_table);
6509 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6511 /* Update the index so we do not go looking at the relocations
6512 we have already processed. */
6513 i = ebb_table.ebb.end_reloc_idx;
6514 free_ebb_constraint (&ebb_table);
6518 if (relax_info->action_list.head)
6519 print_action_list (stderr, &relax_info->action_list);
6523 release_contents (sec, contents);
6524 release_internal_relocs (sec, internal_relocs);
6528 free (reloc_opcodes);
6534 /* Do not widen an instruction if it is preceeded by a
6535 loop opcode. It might cause misalignment. */
6538 prev_instr_is_a_loop (bfd_byte *contents,
6539 bfd_size_type content_length,
6540 bfd_size_type offset)
6542 xtensa_opcode prev_opcode;
6546 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
6547 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
6551 /* Find all of the possible actions for an extended basic block. */
6554 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
6556 const ebb_t *ebb = &ebb_table->ebb;
6557 unsigned rel_idx = ebb->start_reloc_idx;
6558 property_table_entry *entry, *start_entry, *end_entry;
6560 xtensa_isa isa = xtensa_default_isa;
6562 static xtensa_insnbuf insnbuf = NULL;
6563 static xtensa_insnbuf slotbuf = NULL;
6565 if (insnbuf == NULL)
6567 insnbuf = xtensa_insnbuf_alloc (isa);
6568 slotbuf = xtensa_insnbuf_alloc (isa);
6571 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6572 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6574 for (entry = start_entry; entry <= end_entry; entry++)
6576 bfd_vma start_offset, end_offset;
6577 bfd_size_type insn_len;
6579 start_offset = entry->address - ebb->sec->vma;
6580 end_offset = entry->address + entry->size - ebb->sec->vma;
6582 if (entry == start_entry)
6583 start_offset = ebb->start_offset;
6584 if (entry == end_entry)
6585 end_offset = ebb->end_offset;
6586 offset = start_offset;
6588 if (offset == entry->address - ebb->sec->vma
6589 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6591 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6592 BFD_ASSERT (offset != end_offset);
6593 if (offset == end_offset)
6596 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6601 if (check_branch_target_aligned_address (offset, insn_len))
6602 align_type = EBB_REQUIRE_TGT_ALIGN;
6604 ebb_propose_action (ebb_table, align_type, 0,
6605 ta_none, offset, 0, TRUE);
6608 while (offset != end_offset)
6610 Elf_Internal_Rela *irel;
6611 xtensa_opcode opcode;
6613 while (rel_idx < ebb->end_reloc_idx
6614 && (ebb->relocs[rel_idx].r_offset < offset
6615 || (ebb->relocs[rel_idx].r_offset == offset
6616 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6617 != R_XTENSA_ASM_SIMPLIFY))))
6620 /* Check for longcall. */
6621 irel = &ebb->relocs[rel_idx];
6622 if (irel->r_offset == offset
6623 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6625 bfd_size_type simplify_size;
6627 simplify_size = get_asm_simplify_size (ebb->contents,
6628 ebb->content_length,
6630 if (simplify_size == 0)
6633 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6634 ta_convert_longcall, offset, 0, TRUE);
6636 offset += simplify_size;
6640 if (offset + MIN_INSN_LENGTH > ebb->content_length)
6642 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
6643 ebb->content_length - offset);
6644 fmt = xtensa_format_decode (isa, insnbuf);
6645 if (fmt == XTENSA_UNDEFINED)
6647 insn_len = xtensa_format_length (isa, fmt);
6648 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
6651 if (xtensa_format_num_slots (isa, fmt) != 1)
6657 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
6658 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
6659 if (opcode == XTENSA_UNDEFINED)
6662 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6663 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
6664 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
6666 /* Add an instruction narrow action. */
6667 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6668 ta_narrow_insn, offset, 0, FALSE);
6670 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
6671 && can_widen_instruction (slotbuf, fmt, opcode) != 0
6672 && ! prev_instr_is_a_loop (ebb->contents,
6673 ebb->content_length, offset))
6675 /* Add an instruction widen action. */
6676 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6677 ta_widen_insn, offset, 0, FALSE);
6679 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
6681 /* Check for branch targets. */
6682 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6683 ta_none, offset, 0, TRUE);
6690 if (ebb->ends_unreachable)
6692 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6693 ta_fill, ebb->end_offset, 0, TRUE);
6699 (*_bfd_error_handler)
6700 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6701 ebb->sec->owner, ebb->sec, offset);
6706 /* After all of the information has collected about the
6707 transformations possible in an EBB, compute the appropriate actions
6708 here in compute_ebb_actions. We still must check later to make
6709 sure that the actions do not break any relocations. The algorithm
6710 used here is pretty greedy. Basically, it removes as many no-ops
6711 as possible so that the end of the EBB has the same alignment
6712 characteristics as the original. First, it uses narrowing, then
6713 fill space at the end of the EBB, and finally widenings. If that
6714 does not work, it tries again with one fewer no-op removed. The
6715 optimization will only be performed if all of the branch targets
6716 that were aligned before transformation are also aligned after the
6719 When the size_opt flag is set, ignore the branch target alignments,
6720 narrow all wide instructions, and remove all no-ops unless the end
6721 of the EBB prevents it. */
6724 compute_ebb_actions (ebb_constraint *ebb_table)
6728 int removed_bytes = 0;
6729 ebb_t *ebb = &ebb_table->ebb;
6730 unsigned seg_idx_start = 0;
6731 unsigned seg_idx_end = 0;
6733 /* We perform this like the assembler relaxation algorithm: Start by
6734 assuming all instructions are narrow and all no-ops removed; then
6737 /* For each segment of this that has a solid constraint, check to
6738 see if there are any combinations that will keep the constraint.
6740 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
6742 bfd_boolean requires_text_end_align = FALSE;
6743 unsigned longcall_count = 0;
6744 unsigned longcall_convert_count = 0;
6745 unsigned narrowable_count = 0;
6746 unsigned narrowable_convert_count = 0;
6747 unsigned widenable_count = 0;
6748 unsigned widenable_convert_count = 0;
6750 proposed_action *action = NULL;
6751 int align = (1 << ebb_table->ebb.sec->alignment_power);
6753 seg_idx_start = seg_idx_end;
6755 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6757 action = &ebb_table->actions[i];
6758 if (action->action == ta_convert_longcall)
6760 if (action->action == ta_narrow_insn)
6762 if (action->action == ta_widen_insn)
6764 if (action->action == ta_fill)
6766 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6768 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6769 && !elf32xtensa_size_opt)
6774 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6775 requires_text_end_align = TRUE;
6777 if (elf32xtensa_size_opt && !requires_text_end_align
6778 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6779 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6781 longcall_convert_count = longcall_count;
6782 narrowable_convert_count = narrowable_count;
6783 widenable_convert_count = 0;
6787 /* There is a constraint. Convert the max number of longcalls. */
6788 narrowable_convert_count = 0;
6789 longcall_convert_count = 0;
6790 widenable_convert_count = 0;
6792 for (j = 0; j < longcall_count; j++)
6794 int removed = (longcall_count - j) * 3 & (align - 1);
6795 unsigned desire_narrow = (align - removed) & (align - 1);
6796 unsigned desire_widen = removed;
6797 if (desire_narrow <= narrowable_count)
6799 narrowable_convert_count = desire_narrow;
6800 narrowable_convert_count +=
6801 (align * ((narrowable_count - narrowable_convert_count)
6803 longcall_convert_count = (longcall_count - j);
6804 widenable_convert_count = 0;
6807 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6809 narrowable_convert_count = 0;
6810 longcall_convert_count = longcall_count - j;
6811 widenable_convert_count = desire_widen;
6817 /* Now the number of conversions are saved. Do them. */
6818 for (i = seg_idx_start; i < seg_idx_end; i++)
6820 action = &ebb_table->actions[i];
6821 switch (action->action)
6823 case ta_convert_longcall:
6824 if (longcall_convert_count != 0)
6826 action->action = ta_remove_longcall;
6827 action->do_action = TRUE;
6828 action->removed_bytes += 3;
6829 longcall_convert_count--;
6832 case ta_narrow_insn:
6833 if (narrowable_convert_count != 0)
6835 action->do_action = TRUE;
6836 action->removed_bytes += 1;
6837 narrowable_convert_count--;
6841 if (widenable_convert_count != 0)
6843 action->do_action = TRUE;
6844 action->removed_bytes -= 1;
6845 widenable_convert_count--;
6854 /* Now we move on to some local opts. Try to remove each of the
6855 remaining longcalls. */
6857 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6860 for (i = 0; i < ebb_table->action_count; i++)
6862 int old_removed_bytes = removed_bytes;
6863 proposed_action *action = &ebb_table->actions[i];
6865 if (action->do_action && action->action == ta_convert_longcall)
6867 bfd_boolean bad_alignment = FALSE;
6869 for (j = i + 1; j < ebb_table->action_count; j++)
6871 proposed_action *new_action = &ebb_table->actions[j];
6872 bfd_vma offset = new_action->offset;
6873 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6875 if (!check_branch_target_aligned
6876 (ebb_table->ebb.contents,
6877 ebb_table->ebb.content_length,
6878 offset, offset - removed_bytes))
6880 bad_alignment = TRUE;
6884 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6886 if (!check_loop_aligned (ebb_table->ebb.contents,
6887 ebb_table->ebb.content_length,
6889 offset - removed_bytes))
6891 bad_alignment = TRUE;
6895 if (new_action->action == ta_narrow_insn
6896 && !new_action->do_action
6897 && ebb_table->ebb.sec->alignment_power == 2)
6899 /* Narrow an instruction and we are done. */
6900 new_action->do_action = TRUE;
6901 new_action->removed_bytes += 1;
6902 bad_alignment = FALSE;
6905 if (new_action->action == ta_widen_insn
6906 && new_action->do_action
6907 && ebb_table->ebb.sec->alignment_power == 2)
6909 /* Narrow an instruction and we are done. */
6910 new_action->do_action = FALSE;
6911 new_action->removed_bytes += 1;
6912 bad_alignment = FALSE;
6915 if (new_action->do_action)
6916 removed_bytes += new_action->removed_bytes;
6920 action->removed_bytes += 3;
6921 action->action = ta_remove_longcall;
6922 action->do_action = TRUE;
6925 removed_bytes = old_removed_bytes;
6926 if (action->do_action)
6927 removed_bytes += action->removed_bytes;
6932 for (i = 0; i < ebb_table->action_count; ++i)
6934 proposed_action *action = &ebb_table->actions[i];
6935 if (action->do_action)
6936 removed_bytes += action->removed_bytes;
6939 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6940 && ebb->ends_unreachable)
6942 proposed_action *action;
6946 BFD_ASSERT (ebb_table->action_count != 0);
6947 action = &ebb_table->actions[ebb_table->action_count - 1];
6948 BFD_ASSERT (action->action == ta_fill);
