1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public License as
9 published by the Free Software Foundation; either version 3 of the
10 License, or (at your option) any later version.
12 This program is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
31 #include "elf/xtensa.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
35 #define XTENSA_NO_NOP_REMOVAL 0
37 /* Local helper functions. */
39 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
45 static void do_fix_for_final_link
46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
48 /* Local functions to handle Xtensa configurability. */
50 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53 static xtensa_opcode get_const16_opcode (void);
54 static xtensa_opcode get_l32r_opcode (void);
55 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56 static int get_relocation_opnd (xtensa_opcode, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
60 static bfd_boolean is_l32r_relocation
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62 static bfd_boolean is_alt_relocation (int);
63 static bfd_boolean is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65 (bfd_byte *, bfd_size_type, bfd_size_type);
66 static xtensa_opcode insn_decode_opcode
67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
68 static bfd_boolean check_branch_target_aligned
69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
70 static bfd_boolean check_loop_aligned
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
73 static bfd_size_type get_asm_simplify_size
74 (bfd_byte *, bfd_size_type, bfd_size_type);
76 /* Functions for link-time code simplifications. */
78 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
79 (bfd_byte *, bfd_vma, bfd_vma, char **);
80 static bfd_reloc_status_type contract_asm_expansion
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
85 /* Access to internal relocations, section contents and symbols. */
87 static Elf_Internal_Rela *retrieve_internal_relocs
88 (bfd *, asection *, bfd_boolean);
89 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92 static void pin_contents (asection *, bfd_byte *);
93 static void release_contents (asection *, bfd_byte *);
94 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
96 /* Miscellaneous utility functions. */
98 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
100 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
101 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
102 (bfd *, unsigned long);
103 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106 static bfd_boolean xtensa_is_property_section (asection *);
107 static bfd_boolean xtensa_is_insntable_section (asection *);
108 static bfd_boolean xtensa_is_littable_section (asection *);
109 static bfd_boolean xtensa_is_proptable_section (asection *);
110 static int internal_reloc_compare (const void *, const void *);
111 static int internal_reloc_matches (const void *, const void *);
112 static asection *xtensa_get_property_section (asection *, const char *);
113 extern asection *xtensa_make_property_section (asection *, const char *);
114 static flagword xtensa_get_property_predef_flags (asection *);
116 /* Other functions called directly by the linker. */
118 typedef void (*deps_callback_t)
119 (asection *, bfd_vma, asection *, bfd_vma, void *);
120 extern bfd_boolean xtensa_callback_required_dependence
121 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
124 /* Globally visible flag for choosing size optimization of NOP removal
125 instead of branch-target-aware minimization for NOP removal.
126 When nonzero, narrow all instructions and remove all NOPs possible
127 around longcall expansions. */
129 int elf32xtensa_size_opt;
132 /* The "new_section_hook" is used to set up a per-section
133 "xtensa_relax_info" data structure with additional information used
134 during relaxation. */
136 typedef struct xtensa_relax_info_struct xtensa_relax_info;
139 /* The GNU tools do not easily allow extending interfaces to pass around
140 the pointer to the Xtensa ISA information, so instead we add a global
141 variable here (in BFD) that can be used by any of the tools that need
144 xtensa_isa xtensa_default_isa;
147 /* When this is true, relocations may have been modified to refer to
148 symbols from other input files. The per-section list of "fix"
149 records needs to be checked when resolving relocations. */
151 static bfd_boolean relaxing_section = FALSE;
153 /* When this is true, during final links, literals that cannot be
154 coalesced and their relocations may be moved to other sections. */
156 int elf32xtensa_no_literal_movement = 1;
158 /* Rename one of the generic section flags to better document how it
160 /* Whether relocations have been processed. */
161 #define reloc_done sec_flg0
163 static reloc_howto_type elf_howto_table[] =
165 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
166 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
168 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_xtensa_reloc, "R_XTENSA_32",
170 TRUE, 0xffffffff, 0xffffffff, FALSE),
172 /* Replace a 32-bit value with a value from the runtime linker (only
173 used by linker-generated stub functions). The r_addend value is
174 special: 1 means to substitute a pointer to the runtime linker's
175 dynamic resolver function; 2 means to substitute the link map for
176 the shared object. */
177 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
178 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
180 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
182 FALSE, 0, 0xffffffff, FALSE),
183 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
185 FALSE, 0, 0xffffffff, FALSE),
186 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
187 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
188 FALSE, 0, 0xffffffff, FALSE),
189 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
191 FALSE, 0, 0xffffffff, FALSE),
195 /* Old relocations for backward compatibility. */
196 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
197 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
198 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
199 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
206 /* Relax assembly auto-expansion. */
207 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
208 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
212 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
213 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
214 FALSE, 0, 0xffffffff, TRUE),
216 /* GNU extension to record C++ vtable hierarchy. */
217 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
218 NULL, "R_XTENSA_GNU_VTINHERIT",
220 /* GNU extension to record C++ vtable member usage. */
221 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
222 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
225 /* Relocations for supporting difference of symbols. */
226 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
228 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
229 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
230 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
231 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
236 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
237 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
238 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
240 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
242 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
244 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
246 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
248 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
250 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
252 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
254 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
256 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
258 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
260 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
262 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
265 /* "Alternate" relocations. The meaning of these is opcode-specific. */
266 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
268 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
270 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
272 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
274 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
276 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
278 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
280 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
282 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
284 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
286 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
288 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
290 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
292 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
293 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
294 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
295 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
297 /* TLS relocations. */
298 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
299 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
300 FALSE, 0, 0xffffffff, FALSE),
301 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
302 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
303 FALSE, 0, 0xffffffff, FALSE),
304 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
305 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
306 FALSE, 0, 0xffffffff, FALSE),
307 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
308 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
309 FALSE, 0, 0xffffffff, FALSE),
310 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
311 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
313 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
314 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
316 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
317 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
323 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
328 static reloc_howto_type *
329 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
330 bfd_reloc_code_real_type code)
335 TRACE ("BFD_RELOC_NONE");
336 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
339 TRACE ("BFD_RELOC_32");
340 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
342 case BFD_RELOC_32_PCREL:
343 TRACE ("BFD_RELOC_32_PCREL");
344 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
346 case BFD_RELOC_XTENSA_DIFF8:
347 TRACE ("BFD_RELOC_XTENSA_DIFF8");
348 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
350 case BFD_RELOC_XTENSA_DIFF16:
351 TRACE ("BFD_RELOC_XTENSA_DIFF16");
352 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
354 case BFD_RELOC_XTENSA_DIFF32:
355 TRACE ("BFD_RELOC_XTENSA_DIFF32");
356 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
358 case BFD_RELOC_XTENSA_RTLD:
359 TRACE ("BFD_RELOC_XTENSA_RTLD");
360 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
362 case BFD_RELOC_XTENSA_GLOB_DAT:
363 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
364 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
366 case BFD_RELOC_XTENSA_JMP_SLOT:
367 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
368 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
370 case BFD_RELOC_XTENSA_RELATIVE:
371 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
372 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
374 case BFD_RELOC_XTENSA_PLT:
375 TRACE ("BFD_RELOC_XTENSA_PLT");
376 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
378 case BFD_RELOC_XTENSA_OP0:
379 TRACE ("BFD_RELOC_XTENSA_OP0");
380 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
382 case BFD_RELOC_XTENSA_OP1:
383 TRACE ("BFD_RELOC_XTENSA_OP1");
384 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
386 case BFD_RELOC_XTENSA_OP2:
387 TRACE ("BFD_RELOC_XTENSA_OP2");
388 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
390 case BFD_RELOC_XTENSA_ASM_EXPAND:
391 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
392 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
394 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
395 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
396 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
398 case BFD_RELOC_VTABLE_INHERIT:
399 TRACE ("BFD_RELOC_VTABLE_INHERIT");
400 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
402 case BFD_RELOC_VTABLE_ENTRY:
403 TRACE ("BFD_RELOC_VTABLE_ENTRY");
404 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
406 case BFD_RELOC_XTENSA_TLSDESC_FN:
407 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
408 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
410 case BFD_RELOC_XTENSA_TLSDESC_ARG:
411 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
412 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
414 case BFD_RELOC_XTENSA_TLS_DTPOFF:
415 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
416 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
418 case BFD_RELOC_XTENSA_TLS_TPOFF:
419 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
420 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
422 case BFD_RELOC_XTENSA_TLS_FUNC:
423 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
424 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
426 case BFD_RELOC_XTENSA_TLS_ARG:
427 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
428 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
430 case BFD_RELOC_XTENSA_TLS_CALL:
431 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
432 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
435 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
436 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
438 unsigned n = (R_XTENSA_SLOT0_OP +
439 (code - BFD_RELOC_XTENSA_SLOT0_OP));
440 return &elf_howto_table[n];
443 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
444 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
446 unsigned n = (R_XTENSA_SLOT0_ALT +
447 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
448 return &elf_howto_table[n];
458 static reloc_howto_type *
459 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
464 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
465 if (elf_howto_table[i].name != NULL
466 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
467 return &elf_howto_table[i];
473 /* Given an ELF "rela" relocation, find the corresponding howto and record
474 it in the BFD internal arelent representation of the relocation. */
477 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
479 Elf_Internal_Rela *dst)
481 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
483 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
484 cache_ptr->howto = &elf_howto_table[r_type];
488 /* Functions for the Xtensa ELF linker. */
490 /* The name of the dynamic interpreter. This is put in the .interp
493 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
495 /* The size in bytes of an entry in the procedure linkage table.
496 (This does _not_ include the space for the literals associated with
499 #define PLT_ENTRY_SIZE 16
501 /* For _really_ large PLTs, we may need to alternate between literals
502 and code to keep the literals within the 256K range of the L32R
503 instructions in the code. It's unlikely that anyone would ever need
504 such a big PLT, but an arbitrary limit on the PLT size would be bad.
505 Thus, we split the PLT into chunks. Since there's very little
506 overhead (2 extra literals) for each chunk, the chunk size is kept
507 small so that the code for handling multiple chunks get used and
508 tested regularly. With 254 entries, there are 1K of literals for
509 each chunk, and that seems like a nice round number. */
511 #define PLT_ENTRIES_PER_CHUNK 254
513 /* PLT entries are actually used as stub functions for lazy symbol
514 resolution. Once the symbol is resolved, the stub function is never
515 invoked. Note: the 32-byte frame size used here cannot be changed
516 without a corresponding change in the runtime linker. */
518 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
520 0x6c, 0x10, 0x04, /* entry sp, 32 */
521 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
522 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
523 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
524 0x0a, 0x80, 0x00, /* jx a8 */
528 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
530 0x36, 0x41, 0x00, /* entry sp, 32 */
531 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
532 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
533 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
534 0xa0, 0x08, 0x00, /* jx a8 */
538 /* The size of the thread control block. */
541 struct elf_xtensa_link_hash_entry
543 struct elf_link_hash_entry elf;
545 bfd_signed_vma tlsfunc_refcount;
547 #define GOT_UNKNOWN 0
549 #define GOT_TLS_GD 2 /* global or local dynamic */
550 #define GOT_TLS_IE 4 /* initial or local exec */
551 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
552 unsigned char tls_type;
555 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
557 struct elf_xtensa_obj_tdata
559 struct elf_obj_tdata root;
561 /* tls_type for each local got entry. */
562 char *local_got_tls_type;
564 bfd_signed_vma *local_tlsfunc_refcounts;
567 #define elf_xtensa_tdata(abfd) \
568 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
570 #define elf_xtensa_local_got_tls_type(abfd) \
571 (elf_xtensa_tdata (abfd)->local_got_tls_type)
573 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
574 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
576 #define is_xtensa_elf(bfd) \
577 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
578 && elf_tdata (bfd) != NULL \
579 && elf_object_id (bfd) == XTENSA_ELF_DATA)
582 elf_xtensa_mkobject (bfd *abfd)
584 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
588 /* Xtensa ELF linker hash table. */
590 struct elf_xtensa_link_hash_table
592 struct elf_link_hash_table elf;
594 /* Short-cuts to get to dynamic linker sections. */
601 asection *spltlittbl;
603 /* Total count of PLT relocations seen during check_relocs.
604 The actual PLT code must be split into multiple sections and all
605 the sections have to be created before size_dynamic_sections,
606 where we figure out the exact number of PLT entries that will be
607 needed. It is OK if this count is an overestimate, e.g., some
608 relocations may be removed by GC. */
611 struct elf_xtensa_link_hash_entry *tlsbase;
614 /* Get the Xtensa ELF linker hash table from a link_info structure. */
616 #define elf_xtensa_hash_table(p) \
617 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
618 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
620 /* Create an entry in an Xtensa ELF linker hash table. */
622 static struct bfd_hash_entry *
623 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
624 struct bfd_hash_table *table,
627 /* Allocate the structure if it has not already been allocated by a
631 entry = bfd_hash_allocate (table,
632 sizeof (struct elf_xtensa_link_hash_entry));
637 /* Call the allocation method of the superclass. */
638 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
641 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
642 eh->tlsfunc_refcount = 0;
643 eh->tls_type = GOT_UNKNOWN;
649 /* Create an Xtensa ELF linker hash table. */
651 static struct bfd_link_hash_table *
652 elf_xtensa_link_hash_table_create (bfd *abfd)
654 struct elf_link_hash_entry *tlsbase;
655 struct elf_xtensa_link_hash_table *ret;
656 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
658 ret = bfd_zmalloc (amt);
662 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
663 elf_xtensa_link_hash_newfunc,
664 sizeof (struct elf_xtensa_link_hash_entry),
671 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
673 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
675 tlsbase->root.type = bfd_link_hash_new;
676 tlsbase->root.u.undef.abfd = NULL;
677 tlsbase->non_elf = 0;
678 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
679 ret->tlsbase->tls_type = GOT_UNKNOWN;
681 return &ret->elf.root;
684 /* Copy the extra info we tack onto an elf_link_hash_entry. */
687 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
688 struct elf_link_hash_entry *dir,
689 struct elf_link_hash_entry *ind)
691 struct elf_xtensa_link_hash_entry *edir, *eind;
693 edir = elf_xtensa_hash_entry (dir);
694 eind = elf_xtensa_hash_entry (ind);
696 if (ind->root.type == bfd_link_hash_indirect)
698 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
699 eind->tlsfunc_refcount = 0;
701 if (dir->got.refcount <= 0)
703 edir->tls_type = eind->tls_type;
704 eind->tls_type = GOT_UNKNOWN;
708 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
711 static inline bfd_boolean
712 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
713 struct bfd_link_info *info)
715 /* Check if we should do dynamic things to this symbol. The
716 "ignore_protected" argument need not be set, because Xtensa code
717 does not require special handling of STV_PROTECTED to make function
718 pointer comparisons work properly. The PLT addresses are never
719 used for function pointers. */
721 return _bfd_elf_dynamic_symbol_p (h, info, 0);
726 property_table_compare (const void *ap, const void *bp)
728 const property_table_entry *a = (const property_table_entry *) ap;
729 const property_table_entry *b = (const property_table_entry *) bp;
731 if (a->address == b->address)
733 if (a->size != b->size)
734 return (a->size - b->size);
736 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
737 return ((b->flags & XTENSA_PROP_ALIGN)
738 - (a->flags & XTENSA_PROP_ALIGN));
740 if ((a->flags & XTENSA_PROP_ALIGN)
741 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
742 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
743 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
744 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
746 if ((a->flags & XTENSA_PROP_UNREACHABLE)
747 != (b->flags & XTENSA_PROP_UNREACHABLE))
748 return ((b->flags & XTENSA_PROP_UNREACHABLE)
749 - (a->flags & XTENSA_PROP_UNREACHABLE));
751 return (a->flags - b->flags);
754 return (a->address - b->address);
759 property_table_matches (const void *ap, const void *bp)
761 const property_table_entry *a = (const property_table_entry *) ap;
762 const property_table_entry *b = (const property_table_entry *) bp;
764 /* Check if one entry overlaps with the other. */
765 if ((b->address >= a->address && b->address < (a->address + a->size))
766 || (a->address >= b->address && a->address < (b->address + b->size)))
769 return (a->address - b->address);
773 /* Get the literal table or property table entries for the given
774 section. Sets TABLE_P and returns the number of entries. On
775 error, returns a negative value. */
778 xtensa_read_table_entries (bfd *abfd,
780 property_table_entry **table_p,
781 const char *sec_name,
782 bfd_boolean output_addr)
784 asection *table_section;
785 bfd_size_type table_size = 0;
786 bfd_byte *table_data;
787 property_table_entry *blocks;
788 int blk, block_count;
789 bfd_size_type num_records;
790 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
791 bfd_vma section_addr, off;
792 flagword predef_flags;
793 bfd_size_type table_entry_size, section_limit;
796 || !(section->flags & SEC_ALLOC)
797 || (section->flags & SEC_DEBUGGING))
803 table_section = xtensa_get_property_section (section, sec_name);
805 table_size = table_section->size;
813 predef_flags = xtensa_get_property_predef_flags (table_section);
814 table_entry_size = 12;
816 table_entry_size -= 4;
818 num_records = table_size / table_entry_size;
819 table_data = retrieve_contents (abfd, table_section, TRUE);
820 blocks = (property_table_entry *)
821 bfd_malloc (num_records * sizeof (property_table_entry));
825 section_addr = section->output_section->vma + section->output_offset;
827 section_addr = section->vma;
829 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
830 if (internal_relocs && !table_section->reloc_done)
832 qsort (internal_relocs, table_section->reloc_count,
833 sizeof (Elf_Internal_Rela), internal_reloc_compare);
834 irel = internal_relocs;
839 section_limit = bfd_get_section_limit (abfd, section);
840 rel_end = internal_relocs + table_section->reloc_count;
842 for (off = 0; off < table_size; off += table_entry_size)
844 bfd_vma address = bfd_get_32 (abfd, table_data + off);
846 /* Skip any relocations before the current offset. This should help
847 avoid confusion caused by unexpected relocations for the preceding
850 (irel->r_offset < off
851 || (irel->r_offset == off
852 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
859 if (irel && irel->r_offset == off)
862 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
863 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
865 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
868 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
869 BFD_ASSERT (sym_off == 0);
870 address += (section_addr + sym_off + irel->r_addend);
874 if (address < section_addr
875 || address >= section_addr + section_limit)
879 blocks[block_count].address = address;
880 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
882 blocks[block_count].flags = predef_flags;
884 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
888 release_contents (table_section, table_data);
889 release_internal_relocs (table_section, internal_relocs);
893 /* Now sort them into address order for easy reference. */
894 qsort (blocks, block_count, sizeof (property_table_entry),
895 property_table_compare);
897 /* Check that the table contents are valid. Problems may occur,
898 for example, if an unrelocated object file is stripped. */
899 for (blk = 1; blk < block_count; blk++)
901 /* The only circumstance where two entries may legitimately
902 have the same address is when one of them is a zero-size
903 placeholder to mark a place where fill can be inserted.
904 The zero-size entry should come first. */
905 if (blocks[blk - 1].address == blocks[blk].address &&
906 blocks[blk - 1].size != 0)
908 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
910 bfd_set_error (bfd_error_bad_value);
922 static property_table_entry *
923 elf_xtensa_find_property_entry (property_table_entry *property_table,
924 int property_table_size,
927 property_table_entry entry;
928 property_table_entry *rv;
930 if (property_table_size == 0)
933 entry.address = addr;
937 rv = bsearch (&entry, property_table, property_table_size,
938 sizeof (property_table_entry), property_table_matches);
944 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
948 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
955 /* Look through the relocs for a section during the first phase, and
956 calculate needed space in the dynamic reloc sections. */
959 elf_xtensa_check_relocs (bfd *abfd,
960 struct bfd_link_info *info,
962 const Elf_Internal_Rela *relocs)
964 struct elf_xtensa_link_hash_table *htab;
965 Elf_Internal_Shdr *symtab_hdr;
966 struct elf_link_hash_entry **sym_hashes;
967 const Elf_Internal_Rela *rel;
968 const Elf_Internal_Rela *rel_end;
970 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
973 BFD_ASSERT (is_xtensa_elf (abfd));
975 htab = elf_xtensa_hash_table (info);
979 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
980 sym_hashes = elf_sym_hashes (abfd);
982 rel_end = relocs + sec->reloc_count;
983 for (rel = relocs; rel < rel_end; rel++)
986 unsigned long r_symndx;
987 struct elf_link_hash_entry *h = NULL;
988 struct elf_xtensa_link_hash_entry *eh;
989 int tls_type, old_tls_type;
990 bfd_boolean is_got = FALSE;
991 bfd_boolean is_plt = FALSE;
992 bfd_boolean is_tlsfunc = FALSE;
994 r_symndx = ELF32_R_SYM (rel->r_info);
995 r_type = ELF32_R_TYPE (rel->r_info);
997 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
999 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1004 if (r_symndx >= symtab_hdr->sh_info)
1006 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1007 while (h->root.type == bfd_link_hash_indirect
1008 || h->root.type == bfd_link_hash_warning)
1009 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1011 eh = elf_xtensa_hash_entry (h);
1015 case R_XTENSA_TLSDESC_FN:
1018 tls_type = GOT_TLS_GD;
1023 tls_type = GOT_TLS_IE;
1026 case R_XTENSA_TLSDESC_ARG:
1029 tls_type = GOT_TLS_GD;
1034 tls_type = GOT_TLS_IE;
1035 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1040 case R_XTENSA_TLS_DTPOFF:
1042 tls_type = GOT_TLS_GD;
1044 tls_type = GOT_TLS_IE;
1047 case R_XTENSA_TLS_TPOFF:
1048 tls_type = GOT_TLS_IE;
1050 info->flags |= DF_STATIC_TLS;
1051 if (info->shared || h)
1056 tls_type = GOT_NORMAL;
1061 tls_type = GOT_NORMAL;
1065 case R_XTENSA_GNU_VTINHERIT:
1066 /* This relocation describes the C++ object vtable hierarchy.
1067 Reconstruct it for later use during GC. */
1068 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1072 case R_XTENSA_GNU_VTENTRY:
1073 /* This relocation describes which C++ vtable entries are actually
1074 used. Record for later use during GC. */
1075 BFD_ASSERT (h != NULL);
1077 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1082 /* Nothing to do for any other relocations. */
1090 if (h->plt.refcount <= 0)
1093 h->plt.refcount = 1;
1096 h->plt.refcount += 1;
1098 /* Keep track of the total PLT relocation count even if we
1099 don't yet know whether the dynamic sections will be
1101 htab->plt_reloc_count += 1;
1103 if (elf_hash_table (info)->dynamic_sections_created)
1105 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1111 if (h->got.refcount <= 0)
1112 h->got.refcount = 1;
1114 h->got.refcount += 1;
1118 eh->tlsfunc_refcount += 1;
1120 old_tls_type = eh->tls_type;
1124 /* Allocate storage the first time. */
1125 if (elf_local_got_refcounts (abfd) == NULL)
1127 bfd_size_type size = symtab_hdr->sh_info;
1130 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1133 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1135 mem = bfd_zalloc (abfd, size);
1138 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1140 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1143 elf_xtensa_local_tlsfunc_refcounts (abfd)
1144 = (bfd_signed_vma *) mem;
1147 /* This is a global offset table entry for a local symbol. */
1148 if (is_got || is_plt)
1149 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1152 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1154 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1157 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1158 tls_type |= old_tls_type;
1159 /* If a TLS symbol is accessed using IE at least once,
1160 there is no point to use a dynamic model for it. */
1161 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1162 && ((old_tls_type & GOT_TLS_GD) == 0
1163 || (tls_type & GOT_TLS_IE) == 0))
1165 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1166 tls_type = old_tls_type;
1167 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1168 tls_type |= old_tls_type;
1171 (*_bfd_error_handler)
1172 (_("%B: `%s' accessed both as normal and thread local symbol"),
1174 h ? h->root.root.string : "<local>");
1179 if (old_tls_type != tls_type)
1182 eh->tls_type = tls_type;
1184 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1193 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1194 struct elf_link_hash_entry *h)
1198 if (h->plt.refcount > 0)
1200 /* For shared objects, there's no need for PLT entries for local
1201 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1202 if (h->got.refcount < 0)
1203 h->got.refcount = 0;
1204 h->got.refcount += h->plt.refcount;
1205 h->plt.refcount = 0;
1210 /* Don't need any dynamic relocations at all. */
1211 h->plt.refcount = 0;
1212 h->got.refcount = 0;
1218 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1219 struct elf_link_hash_entry *h,
1220 bfd_boolean force_local)
1222 /* For a shared link, move the plt refcount to the got refcount to leave
1223 space for RELATIVE relocs. */
1224 elf_xtensa_make_sym_local (info, h);
1226 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1230 /* Return the section that should be marked against GC for a given
1234 elf_xtensa_gc_mark_hook (asection *sec,
1235 struct bfd_link_info *info,
1236 Elf_Internal_Rela *rel,
1237 struct elf_link_hash_entry *h,
1238 Elf_Internal_Sym *sym)
1240 /* Property sections are marked "KEEP" in the linker scripts, but they
1241 should not cause other sections to be marked. (This approach relies
1242 on elf_xtensa_discard_info to remove property table entries that
1243 describe discarded sections. Alternatively, it might be more
1244 efficient to avoid using "KEEP" in the linker scripts and instead use
1245 the gc_mark_extra_sections hook to mark only the property sections
1246 that describe marked sections. That alternative does not work well
1247 with the current property table sections, which do not correspond
1248 one-to-one with the sections they describe, but that should be fixed
1250 if (xtensa_is_property_section (sec))
1254 switch (ELF32_R_TYPE (rel->r_info))
1256 case R_XTENSA_GNU_VTINHERIT:
1257 case R_XTENSA_GNU_VTENTRY:
1261 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1265 /* Update the GOT & PLT entry reference counts
1266 for the section being removed. */
1269 elf_xtensa_gc_sweep_hook (bfd *abfd,
1270 struct bfd_link_info *info,
1272 const Elf_Internal_Rela *relocs)
1274 Elf_Internal_Shdr *symtab_hdr;
1275 struct elf_link_hash_entry **sym_hashes;
1276 const Elf_Internal_Rela *rel, *relend;
1277 struct elf_xtensa_link_hash_table *htab;
1279 htab = elf_xtensa_hash_table (info);
1283 if (info->relocatable)
1286 if ((sec->flags & SEC_ALLOC) == 0)
1289 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1290 sym_hashes = elf_sym_hashes (abfd);
1292 relend = relocs + sec->reloc_count;
1293 for (rel = relocs; rel < relend; rel++)
1295 unsigned long r_symndx;
1296 unsigned int r_type;
1297 struct elf_link_hash_entry *h = NULL;
1298 struct elf_xtensa_link_hash_entry *eh;
1299 bfd_boolean is_got = FALSE;
1300 bfd_boolean is_plt = FALSE;
1301 bfd_boolean is_tlsfunc = FALSE;
1303 r_symndx = ELF32_R_SYM (rel->r_info);
1304 if (r_symndx >= symtab_hdr->sh_info)
1306 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1307 while (h->root.type == bfd_link_hash_indirect
1308 || h->root.type == bfd_link_hash_warning)
1309 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1311 eh = elf_xtensa_hash_entry (h);
1313 r_type = ELF32_R_TYPE (rel->r_info);
1316 case R_XTENSA_TLSDESC_FN:
1324 case R_XTENSA_TLSDESC_ARG:
1329 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1334 case R_XTENSA_TLS_TPOFF:
1335 if (info->shared || h)
1355 if (h->plt.refcount > 0)
1360 if (h->got.refcount > 0)
1365 if (eh->tlsfunc_refcount > 0)
1366 eh->tlsfunc_refcount--;
1371 if (is_got || is_plt)
1373 bfd_signed_vma *got_refcount
1374 = &elf_local_got_refcounts (abfd) [r_symndx];
1375 if (*got_refcount > 0)
1380 bfd_signed_vma *tlsfunc_refcount
1381 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1382 if (*tlsfunc_refcount > 0)
1383 *tlsfunc_refcount -= 1;
1392 /* Create all the dynamic sections. */
1395 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1397 struct elf_xtensa_link_hash_table *htab;
1398 flagword flags, noalloc_flags;
1400 htab = elf_xtensa_hash_table (info);
1404 /* First do all the standard stuff. */
1405 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1407 htab->splt = bfd_get_linker_section (dynobj, ".plt");
1408 htab->srelplt = bfd_get_linker_section (dynobj, ".rela.plt");
1409 htab->sgot = bfd_get_linker_section (dynobj, ".got");
1410 htab->sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
1411 htab->srelgot = bfd_get_linker_section (dynobj, ".rela.got");
1413 /* Create any extra PLT sections in case check_relocs has already
1414 been called on all the non-dynamic input files. */
1415 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1418 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1419 | SEC_LINKER_CREATED | SEC_READONLY);
1420 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1422 /* Mark the ".got.plt" section READONLY. */
1423 if (htab->sgotplt == NULL
1424 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1427 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1428 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1430 if (htab->sgotloc == NULL
1431 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1434 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1435 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1437 if (htab->spltlittbl == NULL
1438 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1446 add_extra_plt_sections (struct bfd_link_info *info, int count)
1448 bfd *dynobj = elf_hash_table (info)->dynobj;
1451 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1452 ".got.plt" sections. */
1453 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1459 /* Stop when we find a section has already been created. */
1460 if (elf_xtensa_get_plt_section (info, chunk))
1463 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1464 | SEC_LINKER_CREATED | SEC_READONLY);
1466 sname = (char *) bfd_malloc (10);
1467 sprintf (sname, ".plt.%u", chunk);
1468 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1470 || ! bfd_set_section_alignment (dynobj, s, 2))
1473 sname = (char *) bfd_malloc (14);
1474 sprintf (sname, ".got.plt.%u", chunk);
1475 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1477 || ! bfd_set_section_alignment (dynobj, s, 2))
1485 /* Adjust a symbol defined by a dynamic object and referenced by a
1486 regular object. The current definition is in some section of the
1487 dynamic object, but we're not including those sections. We have to
1488 change the definition to something the rest of the link can
1492 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1493 struct elf_link_hash_entry *h)
1495 /* If this is a weak symbol, and there is a real definition, the
1496 processor independent code will have arranged for us to see the
1497 real definition first, and we can just use the same value. */
1500 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1501 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1502 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1503 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1507 /* This is a reference to a symbol defined by a dynamic object. The
1508 reference must go through the GOT, so there's no need for COPY relocs,
1516 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1518 struct bfd_link_info *info;
1519 struct elf_xtensa_link_hash_table *htab;
1520 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1522 if (h->root.type == bfd_link_hash_indirect)
1525 info = (struct bfd_link_info *) arg;
1526 htab = elf_xtensa_hash_table (info);
1530 /* If we saw any use of an IE model for this symbol, we can then optimize
1531 away GOT entries for any TLSDESC_FN relocs. */
1532 if ((eh->tls_type & GOT_TLS_IE) != 0)
1534 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1535 h->got.refcount -= eh->tlsfunc_refcount;
1538 if (! elf_xtensa_dynamic_symbol_p (h, info))
1539 elf_xtensa_make_sym_local (info, h);
1541 if (h->plt.refcount > 0)
1542 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1544 if (h->got.refcount > 0)
1545 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1552 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1554 struct elf_xtensa_link_hash_table *htab;
1557 htab = elf_xtensa_hash_table (info);
1561 for (i = info->input_bfds; i; i = i->link_next)
1563 bfd_signed_vma *local_got_refcounts;
1564 bfd_size_type j, cnt;
1565 Elf_Internal_Shdr *symtab_hdr;
1567 local_got_refcounts = elf_local_got_refcounts (i);
1568 if (!local_got_refcounts)
1571 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1572 cnt = symtab_hdr->sh_info;
1574 for (j = 0; j < cnt; ++j)
1576 /* If we saw any use of an IE model for this symbol, we can
1577 then optimize away GOT entries for any TLSDESC_FN relocs. */
1578 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1580 bfd_signed_vma *tlsfunc_refcount
1581 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1582 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1583 local_got_refcounts[j] -= *tlsfunc_refcount;
1586 if (local_got_refcounts[j] > 0)
1587 htab->srelgot->size += (local_got_refcounts[j]
1588 * sizeof (Elf32_External_Rela));
1594 /* Set the sizes of the dynamic sections. */
1597 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1598 struct bfd_link_info *info)
1600 struct elf_xtensa_link_hash_table *htab;
1602 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1603 bfd_boolean relplt, relgot;
1604 int plt_entries, plt_chunks, chunk;
1609 htab = elf_xtensa_hash_table (info);
1613 dynobj = elf_hash_table (info)->dynobj;
1616 srelgot = htab->srelgot;
1617 srelplt = htab->srelplt;
1619 if (elf_hash_table (info)->dynamic_sections_created)
1621 BFD_ASSERT (htab->srelgot != NULL
1622 && htab->srelplt != NULL
1623 && htab->sgot != NULL
1624 && htab->spltlittbl != NULL
1625 && htab->sgotloc != NULL);
1627 /* Set the contents of the .interp section to the interpreter. */
1628 if (info->executable)
1630 s = bfd_get_linker_section (dynobj, ".interp");
1633 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1634 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1637 /* Allocate room for one word in ".got". */
1638 htab->sgot->size = 4;
1640 /* Allocate space in ".rela.got" for literals that reference global
1641 symbols and space in ".rela.plt" for literals that have PLT
1643 elf_link_hash_traverse (elf_hash_table (info),
1644 elf_xtensa_allocate_dynrelocs,
1647 /* If we are generating a shared object, we also need space in
1648 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1649 reference local symbols. */
1651 elf_xtensa_allocate_local_got_size (info);
1653 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1654 each PLT entry, we need the PLT code plus a 4-byte literal.
