1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
34 #define XTENSA_NO_NOP_REMOVAL 0
36 /* Local helper functions. */
38 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
47 /* Local functions to handle Xtensa configurability. */
49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52 static xtensa_opcode get_const16_opcode (void);
53 static xtensa_opcode get_l32r_opcode (void);
54 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55 static int get_relocation_opnd (xtensa_opcode, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
59 static bfd_boolean is_l32r_relocation
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61 static bfd_boolean is_alt_relocation (int);
62 static bfd_boolean is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte *, bfd_size_type, bfd_size_type);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte *, bfd_size_type, bfd_size_type);
75 /* Functions for link-time code simplifications. */
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte *, bfd_vma, bfd_vma, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
84 /* Access to internal relocations, section contents and symbols. */
86 static Elf_Internal_Rela *retrieve_internal_relocs
87 (bfd *, asection *, bfd_boolean);
88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91 static void pin_contents (asection *, bfd_byte *);
92 static void release_contents (asection *, bfd_byte *);
93 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
95 /* Miscellaneous utility functions. */
97 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
99 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
101 (bfd *, unsigned long);
102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105 static bfd_boolean xtensa_is_property_section (asection *);
106 static bfd_boolean xtensa_is_insntable_section (asection *);
107 static bfd_boolean xtensa_is_littable_section (asection *);
108 static bfd_boolean xtensa_is_proptable_section (asection *);
109 static int internal_reloc_compare (const void *, const void *);
110 static int internal_reloc_matches (const void *, const void *);
111 static asection *xtensa_get_property_section (asection *, const char *);
112 extern asection *xtensa_make_property_section (asection *, const char *);
113 static flagword xtensa_get_property_predef_flags (asection *);
115 /* Other functions called directly by the linker. */
117 typedef void (*deps_callback_t)
118 (asection *, bfd_vma, asection *, bfd_vma, void *);
119 extern bfd_boolean xtensa_callback_required_dependence
120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
123 /* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
128 int elf32xtensa_size_opt;
131 /* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
135 typedef struct xtensa_relax_info_struct xtensa_relax_info;
138 /* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
143 xtensa_isa xtensa_default_isa;
146 /* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
150 static bfd_boolean relaxing_section = FALSE;
152 /* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
155 int elf32xtensa_no_literal_movement = 1;
158 static reloc_howto_type elf_howto_table[] =
160 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
161 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
163 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
164 bfd_elf_xtensa_reloc, "R_XTENSA_32",
165 TRUE, 0xffffffff, 0xffffffff, FALSE),
167 /* Replace a 32-bit value with a value from the runtime linker (only
168 used by linker-generated stub functions). The r_addend value is
169 special: 1 means to substitute a pointer to the runtime linker's
170 dynamic resolver function; 2 means to substitute the link map for
171 the shared object. */
172 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
173 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
175 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
176 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
177 FALSE, 0, 0xffffffff, FALSE),
178 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
179 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
180 FALSE, 0, 0xffffffff, FALSE),
181 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
183 FALSE, 0, 0xffffffff, FALSE),
184 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
186 FALSE, 0, 0xffffffff, FALSE),
190 /* Old relocations for backward compatibility. */
191 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
192 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
193 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
194 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
195 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
196 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
198 /* Assembly auto-expansion. */
199 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
200 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
201 /* Relax assembly auto-expansion. */
202 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
203 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
207 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
208 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
209 FALSE, 0, 0xffffffff, TRUE),
211 /* GNU extension to record C++ vtable hierarchy. */
212 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
213 NULL, "R_XTENSA_GNU_VTINHERIT",
215 /* GNU extension to record C++ vtable member usage. */
216 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
217 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
220 /* Relocations for supporting difference of symbols. */
221 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
222 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
223 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
224 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
225 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
226 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
228 /* General immediate operand relocations. */
229 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
230 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
231 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
232 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
233 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
235 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
237 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
239 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
241 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
243 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
245 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
247 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
249 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
251 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
253 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
255 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
257 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
260 /* "Alternate" relocations. The meaning of these is opcode-specific. */
261 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
263 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
265 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
273 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
275 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
285 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
287 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
289 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
292 /* TLS relocations. */
293 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
295 FALSE, 0, 0xffffffff, FALSE),
296 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
297 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
298 FALSE, 0, 0xffffffff, FALSE),
299 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
301 FALSE, 0, 0xffffffff, FALSE),
302 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
303 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
304 FALSE, 0, 0xffffffff, FALSE),
305 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
308 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
309 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
311 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
318 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
323 static reloc_howto_type *
324 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
325 bfd_reloc_code_real_type code)
330 TRACE ("BFD_RELOC_NONE");
331 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
334 TRACE ("BFD_RELOC_32");
335 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
337 case BFD_RELOC_32_PCREL:
338 TRACE ("BFD_RELOC_32_PCREL");
339 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
341 case BFD_RELOC_XTENSA_DIFF8:
342 TRACE ("BFD_RELOC_XTENSA_DIFF8");
343 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
345 case BFD_RELOC_XTENSA_DIFF16:
346 TRACE ("BFD_RELOC_XTENSA_DIFF16");
347 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
349 case BFD_RELOC_XTENSA_DIFF32:
350 TRACE ("BFD_RELOC_XTENSA_DIFF32");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
353 case BFD_RELOC_XTENSA_RTLD:
354 TRACE ("BFD_RELOC_XTENSA_RTLD");
355 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
357 case BFD_RELOC_XTENSA_GLOB_DAT:
358 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
359 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
361 case BFD_RELOC_XTENSA_JMP_SLOT:
362 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
363 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
365 case BFD_RELOC_XTENSA_RELATIVE:
366 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
367 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
369 case BFD_RELOC_XTENSA_PLT:
370 TRACE ("BFD_RELOC_XTENSA_PLT");
371 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
373 case BFD_RELOC_XTENSA_OP0:
374 TRACE ("BFD_RELOC_XTENSA_OP0");
375 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
377 case BFD_RELOC_XTENSA_OP1:
378 TRACE ("BFD_RELOC_XTENSA_OP1");
379 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
381 case BFD_RELOC_XTENSA_OP2:
382 TRACE ("BFD_RELOC_XTENSA_OP2");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
385 case BFD_RELOC_XTENSA_ASM_EXPAND:
386 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
387 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
389 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
390 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
391 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
393 case BFD_RELOC_VTABLE_INHERIT:
394 TRACE ("BFD_RELOC_VTABLE_INHERIT");
395 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
397 case BFD_RELOC_VTABLE_ENTRY:
398 TRACE ("BFD_RELOC_VTABLE_ENTRY");
399 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
401 case BFD_RELOC_XTENSA_TLSDESC_FN:
402 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
403 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
405 case BFD_RELOC_XTENSA_TLSDESC_ARG:
406 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
407 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
409 case BFD_RELOC_XTENSA_TLS_DTPOFF:
410 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
411 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
413 case BFD_RELOC_XTENSA_TLS_TPOFF:
414 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
415 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
417 case BFD_RELOC_XTENSA_TLS_FUNC:
418 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
419 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
421 case BFD_RELOC_XTENSA_TLS_ARG:
422 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
423 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
425 case BFD_RELOC_XTENSA_TLS_CALL:
426 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
427 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
430 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
431 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
433 unsigned n = (R_XTENSA_SLOT0_OP +
434 (code - BFD_RELOC_XTENSA_SLOT0_OP));
435 return &elf_howto_table[n];
438 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
439 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
441 unsigned n = (R_XTENSA_SLOT0_ALT +
442 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
443 return &elf_howto_table[n];
453 static reloc_howto_type *
454 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
459 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
460 if (elf_howto_table[i].name != NULL
461 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
462 return &elf_howto_table[i];
468 /* Given an ELF "rela" relocation, find the corresponding howto and record
469 it in the BFD internal arelent representation of the relocation. */
472 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
474 Elf_Internal_Rela *dst)
476 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
478 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
479 cache_ptr->howto = &elf_howto_table[r_type];
483 /* Functions for the Xtensa ELF linker. */
485 /* The name of the dynamic interpreter. This is put in the .interp
488 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
490 /* The size in bytes of an entry in the procedure linkage table.
491 (This does _not_ include the space for the literals associated with
494 #define PLT_ENTRY_SIZE 16
496 /* For _really_ large PLTs, we may need to alternate between literals
497 and code to keep the literals within the 256K range of the L32R
498 instructions in the code. It's unlikely that anyone would ever need
499 such a big PLT, but an arbitrary limit on the PLT size would be bad.
500 Thus, we split the PLT into chunks. Since there's very little
501 overhead (2 extra literals) for each chunk, the chunk size is kept
502 small so that the code for handling multiple chunks get used and
503 tested regularly. With 254 entries, there are 1K of literals for
504 each chunk, and that seems like a nice round number. */
506 #define PLT_ENTRIES_PER_CHUNK 254
508 /* PLT entries are actually used as stub functions for lazy symbol
509 resolution. Once the symbol is resolved, the stub function is never
510 invoked. Note: the 32-byte frame size used here cannot be changed
511 without a corresponding change in the runtime linker. */
513 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
515 0x6c, 0x10, 0x04, /* entry sp, 32 */
516 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
517 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
518 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
519 0x0a, 0x80, 0x00, /* jx a8 */
523 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
525 0x36, 0x41, 0x00, /* entry sp, 32 */
526 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
527 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
528 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
529 0xa0, 0x08, 0x00, /* jx a8 */
533 /* The size of the thread control block. */
536 struct elf_xtensa_link_hash_entry
538 struct elf_link_hash_entry elf;
540 bfd_signed_vma tlsfunc_refcount;
542 #define GOT_UNKNOWN 0
544 #define GOT_TLS_GD 2 /* global or local dynamic */
545 #define GOT_TLS_IE 4 /* initial or local exec */
546 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
547 unsigned char tls_type;
550 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
552 struct elf_xtensa_obj_tdata
554 struct elf_obj_tdata root;
556 /* tls_type for each local got entry. */
557 char *local_got_tls_type;
559 bfd_signed_vma *local_tlsfunc_refcounts;
562 #define elf_xtensa_tdata(abfd) \
563 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
565 #define elf_xtensa_local_got_tls_type(abfd) \
566 (elf_xtensa_tdata (abfd)->local_got_tls_type)
568 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
569 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
571 #define is_xtensa_elf(bfd) \
572 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
573 && elf_tdata (bfd) != NULL \
574 && elf_object_id (bfd) == XTENSA_ELF_TDATA)
577 elf_xtensa_mkobject (bfd *abfd)
579 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
583 /* Xtensa ELF linker hash table. */
585 struct elf_xtensa_link_hash_table
587 struct elf_link_hash_table elf;
589 /* Short-cuts to get to dynamic linker sections. */
596 asection *spltlittbl;
598 /* Total count of PLT relocations seen during check_relocs.
599 The actual PLT code must be split into multiple sections and all
600 the sections have to be created before size_dynamic_sections,
601 where we figure out the exact number of PLT entries that will be
602 needed. It is OK if this count is an overestimate, e.g., some
603 relocations may be removed by GC. */
606 struct elf_xtensa_link_hash_entry *tlsbase;
609 /* Get the Xtensa ELF linker hash table from a link_info structure. */
611 #define elf_xtensa_hash_table(p) \
612 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
614 /* Create an entry in an Xtensa ELF linker hash table. */
616 static struct bfd_hash_entry *
617 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
618 struct bfd_hash_table *table,
621 /* Allocate the structure if it has not already been allocated by a
625 entry = bfd_hash_allocate (table,
626 sizeof (struct elf_xtensa_link_hash_entry));
631 /* Call the allocation method of the superclass. */
632 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
635 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
636 eh->tlsfunc_refcount = 0;
637 eh->tls_type = GOT_UNKNOWN;
643 /* Create an Xtensa ELF linker hash table. */
645 static struct bfd_link_hash_table *
646 elf_xtensa_link_hash_table_create (bfd *abfd)
648 struct elf_link_hash_entry *tlsbase;
649 struct elf_xtensa_link_hash_table *ret;
650 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
652 ret = bfd_malloc (amt);
656 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
657 elf_xtensa_link_hash_newfunc,
658 sizeof (struct elf_xtensa_link_hash_entry)))
670 ret->spltlittbl = NULL;
672 ret->plt_reloc_count = 0;
674 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
676 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
678 tlsbase->root.type = bfd_link_hash_new;
679 tlsbase->root.u.undef.abfd = NULL;
680 tlsbase->non_elf = 0;
681 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
682 ret->tlsbase->tls_type = GOT_UNKNOWN;
684 return &ret->elf.root;
687 /* Copy the extra info we tack onto an elf_link_hash_entry. */
690 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
691 struct elf_link_hash_entry *dir,
692 struct elf_link_hash_entry *ind)
694 struct elf_xtensa_link_hash_entry *edir, *eind;
696 edir = elf_xtensa_hash_entry (dir);
697 eind = elf_xtensa_hash_entry (ind);
699 if (ind->root.type == bfd_link_hash_indirect)
701 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
702 eind->tlsfunc_refcount = 0;
704 if (dir->got.refcount <= 0)
706 edir->tls_type = eind->tls_type;
707 eind->tls_type = GOT_UNKNOWN;
711 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
714 static inline bfd_boolean
715 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
716 struct bfd_link_info *info)
718 /* Check if we should do dynamic things to this symbol. The
719 "ignore_protected" argument need not be set, because Xtensa code
720 does not require special handling of STV_PROTECTED to make function
721 pointer comparisons work properly. The PLT addresses are never
722 used for function pointers. */
724 return _bfd_elf_dynamic_symbol_p (h, info, 0);
729 property_table_compare (const void *ap, const void *bp)
731 const property_table_entry *a = (const property_table_entry *) ap;
732 const property_table_entry *b = (const property_table_entry *) bp;
734 if (a->address == b->address)
736 if (a->size != b->size)
737 return (a->size - b->size);
739 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
740 return ((b->flags & XTENSA_PROP_ALIGN)
741 - (a->flags & XTENSA_PROP_ALIGN));
743 if ((a->flags & XTENSA_PROP_ALIGN)
744 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
745 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
746 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
747 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
749 if ((a->flags & XTENSA_PROP_UNREACHABLE)
750 != (b->flags & XTENSA_PROP_UNREACHABLE))
751 return ((b->flags & XTENSA_PROP_UNREACHABLE)
752 - (a->flags & XTENSA_PROP_UNREACHABLE));
754 return (a->flags - b->flags);
757 return (a->address - b->address);
762 property_table_matches (const void *ap, const void *bp)
764 const property_table_entry *a = (const property_table_entry *) ap;
765 const property_table_entry *b = (const property_table_entry *) bp;
767 /* Check if one entry overlaps with the other. */
768 if ((b->address >= a->address && b->address < (a->address + a->size))
769 || (a->address >= b->address && a->address < (b->address + b->size)))
772 return (a->address - b->address);
776 /* Get the literal table or property table entries for the given
777 section. Sets TABLE_P and returns the number of entries. On
778 error, returns a negative value. */
781 xtensa_read_table_entries (bfd *abfd,
783 property_table_entry **table_p,
784 const char *sec_name,
785 bfd_boolean output_addr)
787 asection *table_section;
788 bfd_size_type table_size = 0;
789 bfd_byte *table_data;
790 property_table_entry *blocks;
791 int blk, block_count;
792 bfd_size_type num_records;
793 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
794 bfd_vma section_addr, off;
795 flagword predef_flags;
796 bfd_size_type table_entry_size, section_limit;
799 || !(section->flags & SEC_ALLOC)
800 || (section->flags & SEC_DEBUGGING))
806 table_section = xtensa_get_property_section (section, sec_name);
808 table_size = table_section->size;
816 predef_flags = xtensa_get_property_predef_flags (table_section);
817 table_entry_size = 12;
819 table_entry_size -= 4;
821 num_records = table_size / table_entry_size;
822 table_data = retrieve_contents (abfd, table_section, TRUE);
823 blocks = (property_table_entry *)
824 bfd_malloc (num_records * sizeof (property_table_entry));
828 section_addr = section->output_section->vma + section->output_offset;
830 section_addr = section->vma;
832 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
833 if (internal_relocs && !table_section->reloc_done)
835 qsort (internal_relocs, table_section->reloc_count,
836 sizeof (Elf_Internal_Rela), internal_reloc_compare);
837 irel = internal_relocs;
842 section_limit = bfd_get_section_limit (abfd, section);
843 rel_end = internal_relocs + table_section->reloc_count;
845 for (off = 0; off < table_size; off += table_entry_size)
847 bfd_vma address = bfd_get_32 (abfd, table_data + off);
849 /* Skip any relocations before the current offset. This should help
850 avoid confusion caused by unexpected relocations for the preceding
853 (irel->r_offset < off
854 || (irel->r_offset == off
855 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
862 if (irel && irel->r_offset == off)
865 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
866 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
868 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
871 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
872 BFD_ASSERT (sym_off == 0);
873 address += (section_addr + sym_off + irel->r_addend);
877 if (address < section_addr
878 || address >= section_addr + section_limit)
882 blocks[block_count].address = address;
883 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
885 blocks[block_count].flags = predef_flags;
887 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
891 release_contents (table_section, table_data);
892 release_internal_relocs (table_section, internal_relocs);
896 /* Now sort them into address order for easy reference. */
897 qsort (blocks, block_count, sizeof (property_table_entry),
898 property_table_compare);
900 /* Check that the table contents are valid. Problems may occur,
901 for example, if an unrelocated object file is stripped. */
902 for (blk = 1; blk < block_count; blk++)
904 /* The only circumstance where two entries may legitimately
905 have the same address is when one of them is a zero-size
906 placeholder to mark a place where fill can be inserted.
907 The zero-size entry should come first. */
908 if (blocks[blk - 1].address == blocks[blk].address &&
909 blocks[blk - 1].size != 0)
911 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
913 bfd_set_error (bfd_error_bad_value);
925 static property_table_entry *
926 elf_xtensa_find_property_entry (property_table_entry *property_table,
927 int property_table_size,
930 property_table_entry entry;
931 property_table_entry *rv;
933 if (property_table_size == 0)
936 entry.address = addr;
940 rv = bsearch (&entry, property_table, property_table_size,
941 sizeof (property_table_entry), property_table_matches);
947 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
951 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
958 /* Look through the relocs for a section during the first phase, and
959 calculate needed space in the dynamic reloc sections. */
962 elf_xtensa_check_relocs (bfd *abfd,
963 struct bfd_link_info *info,
965 const Elf_Internal_Rela *relocs)
967 struct elf_xtensa_link_hash_table *htab;
968 Elf_Internal_Shdr *symtab_hdr;
969 struct elf_link_hash_entry **sym_hashes;
970 const Elf_Internal_Rela *rel;
971 const Elf_Internal_Rela *rel_end;
973 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
976 BFD_ASSERT (is_xtensa_elf (abfd));
978 htab = elf_xtensa_hash_table (info);
979 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
980 sym_hashes = elf_sym_hashes (abfd);
982 rel_end = relocs + sec->reloc_count;
983 for (rel = relocs; rel < rel_end; rel++)
986 unsigned long r_symndx;
987 struct elf_link_hash_entry *h = NULL;
988 struct elf_xtensa_link_hash_entry *eh;
989 int tls_type, old_tls_type;
990 bfd_boolean is_got = FALSE;
991 bfd_boolean is_plt = FALSE;
992 bfd_boolean is_tlsfunc = FALSE;
994 r_symndx = ELF32_R_SYM (rel->r_info);
995 r_type = ELF32_R_TYPE (rel->r_info);
997 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
999 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1004 if (r_symndx >= symtab_hdr->sh_info)
1006 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1007 while (h->root.type == bfd_link_hash_indirect
1008 || h->root.type == bfd_link_hash_warning)
1009 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1011 eh = elf_xtensa_hash_entry (h);
1015 case R_XTENSA_TLSDESC_FN:
1018 tls_type = GOT_TLS_GD;
1023 tls_type = GOT_TLS_IE;
1026 case R_XTENSA_TLSDESC_ARG:
1029 tls_type = GOT_TLS_GD;
1034 tls_type = GOT_TLS_IE;
1035 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1040 case R_XTENSA_TLS_DTPOFF:
1042 tls_type = GOT_TLS_GD;
1044 tls_type = GOT_TLS_IE;
1047 case R_XTENSA_TLS_TPOFF:
1048 tls_type = GOT_TLS_IE;
1050 info->flags |= DF_STATIC_TLS;
1051 if (info->shared || h)
1056 tls_type = GOT_NORMAL;
1061 tls_type = GOT_NORMAL;
1065 case R_XTENSA_GNU_VTINHERIT:
1066 /* This relocation describes the C++ object vtable hierarchy.
1067 Reconstruct it for later use during GC. */
1068 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1072 case R_XTENSA_GNU_VTENTRY:
1073 /* This relocation describes which C++ vtable entries are actually
1074 used. Record for later use during GC. */
1075 BFD_ASSERT (h != NULL);
1077 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1082 /* Nothing to do for any other relocations. */
1090 h->plt.refcount += 1;
1093 /* Keep track of the total PLT relocation count even if we
1094 don't yet know whether the dynamic sections will be
1096 htab->plt_reloc_count += 1;
1098 if (elf_hash_table (info)->dynamic_sections_created)
1100 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1105 h->got.refcount += 1;
1108 eh->tlsfunc_refcount += 1;
1110 old_tls_type = eh->tls_type;
1114 /* Allocate storage the first time. */
1115 if (elf_local_got_refcounts (abfd) == NULL)
1117 bfd_size_type size = symtab_hdr->sh_info;
1120 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1123 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1125 mem = bfd_zalloc (abfd, size);
1128 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1130 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1133 elf_xtensa_local_tlsfunc_refcounts (abfd)
1134 = (bfd_signed_vma *) mem;
1137 /* This is a global offset table entry for a local symbol. */
1138 if (is_got || is_plt)
1139 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1142 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1144 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1147 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1148 tls_type |= old_tls_type;
1149 /* If a TLS symbol is accessed using IE at least once,
1150 there is no point to use a dynamic model for it. */
1151 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1152 && ((old_tls_type & GOT_TLS_GD) == 0
1153 || (tls_type & GOT_TLS_IE) == 0))
1155 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1156 tls_type = old_tls_type;
1157 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1158 tls_type |= old_tls_type;
1161 (*_bfd_error_handler)
1162 (_("%B: `%s' accessed both as normal and thread local symbol"),
1164 h ? h->root.root.string : "<local>");
1169 if (old_tls_type != tls_type)
1172 eh->tls_type = tls_type;
1174 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1183 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1184 struct elf_link_hash_entry *h)
1188 if (h->plt.refcount > 0)
1190 /* For shared objects, there's no need for PLT entries for local
1191 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1192 if (h->got.refcount < 0)
1193 h->got.refcount = 0;
1194 h->got.refcount += h->plt.refcount;
1195 h->plt.refcount = 0;
1200 /* Don't need any dynamic relocations at all. */
1201 h->plt.refcount = 0;
1202 h->got.refcount = 0;
1208 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1209 struct elf_link_hash_entry *h,
1210 bfd_boolean force_local)
1212 /* For a shared link, move the plt refcount to the got refcount to leave
1213 space for RELATIVE relocs. */
1214 elf_xtensa_make_sym_local (info, h);
1216 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1220 /* Return the section that should be marked against GC for a given
1224 elf_xtensa_gc_mark_hook (asection *sec,
1225 struct bfd_link_info *info,
1226 Elf_Internal_Rela *rel,
1227 struct elf_link_hash_entry *h,
1228 Elf_Internal_Sym *sym)
1230 /* Property sections are marked "KEEP" in the linker scripts, but they
1231 should not cause other sections to be marked. (This approach relies
1232 on elf_xtensa_discard_info to remove property table entries that
1233 describe discarded sections. Alternatively, it might be more
1234 efficient to avoid using "KEEP" in the linker scripts and instead use
1235 the gc_mark_extra_sections hook to mark only the property sections
1236 that describe marked sections. That alternative does not work well
1237 with the current property table sections, which do not correspond
1238 one-to-one with the sections they describe, but that should be fixed
1240 if (xtensa_is_property_section (sec))
1244 switch (ELF32_R_TYPE (rel->r_info))
1246 case R_XTENSA_GNU_VTINHERIT:
1247 case R_XTENSA_GNU_VTENTRY:
1251 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1255 /* Update the GOT & PLT entry reference counts
1256 for the section being removed. */
1259 elf_xtensa_gc_sweep_hook (bfd *abfd,
1260 struct bfd_link_info *info,
1262 const Elf_Internal_Rela *relocs)
1264 Elf_Internal_Shdr *symtab_hdr;
1265 struct elf_link_hash_entry **sym_hashes;
1266 const Elf_Internal_Rela *rel, *relend;
1267 struct elf_xtensa_link_hash_table *htab;
1269 htab = elf_xtensa_hash_table (info);
1271 if (info->relocatable)
1274 if ((sec->flags & SEC_ALLOC) == 0)
1277 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1278 sym_hashes = elf_sym_hashes (abfd);
1280 relend = relocs + sec->reloc_count;
1281 for (rel = relocs; rel < relend; rel++)
1283 unsigned long r_symndx;
1284 unsigned int r_type;
1285 struct elf_link_hash_entry *h = NULL;
1286 struct elf_xtensa_link_hash_entry *eh;
1287 bfd_boolean is_got = FALSE;
1288 bfd_boolean is_plt = FALSE;
1289 bfd_boolean is_tlsfunc = FALSE;
1291 r_symndx = ELF32_R_SYM (rel->r_info);
1292 if (r_symndx >= symtab_hdr->sh_info)
1294 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1295 while (h->root.type == bfd_link_hash_indirect
1296 || h->root.type == bfd_link_hash_warning)
1297 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1299 eh = elf_xtensa_hash_entry (h);
1301 r_type = ELF32_R_TYPE (rel->r_info);
1304 case R_XTENSA_TLSDESC_FN:
1312 case R_XTENSA_TLSDESC_ARG:
1317 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1322 case R_XTENSA_TLS_TPOFF:
1323 if (info->shared || h)
1343 if (h->plt.refcount > 0)
1348 if (h->got.refcount > 0)
1353 if (eh->tlsfunc_refcount > 0)
1354 eh->tlsfunc_refcount--;
1359 if (is_got || is_plt)
1361 bfd_signed_vma *got_refcount
1362 = &elf_local_got_refcounts (abfd) [r_symndx];
1363 if (*got_refcount > 0)
1368 bfd_signed_vma *tlsfunc_refcount
1369 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1370 if (*tlsfunc_refcount > 0)
1371 *tlsfunc_refcount -= 1;
1380 /* Create all the dynamic sections. */
1383 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1385 struct elf_xtensa_link_hash_table *htab;
1386 flagword flags, noalloc_flags;
1388 htab = elf_xtensa_hash_table (info);
1390 /* First do all the standard stuff. */
1391 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1393 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1394 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1395 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1396 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
1398 /* Create any extra PLT sections in case check_relocs has already
1399 been called on all the non-dynamic input files. */
1400 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1403 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1404 | SEC_LINKER_CREATED | SEC_READONLY);
1405 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1407 /* Mark the ".got.plt" section READONLY. */
1408 if (htab->sgotplt == NULL
1409 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1412 /* Create ".rela.got". */
1413 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1414 if (htab->srelgot == NULL
1415 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
1418 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1419 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1420 if (htab->sgotloc == NULL
1421 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1424 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1425 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1427 if (htab->spltlittbl == NULL
1428 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1436 add_extra_plt_sections (struct bfd_link_info *info, int count)
1438 bfd *dynobj = elf_hash_table (info)->dynobj;
1441 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1442 ".got.plt" sections. */
1443 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1449 /* Stop when we find a section has already been created. */
1450 if (elf_xtensa_get_plt_section (info, chunk))
1453 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1454 | SEC_LINKER_CREATED | SEC_READONLY);
1456 sname = (char *) bfd_malloc (10);
1457 sprintf (sname, ".plt.%u", chunk);
1458 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
1460 || ! bfd_set_section_alignment (dynobj, s, 2))
1463 sname = (char *) bfd_malloc (14);
1464 sprintf (sname, ".got.plt.%u", chunk);
1465 s = bfd_make_section_with_flags (dynobj, sname, flags);
1467 || ! bfd_set_section_alignment (dynobj, s, 2))
1475 /* Adjust a symbol defined by a dynamic object and referenced by a
1476 regular object. The current definition is in some section of the
1477 dynamic object, but we're not including those sections. We have to
1478 change the definition to something the rest of the link can
1482 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1483 struct elf_link_hash_entry *h)
1485 /* If this is a weak symbol, and there is a real definition, the
1486 processor independent code will have arranged for us to see the
1487 real definition first, and we can just use the same value. */
1490 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1491 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1492 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1493 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1497 /* This is a reference to a symbol defined by a dynamic object. The
1498 reference must go through the GOT, so there's no need for COPY relocs,
1506 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1508 struct bfd_link_info *info;
1509 struct elf_xtensa_link_hash_table *htab;
1510 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1512 if (h->root.type == bfd_link_hash_indirect)
1515 if (h->root.type == bfd_link_hash_warning)
1516 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1518 info = (struct bfd_link_info *) arg;
1519 htab = elf_xtensa_hash_table (info);
1521 /* If we saw any use of an IE model for this symbol, we can then optimize
1522 away GOT entries for any TLSDESC_FN relocs. */
1523 if ((eh->tls_type & GOT_TLS_IE) != 0)
1525 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1526 h->got.refcount -= eh->tlsfunc_refcount;
1529 if (! elf_xtensa_dynamic_symbol_p (h, info))
1530 elf_xtensa_make_sym_local (info, h);
1532 if (h->plt.refcount > 0)
1533 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1535 if (h->got.refcount > 0)
1536 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1543 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1545 struct elf_xtensa_link_hash_table *htab;
1548 htab = elf_xtensa_hash_table (info);
1550 for (i = info->input_bfds; i; i = i->link_next)
1552 bfd_signed_vma *local_got_refcounts;
1553 bfd_size_type j, cnt;
1554 Elf_Internal_Shdr *symtab_hdr;
1556 local_got_refcounts = elf_local_got_refcounts (i);
1557 if (!local_got_refcounts)
1560 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1561 cnt = symtab_hdr->sh_info;
1563 for (j = 0; j < cnt; ++j)
1565 /* If we saw any use of an IE model for this symbol, we can
1566 then optimize away GOT entries for any TLSDESC_FN relocs. */
1567 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1569 bfd_signed_vma *tlsfunc_refcount
1570 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1571 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1572 local_got_refcounts[j] -= *tlsfunc_refcount;
1575 if (local_got_refcounts[j] > 0)
1576 htab->srelgot->size += (local_got_refcounts[j]
1577 * sizeof (Elf32_External_Rela));
1583 /* Set the sizes of the dynamic sections. */
1586 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1587 struct bfd_link_info *info)
1589 struct elf_xtensa_link_hash_table *htab;
1591 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1592 bfd_boolean relplt, relgot;
1593 int plt_entries, plt_chunks, chunk;
1598 htab = elf_xtensa_hash_table (info);
1599 dynobj = elf_hash_table (info)->dynobj;
1602 srelgot = htab->srelgot;
1603 srelplt = htab->srelplt;
1605 if (elf_hash_table (info)->dynamic_sections_created)
1607 BFD_ASSERT (htab->srelgot != NULL
1608 && htab->srelplt != NULL
1609 && htab->sgot != NULL
1610 && htab->spltlittbl != NULL
1611 && htab->sgotloc != NULL);
1613 /* Set the contents of the .interp section to the interpreter. */
1614 if (info->executable)
1616 s = bfd_get_section_by_name (dynobj, ".interp");
1619 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1620 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1623 /* Allocate room for one word in ".got". */
1624 htab->sgot->size = 4;
1626 /* Allocate space in ".rela.got" for literals that reference global
1627 symbols and space in ".rela.plt" for literals that have PLT
1629 elf_link_hash_traverse (elf_hash_table (info),
1630 elf_xtensa_allocate_dynrelocs,
1633 /* If we are generating a shared object, we also need space in
1634 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1635 reference local symbols. */
1637 elf_xtensa_allocate_local_got_size (info);
1639 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1640 each PLT entry, we need the PLT code plus a 4-byte literal.
