1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
35 #define XTENSA_NO_NOP_REMOVAL 0
37 /* Local helper functions. */
39 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
45 static void do_fix_for_final_link
46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
48 /* Local functions to handle Xtensa configurability. */
50 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53 static xtensa_opcode get_const16_opcode (void);
54 static xtensa_opcode get_l32r_opcode (void);
55 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56 static int get_relocation_opnd (xtensa_opcode, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
60 static bfd_boolean is_l32r_relocation
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62 static bfd_boolean is_alt_relocation (int);
63 static bfd_boolean is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65 (bfd_byte *, bfd_size_type, bfd_size_type);
66 static int insn_num_slots
67 (bfd_byte *, bfd_size_type, bfd_size_type);
68 static xtensa_opcode insn_decode_opcode
69 (bfd_byte *, bfd_size_type, bfd_size_type, int);
70 static bfd_boolean check_branch_target_aligned
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72 static bfd_boolean check_loop_aligned
73 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
74 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
75 static bfd_size_type get_asm_simplify_size
76 (bfd_byte *, bfd_size_type, bfd_size_type);
78 /* Functions for link-time code simplifications. */
80 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
81 (bfd_byte *, bfd_vma, bfd_vma, char **);
82 static bfd_reloc_status_type contract_asm_expansion
83 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
84 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
85 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
87 /* Access to internal relocations, section contents and symbols. */
89 static Elf_Internal_Rela *retrieve_internal_relocs
90 (bfd *, asection *, bfd_boolean);
91 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
92 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
93 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
94 static void pin_contents (asection *, bfd_byte *);
95 static void release_contents (asection *, bfd_byte *);
96 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
98 /* Miscellaneous utility functions. */
100 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
101 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
102 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
103 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
104 (bfd *, unsigned long);
105 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
106 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
107 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
108 static bfd_boolean xtensa_is_property_section (asection *);
109 static bfd_boolean xtensa_is_insntable_section (asection *);
110 static bfd_boolean xtensa_is_littable_section (asection *);
111 static bfd_boolean xtensa_is_proptable_section (asection *);
112 static int internal_reloc_compare (const void *, const void *);
113 static int internal_reloc_matches (const void *, const void *);
114 static asection *xtensa_get_property_section (asection *, const char *);
115 static flagword xtensa_get_property_predef_flags (asection *);
117 /* Other functions called directly by the linker. */
119 typedef void (*deps_callback_t)
120 (asection *, bfd_vma, asection *, bfd_vma, void *);
121 extern bfd_boolean xtensa_callback_required_dependence
122 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
125 /* Globally visible flag for choosing size optimization of NOP removal
126 instead of branch-target-aware minimization for NOP removal.
127 When nonzero, narrow all instructions and remove all NOPs possible
128 around longcall expansions. */
130 int elf32xtensa_size_opt;
133 /* The "new_section_hook" is used to set up a per-section
134 "xtensa_relax_info" data structure with additional information used
135 during relaxation. */
137 typedef struct xtensa_relax_info_struct xtensa_relax_info;
140 /* The GNU tools do not easily allow extending interfaces to pass around
141 the pointer to the Xtensa ISA information, so instead we add a global
142 variable here (in BFD) that can be used by any of the tools that need
145 xtensa_isa xtensa_default_isa;
148 /* When this is true, relocations may have been modified to refer to
149 symbols from other input files. The per-section list of "fix"
150 records needs to be checked when resolving relocations. */
152 static bfd_boolean relaxing_section = FALSE;
154 /* When this is true, during final links, literals that cannot be
155 coalesced and their relocations may be moved to other sections. */
157 int elf32xtensa_no_literal_movement = 1;
159 /* Place property records for a section into individual property section
160 with xt.prop. prefix. */
162 bfd_boolean elf32xtensa_separate_props = FALSE;
164 /* Rename one of the generic section flags to better document how it
166 /* Whether relocations have been processed. */
167 #define reloc_done sec_flg0
169 static reloc_howto_type elf_howto_table[] =
171 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
172 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
174 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
175 bfd_elf_xtensa_reloc, "R_XTENSA_32",
176 TRUE, 0xffffffff, 0xffffffff, FALSE),
178 /* Replace a 32-bit value with a value from the runtime linker (only
179 used by linker-generated stub functions). The r_addend value is
180 special: 1 means to substitute a pointer to the runtime linker's
181 dynamic resolver function; 2 means to substitute the link map for
182 the shared object. */
183 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
184 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
186 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
187 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
188 FALSE, 0, 0xffffffff, FALSE),
189 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
191 FALSE, 0, 0xffffffff, FALSE),
192 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
193 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
194 FALSE, 0, 0xffffffff, FALSE),
195 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
196 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
197 FALSE, 0, 0xffffffff, FALSE),
201 /* Old relocations for backward compatibility. */
202 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
203 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
204 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
206 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
207 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
209 /* Assembly auto-expansion. */
210 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
211 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
212 /* Relax assembly auto-expansion. */
213 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
214 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
218 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
219 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
220 FALSE, 0, 0xffffffff, TRUE),
222 /* GNU extension to record C++ vtable hierarchy. */
223 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
224 NULL, "R_XTENSA_GNU_VTINHERIT",
226 /* GNU extension to record C++ vtable member usage. */
227 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
228 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
231 /* Relocations for supporting difference of symbols. */
232 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
233 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
234 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
235 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
236 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
237 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
239 /* General immediate operand relocations. */
240 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
242 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
244 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
246 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
248 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
250 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
252 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
254 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
256 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
258 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
260 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
262 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
264 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
266 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
268 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
271 /* "Alternate" relocations. The meaning of these is opcode-specific. */
272 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
274 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
276 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
278 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
280 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
282 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
284 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
286 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
288 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
290 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
292 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
293 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
294 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
295 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
296 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
297 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
298 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
299 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
300 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
301 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
303 /* TLS relocations. */
304 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
305 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
306 FALSE, 0, 0xffffffff, FALSE),
307 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
308 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
309 FALSE, 0, 0xffffffff, FALSE),
310 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
311 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
312 FALSE, 0, 0xffffffff, FALSE),
313 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
314 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
315 FALSE, 0, 0xffffffff, FALSE),
316 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
317 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
319 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
320 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
322 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
323 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
329 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
334 static reloc_howto_type *
335 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
336 bfd_reloc_code_real_type code)
341 TRACE ("BFD_RELOC_NONE");
342 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
345 TRACE ("BFD_RELOC_32");
346 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
348 case BFD_RELOC_32_PCREL:
349 TRACE ("BFD_RELOC_32_PCREL");
350 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
352 case BFD_RELOC_XTENSA_DIFF8:
353 TRACE ("BFD_RELOC_XTENSA_DIFF8");
354 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
356 case BFD_RELOC_XTENSA_DIFF16:
357 TRACE ("BFD_RELOC_XTENSA_DIFF16");
358 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
360 case BFD_RELOC_XTENSA_DIFF32:
361 TRACE ("BFD_RELOC_XTENSA_DIFF32");
362 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
364 case BFD_RELOC_XTENSA_RTLD:
365 TRACE ("BFD_RELOC_XTENSA_RTLD");
366 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
368 case BFD_RELOC_XTENSA_GLOB_DAT:
369 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
370 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
372 case BFD_RELOC_XTENSA_JMP_SLOT:
373 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
374 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
376 case BFD_RELOC_XTENSA_RELATIVE:
377 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
378 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
380 case BFD_RELOC_XTENSA_PLT:
381 TRACE ("BFD_RELOC_XTENSA_PLT");
382 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
384 case BFD_RELOC_XTENSA_OP0:
385 TRACE ("BFD_RELOC_XTENSA_OP0");
386 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
388 case BFD_RELOC_XTENSA_OP1:
389 TRACE ("BFD_RELOC_XTENSA_OP1");
390 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
392 case BFD_RELOC_XTENSA_OP2:
393 TRACE ("BFD_RELOC_XTENSA_OP2");
394 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
396 case BFD_RELOC_XTENSA_ASM_EXPAND:
397 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
398 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
400 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
401 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
402 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
404 case BFD_RELOC_VTABLE_INHERIT:
405 TRACE ("BFD_RELOC_VTABLE_INHERIT");
406 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
408 case BFD_RELOC_VTABLE_ENTRY:
409 TRACE ("BFD_RELOC_VTABLE_ENTRY");
410 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
412 case BFD_RELOC_XTENSA_TLSDESC_FN:
413 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
414 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
416 case BFD_RELOC_XTENSA_TLSDESC_ARG:
417 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
418 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
420 case BFD_RELOC_XTENSA_TLS_DTPOFF:
421 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
422 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
424 case BFD_RELOC_XTENSA_TLS_TPOFF:
425 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
426 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
428 case BFD_RELOC_XTENSA_TLS_FUNC:
429 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
430 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
432 case BFD_RELOC_XTENSA_TLS_ARG:
433 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
434 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
436 case BFD_RELOC_XTENSA_TLS_CALL:
437 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
438 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
441 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
442 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
444 unsigned n = (R_XTENSA_SLOT0_OP +
445 (code - BFD_RELOC_XTENSA_SLOT0_OP));
446 return &elf_howto_table[n];
449 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
450 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
452 unsigned n = (R_XTENSA_SLOT0_ALT +
453 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
454 return &elf_howto_table[n];
460 /* xgettext:c-format */
461 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code);
462 bfd_set_error (bfd_error_bad_value);
467 static reloc_howto_type *
468 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
473 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
474 if (elf_howto_table[i].name != NULL
475 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
476 return &elf_howto_table[i];
482 /* Given an ELF "rela" relocation, find the corresponding howto and record
483 it in the BFD internal arelent representation of the relocation. */
486 elf_xtensa_info_to_howto_rela (bfd *abfd,
488 Elf_Internal_Rela *dst)
490 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
492 if (r_type >= (unsigned int) R_XTENSA_max)
494 /* xgettext:c-format */
495 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
497 bfd_set_error (bfd_error_bad_value);
500 cache_ptr->howto = &elf_howto_table[r_type];
505 /* Functions for the Xtensa ELF linker. */
507 /* The name of the dynamic interpreter. This is put in the .interp
510 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
512 /* The size in bytes of an entry in the procedure linkage table.
513 (This does _not_ include the space for the literals associated with
516 #define PLT_ENTRY_SIZE 16
518 /* For _really_ large PLTs, we may need to alternate between literals
519 and code to keep the literals within the 256K range of the L32R
520 instructions in the code. It's unlikely that anyone would ever need
521 such a big PLT, but an arbitrary limit on the PLT size would be bad.
522 Thus, we split the PLT into chunks. Since there's very little
523 overhead (2 extra literals) for each chunk, the chunk size is kept
524 small so that the code for handling multiple chunks get used and
525 tested regularly. With 254 entries, there are 1K of literals for
526 each chunk, and that seems like a nice round number. */
528 #define PLT_ENTRIES_PER_CHUNK 254
530 /* PLT entries are actually used as stub functions for lazy symbol
531 resolution. Once the symbol is resolved, the stub function is never
532 invoked. Note: the 32-byte frame size used here cannot be changed
533 without a corresponding change in the runtime linker. */
535 static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] =
538 0x6c, 0x10, 0x04, /* entry sp, 32 */
539 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
540 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
541 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
542 0x0a, 0x80, 0x00, /* jx a8 */
546 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
547 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
548 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
549 0x0a, 0x80, 0x00, /* jx a8 */
554 static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] =
557 0x36, 0x41, 0x00, /* entry sp, 32 */
558 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
559 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
560 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
561 0xa0, 0x08, 0x00, /* jx a8 */
565 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
566 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
567 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
568 0xa0, 0x08, 0x00, /* jx a8 */
573 /* The size of the thread control block. */
576 struct elf_xtensa_link_hash_entry
578 struct elf_link_hash_entry elf;
580 bfd_signed_vma tlsfunc_refcount;
582 #define GOT_UNKNOWN 0
584 #define GOT_TLS_GD 2 /* global or local dynamic */
585 #define GOT_TLS_IE 4 /* initial or local exec */
586 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
587 unsigned char tls_type;
590 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
592 struct elf_xtensa_obj_tdata
594 struct elf_obj_tdata root;
596 /* tls_type for each local got entry. */
597 char *local_got_tls_type;
599 bfd_signed_vma *local_tlsfunc_refcounts;
602 #define elf_xtensa_tdata(abfd) \
603 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
605 #define elf_xtensa_local_got_tls_type(abfd) \
606 (elf_xtensa_tdata (abfd)->local_got_tls_type)
608 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
609 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
611 #define is_xtensa_elf(bfd) \
612 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
613 && elf_tdata (bfd) != NULL \
614 && elf_object_id (bfd) == XTENSA_ELF_DATA)
617 elf_xtensa_mkobject (bfd *abfd)
619 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
623 /* Xtensa ELF linker hash table. */
625 struct elf_xtensa_link_hash_table
627 struct elf_link_hash_table elf;
629 /* Short-cuts to get to dynamic linker sections. */
631 asection *spltlittbl;
633 /* Total count of PLT relocations seen during check_relocs.
