1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
35 #define XTENSA_NO_NOP_REMOVAL 0
37 /* Local helper functions. */
39 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
45 static void do_fix_for_final_link
46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
48 /* Local functions to handle Xtensa configurability. */
50 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53 static xtensa_opcode get_const16_opcode (void);
54 static xtensa_opcode get_l32r_opcode (void);
55 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56 static int get_relocation_opnd (xtensa_opcode, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
60 static bfd_boolean is_l32r_relocation
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62 static bfd_boolean is_alt_relocation (int);
63 static bfd_boolean is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65 (bfd_byte *, bfd_size_type, bfd_size_type);
66 static xtensa_opcode insn_decode_opcode
67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
68 static bfd_boolean check_branch_target_aligned
69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
70 static bfd_boolean check_loop_aligned
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
73 static bfd_size_type get_asm_simplify_size
74 (bfd_byte *, bfd_size_type, bfd_size_type);
76 /* Functions for link-time code simplifications. */
78 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
79 (bfd_byte *, bfd_vma, bfd_vma, char **);
80 static bfd_reloc_status_type contract_asm_expansion
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
85 /* Access to internal relocations, section contents and symbols. */
87 static Elf_Internal_Rela *retrieve_internal_relocs
88 (bfd *, asection *, bfd_boolean);
89 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92 static void pin_contents (asection *, bfd_byte *);
93 static void release_contents (asection *, bfd_byte *);
94 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
96 /* Miscellaneous utility functions. */
98 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
100 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
101 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
102 (bfd *, unsigned long);
103 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106 static bfd_boolean xtensa_is_property_section (asection *);
107 static bfd_boolean xtensa_is_insntable_section (asection *);
108 static bfd_boolean xtensa_is_littable_section (asection *);
109 static bfd_boolean xtensa_is_proptable_section (asection *);
110 static int internal_reloc_compare (const void *, const void *);
111 static int internal_reloc_matches (const void *, const void *);
112 static asection *xtensa_get_property_section (asection *, const char *);
113 static flagword xtensa_get_property_predef_flags (asection *);
115 /* Other functions called directly by the linker. */
117 typedef void (*deps_callback_t)
118 (asection *, bfd_vma, asection *, bfd_vma, void *);
119 extern bfd_boolean xtensa_callback_required_dependence
120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
123 /* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
128 int elf32xtensa_size_opt;
131 /* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
135 typedef struct xtensa_relax_info_struct xtensa_relax_info;
138 /* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
143 xtensa_isa xtensa_default_isa;
146 /* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
150 static bfd_boolean relaxing_section = FALSE;
152 /* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
155 int elf32xtensa_no_literal_movement = 1;
157 /* Rename one of the generic section flags to better document how it
159 /* Whether relocations have been processed. */
160 #define reloc_done sec_flg0
162 static reloc_howto_type elf_howto_table[] =
164 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
165 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
167 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_xtensa_reloc, "R_XTENSA_32",
169 TRUE, 0xffffffff, 0xffffffff, FALSE),
171 /* Replace a 32-bit value with a value from the runtime linker (only
172 used by linker-generated stub functions). The r_addend value is
173 special: 1 means to substitute a pointer to the runtime linker's
174 dynamic resolver function; 2 means to substitute the link map for
175 the shared object. */
176 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
177 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
179 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
180 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
181 FALSE, 0, 0xffffffff, FALSE),
182 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
183 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
184 FALSE, 0, 0xffffffff, FALSE),
185 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
186 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
187 FALSE, 0, 0xffffffff, FALSE),
188 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
189 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
190 FALSE, 0, 0xffffffff, FALSE),
194 /* Old relocations for backward compatibility. */
195 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
196 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
199 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
200 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
202 /* Assembly auto-expansion. */
203 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
204 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
205 /* Relax assembly auto-expansion. */
206 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
207 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
211 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
212 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
213 FALSE, 0, 0xffffffff, TRUE),
215 /* GNU extension to record C++ vtable hierarchy. */
216 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
217 NULL, "R_XTENSA_GNU_VTINHERIT",
219 /* GNU extension to record C++ vtable member usage. */
220 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
221 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
224 /* Relocations for supporting difference of symbols. */
225 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
226 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
227 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
228 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
232 /* General immediate operand relocations. */
233 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
235 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
237 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
239 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
241 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
243 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
245 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
247 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
249 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
251 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
253 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
255 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
257 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
259 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
261 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
264 /* "Alternate" relocations. The meaning of these is opcode-specific. */
265 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
273 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
275 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
285 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
287 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
289 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
291 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
292 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
293 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
296 /* TLS relocations. */
297 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
298 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
299 FALSE, 0, 0xffffffff, FALSE),
300 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
301 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
302 FALSE, 0, 0xffffffff, FALSE),
303 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
304 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
305 FALSE, 0, 0xffffffff, FALSE),
306 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
307 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
308 FALSE, 0, 0xffffffff, FALSE),
309 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
310 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
312 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
313 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
315 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
316 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
322 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
327 static reloc_howto_type *
328 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
329 bfd_reloc_code_real_type code)
334 TRACE ("BFD_RELOC_NONE");
335 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
338 TRACE ("BFD_RELOC_32");
339 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
341 case BFD_RELOC_32_PCREL:
342 TRACE ("BFD_RELOC_32_PCREL");
343 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
345 case BFD_RELOC_XTENSA_DIFF8:
346 TRACE ("BFD_RELOC_XTENSA_DIFF8");
347 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
349 case BFD_RELOC_XTENSA_DIFF16:
350 TRACE ("BFD_RELOC_XTENSA_DIFF16");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
353 case BFD_RELOC_XTENSA_DIFF32:
354 TRACE ("BFD_RELOC_XTENSA_DIFF32");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
357 case BFD_RELOC_XTENSA_RTLD:
358 TRACE ("BFD_RELOC_XTENSA_RTLD");
359 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
361 case BFD_RELOC_XTENSA_GLOB_DAT:
362 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
363 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
365 case BFD_RELOC_XTENSA_JMP_SLOT:
366 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
367 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
369 case BFD_RELOC_XTENSA_RELATIVE:
370 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
371 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
373 case BFD_RELOC_XTENSA_PLT:
374 TRACE ("BFD_RELOC_XTENSA_PLT");
375 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
377 case BFD_RELOC_XTENSA_OP0:
378 TRACE ("BFD_RELOC_XTENSA_OP0");
379 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
381 case BFD_RELOC_XTENSA_OP1:
382 TRACE ("BFD_RELOC_XTENSA_OP1");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
385 case BFD_RELOC_XTENSA_OP2:
386 TRACE ("BFD_RELOC_XTENSA_OP2");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
389 case BFD_RELOC_XTENSA_ASM_EXPAND:
390 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
391 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
393 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
394 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
397 case BFD_RELOC_VTABLE_INHERIT:
398 TRACE ("BFD_RELOC_VTABLE_INHERIT");
399 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
401 case BFD_RELOC_VTABLE_ENTRY:
402 TRACE ("BFD_RELOC_VTABLE_ENTRY");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
405 case BFD_RELOC_XTENSA_TLSDESC_FN:
406 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
407 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
409 case BFD_RELOC_XTENSA_TLSDESC_ARG:
410 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
411 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
413 case BFD_RELOC_XTENSA_TLS_DTPOFF:
414 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
415 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
417 case BFD_RELOC_XTENSA_TLS_TPOFF:
418 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
419 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
421 case BFD_RELOC_XTENSA_TLS_FUNC:
422 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
423 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
425 case BFD_RELOC_XTENSA_TLS_ARG:
426 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
427 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
429 case BFD_RELOC_XTENSA_TLS_CALL:
430 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
431 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
434 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
435 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
437 unsigned n = (R_XTENSA_SLOT0_OP +
438 (code - BFD_RELOC_XTENSA_SLOT0_OP));
439 return &elf_howto_table[n];
442 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
443 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
445 unsigned n = (R_XTENSA_SLOT0_ALT +
446 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
447 return &elf_howto_table[n];
457 static reloc_howto_type *
458 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
463 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
464 if (elf_howto_table[i].name != NULL
465 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
466 return &elf_howto_table[i];
472 /* Given an ELF "rela" relocation, find the corresponding howto and record
473 it in the BFD internal arelent representation of the relocation. */
476 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
478 Elf_Internal_Rela *dst)
480 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
482 if (r_type >= (unsigned int) R_XTENSA_max)
484 /* xgettext:c-format */
485 _bfd_error_handler (_("%B: invalid XTENSA reloc number: %d"), abfd, r_type);
488 cache_ptr->howto = &elf_howto_table[r_type];
492 /* Functions for the Xtensa ELF linker. */
494 /* The name of the dynamic interpreter. This is put in the .interp
497 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
499 /* The size in bytes of an entry in the procedure linkage table.
500 (This does _not_ include the space for the literals associated with
503 #define PLT_ENTRY_SIZE 16
505 /* For _really_ large PLTs, we may need to alternate between literals
506 and code to keep the literals within the 256K range of the L32R
507 instructions in the code. It's unlikely that anyone would ever need
508 such a big PLT, but an arbitrary limit on the PLT size would be bad.
509 Thus, we split the PLT into chunks. Since there's very little
510 overhead (2 extra literals) for each chunk, the chunk size is kept
511 small so that the code for handling multiple chunks get used and
512 tested regularly. With 254 entries, there are 1K of literals for
513 each chunk, and that seems like a nice round number. */
515 #define PLT_ENTRIES_PER_CHUNK 254
517 /* PLT entries are actually used as stub functions for lazy symbol
518 resolution. Once the symbol is resolved, the stub function is never
519 invoked. Note: the 32-byte frame size used here cannot be changed
520 without a corresponding change in the runtime linker. */
522 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
524 #if XSHAL_ABI == XTHAL_ABI_WINDOWED
525 0x6c, 0x10, 0x04, /* entry sp, 32 */
527 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
528 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
529 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
530 0x0a, 0x80, 0x00, /* jx a8 */
534 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
536 #if XSHAL_ABI == XTHAL_ABI_WINDOWED
537 0x36, 0x41, 0x00, /* entry sp, 32 */
539 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
540 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
541 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
542 0xa0, 0x08, 0x00, /* jx a8 */
546 /* The size of the thread control block. */
549 struct elf_xtensa_link_hash_entry
551 struct elf_link_hash_entry elf;
553 bfd_signed_vma tlsfunc_refcount;
555 #define GOT_UNKNOWN 0
557 #define GOT_TLS_GD 2 /* global or local dynamic */
558 #define GOT_TLS_IE 4 /* initial or local exec */
559 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
560 unsigned char tls_type;
563 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
565 struct elf_xtensa_obj_tdata
567 struct elf_obj_tdata root;
569 /* tls_type for each local got entry. */
570 char *local_got_tls_type;
572 bfd_signed_vma *local_tlsfunc_refcounts;
575 #define elf_xtensa_tdata(abfd) \
576 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
578 #define elf_xtensa_local_got_tls_type(abfd) \
579 (elf_xtensa_tdata (abfd)->local_got_tls_type)
581 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
582 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
584 #define is_xtensa_elf(bfd) \
585 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
586 && elf_tdata (bfd) != NULL \
587 && elf_object_id (bfd) == XTENSA_ELF_DATA)
590 elf_xtensa_mkobject (bfd *abfd)
592 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
596 /* Xtensa ELF linker hash table. */
598 struct elf_xtensa_link_hash_table
600 struct elf_link_hash_table elf;
602 /* Short-cuts to get to dynamic linker sections. */
604 asection *spltlittbl;
606 /* Total count of PLT relocations seen during check_relocs.
607 The actual PLT code must be split into multiple sections and all
608 the sections have to be created before size_dynamic_sections,
609 where we figure out the exact number of PLT entries that will be
610 needed. It is OK if this count is an overestimate, e.g., some
611 relocations may be removed by GC. */
614 struct elf_xtensa_link_hash_entry *tlsbase;
617 /* Get the Xtensa ELF linker hash table from a link_info structure. */
619 #define elf_xtensa_hash_table(p) \
620 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
621 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
623 /* Create an entry in an Xtensa ELF linker hash table. */
625 static struct bfd_hash_entry *
626 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
627 struct bfd_hash_table *table,
630 /* Allocate the structure if it has not already been allocated by a
634 entry = bfd_hash_allocate (table,
635 sizeof (struct elf_xtensa_link_hash_entry));
640 /* Call the allocation method of the superclass. */
641 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
644 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
645 eh->tlsfunc_refcount = 0;
646 eh->tls_type = GOT_UNKNOWN;
652 /* Create an Xtensa ELF linker hash table. */
654 static struct bfd_link_hash_table *
655 elf_xtensa_link_hash_table_create (bfd *abfd)
657 struct elf_link_hash_entry *tlsbase;
658 struct elf_xtensa_link_hash_table *ret;
659 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
661 ret = bfd_zmalloc (amt);
665 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
666 elf_xtensa_link_hash_newfunc,
667 sizeof (struct elf_xtensa_link_hash_entry),
674 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
676 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
678 tlsbase->root.type = bfd_link_hash_new;
679 tlsbase->root.u.undef.abfd = NULL;
680 tlsbase->non_elf = 0;
681 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
682 ret->tlsbase->tls_type = GOT_UNKNOWN;
684 return &ret->elf.root;
687 /* Copy the extra info we tack onto an elf_link_hash_entry. */
690 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
691 struct elf_link_hash_entry *dir,
692 struct elf_link_hash_entry *ind)
694 struct elf_xtensa_link_hash_entry *edir, *eind;
696 edir = elf_xtensa_hash_entry (dir);
697 eind = elf_xtensa_hash_entry (ind);
699 if (ind->root.type == bfd_link_hash_indirect)
701 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
702 eind->tlsfunc_refcount = 0;
704 if (dir->got.refcount <= 0)
706 edir->tls_type = eind->tls_type;
707 eind->tls_type = GOT_UNKNOWN;
711 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
714 static inline bfd_boolean
715 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
716 struct bfd_link_info *info)
718 /* Check if we should do dynamic things to this symbol. The
719 "ignore_protected" argument need not be set, because Xtensa code
720 does not require special handling of STV_PROTECTED to make function
721 pointer comparisons work properly. The PLT addresses are never
722 used for function pointers. */
724 return _bfd_elf_dynamic_symbol_p (h, info, 0);
729 property_table_compare (const void *ap, const void *bp)
731 const property_table_entry *a = (const property_table_entry *) ap;
732 const property_table_entry *b = (const property_table_entry *) bp;
734 if (a->address == b->address)
736 if (a->size != b->size)
737 return (a->size - b->size);
739 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
740 return ((b->flags & XTENSA_PROP_ALIGN)
741 - (a->flags & XTENSA_PROP_ALIGN));
743 if ((a->flags & XTENSA_PROP_ALIGN)
744 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
745 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
746 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
747 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
749 if ((a->flags & XTENSA_PROP_UNREACHABLE)
750 != (b->flags & XTENSA_PROP_UNREACHABLE))
751 return ((b->flags & XTENSA_PROP_UNREACHABLE)
752 - (a->flags & XTENSA_PROP_UNREACHABLE));
754 return (a->flags - b->flags);
757 return (a->address - b->address);
762 property_table_matches (const void *ap, const void *bp)
764 const property_table_entry *a = (const property_table_entry *) ap;
765 const property_table_entry *b = (const property_table_entry *) bp;
767 /* Check if one entry overlaps with the other. */
768 if ((b->address >= a->address && b->address < (a->address + a->size))
769 || (a->address >= b->address && a->address < (b->address + b->size)))
772 return (a->address - b->address);
776 /* Get the literal table or property table entries for the given
777 section. Sets TABLE_P and returns the number of entries. On
778 error, returns a negative value. */
781 xtensa_read_table_entries (bfd *abfd,
783 property_table_entry **table_p,
784 const char *sec_name,
785 bfd_boolean output_addr)
787 asection *table_section;
788 bfd_size_type table_size = 0;
789 bfd_byte *table_data;
790 property_table_entry *blocks;
791 int blk, block_count;
792 bfd_size_type num_records;
793 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
794 bfd_vma section_addr, off;
795 flagword predef_flags;
796 bfd_size_type table_entry_size, section_limit;
799 || !(section->flags & SEC_ALLOC)
800 || (section->flags & SEC_DEBUGGING))
806 table_section = xtensa_get_property_section (section, sec_name);
808 table_size = table_section->size;
816 predef_flags = xtensa_get_property_predef_flags (table_section);
817 table_entry_size = 12;
819 table_entry_size -= 4;
821 num_records = table_size / table_entry_size;
822 table_data = retrieve_contents (abfd, table_section, TRUE);
823 blocks = (property_table_entry *)
824 bfd_malloc (num_records * sizeof (property_table_entry));
828 section_addr = section->output_section->vma + section->output_offset;
830 section_addr = section->vma;
832 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
833 if (internal_relocs && !table_section->reloc_done)
835 qsort (internal_relocs, table_section->reloc_count,
836 sizeof (Elf_Internal_Rela), internal_reloc_compare);
837 irel = internal_relocs;
842 section_limit = bfd_get_section_limit (abfd, section);
843 rel_end = internal_relocs + table_section->reloc_count;
845 for (off = 0; off < table_size; off += table_entry_size)
847 bfd_vma address = bfd_get_32 (abfd, table_data + off);
849 /* Skip any relocations before the current offset. This should help
850 avoid confusion caused by unexpected relocations for the preceding
853 (irel->r_offset < off
854 || (irel->r_offset == off
855 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
862 if (irel && irel->r_offset == off)
865 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
866 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
868 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
871 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
872 BFD_ASSERT (sym_off == 0);
873 address += (section_addr + sym_off + irel->r_addend);
877 if (address < section_addr
878 || address >= section_addr + section_limit)
882 blocks[block_count].address = address;
883 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
885 blocks[block_count].flags = predef_flags;
887 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
891 release_contents (table_section, table_data);
892 release_internal_relocs (table_section, internal_relocs);
896 /* Now sort them into address order for easy reference. */
897 qsort (blocks, block_count, sizeof (property_table_entry),
898 property_table_compare);
900 /* Check that the table contents are valid. Problems may occur,
901 for example, if an unrelocated object file is stripped. */
902 for (blk = 1; blk < block_count; blk++)
904 /* The only circumstance where two entries may legitimately
905 have the same address is when one of them is a zero-size
906 placeholder to mark a place where fill can be inserted.
907 The zero-size entry should come first. */
908 if (blocks[blk - 1].address == blocks[blk].address &&
909 blocks[blk - 1].size != 0)
911 /* xgettext:c-format */
912 _bfd_error_handler (_("%B(%A): invalid property table"),
914 bfd_set_error (bfd_error_bad_value);
926 static property_table_entry *
927 elf_xtensa_find_property_entry (property_table_entry *property_table,
928 int property_table_size,
931 property_table_entry entry;
932 property_table_entry *rv;
934 if (property_table_size == 0)
937 entry.address = addr;
941 rv = bsearch (&entry, property_table, property_table_size,
942 sizeof (property_table_entry), property_table_matches);
948 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
952 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
959 /* Look through the relocs for a section during the first phase, and
960 calculate needed space in the dynamic reloc sections. */
963 elf_xtensa_check_relocs (bfd *abfd,
964 struct bfd_link_info *info,
966 const Elf_Internal_Rela *relocs)
968 struct elf_xtensa_link_hash_table *htab;
969 Elf_Internal_Shdr *symtab_hdr;
970 struct elf_link_hash_entry **sym_hashes;
971 const Elf_Internal_Rela *rel;
972 const Elf_Internal_Rela *rel_end;
974 if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
977 BFD_ASSERT (is_xtensa_elf (abfd));
979 htab = elf_xtensa_hash_table (info);
983 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
984 sym_hashes = elf_sym_hashes (abfd);
986 rel_end = relocs + sec->reloc_count;
987 for (rel = relocs; rel < rel_end; rel++)
990 unsigned long r_symndx;
991 struct elf_link_hash_entry *h = NULL;
992 struct elf_xtensa_link_hash_entry *eh;
993 int tls_type, old_tls_type;
994 bfd_boolean is_got = FALSE;
995 bfd_boolean is_plt = FALSE;
996 bfd_boolean is_tlsfunc = FALSE;
998 r_symndx = ELF32_R_SYM (rel->r_info);
999 r_type = ELF32_R_TYPE (rel->r_info);
1001 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1003 /* xgettext:c-format */
1004 _bfd_error_handler (_("%B: bad symbol index: %d"),
1009 if (r_symndx >= symtab_hdr->sh_info)
1011 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1012 while (h->root.type == bfd_link_hash_indirect
1013 || h->root.type == bfd_link_hash_warning)
1014 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1016 /* PR15323, ref flags aren't set for references in the same
1018 h->root.non_ir_ref = 1;
1020 eh = elf_xtensa_hash_entry (h);
1024 case R_XTENSA_TLSDESC_FN:
1025 if (bfd_link_pic (info))
1027 tls_type = GOT_TLS_GD;
1032 tls_type = GOT_TLS_IE;
1035 case R_XTENSA_TLSDESC_ARG:
1036 if (bfd_link_pic (info))
1038 tls_type = GOT_TLS_GD;
1043 tls_type = GOT_TLS_IE;
1044 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1049 case R_XTENSA_TLS_DTPOFF:
1050 if (bfd_link_pic (info))
1051 tls_type = GOT_TLS_GD;
1053 tls_type = GOT_TLS_IE;
1056 case R_XTENSA_TLS_TPOFF:
1057 tls_type = GOT_TLS_IE;
1058 if (bfd_link_pic (info))
1059 info->flags |= DF_STATIC_TLS;
1060 if (bfd_link_pic (info) || h)
1065 tls_type = GOT_NORMAL;
1070 tls_type = GOT_NORMAL;
1074 case R_XTENSA_GNU_VTINHERIT:
1075 /* This relocation describes the C++ object vtable hierarchy.
1076 Reconstruct it for later use during GC. */
1077 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1081 case R_XTENSA_GNU_VTENTRY:
1082 /* This relocation describes which C++ vtable entries are actually
1083 used. Record for later use during GC. */
1084 BFD_ASSERT (h != NULL);
1086 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1091 /* Nothing to do for any other relocations. */
1099 if (h->plt.refcount <= 0)
1102 h->plt.refcount = 1;
1105 h->plt.refcount += 1;
1107 /* Keep track of the total PLT relocation count even if we
1108 don't yet know whether the dynamic sections will be
1110 htab->plt_reloc_count += 1;
1112 if (elf_hash_table (info)->dynamic_sections_created)
1114 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1120 if (h->got.refcount <= 0)
1121 h->got.refcount = 1;
1123 h->got.refcount += 1;
1127 eh->tlsfunc_refcount += 1;
1129 old_tls_type = eh->tls_type;
1133 /* Allocate storage the first time. */
1134 if (elf_local_got_refcounts (abfd) == NULL)
1136 bfd_size_type size = symtab_hdr->sh_info;
1139 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1142 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1144 mem = bfd_zalloc (abfd, size);
1147 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1149 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1152 elf_xtensa_local_tlsfunc_refcounts (abfd)
1153 = (bfd_signed_vma *) mem;
1156 /* This is a global offset table entry for a local symbol. */
1157 if (is_got || is_plt)
1158 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1161 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1163 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1166 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1167 tls_type |= old_tls_type;
1168 /* If a TLS symbol is accessed using IE at least once,
1169 there is no point to use a dynamic model for it. */
1170 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1171 && ((old_tls_type & GOT_TLS_GD) == 0
1172 || (tls_type & GOT_TLS_IE) == 0))
1174 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1175 tls_type = old_tls_type;
1176 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1177 tls_type |= old_tls_type;
1181 /* xgettext:c-format */
1182 (_("%B: `%s' accessed both as normal and thread local symbol"),
1184 h ? h->root.root.string : "<local>");
1189 if (old_tls_type != tls_type)
1192 eh->tls_type = tls_type;
1194 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1203 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1204 struct elf_link_hash_entry *h)
1206 if (bfd_link_pic (info))
1208 if (h->plt.refcount > 0)
1210 /* For shared objects, there's no need for PLT entries for local
1211 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1212 if (h->got.refcount < 0)
1213 h->got.refcount = 0;
1214 h->got.refcount += h->plt.refcount;
1215 h->plt.refcount = 0;
1220 /* Don't need any dynamic relocations at all. */
1221 h->plt.refcount = 0;
1222 h->got.refcount = 0;
1228 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1229 struct elf_link_hash_entry *h,
1230 bfd_boolean force_local)
1232 /* For a shared link, move the plt refcount to the got refcount to leave
1233 space for RELATIVE relocs. */
1234 elf_xtensa_make_sym_local (info, h);
1236 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1240 /* Return the section that should be marked against GC for a given
1244 elf_xtensa_gc_mark_hook (asection *sec,
1245 struct bfd_link_info *info,
1246 Elf_Internal_Rela *rel,
1247 struct elf_link_hash_entry *h,
1248 Elf_Internal_Sym *sym)
1250 /* Property sections are marked "KEEP" in the linker scripts, but they
1251 should not cause other sections to be marked. (This approach relies
1252 on elf_xtensa_discard_info to remove property table entries that
1253 describe discarded sections. Alternatively, it might be more
1254 efficient to avoid using "KEEP" in the linker scripts and instead use
1255 the gc_mark_extra_sections hook to mark only the property sections
1256 that describe marked sections. That alternative does not work well
1257 with the current property table sections, which do not correspond
1258 one-to-one with the sections they describe, but that should be fixed
1260 if (xtensa_is_property_section (sec))
1264 switch (ELF32_R_TYPE (rel->r_info))
1266 case R_XTENSA_GNU_VTINHERIT:
1267 case R_XTENSA_GNU_VTENTRY:
1271 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1275 /* Update the GOT & PLT entry reference counts
1276 for the section being removed. */
1279 elf_xtensa_gc_sweep_hook (bfd *abfd,
1280 struct bfd_link_info *info,
1282 const Elf_Internal_Rela *relocs)
1284 Elf_Internal_Shdr *symtab_hdr;
1285 struct elf_link_hash_entry **sym_hashes;
1286 const Elf_Internal_Rela *rel, *relend;
1287 struct elf_xtensa_link_hash_table *htab;
1289 htab = elf_xtensa_hash_table (info);
1293 if (bfd_link_relocatable (info))
1296 if ((sec->flags & SEC_ALLOC) == 0)
1299 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1300 sym_hashes = elf_sym_hashes (abfd);
1302 relend = relocs + sec->reloc_count;
1303 for (rel = relocs; rel < relend; rel++)
1305 unsigned long r_symndx;
1306 unsigned int r_type;
1307 struct elf_link_hash_entry *h = NULL;
1308 struct elf_xtensa_link_hash_entry *eh;
1309 bfd_boolean is_got = FALSE;
1310 bfd_boolean is_plt = FALSE;
1311 bfd_boolean is_tlsfunc = FALSE;
1313 r_symndx = ELF32_R_SYM (rel->r_info);
1314 if (r_symndx >= symtab_hdr->sh_info)
1316 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1317 while (h->root.type == bfd_link_hash_indirect
1318 || h->root.type == bfd_link_hash_warning)
1319 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1321 eh = elf_xtensa_hash_entry (h);
1323 r_type = ELF32_R_TYPE (rel->r_info);
1326 case R_XTENSA_TLSDESC_FN:
1327 if (bfd_link_pic (info))
1334 case R_XTENSA_TLSDESC_ARG:
1335 if (bfd_link_pic (info))
1339 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1344 case R_XTENSA_TLS_TPOFF:
1345 if (bfd_link_pic (info) || h)
1365 /* If the symbol has been localized its plt.refcount got moved
1366 to got.refcount. Handle it as GOT. */
1367 if (h->plt.refcount > 0)
1374 if (h->got.refcount > 0)
1379 if (eh->tlsfunc_refcount > 0)
1380 eh->tlsfunc_refcount--;
1385 if (is_got || is_plt)
1387 bfd_signed_vma *got_refcount
1388 = &elf_local_got_refcounts (abfd) [r_symndx];
1389 if (*got_refcount > 0)
1394 bfd_signed_vma *tlsfunc_refcount
1395 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1396 if (*tlsfunc_refcount > 0)
1397 *tlsfunc_refcount -= 1;
1406 /* Create all the dynamic sections. */
1409 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1411 struct elf_xtensa_link_hash_table *htab;
1412 flagword flags, noalloc_flags;
1414 htab = elf_xtensa_hash_table (info);
1418 /* First do all the standard stuff. */
1419 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1422 /* Create any extra PLT sections in case check_relocs has already
1423 been called on all the non-dynamic input files. */
1424 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1427 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1428 | SEC_LINKER_CREATED | SEC_READONLY);
1429 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1431 /* Mark the ".got.plt" section READONLY. */
1432 if (htab->elf.sgotplt == NULL
1433 || ! bfd_set_section_flags (dynobj, htab->elf.sgotplt, flags))
1436 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1437 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1439 if (htab->sgotloc == NULL
1440 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1443 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1444 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1446 if (htab->spltlittbl == NULL
1447 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1455 add_extra_plt_sections (struct bfd_link_info *info, int count)
1457 bfd *dynobj = elf_hash_table (info)->dynobj;
1460 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1461 ".got.plt" sections. */
1462 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1468 /* Stop when we find a section has already been created. */
1469 if (elf_xtensa_get_plt_section (info, chunk))
1472 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1473 | SEC_LINKER_CREATED | SEC_READONLY);
1475 sname = (char *) bfd_malloc (10);
1476 sprintf (sname, ".plt.%u", chunk);
1477 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1479 || ! bfd_set_section_alignment (dynobj, s, 2))
1482 sname = (char *) bfd_malloc (14);
1483 sprintf (sname, ".got.plt.%u", chunk);
1484 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1486 || ! bfd_set_section_alignment (dynobj, s, 2))
1494 /* Adjust a symbol defined by a dynamic object and referenced by a
1495 regular object. The current definition is in some section of the
1496 dynamic object, but we're not including those sections. We have to
1497 change the definition to something the rest of the link can
1501 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1502 struct elf_link_hash_entry *h)
1504 /* If this is a weak symbol, and there is a real definition, the
1505 processor independent code will have arranged for us to see the
1506 real definition first, and we can just use the same value. */
1509 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1510 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1511 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1512 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1516 /* This is a reference to a symbol defined by a dynamic object. The
1517 reference must go through the GOT, so there's no need for COPY relocs,
1525 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1527 struct bfd_link_info *info;
1528 struct elf_xtensa_link_hash_table *htab;
1529 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1531 if (h->root.type == bfd_link_hash_indirect)
1534 info = (struct bfd_link_info *) arg;
1535 htab = elf_xtensa_hash_table (info);
1539 /* If we saw any use of an IE model for this symbol, we can then optimize
1540 away GOT entries for any TLSDESC_FN relocs. */
1541 if ((eh->tls_type & GOT_TLS_IE) != 0)
1543 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1544 h->got.refcount -= eh->tlsfunc_refcount;
1547 if (! elf_xtensa_dynamic_symbol_p (h, info))
1548 elf_xtensa_make_sym_local (info, h);
1550 if (h->plt.refcount > 0)
1551 htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1553 if (h->got.refcount > 0)
1554 htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1561 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1563 struct elf_xtensa_link_hash_table *htab;
1566 htab = elf_xtensa_hash_table (info);
1570 for (i = info->input_bfds; i; i = i->link.next)
1572 bfd_signed_vma *local_got_refcounts;
1573 bfd_size_type j, cnt;
1574 Elf_Internal_Shdr *symtab_hdr;
1576 local_got_refcounts = elf_local_got_refcounts (i);
1577 if (!local_got_refcounts)
1580 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1581 cnt = symtab_hdr->sh_info;
1583 for (j = 0; j < cnt; ++j)
1585 /* If we saw any use of an IE model for this symbol, we can
1586 then optimize away GOT entries for any TLSDESC_FN relocs. */
1587 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1589 bfd_signed_vma *tlsfunc_refcount
1590 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1591 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1592 local_got_refcounts[j] -= *tlsfunc_refcount;
1595 if (local_got_refcounts[j] > 0)
1596 htab->elf.srelgot->size += (local_got_refcounts[j]
1597 * sizeof (Elf32_External_Rela));
1603 /* Set the sizes of the dynamic sections. */
1606 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1607 struct bfd_link_info *info)
1609 struct elf_xtensa_link_hash_table *htab;
1611 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1612 bfd_boolean relplt, relgot;
1613 int plt_entries, plt_chunks, chunk;
1618 htab = elf_xtensa_hash_table (info);
1622 dynobj = elf_hash_table (info)->dynobj;
1625 srelgot = htab->elf.srelgot;
1626 srelplt = htab->elf.srelplt;
1628 if (elf_hash_table (info)->dynamic_sections_created)
1630 BFD_ASSERT (htab->elf.srelgot != NULL
1631 && htab->elf.srelplt != NULL
1632 && htab->elf.sgot != NULL
1633 && htab->spltlittbl != NULL
1634 && htab->sgotloc != NULL);
1636 /* Set the contents of the .interp section to the interpreter. */
1637 if (bfd_link_executable (info) && !info->nointerp)
1639 s = bfd_get_linker_section (dynobj, ".interp");
1642 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1643 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1646 /* Allocate room for one word in ".got". */
1647 htab->elf.sgot->size = 4;
1649 /* Allocate space in ".rela.got" for literals that reference global
1650 symbols and space in ".rela.plt" for literals that have PLT
1652 elf_link_hash_traverse (elf_hash_table (info),
1653 elf_xtensa_allocate_dynrelocs,
1656 /* If we are generating a shared object, we also need space in
1657 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1658 reference local symbols. */
1659 if (bfd_link_pic (info))
1660 elf_xtensa_allocate_local_got_size (info);
1662 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1663 each PLT entry, we need the PLT code plus a 4-byte literal.