1641 For each chunk of ".plt", we also need two more 4-byte
1642 literals, two corresponding entries in ".rela.got", and an
1643 8-byte entry in ".xt.lit.plt". */
1644 spltlittbl = htab->spltlittbl;
1645 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1647 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1649 /* Iterate over all the PLT chunks, including any extra sections
1650 created earlier because the initial count of PLT relocations
1651 was an overestimate. */
1653 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1658 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1659 BFD_ASSERT (sgotplt != NULL);
1661 if (chunk < plt_chunks - 1)
1662 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1663 else if (chunk == plt_chunks - 1)
1664 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1668 if (chunk_entries != 0)
1670 sgotplt->size = 4 * (chunk_entries + 2);
1671 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1672 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1673 spltlittbl->size += 8;
1682 /* Allocate space in ".got.loc" to match the total size of all the
1684 sgotloc = htab->sgotloc;
1685 sgotloc->size = spltlittbl->size;
1686 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1688 if (abfd->flags & DYNAMIC)
1690 for (s = abfd->sections; s != NULL; s = s->next)
1692 if (! elf_discarded_section (s)
1693 && xtensa_is_littable_section (s)
1695 sgotloc->size += s->size;
1700 /* Allocate memory for dynamic sections. */
1703 for (s = dynobj->sections; s != NULL; s = s->next)
1707 if ((s->flags & SEC_LINKER_CREATED) == 0)
1710 /* It's OK to base decisions on the section name, because none
1711 of the dynobj section names depend upon the input files. */
1712 name = bfd_get_section_name (dynobj, s);
1714 if (CONST_STRNEQ (name, ".rela"))
1718 if (strcmp (name, ".rela.plt") == 0)
1720 else if (strcmp (name, ".rela.got") == 0)
1723 /* We use the reloc_count field as a counter if we need
1724 to copy relocs into the output file. */
1728 else if (! CONST_STRNEQ (name, ".plt.")
1729 && ! CONST_STRNEQ (name, ".got.plt.")
1730 && strcmp (name, ".got") != 0
1731 && strcmp (name, ".plt") != 0
1732 && strcmp (name, ".got.plt") != 0
1733 && strcmp (name, ".xt.lit.plt") != 0
1734 && strcmp (name, ".got.loc") != 0)
1736 /* It's not one of our sections, so don't allocate space. */
1742 /* If we don't need this section, strip it from the output
1743 file. We must create the ".plt*" and ".got.plt*"
1744 sections in create_dynamic_sections and/or check_relocs
1745 based on a conservative estimate of the PLT relocation
1746 count, because the sections must be created before the
1747 linker maps input sections to output sections. The
1748 linker does that before size_dynamic_sections, where we
1749 compute the exact size of the PLT, so there may be more
1750 of these sections than are actually needed. */
1751 s->flags |= SEC_EXCLUDE;
1753 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1755 /* Allocate memory for the section contents. */
1756 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1757 if (s->contents == NULL)
1762 if (elf_hash_table (info)->dynamic_sections_created)
1764 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1765 known until finish_dynamic_sections, but we need to get the relocs
1766 in place before they are sorted. */
1767 for (chunk = 0; chunk < plt_chunks; chunk++)
1769 Elf_Internal_Rela irela;
1773 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1776 loc = (srelgot->contents
1777 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1778 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1779 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1780 loc + sizeof (Elf32_External_Rela));
1781 srelgot->reloc_count += 2;
1784 /* Add some entries to the .dynamic section. We fill in the
1785 values later, in elf_xtensa_finish_dynamic_sections, but we
1786 must add the entries now so that we get the correct size for
1787 the .dynamic section. The DT_DEBUG entry is filled in by the
1788 dynamic linker and used by the debugger. */
1789 #define add_dynamic_entry(TAG, VAL) \
1790 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1792 if (info->executable)
1794 if (!add_dynamic_entry (DT_DEBUG, 0))
1800 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1801 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1802 || !add_dynamic_entry (DT_JMPREL, 0))
1808 if (!add_dynamic_entry (DT_RELA, 0)
1809 || !add_dynamic_entry (DT_RELASZ, 0)
1810 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1814 if (!add_dynamic_entry (DT_PLTGOT, 0)
1815 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1816 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1819 #undef add_dynamic_entry
1825 elf_xtensa_always_size_sections (bfd *output_bfd,
1826 struct bfd_link_info *info)
1828 struct elf_xtensa_link_hash_table *htab;
1831 htab = elf_xtensa_hash_table (info);
1832 tls_sec = htab->elf.tls_sec;
1834 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1836 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1837 struct bfd_link_hash_entry *bh = &tlsbase->root;
1838 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1840 tlsbase->type = STT_TLS;
1841 if (!(_bfd_generic_link_add_one_symbol
1842 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1843 tls_sec, 0, NULL, FALSE,
1844 bed->collect, &bh)))
1846 tlsbase->def_regular = 1;
1847 tlsbase->other = STV_HIDDEN;
1848 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1855 /* Return the base VMA address which should be subtracted from real addresses
1856 when resolving @dtpoff relocation.
1857 This is PT_TLS segment p_vaddr. */
1860 dtpoff_base (struct bfd_link_info *info)
1862 /* If tls_sec is NULL, we should have signalled an error already. */
1863 if (elf_hash_table (info)->tls_sec == NULL)
1865 return elf_hash_table (info)->tls_sec->vma;
1868 /* Return the relocation value for @tpoff relocation
1869 if STT_TLS virtual address is ADDRESS. */
1872 tpoff (struct bfd_link_info *info, bfd_vma address)
1874 struct elf_link_hash_table *htab = elf_hash_table (info);
1877 /* If tls_sec is NULL, we should have signalled an error already. */
1878 if (htab->tls_sec == NULL)
1880 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1881 return address - htab->tls_sec->vma + base;
1884 /* Perform the specified relocation. The instruction at (contents + address)
1885 is modified to set one operand to represent the value in "relocation". The
1886 operand position is determined by the relocation type recorded in the
1889 #define CALL_SEGMENT_BITS (30)
1890 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1892 static bfd_reloc_status_type
1893 elf_xtensa_do_reloc (reloc_howto_type *howto,
1895 asection *input_section,
1899 bfd_boolean is_weak_undef,
1900 char **error_message)
1903 xtensa_opcode opcode;
1904 xtensa_isa isa = xtensa_default_isa;
1905 static xtensa_insnbuf ibuff = NULL;
1906 static xtensa_insnbuf sbuff = NULL;
1907 bfd_vma self_address;
1908 bfd_size_type input_size;
1914 ibuff = xtensa_insnbuf_alloc (isa);
1915 sbuff = xtensa_insnbuf_alloc (isa);
1918 input_size = bfd_get_section_limit (abfd, input_section);
1920 /* Calculate the PC address for this instruction. */
1921 self_address = (input_section->output_section->vma
1922 + input_section->output_offset
1925 switch (howto->type)
1928 case R_XTENSA_DIFF8:
1929 case R_XTENSA_DIFF16:
1930 case R_XTENSA_DIFF32:
1931 case R_XTENSA_TLS_FUNC:
1932 case R_XTENSA_TLS_ARG:
1933 case R_XTENSA_TLS_CALL:
1934 return bfd_reloc_ok;
1936 case R_XTENSA_ASM_EXPAND:
1939 /* Check for windowed CALL across a 1GB boundary. */
1940 xtensa_opcode opcode =
1941 get_expanded_call_opcode (contents + address,
1942 input_size - address, 0);
1943 if (is_windowed_call_opcode (opcode))
1945 if ((self_address >> CALL_SEGMENT_BITS)
1946 != (relocation >> CALL_SEGMENT_BITS))
1948 *error_message = "windowed longcall crosses 1GB boundary; "
1950 return bfd_reloc_dangerous;
1954 return bfd_reloc_ok;
1956 case R_XTENSA_ASM_SIMPLIFY:
1958 /* Convert the L32R/CALLX to CALL. */
1959 bfd_reloc_status_type retval =
1960 elf_xtensa_do_asm_simplify (contents, address, input_size,
1962 if (retval != bfd_reloc_ok)
1963 return bfd_reloc_dangerous;
1965 /* The CALL needs to be relocated. Continue below for that part. */
1968 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1975 x = bfd_get_32 (abfd, contents + address);
1977 bfd_put_32 (abfd, x, contents + address);
1979 return bfd_reloc_ok;
1981 case R_XTENSA_32_PCREL:
1982 bfd_put_32 (abfd, relocation - self_address, contents + address);
1983 return bfd_reloc_ok;
1986 case R_XTENSA_TLSDESC_FN:
1987 case R_XTENSA_TLSDESC_ARG:
1988 case R_XTENSA_TLS_DTPOFF:
1989 case R_XTENSA_TLS_TPOFF:
1990 bfd_put_32 (abfd, relocation, contents + address);
1991 return bfd_reloc_ok;
1994 /* Only instruction slot-specific relocations handled below.... */
1995 slot = get_relocation_slot (howto->type);
1996 if (slot == XTENSA_UNDEFINED)
1998 *error_message = "unexpected relocation";
1999 return bfd_reloc_dangerous;
2002 /* Read the instruction into a buffer and decode the opcode. */
2003 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2004 input_size - address);
2005 fmt = xtensa_format_decode (isa, ibuff);
2006 if (fmt == XTENSA_UNDEFINED)
2008 *error_message = "cannot decode instruction format";
2009 return bfd_reloc_dangerous;
2012 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
2014 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2015 if (opcode == XTENSA_UNDEFINED)
2017 *error_message = "cannot decode instruction opcode";
2018 return bfd_reloc_dangerous;
2021 /* Check for opcode-specific "alternate" relocations. */
2022 if (is_alt_relocation (howto->type))
2024 if (opcode == get_l32r_opcode ())
2026 /* Handle the special-case of non-PC-relative L32R instructions. */
2027 bfd *output_bfd = input_section->output_section->owner;
2028 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2031 *error_message = "relocation references missing .lit4 section";
2032 return bfd_reloc_dangerous;
2034 self_address = ((lit4_sec->vma & ~0xfff)
2035 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2036 newval = relocation;
2039 else if (opcode == get_const16_opcode ())
2041 /* ALT used for high 16 bits. */
2042 newval = relocation >> 16;
2047 /* No other "alternate" relocations currently defined. */
2048 *error_message = "unexpected relocation";
2049 return bfd_reloc_dangerous;
2052 else /* Not an "alternate" relocation.... */
2054 if (opcode == get_const16_opcode ())
2056 newval = relocation & 0xffff;
2061 /* ...normal PC-relative relocation.... */
2063 /* Determine which operand is being relocated. */
2064 opnd = get_relocation_opnd (opcode, howto->type);
2065 if (opnd == XTENSA_UNDEFINED)
2067 *error_message = "unexpected relocation";
2068 return bfd_reloc_dangerous;
2071 if (!howto->pc_relative)
2073 *error_message = "expected PC-relative relocation";
2074 return bfd_reloc_dangerous;
2077 newval = relocation;
2081 /* Apply the relocation. */
2082 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2083 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2084 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2087 const char *opname = xtensa_opcode_name (isa, opcode);
2090 msg = "cannot encode";
2091 if (is_direct_call_opcode (opcode))
2093 if ((relocation & 0x3) != 0)
2094 msg = "misaligned call target";
2096 msg = "call target out of range";
2098 else if (opcode == get_l32r_opcode ())
2100 if ((relocation & 0x3) != 0)
2101 msg = "misaligned literal target";
2102 else if (is_alt_relocation (howto->type))
2103 msg = "literal target out of range (too many literals)";
2104 else if (self_address > relocation)
2105 msg = "literal target out of range (try using text-section-literals)";
2107 msg = "literal placed after use";
2110 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2111 return bfd_reloc_dangerous;
2114 /* Check for calls across 1GB boundaries. */
2115 if (is_direct_call_opcode (opcode)
2116 && is_windowed_call_opcode (opcode))
2118 if ((self_address >> CALL_SEGMENT_BITS)
2119 != (relocation >> CALL_SEGMENT_BITS))
2122 "windowed call crosses 1GB boundary; return may fail";
2123 return bfd_reloc_dangerous;
2127 /* Write the modified instruction back out of the buffer. */
2128 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2129 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2130 input_size - address);
2131 return bfd_reloc_ok;
2136 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2138 /* To reduce the size of the memory leak,
2139 we only use a single message buffer. */
2140 static bfd_size_type alloc_size = 0;
2141 static char *message = NULL;
2142 bfd_size_type orig_len, len = 0;
2143 bfd_boolean is_append;
2145 VA_OPEN (ap, arglen);
2146 VA_FIXEDARG (ap, const char *, origmsg);
2148 is_append = (origmsg == message);
2150 orig_len = strlen (origmsg);
2151 len = orig_len + strlen (fmt) + arglen + 20;
2152 if (len > alloc_size)
2154 message = (char *) bfd_realloc_or_free (message, len);
2157 if (message != NULL)
2160 memcpy (message, origmsg, orig_len);
2161 vsprintf (message + orig_len, fmt, ap);
2168 /* This function is registered as the "special_function" in the
2169 Xtensa howto for handling simplify operations.
2170 bfd_perform_relocation / bfd_install_relocation use it to
2171 perform (install) the specified relocation. Since this replaces the code
2172 in bfd_perform_relocation, it is basically an Xtensa-specific,
2173 stripped-down version of bfd_perform_relocation. */
2175 static bfd_reloc_status_type
2176 bfd_elf_xtensa_reloc (bfd *abfd,
2177 arelent *reloc_entry,
2180 asection *input_section,
2182 char **error_message)
2185 bfd_reloc_status_type flag;
2186 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2187 bfd_vma output_base = 0;
2188 reloc_howto_type *howto = reloc_entry->howto;
2189 asection *reloc_target_output_section;
2190 bfd_boolean is_weak_undef;
2192 if (!xtensa_default_isa)
2193 xtensa_default_isa = xtensa_isa_init (0, 0);
2195 /* ELF relocs are against symbols. If we are producing relocatable
2196 output, and the reloc is against an external symbol, the resulting
2197 reloc will also be against the same symbol. In such a case, we
2198 don't want to change anything about the way the reloc is handled,
2199 since it will all be done at final link time. This test is similar
2200 to what bfd_elf_generic_reloc does except that it lets relocs with
2201 howto->partial_inplace go through even if the addend is non-zero.
2202 (The real problem is that partial_inplace is set for XTENSA_32
2203 relocs to begin with, but that's a long story and there's little we
2204 can do about it now....) */
2206 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2208 reloc_entry->address += input_section->output_offset;
2209 return bfd_reloc_ok;
2212 /* Is the address of the relocation really within the section? */
2213 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2214 return bfd_reloc_outofrange;
2216 /* Work out which section the relocation is targeted at and the
2217 initial relocation command value. */
2219 /* Get symbol value. (Common symbols are special.) */
2220 if (bfd_is_com_section (symbol->section))
2223 relocation = symbol->value;
2225 reloc_target_output_section = symbol->section->output_section;
2227 /* Convert input-section-relative symbol value to absolute. */
2228 if ((output_bfd && !howto->partial_inplace)
2229 || reloc_target_output_section == NULL)
2232 output_base = reloc_target_output_section->vma;
2234 relocation += output_base + symbol->section->output_offset;
2236 /* Add in supplied addend. */
2237 relocation += reloc_entry->addend;
2239 /* Here the variable relocation holds the final address of the
2240 symbol we are relocating against, plus any addend. */
2243 if (!howto->partial_inplace)
2245 /* This is a partial relocation, and we want to apply the relocation
2246 to the reloc entry rather than the raw data. Everything except
2247 relocations against section symbols has already been handled
2250 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2251 reloc_entry->addend = relocation;
2252 reloc_entry->address += input_section->output_offset;
2253 return bfd_reloc_ok;
2257 reloc_entry->address += input_section->output_offset;
2258 reloc_entry->addend = 0;
2262 is_weak_undef = (bfd_is_und_section (symbol->section)
2263 && (symbol->flags & BSF_WEAK) != 0);
2264 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2265 (bfd_byte *) data, (bfd_vma) octets,
2266 is_weak_undef, error_message);
2268 if (flag == bfd_reloc_dangerous)
2270 /* Add the symbol name to the error message. */
2271 if (! *error_message)
2272 *error_message = "";
2273 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2274 strlen (symbol->name) + 17,
2276 (unsigned long) reloc_entry->addend);
2283 /* Set up an entry in the procedure linkage table. */
2286 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2288 unsigned reloc_index)
2290 asection *splt, *sgotplt;
2291 bfd_vma plt_base, got_base;
2292 bfd_vma code_offset, lit_offset;
2295 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2296 splt = elf_xtensa_get_plt_section (info, chunk);
2297 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2298 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2300 plt_base = splt->output_section->vma + splt->output_offset;
2301 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2303 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2304 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2306 /* Fill in the literal entry. This is the offset of the dynamic
2307 relocation entry. */
2308 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2309 sgotplt->contents + lit_offset);
2311 /* Fill in the entry in the procedure linkage table. */
2312 memcpy (splt->contents + code_offset,
2313 (bfd_big_endian (output_bfd)
2314 ? elf_xtensa_be_plt_entry
2315 : elf_xtensa_le_plt_entry),
2317 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2318 plt_base + code_offset + 3),
2319 splt->contents + code_offset + 4);
2320 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2321 plt_base + code_offset + 6),
2322 splt->contents + code_offset + 7);
2323 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2324 plt_base + code_offset + 9),
2325 splt->contents + code_offset + 10);
2327 return plt_base + code_offset;
2331 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2334 replace_tls_insn (Elf_Internal_Rela *rel,
2336 asection *input_section,
2338 bfd_boolean is_ld_model,
2339 char **error_message)
2341 static xtensa_insnbuf ibuff = NULL;
2342 static xtensa_insnbuf sbuff = NULL;
2343 xtensa_isa isa = xtensa_default_isa;
2345 xtensa_opcode old_op, new_op;
2346 bfd_size_type input_size;
2348 unsigned dest_reg, src_reg;
2352 ibuff = xtensa_insnbuf_alloc (isa);
2353 sbuff = xtensa_insnbuf_alloc (isa);
2356 input_size = bfd_get_section_limit (abfd, input_section);
2358 /* Read the instruction into a buffer and decode the opcode. */
2359 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2360 input_size - rel->r_offset);
2361 fmt = xtensa_format_decode (isa, ibuff);
2362 if (fmt == XTENSA_UNDEFINED)
2364 *error_message = "cannot decode instruction format";
2368 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2369 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2371 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2372 if (old_op == XTENSA_UNDEFINED)
2374 *error_message = "cannot decode instruction opcode";
2378 r_type = ELF32_R_TYPE (rel->r_info);
2381 case R_XTENSA_TLS_FUNC:
2382 case R_XTENSA_TLS_ARG:
2383 if (old_op != get_l32r_opcode ()
2384 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2385 sbuff, &dest_reg) != 0)
2387 *error_message = "cannot extract L32R destination for TLS access";
2392 case R_XTENSA_TLS_CALL:
2393 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2394 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2395 sbuff, &src_reg) != 0)
2397 *error_message = "cannot extract CALLXn operands for TLS access";
2410 case R_XTENSA_TLS_FUNC:
2411 case R_XTENSA_TLS_ARG:
2412 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2413 versions of Xtensa). */
2414 new_op = xtensa_opcode_lookup (isa, "nop");
2415 if (new_op == XTENSA_UNDEFINED)
2417 new_op = xtensa_opcode_lookup (isa, "or");
2418 if (new_op == XTENSA_UNDEFINED
2419 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2420 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2422 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2424 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2427 *error_message = "cannot encode OR for TLS access";
2433 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2435 *error_message = "cannot encode NOP for TLS access";
2441 case R_XTENSA_TLS_CALL:
2442 /* Read THREADPTR into the CALLX's return value register. */
2443 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2444 if (new_op == XTENSA_UNDEFINED
2445 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2446 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2447 sbuff, dest_reg + 2) != 0)
2449 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2459 case R_XTENSA_TLS_FUNC:
2460 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2461 if (new_op == XTENSA_UNDEFINED
2462 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2463 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2464 sbuff, dest_reg) != 0)
2466 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2471 case R_XTENSA_TLS_ARG:
2472 /* Nothing to do. Keep the original L32R instruction. */
2475 case R_XTENSA_TLS_CALL:
2476 /* Add the CALLX's src register (holding the THREADPTR value)
2477 to the first argument register (holding the offset) and put
2478 the result in the CALLX's return value register. */
2479 new_op = xtensa_opcode_lookup (isa, "add");
2480 if (new_op == XTENSA_UNDEFINED
2481 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2482 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2483 sbuff, dest_reg + 2) != 0
2484 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2485 sbuff, dest_reg + 2) != 0
2486 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2487 sbuff, src_reg) != 0)
2489 *error_message = "cannot encode ADD for TLS access";
2496 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2497 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2498 input_size - rel->r_offset);
2504 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2505 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2506 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2507 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2508 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2509 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2510 || (R_TYPE) == R_XTENSA_TLS_ARG \
2511 || (R_TYPE) == R_XTENSA_TLS_CALL)
2513 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2514 both relocatable and final links. */
2517 elf_xtensa_relocate_section (bfd *output_bfd,
2518 struct bfd_link_info *info,
2520 asection *input_section,
2522 Elf_Internal_Rela *relocs,
2523 Elf_Internal_Sym *local_syms,
2524 asection **local_sections)
2526 struct elf_xtensa_link_hash_table *htab;
2527 Elf_Internal_Shdr *symtab_hdr;
2528 Elf_Internal_Rela *rel;
2529 Elf_Internal_Rela *relend;
2530 struct elf_link_hash_entry **sym_hashes;
2531 property_table_entry *lit_table = 0;
2533 char *local_got_tls_types;
2534 char *error_message = NULL;
2535 bfd_size_type input_size;
2538 if (!xtensa_default_isa)
2539 xtensa_default_isa = xtensa_isa_init (0, 0);
2541 BFD_ASSERT (is_xtensa_elf (input_bfd));
2543 htab = elf_xtensa_hash_table (info);
2544 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2545 sym_hashes = elf_sym_hashes (input_bfd);
2546 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2548 if (elf_hash_table (info)->dynamic_sections_created)
2550 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2551 &lit_table, XTENSA_LIT_SEC_NAME,
2557 input_size = bfd_get_section_limit (input_bfd, input_section);
2560 relend = relocs + input_section->reloc_count;
2561 for (; rel < relend; rel++)
2564 reloc_howto_type *howto;
2565 unsigned long r_symndx;
2566 struct elf_link_hash_entry *h;
2567 Elf_Internal_Sym *sym;
2572 bfd_reloc_status_type r;
2573 bfd_boolean is_weak_undef;
2574 bfd_boolean unresolved_reloc;
2576 bfd_boolean dynamic_symbol;
2578 r_type = ELF32_R_TYPE (rel->r_info);
2579 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2580 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2583 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2585 bfd_set_error (bfd_error_bad_value);
2588 howto = &elf_howto_table[r_type];
2590 r_symndx = ELF32_R_SYM (rel->r_info);
2595 is_weak_undef = FALSE;
2596 unresolved_reloc = FALSE;
2599 if (howto->partial_inplace && !info->relocatable)
2601 /* Because R_XTENSA_32 was made partial_inplace to fix some
2602 problems with DWARF info in partial links, there may be
2603 an addend stored in the contents. Take it out of there
2604 and move it back into the addend field of the reloc. */
2605 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2606 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2609 if (r_symndx < symtab_hdr->sh_info)
2611 sym = local_syms + r_symndx;
2612 sym_type = ELF32_ST_TYPE (sym->st_info);
2613 sec = local_sections[r_symndx];
2614 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2618 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2619 r_symndx, symtab_hdr, sym_hashes,
2621 unresolved_reloc, warned);
2624 && !unresolved_reloc
2625 && h->root.type == bfd_link_hash_undefweak)
2626 is_weak_undef = TRUE;
2631 if (sec != NULL && elf_discarded_section (sec))
2633 /* For relocs against symbols from removed linkonce sections,
2634 or sections discarded by a linker script, we just want the
2635 section contents zeroed. Avoid any special processing. */
2636 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2642 if (info->relocatable)
2644 /* This is a relocatable link.
2645 1) If the reloc is against a section symbol, adjust
2646 according to the output section.
2647 2) If there is a new target for this relocation,
2648 the new target will be in the same output section.
2649 We adjust the relocation by the output section
2652 if (relaxing_section)
2654 /* Check if this references a section in another input file. */
2655 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2660 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2662 char *error_message = NULL;
2663 /* Convert ASM_SIMPLIFY into the simpler relocation
2664 so that they never escape a relaxing link. */
2665 r = contract_asm_expansion (contents, input_size, rel,
2667 if (r != bfd_reloc_ok)
2669 if (!((*info->callbacks->reloc_dangerous)
2670 (info, error_message, input_bfd, input_section,
2674 r_type = ELF32_R_TYPE (rel->r_info);
2677 /* This is a relocatable link, so we don't have to change
2678 anything unless the reloc is against a section symbol,
2679 in which case we have to adjust according to where the
2680 section symbol winds up in the output section. */
2681 if (r_symndx < symtab_hdr->sh_info)
2683 sym = local_syms + r_symndx;
2684 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2686 sec = local_sections[r_symndx];
2687 rel->r_addend += sec->output_offset + sym->st_value;
2691 /* If there is an addend with a partial_inplace howto,
2692 then move the addend to the contents. This is a hack
2693 to work around problems with DWARF in relocatable links
2694 with some previous version of BFD. Now we can't easily get
2695 rid of the hack without breaking backward compatibility.... */
2698 howto = &elf_howto_table[r_type];
2699 if (howto->partial_inplace)
2701 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2702 rel->r_addend, contents,
2703 rel->r_offset, FALSE,
2705 if (r != bfd_reloc_ok)
2707 if (!((*info->callbacks->reloc_dangerous)
2708 (info, error_message, input_bfd, input_section,
2716 /* Done with work for relocatable link; continue with next reloc. */
2720 /* This is a final link. */
2722 if (relaxing_section)
2724 /* Check if this references a section in another input file. */
2725 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2729 /* Sanity check the address. */
2730 if (rel->r_offset >= input_size
2731 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2733 (*_bfd_error_handler)
2734 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2735 input_bfd, input_section, rel->r_offset, input_size);
2736 bfd_set_error (bfd_error_bad_value);
2741 name = h->root.root.string;
2744 name = (bfd_elf_string_from_elf_section
2745 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2746 if (name == NULL || *name == '\0')
2747 name = bfd_section_name (input_bfd, sec);
2751 && r_type != R_XTENSA_NONE
2753 || h->root.type == bfd_link_hash_defined
2754 || h->root.type == bfd_link_hash_defweak)
2755 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2757 (*_bfd_error_handler)
2758 ((sym_type == STT_TLS
2759 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2760 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2763 (long) rel->r_offset,
2768 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2770 tls_type = GOT_UNKNOWN;
2772 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2773 else if (local_got_tls_types)
2774 tls_type = local_got_tls_types [r_symndx];
2780 if (elf_hash_table (info)->dynamic_sections_created
2781 && (input_section->flags & SEC_ALLOC) != 0
2782 && (dynamic_symbol || info->shared))
2784 Elf_Internal_Rela outrel;
2788 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2789 srel = htab->srelplt;
2791 srel = htab->srelgot;
2793 BFD_ASSERT (srel != NULL);
2796 _bfd_elf_section_offset (output_bfd, info,
2797 input_section, rel->r_offset);
2799 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2800 memset (&outrel, 0, sizeof outrel);
2803 outrel.r_offset += (input_section->output_section->vma
2804 + input_section->output_offset);
2806 /* Complain if the relocation is in a read-only section
2807 and not in a literal pool. */
2808 if ((input_section->flags & SEC_READONLY) != 0
2809 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2813 _("dynamic relocation in read-only section");
2814 if (!((*info->callbacks->reloc_dangerous)
2815 (info, error_message, input_bfd, input_section,
2822 outrel.r_addend = rel->r_addend;
2825 if (r_type == R_XTENSA_32)
2828 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2831 else /* r_type == R_XTENSA_PLT */
2834 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2836 /* Create the PLT entry and set the initial
2837 contents of the literal entry to the address of
2840 elf_xtensa_create_plt_entry (info, output_bfd,
2843 unresolved_reloc = FALSE;
2847 /* Generate a RELATIVE relocation. */
2848 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2849 outrel.r_addend = 0;
2853 loc = (srel->contents
2854 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2855 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2856 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2859 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2861 /* This should only happen for non-PIC code, which is not
2862 supposed to be used on systems with dynamic linking.