634 The actual PLT code must be split into multiple sections and all
635 the sections have to be created before size_dynamic_sections,
636 where we figure out the exact number of PLT entries that will be
637 needed. It is OK if this count is an overestimate, e.g., some
638 relocations may be removed by GC. */
641 struct elf_xtensa_link_hash_entry *tlsbase;
644 /* Get the Xtensa ELF linker hash table from a link_info structure. */
646 #define elf_xtensa_hash_table(p) \
647 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
648 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
650 /* Create an entry in an Xtensa ELF linker hash table. */
652 static struct bfd_hash_entry *
653 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
654 struct bfd_hash_table *table,
657 /* Allocate the structure if it has not already been allocated by a
661 entry = bfd_hash_allocate (table,
662 sizeof (struct elf_xtensa_link_hash_entry));
667 /* Call the allocation method of the superclass. */
668 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
671 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
672 eh->tlsfunc_refcount = 0;
673 eh->tls_type = GOT_UNKNOWN;
679 /* Create an Xtensa ELF linker hash table. */
681 static struct bfd_link_hash_table *
682 elf_xtensa_link_hash_table_create (bfd *abfd)
684 struct elf_link_hash_entry *tlsbase;
685 struct elf_xtensa_link_hash_table *ret;
686 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
688 ret = bfd_zmalloc (amt);
692 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
693 elf_xtensa_link_hash_newfunc,
694 sizeof (struct elf_xtensa_link_hash_entry),
701 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
703 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
705 tlsbase->root.type = bfd_link_hash_new;
706 tlsbase->root.u.undef.abfd = NULL;
707 tlsbase->non_elf = 0;
708 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
709 ret->tlsbase->tls_type = GOT_UNKNOWN;
711 return &ret->elf.root;
714 /* Copy the extra info we tack onto an elf_link_hash_entry. */
717 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
718 struct elf_link_hash_entry *dir,
719 struct elf_link_hash_entry *ind)
721 struct elf_xtensa_link_hash_entry *edir, *eind;
723 edir = elf_xtensa_hash_entry (dir);
724 eind = elf_xtensa_hash_entry (ind);
726 if (ind->root.type == bfd_link_hash_indirect)
728 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
729 eind->tlsfunc_refcount = 0;
731 if (dir->got.refcount <= 0)
733 edir->tls_type = eind->tls_type;
734 eind->tls_type = GOT_UNKNOWN;
738 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
741 static inline bfd_boolean
742 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
743 struct bfd_link_info *info)
745 /* Check if we should do dynamic things to this symbol. The
746 "ignore_protected" argument need not be set, because Xtensa code
747 does not require special handling of STV_PROTECTED to make function
748 pointer comparisons work properly. The PLT addresses are never
749 used for function pointers. */
751 return _bfd_elf_dynamic_symbol_p (h, info, 0);
756 property_table_compare (const void *ap, const void *bp)
758 const property_table_entry *a = (const property_table_entry *) ap;
759 const property_table_entry *b = (const property_table_entry *) bp;
761 if (a->address == b->address)
763 if (a->size != b->size)
764 return (a->size - b->size);
766 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
767 return ((b->flags & XTENSA_PROP_ALIGN)
768 - (a->flags & XTENSA_PROP_ALIGN));
770 if ((a->flags & XTENSA_PROP_ALIGN)
771 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
772 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
773 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
774 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
776 if ((a->flags & XTENSA_PROP_UNREACHABLE)
777 != (b->flags & XTENSA_PROP_UNREACHABLE))
778 return ((b->flags & XTENSA_PROP_UNREACHABLE)
779 - (a->flags & XTENSA_PROP_UNREACHABLE));
781 return (a->flags - b->flags);
784 return (a->address - b->address);
789 property_table_matches (const void *ap, const void *bp)
791 const property_table_entry *a = (const property_table_entry *) ap;
792 const property_table_entry *b = (const property_table_entry *) bp;
794 /* Check if one entry overlaps with the other. */
795 if ((b->address >= a->address && b->address < (a->address + a->size))
796 || (a->address >= b->address && a->address < (b->address + b->size)))
799 return (a->address - b->address);
803 /* Get the literal table or property table entries for the given
804 section. Sets TABLE_P and returns the number of entries. On
805 error, returns a negative value. */
808 xtensa_read_table_entries (bfd *abfd,
810 property_table_entry **table_p,
811 const char *sec_name,
812 bfd_boolean output_addr)
814 asection *table_section;
815 bfd_size_type table_size = 0;
816 bfd_byte *table_data;
817 property_table_entry *blocks;
818 int blk, block_count;
819 bfd_size_type num_records;
820 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
821 bfd_vma section_addr, off;
822 flagword predef_flags;
823 bfd_size_type table_entry_size, section_limit;
826 || !(section->flags & SEC_ALLOC)
827 || (section->flags & SEC_DEBUGGING))
833 table_section = xtensa_get_property_section (section, sec_name);
835 table_size = table_section->size;
843 predef_flags = xtensa_get_property_predef_flags (table_section);
844 table_entry_size = 12;
846 table_entry_size -= 4;
848 num_records = table_size / table_entry_size;
849 table_data = retrieve_contents (abfd, table_section, TRUE);
850 blocks = (property_table_entry *)
851 bfd_malloc (num_records * sizeof (property_table_entry));
855 section_addr = section->output_section->vma + section->output_offset;
857 section_addr = section->vma;
859 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
860 if (internal_relocs && !table_section->reloc_done)
862 qsort (internal_relocs, table_section->reloc_count,
863 sizeof (Elf_Internal_Rela), internal_reloc_compare);
864 irel = internal_relocs;
869 section_limit = bfd_get_section_limit (abfd, section);
870 rel_end = internal_relocs + table_section->reloc_count;
872 for (off = 0; off < table_size; off += table_entry_size)
874 bfd_vma address = bfd_get_32 (abfd, table_data + off);
876 /* Skip any relocations before the current offset. This should help
877 avoid confusion caused by unexpected relocations for the preceding
880 (irel->r_offset < off
881 || (irel->r_offset == off
882 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
889 if (irel && irel->r_offset == off)
892 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
893 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
895 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
898 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
899 BFD_ASSERT (sym_off == 0);
900 address += (section_addr + sym_off + irel->r_addend);
904 if (address < section_addr
905 || address >= section_addr + section_limit)
909 blocks[block_count].address = address;
910 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
912 blocks[block_count].flags = predef_flags;
914 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
918 release_contents (table_section, table_data);
919 release_internal_relocs (table_section, internal_relocs);
923 /* Now sort them into address order for easy reference. */
924 qsort (blocks, block_count, sizeof (property_table_entry),
925 property_table_compare);
927 /* Check that the table contents are valid. Problems may occur,
928 for example, if an unrelocated object file is stripped. */
929 for (blk = 1; blk < block_count; blk++)
931 /* The only circumstance where two entries may legitimately
932 have the same address is when one of them is a zero-size
933 placeholder to mark a place where fill can be inserted.
934 The zero-size entry should come first. */
935 if (blocks[blk - 1].address == blocks[blk].address &&
936 blocks[blk - 1].size != 0)
938 /* xgettext:c-format */
939 _bfd_error_handler (_("%pB(%pA): invalid property table"),
941 bfd_set_error (bfd_error_bad_value);
953 static property_table_entry *
954 elf_xtensa_find_property_entry (property_table_entry *property_table,
955 int property_table_size,
958 property_table_entry entry;
959 property_table_entry *rv;
961 if (property_table_size == 0)
964 entry.address = addr;
968 rv = bsearch (&entry, property_table, property_table_size,
969 sizeof (property_table_entry), property_table_matches);
975 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
979 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
986 /* Look through the relocs for a section during the first phase, and
987 calculate needed space in the dynamic reloc sections. */
990 elf_xtensa_check_relocs (bfd *abfd,
991 struct bfd_link_info *info,
993 const Elf_Internal_Rela *relocs)
995 struct elf_xtensa_link_hash_table *htab;
996 Elf_Internal_Shdr *symtab_hdr;
997 struct elf_link_hash_entry **sym_hashes;
998 const Elf_Internal_Rela *rel;
999 const Elf_Internal_Rela *rel_end;
1001 if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
1004 BFD_ASSERT (is_xtensa_elf (abfd));
1006 htab = elf_xtensa_hash_table (info);
1010 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1011 sym_hashes = elf_sym_hashes (abfd);
1013 rel_end = relocs + sec->reloc_count;
1014 for (rel = relocs; rel < rel_end; rel++)
1016 unsigned int r_type;
1018 struct elf_link_hash_entry *h = NULL;
1019 struct elf_xtensa_link_hash_entry *eh;
1020 int tls_type, old_tls_type;
1021 bfd_boolean is_got = FALSE;
1022 bfd_boolean is_plt = FALSE;
1023 bfd_boolean is_tlsfunc = FALSE;
1025 r_symndx = ELF32_R_SYM (rel->r_info);
1026 r_type = ELF32_R_TYPE (rel->r_info);
1028 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1030 /* xgettext:c-format */
1031 _bfd_error_handler (_("%pB: bad symbol index: %d"),
1036 if (r_symndx >= symtab_hdr->sh_info)
1038 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1039 while (h->root.type == bfd_link_hash_indirect
1040 || h->root.type == bfd_link_hash_warning)
1041 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1043 eh = elf_xtensa_hash_entry (h);
1047 case R_XTENSA_TLSDESC_FN:
1048 if (bfd_link_pic (info))
1050 tls_type = GOT_TLS_GD;
1055 tls_type = GOT_TLS_IE;
1058 case R_XTENSA_TLSDESC_ARG:
1059 if (bfd_link_pic (info))
1061 tls_type = GOT_TLS_GD;
1066 tls_type = GOT_TLS_IE;
1067 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1072 case R_XTENSA_TLS_DTPOFF:
1073 if (bfd_link_pic (info))
1074 tls_type = GOT_TLS_GD;
1076 tls_type = GOT_TLS_IE;
1079 case R_XTENSA_TLS_TPOFF:
1080 tls_type = GOT_TLS_IE;
1081 if (bfd_link_pic (info))
1082 info->flags |= DF_STATIC_TLS;
1083 if (bfd_link_pic (info) || h)
1088 tls_type = GOT_NORMAL;
1093 tls_type = GOT_NORMAL;
1097 case R_XTENSA_GNU_VTINHERIT:
1098 /* This relocation describes the C++ object vtable hierarchy.
1099 Reconstruct it for later use during GC. */
1100 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1104 case R_XTENSA_GNU_VTENTRY:
1105 /* This relocation describes which C++ vtable entries are actually
1106 used. Record for later use during GC. */
1107 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1112 /* Nothing to do for any other relocations. */
1120 if (h->plt.refcount <= 0)
1123 h->plt.refcount = 1;
1126 h->plt.refcount += 1;
1128 /* Keep track of the total PLT relocation count even if we
1129 don't yet know whether the dynamic sections will be
1131 htab->plt_reloc_count += 1;
1133 if (elf_hash_table (info)->dynamic_sections_created)
1135 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1141 if (h->got.refcount <= 0)
1142 h->got.refcount = 1;
1144 h->got.refcount += 1;
1148 eh->tlsfunc_refcount += 1;
1150 old_tls_type = eh->tls_type;
1154 /* Allocate storage the first time. */
1155 if (elf_local_got_refcounts (abfd) == NULL)
1157 bfd_size_type size = symtab_hdr->sh_info;
1160 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1163 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1165 mem = bfd_zalloc (abfd, size);
1168 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1170 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1173 elf_xtensa_local_tlsfunc_refcounts (abfd)
1174 = (bfd_signed_vma *) mem;
1177 /* This is a global offset table entry for a local symbol. */
1178 if (is_got || is_plt)
1179 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1182 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1184 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1187 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1188 tls_type |= old_tls_type;
1189 /* If a TLS symbol is accessed using IE at least once,
1190 there is no point to use a dynamic model for it. */
1191 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1192 && ((old_tls_type & GOT_TLS_GD) == 0
1193 || (tls_type & GOT_TLS_IE) == 0))
1195 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1196 tls_type = old_tls_type;
1197 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1198 tls_type |= old_tls_type;
1202 /* xgettext:c-format */
1203 (_("%pB: `%s' accessed both as normal and thread local symbol"),
1205 h ? h->root.root.string : "<local>");
1210 if (old_tls_type != tls_type)
1213 eh->tls_type = tls_type;
1215 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1224 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1225 struct elf_link_hash_entry *h)
1227 if (bfd_link_pic (info))
1229 if (h->plt.refcount > 0)
1231 /* For shared objects, there's no need for PLT entries for local
1232 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1233 if (h->got.refcount < 0)
1234 h->got.refcount = 0;
1235 h->got.refcount += h->plt.refcount;
1236 h->plt.refcount = 0;
1241 /* Don't need any dynamic relocations at all. */
1242 h->plt.refcount = 0;
1243 h->got.refcount = 0;
1249 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1250 struct elf_link_hash_entry *h,
1251 bfd_boolean force_local)
1253 /* For a shared link, move the plt refcount to the got refcount to leave
1254 space for RELATIVE relocs. */
1255 elf_xtensa_make_sym_local (info, h);
1257 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1261 /* Return the section that should be marked against GC for a given
1265 elf_xtensa_gc_mark_hook (asection *sec,
1266 struct bfd_link_info *info,
1267 Elf_Internal_Rela *rel,
1268 struct elf_link_hash_entry *h,
1269 Elf_Internal_Sym *sym)
1271 /* Property sections are marked "KEEP" in the linker scripts, but they
1272 should not cause other sections to be marked. (This approach relies
1273 on elf_xtensa_discard_info to remove property table entries that
1274 describe discarded sections. Alternatively, it might be more
1275 efficient to avoid using "KEEP" in the linker scripts and instead use
1276 the gc_mark_extra_sections hook to mark only the property sections
1277 that describe marked sections. That alternative does not work well
1278 with the current property table sections, which do not correspond
1279 one-to-one with the sections they describe, but that should be fixed
1281 if (xtensa_is_property_section (sec))
1285 switch (ELF32_R_TYPE (rel->r_info))
1287 case R_XTENSA_GNU_VTINHERIT:
1288 case R_XTENSA_GNU_VTENTRY:
1292 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1296 /* Create all the dynamic sections. */
1299 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1301 struct elf_xtensa_link_hash_table *htab;
1302 flagword flags, noalloc_flags;
1304 htab = elf_xtensa_hash_table (info);
1308 /* First do all the standard stuff. */
1309 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1312 /* Create any extra PLT sections in case check_relocs has already
1313 been called on all the non-dynamic input files. */
1314 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1317 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1318 | SEC_LINKER_CREATED | SEC_READONLY);
1319 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1321 /* Mark the ".got.plt" section READONLY. */
1322 if (htab->elf.sgotplt == NULL
1323 || ! bfd_set_section_flags (dynobj, htab->elf.sgotplt, flags))
1326 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1327 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1329 if (htab->sgotloc == NULL
1330 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1333 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1334 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1336 if (htab->spltlittbl == NULL
1337 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1345 add_extra_plt_sections (struct bfd_link_info *info, int count)
1347 bfd *dynobj = elf_hash_table (info)->dynobj;
1350 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1351 ".got.plt" sections. */
1352 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1358 /* Stop when we find a section has already been created. */
1359 if (elf_xtensa_get_plt_section (info, chunk))
1362 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1363 | SEC_LINKER_CREATED | SEC_READONLY);
1365 sname = (char *) bfd_malloc (10);
1366 sprintf (sname, ".plt.%u", chunk);
1367 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1369 || ! bfd_set_section_alignment (dynobj, s, 2))
1372 sname = (char *) bfd_malloc (14);
1373 sprintf (sname, ".got.plt.%u", chunk);
1374 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1376 || ! bfd_set_section_alignment (dynobj, s, 2))
1384 /* Adjust a symbol defined by a dynamic object and referenced by a
1385 regular object. The current definition is in some section of the
1386 dynamic object, but we're not including those sections. We have to
1387 change the definition to something the rest of the link can
1391 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1392 struct elf_link_hash_entry *h)
1394 /* If this is a weak symbol, and there is a real definition, the
1395 processor independent code will have arranged for us to see the
1396 real definition first, and we can just use the same value. */
1397 if (h->is_weakalias)
1399 struct elf_link_hash_entry *def = weakdef (h);
1400 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1401 h->root.u.def.section = def->root.u.def.section;
1402 h->root.u.def.value = def->root.u.def.value;
1406 /* This is a reference to a symbol defined by a dynamic object. The
1407 reference must go through the GOT, so there's no need for COPY relocs,
1415 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1417 struct bfd_link_info *info;
1418 struct elf_xtensa_link_hash_table *htab;
1419 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1421 if (h->root.type == bfd_link_hash_indirect)
1424 info = (struct bfd_link_info *) arg;
1425 htab = elf_xtensa_hash_table (info);
1429 /* If we saw any use of an IE model for this symbol, we can then optimize
1430 away GOT entries for any TLSDESC_FN relocs. */
1431 if ((eh->tls_type & GOT_TLS_IE) != 0)
1433 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1434 h->got.refcount -= eh->tlsfunc_refcount;
1437 if (! elf_xtensa_dynamic_symbol_p (h, info))
1438 elf_xtensa_make_sym_local (info, h);
1440 if (! elf_xtensa_dynamic_symbol_p (h, info)
1441 && h->root.type == bfd_link_hash_undefweak)
1444 if (h->plt.refcount > 0)
1445 htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1447 if (h->got.refcount > 0)
1448 htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1455 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1457 struct elf_xtensa_link_hash_table *htab;
1460 htab = elf_xtensa_hash_table (info);
1464 for (i = info->input_bfds; i; i = i->link.next)
1466 bfd_signed_vma *local_got_refcounts;
1467 bfd_size_type j, cnt;
1468 Elf_Internal_Shdr *symtab_hdr;
1470 local_got_refcounts = elf_local_got_refcounts (i);
1471 if (!local_got_refcounts)
1474 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1475 cnt = symtab_hdr->sh_info;
1477 for (j = 0; j < cnt; ++j)
1479 /* If we saw any use of an IE model for this symbol, we can
1480 then optimize away GOT entries for any TLSDESC_FN relocs. */
1481 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1483 bfd_signed_vma *tlsfunc_refcount
1484 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1485 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1486 local_got_refcounts[j] -= *tlsfunc_refcount;
1489 if (local_got_refcounts[j] > 0)
1490 htab->elf.srelgot->size += (local_got_refcounts[j]
1491 * sizeof (Elf32_External_Rela));
1497 /* Set the sizes of the dynamic sections. */
1500 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1501 struct bfd_link_info *info)
1503 struct elf_xtensa_link_hash_table *htab;
1505 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1506 bfd_boolean relplt, relgot;
1507 int plt_entries, plt_chunks, chunk;
1512 htab = elf_xtensa_hash_table (info);
1516 dynobj = elf_hash_table (info)->dynobj;
1519 srelgot = htab->elf.srelgot;
1520 srelplt = htab->elf.srelplt;
1522 if (elf_hash_table (info)->dynamic_sections_created)
1524 BFD_ASSERT (htab->elf.srelgot != NULL
1525 && htab->elf.srelplt != NULL
1526 && htab->elf.sgot != NULL
1527 && htab->spltlittbl != NULL
1528 && htab->sgotloc != NULL);
1530 /* Set the contents of the .interp section to the interpreter. */
1531 if (bfd_link_executable (info) && !info->nointerp)
1533 s = bfd_get_linker_section (dynobj, ".interp");
1536 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1537 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1540 /* Allocate room for one word in ".got". */
1541 htab->elf.sgot->size = 4;
1543 /* Allocate space in ".rela.got" for literals that reference global
1544 symbols and space in ".rela.plt" for literals that have PLT
1546 elf_link_hash_traverse (elf_hash_table (info),
1547 elf_xtensa_allocate_dynrelocs,
1550 /* If we are generating a shared object, we also need space in
1551 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1552 reference local symbols. */
1553 if (bfd_link_pic (info))
1554 elf_xtensa_allocate_local_got_size (info);
1556 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1557 each PLT entry, we need the PLT code plus a 4-byte literal.