1664 For each chunk of ".plt", we also need two more 4-byte
1665 literals, two corresponding entries in ".rela.got", and an
1666 8-byte entry in ".xt.lit.plt". */
1667 spltlittbl = htab->spltlittbl;
1668 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1670 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1672 /* Iterate over all the PLT chunks, including any extra sections
1673 created earlier because the initial count of PLT relocations
1674 was an overestimate. */
1676 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1681 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1682 BFD_ASSERT (sgotplt != NULL);
1684 if (chunk < plt_chunks - 1)
1685 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1686 else if (chunk == plt_chunks - 1)
1687 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1691 if (chunk_entries != 0)
1693 sgotplt->size = 4 * (chunk_entries + 2);
1694 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1695 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1696 spltlittbl->size += 8;
1705 /* Allocate space in ".got.loc" to match the total size of all the
1707 sgotloc = htab->sgotloc;
1708 sgotloc->size = spltlittbl->size;
1709 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1711 if (abfd->flags & DYNAMIC)
1713 for (s = abfd->sections; s != NULL; s = s->next)
1715 if (! discarded_section (s)
1716 && xtensa_is_littable_section (s)
1718 sgotloc->size += s->size;
1723 /* Allocate memory for dynamic sections. */
1726 for (s = dynobj->sections; s != NULL; s = s->next)
1730 if ((s->flags & SEC_LINKER_CREATED) == 0)
1733 /* It's OK to base decisions on the section name, because none
1734 of the dynobj section names depend upon the input files. */
1735 name = bfd_get_section_name (dynobj, s);
1737 if (CONST_STRNEQ (name, ".rela"))
1741 if (strcmp (name, ".rela.plt") == 0)
1743 else if (strcmp (name, ".rela.got") == 0)
1746 /* We use the reloc_count field as a counter if we need
1747 to copy relocs into the output file. */
1751 else if (! CONST_STRNEQ (name, ".plt.")
1752 && ! CONST_STRNEQ (name, ".got.plt.")
1753 && strcmp (name, ".got") != 0
1754 && strcmp (name, ".plt") != 0
1755 && strcmp (name, ".got.plt") != 0
1756 && strcmp (name, ".xt.lit.plt") != 0
1757 && strcmp (name, ".got.loc") != 0)
1759 /* It's not one of our sections, so don't allocate space. */
1765 /* If we don't need this section, strip it from the output
1766 file. We must create the ".plt*" and ".got.plt*"
1767 sections in create_dynamic_sections and/or check_relocs
1768 based on a conservative estimate of the PLT relocation
1769 count, because the sections must be created before the
1770 linker maps input sections to output sections. The
1771 linker does that before size_dynamic_sections, where we
1772 compute the exact size of the PLT, so there may be more
1773 of these sections than are actually needed. */
1774 s->flags |= SEC_EXCLUDE;
1776 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1778 /* Allocate memory for the section contents. */
1779 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1780 if (s->contents == NULL)
1785 if (elf_hash_table (info)->dynamic_sections_created)
1787 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1788 known until finish_dynamic_sections, but we need to get the relocs
1789 in place before they are sorted. */
1790 for (chunk = 0; chunk < plt_chunks; chunk++)
1792 Elf_Internal_Rela irela;
1796 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1799 loc = (srelgot->contents
1800 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1801 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1802 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1803 loc + sizeof (Elf32_External_Rela));
1804 srelgot->reloc_count += 2;
1807 /* Add some entries to the .dynamic section. We fill in the
1808 values later, in elf_xtensa_finish_dynamic_sections, but we
1809 must add the entries now so that we get the correct size for
1810 the .dynamic section. The DT_DEBUG entry is filled in by the
1811 dynamic linker and used by the debugger. */
1812 #define add_dynamic_entry(TAG, VAL) \
1813 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1815 if (bfd_link_executable (info))
1817 if (!add_dynamic_entry (DT_DEBUG, 0))
1823 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1824 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1825 || !add_dynamic_entry (DT_JMPREL, 0))
1831 if (!add_dynamic_entry (DT_RELA, 0)
1832 || !add_dynamic_entry (DT_RELASZ, 0)
1833 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1837 if (!add_dynamic_entry (DT_PLTGOT, 0)
1838 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1839 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1842 #undef add_dynamic_entry
1848 elf_xtensa_always_size_sections (bfd *output_bfd,
1849 struct bfd_link_info *info)
1851 struct elf_xtensa_link_hash_table *htab;
1854 htab = elf_xtensa_hash_table (info);
1858 tls_sec = htab->elf.tls_sec;
1860 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1862 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1863 struct bfd_link_hash_entry *bh = &tlsbase->root;
1864 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1866 tlsbase->type = STT_TLS;
1867 if (!(_bfd_generic_link_add_one_symbol
1868 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1869 tls_sec, 0, NULL, FALSE,
1870 bed->collect, &bh)))
1872 tlsbase->def_regular = 1;
1873 tlsbase->other = STV_HIDDEN;
1874 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1881 /* Return the base VMA address which should be subtracted from real addresses
1882 when resolving @dtpoff relocation.
1883 This is PT_TLS segment p_vaddr. */
1886 dtpoff_base (struct bfd_link_info *info)
1888 /* If tls_sec is NULL, we should have signalled an error already. */
1889 if (elf_hash_table (info)->tls_sec == NULL)
1891 return elf_hash_table (info)->tls_sec->vma;
1894 /* Return the relocation value for @tpoff relocation
1895 if STT_TLS virtual address is ADDRESS. */
1898 tpoff (struct bfd_link_info *info, bfd_vma address)
1900 struct elf_link_hash_table *htab = elf_hash_table (info);
1903 /* If tls_sec is NULL, we should have signalled an error already. */
1904 if (htab->tls_sec == NULL)
1906 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1907 return address - htab->tls_sec->vma + base;
1910 /* Perform the specified relocation. The instruction at (contents + address)
1911 is modified to set one operand to represent the value in "relocation". The
1912 operand position is determined by the relocation type recorded in the
1915 #define CALL_SEGMENT_BITS (30)
1916 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1918 static bfd_reloc_status_type
1919 elf_xtensa_do_reloc (reloc_howto_type *howto,
1921 asection *input_section,
1925 bfd_boolean is_weak_undef,
1926 char **error_message)
1929 xtensa_opcode opcode;
1930 xtensa_isa isa = xtensa_default_isa;
1931 static xtensa_insnbuf ibuff = NULL;
1932 static xtensa_insnbuf sbuff = NULL;
1933 bfd_vma self_address;
1934 bfd_size_type input_size;
1940 ibuff = xtensa_insnbuf_alloc (isa);
1941 sbuff = xtensa_insnbuf_alloc (isa);
1944 input_size = bfd_get_section_limit (abfd, input_section);
1946 /* Calculate the PC address for this instruction. */
1947 self_address = (input_section->output_section->vma
1948 + input_section->output_offset
1951 switch (howto->type)
1954 case R_XTENSA_DIFF8:
1955 case R_XTENSA_DIFF16:
1956 case R_XTENSA_DIFF32:
1957 case R_XTENSA_TLS_FUNC:
1958 case R_XTENSA_TLS_ARG:
1959 case R_XTENSA_TLS_CALL:
1960 return bfd_reloc_ok;
1962 case R_XTENSA_ASM_EXPAND:
1965 /* Check for windowed CALL across a 1GB boundary. */
1966 opcode = get_expanded_call_opcode (contents + address,
1967 input_size - address, 0);
1968 if (is_windowed_call_opcode (opcode))
1970 if ((self_address >> CALL_SEGMENT_BITS)
1971 != (relocation >> CALL_SEGMENT_BITS))
1973 *error_message = "windowed longcall crosses 1GB boundary; "
1975 return bfd_reloc_dangerous;
1979 return bfd_reloc_ok;
1981 case R_XTENSA_ASM_SIMPLIFY:
1983 /* Convert the L32R/CALLX to CALL. */
1984 bfd_reloc_status_type retval =
1985 elf_xtensa_do_asm_simplify (contents, address, input_size,
1987 if (retval != bfd_reloc_ok)
1988 return bfd_reloc_dangerous;
1990 /* The CALL needs to be relocated. Continue below for that part. */
1993 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
2000 x = bfd_get_32 (abfd, contents + address);
2002 bfd_put_32 (abfd, x, contents + address);
2004 return bfd_reloc_ok;
2006 case R_XTENSA_32_PCREL:
2007 bfd_put_32 (abfd, relocation - self_address, contents + address);
2008 return bfd_reloc_ok;
2011 case R_XTENSA_TLSDESC_FN:
2012 case R_XTENSA_TLSDESC_ARG:
2013 case R_XTENSA_TLS_DTPOFF:
2014 case R_XTENSA_TLS_TPOFF:
2015 bfd_put_32 (abfd, relocation, contents + address);
2016 return bfd_reloc_ok;
2019 /* Only instruction slot-specific relocations handled below.... */
2020 slot = get_relocation_slot (howto->type);
2021 if (slot == XTENSA_UNDEFINED)
2023 *error_message = "unexpected relocation";
2024 return bfd_reloc_dangerous;
2027 /* Read the instruction into a buffer and decode the opcode. */
2028 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2029 input_size - address);
2030 fmt = xtensa_format_decode (isa, ibuff);
2031 if (fmt == XTENSA_UNDEFINED)
2033 *error_message = "cannot decode instruction format";
2034 return bfd_reloc_dangerous;
2037 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
2039 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2040 if (opcode == XTENSA_UNDEFINED)
2042 *error_message = "cannot decode instruction opcode";
2043 return bfd_reloc_dangerous;
2046 /* Check for opcode-specific "alternate" relocations. */
2047 if (is_alt_relocation (howto->type))
2049 if (opcode == get_l32r_opcode ())
2051 /* Handle the special-case of non-PC-relative L32R instructions. */
2052 bfd *output_bfd = input_section->output_section->owner;
2053 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2056 *error_message = "relocation references missing .lit4 section";
2057 return bfd_reloc_dangerous;
2059 self_address = ((lit4_sec->vma & ~0xfff)
2060 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2061 newval = relocation;
2064 else if (opcode == get_const16_opcode ())
2066 /* ALT used for high 16 bits. */
2067 newval = relocation >> 16;
2072 /* No other "alternate" relocations currently defined. */
2073 *error_message = "unexpected relocation";
2074 return bfd_reloc_dangerous;
2077 else /* Not an "alternate" relocation.... */
2079 if (opcode == get_const16_opcode ())
2081 newval = relocation & 0xffff;
2086 /* ...normal PC-relative relocation.... */
2088 /* Determine which operand is being relocated. */
2089 opnd = get_relocation_opnd (opcode, howto->type);
2090 if (opnd == XTENSA_UNDEFINED)
2092 *error_message = "unexpected relocation";
2093 return bfd_reloc_dangerous;
2096 if (!howto->pc_relative)
2098 *error_message = "expected PC-relative relocation";
2099 return bfd_reloc_dangerous;
2102 newval = relocation;
2106 /* Apply the relocation. */
2107 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2108 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2109 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2112 const char *opname = xtensa_opcode_name (isa, opcode);
2115 msg = "cannot encode";
2116 if (is_direct_call_opcode (opcode))
2118 if ((relocation & 0x3) != 0)
2119 msg = "misaligned call target";
2121 msg = "call target out of range";
2123 else if (opcode == get_l32r_opcode ())
2125 if ((relocation & 0x3) != 0)
2126 msg = "misaligned literal target";
2127 else if (is_alt_relocation (howto->type))
2128 msg = "literal target out of range (too many literals)";
2129 else if (self_address > relocation)
2130 msg = "literal target out of range (try using text-section-literals)";
2132 msg = "literal placed after use";
2135 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2136 return bfd_reloc_dangerous;
2139 /* Check for calls across 1GB boundaries. */
2140 if (is_direct_call_opcode (opcode)
2141 && is_windowed_call_opcode (opcode))
2143 if ((self_address >> CALL_SEGMENT_BITS)
2144 != (relocation >> CALL_SEGMENT_BITS))
2147 "windowed call crosses 1GB boundary; return may fail";
2148 return bfd_reloc_dangerous;
2152 /* Write the modified instruction back out of the buffer. */
2153 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2154 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2155 input_size - address);
2156 return bfd_reloc_ok;
2161 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2163 /* To reduce the size of the memory leak,
2164 we only use a single message buffer. */
2165 static bfd_size_type alloc_size = 0;
2166 static char *message = NULL;
2167 bfd_size_type orig_len, len = 0;
2168 bfd_boolean is_append;
2171 va_start (ap, arglen);
2173 is_append = (origmsg == message);
2175 orig_len = strlen (origmsg);
2176 len = orig_len + strlen (fmt) + arglen + 20;
2177 if (len > alloc_size)
2179 message = (char *) bfd_realloc_or_free (message, len);
2182 if (message != NULL)
2185 memcpy (message, origmsg, orig_len);
2186 vsprintf (message + orig_len, fmt, ap);
2193 /* This function is registered as the "special_function" in the
2194 Xtensa howto for handling simplify operations.
2195 bfd_perform_relocation / bfd_install_relocation use it to
2196 perform (install) the specified relocation. Since this replaces the code
2197 in bfd_perform_relocation, it is basically an Xtensa-specific,
2198 stripped-down version of bfd_perform_relocation. */
2200 static bfd_reloc_status_type
2201 bfd_elf_xtensa_reloc (bfd *abfd,
2202 arelent *reloc_entry,
2205 asection *input_section,
2207 char **error_message)
2210 bfd_reloc_status_type flag;
2211 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2212 bfd_vma output_base = 0;
2213 reloc_howto_type *howto = reloc_entry->howto;
2214 asection *reloc_target_output_section;
2215 bfd_boolean is_weak_undef;
2217 if (!xtensa_default_isa)
2218 xtensa_default_isa = xtensa_isa_init (0, 0);
2220 /* ELF relocs are against symbols. If we are producing relocatable
2221 output, and the reloc is against an external symbol, the resulting
2222 reloc will also be against the same symbol. In such a case, we
2223 don't want to change anything about the way the reloc is handled,
2224 since it will all be done at final link time. This test is similar
2225 to what bfd_elf_generic_reloc does except that it lets relocs with
2226 howto->partial_inplace go through even if the addend is non-zero.
2227 (The real problem is that partial_inplace is set for XTENSA_32
2228 relocs to begin with, but that's a long story and there's little we
2229 can do about it now....) */
2231 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2233 reloc_entry->address += input_section->output_offset;
2234 return bfd_reloc_ok;
2237 /* Is the address of the relocation really within the section? */
2238 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2239 return bfd_reloc_outofrange;
2241 /* Work out which section the relocation is targeted at and the
2242 initial relocation command value. */
2244 /* Get symbol value. (Common symbols are special.) */
2245 if (bfd_is_com_section (symbol->section))
2248 relocation = symbol->value;
2250 reloc_target_output_section = symbol->section->output_section;
2252 /* Convert input-section-relative symbol value to absolute. */
2253 if ((output_bfd && !howto->partial_inplace)
2254 || reloc_target_output_section == NULL)
2257 output_base = reloc_target_output_section->vma;
2259 relocation += output_base + symbol->section->output_offset;
2261 /* Add in supplied addend. */
2262 relocation += reloc_entry->addend;
2264 /* Here the variable relocation holds the final address of the
2265 symbol we are relocating against, plus any addend. */
2268 if (!howto->partial_inplace)
2270 /* This is a partial relocation, and we want to apply the relocation
2271 to the reloc entry rather than the raw data. Everything except
2272 relocations against section symbols has already been handled
2275 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2276 reloc_entry->addend = relocation;
2277 reloc_entry->address += input_section->output_offset;
2278 return bfd_reloc_ok;
2282 reloc_entry->address += input_section->output_offset;
2283 reloc_entry->addend = 0;
2287 is_weak_undef = (bfd_is_und_section (symbol->section)
2288 && (symbol->flags & BSF_WEAK) != 0);
2289 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2290 (bfd_byte *) data, (bfd_vma) octets,
2291 is_weak_undef, error_message);
2293 if (flag == bfd_reloc_dangerous)
2295 /* Add the symbol name to the error message. */
2296 if (! *error_message)
2297 *error_message = "";
2298 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2299 strlen (symbol->name) + 17,
2301 (unsigned long) reloc_entry->addend);
2308 /* Set up an entry in the procedure linkage table. */
2311 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2313 unsigned reloc_index)
2315 asection *splt, *sgotplt;
2316 bfd_vma plt_base, got_base;
2317 bfd_vma code_offset, lit_offset, abi_offset;
2320 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2321 splt = elf_xtensa_get_plt_section (info, chunk);
2322 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2323 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2325 plt_base = splt->output_section->vma + splt->output_offset;
2326 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2328 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2329 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2331 /* Fill in the literal entry. This is the offset of the dynamic
2332 relocation entry. */
2333 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2334 sgotplt->contents + lit_offset);
2336 /* Fill in the entry in the procedure linkage table. */
2337 memcpy (splt->contents + code_offset,
2338 (bfd_big_endian (output_bfd)
2339 ? elf_xtensa_be_plt_entry
2340 : elf_xtensa_le_plt_entry),
2342 abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
2343 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2344 plt_base + code_offset + abi_offset),
2345 splt->contents + code_offset + abi_offset + 1);
2346 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2347 plt_base + code_offset + abi_offset + 3),
2348 splt->contents + code_offset + abi_offset + 4);
2349 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2350 plt_base + code_offset + abi_offset + 6),
2351 splt->contents + code_offset + abi_offset + 7);
2353 return plt_base + code_offset;
2357 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2360 replace_tls_insn (Elf_Internal_Rela *rel,
2362 asection *input_section,
2364 bfd_boolean is_ld_model,
2365 char **error_message)
2367 static xtensa_insnbuf ibuff = NULL;
2368 static xtensa_insnbuf sbuff = NULL;
2369 xtensa_isa isa = xtensa_default_isa;
2371 xtensa_opcode old_op, new_op;
2372 bfd_size_type input_size;
2374 unsigned dest_reg, src_reg;
2378 ibuff = xtensa_insnbuf_alloc (isa);
2379 sbuff = xtensa_insnbuf_alloc (isa);
2382 input_size = bfd_get_section_limit (abfd, input_section);
2384 /* Read the instruction into a buffer and decode the opcode. */
2385 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2386 input_size - rel->r_offset);
2387 fmt = xtensa_format_decode (isa, ibuff);
2388 if (fmt == XTENSA_UNDEFINED)
2390 *error_message = "cannot decode instruction format";
2394 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2395 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2397 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2398 if (old_op == XTENSA_UNDEFINED)
2400 *error_message = "cannot decode instruction opcode";
2404 r_type = ELF32_R_TYPE (rel->r_info);
2407 case R_XTENSA_TLS_FUNC:
2408 case R_XTENSA_TLS_ARG:
2409 if (old_op != get_l32r_opcode ()
2410 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2411 sbuff, &dest_reg) != 0)
2413 *error_message = "cannot extract L32R destination for TLS access";
2418 case R_XTENSA_TLS_CALL:
2419 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2420 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2421 sbuff, &src_reg) != 0)
2423 *error_message = "cannot extract CALLXn operands for TLS access";
2436 case R_XTENSA_TLS_FUNC:
2437 case R_XTENSA_TLS_ARG:
2438 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2439 versions of Xtensa). */
2440 new_op = xtensa_opcode_lookup (isa, "nop");
2441 if (new_op == XTENSA_UNDEFINED)
2443 new_op = xtensa_opcode_lookup (isa, "or");
2444 if (new_op == XTENSA_UNDEFINED
2445 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2446 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2448 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2450 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2453 *error_message = "cannot encode OR for TLS access";
2459 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2461 *error_message = "cannot encode NOP for TLS access";
2467 case R_XTENSA_TLS_CALL:
2468 /* Read THREADPTR into the CALLX's return value register. */
2469 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2470 if (new_op == XTENSA_UNDEFINED
2471 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2472 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2473 sbuff, dest_reg + 2) != 0)
2475 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2485 case R_XTENSA_TLS_FUNC:
2486 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2487 if (new_op == XTENSA_UNDEFINED
2488 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2489 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2490 sbuff, dest_reg) != 0)
2492 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2497 case R_XTENSA_TLS_ARG:
2498 /* Nothing to do. Keep the original L32R instruction. */
2501 case R_XTENSA_TLS_CALL:
2502 /* Add the CALLX's src register (holding the THREADPTR value)
2503 to the first argument register (holding the offset) and put
2504 the result in the CALLX's return value register. */
2505 new_op = xtensa_opcode_lookup (isa, "add");
2506 if (new_op == XTENSA_UNDEFINED
2507 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2508 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2509 sbuff, dest_reg + 2) != 0
2510 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2511 sbuff, dest_reg + 2) != 0
2512 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2513 sbuff, src_reg) != 0)
2515 *error_message = "cannot encode ADD for TLS access";
2522 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2523 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2524 input_size - rel->r_offset);
2530 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2531 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2532 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2533 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2534 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2535 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2536 || (R_TYPE) == R_XTENSA_TLS_ARG \
2537 || (R_TYPE) == R_XTENSA_TLS_CALL)
2539 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2540 both relocatable and final links. */
2543 elf_xtensa_relocate_section (bfd *output_bfd,
2544 struct bfd_link_info *info,
2546 asection *input_section,
2548 Elf_Internal_Rela *relocs,
2549 Elf_Internal_Sym *local_syms,
2550 asection **local_sections)
2552 struct elf_xtensa_link_hash_table *htab;
2553 Elf_Internal_Shdr *symtab_hdr;
2554 Elf_Internal_Rela *rel;
2555 Elf_Internal_Rela *relend;
2556 struct elf_link_hash_entry **sym_hashes;
2557 property_table_entry *lit_table = 0;
2559 char *local_got_tls_types;
2560 char *error_message = NULL;
2561 bfd_size_type input_size;
2564 if (!xtensa_default_isa)
2565 xtensa_default_isa = xtensa_isa_init (0, 0);
2567 BFD_ASSERT (is_xtensa_elf (input_bfd));
2569 htab = elf_xtensa_hash_table (info);
2573 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2574 sym_hashes = elf_sym_hashes (input_bfd);
2575 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2577 if (elf_hash_table (info)->dynamic_sections_created)
2579 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2580 &lit_table, XTENSA_LIT_SEC_NAME,
2586 input_size = bfd_get_section_limit (input_bfd, input_section);
2589 relend = relocs + input_section->reloc_count;
2590 for (; rel < relend; rel++)
2593 reloc_howto_type *howto;
2594 unsigned long r_symndx;
2595 struct elf_link_hash_entry *h;
2596 Elf_Internal_Sym *sym;
2601 bfd_reloc_status_type r;
2602 bfd_boolean is_weak_undef;
2603 bfd_boolean unresolved_reloc;
2605 bfd_boolean dynamic_symbol;
2607 r_type = ELF32_R_TYPE (rel->r_info);
2608 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2609 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2612 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2614 bfd_set_error (bfd_error_bad_value);
2617 howto = &elf_howto_table[r_type];
2619 r_symndx = ELF32_R_SYM (rel->r_info);
2624 is_weak_undef = FALSE;
2625 unresolved_reloc = FALSE;
2628 if (howto->partial_inplace && !bfd_link_relocatable (info))
2630 /* Because R_XTENSA_32 was made partial_inplace to fix some
2631 problems with DWARF info in partial links, there may be
2632 an addend stored in the contents. Take it out of there
2633 and move it back into the addend field of the reloc. */
2634 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2635 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2638 if (r_symndx < symtab_hdr->sh_info)
2640 sym = local_syms + r_symndx;
2641 sym_type = ELF32_ST_TYPE (sym->st_info);
2642 sec = local_sections[r_symndx];
2643 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2647 bfd_boolean ignored;
2649 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2650 r_symndx, symtab_hdr, sym_hashes,
2652 unresolved_reloc, warned, ignored);
2655 && !unresolved_reloc
2656 && h->root.type == bfd_link_hash_undefweak)
2657 is_weak_undef = TRUE;
2662 if (sec != NULL && discarded_section (sec))
2663 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2664 rel, 1, relend, howto, 0, contents);
2666 if (bfd_link_relocatable (info))
2669 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2671 /* This is a relocatable link.
2672 1) If the reloc is against a section symbol, adjust
2673 according to the output section.
2674 2) If there is a new target for this relocation,
2675 the new target will be in the same output section.
2676 We adjust the relocation by the output section
2679 if (relaxing_section)
2681 /* Check if this references a section in another input file. */
2682 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2687 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2688 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2690 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2692 error_message = NULL;
2693 /* Convert ASM_SIMPLIFY into the simpler relocation
2694 so that they never escape a relaxing link. */
2695 r = contract_asm_expansion (contents, input_size, rel,
2697 if (r != bfd_reloc_ok)
2698 (*info->callbacks->reloc_dangerous)
2699 (info, error_message,
2700 input_bfd, input_section, rel->r_offset);
2702 r_type = ELF32_R_TYPE (rel->r_info);
2705 /* This is a relocatable link, so we don't have to change
2706 anything unless the reloc is against a section symbol,
2707 in which case we have to adjust according to where the
2708 section symbol winds up in the output section. */
2709 if (r_symndx < symtab_hdr->sh_info)
2711 sym = local_syms + r_symndx;
2712 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2714 sec = local_sections[r_symndx];
2715 rel->r_addend += sec->output_offset + sym->st_value;
2719 /* If there is an addend with a partial_inplace howto,
2720 then move the addend to the contents. This is a hack
2721 to work around problems with DWARF in relocatable links
2722 with some previous version of BFD. Now we can't easily get
2723 rid of the hack without breaking backward compatibility.... */
2725 howto = &elf_howto_table[r_type];
2726 if (howto->partial_inplace && rel->r_addend)
2728 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2729 rel->r_addend, contents,
2730 rel->r_offset, FALSE,
2736 /* Put the correct bits in the target instruction, even
2737 though the relocation will still be present in the output
2738 file. This makes disassembly clearer, as well as
2739 allowing loadable kernel modules to work without needing
2740 relocations on anything other than calls and l32r's. */
2742 /* If it is not in the same section, there is nothing we can do. */
2743 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2744 sym_sec->output_section == input_section->output_section)
2746 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2747 dest_addr, contents,
2748 rel->r_offset, FALSE,
2752 if (r != bfd_reloc_ok)
2753 (*info->callbacks->reloc_dangerous)
2754 (info, error_message,
2755 input_bfd, input_section, rel->r_offset);
2757 /* Done with work for relocatable link; continue with next reloc. */
2761 /* This is a final link. */
2763 if (relaxing_section)
2765 /* Check if this references a section in another input file. */
2766 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2770 /* Sanity check the address. */
2771 if (rel->r_offset >= input_size
2772 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2775 /* xgettext:c-format */
2776 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2777 input_bfd, input_section, rel->r_offset, input_size);
2778 bfd_set_error (bfd_error_bad_value);
2783 name = h->root.root.string;
2786 name = (bfd_elf_string_from_elf_section
2787 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2788 if (name == NULL || *name == '\0')
2789 name = bfd_section_name (input_bfd, sec);
2792 if (r_symndx != STN_UNDEF
2793 && r_type != R_XTENSA_NONE
2795 || h->root.type == bfd_link_hash_defined
2796 || h->root.type == bfd_link_hash_defweak)
2797 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2800 ((sym_type == STT_TLS
2801 /* xgettext:c-format */
2802 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2803 /* xgettext:c-format */
2804 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2807 (long) rel->r_offset,
2812 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2814 tls_type = GOT_UNKNOWN;
2816 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2817 else if (local_got_tls_types)
2818 tls_type = local_got_tls_types [r_symndx];
2824 if (elf_hash_table (info)->dynamic_sections_created
2825 && (input_section->flags & SEC_ALLOC) != 0
2826 && (dynamic_symbol || bfd_link_pic (info)))
2828 Elf_Internal_Rela outrel;
2832 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2833 srel = htab->elf.srelplt;
2835 srel = htab->elf.srelgot;
2837 BFD_ASSERT (srel != NULL);
2840 _bfd_elf_section_offset (output_bfd, info,
2841 input_section, rel->r_offset);
2843 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2844 memset (&outrel, 0, sizeof outrel);
2847 outrel.r_offset += (input_section->output_section->vma
2848 + input_section->output_offset);
2850 /* Complain if the relocation is in a read-only section
2851 and not in a literal pool. */
2852 if ((input_section->flags & SEC_READONLY) != 0
2853 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2857 _("dynamic relocation in read-only section");
2858 (*info->callbacks->reloc_dangerous)
2859 (info, error_message,
2860 input_bfd, input_section, rel->r_offset);
2865 outrel.r_addend = rel->r_addend;
2868 if (r_type == R_XTENSA_32)
2871 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2874 else /* r_type == R_XTENSA_PLT */
2877 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2879 /* Create the PLT entry and set the initial
2880 contents of the literal entry to the address of
2883 elf_xtensa_create_plt_entry (info, output_bfd,
2886 unresolved_reloc = FALSE;
2890 /* Generate a RELATIVE relocation. */
2891 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2892 outrel.r_addend = 0;
2896 loc = (srel->contents
2897 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2898 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2899 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2902 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2904 /* This should only happen for non-PIC code, which is not
2905 supposed to be used on systems with dynamic linking.