2863 Just ignore these relocations. */
2868 case R_XTENSA_TLS_TPOFF:
2869 /* Switch to LE model for local symbols in an executable. */
2870 if (! info->shared && ! dynamic_symbol)
2872 relocation = tpoff (info, relocation);
2877 case R_XTENSA_TLSDESC_FN:
2878 case R_XTENSA_TLSDESC_ARG:
2880 if (r_type == R_XTENSA_TLSDESC_FN)
2882 if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2883 r_type = R_XTENSA_NONE;
2885 else if (r_type == R_XTENSA_TLSDESC_ARG)
2889 if ((tls_type & GOT_TLS_IE) != 0)
2890 r_type = R_XTENSA_TLS_TPOFF;
2894 r_type = R_XTENSA_TLS_TPOFF;
2895 if (! dynamic_symbol)
2897 relocation = tpoff (info, relocation);
2903 if (r_type == R_XTENSA_NONE)
2904 /* Nothing to do here; skip to the next reloc. */
2907 if (! elf_hash_table (info)->dynamic_sections_created)
2910 _("TLS relocation invalid without dynamic sections");
2911 if (!((*info->callbacks->reloc_dangerous)
2912 (info, error_message, input_bfd, input_section,
2918 Elf_Internal_Rela outrel;
2920 asection *srel = htab->srelgot;
2923 outrel.r_offset = (input_section->output_section->vma
2924 + input_section->output_offset
2927 /* Complain if the relocation is in a read-only section
2928 and not in a literal pool. */
2929 if ((input_section->flags & SEC_READONLY) != 0
2930 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2934 _("dynamic relocation in read-only section");
2935 if (!((*info->callbacks->reloc_dangerous)
2936 (info, error_message, input_bfd, input_section,
2941 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2943 outrel.r_addend = relocation - dtpoff_base (info);
2945 outrel.r_addend = 0;
2948 outrel.r_info = ELF32_R_INFO (indx, r_type);
2950 unresolved_reloc = FALSE;
2953 loc = (srel->contents
2954 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2955 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2956 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2962 case R_XTENSA_TLS_DTPOFF:
2964 /* Switch from LD model to LE model. */
2965 relocation = tpoff (info, relocation);
2967 relocation -= dtpoff_base (info);
2970 case R_XTENSA_TLS_FUNC:
2971 case R_XTENSA_TLS_ARG:
2972 case R_XTENSA_TLS_CALL:
2973 /* Check if optimizing to IE or LE model. */
2974 if ((tls_type & GOT_TLS_IE) != 0)
2976 bfd_boolean is_ld_model =
2977 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2978 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2979 is_ld_model, &error_message))
2981 if (!((*info->callbacks->reloc_dangerous)
2982 (info, error_message, input_bfd, input_section,
2987 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2989 /* Skip subsequent relocations on the same instruction. */
2990 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
2997 if (elf_hash_table (info)->dynamic_sections_created
2998 && dynamic_symbol && (is_operand_relocation (r_type)
2999 || r_type == R_XTENSA_32_PCREL))
3002 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3003 strlen (name) + 2, name);
3004 if (!((*info->callbacks->reloc_dangerous)
3005 (info, error_message, input_bfd, input_section,
3013 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3014 because such sections are not SEC_ALLOC and thus ld.so will
3015 not process them. */
3016 if (unresolved_reloc
3017 && !((input_section->flags & SEC_DEBUGGING) != 0
3020 (*_bfd_error_handler)
3021 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3024 (long) rel->r_offset,
3030 /* TLS optimizations may have changed r_type; update "howto". */
3031 howto = &elf_howto_table[r_type];
3033 /* There's no point in calling bfd_perform_relocation here.
3034 Just go directly to our "special function". */
3035 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3036 relocation + rel->r_addend,
3037 contents, rel->r_offset, is_weak_undef,
3040 if (r != bfd_reloc_ok && !warned)
3042 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3043 BFD_ASSERT (error_message != NULL);
3045 if (rel->r_addend == 0)
3046 error_message = vsprint_msg (error_message, ": %s",
3047 strlen (name) + 2, name);
3049 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3051 name, (int) rel->r_addend);
3053 if (!((*info->callbacks->reloc_dangerous)
3054 (info, error_message, input_bfd, input_section,
3063 input_section->reloc_done = TRUE;
3069 /* Finish up dynamic symbol handling. There's not much to do here since
3070 the PLT and GOT entries are all set up by relocate_section. */
3073 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3074 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3075 struct elf_link_hash_entry *h,
3076 Elf_Internal_Sym *sym)
3078 if (h->needs_plt && !h->def_regular)
3080 /* Mark the symbol as undefined, rather than as defined in
3081 the .plt section. Leave the value alone. */
3082 sym->st_shndx = SHN_UNDEF;
3083 /* If the symbol is weak, we do need to clear the value.
3084 Otherwise, the PLT entry would provide a definition for
3085 the symbol even if the symbol wasn't defined anywhere,
3086 and so the symbol would never be NULL. */
3087 if (!h->ref_regular_nonweak)
3091 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3092 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3093 || h == elf_hash_table (info)->hgot)
3094 sym->st_shndx = SHN_ABS;
3100 /* Combine adjacent literal table entries in the output. Adjacent
3101 entries within each input section may have been removed during
3102 relaxation, but we repeat the process here, even though it's too late
3103 to shrink the output section, because it's important to minimize the
3104 number of literal table entries to reduce the start-up work for the
3105 runtime linker. Returns the number of remaining table entries or -1
3109 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3114 property_table_entry *table;
3115 bfd_size_type section_size, sgotloc_size;
3119 section_size = sxtlit->size;
3120 BFD_ASSERT (section_size % 8 == 0);
3121 num = section_size / 8;
3123 sgotloc_size = sgotloc->size;
3124 if (sgotloc_size != section_size)
3126 (*_bfd_error_handler)
3127 (_("internal inconsistency in size of .got.loc section"));
3131 table = bfd_malloc (num * sizeof (property_table_entry));
3135 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3136 propagates to the output section, where it doesn't really apply and
3137 where it breaks the following call to bfd_malloc_and_get_section. */
3138 sxtlit->flags &= ~SEC_IN_MEMORY;
3140 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3148 /* There should never be any relocations left at this point, so this
3149 is quite a bit easier than what is done during relaxation. */
3151 /* Copy the raw contents into a property table array and sort it. */
3153 for (n = 0; n < num; n++)
3155 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3156 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3159 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3161 for (n = 0; n < num; n++)
3163 bfd_boolean remove = FALSE;
3165 if (table[n].size == 0)
3168 (table[n-1].address + table[n-1].size == table[n].address))
3170 table[n-1].size += table[n].size;
3176 for (m = n; m < num - 1; m++)
3178 table[m].address = table[m+1].address;
3179 table[m].size = table[m+1].size;
3187 /* Copy the data back to the raw contents. */
3189 for (n = 0; n < num; n++)
3191 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3192 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3196 /* Clear the removed bytes. */
3197 if ((bfd_size_type) (num * 8) < section_size)
3198 memset (&contents[num * 8], 0, section_size - num * 8);
3200 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3204 /* Copy the contents to ".got.loc". */
3205 memcpy (sgotloc->contents, contents, section_size);
3213 /* Finish up the dynamic sections. */
3216 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3217 struct bfd_link_info *info)
3219 struct elf_xtensa_link_hash_table *htab;
3221 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
3222 Elf32_External_Dyn *dyncon, *dynconend;
3223 int num_xtlit_entries = 0;
3225 if (! elf_hash_table (info)->dynamic_sections_created)
3228 htab = elf_xtensa_hash_table (info);
3229 dynobj = elf_hash_table (info)->dynobj;
3230 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3231 BFD_ASSERT (sdyn != NULL);
3233 /* Set the first entry in the global offset table to the address of
3234 the dynamic section. */
3238 BFD_ASSERT (sgot->size == 4);
3240 bfd_put_32 (output_bfd, 0, sgot->contents);
3242 bfd_put_32 (output_bfd,
3243 sdyn->output_section->vma + sdyn->output_offset,
3247 srelplt = htab->srelplt;
3248 if (srelplt && srelplt->size != 0)
3250 asection *sgotplt, *srelgot, *spltlittbl;
3251 int chunk, plt_chunks, plt_entries;
3252 Elf_Internal_Rela irela;
3254 unsigned rtld_reloc;
3256 srelgot = htab->srelgot;
3257 spltlittbl = htab->spltlittbl;
3258 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3260 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3261 of them follow immediately after.... */
3262 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3264 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3265 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3266 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3269 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3271 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3273 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3275 for (chunk = 0; chunk < plt_chunks; chunk++)
3277 int chunk_entries = 0;
3279 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3280 BFD_ASSERT (sgotplt != NULL);
3282 /* Emit special RTLD relocations for the first two entries in
3283 each chunk of the .got.plt section. */
3285 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3286 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3287 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3288 irela.r_offset = (sgotplt->output_section->vma
3289 + sgotplt->output_offset);
3290 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3291 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3293 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3295 /* Next literal immediately follows the first. */
3296 loc += sizeof (Elf32_External_Rela);
3297 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3298 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3299 irela.r_offset = (sgotplt->output_section->vma
3300 + sgotplt->output_offset + 4);
3301 /* Tell rtld to set value to object's link map. */
3303 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3305 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3307 /* Fill in the literal table. */
3308 if (chunk < plt_chunks - 1)
3309 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3311 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3313 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3314 bfd_put_32 (output_bfd,
3315 sgotplt->output_section->vma + sgotplt->output_offset,
3316 spltlittbl->contents + (chunk * 8) + 0);
3317 bfd_put_32 (output_bfd,
3318 8 + (chunk_entries * 4),
3319 spltlittbl->contents + (chunk * 8) + 4);
3322 /* All the dynamic relocations have been emitted at this point.
3323 Make sure the relocation sections are the correct size. */
3324 if (srelgot->size != (sizeof (Elf32_External_Rela)
3325 * srelgot->reloc_count)
3326 || srelplt->size != (sizeof (Elf32_External_Rela)
3327 * srelplt->reloc_count))
3330 /* The .xt.lit.plt section has just been modified. This must
3331 happen before the code below which combines adjacent literal
3332 table entries, and the .xt.lit.plt contents have to be forced to
3334 if (! bfd_set_section_contents (output_bfd,
3335 spltlittbl->output_section,
3336 spltlittbl->contents,
3337 spltlittbl->output_offset,
3340 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3341 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3344 /* Combine adjacent literal table entries. */
3345 BFD_ASSERT (! info->relocatable);
3346 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3347 sgotloc = htab->sgotloc;
3348 BFD_ASSERT (sgotloc);
3352 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3353 if (num_xtlit_entries < 0)
3357 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3358 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3359 for (; dyncon < dynconend; dyncon++)
3361 Elf_Internal_Dyn dyn;
3363 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3370 case DT_XTENSA_GOT_LOC_SZ:
3371 dyn.d_un.d_val = num_xtlit_entries;
3374 case DT_XTENSA_GOT_LOC_OFF:
3375 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
3379 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
3383 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3387 dyn.d_un.d_val = htab->srelplt->output_section->size;
3391 /* Adjust RELASZ to not include JMPREL. This matches what
3392 glibc expects and what is done for several other ELF
3393 targets (e.g., i386, alpha), but the "correct" behavior
3394 seems to be unresolved. Since the linker script arranges
3395 for .rela.plt to follow all other relocation sections, we
3396 don't have to worry about changing the DT_RELA entry. */
3398 dyn.d_un.d_val -= htab->srelplt->output_section->size;
3402 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3409 /* Functions for dealing with the e_flags field. */
3411 /* Merge backend specific data from an object file to the output
3412 object file when linking. */
3415 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
3417 unsigned out_mach, in_mach;
3418 flagword out_flag, in_flag;
3420 /* Check if we have the same endianess. */
3421 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3424 /* Don't even pretend to support mixed-format linking. */
3425 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3426 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3429 out_flag = elf_elfheader (obfd)->e_flags;
3430 in_flag = elf_elfheader (ibfd)->e_flags;
3432 out_mach = out_flag & EF_XTENSA_MACH;
3433 in_mach = in_flag & EF_XTENSA_MACH;
3434 if (out_mach != in_mach)
3436 (*_bfd_error_handler)
3437 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
3438 ibfd, out_mach, in_mach);
3439 bfd_set_error (bfd_error_wrong_format);
3443 if (! elf_flags_init (obfd))
3445 elf_flags_init (obfd) = TRUE;
3446 elf_elfheader (obfd)->e_flags = in_flag;
3448 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3449 && bfd_get_arch_info (obfd)->the_default)
3450 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3451 bfd_get_mach (ibfd));
3456 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3457 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3459 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3460 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3467 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3469 BFD_ASSERT (!elf_flags_init (abfd)
3470 || elf_elfheader (abfd)->e_flags == flags);
3472 elf_elfheader (abfd)->e_flags |= flags;
3473 elf_flags_init (abfd) = TRUE;
3480 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3482 FILE *f = (FILE *) farg;
3483 flagword e_flags = elf_elfheader (abfd)->e_flags;
3485 fprintf (f, "\nXtensa header:\n");
3486 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3487 fprintf (f, "\nMachine = Base\n");
3489 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3491 fprintf (f, "Insn tables = %s\n",
3492 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3494 fprintf (f, "Literal tables = %s\n",
3495 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3497 return _bfd_elf_print_private_bfd_data (abfd, farg);
3501 /* Set the right machine number for an Xtensa ELF file. */
3504 elf_xtensa_object_p (bfd *abfd)
3507 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3512 mach = bfd_mach_xtensa;
3518 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3523 /* The final processing done just before writing out an Xtensa ELF object
3524 file. This gets the Xtensa architecture right based on the machine
3528 elf_xtensa_final_write_processing (bfd *abfd,
3529 bfd_boolean linker ATTRIBUTE_UNUSED)
3534 switch (mach = bfd_get_mach (abfd))
3536 case bfd_mach_xtensa:
3537 val = E_XTENSA_MACH;
3543 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3544 elf_elfheader (abfd)->e_flags |= val;
3548 static enum elf_reloc_type_class
3549 elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
3551 switch ((int) ELF32_R_TYPE (rela->r_info))
3553 case R_XTENSA_RELATIVE:
3554 return reloc_class_relative;
3555 case R_XTENSA_JMP_SLOT:
3556 return reloc_class_plt;
3558 return reloc_class_normal;
3564 elf_xtensa_discard_info_for_section (bfd *abfd,
3565 struct elf_reloc_cookie *cookie,
3566 struct bfd_link_info *info,
3570 bfd_vma offset, actual_offset;
3571 bfd_size_type removed_bytes = 0;
3572 bfd_size_type entry_size;
3574 if (sec->output_section
3575 && bfd_is_abs_section (sec->output_section))
3578 if (xtensa_is_proptable_section (sec))
3583 if (sec->size == 0 || sec->size % entry_size != 0)
3586 contents = retrieve_contents (abfd, sec, info->keep_memory);
3590 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3593 release_contents (sec, contents);
3597 /* Sort the relocations. They should already be in order when
3598 relaxation is enabled, but it might not be. */
3599 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3600 internal_reloc_compare);
3602 cookie->rel = cookie->rels;
3603 cookie->relend = cookie->rels + sec->reloc_count;
3605 for (offset = 0; offset < sec->size; offset += entry_size)
3607 actual_offset = offset - removed_bytes;
3609 /* The ...symbol_deleted_p function will skip over relocs but it
3610 won't adjust their offsets, so do that here. */
3611 while (cookie->rel < cookie->relend
3612 && cookie->rel->r_offset < offset)
3614 cookie->rel->r_offset -= removed_bytes;
3618 while (cookie->rel < cookie->relend
3619 && cookie->rel->r_offset == offset)
3621 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3623 /* Remove the table entry. (If the reloc type is NONE, then
3624 the entry has already been merged with another and deleted
3625 during relaxation.) */
3626 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3628 /* Shift the contents up. */
3629 if (offset + entry_size < sec->size)
3630 memmove (&contents[actual_offset],
3631 &contents[actual_offset + entry_size],
3632 sec->size - offset - entry_size);
3633 removed_bytes += entry_size;
3636 /* Remove this relocation. */
3637 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3640 /* Adjust the relocation offset for previous removals. This
3641 should not be done before calling ...symbol_deleted_p
3642 because it might mess up the offset comparisons there.
3643 Make sure the offset doesn't underflow in the case where
3644 the first entry is removed. */
3645 if (cookie->rel->r_offset >= removed_bytes)
3646 cookie->rel->r_offset -= removed_bytes;
3648 cookie->rel->r_offset = 0;
3654 if (removed_bytes != 0)
3656 /* Adjust any remaining relocs (shouldn't be any). */
3657 for (; cookie->rel < cookie->relend; cookie->rel++)
3659 if (cookie->rel->r_offset >= removed_bytes)
3660 cookie->rel->r_offset -= removed_bytes;
3662 cookie->rel->r_offset = 0;
3665 /* Clear the removed bytes. */
3666 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3668 pin_contents (sec, contents);
3669 pin_internal_relocs (sec, cookie->rels);
3672 if (sec->rawsize == 0)
3673 sec->rawsize = sec->size;
3674 sec->size -= removed_bytes;
3676 if (xtensa_is_littable_section (sec))
3678 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3680 sgotloc->size -= removed_bytes;
3685 release_contents (sec, contents);
3686 release_internal_relocs (sec, cookie->rels);
3689 return (removed_bytes != 0);
3694 elf_xtensa_discard_info (bfd *abfd,
3695 struct elf_reloc_cookie *cookie,
3696 struct bfd_link_info *info)
3699 bfd_boolean changed = FALSE;
3701 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3703 if (xtensa_is_property_section (sec))
3705 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3715 elf_xtensa_ignore_discarded_relocs (asection *sec)
3717 return xtensa_is_property_section (sec);
3722 elf_xtensa_action_discarded (asection *sec)
3724 if (strcmp (".xt_except_table", sec->name) == 0)
3727 if (strcmp (".xt_except_desc", sec->name) == 0)
3730 return _bfd_elf_default_action_discarded (sec);
3734 /* Support for core dump NOTE sections. */
3737 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3742 /* The size for Xtensa is variable, so don't try to recognize the format
3743 based on the size. Just assume this is GNU/Linux. */
3746 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3749 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3753 size = note->descsz - offset - 4;
3755 /* Make a ".reg/999" section. */
3756 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3757 size, note->descpos + offset);
3762 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3764 switch (note->descsz)
3769 case 128: /* GNU/Linux elf_prpsinfo */
3770 elf_tdata (abfd)->core_program
3771 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3772 elf_tdata (abfd)->core_command
3773 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3776 /* Note that for some reason, a spurious space is tacked
3777 onto the end of the args in some (at least one anyway)
3778 implementations, so strip it off if it exists. */
3781 char *command = elf_tdata (abfd)->core_command;
3782 int n = strlen (command);
3784 if (0 < n && command[n - 1] == ' ')
3785 command[n - 1] = '\0';
3792 /* Generic Xtensa configurability stuff. */
3794 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3795 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3796 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3797 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3798 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3799 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3800 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3801 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3804 init_call_opcodes (void)
3806 if (callx0_op == XTENSA_UNDEFINED)
3808 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3809 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3810 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3811 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3812 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3813 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3814 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3815 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3821 is_indirect_call_opcode (xtensa_opcode opcode)
3823 init_call_opcodes ();
3824 return (opcode == callx0_op
3825 || opcode == callx4_op
3826 || opcode == callx8_op
3827 || opcode == callx12_op);
3832 is_direct_call_opcode (xtensa_opcode opcode)
3834 init_call_opcodes ();
3835 return (opcode == call0_op
3836 || opcode == call4_op
3837 || opcode == call8_op
3838 || opcode == call12_op);
3843 is_windowed_call_opcode (xtensa_opcode opcode)
3845 init_call_opcodes ();
3846 return (opcode == call4_op
3847 || opcode == call8_op
3848 || opcode == call12_op
3849 || opcode == callx4_op
3850 || opcode == callx8_op
3851 || opcode == callx12_op);
3856 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3858 unsigned dst = (unsigned) -1;
3860 init_call_opcodes ();
3861 if (opcode == callx0_op)
3863 else if (opcode == callx4_op)
3865 else if (opcode == callx8_op)
3867 else if (opcode == callx12_op)
3870 if (dst == (unsigned) -1)
3878 static xtensa_opcode
3879 get_const16_opcode (void)
3881 static bfd_boolean done_lookup = FALSE;
3882 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3885 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3888 return const16_opcode;
3892 static xtensa_opcode
3893 get_l32r_opcode (void)
3895 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3896 static bfd_boolean done_lookup = FALSE;
3900 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3908 l32r_offset (bfd_vma addr, bfd_vma pc)
3912 offset = addr - ((pc+3) & -4);
3913 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3914 offset = (signed int) offset >> 2;
3915 BFD_ASSERT ((signed int) offset >> 16 == -1);
3921 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3923 xtensa_isa isa = xtensa_default_isa;
3924 int last_immed, last_opnd, opi;
3926 if (opcode == XTENSA_UNDEFINED)
3927 return XTENSA_UNDEFINED;
3929 /* Find the last visible PC-relative immediate operand for the opcode.
3930 If there are no PC-relative immediates, then choose the last visible
3931 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3932 last_immed = XTENSA_UNDEFINED;
3933 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3934 for (opi = last_opnd - 1; opi >= 0; opi--)
3936 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3938 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3943 if (last_immed == XTENSA_UNDEFINED
3944 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3948 return XTENSA_UNDEFINED;
3950 /* If the operand number was specified in an old-style relocation,
3951 check for consistency with the operand computed above. */
3952 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3954 int reloc_opnd = r_type - R_XTENSA_OP0;
3955 if (reloc_opnd != last_immed)
3956 return XTENSA_UNDEFINED;
3964 get_relocation_slot (int r_type)
3974 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3975 return r_type - R_XTENSA_SLOT0_OP;
3976 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3977 return r_type - R_XTENSA_SLOT0_ALT;
3981 return XTENSA_UNDEFINED;
3985 /* Get the opcode for a relocation. */
3987 static xtensa_opcode
3988 get_relocation_opcode (bfd *abfd,
3991 Elf_Internal_Rela *irel)
3993 static xtensa_insnbuf ibuff = NULL;
3994 static xtensa_insnbuf sbuff = NULL;
3995 xtensa_isa isa = xtensa_default_isa;
3999 if (contents == NULL)
4000 return XTENSA_UNDEFINED;
4002 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4003 return XTENSA_UNDEFINED;
4007 ibuff = xtensa_insnbuf_alloc (isa);
4008 sbuff = xtensa_insnbuf_alloc (isa);
4011 /* Decode the instruction. */
4012 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4013 sec->size - irel->r_offset);
4014 fmt = xtensa_format_decode (isa, ibuff);
4015 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4016 if (slot == XTENSA_UNDEFINED)
4017 return XTENSA_UNDEFINED;
4018 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4019 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4024 is_l32r_relocation (bfd *abfd,
4027 Elf_Internal_Rela *irel)
4029 xtensa_opcode opcode;
4030 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4032 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4033 return (opcode == get_l32r_opcode ());
4037 static bfd_size_type
4038 get_asm_simplify_size (bfd_byte *contents,
4039 bfd_size_type content_len,
4040 bfd_size_type offset)
4042 bfd_size_type insnlen, size = 0;
4044 /* Decode the size of the next two instructions. */
4045 insnlen = insn_decode_len (contents, content_len, offset);
4051 insnlen = insn_decode_len (contents, content_len, offset + size);
4061 is_alt_relocation (int r_type)
4063 return (r_type >= R_XTENSA_SLOT0_ALT
4064 && r_type <= R_XTENSA_SLOT14_ALT);
4069 is_operand_relocation (int r_type)
4079 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4081 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4090 #define MIN_INSN_LENGTH 2
4092 /* Return 0 if it fails to decode. */
4095 insn_decode_len (bfd_byte *contents,
4096 bfd_size_type content_len,
4097 bfd_size_type offset)
4100 xtensa_isa isa = xtensa_default_isa;
4102 static xtensa_insnbuf ibuff = NULL;
4104 if (offset + MIN_INSN_LENGTH > content_len)
4108 ibuff = xtensa_insnbuf_alloc (isa);
4109 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4110 content_len - offset);
4111 fmt = xtensa_format_decode (isa, ibuff);
4112 if (fmt == XTENSA_UNDEFINED)
4114 insn_len = xtensa_format_length (isa, fmt);
4115 if (insn_len == XTENSA_UNDEFINED)
4121 /* Decode the opcode for a single slot instruction.
4122 Return 0 if it fails to decode or the instruction is multi-slot. */
4125 insn_decode_opcode (bfd_byte *contents,
4126 bfd_size_type content_len,
4127 bfd_size_type offset,
4130 xtensa_isa isa = xtensa_default_isa;
4132 static xtensa_insnbuf insnbuf = NULL;
4133 static xtensa_insnbuf slotbuf = NULL;
4135 if (offset + MIN_INSN_LENGTH > content_len)
4136 return XTENSA_UNDEFINED;
4138 if (insnbuf == NULL)
4140 insnbuf = xtensa_insnbuf_alloc (isa);
4141 slotbuf = xtensa_insnbuf_alloc (isa);
4144 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4145 content_len - offset);
4146 fmt = xtensa_format_decode (isa, insnbuf);
4147 if (fmt == XTENSA_UNDEFINED)
4148 return XTENSA_UNDEFINED;
4150 if (slot >= xtensa_format_num_slots (isa, fmt))
4151 return XTENSA_UNDEFINED;
4153 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4154 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4158 /* The offset is the offset in the contents.
4159 The address is the address of that offset. */
4162 check_branch_target_aligned (bfd_byte *contents,
4163 bfd_size_type content_length,
4167 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4170 return check_branch_target_aligned_address (address, insn_len);
4175 check_loop_aligned (bfd_byte *contents,
4176 bfd_size_type content_length,
4180 bfd_size_type loop_len, insn_len;
4181 xtensa_opcode opcode;
4183 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4184 if (opcode == XTENSA_UNDEFINED
4185 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4191 loop_len = insn_decode_len (contents, content_length, offset);
4192 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4193 if (loop_len == 0 || insn_len == 0)
4199 return check_branch_target_aligned_address (address + loop_len, insn_len);
4204 check_branch_target_aligned_address (bfd_vma addr, int len)
4207 return (addr % 8 == 0);
4208 return ((addr >> 2) == ((addr + len - 1) >> 2));
4212 /* Instruction widening and narrowing. */
4214 /* When FLIX is available we need to access certain instructions only
4215 when they are 16-bit or 24-bit instructions. This table caches
4216 information about such instructions by walking through all the
4217 opcodes and finding the smallest single-slot format into which each
4220 static xtensa_format *op_single_fmt_table = NULL;
4224 init_op_single_format_table (void)
4226 xtensa_isa isa = xtensa_default_isa;
4227 xtensa_insnbuf ibuf;
4228 xtensa_opcode opcode;
4232 if (op_single_fmt_table)
4235 ibuf = xtensa_insnbuf_alloc (isa);
4236 num_opcodes = xtensa_isa_num_opcodes (isa);
4238 op_single_fmt_table = (xtensa_format *)
4239 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4240 for (opcode = 0; opcode < num_opcodes; opcode++)
4242 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4243 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4245 if (xtensa_format_num_slots (isa, fmt) == 1
4246 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4248 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4249 int fmt_length = xtensa_format_length (isa, fmt);
4250 if (old_fmt == XTENSA_UNDEFINED
4251 || fmt_length < xtensa_format_length (isa, old_fmt))
4252 op_single_fmt_table[opcode] = fmt;
4256 xtensa_insnbuf_free (isa, ibuf);
4260 static xtensa_format
4261 get_single_format (xtensa_opcode opcode)
4263 init_op_single_format_table ();
4264 return op_single_fmt_table[opcode];
4268 /* For the set of narrowable instructions we do NOT include the
4269 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4270 involved during linker relaxation that may require these to
4271 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4272 requires special case code to ensure it only works when op1 == op2. */
4280 struct string_pair narrowable[] =
4283 { "addi", "addi.n" },
4284 { "addmi", "addi.n" },
4285 { "l32i", "l32i.n" },
4286 { "movi", "movi.n" },
4288 { "retw", "retw.n" },
4289 { "s32i", "s32i.n" },
4290 { "or", "mov.n" } /* special case only when op1 == op2 */
4293 struct string_pair widenable[] =
4296 { "addi", "addi.n" },
4297 { "addmi", "addi.n" },
4298 { "beqz", "beqz.n" },
4299 { "bnez", "bnez.n" },
4300 { "l32i", "l32i.n" },
4301 { "movi", "movi.n" },
4303 { "retw", "retw.n" },
4304 { "s32i", "s32i.n" },
4305 { "or", "mov.n" } /* special case only when op1 == op2 */
4309 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4310 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4311 return the instruction buffer holding the narrow instruction. Otherwise,
4312 return 0. The set of valid narrowing are specified by a string table
4313 but require some special case operand checks in some cases. */
4315 static xtensa_insnbuf
4316 can_narrow_instruction (xtensa_insnbuf slotbuf,
4318 xtensa_opcode opcode)
4320 xtensa_isa isa = xtensa_default_isa;
4321 xtensa_format o_fmt;
4324 static xtensa_insnbuf o_insnbuf = NULL;
4325 static xtensa_insnbuf o_slotbuf = NULL;
4327 if (o_insnbuf == NULL)
4329 o_insnbuf = xtensa_insnbuf_alloc (isa);
4330 o_slotbuf = xtensa_insnbuf_alloc (isa);
4333 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4335 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4337 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4339 uint32 value, newval;
4340 int i, operand_count, o_operand_count;
4341 xtensa_opcode o_opcode;
4343 /* Address does not matter in this case. We might need to
4344 fix it to handle branches/jumps. */
4345 bfd_vma self_address = 0;
4347 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4348 if (o_opcode == XTENSA_UNDEFINED)
4350 o_fmt = get_single_format (o_opcode);
4351 if (o_fmt == XTENSA_UNDEFINED)
4354 if (xtensa_format_length (isa, fmt) != 3
4355 || xtensa_format_length (isa, o_fmt) != 2)
4358 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4359 operand_count = xtensa_opcode_num_operands (isa, opcode);
4360 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4362 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4367 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4372 uint32 rawval0, rawval1, rawval2;
4374 if (o_operand_count + 1 != operand_count
4375 || xtensa_operand_get_field (isa, opcode, 0,
4376 fmt, 0, slotbuf, &rawval0) != 0
4377 || xtensa_operand_get_field (isa, opcode, 1,
4378 fmt, 0, slotbuf, &rawval1) != 0
4379 || xtensa_operand_get_field (isa, opcode, 2,
4380 fmt, 0, slotbuf, &rawval2) != 0
4381 || rawval1 != rawval2
4382 || rawval0 == rawval1 /* it is a nop */)
4386 for (i = 0; i < o_operand_count; ++i)
4388 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4390 || xtensa_operand_decode (isa, opcode, i, &value))
4393 /* PC-relative branches need adjustment, but
4394 the PC-rel operand will always have a relocation. */
4396 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4398 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4399 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4404 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4414 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4415 the action in-place directly into the contents and return TRUE. Otherwise,
4416 the return value is FALSE and the contents are not modified. */
4419 narrow_instruction (bfd_byte *contents,
4420 bfd_size_type content_length,
4421 bfd_size_type offset)
4423 xtensa_opcode opcode;
4424 bfd_size_type insn_len;
4425 xtensa_isa isa = xtensa_default_isa;
4427 xtensa_insnbuf o_insnbuf;
4429 static xtensa_insnbuf insnbuf = NULL;
4430 static xtensa_insnbuf slotbuf = NULL;
4432 if (insnbuf == NULL)
4434 insnbuf = xtensa_insnbuf_alloc (isa);
4435 slotbuf = xtensa_insnbuf_alloc (isa);
4438 BFD_ASSERT (offset < content_length);
4440 if (content_length < 2)
4443 /* We will hand-code a few of these for a little while.