1558 For each chunk of ".plt", we also need two more 4-byte
1559 literals, two corresponding entries in ".rela.got", and an
1560 8-byte entry in ".xt.lit.plt". */
1561 spltlittbl = htab->spltlittbl;
1562 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1564 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1566 /* Iterate over all the PLT chunks, including any extra sections
1567 created earlier because the initial count of PLT relocations
1568 was an overestimate. */
1570 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1575 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1576 BFD_ASSERT (sgotplt != NULL);
1578 if (chunk < plt_chunks - 1)
1579 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1580 else if (chunk == plt_chunks - 1)
1581 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1585 if (chunk_entries != 0)
1587 sgotplt->size = 4 * (chunk_entries + 2);
1588 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1589 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1590 spltlittbl->size += 8;
1599 /* Allocate space in ".got.loc" to match the total size of all the
1601 sgotloc = htab->sgotloc;
1602 sgotloc->size = spltlittbl->size;
1603 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1605 if (abfd->flags & DYNAMIC)
1607 for (s = abfd->sections; s != NULL; s = s->next)
1609 if (! discarded_section (s)
1610 && xtensa_is_littable_section (s)
1612 sgotloc->size += s->size;
1617 /* Allocate memory for dynamic sections. */
1620 for (s = dynobj->sections; s != NULL; s = s->next)
1624 if ((s->flags & SEC_LINKER_CREATED) == 0)
1627 /* It's OK to base decisions on the section name, because none
1628 of the dynobj section names depend upon the input files. */
1629 name = bfd_get_section_name (dynobj, s);
1631 if (CONST_STRNEQ (name, ".rela"))
1635 if (strcmp (name, ".rela.plt") == 0)
1637 else if (strcmp (name, ".rela.got") == 0)
1640 /* We use the reloc_count field as a counter if we need
1641 to copy relocs into the output file. */
1645 else if (! CONST_STRNEQ (name, ".plt.")
1646 && ! CONST_STRNEQ (name, ".got.plt.")
1647 && strcmp (name, ".got") != 0
1648 && strcmp (name, ".plt") != 0
1649 && strcmp (name, ".got.plt") != 0
1650 && strcmp (name, ".xt.lit.plt") != 0
1651 && strcmp (name, ".got.loc") != 0)
1653 /* It's not one of our sections, so don't allocate space. */
1659 /* If we don't need this section, strip it from the output
1660 file. We must create the ".plt*" and ".got.plt*"
1661 sections in create_dynamic_sections and/or check_relocs
1662 based on a conservative estimate of the PLT relocation
1663 count, because the sections must be created before the
1664 linker maps input sections to output sections. The
1665 linker does that before size_dynamic_sections, where we
1666 compute the exact size of the PLT, so there may be more
1667 of these sections than are actually needed. */
1668 s->flags |= SEC_EXCLUDE;
1670 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1672 /* Allocate memory for the section contents. */
1673 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1674 if (s->contents == NULL)
1679 if (elf_hash_table (info)->dynamic_sections_created)
1681 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1682 known until finish_dynamic_sections, but we need to get the relocs
1683 in place before they are sorted. */
1684 for (chunk = 0; chunk < plt_chunks; chunk++)
1686 Elf_Internal_Rela irela;
1690 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1693 loc = (srelgot->contents
1694 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1695 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1696 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1697 loc + sizeof (Elf32_External_Rela));
1698 srelgot->reloc_count += 2;
1701 /* Add some entries to the .dynamic section. We fill in the
1702 values later, in elf_xtensa_finish_dynamic_sections, but we
1703 must add the entries now so that we get the correct size for
1704 the .dynamic section. The DT_DEBUG entry is filled in by the
1705 dynamic linker and used by the debugger. */
1706 #define add_dynamic_entry(TAG, VAL) \
1707 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1709 if (bfd_link_executable (info))
1711 if (!add_dynamic_entry (DT_DEBUG, 0))
1717 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1718 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1719 || !add_dynamic_entry (DT_JMPREL, 0))
1725 if (!add_dynamic_entry (DT_RELA, 0)
1726 || !add_dynamic_entry (DT_RELASZ, 0)
1727 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1731 if (!add_dynamic_entry (DT_PLTGOT, 0)
1732 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1733 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1736 #undef add_dynamic_entry
1742 elf_xtensa_always_size_sections (bfd *output_bfd,
1743 struct bfd_link_info *info)
1745 struct elf_xtensa_link_hash_table *htab;
1748 htab = elf_xtensa_hash_table (info);
1752 tls_sec = htab->elf.tls_sec;
1754 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1756 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1757 struct bfd_link_hash_entry *bh = &tlsbase->root;
1758 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1760 tlsbase->type = STT_TLS;
1761 if (!(_bfd_generic_link_add_one_symbol
1762 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1763 tls_sec, 0, NULL, FALSE,
1764 bed->collect, &bh)))
1766 tlsbase->def_regular = 1;
1767 tlsbase->other = STV_HIDDEN;
1768 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1775 /* Return the base VMA address which should be subtracted from real addresses
1776 when resolving @dtpoff relocation.
1777 This is PT_TLS segment p_vaddr. */
1780 dtpoff_base (struct bfd_link_info *info)
1782 /* If tls_sec is NULL, we should have signalled an error already. */
1783 if (elf_hash_table (info)->tls_sec == NULL)
1785 return elf_hash_table (info)->tls_sec->vma;
1788 /* Return the relocation value for @tpoff relocation
1789 if STT_TLS virtual address is ADDRESS. */
1792 tpoff (struct bfd_link_info *info, bfd_vma address)
1794 struct elf_link_hash_table *htab = elf_hash_table (info);
1797 /* If tls_sec is NULL, we should have signalled an error already. */
1798 if (htab->tls_sec == NULL)
1800 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1801 return address - htab->tls_sec->vma + base;
1804 /* Perform the specified relocation. The instruction at (contents + address)
1805 is modified to set one operand to represent the value in "relocation". The
1806 operand position is determined by the relocation type recorded in the
1809 #define CALL_SEGMENT_BITS (30)
1810 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1812 static bfd_reloc_status_type
1813 elf_xtensa_do_reloc (reloc_howto_type *howto,
1815 asection *input_section,
1819 bfd_boolean is_weak_undef,
1820 char **error_message)
1823 xtensa_opcode opcode;
1824 xtensa_isa isa = xtensa_default_isa;
1825 static xtensa_insnbuf ibuff = NULL;
1826 static xtensa_insnbuf sbuff = NULL;
1827 bfd_vma self_address;
1828 bfd_size_type input_size;
1834 ibuff = xtensa_insnbuf_alloc (isa);
1835 sbuff = xtensa_insnbuf_alloc (isa);
1838 input_size = bfd_get_section_limit (abfd, input_section);
1840 /* Calculate the PC address for this instruction. */
1841 self_address = (input_section->output_section->vma
1842 + input_section->output_offset
1845 switch (howto->type)
1848 case R_XTENSA_DIFF8:
1849 case R_XTENSA_DIFF16:
1850 case R_XTENSA_DIFF32:
1851 case R_XTENSA_TLS_FUNC:
1852 case R_XTENSA_TLS_ARG:
1853 case R_XTENSA_TLS_CALL:
1854 return bfd_reloc_ok;
1856 case R_XTENSA_ASM_EXPAND:
1859 /* Check for windowed CALL across a 1GB boundary. */
1860 opcode = get_expanded_call_opcode (contents + address,
1861 input_size - address, 0);
1862 if (is_windowed_call_opcode (opcode))
1864 if ((self_address >> CALL_SEGMENT_BITS)
1865 != (relocation >> CALL_SEGMENT_BITS))
1867 *error_message = "windowed longcall crosses 1GB boundary; "
1869 return bfd_reloc_dangerous;
1873 return bfd_reloc_ok;
1875 case R_XTENSA_ASM_SIMPLIFY:
1877 /* Convert the L32R/CALLX to CALL. */
1878 bfd_reloc_status_type retval =
1879 elf_xtensa_do_asm_simplify (contents, address, input_size,
1881 if (retval != bfd_reloc_ok)
1882 return bfd_reloc_dangerous;
1884 /* The CALL needs to be relocated. Continue below for that part. */
1887 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1894 x = bfd_get_32 (abfd, contents + address);
1896 bfd_put_32 (abfd, x, contents + address);
1898 return bfd_reloc_ok;
1900 case R_XTENSA_32_PCREL:
1901 bfd_put_32 (abfd, relocation - self_address, contents + address);
1902 return bfd_reloc_ok;
1905 case R_XTENSA_TLSDESC_FN:
1906 case R_XTENSA_TLSDESC_ARG:
1907 case R_XTENSA_TLS_DTPOFF:
1908 case R_XTENSA_TLS_TPOFF:
1909 bfd_put_32 (abfd, relocation, contents + address);
1910 return bfd_reloc_ok;
1913 /* Only instruction slot-specific relocations handled below.... */
1914 slot = get_relocation_slot (howto->type);
1915 if (slot == XTENSA_UNDEFINED)
1917 *error_message = "unexpected relocation";
1918 return bfd_reloc_dangerous;
1921 /* Read the instruction into a buffer and decode the opcode. */
1922 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1923 input_size - address);
1924 fmt = xtensa_format_decode (isa, ibuff);
1925 if (fmt == XTENSA_UNDEFINED)
1927 *error_message = "cannot decode instruction format";
1928 return bfd_reloc_dangerous;
1931 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1933 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1934 if (opcode == XTENSA_UNDEFINED)
1936 *error_message = "cannot decode instruction opcode";
1937 return bfd_reloc_dangerous;
1940 /* Check for opcode-specific "alternate" relocations. */
1941 if (is_alt_relocation (howto->type))
1943 if (opcode == get_l32r_opcode ())
1945 /* Handle the special-case of non-PC-relative L32R instructions. */
1946 bfd *output_bfd = input_section->output_section->owner;
1947 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1950 *error_message = "relocation references missing .lit4 section";
1951 return bfd_reloc_dangerous;
1953 self_address = ((lit4_sec->vma & ~0xfff)
1954 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1955 newval = relocation;
1958 else if (opcode == get_const16_opcode ())
1960 /* ALT used for high 16 bits.
1961 Ignore 32-bit overflow. */
1962 newval = (relocation >> 16) & 0xffff;
1967 /* No other "alternate" relocations currently defined. */
1968 *error_message = "unexpected relocation";
1969 return bfd_reloc_dangerous;
1972 else /* Not an "alternate" relocation.... */
1974 if (opcode == get_const16_opcode ())
1976 newval = relocation & 0xffff;
1981 /* ...normal PC-relative relocation.... */
1983 /* Determine which operand is being relocated. */
1984 opnd = get_relocation_opnd (opcode, howto->type);
1985 if (opnd == XTENSA_UNDEFINED)
1987 *error_message = "unexpected relocation";
1988 return bfd_reloc_dangerous;
1991 if (!howto->pc_relative)
1993 *error_message = "expected PC-relative relocation";
1994 return bfd_reloc_dangerous;
1997 newval = relocation;
2001 /* Apply the relocation. */
2002 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2003 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2004 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2007 const char *opname = xtensa_opcode_name (isa, opcode);
2010 msg = "cannot encode";
2011 if (is_direct_call_opcode (opcode))
2013 if ((relocation & 0x3) != 0)
2014 msg = "misaligned call target";
2016 msg = "call target out of range";
2018 else if (opcode == get_l32r_opcode ())
2020 if ((relocation & 0x3) != 0)
2021 msg = "misaligned literal target";
2022 else if (is_alt_relocation (howto->type))
2023 msg = "literal target out of range (too many literals)";
2024 else if (self_address > relocation)
2025 msg = "literal target out of range (try using text-section-literals)";
2027 msg = "literal placed after use";
2030 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2031 return bfd_reloc_dangerous;
2034 /* Check for calls across 1GB boundaries. */
2035 if (is_direct_call_opcode (opcode)
2036 && is_windowed_call_opcode (opcode))
2038 if ((self_address >> CALL_SEGMENT_BITS)
2039 != (relocation >> CALL_SEGMENT_BITS))
2042 "windowed call crosses 1GB boundary; return may fail";
2043 return bfd_reloc_dangerous;
2047 /* Write the modified instruction back out of the buffer. */
2048 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2049 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2050 input_size - address);
2051 return bfd_reloc_ok;
2056 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2058 /* To reduce the size of the memory leak,
2059 we only use a single message buffer. */
2060 static bfd_size_type alloc_size = 0;
2061 static char *message = NULL;
2062 bfd_size_type orig_len, len = 0;
2063 bfd_boolean is_append;
2066 va_start (ap, arglen);
2068 is_append = (origmsg == message);
2070 orig_len = strlen (origmsg);
2071 len = orig_len + strlen (fmt) + arglen + 20;
2072 if (len > alloc_size)
2074 message = (char *) bfd_realloc_or_free (message, len);
2077 if (message != NULL)
2080 memcpy (message, origmsg, orig_len);
2081 vsprintf (message + orig_len, fmt, ap);
2088 /* This function is registered as the "special_function" in the
2089 Xtensa howto for handling simplify operations.
2090 bfd_perform_relocation / bfd_install_relocation use it to
2091 perform (install) the specified relocation. Since this replaces the code
2092 in bfd_perform_relocation, it is basically an Xtensa-specific,
2093 stripped-down version of bfd_perform_relocation. */
2095 static bfd_reloc_status_type
2096 bfd_elf_xtensa_reloc (bfd *abfd,
2097 arelent *reloc_entry,
2100 asection *input_section,
2102 char **error_message)
2105 bfd_reloc_status_type flag;
2106 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2107 bfd_vma output_base = 0;
2108 reloc_howto_type *howto = reloc_entry->howto;
2109 asection *reloc_target_output_section;
2110 bfd_boolean is_weak_undef;
2112 if (!xtensa_default_isa)
2113 xtensa_default_isa = xtensa_isa_init (0, 0);
2115 /* ELF relocs are against symbols. If we are producing relocatable
2116 output, and the reloc is against an external symbol, the resulting
2117 reloc will also be against the same symbol. In such a case, we
2118 don't want to change anything about the way the reloc is handled,
2119 since it will all be done at final link time. This test is similar
2120 to what bfd_elf_generic_reloc does except that it lets relocs with
2121 howto->partial_inplace go through even if the addend is non-zero.