6949 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6951 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6952 br = action->removed_bytes + removed_bytes + extra_space;
6953 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6955 action->removed_bytes = extra_space - br;
6961 /* The xlate_map is a sorted array of address mappings designed to
6962 answer the offset_with_removed_text() query with a binary search instead
6963 of a linear search through the section's action_list. */
6965 typedef struct xlate_map_entry xlate_map_entry_t;
6966 typedef struct xlate_map xlate_map_t;
6968 struct xlate_map_entry
6970 unsigned orig_address;
6971 unsigned new_address;
6977 unsigned entry_count;
6978 xlate_map_entry_t *entry;
6983 xlate_compare (const void *a_v, const void *b_v)
6985 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6986 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6987 if (a->orig_address < b->orig_address)
6989 if (a->orig_address > (b->orig_address + b->size - 1))
6996 xlate_offset_with_removed_text (const xlate_map_t *map,
6997 text_action_list *action_list,
7000 xlate_map_entry_t tmp;
7002 xlate_map_entry_t *e;
7005 return offset_with_removed_text (action_list, offset);
7007 if (map->entry_count == 0)
7010 tmp.orig_address = offset;
7011 tmp.new_address = offset;
7014 r = bsearch (&offset, map->entry, map->entry_count,
7015 sizeof (xlate_map_entry_t), &xlate_compare);
7016 e = (xlate_map_entry_t *) r;
7018 BFD_ASSERT (e != NULL);
7021 return e->new_address - e->orig_address + offset;
7025 /* Build a binary searchable offset translation map from a section's
7028 static xlate_map_t *
7029 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7031 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7032 text_action_list *action_list = &relax_info->action_list;
7033 unsigned num_actions = 0;
7036 xlate_map_entry_t *current_entry;
7041 num_actions = action_list_count (action_list);
7042 map->entry = (xlate_map_entry_t *)
7043 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7044 if (map->entry == NULL)
7049 map->entry_count = 0;
7052 current_entry = &map->entry[0];
7054 current_entry->orig_address = 0;
7055 current_entry->new_address = 0;
7056 current_entry->size = 0;
7058 for (r = action_list->head; r != NULL; r = r->next)
7060 unsigned orig_size = 0;
7064 case ta_remove_insn:
7065 case ta_convert_longcall:
7066 case ta_remove_literal:
7067 case ta_add_literal:
7069 case ta_remove_longcall:
7072 case ta_narrow_insn:
7081 current_entry->size =
7082 r->offset + orig_size - current_entry->orig_address;
7083 if (current_entry->size != 0)
7088 current_entry->orig_address = r->offset + orig_size;
7089 removed += r->removed_bytes;
7090 current_entry->new_address = r->offset + orig_size - removed;
7091 current_entry->size = 0;
7094 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7095 - current_entry->orig_address);
7096 if (current_entry->size != 0)
7103 /* Free an offset translation map. */
7106 free_xlate_map (xlate_map_t *map)
7108 if (map && map->entry)
7115 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7116 relocations in a section will fit if a proposed set of actions
7120 check_section_ebb_pcrels_fit (bfd *abfd,
7123 Elf_Internal_Rela *internal_relocs,
7124 const ebb_constraint *constraint,
7125 const xtensa_opcode *reloc_opcodes)
7128 Elf_Internal_Rela *irel;
7129 xlate_map_t *xmap = NULL;
7130 bfd_boolean ok = TRUE;
7131 xtensa_relax_info *relax_info;
7133 relax_info = get_xtensa_relax_info (sec);
7135 if (relax_info && sec->reloc_count > 100)
7137 xmap = build_xlate_map (sec, relax_info);
7138 /* NULL indicates out of memory, but the slow version
7139 can still be used. */
7142 for (i = 0; i < sec->reloc_count; i++)
7145 bfd_vma orig_self_offset, orig_target_offset;
7146 bfd_vma self_offset, target_offset;
7148 reloc_howto_type *howto;
7149 int self_removed_bytes, target_removed_bytes;
7151 irel = &internal_relocs[i];
7152 r_type = ELF32_R_TYPE (irel->r_info);
7154 howto = &elf_howto_table[r_type];
7155 /* We maintain the required invariant: PC-relative relocations
7156 that fit before linking must fit after linking. Thus we only
7157 need to deal with relocations to the same section that are
7159 if (r_type == R_XTENSA_ASM_SIMPLIFY
7160 || r_type == R_XTENSA_32_PCREL
7161 || !howto->pc_relative)
7164 r_reloc_init (&r_rel, abfd, irel, contents,
7165 bfd_get_section_limit (abfd, sec));
7167 if (r_reloc_get_section (&r_rel) != sec)
7170 orig_self_offset = irel->r_offset;
7171 orig_target_offset = r_rel.target_offset;
7173 self_offset = orig_self_offset;
7174 target_offset = orig_target_offset;
7179 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7182 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7183 orig_target_offset);
7186 self_removed_bytes = 0;
7187 target_removed_bytes = 0;
7189 for (j = 0; j < constraint->action_count; ++j)
7191 proposed_action *action = &constraint->actions[j];
7192 bfd_vma offset = action->offset;
7193 int removed_bytes = action->removed_bytes;
7194 if (offset < orig_self_offset
7195 || (offset == orig_self_offset && action->action == ta_fill
7196 && action->removed_bytes < 0))
7197 self_removed_bytes += removed_bytes;
7198 if (offset < orig_target_offset
7199 || (offset == orig_target_offset && action->action == ta_fill
7200 && action->removed_bytes < 0))
7201 target_removed_bytes += removed_bytes;
7203 self_offset -= self_removed_bytes;
7204 target_offset -= target_removed_bytes;
7206 /* Try to encode it. Get the operand and check. */
7207 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7209 /* None of the current alternate relocs are PC-relative,
7210 and only PC-relative relocs matter here. */
7214 xtensa_opcode opcode;
7218 opcode = reloc_opcodes[i];
7220 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7221 if (opcode == XTENSA_UNDEFINED)
7227 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7228 if (opnum == XTENSA_UNDEFINED)
7234 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
7243 free_xlate_map (xmap);
7250 check_section_ebb_reduces (const ebb_constraint *constraint)
7255 for (i = 0; i < constraint->action_count; i++)
7257 const proposed_action *action = &constraint->actions[i];
7258 if (action->do_action)
7259 removed += action->removed_bytes;
7269 text_action_add_proposed (text_action_list *l,
7270 const ebb_constraint *ebb_table,
7275 for (i = 0; i < ebb_table->action_count; i++)
7277 proposed_action *action = &ebb_table->actions[i];
7279 if (!action->do_action)
7281 switch (action->action)
7283 case ta_remove_insn:
7284 case ta_remove_longcall:
7285 case ta_convert_longcall:
7286 case ta_narrow_insn:
7289 case ta_remove_literal:
7290 text_action_add (l, action->action, sec, action->offset,
7291 action->removed_bytes);
7304 compute_fill_extra_space (property_table_entry *entry)
7306 int fill_extra_space;
7311 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7314 fill_extra_space = entry->size;
7315 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7317 /* Fill bytes for alignment:
7318 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7319 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7320 int nsm = (1 << pow) - 1;
7321 bfd_vma addr = entry->address + entry->size;
7322 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7323 fill_extra_space += align_fill;
7325 return fill_extra_space;
7329 /* First relaxation pass. */
7331 /* If the section contains relaxable literals, check each literal to
7332 see if it has the same value as another literal that has already
7333 been seen, either in the current section or a previous one. If so,
7334 add an entry to the per-section list of removed literals. The
7335 actual changes are deferred until the next pass. */
7338 compute_removed_literals (bfd *abfd,
7340 struct bfd_link_info *link_info,
7341 value_map_hash_table *values)
7343 xtensa_relax_info *relax_info;
7345 Elf_Internal_Rela *internal_relocs;
7346 source_reloc *src_relocs, *rel;
7347 bfd_boolean ok = TRUE;
7348 property_table_entry *prop_table = NULL;
7351 bfd_boolean last_loc_is_prev = FALSE;
7352 bfd_vma last_target_offset = 0;
7353 section_cache_t target_sec_cache;
7354 bfd_size_type sec_size;
7356 init_section_cache (&target_sec_cache);
7358 /* Do nothing if it is not a relaxable literal section. */
7359 relax_info = get_xtensa_relax_info (sec);
7360 BFD_ASSERT (relax_info);
7361 if (!relax_info->is_relaxable_literal_section)
7364 internal_relocs = retrieve_internal_relocs (abfd, sec,
7365 link_info->keep_memory);
7367 sec_size = bfd_get_section_limit (abfd, sec);
7368 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7369 if (contents == NULL && sec_size != 0)
7375 /* Sort the source_relocs by target offset. */
7376 src_relocs = relax_info->src_relocs;
7377 qsort (src_relocs, relax_info->src_count,
7378 sizeof (source_reloc), source_reloc_compare);
7379 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7380 internal_reloc_compare);
7382 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7383 XTENSA_PROP_SEC_NAME, FALSE);
7391 for (i = 0; i < relax_info->src_count; i++)
7393 Elf_Internal_Rela *irel = NULL;
7395 rel = &src_relocs[i];
7396 if (get_l32r_opcode () != rel->opcode)
7398 irel = get_irel_at_offset (sec, internal_relocs,
7399 rel->r_rel.target_offset);
7401 /* If the relocation on this is not a simple R_XTENSA_32 or
7402 R_XTENSA_PLT then do not consider it. This may happen when
7403 the difference of two symbols is used in a literal. */
7404 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7405 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7408 /* If the target_offset for this relocation is the same as the
7409 previous relocation, then we've already considered whether the
7410 literal can be coalesced. Skip to the next one.... */
7411 if (i != 0 && prev_i != -1
7412 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
7416 if (last_loc_is_prev &&
7417 last_target_offset + 4 != rel->r_rel.target_offset)
7418 last_loc_is_prev = FALSE;
7420 /* Check if the relocation was from an L32R that is being removed
7421 because a CALLX was converted to a direct CALL, and check if
7422 there are no other relocations to the literal. */
7423 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
7424 sec, prop_table, ptblsize))
7426 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7427 irel, rel, prop_table, ptblsize))
7432 last_target_offset = rel->r_rel.target_offset;
7436 if (!identify_literal_placement (abfd, sec, contents, link_info,
7438 &last_loc_is_prev, irel,
7439 relax_info->src_count - i, rel,
7440 prop_table, ptblsize,
7441 &target_sec_cache, rel->is_abs_literal))
7446 last_target_offset = rel->r_rel.target_offset;
7450 print_removed_literals (stderr, &relax_info->removed_list);
7451 print_action_list (stderr, &relax_info->action_list);
7455 if (prop_table) free (prop_table);
7456 clear_section_cache (&target_sec_cache);
7458 release_contents (sec, contents);
7459 release_internal_relocs (sec, internal_relocs);
7464 static Elf_Internal_Rela *
7465 get_irel_at_offset (asection *sec,
7466 Elf_Internal_Rela *internal_relocs,
7470 Elf_Internal_Rela *irel;
7472 Elf_Internal_Rela key;
7474 if (!internal_relocs)
7477 key.r_offset = offset;
7478 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7479 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7483 /* bsearch does not guarantee which will be returned if there are