1655 For each chunk of ".plt", we also need two more 4-byte
1656 literals, two corresponding entries in ".rela.got", and an
1657 8-byte entry in ".xt.lit.plt". */
1658 spltlittbl = htab->spltlittbl;
1659 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1661 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1663 /* Iterate over all the PLT chunks, including any extra sections
1664 created earlier because the initial count of PLT relocations
1665 was an overestimate. */
1667 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1672 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1673 BFD_ASSERT (sgotplt != NULL);
1675 if (chunk < plt_chunks - 1)
1676 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1677 else if (chunk == plt_chunks - 1)
1678 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1682 if (chunk_entries != 0)
1684 sgotplt->size = 4 * (chunk_entries + 2);
1685 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1686 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1687 spltlittbl->size += 8;
1696 /* Allocate space in ".got.loc" to match the total size of all the
1698 sgotloc = htab->sgotloc;
1699 sgotloc->size = spltlittbl->size;
1700 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1702 if (abfd->flags & DYNAMIC)
1704 for (s = abfd->sections; s != NULL; s = s->next)
1706 if (! discarded_section (s)
1707 && xtensa_is_littable_section (s)
1709 sgotloc->size += s->size;
1714 /* Allocate memory for dynamic sections. */
1717 for (s = dynobj->sections; s != NULL; s = s->next)
1721 if ((s->flags & SEC_LINKER_CREATED) == 0)
1724 /* It's OK to base decisions on the section name, because none
1725 of the dynobj section names depend upon the input files. */
1726 name = bfd_get_section_name (dynobj, s);
1728 if (CONST_STRNEQ (name, ".rela"))
1732 if (strcmp (name, ".rela.plt") == 0)
1734 else if (strcmp (name, ".rela.got") == 0)
1737 /* We use the reloc_count field as a counter if we need
1738 to copy relocs into the output file. */
1742 else if (! CONST_STRNEQ (name, ".plt.")
1743 && ! CONST_STRNEQ (name, ".got.plt.")
1744 && strcmp (name, ".got") != 0
1745 && strcmp (name, ".plt") != 0
1746 && strcmp (name, ".got.plt") != 0
1747 && strcmp (name, ".xt.lit.plt") != 0
1748 && strcmp (name, ".got.loc") != 0)
1750 /* It's not one of our sections, so don't allocate space. */
1756 /* If we don't need this section, strip it from the output
1757 file. We must create the ".plt*" and ".got.plt*"
1758 sections in create_dynamic_sections and/or check_relocs
1759 based on a conservative estimate of the PLT relocation
1760 count, because the sections must be created before the
1761 linker maps input sections to output sections. The
1762 linker does that before size_dynamic_sections, where we
1763 compute the exact size of the PLT, so there may be more
1764 of these sections than are actually needed. */
1765 s->flags |= SEC_EXCLUDE;
1767 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1769 /* Allocate memory for the section contents. */
1770 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1771 if (s->contents == NULL)
1776 if (elf_hash_table (info)->dynamic_sections_created)
1778 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1779 known until finish_dynamic_sections, but we need to get the relocs
1780 in place before they are sorted. */
1781 for (chunk = 0; chunk < plt_chunks; chunk++)
1783 Elf_Internal_Rela irela;
1787 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1790 loc = (srelgot->contents
1791 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1792 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1793 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1794 loc + sizeof (Elf32_External_Rela));
1795 srelgot->reloc_count += 2;
1798 /* Add some entries to the .dynamic section. We fill in the
1799 values later, in elf_xtensa_finish_dynamic_sections, but we
1800 must add the entries now so that we get the correct size for
1801 the .dynamic section. The DT_DEBUG entry is filled in by the
1802 dynamic linker and used by the debugger. */
1803 #define add_dynamic_entry(TAG, VAL) \
1804 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1806 if (info->executable)
1808 if (!add_dynamic_entry (DT_DEBUG, 0))
1814 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1815 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1816 || !add_dynamic_entry (DT_JMPREL, 0))
1822 if (!add_dynamic_entry (DT_RELA, 0)
1823 || !add_dynamic_entry (DT_RELASZ, 0)
1824 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1828 if (!add_dynamic_entry (DT_PLTGOT, 0)
1829 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1830 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1833 #undef add_dynamic_entry
1839 elf_xtensa_always_size_sections (bfd *output_bfd,
1840 struct bfd_link_info *info)
1842 struct elf_xtensa_link_hash_table *htab;
1845 htab = elf_xtensa_hash_table (info);
1849 tls_sec = htab->elf.tls_sec;
1851 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1853 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1854 struct bfd_link_hash_entry *bh = &tlsbase->root;
1855 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1857 tlsbase->type = STT_TLS;
1858 if (!(_bfd_generic_link_add_one_symbol
1859 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1860 tls_sec, 0, NULL, FALSE,
1861 bed->collect, &bh)))
1863 tlsbase->def_regular = 1;
1864 tlsbase->other = STV_HIDDEN;
1865 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1872 /* Return the base VMA address which should be subtracted from real addresses
1873 when resolving @dtpoff relocation.
1874 This is PT_TLS segment p_vaddr. */
1877 dtpoff_base (struct bfd_link_info *info)
1879 /* If tls_sec is NULL, we should have signalled an error already. */
1880 if (elf_hash_table (info)->tls_sec == NULL)
1882 return elf_hash_table (info)->tls_sec->vma;
1885 /* Return the relocation value for @tpoff relocation
1886 if STT_TLS virtual address is ADDRESS. */
1889 tpoff (struct bfd_link_info *info, bfd_vma address)
1891 struct elf_link_hash_table *htab = elf_hash_table (info);
1894 /* If tls_sec is NULL, we should have signalled an error already. */
1895 if (htab->tls_sec == NULL)
1897 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1898 return address - htab->tls_sec->vma + base;
1901 /* Perform the specified relocation. The instruction at (contents + address)
1902 is modified to set one operand to represent the value in "relocation". The
1903 operand position is determined by the relocation type recorded in the
1906 #define CALL_SEGMENT_BITS (30)
1907 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1909 static bfd_reloc_status_type
1910 elf_xtensa_do_reloc (reloc_howto_type *howto,
1912 asection *input_section,
1916 bfd_boolean is_weak_undef,
1917 char **error_message)
1920 xtensa_opcode opcode;
1921 xtensa_isa isa = xtensa_default_isa;
1922 static xtensa_insnbuf ibuff = NULL;
1923 static xtensa_insnbuf sbuff = NULL;
1924 bfd_vma self_address;
1925 bfd_size_type input_size;
1931 ibuff = xtensa_insnbuf_alloc (isa);
1932 sbuff = xtensa_insnbuf_alloc (isa);
1935 input_size = bfd_get_section_limit (abfd, input_section);
1937 /* Calculate the PC address for this instruction. */
1938 self_address = (input_section->output_section->vma
1939 + input_section->output_offset
1942 switch (howto->type)
1945 case R_XTENSA_DIFF8:
1946 case R_XTENSA_DIFF16:
1947 case R_XTENSA_DIFF32:
1948 case R_XTENSA_TLS_FUNC:
1949 case R_XTENSA_TLS_ARG:
1950 case R_XTENSA_TLS_CALL:
1951 return bfd_reloc_ok;
1953 case R_XTENSA_ASM_EXPAND:
1956 /* Check for windowed CALL across a 1GB boundary. */
1957 opcode = get_expanded_call_opcode (contents + address,
1958 input_size - address, 0);
1959 if (is_windowed_call_opcode (opcode))
1961 if ((self_address >> CALL_SEGMENT_BITS)
1962 != (relocation >> CALL_SEGMENT_BITS))
1964 *error_message = "windowed longcall crosses 1GB boundary; "
1966 return bfd_reloc_dangerous;
1970 return bfd_reloc_ok;
1972 case R_XTENSA_ASM_SIMPLIFY:
1974 /* Convert the L32R/CALLX to CALL. */
1975 bfd_reloc_status_type retval =
1976 elf_xtensa_do_asm_simplify (contents, address, input_size,
1978 if (retval != bfd_reloc_ok)
1979 return bfd_reloc_dangerous;
1981 /* The CALL needs to be relocated. Continue below for that part. */
1984 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1991 x = bfd_get_32 (abfd, contents + address);
1993 bfd_put_32 (abfd, x, contents + address);
1995 return bfd_reloc_ok;
1997 case R_XTENSA_32_PCREL:
1998 bfd_put_32 (abfd, relocation - self_address, contents + address);
1999 return bfd_reloc_ok;
2002 case R_XTENSA_TLSDESC_FN:
2003 case R_XTENSA_TLSDESC_ARG:
2004 case R_XTENSA_TLS_DTPOFF:
2005 case R_XTENSA_TLS_TPOFF:
2006 bfd_put_32 (abfd, relocation, contents + address);
2007 return bfd_reloc_ok;
2010 /* Only instruction slot-specific relocations handled below.... */
2011 slot = get_relocation_slot (howto->type);
2012 if (slot == XTENSA_UNDEFINED)
2014 *error_message = "unexpected relocation";
2015 return bfd_reloc_dangerous;
2018 /* Read the instruction into a buffer and decode the opcode. */
2019 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2020 input_size - address);
2021 fmt = xtensa_format_decode (isa, ibuff);
2022 if (fmt == XTENSA_UNDEFINED)
2024 *error_message = "cannot decode instruction format";
2025 return bfd_reloc_dangerous;
2028 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
2030 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2031 if (opcode == XTENSA_UNDEFINED)
2033 *error_message = "cannot decode instruction opcode";
2034 return bfd_reloc_dangerous;
2037 /* Check for opcode-specific "alternate" relocations. */
2038 if (is_alt_relocation (howto->type))
2040 if (opcode == get_l32r_opcode ())
2042 /* Handle the special-case of non-PC-relative L32R instructions. */
2043 bfd *output_bfd = input_section->output_section->owner;
2044 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2047 *error_message = "relocation references missing .lit4 section";
2048 return bfd_reloc_dangerous;
2050 self_address = ((lit4_sec->vma & ~0xfff)
2051 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2052 newval = relocation;
2055 else if (opcode == get_const16_opcode ())
2057 /* ALT used for high 16 bits. */
2058 newval = relocation >> 16;
2063 /* No other "alternate" relocations currently defined. */
2064 *error_message = "unexpected relocation";
2065 return bfd_reloc_dangerous;
2068 else /* Not an "alternate" relocation.... */
2070 if (opcode == get_const16_opcode ())
2072 newval = relocation & 0xffff;
2077 /* ...normal PC-relative relocation.... */
2079 /* Determine which operand is being relocated. */
2080 opnd = get_relocation_opnd (opcode, howto->type);
2081 if (opnd == XTENSA_UNDEFINED)
2083 *error_message = "unexpected relocation";
2084 return bfd_reloc_dangerous;
2087 if (!howto->pc_relative)
2089 *error_message = "expected PC-relative relocation";
2090 return bfd_reloc_dangerous;
2093 newval = relocation;
2097 /* Apply the relocation. */
2098 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2099 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2100 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2103 const char *opname = xtensa_opcode_name (isa, opcode);
2106 msg = "cannot encode";
2107 if (is_direct_call_opcode (opcode))
2109 if ((relocation & 0x3) != 0)
2110 msg = "misaligned call target";
2112 msg = "call target out of range";
2114 else if (opcode == get_l32r_opcode ())
2116 if ((relocation & 0x3) != 0)
2117 msg = "misaligned literal target";
2118 else if (is_alt_relocation (howto->type))
2119 msg = "literal target out of range (too many literals)";
2120 else if (self_address > relocation)
2121 msg = "literal target out of range (try using text-section-literals)";
2123 msg = "literal placed after use";
2126 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2127 return bfd_reloc_dangerous;
2130 /* Check for calls across 1GB boundaries. */
2131 if (is_direct_call_opcode (opcode)
2132 && is_windowed_call_opcode (opcode))
2134 if ((self_address >> CALL_SEGMENT_BITS)
2135 != (relocation >> CALL_SEGMENT_BITS))
2138 "windowed call crosses 1GB boundary; return may fail";
2139 return bfd_reloc_dangerous;
2143 /* Write the modified instruction back out of the buffer. */
2144 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2145 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2146 input_size - address);
2147 return bfd_reloc_ok;
2152 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2154 /* To reduce the size of the memory leak,
2155 we only use a single message buffer. */
2156 static bfd_size_type alloc_size = 0;
2157 static char *message = NULL;
2158 bfd_size_type orig_len, len = 0;
2159 bfd_boolean is_append;
2161 VA_OPEN (ap, arglen);
2162 VA_FIXEDARG (ap, const char *, origmsg);
2164 is_append = (origmsg == message);
2166 orig_len = strlen (origmsg);
2167 len = orig_len + strlen (fmt) + arglen + 20;
2168 if (len > alloc_size)
2170 message = (char *) bfd_realloc_or_free (message, len);
2173 if (message != NULL)
2176 memcpy (message, origmsg, orig_len);
2177 vsprintf (message + orig_len, fmt, ap);
2184 /* This function is registered as the "special_function" in the
2185 Xtensa howto for handling simplify operations.
2186 bfd_perform_relocation / bfd_install_relocation use it to
2187 perform (install) the specified relocation. Since this replaces the code
2188 in bfd_perform_relocation, it is basically an Xtensa-specific,
2189 stripped-down version of bfd_perform_relocation. */
2191 static bfd_reloc_status_type
2192 bfd_elf_xtensa_reloc (bfd *abfd,
2193 arelent *reloc_entry,
2196 asection *input_section,
2198 char **error_message)
2201 bfd_reloc_status_type flag;
2202 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2203 bfd_vma output_base = 0;
2204 reloc_howto_type *howto = reloc_entry->howto;
2205 asection *reloc_target_output_section;
2206 bfd_boolean is_weak_undef;
2208 if (!xtensa_default_isa)
2209 xtensa_default_isa = xtensa_isa_init (0, 0);
2211 /* ELF relocs are against symbols. If we are producing relocatable
2212 output, and the reloc is against an external symbol, the resulting
2213 reloc will also be against the same symbol. In such a case, we
2214 don't want to change anything about the way the reloc is handled,
2215 since it will all be done at final link time. This test is similar
2216 to what bfd_elf_generic_reloc does except that it lets relocs with
2217 howto->partial_inplace go through even if the addend is non-zero.
2218 (The real problem is that partial_inplace is set for XTENSA_32
2219 relocs to begin with, but that's a long story and there's little we
2220 can do about it now....) */
2222 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2224 reloc_entry->address += input_section->output_offset;
2225 return bfd_reloc_ok;
2228 /* Is the address of the relocation really within the section? */
2229 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2230 return bfd_reloc_outofrange;
2232 /* Work out which section the relocation is targeted at and the
2233 initial relocation command value. */
2235 /* Get symbol value. (Common symbols are special.) */
2236 if (bfd_is_com_section (symbol->section))
2239 relocation = symbol->value;
2241 reloc_target_output_section = symbol->section->output_section;
2243 /* Convert input-section-relative symbol value to absolute. */
2244 if ((output_bfd && !howto->partial_inplace)
2245 || reloc_target_output_section == NULL)
2248 output_base = reloc_target_output_section->vma;
2250 relocation += output_base + symbol->section->output_offset;
2252 /* Add in supplied addend. */
2253 relocation += reloc_entry->addend;
2255 /* Here the variable relocation holds the final address of the
2256 symbol we are relocating against, plus any addend. */
2259 if (!howto->partial_inplace)
2261 /* This is a partial relocation, and we want to apply the relocation
2262 to the reloc entry rather than the raw data. Everything except
2263 relocations against section symbols has already been handled
2266 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2267 reloc_entry->addend = relocation;
2268 reloc_entry->address += input_section->output_offset;
2269 return bfd_reloc_ok;
2273 reloc_entry->address += input_section->output_offset;
2274 reloc_entry->addend = 0;
2278 is_weak_undef = (bfd_is_und_section (symbol->section)
2279 && (symbol->flags & BSF_WEAK) != 0);
2280 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2281 (bfd_byte *) data, (bfd_vma) octets,
2282 is_weak_undef, error_message);
2284 if (flag == bfd_reloc_dangerous)
2286 /* Add the symbol name to the error message. */
2287 if (! *error_message)
2288 *error_message = "";
2289 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2290 strlen (symbol->name) + 17,
2292 (unsigned long) reloc_entry->addend);
2299 /* Set up an entry in the procedure linkage table. */
2302 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2304 unsigned reloc_index)
2306 asection *splt, *sgotplt;
2307 bfd_vma plt_base, got_base;
2308 bfd_vma code_offset, lit_offset;
2311 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2312 splt = elf_xtensa_get_plt_section (info, chunk);
2313 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2314 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2316 plt_base = splt->output_section->vma + splt->output_offset;
2317 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2319 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2320 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2322 /* Fill in the literal entry. This is the offset of the dynamic
2323 relocation entry. */
2324 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2325 sgotplt->contents + lit_offset);
2327 /* Fill in the entry in the procedure linkage table. */
2328 memcpy (splt->contents + code_offset,
2329 (bfd_big_endian (output_bfd)
2330 ? elf_xtensa_be_plt_entry
2331 : elf_xtensa_le_plt_entry),
2333 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2334 plt_base + code_offset + 3),
2335 splt->contents + code_offset + 4);
2336 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2337 plt_base + code_offset + 6),
2338 splt->contents + code_offset + 7);
2339 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2340 plt_base + code_offset + 9),
2341 splt->contents + code_offset + 10);
2343 return plt_base + code_offset;
2347 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2350 replace_tls_insn (Elf_Internal_Rela *rel,
2352 asection *input_section,
2354 bfd_boolean is_ld_model,
2355 char **error_message)
2357 static xtensa_insnbuf ibuff = NULL;
2358 static xtensa_insnbuf sbuff = NULL;
2359 xtensa_isa isa = xtensa_default_isa;
2361 xtensa_opcode old_op, new_op;
2362 bfd_size_type input_size;
2364 unsigned dest_reg, src_reg;
2368 ibuff = xtensa_insnbuf_alloc (isa);
2369 sbuff = xtensa_insnbuf_alloc (isa);
2372 input_size = bfd_get_section_limit (abfd, input_section);
2374 /* Read the instruction into a buffer and decode the opcode. */
2375 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2376 input_size - rel->r_offset);
2377 fmt = xtensa_format_decode (isa, ibuff);
2378 if (fmt == XTENSA_UNDEFINED)
2380 *error_message = "cannot decode instruction format";
2384 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2385 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2387 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2388 if (old_op == XTENSA_UNDEFINED)
2390 *error_message = "cannot decode instruction opcode";
2394 r_type = ELF32_R_TYPE (rel->r_info);
2397 case R_XTENSA_TLS_FUNC:
2398 case R_XTENSA_TLS_ARG:
2399 if (old_op != get_l32r_opcode ()
2400 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2401 sbuff, &dest_reg) != 0)
2403 *error_message = "cannot extract L32R destination for TLS access";
2408 case R_XTENSA_TLS_CALL:
2409 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2410 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2411 sbuff, &src_reg) != 0)
2413 *error_message = "cannot extract CALLXn operands for TLS access";
2426 case R_XTENSA_TLS_FUNC:
2427 case R_XTENSA_TLS_ARG:
2428 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2429 versions of Xtensa). */
2430 new_op = xtensa_opcode_lookup (isa, "nop");
2431 if (new_op == XTENSA_UNDEFINED)
2433 new_op = xtensa_opcode_lookup (isa, "or");
2434 if (new_op == XTENSA_UNDEFINED
2435 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2436 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2438 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2440 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2443 *error_message = "cannot encode OR for TLS access";
2449 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2451 *error_message = "cannot encode NOP for TLS access";
2457 case R_XTENSA_TLS_CALL:
2458 /* Read THREADPTR into the CALLX's return value register. */
2459 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2460 if (new_op == XTENSA_UNDEFINED
2461 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2462 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2463 sbuff, dest_reg + 2) != 0)
2465 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2475 case R_XTENSA_TLS_FUNC:
2476 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2477 if (new_op == XTENSA_UNDEFINED
2478 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2479 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2480 sbuff, dest_reg) != 0)
2482 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2487 case R_XTENSA_TLS_ARG:
2488 /* Nothing to do. Keep the original L32R instruction. */
2491 case R_XTENSA_TLS_CALL:
2492 /* Add the CALLX's src register (holding the THREADPTR value)
2493 to the first argument register (holding the offset) and put
2494 the result in the CALLX's return value register. */
2495 new_op = xtensa_opcode_lookup (isa, "add");
2496 if (new_op == XTENSA_UNDEFINED
2497 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2498 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2499 sbuff, dest_reg + 2) != 0
2500 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2501 sbuff, dest_reg + 2) != 0
2502 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2503 sbuff, src_reg) != 0)
2505 *error_message = "cannot encode ADD for TLS access";
2512 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2513 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2514 input_size - rel->r_offset);
2520 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2521 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2522 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2523 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2524 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2525 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2526 || (R_TYPE) == R_XTENSA_TLS_ARG \
2527 || (R_TYPE) == R_XTENSA_TLS_CALL)
2529 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2530 both relocatable and final links. */
2533 elf_xtensa_relocate_section (bfd *output_bfd,
2534 struct bfd_link_info *info,
2536 asection *input_section,
2538 Elf_Internal_Rela *relocs,
2539 Elf_Internal_Sym *local_syms,
2540 asection **local_sections)
2542 struct elf_xtensa_link_hash_table *htab;
2543 Elf_Internal_Shdr *symtab_hdr;
2544 Elf_Internal_Rela *rel;
2545 Elf_Internal_Rela *relend;
2546 struct elf_link_hash_entry **sym_hashes;
2547 property_table_entry *lit_table = 0;
2549 char *local_got_tls_types;
2550 char *error_message = NULL;
2551 bfd_size_type input_size;
2554 if (!xtensa_default_isa)
2555 xtensa_default_isa = xtensa_isa_init (0, 0);
2557 BFD_ASSERT (is_xtensa_elf (input_bfd));
2559 htab = elf_xtensa_hash_table (info);
2563 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2564 sym_hashes = elf_sym_hashes (input_bfd);
2565 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2567 if (elf_hash_table (info)->dynamic_sections_created)
2569 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2570 &lit_table, XTENSA_LIT_SEC_NAME,
2576 input_size = bfd_get_section_limit (input_bfd, input_section);
2579 relend = relocs + input_section->reloc_count;
2580 for (; rel < relend; rel++)
2583 reloc_howto_type *howto;
2584 unsigned long r_symndx;
2585 struct elf_link_hash_entry *h;
2586 Elf_Internal_Sym *sym;
2591 bfd_reloc_status_type r;
2592 bfd_boolean is_weak_undef;
2593 bfd_boolean unresolved_reloc;
2595 bfd_boolean dynamic_symbol;
2597 r_type = ELF32_R_TYPE (rel->r_info);
2598 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2599 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2602 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2604 bfd_set_error (bfd_error_bad_value);
2607 howto = &elf_howto_table[r_type];
2609 r_symndx = ELF32_R_SYM (rel->r_info);
2614 is_weak_undef = FALSE;
2615 unresolved_reloc = FALSE;
2618 if (howto->partial_inplace && !info->relocatable)
2620 /* Because R_XTENSA_32 was made partial_inplace to fix some
2621 problems with DWARF info in partial links, there may be
2622 an addend stored in the contents. Take it out of there
2623 and move it back into the addend field of the reloc. */
2624 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2625 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2628 if (r_symndx < symtab_hdr->sh_info)
2630 sym = local_syms + r_symndx;
2631 sym_type = ELF32_ST_TYPE (sym->st_info);
2632 sec = local_sections[r_symndx];
2633 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2637 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2638 r_symndx, symtab_hdr, sym_hashes,
2640 unresolved_reloc, warned);
2643 && !unresolved_reloc
2644 && h->root.type == bfd_link_hash_undefweak)
2645 is_weak_undef = TRUE;
2650 if (sec != NULL && discarded_section (sec))
2651 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2652 rel, 1, relend, howto, 0, contents);
2654 if (info->relocatable)
2657 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2659 /* This is a relocatable link.
2660 1) If the reloc is against a section symbol, adjust
2661 according to the output section.
2662 2) If there is a new target for this relocation,
2663 the new target will be in the same output section.
2664 We adjust the relocation by the output section
2667 if (relaxing_section)
2669 /* Check if this references a section in another input file. */
2670 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2675 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2676 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2678 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2680 error_message = NULL;
2681 /* Convert ASM_SIMPLIFY into the simpler relocation
2682 so that they never escape a relaxing link. */
2683 r = contract_asm_expansion (contents, input_size, rel,
2685 if (r != bfd_reloc_ok)
2687 if (!((*info->callbacks->reloc_dangerous)
2688 (info, error_message, input_bfd, input_section,
2692 r_type = ELF32_R_TYPE (rel->r_info);
2695 /* This is a relocatable link, so we don't have to change
2696 anything unless the reloc is against a section symbol,
2697 in which case we have to adjust according to where the
2698 section symbol winds up in the output section. */
2699 if (r_symndx < symtab_hdr->sh_info)
2701 sym = local_syms + r_symndx;
2702 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2704 sec = local_sections[r_symndx];
2705 rel->r_addend += sec->output_offset + sym->st_value;
2709 /* If there is an addend with a partial_inplace howto,
2710 then move the addend to the contents. This is a hack
2711 to work around problems with DWARF in relocatable links
2712 with some previous version of BFD. Now we can't easily get
2713 rid of the hack without breaking backward compatibility.... */
2715 howto = &elf_howto_table[r_type];
2716 if (howto->partial_inplace && rel->r_addend)
2718 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2719 rel->r_addend, contents,
2720 rel->r_offset, FALSE,
2726 /* Put the correct bits in the target instruction, even
2727 though the relocation will still be present in the output
2728 file. This makes disassembly clearer, as well as
2729 allowing loadable kernel modules to work without needing
2730 relocations on anything other than calls and l32r's. */
2732 /* If it is not in the same section, there is nothing we can do. */
2733 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2734 sym_sec->output_section == input_section->output_section)
2736 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2737 dest_addr, contents,
2738 rel->r_offset, FALSE,
2742 if (r != bfd_reloc_ok)
2744 if (!((*info->callbacks->reloc_dangerous)
2745 (info, error_message, input_bfd, input_section,
2750 /* Done with work for relocatable link; continue with next reloc. */
2754 /* This is a final link. */
2756 if (relaxing_section)
2758 /* Check if this references a section in another input file. */
2759 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2763 /* Sanity check the address. */
2764 if (rel->r_offset >= input_size
2765 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2767 (*_bfd_error_handler)
2768 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2769 input_bfd, input_section, rel->r_offset, input_size);
2770 bfd_set_error (bfd_error_bad_value);
2775 name = h->root.root.string;
2778 name = (bfd_elf_string_from_elf_section
2779 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2780 if (name == NULL || *name == '\0')
2781 name = bfd_section_name (input_bfd, sec);
2784 if (r_symndx != STN_UNDEF
2785 && r_type != R_XTENSA_NONE
2787 || h->root.type == bfd_link_hash_defined
2788 || h->root.type == bfd_link_hash_defweak)
2789 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2791 (*_bfd_error_handler)
2792 ((sym_type == STT_TLS
2793 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2794 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2797 (long) rel->r_offset,
2802 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2804 tls_type = GOT_UNKNOWN;
2806 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2807 else if (local_got_tls_types)
2808 tls_type = local_got_tls_types [r_symndx];
2814 if (elf_hash_table (info)->dynamic_sections_created
2815 && (input_section->flags & SEC_ALLOC) != 0
2816 && (dynamic_symbol || info->shared))
2818 Elf_Internal_Rela outrel;
2822 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2823 srel = htab->srelplt;
2825 srel = htab->srelgot;
2827 BFD_ASSERT (srel != NULL);
2830 _bfd_elf_section_offset (output_bfd, info,
2831 input_section, rel->r_offset);
2833 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2834 memset (&outrel, 0, sizeof outrel);
2837 outrel.r_offset += (input_section->output_section->vma
2838 + input_section->output_offset);
2840 /* Complain if the relocation is in a read-only section
2841 and not in a literal pool. */
2842 if ((input_section->flags & SEC_READONLY) != 0
2843 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2847 _("dynamic relocation in read-only section");
2848 if (!((*info->callbacks->reloc_dangerous)
2849 (info, error_message, input_bfd, input_section,
2856 outrel.r_addend = rel->r_addend;
2859 if (r_type == R_XTENSA_32)
2862 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2865 else /* r_type == R_XTENSA_PLT */
2868 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2870 /* Create the PLT entry and set the initial
2871 contents of the literal entry to the address of
2874 elf_xtensa_create_plt_entry (info, output_bfd,
2877 unresolved_reloc = FALSE;
2881 /* Generate a RELATIVE relocation. */
2882 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2883 outrel.r_addend = 0;
2887 loc = (srel->contents
2888 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2889 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2890 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2893 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2895 /* This should only happen for non-PIC code, which is not
2896 supposed to be used on systems with dynamic linking.