2122 (The real problem is that partial_inplace is set for XTENSA_32
2123 relocs to begin with, but that's a long story and there's little we
2124 can do about it now....) */
2126 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2128 reloc_entry->address += input_section->output_offset;
2129 return bfd_reloc_ok;
2132 /* Is the address of the relocation really within the section? */
2133 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2134 return bfd_reloc_outofrange;
2136 /* Work out which section the relocation is targeted at and the
2137 initial relocation command value. */
2139 /* Get symbol value. (Common symbols are special.) */
2140 if (bfd_is_com_section (symbol->section))
2143 relocation = symbol->value;
2145 reloc_target_output_section = symbol->section->output_section;
2147 /* Convert input-section-relative symbol value to absolute. */
2148 if ((output_bfd && !howto->partial_inplace)
2149 || reloc_target_output_section == NULL)
2152 output_base = reloc_target_output_section->vma;
2154 relocation += output_base + symbol->section->output_offset;
2156 /* Add in supplied addend. */
2157 relocation += reloc_entry->addend;
2159 /* Here the variable relocation holds the final address of the
2160 symbol we are relocating against, plus any addend. */
2163 if (!howto->partial_inplace)
2165 /* This is a partial relocation, and we want to apply the relocation
2166 to the reloc entry rather than the raw data. Everything except
2167 relocations against section symbols has already been handled
2170 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2171 reloc_entry->addend = relocation;
2172 reloc_entry->address += input_section->output_offset;
2173 return bfd_reloc_ok;
2177 reloc_entry->address += input_section->output_offset;
2178 reloc_entry->addend = 0;
2182 is_weak_undef = (bfd_is_und_section (symbol->section)
2183 && (symbol->flags & BSF_WEAK) != 0);
2184 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2185 (bfd_byte *) data, (bfd_vma) octets,
2186 is_weak_undef, error_message);
2188 if (flag == bfd_reloc_dangerous)
2190 /* Add the symbol name to the error message. */
2191 if (! *error_message)
2192 *error_message = "";
2193 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2194 strlen (symbol->name) + 17,
2196 (unsigned long) reloc_entry->addend);
2203 /* Set up an entry in the procedure linkage table. */
2206 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2208 unsigned reloc_index)
2210 asection *splt, *sgotplt;
2211 bfd_vma plt_base, got_base;
2212 bfd_vma code_offset, lit_offset, abi_offset;
2215 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2216 splt = elf_xtensa_get_plt_section (info, chunk);
2217 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2218 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2220 plt_base = splt->output_section->vma + splt->output_offset;
2221 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2223 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2224 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2226 /* Fill in the literal entry. This is the offset of the dynamic
2227 relocation entry. */
2228 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2229 sgotplt->contents + lit_offset);
2231 /* Fill in the entry in the procedure linkage table. */
2232 memcpy (splt->contents + code_offset,
2233 (bfd_big_endian (output_bfd)
2234 ? elf_xtensa_be_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]
2235 : elf_xtensa_le_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]),
2237 abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
2238 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2239 plt_base + code_offset + abi_offset),
2240 splt->contents + code_offset + abi_offset + 1);
2241 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2242 plt_base + code_offset + abi_offset + 3),
2243 splt->contents + code_offset + abi_offset + 4);
2244 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2245 plt_base + code_offset + abi_offset + 6),
2246 splt->contents + code_offset + abi_offset + 7);
2248 return plt_base + code_offset;
2252 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2255 replace_tls_insn (Elf_Internal_Rela *rel,
2257 asection *input_section,
2259 bfd_boolean is_ld_model,
2260 char **error_message)
2262 static xtensa_insnbuf ibuff = NULL;
2263 static xtensa_insnbuf sbuff = NULL;
2264 xtensa_isa isa = xtensa_default_isa;
2266 xtensa_opcode old_op, new_op;
2267 bfd_size_type input_size;
2269 unsigned dest_reg, src_reg;
2273 ibuff = xtensa_insnbuf_alloc (isa);
2274 sbuff = xtensa_insnbuf_alloc (isa);
2277 input_size = bfd_get_section_limit (abfd, input_section);
2279 /* Read the instruction into a buffer and decode the opcode. */
2280 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2281 input_size - rel->r_offset);
2282 fmt = xtensa_format_decode (isa, ibuff);
2283 if (fmt == XTENSA_UNDEFINED)
2285 *error_message = "cannot decode instruction format";
2289 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2290 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2292 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2293 if (old_op == XTENSA_UNDEFINED)
2295 *error_message = "cannot decode instruction opcode";
2299 r_type = ELF32_R_TYPE (rel->r_info);
2302 case R_XTENSA_TLS_FUNC:
2303 case R_XTENSA_TLS_ARG:
2304 if (old_op != get_l32r_opcode ()
2305 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2306 sbuff, &dest_reg) != 0)
2308 *error_message = "cannot extract L32R destination for TLS access";
2313 case R_XTENSA_TLS_CALL:
2314 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2315 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2316 sbuff, &src_reg) != 0)
2318 *error_message = "cannot extract CALLXn operands for TLS access";
2331 case R_XTENSA_TLS_FUNC:
2332 case R_XTENSA_TLS_ARG:
2333 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2334 versions of Xtensa). */
2335 new_op = xtensa_opcode_lookup (isa, "nop");
2336 if (new_op == XTENSA_UNDEFINED)
2338 new_op = xtensa_opcode_lookup (isa, "or");
2339 if (new_op == XTENSA_UNDEFINED
2340 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2341 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2343 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2345 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2348 *error_message = "cannot encode OR for TLS access";
2354 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2356 *error_message = "cannot encode NOP for TLS access";
2362 case R_XTENSA_TLS_CALL:
2363 /* Read THREADPTR into the CALLX's return value register. */
2364 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2365 if (new_op == XTENSA_UNDEFINED
2366 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2367 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2368 sbuff, dest_reg + 2) != 0)
2370 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2380 case R_XTENSA_TLS_FUNC:
2381 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2382 if (new_op == XTENSA_UNDEFINED
2383 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2384 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2385 sbuff, dest_reg) != 0)
2387 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2392 case R_XTENSA_TLS_ARG:
2393 /* Nothing to do. Keep the original L32R instruction. */
2396 case R_XTENSA_TLS_CALL:
2397 /* Add the CALLX's src register (holding the THREADPTR value)
2398 to the first argument register (holding the offset) and put
2399 the result in the CALLX's return value register. */
2400 new_op = xtensa_opcode_lookup (isa, "add");
2401 if (new_op == XTENSA_UNDEFINED
2402 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2403 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2404 sbuff, dest_reg + 2) != 0
2405 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2406 sbuff, dest_reg + 2) != 0
2407 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2408 sbuff, src_reg) != 0)
2410 *error_message = "cannot encode ADD for TLS access";
2417 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2418 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2419 input_size - rel->r_offset);
2425 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2426 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2427 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2428 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2429 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2430 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2431 || (R_TYPE) == R_XTENSA_TLS_ARG \
2432 || (R_TYPE) == R_XTENSA_TLS_CALL)
2434 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2435 both relocatable and final links. */
2438 elf_xtensa_relocate_section (bfd *output_bfd,
2439 struct bfd_link_info *info,
2441 asection *input_section,
2443 Elf_Internal_Rela *relocs,
2444 Elf_Internal_Sym *local_syms,
2445 asection **local_sections)
2447 struct elf_xtensa_link_hash_table *htab;
2448 Elf_Internal_Shdr *symtab_hdr;
2449 Elf_Internal_Rela *rel;
2450 Elf_Internal_Rela *relend;
2451 struct elf_link_hash_entry **sym_hashes;
2452 property_table_entry *lit_table = 0;
2454 char *local_got_tls_types;
2455 char *error_message = NULL;
2456 bfd_size_type input_size;
2459 if (!xtensa_default_isa)
2460 xtensa_default_isa = xtensa_isa_init (0, 0);
2462 if (!is_xtensa_elf (input_bfd))
2464 bfd_set_error (bfd_error_wrong_format);
2468 htab = elf_xtensa_hash_table (info);
2472 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2473 sym_hashes = elf_sym_hashes (input_bfd);
2474 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2476 if (elf_hash_table (info)->dynamic_sections_created)
2478 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2479 &lit_table, XTENSA_LIT_SEC_NAME,
2485 input_size = bfd_get_section_limit (input_bfd, input_section);
2488 relend = relocs + input_section->reloc_count;
2489 for (; rel < relend; rel++)
2492 reloc_howto_type *howto;
2493 unsigned long r_symndx;
2494 struct elf_link_hash_entry *h;
2495 Elf_Internal_Sym *sym;
2500 bfd_reloc_status_type r;
2501 bfd_boolean is_weak_undef;
2502 bfd_boolean unresolved_reloc;
2504 bfd_boolean dynamic_symbol;
2506 r_type = ELF32_R_TYPE (rel->r_info);
2507 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2508 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2511 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2513 bfd_set_error (bfd_error_bad_value);
2516 howto = &elf_howto_table[r_type];
2518 r_symndx = ELF32_R_SYM (rel->r_info);
2523 is_weak_undef = FALSE;
2524 unresolved_reloc = FALSE;
2527 if (howto->partial_inplace && !bfd_link_relocatable (info))
2529 /* Because R_XTENSA_32 was made partial_inplace to fix some
2530 problems with DWARF info in partial links, there may be
2531 an addend stored in the contents. Take it out of there
2532 and move it back into the addend field of the reloc. */
2533 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2534 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2537 if (r_symndx < symtab_hdr->sh_info)
2539 sym = local_syms + r_symndx;
2540 sym_type = ELF32_ST_TYPE (sym->st_info);
2541 sec = local_sections[r_symndx];
2542 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2546 bfd_boolean ignored;
2548 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2549 r_symndx, symtab_hdr, sym_hashes,
2551 unresolved_reloc, warned, ignored);
2554 && !unresolved_reloc
2555 && h->root.type == bfd_link_hash_undefweak)
2556 is_weak_undef = TRUE;
2561 if (sec != NULL && discarded_section (sec))
2562 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2563 rel, 1, relend, howto, 0, contents);
2565 if (bfd_link_relocatable (info))
2568 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2570 /* This is a relocatable link.
2571 1) If the reloc is against a section symbol, adjust
2572 according to the output section.
2573 2) If there is a new target for this relocation,
2574 the new target will be in the same output section.
2575 We adjust the relocation by the output section
2578 if (relaxing_section)
2580 /* Check if this references a section in another input file. */
2581 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2586 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2587 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2589 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2591 error_message = NULL;
2592 /* Convert ASM_SIMPLIFY into the simpler relocation
2593 so that they never escape a relaxing link. */
2594 r = contract_asm_expansion (contents, input_size, rel,
2596 if (r != bfd_reloc_ok)
2597 (*info->callbacks->reloc_dangerous)
2598 (info, error_message,
2599 input_bfd, input_section, rel->r_offset);
2601 r_type = ELF32_R_TYPE (rel->r_info);
2604 /* This is a relocatable link, so we don't have to change
2605 anything unless the reloc is against a section symbol,
2606 in which case we have to adjust according to where the
2607 section symbol winds up in the output section. */
2608 if (r_symndx < symtab_hdr->sh_info)
2610 sym = local_syms + r_symndx;
2611 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2613 sec = local_sections[r_symndx];
2614 rel->r_addend += sec->output_offset + sym->st_value;
2618 /* If there is an addend with a partial_inplace howto,
2619 then move the addend to the contents. This is a hack
2620 to work around problems with DWARF in relocatable links
2621 with some previous version of BFD. Now we can't easily get
2622 rid of the hack without breaking backward compatibility.... */
2624 howto = &elf_howto_table[r_type];
2625 if (howto->partial_inplace && rel->r_addend)
2627 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2628 rel->r_addend, contents,
2629 rel->r_offset, FALSE,
2635 /* Put the correct bits in the target instruction, even
2636 though the relocation will still be present in the output
2637 file. This makes disassembly clearer, as well as
2638 allowing loadable kernel modules to work without needing
2639 relocations on anything other than calls and l32r's. */
2641 /* If it is not in the same section, there is nothing we can do. */
2642 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2643 sym_sec->output_section == input_section->output_section)
2645 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2646 dest_addr, contents,
2647 rel->r_offset, FALSE,
2651 if (r != bfd_reloc_ok)
2652 (*info->callbacks->reloc_dangerous)
2653 (info, error_message,
2654 input_bfd, input_section, rel->r_offset);
2656 /* Done with work for relocatable link; continue with next reloc. */
2660 /* This is a final link. */
2662 if (relaxing_section)
2664 /* Check if this references a section in another input file. */
2665 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2669 /* Sanity check the address. */
2670 if (rel->r_offset >= input_size
2671 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2674 /* xgettext:c-format */
2675 (_("%pB(%pA+%#" PRIx64 "): "
2676 "relocation offset out of range (size=%#" PRIx64 ")"),
2677 input_bfd, input_section, (uint64_t) rel->r_offset,
2678 (uint64_t) input_size);
2679 bfd_set_error (bfd_error_bad_value);
2684 name = h->root.root.string;
2687 name = (bfd_elf_string_from_elf_section
2688 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2689 if (name == NULL || *name == '\0')
2690 name = bfd_section_name (input_bfd, sec);
2693 if (r_symndx != STN_UNDEF
2694 && r_type != R_XTENSA_NONE
2696 || h->root.type == bfd_link_hash_defined
2697 || h->root.type == bfd_link_hash_defweak)
2698 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2701 ((sym_type == STT_TLS
2702 /* xgettext:c-format */
2703 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
2704 /* xgettext:c-format */
2705 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
2708 (uint64_t) rel->r_offset,
2713 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2715 tls_type = GOT_UNKNOWN;
2717 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2718 else if (local_got_tls_types)
2719 tls_type = local_got_tls_types [r_symndx];
2725 if (elf_hash_table (info)->dynamic_sections_created
2726 && (input_section->flags & SEC_ALLOC) != 0
2727 && (dynamic_symbol || bfd_link_pic (info)))
2729 Elf_Internal_Rela outrel;
2733 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2734 srel = htab->elf.srelplt;
2736 srel = htab->elf.srelgot;
2738 BFD_ASSERT (srel != NULL);
2741 _bfd_elf_section_offset (output_bfd, info,
2742 input_section, rel->r_offset);
2744 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2745 memset (&outrel, 0, sizeof outrel);
2748 outrel.r_offset += (input_section->output_section->vma
2749 + input_section->output_offset);
2751 /* Complain if the relocation is in a read-only section
2752 and not in a literal pool. */
2753 if ((input_section->flags & SEC_READONLY) != 0
2754 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2758 _("dynamic relocation in read-only section");
2759 (*info->callbacks->reloc_dangerous)
2760 (info, error_message,
2761 input_bfd, input_section, rel->r_offset);
2766 outrel.r_addend = rel->r_addend;
2769 if (r_type == R_XTENSA_32)
2772 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2775 else /* r_type == R_XTENSA_PLT */
2778 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2780 /* Create the PLT entry and set the initial
2781 contents of the literal entry to the address of
2784 elf_xtensa_create_plt_entry (info, output_bfd,
2787 unresolved_reloc = FALSE;
2789 else if (!is_weak_undef)
2791 /* Generate a RELATIVE relocation. */
2792 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2793 outrel.r_addend = 0;
2801 loc = (srel->contents
2802 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2803 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2804 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2807 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2809 /* This should only happen for non-PIC code, which is not
2810 supposed to be used on systems with dynamic linking.