7484 multiple matches. We need the first that is not an alignment. */
7485 i = irel - internal_relocs;
7488 if (internal_relocs[i-1].r_offset != offset)
7492 for ( ; i < sec->reloc_count; i++)
7494 irel = &internal_relocs[i];
7495 r_type = ELF32_R_TYPE (irel->r_info);
7496 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7505 is_removable_literal (const source_reloc *rel,
7507 const source_reloc *src_relocs,
7510 property_table_entry *prop_table,
7513 const source_reloc *curr_rel;
7514 property_table_entry *entry;
7519 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7520 sec->vma + rel->r_rel.target_offset);
7521 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
7524 for (++i; i < src_count; ++i)
7526 curr_rel = &src_relocs[i];
7527 /* If all others have the same target offset.... */
7528 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7531 if (!curr_rel->is_null
7532 && !xtensa_is_property_section (curr_rel->source_sec)
7533 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7541 remove_dead_literal (bfd *abfd,
7543 struct bfd_link_info *link_info,
7544 Elf_Internal_Rela *internal_relocs,
7545 Elf_Internal_Rela *irel,
7547 property_table_entry *prop_table,
7550 property_table_entry *entry;
7551 xtensa_relax_info *relax_info;
7553 relax_info = get_xtensa_relax_info (sec);
7557 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7558 sec->vma + rel->r_rel.target_offset);
7560 /* Mark the unused literal so that it will be removed. */
7561 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7563 text_action_add (&relax_info->action_list,
7564 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7566 /* If the section is 4-byte aligned, do not add fill. */
7567 if (sec->alignment_power > 2)
7569 int fill_extra_space;
7570 bfd_vma entry_sec_offset;
7572 property_table_entry *the_add_entry;
7576 entry_sec_offset = entry->address - sec->vma + entry->size;
7578 entry_sec_offset = rel->r_rel.target_offset + 4;
7580 /* If the literal range is at the end of the section,
7582 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7584 fill_extra_space = compute_fill_extra_space (the_add_entry);
7586 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7587 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7588 -4, fill_extra_space);
7590 adjust_fill_action (fa, removed_diff);
7592 text_action_add (&relax_info->action_list,
7593 ta_fill, sec, entry_sec_offset, removed_diff);
7596 /* Zero out the relocation on this literal location. */
7599 if (elf_hash_table (link_info)->dynamic_sections_created)
7600 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7602 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7603 pin_internal_relocs (sec, internal_relocs);
7606 /* Do not modify "last_loc_is_prev". */
7612 identify_literal_placement (bfd *abfd,
7615 struct bfd_link_info *link_info,
7616 value_map_hash_table *values,
7617 bfd_boolean *last_loc_is_prev_p,
7618 Elf_Internal_Rela *irel,
7619 int remaining_src_rels,
7621 property_table_entry *prop_table,
7623 section_cache_t *target_sec_cache,
7624 bfd_boolean is_abs_literal)
7628 xtensa_relax_info *relax_info;
7629 bfd_boolean literal_placed = FALSE;
7631 unsigned long value;
7632 bfd_boolean final_static_link;
7633 bfd_size_type sec_size;
7635 relax_info = get_xtensa_relax_info (sec);
7639 sec_size = bfd_get_section_limit (abfd, sec);
7642 (!link_info->relocatable
7643 && !elf_hash_table (link_info)->dynamic_sections_created);
7645 /* The placement algorithm first checks to see if the literal is
7646 already in the value map. If so and the value map is reachable
7647 from all uses, then the literal is moved to that location. If
7648 not, then we identify the last location where a fresh literal was
7649 placed. If the literal can be safely moved there, then we do so.
7650 If not, then we assume that the literal is not to move and leave
7651 the literal where it is, marking it as the last literal
7654 /* Find the literal value. */
7656 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7659 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7660 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7662 init_literal_value (&val, &r_rel, value, is_abs_literal);
7664 /* Check if we've seen another literal with the same value that
7665 is in the same output section. */
7666 val_map = value_map_get_cached_value (values, &val, final_static_link);
7669 && (r_reloc_get_section (&val_map->loc)->output_section
7670 == sec->output_section)
7671 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7672 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7674 /* No change to last_loc_is_prev. */
7675 literal_placed = TRUE;
7678 /* For relocatable links, do not try to move literals. To do it
7679 correctly might increase the number of relocations in an input
7680 section making the default relocatable linking fail. */
7681 if (!link_info->relocatable && !literal_placed
7682 && values->has_last_loc && !(*last_loc_is_prev_p))
7684 asection *target_sec = r_reloc_get_section (&values->last_loc);
7685 if (target_sec && target_sec->output_section == sec->output_section)
7687 /* Increment the virtual offset. */
7688 r_reloc try_loc = values->last_loc;
7689 try_loc.virtual_offset += 4;
7691 /* There is a last loc that was in the same output section. */
7692 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7693 && move_shared_literal (sec, link_info, rel,
7694 prop_table, ptblsize,
7695 &try_loc, &val, target_sec_cache))
7697 values->last_loc.virtual_offset += 4;
7698 literal_placed = TRUE;
7700 val_map = add_value_map (values, &val, &try_loc,
7703 val_map->loc = try_loc;
7708 if (!literal_placed)
7710 /* Nothing worked, leave the literal alone but update the last loc. */
7711 values->has_last_loc = TRUE;
7712 values->last_loc = rel->r_rel;
7714 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
7716 val_map->loc = rel->r_rel;
7717 *last_loc_is_prev_p = TRUE;
7724 /* Check if the original relocations (presumably on L32R instructions)
7725 identified by reloc[0..N] can be changed to reference the literal
7726 identified by r_rel. If r_rel is out of range for any of the
7727 original relocations, then we don't want to coalesce the original
7728 literal with the one at r_rel. We only check reloc[0..N], where the
7729 offsets are all the same as for reloc[0] (i.e., they're all
7730 referencing the same literal) and where N is also bounded by the
7731 number of remaining entries in the "reloc" array. The "reloc" array
7732 is sorted by target offset so we know all the entries for the same
7733 literal will be contiguous. */
7736 relocations_reach (source_reloc *reloc,
7737 int remaining_relocs,
7738 const r_reloc *r_rel)
7740 bfd_vma from_offset, source_address, dest_address;
7744 if (!r_reloc_is_defined (r_rel))
7747 sec = r_reloc_get_section (r_rel);
7748 from_offset = reloc[0].r_rel.target_offset;
7750 for (i = 0; i < remaining_relocs; i++)
7752 if (reloc[i].r_rel.target_offset != from_offset)
7755 /* Ignore relocations that have been removed. */
7756 if (reloc[i].is_null)
7759 /* The original and new output section for these must be the same
7760 in order to coalesce. */
7761 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7762 != sec->output_section)
7765 /* Absolute literals in the same output section can always be
7767 if (reloc[i].is_abs_literal)
7770 /* A literal with no PC-relative relocations can be moved anywhere. */
7771 if (reloc[i].opnd != -1)
7773 /* Otherwise, check to see that it fits. */
7774 source_address = (reloc[i].source_sec->output_section->vma
7775 + reloc[i].source_sec->output_offset
7776 + reloc[i].r_rel.rela.r_offset);
7777 dest_address = (sec->output_section->vma
7778 + sec->output_offset
7779 + r_rel->target_offset);
7781 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7782 source_address, dest_address))
7791 /* Move a literal to another literal location because it is
7792 the same as the other literal value. */
7795 coalesce_shared_literal (asection *sec,
7797 property_table_entry *prop_table,
7801 property_table_entry *entry;
7803 property_table_entry *the_add_entry;
7805 xtensa_relax_info *relax_info;
7807 relax_info = get_xtensa_relax_info (sec);
7811 entry = elf_xtensa_find_property_entry
7812 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7813 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
7816 /* Mark that the literal will be coalesced. */
7817 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7819 text_action_add (&relax_info->action_list,
7820 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7822 /* If the section is 4-byte aligned, do not add fill. */
7823 if (sec->alignment_power > 2)
7825 int fill_extra_space;
7826 bfd_vma entry_sec_offset;
7829 entry_sec_offset = entry->address - sec->vma + entry->size;
7831 entry_sec_offset = rel->r_rel.target_offset + 4;
7833 /* If the literal range is at the end of the section,
7835 fill_extra_space = 0;
7836 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7838 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7839 fill_extra_space = the_add_entry->size;
7841 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7842 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7843 -4, fill_extra_space);
7845 adjust_fill_action (fa, removed_diff);
7847 text_action_add (&relax_info->action_list,
7848 ta_fill, sec, entry_sec_offset, removed_diff);
7855 /* Move a literal to another location. This may actually increase the
7856 total amount of space used because of alignments so we need to do
7857 this carefully. Also, it may make a branch go out of range. */
7860 move_shared_literal (asection *sec,
7861 struct bfd_link_info *link_info,
7863 property_table_entry *prop_table,
7865 const r_reloc *target_loc,
7866 const literal_value *lit_value,
7867 section_cache_t *target_sec_cache)
7869 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7870 text_action *fa, *target_fa;
7872 xtensa_relax_info *relax_info, *target_relax_info;
7873 asection *target_sec;
7875 ebb_constraint ebb_table;
7876 bfd_boolean relocs_fit;
7878 /* If this routine always returns FALSE, the literals that cannot be
7879 coalesced will not be moved. */
7880 if (elf32xtensa_no_literal_movement)
7883 relax_info = get_xtensa_relax_info (sec);
7887 target_sec = r_reloc_get_section (target_loc);
7888 target_relax_info = get_xtensa_relax_info (target_sec);
7890 /* Literals to undefined sections may not be moved because they
7891 must report an error. */
7892 if (bfd_is_und_section (target_sec))
7895 src_entry = elf_xtensa_find_property_entry
7896 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7898 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7901 target_entry = elf_xtensa_find_property_entry
7902 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7903 target_sec->vma + target_loc->target_offset);
7908 /* Make sure that we have not broken any branches. */
7911 init_ebb_constraint (&ebb_table);
7912 ebb = &ebb_table.ebb;
7913 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7914 target_sec_cache->content_length,
7915 target_sec_cache->ptbl, target_sec_cache->pte_count,
7916 target_sec_cache->relocs, target_sec_cache->reloc_count);
7918 /* Propose to add 4 bytes + worst-case alignment size increase to