2906 Just ignore these relocations. */
2911 case R_XTENSA_TLS_TPOFF:
2912 /* Switch to LE model for local symbols in an executable. */
2913 if (! bfd_link_pic (info) && ! dynamic_symbol)
2915 relocation = tpoff (info, relocation);
2920 case R_XTENSA_TLSDESC_FN:
2921 case R_XTENSA_TLSDESC_ARG:
2923 if (r_type == R_XTENSA_TLSDESC_FN)
2925 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
2926 r_type = R_XTENSA_NONE;
2928 else if (r_type == R_XTENSA_TLSDESC_ARG)
2930 if (bfd_link_pic (info))
2932 if ((tls_type & GOT_TLS_IE) != 0)
2933 r_type = R_XTENSA_TLS_TPOFF;
2937 r_type = R_XTENSA_TLS_TPOFF;
2938 if (! dynamic_symbol)
2940 relocation = tpoff (info, relocation);
2946 if (r_type == R_XTENSA_NONE)
2947 /* Nothing to do here; skip to the next reloc. */
2950 if (! elf_hash_table (info)->dynamic_sections_created)
2953 _("TLS relocation invalid without dynamic sections");
2954 (*info->callbacks->reloc_dangerous)
2955 (info, error_message,
2956 input_bfd, input_section, rel->r_offset);
2960 Elf_Internal_Rela outrel;
2962 asection *srel = htab->elf.srelgot;
2965 outrel.r_offset = (input_section->output_section->vma
2966 + input_section->output_offset
2969 /* Complain if the relocation is in a read-only section
2970 and not in a literal pool. */
2971 if ((input_section->flags & SEC_READONLY) != 0
2972 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2976 _("dynamic relocation in read-only section");
2977 (*info->callbacks->reloc_dangerous)
2978 (info, error_message,
2979 input_bfd, input_section, rel->r_offset);
2982 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2984 outrel.r_addend = relocation - dtpoff_base (info);
2986 outrel.r_addend = 0;
2989 outrel.r_info = ELF32_R_INFO (indx, r_type);
2991 unresolved_reloc = FALSE;
2994 loc = (srel->contents
2995 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2996 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2997 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
3003 case R_XTENSA_TLS_DTPOFF:
3004 if (! bfd_link_pic (info))
3005 /* Switch from LD model to LE model. */
3006 relocation = tpoff (info, relocation);
3008 relocation -= dtpoff_base (info);
3011 case R_XTENSA_TLS_FUNC:
3012 case R_XTENSA_TLS_ARG:
3013 case R_XTENSA_TLS_CALL:
3014 /* Check if optimizing to IE or LE model. */
3015 if ((tls_type & GOT_TLS_IE) != 0)
3017 bfd_boolean is_ld_model =
3018 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3019 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3020 is_ld_model, &error_message))
3021 (*info->callbacks->reloc_dangerous)
3022 (info, error_message,
3023 input_bfd, input_section, rel->r_offset);
3025 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3027 /* Skip subsequent relocations on the same instruction. */
3028 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3035 if (elf_hash_table (info)->dynamic_sections_created
3036 && dynamic_symbol && (is_operand_relocation (r_type)
3037 || r_type == R_XTENSA_32_PCREL))
3040 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3041 strlen (name) + 2, name);
3042 (*info->callbacks->reloc_dangerous)
3043 (info, error_message, input_bfd, input_section, rel->r_offset);
3049 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3050 because such sections are not SEC_ALLOC and thus ld.so will
3051 not process them. */
3052 if (unresolved_reloc
3053 && !((input_section->flags & SEC_DEBUGGING) != 0
3055 && _bfd_elf_section_offset (output_bfd, info, input_section,
3056 rel->r_offset) != (bfd_vma) -1)
3059 /* xgettext:c-format */
3060 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3063 (long) rel->r_offset,
3069 /* TLS optimizations may have changed r_type; update "howto". */
3070 howto = &elf_howto_table[r_type];
3072 /* There's no point in calling bfd_perform_relocation here.
3073 Just go directly to our "special function". */
3074 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3075 relocation + rel->r_addend,
3076 contents, rel->r_offset, is_weak_undef,
3079 if (r != bfd_reloc_ok && !warned)
3081 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3082 BFD_ASSERT (error_message != NULL);
3084 if (rel->r_addend == 0)
3085 error_message = vsprint_msg (error_message, ": %s",
3086 strlen (name) + 2, name);
3088 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3090 name, (int) rel->r_addend);
3092 (*info->callbacks->reloc_dangerous)
3093 (info, error_message, input_bfd, input_section, rel->r_offset);
3100 input_section->reloc_done = TRUE;
3106 /* Finish up dynamic symbol handling. There's not much to do here since
3107 the PLT and GOT entries are all set up by relocate_section. */
3110 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3111 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3112 struct elf_link_hash_entry *h,
3113 Elf_Internal_Sym *sym)
3115 if (h->needs_plt && !h->def_regular)
3117 /* Mark the symbol as undefined, rather than as defined in
3118 the .plt section. Leave the value alone. */
3119 sym->st_shndx = SHN_UNDEF;
3120 /* If the symbol is weak, we do need to clear the value.
3121 Otherwise, the PLT entry would provide a definition for
3122 the symbol even if the symbol wasn't defined anywhere,
3123 and so the symbol would never be NULL. */
3124 if (!h->ref_regular_nonweak)
3128 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3129 if (h == elf_hash_table (info)->hdynamic
3130 || h == elf_hash_table (info)->hgot)
3131 sym->st_shndx = SHN_ABS;
3137 /* Combine adjacent literal table entries in the output. Adjacent
3138 entries within each input section may have been removed during
3139 relaxation, but we repeat the process here, even though it's too late
3140 to shrink the output section, because it's important to minimize the
3141 number of literal table entries to reduce the start-up work for the
3142 runtime linker. Returns the number of remaining table entries or -1
3146 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3151 property_table_entry *table;
3152 bfd_size_type section_size, sgotloc_size;
3156 section_size = sxtlit->size;
3157 BFD_ASSERT (section_size % 8 == 0);
3158 num = section_size / 8;
3160 sgotloc_size = sgotloc->size;
3161 if (sgotloc_size != section_size)
3164 (_("internal inconsistency in size of .got.loc section"));
3168 table = bfd_malloc (num * sizeof (property_table_entry));
3172 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3173 propagates to the output section, where it doesn't really apply and
3174 where it breaks the following call to bfd_malloc_and_get_section. */
3175 sxtlit->flags &= ~SEC_IN_MEMORY;
3177 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3185 /* There should never be any relocations left at this point, so this
3186 is quite a bit easier than what is done during relaxation. */
3188 /* Copy the raw contents into a property table array and sort it. */
3190 for (n = 0; n < num; n++)
3192 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3193 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3196 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3198 for (n = 0; n < num; n++)
3200 bfd_boolean remove_entry = FALSE;
3202 if (table[n].size == 0)
3203 remove_entry = TRUE;
3205 && (table[n-1].address + table[n-1].size == table[n].address))
3207 table[n-1].size += table[n].size;
3208 remove_entry = TRUE;
3213 for (m = n; m < num - 1; m++)
3215 table[m].address = table[m+1].address;
3216 table[m].size = table[m+1].size;
3224 /* Copy the data back to the raw contents. */
3226 for (n = 0; n < num; n++)
3228 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3229 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3233 /* Clear the removed bytes. */
3234 if ((bfd_size_type) (num * 8) < section_size)
3235 memset (&contents[num * 8], 0, section_size - num * 8);
3237 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3241 /* Copy the contents to ".got.loc". */
3242 memcpy (sgotloc->contents, contents, section_size);
3250 /* Finish up the dynamic sections. */
3253 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3254 struct bfd_link_info *info)
3256 struct elf_xtensa_link_hash_table *htab;
3258 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
3259 Elf32_External_Dyn *dyncon, *dynconend;
3260 int num_xtlit_entries = 0;
3262 if (! elf_hash_table (info)->dynamic_sections_created)
3265 htab = elf_xtensa_hash_table (info);
3269 dynobj = elf_hash_table (info)->dynobj;
3270 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3271 BFD_ASSERT (sdyn != NULL);
3273 /* Set the first entry in the global offset table to the address of
3274 the dynamic section. */
3275 sgot = htab->elf.sgot;
3278 BFD_ASSERT (sgot->size == 4);
3280 bfd_put_32 (output_bfd, 0, sgot->contents);
3282 bfd_put_32 (output_bfd,
3283 sdyn->output_section->vma + sdyn->output_offset,
3287 srelplt = htab->elf.srelplt;
3288 if (srelplt && srelplt->size != 0)
3290 asection *sgotplt, *srelgot, *spltlittbl;
3291 int chunk, plt_chunks, plt_entries;
3292 Elf_Internal_Rela irela;
3294 unsigned rtld_reloc;
3296 srelgot = htab->elf.srelgot;
3297 spltlittbl = htab->spltlittbl;
3298 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3300 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3301 of them follow immediately after.... */
3302 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3304 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3305 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3306 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3309 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3311 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3313 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3315 for (chunk = 0; chunk < plt_chunks; chunk++)
3317 int chunk_entries = 0;
3319 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3320 BFD_ASSERT (sgotplt != NULL);
3322 /* Emit special RTLD relocations for the first two entries in
3323 each chunk of the .got.plt section. */
3325 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3326 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3327 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3328 irela.r_offset = (sgotplt->output_section->vma
3329 + sgotplt->output_offset);
3330 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3331 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3333 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3335 /* Next literal immediately follows the first. */
3336 loc += sizeof (Elf32_External_Rela);
3337 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3338 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3339 irela.r_offset = (sgotplt->output_section->vma
3340 + sgotplt->output_offset + 4);
3341 /* Tell rtld to set value to object's link map. */
3343 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3345 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3347 /* Fill in the literal table. */
3348 if (chunk < plt_chunks - 1)
3349 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3351 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3353 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3354 bfd_put_32 (output_bfd,
3355 sgotplt->output_section->vma + sgotplt->output_offset,
3356 spltlittbl->contents + (chunk * 8) + 0);
3357 bfd_put_32 (output_bfd,
3358 8 + (chunk_entries * 4),
3359 spltlittbl->contents + (chunk * 8) + 4);
3362 /* All the dynamic relocations have been emitted at this point.
3363 Make sure the relocation sections are the correct size. */
3364 if (srelgot->size != (sizeof (Elf32_External_Rela)
3365 * srelgot->reloc_count)
3366 || srelplt->size != (sizeof (Elf32_External_Rela)
3367 * srelplt->reloc_count))
3370 /* The .xt.lit.plt section has just been modified. This must
3371 happen before the code below which combines adjacent literal
3372 table entries, and the .xt.lit.plt contents have to be forced to
3374 if (! bfd_set_section_contents (output_bfd,
3375 spltlittbl->output_section,
3376 spltlittbl->contents,
3377 spltlittbl->output_offset,
3380 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3381 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3384 /* Combine adjacent literal table entries. */
3385 BFD_ASSERT (! bfd_link_relocatable (info));
3386 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3387 sgotloc = htab->sgotloc;
3388 BFD_ASSERT (sgotloc);
3392 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3393 if (num_xtlit_entries < 0)
3397 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3398 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3399 for (; dyncon < dynconend; dyncon++)
3401 Elf_Internal_Dyn dyn;
3403 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3410 case DT_XTENSA_GOT_LOC_SZ:
3411 dyn.d_un.d_val = num_xtlit_entries;
3414 case DT_XTENSA_GOT_LOC_OFF:
3415 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3416 + htab->sgotloc->output_offset);
3420 dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
3421 + htab->elf.sgot->output_offset);
3425 dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
3426 + htab->elf.srelplt->output_offset);
3430 dyn.d_un.d_val = htab->elf.srelplt->size;
3434 /* Adjust RELASZ to not include JMPREL. This matches what
3435 glibc expects and what is done for several other ELF
3436 targets (e.g., i386, alpha), but the "correct" behavior
3437 seems to be unresolved. Since the linker script arranges
3438 for .rela.plt to follow all other relocation sections, we
3439 don't have to worry about changing the DT_RELA entry. */
3440 if (htab->elf.srelplt)
3441 dyn.d_un.d_val -= htab->elf.srelplt->size;
3445 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3452 /* Functions for dealing with the e_flags field. */
3454 /* Merge backend specific data from an object file to the output
3455 object file when linking. */
3458 elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3460 bfd *obfd = info->output_bfd;
3461 unsigned out_mach, in_mach;
3462 flagword out_flag, in_flag;
3464 /* Check if we have the same endianness. */
3465 if (!_bfd_generic_verify_endian_match (ibfd, info))
3468 /* Don't even pretend to support mixed-format linking. */
3469 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3470 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3473 out_flag = elf_elfheader (obfd)->e_flags;
3474 in_flag = elf_elfheader (ibfd)->e_flags;
3476 out_mach = out_flag & EF_XTENSA_MACH;
3477 in_mach = in_flag & EF_XTENSA_MACH;
3478 if (out_mach != in_mach)
3481 /* xgettext:c-format */
3482 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
3483 ibfd, out_mach, in_mach);
3484 bfd_set_error (bfd_error_wrong_format);
3488 if (! elf_flags_init (obfd))
3490 elf_flags_init (obfd) = TRUE;
3491 elf_elfheader (obfd)->e_flags = in_flag;
3493 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3494 && bfd_get_arch_info (obfd)->the_default)
3495 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3496 bfd_get_mach (ibfd));
3501 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3502 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3504 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3505 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3512 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3514 BFD_ASSERT (!elf_flags_init (abfd)
3515 || elf_elfheader (abfd)->e_flags == flags);
3517 elf_elfheader (abfd)->e_flags |= flags;
3518 elf_flags_init (abfd) = TRUE;
3525 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3527 FILE *f = (FILE *) farg;
3528 flagword e_flags = elf_elfheader (abfd)->e_flags;
3530 fprintf (f, "\nXtensa header:\n");
3531 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3532 fprintf (f, "\nMachine = Base\n");
3534 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3536 fprintf (f, "Insn tables = %s\n",
3537 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3539 fprintf (f, "Literal tables = %s\n",
3540 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3542 return _bfd_elf_print_private_bfd_data (abfd, farg);
3546 /* Set the right machine number for an Xtensa ELF file. */
3549 elf_xtensa_object_p (bfd *abfd)
3552 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3557 mach = bfd_mach_xtensa;
3563 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3568 /* The final processing done just before writing out an Xtensa ELF object
3569 file. This gets the Xtensa architecture right based on the machine
3573 elf_xtensa_final_write_processing (bfd *abfd,
3574 bfd_boolean linker ATTRIBUTE_UNUSED)
3579 switch (mach = bfd_get_mach (abfd))
3581 case bfd_mach_xtensa:
3582 val = E_XTENSA_MACH;
3588 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3589 elf_elfheader (abfd)->e_flags |= val;
3593 static enum elf_reloc_type_class
3594 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3595 const asection *rel_sec ATTRIBUTE_UNUSED,
3596 const Elf_Internal_Rela *rela)
3598 switch ((int) ELF32_R_TYPE (rela->r_info))
3600 case R_XTENSA_RELATIVE:
3601 return reloc_class_relative;
3602 case R_XTENSA_JMP_SLOT:
3603 return reloc_class_plt;
3605 return reloc_class_normal;
3611 elf_xtensa_discard_info_for_section (bfd *abfd,
3612 struct elf_reloc_cookie *cookie,
3613 struct bfd_link_info *info,
3617 bfd_vma offset, actual_offset;
3618 bfd_size_type removed_bytes = 0;
3619 bfd_size_type entry_size;
3621 if (sec->output_section
3622 && bfd_is_abs_section (sec->output_section))
3625 if (xtensa_is_proptable_section (sec))
3630 if (sec->size == 0 || sec->size % entry_size != 0)
3633 contents = retrieve_contents (abfd, sec, info->keep_memory);
3637 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3640 release_contents (sec, contents);
3644 /* Sort the relocations. They should already be in order when
3645 relaxation is enabled, but it might not be. */
3646 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3647 internal_reloc_compare);
3649 cookie->rel = cookie->rels;
3650 cookie->relend = cookie->rels + sec->reloc_count;
3652 for (offset = 0; offset < sec->size; offset += entry_size)
3654 actual_offset = offset - removed_bytes;
3656 /* The ...symbol_deleted_p function will skip over relocs but it
3657 won't adjust their offsets, so do that here. */
3658 while (cookie->rel < cookie->relend
3659 && cookie->rel->r_offset < offset)
3661 cookie->rel->r_offset -= removed_bytes;
3665 while (cookie->rel < cookie->relend
3666 && cookie->rel->r_offset == offset)
3668 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3670 /* Remove the table entry. (If the reloc type is NONE, then
3671 the entry has already been merged with another and deleted
3672 during relaxation.) */
3673 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3675 /* Shift the contents up. */
3676 if (offset + entry_size < sec->size)
3677 memmove (&contents[actual_offset],
3678 &contents[actual_offset + entry_size],
3679 sec->size - offset - entry_size);
3680 removed_bytes += entry_size;
3683 /* Remove this relocation. */
3684 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3687 /* Adjust the relocation offset for previous removals. This
3688 should not be done before calling ...symbol_deleted_p
3689 because it might mess up the offset comparisons there.
3690 Make sure the offset doesn't underflow in the case where
3691 the first entry is removed. */
3692 if (cookie->rel->r_offset >= removed_bytes)
3693 cookie->rel->r_offset -= removed_bytes;
3695 cookie->rel->r_offset = 0;
3701 if (removed_bytes != 0)
3703 /* Adjust any remaining relocs (shouldn't be any). */
3704 for (; cookie->rel < cookie->relend; cookie->rel++)
3706 if (cookie->rel->r_offset >= removed_bytes)
3707 cookie->rel->r_offset -= removed_bytes;
3709 cookie->rel->r_offset = 0;
3712 /* Clear the removed bytes. */
3713 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3715 pin_contents (sec, contents);
3716 pin_internal_relocs (sec, cookie->rels);
3719 if (sec->rawsize == 0)
3720 sec->rawsize = sec->size;
3721 sec->size -= removed_bytes;
3723 if (xtensa_is_littable_section (sec))
3725 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3727 sgotloc->size -= removed_bytes;
3732 release_contents (sec, contents);
3733 release_internal_relocs (sec, cookie->rels);
3736 return (removed_bytes != 0);
3741 elf_xtensa_discard_info (bfd *abfd,
3742 struct elf_reloc_cookie *cookie,
3743 struct bfd_link_info *info)
3746 bfd_boolean changed = FALSE;
3748 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3750 if (xtensa_is_property_section (sec))
3752 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3762 elf_xtensa_ignore_discarded_relocs (asection *sec)
3764 return xtensa_is_property_section (sec);
3769 elf_xtensa_action_discarded (asection *sec)
3771 if (strcmp (".xt_except_table", sec->name) == 0)
3774 if (strcmp (".xt_except_desc", sec->name) == 0)
3777 return _bfd_elf_default_action_discarded (sec);
3781 /* Support for core dump NOTE sections. */
3784 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3789 /* The size for Xtensa is variable, so don't try to recognize the format
3790 based on the size. Just assume this is GNU/Linux. */
3793 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3796 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3800 size = note->descsz - offset - 4;
3802 /* Make a ".reg/999" section. */
3803 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3804 size, note->descpos + offset);
3809 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3811 switch (note->descsz)
3816 case 128: /* GNU/Linux elf_prpsinfo */
3817 elf_tdata (abfd)->core->program
3818 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3819 elf_tdata (abfd)->core->command
3820 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3823 /* Note that for some reason, a spurious space is tacked
3824 onto the end of the args in some (at least one anyway)
3825 implementations, so strip it off if it exists. */
3828 char *command = elf_tdata (abfd)->core->command;
3829 int n = strlen (command);
3831 if (0 < n && command[n - 1] == ' ')
3832 command[n - 1] = '\0';
3839 /* Generic Xtensa configurability stuff. */
3841 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3842 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3843 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3844 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3845 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3846 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3847 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3848 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3851 init_call_opcodes (void)
3853 if (callx0_op == XTENSA_UNDEFINED)
3855 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3856 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3857 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3858 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3859 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3860 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3861 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3862 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3868 is_indirect_call_opcode (xtensa_opcode opcode)
3870 init_call_opcodes ();
3871 return (opcode == callx0_op
3872 || opcode == callx4_op
3873 || opcode == callx8_op
3874 || opcode == callx12_op);
3879 is_direct_call_opcode (xtensa_opcode opcode)
3881 init_call_opcodes ();
3882 return (opcode == call0_op
3883 || opcode == call4_op
3884 || opcode == call8_op
3885 || opcode == call12_op);
3890 is_windowed_call_opcode (xtensa_opcode opcode)
3892 init_call_opcodes ();
3893 return (opcode == call4_op
3894 || opcode == call8_op
3895 || opcode == call12_op
3896 || opcode == callx4_op
3897 || opcode == callx8_op
3898 || opcode == callx12_op);
3903 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3905 unsigned dst = (unsigned) -1;
3907 init_call_opcodes ();
3908 if (opcode == callx0_op)
3910 else if (opcode == callx4_op)
3912 else if (opcode == callx8_op)
3914 else if (opcode == callx12_op)
3917 if (dst == (unsigned) -1)
3925 static xtensa_opcode
3926 get_const16_opcode (void)
3928 static bfd_boolean done_lookup = FALSE;
3929 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3932 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3935 return const16_opcode;
3939 static xtensa_opcode
3940 get_l32r_opcode (void)
3942 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3943 static bfd_boolean done_lookup = FALSE;
3947 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3955 l32r_offset (bfd_vma addr, bfd_vma pc)
3959 offset = addr - ((pc+3) & -4);
3960 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3961 offset = (signed int) offset >> 2;
3962 BFD_ASSERT ((signed int) offset >> 16 == -1);
3968 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3970 xtensa_isa isa = xtensa_default_isa;
3971 int last_immed, last_opnd, opi;
3973 if (opcode == XTENSA_UNDEFINED)
3974 return XTENSA_UNDEFINED;
3976 /* Find the last visible PC-relative immediate operand for the opcode.
3977 If there are no PC-relative immediates, then choose the last visible
3978 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3979 last_immed = XTENSA_UNDEFINED;
3980 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3981 for (opi = last_opnd - 1; opi >= 0; opi--)
3983 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3985 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3990 if (last_immed == XTENSA_UNDEFINED
3991 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3995 return XTENSA_UNDEFINED;
3997 /* If the operand number was specified in an old-style relocation,
3998 check for consistency with the operand computed above. */
3999 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
4001 int reloc_opnd = r_type - R_XTENSA_OP0;
4002 if (reloc_opnd != last_immed)
4003 return XTENSA_UNDEFINED;
4011 get_relocation_slot (int r_type)
4021 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4022 return r_type - R_XTENSA_SLOT0_OP;
4023 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4024 return r_type - R_XTENSA_SLOT0_ALT;
4028 return XTENSA_UNDEFINED;
4032 /* Get the opcode for a relocation. */
4034 static xtensa_opcode
4035 get_relocation_opcode (bfd *abfd,
4038 Elf_Internal_Rela *irel)
4040 static xtensa_insnbuf ibuff = NULL;
4041 static xtensa_insnbuf sbuff = NULL;
4042 xtensa_isa isa = xtensa_default_isa;
4046 if (contents == NULL)
4047 return XTENSA_UNDEFINED;
4049 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4050 return XTENSA_UNDEFINED;
4054 ibuff = xtensa_insnbuf_alloc (isa);
4055 sbuff = xtensa_insnbuf_alloc (isa);
4058 /* Decode the instruction. */
4059 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4060 sec->size - irel->r_offset);
4061 fmt = xtensa_format_decode (isa, ibuff);
4062 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4063 if (slot == XTENSA_UNDEFINED)
4064 return XTENSA_UNDEFINED;
4065 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4066 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4071 is_l32r_relocation (bfd *abfd,
4074 Elf_Internal_Rela *irel)
4076 xtensa_opcode opcode;
4077 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4079 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4080 return (opcode == get_l32r_opcode ());
4084 static bfd_size_type
4085 get_asm_simplify_size (bfd_byte *contents,
4086 bfd_size_type content_len,
4087 bfd_size_type offset)
4089 bfd_size_type insnlen, size = 0;
4091 /* Decode the size of the next two instructions. */
4092 insnlen = insn_decode_len (contents, content_len, offset);
4098 insnlen = insn_decode_len (contents, content_len, offset + size);
4108 is_alt_relocation (int r_type)
4110 return (r_type >= R_XTENSA_SLOT0_ALT
4111 && r_type <= R_XTENSA_SLOT14_ALT);
4116 is_operand_relocation (int r_type)
4126 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4128 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4137 #define MIN_INSN_LENGTH 2
4139 /* Return 0 if it fails to decode. */
4142 insn_decode_len (bfd_byte *contents,
4143 bfd_size_type content_len,
4144 bfd_size_type offset)
4147 xtensa_isa isa = xtensa_default_isa;
4149 static xtensa_insnbuf ibuff = NULL;
4151 if (offset + MIN_INSN_LENGTH > content_len)
4155 ibuff = xtensa_insnbuf_alloc (isa);
4156 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4157 content_len - offset);
4158 fmt = xtensa_format_decode (isa, ibuff);
4159 if (fmt == XTENSA_UNDEFINED)
4161 insn_len = xtensa_format_length (isa, fmt);
4162 if (insn_len == XTENSA_UNDEFINED)
4168 /* Decode the opcode for a single slot instruction.
4169 Return 0 if it fails to decode or the instruction is multi-slot. */
4172 insn_decode_opcode (bfd_byte *contents,
4173 bfd_size_type content_len,
4174 bfd_size_type offset,
4177 xtensa_isa isa = xtensa_default_isa;
4179 static xtensa_insnbuf insnbuf = NULL;
4180 static xtensa_insnbuf slotbuf = NULL;
4182 if (offset + MIN_INSN_LENGTH > content_len)
4183 return XTENSA_UNDEFINED;
4185 if (insnbuf == NULL)
4187 insnbuf = xtensa_insnbuf_alloc (isa);
4188 slotbuf = xtensa_insnbuf_alloc (isa);
4191 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4192 content_len - offset);
4193 fmt = xtensa_format_decode (isa, insnbuf);
4194 if (fmt == XTENSA_UNDEFINED)
4195 return XTENSA_UNDEFINED;
4197 if (slot >= xtensa_format_num_slots (isa, fmt))
4198 return XTENSA_UNDEFINED;
4200 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4201 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4205 /* The offset is the offset in the contents.
4206 The address is the address of that offset. */
4209 check_branch_target_aligned (bfd_byte *contents,
4210 bfd_size_type content_length,
4214 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4217 return check_branch_target_aligned_address (address, insn_len);
4222 check_loop_aligned (bfd_byte *contents,
4223 bfd_size_type content_length,
4227 bfd_size_type loop_len, insn_len;
4228 xtensa_opcode opcode;
4230 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4231 if (opcode == XTENSA_UNDEFINED
4232 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4238 loop_len = insn_decode_len (contents, content_length, offset);
4239 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4240 if (loop_len == 0 || insn_len == 0)
4246 return check_branch_target_aligned_address (address + loop_len, insn_len);
4251 check_branch_target_aligned_address (bfd_vma addr, int len)
4254 return (addr % 8 == 0);
4255 return ((addr >> 2) == ((addr + len - 1) >> 2));
4259 /* Instruction widening and narrowing. */
4261 /* When FLIX is available we need to access certain instructions only
4262 when they are 16-bit or 24-bit instructions. This table caches
4263 information about such instructions by walking through all the
4264 opcodes and finding the smallest single-slot format into which each
4267 static xtensa_format *op_single_fmt_table = NULL;
4271 init_op_single_format_table (void)
4273 xtensa_isa isa = xtensa_default_isa;
4274 xtensa_insnbuf ibuf;
4275 xtensa_opcode opcode;
4279 if (op_single_fmt_table)
4282 ibuf = xtensa_insnbuf_alloc (isa);
4283 num_opcodes = xtensa_isa_num_opcodes (isa);
4285 op_single_fmt_table = (xtensa_format *)
4286 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4287 for (opcode = 0; opcode < num_opcodes; opcode++)
4289 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4290 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4292 if (xtensa_format_num_slots (isa, fmt) == 1
4293 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4295 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4296 int fmt_length = xtensa_format_length (isa, fmt);
4297 if (old_fmt == XTENSA_UNDEFINED
4298 || fmt_length < xtensa_format_length (isa, old_fmt))
4299 op_single_fmt_table[opcode] = fmt;
4303 xtensa_insnbuf_free (isa, ibuf);
4307 static xtensa_format
4308 get_single_format (xtensa_opcode opcode)
4310 init_op_single_format_table ();
4311 return op_single_fmt_table[opcode];
4315 /* For the set of narrowable instructions we do NOT include the
4316 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4317 involved during linker relaxation that may require these to
4318 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4319 requires special case code to ensure it only works when op1 == op2. */
4327 struct string_pair narrowable[] =
4330 { "addi", "addi.n" },
4331 { "addmi", "addi.n" },
4332 { "l32i", "l32i.n" },
4333 { "movi", "movi.n" },
4335 { "retw", "retw.n" },
4336 { "s32i", "s32i.n" },
4337 { "or", "mov.n" } /* special case only when op1 == op2 */
4340 struct string_pair widenable[] =
4343 { "addi", "addi.n" },
4344 { "addmi", "addi.n" },
4345 { "beqz", "beqz.n" },
4346 { "bnez", "bnez.n" },
4347 { "l32i", "l32i.n" },
4348 { "movi", "movi.n" },
4350 { "retw", "retw.n" },
4351 { "s32i", "s32i.n" },
4352 { "or", "mov.n" } /* special case only when op1 == op2 */
4356 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4357 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4358 return the instruction buffer holding the narrow instruction. Otherwise,
4359 return 0. The set of valid narrowing are specified by a string table
4360 but require some special case operand checks in some cases. */
4362 static xtensa_insnbuf
4363 can_narrow_instruction (xtensa_insnbuf slotbuf,
4365 xtensa_opcode opcode)
4367 xtensa_isa isa = xtensa_default_isa;
4368 xtensa_format o_fmt;
4371 static xtensa_insnbuf o_insnbuf = NULL;
4372 static xtensa_insnbuf o_slotbuf = NULL;
4374 if (o_insnbuf == NULL)
4376 o_insnbuf = xtensa_insnbuf_alloc (isa);
4377 o_slotbuf = xtensa_insnbuf_alloc (isa);
4380 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4382 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4384 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4386 uint32 value, newval;
4387 int i, operand_count, o_operand_count;
4388 xtensa_opcode o_opcode;
4390 /* Address does not matter in this case. We might need to
4391 fix it to handle branches/jumps. */
4392 bfd_vma self_address = 0;
4394 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4395 if (o_opcode == XTENSA_UNDEFINED)
4397 o_fmt = get_single_format (o_opcode);
4398 if (o_fmt == XTENSA_UNDEFINED)
4401 if (xtensa_format_length (isa, fmt) != 3
4402 || xtensa_format_length (isa, o_fmt) != 2)
4405 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4406 operand_count = xtensa_opcode_num_operands (isa, opcode);
4407 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4409 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4414 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4419 uint32 rawval0, rawval1, rawval2;
4421 if (o_operand_count + 1 != operand_count
4422 || xtensa_operand_get_field (isa, opcode, 0,
4423 fmt, 0, slotbuf, &rawval0) != 0
4424 || xtensa_operand_get_field (isa, opcode, 1,
4425 fmt, 0, slotbuf, &rawval1) != 0
4426 || xtensa_operand_get_field (isa, opcode, 2,
4427 fmt, 0, slotbuf, &rawval2) != 0
4428 || rawval1 != rawval2
4429 || rawval0 == rawval1 /* it is a nop */)
4433 for (i = 0; i < o_operand_count; ++i)
4435 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4437 || xtensa_operand_decode (isa, opcode, i, &value))
4440 /* PC-relative branches need adjustment, but
4441 the PC-rel operand will always have a relocation. */
4443 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4445 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4446 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4451 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4461 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4462 the action in-place directly into the contents and return TRUE. Otherwise,
4463 the return value is FALSE and the contents are not modified. */
4466 narrow_instruction (bfd_byte *contents,
4467 bfd_size_type content_length,
4468 bfd_size_type offset)
4470 xtensa_opcode opcode;
4471 bfd_size_type insn_len;
4472 xtensa_isa isa = xtensa_default_isa;
4474 xtensa_insnbuf o_insnbuf;
4476 static xtensa_insnbuf insnbuf = NULL;
4477 static xtensa_insnbuf slotbuf = NULL;
4479 if (insnbuf == NULL)
4481 insnbuf = xtensa_insnbuf_alloc (isa);
4482 slotbuf = xtensa_insnbuf_alloc (isa);
4485 BFD_ASSERT (offset < content_length);
4487 if (content_length < 2)
4490 /* We will hand-code a few of these for a little while.