2897 Just ignore these relocations. */
2902 case R_XTENSA_TLS_TPOFF:
2903 /* Switch to LE model for local symbols in an executable. */
2904 if (! info->shared && ! dynamic_symbol)
2906 relocation = tpoff (info, relocation);
2911 case R_XTENSA_TLSDESC_FN:
2912 case R_XTENSA_TLSDESC_ARG:
2914 if (r_type == R_XTENSA_TLSDESC_FN)
2916 if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2917 r_type = R_XTENSA_NONE;
2919 else if (r_type == R_XTENSA_TLSDESC_ARG)
2923 if ((tls_type & GOT_TLS_IE) != 0)
2924 r_type = R_XTENSA_TLS_TPOFF;
2928 r_type = R_XTENSA_TLS_TPOFF;
2929 if (! dynamic_symbol)
2931 relocation = tpoff (info, relocation);
2937 if (r_type == R_XTENSA_NONE)
2938 /* Nothing to do here; skip to the next reloc. */
2941 if (! elf_hash_table (info)->dynamic_sections_created)
2944 _("TLS relocation invalid without dynamic sections");
2945 if (!((*info->callbacks->reloc_dangerous)
2946 (info, error_message, input_bfd, input_section,
2952 Elf_Internal_Rela outrel;
2954 asection *srel = htab->srelgot;
2957 outrel.r_offset = (input_section->output_section->vma
2958 + input_section->output_offset
2961 /* Complain if the relocation is in a read-only section
2962 and not in a literal pool. */
2963 if ((input_section->flags & SEC_READONLY) != 0
2964 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2968 _("dynamic relocation in read-only section");
2969 if (!((*info->callbacks->reloc_dangerous)
2970 (info, error_message, input_bfd, input_section,
2975 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2977 outrel.r_addend = relocation - dtpoff_base (info);
2979 outrel.r_addend = 0;
2982 outrel.r_info = ELF32_R_INFO (indx, r_type);
2984 unresolved_reloc = FALSE;
2987 loc = (srel->contents
2988 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2989 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2990 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2996 case R_XTENSA_TLS_DTPOFF:
2998 /* Switch from LD model to LE model. */
2999 relocation = tpoff (info, relocation);
3001 relocation -= dtpoff_base (info);
3004 case R_XTENSA_TLS_FUNC:
3005 case R_XTENSA_TLS_ARG:
3006 case R_XTENSA_TLS_CALL:
3007 /* Check if optimizing to IE or LE model. */
3008 if ((tls_type & GOT_TLS_IE) != 0)
3010 bfd_boolean is_ld_model =
3011 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3012 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3013 is_ld_model, &error_message))
3015 if (!((*info->callbacks->reloc_dangerous)
3016 (info, error_message, input_bfd, input_section,
3021 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3023 /* Skip subsequent relocations on the same instruction. */
3024 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3031 if (elf_hash_table (info)->dynamic_sections_created
3032 && dynamic_symbol && (is_operand_relocation (r_type)
3033 || r_type == R_XTENSA_32_PCREL))
3036 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3037 strlen (name) + 2, name);
3038 if (!((*info->callbacks->reloc_dangerous)
3039 (info, error_message, input_bfd, input_section,
3047 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3048 because such sections are not SEC_ALLOC and thus ld.so will
3049 not process them. */
3050 if (unresolved_reloc
3051 && !((input_section->flags & SEC_DEBUGGING) != 0
3053 && _bfd_elf_section_offset (output_bfd, info, input_section,
3054 rel->r_offset) != (bfd_vma) -1)
3056 (*_bfd_error_handler)
3057 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3060 (long) rel->r_offset,
3066 /* TLS optimizations may have changed r_type; update "howto". */
3067 howto = &elf_howto_table[r_type];
3069 /* There's no point in calling bfd_perform_relocation here.
3070 Just go directly to our "special function". */
3071 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3072 relocation + rel->r_addend,
3073 contents, rel->r_offset, is_weak_undef,
3076 if (r != bfd_reloc_ok && !warned)
3078 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3079 BFD_ASSERT (error_message != NULL);
3081 if (rel->r_addend == 0)
3082 error_message = vsprint_msg (error_message, ": %s",
3083 strlen (name) + 2, name);
3085 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3087 name, (int) rel->r_addend);
3089 if (!((*info->callbacks->reloc_dangerous)
3090 (info, error_message, input_bfd, input_section,
3099 input_section->reloc_done = TRUE;
3105 /* Finish up dynamic symbol handling. There's not much to do here since
3106 the PLT and GOT entries are all set up by relocate_section. */
3109 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3110 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3111 struct elf_link_hash_entry *h,
3112 Elf_Internal_Sym *sym)
3114 if (h->needs_plt && !h->def_regular)
3116 /* Mark the symbol as undefined, rather than as defined in
3117 the .plt section. Leave the value alone. */
3118 sym->st_shndx = SHN_UNDEF;
3119 /* If the symbol is weak, we do need to clear the value.
3120 Otherwise, the PLT entry would provide a definition for
3121 the symbol even if the symbol wasn't defined anywhere,
3122 and so the symbol would never be NULL. */
3123 if (!h->ref_regular_nonweak)
3127 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3128 if (h == elf_hash_table (info)->hdynamic
3129 || h == elf_hash_table (info)->hgot)
3130 sym->st_shndx = SHN_ABS;
3136 /* Combine adjacent literal table entries in the output. Adjacent
3137 entries within each input section may have been removed during
3138 relaxation, but we repeat the process here, even though it's too late
3139 to shrink the output section, because it's important to minimize the
3140 number of literal table entries to reduce the start-up work for the
3141 runtime linker. Returns the number of remaining table entries or -1
3145 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3150 property_table_entry *table;
3151 bfd_size_type section_size, sgotloc_size;
3155 section_size = sxtlit->size;
3156 BFD_ASSERT (section_size % 8 == 0);
3157 num = section_size / 8;
3159 sgotloc_size = sgotloc->size;
3160 if (sgotloc_size != section_size)
3162 (*_bfd_error_handler)
3163 (_("internal inconsistency in size of .got.loc section"));
3167 table = bfd_malloc (num * sizeof (property_table_entry));
3171 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3172 propagates to the output section, where it doesn't really apply and
3173 where it breaks the following call to bfd_malloc_and_get_section. */
3174 sxtlit->flags &= ~SEC_IN_MEMORY;
3176 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3184 /* There should never be any relocations left at this point, so this
3185 is quite a bit easier than what is done during relaxation. */
3187 /* Copy the raw contents into a property table array and sort it. */
3189 for (n = 0; n < num; n++)
3191 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3192 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3195 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3197 for (n = 0; n < num; n++)
3199 bfd_boolean remove_entry = FALSE;
3201 if (table[n].size == 0)
3202 remove_entry = TRUE;
3204 && (table[n-1].address + table[n-1].size == table[n].address))
3206 table[n-1].size += table[n].size;
3207 remove_entry = TRUE;
3212 for (m = n; m < num - 1; m++)
3214 table[m].address = table[m+1].address;
3215 table[m].size = table[m+1].size;
3223 /* Copy the data back to the raw contents. */
3225 for (n = 0; n < num; n++)
3227 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3228 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3232 /* Clear the removed bytes. */
3233 if ((bfd_size_type) (num * 8) < section_size)
3234 memset (&contents[num * 8], 0, section_size - num * 8);
3236 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3240 /* Copy the contents to ".got.loc". */
3241 memcpy (sgotloc->contents, contents, section_size);
3249 /* Finish up the dynamic sections. */
3252 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3253 struct bfd_link_info *info)
3255 struct elf_xtensa_link_hash_table *htab;
3257 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
3258 Elf32_External_Dyn *dyncon, *dynconend;
3259 int num_xtlit_entries = 0;
3261 if (! elf_hash_table (info)->dynamic_sections_created)
3264 htab = elf_xtensa_hash_table (info);
3268 dynobj = elf_hash_table (info)->dynobj;
3269 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3270 BFD_ASSERT (sdyn != NULL);
3272 /* Set the first entry in the global offset table to the address of
3273 the dynamic section. */
3277 BFD_ASSERT (sgot->size == 4);
3279 bfd_put_32 (output_bfd, 0, sgot->contents);
3281 bfd_put_32 (output_bfd,
3282 sdyn->output_section->vma + sdyn->output_offset,
3286 srelplt = htab->srelplt;
3287 if (srelplt && srelplt->size != 0)
3289 asection *sgotplt, *srelgot, *spltlittbl;
3290 int chunk, plt_chunks, plt_entries;
3291 Elf_Internal_Rela irela;
3293 unsigned rtld_reloc;
3295 srelgot = htab->srelgot;
3296 spltlittbl = htab->spltlittbl;
3297 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3299 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3300 of them follow immediately after.... */
3301 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3303 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3304 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3305 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3308 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3310 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3312 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3314 for (chunk = 0; chunk < plt_chunks; chunk++)
3316 int chunk_entries = 0;
3318 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3319 BFD_ASSERT (sgotplt != NULL);
3321 /* Emit special RTLD relocations for the first two entries in
3322 each chunk of the .got.plt section. */
3324 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3325 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3326 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3327 irela.r_offset = (sgotplt->output_section->vma
3328 + sgotplt->output_offset);
3329 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3330 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3332 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3334 /* Next literal immediately follows the first. */
3335 loc += sizeof (Elf32_External_Rela);
3336 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3337 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3338 irela.r_offset = (sgotplt->output_section->vma
3339 + sgotplt->output_offset + 4);
3340 /* Tell rtld to set value to object's link map. */
3342 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3344 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3346 /* Fill in the literal table. */
3347 if (chunk < plt_chunks - 1)
3348 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3350 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3352 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3353 bfd_put_32 (output_bfd,
3354 sgotplt->output_section->vma + sgotplt->output_offset,
3355 spltlittbl->contents + (chunk * 8) + 0);
3356 bfd_put_32 (output_bfd,
3357 8 + (chunk_entries * 4),
3358 spltlittbl->contents + (chunk * 8) + 4);
3361 /* All the dynamic relocations have been emitted at this point.
3362 Make sure the relocation sections are the correct size. */
3363 if (srelgot->size != (sizeof (Elf32_External_Rela)
3364 * srelgot->reloc_count)
3365 || srelplt->size != (sizeof (Elf32_External_Rela)
3366 * srelplt->reloc_count))
3369 /* The .xt.lit.plt section has just been modified. This must
3370 happen before the code below which combines adjacent literal
3371 table entries, and the .xt.lit.plt contents have to be forced to
3373 if (! bfd_set_section_contents (output_bfd,
3374 spltlittbl->output_section,
3375 spltlittbl->contents,
3376 spltlittbl->output_offset,
3379 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3380 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3383 /* Combine adjacent literal table entries. */
3384 BFD_ASSERT (! info->relocatable);
3385 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3386 sgotloc = htab->sgotloc;
3387 BFD_ASSERT (sgotloc);
3391 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3392 if (num_xtlit_entries < 0)
3396 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3397 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3398 for (; dyncon < dynconend; dyncon++)
3400 Elf_Internal_Dyn dyn;
3402 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3409 case DT_XTENSA_GOT_LOC_SZ:
3410 dyn.d_un.d_val = num_xtlit_entries;
3413 case DT_XTENSA_GOT_LOC_OFF:
3414 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
3418 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
3422 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3426 dyn.d_un.d_val = htab->srelplt->output_section->size;
3430 /* Adjust RELASZ to not include JMPREL. This matches what
3431 glibc expects and what is done for several other ELF
3432 targets (e.g., i386, alpha), but the "correct" behavior
3433 seems to be unresolved. Since the linker script arranges
3434 for .rela.plt to follow all other relocation sections, we
3435 don't have to worry about changing the DT_RELA entry. */
3437 dyn.d_un.d_val -= htab->srelplt->output_section->size;
3441 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3448 /* Functions for dealing with the e_flags field. */
3450 /* Merge backend specific data from an object file to the output
3451 object file when linking. */
3454 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
3456 unsigned out_mach, in_mach;
3457 flagword out_flag, in_flag;
3459 /* Check if we have the same endianness. */
3460 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3463 /* Don't even pretend to support mixed-format linking. */
3464 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3465 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3468 out_flag = elf_elfheader (obfd)->e_flags;
3469 in_flag = elf_elfheader (ibfd)->e_flags;
3471 out_mach = out_flag & EF_XTENSA_MACH;
3472 in_mach = in_flag & EF_XTENSA_MACH;
3473 if (out_mach != in_mach)
3475 (*_bfd_error_handler)
3476 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
3477 ibfd, out_mach, in_mach);
3478 bfd_set_error (bfd_error_wrong_format);
3482 if (! elf_flags_init (obfd))
3484 elf_flags_init (obfd) = TRUE;
3485 elf_elfheader (obfd)->e_flags = in_flag;
3487 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3488 && bfd_get_arch_info (obfd)->the_default)
3489 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3490 bfd_get_mach (ibfd));
3495 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3496 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3498 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3499 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3506 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3508 BFD_ASSERT (!elf_flags_init (abfd)
3509 || elf_elfheader (abfd)->e_flags == flags);
3511 elf_elfheader (abfd)->e_flags |= flags;
3512 elf_flags_init (abfd) = TRUE;
3519 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3521 FILE *f = (FILE *) farg;
3522 flagword e_flags = elf_elfheader (abfd)->e_flags;
3524 fprintf (f, "\nXtensa header:\n");
3525 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3526 fprintf (f, "\nMachine = Base\n");
3528 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3530 fprintf (f, "Insn tables = %s\n",
3531 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3533 fprintf (f, "Literal tables = %s\n",
3534 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3536 return _bfd_elf_print_private_bfd_data (abfd, farg);
3540 /* Set the right machine number for an Xtensa ELF file. */
3543 elf_xtensa_object_p (bfd *abfd)
3546 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3551 mach = bfd_mach_xtensa;
3557 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3562 /* The final processing done just before writing out an Xtensa ELF object
3563 file. This gets the Xtensa architecture right based on the machine
3567 elf_xtensa_final_write_processing (bfd *abfd,
3568 bfd_boolean linker ATTRIBUTE_UNUSED)
3573 switch (mach = bfd_get_mach (abfd))
3575 case bfd_mach_xtensa:
3576 val = E_XTENSA_MACH;
3582 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3583 elf_elfheader (abfd)->e_flags |= val;
3587 static enum elf_reloc_type_class
3588 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3589 const asection *rel_sec ATTRIBUTE_UNUSED,
3590 const Elf_Internal_Rela *rela)
3592 switch ((int) ELF32_R_TYPE (rela->r_info))
3594 case R_XTENSA_RELATIVE:
3595 return reloc_class_relative;
3596 case R_XTENSA_JMP_SLOT:
3597 return reloc_class_plt;
3599 return reloc_class_normal;
3605 elf_xtensa_discard_info_for_section (bfd *abfd,
3606 struct elf_reloc_cookie *cookie,
3607 struct bfd_link_info *info,
3611 bfd_vma offset, actual_offset;
3612 bfd_size_type removed_bytes = 0;
3613 bfd_size_type entry_size;
3615 if (sec->output_section
3616 && bfd_is_abs_section (sec->output_section))
3619 if (xtensa_is_proptable_section (sec))
3624 if (sec->size == 0 || sec->size % entry_size != 0)
3627 contents = retrieve_contents (abfd, sec, info->keep_memory);
3631 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3634 release_contents (sec, contents);
3638 /* Sort the relocations. They should already be in order when
3639 relaxation is enabled, but it might not be. */
3640 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3641 internal_reloc_compare);
3643 cookie->rel = cookie->rels;
3644 cookie->relend = cookie->rels + sec->reloc_count;
3646 for (offset = 0; offset < sec->size; offset += entry_size)
3648 actual_offset = offset - removed_bytes;
3650 /* The ...symbol_deleted_p function will skip over relocs but it
3651 won't adjust their offsets, so do that here. */
3652 while (cookie->rel < cookie->relend
3653 && cookie->rel->r_offset < offset)
3655 cookie->rel->r_offset -= removed_bytes;
3659 while (cookie->rel < cookie->relend
3660 && cookie->rel->r_offset == offset)
3662 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3664 /* Remove the table entry. (If the reloc type is NONE, then
3665 the entry has already been merged with another and deleted
3666 during relaxation.) */
3667 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3669 /* Shift the contents up. */
3670 if (offset + entry_size < sec->size)
3671 memmove (&contents[actual_offset],
3672 &contents[actual_offset + entry_size],
3673 sec->size - offset - entry_size);
3674 removed_bytes += entry_size;
3677 /* Remove this relocation. */
3678 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3681 /* Adjust the relocation offset for previous removals. This
3682 should not be done before calling ...symbol_deleted_p
3683 because it might mess up the offset comparisons there.
3684 Make sure the offset doesn't underflow in the case where
3685 the first entry is removed. */
3686 if (cookie->rel->r_offset >= removed_bytes)
3687 cookie->rel->r_offset -= removed_bytes;
3689 cookie->rel->r_offset = 0;
3695 if (removed_bytes != 0)
3697 /* Adjust any remaining relocs (shouldn't be any). */
3698 for (; cookie->rel < cookie->relend; cookie->rel++)
3700 if (cookie->rel->r_offset >= removed_bytes)
3701 cookie->rel->r_offset -= removed_bytes;
3703 cookie->rel->r_offset = 0;
3706 /* Clear the removed bytes. */
3707 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3709 pin_contents (sec, contents);
3710 pin_internal_relocs (sec, cookie->rels);
3713 if (sec->rawsize == 0)
3714 sec->rawsize = sec->size;
3715 sec->size -= removed_bytes;
3717 if (xtensa_is_littable_section (sec))
3719 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3721 sgotloc->size -= removed_bytes;
3726 release_contents (sec, contents);
3727 release_internal_relocs (sec, cookie->rels);
3730 return (removed_bytes != 0);
3735 elf_xtensa_discard_info (bfd *abfd,
3736 struct elf_reloc_cookie *cookie,
3737 struct bfd_link_info *info)
3740 bfd_boolean changed = FALSE;
3742 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3744 if (xtensa_is_property_section (sec))
3746 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3756 elf_xtensa_ignore_discarded_relocs (asection *sec)
3758 return xtensa_is_property_section (sec);
3763 elf_xtensa_action_discarded (asection *sec)
3765 if (strcmp (".xt_except_table", sec->name) == 0)
3768 if (strcmp (".xt_except_desc", sec->name) == 0)
3771 return _bfd_elf_default_action_discarded (sec);
3775 /* Support for core dump NOTE sections. */
3778 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3783 /* The size for Xtensa is variable, so don't try to recognize the format
3784 based on the size. Just assume this is GNU/Linux. */
3787 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3790 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3794 size = note->descsz - offset - 4;
3796 /* Make a ".reg/999" section. */
3797 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3798 size, note->descpos + offset);
3803 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3805 switch (note->descsz)
3810 case 128: /* GNU/Linux elf_prpsinfo */
3811 elf_tdata (abfd)->core->program
3812 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3813 elf_tdata (abfd)->core->command
3814 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3817 /* Note that for some reason, a spurious space is tacked
3818 onto the end of the args in some (at least one anyway)
3819 implementations, so strip it off if it exists. */
3822 char *command = elf_tdata (abfd)->core->command;
3823 int n = strlen (command);
3825 if (0 < n && command[n - 1] == ' ')
3826 command[n - 1] = '\0';
3833 /* Generic Xtensa configurability stuff. */
3835 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3836 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3837 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3838 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3839 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3840 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3841 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3842 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3845 init_call_opcodes (void)
3847 if (callx0_op == XTENSA_UNDEFINED)
3849 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3850 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3851 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3852 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3853 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3854 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3855 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3856 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3862 is_indirect_call_opcode (xtensa_opcode opcode)
3864 init_call_opcodes ();
3865 return (opcode == callx0_op
3866 || opcode == callx4_op
3867 || opcode == callx8_op
3868 || opcode == callx12_op);
3873 is_direct_call_opcode (xtensa_opcode opcode)
3875 init_call_opcodes ();
3876 return (opcode == call0_op
3877 || opcode == call4_op
3878 || opcode == call8_op
3879 || opcode == call12_op);
3884 is_windowed_call_opcode (xtensa_opcode opcode)
3886 init_call_opcodes ();
3887 return (opcode == call4_op
3888 || opcode == call8_op
3889 || opcode == call12_op
3890 || opcode == callx4_op
3891 || opcode == callx8_op
3892 || opcode == callx12_op);
3897 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3899 unsigned dst = (unsigned) -1;
3901 init_call_opcodes ();
3902 if (opcode == callx0_op)
3904 else if (opcode == callx4_op)
3906 else if (opcode == callx8_op)
3908 else if (opcode == callx12_op)
3911 if (dst == (unsigned) -1)
3919 static xtensa_opcode
3920 get_const16_opcode (void)
3922 static bfd_boolean done_lookup = FALSE;
3923 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3926 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3929 return const16_opcode;
3933 static xtensa_opcode
3934 get_l32r_opcode (void)
3936 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3937 static bfd_boolean done_lookup = FALSE;
3941 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3949 l32r_offset (bfd_vma addr, bfd_vma pc)
3953 offset = addr - ((pc+3) & -4);
3954 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3955 offset = (signed int) offset >> 2;
3956 BFD_ASSERT ((signed int) offset >> 16 == -1);
3962 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3964 xtensa_isa isa = xtensa_default_isa;
3965 int last_immed, last_opnd, opi;
3967 if (opcode == XTENSA_UNDEFINED)
3968 return XTENSA_UNDEFINED;
3970 /* Find the last visible PC-relative immediate operand for the opcode.
3971 If there are no PC-relative immediates, then choose the last visible
3972 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3973 last_immed = XTENSA_UNDEFINED;
3974 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3975 for (opi = last_opnd - 1; opi >= 0; opi--)
3977 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3979 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3984 if (last_immed == XTENSA_UNDEFINED
3985 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3989 return XTENSA_UNDEFINED;
3991 /* If the operand number was specified in an old-style relocation,
3992 check for consistency with the operand computed above. */
3993 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3995 int reloc_opnd = r_type - R_XTENSA_OP0;
3996 if (reloc_opnd != last_immed)
3997 return XTENSA_UNDEFINED;
4005 get_relocation_slot (int r_type)
4015 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4016 return r_type - R_XTENSA_SLOT0_OP;
4017 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4018 return r_type - R_XTENSA_SLOT0_ALT;
4022 return XTENSA_UNDEFINED;
4026 /* Get the opcode for a relocation. */
4028 static xtensa_opcode
4029 get_relocation_opcode (bfd *abfd,
4032 Elf_Internal_Rela *irel)
4034 static xtensa_insnbuf ibuff = NULL;
4035 static xtensa_insnbuf sbuff = NULL;
4036 xtensa_isa isa = xtensa_default_isa;
4040 if (contents == NULL)
4041 return XTENSA_UNDEFINED;
4043 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4044 return XTENSA_UNDEFINED;
4048 ibuff = xtensa_insnbuf_alloc (isa);
4049 sbuff = xtensa_insnbuf_alloc (isa);
4052 /* Decode the instruction. */
4053 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4054 sec->size - irel->r_offset);
4055 fmt = xtensa_format_decode (isa, ibuff);
4056 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4057 if (slot == XTENSA_UNDEFINED)
4058 return XTENSA_UNDEFINED;
4059 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4060 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4065 is_l32r_relocation (bfd *abfd,
4068 Elf_Internal_Rela *irel)
4070 xtensa_opcode opcode;
4071 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4073 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4074 return (opcode == get_l32r_opcode ());
4078 static bfd_size_type
4079 get_asm_simplify_size (bfd_byte *contents,
4080 bfd_size_type content_len,
4081 bfd_size_type offset)
4083 bfd_size_type insnlen, size = 0;
4085 /* Decode the size of the next two instructions. */
4086 insnlen = insn_decode_len (contents, content_len, offset);
4092 insnlen = insn_decode_len (contents, content_len, offset + size);
4102 is_alt_relocation (int r_type)
4104 return (r_type >= R_XTENSA_SLOT0_ALT
4105 && r_type <= R_XTENSA_SLOT14_ALT);
4110 is_operand_relocation (int r_type)
4120 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4122 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4131 #define MIN_INSN_LENGTH 2
4133 /* Return 0 if it fails to decode. */
4136 insn_decode_len (bfd_byte *contents,
4137 bfd_size_type content_len,
4138 bfd_size_type offset)
4141 xtensa_isa isa = xtensa_default_isa;
4143 static xtensa_insnbuf ibuff = NULL;
4145 if (offset + MIN_INSN_LENGTH > content_len)
4149 ibuff = xtensa_insnbuf_alloc (isa);
4150 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4151 content_len - offset);
4152 fmt = xtensa_format_decode (isa, ibuff);
4153 if (fmt == XTENSA_UNDEFINED)
4155 insn_len = xtensa_format_length (isa, fmt);
4156 if (insn_len == XTENSA_UNDEFINED)
4162 /* Decode the opcode for a single slot instruction.
4163 Return 0 if it fails to decode or the instruction is multi-slot. */
4166 insn_decode_opcode (bfd_byte *contents,
4167 bfd_size_type content_len,
4168 bfd_size_type offset,
4171 xtensa_isa isa = xtensa_default_isa;
4173 static xtensa_insnbuf insnbuf = NULL;
4174 static xtensa_insnbuf slotbuf = NULL;
4176 if (offset + MIN_INSN_LENGTH > content_len)
4177 return XTENSA_UNDEFINED;
4179 if (insnbuf == NULL)
4181 insnbuf = xtensa_insnbuf_alloc (isa);
4182 slotbuf = xtensa_insnbuf_alloc (isa);
4185 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4186 content_len - offset);
4187 fmt = xtensa_format_decode (isa, insnbuf);
4188 if (fmt == XTENSA_UNDEFINED)
4189 return XTENSA_UNDEFINED;
4191 if (slot >= xtensa_format_num_slots (isa, fmt))
4192 return XTENSA_UNDEFINED;
4194 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4195 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4199 /* The offset is the offset in the contents.