2811 Just ignore these relocations. */
2816 case R_XTENSA_TLS_TPOFF:
2817 /* Switch to LE model for local symbols in an executable. */
2818 if (! bfd_link_pic (info) && ! dynamic_symbol)
2820 relocation = tpoff (info, relocation);
2825 case R_XTENSA_TLSDESC_FN:
2826 case R_XTENSA_TLSDESC_ARG:
2828 if (r_type == R_XTENSA_TLSDESC_FN)
2830 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
2831 r_type = R_XTENSA_NONE;
2833 else if (r_type == R_XTENSA_TLSDESC_ARG)
2835 if (bfd_link_pic (info))
2837 if ((tls_type & GOT_TLS_IE) != 0)
2838 r_type = R_XTENSA_TLS_TPOFF;
2842 r_type = R_XTENSA_TLS_TPOFF;
2843 if (! dynamic_symbol)
2845 relocation = tpoff (info, relocation);
2851 if (r_type == R_XTENSA_NONE)
2852 /* Nothing to do here; skip to the next reloc. */
2855 if (! elf_hash_table (info)->dynamic_sections_created)
2858 _("TLS relocation invalid without dynamic sections");
2859 (*info->callbacks->reloc_dangerous)
2860 (info, error_message,
2861 input_bfd, input_section, rel->r_offset);
2865 Elf_Internal_Rela outrel;
2867 asection *srel = htab->elf.srelgot;
2870 outrel.r_offset = (input_section->output_section->vma
2871 + input_section->output_offset
2874 /* Complain if the relocation is in a read-only section
2875 and not in a literal pool. */
2876 if ((input_section->flags & SEC_READONLY) != 0
2877 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2881 _("dynamic relocation in read-only section");
2882 (*info->callbacks->reloc_dangerous)
2883 (info, error_message,
2884 input_bfd, input_section, rel->r_offset);
2887 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2889 outrel.r_addend = relocation - dtpoff_base (info);
2891 outrel.r_addend = 0;
2894 outrel.r_info = ELF32_R_INFO (indx, r_type);
2896 unresolved_reloc = FALSE;
2899 loc = (srel->contents
2900 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2901 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2902 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2908 case R_XTENSA_TLS_DTPOFF:
2909 if (! bfd_link_pic (info))
2910 /* Switch from LD model to LE model. */
2911 relocation = tpoff (info, relocation);
2913 relocation -= dtpoff_base (info);
2916 case R_XTENSA_TLS_FUNC:
2917 case R_XTENSA_TLS_ARG:
2918 case R_XTENSA_TLS_CALL:
2919 /* Check if optimizing to IE or LE model. */
2920 if ((tls_type & GOT_TLS_IE) != 0)
2922 bfd_boolean is_ld_model =
2923 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2924 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2925 is_ld_model, &error_message))
2926 (*info->callbacks->reloc_dangerous)
2927 (info, error_message,
2928 input_bfd, input_section, rel->r_offset);
2930 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2932 /* Skip subsequent relocations on the same instruction. */
2933 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
2940 if (elf_hash_table (info)->dynamic_sections_created
2941 && dynamic_symbol && (is_operand_relocation (r_type)
2942 || r_type == R_XTENSA_32_PCREL))
2945 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2946 strlen (name) + 2, name);
2947 (*info->callbacks->reloc_dangerous)
2948 (info, error_message, input_bfd, input_section, rel->r_offset);
2954 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2955 because such sections are not SEC_ALLOC and thus ld.so will
2956 not process them. */
2957 if (unresolved_reloc
2958 && !((input_section->flags & SEC_DEBUGGING) != 0
2960 && _bfd_elf_section_offset (output_bfd, info, input_section,
2961 rel->r_offset) != (bfd_vma) -1)
2964 /* xgettext:c-format */
2965 (_("%pB(%pA+%#" PRIx64 "): "
2966 "unresolvable %s relocation against symbol `%s'"),
2969 (uint64_t) rel->r_offset,
2975 /* TLS optimizations may have changed r_type; update "howto". */
2976 howto = &elf_howto_table[r_type];
2978 /* There's no point in calling bfd_perform_relocation here.
2979 Just go directly to our "special function". */
2980 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2981 relocation + rel->r_addend,
2982 contents, rel->r_offset, is_weak_undef,
2985 if (r != bfd_reloc_ok && !warned)
2987 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2988 BFD_ASSERT (error_message != NULL);
2990 if (rel->r_addend == 0)
2991 error_message = vsprint_msg (error_message, ": %s",
2992 strlen (name) + 2, name);
2994 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2996 name, (int) rel->r_addend);
2998 (*info->callbacks->reloc_dangerous)
2999 (info, error_message, input_bfd, input_section, rel->r_offset);
3006 input_section->reloc_done = TRUE;
3012 /* Finish up dynamic symbol handling. There's not much to do here since
3013 the PLT and GOT entries are all set up by relocate_section. */
3016 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3017 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3018 struct elf_link_hash_entry *h,
3019 Elf_Internal_Sym *sym)
3021 if (h->needs_plt && !h->def_regular)
3023 /* Mark the symbol as undefined, rather than as defined in
3024 the .plt section. Leave the value alone. */
3025 sym->st_shndx = SHN_UNDEF;
3026 /* If the symbol is weak, we do need to clear the value.
3027 Otherwise, the PLT entry would provide a definition for
3028 the symbol even if the symbol wasn't defined anywhere,
3029 and so the symbol would never be NULL. */
3030 if (!h->ref_regular_nonweak)
3034 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3035 if (h == elf_hash_table (info)->hdynamic
3036 || h == elf_hash_table (info)->hgot)
3037 sym->st_shndx = SHN_ABS;
3043 /* Combine adjacent literal table entries in the output. Adjacent
3044 entries within each input section may have been removed during
3045 relaxation, but we repeat the process here, even though it's too late
3046 to shrink the output section, because it's important to minimize the
3047 number of literal table entries to reduce the start-up work for the
3048 runtime linker. Returns the number of remaining table entries or -1
3052 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3057 property_table_entry *table;
3058 bfd_size_type section_size, sgotloc_size;
3062 section_size = sxtlit->size;
3063 BFD_ASSERT (section_size % 8 == 0);
3064 num = section_size / 8;
3066 sgotloc_size = sgotloc->size;
3067 if (sgotloc_size != section_size)
3070 (_("internal inconsistency in size of .got.loc section"));
3074 table = bfd_malloc (num * sizeof (property_table_entry));
3078 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3079 propagates to the output section, where it doesn't really apply and
3080 where it breaks the following call to bfd_malloc_and_get_section. */
3081 sxtlit->flags &= ~SEC_IN_MEMORY;
3083 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3091 /* There should never be any relocations left at this point, so this
3092 is quite a bit easier than what is done during relaxation. */
3094 /* Copy the raw contents into a property table array and sort it. */
3096 for (n = 0; n < num; n++)
3098 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3099 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3102 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3104 for (n = 0; n < num; n++)
3106 bfd_boolean remove_entry = FALSE;
3108 if (table[n].size == 0)
3109 remove_entry = TRUE;
3111 && (table[n-1].address + table[n-1].size == table[n].address))
3113 table[n-1].size += table[n].size;
3114 remove_entry = TRUE;
3119 for (m = n; m < num - 1; m++)
3121 table[m].address = table[m+1].address;
3122 table[m].size = table[m+1].size;
3130 /* Copy the data back to the raw contents. */
3132 for (n = 0; n < num; n++)
3134 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3135 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3139 /* Clear the removed bytes. */
3140 if ((bfd_size_type) (num * 8) < section_size)
3141 memset (&contents[num * 8], 0, section_size - num * 8);
3143 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3147 /* Copy the contents to ".got.loc". */
3148 memcpy (sgotloc->contents, contents, section_size);
3156 /* Finish up the dynamic sections. */
3159 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3160 struct bfd_link_info *info)
3162 struct elf_xtensa_link_hash_table *htab;
3164 asection *sdyn, *srelplt, *srelgot, *sgot, *sxtlit, *sgotloc;
3165 Elf32_External_Dyn *dyncon, *dynconend;
3166 int num_xtlit_entries = 0;
3168 if (! elf_hash_table (info)->dynamic_sections_created)
3171 htab = elf_xtensa_hash_table (info);
3175 dynobj = elf_hash_table (info)->dynobj;
3176 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3177 BFD_ASSERT (sdyn != NULL);
3179 /* Set the first entry in the global offset table to the address of
3180 the dynamic section. */
3181 sgot = htab->elf.sgot;
3184 BFD_ASSERT (sgot->size == 4);
3186 bfd_put_32 (output_bfd, 0, sgot->contents);
3188 bfd_put_32 (output_bfd,
3189 sdyn->output_section->vma + sdyn->output_offset,
3193 srelplt = htab->elf.srelplt;
3194 srelgot = htab->elf.srelgot;
3195 if (srelplt && srelplt->size != 0)
3197 asection *sgotplt, *spltlittbl;
3198 int chunk, plt_chunks, plt_entries;
3199 Elf_Internal_Rela irela;
3201 unsigned rtld_reloc;
3203 spltlittbl = htab->spltlittbl;
3204 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3206 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3207 of them follow immediately after.... */
3208 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3210 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3211 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3212 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3215 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3217 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3219 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3221 for (chunk = 0; chunk < plt_chunks; chunk++)
3223 int chunk_entries = 0;
3225 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3226 BFD_ASSERT (sgotplt != NULL);
3228 /* Emit special RTLD relocations for the first two entries in
3229 each chunk of the .got.plt section. */
3231 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3232 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3233 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3234 irela.r_offset = (sgotplt->output_section->vma
3235 + sgotplt->output_offset);
3236 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3237 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3239 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3241 /* Next literal immediately follows the first. */
3242 loc += sizeof (Elf32_External_Rela);
3243 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3244 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3245 irela.r_offset = (sgotplt->output_section->vma
3246 + sgotplt->output_offset + 4);
3247 /* Tell rtld to set value to object's link map. */
3249 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3251 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3253 /* Fill in the literal table. */
3254 if (chunk < plt_chunks - 1)
3255 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3257 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3259 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3260 bfd_put_32 (output_bfd,
3261 sgotplt->output_section->vma + sgotplt->output_offset,
3262 spltlittbl->contents + (chunk * 8) + 0);
3263 bfd_put_32 (output_bfd,
3264 8 + (chunk_entries * 4),
3265 spltlittbl->contents + (chunk * 8) + 4);
3268 /* The .xt.lit.plt section has just been modified. This must
3269 happen before the code below which combines adjacent literal
3270 table entries, and the .xt.lit.plt contents have to be forced to
3272 if (! bfd_set_section_contents (output_bfd,
3273 spltlittbl->output_section,
3274 spltlittbl->contents,
3275 spltlittbl->output_offset,
3278 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3279 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3282 /* All the dynamic relocations have been emitted at this point.
3283 Make sure the relocation sections are the correct size. */
3284 if ((srelgot && srelgot->size != (sizeof (Elf32_External_Rela)
3285 * srelgot->reloc_count))
3286 || (srelplt && srelplt->size != (sizeof (Elf32_External_Rela)
3287 * srelplt->reloc_count)))
3290 /* Combine adjacent literal table entries. */
3291 BFD_ASSERT (! bfd_link_relocatable (info));
3292 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3293 sgotloc = htab->sgotloc;
3294 BFD_ASSERT (sgotloc);
3298 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3299 if (num_xtlit_entries < 0)
3303 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3304 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3305 for (; dyncon < dynconend; dyncon++)
3307 Elf_Internal_Dyn dyn;
3309 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3316 case DT_XTENSA_GOT_LOC_SZ:
3317 dyn.d_un.d_val = num_xtlit_entries;
3320 case DT_XTENSA_GOT_LOC_OFF:
3321 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3322 + htab->sgotloc->output_offset);
3326 dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
3327 + htab->elf.sgot->output_offset);
3331 dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
3332 + htab->elf.srelplt->output_offset);
3336 dyn.d_un.d_val = htab->elf.srelplt->size;
3340 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3347 /* Functions for dealing with the e_flags field. */
3349 /* Merge backend specific data from an object file to the output
3350 object file when linking. */
3353 elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3355 bfd *obfd = info->output_bfd;
3356 unsigned out_mach, in_mach;
3357 flagword out_flag, in_flag;
3359 /* Check if we have the same endianness. */
3360 if (!_bfd_generic_verify_endian_match (ibfd, info))
3363 /* Don't even pretend to support mixed-format linking. */
3364 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3365 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3368 out_flag = elf_elfheader (obfd)->e_flags;
3369 in_flag = elf_elfheader (ibfd)->e_flags;
3371 out_mach = out_flag & EF_XTENSA_MACH;
3372 in_mach = in_flag & EF_XTENSA_MACH;
3373 if (out_mach != in_mach)
3376 /* xgettext:c-format */
3377 (_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"),
3378 ibfd, out_mach, in_mach);
3379 bfd_set_error (bfd_error_wrong_format);
3383 if (! elf_flags_init (obfd))
3385 elf_flags_init (obfd) = TRUE;
3386 elf_elfheader (obfd)->e_flags = in_flag;
3388 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3389 && bfd_get_arch_info (obfd)->the_default)
3390 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3391 bfd_get_mach (ibfd));
3396 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3397 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3399 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3400 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3407 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3409 BFD_ASSERT (!elf_flags_init (abfd)
3410 || elf_elfheader (abfd)->e_flags == flags);
3412 elf_elfheader (abfd)->e_flags |= flags;
3413 elf_flags_init (abfd) = TRUE;
3420 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3422 FILE *f = (FILE *) farg;
3423 flagword e_flags = elf_elfheader (abfd)->e_flags;
3425 fprintf (f, "\nXtensa header:\n");
3426 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3427 fprintf (f, "\nMachine = Base\n");
3429 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3431 fprintf (f, "Insn tables = %s\n",
3432 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3434 fprintf (f, "Literal tables = %s\n",
3435 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3437 return _bfd_elf_print_private_bfd_data (abfd, farg);
3441 /* Set the right machine number for an Xtensa ELF file. */
3444 elf_xtensa_object_p (bfd *abfd)
3447 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3452 mach = bfd_mach_xtensa;
3458 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3463 /* The final processing done just before writing out an Xtensa ELF object
3464 file. This gets the Xtensa architecture right based on the machine
3468 elf_xtensa_final_write_processing (bfd *abfd)
3471 unsigned long val = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3473 switch (mach = bfd_get_mach (abfd))
3475 case bfd_mach_xtensa:
3476 val = E_XTENSA_MACH;
3482 elf_elfheader (abfd)->e_flags &= ~EF_XTENSA_MACH;
3483 elf_elfheader (abfd)->e_flags |= val;
3484 return _bfd_elf_final_write_processing (abfd);
3488 static enum elf_reloc_type_class
3489 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3490 const asection *rel_sec ATTRIBUTE_UNUSED,
3491 const Elf_Internal_Rela *rela)
3493 switch ((int) ELF32_R_TYPE (rela->r_info))
3495 case R_XTENSA_RELATIVE:
3496 return reloc_class_relative;
3497 case R_XTENSA_JMP_SLOT:
3498 return reloc_class_plt;
3500 return reloc_class_normal;
3506 elf_xtensa_discard_info_for_section (bfd *abfd,
3507 struct elf_reloc_cookie *cookie,
3508 struct bfd_link_info *info,
3512 bfd_vma offset, actual_offset;
3513 bfd_size_type removed_bytes = 0;
3514 bfd_size_type entry_size;
3516 if (sec->output_section
3517 && bfd_is_abs_section (sec->output_section))
3520 if (xtensa_is_proptable_section (sec))
3525 if (sec->size == 0 || sec->size % entry_size != 0)
3528 contents = retrieve_contents (abfd, sec, info->keep_memory);
3532 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3535 release_contents (sec, contents);
3539 /* Sort the relocations. They should already be in order when
3540 relaxation is enabled, but it might not be. */
3541 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3542 internal_reloc_compare);
3544 cookie->rel = cookie->rels;
3545 cookie->relend = cookie->rels + sec->reloc_count;
3547 for (offset = 0; offset < sec->size; offset += entry_size)
3549 actual_offset = offset - removed_bytes;
3551 /* The ...symbol_deleted_p function will skip over relocs but it
3552 won't adjust their offsets, so do that here. */
3553 while (cookie->rel < cookie->relend
3554 && cookie->rel->r_offset < offset)
3556 cookie->rel->r_offset -= removed_bytes;
3560 while (cookie->rel < cookie->relend
3561 && cookie->rel->r_offset == offset)
3563 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3565 /* Remove the table entry. (If the reloc type is NONE, then
3566 the entry has already been merged with another and deleted
3567 during relaxation.) */
3568 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3570 /* Shift the contents up. */
3571 if (offset + entry_size < sec->size)
3572 memmove (&contents[actual_offset],
3573 &contents[actual_offset + entry_size],
3574 sec->size - offset - entry_size);
3575 removed_bytes += entry_size;
3578 /* Remove this relocation. */
3579 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3582 /* Adjust the relocation offset for previous removals. This
3583 should not be done before calling ...symbol_deleted_p
3584 because it might mess up the offset comparisons there.