4491 These have all been specified in the assembler aleady. */
4492 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4493 content_length - offset);
4494 fmt = xtensa_format_decode (isa, insnbuf);
4495 if (xtensa_format_num_slots (isa, fmt) != 1)
4498 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4501 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4502 if (opcode == XTENSA_UNDEFINED)
4504 insn_len = xtensa_format_length (isa, fmt);
4505 if (insn_len > content_length)
4508 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4511 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4512 content_length - offset);
4520 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4521 "density" instruction to a standard 3-byte instruction. If it is valid,
4522 return the instruction buffer holding the wide instruction. Otherwise,
4523 return 0. The set of valid widenings are specified by a string table
4524 but require some special case operand checks in some cases. */
4526 static xtensa_insnbuf
4527 can_widen_instruction (xtensa_insnbuf slotbuf,
4529 xtensa_opcode opcode)
4531 xtensa_isa isa = xtensa_default_isa;
4532 xtensa_format o_fmt;
4535 static xtensa_insnbuf o_insnbuf = NULL;
4536 static xtensa_insnbuf o_slotbuf = NULL;
4538 if (o_insnbuf == NULL)
4540 o_insnbuf = xtensa_insnbuf_alloc (isa);
4541 o_slotbuf = xtensa_insnbuf_alloc (isa);
4544 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4546 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4547 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4548 || strcmp ("bnez", widenable[opi].wide) == 0);
4550 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4552 uint32 value, newval;
4553 int i, operand_count, o_operand_count, check_operand_count;
4554 xtensa_opcode o_opcode;
4556 /* Address does not matter in this case. We might need to fix it
4557 to handle branches/jumps. */
4558 bfd_vma self_address = 0;
4560 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4561 if (o_opcode == XTENSA_UNDEFINED)
4563 o_fmt = get_single_format (o_opcode);
4564 if (o_fmt == XTENSA_UNDEFINED)
4567 if (xtensa_format_length (isa, fmt) != 2
4568 || xtensa_format_length (isa, o_fmt) != 3)
4571 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4572 operand_count = xtensa_opcode_num_operands (isa, opcode);
4573 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4574 check_operand_count = o_operand_count;
4576 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4581 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4586 uint32 rawval0, rawval1;
4588 if (o_operand_count != operand_count + 1
4589 || xtensa_operand_get_field (isa, opcode, 0,
4590 fmt, 0, slotbuf, &rawval0) != 0
4591 || xtensa_operand_get_field (isa, opcode, 1,
4592 fmt, 0, slotbuf, &rawval1) != 0
4593 || rawval0 == rawval1 /* it is a nop */)
4597 check_operand_count--;
4599 for (i = 0; i < check_operand_count; i++)
4602 if (is_or && i == o_operand_count - 1)
4604 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4606 || xtensa_operand_decode (isa, opcode, new_i, &value))
4609 /* PC-relative branches need adjustment, but
4610 the PC-rel operand will always have a relocation. */
4612 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4614 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4615 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4620 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4630 /* Attempt to widen an instruction. If the widening is valid, perform
4631 the action in-place directly into the contents and return TRUE. Otherwise,
4632 the return value is FALSE and the contents are not modified. */
4635 widen_instruction (bfd_byte *contents,
4636 bfd_size_type content_length,
4637 bfd_size_type offset)
4639 xtensa_opcode opcode;
4640 bfd_size_type insn_len;
4641 xtensa_isa isa = xtensa_default_isa;
4643 xtensa_insnbuf o_insnbuf;
4645 static xtensa_insnbuf insnbuf = NULL;
4646 static xtensa_insnbuf slotbuf = NULL;
4648 if (insnbuf == NULL)
4650 insnbuf = xtensa_insnbuf_alloc (isa);
4651 slotbuf = xtensa_insnbuf_alloc (isa);
4654 BFD_ASSERT (offset < content_length);
4656 if (content_length < 2)
4659 /* We will hand-code a few of these for a little while.
4660 These have all been specified in the assembler aleady. */
4661 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4662 content_length - offset);
4663 fmt = xtensa_format_decode (isa, insnbuf);
4664 if (xtensa_format_num_slots (isa, fmt) != 1)
4667 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4670 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4671 if (opcode == XTENSA_UNDEFINED)
4673 insn_len = xtensa_format_length (isa, fmt);
4674 if (insn_len > content_length)
4677 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4680 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4681 content_length - offset);
4688 /* Code for transforming CALLs at link-time. */
4690 static bfd_reloc_status_type
4691 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4693 bfd_vma content_length,
4694 char **error_message)
4696 static xtensa_insnbuf insnbuf = NULL;
4697 static xtensa_insnbuf slotbuf = NULL;
4698 xtensa_format core_format = XTENSA_UNDEFINED;
4699 xtensa_opcode opcode;
4700 xtensa_opcode direct_call_opcode;
4701 xtensa_isa isa = xtensa_default_isa;
4702 bfd_byte *chbuf = contents + address;
4705 if (insnbuf == NULL)
4707 insnbuf = xtensa_insnbuf_alloc (isa);
4708 slotbuf = xtensa_insnbuf_alloc (isa);
4711 if (content_length < address)
4713 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4714 return bfd_reloc_other;
4717 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4718 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4719 if (direct_call_opcode == XTENSA_UNDEFINED)
4721 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4722 return bfd_reloc_other;
4725 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4726 core_format = xtensa_format_lookup (isa, "x24");
4727 opcode = xtensa_opcode_lookup (isa, "or");
4728 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4729 for (opn = 0; opn < 3; opn++)
4732 xtensa_operand_encode (isa, opcode, opn, ®no);
4733 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4736 xtensa_format_encode (isa, core_format, insnbuf);
4737 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4738 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4740 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4741 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4742 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4744 xtensa_format_encode (isa, core_format, insnbuf);
4745 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4746 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4747 content_length - address - 3);
4749 return bfd_reloc_ok;
4753 static bfd_reloc_status_type
4754 contract_asm_expansion (bfd_byte *contents,
4755 bfd_vma content_length,
4756 Elf_Internal_Rela *irel,
4757 char **error_message)
4759 bfd_reloc_status_type retval =
4760 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4763 if (retval != bfd_reloc_ok)
4764 return bfd_reloc_dangerous;
4766 /* Update the irel->r_offset field so that the right immediate and
4767 the right instruction are modified during the relocation. */
4768 irel->r_offset += 3;
4769 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4770 return bfd_reloc_ok;
4774 static xtensa_opcode
4775 swap_callx_for_call_opcode (xtensa_opcode opcode)
4777 init_call_opcodes ();
4779 if (opcode == callx0_op) return call0_op;
4780 if (opcode == callx4_op) return call4_op;
4781 if (opcode == callx8_op) return call8_op;
4782 if (opcode == callx12_op) return call12_op;
4784 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4785 return XTENSA_UNDEFINED;
4789 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4790 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4791 If not, return XTENSA_UNDEFINED. */
4793 #define L32R_TARGET_REG_OPERAND 0
4794 #define CONST16_TARGET_REG_OPERAND 0
4795 #define CALLN_SOURCE_OPERAND 0
4797 static xtensa_opcode
4798 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4800 static xtensa_insnbuf insnbuf = NULL;
4801 static xtensa_insnbuf slotbuf = NULL;
4803 xtensa_opcode opcode;
4804 xtensa_isa isa = xtensa_default_isa;
4805 uint32 regno, const16_regno, call_regno;
4808 if (insnbuf == NULL)
4810 insnbuf = xtensa_insnbuf_alloc (isa);
4811 slotbuf = xtensa_insnbuf_alloc (isa);
4814 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4815 fmt = xtensa_format_decode (isa, insnbuf);
4816 if (fmt == XTENSA_UNDEFINED
4817 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4818 return XTENSA_UNDEFINED;
4820 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4821 if (opcode == XTENSA_UNDEFINED)
4822 return XTENSA_UNDEFINED;
4824 if (opcode == get_l32r_opcode ())
4827 *p_uses_l32r = TRUE;
4828 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4829 fmt, 0, slotbuf, ®no)
4830 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4832 return XTENSA_UNDEFINED;
4834 else if (opcode == get_const16_opcode ())
4837 *p_uses_l32r = FALSE;
4838 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4839 fmt, 0, slotbuf, ®no)
4840 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4842 return XTENSA_UNDEFINED;
4844 /* Check that the next instruction is also CONST16. */
4845 offset += xtensa_format_length (isa, fmt);
4846 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4847 fmt = xtensa_format_decode (isa, insnbuf);
4848 if (fmt == XTENSA_UNDEFINED
4849 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4850 return XTENSA_UNDEFINED;
4851 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4852 if (opcode != get_const16_opcode ())
4853 return XTENSA_UNDEFINED;
4855 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4856 fmt, 0, slotbuf, &const16_regno)
4857 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4859 || const16_regno != regno)
4860 return XTENSA_UNDEFINED;
4863 return XTENSA_UNDEFINED;
4865 /* Next instruction should be an CALLXn with operand 0 == regno. */
4866 offset += xtensa_format_length (isa, fmt);
4867 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4868 fmt = xtensa_format_decode (isa, insnbuf);
4869 if (fmt == XTENSA_UNDEFINED
4870 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4871 return XTENSA_UNDEFINED;
4872 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4873 if (opcode == XTENSA_UNDEFINED
4874 || !is_indirect_call_opcode (opcode))
4875 return XTENSA_UNDEFINED;
4877 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4878 fmt, 0, slotbuf, &call_regno)
4879 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4881 return XTENSA_UNDEFINED;
4883 if (call_regno != regno)
4884 return XTENSA_UNDEFINED;
4890 /* Data structures used during relaxation. */
4892 /* r_reloc: relocation values. */
4894 /* Through the relaxation process, we need to keep track of the values
4895 that will result from evaluating relocations. The standard ELF
4896 relocation structure is not sufficient for this purpose because we're
4897 operating on multiple input files at once, so we need to know which
4898 input file a relocation refers to. The r_reloc structure thus
4899 records both the input file (bfd) and ELF relocation.
4901 For efficiency, an r_reloc also contains a "target_offset" field to
4902 cache the target-section-relative offset value that is represented by
4905 The r_reloc also contains a virtual offset that allows multiple
4906 inserted literals to be placed at the same "address" with
4907 different offsets. */
4909 typedef struct r_reloc_struct r_reloc;
4911 struct r_reloc_struct
4914 Elf_Internal_Rela rela;
4915 bfd_vma target_offset;
4916 bfd_vma virtual_offset;
4920 /* The r_reloc structure is included by value in literal_value, but not
4921 every literal_value has an associated relocation -- some are simple
4922 constants. In such cases, we set all the fields in the r_reloc
4923 struct to zero. The r_reloc_is_const function should be used to
4924 detect this case. */
4927 r_reloc_is_const (const r_reloc *r_rel)
4929 return (r_rel->abfd == NULL);
4934 r_reloc_get_target_offset (const r_reloc *r_rel)
4936 bfd_vma target_offset;
4937 unsigned long r_symndx;
4939 BFD_ASSERT (!r_reloc_is_const (r_rel));
4940 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4941 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4942 return (target_offset + r_rel->rela.r_addend);
4946 static struct elf_link_hash_entry *
4947 r_reloc_get_hash_entry (const r_reloc *r_rel)
4949 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4950 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4955 r_reloc_get_section (const r_reloc *r_rel)
4957 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4958 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4963 r_reloc_is_defined (const r_reloc *r_rel)
4969 sec = r_reloc_get_section (r_rel);
4970 if (sec == bfd_abs_section_ptr
4971 || sec == bfd_com_section_ptr
4972 || sec == bfd_und_section_ptr)
4979 r_reloc_init (r_reloc *r_rel,
4981 Elf_Internal_Rela *irel,
4983 bfd_size_type content_length)
4986 reloc_howto_type *howto;
4990 r_rel->rela = *irel;
4992 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4993 r_rel->virtual_offset = 0;
4994 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4995 howto = &elf_howto_table[r_type];
4996 if (howto->partial_inplace)
4998 bfd_vma inplace_val;
4999 BFD_ASSERT (r_rel->rela.r_offset < content_length);
5001 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5002 r_rel->target_offset += inplace_val;
5006 memset (r_rel, 0, sizeof (r_reloc));
5013 print_r_reloc (FILE *fp, const r_reloc *r_rel)
5015 if (r_reloc_is_defined (r_rel))
5017 asection *sec = r_reloc_get_section (r_rel);
5018 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5020 else if (r_reloc_get_hash_entry (r_rel))
5021 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5023 fprintf (fp, " ?? + ");
5025 fprintf_vma (fp, r_rel->target_offset);
5026 if (r_rel->virtual_offset)
5028 fprintf (fp, " + ");
5029 fprintf_vma (fp, r_rel->virtual_offset);
5038 /* source_reloc: relocations that reference literals. */
5040 /* To determine whether literals can be coalesced, we need to first
5041 record all the relocations that reference the literals. The
5042 source_reloc structure below is used for this purpose. The
5043 source_reloc entries are kept in a per-literal-section array, sorted
5044 by offset within the literal section (i.e., target offset).
5046 The source_sec and r_rel.rela.r_offset fields identify the source of
5047 the relocation. The r_rel field records the relocation value, i.e.,
5048 the offset of the literal being referenced. The opnd field is needed
5049 to determine the range of the immediate field to which the relocation
5050 applies, so we can determine whether another literal with the same
5051 value is within range. The is_null field is true when the relocation
5052 is being removed (e.g., when an L32R is being removed due to a CALLX
5053 that is converted to a direct CALL). */
5055 typedef struct source_reloc_struct source_reloc;
5057 struct source_reloc_struct
5059 asection *source_sec;
5061 xtensa_opcode opcode;
5063 bfd_boolean is_null;
5064 bfd_boolean is_abs_literal;
5069 init_source_reloc (source_reloc *reloc,
5070 asection *source_sec,
5071 const r_reloc *r_rel,
5072 xtensa_opcode opcode,
5074 bfd_boolean is_abs_literal)
5076 reloc->source_sec = source_sec;
5077 reloc->r_rel = *r_rel;
5078 reloc->opcode = opcode;
5080 reloc->is_null = FALSE;
5081 reloc->is_abs_literal = is_abs_literal;
5085 /* Find the source_reloc for a particular source offset and relocation
5086 type. Note that the array is sorted by _target_ offset, so this is
5087 just a linear search. */
5089 static source_reloc *
5090 find_source_reloc (source_reloc *src_relocs,
5093 Elf_Internal_Rela *irel)
5097 for (i = 0; i < src_count; i++)
5099 if (src_relocs[i].source_sec == sec
5100 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5101 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5102 == ELF32_R_TYPE (irel->r_info)))
5103 return &src_relocs[i];
5111 source_reloc_compare (const void *ap, const void *bp)
5113 const source_reloc *a = (const source_reloc *) ap;
5114 const source_reloc *b = (const source_reloc *) bp;
5116 if (a->r_rel.target_offset != b->r_rel.target_offset)
5117 return (a->r_rel.target_offset - b->r_rel.target_offset);
5119 /* We don't need to sort on these criteria for correctness,
5120 but enforcing a more strict ordering prevents unstable qsort
5121 from behaving differently with different implementations.
5122 Without the code below we get correct but different results
5123 on Solaris 2.7 and 2.8. We would like to always produce the
5124 same results no matter the host. */
5126 if ((!a->is_null) - (!b->is_null))
5127 return ((!a->is_null) - (!b->is_null));
5128 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5132 /* Literal values and value hash tables. */
5134 /* Literals with the same value can be coalesced. The literal_value
5135 structure records the value of a literal: the "r_rel" field holds the
5136 information from the relocation on the literal (if there is one) and
5137 the "value" field holds the contents of the literal word itself.
5139 The value_map structure records a literal value along with the
5140 location of a literal holding that value. The value_map hash table
5141 is indexed by the literal value, so that we can quickly check if a
5142 particular literal value has been seen before and is thus a candidate
5145 typedef struct literal_value_struct literal_value;
5146 typedef struct value_map_struct value_map;
5147 typedef struct value_map_hash_table_struct value_map_hash_table;
5149 struct literal_value_struct
5152 unsigned long value;
5153 bfd_boolean is_abs_literal;
5156 struct value_map_struct
5158 literal_value val; /* The literal value. */
5159 r_reloc loc; /* Location of the literal. */
5163 struct value_map_hash_table_struct
5165 unsigned bucket_count;
5166 value_map **buckets;
5168 bfd_boolean has_last_loc;
5174 init_literal_value (literal_value *lit,
5175 const r_reloc *r_rel,
5176 unsigned long value,
5177 bfd_boolean is_abs_literal)
5179 lit->r_rel = *r_rel;
5181 lit->is_abs_literal = is_abs_literal;
5186 literal_value_equal (const literal_value *src1,
5187 const literal_value *src2,
5188 bfd_boolean final_static_link)
5190 struct elf_link_hash_entry *h1, *h2;
5192 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5195 if (r_reloc_is_const (&src1->r_rel))
5196 return (src1->value == src2->value);
5198 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5199 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5202 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5205 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5208 if (src1->value != src2->value)
5211 /* Now check for the same section (if defined) or the same elf_hash
5212 (if undefined or weak). */
5213 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5214 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5215 if (r_reloc_is_defined (&src1->r_rel)
5216 && (final_static_link
5217 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5218 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5220 if (r_reloc_get_section (&src1->r_rel)
5221 != r_reloc_get_section (&src2->r_rel))
5226 /* Require that the hash entries (i.e., symbols) be identical. */
5227 if (h1 != h2 || h1 == 0)
5231 if (src1->is_abs_literal != src2->is_abs_literal)
5238 /* Must be power of 2. */
5239 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5241 static value_map_hash_table *
5242 value_map_hash_table_init (void)
5244 value_map_hash_table *values;
5246 values = (value_map_hash_table *)
5247 bfd_zmalloc (sizeof (value_map_hash_table));
5248 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5250 values->buckets = (value_map **)
5251 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5252 if (values->buckets == NULL)
5257 values->has_last_loc = FALSE;
5264 value_map_hash_table_delete (value_map_hash_table *table)
5266 free (table->buckets);
5272 hash_bfd_vma (bfd_vma val)
5274 return (val >> 2) + (val >> 10);
5279 literal_value_hash (const literal_value *src)
5283 hash_val = hash_bfd_vma (src->value);
5284 if (!r_reloc_is_const (&src->r_rel))
5288 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5289 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5290 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5292 /* Now check for the same section and the same elf_hash. */
5293 if (r_reloc_is_defined (&src->r_rel))
5294 sec_or_hash = r_reloc_get_section (&src->r_rel);
5296 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5297 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5303 /* Check if the specified literal_value has been seen before. */
5306 value_map_get_cached_value (value_map_hash_table *map,
5307 const literal_value *val,
5308 bfd_boolean final_static_link)
5314 idx = literal_value_hash (val);
5315 idx = idx & (map->bucket_count - 1);
5316 bucket = map->buckets[idx];
5317 for (map_e = bucket; map_e; map_e = map_e->next)
5319 if (literal_value_equal (&map_e->val, val, final_static_link))
5326 /* Record a new literal value. It is illegal to call this if VALUE
5327 already has an entry here. */
5330 add_value_map (value_map_hash_table *map,
5331 const literal_value *val,
5333 bfd_boolean final_static_link)
5335 value_map **bucket_p;
5338 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5341 bfd_set_error (bfd_error_no_memory);
5345 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5349 idx = literal_value_hash (val);
5350 idx = idx & (map->bucket_count - 1);
5351 bucket_p = &map->buckets[idx];
5353 val_e->next = *bucket_p;
5356 /* FIXME: Consider resizing the hash table if we get too many entries. */
5362 /* Lists of text actions (ta_) for narrowing, widening, longcall
5363 conversion, space fill, code & literal removal, etc. */
5365 /* The following text actions are generated:
5367 "ta_remove_insn" remove an instruction or instructions
5368 "ta_remove_longcall" convert longcall to call
5369 "ta_convert_longcall" convert longcall to nop/call
5370 "ta_narrow_insn" narrow a wide instruction
5371 "ta_widen" widen a narrow instruction
5372 "ta_fill" add fill or remove fill
5373 removed < 0 is a fill; branches to the fill address will be
5374 changed to address + fill size (e.g., address - removed)
5375 removed >= 0 branches to the fill address will stay unchanged
5376 "ta_remove_literal" remove a literal; this action is
5377 indicated when a literal is removed
5379 "ta_add_literal" insert a new literal; this action is
5380 indicated when a literal has been moved.
5381 It may use a virtual_offset because
5382 multiple literals can be placed at the
5385 For each of these text actions, we also record the number of bytes
5386 removed by performing the text action. In the case of a "ta_widen"
5387 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5389 typedef struct text_action_struct text_action;
5390 typedef struct text_action_list_struct text_action_list;
5391 typedef enum text_action_enum_t text_action_t;
5393 enum text_action_enum_t
5396 ta_remove_insn, /* removed = -size */
5397 ta_remove_longcall, /* removed = -size */
5398 ta_convert_longcall, /* removed = 0 */
5399 ta_narrow_insn, /* removed = -1 */
5400 ta_widen_insn, /* removed = +1 */
5401 ta_fill, /* removed = +size */
5407 /* Structure for a text action record. */
5408 struct text_action_struct
5410 text_action_t action;
5411 asection *sec; /* Optional */
5413 bfd_vma virtual_offset; /* Zero except for adding literals. */
5415 literal_value value; /* Only valid when adding literals. */
5418 struct removal_by_action_entry_struct
5423 int eq_removed_before_fill;
5425 typedef struct removal_by_action_entry_struct removal_by_action_entry;
5427 struct removal_by_action_map_struct
5430 removal_by_action_entry *entry;
5432 typedef struct removal_by_action_map_struct removal_by_action_map;
5435 /* List of all of the actions taken on a text section. */
5436 struct text_action_list_struct
5440 removal_by_action_map map;
5444 static text_action *
5445 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5449 /* It is not necessary to fill at the end of a section. */
5450 if (sec->size == offset)
5456 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5458 return (text_action *)node->value;
5464 compute_removed_action_diff (const text_action *ta,
5468 int removable_space)
5471 int current_removed = 0;
5474 current_removed = ta->removed_bytes;
5476 BFD_ASSERT (ta == NULL || ta->offset == offset);
5477 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5479 /* It is not necessary to fill at the end of a section. Clean this up. */
5480 if (sec->size == offset)
5481 new_removed = removable_space - 0;
5485 int added = -removed - current_removed;
5486 /* Ignore multiples of the section alignment. */
5487 added = ((1 << sec->alignment_power) - 1) & added;
5488 new_removed = (-added);
5490 /* Modify for removable. */
5491 space = removable_space - new_removed;
5492 new_removed = (removable_space
5493 - (((1 << sec->alignment_power) - 1) & space));
5495 return (new_removed - current_removed);
5500 adjust_fill_action (text_action *ta, int fill_diff)
5502 ta->removed_bytes += fill_diff;
5507 text_action_compare (splay_tree_key a, splay_tree_key b)
5509 text_action *pa = (text_action *)a;
5510 text_action *pb = (text_action *)b;
5511 static const int action_priority[] =
5515 [ta_convert_longcall] = 2,
5516 [ta_narrow_insn] = 3,
5517 [ta_remove_insn] = 4,
5518 [ta_remove_longcall] = 5,
5519 [ta_remove_literal] = 6,
5520 [ta_widen_insn] = 7,
5521 [ta_add_literal] = 8,
5524 if (pa->offset == pb->offset)
5526 if (pa->action == pb->action)
5528 return action_priority[pa->action] - action_priority[pb->action];
5531 return pa->offset < pb->offset ? -1 : 1;
5534 static text_action *
5535 action_first (text_action_list *action_list)
5537 splay_tree_node node = splay_tree_min (action_list->tree);
5538 return node ? (text_action *)node->value : NULL;
5541 static text_action *
5542 action_next (text_action_list *action_list, text_action *action)
5544 splay_tree_node node = splay_tree_successor (action_list->tree,
5545 (splay_tree_key)action);
5546 return node ? (text_action *)node->value : NULL;
5549 /* Add a modification action to the text. For the case of adding or
5550 removing space, modify any current fill and assume that
5551 "unreachable_space" bytes can be freely contracted. Note that a
5552 negative removed value is a fill. */
5555 text_action_add (text_action_list *l,
5556 text_action_t action,
5564 /* It is not necessary to fill at the end of a section. */
5565 if (action == ta_fill && sec->size == offset)
5568 /* It is not necessary to fill 0 bytes. */
5569 if (action == ta_fill && removed == 0)
5575 if (action == ta_fill)
5577 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5581 ta = (text_action *)node->value;
5582 ta->removed_bytes += removed;
5587 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
5589 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5590 ta->action = action;
5592 ta->offset = offset;
5593 ta->removed_bytes = removed;
5594 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5600 text_action_add_literal (text_action_list *l,
5601 text_action_t action,
5603 const literal_value *value,
5607 asection *sec = r_reloc_get_section (loc);
5608 bfd_vma offset = loc->target_offset;
5609 bfd_vma virtual_offset = loc->virtual_offset;
5611 BFD_ASSERT (action == ta_add_literal);
5613 /* Create a new record and fill it up. */
5614 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5615 ta->action = action;
5617 ta->offset = offset;
5618 ta->virtual_offset = virtual_offset;
5620 ta->removed_bytes = removed;
5622 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5623 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5628 /* Find the total offset adjustment for the relaxations specified by
5629 text_actions, beginning from a particular starting action. This is
5630 typically used from offset_with_removed_text to search an entire list of
5631 actions, but it may also be called directly when adjusting adjacent offsets
5632 so that each search may begin where the previous one left off. */
5635 removed_by_actions (text_action_list *action_list,
5636 text_action **p_start_action,
5638 bfd_boolean before_fill)
5643 r = *p_start_action;
5646 splay_tree_node node = splay_tree_lookup (action_list->tree,
5648 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5653 if (r->offset > offset)
5656 if (r->offset == offset
5657 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5660 removed += r->removed_bytes;
5662 r = action_next (action_list, r);
5665 *p_start_action = r;
5671 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5673 text_action *r = action_first (action_list);
5675 return offset - removed_by_actions (action_list, &r, offset, FALSE);
5680 action_list_count (text_action_list *action_list)
5682 return action_list->count;
5685 typedef struct map_action_fn_context_struct map_action_fn_context;
5686 struct map_action_fn_context_struct
5689 removal_by_action_map map;
5690 bfd_boolean eq_complete;
5694 map_action_fn (splay_tree_node node, void *p)
5696 map_action_fn_context *ctx = p;
5697 text_action *r = (text_action *)node->value;
5698 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
5700 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
5706 ++ctx->map.n_entries;
5707 ctx->eq_complete = FALSE;
5708 ientry->offset = r->offset;
5709 ientry->eq_removed_before_fill = ctx->removed;
5712 if (!ctx->eq_complete)
5714 if (r->action != ta_fill || r->removed_bytes >= 0)
5716 ientry->eq_removed = ctx->removed;
5717 ctx->eq_complete = TRUE;
5720 ientry->eq_removed = ctx->removed + r->removed_bytes;
5723 ctx->removed += r->removed_bytes;
5724 ientry->removed = ctx->removed;
5729 map_removal_by_action (text_action_list *action_list)
5731 map_action_fn_context ctx;
5734 ctx.map.n_entries = 0;
5735 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5736 sizeof (removal_by_action_entry));
5737 ctx.eq_complete = FALSE;
5739 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5740 action_list->map = ctx.map;
5744 removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5745 bfd_boolean before_fill)
5749 if (!action_list->map.entry)
5750 map_removal_by_action (action_list);
5752 if (!action_list->map.n_entries)
5756 b = action_list->map.n_entries;
5760 unsigned c = (a + b) / 2;
5762 if (action_list->map.entry[c].offset <= offset)
5768 if (action_list->map.entry[a].offset < offset)
5770 return action_list->map.entry[a].removed;
5772 else if (action_list->map.entry[a].offset == offset)
5774 return before_fill ?
5775 action_list->map.entry[a].eq_removed_before_fill :
5776 action_list->map.entry[a].eq_removed;
5785 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5787 int removed = removed_by_actions_map (action_list, offset, FALSE);
5788 return offset - removed;
5792 /* The find_insn_action routine will only find non-fill actions. */
5794 static text_action *
5795 find_insn_action (text_action_list *action_list, bfd_vma offset)
5797 static const text_action_t action[] =
5799 ta_convert_longcall,
5809 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5811 splay_tree_node node;
5813 a.action = action[i];
5814 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5816 return (text_action *)node->value;
5825 print_action (FILE *fp, text_action *r)
5827 const char *t = "unknown";
5830 case ta_remove_insn:
5831 t = "remove_insn"; break;
5832 case ta_remove_longcall:
5833 t = "remove_longcall"; break;
5834 case ta_convert_longcall:
5835 t = "convert_longcall"; break;
5836 case ta_narrow_insn:
5837 t = "narrow_insn"; break;
5839 t = "widen_insn"; break;
5844 case ta_remove_literal:
5845 t = "remove_literal"; break;
5846 case ta_add_literal:
5847 t = "add_literal"; break;
5850 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5851 r->sec->owner->filename,
5852 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5856 print_action_list_fn (splay_tree_node node, void *p)
5858 text_action *r = (text_action *)node->value;
5860 print_action (p, r);
5865 print_action_list (FILE *fp, text_action_list *action_list)
5867 fprintf (fp, "Text Action\n");
5868 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
5874 /* Lists of literals being coalesced or removed. */
5876 /* In the usual case, the literal identified by "from" is being
5877 coalesced with another literal identified by "to". If the literal is
5878 unused and is being removed altogether, "to.abfd" will be NULL.