4200 The address is the address of that offset. */
4203 check_branch_target_aligned (bfd_byte *contents,
4204 bfd_size_type content_length,
4208 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4211 return check_branch_target_aligned_address (address, insn_len);
4216 check_loop_aligned (bfd_byte *contents,
4217 bfd_size_type content_length,
4221 bfd_size_type loop_len, insn_len;
4222 xtensa_opcode opcode;
4224 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4225 if (opcode == XTENSA_UNDEFINED
4226 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4232 loop_len = insn_decode_len (contents, content_length, offset);
4233 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4234 if (loop_len == 0 || insn_len == 0)
4240 return check_branch_target_aligned_address (address + loop_len, insn_len);
4245 check_branch_target_aligned_address (bfd_vma addr, int len)
4248 return (addr % 8 == 0);
4249 return ((addr >> 2) == ((addr + len - 1) >> 2));
4253 /* Instruction widening and narrowing. */
4255 /* When FLIX is available we need to access certain instructions only
4256 when they are 16-bit or 24-bit instructions. This table caches
4257 information about such instructions by walking through all the
4258 opcodes and finding the smallest single-slot format into which each
4261 static xtensa_format *op_single_fmt_table = NULL;
4265 init_op_single_format_table (void)
4267 xtensa_isa isa = xtensa_default_isa;
4268 xtensa_insnbuf ibuf;
4269 xtensa_opcode opcode;
4273 if (op_single_fmt_table)
4276 ibuf = xtensa_insnbuf_alloc (isa);
4277 num_opcodes = xtensa_isa_num_opcodes (isa);
4279 op_single_fmt_table = (xtensa_format *)
4280 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4281 for (opcode = 0; opcode < num_opcodes; opcode++)
4283 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4284 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4286 if (xtensa_format_num_slots (isa, fmt) == 1
4287 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4289 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4290 int fmt_length = xtensa_format_length (isa, fmt);
4291 if (old_fmt == XTENSA_UNDEFINED
4292 || fmt_length < xtensa_format_length (isa, old_fmt))
4293 op_single_fmt_table[opcode] = fmt;
4297 xtensa_insnbuf_free (isa, ibuf);
4301 static xtensa_format
4302 get_single_format (xtensa_opcode opcode)
4304 init_op_single_format_table ();
4305 return op_single_fmt_table[opcode];
4309 /* For the set of narrowable instructions we do NOT include the
4310 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4311 involved during linker relaxation that may require these to
4312 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4313 requires special case code to ensure it only works when op1 == op2. */
4321 struct string_pair narrowable[] =
4324 { "addi", "addi.n" },
4325 { "addmi", "addi.n" },
4326 { "l32i", "l32i.n" },
4327 { "movi", "movi.n" },
4329 { "retw", "retw.n" },
4330 { "s32i", "s32i.n" },
4331 { "or", "mov.n" } /* special case only when op1 == op2 */
4334 struct string_pair widenable[] =
4337 { "addi", "addi.n" },
4338 { "addmi", "addi.n" },
4339 { "beqz", "beqz.n" },
4340 { "bnez", "bnez.n" },
4341 { "l32i", "l32i.n" },
4342 { "movi", "movi.n" },
4344 { "retw", "retw.n" },
4345 { "s32i", "s32i.n" },
4346 { "or", "mov.n" } /* special case only when op1 == op2 */
4350 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4351 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4352 return the instruction buffer holding the narrow instruction. Otherwise,
4353 return 0. The set of valid narrowing are specified by a string table
4354 but require some special case operand checks in some cases. */
4356 static xtensa_insnbuf
4357 can_narrow_instruction (xtensa_insnbuf slotbuf,
4359 xtensa_opcode opcode)
4361 xtensa_isa isa = xtensa_default_isa;
4362 xtensa_format o_fmt;
4365 static xtensa_insnbuf o_insnbuf = NULL;
4366 static xtensa_insnbuf o_slotbuf = NULL;
4368 if (o_insnbuf == NULL)
4370 o_insnbuf = xtensa_insnbuf_alloc (isa);
4371 o_slotbuf = xtensa_insnbuf_alloc (isa);
4374 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4376 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4378 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4380 uint32 value, newval;
4381 int i, operand_count, o_operand_count;
4382 xtensa_opcode o_opcode;
4384 /* Address does not matter in this case. We might need to
4385 fix it to handle branches/jumps. */
4386 bfd_vma self_address = 0;
4388 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4389 if (o_opcode == XTENSA_UNDEFINED)
4391 o_fmt = get_single_format (o_opcode);
4392 if (o_fmt == XTENSA_UNDEFINED)
4395 if (xtensa_format_length (isa, fmt) != 3
4396 || xtensa_format_length (isa, o_fmt) != 2)
4399 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4400 operand_count = xtensa_opcode_num_operands (isa, opcode);
4401 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4403 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4408 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4413 uint32 rawval0, rawval1, rawval2;
4415 if (o_operand_count + 1 != operand_count
4416 || xtensa_operand_get_field (isa, opcode, 0,
4417 fmt, 0, slotbuf, &rawval0) != 0
4418 || xtensa_operand_get_field (isa, opcode, 1,
4419 fmt, 0, slotbuf, &rawval1) != 0
4420 || xtensa_operand_get_field (isa, opcode, 2,
4421 fmt, 0, slotbuf, &rawval2) != 0
4422 || rawval1 != rawval2
4423 || rawval0 == rawval1 /* it is a nop */)
4427 for (i = 0; i < o_operand_count; ++i)
4429 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4431 || xtensa_operand_decode (isa, opcode, i, &value))
4434 /* PC-relative branches need adjustment, but
4435 the PC-rel operand will always have a relocation. */
4437 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4439 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4440 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4445 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4455 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4456 the action in-place directly into the contents and return TRUE. Otherwise,
4457 the return value is FALSE and the contents are not modified. */
4460 narrow_instruction (bfd_byte *contents,
4461 bfd_size_type content_length,
4462 bfd_size_type offset)
4464 xtensa_opcode opcode;
4465 bfd_size_type insn_len;
4466 xtensa_isa isa = xtensa_default_isa;
4468 xtensa_insnbuf o_insnbuf;
4470 static xtensa_insnbuf insnbuf = NULL;
4471 static xtensa_insnbuf slotbuf = NULL;
4473 if (insnbuf == NULL)
4475 insnbuf = xtensa_insnbuf_alloc (isa);
4476 slotbuf = xtensa_insnbuf_alloc (isa);
4479 BFD_ASSERT (offset < content_length);
4481 if (content_length < 2)
4484 /* We will hand-code a few of these for a little while.
4485 These have all been specified in the assembler aleady. */
4486 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4487 content_length - offset);
4488 fmt = xtensa_format_decode (isa, insnbuf);
4489 if (xtensa_format_num_slots (isa, fmt) != 1)
4492 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4495 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4496 if (opcode == XTENSA_UNDEFINED)
4498 insn_len = xtensa_format_length (isa, fmt);
4499 if (insn_len > content_length)
4502 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4505 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4506 content_length - offset);
4514 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4515 "density" instruction to a standard 3-byte instruction. If it is valid,
4516 return the instruction buffer holding the wide instruction. Otherwise,
4517 return 0. The set of valid widenings are specified by a string table
4518 but require some special case operand checks in some cases. */
4520 static xtensa_insnbuf
4521 can_widen_instruction (xtensa_insnbuf slotbuf,
4523 xtensa_opcode opcode)
4525 xtensa_isa isa = xtensa_default_isa;
4526 xtensa_format o_fmt;
4529 static xtensa_insnbuf o_insnbuf = NULL;
4530 static xtensa_insnbuf o_slotbuf = NULL;
4532 if (o_insnbuf == NULL)
4534 o_insnbuf = xtensa_insnbuf_alloc (isa);
4535 o_slotbuf = xtensa_insnbuf_alloc (isa);
4538 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4540 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4541 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4542 || strcmp ("bnez", widenable[opi].wide) == 0);
4544 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4546 uint32 value, newval;
4547 int i, operand_count, o_operand_count, check_operand_count;
4548 xtensa_opcode o_opcode;
4550 /* Address does not matter in this case. We might need to fix it
4551 to handle branches/jumps. */
4552 bfd_vma self_address = 0;
4554 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4555 if (o_opcode == XTENSA_UNDEFINED)
4557 o_fmt = get_single_format (o_opcode);
4558 if (o_fmt == XTENSA_UNDEFINED)
4561 if (xtensa_format_length (isa, fmt) != 2
4562 || xtensa_format_length (isa, o_fmt) != 3)
4565 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4566 operand_count = xtensa_opcode_num_operands (isa, opcode);
4567 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4568 check_operand_count = o_operand_count;
4570 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4575 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4580 uint32 rawval0, rawval1;
4582 if (o_operand_count != operand_count + 1
4583 || xtensa_operand_get_field (isa, opcode, 0,
4584 fmt, 0, slotbuf, &rawval0) != 0
4585 || xtensa_operand_get_field (isa, opcode, 1,
4586 fmt, 0, slotbuf, &rawval1) != 0
4587 || rawval0 == rawval1 /* it is a nop */)
4591 check_operand_count--;
4593 for (i = 0; i < check_operand_count; i++)
4596 if (is_or && i == o_operand_count - 1)
4598 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4600 || xtensa_operand_decode (isa, opcode, new_i, &value))
4603 /* PC-relative branches need adjustment, but
4604 the PC-rel operand will always have a relocation. */
4606 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4608 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4609 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4614 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4624 /* Attempt to widen an instruction. If the widening is valid, perform
4625 the action in-place directly into the contents and return TRUE. Otherwise,
4626 the return value is FALSE and the contents are not modified. */
4629 widen_instruction (bfd_byte *contents,
4630 bfd_size_type content_length,
4631 bfd_size_type offset)
4633 xtensa_opcode opcode;
4634 bfd_size_type insn_len;
4635 xtensa_isa isa = xtensa_default_isa;
4637 xtensa_insnbuf o_insnbuf;
4639 static xtensa_insnbuf insnbuf = NULL;
4640 static xtensa_insnbuf slotbuf = NULL;
4642 if (insnbuf == NULL)
4644 insnbuf = xtensa_insnbuf_alloc (isa);
4645 slotbuf = xtensa_insnbuf_alloc (isa);
4648 BFD_ASSERT (offset < content_length);
4650 if (content_length < 2)
4653 /* We will hand-code a few of these for a little while.
4654 These have all been specified in the assembler aleady. */
4655 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4656 content_length - offset);
4657 fmt = xtensa_format_decode (isa, insnbuf);
4658 if (xtensa_format_num_slots (isa, fmt) != 1)
4661 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4664 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4665 if (opcode == XTENSA_UNDEFINED)
4667 insn_len = xtensa_format_length (isa, fmt);
4668 if (insn_len > content_length)
4671 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4674 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4675 content_length - offset);
4682 /* Code for transforming CALLs at link-time. */
4684 static bfd_reloc_status_type
4685 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4687 bfd_vma content_length,
4688 char **error_message)
4690 static xtensa_insnbuf insnbuf = NULL;
4691 static xtensa_insnbuf slotbuf = NULL;
4692 xtensa_format core_format = XTENSA_UNDEFINED;
4693 xtensa_opcode opcode;
4694 xtensa_opcode direct_call_opcode;
4695 xtensa_isa isa = xtensa_default_isa;
4696 bfd_byte *chbuf = contents + address;
4699 if (insnbuf == NULL)
4701 insnbuf = xtensa_insnbuf_alloc (isa);
4702 slotbuf = xtensa_insnbuf_alloc (isa);
4705 if (content_length < address)
4707 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4708 return bfd_reloc_other;
4711 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4712 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4713 if (direct_call_opcode == XTENSA_UNDEFINED)
4715 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4716 return bfd_reloc_other;
4719 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4720 core_format = xtensa_format_lookup (isa, "x24");
4721 opcode = xtensa_opcode_lookup (isa, "or");
4722 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4723 for (opn = 0; opn < 3; opn++)
4726 xtensa_operand_encode (isa, opcode, opn, ®no);
4727 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4730 xtensa_format_encode (isa, core_format, insnbuf);
4731 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4732 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4734 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4735 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4736 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4738 xtensa_format_encode (isa, core_format, insnbuf);
4739 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4740 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4741 content_length - address - 3);
4743 return bfd_reloc_ok;
4747 static bfd_reloc_status_type
4748 contract_asm_expansion (bfd_byte *contents,
4749 bfd_vma content_length,
4750 Elf_Internal_Rela *irel,
4751 char **error_message)
4753 bfd_reloc_status_type retval =
4754 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4757 if (retval != bfd_reloc_ok)
4758 return bfd_reloc_dangerous;
4760 /* Update the irel->r_offset field so that the right immediate and
4761 the right instruction are modified during the relocation. */
4762 irel->r_offset += 3;
4763 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4764 return bfd_reloc_ok;
4768 static xtensa_opcode
4769 swap_callx_for_call_opcode (xtensa_opcode opcode)
4771 init_call_opcodes ();
4773 if (opcode == callx0_op) return call0_op;
4774 if (opcode == callx4_op) return call4_op;
4775 if (opcode == callx8_op) return call8_op;
4776 if (opcode == callx12_op) return call12_op;
4778 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4779 return XTENSA_UNDEFINED;
4783 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4784 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4785 If not, return XTENSA_UNDEFINED. */
4787 #define L32R_TARGET_REG_OPERAND 0
4788 #define CONST16_TARGET_REG_OPERAND 0
4789 #define CALLN_SOURCE_OPERAND 0
4791 static xtensa_opcode
4792 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4794 static xtensa_insnbuf insnbuf = NULL;
4795 static xtensa_insnbuf slotbuf = NULL;
4797 xtensa_opcode opcode;
4798 xtensa_isa isa = xtensa_default_isa;
4799 uint32 regno, const16_regno, call_regno;
4802 if (insnbuf == NULL)
4804 insnbuf = xtensa_insnbuf_alloc (isa);
4805 slotbuf = xtensa_insnbuf_alloc (isa);
4808 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4809 fmt = xtensa_format_decode (isa, insnbuf);
4810 if (fmt == XTENSA_UNDEFINED
4811 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4812 return XTENSA_UNDEFINED;
4814 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4815 if (opcode == XTENSA_UNDEFINED)
4816 return XTENSA_UNDEFINED;
4818 if (opcode == get_l32r_opcode ())
4821 *p_uses_l32r = TRUE;
4822 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4823 fmt, 0, slotbuf, ®no)
4824 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4826 return XTENSA_UNDEFINED;
4828 else if (opcode == get_const16_opcode ())
4831 *p_uses_l32r = FALSE;
4832 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4833 fmt, 0, slotbuf, ®no)
4834 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4836 return XTENSA_UNDEFINED;
4838 /* Check that the next instruction is also CONST16. */
4839 offset += xtensa_format_length (isa, fmt);
4840 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4841 fmt = xtensa_format_decode (isa, insnbuf);
4842 if (fmt == XTENSA_UNDEFINED
4843 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4844 return XTENSA_UNDEFINED;
4845 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4846 if (opcode != get_const16_opcode ())
4847 return XTENSA_UNDEFINED;
4849 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4850 fmt, 0, slotbuf, &const16_regno)
4851 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4853 || const16_regno != regno)
4854 return XTENSA_UNDEFINED;
4857 return XTENSA_UNDEFINED;
4859 /* Next instruction should be an CALLXn with operand 0 == regno. */
4860 offset += xtensa_format_length (isa, fmt);
4861 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4862 fmt = xtensa_format_decode (isa, insnbuf);
4863 if (fmt == XTENSA_UNDEFINED
4864 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4865 return XTENSA_UNDEFINED;
4866 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4867 if (opcode == XTENSA_UNDEFINED
4868 || !is_indirect_call_opcode (opcode))
4869 return XTENSA_UNDEFINED;
4871 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4872 fmt, 0, slotbuf, &call_regno)
4873 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4875 return XTENSA_UNDEFINED;
4877 if (call_regno != regno)
4878 return XTENSA_UNDEFINED;
4884 /* Data structures used during relaxation. */
4886 /* r_reloc: relocation values. */
4888 /* Through the relaxation process, we need to keep track of the values
4889 that will result from evaluating relocations. The standard ELF
4890 relocation structure is not sufficient for this purpose because we're
4891 operating on multiple input files at once, so we need to know which
4892 input file a relocation refers to. The r_reloc structure thus
4893 records both the input file (bfd) and ELF relocation.
4895 For efficiency, an r_reloc also contains a "target_offset" field to
4896 cache the target-section-relative offset value that is represented by
4899 The r_reloc also contains a virtual offset that allows multiple
4900 inserted literals to be placed at the same "address" with
4901 different offsets. */
4903 typedef struct r_reloc_struct r_reloc;
4905 struct r_reloc_struct
4908 Elf_Internal_Rela rela;
4909 bfd_vma target_offset;
4910 bfd_vma virtual_offset;
4914 /* The r_reloc structure is included by value in literal_value, but not
4915 every literal_value has an associated relocation -- some are simple
4916 constants. In such cases, we set all the fields in the r_reloc
4917 struct to zero. The r_reloc_is_const function should be used to
4918 detect this case. */
4921 r_reloc_is_const (const r_reloc *r_rel)
4923 return (r_rel->abfd == NULL);
4928 r_reloc_get_target_offset (const r_reloc *r_rel)
4930 bfd_vma target_offset;
4931 unsigned long r_symndx;
4933 BFD_ASSERT (!r_reloc_is_const (r_rel));
4934 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4935 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4936 return (target_offset + r_rel->rela.r_addend);
4940 static struct elf_link_hash_entry *
4941 r_reloc_get_hash_entry (const r_reloc *r_rel)
4943 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4944 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4949 r_reloc_get_section (const r_reloc *r_rel)
4951 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4952 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4957 r_reloc_is_defined (const r_reloc *r_rel)
4963 sec = r_reloc_get_section (r_rel);
4964 if (sec == bfd_abs_section_ptr
4965 || sec == bfd_com_section_ptr
4966 || sec == bfd_und_section_ptr)
4973 r_reloc_init (r_reloc *r_rel,
4975 Elf_Internal_Rela *irel,
4977 bfd_size_type content_length)
4980 reloc_howto_type *howto;
4984 r_rel->rela = *irel;
4986 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4987 r_rel->virtual_offset = 0;
4988 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4989 howto = &elf_howto_table[r_type];
4990 if (howto->partial_inplace)
4992 bfd_vma inplace_val;
4993 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4995 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4996 r_rel->target_offset += inplace_val;
5000 memset (r_rel, 0, sizeof (r_reloc));
5007 print_r_reloc (FILE *fp, const r_reloc *r_rel)
5009 if (r_reloc_is_defined (r_rel))
5011 asection *sec = r_reloc_get_section (r_rel);
5012 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5014 else if (r_reloc_get_hash_entry (r_rel))
5015 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5017 fprintf (fp, " ?? + ");
5019 fprintf_vma (fp, r_rel->target_offset);
5020 if (r_rel->virtual_offset)
5022 fprintf (fp, " + ");
5023 fprintf_vma (fp, r_rel->virtual_offset);
5032 /* source_reloc: relocations that reference literals. */
5034 /* To determine whether literals can be coalesced, we need to first
5035 record all the relocations that reference the literals. The
5036 source_reloc structure below is used for this purpose. The
5037 source_reloc entries are kept in a per-literal-section array, sorted
5038 by offset within the literal section (i.e., target offset).
5040 The source_sec and r_rel.rela.r_offset fields identify the source of
5041 the relocation. The r_rel field records the relocation value, i.e.,
5042 the offset of the literal being referenced. The opnd field is needed
5043 to determine the range of the immediate field to which the relocation
5044 applies, so we can determine whether another literal with the same
5045 value is within range. The is_null field is true when the relocation
5046 is being removed (e.g., when an L32R is being removed due to a CALLX
5047 that is converted to a direct CALL). */
5049 typedef struct source_reloc_struct source_reloc;
5051 struct source_reloc_struct
5053 asection *source_sec;
5055 xtensa_opcode opcode;
5057 bfd_boolean is_null;
5058 bfd_boolean is_abs_literal;
5063 init_source_reloc (source_reloc *reloc,
5064 asection *source_sec,
5065 const r_reloc *r_rel,
5066 xtensa_opcode opcode,
5068 bfd_boolean is_abs_literal)
5070 reloc->source_sec = source_sec;
5071 reloc->r_rel = *r_rel;
5072 reloc->opcode = opcode;
5074 reloc->is_null = FALSE;
5075 reloc->is_abs_literal = is_abs_literal;
5079 /* Find the source_reloc for a particular source offset and relocation
5080 type. Note that the array is sorted by _target_ offset, so this is
5081 just a linear search. */
5083 static source_reloc *
5084 find_source_reloc (source_reloc *src_relocs,
5087 Elf_Internal_Rela *irel)
5091 for (i = 0; i < src_count; i++)
5093 if (src_relocs[i].source_sec == sec
5094 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5095 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5096 == ELF32_R_TYPE (irel->r_info)))
5097 return &src_relocs[i];
5105 source_reloc_compare (const void *ap, const void *bp)
5107 const source_reloc *a = (const source_reloc *) ap;
5108 const source_reloc *b = (const source_reloc *) bp;
5110 if (a->r_rel.target_offset != b->r_rel.target_offset)
5111 return (a->r_rel.target_offset - b->r_rel.target_offset);
5113 /* We don't need to sort on these criteria for correctness,
5114 but enforcing a more strict ordering prevents unstable qsort
5115 from behaving differently with different implementations.
5116 Without the code below we get correct but different results
5117 on Solaris 2.7 and 2.8. We would like to always produce the
5118 same results no matter the host. */
5120 if ((!a->is_null) - (!b->is_null))
5121 return ((!a->is_null) - (!b->is_null));
5122 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5126 /* Literal values and value hash tables. */
5128 /* Literals with the same value can be coalesced. The literal_value
5129 structure records the value of a literal: the "r_rel" field holds the
5130 information from the relocation on the literal (if there is one) and
5131 the "value" field holds the contents of the literal word itself.
5133 The value_map structure records a literal value along with the
5134 location of a literal holding that value. The value_map hash table
5135 is indexed by the literal value, so that we can quickly check if a
5136 particular literal value has been seen before and is thus a candidate
5139 typedef struct literal_value_struct literal_value;
5140 typedef struct value_map_struct value_map;
5141 typedef struct value_map_hash_table_struct value_map_hash_table;
5143 struct literal_value_struct
5146 unsigned long value;
5147 bfd_boolean is_abs_literal;
5150 struct value_map_struct
5152 literal_value val; /* The literal value. */
5153 r_reloc loc; /* Location of the literal. */
5157 struct value_map_hash_table_struct
5159 unsigned bucket_count;
5160 value_map **buckets;
5162 bfd_boolean has_last_loc;
5168 init_literal_value (literal_value *lit,
5169 const r_reloc *r_rel,
5170 unsigned long value,
5171 bfd_boolean is_abs_literal)
5173 lit->r_rel = *r_rel;
5175 lit->is_abs_literal = is_abs_literal;
5180 literal_value_equal (const literal_value *src1,
5181 const literal_value *src2,
5182 bfd_boolean final_static_link)
5184 struct elf_link_hash_entry *h1, *h2;
5186 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5189 if (r_reloc_is_const (&src1->r_rel))
5190 return (src1->value == src2->value);
5192 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5193 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5196 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5199 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5202 if (src1->value != src2->value)
5205 /* Now check for the same section (if defined) or the same elf_hash
5206 (if undefined or weak). */
5207 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5208 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5209 if (r_reloc_is_defined (&src1->r_rel)
5210 && (final_static_link
5211 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5212 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5214 if (r_reloc_get_section (&src1->r_rel)
5215 != r_reloc_get_section (&src2->r_rel))
5220 /* Require that the hash entries (i.e., symbols) be identical. */
5221 if (h1 != h2 || h1 == 0)
5225 if (src1->is_abs_literal != src2->is_abs_literal)
5232 /* Must be power of 2. */
5233 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5235 static value_map_hash_table *
5236 value_map_hash_table_init (void)
5238 value_map_hash_table *values;
5240 values = (value_map_hash_table *)
5241 bfd_zmalloc (sizeof (value_map_hash_table));
5242 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5244 values->buckets = (value_map **)
5245 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5246 if (values->buckets == NULL)
5251 values->has_last_loc = FALSE;
5258 value_map_hash_table_delete (value_map_hash_table *table)
5260 free (table->buckets);
5266 hash_bfd_vma (bfd_vma val)
5268 return (val >> 2) + (val >> 10);
5273 literal_value_hash (const literal_value *src)
5277 hash_val = hash_bfd_vma (src->value);
5278 if (!r_reloc_is_const (&src->r_rel))
5282 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5283 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5284 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5286 /* Now check for the same section and the same elf_hash. */
5287 if (r_reloc_is_defined (&src->r_rel))
5288 sec_or_hash = r_reloc_get_section (&src->r_rel);
5290 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5291 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5297 /* Check if the specified literal_value has been seen before. */
5300 value_map_get_cached_value (value_map_hash_table *map,
5301 const literal_value *val,
5302 bfd_boolean final_static_link)
5308 idx = literal_value_hash (val);
5309 idx = idx & (map->bucket_count - 1);
5310 bucket = map->buckets[idx];
5311 for (map_e = bucket; map_e; map_e = map_e->next)
5313 if (literal_value_equal (&map_e->val, val, final_static_link))
5320 /* Record a new literal value. It is illegal to call this if VALUE
5321 already has an entry here. */
5324 add_value_map (value_map_hash_table *map,
5325 const literal_value *val,
5327 bfd_boolean final_static_link)
5329 value_map **bucket_p;
5332 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5335 bfd_set_error (bfd_error_no_memory);
5339 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5343 idx = literal_value_hash (val);
5344 idx = idx & (map->bucket_count - 1);
5345 bucket_p = &map->buckets[idx];
5347 val_e->next = *bucket_p;
5350 /* FIXME: Consider resizing the hash table if we get too many entries. */
5356 /* Lists of text actions (ta_) for narrowing, widening, longcall
5357 conversion, space fill, code & literal removal, etc. */
5359 /* The following text actions are generated:
5361 "ta_remove_insn" remove an instruction or instructions
5362 "ta_remove_longcall" convert longcall to call
5363 "ta_convert_longcall" convert longcall to nop/call
5364 "ta_narrow_insn" narrow a wide instruction
5365 "ta_widen" widen a narrow instruction
5366 "ta_fill" add fill or remove fill
5367 removed < 0 is a fill; branches to the fill address will be
5368 changed to address + fill size (e.g., address - removed)
5369 removed >= 0 branches to the fill address will stay unchanged
5370 "ta_remove_literal" remove a literal; this action is
5371 indicated when a literal is removed
5373 "ta_add_literal" insert a new literal; this action is
5374 indicated when a literal has been moved.
5375 It may use a virtual_offset because
5376 multiple literals can be placed at the
5379 For each of these text actions, we also record the number of bytes
5380 removed by performing the text action. In the case of a "ta_widen"
5381 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5383 typedef struct text_action_struct text_action;
5384 typedef struct text_action_list_struct text_action_list;
5385 typedef enum text_action_enum_t text_action_t;
5387 enum text_action_enum_t
5390 ta_remove_insn, /* removed = -size */
5391 ta_remove_longcall, /* removed = -size */
5392 ta_convert_longcall, /* removed = 0 */
5393 ta_narrow_insn, /* removed = -1 */
5394 ta_widen_insn, /* removed = +1 */
5395 ta_fill, /* removed = +size */
5401 /* Structure for a text action record. */
5402 struct text_action_struct
5404 text_action_t action;
5405 asection *sec; /* Optional */
5407 bfd_vma virtual_offset; /* Zero except for adding literals. */
5409 literal_value value; /* Only valid when adding literals. */
5415 /* List of all of the actions taken on a text section. */
5416 struct text_action_list_struct
5422 static text_action *
5423 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5427 /* It is not necessary to fill at the end of a section. */
5428 if (sec->size == offset)
5431 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5433 text_action *t = *m_p;
5434 /* When the action is another fill at the same address,
5435 just increase the size. */
5436 if (t->offset == offset && t->action == ta_fill)
5444 compute_removed_action_diff (const text_action *ta,
5448 int removable_space)
5451 int current_removed = 0;
5454 current_removed = ta->removed_bytes;
5456 BFD_ASSERT (ta == NULL || ta->offset == offset);
5457 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5459 /* It is not necessary to fill at the end of a section. Clean this up. */
5460 if (sec->size == offset)
5461 new_removed = removable_space - 0;
5465 int added = -removed - current_removed;
5466 /* Ignore multiples of the section alignment. */
5467 added = ((1 << sec->alignment_power) - 1) & added;
5468 new_removed = (-added);
5470 /* Modify for removable. */
5471 space = removable_space - new_removed;
5472 new_removed = (removable_space
5473 - (((1 << sec->alignment_power) - 1) & space));
5475 return (new_removed - current_removed);
5480 adjust_fill_action (text_action *ta, int fill_diff)
5482 ta->removed_bytes += fill_diff;
5486 /* Add a modification action to the text. For the case of adding or
5487 removing space, modify any current fill and assume that
5488 "unreachable_space" bytes can be freely contracted. Note that a
5489 negative removed value is a fill. */
5492 text_action_add (text_action_list *l,
5493 text_action_t action,
5501 /* It is not necessary to fill at the end of a section. */
5502 if (action == ta_fill && sec->size == offset)
5505 /* It is not necessary to fill 0 bytes. */
5506 if (action == ta_fill && removed == 0)
5509 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5511 text_action *t = *m_p;
5513 if (action == ta_fill)
5515 /* When the action is another fill at the same address,
5516 just increase the size. */
5517 if (t->offset == offset && t->action == ta_fill)
5519 t->removed_bytes += removed;
5522 /* Fills need to happen before widens so that we don't
5523 insert fill bytes into the instruction stream. */
5524 if (t->offset == offset && t->action == ta_widen_insn)
5529 /* Create a new record and fill it up. */
5530 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5531 ta->action = action;
5533 ta->offset = offset;
5534 ta->removed_bytes = removed;
5541 text_action_add_literal (text_action_list *l,
5542 text_action_t action,
5544 const literal_value *value,
5549 asection *sec = r_reloc_get_section (loc);
5550 bfd_vma offset = loc->target_offset;
5551 bfd_vma virtual_offset = loc->virtual_offset;
5553 BFD_ASSERT (action == ta_add_literal);
5555 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5557 if ((*m_p)->offset > offset
5558 && ((*m_p)->offset != offset
5559 || (*m_p)->virtual_offset > virtual_offset))
5563 /* Create a new record and fill it up. */
5564 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5565 ta->action = action;
5567 ta->offset = offset;
5568 ta->virtual_offset = virtual_offset;
5570 ta->removed_bytes = removed;
5576 /* Find the total offset adjustment for the relaxations specified by
5577 text_actions, beginning from a particular starting action. This is
5578 typically used from offset_with_removed_text to search an entire list of
5579 actions, but it may also be called directly when adjusting adjacent offsets
5580 so that each search may begin where the previous one left off. */
5583 removed_by_actions (text_action **p_start_action,
5585 bfd_boolean before_fill)
5590 r = *p_start_action;
5593 if (r->offset > offset)
5596 if (r->offset == offset
5597 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5600 removed += r->removed_bytes;
5605 *p_start_action = r;
5611 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5613 text_action *r = action_list->head;
5614 return offset - removed_by_actions (&r, offset, FALSE);
5619 action_list_count (text_action_list *action_list)
5621 text_action *r = action_list->head;
5623 for (r = action_list->head; r != NULL; r = r->next)
5631 /* The find_insn_action routine will only find non-fill actions. */
5633 static text_action *
5634 find_insn_action (text_action_list *action_list, bfd_vma offset)
5637 for (t = action_list->head; t; t = t->next)
5639 if (t->offset == offset)
5646 case ta_remove_insn:
5647 case ta_remove_longcall:
5648 case ta_convert_longcall:
5649 case ta_narrow_insn:
5652 case ta_remove_literal:
5653 case ta_add_literal:
5666 print_action_list (FILE *fp, text_action_list *action_list)
5670 fprintf (fp, "Text Action\n");
5671 for (r = action_list->head; r != NULL; r = r->next)
5673 const char *t = "unknown";
5676 case ta_remove_insn:
5677 t = "remove_insn"; break;
5678 case ta_remove_longcall:
5679 t = "remove_longcall"; break;
5680 case ta_convert_longcall:
5681 t = "convert_longcall"; break;
5682 case ta_narrow_insn:
5683 t = "narrow_insn"; break;
5685 t = "widen_insn"; break;
5690 case ta_remove_literal:
5691 t = "remove_literal"; break;
5692 case ta_add_literal:
5693 t = "add_literal"; break;
5696 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5697 r->sec->owner->filename,
5698 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5705 /* Lists of literals being coalesced or removed. */
5707 /* In the usual case, the literal identified by "from" is being
5708 coalesced with another literal identified by "to". If the literal is
5709 unused and is being removed altogether, "to.abfd" will be NULL.