4444 These have all been specified in the assembler aleady. */
4445 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4446 content_length - offset);
4447 fmt = xtensa_format_decode (isa, insnbuf);
4448 if (xtensa_format_num_slots (isa, fmt) != 1)
4451 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4454 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4455 if (opcode == XTENSA_UNDEFINED)
4457 insn_len = xtensa_format_length (isa, fmt);
4458 if (insn_len > content_length)
4461 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4464 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4465 content_length - offset);
4473 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4474 "density" instruction to a standard 3-byte instruction. If it is valid,
4475 return the instruction buffer holding the wide instruction. Otherwise,
4476 return 0. The set of valid widenings are specified by a string table
4477 but require some special case operand checks in some cases. */
4479 static xtensa_insnbuf
4480 can_widen_instruction (xtensa_insnbuf slotbuf,
4482 xtensa_opcode opcode)
4484 xtensa_isa isa = xtensa_default_isa;
4485 xtensa_format o_fmt;
4488 static xtensa_insnbuf o_insnbuf = NULL;
4489 static xtensa_insnbuf o_slotbuf = NULL;
4491 if (o_insnbuf == NULL)
4493 o_insnbuf = xtensa_insnbuf_alloc (isa);
4494 o_slotbuf = xtensa_insnbuf_alloc (isa);
4497 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4499 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4500 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4501 || strcmp ("bnez", widenable[opi].wide) == 0);
4503 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4505 uint32 value, newval;
4506 int i, operand_count, o_operand_count, check_operand_count;
4507 xtensa_opcode o_opcode;
4509 /* Address does not matter in this case. We might need to fix it
4510 to handle branches/jumps. */
4511 bfd_vma self_address = 0;
4513 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4514 if (o_opcode == XTENSA_UNDEFINED)
4516 o_fmt = get_single_format (o_opcode);
4517 if (o_fmt == XTENSA_UNDEFINED)
4520 if (xtensa_format_length (isa, fmt) != 2
4521 || xtensa_format_length (isa, o_fmt) != 3)
4524 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4525 operand_count = xtensa_opcode_num_operands (isa, opcode);
4526 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4527 check_operand_count = o_operand_count;
4529 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4534 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4539 uint32 rawval0, rawval1;
4541 if (o_operand_count != operand_count + 1
4542 || xtensa_operand_get_field (isa, opcode, 0,
4543 fmt, 0, slotbuf, &rawval0) != 0
4544 || xtensa_operand_get_field (isa, opcode, 1,
4545 fmt, 0, slotbuf, &rawval1) != 0
4546 || rawval0 == rawval1 /* it is a nop */)
4550 check_operand_count--;
4552 for (i = 0; i < check_operand_count; i++)
4555 if (is_or && i == o_operand_count - 1)
4557 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4559 || xtensa_operand_decode (isa, opcode, new_i, &value))
4562 /* PC-relative branches need adjustment, but
4563 the PC-rel operand will always have a relocation. */
4565 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4567 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4568 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4573 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4583 /* Attempt to widen an instruction. If the widening is valid, perform
4584 the action in-place directly into the contents and return TRUE. Otherwise,
4585 the return value is FALSE and the contents are not modified. */
4588 widen_instruction (bfd_byte *contents,
4589 bfd_size_type content_length,
4590 bfd_size_type offset)
4592 xtensa_opcode opcode;
4593 bfd_size_type insn_len;
4594 xtensa_isa isa = xtensa_default_isa;
4596 xtensa_insnbuf o_insnbuf;
4598 static xtensa_insnbuf insnbuf = NULL;
4599 static xtensa_insnbuf slotbuf = NULL;
4601 if (insnbuf == NULL)
4603 insnbuf = xtensa_insnbuf_alloc (isa);
4604 slotbuf = xtensa_insnbuf_alloc (isa);
4607 BFD_ASSERT (offset < content_length);
4609 if (content_length < 2)
4612 /* We will hand-code a few of these for a little while.
4613 These have all been specified in the assembler aleady. */
4614 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4615 content_length - offset);
4616 fmt = xtensa_format_decode (isa, insnbuf);
4617 if (xtensa_format_num_slots (isa, fmt) != 1)
4620 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4623 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4624 if (opcode == XTENSA_UNDEFINED)
4626 insn_len = xtensa_format_length (isa, fmt);
4627 if (insn_len > content_length)
4630 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4633 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4634 content_length - offset);
4641 /* Code for transforming CALLs at link-time. */
4643 static bfd_reloc_status_type
4644 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4646 bfd_vma content_length,
4647 char **error_message)
4649 static xtensa_insnbuf insnbuf = NULL;
4650 static xtensa_insnbuf slotbuf = NULL;
4651 xtensa_format core_format = XTENSA_UNDEFINED;
4652 xtensa_opcode opcode;
4653 xtensa_opcode direct_call_opcode;
4654 xtensa_isa isa = xtensa_default_isa;
4655 bfd_byte *chbuf = contents + address;
4658 if (insnbuf == NULL)
4660 insnbuf = xtensa_insnbuf_alloc (isa);
4661 slotbuf = xtensa_insnbuf_alloc (isa);
4664 if (content_length < address)
4666 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4667 return bfd_reloc_other;
4670 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4671 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4672 if (direct_call_opcode == XTENSA_UNDEFINED)
4674 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4675 return bfd_reloc_other;
4678 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4679 core_format = xtensa_format_lookup (isa, "x24");
4680 opcode = xtensa_opcode_lookup (isa, "or");
4681 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4682 for (opn = 0; opn < 3; opn++)
4685 xtensa_operand_encode (isa, opcode, opn, ®no);
4686 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4689 xtensa_format_encode (isa, core_format, insnbuf);
4690 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4691 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4693 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4694 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4695 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4697 xtensa_format_encode (isa, core_format, insnbuf);
4698 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4699 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4700 content_length - address - 3);
4702 return bfd_reloc_ok;
4706 static bfd_reloc_status_type
4707 contract_asm_expansion (bfd_byte *contents,
4708 bfd_vma content_length,
4709 Elf_Internal_Rela *irel,
4710 char **error_message)
4712 bfd_reloc_status_type retval =
4713 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4716 if (retval != bfd_reloc_ok)
4717 return bfd_reloc_dangerous;
4719 /* Update the irel->r_offset field so that the right immediate and
4720 the right instruction are modified during the relocation. */
4721 irel->r_offset += 3;
4722 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4723 return bfd_reloc_ok;
4727 static xtensa_opcode
4728 swap_callx_for_call_opcode (xtensa_opcode opcode)
4730 init_call_opcodes ();
4732 if (opcode == callx0_op) return call0_op;
4733 if (opcode == callx4_op) return call4_op;
4734 if (opcode == callx8_op) return call8_op;
4735 if (opcode == callx12_op) return call12_op;
4737 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4738 return XTENSA_UNDEFINED;
4742 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4743 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4744 If not, return XTENSA_UNDEFINED. */
4746 #define L32R_TARGET_REG_OPERAND 0
4747 #define CONST16_TARGET_REG_OPERAND 0
4748 #define CALLN_SOURCE_OPERAND 0
4750 static xtensa_opcode
4751 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4753 static xtensa_insnbuf insnbuf = NULL;
4754 static xtensa_insnbuf slotbuf = NULL;
4756 xtensa_opcode opcode;
4757 xtensa_isa isa = xtensa_default_isa;
4758 uint32 regno, const16_regno, call_regno;
4761 if (insnbuf == NULL)
4763 insnbuf = xtensa_insnbuf_alloc (isa);
4764 slotbuf = xtensa_insnbuf_alloc (isa);
4767 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4768 fmt = xtensa_format_decode (isa, insnbuf);
4769 if (fmt == XTENSA_UNDEFINED
4770 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4771 return XTENSA_UNDEFINED;
4773 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4774 if (opcode == XTENSA_UNDEFINED)
4775 return XTENSA_UNDEFINED;
4777 if (opcode == get_l32r_opcode ())
4780 *p_uses_l32r = TRUE;
4781 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4782 fmt, 0, slotbuf, ®no)
4783 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4785 return XTENSA_UNDEFINED;
4787 else if (opcode == get_const16_opcode ())
4790 *p_uses_l32r = FALSE;
4791 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4792 fmt, 0, slotbuf, ®no)
4793 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4795 return XTENSA_UNDEFINED;
4797 /* Check that the next instruction is also CONST16. */
4798 offset += xtensa_format_length (isa, fmt);
4799 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4800 fmt = xtensa_format_decode (isa, insnbuf);
4801 if (fmt == XTENSA_UNDEFINED
4802 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4803 return XTENSA_UNDEFINED;
4804 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4805 if (opcode != get_const16_opcode ())
4806 return XTENSA_UNDEFINED;
4808 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4809 fmt, 0, slotbuf, &const16_regno)
4810 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4812 || const16_regno != regno)
4813 return XTENSA_UNDEFINED;
4816 return XTENSA_UNDEFINED;
4818 /* Next instruction should be an CALLXn with operand 0 == regno. */
4819 offset += xtensa_format_length (isa, fmt);
4820 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4821 fmt = xtensa_format_decode (isa, insnbuf);
4822 if (fmt == XTENSA_UNDEFINED
4823 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4824 return XTENSA_UNDEFINED;
4825 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4826 if (opcode == XTENSA_UNDEFINED
4827 || !is_indirect_call_opcode (opcode))
4828 return XTENSA_UNDEFINED;
4830 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4831 fmt, 0, slotbuf, &call_regno)
4832 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4834 return XTENSA_UNDEFINED;
4836 if (call_regno != regno)
4837 return XTENSA_UNDEFINED;
4843 /* Data structures used during relaxation. */
4845 /* r_reloc: relocation values. */
4847 /* Through the relaxation process, we need to keep track of the values
4848 that will result from evaluating relocations. The standard ELF
4849 relocation structure is not sufficient for this purpose because we're
4850 operating on multiple input files at once, so we need to know which
4851 input file a relocation refers to. The r_reloc structure thus
4852 records both the input file (bfd) and ELF relocation.
4854 For efficiency, an r_reloc also contains a "target_offset" field to
4855 cache the target-section-relative offset value that is represented by
4858 The r_reloc also contains a virtual offset that allows multiple
4859 inserted literals to be placed at the same "address" with
4860 different offsets. */
4862 typedef struct r_reloc_struct r_reloc;
4864 struct r_reloc_struct
4867 Elf_Internal_Rela rela;
4868 bfd_vma target_offset;
4869 bfd_vma virtual_offset;
4873 /* The r_reloc structure is included by value in literal_value, but not
4874 every literal_value has an associated relocation -- some are simple
4875 constants. In such cases, we set all the fields in the r_reloc
4876 struct to zero. The r_reloc_is_const function should be used to
4877 detect this case. */
4880 r_reloc_is_const (const r_reloc *r_rel)
4882 return (r_rel->abfd == NULL);
4887 r_reloc_get_target_offset (const r_reloc *r_rel)
4889 bfd_vma target_offset;
4890 unsigned long r_symndx;
4892 BFD_ASSERT (!r_reloc_is_const (r_rel));
4893 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4894 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4895 return (target_offset + r_rel->rela.r_addend);
4899 static struct elf_link_hash_entry *
4900 r_reloc_get_hash_entry (const r_reloc *r_rel)
4902 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4903 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4908 r_reloc_get_section (const r_reloc *r_rel)
4910 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4911 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4916 r_reloc_is_defined (const r_reloc *r_rel)
4922 sec = r_reloc_get_section (r_rel);
4923 if (sec == bfd_abs_section_ptr
4924 || sec == bfd_com_section_ptr
4925 || sec == bfd_und_section_ptr)
4932 r_reloc_init (r_reloc *r_rel,
4934 Elf_Internal_Rela *irel,
4936 bfd_size_type content_length)
4939 reloc_howto_type *howto;
4943 r_rel->rela = *irel;
4945 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4946 r_rel->virtual_offset = 0;
4947 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4948 howto = &elf_howto_table[r_type];
4949 if (howto->partial_inplace)
4951 bfd_vma inplace_val;
4952 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4954 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4955 r_rel->target_offset += inplace_val;
4959 memset (r_rel, 0, sizeof (r_reloc));
4966 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4968 if (r_reloc_is_defined (r_rel))
4970 asection *sec = r_reloc_get_section (r_rel);
4971 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4973 else if (r_reloc_get_hash_entry (r_rel))
4974 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4976 fprintf (fp, " ?? + ");
4978 fprintf_vma (fp, r_rel->target_offset);
4979 if (r_rel->virtual_offset)
4981 fprintf (fp, " + ");
4982 fprintf_vma (fp, r_rel->virtual_offset);
4991 /* source_reloc: relocations that reference literals. */
4993 /* To determine whether literals can be coalesced, we need to first
4994 record all the relocations that reference the literals. The
4995 source_reloc structure below is used for this purpose. The
4996 source_reloc entries are kept in a per-literal-section array, sorted
4997 by offset within the literal section (i.e., target offset).
4999 The source_sec and r_rel.rela.r_offset fields identify the source of
5000 the relocation. The r_rel field records the relocation value, i.e.,
5001 the offset of the literal being referenced. The opnd field is needed
5002 to determine the range of the immediate field to which the relocation
5003 applies, so we can determine whether another literal with the same
5004 value is within range. The is_null field is true when the relocation
5005 is being removed (e.g., when an L32R is being removed due to a CALLX
5006 that is converted to a direct CALL). */
5008 typedef struct source_reloc_struct source_reloc;
5010 struct source_reloc_struct
5012 asection *source_sec;
5014 xtensa_opcode opcode;
5016 bfd_boolean is_null;
5017 bfd_boolean is_abs_literal;
5022 init_source_reloc (source_reloc *reloc,
5023 asection *source_sec,
5024 const r_reloc *r_rel,
5025 xtensa_opcode opcode,
5027 bfd_boolean is_abs_literal)
5029 reloc->source_sec = source_sec;
5030 reloc->r_rel = *r_rel;
5031 reloc->opcode = opcode;
5033 reloc->is_null = FALSE;
5034 reloc->is_abs_literal = is_abs_literal;
5038 /* Find the source_reloc for a particular source offset and relocation
5039 type. Note that the array is sorted by _target_ offset, so this is
5040 just a linear search. */
5042 static source_reloc *
5043 find_source_reloc (source_reloc *src_relocs,
5046 Elf_Internal_Rela *irel)
5050 for (i = 0; i < src_count; i++)
5052 if (src_relocs[i].source_sec == sec
5053 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5054 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5055 == ELF32_R_TYPE (irel->r_info)))
5056 return &src_relocs[i];
5064 source_reloc_compare (const void *ap, const void *bp)
5066 const source_reloc *a = (const source_reloc *) ap;
5067 const source_reloc *b = (const source_reloc *) bp;
5069 if (a->r_rel.target_offset != b->r_rel.target_offset)
5070 return (a->r_rel.target_offset - b->r_rel.target_offset);
5072 /* We don't need to sort on these criteria for correctness,
5073 but enforcing a more strict ordering prevents unstable qsort
5074 from behaving differently with different implementations.
5075 Without the code below we get correct but different results
5076 on Solaris 2.7 and 2.8. We would like to always produce the
5077 same results no matter the host. */
5079 if ((!a->is_null) - (!b->is_null))
5080 return ((!a->is_null) - (!b->is_null));
5081 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5085 /* Literal values and value hash tables. */
5087 /* Literals with the same value can be coalesced. The literal_value
5088 structure records the value of a literal: the "r_rel" field holds the
5089 information from the relocation on the literal (if there is one) and
5090 the "value" field holds the contents of the literal word itself.
5092 The value_map structure records a literal value along with the
5093 location of a literal holding that value. The value_map hash table
5094 is indexed by the literal value, so that we can quickly check if a
5095 particular literal value has been seen before and is thus a candidate
5098 typedef struct literal_value_struct literal_value;
5099 typedef struct value_map_struct value_map;
5100 typedef struct value_map_hash_table_struct value_map_hash_table;
5102 struct literal_value_struct
5105 unsigned long value;
5106 bfd_boolean is_abs_literal;
5109 struct value_map_struct
5111 literal_value val; /* The literal value. */
5112 r_reloc loc; /* Location of the literal. */
5116 struct value_map_hash_table_struct
5118 unsigned bucket_count;
5119 value_map **buckets;
5121 bfd_boolean has_last_loc;
5127 init_literal_value (literal_value *lit,
5128 const r_reloc *r_rel,
5129 unsigned long value,
5130 bfd_boolean is_abs_literal)
5132 lit->r_rel = *r_rel;
5134 lit->is_abs_literal = is_abs_literal;
5139 literal_value_equal (const literal_value *src1,
5140 const literal_value *src2,
5141 bfd_boolean final_static_link)
5143 struct elf_link_hash_entry *h1, *h2;
5145 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5148 if (r_reloc_is_const (&src1->r_rel))
5149 return (src1->value == src2->value);
5151 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5152 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5155 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5158 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5161 if (src1->value != src2->value)
5164 /* Now check for the same section (if defined) or the same elf_hash
5165 (if undefined or weak). */
5166 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5167 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5168 if (r_reloc_is_defined (&src1->r_rel)
5169 && (final_static_link
5170 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5171 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5173 if (r_reloc_get_section (&src1->r_rel)
5174 != r_reloc_get_section (&src2->r_rel))
5179 /* Require that the hash entries (i.e., symbols) be identical. */
5180 if (h1 != h2 || h1 == 0)
5184 if (src1->is_abs_literal != src2->is_abs_literal)
5191 /* Must be power of 2. */
5192 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5194 static value_map_hash_table *
5195 value_map_hash_table_init (void)
5197 value_map_hash_table *values;
5199 values = (value_map_hash_table *)
5200 bfd_zmalloc (sizeof (value_map_hash_table));
5201 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5203 values->buckets = (value_map **)
5204 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5205 if (values->buckets == NULL)
5210 values->has_last_loc = FALSE;
5217 value_map_hash_table_delete (value_map_hash_table *table)
5219 free (table->buckets);
5225 hash_bfd_vma (bfd_vma val)
5227 return (val >> 2) + (val >> 10);
5232 literal_value_hash (const literal_value *src)
5236 hash_val = hash_bfd_vma (src->value);
5237 if (!r_reloc_is_const (&src->r_rel))
5241 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5242 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5243 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5245 /* Now check for the same section and the same elf_hash. */
5246 if (r_reloc_is_defined (&src->r_rel))
5247 sec_or_hash = r_reloc_get_section (&src->r_rel);
5249 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5250 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5256 /* Check if the specified literal_value has been seen before. */
5259 value_map_get_cached_value (value_map_hash_table *map,
5260 const literal_value *val,
5261 bfd_boolean final_static_link)
5267 idx = literal_value_hash (val);
5268 idx = idx & (map->bucket_count - 1);
5269 bucket = map->buckets[idx];
5270 for (map_e = bucket; map_e; map_e = map_e->next)
5272 if (literal_value_equal (&map_e->val, val, final_static_link))
5279 /* Record a new literal value. It is illegal to call this if VALUE
5280 already has an entry here. */
5283 add_value_map (value_map_hash_table *map,
5284 const literal_value *val,
5286 bfd_boolean final_static_link)
5288 value_map **bucket_p;
5291 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5294 bfd_set_error (bfd_error_no_memory);
5298 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5302 idx = literal_value_hash (val);
5303 idx = idx & (map->bucket_count - 1);
5304 bucket_p = &map->buckets[idx];
5306 val_e->next = *bucket_p;
5309 /* FIXME: Consider resizing the hash table if we get too many entries. */
5315 /* Lists of text actions (ta_) for narrowing, widening, longcall
5316 conversion, space fill, code & literal removal, etc. */
5318 /* The following text actions are generated:
5320 "ta_remove_insn" remove an instruction or instructions
5321 "ta_remove_longcall" convert longcall to call
5322 "ta_convert_longcall" convert longcall to nop/call
5323 "ta_narrow_insn" narrow a wide instruction
5324 "ta_widen" widen a narrow instruction
5325 "ta_fill" add fill or remove fill
5326 removed < 0 is a fill; branches to the fill address will be
5327 changed to address + fill size (e.g., address - removed)
5328 removed >= 0 branches to the fill address will stay unchanged
5329 "ta_remove_literal" remove a literal; this action is
5330 indicated when a literal is removed
5332 "ta_add_literal" insert a new literal; this action is
5333 indicated when a literal has been moved.
5334 It may use a virtual_offset because
5335 multiple literals can be placed at the
5338 For each of these text actions, we also record the number of bytes
5339 removed by performing the text action. In the case of a "ta_widen"
5340 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5342 typedef struct text_action_struct text_action;
5343 typedef struct text_action_list_struct text_action_list;
5344 typedef enum text_action_enum_t text_action_t;
5346 enum text_action_enum_t
5349 ta_remove_insn, /* removed = -size */
5350 ta_remove_longcall, /* removed = -size */
5351 ta_convert_longcall, /* removed = 0 */
5352 ta_narrow_insn, /* removed = -1 */
5353 ta_widen_insn, /* removed = +1 */
5354 ta_fill, /* removed = +size */
5360 /* Structure for a text action record. */
5361 struct text_action_struct
5363 text_action_t action;
5364 asection *sec; /* Optional */
5366 bfd_vma virtual_offset; /* Zero except for adding literals. */
5368 literal_value value; /* Only valid when adding literals. */
5374 /* List of all of the actions taken on a text section. */
5375 struct text_action_list_struct
5381 static text_action *
5382 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5386 /* It is not necessary to fill at the end of a section. */
5387 if (sec->size == offset)
5390 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5392 text_action *t = *m_p;
5393 /* When the action is another fill at the same address,
5394 just increase the size. */
5395 if (t->offset == offset && t->action == ta_fill)
5403 compute_removed_action_diff (const text_action *ta,
5407 int removable_space)
5410 int current_removed = 0;
5413 current_removed = ta->removed_bytes;
5415 BFD_ASSERT (ta == NULL || ta->offset == offset);
5416 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5418 /* It is not necessary to fill at the end of a section. Clean this up. */
5419 if (sec->size == offset)
5420 new_removed = removable_space - 0;
5424 int added = -removed - current_removed;
5425 /* Ignore multiples of the section alignment. */
5426 added = ((1 << sec->alignment_power) - 1) & added;
5427 new_removed = (-added);
5429 /* Modify for removable. */
5430 space = removable_space - new_removed;
5431 new_removed = (removable_space
5432 - (((1 << sec->alignment_power) - 1) & space));
5434 return (new_removed - current_removed);
5439 adjust_fill_action (text_action *ta, int fill_diff)
5441 ta->removed_bytes += fill_diff;
5445 /* Add a modification action to the text. For the case of adding or
5446 removing space, modify any current fill and assume that
5447 "unreachable_space" bytes can be freely contracted. Note that a
5448 negative removed value is a fill. */
5451 text_action_add (text_action_list *l,
5452 text_action_t action,
5460 /* It is not necessary to fill at the end of a section. */
5461 if (action == ta_fill && sec->size == offset)
5464 /* It is not necessary to fill 0 bytes. */
5465 if (action == ta_fill && removed == 0)
5468 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5470 text_action *t = *m_p;
5471 /* When the action is another fill at the same address,
5472 just increase the size. */
5473 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
5475 t->removed_bytes += removed;
5480 /* Create a new record and fill it up. */
5481 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5482 ta->action = action;
5484 ta->offset = offset;
5485 ta->removed_bytes = removed;
5492 text_action_add_literal (text_action_list *l,
5493 text_action_t action,
5495 const literal_value *value,
5500 asection *sec = r_reloc_get_section (loc);
5501 bfd_vma offset = loc->target_offset;
5502 bfd_vma virtual_offset = loc->virtual_offset;
5504 BFD_ASSERT (action == ta_add_literal);
5506 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5508 if ((*m_p)->offset > offset
5509 && ((*m_p)->offset != offset
5510 || (*m_p)->virtual_offset > virtual_offset))
5514 /* Create a new record and fill it up. */
5515 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5516 ta->action = action;
5518 ta->offset = offset;
5519 ta->virtual_offset = virtual_offset;
5521 ta->removed_bytes = removed;
5527 /* Find the total offset adjustment for the relaxations specified by
5528 text_actions, beginning from a particular starting action. This is
5529 typically used from offset_with_removed_text to search an entire list of
5530 actions, but it may also be called directly when adjusting adjacent offsets
5531 so that each search may begin where the previous one left off. */
5534 removed_by_actions (text_action **p_start_action,
5536 bfd_boolean before_fill)
5541 r = *p_start_action;
5544 if (r->offset > offset)
5547 if (r->offset == offset
5548 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5551 removed += r->removed_bytes;
5556 *p_start_action = r;
5562 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5564 text_action *r = action_list->head;
5565 return offset - removed_by_actions (&r, offset, FALSE);
5570 action_list_count (text_action_list *action_list)
5572 text_action *r = action_list->head;
5574 for (r = action_list->head; r != NULL; r = r->next)
5582 /* The find_insn_action routine will only find non-fill actions. */
5584 static text_action *
5585 find_insn_action (text_action_list *action_list, bfd_vma offset)
5588 for (t = action_list->head; t; t = t->next)
5590 if (t->offset == offset)
5597 case ta_remove_insn:
5598 case ta_remove_longcall:
5599 case ta_convert_longcall:
5600 case ta_narrow_insn:
5603 case ta_remove_literal:
5604 case ta_add_literal:
5617 print_action_list (FILE *fp, text_action_list *action_list)
5621 fprintf (fp, "Text Action\n");
5622 for (r = action_list->head; r != NULL; r = r->next)
5624 const char *t = "unknown";
5627 case ta_remove_insn:
5628 t = "remove_insn"; break;
5629 case ta_remove_longcall:
5630 t = "remove_longcall"; break;
5631 case ta_convert_longcall:
5632 t = "convert_longcall"; break;
5633 case ta_narrow_insn:
5634 t = "narrow_insn"; break;
5636 t = "widen_insn"; break;
5641 case ta_remove_literal:
5642 t = "remove_literal"; break;
5643 case ta_add_literal:
5644 t = "add_literal"; break;
5647 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5648 r->sec->owner->filename,
5649 r->sec->name, r->offset, t, r->removed_bytes);
5656 /* Lists of literals being coalesced or removed. */
5658 /* In the usual case, the literal identified by "from" is being
5659 coalesced with another literal identified by "to". If the literal is
5660 unused and is being removed altogether, "to.abfd" will be NULL.