5879 The removed_literal entries are kept on a per-section list, sorted
5880 by the "from" offset field. */
5882 typedef struct removed_literal_struct removed_literal;
5883 typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
5884 typedef struct removed_literal_list_struct removed_literal_list;
5886 struct removed_literal_struct
5890 removed_literal *next;
5893 struct removed_literal_map_entry_struct
5896 removed_literal *literal;
5899 struct removed_literal_list_struct
5901 removed_literal *head;
5902 removed_literal *tail;
5905 removed_literal_map_entry *map;
5909 /* Record that the literal at "from" is being removed. If "to" is not
5910 NULL, the "from" literal is being coalesced with the "to" literal. */
5913 add_removed_literal (removed_literal_list *removed_list,
5914 const r_reloc *from,
5917 removed_literal *r, *new_r, *next_r;
5919 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5921 new_r->from = *from;
5925 new_r->to.abfd = NULL;
5928 r = removed_list->head;
5931 removed_list->head = new_r;
5932 removed_list->tail = new_r;
5934 /* Special check for common case of append. */
5935 else if (removed_list->tail->from.target_offset < from->target_offset)
5937 removed_list->tail->next = new_r;
5938 removed_list->tail = new_r;
5942 while (r->from.target_offset < from->target_offset && r->next)
5948 new_r->next = next_r;
5950 removed_list->tail = new_r;
5955 map_removed_literal (removed_literal_list *removed_list)
5959 removed_literal_map_entry *map = NULL;
5960 removed_literal *r = removed_list->head;
5962 for (i = 0; r; ++i, r = r->next)
5966 n_map = (n_map * 2) + 2;
5967 map = bfd_realloc (map, n_map * sizeof (*map));
5969 map[i].addr = r->from.target_offset;
5972 removed_list->map = map;
5973 removed_list->n_map = i;
5977 removed_literal_compare (const void *a, const void *b)
5979 const removed_literal_map_entry *pa = a;
5980 const removed_literal_map_entry *pb = b;
5982 if (pa->addr == pb->addr)
5985 return pa->addr < pb->addr ? -1 : 1;
5988 /* Check if the list of removed literals contains an entry for the
5989 given address. Return the entry if found. */
5991 static removed_literal *
5992 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5994 removed_literal_map_entry *p;
5995 removed_literal *r = NULL;
5997 if (removed_list->map == NULL)
5998 map_removed_literal (removed_list);
6000 p = bsearch (&addr, removed_list->map, removed_list->n_map,
6001 sizeof (*removed_list->map), removed_literal_compare);
6004 while (p != removed_list->map && (p - 1)->addr == addr)
6015 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
6018 r = removed_list->head;
6020 fprintf (fp, "Removed Literals\n");
6021 for (; r != NULL; r = r->next)
6023 print_r_reloc (fp, &r->from);
6024 fprintf (fp, " => ");
6025 if (r->to.abfd == NULL)
6026 fprintf (fp, "REMOVED");
6028 print_r_reloc (fp, &r->to);
6036 /* Per-section data for relaxation. */
6038 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
6040 struct xtensa_relax_info_struct
6042 bfd_boolean is_relaxable_literal_section;
6043 bfd_boolean is_relaxable_asm_section;
6044 int visited; /* Number of times visited. */
6046 source_reloc *src_relocs; /* Array[src_count]. */
6048 int src_next; /* Next src_relocs entry to assign. */
6050 removed_literal_list removed_list;
6051 text_action_list action_list;
6053 reloc_bfd_fix *fix_list;
6054 reloc_bfd_fix *fix_array;
6055 unsigned fix_array_count;
6057 /* Support for expanding the reloc array that is stored
6058 in the section structure. If the relocations have been
6059 reallocated, the newly allocated relocations will be referenced
6060 here along with the actual size allocated. The relocation
6061 count will always be found in the section structure. */
6062 Elf_Internal_Rela *allocated_relocs;
6063 unsigned relocs_count;
6064 unsigned allocated_relocs_count;
6067 struct elf_xtensa_section_data
6069 struct bfd_elf_section_data elf;
6070 xtensa_relax_info relax_info;
6075 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
6077 if (!sec->used_by_bfd)
6079 struct elf_xtensa_section_data *sdata;
6080 bfd_size_type amt = sizeof (*sdata);
6082 sdata = bfd_zalloc (abfd, amt);
6085 sec->used_by_bfd = sdata;
6088 return _bfd_elf_new_section_hook (abfd, sec);
6092 static xtensa_relax_info *
6093 get_xtensa_relax_info (asection *sec)
6095 struct elf_xtensa_section_data *section_data;
6097 /* No info available if no section or if it is an output section. */
6098 if (!sec || sec == sec->output_section)
6101 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
6102 return §ion_data->relax_info;
6107 init_xtensa_relax_info (asection *sec)
6109 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6111 relax_info->is_relaxable_literal_section = FALSE;
6112 relax_info->is_relaxable_asm_section = FALSE;
6113 relax_info->visited = 0;
6115 relax_info->src_relocs = NULL;
6116 relax_info->src_count = 0;
6117 relax_info->src_next = 0;
6119 relax_info->removed_list.head = NULL;
6120 relax_info->removed_list.tail = NULL;
6122 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6124 relax_info->action_list.map.n_entries = 0;
6125 relax_info->action_list.map.entry = NULL;
6127 relax_info->fix_list = NULL;
6128 relax_info->fix_array = NULL;
6129 relax_info->fix_array_count = 0;
6131 relax_info->allocated_relocs = NULL;
6132 relax_info->relocs_count = 0;
6133 relax_info->allocated_relocs_count = 0;
6137 /* Coalescing literals may require a relocation to refer to a section in
6138 a different input file, but the standard relocation information
6139 cannot express that. Instead, the reloc_bfd_fix structures are used
6140 to "fix" the relocations that refer to sections in other input files.
6141 These structures are kept on per-section lists. The "src_type" field
6142 records the relocation type in case there are multiple relocations on
6143 the same location. FIXME: This is ugly; an alternative might be to
6144 add new symbols with the "owner" field to some other input file. */
6146 struct reloc_bfd_fix_struct
6150 unsigned src_type; /* Relocation type. */
6152 asection *target_sec;
6153 bfd_vma target_offset;
6154 bfd_boolean translated;
6156 reloc_bfd_fix *next;
6160 static reloc_bfd_fix *
6161 reloc_bfd_fix_init (asection *src_sec,
6164 asection *target_sec,
6165 bfd_vma target_offset,
6166 bfd_boolean translated)
6170 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6171 fix->src_sec = src_sec;
6172 fix->src_offset = src_offset;
6173 fix->src_type = src_type;
6174 fix->target_sec = target_sec;
6175 fix->target_offset = target_offset;
6176 fix->translated = translated;
6183 add_fix (asection *src_sec, reloc_bfd_fix *fix)
6185 xtensa_relax_info *relax_info;
6187 relax_info = get_xtensa_relax_info (src_sec);
6188 fix->next = relax_info->fix_list;
6189 relax_info->fix_list = fix;
6194 fix_compare (const void *ap, const void *bp)
6196 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6197 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6199 if (a->src_offset != b->src_offset)
6200 return (a->src_offset - b->src_offset);
6201 return (a->src_type - b->src_type);
6206 cache_fix_array (asection *sec)
6208 unsigned i, count = 0;
6210 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6212 if (relax_info == NULL)
6214 if (relax_info->fix_list == NULL)
6217 for (r = relax_info->fix_list; r != NULL; r = r->next)
6220 relax_info->fix_array =
6221 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6222 relax_info->fix_array_count = count;
6224 r = relax_info->fix_list;
6225 for (i = 0; i < count; i++, r = r->next)
6227 relax_info->fix_array[count - 1 - i] = *r;
6228 relax_info->fix_array[count - 1 - i].next = NULL;
6231 qsort (relax_info->fix_array, relax_info->fix_array_count,
6232 sizeof (reloc_bfd_fix), fix_compare);
6236 static reloc_bfd_fix *
6237 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6239 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6243 if (relax_info == NULL)
6245 if (relax_info->fix_list == NULL)
6248 if (relax_info->fix_array == NULL)
6249 cache_fix_array (sec);
6251 key.src_offset = offset;
6252 key.src_type = type;
6253 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6254 sizeof (reloc_bfd_fix), fix_compare);
6259 /* Section caching. */
6261 typedef struct section_cache_struct section_cache_t;
6263 struct section_cache_struct
6267 bfd_byte *contents; /* Cache of the section contents. */
6268 bfd_size_type content_length;
6270 property_table_entry *ptbl; /* Cache of the section property table. */
6273 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6274 unsigned reloc_count;
6279 init_section_cache (section_cache_t *sec_cache)
6281 memset (sec_cache, 0, sizeof (*sec_cache));
6286 free_section_cache (section_cache_t *sec_cache)
6290 release_contents (sec_cache->sec, sec_cache->contents);
6291 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6292 if (sec_cache->ptbl)
6293 free (sec_cache->ptbl);
6299 section_cache_section (section_cache_t *sec_cache,
6301 struct bfd_link_info *link_info)
6304 property_table_entry *prop_table = NULL;
6306 bfd_byte *contents = NULL;
6307 Elf_Internal_Rela *internal_relocs = NULL;
6308 bfd_size_type sec_size;
6312 if (sec == sec_cache->sec)
6316 sec_size = bfd_get_section_limit (abfd, sec);
6318 /* Get the contents. */
6319 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6320 if (contents == NULL && sec_size != 0)
6323 /* Get the relocations. */
6324 internal_relocs = retrieve_internal_relocs (abfd, sec,
6325 link_info->keep_memory);
6327 /* Get the entry table. */
6328 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6329 XTENSA_PROP_SEC_NAME, FALSE);
6333 /* Fill in the new section cache. */
6334 free_section_cache (sec_cache);
6335 init_section_cache (sec_cache);
6337 sec_cache->sec = sec;
6338 sec_cache->contents = contents;
6339 sec_cache->content_length = sec_size;
6340 sec_cache->relocs = internal_relocs;
6341 sec_cache->reloc_count = sec->reloc_count;
6342 sec_cache->pte_count = ptblsize;
6343 sec_cache->ptbl = prop_table;
6348 release_contents (sec, contents);
6349 release_internal_relocs (sec, internal_relocs);
6356 /* Extended basic blocks. */
6358 /* An ebb_struct represents an Extended Basic Block. Within this
6359 range, we guarantee that all instructions are decodable, the
6360 property table entries are contiguous, and no property table
6361 specifies a segment that cannot have instructions moved. This
6362 structure contains caches of the contents, property table and
6363 relocations for the specified section for easy use. The range is
6364 specified by ranges of indices for the byte offset, property table
6365 offsets and relocation offsets. These must be consistent. */
6367 typedef struct ebb_struct ebb_t;
6373 bfd_byte *contents; /* Cache of the section contents. */
6374 bfd_size_type content_length;
6376 property_table_entry *ptbl; /* Cache of the section property table. */
6379 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6380 unsigned reloc_count;
6382 bfd_vma start_offset; /* Offset in section. */
6383 unsigned start_ptbl_idx; /* Offset in the property table. */
6384 unsigned start_reloc_idx; /* Offset in the relocations. */
6387 unsigned end_ptbl_idx;
6388 unsigned end_reloc_idx;
6390 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6392 /* The unreachable property table at the end of this set of blocks;
6393 NULL if the end is not an unreachable block. */
6394 property_table_entry *ends_unreachable;
6398 enum ebb_target_enum
6401 EBB_DESIRE_TGT_ALIGN,
6402 EBB_REQUIRE_TGT_ALIGN,
6403 EBB_REQUIRE_LOOP_ALIGN,
6408 /* proposed_action_struct is similar to the text_action_struct except
6409 that is represents a potential transformation, not one that will
6410 occur. We build a list of these for an extended basic block
6411 and use them to compute the actual actions desired. We must be
6412 careful that the entire set of actual actions we perform do not
6413 break any relocations that would fit if the actions were not
6416 typedef struct proposed_action_struct proposed_action;
6418 struct proposed_action_struct
6420 enum ebb_target_enum align_type; /* for the target alignment */
6421 bfd_vma alignment_pow;
6422 text_action_t action;
6425 bfd_boolean do_action; /* If false, then we will not perform the action. */
6429 /* The ebb_constraint_struct keeps a set of proposed actions for an
6430 extended basic block. */
6432 typedef struct ebb_constraint_struct ebb_constraint;
6434 struct ebb_constraint_struct
6437 bfd_boolean start_movable;
6439 /* Bytes of extra space at the beginning if movable. */
6440 int start_extra_space;
6442 enum ebb_target_enum start_align;
6444 bfd_boolean end_movable;
6446 /* Bytes of extra space at the end if movable. */
6447 int end_extra_space;
6449 unsigned action_count;
6450 unsigned action_allocated;
6452 /* Array of proposed actions. */
6453 proposed_action *actions;
6455 /* Action alignments -- one for each proposed action. */
6456 enum ebb_target_enum *action_aligns;
6461 init_ebb_constraint (ebb_constraint *c)
6463 memset (c, 0, sizeof (ebb_constraint));
6468 free_ebb_constraint (ebb_constraint *c)
6476 init_ebb (ebb_t *ebb,
6479 bfd_size_type content_length,
6480 property_table_entry *prop_table,
6482 Elf_Internal_Rela *internal_relocs,
6483 unsigned reloc_count)
6485 memset (ebb, 0, sizeof (ebb_t));
6487 ebb->contents = contents;
6488 ebb->content_length = content_length;
6489 ebb->ptbl = prop_table;
6490 ebb->pte_count = ptblsize;
6491 ebb->relocs = internal_relocs;
6492 ebb->reloc_count = reloc_count;
6493 ebb->start_offset = 0;
6494 ebb->end_offset = ebb->content_length - 1;
6495 ebb->start_ptbl_idx = 0;
6496 ebb->end_ptbl_idx = ptblsize;
6497 ebb->start_reloc_idx = 0;
6498 ebb->end_reloc_idx = reloc_count;
6502 /* Extend the ebb to all decodable contiguous sections. The algorithm
6503 for building a basic block around an instruction is to push it
6504 forward until we hit the end of a section, an unreachable block or
6505 a block that cannot be transformed. Then we push it backwards
6506 searching for similar conditions. */
6508 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6509 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6510 static bfd_size_type insn_block_decodable_len
6511 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6514 extend_ebb_bounds (ebb_t *ebb)
6516 if (!extend_ebb_bounds_forward (ebb))
6518 if (!extend_ebb_bounds_backward (ebb))
6525 extend_ebb_bounds_forward (ebb_t *ebb)
6527 property_table_entry *the_entry, *new_entry;
6529 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6531 /* Stop when (1) we cannot decode an instruction, (2) we are at
6532 the end of the property tables, (3) we hit a non-contiguous property
6533 table entry, (4) we hit a NO_TRANSFORM region. */
6538 bfd_size_type insn_block_len;
6540 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6542 insn_block_decodable_len (ebb->contents, ebb->content_length,
6544 entry_end - ebb->end_offset);
6545 if (insn_block_len != (entry_end - ebb->end_offset))
6548 /* xgettext:c-format */
6549 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6550 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6553 ebb->end_offset += insn_block_len;
6555 if (ebb->end_offset == ebb->sec->size)
6556 ebb->ends_section = TRUE;
6558 /* Update the reloc counter. */
6559 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6560 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6563 ebb->end_reloc_idx++;
6566 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6569 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6570 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6571 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6572 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6575 if (the_entry->address + the_entry->size != new_entry->address)
6578 the_entry = new_entry;
6579 ebb->end_ptbl_idx++;
6582 /* Quick check for an unreachable or end of file just at the end. */
6583 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6585 if (ebb->end_offset == ebb->content_length)
6586 ebb->ends_section = TRUE;
6590 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6591 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6592 && the_entry->address + the_entry->size == new_entry->address)
6593 ebb->ends_unreachable = new_entry;
6596 /* Any other ending requires exact alignment. */
6602 extend_ebb_bounds_backward (ebb_t *ebb)
6604 property_table_entry *the_entry, *new_entry;
6606 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6608 /* Stop when (1) we cannot decode the instructions in the current entry.
6609 (2) we are at the beginning of the property tables, (3) we hit a
6610 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6614 bfd_vma block_begin;
6615 bfd_size_type insn_block_len;
6617 block_begin = the_entry->address - ebb->sec->vma;
6619 insn_block_decodable_len (ebb->contents, ebb->content_length,
6621 ebb->start_offset - block_begin);
6622 if (insn_block_len != ebb->start_offset - block_begin)
6625 /* xgettext:c-format */
6626 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6627 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6630 ebb->start_offset -= insn_block_len;
6632 /* Update the reloc counter. */
6633 while (ebb->start_reloc_idx > 0
6634 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6635 >= ebb->start_offset))
6637 ebb->start_reloc_idx--;
6640 if (ebb->start_ptbl_idx == 0)
6643 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6644 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6645 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6646 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6648 if (new_entry->address + new_entry->size != the_entry->address)
6651 the_entry = new_entry;
6652 ebb->start_ptbl_idx--;
6658 static bfd_size_type
6659 insn_block_decodable_len (bfd_byte *contents,
6660 bfd_size_type content_len,
6661 bfd_vma block_offset,
6662 bfd_size_type block_len)
6664 bfd_vma offset = block_offset;
6666 while (offset < block_offset + block_len)
6668 bfd_size_type insn_len = 0;
6670 insn_len = insn_decode_len (contents, content_len, offset);
6672 return (offset - block_offset);
6675 return (offset - block_offset);
6680 ebb_propose_action (ebb_constraint *c,
6681 enum ebb_target_enum align_type,
6682 bfd_vma alignment_pow,
6683 text_action_t action,
6686 bfd_boolean do_action)
6688 proposed_action *act;
6690 if (c->action_allocated <= c->action_count)
6692 unsigned new_allocated, i;
6693 proposed_action *new_actions;
6695 new_allocated = (c->action_count + 2) * 2;
6696 new_actions = (proposed_action *)
6697 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6699 for (i = 0; i < c->action_count; i++)
6700 new_actions[i] = c->actions[i];
6703 c->actions = new_actions;
6704 c->action_allocated = new_allocated;
6707 act = &c->actions[c->action_count];
6708 act->align_type = align_type;
6709 act->alignment_pow = alignment_pow;
6710 act->action = action;
6711 act->offset = offset;
6712 act->removed_bytes = removed_bytes;
6713 act->do_action = do_action;
6719 /* Access to internal relocations, section contents and symbols. */
6721 /* During relaxation, we need to modify relocations, section contents,
6722 and symbol definitions, and we need to keep the original values from
6723 being reloaded from the input files, i.e., we need to "pin" the
6724 modified values in memory. We also want to continue to observe the
6725 setting of the "keep-memory" flag. The following functions wrap the
6726 standard BFD functions to take care of this for us. */
6728 static Elf_Internal_Rela *
6729 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6731 Elf_Internal_Rela *internal_relocs;
6733 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6736 internal_relocs = elf_section_data (sec)->relocs;
6737 if (internal_relocs == NULL)
6738 internal_relocs = (_bfd_elf_link_read_relocs
6739 (abfd, sec, NULL, NULL, keep_memory));
6740 return internal_relocs;
6745 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6747 elf_section_data (sec)->relocs = internal_relocs;
6752 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6755 && elf_section_data (sec)->relocs != internal_relocs)
6756 free (internal_relocs);
6761 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6764 bfd_size_type sec_size;
6766 sec_size = bfd_get_section_limit (abfd, sec);
6767 contents = elf_section_data (sec)->this_hdr.contents;
6769 if (contents == NULL && sec_size != 0)
6771 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6778 elf_section_data (sec)->this_hdr.contents = contents;
6785 pin_contents (asection *sec, bfd_byte *contents)
6787 elf_section_data (sec)->this_hdr.contents = contents;
6792 release_contents (asection *sec, bfd_byte *contents)
6794 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6799 static Elf_Internal_Sym *
6800 retrieve_local_syms (bfd *input_bfd)
6802 Elf_Internal_Shdr *symtab_hdr;
6803 Elf_Internal_Sym *isymbuf;
6806 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6807 locsymcount = symtab_hdr->sh_info;
6809 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6810 if (isymbuf == NULL && locsymcount != 0)
6811 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6814 /* Save the symbols for this input file so they won't be read again. */
6815 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6816 symtab_hdr->contents = (unsigned char *) isymbuf;
6822 /* Code for link-time relaxation. */
6824 /* Initialization for relaxation: */
6825 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6826 static bfd_boolean find_relaxable_sections
6827 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6828 static bfd_boolean collect_source_relocs
6829 (bfd *, asection *, struct bfd_link_info *);
6830 static bfd_boolean is_resolvable_asm_expansion
6831 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6833 static Elf_Internal_Rela *find_associated_l32r_irel
6834 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6835 static bfd_boolean compute_text_actions
6836 (bfd *, asection *, struct bfd_link_info *);
6837 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6838 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6839 typedef struct reloc_range_list_struct reloc_range_list;
6840 static bfd_boolean check_section_ebb_pcrels_fit
6841 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6842 reloc_range_list *, const ebb_constraint *,
6843 const xtensa_opcode *);
6844 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6845 static void text_action_add_proposed
6846 (text_action_list *, const ebb_constraint *, asection *);
6847 static int compute_fill_extra_space (property_table_entry *);
6850 static bfd_boolean compute_removed_literals
6851 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6852 static Elf_Internal_Rela *get_irel_at_offset
6853 (asection *, Elf_Internal_Rela *, bfd_vma);
6854 static bfd_boolean is_removable_literal
6855 (const source_reloc *, int, const source_reloc *, int, asection *,
6856 property_table_entry *, int);
6857 static bfd_boolean remove_dead_literal
6858 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6859 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6860 static bfd_boolean identify_literal_placement
6861 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6862 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6863 source_reloc *, property_table_entry *, int, section_cache_t *,
6865 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6866 static bfd_boolean coalesce_shared_literal
6867 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6868 static bfd_boolean move_shared_literal
6869 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6870 int, const r_reloc *, const literal_value *, section_cache_t *);
6873 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6874 static bfd_boolean translate_section_fixes (asection *);
6875 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6876 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6877 static void shrink_dynamic_reloc_sections
6878 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6879 static bfd_boolean move_literal
6880 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6881 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6882 static bfd_boolean relax_property_section
6883 (bfd *, asection *, struct bfd_link_info *);
6886 static bfd_boolean relax_section_symbols (bfd *, asection *);
6890 elf_xtensa_relax_section (bfd *abfd,
6892 struct bfd_link_info *link_info,
6895 static value_map_hash_table *values = NULL;
6896 static bfd_boolean relocations_analyzed = FALSE;
6897 xtensa_relax_info *relax_info;
6899 if (!relocations_analyzed)
6901 /* Do some overall initialization for relaxation. */
6902 values = value_map_hash_table_init ();
6905 relaxing_section = TRUE;
6906 if (!analyze_relocations (link_info))
6908 relocations_analyzed = TRUE;
6912 /* Don't mess with linker-created sections. */
6913 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6916 relax_info = get_xtensa_relax_info (sec);
6917 BFD_ASSERT (relax_info != NULL);
6919 switch (relax_info->visited)
6922 /* Note: It would be nice to fold this pass into
6923 analyze_relocations, but it is important for this step that the
6924 sections be examined in link order. */
6925 if (!compute_removed_literals (abfd, sec, link_info, values))
6932 value_map_hash_table_delete (values);
6934 if (!relax_section (abfd, sec, link_info))
6940 if (!relax_section_symbols (abfd, sec))
6945 relax_info->visited++;
6950 /* Initialization for relaxation. */
6952 /* This function is called once at the start of relaxation. It scans
6953 all the input sections and marks the ones that are relaxable (i.e.,
6954 literal sections with L32R relocations against them), and then
6955 collects source_reloc information for all the relocations against
6956 those relaxable sections. During this process, it also detects
6957 longcalls, i.e., calls relaxed by the assembler into indirect
6958 calls, that can be optimized back into direct calls. Within each
6959 extended basic block (ebb) containing an optimized longcall, it
6960 computes a set of "text actions" that can be performed to remove
6961 the L32R associated with the longcall while optionally preserving
6962 branch target alignments. */
6965 analyze_relocations (struct bfd_link_info *link_info)
6969 bfd_boolean is_relaxable = FALSE;
6971 /* Initialize the per-section relaxation info. */
6972 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6973 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6975 init_xtensa_relax_info (sec);
6978 /* Mark relaxable sections (and count relocations against each one). */
6979 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6980 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6982 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6986 /* Bail out if there are no relaxable sections. */
6990 /* Allocate space for source_relocs. */
6991 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6992 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6994 xtensa_relax_info *relax_info;
6996 relax_info = get_xtensa_relax_info (sec);
6997 if (relax_info->is_relaxable_literal_section
6998 || relax_info->is_relaxable_asm_section)
7000 relax_info->src_relocs = (source_reloc *)
7001 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
7004 relax_info->src_count = 0;
7007 /* Collect info on relocations against each relaxable section. */
7008 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7009 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7011 if (!collect_source_relocs (abfd, sec, link_info))
7015 /* Compute the text actions. */
7016 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7017 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7019 if (!compute_text_actions (abfd, sec, link_info))
7027 /* Find all the sections that might be relaxed. The motivation for
7028 this pass is that collect_source_relocs() needs to record _all_ the
7029 relocations that target each relaxable section. That is expensive
7030 and unnecessary unless the target section is actually going to be
7031 relaxed. This pass identifies all such sections by checking if
7032 they have L32Rs pointing to them. In the process, the total number
7033 of relocations targeting each section is also counted so that we
7034 know how much space to allocate for source_relocs against each
7035 relaxable literal section. */
7038 find_relaxable_sections (bfd *abfd,
7040 struct bfd_link_info *link_info,
7041 bfd_boolean *is_relaxable_p)
7043 Elf_Internal_Rela *internal_relocs;
7045 bfd_boolean ok = TRUE;
7047 xtensa_relax_info *source_relax_info;
7048 bfd_boolean is_l32r_reloc;
7050 internal_relocs = retrieve_internal_relocs (abfd, sec,
7051 link_info->keep_memory);
7052 if (internal_relocs == NULL)
7055 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7056 if (contents == NULL && sec->size != 0)
7062 source_relax_info = get_xtensa_relax_info (sec);
7063 for (i = 0; i < sec->reloc_count; i++)
7065 Elf_Internal_Rela *irel = &internal_relocs[i];
7067 asection *target_sec;
7068 xtensa_relax_info *target_relax_info;
7070 /* If this section has not already been marked as "relaxable", and
7071 if it contains any ASM_EXPAND relocations (marking expanded
7072 longcalls) that can be optimized into direct calls, then mark
7073 the section as "relaxable". */
7074 if (source_relax_info
7075 && !source_relax_info->is_relaxable_asm_section
7076 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
7078 bfd_boolean is_reachable = FALSE;
7079 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
7080 link_info, &is_reachable)
7083 source_relax_info->is_relaxable_asm_section = TRUE;
7084 *is_relaxable_p = TRUE;
7088 r_reloc_init (&r_rel, abfd, irel, contents,
7089 bfd_get_section_limit (abfd, sec));
7091 target_sec = r_reloc_get_section (&r_rel);
7092 target_relax_info = get_xtensa_relax_info (target_sec);
7093 if (!target_relax_info)
7096 /* Count PC-relative operand relocations against the target section.
7097 Note: The conditions tested here must match the conditions under
7098 which init_source_reloc is called in collect_source_relocs(). */
7099 is_l32r_reloc = FALSE;
7100 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7102 xtensa_opcode opcode =
7103 get_relocation_opcode (abfd, sec, contents, irel);
7104 if (opcode != XTENSA_UNDEFINED)
7106 is_l32r_reloc = (opcode == get_l32r_opcode ());
7107 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7109 target_relax_info->src_count++;
7113 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
7115 /* Mark the target section as relaxable. */
7116 target_relax_info->is_relaxable_literal_section = TRUE;
7117 *is_relaxable_p = TRUE;
7122 release_contents (sec, contents);
7123 release_internal_relocs (sec, internal_relocs);
7128 /* Record _all_ the relocations that point to relaxable sections, and
7129 get rid of ASM_EXPAND relocs by either converting them to
7130 ASM_SIMPLIFY or by removing them. */
7133 collect_source_relocs (bfd *abfd,
7135 struct bfd_link_info *link_info)
7137 Elf_Internal_Rela *internal_relocs;
7139 bfd_boolean ok = TRUE;
7141 bfd_size_type sec_size;
7143 internal_relocs = retrieve_internal_relocs (abfd, sec,
7144 link_info->keep_memory);
7145 if (internal_relocs == NULL)
7148 sec_size = bfd_get_section_limit (abfd, sec);
7149 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7150 if (contents == NULL && sec_size != 0)
7156 /* Record relocations against relaxable literal sections. */
7157 for (i = 0; i < sec->reloc_count; i++)
7159 Elf_Internal_Rela *irel = &internal_relocs[i];
7161 asection *target_sec;
7162 xtensa_relax_info *target_relax_info;
7164 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7166 target_sec = r_reloc_get_section (&r_rel);
7167 target_relax_info = get_xtensa_relax_info (target_sec);
7169 if (target_relax_info
7170 && (target_relax_info->is_relaxable_literal_section
7171 || target_relax_info->is_relaxable_asm_section))
7173 xtensa_opcode opcode = XTENSA_UNDEFINED;
7175 bfd_boolean is_abs_literal = FALSE;
7177 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7179 /* None of the current alternate relocs are PC-relative,
7180 and only PC-relative relocs matter here. However, we
7181 still need to record the opcode for literal
7183 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7184 if (opcode == get_l32r_opcode ())
7186 is_abs_literal = TRUE;
7190 opcode = XTENSA_UNDEFINED;
7192 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7194 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7195 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7198 if (opcode != XTENSA_UNDEFINED)
7200 int src_next = target_relax_info->src_next++;
7201 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7203 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7209 /* Now get rid of ASM_EXPAND relocations. At this point, the
7210 src_relocs array for the target literal section may still be
7211 incomplete, but it must at least contain the entries for the L32R
7212 relocations associated with ASM_EXPANDs because they were just
7213 added in the preceding loop over the relocations. */
7215 for (i = 0; i < sec->reloc_count; i++)
7217 Elf_Internal_Rela *irel = &internal_relocs[i];
7218 bfd_boolean is_reachable;
7220 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7226 Elf_Internal_Rela *l32r_irel;
7228 asection *target_sec;
7229 xtensa_relax_info *target_relax_info;
7231 /* Mark the source_reloc for the L32R so that it will be
7232 removed in compute_removed_literals(), along with the
7233 associated literal. */
7234 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7235 irel, internal_relocs);
7236 if (l32r_irel == NULL)
7239 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7241 target_sec = r_reloc_get_section (&r_rel);
7242 target_relax_info = get_xtensa_relax_info (target_sec);
7244 if (target_relax_info
7245 && (target_relax_info->is_relaxable_literal_section
7246 || target_relax_info->is_relaxable_asm_section))
7248 source_reloc *s_reloc;
7250 /* Search the source_relocs for the entry corresponding to
7251 the l32r_irel. Note: The src_relocs array is not yet
7252 sorted, but it wouldn't matter anyway because we're
7253 searching by source offset instead of target offset. */
7254 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7255 target_relax_info->src_next,
7257 BFD_ASSERT (s_reloc);
7258 s_reloc->is_null = TRUE;
7261 /* Convert this reloc to ASM_SIMPLIFY. */
7262 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7263 R_XTENSA_ASM_SIMPLIFY);
7264 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7266 pin_internal_relocs (sec, internal_relocs);
7270 /* It is resolvable but doesn't reach. We resolve now
7271 by eliminating the relocation -- the call will remain
7272 expanded into L32R/CALLX. */
7273 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7274 pin_internal_relocs (sec, internal_relocs);
7279 release_contents (sec, contents);
7280 release_internal_relocs (sec, internal_relocs);
7285 /* Return TRUE if the asm expansion can be resolved. Generally it can
7286 be resolved on a final link or when a partial link locates it in the
7287 same section as the target. Set "is_reachable" flag if the target of
7288 the call is within the range of a direct call, given the current VMA
7289 for this section and the target section. */
7292 is_resolvable_asm_expansion (bfd *abfd,
7295 Elf_Internal_Rela *irel,
7296 struct bfd_link_info *link_info,
7297 bfd_boolean *is_reachable_p)
7299 asection *target_sec;
7300 bfd_vma target_offset;
7302 xtensa_opcode opcode, direct_call_opcode;
7303 bfd_vma self_address;
7304 bfd_vma dest_address;
7305 bfd_boolean uses_l32r;
7306 bfd_size_type sec_size;
7308 *is_reachable_p = FALSE;
7310 if (contents == NULL)
7313 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7316 sec_size = bfd_get_section_limit (abfd, sec);
7317 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7318 sec_size - irel->r_offset, &uses_l32r);
7319 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7323 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7324 if (direct_call_opcode == XTENSA_UNDEFINED)
7327 /* Check and see that the target resolves. */
7328 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7329 if (!r_reloc_is_defined (&r_rel))
7332 target_sec = r_reloc_get_section (&r_rel);
7333 target_offset = r_rel.target_offset;
7335 /* If the target is in a shared library, then it doesn't reach. This
7336 isn't supposed to come up because the compiler should never generate
7337 non-PIC calls on systems that use shared libraries, but the linker
7338 shouldn't crash regardless. */
7339 if (!target_sec->output_section)
7342 /* For relocatable sections, we can only simplify when the output
7343 section of the target is the same as the output section of the
7345 if (bfd_link_relocatable (link_info)
7346 && (target_sec->output_section != sec->output_section
7347 || is_reloc_sym_weak (abfd, irel)))
7350 if (target_sec->output_section != sec->output_section)
7352 /* If the two sections are sufficiently far away that relaxation
7353 might take the call out of range, we can't simplify. For
7354 example, a positive displacement call into another memory
7355 could get moved to a lower address due to literal removal,
7356 but the destination won't move, and so the displacment might
7359 If the displacement is negative, assume the destination could
7360 move as far back as the start of the output section. The
7361 self_address will be at least as far into the output section
7362 as it is prior to relaxation.