5710 The removed_literal entries are kept on a per-section list, sorted
5711 by the "from" offset field. */
5713 typedef struct removed_literal_struct removed_literal;
5714 typedef struct removed_literal_list_struct removed_literal_list;
5716 struct removed_literal_struct
5720 removed_literal *next;
5723 struct removed_literal_list_struct
5725 removed_literal *head;
5726 removed_literal *tail;
5730 /* Record that the literal at "from" is being removed. If "to" is not
5731 NULL, the "from" literal is being coalesced with the "to" literal. */
5734 add_removed_literal (removed_literal_list *removed_list,
5735 const r_reloc *from,
5738 removed_literal *r, *new_r, *next_r;
5740 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5742 new_r->from = *from;
5746 new_r->to.abfd = NULL;
5749 r = removed_list->head;
5752 removed_list->head = new_r;
5753 removed_list->tail = new_r;
5755 /* Special check for common case of append. */
5756 else if (removed_list->tail->from.target_offset < from->target_offset)
5758 removed_list->tail->next = new_r;
5759 removed_list->tail = new_r;
5763 while (r->from.target_offset < from->target_offset && r->next)
5769 new_r->next = next_r;
5771 removed_list->tail = new_r;
5776 /* Check if the list of removed literals contains an entry for the
5777 given address. Return the entry if found. */
5779 static removed_literal *
5780 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5782 removed_literal *r = removed_list->head;
5783 while (r && r->from.target_offset < addr)
5785 if (r && r->from.target_offset == addr)
5794 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
5797 r = removed_list->head;
5799 fprintf (fp, "Removed Literals\n");
5800 for (; r != NULL; r = r->next)
5802 print_r_reloc (fp, &r->from);
5803 fprintf (fp, " => ");
5804 if (r->to.abfd == NULL)
5805 fprintf (fp, "REMOVED");
5807 print_r_reloc (fp, &r->to);
5815 /* Per-section data for relaxation. */
5817 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5819 struct xtensa_relax_info_struct
5821 bfd_boolean is_relaxable_literal_section;
5822 bfd_boolean is_relaxable_asm_section;
5823 int visited; /* Number of times visited. */
5825 source_reloc *src_relocs; /* Array[src_count]. */
5827 int src_next; /* Next src_relocs entry to assign. */
5829 removed_literal_list removed_list;
5830 text_action_list action_list;
5832 reloc_bfd_fix *fix_list;
5833 reloc_bfd_fix *fix_array;
5834 unsigned fix_array_count;
5836 /* Support for expanding the reloc array that is stored
5837 in the section structure. If the relocations have been
5838 reallocated, the newly allocated relocations will be referenced
5839 here along with the actual size allocated. The relocation
5840 count will always be found in the section structure. */
5841 Elf_Internal_Rela *allocated_relocs;
5842 unsigned relocs_count;
5843 unsigned allocated_relocs_count;
5846 struct elf_xtensa_section_data
5848 struct bfd_elf_section_data elf;
5849 xtensa_relax_info relax_info;
5854 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5856 if (!sec->used_by_bfd)
5858 struct elf_xtensa_section_data *sdata;
5859 bfd_size_type amt = sizeof (*sdata);
5861 sdata = bfd_zalloc (abfd, amt);
5864 sec->used_by_bfd = sdata;
5867 return _bfd_elf_new_section_hook (abfd, sec);
5871 static xtensa_relax_info *
5872 get_xtensa_relax_info (asection *sec)
5874 struct elf_xtensa_section_data *section_data;
5876 /* No info available if no section or if it is an output section. */
5877 if (!sec || sec == sec->output_section)
5880 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5881 return §ion_data->relax_info;
5886 init_xtensa_relax_info (asection *sec)
5888 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5890 relax_info->is_relaxable_literal_section = FALSE;
5891 relax_info->is_relaxable_asm_section = FALSE;
5892 relax_info->visited = 0;
5894 relax_info->src_relocs = NULL;
5895 relax_info->src_count = 0;
5896 relax_info->src_next = 0;
5898 relax_info->removed_list.head = NULL;
5899 relax_info->removed_list.tail = NULL;
5901 relax_info->action_list.head = NULL;
5903 relax_info->fix_list = NULL;
5904 relax_info->fix_array = NULL;
5905 relax_info->fix_array_count = 0;
5907 relax_info->allocated_relocs = NULL;
5908 relax_info->relocs_count = 0;
5909 relax_info->allocated_relocs_count = 0;
5913 /* Coalescing literals may require a relocation to refer to a section in
5914 a different input file, but the standard relocation information
5915 cannot express that. Instead, the reloc_bfd_fix structures are used
5916 to "fix" the relocations that refer to sections in other input files.
5917 These structures are kept on per-section lists. The "src_type" field
5918 records the relocation type in case there are multiple relocations on
5919 the same location. FIXME: This is ugly; an alternative might be to
5920 add new symbols with the "owner" field to some other input file. */
5922 struct reloc_bfd_fix_struct
5926 unsigned src_type; /* Relocation type. */
5928 asection *target_sec;
5929 bfd_vma target_offset;
5930 bfd_boolean translated;
5932 reloc_bfd_fix *next;
5936 static reloc_bfd_fix *
5937 reloc_bfd_fix_init (asection *src_sec,
5940 asection *target_sec,
5941 bfd_vma target_offset,
5942 bfd_boolean translated)
5946 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5947 fix->src_sec = src_sec;
5948 fix->src_offset = src_offset;
5949 fix->src_type = src_type;
5950 fix->target_sec = target_sec;
5951 fix->target_offset = target_offset;
5952 fix->translated = translated;
5959 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5961 xtensa_relax_info *relax_info;
5963 relax_info = get_xtensa_relax_info (src_sec);
5964 fix->next = relax_info->fix_list;
5965 relax_info->fix_list = fix;
5970 fix_compare (const void *ap, const void *bp)
5972 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5973 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5975 if (a->src_offset != b->src_offset)
5976 return (a->src_offset - b->src_offset);
5977 return (a->src_type - b->src_type);
5982 cache_fix_array (asection *sec)
5984 unsigned i, count = 0;
5986 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5988 if (relax_info == NULL)
5990 if (relax_info->fix_list == NULL)
5993 for (r = relax_info->fix_list; r != NULL; r = r->next)
5996 relax_info->fix_array =
5997 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5998 relax_info->fix_array_count = count;
6000 r = relax_info->fix_list;
6001 for (i = 0; i < count; i++, r = r->next)
6003 relax_info->fix_array[count - 1 - i] = *r;
6004 relax_info->fix_array[count - 1 - i].next = NULL;
6007 qsort (relax_info->fix_array, relax_info->fix_array_count,
6008 sizeof (reloc_bfd_fix), fix_compare);
6012 static reloc_bfd_fix *
6013 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6015 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6019 if (relax_info == NULL)
6021 if (relax_info->fix_list == NULL)
6024 if (relax_info->fix_array == NULL)
6025 cache_fix_array (sec);
6027 key.src_offset = offset;
6028 key.src_type = type;
6029 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6030 sizeof (reloc_bfd_fix), fix_compare);
6035 /* Section caching. */
6037 typedef struct section_cache_struct section_cache_t;
6039 struct section_cache_struct
6043 bfd_byte *contents; /* Cache of the section contents. */
6044 bfd_size_type content_length;
6046 property_table_entry *ptbl; /* Cache of the section property table. */
6049 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6050 unsigned reloc_count;
6055 init_section_cache (section_cache_t *sec_cache)
6057 memset (sec_cache, 0, sizeof (*sec_cache));
6062 free_section_cache (section_cache_t *sec_cache)
6066 release_contents (sec_cache->sec, sec_cache->contents);
6067 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6068 if (sec_cache->ptbl)
6069 free (sec_cache->ptbl);
6075 section_cache_section (section_cache_t *sec_cache,
6077 struct bfd_link_info *link_info)
6080 property_table_entry *prop_table = NULL;
6082 bfd_byte *contents = NULL;
6083 Elf_Internal_Rela *internal_relocs = NULL;
6084 bfd_size_type sec_size;
6088 if (sec == sec_cache->sec)
6092 sec_size = bfd_get_section_limit (abfd, sec);
6094 /* Get the contents. */
6095 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6096 if (contents == NULL && sec_size != 0)
6099 /* Get the relocations. */
6100 internal_relocs = retrieve_internal_relocs (abfd, sec,
6101 link_info->keep_memory);
6103 /* Get the entry table. */
6104 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6105 XTENSA_PROP_SEC_NAME, FALSE);
6109 /* Fill in the new section cache. */
6110 free_section_cache (sec_cache);
6111 init_section_cache (sec_cache);
6113 sec_cache->sec = sec;
6114 sec_cache->contents = contents;
6115 sec_cache->content_length = sec_size;
6116 sec_cache->relocs = internal_relocs;
6117 sec_cache->reloc_count = sec->reloc_count;
6118 sec_cache->pte_count = ptblsize;
6119 sec_cache->ptbl = prop_table;
6124 release_contents (sec, contents);
6125 release_internal_relocs (sec, internal_relocs);
6132 /* Extended basic blocks. */
6134 /* An ebb_struct represents an Extended Basic Block. Within this
6135 range, we guarantee that all instructions are decodable, the
6136 property table entries are contiguous, and no property table
6137 specifies a segment that cannot have instructions moved. This
6138 structure contains caches of the contents, property table and
6139 relocations for the specified section for easy use. The range is
6140 specified by ranges of indices for the byte offset, property table
6141 offsets and relocation offsets. These must be consistent. */
6143 typedef struct ebb_struct ebb_t;
6149 bfd_byte *contents; /* Cache of the section contents. */
6150 bfd_size_type content_length;
6152 property_table_entry *ptbl; /* Cache of the section property table. */
6155 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6156 unsigned reloc_count;
6158 bfd_vma start_offset; /* Offset in section. */
6159 unsigned start_ptbl_idx; /* Offset in the property table. */
6160 unsigned start_reloc_idx; /* Offset in the relocations. */
6163 unsigned end_ptbl_idx;
6164 unsigned end_reloc_idx;
6166 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6168 /* The unreachable property table at the end of this set of blocks;
6169 NULL if the end is not an unreachable block. */
6170 property_table_entry *ends_unreachable;
6174 enum ebb_target_enum
6177 EBB_DESIRE_TGT_ALIGN,
6178 EBB_REQUIRE_TGT_ALIGN,
6179 EBB_REQUIRE_LOOP_ALIGN,
6184 /* proposed_action_struct is similar to the text_action_struct except
6185 that is represents a potential transformation, not one that will
6186 occur. We build a list of these for an extended basic block
6187 and use them to compute the actual actions desired. We must be
6188 careful that the entire set of actual actions we perform do not
6189 break any relocations that would fit if the actions were not
6192 typedef struct proposed_action_struct proposed_action;
6194 struct proposed_action_struct
6196 enum ebb_target_enum align_type; /* for the target alignment */
6197 bfd_vma alignment_pow;
6198 text_action_t action;
6201 bfd_boolean do_action; /* If false, then we will not perform the action. */
6205 /* The ebb_constraint_struct keeps a set of proposed actions for an
6206 extended basic block. */
6208 typedef struct ebb_constraint_struct ebb_constraint;
6210 struct ebb_constraint_struct
6213 bfd_boolean start_movable;
6215 /* Bytes of extra space at the beginning if movable. */
6216 int start_extra_space;
6218 enum ebb_target_enum start_align;
6220 bfd_boolean end_movable;
6222 /* Bytes of extra space at the end if movable. */
6223 int end_extra_space;
6225 unsigned action_count;
6226 unsigned action_allocated;
6228 /* Array of proposed actions. */
6229 proposed_action *actions;
6231 /* Action alignments -- one for each proposed action. */
6232 enum ebb_target_enum *action_aligns;
6237 init_ebb_constraint (ebb_constraint *c)
6239 memset (c, 0, sizeof (ebb_constraint));
6244 free_ebb_constraint (ebb_constraint *c)
6252 init_ebb (ebb_t *ebb,
6255 bfd_size_type content_length,
6256 property_table_entry *prop_table,
6258 Elf_Internal_Rela *internal_relocs,
6259 unsigned reloc_count)
6261 memset (ebb, 0, sizeof (ebb_t));
6263 ebb->contents = contents;
6264 ebb->content_length = content_length;
6265 ebb->ptbl = prop_table;
6266 ebb->pte_count = ptblsize;
6267 ebb->relocs = internal_relocs;
6268 ebb->reloc_count = reloc_count;
6269 ebb->start_offset = 0;
6270 ebb->end_offset = ebb->content_length - 1;
6271 ebb->start_ptbl_idx = 0;
6272 ebb->end_ptbl_idx = ptblsize;
6273 ebb->start_reloc_idx = 0;
6274 ebb->end_reloc_idx = reloc_count;
6278 /* Extend the ebb to all decodable contiguous sections. The algorithm
6279 for building a basic block around an instruction is to push it
6280 forward until we hit the end of a section, an unreachable block or
6281 a block that cannot be transformed. Then we push it backwards
6282 searching for similar conditions. */
6284 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6285 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6286 static bfd_size_type insn_block_decodable_len
6287 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6290 extend_ebb_bounds (ebb_t *ebb)
6292 if (!extend_ebb_bounds_forward (ebb))
6294 if (!extend_ebb_bounds_backward (ebb))
6301 extend_ebb_bounds_forward (ebb_t *ebb)
6303 property_table_entry *the_entry, *new_entry;
6305 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6307 /* Stop when (1) we cannot decode an instruction, (2) we are at
6308 the end of the property tables, (3) we hit a non-contiguous property
6309 table entry, (4) we hit a NO_TRANSFORM region. */
6314 bfd_size_type insn_block_len;
6316 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6318 insn_block_decodable_len (ebb->contents, ebb->content_length,
6320 entry_end - ebb->end_offset);
6321 if (insn_block_len != (entry_end - ebb->end_offset))
6323 (*_bfd_error_handler)
6324 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6325 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6328 ebb->end_offset += insn_block_len;
6330 if (ebb->end_offset == ebb->sec->size)
6331 ebb->ends_section = TRUE;
6333 /* Update the reloc counter. */
6334 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6335 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6338 ebb->end_reloc_idx++;
6341 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6344 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6345 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6346 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6347 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6350 if (the_entry->address + the_entry->size != new_entry->address)
6353 the_entry = new_entry;
6354 ebb->end_ptbl_idx++;
6357 /* Quick check for an unreachable or end of file just at the end. */
6358 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6360 if (ebb->end_offset == ebb->content_length)
6361 ebb->ends_section = TRUE;
6365 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6366 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6367 && the_entry->address + the_entry->size == new_entry->address)
6368 ebb->ends_unreachable = new_entry;
6371 /* Any other ending requires exact alignment. */
6377 extend_ebb_bounds_backward (ebb_t *ebb)
6379 property_table_entry *the_entry, *new_entry;
6381 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6383 /* Stop when (1) we cannot decode the instructions in the current entry.
6384 (2) we are at the beginning of the property tables, (3) we hit a
6385 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6389 bfd_vma block_begin;
6390 bfd_size_type insn_block_len;
6392 block_begin = the_entry->address - ebb->sec->vma;
6394 insn_block_decodable_len (ebb->contents, ebb->content_length,
6396 ebb->start_offset - block_begin);
6397 if (insn_block_len != ebb->start_offset - block_begin)
6399 (*_bfd_error_handler)
6400 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6401 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6404 ebb->start_offset -= insn_block_len;
6406 /* Update the reloc counter. */
6407 while (ebb->start_reloc_idx > 0
6408 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6409 >= ebb->start_offset))
6411 ebb->start_reloc_idx--;
6414 if (ebb->start_ptbl_idx == 0)
6417 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6418 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6419 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6420 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6422 if (new_entry->address + new_entry->size != the_entry->address)
6425 the_entry = new_entry;
6426 ebb->start_ptbl_idx--;
6432 static bfd_size_type
6433 insn_block_decodable_len (bfd_byte *contents,
6434 bfd_size_type content_len,
6435 bfd_vma block_offset,
6436 bfd_size_type block_len)
6438 bfd_vma offset = block_offset;
6440 while (offset < block_offset + block_len)
6442 bfd_size_type insn_len = 0;
6444 insn_len = insn_decode_len (contents, content_len, offset);
6446 return (offset - block_offset);
6449 return (offset - block_offset);
6454 ebb_propose_action (ebb_constraint *c,
6455 enum ebb_target_enum align_type,
6456 bfd_vma alignment_pow,
6457 text_action_t action,
6460 bfd_boolean do_action)
6462 proposed_action *act;
6464 if (c->action_allocated <= c->action_count)
6466 unsigned new_allocated, i;
6467 proposed_action *new_actions;
6469 new_allocated = (c->action_count + 2) * 2;
6470 new_actions = (proposed_action *)
6471 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6473 for (i = 0; i < c->action_count; i++)
6474 new_actions[i] = c->actions[i];
6477 c->actions = new_actions;
6478 c->action_allocated = new_allocated;
6481 act = &c->actions[c->action_count];
6482 act->align_type = align_type;
6483 act->alignment_pow = alignment_pow;
6484 act->action = action;
6485 act->offset = offset;
6486 act->removed_bytes = removed_bytes;
6487 act->do_action = do_action;
6493 /* Access to internal relocations, section contents and symbols. */
6495 /* During relaxation, we need to modify relocations, section contents,
6496 and symbol definitions, and we need to keep the original values from
6497 being reloaded from the input files, i.e., we need to "pin" the
6498 modified values in memory. We also want to continue to observe the
6499 setting of the "keep-memory" flag. The following functions wrap the
6500 standard BFD functions to take care of this for us. */
6502 static Elf_Internal_Rela *
6503 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6505 Elf_Internal_Rela *internal_relocs;
6507 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6510 internal_relocs = elf_section_data (sec)->relocs;
6511 if (internal_relocs == NULL)
6512 internal_relocs = (_bfd_elf_link_read_relocs
6513 (abfd, sec, NULL, NULL, keep_memory));
6514 return internal_relocs;
6519 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6521 elf_section_data (sec)->relocs = internal_relocs;
6526 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6529 && elf_section_data (sec)->relocs != internal_relocs)
6530 free (internal_relocs);
6535 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6538 bfd_size_type sec_size;
6540 sec_size = bfd_get_section_limit (abfd, sec);
6541 contents = elf_section_data (sec)->this_hdr.contents;
6543 if (contents == NULL && sec_size != 0)
6545 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6552 elf_section_data (sec)->this_hdr.contents = contents;
6559 pin_contents (asection *sec, bfd_byte *contents)
6561 elf_section_data (sec)->this_hdr.contents = contents;
6566 release_contents (asection *sec, bfd_byte *contents)
6568 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6573 static Elf_Internal_Sym *
6574 retrieve_local_syms (bfd *input_bfd)
6576 Elf_Internal_Shdr *symtab_hdr;
6577 Elf_Internal_Sym *isymbuf;
6580 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6581 locsymcount = symtab_hdr->sh_info;
6583 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6584 if (isymbuf == NULL && locsymcount != 0)
6585 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6588 /* Save the symbols for this input file so they won't be read again. */
6589 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6590 symtab_hdr->contents = (unsigned char *) isymbuf;
6596 /* Code for link-time relaxation. */
6598 /* Initialization for relaxation: */
6599 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6600 static bfd_boolean find_relaxable_sections
6601 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6602 static bfd_boolean collect_source_relocs
6603 (bfd *, asection *, struct bfd_link_info *);
6604 static bfd_boolean is_resolvable_asm_expansion
6605 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6607 static Elf_Internal_Rela *find_associated_l32r_irel
6608 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6609 static bfd_boolean compute_text_actions
6610 (bfd *, asection *, struct bfd_link_info *);
6611 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6612 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6613 static bfd_boolean check_section_ebb_pcrels_fit
6614 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
6615 const xtensa_opcode *);
6616 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6617 static void text_action_add_proposed
6618 (text_action_list *, const ebb_constraint *, asection *);
6619 static int compute_fill_extra_space (property_table_entry *);
6622 static bfd_boolean compute_removed_literals
6623 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6624 static Elf_Internal_Rela *get_irel_at_offset
6625 (asection *, Elf_Internal_Rela *, bfd_vma);
6626 static bfd_boolean is_removable_literal
6627 (const source_reloc *, int, const source_reloc *, int, asection *,
6628 property_table_entry *, int);
6629 static bfd_boolean remove_dead_literal
6630 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6631 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6632 static bfd_boolean identify_literal_placement
6633 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6634 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6635 source_reloc *, property_table_entry *, int, section_cache_t *,
6637 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6638 static bfd_boolean coalesce_shared_literal
6639 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6640 static bfd_boolean move_shared_literal
6641 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6642 int, const r_reloc *, const literal_value *, section_cache_t *);
6645 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6646 static bfd_boolean translate_section_fixes (asection *);
6647 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6648 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6649 static void shrink_dynamic_reloc_sections
6650 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6651 static bfd_boolean move_literal
6652 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6653 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6654 static bfd_boolean relax_property_section
6655 (bfd *, asection *, struct bfd_link_info *);
6658 static bfd_boolean relax_section_symbols (bfd *, asection *);
6662 elf_xtensa_relax_section (bfd *abfd,
6664 struct bfd_link_info *link_info,
6667 static value_map_hash_table *values = NULL;
6668 static bfd_boolean relocations_analyzed = FALSE;
6669 xtensa_relax_info *relax_info;
6671 if (!relocations_analyzed)
6673 /* Do some overall initialization for relaxation. */
6674 values = value_map_hash_table_init ();
6677 relaxing_section = TRUE;
6678 if (!analyze_relocations (link_info))
6680 relocations_analyzed = TRUE;
6684 /* Don't mess with linker-created sections. */
6685 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6688 relax_info = get_xtensa_relax_info (sec);
6689 BFD_ASSERT (relax_info != NULL);
6691 switch (relax_info->visited)
6694 /* Note: It would be nice to fold this pass into
6695 analyze_relocations, but it is important for this step that the
6696 sections be examined in link order. */
6697 if (!compute_removed_literals (abfd, sec, link_info, values))
6704 value_map_hash_table_delete (values);
6706 if (!relax_section (abfd, sec, link_info))
6712 if (!relax_section_symbols (abfd, sec))
6717 relax_info->visited++;
6722 /* Initialization for relaxation. */
6724 /* This function is called once at the start of relaxation. It scans
6725 all the input sections and marks the ones that are relaxable (i.e.,
6726 literal sections with L32R relocations against them), and then
6727 collects source_reloc information for all the relocations against
6728 those relaxable sections. During this process, it also detects
6729 longcalls, i.e., calls relaxed by the assembler into indirect
6730 calls, that can be optimized back into direct calls. Within each
6731 extended basic block (ebb) containing an optimized longcall, it
6732 computes a set of "text actions" that can be performed to remove
6733 the L32R associated with the longcall while optionally preserving
6734 branch target alignments. */
6737 analyze_relocations (struct bfd_link_info *link_info)
6741 bfd_boolean is_relaxable = FALSE;
6743 /* Initialize the per-section relaxation info. */
6744 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6745 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6747 init_xtensa_relax_info (sec);
6750 /* Mark relaxable sections (and count relocations against each one). */
6751 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6752 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6754 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6758 /* Bail out if there are no relaxable sections. */
6762 /* Allocate space for source_relocs. */
6763 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6764 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6766 xtensa_relax_info *relax_info;
6768 relax_info = get_xtensa_relax_info (sec);
6769 if (relax_info->is_relaxable_literal_section
6770 || relax_info->is_relaxable_asm_section)
6772 relax_info->src_relocs = (source_reloc *)
6773 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6776 relax_info->src_count = 0;
6779 /* Collect info on relocations against each relaxable section. */
6780 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6781 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6783 if (!collect_source_relocs (abfd, sec, link_info))
6787 /* Compute the text actions. */
6788 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6789 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6791 if (!compute_text_actions (abfd, sec, link_info))
6799 /* Find all the sections that might be relaxed. The motivation for
6800 this pass is that collect_source_relocs() needs to record _all_ the
6801 relocations that target each relaxable section. That is expensive
6802 and unnecessary unless the target section is actually going to be
6803 relaxed. This pass identifies all such sections by checking if
6804 they have L32Rs pointing to them. In the process, the total number
6805 of relocations targeting each section is also counted so that we
6806 know how much space to allocate for source_relocs against each
6807 relaxable literal section. */
6810 find_relaxable_sections (bfd *abfd,
6812 struct bfd_link_info *link_info,
6813 bfd_boolean *is_relaxable_p)
6815 Elf_Internal_Rela *internal_relocs;
6817 bfd_boolean ok = TRUE;
6819 xtensa_relax_info *source_relax_info;
6820 bfd_boolean is_l32r_reloc;
6822 internal_relocs = retrieve_internal_relocs (abfd, sec,
6823 link_info->keep_memory);
6824 if (internal_relocs == NULL)
6827 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6828 if (contents == NULL && sec->size != 0)
6834 source_relax_info = get_xtensa_relax_info (sec);
6835 for (i = 0; i < sec->reloc_count; i++)
6837 Elf_Internal_Rela *irel = &internal_relocs[i];
6839 asection *target_sec;
6840 xtensa_relax_info *target_relax_info;
6842 /* If this section has not already been marked as "relaxable", and
6843 if it contains any ASM_EXPAND relocations (marking expanded
6844 longcalls) that can be optimized into direct calls, then mark
6845 the section as "relaxable". */
6846 if (source_relax_info
6847 && !source_relax_info->is_relaxable_asm_section
6848 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6850 bfd_boolean is_reachable = FALSE;
6851 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6852 link_info, &is_reachable)
6855 source_relax_info->is_relaxable_asm_section = TRUE;
6856 *is_relaxable_p = TRUE;
6860 r_reloc_init (&r_rel, abfd, irel, contents,
6861 bfd_get_section_limit (abfd, sec));
6863 target_sec = r_reloc_get_section (&r_rel);
6864 target_relax_info = get_xtensa_relax_info (target_sec);
6865 if (!target_relax_info)
6868 /* Count PC-relative operand relocations against the target section.