5661 The removed_literal entries are kept on a per-section list, sorted
5662 by the "from" offset field. */
5664 typedef struct removed_literal_struct removed_literal;
5665 typedef struct removed_literal_list_struct removed_literal_list;
5667 struct removed_literal_struct
5671 removed_literal *next;
5674 struct removed_literal_list_struct
5676 removed_literal *head;
5677 removed_literal *tail;
5681 /* Record that the literal at "from" is being removed. If "to" is not
5682 NULL, the "from" literal is being coalesced with the "to" literal. */
5685 add_removed_literal (removed_literal_list *removed_list,
5686 const r_reloc *from,
5689 removed_literal *r, *new_r, *next_r;
5691 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5693 new_r->from = *from;
5697 new_r->to.abfd = NULL;
5700 r = removed_list->head;
5703 removed_list->head = new_r;
5704 removed_list->tail = new_r;
5706 /* Special check for common case of append. */
5707 else if (removed_list->tail->from.target_offset < from->target_offset)
5709 removed_list->tail->next = new_r;
5710 removed_list->tail = new_r;
5714 while (r->from.target_offset < from->target_offset && r->next)
5720 new_r->next = next_r;
5722 removed_list->tail = new_r;
5727 /* Check if the list of removed literals contains an entry for the
5728 given address. Return the entry if found. */
5730 static removed_literal *
5731 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5733 removed_literal *r = removed_list->head;
5734 while (r && r->from.target_offset < addr)
5736 if (r && r->from.target_offset == addr)
5745 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
5748 r = removed_list->head;
5750 fprintf (fp, "Removed Literals\n");
5751 for (; r != NULL; r = r->next)
5753 print_r_reloc (fp, &r->from);
5754 fprintf (fp, " => ");
5755 if (r->to.abfd == NULL)
5756 fprintf (fp, "REMOVED");
5758 print_r_reloc (fp, &r->to);
5766 /* Per-section data for relaxation. */
5768 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5770 struct xtensa_relax_info_struct
5772 bfd_boolean is_relaxable_literal_section;
5773 bfd_boolean is_relaxable_asm_section;
5774 int visited; /* Number of times visited. */
5776 source_reloc *src_relocs; /* Array[src_count]. */
5778 int src_next; /* Next src_relocs entry to assign. */
5780 removed_literal_list removed_list;
5781 text_action_list action_list;
5783 reloc_bfd_fix *fix_list;
5784 reloc_bfd_fix *fix_array;
5785 unsigned fix_array_count;
5787 /* Support for expanding the reloc array that is stored
5788 in the section structure. If the relocations have been
5789 reallocated, the newly allocated relocations will be referenced
5790 here along with the actual size allocated. The relocation
5791 count will always be found in the section structure. */
5792 Elf_Internal_Rela *allocated_relocs;
5793 unsigned relocs_count;
5794 unsigned allocated_relocs_count;
5797 struct elf_xtensa_section_data
5799 struct bfd_elf_section_data elf;
5800 xtensa_relax_info relax_info;
5805 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5807 if (!sec->used_by_bfd)
5809 struct elf_xtensa_section_data *sdata;
5810 bfd_size_type amt = sizeof (*sdata);
5812 sdata = bfd_zalloc (abfd, amt);
5815 sec->used_by_bfd = sdata;
5818 return _bfd_elf_new_section_hook (abfd, sec);
5822 static xtensa_relax_info *
5823 get_xtensa_relax_info (asection *sec)
5825 struct elf_xtensa_section_data *section_data;
5827 /* No info available if no section or if it is an output section. */
5828 if (!sec || sec == sec->output_section)
5831 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5832 return §ion_data->relax_info;
5837 init_xtensa_relax_info (asection *sec)
5839 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5841 relax_info->is_relaxable_literal_section = FALSE;
5842 relax_info->is_relaxable_asm_section = FALSE;
5843 relax_info->visited = 0;
5845 relax_info->src_relocs = NULL;
5846 relax_info->src_count = 0;
5847 relax_info->src_next = 0;
5849 relax_info->removed_list.head = NULL;
5850 relax_info->removed_list.tail = NULL;
5852 relax_info->action_list.head = NULL;
5854 relax_info->fix_list = NULL;
5855 relax_info->fix_array = NULL;
5856 relax_info->fix_array_count = 0;
5858 relax_info->allocated_relocs = NULL;
5859 relax_info->relocs_count = 0;
5860 relax_info->allocated_relocs_count = 0;
5864 /* Coalescing literals may require a relocation to refer to a section in
5865 a different input file, but the standard relocation information
5866 cannot express that. Instead, the reloc_bfd_fix structures are used
5867 to "fix" the relocations that refer to sections in other input files.
5868 These structures are kept on per-section lists. The "src_type" field
5869 records the relocation type in case there are multiple relocations on
5870 the same location. FIXME: This is ugly; an alternative might be to
5871 add new symbols with the "owner" field to some other input file. */
5873 struct reloc_bfd_fix_struct
5877 unsigned src_type; /* Relocation type. */
5879 asection *target_sec;
5880 bfd_vma target_offset;
5881 bfd_boolean translated;
5883 reloc_bfd_fix *next;
5887 static reloc_bfd_fix *
5888 reloc_bfd_fix_init (asection *src_sec,
5891 asection *target_sec,
5892 bfd_vma target_offset,
5893 bfd_boolean translated)
5897 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5898 fix->src_sec = src_sec;
5899 fix->src_offset = src_offset;
5900 fix->src_type = src_type;
5901 fix->target_sec = target_sec;
5902 fix->target_offset = target_offset;
5903 fix->translated = translated;
5910 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5912 xtensa_relax_info *relax_info;
5914 relax_info = get_xtensa_relax_info (src_sec);
5915 fix->next = relax_info->fix_list;
5916 relax_info->fix_list = fix;
5921 fix_compare (const void *ap, const void *bp)
5923 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5924 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5926 if (a->src_offset != b->src_offset)
5927 return (a->src_offset - b->src_offset);
5928 return (a->src_type - b->src_type);
5933 cache_fix_array (asection *sec)
5935 unsigned i, count = 0;
5937 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5939 if (relax_info == NULL)
5941 if (relax_info->fix_list == NULL)
5944 for (r = relax_info->fix_list; r != NULL; r = r->next)
5947 relax_info->fix_array =
5948 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5949 relax_info->fix_array_count = count;
5951 r = relax_info->fix_list;
5952 for (i = 0; i < count; i++, r = r->next)
5954 relax_info->fix_array[count - 1 - i] = *r;
5955 relax_info->fix_array[count - 1 - i].next = NULL;
5958 qsort (relax_info->fix_array, relax_info->fix_array_count,
5959 sizeof (reloc_bfd_fix), fix_compare);
5963 static reloc_bfd_fix *
5964 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
5966 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5970 if (relax_info == NULL)
5972 if (relax_info->fix_list == NULL)
5975 if (relax_info->fix_array == NULL)
5976 cache_fix_array (sec);
5978 key.src_offset = offset;
5979 key.src_type = type;
5980 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5981 sizeof (reloc_bfd_fix), fix_compare);
5986 /* Section caching. */
5988 typedef struct section_cache_struct section_cache_t;
5990 struct section_cache_struct
5994 bfd_byte *contents; /* Cache of the section contents. */
5995 bfd_size_type content_length;
5997 property_table_entry *ptbl; /* Cache of the section property table. */
6000 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6001 unsigned reloc_count;
6006 init_section_cache (section_cache_t *sec_cache)
6008 memset (sec_cache, 0, sizeof (*sec_cache));
6013 clear_section_cache (section_cache_t *sec_cache)
6017 release_contents (sec_cache->sec, sec_cache->contents);
6018 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6019 if (sec_cache->ptbl)
6020 free (sec_cache->ptbl);
6021 memset (sec_cache, 0, sizeof (sec_cache));
6027 section_cache_section (section_cache_t *sec_cache,
6029 struct bfd_link_info *link_info)
6032 property_table_entry *prop_table = NULL;
6034 bfd_byte *contents = NULL;
6035 Elf_Internal_Rela *internal_relocs = NULL;
6036 bfd_size_type sec_size;
6040 if (sec == sec_cache->sec)
6044 sec_size = bfd_get_section_limit (abfd, sec);
6046 /* Get the contents. */
6047 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6048 if (contents == NULL && sec_size != 0)
6051 /* Get the relocations. */
6052 internal_relocs = retrieve_internal_relocs (abfd, sec,
6053 link_info->keep_memory);
6055 /* Get the entry table. */
6056 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6057 XTENSA_PROP_SEC_NAME, FALSE);
6061 /* Fill in the new section cache. */
6062 clear_section_cache (sec_cache);
6063 memset (sec_cache, 0, sizeof (sec_cache));
6065 sec_cache->sec = sec;
6066 sec_cache->contents = contents;
6067 sec_cache->content_length = sec_size;
6068 sec_cache->relocs = internal_relocs;
6069 sec_cache->reloc_count = sec->reloc_count;
6070 sec_cache->pte_count = ptblsize;
6071 sec_cache->ptbl = prop_table;
6076 release_contents (sec, contents);
6077 release_internal_relocs (sec, internal_relocs);
6084 /* Extended basic blocks. */
6086 /* An ebb_struct represents an Extended Basic Block. Within this
6087 range, we guarantee that all instructions are decodable, the
6088 property table entries are contiguous, and no property table
6089 specifies a segment that cannot have instructions moved. This
6090 structure contains caches of the contents, property table and
6091 relocations for the specified section for easy use. The range is
6092 specified by ranges of indices for the byte offset, property table
6093 offsets and relocation offsets. These must be consistent. */
6095 typedef struct ebb_struct ebb_t;
6101 bfd_byte *contents; /* Cache of the section contents. */
6102 bfd_size_type content_length;
6104 property_table_entry *ptbl; /* Cache of the section property table. */
6107 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6108 unsigned reloc_count;
6110 bfd_vma start_offset; /* Offset in section. */
6111 unsigned start_ptbl_idx; /* Offset in the property table. */
6112 unsigned start_reloc_idx; /* Offset in the relocations. */
6115 unsigned end_ptbl_idx;
6116 unsigned end_reloc_idx;
6118 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6120 /* The unreachable property table at the end of this set of blocks;
6121 NULL if the end is not an unreachable block. */
6122 property_table_entry *ends_unreachable;
6126 enum ebb_target_enum
6129 EBB_DESIRE_TGT_ALIGN,
6130 EBB_REQUIRE_TGT_ALIGN,
6131 EBB_REQUIRE_LOOP_ALIGN,
6136 /* proposed_action_struct is similar to the text_action_struct except
6137 that is represents a potential transformation, not one that will
6138 occur. We build a list of these for an extended basic block
6139 and use them to compute the actual actions desired. We must be
6140 careful that the entire set of actual actions we perform do not
6141 break any relocations that would fit if the actions were not
6144 typedef struct proposed_action_struct proposed_action;
6146 struct proposed_action_struct
6148 enum ebb_target_enum align_type; /* for the target alignment */
6149 bfd_vma alignment_pow;
6150 text_action_t action;
6153 bfd_boolean do_action; /* If false, then we will not perform the action. */
6157 /* The ebb_constraint_struct keeps a set of proposed actions for an
6158 extended basic block. */
6160 typedef struct ebb_constraint_struct ebb_constraint;
6162 struct ebb_constraint_struct
6165 bfd_boolean start_movable;
6167 /* Bytes of extra space at the beginning if movable. */
6168 int start_extra_space;
6170 enum ebb_target_enum start_align;
6172 bfd_boolean end_movable;
6174 /* Bytes of extra space at the end if movable. */
6175 int end_extra_space;
6177 unsigned action_count;
6178 unsigned action_allocated;
6180 /* Array of proposed actions. */
6181 proposed_action *actions;
6183 /* Action alignments -- one for each proposed action. */
6184 enum ebb_target_enum *action_aligns;
6189 init_ebb_constraint (ebb_constraint *c)
6191 memset (c, 0, sizeof (ebb_constraint));
6196 free_ebb_constraint (ebb_constraint *c)
6204 init_ebb (ebb_t *ebb,
6207 bfd_size_type content_length,
6208 property_table_entry *prop_table,
6210 Elf_Internal_Rela *internal_relocs,
6211 unsigned reloc_count)
6213 memset (ebb, 0, sizeof (ebb_t));
6215 ebb->contents = contents;
6216 ebb->content_length = content_length;
6217 ebb->ptbl = prop_table;
6218 ebb->pte_count = ptblsize;
6219 ebb->relocs = internal_relocs;
6220 ebb->reloc_count = reloc_count;
6221 ebb->start_offset = 0;
6222 ebb->end_offset = ebb->content_length - 1;
6223 ebb->start_ptbl_idx = 0;
6224 ebb->end_ptbl_idx = ptblsize;
6225 ebb->start_reloc_idx = 0;
6226 ebb->end_reloc_idx = reloc_count;
6230 /* Extend the ebb to all decodable contiguous sections. The algorithm
6231 for building a basic block around an instruction is to push it
6232 forward until we hit the end of a section, an unreachable block or
6233 a block that cannot be transformed. Then we push it backwards
6234 searching for similar conditions. */
6236 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6237 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6238 static bfd_size_type insn_block_decodable_len
6239 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6242 extend_ebb_bounds (ebb_t *ebb)
6244 if (!extend_ebb_bounds_forward (ebb))
6246 if (!extend_ebb_bounds_backward (ebb))
6253 extend_ebb_bounds_forward (ebb_t *ebb)
6255 property_table_entry *the_entry, *new_entry;
6257 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6259 /* Stop when (1) we cannot decode an instruction, (2) we are at
6260 the end of the property tables, (3) we hit a non-contiguous property
6261 table entry, (4) we hit a NO_TRANSFORM region. */
6266 bfd_size_type insn_block_len;
6268 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6270 insn_block_decodable_len (ebb->contents, ebb->content_length,
6272 entry_end - ebb->end_offset);
6273 if (insn_block_len != (entry_end - ebb->end_offset))
6275 (*_bfd_error_handler)
6276 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6277 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6280 ebb->end_offset += insn_block_len;
6282 if (ebb->end_offset == ebb->sec->size)
6283 ebb->ends_section = TRUE;
6285 /* Update the reloc counter. */
6286 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6287 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6290 ebb->end_reloc_idx++;
6293 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6296 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6297 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6298 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6299 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6302 if (the_entry->address + the_entry->size != new_entry->address)
6305 the_entry = new_entry;
6306 ebb->end_ptbl_idx++;
6309 /* Quick check for an unreachable or end of file just at the end. */
6310 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6312 if (ebb->end_offset == ebb->content_length)
6313 ebb->ends_section = TRUE;
6317 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6318 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6319 && the_entry->address + the_entry->size == new_entry->address)
6320 ebb->ends_unreachable = new_entry;
6323 /* Any other ending requires exact alignment. */
6329 extend_ebb_bounds_backward (ebb_t *ebb)
6331 property_table_entry *the_entry, *new_entry;
6333 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6335 /* Stop when (1) we cannot decode the instructions in the current entry.
6336 (2) we are at the beginning of the property tables, (3) we hit a
6337 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6341 bfd_vma block_begin;
6342 bfd_size_type insn_block_len;
6344 block_begin = the_entry->address - ebb->sec->vma;
6346 insn_block_decodable_len (ebb->contents, ebb->content_length,
6348 ebb->start_offset - block_begin);
6349 if (insn_block_len != ebb->start_offset - block_begin)
6351 (*_bfd_error_handler)
6352 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6353 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6356 ebb->start_offset -= insn_block_len;
6358 /* Update the reloc counter. */
6359 while (ebb->start_reloc_idx > 0
6360 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6361 >= ebb->start_offset))
6363 ebb->start_reloc_idx--;
6366 if (ebb->start_ptbl_idx == 0)
6369 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6370 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6371 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6372 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6374 if (new_entry->address + new_entry->size != the_entry->address)
6377 the_entry = new_entry;
6378 ebb->start_ptbl_idx--;
6384 static bfd_size_type
6385 insn_block_decodable_len (bfd_byte *contents,
6386 bfd_size_type content_len,
6387 bfd_vma block_offset,
6388 bfd_size_type block_len)
6390 bfd_vma offset = block_offset;
6392 while (offset < block_offset + block_len)
6394 bfd_size_type insn_len = 0;
6396 insn_len = insn_decode_len (contents, content_len, offset);
6398 return (offset - block_offset);
6401 return (offset - block_offset);
6406 ebb_propose_action (ebb_constraint *c,
6407 enum ebb_target_enum align_type,
6408 bfd_vma alignment_pow,
6409 text_action_t action,
6412 bfd_boolean do_action)
6414 proposed_action *act;
6416 if (c->action_allocated <= c->action_count)
6418 unsigned new_allocated, i;
6419 proposed_action *new_actions;
6421 new_allocated = (c->action_count + 2) * 2;
6422 new_actions = (proposed_action *)
6423 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6425 for (i = 0; i < c->action_count; i++)
6426 new_actions[i] = c->actions[i];
6429 c->actions = new_actions;
6430 c->action_allocated = new_allocated;
6433 act = &c->actions[c->action_count];
6434 act->align_type = align_type;
6435 act->alignment_pow = alignment_pow;
6436 act->action = action;
6437 act->offset = offset;
6438 act->removed_bytes = removed_bytes;
6439 act->do_action = do_action;
6445 /* Access to internal relocations, section contents and symbols. */
6447 /* During relaxation, we need to modify relocations, section contents,
6448 and symbol definitions, and we need to keep the original values from
6449 being reloaded from the input files, i.e., we need to "pin" the
6450 modified values in memory. We also want to continue to observe the
6451 setting of the "keep-memory" flag. The following functions wrap the
6452 standard BFD functions to take care of this for us. */
6454 static Elf_Internal_Rela *
6455 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6457 Elf_Internal_Rela *internal_relocs;
6459 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6462 internal_relocs = elf_section_data (sec)->relocs;
6463 if (internal_relocs == NULL)
6464 internal_relocs = (_bfd_elf_link_read_relocs
6465 (abfd, sec, NULL, NULL, keep_memory));
6466 return internal_relocs;
6471 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6473 elf_section_data (sec)->relocs = internal_relocs;
6478 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6481 && elf_section_data (sec)->relocs != internal_relocs)
6482 free (internal_relocs);
6487 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6490 bfd_size_type sec_size;
6492 sec_size = bfd_get_section_limit (abfd, sec);
6493 contents = elf_section_data (sec)->this_hdr.contents;
6495 if (contents == NULL && sec_size != 0)
6497 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6504 elf_section_data (sec)->this_hdr.contents = contents;
6511 pin_contents (asection *sec, bfd_byte *contents)
6513 elf_section_data (sec)->this_hdr.contents = contents;
6518 release_contents (asection *sec, bfd_byte *contents)
6520 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6525 static Elf_Internal_Sym *
6526 retrieve_local_syms (bfd *input_bfd)
6528 Elf_Internal_Shdr *symtab_hdr;
6529 Elf_Internal_Sym *isymbuf;
6532 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6533 locsymcount = symtab_hdr->sh_info;
6535 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6536 if (isymbuf == NULL && locsymcount != 0)
6537 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6540 /* Save the symbols for this input file so they won't be read again. */
6541 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6542 symtab_hdr->contents = (unsigned char *) isymbuf;
6548 /* Code for link-time relaxation. */
6550 /* Initialization for relaxation: */
6551 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6552 static bfd_boolean find_relaxable_sections
6553 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6554 static bfd_boolean collect_source_relocs
6555 (bfd *, asection *, struct bfd_link_info *);
6556 static bfd_boolean is_resolvable_asm_expansion
6557 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6559 static Elf_Internal_Rela *find_associated_l32r_irel
6560 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6561 static bfd_boolean compute_text_actions
6562 (bfd *, asection *, struct bfd_link_info *);
6563 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6564 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6565 static bfd_boolean check_section_ebb_pcrels_fit
6566 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
6567 const xtensa_opcode *);
6568 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6569 static void text_action_add_proposed
6570 (text_action_list *, const ebb_constraint *, asection *);
6571 static int compute_fill_extra_space (property_table_entry *);
6574 static bfd_boolean compute_removed_literals
6575 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6576 static Elf_Internal_Rela *get_irel_at_offset
6577 (asection *, Elf_Internal_Rela *, bfd_vma);
6578 static bfd_boolean is_removable_literal
6579 (const source_reloc *, int, const source_reloc *, int, asection *,
6580 property_table_entry *, int);
6581 static bfd_boolean remove_dead_literal
6582 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6583 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6584 static bfd_boolean identify_literal_placement
6585 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6586 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6587 source_reloc *, property_table_entry *, int, section_cache_t *,
6589 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6590 static bfd_boolean coalesce_shared_literal
6591 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6592 static bfd_boolean move_shared_literal
6593 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6594 int, const r_reloc *, const literal_value *, section_cache_t *);
6597 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6598 static bfd_boolean translate_section_fixes (asection *);
6599 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6600 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6601 static void shrink_dynamic_reloc_sections
6602 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6603 static bfd_boolean move_literal
6604 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6605 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6606 static bfd_boolean relax_property_section
6607 (bfd *, asection *, struct bfd_link_info *);
6610 static bfd_boolean relax_section_symbols (bfd *, asection *);
6614 elf_xtensa_relax_section (bfd *abfd,
6616 struct bfd_link_info *link_info,
6619 static value_map_hash_table *values = NULL;
6620 static bfd_boolean relocations_analyzed = FALSE;
6621 xtensa_relax_info *relax_info;
6623 if (!relocations_analyzed)
6625 /* Do some overall initialization for relaxation. */
6626 values = value_map_hash_table_init ();
6629 relaxing_section = TRUE;
6630 if (!analyze_relocations (link_info))
6632 relocations_analyzed = TRUE;
6636 /* Don't mess with linker-created sections. */
6637 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6640 relax_info = get_xtensa_relax_info (sec);
6641 BFD_ASSERT (relax_info != NULL);
6643 switch (relax_info->visited)
6646 /* Note: It would be nice to fold this pass into
6647 analyze_relocations, but it is important for this step that the
6648 sections be examined in link order. */
6649 if (!compute_removed_literals (abfd, sec, link_info, values))
6656 value_map_hash_table_delete (values);
6658 if (!relax_section (abfd, sec, link_info))
6664 if (!relax_section_symbols (abfd, sec))
6669 relax_info->visited++;
6674 /* Initialization for relaxation. */
6676 /* This function is called once at the start of relaxation. It scans
6677 all the input sections and marks the ones that are relaxable (i.e.,
6678 literal sections with L32R relocations against them), and then
6679 collects source_reloc information for all the relocations against
6680 those relaxable sections. During this process, it also detects
6681 longcalls, i.e., calls relaxed by the assembler into indirect
6682 calls, that can be optimized back into direct calls. Within each
6683 extended basic block (ebb) containing an optimized longcall, it
6684 computes a set of "text actions" that can be performed to remove
6685 the L32R associated with the longcall while optionally preserving
6686 branch target alignments. */
6689 analyze_relocations (struct bfd_link_info *link_info)
6693 bfd_boolean is_relaxable = FALSE;
6695 /* Initialize the per-section relaxation info. */
6696 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6697 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6699 init_xtensa_relax_info (sec);
6702 /* Mark relaxable sections (and count relocations against each one). */
6703 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6704 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6706 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6710 /* Bail out if there are no relaxable sections. */
6714 /* Allocate space for source_relocs. */
6715 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6716 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6718 xtensa_relax_info *relax_info;
6720 relax_info = get_xtensa_relax_info (sec);
6721 if (relax_info->is_relaxable_literal_section
6722 || relax_info->is_relaxable_asm_section)
6724 relax_info->src_relocs = (source_reloc *)
6725 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6728 relax_info->src_count = 0;
6731 /* Collect info on relocations against each relaxable section. */
6732 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6733 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6735 if (!collect_source_relocs (abfd, sec, link_info))
6739 /* Compute the text actions. */
6740 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6741 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6743 if (!compute_text_actions (abfd, sec, link_info))
6751 /* Find all the sections that might be relaxed. The motivation for
6752 this pass is that collect_source_relocs() needs to record _all_ the
6753 relocations that target each relaxable section. That is expensive
6754 and unnecessary unless the target section is actually going to be
6755 relaxed. This pass identifies all such sections by checking if
6756 they have L32Rs pointing to them. In the process, the total number
6757 of relocations targeting each section is also counted so that we
6758 know how much space to allocate for source_relocs against each
6759 relaxable literal section. */
6762 find_relaxable_sections (bfd *abfd,
6764 struct bfd_link_info *link_info,
6765 bfd_boolean *is_relaxable_p)
6767 Elf_Internal_Rela *internal_relocs;
6769 bfd_boolean ok = TRUE;
6771 xtensa_relax_info *source_relax_info;
6772 bfd_boolean is_l32r_reloc;
6774 internal_relocs = retrieve_internal_relocs (abfd, sec,
6775 link_info->keep_memory);
6776 if (internal_relocs == NULL)
6779 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6780 if (contents == NULL && sec->size != 0)
6786 source_relax_info = get_xtensa_relax_info (sec);
6787 for (i = 0; i < sec->reloc_count; i++)
6789 Elf_Internal_Rela *irel = &internal_relocs[i];
6791 asection *target_sec;
6792 xtensa_relax_info *target_relax_info;
6794 /* If this section has not already been marked as "relaxable", and
6795 if it contains any ASM_EXPAND relocations (marking expanded
6796 longcalls) that can be optimized into direct calls, then mark
6797 the section as "relaxable". */
6798 if (source_relax_info
6799 && !source_relax_info->is_relaxable_asm_section
6800 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6802 bfd_boolean is_reachable = FALSE;
6803 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6804 link_info, &is_reachable)
6807 source_relax_info->is_relaxable_asm_section = TRUE;
6808 *is_relaxable_p = TRUE;
6812 r_reloc_init (&r_rel, abfd, irel, contents,
6813 bfd_get_section_limit (abfd, sec));
6815 target_sec = r_reloc_get_section (&r_rel);
6816 target_relax_info = get_xtensa_relax_info (target_sec);
6817 if (!target_relax_info)
6820 /* Count PC-relative operand relocations against the target section.
6821 Note: The conditions tested here must match the conditions under
6822 which init_source_reloc is called in collect_source_relocs(). */
6823 is_l32r_reloc = FALSE;
6824 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6826 xtensa_opcode opcode =
6827 get_relocation_opcode (abfd, sec, contents, irel);
6828 if (opcode != XTENSA_UNDEFINED)
6830 is_l32r_reloc = (opcode == get_l32r_opcode ());
6831 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6833 target_relax_info->src_count++;
6837 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6839 /* Mark the target section as relaxable. */
6840 target_relax_info->is_relaxable_literal_section = TRUE;
6841 *is_relaxable_p = TRUE;
6846 release_contents (sec, contents);
6847 release_internal_relocs (sec, internal_relocs);
6852 /* Record _all_ the relocations that point to relaxable sections, and
6853 get rid of ASM_EXPAND relocs by either converting them to
6854 ASM_SIMPLIFY or by removing them. */
6857 collect_source_relocs (bfd *abfd,
6859 struct bfd_link_info *link_info)
6861 Elf_Internal_Rela *internal_relocs;
6863 bfd_boolean ok = TRUE;
6865 bfd_size_type sec_size;
6867 internal_relocs = retrieve_internal_relocs (abfd, sec,
6868 link_info->keep_memory);
6869 if (internal_relocs == NULL)
6872 sec_size = bfd_get_section_limit (abfd, sec);
6873 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6874 if (contents == NULL && sec_size != 0)
6880 /* Record relocations against relaxable literal sections. */
6881 for (i = 0; i < sec->reloc_count; i++)
6883 Elf_Internal_Rela *irel = &internal_relocs[i];
6885 asection *target_sec;
6886 xtensa_relax_info *target_relax_info;
6888 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6890 target_sec = r_reloc_get_section (&r_rel);
6891 target_relax_info = get_xtensa_relax_info (target_sec);
6893 if (target_relax_info
6894 && (target_relax_info->is_relaxable_literal_section
6895 || target_relax_info->is_relaxable_asm_section))
6897 xtensa_opcode opcode = XTENSA_UNDEFINED;
6899 bfd_boolean is_abs_literal = FALSE;
6901 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6903 /* None of the current alternate relocs are PC-relative,
6904 and only PC-relative relocs matter here. However, we
6905 still need to record the opcode for literal
6907 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6908 if (opcode == get_l32r_opcode ())
6910 is_abs_literal = TRUE;
6914 opcode = XTENSA_UNDEFINED;
6916 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6918 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6919 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6922 if (opcode != XTENSA_UNDEFINED)
6924 int src_next = target_relax_info->src_next++;
6925 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6927 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6933 /* Now get rid of ASM_EXPAND relocations. At this point, the
6934 src_relocs array for the target literal section may still be
6935 incomplete, but it must at least contain the entries for the L32R
6936 relocations associated with ASM_EXPANDs because they were just
6937 added in the preceding loop over the relocations. */
6939 for (i = 0; i < sec->reloc_count; i++)
6941 Elf_Internal_Rela *irel = &internal_relocs[i];
6942 bfd_boolean is_reachable;
6944 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6950 Elf_Internal_Rela *l32r_irel;
6952 asection *target_sec;
6953 xtensa_relax_info *target_relax_info;
6955 /* Mark the source_reloc for the L32R so that it will be
6956 removed in compute_removed_literals(), along with the
6957 associated literal. */
6958 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6959 irel, internal_relocs);
6960 if (l32r_irel == NULL)
6963 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6965 target_sec = r_reloc_get_section (&r_rel);
6966 target_relax_info = get_xtensa_relax_info (target_sec);
6968 if (target_relax_info
6969 && (target_relax_info->is_relaxable_literal_section
6970 || target_relax_info->is_relaxable_asm_section))
6972 source_reloc *s_reloc;
6974 /* Search the source_relocs for the entry corresponding to
6975 the l32r_irel. Note: The src_relocs array is not yet
6976 sorted, but it wouldn't matter anyway because we're
6977 searching by source offset instead of target offset. */
6978 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6979 target_relax_info->src_next,
6981 BFD_ASSERT (s_reloc);
6982 s_reloc->is_null = TRUE;
6985 /* Convert this reloc to ASM_SIMPLIFY. */
6986 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6987 R_XTENSA_ASM_SIMPLIFY);
6988 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6990 pin_internal_relocs (sec, internal_relocs);
6994 /* It is resolvable but doesn't reach. We resolve now
6995 by eliminating the relocation -- the call will remain
6996 expanded into L32R/CALLX. */
6997 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6998 pin_internal_relocs (sec, internal_relocs);
7003 release_contents (sec, contents);
7004 release_internal_relocs (sec, internal_relocs);
7009 /* Return TRUE if the asm expansion can be resolved. Generally it can
7010 be resolved on a final link or when a partial link locates it in the
7011 same section as the target. Set "is_reachable" flag if the target of
7012 the call is within the range of a direct call, given the current VMA
7013 for this section and the target section. */
7016 is_resolvable_asm_expansion (bfd *abfd,
7019 Elf_Internal_Rela *irel,
7020 struct bfd_link_info *link_info,
7021 bfd_boolean *is_reachable_p)
7023 asection *target_sec;
7024 bfd_vma target_offset;
7026 xtensa_opcode opcode, direct_call_opcode;
7027 bfd_vma self_address;
7028 bfd_vma dest_address;
7029 bfd_boolean uses_l32r;
7030 bfd_size_type sec_size;
7032 *is_reachable_p = FALSE;
7034 if (contents == NULL)
7037 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7040 sec_size = bfd_get_section_limit (abfd, sec);
7041 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7042 sec_size - irel->r_offset, &uses_l32r);
7043 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7047 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7048 if (direct_call_opcode == XTENSA_UNDEFINED)
7051 /* Check and see that the target resolves. */
7052 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7053 if (!r_reloc_is_defined (&r_rel))
7056 target_sec = r_reloc_get_section (&r_rel);
7057 target_offset = r_rel.target_offset;
7059 /* If the target is in a shared library, then it doesn't reach. This
7060 isn't supposed to come up because the compiler should never generate
7061 non-PIC calls on systems that use shared libraries, but the linker
7062 shouldn't crash regardless. */
7063 if (!target_sec->output_section)
7066 /* For relocatable sections, we can only simplify when the output
7067 section of the target is the same as the output section of the
7069 if (link_info->relocatable
7070 && (target_sec->output_section != sec->output_section
7071 || is_reloc_sym_weak (abfd, irel)))
7074 self_address = (sec->output_section->vma
7075 + sec->output_offset + irel->r_offset + 3);
7076 dest_address = (target_sec->output_section->vma
7077 + target_sec->output_offset + target_offset);
7079 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7080 self_address, dest_address);
7082 if ((self_address >> CALL_SEGMENT_BITS) !=
7083 (dest_address >> CALL_SEGMENT_BITS))
7090 static Elf_Internal_Rela *
7091 find_associated_l32r_irel (bfd *abfd,
7094 Elf_Internal_Rela *other_irel,
7095 Elf_Internal_Rela *internal_relocs)
7099 for (i = 0; i < sec->reloc_count; i++)
7101 Elf_Internal_Rela *irel = &internal_relocs[i];
7103 if (irel == other_irel)
7105 if (irel->r_offset != other_irel->r_offset)
7107 if (is_l32r_relocation (abfd, sec, contents, irel))
7115 static xtensa_opcode *
7116 build_reloc_opcodes (bfd *abfd,
7119 Elf_Internal_Rela *internal_relocs)
7122 xtensa_opcode *reloc_opcodes =
7123 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7124 for (i = 0; i < sec->reloc_count; i++)
7126 Elf_Internal_Rela *irel = &internal_relocs[i];
7127 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7129 return reloc_opcodes;