7364 If the displacement is postive, assume the destination will be in
7365 it's pre-relaxed location (because relaxation only makes sections
7366 smaller). The self_address could go all the way to the beginning
7367 of the output section. */
7369 dest_address = target_sec->output_section->vma;
7370 self_address = sec->output_section->vma;
7372 if (sec->output_section->vma > target_sec->output_section->vma)
7373 self_address += sec->output_offset + irel->r_offset + 3;
7375 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7376 /* Call targets should be four-byte aligned. */
7377 dest_address = (dest_address + 3) & ~3;
7382 self_address = (sec->output_section->vma
7383 + sec->output_offset + irel->r_offset + 3);
7384 dest_address = (target_sec->output_section->vma
7385 + target_sec->output_offset + target_offset);
7388 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7389 self_address, dest_address);
7391 if ((self_address >> CALL_SEGMENT_BITS) !=
7392 (dest_address >> CALL_SEGMENT_BITS))
7399 static Elf_Internal_Rela *
7400 find_associated_l32r_irel (bfd *abfd,
7403 Elf_Internal_Rela *other_irel,
7404 Elf_Internal_Rela *internal_relocs)
7408 for (i = 0; i < sec->reloc_count; i++)
7410 Elf_Internal_Rela *irel = &internal_relocs[i];
7412 if (irel == other_irel)
7414 if (irel->r_offset != other_irel->r_offset)
7416 if (is_l32r_relocation (abfd, sec, contents, irel))
7424 static xtensa_opcode *
7425 build_reloc_opcodes (bfd *abfd,
7428 Elf_Internal_Rela *internal_relocs)
7431 xtensa_opcode *reloc_opcodes =
7432 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7433 for (i = 0; i < sec->reloc_count; i++)
7435 Elf_Internal_Rela *irel = &internal_relocs[i];
7436 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7438 return reloc_opcodes;
7441 struct reloc_range_struct
7444 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7445 /* Original irel index in the array of relocations for a section. */
7446 unsigned irel_index;
7448 typedef struct reloc_range_struct reloc_range;
7450 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7451 struct reloc_range_list_entry_struct
7453 reloc_range_list_entry *next;
7454 reloc_range_list_entry *prev;
7455 Elf_Internal_Rela *irel;
7456 xtensa_opcode opcode;
7460 struct reloc_range_list_struct
7462 /* The rest of the structure is only meaningful when ok is TRUE. */
7465 unsigned n_range; /* Number of range markers. */
7466 reloc_range *range; /* Sorted range markers. */
7468 unsigned first; /* Index of a first range element in the list. */
7469 unsigned last; /* One past index of a last range element in the list. */
7471 unsigned n_list; /* Number of list elements. */
7472 reloc_range_list_entry *reloc; /* */
7473 reloc_range_list_entry list_root;
7477 reloc_range_compare (const void *a, const void *b)
7479 const reloc_range *ra = a;
7480 const reloc_range *rb = b;
7482 if (ra->addr != rb->addr)
7483 return ra->addr < rb->addr ? -1 : 1;
7484 if (ra->add != rb->add)
7485 return ra->add ? -1 : 1;
7490 build_reloc_ranges (bfd *abfd, asection *sec,
7492 Elf_Internal_Rela *internal_relocs,
7493 xtensa_opcode *reloc_opcodes,
7494 reloc_range_list *list)
7499 reloc_range *ranges = NULL;
7500 reloc_range_list_entry *reloc =
7501 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7503 memset (list, 0, sizeof (*list));
7506 for (i = 0; i < sec->reloc_count; i++)
7508 Elf_Internal_Rela *irel = &internal_relocs[i];
7509 int r_type = ELF32_R_TYPE (irel->r_info);
7510 reloc_howto_type *howto = &elf_howto_table[r_type];
7513 if (r_type == R_XTENSA_ASM_SIMPLIFY
7514 || r_type == R_XTENSA_32_PCREL
7515 || !howto->pc_relative)
7518 r_reloc_init (&r_rel, abfd, irel, contents,
7519 bfd_get_section_limit (abfd, sec));
7521 if (r_reloc_get_section (&r_rel) != sec)
7526 max_n = (max_n + 2) * 2;
7527 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7530 ranges[n].addr = irel->r_offset;
7531 ranges[n + 1].addr = r_rel.target_offset;
7533 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7534 ranges[n + 1].add = !ranges[n].add;
7536 ranges[n].irel_index = i;
7537 ranges[n + 1].irel_index = i;
7541 reloc[i].irel = irel;
7543 /* Every relocation won't possibly be checked in the optimized version of
7544 check_section_ebb_pcrels_fit, so this needs to be done here. */
7545 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7547 /* None of the current alternate relocs are PC-relative,
7548 and only PC-relative relocs matter here. */
7552 xtensa_opcode opcode;
7556 opcode = reloc_opcodes[i];
7558 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7560 if (opcode == XTENSA_UNDEFINED)
7566 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7567 if (opnum == XTENSA_UNDEFINED)
7573 /* Record relocation opcode and opnum as we've calculated them
7574 anyway and they won't change. */
7575 reloc[i].opcode = opcode;
7576 reloc[i].opnum = opnum;
7582 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7583 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7586 list->range = ranges;
7587 list->reloc = reloc;
7588 list->list_root.prev = &list->list_root;
7589 list->list_root.next = &list->list_root;
7598 static void reloc_range_list_append (reloc_range_list *list,
7599 unsigned irel_index)
7601 reloc_range_list_entry *entry = list->reloc + irel_index;
7603 entry->prev = list->list_root.prev;
7604 entry->next = &list->list_root;
7605 entry->prev->next = entry;
7606 entry->next->prev = entry;
7610 static void reloc_range_list_remove (reloc_range_list *list,
7611 unsigned irel_index)
7613 reloc_range_list_entry *entry = list->reloc + irel_index;
7615 entry->next->prev = entry->prev;
7616 entry->prev->next = entry->next;
7620 /* Update relocation list object so that it lists all relocations that cross
7621 [first; last] range. Range bounds should not decrease with successive
7623 static void reloc_range_list_update_range (reloc_range_list *list,
7624 bfd_vma first, bfd_vma last)
7626 /* This should not happen: EBBs are iterated from lower addresses to higher.
7627 But even if that happens there's no need to break: just flush current list
7628 and start from scratch. */
7629 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7630 (list->first > 0 && list->range[list->first - 1].addr >= first))
7635 list->list_root.next = &list->list_root;
7636 list->list_root.prev = &list->list_root;
7637 fprintf (stderr, "%s: move backwards requested\n", __func__);
7640 for (; list->last < list->n_range &&
7641 list->range[list->last].addr <= last; ++list->last)
7642 if (list->range[list->last].add)
7643 reloc_range_list_append (list, list->range[list->last].irel_index);
7645 for (; list->first < list->n_range &&
7646 list->range[list->first].addr < first; ++list->first)
7647 if (!list->range[list->first].add)
7648 reloc_range_list_remove (list, list->range[list->first].irel_index);
7651 static void free_reloc_range_list (reloc_range_list *list)
7657 /* The compute_text_actions function will build a list of potential
7658 transformation actions for code in the extended basic block of each
7659 longcall that is optimized to a direct call. From this list we
7660 generate a set of actions to actually perform that optimizes for
7661 space and, if not using size_opt, maintains branch target
7664 These actions to be performed are placed on a per-section list.
7665 The actual changes are performed by relax_section() in the second
7669 compute_text_actions (bfd *abfd,
7671 struct bfd_link_info *link_info)
7673 xtensa_opcode *reloc_opcodes = NULL;
7674 xtensa_relax_info *relax_info;
7676 Elf_Internal_Rela *internal_relocs;
7677 bfd_boolean ok = TRUE;
7679 property_table_entry *prop_table = 0;
7681 bfd_size_type sec_size;
7682 reloc_range_list relevant_relocs;
7684 relax_info = get_xtensa_relax_info (sec);
7685 BFD_ASSERT (relax_info);
7686 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7688 /* Do nothing if the section contains no optimized longcalls. */
7689 if (!relax_info->is_relaxable_asm_section)
7692 internal_relocs = retrieve_internal_relocs (abfd, sec,
7693 link_info->keep_memory);
7695 if (internal_relocs)
7696 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7697 internal_reloc_compare);
7699 sec_size = bfd_get_section_limit (abfd, sec);
7700 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7701 if (contents == NULL && sec_size != 0)
7707 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7708 XTENSA_PROP_SEC_NAME, FALSE);
7715 /* Precompute the opcode for each relocation. */
7716 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7718 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7721 for (i = 0; i < sec->reloc_count; i++)
7723 Elf_Internal_Rela *irel = &internal_relocs[i];
7725 property_table_entry *the_entry;
7728 ebb_constraint ebb_table;
7729 bfd_size_type simplify_size;
7731 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7733 r_offset = irel->r_offset;
7735 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7736 if (simplify_size == 0)
7739 /* xgettext:c-format */
7740 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7741 sec->owner, sec, r_offset);
7745 /* If the instruction table is not around, then don't do this
7747 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7748 sec->vma + irel->r_offset);
7749 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7751 text_action_add (&relax_info->action_list,
7752 ta_convert_longcall, sec, r_offset,
7757 /* If the next longcall happens to be at the same address as an
7758 unreachable section of size 0, then skip forward. */
7759 ptbl_idx = the_entry - prop_table;
7760 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7761 && the_entry->size == 0
7762 && ptbl_idx + 1 < ptblsize
7763 && (prop_table[ptbl_idx + 1].address
7764 == prop_table[ptbl_idx].address))
7770 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7771 /* NO_REORDER is OK */
7774 init_ebb_constraint (&ebb_table);
7775 ebb = &ebb_table.ebb;
7776 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7777 internal_relocs, sec->reloc_count);
7778 ebb->start_offset = r_offset + simplify_size;
7779 ebb->end_offset = r_offset + simplify_size;
7780 ebb->start_ptbl_idx = ptbl_idx;
7781 ebb->end_ptbl_idx = ptbl_idx;
7782 ebb->start_reloc_idx = i;
7783 ebb->end_reloc_idx = i;
7785 if (!extend_ebb_bounds (ebb)
7786 || !compute_ebb_proposed_actions (&ebb_table)
7787 || !compute_ebb_actions (&ebb_table)
7788 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7791 &ebb_table, reloc_opcodes)
7792 || !check_section_ebb_reduces (&ebb_table))
7794 /* If anything goes wrong or we get unlucky and something does
7795 not fit, with our plan because of expansion between
7796 critical branches, just convert to a NOP. */
7798 text_action_add (&relax_info->action_list,
7799 ta_convert_longcall, sec, r_offset, 0);
7800 i = ebb_table.ebb.end_reloc_idx;
7801 free_ebb_constraint (&ebb_table);
7805 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7807 /* Update the index so we do not go looking at the relocations
7808 we have already processed. */
7809 i = ebb_table.ebb.end_reloc_idx;
7810 free_ebb_constraint (&ebb_table);
7813 free_reloc_range_list (&relevant_relocs);
7816 if (action_list_count (&relax_info->action_list))
7817 print_action_list (stderr, &relax_info->action_list);
7821 release_contents (sec, contents);
7822 release_internal_relocs (sec, internal_relocs);
7826 free (reloc_opcodes);
7832 /* Do not widen an instruction if it is preceeded by a
7833 loop opcode. It might cause misalignment. */
7836 prev_instr_is_a_loop (bfd_byte *contents,
7837 bfd_size_type content_length,
7838 bfd_size_type offset)
7840 xtensa_opcode prev_opcode;
7844 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7845 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7849 /* Find all of the possible actions for an extended basic block. */
7852 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7854 const ebb_t *ebb = &ebb_table->ebb;
7855 unsigned rel_idx = ebb->start_reloc_idx;
7856 property_table_entry *entry, *start_entry, *end_entry;
7858 xtensa_isa isa = xtensa_default_isa;
7860 static xtensa_insnbuf insnbuf = NULL;
7861 static xtensa_insnbuf slotbuf = NULL;
7863 if (insnbuf == NULL)
7865 insnbuf = xtensa_insnbuf_alloc (isa);
7866 slotbuf = xtensa_insnbuf_alloc (isa);
7869 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7870 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7872 for (entry = start_entry; entry <= end_entry; entry++)
7874 bfd_vma start_offset, end_offset;
7875 bfd_size_type insn_len;
7877 start_offset = entry->address - ebb->sec->vma;
7878 end_offset = entry->address + entry->size - ebb->sec->vma;
7880 if (entry == start_entry)
7881 start_offset = ebb->start_offset;
7882 if (entry == end_entry)
7883 end_offset = ebb->end_offset;
7884 offset = start_offset;
7886 if (offset == entry->address - ebb->sec->vma
7887 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7889 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7890 BFD_ASSERT (offset != end_offset);
7891 if (offset == end_offset)
7894 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7899 if (check_branch_target_aligned_address (offset, insn_len))
7900 align_type = EBB_REQUIRE_TGT_ALIGN;
7902 ebb_propose_action (ebb_table, align_type, 0,
7903 ta_none, offset, 0, TRUE);
7906 while (offset != end_offset)
7908 Elf_Internal_Rela *irel;
7909 xtensa_opcode opcode;
7911 while (rel_idx < ebb->end_reloc_idx
7912 && (ebb->relocs[rel_idx].r_offset < offset
7913 || (ebb->relocs[rel_idx].r_offset == offset
7914 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7915 != R_XTENSA_ASM_SIMPLIFY))))
7918 /* Check for longcall. */
7919 irel = &ebb->relocs[rel_idx];
7920 if (irel->r_offset == offset
7921 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7923 bfd_size_type simplify_size;
7925 simplify_size = get_asm_simplify_size (ebb->contents,
7926 ebb->content_length,
7928 if (simplify_size == 0)
7931 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7932 ta_convert_longcall, offset, 0, TRUE);
7934 offset += simplify_size;
7938 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7940 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7941 ebb->content_length - offset);
7942 fmt = xtensa_format_decode (isa, insnbuf);
7943 if (fmt == XTENSA_UNDEFINED)
7945 insn_len = xtensa_format_length (isa, fmt);
7946 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7949 if (xtensa_format_num_slots (isa, fmt) != 1)
7955 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7956 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7957 if (opcode == XTENSA_UNDEFINED)
7960 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7961 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7962 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7964 /* Add an instruction narrow action. */
7965 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7966 ta_narrow_insn, offset, 0, FALSE);
7968 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7969 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7970 && ! prev_instr_is_a_loop (ebb->contents,
7971 ebb->content_length, offset))
7973 /* Add an instruction widen action. */
7974 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7975 ta_widen_insn, offset, 0, FALSE);
7977 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7979 /* Check for branch targets. */
7980 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7981 ta_none, offset, 0, TRUE);
7988 if (ebb->ends_unreachable)
7990 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7991 ta_fill, ebb->end_offset, 0, TRUE);
7998 /* xgettext:c-format */
7999 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
8000 ebb->sec->owner, ebb->sec, offset);
8005 /* After all of the information has collected about the
8006 transformations possible in an EBB, compute the appropriate actions
8007 here in compute_ebb_actions. We still must check later to make
8008 sure that the actions do not break any relocations. The algorithm
8009 used here is pretty greedy. Basically, it removes as many no-ops
8010 as possible so that the end of the EBB has the same alignment
8011 characteristics as the original. First, it uses narrowing, then
8012 fill space at the end of the EBB, and finally widenings. If that
8013 does not work, it tries again with one fewer no-op removed. The
8014 optimization will only be performed if all of the branch targets
8015 that were aligned before transformation are also aligned after the
8018 When the size_opt flag is set, ignore the branch target alignments,
8019 narrow all wide instructions, and remove all no-ops unless the end
8020 of the EBB prevents it. */
8023 compute_ebb_actions (ebb_constraint *ebb_table)
8027 int removed_bytes = 0;
8028 ebb_t *ebb = &ebb_table->ebb;
8029 unsigned seg_idx_start = 0;
8030 unsigned seg_idx_end = 0;
8032 /* We perform this like the assembler relaxation algorithm: Start by
8033 assuming all instructions are narrow and all no-ops removed; then
8036 /* For each segment of this that has a solid constraint, check to
8037 see if there are any combinations that will keep the constraint.
8039 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
8041 bfd_boolean requires_text_end_align = FALSE;
8042 unsigned longcall_count = 0;
8043 unsigned longcall_convert_count = 0;
8044 unsigned narrowable_count = 0;
8045 unsigned narrowable_convert_count = 0;
8046 unsigned widenable_count = 0;
8047 unsigned widenable_convert_count = 0;
8049 proposed_action *action = NULL;
8050 int align = (1 << ebb_table->ebb.sec->alignment_power);
8052 seg_idx_start = seg_idx_end;
8054 for (i = seg_idx_start; i < ebb_table->action_count; i++)
8056 action = &ebb_table->actions[i];
8057 if (action->action == ta_convert_longcall)
8059 if (action->action == ta_narrow_insn)
8061 if (action->action == ta_widen_insn)
8063 if (action->action == ta_fill)
8065 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8067 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8068 && !elf32xtensa_size_opt)
8073 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8074 requires_text_end_align = TRUE;
8076 if (elf32xtensa_size_opt && !requires_text_end_align
8077 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8078 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8080 longcall_convert_count = longcall_count;
8081 narrowable_convert_count = narrowable_count;
8082 widenable_convert_count = 0;
8086 /* There is a constraint. Convert the max number of longcalls. */
8087 narrowable_convert_count = 0;
8088 longcall_convert_count = 0;
8089 widenable_convert_count = 0;
8091 for (j = 0; j < longcall_count; j++)
8093 int removed = (longcall_count - j) * 3 & (align - 1);
8094 unsigned desire_narrow = (align - removed) & (align - 1);
8095 unsigned desire_widen = removed;
8096 if (desire_narrow <= narrowable_count)
8098 narrowable_convert_count = desire_narrow;
8099 narrowable_convert_count +=
8100 (align * ((narrowable_count - narrowable_convert_count)
8102 longcall_convert_count = (longcall_count - j);
8103 widenable_convert_count = 0;
8106 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8108 narrowable_convert_count = 0;
8109 longcall_convert_count = longcall_count - j;
8110 widenable_convert_count = desire_widen;
8116 /* Now the number of conversions are saved. Do them. */
8117 for (i = seg_idx_start; i < seg_idx_end; i++)
8119 action = &ebb_table->actions[i];
8120 switch (action->action)
8122 case ta_convert_longcall:
8123 if (longcall_convert_count != 0)
8125 action->action = ta_remove_longcall;
8126 action->do_action = TRUE;
8127 action->removed_bytes += 3;
8128 longcall_convert_count--;
8131 case ta_narrow_insn:
8132 if (narrowable_convert_count != 0)
8134 action->do_action = TRUE;
8135 action->removed_bytes += 1;
8136 narrowable_convert_count--;
8140 if (widenable_convert_count != 0)
8142 action->do_action = TRUE;
8143 action->removed_bytes -= 1;
8144 widenable_convert_count--;
8153 /* Now we move on to some local opts. Try to remove each of the
8154 remaining longcalls. */
8156 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8159 for (i = 0; i < ebb_table->action_count; i++)
8161 int old_removed_bytes = removed_bytes;
8162 proposed_action *action = &ebb_table->actions[i];
8164 if (action->do_action && action->action == ta_convert_longcall)
8166 bfd_boolean bad_alignment = FALSE;
8168 for (j = i + 1; j < ebb_table->action_count; j++)
8170 proposed_action *new_action = &ebb_table->actions[j];
8171 bfd_vma offset = new_action->offset;
8172 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8174 if (!check_branch_target_aligned
8175 (ebb_table->ebb.contents,
8176 ebb_table->ebb.content_length,
8177 offset, offset - removed_bytes))
8179 bad_alignment = TRUE;
8183 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8185 if (!check_loop_aligned (ebb_table->ebb.contents,
8186 ebb_table->ebb.content_length,
8188 offset - removed_bytes))
8190 bad_alignment = TRUE;
8194 if (new_action->action == ta_narrow_insn
8195 && !new_action->do_action
8196 && ebb_table->ebb.sec->alignment_power == 2)
8198 /* Narrow an instruction and we are done. */
8199 new_action->do_action = TRUE;
8200 new_action->removed_bytes += 1;
8201 bad_alignment = FALSE;
8204 if (new_action->action == ta_widen_insn
8205 && new_action->do_action
8206 && ebb_table->ebb.sec->alignment_power == 2)
8208 /* Narrow an instruction and we are done. */
8209 new_action->do_action = FALSE;
8210 new_action->removed_bytes += 1;
8211 bad_alignment = FALSE;
8214 if (new_action->do_action)
8215 removed_bytes += new_action->removed_bytes;
8219 action->removed_bytes += 3;
8220 action->action = ta_remove_longcall;
8221 action->do_action = TRUE;
8224 removed_bytes = old_removed_bytes;
8225 if (action->do_action)
8226 removed_bytes += action->removed_bytes;
8231 for (i = 0; i < ebb_table->action_count; ++i)
8233 proposed_action *action = &ebb_table->actions[i];
8234 if (action->do_action)
8235 removed_bytes += action->removed_bytes;
8238 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8239 && ebb->ends_unreachable)
8241 proposed_action *action;
8245 BFD_ASSERT (ebb_table->action_count != 0);
8246 action = &ebb_table->actions[ebb_table->action_count - 1];
8247 BFD_ASSERT (action->action == ta_fill);
8248 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8250 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
8251 br = action->removed_bytes + removed_bytes + extra_space;
8252 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8254 action->removed_bytes = extra_space - br;
8260 /* The xlate_map is a sorted array of address mappings designed to
8261 answer the offset_with_removed_text() query with a binary search instead
8262 of a linear search through the section's action_list. */
8264 typedef struct xlate_map_entry xlate_map_entry_t;
8265 typedef struct xlate_map xlate_map_t;
8267 struct xlate_map_entry
8269 unsigned orig_address;
8270 unsigned new_address;
8276 unsigned entry_count;
8277 xlate_map_entry_t *entry;
8282 xlate_compare (const void *a_v, const void *b_v)
8284 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8285 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8286 if (a->orig_address < b->orig_address)
8288 if (a->orig_address > (b->orig_address + b->size - 1))
8295 xlate_offset_with_removed_text (const xlate_map_t *map,
8296 text_action_list *action_list,
8300 xlate_map_entry_t *e;
8303 return offset_with_removed_text (action_list, offset);
8305 if (map->entry_count == 0)
8308 r = bsearch (&offset, map->entry, map->entry_count,
8309 sizeof (xlate_map_entry_t), &xlate_compare);
8310 e = (xlate_map_entry_t *) r;
8312 BFD_ASSERT (e != NULL);
8315 return e->new_address - e->orig_address + offset;
8318 typedef struct xlate_map_context_struct xlate_map_context;
8319 struct xlate_map_context_struct
8322 xlate_map_entry_t *current_entry;
8327 xlate_map_fn (splay_tree_node node, void *p)
8329 text_action *r = (text_action *)node->value;
8330 xlate_map_context *ctx = p;
8331 unsigned orig_size = 0;
8336 case ta_remove_insn:
8337 case ta_convert_longcall:
8338 case ta_remove_literal:
8339 case ta_add_literal:
8341 case ta_remove_longcall:
8344 case ta_narrow_insn:
8353 ctx->current_entry->size =
8354 r->offset + orig_size - ctx->current_entry->orig_address;
8355 if (ctx->current_entry->size != 0)
8357 ctx->current_entry++;
8358 ctx->map->entry_count++;
8360 ctx->current_entry->orig_address = r->offset + orig_size;
8361 ctx->removed += r->removed_bytes;
8362 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8363 ctx->current_entry->size = 0;
8367 /* Build a binary searchable offset translation map from a section's
8370 static xlate_map_t *
8371 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8373 text_action_list *action_list = &relax_info->action_list;
8374 unsigned num_actions = 0;
8375 xlate_map_context ctx;
8377 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8379 if (ctx.map == NULL)
8382 num_actions = action_list_count (action_list);
8383 ctx.map->entry = (xlate_map_entry_t *)
8384 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8385 if (ctx.map->entry == NULL)
8390 ctx.map->entry_count = 0;
8393 ctx.current_entry = &ctx.map->entry[0];
8395 ctx.current_entry->orig_address = 0;
8396 ctx.current_entry->new_address = 0;
8397 ctx.current_entry->size = 0;
8399 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
8401 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8402 - ctx.current_entry->orig_address);
8403 if (ctx.current_entry->size != 0)
8404 ctx.map->entry_count++;
8410 /* Free an offset translation map. */
8413 free_xlate_map (xlate_map_t *map)
8415 if (map && map->entry)
8422 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8423 relocations in a section will fit if a proposed set of actions
8427 check_section_ebb_pcrels_fit (bfd *abfd,
8430 Elf_Internal_Rela *internal_relocs,
8431 reloc_range_list *relevant_relocs,
8432 const ebb_constraint *constraint,
8433 const xtensa_opcode *reloc_opcodes)
8436 unsigned n = sec->reloc_count;
8437 Elf_Internal_Rela *irel;
8438 xlate_map_t *xmap = NULL;
8439 bfd_boolean ok = TRUE;
8440 xtensa_relax_info *relax_info;
8441 reloc_range_list_entry *entry = NULL;
8443 relax_info = get_xtensa_relax_info (sec);
8445 if (relax_info && sec->reloc_count > 100)
8447 xmap = build_xlate_map (sec, relax_info);
8448 /* NULL indicates out of memory, but the slow version
8449 can still be used. */
8452 if (relevant_relocs && constraint->action_count)
8454 if (!relevant_relocs->ok)
8461 bfd_vma min_offset, max_offset;
8462 min_offset = max_offset = constraint->actions[0].offset;
8464 for (i = 1; i < constraint->action_count; ++i)
8466 proposed_action *action = &constraint->actions[i];
8467 bfd_vma offset = action->offset;
8469 if (offset < min_offset)
8470 min_offset = offset;
8471 if (offset > max_offset)
8472 max_offset = offset;
8474 reloc_range_list_update_range (relevant_relocs, min_offset,
8476 n = relevant_relocs->n_list;
8477 entry = &relevant_relocs->list_root;
8482 relevant_relocs = NULL;
8485 for (i = 0; i < n; i++)
8488 bfd_vma orig_self_offset, orig_target_offset;
8489 bfd_vma self_offset, target_offset;
8491 reloc_howto_type *howto;
8492 int self_removed_bytes, target_removed_bytes;
8494 if (relevant_relocs)
8496 entry = entry->next;
8501 irel = internal_relocs + i;
8503 r_type = ELF32_R_TYPE (irel->r_info);
8505 howto = &elf_howto_table[r_type];
8506 /* We maintain the required invariant: PC-relative relocations
8507 that fit before linking must fit after linking. Thus we only
8508 need to deal with relocations to the same section that are
8510 if (r_type == R_XTENSA_ASM_SIMPLIFY
8511 || r_type == R_XTENSA_32_PCREL
8512 || !howto->pc_relative)
8515 r_reloc_init (&r_rel, abfd, irel, contents,
8516 bfd_get_section_limit (abfd, sec));
8518 if (r_reloc_get_section (&r_rel) != sec)
8521 orig_self_offset = irel->r_offset;
8522 orig_target_offset = r_rel.target_offset;
8524 self_offset = orig_self_offset;
8525 target_offset = orig_target_offset;
8530 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8533 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8534 orig_target_offset);
8537 self_removed_bytes = 0;
8538 target_removed_bytes = 0;
8540 for (j = 0; j < constraint->action_count; ++j)
8542 proposed_action *action = &constraint->actions[j];
8543 bfd_vma offset = action->offset;
8544 int removed_bytes = action->removed_bytes;
8545 if (offset < orig_self_offset
8546 || (offset == orig_self_offset && action->action == ta_fill
8547 && action->removed_bytes < 0))
8548 self_removed_bytes += removed_bytes;
8549 if (offset < orig_target_offset
8550 || (offset == orig_target_offset && action->action == ta_fill
8551 && action->removed_bytes < 0))
8552 target_removed_bytes += removed_bytes;
8554 self_offset -= self_removed_bytes;
8555 target_offset -= target_removed_bytes;
8557 /* Try to encode it. Get the operand and check. */
8558 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8560 /* None of the current alternate relocs are PC-relative,
8561 and only PC-relative relocs matter here. */
8565 xtensa_opcode opcode;
8568 if (relevant_relocs)
8570 opcode = entry->opcode;
8571 opnum = entry->opnum;
8576 opcode = reloc_opcodes[relevant_relocs ?