7920 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7921 ta_fill, target_loc->target_offset,
7922 -4 - (1 << target_sec->alignment_power), TRUE);
7924 /* Check all of the PC-relative relocations to make sure they still fit. */
7925 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7926 target_sec_cache->contents,
7927 target_sec_cache->relocs,
7933 text_action_add_literal (&target_relax_info->action_list,
7934 ta_add_literal, target_loc, lit_value, -4);
7936 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7938 /* May need to add or remove some fill to maintain alignment. */
7939 int fill_extra_space;
7940 bfd_vma entry_sec_offset;
7943 target_entry->address - target_sec->vma + target_entry->size;
7945 /* If the literal range is at the end of the section,
7947 fill_extra_space = 0;
7949 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7950 target_sec_cache->pte_count,
7952 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7953 fill_extra_space = the_add_entry->size;
7955 target_fa = find_fill_action (&target_relax_info->action_list,
7956 target_sec, entry_sec_offset);
7957 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7958 entry_sec_offset, 4,
7961 adjust_fill_action (target_fa, removed_diff);
7963 text_action_add (&target_relax_info->action_list,
7964 ta_fill, target_sec, entry_sec_offset, removed_diff);
7967 /* Mark that the literal will be moved to the new location. */
7968 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7970 /* Remove the literal. */
7971 text_action_add (&relax_info->action_list,
7972 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7974 /* If the section is 4-byte aligned, do not add fill. */
7975 if (sec->alignment_power > 2 && target_entry != src_entry)
7977 int fill_extra_space;
7978 bfd_vma entry_sec_offset;
7981 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7983 entry_sec_offset = rel->r_rel.target_offset+4;
7985 /* If the literal range is at the end of the section,
7987 fill_extra_space = 0;
7988 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7990 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7991 fill_extra_space = the_add_entry->size;
7993 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7994 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7995 -4, fill_extra_space);
7997 adjust_fill_action (fa, removed_diff);
7999 text_action_add (&relax_info->action_list,
8000 ta_fill, sec, entry_sec_offset, removed_diff);
8007 /* Second relaxation pass. */
8009 /* Modify all of the relocations to point to the right spot, and if this
8010 is a relaxable section, delete the unwanted literals and fix the
8014 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
8016 Elf_Internal_Rela *internal_relocs;
8017 xtensa_relax_info *relax_info;
8019 bfd_boolean ok = TRUE;
8021 bfd_boolean rv = FALSE;
8022 bfd_boolean virtual_action;
8023 bfd_size_type sec_size;
8025 sec_size = bfd_get_section_limit (abfd, sec);
8026 relax_info = get_xtensa_relax_info (sec);
8027 BFD_ASSERT (relax_info);
8029 /* First translate any of the fixes that have been added already. */
8030 translate_section_fixes (sec);
8032 /* Handle property sections (e.g., literal tables) specially. */
8033 if (xtensa_is_property_section (sec))
8035 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8036 return relax_property_section (abfd, sec, link_info);
8039 internal_relocs = retrieve_internal_relocs (abfd, sec,
8040 link_info->keep_memory);
8041 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8042 if (contents == NULL && sec_size != 0)
8048 if (internal_relocs)
8050 for (i = 0; i < sec->reloc_count; i++)
8052 Elf_Internal_Rela *irel;
8053 xtensa_relax_info *target_relax_info;
8054 bfd_vma source_offset, old_source_offset;
8057 asection *target_sec;
8059 /* Locally change the source address.
8060 Translate the target to the new target address.
8061 If it points to this section and has been removed,
8065 irel = &internal_relocs[i];
8066 source_offset = irel->r_offset;
8067 old_source_offset = source_offset;
8069 r_type = ELF32_R_TYPE (irel->r_info);
8070 r_reloc_init (&r_rel, abfd, irel, contents,
8071 bfd_get_section_limit (abfd, sec));
8073 /* If this section could have changed then we may need to
8074 change the relocation's offset. */
8076 if (relax_info->is_relaxable_literal_section
8077 || relax_info->is_relaxable_asm_section)
8079 pin_internal_relocs (sec, internal_relocs);
8081 if (r_type != R_XTENSA_NONE
8082 && find_removed_literal (&relax_info->removed_list,
8085 /* Remove this relocation. */
8086 if (elf_hash_table (link_info)->dynamic_sections_created)
8087 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8088 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8089 irel->r_offset = offset_with_removed_text
8090 (&relax_info->action_list, irel->r_offset);
8094 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8096 text_action *action =
8097 find_insn_action (&relax_info->action_list,
8099 if (action && (action->action == ta_convert_longcall
8100 || action->action == ta_remove_longcall))
8102 bfd_reloc_status_type retval;
8103 char *error_message = NULL;
8105 retval = contract_asm_expansion (contents, sec_size,
8106 irel, &error_message);
8107 if (retval != bfd_reloc_ok)
8109 (*link_info->callbacks->reloc_dangerous)
8110 (link_info, error_message, abfd, sec,
8114 /* Update the action so that the code that moves
8115 the contents will do the right thing. */
8116 if (action->action == ta_remove_longcall)
8117 action->action = ta_remove_insn;
8119 action->action = ta_none;
8120 /* Refresh the info in the r_rel. */
8121 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8122 r_type = ELF32_R_TYPE (irel->r_info);
8126 source_offset = offset_with_removed_text
8127 (&relax_info->action_list, irel->r_offset);
8128 irel->r_offset = source_offset;
8131 /* If the target section could have changed then
8132 we may need to change the relocation's target offset. */
8134 target_sec = r_reloc_get_section (&r_rel);
8136 /* For a reference to a discarded section from a DWARF section,
8137 i.e., where action_discarded is PRETEND, the symbol will
8138 eventually be modified to refer to the kept section (at least if
8139 the kept and discarded sections are the same size). Anticipate
8140 that here and adjust things accordingly. */
8141 if (! elf_xtensa_ignore_discarded_relocs (sec)
8142 && elf_xtensa_action_discarded (sec) == PRETEND
8143 && sec->sec_info_type != ELF_INFO_TYPE_STABS
8144 && target_sec != NULL
8145 && elf_discarded_section (target_sec))
8147 /* It would be natural to call _bfd_elf_check_kept_section
8148 here, but it's not exported from elflink.c. It's also a
8149 fairly expensive check. Adjusting the relocations to the
8150 discarded section is fairly harmless; it will only adjust
8151 some addends and difference values. If it turns out that
8152 _bfd_elf_check_kept_section fails later, it won't matter,
8153 so just compare the section names to find the right group
8155 asection *kept = target_sec->kept_section;
8158 if ((kept->flags & SEC_GROUP) != 0)
8160 asection *first = elf_next_in_group (kept);
8161 asection *s = first;
8166 if (strcmp (s->name, target_sec->name) == 0)
8171 s = elf_next_in_group (s);
8178 && ((target_sec->rawsize != 0
8179 ? target_sec->rawsize : target_sec->size)
8180 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8184 target_relax_info = get_xtensa_relax_info (target_sec);
8185 if (target_relax_info
8186 && (target_relax_info->is_relaxable_literal_section
8187 || target_relax_info->is_relaxable_asm_section))
8190 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
8192 if (r_type == R_XTENSA_DIFF8
8193 || r_type == R_XTENSA_DIFF16
8194 || r_type == R_XTENSA_DIFF32)
8196 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8198 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8200 (*link_info->callbacks->reloc_dangerous)
8201 (link_info, _("invalid relocation address"),
8202 abfd, sec, old_source_offset);
8208 case R_XTENSA_DIFF8:
8210 bfd_get_8 (abfd, &contents[old_source_offset]);
8212 case R_XTENSA_DIFF16:
8214 bfd_get_16 (abfd, &contents[old_source_offset]);
8216 case R_XTENSA_DIFF32:
8218 bfd_get_32 (abfd, &contents[old_source_offset]);
8222 new_end_offset = offset_with_removed_text
8223 (&target_relax_info->action_list,
8224 r_rel.target_offset + diff_value);
8225 diff_value = new_end_offset - new_reloc.target_offset;
8229 case R_XTENSA_DIFF8:
8231 bfd_put_8 (abfd, diff_value,
8232 &contents[old_source_offset]);
8234 case R_XTENSA_DIFF16:
8236 bfd_put_16 (abfd, diff_value,
8237 &contents[old_source_offset]);
8239 case R_XTENSA_DIFF32:
8240 diff_mask = 0xffffffff;
8241 bfd_put_32 (abfd, diff_value,
8242 &contents[old_source_offset]);
8246 /* Check for overflow. */
8247 if ((diff_value & ~diff_mask) != 0)
8249 (*link_info->callbacks->reloc_dangerous)
8250 (link_info, _("overflow after relaxation"),
8251 abfd, sec, old_source_offset);
8255 pin_contents (sec, contents);
8258 /* If the relocation still references a section in the same
8259 input file, modify the relocation directly instead of
8260 adding a "fix" record. */
8261 if (target_sec->owner == abfd)
8263 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
8264 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
8265 irel->r_addend = new_reloc.rela.r_addend;
8266 pin_internal_relocs (sec, internal_relocs);
8270 bfd_vma addend_displacement;
8273 addend_displacement =
8274 new_reloc.target_offset + new_reloc.virtual_offset;
8275 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
8277 addend_displacement, TRUE);
8284 if ((relax_info->is_relaxable_literal_section
8285 || relax_info->is_relaxable_asm_section)
8286 && relax_info->action_list.head)
8288 /* Walk through the planned actions and build up a table
8289 of move, copy and fill records. Use the move, copy and
8290 fill records to perform the actions once. */
8293 bfd_size_type final_size, copy_size, orig_insn_size;
8294 bfd_byte *scratch = NULL;
8295 bfd_byte *dup_contents = NULL;
8296 bfd_size_type orig_size = sec->size;
8297 bfd_vma orig_dot = 0;
8298 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8299 orig dot in physical memory. */
8300 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8301 bfd_vma dup_dot = 0;
8303 text_action *action = relax_info->action_list.head;
8305 final_size = sec->size;
8306 for (action = relax_info->action_list.head; action;
8307 action = action->next)
8309 final_size -= action->removed_bytes;
8312 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8313 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8315 /* The dot is the current fill location. */
8317 print_action_list (stderr, &relax_info->action_list);
8320 for (action = relax_info->action_list.head; action;
8321 action = action->next)
8323 virtual_action = FALSE;
8324 if (action->offset > orig_dot)
8326 orig_dot += orig_dot_copied;
8327 orig_dot_copied = 0;
8329 /* Out of the virtual world. */
8332 if (action->offset > orig_dot)
8334 copy_size = action->offset - orig_dot;
8335 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8336 orig_dot += copy_size;
8337 dup_dot += copy_size;
8338 BFD_ASSERT (action->offset == orig_dot);
8340 else if (action->offset < orig_dot)
8342 if (action->action == ta_fill
8343 && action->offset - action->removed_bytes == orig_dot)