7133 /* The compute_text_actions function will build a list of potential
7134 transformation actions for code in the extended basic block of each
7135 longcall that is optimized to a direct call. From this list we
7136 generate a set of actions to actually perform that optimizes for
7137 space and, if not using size_opt, maintains branch target
7140 These actions to be performed are placed on a per-section list.
7141 The actual changes are performed by relax_section() in the second
7145 compute_text_actions (bfd *abfd,
7147 struct bfd_link_info *link_info)
7149 xtensa_opcode *reloc_opcodes = NULL;
7150 xtensa_relax_info *relax_info;
7152 Elf_Internal_Rela *internal_relocs;
7153 bfd_boolean ok = TRUE;
7155 property_table_entry *prop_table = 0;
7157 bfd_size_type sec_size;
7159 relax_info = get_xtensa_relax_info (sec);
7160 BFD_ASSERT (relax_info);
7161 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7163 /* Do nothing if the section contains no optimized longcalls. */
7164 if (!relax_info->is_relaxable_asm_section)
7167 internal_relocs = retrieve_internal_relocs (abfd, sec,
7168 link_info->keep_memory);
7170 if (internal_relocs)
7171 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7172 internal_reloc_compare);
7174 sec_size = bfd_get_section_limit (abfd, sec);
7175 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7176 if (contents == NULL && sec_size != 0)
7182 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7183 XTENSA_PROP_SEC_NAME, FALSE);
7190 for (i = 0; i < sec->reloc_count; i++)
7192 Elf_Internal_Rela *irel = &internal_relocs[i];
7194 property_table_entry *the_entry;
7197 ebb_constraint ebb_table;
7198 bfd_size_type simplify_size;
7200 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7202 r_offset = irel->r_offset;
7204 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7205 if (simplify_size == 0)
7207 (*_bfd_error_handler)
7208 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7209 sec->owner, sec, r_offset);
7213 /* If the instruction table is not around, then don't do this
7215 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7216 sec->vma + irel->r_offset);
7217 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7219 text_action_add (&relax_info->action_list,
7220 ta_convert_longcall, sec, r_offset,
7225 /* If the next longcall happens to be at the same address as an
7226 unreachable section of size 0, then skip forward. */
7227 ptbl_idx = the_entry - prop_table;
7228 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7229 && the_entry->size == 0
7230 && ptbl_idx + 1 < ptblsize
7231 && (prop_table[ptbl_idx + 1].address
7232 == prop_table[ptbl_idx].address))
7238 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7239 /* NO_REORDER is OK */
7242 init_ebb_constraint (&ebb_table);
7243 ebb = &ebb_table.ebb;
7244 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7245 internal_relocs, sec->reloc_count);
7246 ebb->start_offset = r_offset + simplify_size;
7247 ebb->end_offset = r_offset + simplify_size;
7248 ebb->start_ptbl_idx = ptbl_idx;
7249 ebb->end_ptbl_idx = ptbl_idx;
7250 ebb->start_reloc_idx = i;
7251 ebb->end_reloc_idx = i;
7253 /* Precompute the opcode for each relocation. */
7254 if (reloc_opcodes == NULL)
7255 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
7258 if (!extend_ebb_bounds (ebb)
7259 || !compute_ebb_proposed_actions (&ebb_table)
7260 || !compute_ebb_actions (&ebb_table)
7261 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7262 internal_relocs, &ebb_table,
7264 || !check_section_ebb_reduces (&ebb_table))
7266 /* If anything goes wrong or we get unlucky and something does
7267 not fit, with our plan because of expansion between
7268 critical branches, just convert to a NOP. */
7270 text_action_add (&relax_info->action_list,
7271 ta_convert_longcall, sec, r_offset, 0);
7272 i = ebb_table.ebb.end_reloc_idx;
7273 free_ebb_constraint (&ebb_table);
7277 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7279 /* Update the index so we do not go looking at the relocations
7280 we have already processed. */
7281 i = ebb_table.ebb.end_reloc_idx;
7282 free_ebb_constraint (&ebb_table);
7286 if (relax_info->action_list.head)
7287 print_action_list (stderr, &relax_info->action_list);
7291 release_contents (sec, contents);
7292 release_internal_relocs (sec, internal_relocs);
7296 free (reloc_opcodes);
7302 /* Do not widen an instruction if it is preceeded by a
7303 loop opcode. It might cause misalignment. */
7306 prev_instr_is_a_loop (bfd_byte *contents,
7307 bfd_size_type content_length,
7308 bfd_size_type offset)
7310 xtensa_opcode prev_opcode;
7314 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7315 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7319 /* Find all of the possible actions for an extended basic block. */
7322 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7324 const ebb_t *ebb = &ebb_table->ebb;
7325 unsigned rel_idx = ebb->start_reloc_idx;
7326 property_table_entry *entry, *start_entry, *end_entry;
7328 xtensa_isa isa = xtensa_default_isa;
7330 static xtensa_insnbuf insnbuf = NULL;
7331 static xtensa_insnbuf slotbuf = NULL;
7333 if (insnbuf == NULL)
7335 insnbuf = xtensa_insnbuf_alloc (isa);
7336 slotbuf = xtensa_insnbuf_alloc (isa);
7339 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7340 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7342 for (entry = start_entry; entry <= end_entry; entry++)
7344 bfd_vma start_offset, end_offset;
7345 bfd_size_type insn_len;
7347 start_offset = entry->address - ebb->sec->vma;
7348 end_offset = entry->address + entry->size - ebb->sec->vma;
7350 if (entry == start_entry)
7351 start_offset = ebb->start_offset;
7352 if (entry == end_entry)
7353 end_offset = ebb->end_offset;
7354 offset = start_offset;
7356 if (offset == entry->address - ebb->sec->vma
7357 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7359 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7360 BFD_ASSERT (offset != end_offset);
7361 if (offset == end_offset)
7364 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7369 if (check_branch_target_aligned_address (offset, insn_len))
7370 align_type = EBB_REQUIRE_TGT_ALIGN;
7372 ebb_propose_action (ebb_table, align_type, 0,
7373 ta_none, offset, 0, TRUE);
7376 while (offset != end_offset)
7378 Elf_Internal_Rela *irel;
7379 xtensa_opcode opcode;
7381 while (rel_idx < ebb->end_reloc_idx
7382 && (ebb->relocs[rel_idx].r_offset < offset
7383 || (ebb->relocs[rel_idx].r_offset == offset
7384 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7385 != R_XTENSA_ASM_SIMPLIFY))))
7388 /* Check for longcall. */
7389 irel = &ebb->relocs[rel_idx];
7390 if (irel->r_offset == offset
7391 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7393 bfd_size_type simplify_size;
7395 simplify_size = get_asm_simplify_size (ebb->contents,
7396 ebb->content_length,
7398 if (simplify_size == 0)
7401 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7402 ta_convert_longcall, offset, 0, TRUE);
7404 offset += simplify_size;
7408 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7410 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7411 ebb->content_length - offset);
7412 fmt = xtensa_format_decode (isa, insnbuf);
7413 if (fmt == XTENSA_UNDEFINED)
7415 insn_len = xtensa_format_length (isa, fmt);
7416 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7419 if (xtensa_format_num_slots (isa, fmt) != 1)
7425 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7426 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7427 if (opcode == XTENSA_UNDEFINED)
7430 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7431 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7432 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7434 /* Add an instruction narrow action. */
7435 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7436 ta_narrow_insn, offset, 0, FALSE);
7438 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7439 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7440 && ! prev_instr_is_a_loop (ebb->contents,
7441 ebb->content_length, offset))
7443 /* Add an instruction widen action. */
7444 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7445 ta_widen_insn, offset, 0, FALSE);
7447 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7449 /* Check for branch targets. */
7450 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7451 ta_none, offset, 0, TRUE);
7458 if (ebb->ends_unreachable)
7460 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7461 ta_fill, ebb->end_offset, 0, TRUE);
7467 (*_bfd_error_handler)
7468 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7469 ebb->sec->owner, ebb->sec, offset);
7474 /* After all of the information has collected about the
7475 transformations possible in an EBB, compute the appropriate actions
7476 here in compute_ebb_actions. We still must check later to make
7477 sure that the actions do not break any relocations. The algorithm
7478 used here is pretty greedy. Basically, it removes as many no-ops
7479 as possible so that the end of the EBB has the same alignment
7480 characteristics as the original. First, it uses narrowing, then
7481 fill space at the end of the EBB, and finally widenings. If that
7482 does not work, it tries again with one fewer no-op removed. The
7483 optimization will only be performed if all of the branch targets
7484 that were aligned before transformation are also aligned after the
7487 When the size_opt flag is set, ignore the branch target alignments,
7488 narrow all wide instructions, and remove all no-ops unless the end
7489 of the EBB prevents it. */
7492 compute_ebb_actions (ebb_constraint *ebb_table)
7496 int removed_bytes = 0;
7497 ebb_t *ebb = &ebb_table->ebb;
7498 unsigned seg_idx_start = 0;
7499 unsigned seg_idx_end = 0;
7501 /* We perform this like the assembler relaxation algorithm: Start by
7502 assuming all instructions are narrow and all no-ops removed; then
7505 /* For each segment of this that has a solid constraint, check to
7506 see if there are any combinations that will keep the constraint.
7508 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
7510 bfd_boolean requires_text_end_align = FALSE;
7511 unsigned longcall_count = 0;
7512 unsigned longcall_convert_count = 0;
7513 unsigned narrowable_count = 0;
7514 unsigned narrowable_convert_count = 0;
7515 unsigned widenable_count = 0;
7516 unsigned widenable_convert_count = 0;
7518 proposed_action *action = NULL;
7519 int align = (1 << ebb_table->ebb.sec->alignment_power);
7521 seg_idx_start = seg_idx_end;
7523 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7525 action = &ebb_table->actions[i];
7526 if (action->action == ta_convert_longcall)
7528 if (action->action == ta_narrow_insn)
7530 if (action->action == ta_widen_insn)
7532 if (action->action == ta_fill)
7534 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7536 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7537 && !elf32xtensa_size_opt)
7542 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7543 requires_text_end_align = TRUE;
7545 if (elf32xtensa_size_opt && !requires_text_end_align
7546 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7547 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7549 longcall_convert_count = longcall_count;
7550 narrowable_convert_count = narrowable_count;
7551 widenable_convert_count = 0;
7555 /* There is a constraint. Convert the max number of longcalls. */
7556 narrowable_convert_count = 0;
7557 longcall_convert_count = 0;
7558 widenable_convert_count = 0;
7560 for (j = 0; j < longcall_count; j++)
7562 int removed = (longcall_count - j) * 3 & (align - 1);
7563 unsigned desire_narrow = (align - removed) & (align - 1);
7564 unsigned desire_widen = removed;
7565 if (desire_narrow <= narrowable_count)
7567 narrowable_convert_count = desire_narrow;
7568 narrowable_convert_count +=
7569 (align * ((narrowable_count - narrowable_convert_count)
7571 longcall_convert_count = (longcall_count - j);
7572 widenable_convert_count = 0;
7575 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7577 narrowable_convert_count = 0;
7578 longcall_convert_count = longcall_count - j;
7579 widenable_convert_count = desire_widen;
7585 /* Now the number of conversions are saved. Do them. */
7586 for (i = seg_idx_start; i < seg_idx_end; i++)
7588 action = &ebb_table->actions[i];
7589 switch (action->action)
7591 case ta_convert_longcall:
7592 if (longcall_convert_count != 0)
7594 action->action = ta_remove_longcall;
7595 action->do_action = TRUE;
7596 action->removed_bytes += 3;
7597 longcall_convert_count--;
7600 case ta_narrow_insn:
7601 if (narrowable_convert_count != 0)
7603 action->do_action = TRUE;
7604 action->removed_bytes += 1;
7605 narrowable_convert_count--;
7609 if (widenable_convert_count != 0)
7611 action->do_action = TRUE;
7612 action->removed_bytes -= 1;
7613 widenable_convert_count--;
7622 /* Now we move on to some local opts. Try to remove each of the
7623 remaining longcalls. */
7625 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
7628 for (i = 0; i < ebb_table->action_count; i++)
7630 int old_removed_bytes = removed_bytes;
7631 proposed_action *action = &ebb_table->actions[i];
7633 if (action->do_action && action->action == ta_convert_longcall)
7635 bfd_boolean bad_alignment = FALSE;
7637 for (j = i + 1; j < ebb_table->action_count; j++)
7639 proposed_action *new_action = &ebb_table->actions[j];
7640 bfd_vma offset = new_action->offset;
7641 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
7643 if (!check_branch_target_aligned
7644 (ebb_table->ebb.contents,
7645 ebb_table->ebb.content_length,
7646 offset, offset - removed_bytes))
7648 bad_alignment = TRUE;
7652 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7654 if (!check_loop_aligned (ebb_table->ebb.contents,
7655 ebb_table->ebb.content_length,
7657 offset - removed_bytes))
7659 bad_alignment = TRUE;
7663 if (new_action->action == ta_narrow_insn
7664 && !new_action->do_action
7665 && ebb_table->ebb.sec->alignment_power == 2)
7667 /* Narrow an instruction and we are done. */
7668 new_action->do_action = TRUE;
7669 new_action->removed_bytes += 1;
7670 bad_alignment = FALSE;
7673 if (new_action->action == ta_widen_insn
7674 && new_action->do_action
7675 && ebb_table->ebb.sec->alignment_power == 2)
7677 /* Narrow an instruction and we are done. */
7678 new_action->do_action = FALSE;
7679 new_action->removed_bytes += 1;
7680 bad_alignment = FALSE;
7683 if (new_action->do_action)
7684 removed_bytes += new_action->removed_bytes;
7688 action->removed_bytes += 3;
7689 action->action = ta_remove_longcall;
7690 action->do_action = TRUE;
7693 removed_bytes = old_removed_bytes;
7694 if (action->do_action)
7695 removed_bytes += action->removed_bytes;
7700 for (i = 0; i < ebb_table->action_count; ++i)
7702 proposed_action *action = &ebb_table->actions[i];
7703 if (action->do_action)
7704 removed_bytes += action->removed_bytes;
7707 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
7708 && ebb->ends_unreachable)
7710 proposed_action *action;
7714 BFD_ASSERT (ebb_table->action_count != 0);
7715 action = &ebb_table->actions[ebb_table->action_count - 1];
7716 BFD_ASSERT (action->action == ta_fill);
7717 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
7719 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
7720 br = action->removed_bytes + removed_bytes + extra_space;
7721 br = br & ((1 << ebb->sec->alignment_power ) - 1);
7723 action->removed_bytes = extra_space - br;
7729 /* The xlate_map is a sorted array of address mappings designed to
7730 answer the offset_with_removed_text() query with a binary search instead
7731 of a linear search through the section's action_list. */
7733 typedef struct xlate_map_entry xlate_map_entry_t;
7734 typedef struct xlate_map xlate_map_t;
7736 struct xlate_map_entry
7738 unsigned orig_address;
7739 unsigned new_address;
7745 unsigned entry_count;
7746 xlate_map_entry_t *entry;
7751 xlate_compare (const void *a_v, const void *b_v)
7753 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
7754 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7755 if (a->orig_address < b->orig_address)
7757 if (a->orig_address > (b->orig_address + b->size - 1))
7764 xlate_offset_with_removed_text (const xlate_map_t *map,
7765 text_action_list *action_list,
7768 xlate_map_entry_t tmp;
7770 xlate_map_entry_t *e;
7773 return offset_with_removed_text (action_list, offset);
7775 if (map->entry_count == 0)
7778 tmp.orig_address = offset;
7779 tmp.new_address = offset;
7782 r = bsearch (&offset, map->entry, map->entry_count,
7783 sizeof (xlate_map_entry_t), &xlate_compare);
7784 e = (xlate_map_entry_t *) r;
7786 BFD_ASSERT (e != NULL);
7789 return e->new_address - e->orig_address + offset;
7793 /* Build a binary searchable offset translation map from a section's
7796 static xlate_map_t *
7797 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7799 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7800 text_action_list *action_list = &relax_info->action_list;
7801 unsigned num_actions = 0;
7804 xlate_map_entry_t *current_entry;
7809 num_actions = action_list_count (action_list);
7810 map->entry = (xlate_map_entry_t *)
7811 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7812 if (map->entry == NULL)
7817 map->entry_count = 0;
7820 current_entry = &map->entry[0];
7822 current_entry->orig_address = 0;
7823 current_entry->new_address = 0;
7824 current_entry->size = 0;
7826 for (r = action_list->head; r != NULL; r = r->next)
7828 unsigned orig_size = 0;
7832 case ta_remove_insn:
7833 case ta_convert_longcall:
7834 case ta_remove_literal:
7835 case ta_add_literal:
7837 case ta_remove_longcall:
7840 case ta_narrow_insn:
7849 current_entry->size =
7850 r->offset + orig_size - current_entry->orig_address;
7851 if (current_entry->size != 0)
7856 current_entry->orig_address = r->offset + orig_size;
7857 removed += r->removed_bytes;
7858 current_entry->new_address = r->offset + orig_size - removed;
7859 current_entry->size = 0;
7862 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7863 - current_entry->orig_address);
7864 if (current_entry->size != 0)
7871 /* Free an offset translation map. */
7874 free_xlate_map (xlate_map_t *map)
7876 if (map && map->entry)
7883 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7884 relocations in a section will fit if a proposed set of actions
7888 check_section_ebb_pcrels_fit (bfd *abfd,
7891 Elf_Internal_Rela *internal_relocs,
7892 const ebb_constraint *constraint,
7893 const xtensa_opcode *reloc_opcodes)
7896 Elf_Internal_Rela *irel;
7897 xlate_map_t *xmap = NULL;
7898 bfd_boolean ok = TRUE;
7899 xtensa_relax_info *relax_info;
7901 relax_info = get_xtensa_relax_info (sec);
7903 if (relax_info && sec->reloc_count > 100)
7905 xmap = build_xlate_map (sec, relax_info);
7906 /* NULL indicates out of memory, but the slow version
7907 can still be used. */
7910 for (i = 0; i < sec->reloc_count; i++)
7913 bfd_vma orig_self_offset, orig_target_offset;
7914 bfd_vma self_offset, target_offset;
7916 reloc_howto_type *howto;
7917 int self_removed_bytes, target_removed_bytes;
7919 irel = &internal_relocs[i];
7920 r_type = ELF32_R_TYPE (irel->r_info);
7922 howto = &elf_howto_table[r_type];
7923 /* We maintain the required invariant: PC-relative relocations
7924 that fit before linking must fit after linking. Thus we only
7925 need to deal with relocations to the same section that are
7927 if (r_type == R_XTENSA_ASM_SIMPLIFY
7928 || r_type == R_XTENSA_32_PCREL
7929 || !howto->pc_relative)
7932 r_reloc_init (&r_rel, abfd, irel, contents,
7933 bfd_get_section_limit (abfd, sec));
7935 if (r_reloc_get_section (&r_rel) != sec)
7938 orig_self_offset = irel->r_offset;
7939 orig_target_offset = r_rel.target_offset;
7941 self_offset = orig_self_offset;
7942 target_offset = orig_target_offset;
7947 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7950 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7951 orig_target_offset);
7954 self_removed_bytes = 0;
7955 target_removed_bytes = 0;
7957 for (j = 0; j < constraint->action_count; ++j)
7959 proposed_action *action = &constraint->actions[j];
7960 bfd_vma offset = action->offset;
7961 int removed_bytes = action->removed_bytes;
7962 if (offset < orig_self_offset
7963 || (offset == orig_self_offset && action->action == ta_fill
7964 && action->removed_bytes < 0))
7965 self_removed_bytes += removed_bytes;
7966 if (offset < orig_target_offset
7967 || (offset == orig_target_offset && action->action == ta_fill
7968 && action->removed_bytes < 0))
7969 target_removed_bytes += removed_bytes;
7971 self_offset -= self_removed_bytes;
7972 target_offset -= target_removed_bytes;
7974 /* Try to encode it. Get the operand and check. */
7975 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7977 /* None of the current alternate relocs are PC-relative,
7978 and only PC-relative relocs matter here. */
7982 xtensa_opcode opcode;
7986 opcode = reloc_opcodes[i];
7988 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7989 if (opcode == XTENSA_UNDEFINED)
7995 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7996 if (opnum == XTENSA_UNDEFINED)
8002 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8011 free_xlate_map (xmap);
8018 check_section_ebb_reduces (const ebb_constraint *constraint)
8023 for (i = 0; i < constraint->action_count; i++)
8025 const proposed_action *action = &constraint->actions[i];
8026 if (action->do_action)
8027 removed += action->removed_bytes;
8037 text_action_add_proposed (text_action_list *l,
8038 const ebb_constraint *ebb_table,
8043 for (i = 0; i < ebb_table->action_count; i++)
8045 proposed_action *action = &ebb_table->actions[i];
8047 if (!action->do_action)
8049 switch (action->action)
8051 case ta_remove_insn:
8052 case ta_remove_longcall:
8053 case ta_convert_longcall:
8054 case ta_narrow_insn:
8057 case ta_remove_literal:
8058 text_action_add (l, action->action, sec, action->offset,
8059 action->removed_bytes);
8072 compute_fill_extra_space (property_table_entry *entry)
8074 int fill_extra_space;
8079 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8082 fill_extra_space = entry->size;
8083 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8085 /* Fill bytes for alignment:
8086 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8087 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8088 int nsm = (1 << pow) - 1;
8089 bfd_vma addr = entry->address + entry->size;
8090 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8091 fill_extra_space += align_fill;
8093 return fill_extra_space;
8097 /* First relaxation pass. */
8099 /* If the section contains relaxable literals, check each literal to
8100 see if it has the same value as another literal that has already
8101 been seen, either in the current section or a previous one. If so,
8102 add an entry to the per-section list of removed literals. The
8103 actual changes are deferred until the next pass. */
8106 compute_removed_literals (bfd *abfd,
8108 struct bfd_link_info *link_info,
8109 value_map_hash_table *values)
8111 xtensa_relax_info *relax_info;
8113 Elf_Internal_Rela *internal_relocs;
8114 source_reloc *src_relocs, *rel;
8115 bfd_boolean ok = TRUE;
8116 property_table_entry *prop_table = NULL;
8119 bfd_boolean last_loc_is_prev = FALSE;
8120 bfd_vma last_target_offset = 0;
8121 section_cache_t target_sec_cache;
8122 bfd_size_type sec_size;
8124 init_section_cache (&target_sec_cache);
8126 /* Do nothing if it is not a relaxable literal section. */
8127 relax_info = get_xtensa_relax_info (sec);
8128 BFD_ASSERT (relax_info);
8129 if (!relax_info->is_relaxable_literal_section)
8132 internal_relocs = retrieve_internal_relocs (abfd, sec,
8133 link_info->keep_memory);
8135 sec_size = bfd_get_section_limit (abfd, sec);
8136 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8137 if (contents == NULL && sec_size != 0)
8143 /* Sort the source_relocs by target offset. */
8144 src_relocs = relax_info->src_relocs;
8145 qsort (src_relocs, relax_info->src_count,
8146 sizeof (source_reloc), source_reloc_compare);
8147 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8148 internal_reloc_compare);
8150 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8151 XTENSA_PROP_SEC_NAME, FALSE);
8159 for (i = 0; i < relax_info->src_count; i++)
8161 Elf_Internal_Rela *irel = NULL;
8163 rel = &src_relocs[i];
8164 if (get_l32r_opcode () != rel->opcode)
8166 irel = get_irel_at_offset (sec, internal_relocs,
8167 rel->r_rel.target_offset);
8169 /* If the relocation on this is not a simple R_XTENSA_32 or
8170 R_XTENSA_PLT then do not consider it. This may happen when
8171 the difference of two symbols is used in a literal. */
8172 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8173 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8176 /* If the target_offset for this relocation is the same as the
8177 previous relocation, then we've already considered whether the
8178 literal can be coalesced. Skip to the next one.... */
8179 if (i != 0 && prev_i != -1
8180 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8184 if (last_loc_is_prev &&
8185 last_target_offset + 4 != rel->r_rel.target_offset)
8186 last_loc_is_prev = FALSE;
8188 /* Check if the relocation was from an L32R that is being removed
8189 because a CALLX was converted to a direct CALL, and check if
8190 there are no other relocations to the literal. */
8191 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8192 sec, prop_table, ptblsize))
8194 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8195 irel, rel, prop_table, ptblsize))
8200 last_target_offset = rel->r_rel.target_offset;
8204 if (!identify_literal_placement (abfd, sec, contents, link_info,
8206 &last_loc_is_prev, irel,
8207 relax_info->src_count - i, rel,
8208 prop_table, ptblsize,
8209 &target_sec_cache, rel->is_abs_literal))
8214 last_target_offset = rel->r_rel.target_offset;
8218 print_removed_literals (stderr, &relax_info->removed_list);
8219 print_action_list (stderr, &relax_info->action_list);
8223 if (prop_table) free (prop_table);
8224 clear_section_cache (&target_sec_cache);
8226 release_contents (sec, contents);
8227 release_internal_relocs (sec, internal_relocs);
8232 static Elf_Internal_Rela *
8233 get_irel_at_offset (asection *sec,
8234 Elf_Internal_Rela *internal_relocs,
8238 Elf_Internal_Rela *irel;
8240 Elf_Internal_Rela key;
8242 if (!internal_relocs)
8245 key.r_offset = offset;
8246 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8247 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8251 /* bsearch does not guarantee which will be returned if there are
8252 multiple matches. We need the first that is not an alignment. */
8253 i = irel - internal_relocs;
8256 if (internal_relocs[i-1].r_offset != offset)
8260 for ( ; i < sec->reloc_count; i++)
8262 irel = &internal_relocs[i];
8263 r_type = ELF32_R_TYPE (irel->r_info);
8264 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8273 is_removable_literal (const source_reloc *rel,
8275 const source_reloc *src_relocs,
8278 property_table_entry *prop_table,
8281 const source_reloc *curr_rel;
8282 property_table_entry *entry;
8287 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8288 sec->vma + rel->r_rel.target_offset);
8289 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8292 for (++i; i < src_count; ++i)
8294 curr_rel = &src_relocs[i];
8295 /* If all others have the same target offset.... */
8296 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8299 if (!curr_rel->is_null
8300 && !xtensa_is_property_section (curr_rel->source_sec)
8301 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8309 remove_dead_literal (bfd *abfd,
8311 struct bfd_link_info *link_info,
8312 Elf_Internal_Rela *internal_relocs,
8313 Elf_Internal_Rela *irel,
8315 property_table_entry *prop_table,
8318 property_table_entry *entry;
8319 xtensa_relax_info *relax_info;
8321 relax_info = get_xtensa_relax_info (sec);
8325 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8326 sec->vma + rel->r_rel.target_offset);
8328 /* Mark the unused literal so that it will be removed. */
8329 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8331 text_action_add (&relax_info->action_list,
8332 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8334 /* If the section is 4-byte aligned, do not add fill. */
8335 if (sec->alignment_power > 2)
8337 int fill_extra_space;
8338 bfd_vma entry_sec_offset;
8340 property_table_entry *the_add_entry;
8344 entry_sec_offset = entry->address - sec->vma + entry->size;
8346 entry_sec_offset = rel->r_rel.target_offset + 4;
8348 /* If the literal range is at the end of the section,
8350 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8352 fill_extra_space = compute_fill_extra_space (the_add_entry);
8354 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8355 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8356 -4, fill_extra_space);
8358 adjust_fill_action (fa, removed_diff);
8360 text_action_add (&relax_info->action_list,
8361 ta_fill, sec, entry_sec_offset, removed_diff);
8364 /* Zero out the relocation on this literal location. */
8367 if (elf_hash_table (link_info)->dynamic_sections_created)
8368 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8370 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8371 pin_internal_relocs (sec, internal_relocs);
8374 /* Do not modify "last_loc_is_prev". */
8380 identify_literal_placement (bfd *abfd,
8383 struct bfd_link_info *link_info,
8384 value_map_hash_table *values,
8385 bfd_boolean *last_loc_is_prev_p,
8386 Elf_Internal_Rela *irel,
8387 int remaining_src_rels,
8389 property_table_entry *prop_table,
8391 section_cache_t *target_sec_cache,
8392 bfd_boolean is_abs_literal)
8396 xtensa_relax_info *relax_info;
8397 bfd_boolean literal_placed = FALSE;
8399 unsigned long value;
8400 bfd_boolean final_static_link;
8401 bfd_size_type sec_size;
8403 relax_info = get_xtensa_relax_info (sec);
8407 sec_size = bfd_get_section_limit (abfd, sec);
8410 (!link_info->relocatable
8411 && !elf_hash_table (link_info)->dynamic_sections_created);
8413 /* The placement algorithm first checks to see if the literal is
8414 already in the value map. If so and the value map is reachable
8415 from all uses, then the literal is moved to that location. If
8416 not, then we identify the last location where a fresh literal was
8417 placed. If the literal can be safely moved there, then we do so.