8577 (unsigned)(entry - relevant_relocs->reloc) : i];
8579 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8580 if (opcode == XTENSA_UNDEFINED)
8586 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8587 if (opnum == XTENSA_UNDEFINED)
8594 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8603 free_xlate_map (xmap);
8610 check_section_ebb_reduces (const ebb_constraint *constraint)
8615 for (i = 0; i < constraint->action_count; i++)
8617 const proposed_action *action = &constraint->actions[i];
8618 if (action->do_action)
8619 removed += action->removed_bytes;
8629 text_action_add_proposed (text_action_list *l,
8630 const ebb_constraint *ebb_table,
8635 for (i = 0; i < ebb_table->action_count; i++)
8637 proposed_action *action = &ebb_table->actions[i];
8639 if (!action->do_action)
8641 switch (action->action)
8643 case ta_remove_insn:
8644 case ta_remove_longcall:
8645 case ta_convert_longcall:
8646 case ta_narrow_insn:
8649 case ta_remove_literal:
8650 text_action_add (l, action->action, sec, action->offset,
8651 action->removed_bytes);
8664 compute_fill_extra_space (property_table_entry *entry)
8666 int fill_extra_space;
8671 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8674 fill_extra_space = entry->size;
8675 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8677 /* Fill bytes for alignment:
8678 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8679 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8680 int nsm = (1 << pow) - 1;
8681 bfd_vma addr = entry->address + entry->size;
8682 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8683 fill_extra_space += align_fill;
8685 return fill_extra_space;
8689 /* First relaxation pass. */
8691 /* If the section contains relaxable literals, check each literal to
8692 see if it has the same value as another literal that has already
8693 been seen, either in the current section or a previous one. If so,
8694 add an entry to the per-section list of removed literals. The
8695 actual changes are deferred until the next pass. */
8698 compute_removed_literals (bfd *abfd,
8700 struct bfd_link_info *link_info,
8701 value_map_hash_table *values)
8703 xtensa_relax_info *relax_info;
8705 Elf_Internal_Rela *internal_relocs;
8706 source_reloc *src_relocs, *rel;
8707 bfd_boolean ok = TRUE;
8708 property_table_entry *prop_table = NULL;
8711 bfd_boolean last_loc_is_prev = FALSE;
8712 bfd_vma last_target_offset = 0;
8713 section_cache_t target_sec_cache;
8714 bfd_size_type sec_size;
8716 init_section_cache (&target_sec_cache);
8718 /* Do nothing if it is not a relaxable literal section. */
8719 relax_info = get_xtensa_relax_info (sec);
8720 BFD_ASSERT (relax_info);
8721 if (!relax_info->is_relaxable_literal_section)
8724 internal_relocs = retrieve_internal_relocs (abfd, sec,
8725 link_info->keep_memory);
8727 sec_size = bfd_get_section_limit (abfd, sec);
8728 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8729 if (contents == NULL && sec_size != 0)
8735 /* Sort the source_relocs by target offset. */
8736 src_relocs = relax_info->src_relocs;
8737 qsort (src_relocs, relax_info->src_count,
8738 sizeof (source_reloc), source_reloc_compare);
8739 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8740 internal_reloc_compare);
8742 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8743 XTENSA_PROP_SEC_NAME, FALSE);
8751 for (i = 0; i < relax_info->src_count; i++)
8753 Elf_Internal_Rela *irel = NULL;
8755 rel = &src_relocs[i];
8756 if (get_l32r_opcode () != rel->opcode)
8758 irel = get_irel_at_offset (sec, internal_relocs,
8759 rel->r_rel.target_offset);
8761 /* If the relocation on this is not a simple R_XTENSA_32 or
8762 R_XTENSA_PLT then do not consider it. This may happen when
8763 the difference of two symbols is used in a literal. */
8764 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8765 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8768 /* If the target_offset for this relocation is the same as the
8769 previous relocation, then we've already considered whether the
8770 literal can be coalesced. Skip to the next one.... */
8771 if (i != 0 && prev_i != -1
8772 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8776 if (last_loc_is_prev &&
8777 last_target_offset + 4 != rel->r_rel.target_offset)
8778 last_loc_is_prev = FALSE;
8780 /* Check if the relocation was from an L32R that is being removed
8781 because a CALLX was converted to a direct CALL, and check if
8782 there are no other relocations to the literal. */
8783 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8784 sec, prop_table, ptblsize))
8786 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8787 irel, rel, prop_table, ptblsize))
8792 last_target_offset = rel->r_rel.target_offset;
8796 if (!identify_literal_placement (abfd, sec, contents, link_info,
8798 &last_loc_is_prev, irel,
8799 relax_info->src_count - i, rel,
8800 prop_table, ptblsize,
8801 &target_sec_cache, rel->is_abs_literal))
8806 last_target_offset = rel->r_rel.target_offset;
8810 print_removed_literals (stderr, &relax_info->removed_list);
8811 print_action_list (stderr, &relax_info->action_list);
8817 free_section_cache (&target_sec_cache);
8819 release_contents (sec, contents);
8820 release_internal_relocs (sec, internal_relocs);
8825 static Elf_Internal_Rela *
8826 get_irel_at_offset (asection *sec,
8827 Elf_Internal_Rela *internal_relocs,
8831 Elf_Internal_Rela *irel;
8833 Elf_Internal_Rela key;
8835 if (!internal_relocs)
8838 key.r_offset = offset;
8839 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8840 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8844 /* bsearch does not guarantee which will be returned if there are
8845 multiple matches. We need the first that is not an alignment. */
8846 i = irel - internal_relocs;
8849 if (internal_relocs[i-1].r_offset != offset)
8853 for ( ; i < sec->reloc_count; i++)
8855 irel = &internal_relocs[i];
8856 r_type = ELF32_R_TYPE (irel->r_info);
8857 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8866 is_removable_literal (const source_reloc *rel,
8868 const source_reloc *src_relocs,
8871 property_table_entry *prop_table,
8874 const source_reloc *curr_rel;
8875 property_table_entry *entry;
8880 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8881 sec->vma + rel->r_rel.target_offset);
8882 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8885 for (++i; i < src_count; ++i)
8887 curr_rel = &src_relocs[i];
8888 /* If all others have the same target offset.... */
8889 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8892 if (!curr_rel->is_null
8893 && !xtensa_is_property_section (curr_rel->source_sec)
8894 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8902 remove_dead_literal (bfd *abfd,
8904 struct bfd_link_info *link_info,
8905 Elf_Internal_Rela *internal_relocs,
8906 Elf_Internal_Rela *irel,
8908 property_table_entry *prop_table,
8911 property_table_entry *entry;
8912 xtensa_relax_info *relax_info;
8914 relax_info = get_xtensa_relax_info (sec);
8918 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8919 sec->vma + rel->r_rel.target_offset);
8921 /* Mark the unused literal so that it will be removed. */
8922 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8924 text_action_add (&relax_info->action_list,
8925 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8927 /* If the section is 4-byte aligned, do not add fill. */
8928 if (sec->alignment_power > 2)
8930 int fill_extra_space;
8931 bfd_vma entry_sec_offset;
8933 property_table_entry *the_add_entry;
8937 entry_sec_offset = entry->address - sec->vma + entry->size;
8939 entry_sec_offset = rel->r_rel.target_offset + 4;
8941 /* If the literal range is at the end of the section,
8943 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8945 fill_extra_space = compute_fill_extra_space (the_add_entry);
8947 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8948 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8949 -4, fill_extra_space);
8951 adjust_fill_action (fa, removed_diff);
8953 text_action_add (&relax_info->action_list,
8954 ta_fill, sec, entry_sec_offset, removed_diff);
8957 /* Zero out the relocation on this literal location. */
8960 if (elf_hash_table (link_info)->dynamic_sections_created)
8961 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8963 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8964 pin_internal_relocs (sec, internal_relocs);
8967 /* Do not modify "last_loc_is_prev". */
8973 identify_literal_placement (bfd *abfd,
8976 struct bfd_link_info *link_info,
8977 value_map_hash_table *values,
8978 bfd_boolean *last_loc_is_prev_p,
8979 Elf_Internal_Rela *irel,
8980 int remaining_src_rels,
8982 property_table_entry *prop_table,
8984 section_cache_t *target_sec_cache,
8985 bfd_boolean is_abs_literal)
8989 xtensa_relax_info *relax_info;
8990 bfd_boolean literal_placed = FALSE;
8992 unsigned long value;
8993 bfd_boolean final_static_link;
8994 bfd_size_type sec_size;
8996 relax_info = get_xtensa_relax_info (sec);
9000 sec_size = bfd_get_section_limit (abfd, sec);
9003 (!bfd_link_relocatable (link_info)
9004 && !elf_hash_table (link_info)->dynamic_sections_created);
9006 /* The placement algorithm first checks to see if the literal is
9007 already in the value map. If so and the value map is reachable
9008 from all uses, then the literal is moved to that location. If
9009 not, then we identify the last location where a fresh literal was
9010 placed. If the literal can be safely moved there, then we do so.
9011 If not, then we assume that the literal is not to move and leave
9012 the literal where it is, marking it as the last literal
9015 /* Find the literal value. */
9017 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9020 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
9021 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
9023 init_literal_value (&val, &r_rel, value, is_abs_literal);
9025 /* Check if we've seen another literal with the same value that
9026 is in the same output section. */
9027 val_map = value_map_get_cached_value (values, &val, final_static_link);
9030 && (r_reloc_get_section (&val_map->loc)->output_section
9031 == sec->output_section)
9032 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
9033 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
9035 /* No change to last_loc_is_prev. */
9036 literal_placed = TRUE;
9039 /* For relocatable links, do not try to move literals. To do it
9040 correctly might increase the number of relocations in an input
9041 section making the default relocatable linking fail. */
9042 if (!bfd_link_relocatable (link_info) && !literal_placed
9043 && values->has_last_loc && !(*last_loc_is_prev_p))
9045 asection *target_sec = r_reloc_get_section (&values->last_loc);
9046 if (target_sec && target_sec->output_section == sec->output_section)
9048 /* Increment the virtual offset. */
9049 r_reloc try_loc = values->last_loc;
9050 try_loc.virtual_offset += 4;
9052 /* There is a last loc that was in the same output section. */
9053 if (relocations_reach (rel, remaining_src_rels, &try_loc)
9054 && move_shared_literal (sec, link_info, rel,
9055 prop_table, ptblsize,
9056 &try_loc, &val, target_sec_cache))
9058 values->last_loc.virtual_offset += 4;
9059 literal_placed = TRUE;
9061 val_map = add_value_map (values, &val, &try_loc,
9064 val_map->loc = try_loc;
9069 if (!literal_placed)
9071 /* Nothing worked, leave the literal alone but update the last loc. */
9072 values->has_last_loc = TRUE;
9073 values->last_loc = rel->r_rel;
9075 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
9077 val_map->loc = rel->r_rel;
9078 *last_loc_is_prev_p = TRUE;
9085 /* Check if the original relocations (presumably on L32R instructions)
9086 identified by reloc[0..N] can be changed to reference the literal
9087 identified by r_rel. If r_rel is out of range for any of the
9088 original relocations, then we don't want to coalesce the original
9089 literal with the one at r_rel. We only check reloc[0..N], where the
9090 offsets are all the same as for reloc[0] (i.e., they're all
9091 referencing the same literal) and where N is also bounded by the
9092 number of remaining entries in the "reloc" array. The "reloc" array
9093 is sorted by target offset so we know all the entries for the same
9094 literal will be contiguous. */
9097 relocations_reach (source_reloc *reloc,
9098 int remaining_relocs,
9099 const r_reloc *r_rel)
9101 bfd_vma from_offset, source_address, dest_address;
9105 if (!r_reloc_is_defined (r_rel))
9108 sec = r_reloc_get_section (r_rel);
9109 from_offset = reloc[0].r_rel.target_offset;
9111 for (i = 0; i < remaining_relocs; i++)
9113 if (reloc[i].r_rel.target_offset != from_offset)
9116 /* Ignore relocations that have been removed. */
9117 if (reloc[i].is_null)
9120 /* The original and new output section for these must be the same
9121 in order to coalesce. */
9122 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9123 != sec->output_section)
9126 /* Absolute literals in the same output section can always be
9128 if (reloc[i].is_abs_literal)
9131 /* A literal with no PC-relative relocations can be moved anywhere. */
9132 if (reloc[i].opnd != -1)
9134 /* Otherwise, check to see that it fits. */
9135 source_address = (reloc[i].source_sec->output_section->vma
9136 + reloc[i].source_sec->output_offset
9137 + reloc[i].r_rel.rela.r_offset);
9138 dest_address = (sec->output_section->vma
9139 + sec->output_offset
9140 + r_rel->target_offset);
9142 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9143 source_address, dest_address))
9152 /* Move a literal to another literal location because it is
9153 the same as the other literal value. */
9156 coalesce_shared_literal (asection *sec,
9158 property_table_entry *prop_table,
9162 property_table_entry *entry;
9164 property_table_entry *the_add_entry;
9166 xtensa_relax_info *relax_info;
9168 relax_info = get_xtensa_relax_info (sec);
9172 entry = elf_xtensa_find_property_entry
9173 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9174 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
9177 /* Mark that the literal will be coalesced. */
9178 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9180 text_action_add (&relax_info->action_list,
9181 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9183 /* If the section is 4-byte aligned, do not add fill. */
9184 if (sec->alignment_power > 2)
9186 int fill_extra_space;
9187 bfd_vma entry_sec_offset;
9190 entry_sec_offset = entry->address - sec->vma + entry->size;
9192 entry_sec_offset = rel->r_rel.target_offset + 4;
9194 /* If the literal range is at the end of the section,
9196 fill_extra_space = 0;
9197 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9199 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9200 fill_extra_space = the_add_entry->size;
9202 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9203 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9204 -4, fill_extra_space);
9206 adjust_fill_action (fa, removed_diff);
9208 text_action_add (&relax_info->action_list,
9209 ta_fill, sec, entry_sec_offset, removed_diff);
9216 /* Move a literal to another location. This may actually increase the
9217 total amount of space used because of alignments so we need to do
9218 this carefully. Also, it may make a branch go out of range. */
9221 move_shared_literal (asection *sec,
9222 struct bfd_link_info *link_info,
9224 property_table_entry *prop_table,
9226 const r_reloc *target_loc,
9227 const literal_value *lit_value,
9228 section_cache_t *target_sec_cache)
9230 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9231 text_action *fa, *target_fa;
9233 xtensa_relax_info *relax_info, *target_relax_info;
9234 asection *target_sec;
9236 ebb_constraint ebb_table;
9237 bfd_boolean relocs_fit;
9239 /* If this routine always returns FALSE, the literals that cannot be
9240 coalesced will not be moved. */
9241 if (elf32xtensa_no_literal_movement)
9244 relax_info = get_xtensa_relax_info (sec);
9248 target_sec = r_reloc_get_section (target_loc);
9249 target_relax_info = get_xtensa_relax_info (target_sec);
9251 /* Literals to undefined sections may not be moved because they
9252 must report an error. */
9253 if (bfd_is_und_section (target_sec))
9256 src_entry = elf_xtensa_find_property_entry
9257 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9259 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9262 target_entry = elf_xtensa_find_property_entry
9263 (target_sec_cache->ptbl, target_sec_cache->pte_count,
9264 target_sec->vma + target_loc->target_offset);
9269 /* Make sure that we have not broken any branches. */
9272 init_ebb_constraint (&ebb_table);
9273 ebb = &ebb_table.ebb;
9274 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9275 target_sec_cache->content_length,
9276 target_sec_cache->ptbl, target_sec_cache->pte_count,
9277 target_sec_cache->relocs, target_sec_cache->reloc_count);
9279 /* Propose to add 4 bytes + worst-case alignment size increase to
9281 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9282 ta_fill, target_loc->target_offset,
9283 -4 - (1 << target_sec->alignment_power), TRUE);
9285 /* Check all of the PC-relative relocations to make sure they still fit. */
9286 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9287 target_sec_cache->contents,
9288 target_sec_cache->relocs, NULL,
9294 text_action_add_literal (&target_relax_info->action_list,
9295 ta_add_literal, target_loc, lit_value, -4);
9297 if (target_sec->alignment_power > 2 && target_entry != src_entry)
9299 /* May need to add or remove some fill to maintain alignment. */
9300 int fill_extra_space;
9301 bfd_vma entry_sec_offset;
9304 target_entry->address - target_sec->vma + target_entry->size;
9306 /* If the literal range is at the end of the section,
9308 fill_extra_space = 0;
9310 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9311 target_sec_cache->pte_count,
9313 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9314 fill_extra_space = the_add_entry->size;
9316 target_fa = find_fill_action (&target_relax_info->action_list,
9317 target_sec, entry_sec_offset);
9318 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9319 entry_sec_offset, 4,
9322 adjust_fill_action (target_fa, removed_diff);
9324 text_action_add (&target_relax_info->action_list,
9325 ta_fill, target_sec, entry_sec_offset, removed_diff);
9328 /* Mark that the literal will be moved to the new location. */
9329 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9331 /* Remove the literal. */
9332 text_action_add (&relax_info->action_list,
9333 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9335 /* If the section is 4-byte aligned, do not add fill. */
9336 if (sec->alignment_power > 2 && target_entry != src_entry)
9338 int fill_extra_space;
9339 bfd_vma entry_sec_offset;
9342 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9344 entry_sec_offset = rel->r_rel.target_offset+4;
9346 /* If the literal range is at the end of the section,
9348 fill_extra_space = 0;
9349 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9351 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9352 fill_extra_space = the_add_entry->size;
9354 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9355 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9356 -4, fill_extra_space);
9358 adjust_fill_action (fa, removed_diff);
9360 text_action_add (&relax_info->action_list,
9361 ta_fill, sec, entry_sec_offset, removed_diff);
9368 /* Second relaxation pass. */
9371 action_remove_bytes_fn (splay_tree_node node, void *p)
9373 bfd_size_type *final_size = p;
9374 text_action *action = (text_action *)node->value;
9376 *final_size -= action->removed_bytes;
9380 /* Modify all of the relocations to point to the right spot, and if this
9381 is a relaxable section, delete the unwanted literals and fix the
9385 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9387 Elf_Internal_Rela *internal_relocs;
9388 xtensa_relax_info *relax_info;
9390 bfd_boolean ok = TRUE;
9392 bfd_boolean rv = FALSE;
9393 bfd_boolean virtual_action;
9394 bfd_size_type sec_size;
9396 sec_size = bfd_get_section_limit (abfd, sec);
9397 relax_info = get_xtensa_relax_info (sec);
9398 BFD_ASSERT (relax_info);
9400 /* First translate any of the fixes that have been added already. */
9401 translate_section_fixes (sec);
9403 /* Handle property sections (e.g., literal tables) specially. */
9404 if (xtensa_is_property_section (sec))
9406 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9407 return relax_property_section (abfd, sec, link_info);
9410 internal_relocs = retrieve_internal_relocs (abfd, sec,
9411 link_info->keep_memory);
9412 if (!internal_relocs && !action_list_count (&relax_info->action_list))
9415 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9416 if (contents == NULL && sec_size != 0)
9422 if (internal_relocs)
9424 for (i = 0; i < sec->reloc_count; i++)
9426 Elf_Internal_Rela *irel;
9427 xtensa_relax_info *target_relax_info;
9428 bfd_vma source_offset, old_source_offset;
9431 asection *target_sec;
9433 /* Locally change the source address.
9434 Translate the target to the new target address.
9435 If it points to this section and has been removed,
9439 irel = &internal_relocs[i];
9440 source_offset = irel->r_offset;
9441 old_source_offset = source_offset;
9443 r_type = ELF32_R_TYPE (irel->r_info);
9444 r_reloc_init (&r_rel, abfd, irel, contents,
9445 bfd_get_section_limit (abfd, sec));
9447 /* If this section could have changed then we may need to
9448 change the relocation's offset. */
9450 if (relax_info->is_relaxable_literal_section
9451 || relax_info->is_relaxable_asm_section)
9453 pin_internal_relocs (sec, internal_relocs);
9455 if (r_type != R_XTENSA_NONE
9456 && find_removed_literal (&relax_info->removed_list,
9459 /* Remove this relocation. */
9460 if (elf_hash_table (link_info)->dynamic_sections_created)
9461 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9462 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9463 irel->r_offset = offset_with_removed_text_map
9464 (&relax_info->action_list, irel->r_offset);
9468 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9470 text_action *action =
9471 find_insn_action (&relax_info->action_list,
9473 if (action && (action->action == ta_convert_longcall
9474 || action->action == ta_remove_longcall))
9476 bfd_reloc_status_type retval;
9477 char *error_message = NULL;
9479 retval = contract_asm_expansion (contents, sec_size,
9480 irel, &error_message);
9481 if (retval != bfd_reloc_ok)
9483 (*link_info->callbacks->reloc_dangerous)
9484 (link_info, error_message, abfd, sec,
9488 /* Update the action so that the code that moves
9489 the contents will do the right thing. */
9490 /* ta_remove_longcall and ta_remove_insn actions are
9491 grouped together in the tree as well as
9492 ta_convert_longcall and ta_none, so that changes below
9493 can be done w/o removing and reinserting action into
9496 if (action->action == ta_remove_longcall)
9497 action->action = ta_remove_insn;
9499 action->action = ta_none;
9500 /* Refresh the info in the r_rel. */
9501 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9502 r_type = ELF32_R_TYPE (irel->r_info);
9506 source_offset = offset_with_removed_text_map
9507 (&relax_info->action_list, irel->r_offset);
9508 irel->r_offset = source_offset;
9511 /* If the target section could have changed then
9512 we may need to change the relocation's target offset. */
9514 target_sec = r_reloc_get_section (&r_rel);
9516 /* For a reference to a discarded section from a DWARF section,
9517 i.e., where action_discarded is PRETEND, the symbol will
9518 eventually be modified to refer to the kept section (at least if
9519 the kept and discarded sections are the same size). Anticipate
9520 that here and adjust things accordingly. */
9521 if (! elf_xtensa_ignore_discarded_relocs (sec)
9522 && elf_xtensa_action_discarded (sec) == PRETEND
9523 && sec->sec_info_type != SEC_INFO_TYPE_STABS
9524 && target_sec != NULL
9525 && discarded_section (target_sec))
9527 /* It would be natural to call _bfd_elf_check_kept_section
9528 here, but it's not exported from elflink.c. It's also a
9529 fairly expensive check. Adjusting the relocations to the
9530 discarded section is fairly harmless; it will only adjust
9531 some addends and difference values. If it turns out that
9532 _bfd_elf_check_kept_section fails later, it won't matter,
9533 so just compare the section names to find the right group
9535 asection *kept = target_sec->kept_section;
9538 if ((kept->flags & SEC_GROUP) != 0)
9540 asection *first = elf_next_in_group (kept);
9541 asection *s = first;
9546 if (strcmp (s->name, target_sec->name) == 0)
9551 s = elf_next_in_group (s);
9558 && ((target_sec->rawsize != 0
9559 ? target_sec->rawsize : target_sec->size)
9560 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9564 target_relax_info = get_xtensa_relax_info (target_sec);
9565 if (target_relax_info
9566 && (target_relax_info->is_relaxable_literal_section
9567 || target_relax_info->is_relaxable_asm_section))
9570 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9572 if (r_type == R_XTENSA_DIFF8
9573 || r_type == R_XTENSA_DIFF16
9574 || r_type == R_XTENSA_DIFF32)
9576 bfd_signed_vma diff_value = 0;
9577 bfd_vma new_end_offset, diff_mask = 0;
9579 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9581 (*link_info->callbacks->reloc_dangerous)
9582 (link_info, _("invalid relocation address"),
9583 abfd, sec, old_source_offset);
9589 case R_XTENSA_DIFF8:
9591 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9593 case R_XTENSA_DIFF16:
9595 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9597 case R_XTENSA_DIFF32:
9599 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9603 new_end_offset = offset_with_removed_text_map
9604 (&target_relax_info->action_list,
9605 r_rel.target_offset + diff_value);
9606 diff_value = new_end_offset - new_reloc.target_offset;
9610 case R_XTENSA_DIFF8:
9612 bfd_put_signed_8 (abfd, diff_value,
9613 &contents[old_source_offset]);
9615 case R_XTENSA_DIFF16:
9617 bfd_put_signed_16 (abfd, diff_value,
9618 &contents[old_source_offset]);
9620 case R_XTENSA_DIFF32:
9621 diff_mask = 0x7fffffff;
9622 bfd_put_signed_32 (abfd, diff_value,
9623 &contents[old_source_offset]);
9627 /* Check for overflow. Sign bits must be all zeroes or all ones */
9628 if ((diff_value & ~diff_mask) != 0 &&
9629 (diff_value & ~diff_mask) != (-1 & ~diff_mask))
9631 (*link_info->callbacks->reloc_dangerous)
9632 (link_info, _("overflow after relaxation"),
9633 abfd, sec, old_source_offset);
9637 pin_contents (sec, contents);
9640 /* If the relocation still references a section in the same
9641 input file, modify the relocation directly instead of
9642 adding a "fix" record. */
9643 if (target_sec->owner == abfd)
9645 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9646 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9647 irel->r_addend = new_reloc.rela.r_addend;
9648 pin_internal_relocs (sec, internal_relocs);
9652 bfd_vma addend_displacement;
9655 addend_displacement =
9656 new_reloc.target_offset + new_reloc.virtual_offset;
9657 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9659 addend_displacement, TRUE);
9666 if ((relax_info->is_relaxable_literal_section
9667 || relax_info->is_relaxable_asm_section)
9668 && action_list_count (&relax_info->action_list))
9670 /* Walk through the planned actions and build up a table
9671 of move, copy and fill records. Use the move, copy and
9672 fill records to perform the actions once. */
9674 bfd_size_type final_size, copy_size, orig_insn_size;
9675 bfd_byte *scratch = NULL;
9676 bfd_byte *dup_contents = NULL;
9677 bfd_size_type orig_size = sec->size;
9678 bfd_vma orig_dot = 0;
9679 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9680 orig dot in physical memory. */
9681 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9682 bfd_vma dup_dot = 0;
9684 text_action *action;
9686 final_size = sec->size;
9688 splay_tree_foreach (relax_info->action_list.tree,
9689 action_remove_bytes_fn, &final_size);
9690 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9691 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9693 /* The dot is the current fill location. */
9695 print_action_list (stderr, &relax_info->action_list);
9698 for (action = action_first (&relax_info->action_list); action;
9699 action = action_next (&relax_info->action_list, action))
9701 virtual_action = FALSE;
9702 if (action->offset > orig_dot)
9704 orig_dot += orig_dot_copied;
9705 orig_dot_copied = 0;
9707 /* Out of the virtual world. */
9710 if (action->offset > orig_dot)
9712 copy_size = action->offset - orig_dot;
9713 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9714 orig_dot += copy_size;
9715 dup_dot += copy_size;
9716 BFD_ASSERT (action->offset == orig_dot);
9718 else if (action->offset < orig_dot)
9720 if (action->action == ta_fill
9721 && action->offset - action->removed_bytes == orig_dot)
9723 /* This is OK because the fill only effects the dup_dot. */
9725 else if (action->action == ta_add_literal)
9727 /* TBD. Might need to handle this. */
9730 if (action->offset == orig_dot)
9732 if (action->virtual_offset > orig_dot_vo)
9734 if (orig_dot_vo == 0)
9736 /* Need to copy virtual_offset bytes. Probably four. */
9737 copy_size = action->virtual_offset - orig_dot_vo;
9738 memmove (&dup_contents[dup_dot],
9739 &contents[orig_dot], copy_size);
9740 orig_dot_copied = copy_size;
9741 dup_dot += copy_size;
9743 virtual_action = TRUE;
9746 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9748 switch (action->action)
9750 case ta_remove_literal:
9751 case ta_remove_insn:
9752 BFD_ASSERT (action->removed_bytes >= 0);
9753 orig_dot += action->removed_bytes;
9756 case ta_narrow_insn:
9759 memmove (scratch, &contents[orig_dot], orig_insn_size);
9760 BFD_ASSERT (action->removed_bytes == 1);
9761 rv = narrow_instruction (scratch, final_size, 0);
9763 memmove (&dup_contents[dup_dot], scratch, copy_size);
9764 orig_dot += orig_insn_size;
9765 dup_dot += copy_size;
9769 if (action->removed_bytes >= 0)
9770 orig_dot += action->removed_bytes;
9773 /* Already zeroed in dup_contents. Just bump the
9775 dup_dot += (-action->removed_bytes);
9780 BFD_ASSERT (action->removed_bytes == 0);
9783 case ta_convert_longcall:
9784 case ta_remove_longcall:
9785 /* These will be removed or converted before we get here. */
9792 memmove (scratch, &contents[orig_dot], orig_insn_size);
9793 BFD_ASSERT (action->removed_bytes == -1);
9794 rv = widen_instruction (scratch, final_size, 0);
9796 memmove (&dup_contents[dup_dot], scratch, copy_size);
9797 orig_dot += orig_insn_size;
9798 dup_dot += copy_size;
9801 case ta_add_literal:
9804 BFD_ASSERT (action->removed_bytes == -4);
9805 /* TBD -- place the literal value here and insert
9807 memset (&dup_contents[dup_dot], 0, 4);
9808 pin_internal_relocs (sec, internal_relocs);
9809 pin_contents (sec, contents);
9811 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9812 relax_info, &internal_relocs, &action->value))
9816 orig_dot_vo += copy_size;
9818 orig_dot += orig_insn_size;
9819 dup_dot += copy_size;
9823 /* Not implemented yet. */
9828 BFD_ASSERT (dup_dot <= final_size);
9829 BFD_ASSERT (orig_dot <= orig_size);
9832 orig_dot += orig_dot_copied;
9833 orig_dot_copied = 0;
9835 if (orig_dot != orig_size)
9837 copy_size = orig_size - orig_dot;
9838 BFD_ASSERT (orig_size > orig_dot);
9839 BFD_ASSERT (dup_dot + copy_size == final_size);
9840 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9841 orig_dot += copy_size;
9842 dup_dot += copy_size;
9844 BFD_ASSERT (orig_size == orig_dot);
9845 BFD_ASSERT (final_size == dup_dot);
9847 /* Move the dup_contents back. */
9848 if (final_size > orig_size)
9850 /* Contents need to be reallocated. Swap the dup_contents into
9852 sec->contents = dup_contents;
9854 contents = dup_contents;
9855 pin_contents (sec, contents);
9859 BFD_ASSERT (final_size <= orig_size);
9860 memset (contents, 0, orig_size);
9861 memcpy (contents, dup_contents, final_size);
9862 free (dup_contents);
9865 pin_contents (sec, contents);
9867 if (sec->rawsize == 0)
9868 sec->rawsize = sec->size;
9869 sec->size = final_size;
9873 release_internal_relocs (sec, internal_relocs);
9874 release_contents (sec, contents);
9880 translate_section_fixes (asection *sec)
9882 xtensa_relax_info *relax_info;
9885 relax_info = get_xtensa_relax_info (sec);
9889 for (r = relax_info->fix_list; r != NULL; r = r->next)
9890 if (!translate_reloc_bfd_fix (r))
9897 /* Translate a fix given the mapping in the relax info for the target
9898 section. If it has already been translated, no work is required. */
9901 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9903 reloc_bfd_fix new_fix;
9905 xtensa_relax_info *relax_info;
9906 removed_literal *removed;
9907 bfd_vma new_offset, target_offset;
9909 if (fix->translated)
9912 sec = fix->target_sec;
9913 target_offset = fix->target_offset;
9915 relax_info = get_xtensa_relax_info (sec);
9918 fix->translated = TRUE;
9924 /* The fix does not need to be translated if the section cannot change. */
9925 if (!relax_info->is_relaxable_literal_section
9926 && !relax_info->is_relaxable_asm_section)
9928 fix->translated = TRUE;
9932 /* If the literal has been moved and this relocation was on an
9933 opcode, then the relocation should move to the new literal
9934 location. Otherwise, the relocation should move within the
9938 if (is_operand_relocation (fix->src_type))
9940 /* Check if the original relocation is against a literal being
9942 removed = find_removed_literal (&relax_info->removed_list,
9950 /* The fact that there is still a relocation to this literal indicates
9951 that the literal is being coalesced, not simply removed. */
9952 BFD_ASSERT (removed->to.abfd != NULL);
9954 /* This was moved to some other address (possibly another section). */
9955 new_sec = r_reloc_get_section (&removed->to);
9959 relax_info = get_xtensa_relax_info (sec);
9961 (!relax_info->is_relaxable_literal_section
9962 && !relax_info->is_relaxable_asm_section))
9964 target_offset = removed->to.target_offset;
9965 new_fix.target_sec = new_sec;
9966 new_fix.target_offset = target_offset;
9967 new_fix.translated = TRUE;
9972 target_offset = removed->to.target_offset;
9973 new_fix.target_sec = new_sec;
9976 /* The target address may have been moved within its section. */
9977 new_offset = offset_with_removed_text (&relax_info->action_list,
9980 new_fix.target_offset = new_offset;
9981 new_fix.target_offset = new_offset;
9982 new_fix.translated = TRUE;
9988 /* Fix up a relocation to take account of removed literals. */
9991 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9993 xtensa_relax_info *relax_info;
9994 removed_literal *removed;
9995 bfd_vma target_offset, base_offset;
9997 *new_rel = *orig_rel;
9999 if (!r_reloc_is_defined (orig_rel))
10002 relax_info = get_xtensa_relax_info (sec);
10003 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
10004 || relax_info->is_relaxable_asm_section));
10006 target_offset = orig_rel->target_offset;
10009 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
10011 /* Check if the original relocation is against a literal being
10013 removed = find_removed_literal (&relax_info->removed_list,
10016 if (removed && removed->to.abfd)
10020 /* The fact that there is still a relocation to this literal indicates
10021 that the literal is being coalesced, not simply removed. */
10022 BFD_ASSERT (removed->to.abfd != NULL);
10024 /* This was moved to some other address
10025 (possibly in another section). */
10026 *new_rel = removed->to;
10027 new_sec = r_reloc_get_section (new_rel);
10028 if (new_sec != sec)
10031 relax_info = get_xtensa_relax_info (sec);
10033 || (!relax_info->is_relaxable_literal_section
10034 && !relax_info->is_relaxable_asm_section))
10037 target_offset = new_rel->target_offset;
10040 /* Find the base offset of the reloc symbol, excluding any addend from the
10041 reloc or from the section contents (for a partial_inplace reloc). Then
10042 find the adjusted values of the offsets due to relaxation. The base
10043 offset is needed to determine the change to the reloc's addend; the reloc
10044 addend should not be adjusted due to relaxations located before the base
10047 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
10048 if (base_offset <= target_offset)
10050 int base_removed = removed_by_actions_map (&relax_info->action_list,
10051 base_offset, FALSE);
10052 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10053 target_offset, FALSE) -
10056 new_rel->target_offset = target_offset - base_removed - addend_removed;
10057 new_rel->rela.r_addend -= addend_removed;
10061 /* Handle a negative addend. The base offset comes first. */
10062 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
10063 target_offset, FALSE);
10064 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10065 base_offset, FALSE) -
10068 new_rel->target_offset = target_offset - tgt_removed;
10069 new_rel->rela.r_addend += addend_removed;
10076 /* For dynamic links, there may be a dynamic relocation for each
10077 literal. The number of dynamic relocations must be computed in
10078 size_dynamic_sections, which occurs before relaxation. When a
10079 literal is removed, this function checks if there is a corresponding
10080 dynamic relocation and shrinks the size of the appropriate dynamic
10081 relocation section accordingly. At this point, the contents of the
10082 dynamic relocation sections have not yet been filled in, so there's
10083 nothing else that needs to be done. */
10086 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10088 asection *input_section,
10089 Elf_Internal_Rela *rel)
10091 struct elf_xtensa_link_hash_table *htab;
10092 Elf_Internal_Shdr *symtab_hdr;
10093 struct elf_link_hash_entry **sym_hashes;
10094 unsigned long r_symndx;
10096 struct elf_link_hash_entry *h;
10097 bfd_boolean dynamic_symbol;
10099 htab = elf_xtensa_hash_table (info);
10103 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10104 sym_hashes = elf_sym_hashes (abfd);
10106 r_type = ELF32_R_TYPE (rel->r_info);
10107 r_symndx = ELF32_R_SYM (rel->r_info);
10109 if (r_symndx < symtab_hdr->sh_info)
10112 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10114 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
10116 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10117 && (input_section->flags & SEC_ALLOC) != 0
10118 && (dynamic_symbol || bfd_link_pic (info)))
10121 bfd_boolean is_plt = FALSE;
10123 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10125 srel = htab->elf.srelplt;
10129 srel = htab->elf.srelgot;
10131 /* Reduce size of the .rela.* section by one reloc. */
10132 BFD_ASSERT (srel != NULL);
10133 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10134 srel->size -= sizeof (Elf32_External_Rela);
10138 asection *splt, *sgotplt, *srelgot;
10139 int reloc_index, chunk;
10141 /* Find the PLT reloc index of the entry being removed. This
10142 is computed from the size of ".rela.plt". It is needed to
10143 figure out which PLT chunk to resize. Usually "last index
10144 = size - 1" since the index starts at zero, but in this
10145 context, the size has just been decremented so there's no
10146 need to subtract one. */
10147 reloc_index = srel->size / sizeof (Elf32_External_Rela);
10149 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
10150 splt = elf_xtensa_get_plt_section (info, chunk);
10151 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
10152 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10154 /* Check if an entire PLT chunk has just been eliminated. */
10155 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10157 /* The two magic GOT entries for that chunk can go away. */
10158 srelgot = htab->elf.srelgot;
10159 BFD_ASSERT (srelgot != NULL);
10160 srelgot->reloc_count -= 2;
10161 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10162 sgotplt->size -= 8;
10164 /* There should be only one entry left (and it will be
10166 BFD_ASSERT (sgotplt->size == 4);
10167 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
10170 BFD_ASSERT (sgotplt->size >= 4);
10171 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
10173 sgotplt->size -= 4;
10174 splt->size -= PLT_ENTRY_SIZE;
10180 /* Take an r_rel and move it to another section. This usually
10181 requires extending the interal_relocation array and pinning it. If
10182 the original r_rel is from the same BFD, we can complete this here.