8345 /* This is OK because the fill only effects the dup_dot. */
8347 else if (action->action == ta_add_literal)
8349 /* TBD. Might need to handle this. */
8352 if (action->offset == orig_dot)
8354 if (action->virtual_offset > orig_dot_vo)
8356 if (orig_dot_vo == 0)
8358 /* Need to copy virtual_offset bytes. Probably four. */
8359 copy_size = action->virtual_offset - orig_dot_vo;
8360 memmove (&dup_contents[dup_dot],
8361 &contents[orig_dot], copy_size);
8362 orig_dot_copied = copy_size;
8363 dup_dot += copy_size;
8365 virtual_action = TRUE;
8368 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8370 switch (action->action)
8372 case ta_remove_literal:
8373 case ta_remove_insn:
8374 BFD_ASSERT (action->removed_bytes >= 0);
8375 orig_dot += action->removed_bytes;
8378 case ta_narrow_insn:
8381 memmove (scratch, &contents[orig_dot], orig_insn_size);
8382 BFD_ASSERT (action->removed_bytes == 1);
8383 rv = narrow_instruction (scratch, final_size, 0);
8385 memmove (&dup_contents[dup_dot], scratch, copy_size);
8386 orig_dot += orig_insn_size;
8387 dup_dot += copy_size;
8391 if (action->removed_bytes >= 0)
8392 orig_dot += action->removed_bytes;
8395 /* Already zeroed in dup_contents. Just bump the
8397 dup_dot += (-action->removed_bytes);
8402 BFD_ASSERT (action->removed_bytes == 0);
8405 case ta_convert_longcall:
8406 case ta_remove_longcall:
8407 /* These will be removed or converted before we get here. */
8414 memmove (scratch, &contents[orig_dot], orig_insn_size);
8415 BFD_ASSERT (action->removed_bytes == -1);
8416 rv = widen_instruction (scratch, final_size, 0);
8418 memmove (&dup_contents[dup_dot], scratch, copy_size);
8419 orig_dot += orig_insn_size;
8420 dup_dot += copy_size;
8423 case ta_add_literal:
8426 BFD_ASSERT (action->removed_bytes == -4);
8427 /* TBD -- place the literal value here and insert
8429 memset (&dup_contents[dup_dot], 0, 4);
8430 pin_internal_relocs (sec, internal_relocs);
8431 pin_contents (sec, contents);
8433 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8434 relax_info, &internal_relocs, &action->value))
8438 orig_dot_vo += copy_size;
8440 orig_dot += orig_insn_size;
8441 dup_dot += copy_size;
8445 /* Not implemented yet. */
8450 removed += action->removed_bytes;
8451 BFD_ASSERT (dup_dot <= final_size);
8452 BFD_ASSERT (orig_dot <= orig_size);
8455 orig_dot += orig_dot_copied;
8456 orig_dot_copied = 0;
8458 if (orig_dot != orig_size)
8460 copy_size = orig_size - orig_dot;
8461 BFD_ASSERT (orig_size > orig_dot);
8462 BFD_ASSERT (dup_dot + copy_size == final_size);
8463 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8464 orig_dot += copy_size;
8465 dup_dot += copy_size;
8467 BFD_ASSERT (orig_size == orig_dot);
8468 BFD_ASSERT (final_size == dup_dot);
8470 /* Move the dup_contents back. */
8471 if (final_size > orig_size)
8473 /* Contents need to be reallocated. Swap the dup_contents into
8475 sec->contents = dup_contents;
8477 contents = dup_contents;
8478 pin_contents (sec, contents);
8482 BFD_ASSERT (final_size <= orig_size);
8483 memset (contents, 0, orig_size);
8484 memcpy (contents, dup_contents, final_size);
8485 free (dup_contents);
8488 pin_contents (sec, contents);
8490 if (sec->rawsize == 0)
8491 sec->rawsize = sec->size;
8492 sec->size = final_size;
8496 release_internal_relocs (sec, internal_relocs);
8497 release_contents (sec, contents);
8503 translate_section_fixes (asection *sec)
8505 xtensa_relax_info *relax_info;
8508 relax_info = get_xtensa_relax_info (sec);
8512 for (r = relax_info->fix_list; r != NULL; r = r->next)
8513 if (!translate_reloc_bfd_fix (r))
8520 /* Translate a fix given the mapping in the relax info for the target
8521 section. If it has already been translated, no work is required. */
8524 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
8526 reloc_bfd_fix new_fix;
8528 xtensa_relax_info *relax_info;
8529 removed_literal *removed;
8530 bfd_vma new_offset, target_offset;
8532 if (fix->translated)
8535 sec = fix->target_sec;
8536 target_offset = fix->target_offset;
8538 relax_info = get_xtensa_relax_info (sec);
8541 fix->translated = TRUE;
8547 /* The fix does not need to be translated if the section cannot change. */
8548 if (!relax_info->is_relaxable_literal_section
8549 && !relax_info->is_relaxable_asm_section)
8551 fix->translated = TRUE;
8555 /* If the literal has been moved and this relocation was on an
8556 opcode, then the relocation should move to the new literal
8557 location. Otherwise, the relocation should move within the
8561 if (is_operand_relocation (fix->src_type))
8563 /* Check if the original relocation is against a literal being
8565 removed = find_removed_literal (&relax_info->removed_list,
8573 /* The fact that there is still a relocation to this literal indicates
8574 that the literal is being coalesced, not simply removed. */
8575 BFD_ASSERT (removed->to.abfd != NULL);
8577 /* This was moved to some other address (possibly another section). */
8578 new_sec = r_reloc_get_section (&removed->to);
8582 relax_info = get_xtensa_relax_info (sec);
8584 (!relax_info->is_relaxable_literal_section
8585 && !relax_info->is_relaxable_asm_section))
8587 target_offset = removed->to.target_offset;
8588 new_fix.target_sec = new_sec;
8589 new_fix.target_offset = target_offset;
8590 new_fix.translated = TRUE;
8595 target_offset = removed->to.target_offset;
8596 new_fix.target_sec = new_sec;
8599 /* The target address may have been moved within its section. */
8600 new_offset = offset_with_removed_text (&relax_info->action_list,
8603 new_fix.target_offset = new_offset;
8604 new_fix.target_offset = new_offset;
8605 new_fix.translated = TRUE;
8611 /* Fix up a relocation to take account of removed literals. */
8614 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
8616 xtensa_relax_info *relax_info;
8617 removed_literal *removed;
8618 bfd_vma target_offset, base_offset;
8621 *new_rel = *orig_rel;
8623 if (!r_reloc_is_defined (orig_rel))
8626 relax_info = get_xtensa_relax_info (sec);
8627 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
8628 || relax_info->is_relaxable_asm_section));
8630 target_offset = orig_rel->target_offset;
8633 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8635 /* Check if the original relocation is against a literal being
8637 removed = find_removed_literal (&relax_info->removed_list,
8640 if (removed && removed->to.abfd)
8644 /* The fact that there is still a relocation to this literal indicates
8645 that the literal is being coalesced, not simply removed. */
8646 BFD_ASSERT (removed->to.abfd != NULL);
8648 /* This was moved to some other address
8649 (possibly in another section). */
8650 *new_rel = removed->to;
8651 new_sec = r_reloc_get_section (new_rel);
8655 relax_info = get_xtensa_relax_info (sec);
8657 || (!relax_info->is_relaxable_literal_section
8658 && !relax_info->is_relaxable_asm_section))
8661 target_offset = new_rel->target_offset;
8664 /* Find the base offset of the reloc symbol, excluding any addend from the
8665 reloc or from the section contents (for a partial_inplace reloc). Then
8666 find the adjusted values of the offsets due to relaxation. The base
8667 offset is needed to determine the change to the reloc's addend; the reloc
8668 addend should not be adjusted due to relaxations located before the base
8671 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
8672 act = relax_info->action_list.head;
8673 if (base_offset <= target_offset)
8675 int base_removed = removed_by_actions (&act, base_offset, FALSE);
8676 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
8677 new_rel->target_offset = target_offset - base_removed - addend_removed;
8678 new_rel->rela.r_addend -= addend_removed;
8682 /* Handle a negative addend. The base offset comes first. */
8683 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
8684 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
8685 new_rel->target_offset = target_offset - tgt_removed;
8686 new_rel->rela.r_addend += addend_removed;
8693 /* For dynamic links, there may be a dynamic relocation for each
8694 literal. The number of dynamic relocations must be computed in
8695 size_dynamic_sections, which occurs before relaxation. When a
8696 literal is removed, this function checks if there is a corresponding
8697 dynamic relocation and shrinks the size of the appropriate dynamic
8698 relocation section accordingly. At this point, the contents of the
8699 dynamic relocation sections have not yet been filled in, so there's
8700 nothing else that needs to be done. */
8703 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8705 asection *input_section,
8706 Elf_Internal_Rela *rel)
8708 struct elf_xtensa_link_hash_table *htab;
8709 Elf_Internal_Shdr *symtab_hdr;
8710 struct elf_link_hash_entry **sym_hashes;
8711 unsigned long r_symndx;
8713 struct elf_link_hash_entry *h;
8714 bfd_boolean dynamic_symbol;
8716 htab = elf_xtensa_hash_table (info);
8717 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8718 sym_hashes = elf_sym_hashes (abfd);
8720 r_type = ELF32_R_TYPE (rel->r_info);
8721 r_symndx = ELF32_R_SYM (rel->r_info);
8723 if (r_symndx < symtab_hdr->sh_info)
8726 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8728 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
8730 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8731 && (input_section->flags & SEC_ALLOC) != 0
8732 && (dynamic_symbol || info->shared))
8735 bfd_boolean is_plt = FALSE;
8737 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8739 srel = htab->srelplt;
8743 srel = htab->srelgot;
8745 /* Reduce size of the .rela.* section by one reloc. */
8746 BFD_ASSERT (srel != NULL);
8747 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8748 srel->size -= sizeof (Elf32_External_Rela);
8752 asection *splt, *sgotplt, *srelgot;
8753 int reloc_index, chunk;
8755 /* Find the PLT reloc index of the entry being removed. This
8756 is computed from the size of ".rela.plt". It is needed to
8757 figure out which PLT chunk to resize. Usually "last index
8758 = size - 1" since the index starts at zero, but in this
8759 context, the size has just been decremented so there's no
8760 need to subtract one. */
8761 reloc_index = srel->size / sizeof (Elf32_External_Rela);
8763 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8764 splt = elf_xtensa_get_plt_section (info, chunk);
8765 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
8766 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8768 /* Check if an entire PLT chunk has just been eliminated. */
8769 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8771 /* The two magic GOT entries for that chunk can go away. */
8772 srelgot = htab->srelgot;
8773 BFD_ASSERT (srelgot != NULL);
8774 srelgot->reloc_count -= 2;
8775 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8778 /* There should be only one entry left (and it will be
8780 BFD_ASSERT (sgotplt->size == 4);
8781 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
8784 BFD_ASSERT (sgotplt->size >= 4);
8785 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
8788 splt->size -= PLT_ENTRY_SIZE;
8794 /* Take an r_rel and move it to another section. This usually
8795 requires extending the interal_relocation array and pinning it. If
8796 the original r_rel is from the same BFD, we can complete this here.