3585 Make sure the offset doesn't underflow in the case where
3586 the first entry is removed. */
3587 if (cookie->rel->r_offset >= removed_bytes)
3588 cookie->rel->r_offset -= removed_bytes;
3590 cookie->rel->r_offset = 0;
3596 if (removed_bytes != 0)
3598 /* Adjust any remaining relocs (shouldn't be any). */
3599 for (; cookie->rel < cookie->relend; cookie->rel++)
3601 if (cookie->rel->r_offset >= removed_bytes)
3602 cookie->rel->r_offset -= removed_bytes;
3604 cookie->rel->r_offset = 0;
3607 /* Clear the removed bytes. */
3608 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3610 pin_contents (sec, contents);
3611 pin_internal_relocs (sec, cookie->rels);
3614 if (sec->rawsize == 0)
3615 sec->rawsize = sec->size;
3616 sec->size -= removed_bytes;
3618 if (xtensa_is_littable_section (sec))
3620 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3622 sgotloc->size -= removed_bytes;
3627 release_contents (sec, contents);
3628 release_internal_relocs (sec, cookie->rels);
3631 return (removed_bytes != 0);
3636 elf_xtensa_discard_info (bfd *abfd,
3637 struct elf_reloc_cookie *cookie,
3638 struct bfd_link_info *info)
3641 bfd_boolean changed = FALSE;
3643 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3645 if (xtensa_is_property_section (sec))
3647 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3657 elf_xtensa_ignore_discarded_relocs (asection *sec)
3659 return xtensa_is_property_section (sec);
3664 elf_xtensa_action_discarded (asection *sec)
3666 if (strcmp (".xt_except_table", sec->name) == 0)
3669 if (strcmp (".xt_except_desc", sec->name) == 0)
3672 return _bfd_elf_default_action_discarded (sec);
3676 /* Support for core dump NOTE sections. */
3679 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3684 /* The size for Xtensa is variable, so don't try to recognize the format
3685 based on the size. Just assume this is GNU/Linux. */
3688 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3691 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3695 size = note->descsz - offset - 4;
3697 /* Make a ".reg/999" section. */
3698 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3699 size, note->descpos + offset);
3704 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3706 switch (note->descsz)
3711 case 128: /* GNU/Linux elf_prpsinfo */
3712 elf_tdata (abfd)->core->program
3713 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3714 elf_tdata (abfd)->core->command
3715 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3718 /* Note that for some reason, a spurious space is tacked
3719 onto the end of the args in some (at least one anyway)
3720 implementations, so strip it off if it exists. */
3723 char *command = elf_tdata (abfd)->core->command;
3724 int n = strlen (command);
3726 if (0 < n && command[n - 1] == ' ')
3727 command[n - 1] = '\0';
3734 /* Generic Xtensa configurability stuff. */
3736 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3737 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3738 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3739 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3740 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3741 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3742 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3743 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3746 init_call_opcodes (void)
3748 if (callx0_op == XTENSA_UNDEFINED)
3750 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3751 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3752 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3753 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3754 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3755 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3756 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3757 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3763 is_indirect_call_opcode (xtensa_opcode opcode)
3765 init_call_opcodes ();
3766 return (opcode == callx0_op
3767 || opcode == callx4_op
3768 || opcode == callx8_op
3769 || opcode == callx12_op);
3774 is_direct_call_opcode (xtensa_opcode opcode)
3776 init_call_opcodes ();
3777 return (opcode == call0_op
3778 || opcode == call4_op
3779 || opcode == call8_op
3780 || opcode == call12_op);
3785 is_windowed_call_opcode (xtensa_opcode opcode)
3787 init_call_opcodes ();
3788 return (opcode == call4_op
3789 || opcode == call8_op
3790 || opcode == call12_op
3791 || opcode == callx4_op
3792 || opcode == callx8_op
3793 || opcode == callx12_op);
3798 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3800 unsigned dst = (unsigned) -1;
3802 init_call_opcodes ();
3803 if (opcode == callx0_op)
3805 else if (opcode == callx4_op)
3807 else if (opcode == callx8_op)
3809 else if (opcode == callx12_op)
3812 if (dst == (unsigned) -1)
3820 static xtensa_opcode
3821 get_const16_opcode (void)
3823 static bfd_boolean done_lookup = FALSE;
3824 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3827 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3830 return const16_opcode;
3834 static xtensa_opcode
3835 get_l32r_opcode (void)
3837 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3838 static bfd_boolean done_lookup = FALSE;
3842 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3850 l32r_offset (bfd_vma addr, bfd_vma pc)
3854 offset = addr - ((pc+3) & -4);
3855 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3856 offset = (signed int) offset >> 2;
3857 BFD_ASSERT ((signed int) offset >> 16 == -1);
3862 static xtensa_opcode
3863 get_rsr_lend_opcode (void)
3865 static xtensa_opcode rsr_lend_opcode = XTENSA_UNDEFINED;
3866 static bfd_boolean done_lookup = FALSE;
3869 rsr_lend_opcode = xtensa_opcode_lookup (xtensa_default_isa, "rsr.lend");
3872 return rsr_lend_opcode;
3875 static xtensa_opcode
3876 get_wsr_lbeg_opcode (void)
3878 static xtensa_opcode wsr_lbeg_opcode = XTENSA_UNDEFINED;
3879 static bfd_boolean done_lookup = FALSE;
3882 wsr_lbeg_opcode = xtensa_opcode_lookup (xtensa_default_isa, "wsr.lbeg");
3885 return wsr_lbeg_opcode;
3890 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3892 xtensa_isa isa = xtensa_default_isa;
3893 int last_immed, last_opnd, opi;
3895 if (opcode == XTENSA_UNDEFINED)
3896 return XTENSA_UNDEFINED;
3898 /* Find the last visible PC-relative immediate operand for the opcode.
3899 If there are no PC-relative immediates, then choose the last visible
3900 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3901 last_immed = XTENSA_UNDEFINED;
3902 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3903 for (opi = last_opnd - 1; opi >= 0; opi--)
3905 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3907 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3912 if (last_immed == XTENSA_UNDEFINED
3913 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3917 return XTENSA_UNDEFINED;
3919 /* If the operand number was specified in an old-style relocation,
3920 check for consistency with the operand computed above. */
3921 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3923 int reloc_opnd = r_type - R_XTENSA_OP0;
3924 if (reloc_opnd != last_immed)
3925 return XTENSA_UNDEFINED;
3933 get_relocation_slot (int r_type)
3943 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3944 return r_type - R_XTENSA_SLOT0_OP;
3945 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3946 return r_type - R_XTENSA_SLOT0_ALT;
3950 return XTENSA_UNDEFINED;
3954 /* Get the opcode for a relocation. */
3956 static xtensa_opcode
3957 get_relocation_opcode (bfd *abfd,
3960 Elf_Internal_Rela *irel)
3962 static xtensa_insnbuf ibuff = NULL;
3963 static xtensa_insnbuf sbuff = NULL;
3964 xtensa_isa isa = xtensa_default_isa;
3968 if (contents == NULL)
3969 return XTENSA_UNDEFINED;
3971 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3972 return XTENSA_UNDEFINED;
3976 ibuff = xtensa_insnbuf_alloc (isa);
3977 sbuff = xtensa_insnbuf_alloc (isa);
3980 /* Decode the instruction. */
3981 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3982 sec->size - irel->r_offset);
3983 fmt = xtensa_format_decode (isa, ibuff);
3984 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3985 if (slot == XTENSA_UNDEFINED)
3986 return XTENSA_UNDEFINED;
3987 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3988 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3993 is_l32r_relocation (bfd *abfd,
3996 Elf_Internal_Rela *irel)
3998 xtensa_opcode opcode;
3999 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4001 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4002 return (opcode == get_l32r_opcode ());
4006 static bfd_size_type
4007 get_asm_simplify_size (bfd_byte *contents,
4008 bfd_size_type content_len,
4009 bfd_size_type offset)
4011 bfd_size_type insnlen, size = 0;
4013 /* Decode the size of the next two instructions. */
4014 insnlen = insn_decode_len (contents, content_len, offset);
4020 insnlen = insn_decode_len (contents, content_len, offset + size);
4030 is_alt_relocation (int r_type)
4032 return (r_type >= R_XTENSA_SLOT0_ALT
4033 && r_type <= R_XTENSA_SLOT14_ALT);
4038 is_operand_relocation (int r_type)
4048 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4050 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4059 #define MIN_INSN_LENGTH 2
4061 /* Return 0 if it fails to decode. */
4064 insn_decode_len (bfd_byte *contents,
4065 bfd_size_type content_len,
4066 bfd_size_type offset)
4069 xtensa_isa isa = xtensa_default_isa;
4071 static xtensa_insnbuf ibuff = NULL;
4073 if (offset + MIN_INSN_LENGTH > content_len)
4077 ibuff = xtensa_insnbuf_alloc (isa);
4078 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4079 content_len - offset);
4080 fmt = xtensa_format_decode (isa, ibuff);
4081 if (fmt == XTENSA_UNDEFINED)
4083 insn_len = xtensa_format_length (isa, fmt);
4084 if (insn_len == XTENSA_UNDEFINED)
4090 insn_num_slots (bfd_byte *contents,
4091 bfd_size_type content_len,
4092 bfd_size_type offset)
4094 xtensa_isa isa = xtensa_default_isa;
4096 static xtensa_insnbuf ibuff = NULL;
4098 if (offset + MIN_INSN_LENGTH > content_len)
4099 return XTENSA_UNDEFINED;
4102 ibuff = xtensa_insnbuf_alloc (isa);
4103 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4104 content_len - offset);
4105 fmt = xtensa_format_decode (isa, ibuff);
4106 if (fmt == XTENSA_UNDEFINED)
4107 return XTENSA_UNDEFINED;
4108 return xtensa_format_num_slots (isa, fmt);
4112 /* Decode the opcode for a single slot instruction.
4113 Return 0 if it fails to decode or the instruction is multi-slot. */
4116 insn_decode_opcode (bfd_byte *contents,
4117 bfd_size_type content_len,
4118 bfd_size_type offset,
4121 xtensa_isa isa = xtensa_default_isa;
4123 static xtensa_insnbuf insnbuf = NULL;
4124 static xtensa_insnbuf slotbuf = NULL;
4126 if (offset + MIN_INSN_LENGTH > content_len)
4127 return XTENSA_UNDEFINED;
4129 if (insnbuf == NULL)
4131 insnbuf = xtensa_insnbuf_alloc (isa);
4132 slotbuf = xtensa_insnbuf_alloc (isa);
4135 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4136 content_len - offset);
4137 fmt = xtensa_format_decode (isa, insnbuf);
4138 if (fmt == XTENSA_UNDEFINED)
4139 return XTENSA_UNDEFINED;
4141 if (slot >= xtensa_format_num_slots (isa, fmt))
4142 return XTENSA_UNDEFINED;
4144 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4145 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4149 /* The offset is the offset in the contents.
4150 The address is the address of that offset. */
4153 check_branch_target_aligned (bfd_byte *contents,
4154 bfd_size_type content_length,
4158 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4161 return check_branch_target_aligned_address (address, insn_len);
4166 check_loop_aligned (bfd_byte *contents,
4167 bfd_size_type content_length,
4171 bfd_size_type loop_len, insn_len;
4172 xtensa_opcode opcode;
4174 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4175 if (opcode == XTENSA_UNDEFINED
4176 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4182 loop_len = insn_decode_len (contents, content_length, offset);
4183 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4184 if (loop_len == 0 || insn_len == 0)
4190 /* If this is relaxed loop, analyze first instruction of the actual loop
4191 body. It must be at offset 27 from the loop instruction address. */
4193 && insn_num_slots (contents, content_length, offset + loop_len) == 1
4194 && insn_decode_opcode (contents, content_length,
4195 offset + loop_len, 0) == get_rsr_lend_opcode()
4196 && insn_decode_len (contents, content_length, offset + loop_len + 3) == 3
4197 && insn_num_slots (contents, content_length, offset + loop_len + 3) == 1
4198 && insn_decode_opcode (contents, content_length,
4199 offset + loop_len + 3, 0) == get_wsr_lbeg_opcode())
4202 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4204 return check_branch_target_aligned_address (address + loop_len, insn_len);
4209 check_branch_target_aligned_address (bfd_vma addr, int len)
4212 return (addr % 8 == 0);
4213 return ((addr >> 2) == ((addr + len - 1) >> 2));
4217 /* Instruction widening and narrowing. */
4219 /* When FLIX is available we need to access certain instructions only
4220 when they are 16-bit or 24-bit instructions. This table caches
4221 information about such instructions by walking through all the
4222 opcodes and finding the smallest single-slot format into which each
4225 static xtensa_format *op_single_fmt_table = NULL;
4229 init_op_single_format_table (void)
4231 xtensa_isa isa = xtensa_default_isa;
4232 xtensa_insnbuf ibuf;
4233 xtensa_opcode opcode;
4237 if (op_single_fmt_table)
4240 ibuf = xtensa_insnbuf_alloc (isa);
4241 num_opcodes = xtensa_isa_num_opcodes (isa);
4243 op_single_fmt_table = (xtensa_format *)
4244 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4245 for (opcode = 0; opcode < num_opcodes; opcode++)
4247 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4248 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4250 if (xtensa_format_num_slots (isa, fmt) == 1
4251 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4253 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4254 int fmt_length = xtensa_format_length (isa, fmt);
4255 if (old_fmt == XTENSA_UNDEFINED
4256 || fmt_length < xtensa_format_length (isa, old_fmt))
4257 op_single_fmt_table[opcode] = fmt;
4261 xtensa_insnbuf_free (isa, ibuf);
4265 static xtensa_format
4266 get_single_format (xtensa_opcode opcode)
4268 init_op_single_format_table ();
4269 return op_single_fmt_table[opcode];
4273 /* For the set of narrowable instructions we do NOT include the
4274 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4275 involved during linker relaxation that may require these to
4276 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4277 requires special case code to ensure it only works when op1 == op2. */
4285 struct string_pair narrowable[] =
4288 { "addi", "addi.n" },
4289 { "addmi", "addi.n" },
4290 { "l32i", "l32i.n" },
4291 { "movi", "movi.n" },
4293 { "retw", "retw.n" },
4294 { "s32i", "s32i.n" },
4295 { "or", "mov.n" } /* special case only when op1 == op2 */
4298 struct string_pair widenable[] =
4301 { "addi", "addi.n" },
4302 { "addmi", "addi.n" },
4303 { "beqz", "beqz.n" },
4304 { "bnez", "bnez.n" },
4305 { "l32i", "l32i.n" },
4306 { "movi", "movi.n" },
4308 { "retw", "retw.n" },
4309 { "s32i", "s32i.n" },
4310 { "or", "mov.n" } /* special case only when op1 == op2 */
4314 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4315 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4316 return the instruction buffer holding the narrow instruction. Otherwise,
4317 return 0. The set of valid narrowing are specified by a string table
4318 but require some special case operand checks in some cases. */
4320 static xtensa_insnbuf
4321 can_narrow_instruction (xtensa_insnbuf slotbuf,
4323 xtensa_opcode opcode)
4325 xtensa_isa isa = xtensa_default_isa;
4326 xtensa_format o_fmt;
4329 static xtensa_insnbuf o_insnbuf = NULL;
4330 static xtensa_insnbuf o_slotbuf = NULL;
4332 if (o_insnbuf == NULL)
4334 o_insnbuf = xtensa_insnbuf_alloc (isa);
4335 o_slotbuf = xtensa_insnbuf_alloc (isa);
4338 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4340 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4342 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4344 uint32 value, newval;
4345 int i, operand_count, o_operand_count;
4346 xtensa_opcode o_opcode;
4348 /* Address does not matter in this case. We might need to
4349 fix it to handle branches/jumps. */
4350 bfd_vma self_address = 0;
4352 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4353 if (o_opcode == XTENSA_UNDEFINED)
4355 o_fmt = get_single_format (o_opcode);
4356 if (o_fmt == XTENSA_UNDEFINED)
4359 if (xtensa_format_length (isa, fmt) != 3
4360 || xtensa_format_length (isa, o_fmt) != 2)
4363 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4364 operand_count = xtensa_opcode_num_operands (isa, opcode);
4365 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4367 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4372 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4377 uint32 rawval0, rawval1, rawval2;
4379 if (o_operand_count + 1 != operand_count
4380 || xtensa_operand_get_field (isa, opcode, 0,
4381 fmt, 0, slotbuf, &rawval0) != 0
4382 || xtensa_operand_get_field (isa, opcode, 1,
4383 fmt, 0, slotbuf, &rawval1) != 0
4384 || xtensa_operand_get_field (isa, opcode, 2,
4385 fmt, 0, slotbuf, &rawval2) != 0
4386 || rawval1 != rawval2
4387 || rawval0 == rawval1 /* it is a nop */)
4391 for (i = 0; i < o_operand_count; ++i)
4393 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4395 || xtensa_operand_decode (isa, opcode, i, &value))
4398 /* PC-relative branches need adjustment, but
4399 the PC-rel operand will always have a relocation. */
4401 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4403 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4404 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4409 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4419 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4420 the action in-place directly into the contents and return TRUE. Otherwise,
4421 the return value is FALSE and the contents are not modified. */
4424 narrow_instruction (bfd_byte *contents,
4425 bfd_size_type content_length,
4426 bfd_size_type offset)
4428 xtensa_opcode opcode;
4429 bfd_size_type insn_len;
4430 xtensa_isa isa = xtensa_default_isa;
4432 xtensa_insnbuf o_insnbuf;
4434 static xtensa_insnbuf insnbuf = NULL;
4435 static xtensa_insnbuf slotbuf = NULL;
4437 if (insnbuf == NULL)
4439 insnbuf = xtensa_insnbuf_alloc (isa);
4440 slotbuf = xtensa_insnbuf_alloc (isa);
4443 BFD_ASSERT (offset < content_length);
4445 if (content_length < 2)
4448 /* We will hand-code a few of these for a little while.