6869 Note: The conditions tested here must match the conditions under
6870 which init_source_reloc is called in collect_source_relocs(). */
6871 is_l32r_reloc = FALSE;
6872 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6874 xtensa_opcode opcode =
6875 get_relocation_opcode (abfd, sec, contents, irel);
6876 if (opcode != XTENSA_UNDEFINED)
6878 is_l32r_reloc = (opcode == get_l32r_opcode ());
6879 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6881 target_relax_info->src_count++;
6885 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6887 /* Mark the target section as relaxable. */
6888 target_relax_info->is_relaxable_literal_section = TRUE;
6889 *is_relaxable_p = TRUE;
6894 release_contents (sec, contents);
6895 release_internal_relocs (sec, internal_relocs);
6900 /* Record _all_ the relocations that point to relaxable sections, and
6901 get rid of ASM_EXPAND relocs by either converting them to
6902 ASM_SIMPLIFY or by removing them. */
6905 collect_source_relocs (bfd *abfd,
6907 struct bfd_link_info *link_info)
6909 Elf_Internal_Rela *internal_relocs;
6911 bfd_boolean ok = TRUE;
6913 bfd_size_type sec_size;
6915 internal_relocs = retrieve_internal_relocs (abfd, sec,
6916 link_info->keep_memory);
6917 if (internal_relocs == NULL)
6920 sec_size = bfd_get_section_limit (abfd, sec);
6921 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6922 if (contents == NULL && sec_size != 0)
6928 /* Record relocations against relaxable literal sections. */
6929 for (i = 0; i < sec->reloc_count; i++)
6931 Elf_Internal_Rela *irel = &internal_relocs[i];
6933 asection *target_sec;
6934 xtensa_relax_info *target_relax_info;
6936 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6938 target_sec = r_reloc_get_section (&r_rel);
6939 target_relax_info = get_xtensa_relax_info (target_sec);
6941 if (target_relax_info
6942 && (target_relax_info->is_relaxable_literal_section
6943 || target_relax_info->is_relaxable_asm_section))
6945 xtensa_opcode opcode = XTENSA_UNDEFINED;
6947 bfd_boolean is_abs_literal = FALSE;
6949 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6951 /* None of the current alternate relocs are PC-relative,
6952 and only PC-relative relocs matter here. However, we
6953 still need to record the opcode for literal
6955 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6956 if (opcode == get_l32r_opcode ())
6958 is_abs_literal = TRUE;
6962 opcode = XTENSA_UNDEFINED;
6964 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6966 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6967 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6970 if (opcode != XTENSA_UNDEFINED)
6972 int src_next = target_relax_info->src_next++;
6973 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6975 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6981 /* Now get rid of ASM_EXPAND relocations. At this point, the
6982 src_relocs array for the target literal section may still be
6983 incomplete, but it must at least contain the entries for the L32R
6984 relocations associated with ASM_EXPANDs because they were just
6985 added in the preceding loop over the relocations. */
6987 for (i = 0; i < sec->reloc_count; i++)
6989 Elf_Internal_Rela *irel = &internal_relocs[i];
6990 bfd_boolean is_reachable;
6992 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6998 Elf_Internal_Rela *l32r_irel;
7000 asection *target_sec;
7001 xtensa_relax_info *target_relax_info;
7003 /* Mark the source_reloc for the L32R so that it will be
7004 removed in compute_removed_literals(), along with the
7005 associated literal. */
7006 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7007 irel, internal_relocs);
7008 if (l32r_irel == NULL)
7011 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7013 target_sec = r_reloc_get_section (&r_rel);
7014 target_relax_info = get_xtensa_relax_info (target_sec);
7016 if (target_relax_info
7017 && (target_relax_info->is_relaxable_literal_section
7018 || target_relax_info->is_relaxable_asm_section))
7020 source_reloc *s_reloc;
7022 /* Search the source_relocs for the entry corresponding to
7023 the l32r_irel. Note: The src_relocs array is not yet
7024 sorted, but it wouldn't matter anyway because we're
7025 searching by source offset instead of target offset. */
7026 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7027 target_relax_info->src_next,
7029 BFD_ASSERT (s_reloc);
7030 s_reloc->is_null = TRUE;
7033 /* Convert this reloc to ASM_SIMPLIFY. */
7034 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7035 R_XTENSA_ASM_SIMPLIFY);
7036 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7038 pin_internal_relocs (sec, internal_relocs);
7042 /* It is resolvable but doesn't reach. We resolve now
7043 by eliminating the relocation -- the call will remain
7044 expanded into L32R/CALLX. */
7045 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7046 pin_internal_relocs (sec, internal_relocs);
7051 release_contents (sec, contents);
7052 release_internal_relocs (sec, internal_relocs);
7057 /* Return TRUE if the asm expansion can be resolved. Generally it can
7058 be resolved on a final link or when a partial link locates it in the
7059 same section as the target. Set "is_reachable" flag if the target of
7060 the call is within the range of a direct call, given the current VMA
7061 for this section and the target section. */
7064 is_resolvable_asm_expansion (bfd *abfd,
7067 Elf_Internal_Rela *irel,
7068 struct bfd_link_info *link_info,
7069 bfd_boolean *is_reachable_p)
7071 asection *target_sec;
7072 bfd_vma target_offset;
7074 xtensa_opcode opcode, direct_call_opcode;
7075 bfd_vma self_address;
7076 bfd_vma dest_address;
7077 bfd_boolean uses_l32r;
7078 bfd_size_type sec_size;
7080 *is_reachable_p = FALSE;
7082 if (contents == NULL)
7085 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7088 sec_size = bfd_get_section_limit (abfd, sec);
7089 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7090 sec_size - irel->r_offset, &uses_l32r);
7091 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7095 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7096 if (direct_call_opcode == XTENSA_UNDEFINED)
7099 /* Check and see that the target resolves. */
7100 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7101 if (!r_reloc_is_defined (&r_rel))
7104 target_sec = r_reloc_get_section (&r_rel);
7105 target_offset = r_rel.target_offset;
7107 /* If the target is in a shared library, then it doesn't reach. This
7108 isn't supposed to come up because the compiler should never generate
7109 non-PIC calls on systems that use shared libraries, but the linker
7110 shouldn't crash regardless. */
7111 if (!target_sec->output_section)
7114 /* For relocatable sections, we can only simplify when the output
7115 section of the target is the same as the output section of the
7117 if (link_info->relocatable
7118 && (target_sec->output_section != sec->output_section
7119 || is_reloc_sym_weak (abfd, irel)))
7122 self_address = (sec->output_section->vma
7123 + sec->output_offset + irel->r_offset + 3);
7124 dest_address = (target_sec->output_section->vma
7125 + target_sec->output_offset + target_offset);
7127 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7128 self_address, dest_address);
7130 if ((self_address >> CALL_SEGMENT_BITS) !=
7131 (dest_address >> CALL_SEGMENT_BITS))
7138 static Elf_Internal_Rela *
7139 find_associated_l32r_irel (bfd *abfd,
7142 Elf_Internal_Rela *other_irel,
7143 Elf_Internal_Rela *internal_relocs)
7147 for (i = 0; i < sec->reloc_count; i++)
7149 Elf_Internal_Rela *irel = &internal_relocs[i];
7151 if (irel == other_irel)
7153 if (irel->r_offset != other_irel->r_offset)
7155 if (is_l32r_relocation (abfd, sec, contents, irel))
7163 static xtensa_opcode *
7164 build_reloc_opcodes (bfd *abfd,
7167 Elf_Internal_Rela *internal_relocs)
7170 xtensa_opcode *reloc_opcodes =
7171 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7172 for (i = 0; i < sec->reloc_count; i++)
7174 Elf_Internal_Rela *irel = &internal_relocs[i];
7175 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7177 return reloc_opcodes;
7181 /* The compute_text_actions function will build a list of potential
7182 transformation actions for code in the extended basic block of each
7183 longcall that is optimized to a direct call. From this list we
7184 generate a set of actions to actually perform that optimizes for
7185 space and, if not using size_opt, maintains branch target
7188 These actions to be performed are placed on a per-section list.
7189 The actual changes are performed by relax_section() in the second
7193 compute_text_actions (bfd *abfd,
7195 struct bfd_link_info *link_info)
7197 xtensa_opcode *reloc_opcodes = NULL;
7198 xtensa_relax_info *relax_info;
7200 Elf_Internal_Rela *internal_relocs;
7201 bfd_boolean ok = TRUE;
7203 property_table_entry *prop_table = 0;
7205 bfd_size_type sec_size;
7207 relax_info = get_xtensa_relax_info (sec);
7208 BFD_ASSERT (relax_info);
7209 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7211 /* Do nothing if the section contains no optimized longcalls. */
7212 if (!relax_info->is_relaxable_asm_section)
7215 internal_relocs = retrieve_internal_relocs (abfd, sec,
7216 link_info->keep_memory);
7218 if (internal_relocs)
7219 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7220 internal_reloc_compare);
7222 sec_size = bfd_get_section_limit (abfd, sec);
7223 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7224 if (contents == NULL && sec_size != 0)
7230 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7231 XTENSA_PROP_SEC_NAME, FALSE);
7238 for (i = 0; i < sec->reloc_count; i++)
7240 Elf_Internal_Rela *irel = &internal_relocs[i];
7242 property_table_entry *the_entry;
7245 ebb_constraint ebb_table;
7246 bfd_size_type simplify_size;
7248 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7250 r_offset = irel->r_offset;
7252 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7253 if (simplify_size == 0)
7255 (*_bfd_error_handler)
7256 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7257 sec->owner, sec, r_offset);
7261 /* If the instruction table is not around, then don't do this
7263 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7264 sec->vma + irel->r_offset);
7265 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7267 text_action_add (&relax_info->action_list,
7268 ta_convert_longcall, sec, r_offset,
7273 /* If the next longcall happens to be at the same address as an
7274 unreachable section of size 0, then skip forward. */
7275 ptbl_idx = the_entry - prop_table;
7276 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7277 && the_entry->size == 0
7278 && ptbl_idx + 1 < ptblsize
7279 && (prop_table[ptbl_idx + 1].address
7280 == prop_table[ptbl_idx].address))
7286 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7287 /* NO_REORDER is OK */
7290 init_ebb_constraint (&ebb_table);
7291 ebb = &ebb_table.ebb;
7292 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7293 internal_relocs, sec->reloc_count);
7294 ebb->start_offset = r_offset + simplify_size;
7295 ebb->end_offset = r_offset + simplify_size;
7296 ebb->start_ptbl_idx = ptbl_idx;
7297 ebb->end_ptbl_idx = ptbl_idx;
7298 ebb->start_reloc_idx = i;
7299 ebb->end_reloc_idx = i;
7301 /* Precompute the opcode for each relocation. */
7302 if (reloc_opcodes == NULL)
7303 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
7306 if (!extend_ebb_bounds (ebb)
7307 || !compute_ebb_proposed_actions (&ebb_table)
7308 || !compute_ebb_actions (&ebb_table)
7309 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7310 internal_relocs, &ebb_table,
7312 || !check_section_ebb_reduces (&ebb_table))
7314 /* If anything goes wrong or we get unlucky and something does
7315 not fit, with our plan because of expansion between
7316 critical branches, just convert to a NOP. */
7318 text_action_add (&relax_info->action_list,
7319 ta_convert_longcall, sec, r_offset, 0);
7320 i = ebb_table.ebb.end_reloc_idx;
7321 free_ebb_constraint (&ebb_table);
7325 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7327 /* Update the index so we do not go looking at the relocations
7328 we have already processed. */
7329 i = ebb_table.ebb.end_reloc_idx;
7330 free_ebb_constraint (&ebb_table);
7334 if (relax_info->action_list.head)
7335 print_action_list (stderr, &relax_info->action_list);
7339 release_contents (sec, contents);
7340 release_internal_relocs (sec, internal_relocs);
7344 free (reloc_opcodes);
7350 /* Do not widen an instruction if it is preceeded by a
7351 loop opcode. It might cause misalignment. */
7354 prev_instr_is_a_loop (bfd_byte *contents,
7355 bfd_size_type content_length,
7356 bfd_size_type offset)
7358 xtensa_opcode prev_opcode;
7362 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7363 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7367 /* Find all of the possible actions for an extended basic block. */
7370 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7372 const ebb_t *ebb = &ebb_table->ebb;
7373 unsigned rel_idx = ebb->start_reloc_idx;
7374 property_table_entry *entry, *start_entry, *end_entry;
7376 xtensa_isa isa = xtensa_default_isa;
7378 static xtensa_insnbuf insnbuf = NULL;
7379 static xtensa_insnbuf slotbuf = NULL;
7381 if (insnbuf == NULL)
7383 insnbuf = xtensa_insnbuf_alloc (isa);
7384 slotbuf = xtensa_insnbuf_alloc (isa);
7387 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7388 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7390 for (entry = start_entry; entry <= end_entry; entry++)
7392 bfd_vma start_offset, end_offset;
7393 bfd_size_type insn_len;
7395 start_offset = entry->address - ebb->sec->vma;
7396 end_offset = entry->address + entry->size - ebb->sec->vma;
7398 if (entry == start_entry)
7399 start_offset = ebb->start_offset;
7400 if (entry == end_entry)
7401 end_offset = ebb->end_offset;
7402 offset = start_offset;
7404 if (offset == entry->address - ebb->sec->vma
7405 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7407 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7408 BFD_ASSERT (offset != end_offset);
7409 if (offset == end_offset)
7412 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7417 if (check_branch_target_aligned_address (offset, insn_len))
7418 align_type = EBB_REQUIRE_TGT_ALIGN;
7420 ebb_propose_action (ebb_table, align_type, 0,
7421 ta_none, offset, 0, TRUE);
7424 while (offset != end_offset)
7426 Elf_Internal_Rela *irel;
7427 xtensa_opcode opcode;
7429 while (rel_idx < ebb->end_reloc_idx
7430 && (ebb->relocs[rel_idx].r_offset < offset
7431 || (ebb->relocs[rel_idx].r_offset == offset
7432 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7433 != R_XTENSA_ASM_SIMPLIFY))))
7436 /* Check for longcall. */
7437 irel = &ebb->relocs[rel_idx];
7438 if (irel->r_offset == offset
7439 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7441 bfd_size_type simplify_size;
7443 simplify_size = get_asm_simplify_size (ebb->contents,
7444 ebb->content_length,
7446 if (simplify_size == 0)
7449 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7450 ta_convert_longcall, offset, 0, TRUE);
7452 offset += simplify_size;
7456 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7458 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7459 ebb->content_length - offset);
7460 fmt = xtensa_format_decode (isa, insnbuf);
7461 if (fmt == XTENSA_UNDEFINED)
7463 insn_len = xtensa_format_length (isa, fmt);
7464 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7467 if (xtensa_format_num_slots (isa, fmt) != 1)
7473 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7474 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7475 if (opcode == XTENSA_UNDEFINED)
7478 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7479 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7480 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7482 /* Add an instruction narrow action. */
7483 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7484 ta_narrow_insn, offset, 0, FALSE);
7486 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7487 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7488 && ! prev_instr_is_a_loop (ebb->contents,
7489 ebb->content_length, offset))
7491 /* Add an instruction widen action. */
7492 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7493 ta_widen_insn, offset, 0, FALSE);
7495 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7497 /* Check for branch targets. */
7498 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7499 ta_none, offset, 0, TRUE);
7506 if (ebb->ends_unreachable)
7508 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7509 ta_fill, ebb->end_offset, 0, TRUE);
7515 (*_bfd_error_handler)
7516 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7517 ebb->sec->owner, ebb->sec, offset);
7522 /* After all of the information has collected about the
7523 transformations possible in an EBB, compute the appropriate actions
7524 here in compute_ebb_actions. We still must check later to make
7525 sure that the actions do not break any relocations. The algorithm
7526 used here is pretty greedy. Basically, it removes as many no-ops
7527 as possible so that the end of the EBB has the same alignment
7528 characteristics as the original. First, it uses narrowing, then
7529 fill space at the end of the EBB, and finally widenings. If that
7530 does not work, it tries again with one fewer no-op removed. The
7531 optimization will only be performed if all of the branch targets
7532 that were aligned before transformation are also aligned after the
7535 When the size_opt flag is set, ignore the branch target alignments,
7536 narrow all wide instructions, and remove all no-ops unless the end
7537 of the EBB prevents it. */
7540 compute_ebb_actions (ebb_constraint *ebb_table)
7544 int removed_bytes = 0;
7545 ebb_t *ebb = &ebb_table->ebb;
7546 unsigned seg_idx_start = 0;
7547 unsigned seg_idx_end = 0;
7549 /* We perform this like the assembler relaxation algorithm: Start by
7550 assuming all instructions are narrow and all no-ops removed; then
7553 /* For each segment of this that has a solid constraint, check to
7554 see if there are any combinations that will keep the constraint.
7556 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
7558 bfd_boolean requires_text_end_align = FALSE;
7559 unsigned longcall_count = 0;
7560 unsigned longcall_convert_count = 0;
7561 unsigned narrowable_count = 0;
7562 unsigned narrowable_convert_count = 0;
7563 unsigned widenable_count = 0;
7564 unsigned widenable_convert_count = 0;
7566 proposed_action *action = NULL;
7567 int align = (1 << ebb_table->ebb.sec->alignment_power);
7569 seg_idx_start = seg_idx_end;
7571 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7573 action = &ebb_table->actions[i];
7574 if (action->action == ta_convert_longcall)
7576 if (action->action == ta_narrow_insn)
7578 if (action->action == ta_widen_insn)
7580 if (action->action == ta_fill)
7582 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7584 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7585 && !elf32xtensa_size_opt)
7590 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7591 requires_text_end_align = TRUE;
7593 if (elf32xtensa_size_opt && !requires_text_end_align
7594 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7595 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7597 longcall_convert_count = longcall_count;
7598 narrowable_convert_count = narrowable_count;
7599 widenable_convert_count = 0;
7603 /* There is a constraint. Convert the max number of longcalls. */
7604 narrowable_convert_count = 0;
7605 longcall_convert_count = 0;
7606 widenable_convert_count = 0;
7608 for (j = 0; j < longcall_count; j++)
7610 int removed = (longcall_count - j) * 3 & (align - 1);
7611 unsigned desire_narrow = (align - removed) & (align - 1);
7612 unsigned desire_widen = removed;
7613 if (desire_narrow <= narrowable_count)
7615 narrowable_convert_count = desire_narrow;
7616 narrowable_convert_count +=
7617 (align * ((narrowable_count - narrowable_convert_count)
7619 longcall_convert_count = (longcall_count - j);
7620 widenable_convert_count = 0;
7623 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7625 narrowable_convert_count = 0;
7626 longcall_convert_count = longcall_count - j;
7627 widenable_convert_count = desire_widen;
7633 /* Now the number of conversions are saved. Do them. */
7634 for (i = seg_idx_start; i < seg_idx_end; i++)
7636 action = &ebb_table->actions[i];
7637 switch (action->action)
7639 case ta_convert_longcall:
7640 if (longcall_convert_count != 0)
7642 action->action = ta_remove_longcall;
7643 action->do_action = TRUE;
7644 action->removed_bytes += 3;
7645 longcall_convert_count--;
7648 case ta_narrow_insn:
7649 if (narrowable_convert_count != 0)
7651 action->do_action = TRUE;
7652 action->removed_bytes += 1;
7653 narrowable_convert_count--;
7657 if (widenable_convert_count != 0)
7659 action->do_action = TRUE;
7660 action->removed_bytes -= 1;
7661 widenable_convert_count--;
7670 /* Now we move on to some local opts. Try to remove each of the
7671 remaining longcalls. */
7673 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
7676 for (i = 0; i < ebb_table->action_count; i++)
7678 int old_removed_bytes = removed_bytes;
7679 proposed_action *action = &ebb_table->actions[i];
7681 if (action->do_action && action->action == ta_convert_longcall)
7683 bfd_boolean bad_alignment = FALSE;
7685 for (j = i + 1; j < ebb_table->action_count; j++)
7687 proposed_action *new_action = &ebb_table->actions[j];
7688 bfd_vma offset = new_action->offset;
7689 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
7691 if (!check_branch_target_aligned
7692 (ebb_table->ebb.contents,
7693 ebb_table->ebb.content_length,
7694 offset, offset - removed_bytes))
7696 bad_alignment = TRUE;
7700 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7702 if (!check_loop_aligned (ebb_table->ebb.contents,
7703 ebb_table->ebb.content_length,
7705 offset - removed_bytes))
7707 bad_alignment = TRUE;
7711 if (new_action->action == ta_narrow_insn
7712 && !new_action->do_action
7713 && ebb_table->ebb.sec->alignment_power == 2)
7715 /* Narrow an instruction and we are done. */
7716 new_action->do_action = TRUE;
7717 new_action->removed_bytes += 1;
7718 bad_alignment = FALSE;
7721 if (new_action->action == ta_widen_insn
7722 && new_action->do_action
7723 && ebb_table->ebb.sec->alignment_power == 2)
7725 /* Narrow an instruction and we are done. */
7726 new_action->do_action = FALSE;
7727 new_action->removed_bytes += 1;
7728 bad_alignment = FALSE;
7731 if (new_action->do_action)
7732 removed_bytes += new_action->removed_bytes;
7736 action->removed_bytes += 3;
7737 action->action = ta_remove_longcall;
7738 action->do_action = TRUE;
7741 removed_bytes = old_removed_bytes;
7742 if (action->do_action)
7743 removed_bytes += action->removed_bytes;
7748 for (i = 0; i < ebb_table->action_count; ++i)
7750 proposed_action *action = &ebb_table->actions[i];
7751 if (action->do_action)
7752 removed_bytes += action->removed_bytes;
7755 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
7756 && ebb->ends_unreachable)
7758 proposed_action *action;
7762 BFD_ASSERT (ebb_table->action_count != 0);
7763 action = &ebb_table->actions[ebb_table->action_count - 1];
7764 BFD_ASSERT (action->action == ta_fill);
7765 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
7767 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
7768 br = action->removed_bytes + removed_bytes + extra_space;
7769 br = br & ((1 << ebb->sec->alignment_power ) - 1);
7771 action->removed_bytes = extra_space - br;
7777 /* The xlate_map is a sorted array of address mappings designed to
7778 answer the offset_with_removed_text() query with a binary search instead
7779 of a linear search through the section's action_list. */
7781 typedef struct xlate_map_entry xlate_map_entry_t;
7782 typedef struct xlate_map xlate_map_t;
7784 struct xlate_map_entry
7786 unsigned orig_address;
7787 unsigned new_address;
7793 unsigned entry_count;
7794 xlate_map_entry_t *entry;
7799 xlate_compare (const void *a_v, const void *b_v)
7801 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
7802 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7803 if (a->orig_address < b->orig_address)
7805 if (a->orig_address > (b->orig_address + b->size - 1))
7812 xlate_offset_with_removed_text (const xlate_map_t *map,
7813 text_action_list *action_list,
7817 xlate_map_entry_t *e;
7820 return offset_with_removed_text (action_list, offset);
7822 if (map->entry_count == 0)
7825 r = bsearch (&offset, map->entry, map->entry_count,
7826 sizeof (xlate_map_entry_t), &xlate_compare);
7827 e = (xlate_map_entry_t *) r;
7829 BFD_ASSERT (e != NULL);
7832 return e->new_address - e->orig_address + offset;
7836 /* Build a binary searchable offset translation map from a section's
7839 static xlate_map_t *
7840 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7842 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7843 text_action_list *action_list = &relax_info->action_list;
7844 unsigned num_actions = 0;
7847 xlate_map_entry_t *current_entry;
7852 num_actions = action_list_count (action_list);
7853 map->entry = (xlate_map_entry_t *)
7854 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7855 if (map->entry == NULL)
7860 map->entry_count = 0;
7863 current_entry = &map->entry[0];
7865 current_entry->orig_address = 0;
7866 current_entry->new_address = 0;
7867 current_entry->size = 0;
7869 for (r = action_list->head; r != NULL; r = r->next)
7871 unsigned orig_size = 0;
7875 case ta_remove_insn:
7876 case ta_convert_longcall:
7877 case ta_remove_literal:
7878 case ta_add_literal:
7880 case ta_remove_longcall:
7883 case ta_narrow_insn:
7892 current_entry->size =
7893 r->offset + orig_size - current_entry->orig_address;
7894 if (current_entry->size != 0)
7899 current_entry->orig_address = r->offset + orig_size;
7900 removed += r->removed_bytes;
7901 current_entry->new_address = r->offset + orig_size - removed;
7902 current_entry->size = 0;
7905 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7906 - current_entry->orig_address);
7907 if (current_entry->size != 0)
7914 /* Free an offset translation map. */
7917 free_xlate_map (xlate_map_t *map)
7919 if (map && map->entry)
7926 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7927 relocations in a section will fit if a proposed set of actions
7931 check_section_ebb_pcrels_fit (bfd *abfd,
7934 Elf_Internal_Rela *internal_relocs,
7935 const ebb_constraint *constraint,
7936 const xtensa_opcode *reloc_opcodes)
7939 Elf_Internal_Rela *irel;
7940 xlate_map_t *xmap = NULL;
7941 bfd_boolean ok = TRUE;
7942 xtensa_relax_info *relax_info;
7944 relax_info = get_xtensa_relax_info (sec);
7946 if (relax_info && sec->reloc_count > 100)
7948 xmap = build_xlate_map (sec, relax_info);
7949 /* NULL indicates out of memory, but the slow version
7950 can still be used. */
7953 for (i = 0; i < sec->reloc_count; i++)
7956 bfd_vma orig_self_offset, orig_target_offset;
7957 bfd_vma self_offset, target_offset;
7959 reloc_howto_type *howto;
7960 int self_removed_bytes, target_removed_bytes;
7962 irel = &internal_relocs[i];
7963 r_type = ELF32_R_TYPE (irel->r_info);
7965 howto = &elf_howto_table[r_type];
7966 /* We maintain the required invariant: PC-relative relocations
7967 that fit before linking must fit after linking. Thus we only
7968 need to deal with relocations to the same section that are
7970 if (r_type == R_XTENSA_ASM_SIMPLIFY
7971 || r_type == R_XTENSA_32_PCREL
7972 || !howto->pc_relative)
7975 r_reloc_init (&r_rel, abfd, irel, contents,
7976 bfd_get_section_limit (abfd, sec));
7978 if (r_reloc_get_section (&r_rel) != sec)
7981 orig_self_offset = irel->r_offset;
7982 orig_target_offset = r_rel.target_offset;
7984 self_offset = orig_self_offset;
7985 target_offset = orig_target_offset;
7990 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7993 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7994 orig_target_offset);
7997 self_removed_bytes = 0;
7998 target_removed_bytes = 0;
8000 for (j = 0; j < constraint->action_count; ++j)
8002 proposed_action *action = &constraint->actions[j];
8003 bfd_vma offset = action->offset;
8004 int removed_bytes = action->removed_bytes;
8005 if (offset < orig_self_offset
8006 || (offset == orig_self_offset && action->action == ta_fill
8007 && action->removed_bytes < 0))
8008 self_removed_bytes += removed_bytes;
8009 if (offset < orig_target_offset
8010 || (offset == orig_target_offset && action->action == ta_fill
8011 && action->removed_bytes < 0))
8012 target_removed_bytes += removed_bytes;
8014 self_offset -= self_removed_bytes;
8015 target_offset -= target_removed_bytes;
8017 /* Try to encode it. Get the operand and check. */
8018 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8020 /* None of the current alternate relocs are PC-relative,
8021 and only PC-relative relocs matter here. */
8025 xtensa_opcode opcode;
8029 opcode = reloc_opcodes[i];
8031 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8032 if (opcode == XTENSA_UNDEFINED)
8038 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8039 if (opnum == XTENSA_UNDEFINED)
8045 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8054 free_xlate_map (xmap);
8061 check_section_ebb_reduces (const ebb_constraint *constraint)
8066 for (i = 0; i < constraint->action_count; i++)
8068 const proposed_action *action = &constraint->actions[i];
8069 if (action->do_action)
8070 removed += action->removed_bytes;
8080 text_action_add_proposed (text_action_list *l,
8081 const ebb_constraint *ebb_table,
8086 for (i = 0; i < ebb_table->action_count; i++)
8088 proposed_action *action = &ebb_table->actions[i];
8090 if (!action->do_action)
8092 switch (action->action)
8094 case ta_remove_insn:
8095 case ta_remove_longcall:
8096 case ta_convert_longcall:
8097 case ta_narrow_insn:
8100 case ta_remove_literal:
8101 text_action_add (l, action->action, sec, action->offset,
8102 action->removed_bytes);
8115 compute_fill_extra_space (property_table_entry *entry)
8117 int fill_extra_space;
8122 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8125 fill_extra_space = entry->size;
8126 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8128 /* Fill bytes for alignment:
8129 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8130 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8131 int nsm = (1 << pow) - 1;
8132 bfd_vma addr = entry->address + entry->size;
8133 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8134 fill_extra_space += align_fill;
8136 return fill_extra_space;
8140 /* First relaxation pass. */
8142 /* If the section contains relaxable literals, check each literal to
8143 see if it has the same value as another literal that has already
8144 been seen, either in the current section or a previous one. If so,
8145 add an entry to the per-section list of removed literals. The
8146 actual changes are deferred until the next pass. */
8149 compute_removed_literals (bfd *abfd,
8151 struct bfd_link_info *link_info,
8152 value_map_hash_table *values)
8154 xtensa_relax_info *relax_info;
8156 Elf_Internal_Rela *internal_relocs;
8157 source_reloc *src_relocs, *rel;
8158 bfd_boolean ok = TRUE;
8159 property_table_entry *prop_table = NULL;
8162 bfd_boolean last_loc_is_prev = FALSE;
8163 bfd_vma last_target_offset = 0;
8164 section_cache_t target_sec_cache;
8165 bfd_size_type sec_size;
8167 init_section_cache (&target_sec_cache);
8169 /* Do nothing if it is not a relaxable literal section. */
8170 relax_info = get_xtensa_relax_info (sec);
8171 BFD_ASSERT (relax_info);
8172 if (!relax_info->is_relaxable_literal_section)
8175 internal_relocs = retrieve_internal_relocs (abfd, sec,
8176 link_info->keep_memory);
8178 sec_size = bfd_get_section_limit (abfd, sec);
8179 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8180 if (contents == NULL && sec_size != 0)
8186 /* Sort the source_relocs by target offset. */
8187 src_relocs = relax_info->src_relocs;
8188 qsort (src_relocs, relax_info->src_count,
8189 sizeof (source_reloc), source_reloc_compare);
8190 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8191 internal_reloc_compare);
8193 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8194 XTENSA_PROP_SEC_NAME, FALSE);
8202 for (i = 0; i < relax_info->src_count; i++)
8204 Elf_Internal_Rela *irel = NULL;
8206 rel = &src_relocs[i];
8207 if (get_l32r_opcode () != rel->opcode)
8209 irel = get_irel_at_offset (sec, internal_relocs,
8210 rel->r_rel.target_offset);
8212 /* If the relocation on this is not a simple R_XTENSA_32 or
8213 R_XTENSA_PLT then do not consider it. This may happen when
8214 the difference of two symbols is used in a literal. */
8215 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8216 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8219 /* If the target_offset for this relocation is the same as the
8220 previous relocation, then we've already considered whether the
8221 literal can be coalesced. Skip to the next one.... */
8222 if (i != 0 && prev_i != -1
8223 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8227 if (last_loc_is_prev &&
8228 last_target_offset + 4 != rel->r_rel.target_offset)
8229 last_loc_is_prev = FALSE;
8231 /* Check if the relocation was from an L32R that is being removed
8232 because a CALLX was converted to a direct CALL, and check if
8233 there are no other relocations to the literal. */
8234 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8235 sec, prop_table, ptblsize))
8237 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8238 irel, rel, prop_table, ptblsize))
8243 last_target_offset = rel->r_rel.target_offset;
8247 if (!identify_literal_placement (abfd, sec, contents, link_info,
8249 &last_loc_is_prev, irel,
8250 relax_info->src_count - i, rel,
8251 prop_table, ptblsize,
8252 &target_sec_cache, rel->is_abs_literal))
8257 last_target_offset = rel->r_rel.target_offset;
8261 print_removed_literals (stderr, &relax_info->removed_list);
8262 print_action_list (stderr, &relax_info->action_list);
8268 free_section_cache (&target_sec_cache);
8270 release_contents (sec, contents);
8271 release_internal_relocs (sec, internal_relocs);
8276 static Elf_Internal_Rela *
8277 get_irel_at_offset (asection *sec,
8278 Elf_Internal_Rela *internal_relocs,
8282 Elf_Internal_Rela *irel;
8284 Elf_Internal_Rela key;
8286 if (!internal_relocs)
8289 key.r_offset = offset;
8290 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8291 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8295 /* bsearch does not guarantee which will be returned if there are
8296 multiple matches. We need the first that is not an alignment. */
8297 i = irel - internal_relocs;
8300 if (internal_relocs[i-1].r_offset != offset)
8304 for ( ; i < sec->reloc_count; i++)
8306 irel = &internal_relocs[i];
8307 r_type = ELF32_R_TYPE (irel->r_info);
8308 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8317 is_removable_literal (const source_reloc *rel,
8319 const source_reloc *src_relocs,
8322 property_table_entry *prop_table,
8325 const source_reloc *curr_rel;
8326 property_table_entry *entry;
8331 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8332 sec->vma + rel->r_rel.target_offset);
8333 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8336 for (++i; i < src_count; ++i)
8338 curr_rel = &src_relocs[i];
8339 /* If all others have the same target offset.... */
8340 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8343 if (!curr_rel->is_null
8344 && !xtensa_is_property_section (curr_rel->source_sec)
8345 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8353 remove_dead_literal (bfd *abfd,
8355 struct bfd_link_info *link_info,
8356 Elf_Internal_Rela *internal_relocs,
8357 Elf_Internal_Rela *irel,
8359 property_table_entry *prop_table,
8362 property_table_entry *entry;
8363 xtensa_relax_info *relax_info;
8365 relax_info = get_xtensa_relax_info (sec);
8369 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8370 sec->vma + rel->r_rel.target_offset);
8372 /* Mark the unused literal so that it will be removed. */
8373 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8375 text_action_add (&relax_info->action_list,
8376 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8378 /* If the section is 4-byte aligned, do not add fill. */
8379 if (sec->alignment_power > 2)
8381 int fill_extra_space;
8382 bfd_vma entry_sec_offset;
8384 property_table_entry *the_add_entry;
8388 entry_sec_offset = entry->address - sec->vma + entry->size;
8390 entry_sec_offset = rel->r_rel.target_offset + 4;
8392 /* If the literal range is at the end of the section,
8394 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8396 fill_extra_space = compute_fill_extra_space (the_add_entry);
8398 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8399 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8400 -4, fill_extra_space);
8402 adjust_fill_action (fa, removed_diff);
8404 text_action_add (&relax_info->action_list,
8405 ta_fill, sec, entry_sec_offset, removed_diff);
8408 /* Zero out the relocation on this literal location. */
8411 if (elf_hash_table (link_info)->dynamic_sections_created)
8412 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8414 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8415 pin_internal_relocs (sec, internal_relocs);
8418 /* Do not modify "last_loc_is_prev". */
8424 identify_literal_placement (bfd *abfd,
8427 struct bfd_link_info *link_info,
8428 value_map_hash_table *values,
8429 bfd_boolean *last_loc_is_prev_p,
8430 Elf_Internal_Rela *irel,
8431 int remaining_src_rels,
8433 property_table_entry *prop_table,
8435 section_cache_t *target_sec_cache,
8436 bfd_boolean is_abs_literal)
8440 xtensa_relax_info *relax_info;
8441 bfd_boolean literal_placed = FALSE;
8443 unsigned long value;
8444 bfd_boolean final_static_link;
8445 bfd_size_type sec_size;
8447 relax_info = get_xtensa_relax_info (sec);
8451 sec_size = bfd_get_section_limit (abfd, sec);
8454 (!link_info->relocatable
8455 && !elf_hash_table (link_info)->dynamic_sections_created);
8457 /* The placement algorithm first checks to see if the literal is
8458 already in the value map. If so and the value map is reachable
8459 from all uses, then the literal is moved to that location. If
8460 not, then we identify the last location where a fresh literal was
8461 placed. If the literal can be safely moved there, then we do so.