8797 Otherwise, we add a fix record to let the final link fix the
8798 appropriate address. Contents and internal relocations for the
8799 section must be pinned after calling this routine. */
8802 move_literal (bfd *abfd,
8803 struct bfd_link_info *link_info,
8807 xtensa_relax_info *relax_info,
8808 Elf_Internal_Rela **internal_relocs_p,
8809 const literal_value *lit)
8811 Elf_Internal_Rela *new_relocs = NULL;
8812 size_t new_relocs_count = 0;
8813 Elf_Internal_Rela this_rela;
8814 const r_reloc *r_rel;
8816 r_rel = &lit->r_rel;
8817 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8819 if (r_reloc_is_const (r_rel))
8820 bfd_put_32 (abfd, lit->value, contents + offset);
8825 asection *target_sec;
8829 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8830 target_sec = r_reloc_get_section (r_rel);
8832 /* This is the difficult case. We have to create a fix up. */
8833 this_rela.r_offset = offset;
8834 this_rela.r_info = ELF32_R_INFO (0, r_type);
8835 this_rela.r_addend =
8836 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8837 bfd_put_32 (abfd, lit->value, contents + offset);
8839 /* Currently, we cannot move relocations during a relocatable link. */
8840 BFD_ASSERT (!link_info->relocatable);
8841 fix = reloc_bfd_fix_init (sec, offset, r_type,
8842 r_reloc_get_section (r_rel),
8843 r_rel->target_offset + r_rel->virtual_offset,
8845 /* We also need to mark that relocations are needed here. */
8846 sec->flags |= SEC_RELOC;
8848 translate_reloc_bfd_fix (fix);
8849 /* This fix has not yet been translated. */
8852 /* Add the relocation. If we have already allocated our own
8853 space for the relocations and we have room for more, then use
8854 it. Otherwise, allocate new space and move the literals. */
8855 insert_at = sec->reloc_count;
8856 for (i = 0; i < sec->reloc_count; ++i)
8858 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8865 if (*internal_relocs_p != relax_info->allocated_relocs
8866 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8868 BFD_ASSERT (relax_info->allocated_relocs == NULL
8869 || sec->reloc_count == relax_info->relocs_count);
8871 if (relax_info->allocated_relocs_count == 0)
8872 new_relocs_count = (sec->reloc_count + 2) * 2;
8874 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8876 new_relocs = (Elf_Internal_Rela *)
8877 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8881 /* We could handle this more quickly by finding the split point. */
8883 memcpy (new_relocs, *internal_relocs_p,
8884 insert_at * sizeof (Elf_Internal_Rela));
8886 new_relocs[insert_at] = this_rela;
8888 if (insert_at != sec->reloc_count)
8889 memcpy (new_relocs + insert_at + 1,
8890 (*internal_relocs_p) + insert_at,
8891 (sec->reloc_count - insert_at)
8892 * sizeof (Elf_Internal_Rela));
8894 if (*internal_relocs_p != relax_info->allocated_relocs)
8896 /* The first time we re-allocate, we can only free the
8897 old relocs if they were allocated with bfd_malloc.
8898 This is not true when keep_memory is in effect. */
8899 if (!link_info->keep_memory)
8900 free (*internal_relocs_p);
8903 free (*internal_relocs_p);
8904 relax_info->allocated_relocs = new_relocs;
8905 relax_info->allocated_relocs_count = new_relocs_count;
8906 elf_section_data (sec)->relocs = new_relocs;
8908 relax_info->relocs_count = sec->reloc_count;
8909 *internal_relocs_p = new_relocs;
8913 if (insert_at != sec->reloc_count)
8916 for (idx = sec->reloc_count; idx > insert_at; idx--)
8917 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8919 (*internal_relocs_p)[insert_at] = this_rela;
8921 if (relax_info->allocated_relocs)
8922 relax_info->relocs_count = sec->reloc_count;
8929 /* This is similar to relax_section except that when a target is moved,
8930 we shift addresses up. We also need to modify the size. This
8931 algorithm does NOT allow for relocations into the middle of the
8932 property sections. */
8935 relax_property_section (bfd *abfd,
8937 struct bfd_link_info *link_info)
8939 Elf_Internal_Rela *internal_relocs;
8942 bfd_boolean ok = TRUE;
8943 bfd_boolean is_full_prop_section;
8944 size_t last_zfill_target_offset = 0;
8945 asection *last_zfill_target_sec = NULL;
8946 bfd_size_type sec_size;
8947 bfd_size_type entry_size;
8949 sec_size = bfd_get_section_limit (abfd, sec);
8950 internal_relocs = retrieve_internal_relocs (abfd, sec,
8951 link_info->keep_memory);
8952 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8953 if (contents == NULL && sec_size != 0)
8959 is_full_prop_section = xtensa_is_proptable_section (sec);
8960 if (is_full_prop_section)
8965 if (internal_relocs)
8967 for (i = 0; i < sec->reloc_count; i++)
8969 Elf_Internal_Rela *irel;
8970 xtensa_relax_info *target_relax_info;
8972 asection *target_sec;
8974 bfd_byte *size_p, *flags_p;
8976 /* Locally change the source address.
8977 Translate the target to the new target address.
8978 If it points to this section and has been removed, MOVE IT.
8979 Also, don't forget to modify the associated SIZE at
8982 irel = &internal_relocs[i];
8983 r_type = ELF32_R_TYPE (irel->r_info);
8984 if (r_type == R_XTENSA_NONE)
8987 /* Find the literal value. */
8988 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8989 size_p = &contents[irel->r_offset + 4];
8991 if (is_full_prop_section)
8992 flags_p = &contents[irel->r_offset + 8];
8993 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
8995 target_sec = r_reloc_get_section (&val.r_rel);
8996 target_relax_info = get_xtensa_relax_info (target_sec);
8998 if (target_relax_info
8999 && (target_relax_info->is_relaxable_literal_section
9000 || target_relax_info->is_relaxable_asm_section ))
9002 /* Translate the relocation's destination. */
9003 bfd_vma old_offset = val.r_rel.target_offset;
9005 long old_size, new_size;
9006 text_action *act = target_relax_info->action_list.head;
9007 new_offset = old_offset -
9008 removed_by_actions (&act, old_offset, FALSE);
9010 /* Assert that we are not out of bounds. */
9011 old_size = bfd_get_32 (abfd, size_p);
9012 new_size = old_size;
9016 /* Only the first zero-sized unreachable entry is
9017 allowed to expand. In this case the new offset
9018 should be the offset before the fill and the new
9019 size is the expansion size. For other zero-sized
9020 entries the resulting size should be zero with an
9021 offset before or after the fill address depending
9022 on whether the expanding unreachable entry
9024 if (last_zfill_target_sec == 0
9025 || last_zfill_target_sec != target_sec
9026 || last_zfill_target_offset != old_offset)
9028 bfd_vma new_end_offset = new_offset;
9030 /* Recompute the new_offset, but this time don't
9031 include any fill inserted by relaxation. */
9032 act = target_relax_info->action_list.head;
9033 new_offset = old_offset -
9034 removed_by_actions (&act, old_offset, TRUE);
9036 /* If it is not unreachable and we have not yet
9037 seen an unreachable at this address, place it
9038 before the fill address. */
9039 if (flags_p && (bfd_get_32 (abfd, flags_p)
9040 & XTENSA_PROP_UNREACHABLE) != 0)
9042 new_size = new_end_offset - new_offset;
9044 last_zfill_target_sec = target_sec;
9045 last_zfill_target_offset = old_offset;
9051 removed_by_actions (&act, old_offset + old_size, TRUE);
9053 if (new_size != old_size)
9055 bfd_put_32 (abfd, new_size, size_p);
9056 pin_contents (sec, contents);
9059 if (new_offset != old_offset)
9061 bfd_vma diff = new_offset - old_offset;
9062 irel->r_addend += diff;
9063 pin_internal_relocs (sec, internal_relocs);
9069 /* Combine adjacent property table entries. This is also done in
9070 finish_dynamic_sections() but at that point it's too late to
9071 reclaim the space in the output section, so we do this twice. */
9073 if (internal_relocs && (!link_info->relocatable
9074 || xtensa_is_littable_section (sec)))
9076 Elf_Internal_Rela *last_irel = NULL;
9077 Elf_Internal_Rela *irel, *next_rel, *rel_end;
9078 int removed_bytes = 0;
9080 flagword predef_flags;
9082 predef_flags = xtensa_get_property_predef_flags (sec);
9084 /* Walk over memory and relocations at the same time.