4449 These have all been specified in the assembler aleady. */
4450 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4451 content_length - offset);
4452 fmt = xtensa_format_decode (isa, insnbuf);
4453 if (xtensa_format_num_slots (isa, fmt) != 1)
4456 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4459 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4460 if (opcode == XTENSA_UNDEFINED)
4462 insn_len = xtensa_format_length (isa, fmt);
4463 if (insn_len > content_length)
4466 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4469 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4470 content_length - offset);
4478 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4479 "density" instruction to a standard 3-byte instruction. If it is valid,
4480 return the instruction buffer holding the wide instruction. Otherwise,
4481 return 0. The set of valid widenings are specified by a string table
4482 but require some special case operand checks in some cases. */
4484 static xtensa_insnbuf
4485 can_widen_instruction (xtensa_insnbuf slotbuf,
4487 xtensa_opcode opcode)
4489 xtensa_isa isa = xtensa_default_isa;
4490 xtensa_format o_fmt;
4493 static xtensa_insnbuf o_insnbuf = NULL;
4494 static xtensa_insnbuf o_slotbuf = NULL;
4496 if (o_insnbuf == NULL)
4498 o_insnbuf = xtensa_insnbuf_alloc (isa);
4499 o_slotbuf = xtensa_insnbuf_alloc (isa);
4502 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4504 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4505 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4506 || strcmp ("bnez", widenable[opi].wide) == 0);
4508 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4510 uint32 value, newval;
4511 int i, operand_count, o_operand_count, check_operand_count;
4512 xtensa_opcode o_opcode;
4514 /* Address does not matter in this case. We might need to fix it
4515 to handle branches/jumps. */
4516 bfd_vma self_address = 0;
4518 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4519 if (o_opcode == XTENSA_UNDEFINED)
4521 o_fmt = get_single_format (o_opcode);
4522 if (o_fmt == XTENSA_UNDEFINED)
4525 if (xtensa_format_length (isa, fmt) != 2
4526 || xtensa_format_length (isa, o_fmt) != 3)
4529 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4530 operand_count = xtensa_opcode_num_operands (isa, opcode);
4531 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4532 check_operand_count = o_operand_count;
4534 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4539 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4544 uint32 rawval0, rawval1;
4546 if (o_operand_count != operand_count + 1
4547 || xtensa_operand_get_field (isa, opcode, 0,
4548 fmt, 0, slotbuf, &rawval0) != 0
4549 || xtensa_operand_get_field (isa, opcode, 1,
4550 fmt, 0, slotbuf, &rawval1) != 0
4551 || rawval0 == rawval1 /* it is a nop */)
4555 check_operand_count--;
4557 for (i = 0; i < check_operand_count; i++)
4560 if (is_or && i == o_operand_count - 1)
4562 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4564 || xtensa_operand_decode (isa, opcode, new_i, &value))
4567 /* PC-relative branches need adjustment, but
4568 the PC-rel operand will always have a relocation. */
4570 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4572 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4573 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4578 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4588 /* Attempt to widen an instruction. If the widening is valid, perform
4589 the action in-place directly into the contents and return TRUE. Otherwise,
4590 the return value is FALSE and the contents are not modified. */
4593 widen_instruction (bfd_byte *contents,
4594 bfd_size_type content_length,
4595 bfd_size_type offset)
4597 xtensa_opcode opcode;
4598 bfd_size_type insn_len;
4599 xtensa_isa isa = xtensa_default_isa;
4601 xtensa_insnbuf o_insnbuf;
4603 static xtensa_insnbuf insnbuf = NULL;
4604 static xtensa_insnbuf slotbuf = NULL;
4606 if (insnbuf == NULL)
4608 insnbuf = xtensa_insnbuf_alloc (isa);
4609 slotbuf = xtensa_insnbuf_alloc (isa);
4612 BFD_ASSERT (offset < content_length);
4614 if (content_length < 2)
4617 /* We will hand-code a few of these for a little while.
4618 These have all been specified in the assembler aleady. */
4619 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4620 content_length - offset);
4621 fmt = xtensa_format_decode (isa, insnbuf);
4622 if (xtensa_format_num_slots (isa, fmt) != 1)
4625 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4628 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4629 if (opcode == XTENSA_UNDEFINED)
4631 insn_len = xtensa_format_length (isa, fmt);
4632 if (insn_len > content_length)
4635 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4638 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4639 content_length - offset);
4646 /* Code for transforming CALLs at link-time. */
4648 static bfd_reloc_status_type
4649 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4651 bfd_vma content_length,
4652 char **error_message)
4654 static xtensa_insnbuf insnbuf = NULL;
4655 static xtensa_insnbuf slotbuf = NULL;
4656 xtensa_format core_format = XTENSA_UNDEFINED;
4657 xtensa_opcode opcode;
4658 xtensa_opcode direct_call_opcode;
4659 xtensa_isa isa = xtensa_default_isa;
4660 bfd_byte *chbuf = contents + address;
4663 if (insnbuf == NULL)
4665 insnbuf = xtensa_insnbuf_alloc (isa);
4666 slotbuf = xtensa_insnbuf_alloc (isa);
4669 if (content_length < address)
4671 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4672 return bfd_reloc_other;
4675 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4676 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4677 if (direct_call_opcode == XTENSA_UNDEFINED)
4679 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4680 return bfd_reloc_other;
4683 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4684 core_format = xtensa_format_lookup (isa, "x24");
4685 opcode = xtensa_opcode_lookup (isa, "or");
4686 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4687 for (opn = 0; opn < 3; opn++)
4690 xtensa_operand_encode (isa, opcode, opn, ®no);
4691 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4694 xtensa_format_encode (isa, core_format, insnbuf);
4695 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4696 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4698 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4699 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4700 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4702 xtensa_format_encode (isa, core_format, insnbuf);
4703 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4704 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4705 content_length - address - 3);
4707 return bfd_reloc_ok;
4711 static bfd_reloc_status_type
4712 contract_asm_expansion (bfd_byte *contents,
4713 bfd_vma content_length,
4714 Elf_Internal_Rela *irel,
4715 char **error_message)
4717 bfd_reloc_status_type retval =
4718 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4721 if (retval != bfd_reloc_ok)
4722 return bfd_reloc_dangerous;
4724 /* Update the irel->r_offset field so that the right immediate and
4725 the right instruction are modified during the relocation. */
4726 irel->r_offset += 3;
4727 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4728 return bfd_reloc_ok;
4732 static xtensa_opcode
4733 swap_callx_for_call_opcode (xtensa_opcode opcode)
4735 init_call_opcodes ();
4737 if (opcode == callx0_op) return call0_op;
4738 if (opcode == callx4_op) return call4_op;
4739 if (opcode == callx8_op) return call8_op;
4740 if (opcode == callx12_op) return call12_op;
4742 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4743 return XTENSA_UNDEFINED;
4747 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4748 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4749 If not, return XTENSA_UNDEFINED. */
4751 #define L32R_TARGET_REG_OPERAND 0
4752 #define CONST16_TARGET_REG_OPERAND 0
4753 #define CALLN_SOURCE_OPERAND 0
4755 static xtensa_opcode
4756 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4758 static xtensa_insnbuf insnbuf = NULL;
4759 static xtensa_insnbuf slotbuf = NULL;
4761 xtensa_opcode opcode;
4762 xtensa_isa isa = xtensa_default_isa;
4763 uint32 regno, const16_regno, call_regno;
4766 if (insnbuf == NULL)
4768 insnbuf = xtensa_insnbuf_alloc (isa);
4769 slotbuf = xtensa_insnbuf_alloc (isa);
4772 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4773 fmt = xtensa_format_decode (isa, insnbuf);
4774 if (fmt == XTENSA_UNDEFINED
4775 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4776 return XTENSA_UNDEFINED;
4778 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4779 if (opcode == XTENSA_UNDEFINED)
4780 return XTENSA_UNDEFINED;
4782 if (opcode == get_l32r_opcode ())
4785 *p_uses_l32r = TRUE;
4786 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4787 fmt, 0, slotbuf, ®no)
4788 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4790 return XTENSA_UNDEFINED;
4792 else if (opcode == get_const16_opcode ())
4795 *p_uses_l32r = FALSE;
4796 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4797 fmt, 0, slotbuf, ®no)
4798 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4800 return XTENSA_UNDEFINED;
4802 /* Check that the next instruction is also CONST16. */
4803 offset += xtensa_format_length (isa, fmt);
4804 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4805 fmt = xtensa_format_decode (isa, insnbuf);
4806 if (fmt == XTENSA_UNDEFINED
4807 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4808 return XTENSA_UNDEFINED;
4809 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4810 if (opcode != get_const16_opcode ())
4811 return XTENSA_UNDEFINED;
4813 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4814 fmt, 0, slotbuf, &const16_regno)
4815 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4817 || const16_regno != regno)
4818 return XTENSA_UNDEFINED;
4821 return XTENSA_UNDEFINED;
4823 /* Next instruction should be an CALLXn with operand 0 == regno. */
4824 offset += xtensa_format_length (isa, fmt);
4825 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4826 fmt = xtensa_format_decode (isa, insnbuf);
4827 if (fmt == XTENSA_UNDEFINED
4828 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4829 return XTENSA_UNDEFINED;
4830 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4831 if (opcode == XTENSA_UNDEFINED
4832 || !is_indirect_call_opcode (opcode))
4833 return XTENSA_UNDEFINED;
4835 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4836 fmt, 0, slotbuf, &call_regno)
4837 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4839 return XTENSA_UNDEFINED;
4841 if (call_regno != regno)
4842 return XTENSA_UNDEFINED;
4848 /* Data structures used during relaxation. */
4850 /* r_reloc: relocation values. */
4852 /* Through the relaxation process, we need to keep track of the values
4853 that will result from evaluating relocations. The standard ELF
4854 relocation structure is not sufficient for this purpose because we're
4855 operating on multiple input files at once, so we need to know which
4856 input file a relocation refers to. The r_reloc structure thus
4857 records both the input file (bfd) and ELF relocation.
4859 For efficiency, an r_reloc also contains a "target_offset" field to
4860 cache the target-section-relative offset value that is represented by
4863 The r_reloc also contains a virtual offset that allows multiple
4864 inserted literals to be placed at the same "address" with
4865 different offsets. */
4867 typedef struct r_reloc_struct r_reloc;
4869 struct r_reloc_struct
4872 Elf_Internal_Rela rela;
4873 bfd_vma target_offset;
4874 bfd_vma virtual_offset;
4878 /* The r_reloc structure is included by value in literal_value, but not
4879 every literal_value has an associated relocation -- some are simple
4880 constants. In such cases, we set all the fields in the r_reloc
4881 struct to zero. The r_reloc_is_const function should be used to
4882 detect this case. */
4885 r_reloc_is_const (const r_reloc *r_rel)
4887 return (r_rel->abfd == NULL);
4892 r_reloc_get_target_offset (const r_reloc *r_rel)
4894 bfd_vma target_offset;
4895 unsigned long r_symndx;
4897 BFD_ASSERT (!r_reloc_is_const (r_rel));
4898 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4899 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4900 return (target_offset + r_rel->rela.r_addend);
4904 static struct elf_link_hash_entry *
4905 r_reloc_get_hash_entry (const r_reloc *r_rel)
4907 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4908 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4913 r_reloc_get_section (const r_reloc *r_rel)
4915 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4916 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4921 r_reloc_is_defined (const r_reloc *r_rel)
4927 sec = r_reloc_get_section (r_rel);
4928 if (sec == bfd_abs_section_ptr
4929 || sec == bfd_com_section_ptr
4930 || sec == bfd_und_section_ptr)
4937 r_reloc_init (r_reloc *r_rel,
4939 Elf_Internal_Rela *irel,
4941 bfd_size_type content_length)
4944 reloc_howto_type *howto;
4948 r_rel->rela = *irel;
4950 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4951 r_rel->virtual_offset = 0;
4952 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4953 howto = &elf_howto_table[r_type];
4954 if (howto->partial_inplace)
4956 bfd_vma inplace_val;
4957 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4959 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4960 r_rel->target_offset += inplace_val;
4964 memset (r_rel, 0, sizeof (r_reloc));
4971 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4973 if (r_reloc_is_defined (r_rel))
4975 asection *sec = r_reloc_get_section (r_rel);
4976 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4978 else if (r_reloc_get_hash_entry (r_rel))
4979 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4981 fprintf (fp, " ?? + ");
4983 fprintf_vma (fp, r_rel->target_offset);
4984 if (r_rel->virtual_offset)
4986 fprintf (fp, " + ");
4987 fprintf_vma (fp, r_rel->virtual_offset);
4996 /* source_reloc: relocations that reference literals. */
4998 /* To determine whether literals can be coalesced, we need to first
4999 record all the relocations that reference the literals. The
5000 source_reloc structure below is used for this purpose. The
5001 source_reloc entries are kept in a per-literal-section array, sorted
5002 by offset within the literal section (i.e., target offset).
5004 The source_sec and r_rel.rela.r_offset fields identify the source of
5005 the relocation. The r_rel field records the relocation value, i.e.,
5006 the offset of the literal being referenced. The opnd field is needed
5007 to determine the range of the immediate field to which the relocation
5008 applies, so we can determine whether another literal with the same
5009 value is within range. The is_null field is true when the relocation
5010 is being removed (e.g., when an L32R is being removed due to a CALLX
5011 that is converted to a direct CALL). */
5013 typedef struct source_reloc_struct source_reloc;
5015 struct source_reloc_struct
5017 asection *source_sec;
5019 xtensa_opcode opcode;
5021 bfd_boolean is_null;
5022 bfd_boolean is_abs_literal;
5027 init_source_reloc (source_reloc *reloc,
5028 asection *source_sec,
5029 const r_reloc *r_rel,
5030 xtensa_opcode opcode,
5032 bfd_boolean is_abs_literal)
5034 reloc->source_sec = source_sec;
5035 reloc->r_rel = *r_rel;
5036 reloc->opcode = opcode;
5038 reloc->is_null = FALSE;
5039 reloc->is_abs_literal = is_abs_literal;
5043 /* Find the source_reloc for a particular source offset and relocation
5044 type. Note that the array is sorted by _target_ offset, so this is
5045 just a linear search. */
5047 static source_reloc *
5048 find_source_reloc (source_reloc *src_relocs,
5051 Elf_Internal_Rela *irel)
5055 for (i = 0; i < src_count; i++)
5057 if (src_relocs[i].source_sec == sec
5058 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5059 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5060 == ELF32_R_TYPE (irel->r_info)))
5061 return &src_relocs[i];
5069 source_reloc_compare (const void *ap, const void *bp)
5071 const source_reloc *a = (const source_reloc *) ap;
5072 const source_reloc *b = (const source_reloc *) bp;
5074 if (a->r_rel.target_offset != b->r_rel.target_offset)
5075 return (a->r_rel.target_offset - b->r_rel.target_offset);
5077 /* We don't need to sort on these criteria for correctness,
5078 but enforcing a more strict ordering prevents unstable qsort
5079 from behaving differently with different implementations.