8462 If not, then we assume that the literal is not to move and leave
8463 the literal where it is, marking it as the last literal
8466 /* Find the literal value. */
8468 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8471 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8472 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8474 init_literal_value (&val, &r_rel, value, is_abs_literal);
8476 /* Check if we've seen another literal with the same value that
8477 is in the same output section. */
8478 val_map = value_map_get_cached_value (values, &val, final_static_link);
8481 && (r_reloc_get_section (&val_map->loc)->output_section
8482 == sec->output_section)
8483 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8484 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8486 /* No change to last_loc_is_prev. */
8487 literal_placed = TRUE;
8490 /* For relocatable links, do not try to move literals. To do it
8491 correctly might increase the number of relocations in an input
8492 section making the default relocatable linking fail. */
8493 if (!link_info->relocatable && !literal_placed
8494 && values->has_last_loc && !(*last_loc_is_prev_p))
8496 asection *target_sec = r_reloc_get_section (&values->last_loc);
8497 if (target_sec && target_sec->output_section == sec->output_section)
8499 /* Increment the virtual offset. */
8500 r_reloc try_loc = values->last_loc;
8501 try_loc.virtual_offset += 4;
8503 /* There is a last loc that was in the same output section. */
8504 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8505 && move_shared_literal (sec, link_info, rel,
8506 prop_table, ptblsize,
8507 &try_loc, &val, target_sec_cache))
8509 values->last_loc.virtual_offset += 4;
8510 literal_placed = TRUE;
8512 val_map = add_value_map (values, &val, &try_loc,
8515 val_map->loc = try_loc;
8520 if (!literal_placed)
8522 /* Nothing worked, leave the literal alone but update the last loc. */
8523 values->has_last_loc = TRUE;
8524 values->last_loc = rel->r_rel;
8526 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
8528 val_map->loc = rel->r_rel;
8529 *last_loc_is_prev_p = TRUE;
8536 /* Check if the original relocations (presumably on L32R instructions)
8537 identified by reloc[0..N] can be changed to reference the literal
8538 identified by r_rel. If r_rel is out of range for any of the
8539 original relocations, then we don't want to coalesce the original
8540 literal with the one at r_rel. We only check reloc[0..N], where the
8541 offsets are all the same as for reloc[0] (i.e., they're all
8542 referencing the same literal) and where N is also bounded by the
8543 number of remaining entries in the "reloc" array. The "reloc" array
8544 is sorted by target offset so we know all the entries for the same
8545 literal will be contiguous. */
8548 relocations_reach (source_reloc *reloc,
8549 int remaining_relocs,
8550 const r_reloc *r_rel)
8552 bfd_vma from_offset, source_address, dest_address;
8556 if (!r_reloc_is_defined (r_rel))
8559 sec = r_reloc_get_section (r_rel);
8560 from_offset = reloc[0].r_rel.target_offset;
8562 for (i = 0; i < remaining_relocs; i++)
8564 if (reloc[i].r_rel.target_offset != from_offset)
8567 /* Ignore relocations that have been removed. */
8568 if (reloc[i].is_null)
8571 /* The original and new output section for these must be the same
8572 in order to coalesce. */
8573 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
8574 != sec->output_section)
8577 /* Absolute literals in the same output section can always be
8579 if (reloc[i].is_abs_literal)
8582 /* A literal with no PC-relative relocations can be moved anywhere. */
8583 if (reloc[i].opnd != -1)
8585 /* Otherwise, check to see that it fits. */
8586 source_address = (reloc[i].source_sec->output_section->vma
8587 + reloc[i].source_sec->output_offset
8588 + reloc[i].r_rel.rela.r_offset);
8589 dest_address = (sec->output_section->vma
8590 + sec->output_offset
8591 + r_rel->target_offset);
8593 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
8594 source_address, dest_address))
8603 /* Move a literal to another literal location because it is
8604 the same as the other literal value. */
8607 coalesce_shared_literal (asection *sec,
8609 property_table_entry *prop_table,
8613 property_table_entry *entry;
8615 property_table_entry *the_add_entry;
8617 xtensa_relax_info *relax_info;
8619 relax_info = get_xtensa_relax_info (sec);
8623 entry = elf_xtensa_find_property_entry
8624 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8625 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8628 /* Mark that the literal will be coalesced. */
8629 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
8631 text_action_add (&relax_info->action_list,
8632 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8634 /* If the section is 4-byte aligned, do not add fill. */
8635 if (sec->alignment_power > 2)
8637 int fill_extra_space;
8638 bfd_vma entry_sec_offset;
8641 entry_sec_offset = entry->address - sec->vma + entry->size;
8643 entry_sec_offset = rel->r_rel.target_offset + 4;
8645 /* If the literal range is at the end of the section,
8647 fill_extra_space = 0;
8648 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8650 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8651 fill_extra_space = the_add_entry->size;
8653 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8654 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8655 -4, fill_extra_space);
8657 adjust_fill_action (fa, removed_diff);
8659 text_action_add (&relax_info->action_list,
8660 ta_fill, sec, entry_sec_offset, removed_diff);
8667 /* Move a literal to another location. This may actually increase the
8668 total amount of space used because of alignments so we need to do
8669 this carefully. Also, it may make a branch go out of range. */
8672 move_shared_literal (asection *sec,
8673 struct bfd_link_info *link_info,
8675 property_table_entry *prop_table,
8677 const r_reloc *target_loc,
8678 const literal_value *lit_value,
8679 section_cache_t *target_sec_cache)
8681 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
8682 text_action *fa, *target_fa;
8684 xtensa_relax_info *relax_info, *target_relax_info;
8685 asection *target_sec;
8687 ebb_constraint ebb_table;
8688 bfd_boolean relocs_fit;
8690 /* If this routine always returns FALSE, the literals that cannot be
8691 coalesced will not be moved. */
8692 if (elf32xtensa_no_literal_movement)
8695 relax_info = get_xtensa_relax_info (sec);
8699 target_sec = r_reloc_get_section (target_loc);
8700 target_relax_info = get_xtensa_relax_info (target_sec);
8702 /* Literals to undefined sections may not be moved because they
8703 must report an error. */
8704 if (bfd_is_und_section (target_sec))
8707 src_entry = elf_xtensa_find_property_entry
8708 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8710 if (!section_cache_section (target_sec_cache, target_sec, link_info))
8713 target_entry = elf_xtensa_find_property_entry
8714 (target_sec_cache->ptbl, target_sec_cache->pte_count,
8715 target_sec->vma + target_loc->target_offset);
8720 /* Make sure that we have not broken any branches. */
8723 init_ebb_constraint (&ebb_table);
8724 ebb = &ebb_table.ebb;
8725 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
8726 target_sec_cache->content_length,
8727 target_sec_cache->ptbl, target_sec_cache->pte_count,
8728 target_sec_cache->relocs, target_sec_cache->reloc_count);
8730 /* Propose to add 4 bytes + worst-case alignment size increase to
8732 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
8733 ta_fill, target_loc->target_offset,
8734 -4 - (1 << target_sec->alignment_power), TRUE);
8736 /* Check all of the PC-relative relocations to make sure they still fit. */
8737 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
8738 target_sec_cache->contents,
8739 target_sec_cache->relocs,
8745 text_action_add_literal (&target_relax_info->action_list,
8746 ta_add_literal, target_loc, lit_value, -4);
8748 if (target_sec->alignment_power > 2 && target_entry != src_entry)
8750 /* May need to add or remove some fill to maintain alignment. */
8751 int fill_extra_space;
8752 bfd_vma entry_sec_offset;
8755 target_entry->address - target_sec->vma + target_entry->size;
8757 /* If the literal range is at the end of the section,
8759 fill_extra_space = 0;
8761 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
8762 target_sec_cache->pte_count,
8764 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8765 fill_extra_space = the_add_entry->size;
8767 target_fa = find_fill_action (&target_relax_info->action_list,
8768 target_sec, entry_sec_offset);
8769 removed_diff = compute_removed_action_diff (target_fa, target_sec,
8770 entry_sec_offset, 4,
8773 adjust_fill_action (target_fa, removed_diff);
8775 text_action_add (&target_relax_info->action_list,
8776 ta_fill, target_sec, entry_sec_offset, removed_diff);
8779 /* Mark that the literal will be moved to the new location. */
8780 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
8782 /* Remove the literal. */
8783 text_action_add (&relax_info->action_list,
8784 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8786 /* If the section is 4-byte aligned, do not add fill. */
8787 if (sec->alignment_power > 2 && target_entry != src_entry)
8789 int fill_extra_space;
8790 bfd_vma entry_sec_offset;
8793 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
8795 entry_sec_offset = rel->r_rel.target_offset+4;
8797 /* If the literal range is at the end of the section,
8799 fill_extra_space = 0;
8800 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8802 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8803 fill_extra_space = the_add_entry->size;
8805 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8806 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8807 -4, fill_extra_space);
8809 adjust_fill_action (fa, removed_diff);
8811 text_action_add (&relax_info->action_list,
8812 ta_fill, sec, entry_sec_offset, removed_diff);
8819 /* Second relaxation pass. */
8821 /* Modify all of the relocations to point to the right spot, and if this
8822 is a relaxable section, delete the unwanted literals and fix the
8826 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
8828 Elf_Internal_Rela *internal_relocs;
8829 xtensa_relax_info *relax_info;
8831 bfd_boolean ok = TRUE;
8833 bfd_boolean rv = FALSE;
8834 bfd_boolean virtual_action;
8835 bfd_size_type sec_size;
8837 sec_size = bfd_get_section_limit (abfd, sec);
8838 relax_info = get_xtensa_relax_info (sec);
8839 BFD_ASSERT (relax_info);
8841 /* First translate any of the fixes that have been added already. */
8842 translate_section_fixes (sec);
8844 /* Handle property sections (e.g., literal tables) specially. */
8845 if (xtensa_is_property_section (sec))
8847 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8848 return relax_property_section (abfd, sec, link_info);
8851 internal_relocs = retrieve_internal_relocs (abfd, sec,
8852 link_info->keep_memory);
8853 if (!internal_relocs && !relax_info->action_list.head)
8856 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8857 if (contents == NULL && sec_size != 0)
8863 if (internal_relocs)
8865 for (i = 0; i < sec->reloc_count; i++)
8867 Elf_Internal_Rela *irel;
8868 xtensa_relax_info *target_relax_info;
8869 bfd_vma source_offset, old_source_offset;
8872 asection *target_sec;
8874 /* Locally change the source address.
8875 Translate the target to the new target address.
8876 If it points to this section and has been removed,
8880 irel = &internal_relocs[i];
8881 source_offset = irel->r_offset;
8882 old_source_offset = source_offset;
8884 r_type = ELF32_R_TYPE (irel->r_info);
8885 r_reloc_init (&r_rel, abfd, irel, contents,
8886 bfd_get_section_limit (abfd, sec));
8888 /* If this section could have changed then we may need to
8889 change the relocation's offset. */
8891 if (relax_info->is_relaxable_literal_section
8892 || relax_info->is_relaxable_asm_section)
8894 pin_internal_relocs (sec, internal_relocs);
8896 if (r_type != R_XTENSA_NONE
8897 && find_removed_literal (&relax_info->removed_list,
8900 /* Remove this relocation. */
8901 if (elf_hash_table (link_info)->dynamic_sections_created)
8902 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8903 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8904 irel->r_offset = offset_with_removed_text
8905 (&relax_info->action_list, irel->r_offset);
8909 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8911 text_action *action =
8912 find_insn_action (&relax_info->action_list,
8914 if (action && (action->action == ta_convert_longcall
8915 || action->action == ta_remove_longcall))
8917 bfd_reloc_status_type retval;
8918 char *error_message = NULL;
8920 retval = contract_asm_expansion (contents, sec_size,
8921 irel, &error_message);
8922 if (retval != bfd_reloc_ok)
8924 (*link_info->callbacks->reloc_dangerous)
8925 (link_info, error_message, abfd, sec,
8929 /* Update the action so that the code that moves
8930 the contents will do the right thing. */
8931 if (action->action == ta_remove_longcall)
8932 action->action = ta_remove_insn;
8934 action->action = ta_none;
8935 /* Refresh the info in the r_rel. */
8936 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8937 r_type = ELF32_R_TYPE (irel->r_info);
8941 source_offset = offset_with_removed_text
8942 (&relax_info->action_list, irel->r_offset);
8943 irel->r_offset = source_offset;
8946 /* If the target section could have changed then
8947 we may need to change the relocation's target offset. */
8949 target_sec = r_reloc_get_section (&r_rel);
8951 /* For a reference to a discarded section from a DWARF section,
8952 i.e., where action_discarded is PRETEND, the symbol will
8953 eventually be modified to refer to the kept section (at least if
8954 the kept and discarded sections are the same size). Anticipate
8955 that here and adjust things accordingly. */
8956 if (! elf_xtensa_ignore_discarded_relocs (sec)
8957 && elf_xtensa_action_discarded (sec) == PRETEND
8958 && sec->sec_info_type != SEC_INFO_TYPE_STABS
8959 && target_sec != NULL
8960 && discarded_section (target_sec))
8962 /* It would be natural to call _bfd_elf_check_kept_section
8963 here, but it's not exported from elflink.c. It's also a
8964 fairly expensive check. Adjusting the relocations to the
8965 discarded section is fairly harmless; it will only adjust
8966 some addends and difference values. If it turns out that
8967 _bfd_elf_check_kept_section fails later, it won't matter,
8968 so just compare the section names to find the right group
8970 asection *kept = target_sec->kept_section;
8973 if ((kept->flags & SEC_GROUP) != 0)
8975 asection *first = elf_next_in_group (kept);
8976 asection *s = first;
8981 if (strcmp (s->name, target_sec->name) == 0)
8986 s = elf_next_in_group (s);
8993 && ((target_sec->rawsize != 0
8994 ? target_sec->rawsize : target_sec->size)
8995 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8999 target_relax_info = get_xtensa_relax_info (target_sec);
9000 if (target_relax_info
9001 && (target_relax_info->is_relaxable_literal_section
9002 || target_relax_info->is_relaxable_asm_section))
9005 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9007 if (r_type == R_XTENSA_DIFF8
9008 || r_type == R_XTENSA_DIFF16
9009 || r_type == R_XTENSA_DIFF32)
9011 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
9013 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9015 (*link_info->callbacks->reloc_dangerous)
9016 (link_info, _("invalid relocation address"),
9017 abfd, sec, old_source_offset);
9023 case R_XTENSA_DIFF8:
9025 bfd_get_8 (abfd, &contents[old_source_offset]);
9027 case R_XTENSA_DIFF16:
9029 bfd_get_16 (abfd, &contents[old_source_offset]);
9031 case R_XTENSA_DIFF32:
9033 bfd_get_32 (abfd, &contents[old_source_offset]);
9037 new_end_offset = offset_with_removed_text
9038 (&target_relax_info->action_list,
9039 r_rel.target_offset + diff_value);
9040 diff_value = new_end_offset - new_reloc.target_offset;
9044 case R_XTENSA_DIFF8:
9046 bfd_put_8 (abfd, diff_value,
9047 &contents[old_source_offset]);
9049 case R_XTENSA_DIFF16:
9051 bfd_put_16 (abfd, diff_value,
9052 &contents[old_source_offset]);
9054 case R_XTENSA_DIFF32:
9055 diff_mask = 0xffffffff;
9056 bfd_put_32 (abfd, diff_value,
9057 &contents[old_source_offset]);
9061 /* Check for overflow. */
9062 if ((diff_value & ~diff_mask) != 0)
9064 (*link_info->callbacks->reloc_dangerous)
9065 (link_info, _("overflow after relaxation"),
9066 abfd, sec, old_source_offset);
9070 pin_contents (sec, contents);
9073 /* If the relocation still references a section in the same
9074 input file, modify the relocation directly instead of
9075 adding a "fix" record. */
9076 if (target_sec->owner == abfd)
9078 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9079 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9080 irel->r_addend = new_reloc.rela.r_addend;
9081 pin_internal_relocs (sec, internal_relocs);
9085 bfd_vma addend_displacement;
9088 addend_displacement =
9089 new_reloc.target_offset + new_reloc.virtual_offset;
9090 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9092 addend_displacement, TRUE);
9099 if ((relax_info->is_relaxable_literal_section
9100 || relax_info->is_relaxable_asm_section)
9101 && relax_info->action_list.head)
9103 /* Walk through the planned actions and build up a table
9104 of move, copy and fill records. Use the move, copy and
9105 fill records to perform the actions once. */
9108 bfd_size_type final_size, copy_size, orig_insn_size;
9109 bfd_byte *scratch = NULL;
9110 bfd_byte *dup_contents = NULL;
9111 bfd_size_type orig_size = sec->size;
9112 bfd_vma orig_dot = 0;
9113 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9114 orig dot in physical memory. */
9115 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9116 bfd_vma dup_dot = 0;
9118 text_action *action = relax_info->action_list.head;
9120 final_size = sec->size;
9121 for (action = relax_info->action_list.head; action;
9122 action = action->next)
9124 final_size -= action->removed_bytes;
9127 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9128 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9130 /* The dot is the current fill location. */
9132 print_action_list (stderr, &relax_info->action_list);
9135 for (action = relax_info->action_list.head; action;
9136 action = action->next)
9138 virtual_action = FALSE;
9139 if (action->offset > orig_dot)
9141 orig_dot += orig_dot_copied;
9142 orig_dot_copied = 0;
9144 /* Out of the virtual world. */
9147 if (action->offset > orig_dot)
9149 copy_size = action->offset - orig_dot;
9150 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9151 orig_dot += copy_size;
9152 dup_dot += copy_size;
9153 BFD_ASSERT (action->offset == orig_dot);
9155 else if (action->offset < orig_dot)
9157 if (action->action == ta_fill
9158 && action->offset - action->removed_bytes == orig_dot)
9160 /* This is OK because the fill only effects the dup_dot. */
9162 else if (action->action == ta_add_literal)
9164 /* TBD. Might need to handle this. */
9167 if (action->offset == orig_dot)
9169 if (action->virtual_offset > orig_dot_vo)
9171 if (orig_dot_vo == 0)
9173 /* Need to copy virtual_offset bytes. Probably four. */
9174 copy_size = action->virtual_offset - orig_dot_vo;
9175 memmove (&dup_contents[dup_dot],
9176 &contents[orig_dot], copy_size);
9177 orig_dot_copied = copy_size;
9178 dup_dot += copy_size;
9180 virtual_action = TRUE;
9183 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9185 switch (action->action)
9187 case ta_remove_literal:
9188 case ta_remove_insn:
9189 BFD_ASSERT (action->removed_bytes >= 0);
9190 orig_dot += action->removed_bytes;
9193 case ta_narrow_insn:
9196 memmove (scratch, &contents[orig_dot], orig_insn_size);
9197 BFD_ASSERT (action->removed_bytes == 1);
9198 rv = narrow_instruction (scratch, final_size, 0);
9200 memmove (&dup_contents[dup_dot], scratch, copy_size);
9201 orig_dot += orig_insn_size;
9202 dup_dot += copy_size;
9206 if (action->removed_bytes >= 0)
9207 orig_dot += action->removed_bytes;
9210 /* Already zeroed in dup_contents. Just bump the
9212 dup_dot += (-action->removed_bytes);
9217 BFD_ASSERT (action->removed_bytes == 0);
9220 case ta_convert_longcall:
9221 case ta_remove_longcall:
9222 /* These will be removed or converted before we get here. */
9229 memmove (scratch, &contents[orig_dot], orig_insn_size);
9230 BFD_ASSERT (action->removed_bytes == -1);
9231 rv = widen_instruction (scratch, final_size, 0);
9233 memmove (&dup_contents[dup_dot], scratch, copy_size);
9234 orig_dot += orig_insn_size;
9235 dup_dot += copy_size;
9238 case ta_add_literal:
9241 BFD_ASSERT (action->removed_bytes == -4);
9242 /* TBD -- place the literal value here and insert
9244 memset (&dup_contents[dup_dot], 0, 4);
9245 pin_internal_relocs (sec, internal_relocs);
9246 pin_contents (sec, contents);
9248 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9249 relax_info, &internal_relocs, &action->value))
9253 orig_dot_vo += copy_size;
9255 orig_dot += orig_insn_size;
9256 dup_dot += copy_size;
9260 /* Not implemented yet. */
9265 removed += action->removed_bytes;
9266 BFD_ASSERT (dup_dot <= final_size);
9267 BFD_ASSERT (orig_dot <= orig_size);
9270 orig_dot += orig_dot_copied;
9271 orig_dot_copied = 0;
9273 if (orig_dot != orig_size)
9275 copy_size = orig_size - orig_dot;
9276 BFD_ASSERT (orig_size > orig_dot);
9277 BFD_ASSERT (dup_dot + copy_size == final_size);
9278 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9279 orig_dot += copy_size;
9280 dup_dot += copy_size;
9282 BFD_ASSERT (orig_size == orig_dot);
9283 BFD_ASSERT (final_size == dup_dot);
9285 /* Move the dup_contents back. */
9286 if (final_size > orig_size)
9288 /* Contents need to be reallocated. Swap the dup_contents into
9290 sec->contents = dup_contents;
9292 contents = dup_contents;
9293 pin_contents (sec, contents);
9297 BFD_ASSERT (final_size <= orig_size);
9298 memset (contents, 0, orig_size);
9299 memcpy (contents, dup_contents, final_size);
9300 free (dup_contents);
9303 pin_contents (sec, contents);
9305 if (sec->rawsize == 0)
9306 sec->rawsize = sec->size;
9307 sec->size = final_size;
9311 release_internal_relocs (sec, internal_relocs);
9312 release_contents (sec, contents);
9318 translate_section_fixes (asection *sec)
9320 xtensa_relax_info *relax_info;
9323 relax_info = get_xtensa_relax_info (sec);
9327 for (r = relax_info->fix_list; r != NULL; r = r->next)
9328 if (!translate_reloc_bfd_fix (r))
9335 /* Translate a fix given the mapping in the relax info for the target
9336 section. If it has already been translated, no work is required. */
9339 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9341 reloc_bfd_fix new_fix;
9343 xtensa_relax_info *relax_info;
9344 removed_literal *removed;
9345 bfd_vma new_offset, target_offset;
9347 if (fix->translated)
9350 sec = fix->target_sec;
9351 target_offset = fix->target_offset;
9353 relax_info = get_xtensa_relax_info (sec);
9356 fix->translated = TRUE;
9362 /* The fix does not need to be translated if the section cannot change. */
9363 if (!relax_info->is_relaxable_literal_section
9364 && !relax_info->is_relaxable_asm_section)
9366 fix->translated = TRUE;
9370 /* If the literal has been moved and this relocation was on an
9371 opcode, then the relocation should move to the new literal
9372 location. Otherwise, the relocation should move within the
9376 if (is_operand_relocation (fix->src_type))
9378 /* Check if the original relocation is against a literal being
9380 removed = find_removed_literal (&relax_info->removed_list,
9388 /* The fact that there is still a relocation to this literal indicates
9389 that the literal is being coalesced, not simply removed. */
9390 BFD_ASSERT (removed->to.abfd != NULL);
9392 /* This was moved to some other address (possibly another section). */
9393 new_sec = r_reloc_get_section (&removed->to);
9397 relax_info = get_xtensa_relax_info (sec);
9399 (!relax_info->is_relaxable_literal_section
9400 && !relax_info->is_relaxable_asm_section))
9402 target_offset = removed->to.target_offset;
9403 new_fix.target_sec = new_sec;
9404 new_fix.target_offset = target_offset;
9405 new_fix.translated = TRUE;
9410 target_offset = removed->to.target_offset;
9411 new_fix.target_sec = new_sec;
9414 /* The target address may have been moved within its section. */
9415 new_offset = offset_with_removed_text (&relax_info->action_list,
9418 new_fix.target_offset = new_offset;
9419 new_fix.target_offset = new_offset;
9420 new_fix.translated = TRUE;
9426 /* Fix up a relocation to take account of removed literals. */
9429 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9431 xtensa_relax_info *relax_info;
9432 removed_literal *removed;
9433 bfd_vma target_offset, base_offset;
9436 *new_rel = *orig_rel;
9438 if (!r_reloc_is_defined (orig_rel))
9441 relax_info = get_xtensa_relax_info (sec);
9442 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9443 || relax_info->is_relaxable_asm_section));
9445 target_offset = orig_rel->target_offset;
9448 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9450 /* Check if the original relocation is against a literal being
9452 removed = find_removed_literal (&relax_info->removed_list,
9455 if (removed && removed->to.abfd)
9459 /* The fact that there is still a relocation to this literal indicates
9460 that the literal is being coalesced, not simply removed. */
9461 BFD_ASSERT (removed->to.abfd != NULL);
9463 /* This was moved to some other address
9464 (possibly in another section). */
9465 *new_rel = removed->to;
9466 new_sec = r_reloc_get_section (new_rel);
9470 relax_info = get_xtensa_relax_info (sec);
9472 || (!relax_info->is_relaxable_literal_section
9473 && !relax_info->is_relaxable_asm_section))
9476 target_offset = new_rel->target_offset;
9479 /* Find the base offset of the reloc symbol, excluding any addend from the
9480 reloc or from the section contents (for a partial_inplace reloc). Then
9481 find the adjusted values of the offsets due to relaxation. The base
9482 offset is needed to determine the change to the reloc's addend; the reloc
9483 addend should not be adjusted due to relaxations located before the base
9486 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9487 act = relax_info->action_list.head;
9488 if (base_offset <= target_offset)
9490 int base_removed = removed_by_actions (&act, base_offset, FALSE);
9491 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
9492 new_rel->target_offset = target_offset - base_removed - addend_removed;
9493 new_rel->rela.r_addend -= addend_removed;
9497 /* Handle a negative addend. The base offset comes first. */
9498 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
9499 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
9500 new_rel->target_offset = target_offset - tgt_removed;
9501 new_rel->rela.r_addend += addend_removed;
9508 /* For dynamic links, there may be a dynamic relocation for each
9509 literal. The number of dynamic relocations must be computed in
9510 size_dynamic_sections, which occurs before relaxation. When a
9511 literal is removed, this function checks if there is a corresponding
9512 dynamic relocation and shrinks the size of the appropriate dynamic
9513 relocation section accordingly. At this point, the contents of the
9514 dynamic relocation sections have not yet been filled in, so there's
9515 nothing else that needs to be done. */
9518 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9520 asection *input_section,
9521 Elf_Internal_Rela *rel)
9523 struct elf_xtensa_link_hash_table *htab;
9524 Elf_Internal_Shdr *symtab_hdr;
9525 struct elf_link_hash_entry **sym_hashes;
9526 unsigned long r_symndx;
9528 struct elf_link_hash_entry *h;
9529 bfd_boolean dynamic_symbol;
9531 htab = elf_xtensa_hash_table (info);
9535 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9536 sym_hashes = elf_sym_hashes (abfd);
9538 r_type = ELF32_R_TYPE (rel->r_info);
9539 r_symndx = ELF32_R_SYM (rel->r_info);
9541 if (r_symndx < symtab_hdr->sh_info)
9544 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9546 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
9548 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
9549 && (input_section->flags & SEC_ALLOC) != 0
9550 && (dynamic_symbol || info->shared))
9553 bfd_boolean is_plt = FALSE;
9555 if (dynamic_symbol && r_type == R_XTENSA_PLT)
9557 srel = htab->srelplt;
9561 srel = htab->srelgot;
9563 /* Reduce size of the .rela.* section by one reloc. */
9564 BFD_ASSERT (srel != NULL);
9565 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
9566 srel->size -= sizeof (Elf32_External_Rela);
9570 asection *splt, *sgotplt, *srelgot;
9571 int reloc_index, chunk;
9573 /* Find the PLT reloc index of the entry being removed. This
9574 is computed from the size of ".rela.plt". It is needed to
9575 figure out which PLT chunk to resize. Usually "last index
9576 = size - 1" since the index starts at zero, but in this
9577 context, the size has just been decremented so there's no
9578 need to subtract one. */
9579 reloc_index = srel->size / sizeof (Elf32_External_Rela);
9581 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
9582 splt = elf_xtensa_get_plt_section (info, chunk);
9583 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
9584 BFD_ASSERT (splt != NULL && sgotplt != NULL);
9586 /* Check if an entire PLT chunk has just been eliminated. */
9587 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
9589 /* The two magic GOT entries for that chunk can go away. */
9590 srelgot = htab->srelgot;
9591 BFD_ASSERT (srelgot != NULL);
9592 srelgot->reloc_count -= 2;
9593 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
9596 /* There should be only one entry left (and it will be
9598 BFD_ASSERT (sgotplt->size == 4);
9599 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
9602 BFD_ASSERT (sgotplt->size >= 4);
9603 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
9606 splt->size -= PLT_ENTRY_SIZE;
9612 /* Take an r_rel and move it to another section. This usually
9613 requires extending the interal_relocation array and pinning it. If
9614 the original r_rel is from the same BFD, we can complete this here.