9085 This REQUIRES that the internal_relocs be sorted by offset. */
9086 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9087 internal_reloc_compare);
9089 pin_internal_relocs (sec, internal_relocs);
9090 pin_contents (sec, contents);
9092 next_rel = internal_relocs;
9093 rel_end = internal_relocs + sec->reloc_count;
9095 BFD_ASSERT (sec->size % entry_size == 0);
9097 for (offset = 0; offset < sec->size; offset += entry_size)
9099 Elf_Internal_Rela *offset_rel, *extra_rel;
9100 bfd_vma bytes_to_remove, size, actual_offset;
9101 bfd_boolean remove_this_rel;
9104 /* Find the first relocation for the entry at the current offset.
9105 Adjust the offsets of any extra relocations for the previous
9110 for (irel = next_rel; irel < rel_end; irel++)
9112 if ((irel->r_offset == offset
9113 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9114 || irel->r_offset > offset)
9119 irel->r_offset -= removed_bytes;
9123 /* Find the next relocation (if there are any left). */
9127 for (irel = offset_rel + 1; irel < rel_end; irel++)
9129 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9137 /* Check if there are relocations on the current entry. There
9138 should usually be a relocation on the offset field. If there
9139 are relocations on the size or flags, then we can't optimize
9140 this entry. Also, find the next relocation to examine on the
9144 if (offset_rel->r_offset >= offset + entry_size)
9146 next_rel = offset_rel;
9147 /* There are no relocations on the current entry, but we
9148 might still be able to remove it if the size is zero. */
9151 else if (offset_rel->r_offset > offset
9153 && extra_rel->r_offset < offset + entry_size))
9155 /* There is a relocation on the size or flags, so we can't
9156 do anything with this entry. Continue with the next. */
9157 next_rel = offset_rel;
9162 BFD_ASSERT (offset_rel->r_offset == offset);
9163 offset_rel->r_offset -= removed_bytes;
9164 next_rel = offset_rel + 1;
9170 remove_this_rel = FALSE;
9171 bytes_to_remove = 0;
9172 actual_offset = offset - removed_bytes;
9173 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9175 if (is_full_prop_section)
9176 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9178 flags = predef_flags;
9181 && (flags & XTENSA_PROP_ALIGN) == 0
9182 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
9184 /* Always remove entries with zero size and no alignment. */
9185 bytes_to_remove = entry_size;
9187 remove_this_rel = TRUE;
9190 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
9196 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9197 bfd_vma old_address =
9198 (last_irel->r_addend
9199 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9200 bfd_vma new_address =
9201 (offset_rel->r_addend
9202 + bfd_get_32 (abfd, &contents[actual_offset]));
9203 if (is_full_prop_section)
9204 old_flags = bfd_get_32
9205 (abfd, &contents[last_irel->r_offset + 8]);
9207 old_flags = predef_flags;
9209 if ((ELF32_R_SYM (offset_rel->r_info)
9210 == ELF32_R_SYM (last_irel->r_info))
9211 && old_address + old_size == new_address
9212 && old_flags == flags
9213 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9214 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
9216 /* Fix the old size. */
9217 bfd_put_32 (abfd, old_size + size,
9218 &contents[last_irel->r_offset + 4]);
9219 bytes_to_remove = entry_size;
9220 remove_this_rel = TRUE;
9223 last_irel = offset_rel;
9226 last_irel = offset_rel;
9229 if (remove_this_rel)
9231 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9232 /* In case this is the last entry, move the relocation offset
9233 to the previous entry, if there is one. */
9234 if (offset_rel->r_offset >= bytes_to_remove)
9235 offset_rel->r_offset -= bytes_to_remove;
9237 offset_rel->r_offset = 0;
9240 if (bytes_to_remove != 0)
9242 removed_bytes += bytes_to_remove;
9243 if (offset + bytes_to_remove < sec->size)
9244 memmove (&contents[actual_offset],
9245 &contents[actual_offset + bytes_to_remove],
9246 sec->size - offset - bytes_to_remove);
9252 /* Fix up any extra relocations on the last entry. */
9253 for (irel = next_rel; irel < rel_end; irel++)
9254 irel->r_offset -= removed_bytes;
9256 /* Clear the removed bytes. */
9257 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
9259 if (sec->rawsize == 0)
9260 sec->rawsize = sec->size;
9261 sec->size -= removed_bytes;
9263 if (xtensa_is_littable_section (sec))
9265 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
9267 sgotloc->size -= removed_bytes;
9273 release_internal_relocs (sec, internal_relocs);
9274 release_contents (sec, contents);
9279 /* Third relaxation pass. */
9281 /* Change symbol values to account for removed literals. */
9284 relax_section_symbols (bfd *abfd, asection *sec)
9286 xtensa_relax_info *relax_info;
9287 unsigned int sec_shndx;
9288 Elf_Internal_Shdr *symtab_hdr;
9289 Elf_Internal_Sym *isymbuf;
9290 unsigned i, num_syms, num_locals;
9292 relax_info = get_xtensa_relax_info (sec);
9293 BFD_ASSERT (relax_info);
9295 if (!relax_info->is_relaxable_literal_section
9296 && !relax_info->is_relaxable_asm_section)
9299 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9301 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9302 isymbuf = retrieve_local_syms (abfd);
9304 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9305 num_locals = symtab_hdr->sh_info;
9307 /* Adjust the local symbols defined in this section. */
9308 for (i = 0; i < num_locals; i++)
9310 Elf_Internal_Sym *isym = &isymbuf[i];
9312 if (isym->st_shndx == sec_shndx)
9314 text_action *act = relax_info->action_list.head;
9315 bfd_vma orig_addr = isym->st_value;
9317 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
9319 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9321 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
9325 /* Now adjust the global symbols defined in this section. */
9326 for (i = 0; i < (num_syms - num_locals); i++)
9328 struct elf_link_hash_entry *sym_hash;
9330 sym_hash = elf_sym_hashes (abfd)[i];
9332 if (sym_hash->root.type == bfd_link_hash_warning)
9333 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9335 if ((sym_hash->root.type == bfd_link_hash_defined
9336 || sym_hash->root.type == bfd_link_hash_defweak)
9337 && sym_hash->root.u.def.section == sec)
9339 text_action *act = relax_info->action_list.head;
9340 bfd_vma orig_addr = sym_hash->root.u.def.value;
9342 sym_hash->root.u.def.value -=
9343 removed_by_actions (&act, orig_addr, FALSE);
9345 if (sym_hash->type == STT_FUNC)
9347 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
9355 /* "Fix" handling functions, called while performing relocations. */
9358 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9360 asection *input_section,
9364 asection *sec, *old_sec;
9366 int r_type = ELF32_R_TYPE (rel->r_info);
9369 if (r_type == R_XTENSA_NONE)
9372 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9376 r_reloc_init (&r_rel, input_bfd, rel, contents,
9377 bfd_get_section_limit (input_bfd, input_section));
9378 old_sec = r_reloc_get_section (&r_rel);
9379 old_offset = r_rel.target_offset;
9381 if (!old_sec || !r_reloc_is_defined (&r_rel))
9383 if (r_type != R_XTENSA_ASM_EXPAND)
9385 (*_bfd_error_handler)
9386 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9387 input_bfd, input_section, rel->r_offset,
9388 elf_howto_table[r_type].name);
9391 /* Leave it be. Resolution will happen in a later stage. */
9395 sec = fix->target_sec;
9396 rel->r_addend += ((sec->output_offset + fix->target_offset)
9397 - (old_sec->output_offset + old_offset));
9404 do_fix_for_final_link (Elf_Internal_Rela *rel,
9406 asection *input_section,
9408 bfd_vma *relocationp)
9411 int r_type = ELF32_R_TYPE (rel->r_info);
9415 if (r_type == R_XTENSA_NONE)
9418 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9422 sec = fix->target_sec;
9424 fixup_diff = rel->r_addend;
9425 if (elf_howto_table[fix->src_type].partial_inplace)
9427 bfd_vma inplace_val;
9428 BFD_ASSERT (fix->src_offset
9429 < bfd_get_section_limit (input_bfd, input_section));
9430 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9431 fixup_diff += inplace_val;
9434 *relocationp = (sec->output_section->vma
9435 + sec->output_offset
9436 + fix->target_offset - fixup_diff);
9440 /* Miscellaneous utility functions.... */
9443 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
9445 struct elf_xtensa_link_hash_table *htab;
9451 htab = elf_xtensa_hash_table (info);
9455 dynobj = elf_hash_table (info)->dynobj;
9456 sprintf (plt_name, ".plt.%u", chunk);
9457 return bfd_get_section_by_name (dynobj, plt_name);
9462 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
9464 struct elf_xtensa_link_hash_table *htab;
9470 htab = elf_xtensa_hash_table (info);
9471 return htab->sgotplt;
9474 dynobj = elf_hash_table (info)->dynobj;
9475 sprintf (got_name, ".got.plt.%u", chunk);
9476 return bfd_get_section_by_name (dynobj, got_name);
9480 /* Get the input section for a given symbol index.