8418 If not, then we assume that the literal is not to move and leave
8419 the literal where it is, marking it as the last literal
8422 /* Find the literal value. */
8424 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8427 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8428 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8430 init_literal_value (&val, &r_rel, value, is_abs_literal);
8432 /* Check if we've seen another literal with the same value that
8433 is in the same output section. */
8434 val_map = value_map_get_cached_value (values, &val, final_static_link);
8437 && (r_reloc_get_section (&val_map->loc)->output_section
8438 == sec->output_section)
8439 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8440 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8442 /* No change to last_loc_is_prev. */
8443 literal_placed = TRUE;
8446 /* For relocatable links, do not try to move literals. To do it
8447 correctly might increase the number of relocations in an input
8448 section making the default relocatable linking fail. */
8449 if (!link_info->relocatable && !literal_placed
8450 && values->has_last_loc && !(*last_loc_is_prev_p))
8452 asection *target_sec = r_reloc_get_section (&values->last_loc);
8453 if (target_sec && target_sec->output_section == sec->output_section)
8455 /* Increment the virtual offset. */
8456 r_reloc try_loc = values->last_loc;
8457 try_loc.virtual_offset += 4;
8459 /* There is a last loc that was in the same output section. */
8460 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8461 && move_shared_literal (sec, link_info, rel,
8462 prop_table, ptblsize,
8463 &try_loc, &val, target_sec_cache))
8465 values->last_loc.virtual_offset += 4;
8466 literal_placed = TRUE;
8468 val_map = add_value_map (values, &val, &try_loc,
8471 val_map->loc = try_loc;
8476 if (!literal_placed)
8478 /* Nothing worked, leave the literal alone but update the last loc. */
8479 values->has_last_loc = TRUE;
8480 values->last_loc = rel->r_rel;
8482 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
8484 val_map->loc = rel->r_rel;
8485 *last_loc_is_prev_p = TRUE;
8492 /* Check if the original relocations (presumably on L32R instructions)
8493 identified by reloc[0..N] can be changed to reference the literal
8494 identified by r_rel. If r_rel is out of range for any of the
8495 original relocations, then we don't want to coalesce the original
8496 literal with the one at r_rel. We only check reloc[0..N], where the
8497 offsets are all the same as for reloc[0] (i.e., they're all
8498 referencing the same literal) and where N is also bounded by the
8499 number of remaining entries in the "reloc" array. The "reloc" array
8500 is sorted by target offset so we know all the entries for the same
8501 literal will be contiguous. */
8504 relocations_reach (source_reloc *reloc,
8505 int remaining_relocs,
8506 const r_reloc *r_rel)
8508 bfd_vma from_offset, source_address, dest_address;
8512 if (!r_reloc_is_defined (r_rel))
8515 sec = r_reloc_get_section (r_rel);
8516 from_offset = reloc[0].r_rel.target_offset;
8518 for (i = 0; i < remaining_relocs; i++)
8520 if (reloc[i].r_rel.target_offset != from_offset)
8523 /* Ignore relocations that have been removed. */
8524 if (reloc[i].is_null)
8527 /* The original and new output section for these must be the same
8528 in order to coalesce. */
8529 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
8530 != sec->output_section)
8533 /* Absolute literals in the same output section can always be
8535 if (reloc[i].is_abs_literal)
8538 /* A literal with no PC-relative relocations can be moved anywhere. */
8539 if (reloc[i].opnd != -1)
8541 /* Otherwise, check to see that it fits. */
8542 source_address = (reloc[i].source_sec->output_section->vma
8543 + reloc[i].source_sec->output_offset
8544 + reloc[i].r_rel.rela.r_offset);
8545 dest_address = (sec->output_section->vma
8546 + sec->output_offset
8547 + r_rel->target_offset);
8549 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
8550 source_address, dest_address))
8559 /* Move a literal to another literal location because it is
8560 the same as the other literal value. */
8563 coalesce_shared_literal (asection *sec,
8565 property_table_entry *prop_table,
8569 property_table_entry *entry;
8571 property_table_entry *the_add_entry;
8573 xtensa_relax_info *relax_info;
8575 relax_info = get_xtensa_relax_info (sec);
8579 entry = elf_xtensa_find_property_entry
8580 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8581 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8584 /* Mark that the literal will be coalesced. */
8585 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
8587 text_action_add (&relax_info->action_list,
8588 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8590 /* If the section is 4-byte aligned, do not add fill. */
8591 if (sec->alignment_power > 2)
8593 int fill_extra_space;
8594 bfd_vma entry_sec_offset;
8597 entry_sec_offset = entry->address - sec->vma + entry->size;
8599 entry_sec_offset = rel->r_rel.target_offset + 4;
8601 /* If the literal range is at the end of the section,
8603 fill_extra_space = 0;
8604 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8606 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8607 fill_extra_space = the_add_entry->size;
8609 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8610 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8611 -4, fill_extra_space);
8613 adjust_fill_action (fa, removed_diff);
8615 text_action_add (&relax_info->action_list,
8616 ta_fill, sec, entry_sec_offset, removed_diff);
8623 /* Move a literal to another location. This may actually increase the
8624 total amount of space used because of alignments so we need to do
8625 this carefully. Also, it may make a branch go out of range. */
8628 move_shared_literal (asection *sec,
8629 struct bfd_link_info *link_info,
8631 property_table_entry *prop_table,
8633 const r_reloc *target_loc,
8634 const literal_value *lit_value,
8635 section_cache_t *target_sec_cache)
8637 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
8638 text_action *fa, *target_fa;
8640 xtensa_relax_info *relax_info, *target_relax_info;
8641 asection *target_sec;
8643 ebb_constraint ebb_table;
8644 bfd_boolean relocs_fit;
8646 /* If this routine always returns FALSE, the literals that cannot be
8647 coalesced will not be moved. */
8648 if (elf32xtensa_no_literal_movement)
8651 relax_info = get_xtensa_relax_info (sec);
8655 target_sec = r_reloc_get_section (target_loc);
8656 target_relax_info = get_xtensa_relax_info (target_sec);
8658 /* Literals to undefined sections may not be moved because they
8659 must report an error. */
8660 if (bfd_is_und_section (target_sec))
8663 src_entry = elf_xtensa_find_property_entry
8664 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8666 if (!section_cache_section (target_sec_cache, target_sec, link_info))
8669 target_entry = elf_xtensa_find_property_entry
8670 (target_sec_cache->ptbl, target_sec_cache->pte_count,
8671 target_sec->vma + target_loc->target_offset);
8676 /* Make sure that we have not broken any branches. */
8679 init_ebb_constraint (&ebb_table);
8680 ebb = &ebb_table.ebb;
8681 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
8682 target_sec_cache->content_length,
8683 target_sec_cache->ptbl, target_sec_cache->pte_count,
8684 target_sec_cache->relocs, target_sec_cache->reloc_count);
8686 /* Propose to add 4 bytes + worst-case alignment size increase to
8688 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
8689 ta_fill, target_loc->target_offset,
8690 -4 - (1 << target_sec->alignment_power), TRUE);
8692 /* Check all of the PC-relative relocations to make sure they still fit. */
8693 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
8694 target_sec_cache->contents,
8695 target_sec_cache->relocs,
8701 text_action_add_literal (&target_relax_info->action_list,
8702 ta_add_literal, target_loc, lit_value, -4);
8704 if (target_sec->alignment_power > 2 && target_entry != src_entry)
8706 /* May need to add or remove some fill to maintain alignment. */
8707 int fill_extra_space;
8708 bfd_vma entry_sec_offset;
8711 target_entry->address - target_sec->vma + target_entry->size;
8713 /* If the literal range is at the end of the section,
8715 fill_extra_space = 0;
8717 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
8718 target_sec_cache->pte_count,
8720 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8721 fill_extra_space = the_add_entry->size;
8723 target_fa = find_fill_action (&target_relax_info->action_list,
8724 target_sec, entry_sec_offset);
8725 removed_diff = compute_removed_action_diff (target_fa, target_sec,
8726 entry_sec_offset, 4,
8729 adjust_fill_action (target_fa, removed_diff);
8731 text_action_add (&target_relax_info->action_list,
8732 ta_fill, target_sec, entry_sec_offset, removed_diff);
8735 /* Mark that the literal will be moved to the new location. */
8736 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
8738 /* Remove the literal. */
8739 text_action_add (&relax_info->action_list,
8740 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8742 /* If the section is 4-byte aligned, do not add fill. */
8743 if (sec->alignment_power > 2 && target_entry != src_entry)
8745 int fill_extra_space;
8746 bfd_vma entry_sec_offset;
8749 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
8751 entry_sec_offset = rel->r_rel.target_offset+4;
8753 /* If the literal range is at the end of the section,
8755 fill_extra_space = 0;
8756 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8758 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8759 fill_extra_space = the_add_entry->size;
8761 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8762 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8763 -4, fill_extra_space);
8765 adjust_fill_action (fa, removed_diff);
8767 text_action_add (&relax_info->action_list,
8768 ta_fill, sec, entry_sec_offset, removed_diff);
8775 /* Second relaxation pass. */
8777 /* Modify all of the relocations to point to the right spot, and if this
8778 is a relaxable section, delete the unwanted literals and fix the
8782 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
8784 Elf_Internal_Rela *internal_relocs;
8785 xtensa_relax_info *relax_info;
8787 bfd_boolean ok = TRUE;
8789 bfd_boolean rv = FALSE;
8790 bfd_boolean virtual_action;
8791 bfd_size_type sec_size;
8793 sec_size = bfd_get_section_limit (abfd, sec);
8794 relax_info = get_xtensa_relax_info (sec);
8795 BFD_ASSERT (relax_info);
8797 /* First translate any of the fixes that have been added already. */
8798 translate_section_fixes (sec);
8800 /* Handle property sections (e.g., literal tables) specially. */
8801 if (xtensa_is_property_section (sec))
8803 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8804 return relax_property_section (abfd, sec, link_info);
8807 internal_relocs = retrieve_internal_relocs (abfd, sec,
8808 link_info->keep_memory);
8809 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8810 if (contents == NULL && sec_size != 0)
8816 if (internal_relocs)
8818 for (i = 0; i < sec->reloc_count; i++)
8820 Elf_Internal_Rela *irel;
8821 xtensa_relax_info *target_relax_info;
8822 bfd_vma source_offset, old_source_offset;
8825 asection *target_sec;
8827 /* Locally change the source address.
8828 Translate the target to the new target address.
8829 If it points to this section and has been removed,
8833 irel = &internal_relocs[i];
8834 source_offset = irel->r_offset;
8835 old_source_offset = source_offset;
8837 r_type = ELF32_R_TYPE (irel->r_info);
8838 r_reloc_init (&r_rel, abfd, irel, contents,
8839 bfd_get_section_limit (abfd, sec));
8841 /* If this section could have changed then we may need to
8842 change the relocation's offset. */
8844 if (relax_info->is_relaxable_literal_section
8845 || relax_info->is_relaxable_asm_section)
8847 pin_internal_relocs (sec, internal_relocs);
8849 if (r_type != R_XTENSA_NONE
8850 && find_removed_literal (&relax_info->removed_list,
8853 /* Remove this relocation. */
8854 if (elf_hash_table (link_info)->dynamic_sections_created)
8855 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8856 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8857 irel->r_offset = offset_with_removed_text
8858 (&relax_info->action_list, irel->r_offset);
8862 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8864 text_action *action =
8865 find_insn_action (&relax_info->action_list,
8867 if (action && (action->action == ta_convert_longcall
8868 || action->action == ta_remove_longcall))
8870 bfd_reloc_status_type retval;
8871 char *error_message = NULL;
8873 retval = contract_asm_expansion (contents, sec_size,
8874 irel, &error_message);
8875 if (retval != bfd_reloc_ok)
8877 (*link_info->callbacks->reloc_dangerous)
8878 (link_info, error_message, abfd, sec,
8882 /* Update the action so that the code that moves
8883 the contents will do the right thing. */
8884 if (action->action == ta_remove_longcall)
8885 action->action = ta_remove_insn;
8887 action->action = ta_none;
8888 /* Refresh the info in the r_rel. */
8889 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8890 r_type = ELF32_R_TYPE (irel->r_info);
8894 source_offset = offset_with_removed_text
8895 (&relax_info->action_list, irel->r_offset);
8896 irel->r_offset = source_offset;
8899 /* If the target section could have changed then
8900 we may need to change the relocation's target offset. */
8902 target_sec = r_reloc_get_section (&r_rel);
8904 /* For a reference to a discarded section from a DWARF section,
8905 i.e., where action_discarded is PRETEND, the symbol will
8906 eventually be modified to refer to the kept section (at least if
8907 the kept and discarded sections are the same size). Anticipate
8908 that here and adjust things accordingly. */
8909 if (! elf_xtensa_ignore_discarded_relocs (sec)
8910 && elf_xtensa_action_discarded (sec) == PRETEND
8911 && sec->sec_info_type != ELF_INFO_TYPE_STABS
8912 && target_sec != NULL
8913 && elf_discarded_section (target_sec))
8915 /* It would be natural to call _bfd_elf_check_kept_section
8916 here, but it's not exported from elflink.c. It's also a
8917 fairly expensive check. Adjusting the relocations to the
8918 discarded section is fairly harmless; it will only adjust
8919 some addends and difference values. If it turns out that
8920 _bfd_elf_check_kept_section fails later, it won't matter,
8921 so just compare the section names to find the right group
8923 asection *kept = target_sec->kept_section;
8926 if ((kept->flags & SEC_GROUP) != 0)
8928 asection *first = elf_next_in_group (kept);
8929 asection *s = first;
8934 if (strcmp (s->name, target_sec->name) == 0)
8939 s = elf_next_in_group (s);
8946 && ((target_sec->rawsize != 0
8947 ? target_sec->rawsize : target_sec->size)
8948 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8952 target_relax_info = get_xtensa_relax_info (target_sec);
8953 if (target_relax_info
8954 && (target_relax_info->is_relaxable_literal_section
8955 || target_relax_info->is_relaxable_asm_section))
8958 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
8960 if (r_type == R_XTENSA_DIFF8
8961 || r_type == R_XTENSA_DIFF16
8962 || r_type == R_XTENSA_DIFF32)
8964 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8966 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8968 (*link_info->callbacks->reloc_dangerous)
8969 (link_info, _("invalid relocation address"),
8970 abfd, sec, old_source_offset);
8976 case R_XTENSA_DIFF8:
8978 bfd_get_8 (abfd, &contents[old_source_offset]);
8980 case R_XTENSA_DIFF16:
8982 bfd_get_16 (abfd, &contents[old_source_offset]);
8984 case R_XTENSA_DIFF32:
8986 bfd_get_32 (abfd, &contents[old_source_offset]);
8990 new_end_offset = offset_with_removed_text
8991 (&target_relax_info->action_list,
8992 r_rel.target_offset + diff_value);
8993 diff_value = new_end_offset - new_reloc.target_offset;
8997 case R_XTENSA_DIFF8:
8999 bfd_put_8 (abfd, diff_value,
9000 &contents[old_source_offset]);
9002 case R_XTENSA_DIFF16:
9004 bfd_put_16 (abfd, diff_value,
9005 &contents[old_source_offset]);
9007 case R_XTENSA_DIFF32:
9008 diff_mask = 0xffffffff;
9009 bfd_put_32 (abfd, diff_value,
9010 &contents[old_source_offset]);
9014 /* Check for overflow. */
9015 if ((diff_value & ~diff_mask) != 0)
9017 (*link_info->callbacks->reloc_dangerous)
9018 (link_info, _("overflow after relaxation"),
9019 abfd, sec, old_source_offset);
9023 pin_contents (sec, contents);
9026 /* If the relocation still references a section in the same
9027 input file, modify the relocation directly instead of
9028 adding a "fix" record. */
9029 if (target_sec->owner == abfd)
9031 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9032 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9033 irel->r_addend = new_reloc.rela.r_addend;
9034 pin_internal_relocs (sec, internal_relocs);
9038 bfd_vma addend_displacement;
9041 addend_displacement =
9042 new_reloc.target_offset + new_reloc.virtual_offset;
9043 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9045 addend_displacement, TRUE);
9052 if ((relax_info->is_relaxable_literal_section
9053 || relax_info->is_relaxable_asm_section)
9054 && relax_info->action_list.head)
9056 /* Walk through the planned actions and build up a table
9057 of move, copy and fill records. Use the move, copy and
9058 fill records to perform the actions once. */
9061 bfd_size_type final_size, copy_size, orig_insn_size;
9062 bfd_byte *scratch = NULL;
9063 bfd_byte *dup_contents = NULL;
9064 bfd_size_type orig_size = sec->size;
9065 bfd_vma orig_dot = 0;
9066 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9067 orig dot in physical memory. */
9068 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9069 bfd_vma dup_dot = 0;
9071 text_action *action = relax_info->action_list.head;
9073 final_size = sec->size;
9074 for (action = relax_info->action_list.head; action;
9075 action = action->next)
9077 final_size -= action->removed_bytes;
9080 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9081 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9083 /* The dot is the current fill location. */
9085 print_action_list (stderr, &relax_info->action_list);
9088 for (action = relax_info->action_list.head; action;
9089 action = action->next)
9091 virtual_action = FALSE;
9092 if (action->offset > orig_dot)
9094 orig_dot += orig_dot_copied;
9095 orig_dot_copied = 0;
9097 /* Out of the virtual world. */
9100 if (action->offset > orig_dot)
9102 copy_size = action->offset - orig_dot;
9103 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9104 orig_dot += copy_size;
9105 dup_dot += copy_size;
9106 BFD_ASSERT (action->offset == orig_dot);
9108 else if (action->offset < orig_dot)
9110 if (action->action == ta_fill
9111 && action->offset - action->removed_bytes == orig_dot)
9113 /* This is OK because the fill only effects the dup_dot. */
9115 else if (action->action == ta_add_literal)
9117 /* TBD. Might need to handle this. */
9120 if (action->offset == orig_dot)
9122 if (action->virtual_offset > orig_dot_vo)
9124 if (orig_dot_vo == 0)
9126 /* Need to copy virtual_offset bytes. Probably four. */
9127 copy_size = action->virtual_offset - orig_dot_vo;
9128 memmove (&dup_contents[dup_dot],
9129 &contents[orig_dot], copy_size);
9130 orig_dot_copied = copy_size;
9131 dup_dot += copy_size;
9133 virtual_action = TRUE;
9136 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9138 switch (action->action)
9140 case ta_remove_literal:
9141 case ta_remove_insn:
9142 BFD_ASSERT (action->removed_bytes >= 0);
9143 orig_dot += action->removed_bytes;
9146 case ta_narrow_insn:
9149 memmove (scratch, &contents[orig_dot], orig_insn_size);
9150 BFD_ASSERT (action->removed_bytes == 1);
9151 rv = narrow_instruction (scratch, final_size, 0);
9153 memmove (&dup_contents[dup_dot], scratch, copy_size);
9154 orig_dot += orig_insn_size;
9155 dup_dot += copy_size;
9159 if (action->removed_bytes >= 0)
9160 orig_dot += action->removed_bytes;
9163 /* Already zeroed in dup_contents. Just bump the
9165 dup_dot += (-action->removed_bytes);
9170 BFD_ASSERT (action->removed_bytes == 0);
9173 case ta_convert_longcall:
9174 case ta_remove_longcall:
9175 /* These will be removed or converted before we get here. */
9182 memmove (scratch, &contents[orig_dot], orig_insn_size);
9183 BFD_ASSERT (action->removed_bytes == -1);
9184 rv = widen_instruction (scratch, final_size, 0);
9186 memmove (&dup_contents[dup_dot], scratch, copy_size);
9187 orig_dot += orig_insn_size;
9188 dup_dot += copy_size;
9191 case ta_add_literal:
9194 BFD_ASSERT (action->removed_bytes == -4);
9195 /* TBD -- place the literal value here and insert
9197 memset (&dup_contents[dup_dot], 0, 4);
9198 pin_internal_relocs (sec, internal_relocs);
9199 pin_contents (sec, contents);
9201 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9202 relax_info, &internal_relocs, &action->value))
9206 orig_dot_vo += copy_size;
9208 orig_dot += orig_insn_size;
9209 dup_dot += copy_size;
9213 /* Not implemented yet. */
9218 removed += action->removed_bytes;
9219 BFD_ASSERT (dup_dot <= final_size);
9220 BFD_ASSERT (orig_dot <= orig_size);
9223 orig_dot += orig_dot_copied;
9224 orig_dot_copied = 0;
9226 if (orig_dot != orig_size)
9228 copy_size = orig_size - orig_dot;
9229 BFD_ASSERT (orig_size > orig_dot);
9230 BFD_ASSERT (dup_dot + copy_size == final_size);
9231 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9232 orig_dot += copy_size;
9233 dup_dot += copy_size;
9235 BFD_ASSERT (orig_size == orig_dot);
9236 BFD_ASSERT (final_size == dup_dot);
9238 /* Move the dup_contents back. */
9239 if (final_size > orig_size)
9241 /* Contents need to be reallocated. Swap the dup_contents into
9243 sec->contents = dup_contents;
9245 contents = dup_contents;
9246 pin_contents (sec, contents);
9250 BFD_ASSERT (final_size <= orig_size);
9251 memset (contents, 0, orig_size);
9252 memcpy (contents, dup_contents, final_size);
9253 free (dup_contents);
9256 pin_contents (sec, contents);
9258 if (sec->rawsize == 0)
9259 sec->rawsize = sec->size;
9260 sec->size = final_size;
9264 release_internal_relocs (sec, internal_relocs);
9265 release_contents (sec, contents);
9271 translate_section_fixes (asection *sec)
9273 xtensa_relax_info *relax_info;
9276 relax_info = get_xtensa_relax_info (sec);
9280 for (r = relax_info->fix_list; r != NULL; r = r->next)
9281 if (!translate_reloc_bfd_fix (r))
9288 /* Translate a fix given the mapping in the relax info for the target
9289 section. If it has already been translated, no work is required. */
9292 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9294 reloc_bfd_fix new_fix;
9296 xtensa_relax_info *relax_info;
9297 removed_literal *removed;
9298 bfd_vma new_offset, target_offset;
9300 if (fix->translated)
9303 sec = fix->target_sec;
9304 target_offset = fix->target_offset;
9306 relax_info = get_xtensa_relax_info (sec);
9309 fix->translated = TRUE;
9315 /* The fix does not need to be translated if the section cannot change. */
9316 if (!relax_info->is_relaxable_literal_section
9317 && !relax_info->is_relaxable_asm_section)
9319 fix->translated = TRUE;
9323 /* If the literal has been moved and this relocation was on an
9324 opcode, then the relocation should move to the new literal
9325 location. Otherwise, the relocation should move within the
9329 if (is_operand_relocation (fix->src_type))
9331 /* Check if the original relocation is against a literal being
9333 removed = find_removed_literal (&relax_info->removed_list,
9341 /* The fact that there is still a relocation to this literal indicates
9342 that the literal is being coalesced, not simply removed. */
9343 BFD_ASSERT (removed->to.abfd != NULL);
9345 /* This was moved to some other address (possibly another section). */
9346 new_sec = r_reloc_get_section (&removed->to);
9350 relax_info = get_xtensa_relax_info (sec);
9352 (!relax_info->is_relaxable_literal_section
9353 && !relax_info->is_relaxable_asm_section))
9355 target_offset = removed->to.target_offset;
9356 new_fix.target_sec = new_sec;
9357 new_fix.target_offset = target_offset;
9358 new_fix.translated = TRUE;
9363 target_offset = removed->to.target_offset;
9364 new_fix.target_sec = new_sec;
9367 /* The target address may have been moved within its section. */
9368 new_offset = offset_with_removed_text (&relax_info->action_list,
9371 new_fix.target_offset = new_offset;
9372 new_fix.target_offset = new_offset;
9373 new_fix.translated = TRUE;
9379 /* Fix up a relocation to take account of removed literals. */
9382 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9384 xtensa_relax_info *relax_info;
9385 removed_literal *removed;
9386 bfd_vma target_offset, base_offset;
9389 *new_rel = *orig_rel;
9391 if (!r_reloc_is_defined (orig_rel))
9394 relax_info = get_xtensa_relax_info (sec);
9395 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9396 || relax_info->is_relaxable_asm_section));
9398 target_offset = orig_rel->target_offset;
9401 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9403 /* Check if the original relocation is against a literal being
9405 removed = find_removed_literal (&relax_info->removed_list,
9408 if (removed && removed->to.abfd)
9412 /* The fact that there is still a relocation to this literal indicates
9413 that the literal is being coalesced, not simply removed. */
9414 BFD_ASSERT (removed->to.abfd != NULL);
9416 /* This was moved to some other address
9417 (possibly in another section). */
9418 *new_rel = removed->to;
9419 new_sec = r_reloc_get_section (new_rel);
9423 relax_info = get_xtensa_relax_info (sec);
9425 || (!relax_info->is_relaxable_literal_section
9426 && !relax_info->is_relaxable_asm_section))
9429 target_offset = new_rel->target_offset;
9432 /* Find the base offset of the reloc symbol, excluding any addend from the
9433 reloc or from the section contents (for a partial_inplace reloc). Then
9434 find the adjusted values of the offsets due to relaxation. The base
9435 offset is needed to determine the change to the reloc's addend; the reloc
9436 addend should not be adjusted due to relaxations located before the base
9439 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9440 act = relax_info->action_list.head;
9441 if (base_offset <= target_offset)
9443 int base_removed = removed_by_actions (&act, base_offset, FALSE);
9444 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
9445 new_rel->target_offset = target_offset - base_removed - addend_removed;
9446 new_rel->rela.r_addend -= addend_removed;
9450 /* Handle a negative addend. The base offset comes first. */
9451 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
9452 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
9453 new_rel->target_offset = target_offset - tgt_removed;
9454 new_rel->rela.r_addend += addend_removed;
9461 /* For dynamic links, there may be a dynamic relocation for each
9462 literal. The number of dynamic relocations must be computed in
9463 size_dynamic_sections, which occurs before relaxation. When a
9464 literal is removed, this function checks if there is a corresponding
9465 dynamic relocation and shrinks the size of the appropriate dynamic
9466 relocation section accordingly. At this point, the contents of the
9467 dynamic relocation sections have not yet been filled in, so there's
9468 nothing else that needs to be done. */
9471 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9473 asection *input_section,
9474 Elf_Internal_Rela *rel)
9476 struct elf_xtensa_link_hash_table *htab;
9477 Elf_Internal_Shdr *symtab_hdr;
9478 struct elf_link_hash_entry **sym_hashes;
9479 unsigned long r_symndx;
9481 struct elf_link_hash_entry *h;
9482 bfd_boolean dynamic_symbol;
9484 htab = elf_xtensa_hash_table (info);
9485 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9486 sym_hashes = elf_sym_hashes (abfd);
9488 r_type = ELF32_R_TYPE (rel->r_info);
9489 r_symndx = ELF32_R_SYM (rel->r_info);
9491 if (r_symndx < symtab_hdr->sh_info)
9494 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9496 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
9498 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
9499 && (input_section->flags & SEC_ALLOC) != 0
9500 && (dynamic_symbol || info->shared))
9503 bfd_boolean is_plt = FALSE;
9505 if (dynamic_symbol && r_type == R_XTENSA_PLT)
9507 srel = htab->srelplt;
9511 srel = htab->srelgot;
9513 /* Reduce size of the .rela.* section by one reloc. */
9514 BFD_ASSERT (srel != NULL);
9515 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
9516 srel->size -= sizeof (Elf32_External_Rela);
9520 asection *splt, *sgotplt, *srelgot;
9521 int reloc_index, chunk;
9523 /* Find the PLT reloc index of the entry being removed. This
9524 is computed from the size of ".rela.plt". It is needed to
9525 figure out which PLT chunk to resize. Usually "last index
9526 = size - 1" since the index starts at zero, but in this
9527 context, the size has just been decremented so there's no
9528 need to subtract one. */
9529 reloc_index = srel->size / sizeof (Elf32_External_Rela);
9531 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
9532 splt = elf_xtensa_get_plt_section (info, chunk);
9533 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
9534 BFD_ASSERT (splt != NULL && sgotplt != NULL);
9536 /* Check if an entire PLT chunk has just been eliminated. */
9537 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
9539 /* The two magic GOT entries for that chunk can go away. */
9540 srelgot = htab->srelgot;
9541 BFD_ASSERT (srelgot != NULL);
9542 srelgot->reloc_count -= 2;
9543 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
9546 /* There should be only one entry left (and it will be
9548 BFD_ASSERT (sgotplt->size == 4);
9549 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
9552 BFD_ASSERT (sgotplt->size >= 4);
9553 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
9556 splt->size -= PLT_ENTRY_SIZE;
9562 /* Take an r_rel and move it to another section. This usually
9563 requires extending the interal_relocation array and pinning it. If
9564 the original r_rel is from the same BFD, we can complete this here.