9615 Otherwise, we add a fix record to let the final link fix the
9616 appropriate address. Contents and internal relocations for the
9617 section must be pinned after calling this routine. */
9620 move_literal (bfd *abfd,
9621 struct bfd_link_info *link_info,
9625 xtensa_relax_info *relax_info,
9626 Elf_Internal_Rela **internal_relocs_p,
9627 const literal_value *lit)
9629 Elf_Internal_Rela *new_relocs = NULL;
9630 size_t new_relocs_count = 0;
9631 Elf_Internal_Rela this_rela;
9632 const r_reloc *r_rel;
9634 r_rel = &lit->r_rel;
9635 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
9637 if (r_reloc_is_const (r_rel))
9638 bfd_put_32 (abfd, lit->value, contents + offset);
9646 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
9648 /* This is the difficult case. We have to create a fix up. */
9649 this_rela.r_offset = offset;
9650 this_rela.r_info = ELF32_R_INFO (0, r_type);
9651 this_rela.r_addend =
9652 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
9653 bfd_put_32 (abfd, lit->value, contents + offset);
9655 /* Currently, we cannot move relocations during a relocatable link. */
9656 BFD_ASSERT (!link_info->relocatable);
9657 fix = reloc_bfd_fix_init (sec, offset, r_type,
9658 r_reloc_get_section (r_rel),
9659 r_rel->target_offset + r_rel->virtual_offset,
9661 /* We also need to mark that relocations are needed here. */
9662 sec->flags |= SEC_RELOC;
9664 translate_reloc_bfd_fix (fix);
9665 /* This fix has not yet been translated. */
9668 /* Add the relocation. If we have already allocated our own
9669 space for the relocations and we have room for more, then use
9670 it. Otherwise, allocate new space and move the literals. */
9671 insert_at = sec->reloc_count;
9672 for (i = 0; i < sec->reloc_count; ++i)
9674 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
9681 if (*internal_relocs_p != relax_info->allocated_relocs
9682 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
9684 BFD_ASSERT (relax_info->allocated_relocs == NULL
9685 || sec->reloc_count == relax_info->relocs_count);
9687 if (relax_info->allocated_relocs_count == 0)
9688 new_relocs_count = (sec->reloc_count + 2) * 2;
9690 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
9692 new_relocs = (Elf_Internal_Rela *)
9693 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
9697 /* We could handle this more quickly by finding the split point. */
9699 memcpy (new_relocs, *internal_relocs_p,
9700 insert_at * sizeof (Elf_Internal_Rela));
9702 new_relocs[insert_at] = this_rela;
9704 if (insert_at != sec->reloc_count)
9705 memcpy (new_relocs + insert_at + 1,
9706 (*internal_relocs_p) + insert_at,
9707 (sec->reloc_count - insert_at)
9708 * sizeof (Elf_Internal_Rela));
9710 if (*internal_relocs_p != relax_info->allocated_relocs)
9712 /* The first time we re-allocate, we can only free the
9713 old relocs if they were allocated with bfd_malloc.
9714 This is not true when keep_memory is in effect. */
9715 if (!link_info->keep_memory)
9716 free (*internal_relocs_p);
9719 free (*internal_relocs_p);
9720 relax_info->allocated_relocs = new_relocs;
9721 relax_info->allocated_relocs_count = new_relocs_count;
9722 elf_section_data (sec)->relocs = new_relocs;
9724 relax_info->relocs_count = sec->reloc_count;
9725 *internal_relocs_p = new_relocs;
9729 if (insert_at != sec->reloc_count)
9732 for (idx = sec->reloc_count; idx > insert_at; idx--)
9733 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
9735 (*internal_relocs_p)[insert_at] = this_rela;
9737 if (relax_info->allocated_relocs)
9738 relax_info->relocs_count = sec->reloc_count;
9745 /* This is similar to relax_section except that when a target is moved,
9746 we shift addresses up. We also need to modify the size. This
9747 algorithm does NOT allow for relocations into the middle of the
9748 property sections. */
9751 relax_property_section (bfd *abfd,
9753 struct bfd_link_info *link_info)
9755 Elf_Internal_Rela *internal_relocs;
9758 bfd_boolean ok = TRUE;
9759 bfd_boolean is_full_prop_section;
9760 size_t last_zfill_target_offset = 0;
9761 asection *last_zfill_target_sec = NULL;
9762 bfd_size_type sec_size;
9763 bfd_size_type entry_size;
9765 sec_size = bfd_get_section_limit (abfd, sec);
9766 internal_relocs = retrieve_internal_relocs (abfd, sec,
9767 link_info->keep_memory);
9768 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9769 if (contents == NULL && sec_size != 0)
9775 is_full_prop_section = xtensa_is_proptable_section (sec);
9776 if (is_full_prop_section)
9781 if (internal_relocs)
9783 for (i = 0; i < sec->reloc_count; i++)
9785 Elf_Internal_Rela *irel;
9786 xtensa_relax_info *target_relax_info;
9788 asection *target_sec;
9790 bfd_byte *size_p, *flags_p;
9792 /* Locally change the source address.
9793 Translate the target to the new target address.
9794 If it points to this section and has been removed, MOVE IT.
9795 Also, don't forget to modify the associated SIZE at
9798 irel = &internal_relocs[i];
9799 r_type = ELF32_R_TYPE (irel->r_info);
9800 if (r_type == R_XTENSA_NONE)
9803 /* Find the literal value. */
9804 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
9805 size_p = &contents[irel->r_offset + 4];
9807 if (is_full_prop_section)
9808 flags_p = &contents[irel->r_offset + 8];
9809 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
9811 target_sec = r_reloc_get_section (&val.r_rel);
9812 target_relax_info = get_xtensa_relax_info (target_sec);
9814 if (target_relax_info
9815 && (target_relax_info->is_relaxable_literal_section
9816 || target_relax_info->is_relaxable_asm_section ))
9818 /* Translate the relocation's destination. */
9819 bfd_vma old_offset = val.r_rel.target_offset;
9821 long old_size, new_size;
9822 text_action *act = target_relax_info->action_list.head;
9823 new_offset = old_offset -
9824 removed_by_actions (&act, old_offset, FALSE);
9826 /* Assert that we are not out of bounds. */
9827 old_size = bfd_get_32 (abfd, size_p);
9828 new_size = old_size;
9832 /* Only the first zero-sized unreachable entry is
9833 allowed to expand. In this case the new offset
9834 should be the offset before the fill and the new
9835 size is the expansion size. For other zero-sized
9836 entries the resulting size should be zero with an
9837 offset before or after the fill address depending
9838 on whether the expanding unreachable entry
9840 if (last_zfill_target_sec == 0
9841 || last_zfill_target_sec != target_sec
9842 || last_zfill_target_offset != old_offset)
9844 bfd_vma new_end_offset = new_offset;
9846 /* Recompute the new_offset, but this time don't
9847 include any fill inserted by relaxation. */
9848 act = target_relax_info->action_list.head;
9849 new_offset = old_offset -
9850 removed_by_actions (&act, old_offset, TRUE);
9852 /* If it is not unreachable and we have not yet
9853 seen an unreachable at this address, place it
9854 before the fill address. */
9855 if (flags_p && (bfd_get_32 (abfd, flags_p)
9856 & XTENSA_PROP_UNREACHABLE) != 0)
9858 new_size = new_end_offset - new_offset;
9860 last_zfill_target_sec = target_sec;
9861 last_zfill_target_offset = old_offset;
9867 removed_by_actions (&act, old_offset + old_size, TRUE);
9869 if (new_size != old_size)
9871 bfd_put_32 (abfd, new_size, size_p);
9872 pin_contents (sec, contents);
9875 if (new_offset != old_offset)
9877 bfd_vma diff = new_offset - old_offset;
9878 irel->r_addend += diff;
9879 pin_internal_relocs (sec, internal_relocs);
9885 /* Combine adjacent property table entries. This is also done in
9886 finish_dynamic_sections() but at that point it's too late to
9887 reclaim the space in the output section, so we do this twice. */
9889 if (internal_relocs && (!link_info->relocatable
9890 || xtensa_is_littable_section (sec)))
9892 Elf_Internal_Rela *last_irel = NULL;
9893 Elf_Internal_Rela *irel, *next_rel, *rel_end;
9894 int removed_bytes = 0;
9896 flagword predef_flags;
9898 predef_flags = xtensa_get_property_predef_flags (sec);
9900 /* Walk over memory and relocations at the same time.
9901 This REQUIRES that the internal_relocs be sorted by offset. */
9902 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9903 internal_reloc_compare);
9905 pin_internal_relocs (sec, internal_relocs);
9906 pin_contents (sec, contents);
9908 next_rel = internal_relocs;
9909 rel_end = internal_relocs + sec->reloc_count;
9911 BFD_ASSERT (sec->size % entry_size == 0);
9913 for (offset = 0; offset < sec->size; offset += entry_size)
9915 Elf_Internal_Rela *offset_rel, *extra_rel;
9916 bfd_vma bytes_to_remove, size, actual_offset;
9917 bfd_boolean remove_this_rel;
9920 /* Find the first relocation for the entry at the current offset.
9921 Adjust the offsets of any extra relocations for the previous
9926 for (irel = next_rel; irel < rel_end; irel++)
9928 if ((irel->r_offset == offset
9929 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9930 || irel->r_offset > offset)
9935 irel->r_offset -= removed_bytes;
9939 /* Find the next relocation (if there are any left). */
9943 for (irel = offset_rel + 1; irel < rel_end; irel++)
9945 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9953 /* Check if there are relocations on the current entry. There
9954 should usually be a relocation on the offset field. If there
9955 are relocations on the size or flags, then we can't optimize
9956 this entry. Also, find the next relocation to examine on the
9960 if (offset_rel->r_offset >= offset + entry_size)
9962 next_rel = offset_rel;
9963 /* There are no relocations on the current entry, but we
9964 might still be able to remove it if the size is zero. */
9967 else if (offset_rel->r_offset > offset
9969 && extra_rel->r_offset < offset + entry_size))
9971 /* There is a relocation on the size or flags, so we can't
9972 do anything with this entry. Continue with the next. */
9973 next_rel = offset_rel;
9978 BFD_ASSERT (offset_rel->r_offset == offset);
9979 offset_rel->r_offset -= removed_bytes;
9980 next_rel = offset_rel + 1;
9986 remove_this_rel = FALSE;
9987 bytes_to_remove = 0;
9988 actual_offset = offset - removed_bytes;
9989 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9991 if (is_full_prop_section)
9992 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9994 flags = predef_flags;
9997 && (flags & XTENSA_PROP_ALIGN) == 0
9998 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10000 /* Always remove entries with zero size and no alignment. */
10001 bytes_to_remove = entry_size;
10003 remove_this_rel = TRUE;
10005 else if (offset_rel
10006 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10010 flagword old_flags;
10012 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10013 bfd_vma old_address =
10014 (last_irel->r_addend
10015 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10016 bfd_vma new_address =
10017 (offset_rel->r_addend
10018 + bfd_get_32 (abfd, &contents[actual_offset]));
10019 if (is_full_prop_section)
10020 old_flags = bfd_get_32
10021 (abfd, &contents[last_irel->r_offset + 8]);
10023 old_flags = predef_flags;
10025 if ((ELF32_R_SYM (offset_rel->r_info)
10026 == ELF32_R_SYM (last_irel->r_info))
10027 && old_address + old_size == new_address
10028 && old_flags == flags
10029 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10030 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10032 /* Fix the old size. */
10033 bfd_put_32 (abfd, old_size + size,
10034 &contents[last_irel->r_offset + 4]);
10035 bytes_to_remove = entry_size;
10036 remove_this_rel = TRUE;
10039 last_irel = offset_rel;
10042 last_irel = offset_rel;
10045 if (remove_this_rel)
10047 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10048 offset_rel->r_offset = 0;
10051 if (bytes_to_remove != 0)
10053 removed_bytes += bytes_to_remove;
10054 if (offset + bytes_to_remove < sec->size)
10055 memmove (&contents[actual_offset],
10056 &contents[actual_offset + bytes_to_remove],
10057 sec->size - offset - bytes_to_remove);
10063 /* Fix up any extra relocations on the last entry. */
10064 for (irel = next_rel; irel < rel_end; irel++)
10065 irel->r_offset -= removed_bytes;
10067 /* Clear the removed bytes. */
10068 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10070 if (sec->rawsize == 0)
10071 sec->rawsize = sec->size;
10072 sec->size -= removed_bytes;
10074 if (xtensa_is_littable_section (sec))
10076 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10078 sgotloc->size -= removed_bytes;
10084 release_internal_relocs (sec, internal_relocs);
10085 release_contents (sec, contents);
10090 /* Third relaxation pass. */
10092 /* Change symbol values to account for removed literals. */
10095 relax_section_symbols (bfd *abfd, asection *sec)
10097 xtensa_relax_info *relax_info;
10098 unsigned int sec_shndx;
10099 Elf_Internal_Shdr *symtab_hdr;
10100 Elf_Internal_Sym *isymbuf;
10101 unsigned i, num_syms, num_locals;
10103 relax_info = get_xtensa_relax_info (sec);
10104 BFD_ASSERT (relax_info);
10106 if (!relax_info->is_relaxable_literal_section
10107 && !relax_info->is_relaxable_asm_section)
10110 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10112 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10113 isymbuf = retrieve_local_syms (abfd);
10115 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10116 num_locals = symtab_hdr->sh_info;
10118 /* Adjust the local symbols defined in this section. */
10119 for (i = 0; i < num_locals; i++)
10121 Elf_Internal_Sym *isym = &isymbuf[i];
10123 if (isym->st_shndx == sec_shndx)
10125 text_action *act = relax_info->action_list.head;
10126 bfd_vma orig_addr = isym->st_value;
10128 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
10130 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10132 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
10136 /* Now adjust the global symbols defined in this section. */
10137 for (i = 0; i < (num_syms - num_locals); i++)
10139 struct elf_link_hash_entry *sym_hash;
10141 sym_hash = elf_sym_hashes (abfd)[i];
10143 if (sym_hash->root.type == bfd_link_hash_warning)
10144 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10146 if ((sym_hash->root.type == bfd_link_hash_defined
10147 || sym_hash->root.type == bfd_link_hash_defweak)
10148 && sym_hash->root.u.def.section == sec)
10150 text_action *act = relax_info->action_list.head;
10151 bfd_vma orig_addr = sym_hash->root.u.def.value;
10153 sym_hash->root.u.def.value -=
10154 removed_by_actions (&act, orig_addr, FALSE);
10156 if (sym_hash->type == STT_FUNC)
10158 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
10166 /* "Fix" handling functions, called while performing relocations. */
10169 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10171 asection *input_section,
10172 bfd_byte *contents)
10175 asection *sec, *old_sec;
10176 bfd_vma old_offset;
10177 int r_type = ELF32_R_TYPE (rel->r_info);
10178 reloc_bfd_fix *fix;
10180 if (r_type == R_XTENSA_NONE)
10183 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10187 r_reloc_init (&r_rel, input_bfd, rel, contents,
10188 bfd_get_section_limit (input_bfd, input_section));
10189 old_sec = r_reloc_get_section (&r_rel);
10190 old_offset = r_rel.target_offset;
10192 if (!old_sec || !r_reloc_is_defined (&r_rel))
10194 if (r_type != R_XTENSA_ASM_EXPAND)
10196 (*_bfd_error_handler)
10197 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10198 input_bfd, input_section, rel->r_offset,
10199 elf_howto_table[r_type].name);
10202 /* Leave it be. Resolution will happen in a later stage. */
10206 sec = fix->target_sec;
10207 rel->r_addend += ((sec->output_offset + fix->target_offset)
10208 - (old_sec->output_offset + old_offset));
10215 do_fix_for_final_link (Elf_Internal_Rela *rel,
10217 asection *input_section,
10218 bfd_byte *contents,
10219 bfd_vma *relocationp)
10222 int r_type = ELF32_R_TYPE (rel->r_info);
10223 reloc_bfd_fix *fix;
10224 bfd_vma fixup_diff;
10226 if (r_type == R_XTENSA_NONE)
10229 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10233 sec = fix->target_sec;
10235 fixup_diff = rel->r_addend;
10236 if (elf_howto_table[fix->src_type].partial_inplace)
10238 bfd_vma inplace_val;
10239 BFD_ASSERT (fix->src_offset
10240 < bfd_get_section_limit (input_bfd, input_section));
10241 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10242 fixup_diff += inplace_val;
10245 *relocationp = (sec->output_section->vma
10246 + sec->output_offset
10247 + fix->target_offset - fixup_diff);
10251 /* Miscellaneous utility functions.... */
10254 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10256 struct elf_xtensa_link_hash_table *htab;
10262 htab = elf_xtensa_hash_table (info);
10269 dynobj = elf_hash_table (info)->dynobj;
10270 sprintf (plt_name, ".plt.%u", chunk);
10271 return bfd_get_linker_section (dynobj, plt_name);
10276 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10278 struct elf_xtensa_link_hash_table *htab;
10284 htab = elf_xtensa_hash_table (info);
10287 return htab->sgotplt;
10290 dynobj = elf_hash_table (info)->dynobj;
10291 sprintf (got_name, ".got.plt.%u", chunk);
10292 return bfd_get_linker_section (dynobj, got_name);
10296 /* Get the input section for a given symbol index.
10298 . a section symbol, return the section;
10299 . a common symbol, return the common section;
10300 . an undefined symbol, return the undefined section;
10301 . an indirect symbol, follow the links;
10302 . an absolute value, return the absolute section. */
10305 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10307 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10308 asection *target_sec = NULL;
10309 if (r_symndx < symtab_hdr->sh_info)
10311 Elf_Internal_Sym *isymbuf;
10312 unsigned int section_index;
10314 isymbuf = retrieve_local_syms (abfd);
10315 section_index = isymbuf[r_symndx].st_shndx;
10317 if (section_index == SHN_UNDEF)
10318 target_sec = bfd_und_section_ptr;
10319 else if (section_index == SHN_ABS)
10320 target_sec = bfd_abs_section_ptr;
10321 else if (section_index == SHN_COMMON)
10322 target_sec = bfd_com_section_ptr;
10324 target_sec = bfd_section_from_elf_index (abfd, section_index);
10328 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10329 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10331 while (h->root.type == bfd_link_hash_indirect
10332 || h->root.type == bfd_link_hash_warning)
10333 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10335 switch (h->root.type)
10337 case bfd_link_hash_defined:
10338 case bfd_link_hash_defweak:
10339 target_sec = h->root.u.def.section;
10341 case bfd_link_hash_common:
10342 target_sec = bfd_com_section_ptr;
10344 case bfd_link_hash_undefined:
10345 case bfd_link_hash_undefweak:
10346 target_sec = bfd_und_section_ptr;
10348 default: /* New indirect warning. */
10349 target_sec = bfd_und_section_ptr;
10357 static struct elf_link_hash_entry *
10358 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10360 unsigned long indx;
10361 struct elf_link_hash_entry *h;
10362 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10364 if (r_symndx < symtab_hdr->sh_info)
10367 indx = r_symndx - symtab_hdr->sh_info;
10368 h = elf_sym_hashes (abfd)[indx];
10369 while (h->root.type == bfd_link_hash_indirect
10370 || h->root.type == bfd_link_hash_warning)
10371 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10376 /* Get the section-relative offset for a symbol number. */
10379 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10381 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10382 bfd_vma offset = 0;
10384 if (r_symndx < symtab_hdr->sh_info)
10386 Elf_Internal_Sym *isymbuf;
10387 isymbuf = retrieve_local_syms (abfd);
10388 offset = isymbuf[r_symndx].st_value;
10392 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10393 struct elf_link_hash_entry *h =
10394 elf_sym_hashes (abfd)[indx];
10396 while (h->root.type == bfd_link_hash_indirect
10397 || h->root.type == bfd_link_hash_warning)
10398 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10399 if (h->root.type == bfd_link_hash_defined
10400 || h->root.type == bfd_link_hash_defweak)
10401 offset = h->root.u.def.value;
10408 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10410 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10411 struct elf_link_hash_entry *h;
10413 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10414 if (h && h->root.type == bfd_link_hash_defweak)
10421 pcrel_reloc_fits (xtensa_opcode opc,
10423 bfd_vma self_address,
10424 bfd_vma dest_address)
10426 xtensa_isa isa = xtensa_default_isa;
10427 uint32 valp = dest_address;
10428 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10429 || xtensa_operand_encode (isa, opc, opnd, &valp))
10436 xtensa_is_property_section (asection *sec)
10438 if (xtensa_is_insntable_section (sec)
10439 || xtensa_is_littable_section (sec)
10440 || xtensa_is_proptable_section (sec))
10448 xtensa_is_insntable_section (asection *sec)
10450 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10451 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
10459 xtensa_is_littable_section (asection *sec)
10461 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10462 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
10470 xtensa_is_proptable_section (asection *sec)
10472 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10473 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
10481 internal_reloc_compare (const void *ap, const void *bp)
10483 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10484 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10486 if (a->r_offset != b->r_offset)
10487 return (a->r_offset - b->r_offset);
10489 /* We don't need to sort on these criteria for correctness,
10490 but enforcing a more strict ordering prevents unstable qsort
10491 from behaving differently with different implementations.
10492 Without the code below we get correct but different results
10493 on Solaris 2.7 and 2.8. We would like to always produce the
10494 same results no matter the host. */
10496 if (a->r_info != b->r_info)
10497 return (a->r_info - b->r_info);
10499 return (a->r_addend - b->r_addend);
10504 internal_reloc_matches (const void *ap, const void *bp)
10506 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10507 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10509 /* Check if one entry overlaps with the other; this shouldn't happen
10510 except when searching for a match. */
10511 return (a->r_offset - b->r_offset);
10515 /* Predicate function used to look up a section in a particular group. */
10518 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10520 const char *gname = inf;
10521 const char *group_name = elf_group_name (sec);
10523 return (group_name == gname
10524 || (group_name != NULL
10526 && strcmp (group_name, gname) == 0));
10530 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10533 xtensa_property_section_name (asection *sec, const char *base_name)
10535 const char *suffix, *group_name;
10536 char *prop_sec_name;
10538 group_name = elf_group_name (sec);
10541 suffix = strrchr (sec->name, '.');
10542 if (suffix == sec->name)
10544 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10545 + (suffix ? strlen (suffix) : 0));
10546 strcpy (prop_sec_name, base_name);
10548 strcat (prop_sec_name, suffix);
10550 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
10552 char *linkonce_kind = 0;
10554 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
10555 linkonce_kind = "x.";
10556 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
10557 linkonce_kind = "p.";
10558 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
10559 linkonce_kind = "prop.";
10563 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
10564 + strlen (linkonce_kind) + 1);
10565 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
10566 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
10568 suffix = sec->name + linkonce_len;
10569 /* For backward compatibility, replace "t." instead of inserting
10570 the new linkonce_kind (but not for "prop" sections). */
10571 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
10573 strcat (prop_sec_name + linkonce_len, suffix);
10576 prop_sec_name = strdup (base_name);
10578 return prop_sec_name;
10583 xtensa_get_property_section (asection *sec, const char *base_name)
10585 char *prop_sec_name;
10586 asection *prop_sec;
10588 prop_sec_name = xtensa_property_section_name (sec, base_name);
10589 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10590 match_section_group,
10591 (void *) elf_group_name (sec));
10592 free (prop_sec_name);
10598 xtensa_make_property_section (asection *sec, const char *base_name)
10600 char *prop_sec_name;
10601 asection *prop_sec;
10603 /* Check if the section already exists. */
10604 prop_sec_name = xtensa_property_section_name (sec, base_name);
10605 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10606 match_section_group,
10607 (void *) elf_group_name (sec));
10608 /* If not, create it. */
10611 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
10612 flags |= (bfd_get_section_flags (sec->owner, sec)
10613 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
10615 prop_sec = bfd_make_section_anyway_with_flags
10616 (sec->owner, strdup (prop_sec_name), flags);
10620 elf_group_name (prop_sec) = elf_group_name (sec);
10623 free (prop_sec_name);
10629 xtensa_get_property_predef_flags (asection *sec)
10631 if (xtensa_is_insntable_section (sec))
10632 return (XTENSA_PROP_INSN
10633 | XTENSA_PROP_NO_TRANSFORM
10634 | XTENSA_PROP_INSN_NO_REORDER);
10636 if (xtensa_is_littable_section (sec))
10637 return (XTENSA_PROP_LITERAL
10638 | XTENSA_PROP_NO_TRANSFORM
10639 | XTENSA_PROP_INSN_NO_REORDER);
10645 /* Other functions called directly by the linker. */
10648 xtensa_callback_required_dependence (bfd *abfd,
10650 struct bfd_link_info *link_info,
10651 deps_callback_t callback,
10654 Elf_Internal_Rela *internal_relocs;
10655 bfd_byte *contents;
10657 bfd_boolean ok = TRUE;
10658 bfd_size_type sec_size;
10660 sec_size = bfd_get_section_limit (abfd, sec);
10662 /* ".plt*" sections have no explicit relocations but they contain L32R
10663 instructions that reference the corresponding ".got.plt*" sections. */
10664 if ((sec->flags & SEC_LINKER_CREATED) != 0
10665 && CONST_STRNEQ (sec->name, ".plt"))
10669 /* Find the corresponding ".got.plt*" section. */
10670 if (sec->name[4] == '\0')
10671 sgotplt = bfd_get_linker_section (sec->owner, ".got.plt");
10677 BFD_ASSERT (sec->name[4] == '.');
10678 chunk = strtol (&sec->name[5], NULL, 10);
10680 sprintf (got_name, ".got.plt.%u", chunk);
10681 sgotplt = bfd_get_linker_section (sec->owner, got_name);
10683 BFD_ASSERT (sgotplt);
10685 /* Assume worst-case offsets: L32R at the very end of the ".plt"
10686 section referencing a literal at the very beginning of
10687 ".got.plt". This is very close to the real dependence, anyway. */
10688 (*callback) (sec, sec_size, sgotplt, 0, closure);
10691 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
10692 when building uclibc, which runs "ld -b binary /dev/null". */
10693 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
10696 internal_relocs = retrieve_internal_relocs (abfd, sec,
10697 link_info->keep_memory);
10698 if (internal_relocs == NULL
10699 || sec->reloc_count == 0)
10702 /* Cache the contents for the duration of this scan. */
10703 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10704 if (contents == NULL && sec_size != 0)
10710 if (!xtensa_default_isa)
10711 xtensa_default_isa = xtensa_isa_init (0, 0);
10713 for (i = 0; i < sec->reloc_count; i++)
10715 Elf_Internal_Rela *irel = &internal_relocs[i];
10716 if (is_l32r_relocation (abfd, sec, contents, irel))
10719 asection *target_sec;
10720 bfd_vma target_offset;
10722 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
10725 /* L32Rs must be local to the input file. */
10726 if (r_reloc_is_defined (&l32r_rel))
10728 target_sec = r_reloc_get_section (&l32r_rel);
10729 target_offset = l32r_rel.target_offset;
10731 (*callback) (sec, irel->r_offset, target_sec, target_offset,
10737 release_internal_relocs (sec, internal_relocs);
10738 release_contents (sec, contents);
10742 /* The default literal sections should always be marked as "code" (i.e.,
10743 SHF_EXECINSTR). This is particularly important for the Linux kernel
10744 module loader so that the literals are not placed after the text. */
10745 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
10747 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10748 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10749 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10750 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
10751 { NULL, 0, 0, 0, 0 }
10754 #define ELF_TARGET_ID XTENSA_ELF_DATA
10756 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
10757 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
10758 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
10759 #define TARGET_BIG_NAME "elf32-xtensa-be"
10760 #define ELF_ARCH bfd_arch_xtensa
10762 #define ELF_MACHINE_CODE EM_XTENSA
10763 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
10766 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
10767 #else /* !XCHAL_HAVE_MMU */
10768 #define ELF_MAXPAGESIZE 1
10769 #endif /* !XCHAL_HAVE_MMU */
10770 #endif /* ELF_ARCH */
10772 #define elf_backend_can_gc_sections 1
10773 #define elf_backend_can_refcount 1
10774 #define elf_backend_plt_readonly 1
10775 #define elf_backend_got_header_size 4
10776 #define elf_backend_want_dynbss 0
10777 #define elf_backend_want_got_plt 1
10779 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
10781 #define bfd_elf32_mkobject elf_xtensa_mkobject
10783 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
10784 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
10785 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
10786 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
10787 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
10788 #define bfd_elf32_bfd_reloc_name_lookup \
10789 elf_xtensa_reloc_name_lookup
10790 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
10791 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
10793 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
10794 #define elf_backend_check_relocs elf_xtensa_check_relocs
10795 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
10796 #define elf_backend_discard_info elf_xtensa_discard_info
10797 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
10798 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
10799 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
10800 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
10801 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
10802 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
10803 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
10804 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
10805 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
10806 #define elf_backend_object_p elf_xtensa_object_p
10807 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
10808 #define elf_backend_relocate_section elf_xtensa_relocate_section
10809 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
10810 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
10811 #define elf_backend_omit_section_dynsym \
10812 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
10813 #define elf_backend_special_sections elf_xtensa_special_sections
10814 #define elf_backend_action_discarded elf_xtensa_action_discarded
10815 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
10817 #include "elf32-target.h"