9482 . a section symbol, return the section;
9483 . a common symbol, return the common section;
9484 . an undefined symbol, return the undefined section;
9485 . an indirect symbol, follow the links;
9486 . an absolute value, return the absolute section. */
9489 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
9491 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9492 asection *target_sec = NULL;
9493 if (r_symndx < symtab_hdr->sh_info)
9495 Elf_Internal_Sym *isymbuf;
9496 unsigned int section_index;
9498 isymbuf = retrieve_local_syms (abfd);
9499 section_index = isymbuf[r_symndx].st_shndx;
9501 if (section_index == SHN_UNDEF)
9502 target_sec = bfd_und_section_ptr;
9503 else if (section_index > 0 && section_index < SHN_LORESERVE)
9504 target_sec = bfd_section_from_elf_index (abfd, section_index);
9505 else if (section_index == SHN_ABS)
9506 target_sec = bfd_abs_section_ptr;
9507 else if (section_index == SHN_COMMON)
9508 target_sec = bfd_com_section_ptr;
9515 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9516 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9518 while (h->root.type == bfd_link_hash_indirect
9519 || h->root.type == bfd_link_hash_warning)
9520 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9522 switch (h->root.type)
9524 case bfd_link_hash_defined:
9525 case bfd_link_hash_defweak:
9526 target_sec = h->root.u.def.section;
9528 case bfd_link_hash_common:
9529 target_sec = bfd_com_section_ptr;
9531 case bfd_link_hash_undefined:
9532 case bfd_link_hash_undefweak:
9533 target_sec = bfd_und_section_ptr;
9535 default: /* New indirect warning. */
9536 target_sec = bfd_und_section_ptr;
9544 static struct elf_link_hash_entry *
9545 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
9548 struct elf_link_hash_entry *h;
9549 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9551 if (r_symndx < symtab_hdr->sh_info)
9554 indx = r_symndx - symtab_hdr->sh_info;
9555 h = elf_sym_hashes (abfd)[indx];
9556 while (h->root.type == bfd_link_hash_indirect
9557 || h->root.type == bfd_link_hash_warning)
9558 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9563 /* Get the section-relative offset for a symbol number. */
9566 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
9568 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9571 if (r_symndx < symtab_hdr->sh_info)
9573 Elf_Internal_Sym *isymbuf;
9574 isymbuf = retrieve_local_syms (abfd);
9575 offset = isymbuf[r_symndx].st_value;
9579 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9580 struct elf_link_hash_entry *h =
9581 elf_sym_hashes (abfd)[indx];
9583 while (h->root.type == bfd_link_hash_indirect
9584 || h->root.type == bfd_link_hash_warning)
9585 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9586 if (h->root.type == bfd_link_hash_defined
9587 || h->root.type == bfd_link_hash_defweak)
9588 offset = h->root.u.def.value;
9595 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
9597 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9598 struct elf_link_hash_entry *h;
9600 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9601 if (h && h->root.type == bfd_link_hash_defweak)
9608 pcrel_reloc_fits (xtensa_opcode opc,
9610 bfd_vma self_address,
9611 bfd_vma dest_address)
9613 xtensa_isa isa = xtensa_default_isa;
9614 uint32 valp = dest_address;
9615 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9616 || xtensa_operand_encode (isa, opc, opnd, &valp))
9623 xtensa_is_property_section (asection *sec)
9625 if (xtensa_is_insntable_section (sec)
9626 || xtensa_is_littable_section (sec)
9627 || xtensa_is_proptable_section (sec))
9635 xtensa_is_insntable_section (asection *sec)
9637 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9638 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
9646 xtensa_is_littable_section (asection *sec)
9648 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
9649 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
9657 xtensa_is_proptable_section (asection *sec)
9659 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
9660 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
9668 internal_reloc_compare (const void *ap, const void *bp)
9670 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9671 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9673 if (a->r_offset != b->r_offset)
9674 return (a->r_offset - b->r_offset);
9676 /* We don't need to sort on these criteria for correctness,
9677 but enforcing a more strict ordering prevents unstable qsort
9678 from behaving differently with different implementations.
9679 Without the code below we get correct but different results
9680 on Solaris 2.7 and 2.8. We would like to always produce the
9681 same results no matter the host. */
9683 if (a->r_info != b->r_info)
9684 return (a->r_info - b->r_info);
9686 return (a->r_addend - b->r_addend);
9691 internal_reloc_matches (const void *ap, const void *bp)
9693 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9694 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9696 /* Check if one entry overlaps with the other; this shouldn't happen
9697 except when searching for a match. */
9698 return (a->r_offset - b->r_offset);
9702 /* Predicate function used to look up a section in a particular group. */
9705 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
9707 const char *gname = inf;
9708 const char *group_name = elf_group_name (sec);
9710 return (group_name == gname
9711 || (group_name != NULL
9713 && strcmp (group_name, gname) == 0));
9717 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9720 xtensa_get_property_section (asection *sec, const char *base_name)
9722 const char *suffix, *group_name;
9723 char *prop_sec_name;
9726 group_name = elf_group_name (sec);
9729 suffix = strrchr (sec->name, '.');
9730 if (suffix == sec->name)
9732 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
9733 + (suffix ? strlen (suffix) : 0));
9734 strcpy (prop_sec_name, base_name);
9736 strcat (prop_sec_name, suffix);
9738 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
9740 char *linkonce_kind = 0;
9742 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
9743 linkonce_kind = "x.";
9744 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
9745 linkonce_kind = "p.";
9746 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9747 linkonce_kind = "prop.";
9751 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9752 + strlen (linkonce_kind) + 1);
9753 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
9754 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
9756 suffix = sec->name + linkonce_len;
9757 /* For backward compatibility, replace "t." instead of inserting
9758 the new linkonce_kind (but not for "prop" sections). */
9759 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
9761 strcat (prop_sec_name + linkonce_len, suffix);
9764 prop_sec_name = strdup (base_name);
9766 /* Check if the section already exists. */
9767 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
9768 match_section_group,
9769 (void *) group_name);
9770 /* If not, create it. */
9773 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
9774 flags |= (bfd_get_section_flags (sec->owner, sec)
9775 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
9777 prop_sec = bfd_make_section_anyway_with_flags
9778 (sec->owner, strdup (prop_sec_name), flags);
9782 elf_group_name (prop_sec) = group_name;
9785 free (prop_sec_name);
9791 xtensa_get_property_predef_flags (asection *sec)
9793 if (xtensa_is_insntable_section (sec))
9794 return (XTENSA_PROP_INSN
9795 | XTENSA_PROP_NO_TRANSFORM
9796 | XTENSA_PROP_INSN_NO_REORDER);
9798 if (xtensa_is_littable_section (sec))
9799 return (XTENSA_PROP_LITERAL
9800 | XTENSA_PROP_NO_TRANSFORM
9801 | XTENSA_PROP_INSN_NO_REORDER);
9807 /* Other functions called directly by the linker. */
9810 xtensa_callback_required_dependence (bfd *abfd,
9812 struct bfd_link_info *link_info,
9813 deps_callback_t callback,
9816 Elf_Internal_Rela *internal_relocs;
9819 bfd_boolean ok = TRUE;
9820 bfd_size_type sec_size;
9822 sec_size = bfd_get_section_limit (abfd, sec);
9824 /* ".plt*" sections have no explicit relocations but they contain L32R
9825 instructions that reference the corresponding ".got.plt*" sections. */
9826 if ((sec->flags & SEC_LINKER_CREATED) != 0
9827 && CONST_STRNEQ (sec->name, ".plt"))
9831 /* Find the corresponding ".got.plt*" section. */
9832 if (sec->name[4] == '\0')
9833 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9839 BFD_ASSERT (sec->name[4] == '.');
9840 chunk = strtol (&sec->name[5], NULL, 10);
9842 sprintf (got_name, ".got.plt.%u", chunk);
9843 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9845 BFD_ASSERT (sgotplt);
9847 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9848 section referencing a literal at the very beginning of
9849 ".got.plt". This is very close to the real dependence, anyway. */
9850 (*callback) (sec, sec_size, sgotplt, 0, closure);
9853 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
9854 when building uclibc, which runs "ld -b binary /dev/null". */
9855 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9858 internal_relocs = retrieve_internal_relocs (abfd, sec,
9859 link_info->keep_memory);
9860 if (internal_relocs == NULL
9861 || sec->reloc_count == 0)
9864 /* Cache the contents for the duration of this scan. */
9865 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9866 if (contents == NULL && sec_size != 0)
9872 if (!xtensa_default_isa)
9873 xtensa_default_isa = xtensa_isa_init (0, 0);
9875 for (i = 0; i < sec->reloc_count; i++)
9877 Elf_Internal_Rela *irel = &internal_relocs[i];
9878 if (is_l32r_relocation (abfd, sec, contents, irel))
9881 asection *target_sec;
9882 bfd_vma target_offset;
9884 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
9887 /* L32Rs must be local to the input file. */
9888 if (r_reloc_is_defined (&l32r_rel))
9890 target_sec = r_reloc_get_section (&l32r_rel);
9891 target_offset = l32r_rel.target_offset;
9893 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9899 release_internal_relocs (sec, internal_relocs);
9900 release_contents (sec, contents);
9904 /* The default literal sections should always be marked as "code" (i.e.,
9905 SHF_EXECINSTR). This is particularly important for the Linux kernel
9906 module loader so that the literals are not placed after the text. */
9907 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
9909 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9910 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9911 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9912 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
9913 { NULL, 0, 0, 0, 0 }
9917 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9918 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
9919 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9920 #define TARGET_BIG_NAME "elf32-xtensa-be"
9921 #define ELF_ARCH bfd_arch_xtensa
9923 #define ELF_MACHINE_CODE EM_XTENSA
9924 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
9927 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9928 #else /* !XCHAL_HAVE_MMU */
9929 #define ELF_MAXPAGESIZE 1
9930 #endif /* !XCHAL_HAVE_MMU */
9931 #endif /* ELF_ARCH */
9933 #define elf_backend_can_gc_sections 1
9934 #define elf_backend_can_refcount 1
9935 #define elf_backend_plt_readonly 1
9936 #define elf_backend_got_header_size 4
9937 #define elf_backend_want_dynbss 0
9938 #define elf_backend_want_got_plt 1
9940 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
9942 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9943 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9944 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9945 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9946 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9947 #define bfd_elf32_bfd_reloc_name_lookup \
9948 elf_xtensa_reloc_name_lookup
9949 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9950 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
9952 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9953 #define elf_backend_check_relocs elf_xtensa_check_relocs
9954 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9955 #define elf_backend_discard_info elf_xtensa_discard_info
9956 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9957 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
9958 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9959 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9960 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9961 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9962 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9963 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9964 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
9965 #define elf_backend_object_p elf_xtensa_object_p
9966 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9967 #define elf_backend_relocate_section elf_xtensa_relocate_section
9968 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
9969 #define elf_backend_omit_section_dynsym \
9970 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
9971 #define elf_backend_special_sections elf_xtensa_special_sections
9972 #define elf_backend_action_discarded elf_xtensa_action_discarded
9974 #include "elf32-target.h"