10183 Otherwise, we add a fix record to let the final link fix the
10184 appropriate address. Contents and internal relocations for the
10185 section must be pinned after calling this routine. */
10188 move_literal (bfd *abfd,
10189 struct bfd_link_info *link_info,
10192 bfd_byte *contents,
10193 xtensa_relax_info *relax_info,
10194 Elf_Internal_Rela **internal_relocs_p,
10195 const literal_value *lit)
10197 Elf_Internal_Rela *new_relocs = NULL;
10198 size_t new_relocs_count = 0;
10199 Elf_Internal_Rela this_rela;
10200 const r_reloc *r_rel;
10202 r_rel = &lit->r_rel;
10203 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10205 if (r_reloc_is_const (r_rel))
10206 bfd_put_32 (abfd, lit->value, contents + offset);
10211 reloc_bfd_fix *fix;
10212 unsigned insert_at;
10214 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
10216 /* This is the difficult case. We have to create a fix up. */
10217 this_rela.r_offset = offset;
10218 this_rela.r_info = ELF32_R_INFO (0, r_type);
10219 this_rela.r_addend =
10220 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10221 bfd_put_32 (abfd, lit->value, contents + offset);
10223 /* Currently, we cannot move relocations during a relocatable link. */
10224 BFD_ASSERT (!bfd_link_relocatable (link_info));
10225 fix = reloc_bfd_fix_init (sec, offset, r_type,
10226 r_reloc_get_section (r_rel),
10227 r_rel->target_offset + r_rel->virtual_offset,
10229 /* We also need to mark that relocations are needed here. */
10230 sec->flags |= SEC_RELOC;
10232 translate_reloc_bfd_fix (fix);
10233 /* This fix has not yet been translated. */
10234 add_fix (sec, fix);
10236 /* Add the relocation. If we have already allocated our own
10237 space for the relocations and we have room for more, then use
10238 it. Otherwise, allocate new space and move the literals. */
10239 insert_at = sec->reloc_count;
10240 for (i = 0; i < sec->reloc_count; ++i)
10242 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10249 if (*internal_relocs_p != relax_info->allocated_relocs
10250 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10252 BFD_ASSERT (relax_info->allocated_relocs == NULL
10253 || sec->reloc_count == relax_info->relocs_count);
10255 if (relax_info->allocated_relocs_count == 0)
10256 new_relocs_count = (sec->reloc_count + 2) * 2;
10258 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10260 new_relocs = (Elf_Internal_Rela *)
10261 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10265 /* We could handle this more quickly by finding the split point. */
10266 if (insert_at != 0)
10267 memcpy (new_relocs, *internal_relocs_p,
10268 insert_at * sizeof (Elf_Internal_Rela));
10270 new_relocs[insert_at] = this_rela;
10272 if (insert_at != sec->reloc_count)
10273 memcpy (new_relocs + insert_at + 1,
10274 (*internal_relocs_p) + insert_at,
10275 (sec->reloc_count - insert_at)
10276 * sizeof (Elf_Internal_Rela));
10278 if (*internal_relocs_p != relax_info->allocated_relocs)
10280 /* The first time we re-allocate, we can only free the
10281 old relocs if they were allocated with bfd_malloc.
10282 This is not true when keep_memory is in effect. */
10283 if (!link_info->keep_memory)
10284 free (*internal_relocs_p);
10287 free (*internal_relocs_p);
10288 relax_info->allocated_relocs = new_relocs;
10289 relax_info->allocated_relocs_count = new_relocs_count;
10290 elf_section_data (sec)->relocs = new_relocs;
10291 sec->reloc_count++;
10292 relax_info->relocs_count = sec->reloc_count;
10293 *internal_relocs_p = new_relocs;
10297 if (insert_at != sec->reloc_count)
10300 for (idx = sec->reloc_count; idx > insert_at; idx--)
10301 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10303 (*internal_relocs_p)[insert_at] = this_rela;
10304 sec->reloc_count++;
10305 if (relax_info->allocated_relocs)
10306 relax_info->relocs_count = sec->reloc_count;
10313 /* This is similar to relax_section except that when a target is moved,
10314 we shift addresses up. We also need to modify the size. This
10315 algorithm does NOT allow for relocations into the middle of the
10316 property sections. */
10319 relax_property_section (bfd *abfd,
10321 struct bfd_link_info *link_info)
10323 Elf_Internal_Rela *internal_relocs;
10324 bfd_byte *contents;
10326 bfd_boolean ok = TRUE;
10327 bfd_boolean is_full_prop_section;
10328 size_t last_zfill_target_offset = 0;
10329 asection *last_zfill_target_sec = NULL;
10330 bfd_size_type sec_size;
10331 bfd_size_type entry_size;
10333 sec_size = bfd_get_section_limit (abfd, sec);
10334 internal_relocs = retrieve_internal_relocs (abfd, sec,
10335 link_info->keep_memory);
10336 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10337 if (contents == NULL && sec_size != 0)
10343 is_full_prop_section = xtensa_is_proptable_section (sec);
10344 if (is_full_prop_section)
10349 if (internal_relocs)
10351 for (i = 0; i < sec->reloc_count; i++)
10353 Elf_Internal_Rela *irel;
10354 xtensa_relax_info *target_relax_info;
10356 asection *target_sec;
10358 bfd_byte *size_p, *flags_p;
10360 /* Locally change the source address.
10361 Translate the target to the new target address.
10362 If it points to this section and has been removed, MOVE IT.
10363 Also, don't forget to modify the associated SIZE at
10366 irel = &internal_relocs[i];
10367 r_type = ELF32_R_TYPE (irel->r_info);
10368 if (r_type == R_XTENSA_NONE)
10371 /* Find the literal value. */
10372 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10373 size_p = &contents[irel->r_offset + 4];
10375 if (is_full_prop_section)
10376 flags_p = &contents[irel->r_offset + 8];
10377 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10379 target_sec = r_reloc_get_section (&val.r_rel);
10380 target_relax_info = get_xtensa_relax_info (target_sec);
10382 if (target_relax_info
10383 && (target_relax_info->is_relaxable_literal_section
10384 || target_relax_info->is_relaxable_asm_section ))
10386 /* Translate the relocation's destination. */
10387 bfd_vma old_offset = val.r_rel.target_offset;
10388 bfd_vma new_offset;
10389 long old_size, new_size;
10390 int removed_by_old_offset =
10391 removed_by_actions_map (&target_relax_info->action_list,
10392 old_offset, FALSE);
10393 new_offset = old_offset - removed_by_old_offset;
10395 /* Assert that we are not out of bounds. */
10396 old_size = bfd_get_32 (abfd, size_p);
10397 new_size = old_size;
10401 /* Only the first zero-sized unreachable entry is
10402 allowed to expand. In this case the new offset
10403 should be the offset before the fill and the new
10404 size is the expansion size. For other zero-sized
10405 entries the resulting size should be zero with an
10406 offset before or after the fill address depending
10407 on whether the expanding unreachable entry
10409 if (last_zfill_target_sec == 0
10410 || last_zfill_target_sec != target_sec
10411 || last_zfill_target_offset != old_offset)
10413 bfd_vma new_end_offset = new_offset;
10415 /* Recompute the new_offset, but this time don't
10416 include any fill inserted by relaxation. */
10417 removed_by_old_offset =
10418 removed_by_actions_map (&target_relax_info->action_list,
10420 new_offset = old_offset - removed_by_old_offset;
10422 /* If it is not unreachable and we have not yet
10423 seen an unreachable at this address, place it
10424 before the fill address. */
10425 if (flags_p && (bfd_get_32 (abfd, flags_p)
10426 & XTENSA_PROP_UNREACHABLE) != 0)
10428 new_size = new_end_offset - new_offset;
10430 last_zfill_target_sec = target_sec;
10431 last_zfill_target_offset = old_offset;
10437 int removed_by_old_offset_size =
10438 removed_by_actions_map (&target_relax_info->action_list,
10439 old_offset + old_size, TRUE);
10440 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10443 if (new_size != old_size)
10445 bfd_put_32 (abfd, new_size, size_p);
10446 pin_contents (sec, contents);
10449 if (new_offset != old_offset)
10451 bfd_vma diff = new_offset - old_offset;
10452 irel->r_addend += diff;
10453 pin_internal_relocs (sec, internal_relocs);
10459 /* Combine adjacent property table entries. This is also done in
10460 finish_dynamic_sections() but at that point it's too late to
10461 reclaim the space in the output section, so we do this twice. */
10463 if (internal_relocs && (!bfd_link_relocatable (link_info)
10464 || xtensa_is_littable_section (sec)))
10466 Elf_Internal_Rela *last_irel = NULL;
10467 Elf_Internal_Rela *irel, *next_rel, *rel_end;
10468 int removed_bytes = 0;
10470 flagword predef_flags;
10472 predef_flags = xtensa_get_property_predef_flags (sec);
10474 /* Walk over memory and relocations at the same time.
10475 This REQUIRES that the internal_relocs be sorted by offset. */
10476 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10477 internal_reloc_compare);
10479 pin_internal_relocs (sec, internal_relocs);
10480 pin_contents (sec, contents);
10482 next_rel = internal_relocs;
10483 rel_end = internal_relocs + sec->reloc_count;
10485 BFD_ASSERT (sec->size % entry_size == 0);
10487 for (offset = 0; offset < sec->size; offset += entry_size)
10489 Elf_Internal_Rela *offset_rel, *extra_rel;
10490 bfd_vma bytes_to_remove, size, actual_offset;
10491 bfd_boolean remove_this_rel;
10494 /* Find the first relocation for the entry at the current offset.
10495 Adjust the offsets of any extra relocations for the previous
10500 for (irel = next_rel; irel < rel_end; irel++)
10502 if ((irel->r_offset == offset
10503 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10504 || irel->r_offset > offset)
10509 irel->r_offset -= removed_bytes;
10513 /* Find the next relocation (if there are any left). */
10517 for (irel = offset_rel + 1; irel < rel_end; irel++)
10519 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10527 /* Check if there are relocations on the current entry. There
10528 should usually be a relocation on the offset field. If there
10529 are relocations on the size or flags, then we can't optimize
10530 this entry. Also, find the next relocation to examine on the
10534 if (offset_rel->r_offset >= offset + entry_size)
10536 next_rel = offset_rel;
10537 /* There are no relocations on the current entry, but we
10538 might still be able to remove it if the size is zero. */
10541 else if (offset_rel->r_offset > offset
10543 && extra_rel->r_offset < offset + entry_size))
10545 /* There is a relocation on the size or flags, so we can't
10546 do anything with this entry. Continue with the next. */
10547 next_rel = offset_rel;
10552 BFD_ASSERT (offset_rel->r_offset == offset);
10553 offset_rel->r_offset -= removed_bytes;
10554 next_rel = offset_rel + 1;
10560 remove_this_rel = FALSE;
10561 bytes_to_remove = 0;
10562 actual_offset = offset - removed_bytes;
10563 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10565 if (is_full_prop_section)
10566 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10568 flags = predef_flags;
10571 && (flags & XTENSA_PROP_ALIGN) == 0
10572 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10574 /* Always remove entries with zero size and no alignment. */
10575 bytes_to_remove = entry_size;
10577 remove_this_rel = TRUE;
10579 else if (offset_rel
10580 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10584 flagword old_flags;
10586 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10587 bfd_vma old_address =
10588 (last_irel->r_addend
10589 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10590 bfd_vma new_address =
10591 (offset_rel->r_addend
10592 + bfd_get_32 (abfd, &contents[actual_offset]));
10593 if (is_full_prop_section)
10594 old_flags = bfd_get_32
10595 (abfd, &contents[last_irel->r_offset + 8]);
10597 old_flags = predef_flags;
10599 if ((ELF32_R_SYM (offset_rel->r_info)
10600 == ELF32_R_SYM (last_irel->r_info))
10601 && old_address + old_size == new_address
10602 && old_flags == flags
10603 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10604 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10606 /* Fix the old size. */
10607 bfd_put_32 (abfd, old_size + size,
10608 &contents[last_irel->r_offset + 4]);
10609 bytes_to_remove = entry_size;
10610 remove_this_rel = TRUE;
10613 last_irel = offset_rel;
10616 last_irel = offset_rel;
10619 if (remove_this_rel)
10621 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10622 offset_rel->r_offset = 0;
10625 if (bytes_to_remove != 0)
10627 removed_bytes += bytes_to_remove;
10628 if (offset + bytes_to_remove < sec->size)
10629 memmove (&contents[actual_offset],
10630 &contents[actual_offset + bytes_to_remove],
10631 sec->size - offset - bytes_to_remove);
10637 /* Fix up any extra relocations on the last entry. */
10638 for (irel = next_rel; irel < rel_end; irel++)
10639 irel->r_offset -= removed_bytes;
10641 /* Clear the removed bytes. */
10642 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10644 if (sec->rawsize == 0)
10645 sec->rawsize = sec->size;
10646 sec->size -= removed_bytes;
10648 if (xtensa_is_littable_section (sec))
10650 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10652 sgotloc->size -= removed_bytes;
10658 release_internal_relocs (sec, internal_relocs);
10659 release_contents (sec, contents);
10664 /* Third relaxation pass. */
10666 /* Change symbol values to account for removed literals. */
10669 relax_section_symbols (bfd *abfd, asection *sec)
10671 xtensa_relax_info *relax_info;
10672 unsigned int sec_shndx;
10673 Elf_Internal_Shdr *symtab_hdr;
10674 Elf_Internal_Sym *isymbuf;
10675 unsigned i, num_syms, num_locals;
10677 relax_info = get_xtensa_relax_info (sec);
10678 BFD_ASSERT (relax_info);
10680 if (!relax_info->is_relaxable_literal_section
10681 && !relax_info->is_relaxable_asm_section)
10684 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10686 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10687 isymbuf = retrieve_local_syms (abfd);
10689 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10690 num_locals = symtab_hdr->sh_info;
10692 /* Adjust the local symbols defined in this section. */
10693 for (i = 0; i < num_locals; i++)
10695 Elf_Internal_Sym *isym = &isymbuf[i];
10697 if (isym->st_shndx == sec_shndx)
10699 bfd_vma orig_addr = isym->st_value;
10700 int removed = removed_by_actions_map (&relax_info->action_list,
10703 isym->st_value -= removed;
10704 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10706 removed_by_actions_map (&relax_info->action_list,
10707 orig_addr + isym->st_size, FALSE) -
10712 /* Now adjust the global symbols defined in this section. */
10713 for (i = 0; i < (num_syms - num_locals); i++)
10715 struct elf_link_hash_entry *sym_hash;
10717 sym_hash = elf_sym_hashes (abfd)[i];
10719 if (sym_hash->root.type == bfd_link_hash_warning)
10720 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10722 if ((sym_hash->root.type == bfd_link_hash_defined
10723 || sym_hash->root.type == bfd_link_hash_defweak)
10724 && sym_hash->root.u.def.section == sec)
10726 bfd_vma orig_addr = sym_hash->root.u.def.value;
10727 int removed = removed_by_actions_map (&relax_info->action_list,
10730 sym_hash->root.u.def.value -= removed;
10732 if (sym_hash->type == STT_FUNC)
10734 removed_by_actions_map (&relax_info->action_list,
10735 orig_addr + sym_hash->size, FALSE) -
10744 /* "Fix" handling functions, called while performing relocations. */
10747 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10749 asection *input_section,
10750 bfd_byte *contents)
10753 asection *sec, *old_sec;
10754 bfd_vma old_offset;
10755 int r_type = ELF32_R_TYPE (rel->r_info);
10756 reloc_bfd_fix *fix;
10758 if (r_type == R_XTENSA_NONE)
10761 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10765 r_reloc_init (&r_rel, input_bfd, rel, contents,
10766 bfd_get_section_limit (input_bfd, input_section));
10767 old_sec = r_reloc_get_section (&r_rel);
10768 old_offset = r_rel.target_offset;
10770 if (!old_sec || !r_reloc_is_defined (&r_rel))
10772 if (r_type != R_XTENSA_ASM_EXPAND)
10775 /* xgettext:c-format */
10776 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10777 input_bfd, input_section, rel->r_offset,
10778 elf_howto_table[r_type].name);
10781 /* Leave it be. Resolution will happen in a later stage. */
10785 sec = fix->target_sec;
10786 rel->r_addend += ((sec->output_offset + fix->target_offset)
10787 - (old_sec->output_offset + old_offset));
10794 do_fix_for_final_link (Elf_Internal_Rela *rel,
10796 asection *input_section,
10797 bfd_byte *contents,
10798 bfd_vma *relocationp)
10801 int r_type = ELF32_R_TYPE (rel->r_info);
10802 reloc_bfd_fix *fix;
10803 bfd_vma fixup_diff;
10805 if (r_type == R_XTENSA_NONE)
10808 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10812 sec = fix->target_sec;
10814 fixup_diff = rel->r_addend;
10815 if (elf_howto_table[fix->src_type].partial_inplace)
10817 bfd_vma inplace_val;
10818 BFD_ASSERT (fix->src_offset
10819 < bfd_get_section_limit (input_bfd, input_section));
10820 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10821 fixup_diff += inplace_val;
10824 *relocationp = (sec->output_section->vma
10825 + sec->output_offset
10826 + fix->target_offset - fixup_diff);
10830 /* Miscellaneous utility functions.... */
10833 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10839 return elf_hash_table (info)->splt;
10841 dynobj = elf_hash_table (info)->dynobj;
10842 sprintf (plt_name, ".plt.%u", chunk);
10843 return bfd_get_linker_section (dynobj, plt_name);
10848 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10854 return elf_hash_table (info)->sgotplt;
10856 dynobj = elf_hash_table (info)->dynobj;
10857 sprintf (got_name, ".got.plt.%u", chunk);
10858 return bfd_get_linker_section (dynobj, got_name);
10862 /* Get the input section for a given symbol index.
10864 . a section symbol, return the section;
10865 . a common symbol, return the common section;
10866 . an undefined symbol, return the undefined section;
10867 . an indirect symbol, follow the links;
10868 . an absolute value, return the absolute section. */
10871 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10873 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10874 asection *target_sec = NULL;
10875 if (r_symndx < symtab_hdr->sh_info)
10877 Elf_Internal_Sym *isymbuf;
10878 unsigned int section_index;
10880 isymbuf = retrieve_local_syms (abfd);
10881 section_index = isymbuf[r_symndx].st_shndx;
10883 if (section_index == SHN_UNDEF)
10884 target_sec = bfd_und_section_ptr;
10885 else if (section_index == SHN_ABS)
10886 target_sec = bfd_abs_section_ptr;
10887 else if (section_index == SHN_COMMON)
10888 target_sec = bfd_com_section_ptr;
10890 target_sec = bfd_section_from_elf_index (abfd, section_index);
10894 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10895 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10897 while (h->root.type == bfd_link_hash_indirect
10898 || h->root.type == bfd_link_hash_warning)
10899 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10901 switch (h->root.type)
10903 case bfd_link_hash_defined:
10904 case bfd_link_hash_defweak:
10905 target_sec = h->root.u.def.section;
10907 case bfd_link_hash_common:
10908 target_sec = bfd_com_section_ptr;
10910 case bfd_link_hash_undefined:
10911 case bfd_link_hash_undefweak:
10912 target_sec = bfd_und_section_ptr;
10914 default: /* New indirect warning. */
10915 target_sec = bfd_und_section_ptr;
10923 static struct elf_link_hash_entry *
10924 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10926 unsigned long indx;
10927 struct elf_link_hash_entry *h;
10928 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10930 if (r_symndx < symtab_hdr->sh_info)
10933 indx = r_symndx - symtab_hdr->sh_info;
10934 h = elf_sym_hashes (abfd)[indx];
10935 while (h->root.type == bfd_link_hash_indirect
10936 || h->root.type == bfd_link_hash_warning)
10937 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10942 /* Get the section-relative offset for a symbol number. */
10945 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10947 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10948 bfd_vma offset = 0;
10950 if (r_symndx < symtab_hdr->sh_info)
10952 Elf_Internal_Sym *isymbuf;
10953 isymbuf = retrieve_local_syms (abfd);
10954 offset = isymbuf[r_symndx].st_value;
10958 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10959 struct elf_link_hash_entry *h =
10960 elf_sym_hashes (abfd)[indx];
10962 while (h->root.type == bfd_link_hash_indirect
10963 || h->root.type == bfd_link_hash_warning)
10964 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10965 if (h->root.type == bfd_link_hash_defined
10966 || h->root.type == bfd_link_hash_defweak)
10967 offset = h->root.u.def.value;
10974 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10976 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10977 struct elf_link_hash_entry *h;
10979 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10980 if (h && h->root.type == bfd_link_hash_defweak)
10987 pcrel_reloc_fits (xtensa_opcode opc,
10989 bfd_vma self_address,
10990 bfd_vma dest_address)
10992 xtensa_isa isa = xtensa_default_isa;
10993 uint32 valp = dest_address;
10994 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10995 || xtensa_operand_encode (isa, opc, opnd, &valp))
11002 xtensa_is_property_section (asection *sec)
11004 if (xtensa_is_insntable_section (sec)
11005 || xtensa_is_littable_section (sec)
11006 || xtensa_is_proptable_section (sec))
11014 xtensa_is_insntable_section (asection *sec)
11016 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
11017 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
11025 xtensa_is_littable_section (asection *sec)
11027 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
11028 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
11036 xtensa_is_proptable_section (asection *sec)
11038 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
11039 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
11047 internal_reloc_compare (const void *ap, const void *bp)
11049 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11050 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11052 if (a->r_offset != b->r_offset)
11053 return (a->r_offset - b->r_offset);
11055 /* We don't need to sort on these criteria for correctness,
11056 but enforcing a more strict ordering prevents unstable qsort
11057 from behaving differently with different implementations.
11058 Without the code below we get correct but different results
11059 on Solaris 2.7 and 2.8. We would like to always produce the
11060 same results no matter the host. */
11062 if (a->r_info != b->r_info)
11063 return (a->r_info - b->r_info);
11065 return (a->r_addend - b->r_addend);
11070 internal_reloc_matches (const void *ap, const void *bp)
11072 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11073 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11075 /* Check if one entry overlaps with the other; this shouldn't happen
11076 except when searching for a match. */
11077 return (a->r_offset - b->r_offset);
11081 /* Predicate function used to look up a section in a particular group. */
11084 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11086 const char *gname = inf;
11087 const char *group_name = elf_group_name (sec);
11089 return (group_name == gname
11090 || (group_name != NULL
11092 && strcmp (group_name, gname) == 0));
11096 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11099 xtensa_property_section_name (asection *sec, const char *base_name)
11101 const char *suffix, *group_name;
11102 char *prop_sec_name;
11104 group_name = elf_group_name (sec);
11107 suffix = strrchr (sec->name, '.');
11108 if (suffix == sec->name)
11110 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
11111 + (suffix ? strlen (suffix) : 0));
11112 strcpy (prop_sec_name, base_name);
11114 strcat (prop_sec_name, suffix);
11116 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
11118 char *linkonce_kind = 0;
11120 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
11121 linkonce_kind = "x.";
11122 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
11123 linkonce_kind = "p.";
11124 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11125 linkonce_kind = "prop.";
11129 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11130 + strlen (linkonce_kind) + 1);
11131 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
11132 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
11134 suffix = sec->name + linkonce_len;
11135 /* For backward compatibility, replace "t." instead of inserting
11136 the new linkonce_kind (but not for "prop" sections). */
11137 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
11139 strcat (prop_sec_name + linkonce_len, suffix);
11142 prop_sec_name = strdup (base_name);
11144 return prop_sec_name;
11149 xtensa_get_property_section (asection *sec, const char *base_name)
11151 char *prop_sec_name;
11152 asection *prop_sec;
11154 prop_sec_name = xtensa_property_section_name (sec, base_name);
11155 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11156 match_section_group,
11157 (void *) elf_group_name (sec));
11158 free (prop_sec_name);
11164 xtensa_make_property_section (asection *sec, const char *base_name)
11166 char *prop_sec_name;
11167 asection *prop_sec;
11169 /* Check if the section already exists. */
11170 prop_sec_name = xtensa_property_section_name (sec, base_name);
11171 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11172 match_section_group,
11173 (void *) elf_group_name (sec));
11174 /* If not, create it. */
11177 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11178 flags |= (bfd_get_section_flags (sec->owner, sec)
11179 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11181 prop_sec = bfd_make_section_anyway_with_flags
11182 (sec->owner, strdup (prop_sec_name), flags);
11186 elf_group_name (prop_sec) = elf_group_name (sec);
11189 free (prop_sec_name);
11195 xtensa_get_property_predef_flags (asection *sec)
11197 if (xtensa_is_insntable_section (sec))
11198 return (XTENSA_PROP_INSN
11199 | XTENSA_PROP_NO_TRANSFORM
11200 | XTENSA_PROP_INSN_NO_REORDER);
11202 if (xtensa_is_littable_section (sec))
11203 return (XTENSA_PROP_LITERAL
11204 | XTENSA_PROP_NO_TRANSFORM
11205 | XTENSA_PROP_INSN_NO_REORDER);
11211 /* Other functions called directly by the linker. */
11214 xtensa_callback_required_dependence (bfd *abfd,
11216 struct bfd_link_info *link_info,
11217 deps_callback_t callback,
11220 Elf_Internal_Rela *internal_relocs;
11221 bfd_byte *contents;
11223 bfd_boolean ok = TRUE;
11224 bfd_size_type sec_size;
11226 sec_size = bfd_get_section_limit (abfd, sec);
11228 /* ".plt*" sections have no explicit relocations but they contain L32R
11229 instructions that reference the corresponding ".got.plt*" sections. */
11230 if ((sec->flags & SEC_LINKER_CREATED) != 0
11231 && CONST_STRNEQ (sec->name, ".plt"))
11235 /* Find the corresponding ".got.plt*" section. */
11236 if (sec->name[4] == '\0')
11237 sgotplt = elf_hash_table (link_info)->sgotplt;
11243 BFD_ASSERT (sec->name[4] == '.');
11244 chunk = strtol (&sec->name[5], NULL, 10);
11246 sprintf (got_name, ".got.plt.%u", chunk);
11247 sgotplt = bfd_get_linker_section (sec->owner, got_name);
11249 BFD_ASSERT (sgotplt);
11251 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11252 section referencing a literal at the very beginning of
11253 ".got.plt". This is very close to the real dependence, anyway. */
11254 (*callback) (sec, sec_size, sgotplt, 0, closure);
11257 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11258 when building uclibc, which runs "ld -b binary /dev/null". */
11259 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11262 internal_relocs = retrieve_internal_relocs (abfd, sec,
11263 link_info->keep_memory);
11264 if (internal_relocs == NULL
11265 || sec->reloc_count == 0)
11268 /* Cache the contents for the duration of this scan. */
11269 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11270 if (contents == NULL && sec_size != 0)
11276 if (!xtensa_default_isa)
11277 xtensa_default_isa = xtensa_isa_init (0, 0);
11279 for (i = 0; i < sec->reloc_count; i++)
11281 Elf_Internal_Rela *irel = &internal_relocs[i];
11282 if (is_l32r_relocation (abfd, sec, contents, irel))
11285 asection *target_sec;
11286 bfd_vma target_offset;
11288 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11291 /* L32Rs must be local to the input file. */
11292 if (r_reloc_is_defined (&l32r_rel))
11294 target_sec = r_reloc_get_section (&l32r_rel);
11295 target_offset = l32r_rel.target_offset;
11297 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11303 release_internal_relocs (sec, internal_relocs);
11304 release_contents (sec, contents);
11308 /* The default literal sections should always be marked as "code" (i.e.,
11309 SHF_EXECINSTR). This is particularly important for the Linux kernel
11310 module loader so that the literals are not placed after the text. */
11311 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11313 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11314 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11315 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11316 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11317 { NULL, 0, 0, 0, 0 }
11320 #define ELF_TARGET_ID XTENSA_ELF_DATA
11322 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11323 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11324 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11325 #define TARGET_BIG_NAME "elf32-xtensa-be"
11326 #define ELF_ARCH bfd_arch_xtensa
11328 #define ELF_MACHINE_CODE EM_XTENSA
11329 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11332 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
11333 #else /* !XCHAL_HAVE_MMU */
11334 #define ELF_MAXPAGESIZE 1
11335 #endif /* !XCHAL_HAVE_MMU */
11336 #endif /* ELF_ARCH */
11338 #define elf_backend_can_gc_sections 1
11339 #define elf_backend_can_refcount 1
11340 #define elf_backend_plt_readonly 1
11341 #define elf_backend_got_header_size 4
11342 #define elf_backend_want_dynbss 0
11343 #define elf_backend_want_got_plt 1
11345 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11347 #define bfd_elf32_mkobject elf_xtensa_mkobject
11349 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11350 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11351 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11352 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11353 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11354 #define bfd_elf32_bfd_reloc_name_lookup \
11355 elf_xtensa_reloc_name_lookup
11356 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11357 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11359 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11360 #define elf_backend_check_relocs elf_xtensa_check_relocs
11361 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11362 #define elf_backend_discard_info elf_xtensa_discard_info
11363 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11364 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11365 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11366 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11367 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11368 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
11369 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11370 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11371 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11372 #define elf_backend_object_p elf_xtensa_object_p
11373 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11374 #define elf_backend_relocate_section elf_xtensa_relocate_section
11375 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11376 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11377 #define elf_backend_omit_section_dynsym \
11378 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
11379 #define elf_backend_special_sections elf_xtensa_special_sections
11380 #define elf_backend_action_discarded elf_xtensa_action_discarded
11381 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11383 #include "elf32-target.h"