9565 Otherwise, we add a fix record to let the final link fix the
9566 appropriate address. Contents and internal relocations for the
9567 section must be pinned after calling this routine. */
9570 move_literal (bfd *abfd,
9571 struct bfd_link_info *link_info,
9575 xtensa_relax_info *relax_info,
9576 Elf_Internal_Rela **internal_relocs_p,
9577 const literal_value *lit)
9579 Elf_Internal_Rela *new_relocs = NULL;
9580 size_t new_relocs_count = 0;
9581 Elf_Internal_Rela this_rela;
9582 const r_reloc *r_rel;
9584 r_rel = &lit->r_rel;
9585 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
9587 if (r_reloc_is_const (r_rel))
9588 bfd_put_32 (abfd, lit->value, contents + offset);
9593 asection *target_sec;
9597 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
9598 target_sec = r_reloc_get_section (r_rel);
9600 /* This is the difficult case. We have to create a fix up. */
9601 this_rela.r_offset = offset;
9602 this_rela.r_info = ELF32_R_INFO (0, r_type);
9603 this_rela.r_addend =
9604 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
9605 bfd_put_32 (abfd, lit->value, contents + offset);
9607 /* Currently, we cannot move relocations during a relocatable link. */
9608 BFD_ASSERT (!link_info->relocatable);
9609 fix = reloc_bfd_fix_init (sec, offset, r_type,
9610 r_reloc_get_section (r_rel),
9611 r_rel->target_offset + r_rel->virtual_offset,
9613 /* We also need to mark that relocations are needed here. */
9614 sec->flags |= SEC_RELOC;
9616 translate_reloc_bfd_fix (fix);
9617 /* This fix has not yet been translated. */
9620 /* Add the relocation. If we have already allocated our own
9621 space for the relocations and we have room for more, then use
9622 it. Otherwise, allocate new space and move the literals. */
9623 insert_at = sec->reloc_count;
9624 for (i = 0; i < sec->reloc_count; ++i)
9626 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
9633 if (*internal_relocs_p != relax_info->allocated_relocs
9634 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
9636 BFD_ASSERT (relax_info->allocated_relocs == NULL
9637 || sec->reloc_count == relax_info->relocs_count);
9639 if (relax_info->allocated_relocs_count == 0)
9640 new_relocs_count = (sec->reloc_count + 2) * 2;
9642 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
9644 new_relocs = (Elf_Internal_Rela *)
9645 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
9649 /* We could handle this more quickly by finding the split point. */
9651 memcpy (new_relocs, *internal_relocs_p,
9652 insert_at * sizeof (Elf_Internal_Rela));
9654 new_relocs[insert_at] = this_rela;
9656 if (insert_at != sec->reloc_count)
9657 memcpy (new_relocs + insert_at + 1,
9658 (*internal_relocs_p) + insert_at,
9659 (sec->reloc_count - insert_at)
9660 * sizeof (Elf_Internal_Rela));
9662 if (*internal_relocs_p != relax_info->allocated_relocs)
9664 /* The first time we re-allocate, we can only free the
9665 old relocs if they were allocated with bfd_malloc.
9666 This is not true when keep_memory is in effect. */
9667 if (!link_info->keep_memory)
9668 free (*internal_relocs_p);
9671 free (*internal_relocs_p);
9672 relax_info->allocated_relocs = new_relocs;
9673 relax_info->allocated_relocs_count = new_relocs_count;
9674 elf_section_data (sec)->relocs = new_relocs;
9676 relax_info->relocs_count = sec->reloc_count;
9677 *internal_relocs_p = new_relocs;
9681 if (insert_at != sec->reloc_count)
9684 for (idx = sec->reloc_count; idx > insert_at; idx--)
9685 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
9687 (*internal_relocs_p)[insert_at] = this_rela;
9689 if (relax_info->allocated_relocs)
9690 relax_info->relocs_count = sec->reloc_count;
9697 /* This is similar to relax_section except that when a target is moved,
9698 we shift addresses up. We also need to modify the size. This
9699 algorithm does NOT allow for relocations into the middle of the
9700 property sections. */
9703 relax_property_section (bfd *abfd,
9705 struct bfd_link_info *link_info)
9707 Elf_Internal_Rela *internal_relocs;
9710 bfd_boolean ok = TRUE;
9711 bfd_boolean is_full_prop_section;
9712 size_t last_zfill_target_offset = 0;
9713 asection *last_zfill_target_sec = NULL;
9714 bfd_size_type sec_size;
9715 bfd_size_type entry_size;
9717 sec_size = bfd_get_section_limit (abfd, sec);
9718 internal_relocs = retrieve_internal_relocs (abfd, sec,
9719 link_info->keep_memory);
9720 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9721 if (contents == NULL && sec_size != 0)
9727 is_full_prop_section = xtensa_is_proptable_section (sec);
9728 if (is_full_prop_section)
9733 if (internal_relocs)
9735 for (i = 0; i < sec->reloc_count; i++)
9737 Elf_Internal_Rela *irel;
9738 xtensa_relax_info *target_relax_info;
9740 asection *target_sec;
9742 bfd_byte *size_p, *flags_p;
9744 /* Locally change the source address.
9745 Translate the target to the new target address.
9746 If it points to this section and has been removed, MOVE IT.
9747 Also, don't forget to modify the associated SIZE at
9750 irel = &internal_relocs[i];
9751 r_type = ELF32_R_TYPE (irel->r_info);
9752 if (r_type == R_XTENSA_NONE)
9755 /* Find the literal value. */
9756 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
9757 size_p = &contents[irel->r_offset + 4];
9759 if (is_full_prop_section)
9760 flags_p = &contents[irel->r_offset + 8];
9761 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
9763 target_sec = r_reloc_get_section (&val.r_rel);
9764 target_relax_info = get_xtensa_relax_info (target_sec);
9766 if (target_relax_info
9767 && (target_relax_info->is_relaxable_literal_section
9768 || target_relax_info->is_relaxable_asm_section ))
9770 /* Translate the relocation's destination. */
9771 bfd_vma old_offset = val.r_rel.target_offset;
9773 long old_size, new_size;
9774 text_action *act = target_relax_info->action_list.head;
9775 new_offset = old_offset -
9776 removed_by_actions (&act, old_offset, FALSE);
9778 /* Assert that we are not out of bounds. */
9779 old_size = bfd_get_32 (abfd, size_p);
9780 new_size = old_size;
9784 /* Only the first zero-sized unreachable entry is
9785 allowed to expand. In this case the new offset
9786 should be the offset before the fill and the new
9787 size is the expansion size. For other zero-sized
9788 entries the resulting size should be zero with an
9789 offset before or after the fill address depending
9790 on whether the expanding unreachable entry
9792 if (last_zfill_target_sec == 0
9793 || last_zfill_target_sec != target_sec
9794 || last_zfill_target_offset != old_offset)
9796 bfd_vma new_end_offset = new_offset;
9798 /* Recompute the new_offset, but this time don't
9799 include any fill inserted by relaxation. */
9800 act = target_relax_info->action_list.head;
9801 new_offset = old_offset -
9802 removed_by_actions (&act, old_offset, TRUE);
9804 /* If it is not unreachable and we have not yet
9805 seen an unreachable at this address, place it
9806 before the fill address. */
9807 if (flags_p && (bfd_get_32 (abfd, flags_p)
9808 & XTENSA_PROP_UNREACHABLE) != 0)
9810 new_size = new_end_offset - new_offset;
9812 last_zfill_target_sec = target_sec;
9813 last_zfill_target_offset = old_offset;
9819 removed_by_actions (&act, old_offset + old_size, TRUE);
9821 if (new_size != old_size)
9823 bfd_put_32 (abfd, new_size, size_p);
9824 pin_contents (sec, contents);
9827 if (new_offset != old_offset)
9829 bfd_vma diff = new_offset - old_offset;
9830 irel->r_addend += diff;
9831 pin_internal_relocs (sec, internal_relocs);
9837 /* Combine adjacent property table entries. This is also done in
9838 finish_dynamic_sections() but at that point it's too late to
9839 reclaim the space in the output section, so we do this twice. */
9841 if (internal_relocs && (!link_info->relocatable
9842 || xtensa_is_littable_section (sec)))
9844 Elf_Internal_Rela *last_irel = NULL;
9845 Elf_Internal_Rela *irel, *next_rel, *rel_end;
9846 int removed_bytes = 0;
9848 flagword predef_flags;
9850 predef_flags = xtensa_get_property_predef_flags (sec);
9852 /* Walk over memory and relocations at the same time.
9853 This REQUIRES that the internal_relocs be sorted by offset. */
9854 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9855 internal_reloc_compare);
9857 pin_internal_relocs (sec, internal_relocs);
9858 pin_contents (sec, contents);
9860 next_rel = internal_relocs;
9861 rel_end = internal_relocs + sec->reloc_count;
9863 BFD_ASSERT (sec->size % entry_size == 0);
9865 for (offset = 0; offset < sec->size; offset += entry_size)
9867 Elf_Internal_Rela *offset_rel, *extra_rel;
9868 bfd_vma bytes_to_remove, size, actual_offset;
9869 bfd_boolean remove_this_rel;
9872 /* Find the first relocation for the entry at the current offset.
9873 Adjust the offsets of any extra relocations for the previous
9878 for (irel = next_rel; irel < rel_end; irel++)
9880 if ((irel->r_offset == offset
9881 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9882 || irel->r_offset > offset)
9887 irel->r_offset -= removed_bytes;
9891 /* Find the next relocation (if there are any left). */
9895 for (irel = offset_rel + 1; irel < rel_end; irel++)
9897 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9905 /* Check if there are relocations on the current entry. There
9906 should usually be a relocation on the offset field. If there
9907 are relocations on the size or flags, then we can't optimize
9908 this entry. Also, find the next relocation to examine on the
9912 if (offset_rel->r_offset >= offset + entry_size)
9914 next_rel = offset_rel;
9915 /* There are no relocations on the current entry, but we
9916 might still be able to remove it if the size is zero. */
9919 else if (offset_rel->r_offset > offset
9921 && extra_rel->r_offset < offset + entry_size))
9923 /* There is a relocation on the size or flags, so we can't
9924 do anything with this entry. Continue with the next. */
9925 next_rel = offset_rel;
9930 BFD_ASSERT (offset_rel->r_offset == offset);
9931 offset_rel->r_offset -= removed_bytes;
9932 next_rel = offset_rel + 1;
9938 remove_this_rel = FALSE;
9939 bytes_to_remove = 0;
9940 actual_offset = offset - removed_bytes;
9941 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9943 if (is_full_prop_section)
9944 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9946 flags = predef_flags;
9949 && (flags & XTENSA_PROP_ALIGN) == 0
9950 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
9952 /* Always remove entries with zero size and no alignment. */
9953 bytes_to_remove = entry_size;
9955 remove_this_rel = TRUE;
9958 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
9964 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9965 bfd_vma old_address =
9966 (last_irel->r_addend
9967 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9968 bfd_vma new_address =
9969 (offset_rel->r_addend
9970 + bfd_get_32 (abfd, &contents[actual_offset]));
9971 if (is_full_prop_section)
9972 old_flags = bfd_get_32
9973 (abfd, &contents[last_irel->r_offset + 8]);
9975 old_flags = predef_flags;
9977 if ((ELF32_R_SYM (offset_rel->r_info)
9978 == ELF32_R_SYM (last_irel->r_info))
9979 && old_address + old_size == new_address
9980 && old_flags == flags
9981 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9982 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
9984 /* Fix the old size. */
9985 bfd_put_32 (abfd, old_size + size,
9986 &contents[last_irel->r_offset + 4]);
9987 bytes_to_remove = entry_size;
9988 remove_this_rel = TRUE;
9991 last_irel = offset_rel;
9994 last_irel = offset_rel;
9997 if (remove_this_rel)
9999 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10000 /* In case this is the last entry, move the relocation offset
10001 to the previous entry, if there is one. */
10002 if (offset_rel->r_offset >= bytes_to_remove)
10003 offset_rel->r_offset -= bytes_to_remove;
10005 offset_rel->r_offset = 0;
10008 if (bytes_to_remove != 0)
10010 removed_bytes += bytes_to_remove;
10011 if (offset + bytes_to_remove < sec->size)
10012 memmove (&contents[actual_offset],
10013 &contents[actual_offset + bytes_to_remove],
10014 sec->size - offset - bytes_to_remove);
10020 /* Fix up any extra relocations on the last entry. */
10021 for (irel = next_rel; irel < rel_end; irel++)
10022 irel->r_offset -= removed_bytes;
10024 /* Clear the removed bytes. */
10025 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10027 if (sec->rawsize == 0)
10028 sec->rawsize = sec->size;
10029 sec->size -= removed_bytes;
10031 if (xtensa_is_littable_section (sec))
10033 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10035 sgotloc->size -= removed_bytes;
10041 release_internal_relocs (sec, internal_relocs);
10042 release_contents (sec, contents);
10047 /* Third relaxation pass. */
10049 /* Change symbol values to account for removed literals. */
10052 relax_section_symbols (bfd *abfd, asection *sec)
10054 xtensa_relax_info *relax_info;
10055 unsigned int sec_shndx;
10056 Elf_Internal_Shdr *symtab_hdr;
10057 Elf_Internal_Sym *isymbuf;
10058 unsigned i, num_syms, num_locals;
10060 relax_info = get_xtensa_relax_info (sec);
10061 BFD_ASSERT (relax_info);
10063 if (!relax_info->is_relaxable_literal_section
10064 && !relax_info->is_relaxable_asm_section)
10067 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10069 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10070 isymbuf = retrieve_local_syms (abfd);
10072 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10073 num_locals = symtab_hdr->sh_info;
10075 /* Adjust the local symbols defined in this section. */
10076 for (i = 0; i < num_locals; i++)
10078 Elf_Internal_Sym *isym = &isymbuf[i];
10080 if (isym->st_shndx == sec_shndx)
10082 text_action *act = relax_info->action_list.head;
10083 bfd_vma orig_addr = isym->st_value;
10085 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
10087 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10089 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
10093 /* Now adjust the global symbols defined in this section. */
10094 for (i = 0; i < (num_syms - num_locals); i++)
10096 struct elf_link_hash_entry *sym_hash;
10098 sym_hash = elf_sym_hashes (abfd)[i];
10100 if (sym_hash->root.type == bfd_link_hash_warning)
10101 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10103 if ((sym_hash->root.type == bfd_link_hash_defined
10104 || sym_hash->root.type == bfd_link_hash_defweak)
10105 && sym_hash->root.u.def.section == sec)
10107 text_action *act = relax_info->action_list.head;
10108 bfd_vma orig_addr = sym_hash->root.u.def.value;
10110 sym_hash->root.u.def.value -=
10111 removed_by_actions (&act, orig_addr, FALSE);
10113 if (sym_hash->type == STT_FUNC)
10115 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
10123 /* "Fix" handling functions, called while performing relocations. */
10126 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10128 asection *input_section,
10129 bfd_byte *contents)
10132 asection *sec, *old_sec;
10133 bfd_vma old_offset;
10134 int r_type = ELF32_R_TYPE (rel->r_info);
10135 reloc_bfd_fix *fix;
10137 if (r_type == R_XTENSA_NONE)
10140 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10144 r_reloc_init (&r_rel, input_bfd, rel, contents,
10145 bfd_get_section_limit (input_bfd, input_section));
10146 old_sec = r_reloc_get_section (&r_rel);
10147 old_offset = r_rel.target_offset;
10149 if (!old_sec || !r_reloc_is_defined (&r_rel))
10151 if (r_type != R_XTENSA_ASM_EXPAND)
10153 (*_bfd_error_handler)
10154 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10155 input_bfd, input_section, rel->r_offset,
10156 elf_howto_table[r_type].name);
10159 /* Leave it be. Resolution will happen in a later stage. */
10163 sec = fix->target_sec;
10164 rel->r_addend += ((sec->output_offset + fix->target_offset)
10165 - (old_sec->output_offset + old_offset));
10172 do_fix_for_final_link (Elf_Internal_Rela *rel,
10174 asection *input_section,
10175 bfd_byte *contents,
10176 bfd_vma *relocationp)
10179 int r_type = ELF32_R_TYPE (rel->r_info);
10180 reloc_bfd_fix *fix;
10181 bfd_vma fixup_diff;
10183 if (r_type == R_XTENSA_NONE)
10186 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10190 sec = fix->target_sec;
10192 fixup_diff = rel->r_addend;
10193 if (elf_howto_table[fix->src_type].partial_inplace)
10195 bfd_vma inplace_val;
10196 BFD_ASSERT (fix->src_offset
10197 < bfd_get_section_limit (input_bfd, input_section));
10198 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10199 fixup_diff += inplace_val;
10202 *relocationp = (sec->output_section->vma
10203 + sec->output_offset
10204 + fix->target_offset - fixup_diff);
10208 /* Miscellaneous utility functions.... */
10211 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10213 struct elf_xtensa_link_hash_table *htab;
10219 htab = elf_xtensa_hash_table (info);
10223 dynobj = elf_hash_table (info)->dynobj;
10224 sprintf (plt_name, ".plt.%u", chunk);
10225 return bfd_get_section_by_name (dynobj, plt_name);
10230 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10232 struct elf_xtensa_link_hash_table *htab;
10238 htab = elf_xtensa_hash_table (info);
10239 return htab->sgotplt;
10242 dynobj = elf_hash_table (info)->dynobj;
10243 sprintf (got_name, ".got.plt.%u", chunk);
10244 return bfd_get_section_by_name (dynobj, got_name);
10248 /* Get the input section for a given symbol index.
10250 . a section symbol, return the section;
10251 . a common symbol, return the common section;
10252 . an undefined symbol, return the undefined section;
10253 . an indirect symbol, follow the links;
10254 . an absolute value, return the absolute section. */
10257 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10259 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10260 asection *target_sec = NULL;
10261 if (r_symndx < symtab_hdr->sh_info)
10263 Elf_Internal_Sym *isymbuf;
10264 unsigned int section_index;
10266 isymbuf = retrieve_local_syms (abfd);
10267 section_index = isymbuf[r_symndx].st_shndx;
10269 if (section_index == SHN_UNDEF)
10270 target_sec = bfd_und_section_ptr;
10271 else if (section_index == SHN_ABS)
10272 target_sec = bfd_abs_section_ptr;
10273 else if (section_index == SHN_COMMON)
10274 target_sec = bfd_com_section_ptr;
10276 target_sec = bfd_section_from_elf_index (abfd, section_index);
10280 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10281 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10283 while (h->root.type == bfd_link_hash_indirect
10284 || h->root.type == bfd_link_hash_warning)
10285 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10287 switch (h->root.type)
10289 case bfd_link_hash_defined:
10290 case bfd_link_hash_defweak:
10291 target_sec = h->root.u.def.section;
10293 case bfd_link_hash_common:
10294 target_sec = bfd_com_section_ptr;
10296 case bfd_link_hash_undefined:
10297 case bfd_link_hash_undefweak:
10298 target_sec = bfd_und_section_ptr;
10300 default: /* New indirect warning. */
10301 target_sec = bfd_und_section_ptr;
10309 static struct elf_link_hash_entry *
10310 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10312 unsigned long indx;
10313 struct elf_link_hash_entry *h;
10314 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10316 if (r_symndx < symtab_hdr->sh_info)
10319 indx = r_symndx - symtab_hdr->sh_info;
10320 h = elf_sym_hashes (abfd)[indx];
10321 while (h->root.type == bfd_link_hash_indirect
10322 || h->root.type == bfd_link_hash_warning)
10323 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10328 /* Get the section-relative offset for a symbol number. */
10331 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10333 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10334 bfd_vma offset = 0;
10336 if (r_symndx < symtab_hdr->sh_info)
10338 Elf_Internal_Sym *isymbuf;
10339 isymbuf = retrieve_local_syms (abfd);
10340 offset = isymbuf[r_symndx].st_value;
10344 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10345 struct elf_link_hash_entry *h =
10346 elf_sym_hashes (abfd)[indx];
10348 while (h->root.type == bfd_link_hash_indirect
10349 || h->root.type == bfd_link_hash_warning)
10350 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10351 if (h->root.type == bfd_link_hash_defined
10352 || h->root.type == bfd_link_hash_defweak)
10353 offset = h->root.u.def.value;
10360 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10362 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10363 struct elf_link_hash_entry *h;
10365 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10366 if (h && h->root.type == bfd_link_hash_defweak)
10373 pcrel_reloc_fits (xtensa_opcode opc,
10375 bfd_vma self_address,
10376 bfd_vma dest_address)
10378 xtensa_isa isa = xtensa_default_isa;
10379 uint32 valp = dest_address;
10380 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10381 || xtensa_operand_encode (isa, opc, opnd, &valp))
10388 xtensa_is_property_section (asection *sec)
10390 if (xtensa_is_insntable_section (sec)
10391 || xtensa_is_littable_section (sec)
10392 || xtensa_is_proptable_section (sec))
10400 xtensa_is_insntable_section (asection *sec)
10402 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10403 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
10411 xtensa_is_littable_section (asection *sec)
10413 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10414 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
10422 xtensa_is_proptable_section (asection *sec)
10424 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10425 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
10433 internal_reloc_compare (const void *ap, const void *bp)
10435 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10436 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10438 if (a->r_offset != b->r_offset)
10439 return (a->r_offset - b->r_offset);
10441 /* We don't need to sort on these criteria for correctness,
10442 but enforcing a more strict ordering prevents unstable qsort
10443 from behaving differently with different implementations.
10444 Without the code below we get correct but different results
10445 on Solaris 2.7 and 2.8. We would like to always produce the
10446 same results no matter the host. */
10448 if (a->r_info != b->r_info)
10449 return (a->r_info - b->r_info);
10451 return (a->r_addend - b->r_addend);
10456 internal_reloc_matches (const void *ap, const void *bp)
10458 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10459 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10461 /* Check if one entry overlaps with the other; this shouldn't happen
10462 except when searching for a match. */
10463 return (a->r_offset - b->r_offset);
10467 /* Predicate function used to look up a section in a particular group. */
10470 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10472 const char *gname = inf;
10473 const char *group_name = elf_group_name (sec);
10475 return (group_name == gname
10476 || (group_name != NULL
10478 && strcmp (group_name, gname) == 0));
10482 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10485 xtensa_property_section_name (asection *sec, const char *base_name)
10487 const char *suffix, *group_name;
10488 char *prop_sec_name;
10490 group_name = elf_group_name (sec);
10493 suffix = strrchr (sec->name, '.');
10494 if (suffix == sec->name)
10496 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10497 + (suffix ? strlen (suffix) : 0));
10498 strcpy (prop_sec_name, base_name);
10500 strcat (prop_sec_name, suffix);
10502 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
10504 char *linkonce_kind = 0;
10506 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
10507 linkonce_kind = "x.";
10508 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
10509 linkonce_kind = "p.";
10510 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
10511 linkonce_kind = "prop.";
10515 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
10516 + strlen (linkonce_kind) + 1);
10517 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
10518 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
10520 suffix = sec->name + linkonce_len;
10521 /* For backward compatibility, replace "t." instead of inserting
10522 the new linkonce_kind (but not for "prop" sections). */
10523 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
10525 strcat (prop_sec_name + linkonce_len, suffix);
10528 prop_sec_name = strdup (base_name);
10530 return prop_sec_name;
10535 xtensa_get_property_section (asection *sec, const char *base_name)
10537 char *prop_sec_name;
10538 asection *prop_sec;
10540 prop_sec_name = xtensa_property_section_name (sec, base_name);
10541 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10542 match_section_group,
10543 (void *) elf_group_name (sec));
10544 free (prop_sec_name);
10550 xtensa_make_property_section (asection *sec, const char *base_name)
10552 char *prop_sec_name;
10553 asection *prop_sec;
10555 /* Check if the section already exists. */
10556 prop_sec_name = xtensa_property_section_name (sec, base_name);
10557 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10558 match_section_group,
10559 (void *) elf_group_name (sec));
10560 /* If not, create it. */
10563 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
10564 flags |= (bfd_get_section_flags (sec->owner, sec)
10565 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
10567 prop_sec = bfd_make_section_anyway_with_flags
10568 (sec->owner, strdup (prop_sec_name), flags);
10572 elf_group_name (prop_sec) = elf_group_name (sec);
10575 free (prop_sec_name);
10581 xtensa_get_property_predef_flags (asection *sec)
10583 if (xtensa_is_insntable_section (sec))
10584 return (XTENSA_PROP_INSN
10585 | XTENSA_PROP_NO_TRANSFORM
10586 | XTENSA_PROP_INSN_NO_REORDER);
10588 if (xtensa_is_littable_section (sec))
10589 return (XTENSA_PROP_LITERAL
10590 | XTENSA_PROP_NO_TRANSFORM
10591 | XTENSA_PROP_INSN_NO_REORDER);
10597 /* Other functions called directly by the linker. */
10600 xtensa_callback_required_dependence (bfd *abfd,
10602 struct bfd_link_info *link_info,
10603 deps_callback_t callback,
10606 Elf_Internal_Rela *internal_relocs;
10607 bfd_byte *contents;
10609 bfd_boolean ok = TRUE;
10610 bfd_size_type sec_size;
10612 sec_size = bfd_get_section_limit (abfd, sec);
10614 /* ".plt*" sections have no explicit relocations but they contain L32R
10615 instructions that reference the corresponding ".got.plt*" sections. */
10616 if ((sec->flags & SEC_LINKER_CREATED) != 0
10617 && CONST_STRNEQ (sec->name, ".plt"))
10621 /* Find the corresponding ".got.plt*" section. */
10622 if (sec->name[4] == '\0')
10623 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
10629 BFD_ASSERT (sec->name[4] == '.');
10630 chunk = strtol (&sec->name[5], NULL, 10);
10632 sprintf (got_name, ".got.plt.%u", chunk);
10633 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
10635 BFD_ASSERT (sgotplt);
10637 /* Assume worst-case offsets: L32R at the very end of the ".plt"
10638 section referencing a literal at the very beginning of
10639 ".got.plt". This is very close to the real dependence, anyway. */
10640 (*callback) (sec, sec_size, sgotplt, 0, closure);
10643 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
10644 when building uclibc, which runs "ld -b binary /dev/null". */
10645 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
10648 internal_relocs = retrieve_internal_relocs (abfd, sec,
10649 link_info->keep_memory);
10650 if (internal_relocs == NULL
10651 || sec->reloc_count == 0)
10654 /* Cache the contents for the duration of this scan. */
10655 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10656 if (contents == NULL && sec_size != 0)
10662 if (!xtensa_default_isa)
10663 xtensa_default_isa = xtensa_isa_init (0, 0);
10665 for (i = 0; i < sec->reloc_count; i++)
10667 Elf_Internal_Rela *irel = &internal_relocs[i];
10668 if (is_l32r_relocation (abfd, sec, contents, irel))
10671 asection *target_sec;
10672 bfd_vma target_offset;
10674 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
10677 /* L32Rs must be local to the input file. */
10678 if (r_reloc_is_defined (&l32r_rel))
10680 target_sec = r_reloc_get_section (&l32r_rel);
10681 target_offset = l32r_rel.target_offset;
10683 (*callback) (sec, irel->r_offset, target_sec, target_offset,
10689 release_internal_relocs (sec, internal_relocs);
10690 release_contents (sec, contents);
10694 /* The default literal sections should always be marked as "code" (i.e.,
10695 SHF_EXECINSTR). This is particularly important for the Linux kernel
10696 module loader so that the literals are not placed after the text. */
10697 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
10699 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10700 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10701 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10702 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
10703 { NULL, 0, 0, 0, 0 }
10707 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
10708 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
10709 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
10710 #define TARGET_BIG_NAME "elf32-xtensa-be"
10711 #define ELF_ARCH bfd_arch_xtensa
10713 #define ELF_MACHINE_CODE EM_XTENSA
10714 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
10717 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
10718 #else /* !XCHAL_HAVE_MMU */
10719 #define ELF_MAXPAGESIZE 1
10720 #endif /* !XCHAL_HAVE_MMU */
10721 #endif /* ELF_ARCH */
10723 #define elf_backend_can_gc_sections 1
10724 #define elf_backend_can_refcount 1
10725 #define elf_backend_plt_readonly 1
10726 #define elf_backend_got_header_size 4
10727 #define elf_backend_want_dynbss 0
10728 #define elf_backend_want_got_plt 1
10730 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
10732 #define bfd_elf32_mkobject elf_xtensa_mkobject
10734 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
10735 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
10736 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
10737 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
10738 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
10739 #define bfd_elf32_bfd_reloc_name_lookup \
10740 elf_xtensa_reloc_name_lookup
10741 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
10742 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
10744 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
10745 #define elf_backend_check_relocs elf_xtensa_check_relocs
10746 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
10747 #define elf_backend_discard_info elf_xtensa_discard_info
10748 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
10749 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
10750 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
10751 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
10752 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
10753 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
10754 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
10755 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
10756 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
10757 #define elf_backend_object_p elf_xtensa_object_p
10758 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
10759 #define elf_backend_relocate_section elf_xtensa_relocate_section
10760 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
10761 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
10762 #define elf_backend_omit_section_dynsym \
10763 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
10764 #define elf_backend_special_sections elf_xtensa_special_sections
10765 #define elf_backend_action_discarded elf_xtensa_action_discarded
10766 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
10768 #include "elf32-target.h"