5080 Without the code below we get correct but different results
5081 on Solaris 2.7 and 2.8. We would like to always produce the
5082 same results no matter the host. */
5084 if ((!a->is_null) - (!b->is_null))
5085 return ((!a->is_null) - (!b->is_null));
5086 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5090 /* Literal values and value hash tables. */
5092 /* Literals with the same value can be coalesced. The literal_value
5093 structure records the value of a literal: the "r_rel" field holds the
5094 information from the relocation on the literal (if there is one) and
5095 the "value" field holds the contents of the literal word itself.
5097 The value_map structure records a literal value along with the
5098 location of a literal holding that value. The value_map hash table
5099 is indexed by the literal value, so that we can quickly check if a
5100 particular literal value has been seen before and is thus a candidate
5103 typedef struct literal_value_struct literal_value;
5104 typedef struct value_map_struct value_map;
5105 typedef struct value_map_hash_table_struct value_map_hash_table;
5107 struct literal_value_struct
5110 unsigned long value;
5111 bfd_boolean is_abs_literal;
5114 struct value_map_struct
5116 literal_value val; /* The literal value. */
5117 r_reloc loc; /* Location of the literal. */
5121 struct value_map_hash_table_struct
5123 unsigned bucket_count;
5124 value_map **buckets;
5126 bfd_boolean has_last_loc;
5132 init_literal_value (literal_value *lit,
5133 const r_reloc *r_rel,
5134 unsigned long value,
5135 bfd_boolean is_abs_literal)
5137 lit->r_rel = *r_rel;
5139 lit->is_abs_literal = is_abs_literal;
5144 literal_value_equal (const literal_value *src1,
5145 const literal_value *src2,
5146 bfd_boolean final_static_link)
5148 struct elf_link_hash_entry *h1, *h2;
5150 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5153 if (r_reloc_is_const (&src1->r_rel))
5154 return (src1->value == src2->value);
5156 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5157 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5160 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5163 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5166 if (src1->value != src2->value)
5169 /* Now check for the same section (if defined) or the same elf_hash
5170 (if undefined or weak). */
5171 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5172 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5173 if (r_reloc_is_defined (&src1->r_rel)
5174 && (final_static_link
5175 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5176 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5178 if (r_reloc_get_section (&src1->r_rel)
5179 != r_reloc_get_section (&src2->r_rel))
5184 /* Require that the hash entries (i.e., symbols) be identical. */
5185 if (h1 != h2 || h1 == 0)
5189 if (src1->is_abs_literal != src2->is_abs_literal)
5196 /* Must be power of 2. */
5197 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5199 static value_map_hash_table *
5200 value_map_hash_table_init (void)
5202 value_map_hash_table *values;
5204 values = (value_map_hash_table *)
5205 bfd_zmalloc (sizeof (value_map_hash_table));
5206 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5208 values->buckets = (value_map **)
5209 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5210 if (values->buckets == NULL)
5215 values->has_last_loc = FALSE;
5222 value_map_hash_table_delete (value_map_hash_table *table)
5224 free (table->buckets);
5230 hash_bfd_vma (bfd_vma val)
5232 return (val >> 2) + (val >> 10);
5237 literal_value_hash (const literal_value *src)
5241 hash_val = hash_bfd_vma (src->value);
5242 if (!r_reloc_is_const (&src->r_rel))
5246 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5247 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5248 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5250 /* Now check for the same section and the same elf_hash. */
5251 if (r_reloc_is_defined (&src->r_rel))
5252 sec_or_hash = r_reloc_get_section (&src->r_rel);
5254 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5255 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5261 /* Check if the specified literal_value has been seen before. */
5264 value_map_get_cached_value (value_map_hash_table *map,
5265 const literal_value *val,
5266 bfd_boolean final_static_link)
5272 idx = literal_value_hash (val);
5273 idx = idx & (map->bucket_count - 1);
5274 bucket = map->buckets[idx];
5275 for (map_e = bucket; map_e; map_e = map_e->next)
5277 if (literal_value_equal (&map_e->val, val, final_static_link))
5284 /* Record a new literal value. It is illegal to call this if VALUE
5285 already has an entry here. */
5288 add_value_map (value_map_hash_table *map,
5289 const literal_value *val,
5291 bfd_boolean final_static_link)
5293 value_map **bucket_p;
5296 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5299 bfd_set_error (bfd_error_no_memory);
5303 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5307 idx = literal_value_hash (val);
5308 idx = idx & (map->bucket_count - 1);
5309 bucket_p = &map->buckets[idx];
5311 val_e->next = *bucket_p;
5314 /* FIXME: Consider resizing the hash table if we get too many entries. */
5320 /* Lists of text actions (ta_) for narrowing, widening, longcall
5321 conversion, space fill, code & literal removal, etc. */
5323 /* The following text actions are generated:
5325 "ta_remove_insn" remove an instruction or instructions
5326 "ta_remove_longcall" convert longcall to call
5327 "ta_convert_longcall" convert longcall to nop/call
5328 "ta_narrow_insn" narrow a wide instruction
5329 "ta_widen" widen a narrow instruction
5330 "ta_fill" add fill or remove fill
5331 removed < 0 is a fill; branches to the fill address will be
5332 changed to address + fill size (e.g., address - removed)
5333 removed >= 0 branches to the fill address will stay unchanged
5334 "ta_remove_literal" remove a literal; this action is
5335 indicated when a literal is removed
5337 "ta_add_literal" insert a new literal; this action is
5338 indicated when a literal has been moved.
5339 It may use a virtual_offset because
5340 multiple literals can be placed at the
5343 For each of these text actions, we also record the number of bytes
5344 removed by performing the text action. In the case of a "ta_widen"
5345 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5347 typedef struct text_action_struct text_action;
5348 typedef struct text_action_list_struct text_action_list;
5349 typedef enum text_action_enum_t text_action_t;
5351 enum text_action_enum_t
5354 ta_remove_insn, /* removed = -size */
5355 ta_remove_longcall, /* removed = -size */
5356 ta_convert_longcall, /* removed = 0 */
5357 ta_narrow_insn, /* removed = -1 */
5358 ta_widen_insn, /* removed = +1 */
5359 ta_fill, /* removed = +size */
5365 /* Structure for a text action record. */
5366 struct text_action_struct
5368 text_action_t action;
5369 asection *sec; /* Optional */
5371 bfd_vma virtual_offset; /* Zero except for adding literals. */
5373 literal_value value; /* Only valid when adding literals. */
5376 struct removal_by_action_entry_struct
5381 int eq_removed_before_fill;
5383 typedef struct removal_by_action_entry_struct removal_by_action_entry;
5385 struct removal_by_action_map_struct
5388 removal_by_action_entry *entry;
5390 typedef struct removal_by_action_map_struct removal_by_action_map;
5393 /* List of all of the actions taken on a text section. */
5394 struct text_action_list_struct
5398 removal_by_action_map map;
5402 static text_action *
5403 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5407 /* It is not necessary to fill at the end of a section. */
5408 if (sec->size == offset)
5414 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5416 return (text_action *)node->value;
5422 compute_removed_action_diff (const text_action *ta,
5426 int removable_space)
5429 int current_removed = 0;
5432 current_removed = ta->removed_bytes;
5434 BFD_ASSERT (ta == NULL || ta->offset == offset);
5435 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5437 /* It is not necessary to fill at the end of a section. Clean this up. */
5438 if (sec->size == offset)
5439 new_removed = removable_space - 0;
5443 int added = -removed - current_removed;
5444 /* Ignore multiples of the section alignment. */
5445 added = ((1 << sec->alignment_power) - 1) & added;
5446 new_removed = (-added);
5448 /* Modify for removable. */
5449 space = removable_space - new_removed;
5450 new_removed = (removable_space
5451 - (((1 << sec->alignment_power) - 1) & space));
5453 return (new_removed - current_removed);
5458 adjust_fill_action (text_action *ta, int fill_diff)
5460 ta->removed_bytes += fill_diff;
5465 text_action_compare (splay_tree_key a, splay_tree_key b)
5467 text_action *pa = (text_action *)a;
5468 text_action *pb = (text_action *)b;
5469 static const int action_priority[] =
5473 [ta_convert_longcall] = 2,
5474 [ta_narrow_insn] = 3,
5475 [ta_remove_insn] = 4,
5476 [ta_remove_longcall] = 5,
5477 [ta_remove_literal] = 6,
5478 [ta_widen_insn] = 7,
5479 [ta_add_literal] = 8,
5482 if (pa->offset == pb->offset)
5484 if (pa->action == pb->action)
5486 return action_priority[pa->action] - action_priority[pb->action];
5489 return pa->offset < pb->offset ? -1 : 1;
5492 static text_action *
5493 action_first (text_action_list *action_list)
5495 splay_tree_node node = splay_tree_min (action_list->tree);
5496 return node ? (text_action *)node->value : NULL;
5499 static text_action *
5500 action_next (text_action_list *action_list, text_action *action)
5502 splay_tree_node node = splay_tree_successor (action_list->tree,
5503 (splay_tree_key)action);
5504 return node ? (text_action *)node->value : NULL;
5507 /* Add a modification action to the text. For the case of adding or
5508 removing space, modify any current fill and assume that
5509 "unreachable_space" bytes can be freely contracted. Note that a
5510 negative removed value is a fill. */
5513 text_action_add (text_action_list *l,
5514 text_action_t action,
5522 /* It is not necessary to fill at the end of a section. */
5523 if (action == ta_fill && sec->size == offset)
5526 /* It is not necessary to fill 0 bytes. */
5527 if (action == ta_fill && removed == 0)
5533 if (action == ta_fill)
5535 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5539 ta = (text_action *)node->value;
5540 ta->removed_bytes += removed;
5545 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
5547 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5548 ta->action = action;
5550 ta->offset = offset;
5551 ta->removed_bytes = removed;
5552 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5558 text_action_add_literal (text_action_list *l,
5559 text_action_t action,
5561 const literal_value *value,
5565 asection *sec = r_reloc_get_section (loc);
5566 bfd_vma offset = loc->target_offset;
5567 bfd_vma virtual_offset = loc->virtual_offset;
5569 BFD_ASSERT (action == ta_add_literal);
5571 /* Create a new record and fill it up. */
5572 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5573 ta->action = action;
5575 ta->offset = offset;
5576 ta->virtual_offset = virtual_offset;
5578 ta->removed_bytes = removed;
5580 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5581 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5586 /* Find the total offset adjustment for the relaxations specified by
5587 text_actions, beginning from a particular starting action. This is
5588 typically used from offset_with_removed_text to search an entire list of
5589 actions, but it may also be called directly when adjusting adjacent offsets
5590 so that each search may begin where the previous one left off. */
5593 removed_by_actions (text_action_list *action_list,
5594 text_action **p_start_action,
5596 bfd_boolean before_fill)
5601 r = *p_start_action;
5604 splay_tree_node node = splay_tree_lookup (action_list->tree,
5606 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5611 if (r->offset > offset)
5614 if (r->offset == offset
5615 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5618 removed += r->removed_bytes;
5620 r = action_next (action_list, r);
5623 *p_start_action = r;
5629 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5631 text_action *r = action_first (action_list);
5633 return offset - removed_by_actions (action_list, &r, offset, FALSE);
5638 action_list_count (text_action_list *action_list)
5640 return action_list->count;
5643 typedef struct map_action_fn_context_struct map_action_fn_context;
5644 struct map_action_fn_context_struct
5647 removal_by_action_map map;
5648 bfd_boolean eq_complete;
5652 map_action_fn (splay_tree_node node, void *p)
5654 map_action_fn_context *ctx = p;
5655 text_action *r = (text_action *)node->value;
5656 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
5658 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
5664 ++ctx->map.n_entries;
5665 ctx->eq_complete = FALSE;
5666 ientry->offset = r->offset;
5667 ientry->eq_removed_before_fill = ctx->removed;
5670 if (!ctx->eq_complete)
5672 if (r->action != ta_fill || r->removed_bytes >= 0)
5674 ientry->eq_removed = ctx->removed;
5675 ctx->eq_complete = TRUE;
5678 ientry->eq_removed = ctx->removed + r->removed_bytes;
5681 ctx->removed += r->removed_bytes;
5682 ientry->removed = ctx->removed;
5687 map_removal_by_action (text_action_list *action_list)
5689 map_action_fn_context ctx;
5692 ctx.map.n_entries = 0;
5693 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5694 sizeof (removal_by_action_entry));
5695 ctx.eq_complete = FALSE;
5697 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5698 action_list->map = ctx.map;
5702 removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5703 bfd_boolean before_fill)
5707 if (!action_list->map.entry)
5708 map_removal_by_action (action_list);
5710 if (!action_list->map.n_entries)
5714 b = action_list->map.n_entries;
5718 unsigned c = (a + b) / 2;
5720 if (action_list->map.entry[c].offset <= offset)
5726 if (action_list->map.entry[a].offset < offset)
5728 return action_list->map.entry[a].removed;
5730 else if (action_list->map.entry[a].offset == offset)
5732 return before_fill ?
5733 action_list->map.entry[a].eq_removed_before_fill :
5734 action_list->map.entry[a].eq_removed;
5743 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5745 int removed = removed_by_actions_map (action_list, offset, FALSE);
5746 return offset - removed;
5750 /* The find_insn_action routine will only find non-fill actions. */
5752 static text_action *
5753 find_insn_action (text_action_list *action_list, bfd_vma offset)
5755 static const text_action_t action[] =
5757 ta_convert_longcall,
5767 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5769 splay_tree_node node;
5771 a.action = action[i];
5772 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5774 return (text_action *)node->value;
5783 print_action (FILE *fp, text_action *r)
5785 const char *t = "unknown";
5788 case ta_remove_insn:
5789 t = "remove_insn"; break;
5790 case ta_remove_longcall:
5791 t = "remove_longcall"; break;
5792 case ta_convert_longcall:
5793 t = "convert_longcall"; break;
5794 case ta_narrow_insn:
5795 t = "narrow_insn"; break;
5797 t = "widen_insn"; break;
5802 case ta_remove_literal:
5803 t = "remove_literal"; break;
5804 case ta_add_literal:
5805 t = "add_literal"; break;
5808 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5809 r->sec->owner->filename,
5810 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5814 print_action_list_fn (splay_tree_node node, void *p)
5816 text_action *r = (text_action *)node->value;
5818 print_action (p, r);
5823 print_action_list (FILE *fp, text_action_list *action_list)
5825 fprintf (fp, "Text Action\n");
5826 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
5832 /* Lists of literals being coalesced or removed. */
5834 /* In the usual case, the literal identified by "from" is being
5835 coalesced with another literal identified by "to". If the literal is
5836 unused and is being removed altogether, "to.abfd" will be NULL.
5837 The removed_literal entries are kept on a per-section list, sorted
5838 by the "from" offset field. */
5840 typedef struct removed_literal_struct removed_literal;
5841 typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
5842 typedef struct removed_literal_list_struct removed_literal_list;
5844 struct removed_literal_struct
5848 removed_literal *next;
5851 struct removed_literal_map_entry_struct
5854 removed_literal *literal;
5857 struct removed_literal_list_struct
5859 removed_literal *head;
5860 removed_literal *tail;
5863 removed_literal_map_entry *map;
5867 /* Record that the literal at "from" is being removed. If "to" is not
5868 NULL, the "from" literal is being coalesced with the "to" literal. */
5871 add_removed_literal (removed_literal_list *removed_list,
5872 const r_reloc *from,
5875 removed_literal *r, *new_r, *next_r;
5877 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5879 new_r->from = *from;
5883 new_r->to.abfd = NULL;
5886 r = removed_list->head;
5889 removed_list->head = new_r;
5890 removed_list->tail = new_r;
5892 /* Special check for common case of append. */
5893 else if (removed_list->tail->from.target_offset < from->target_offset)
5895 removed_list->tail->next = new_r;
5896 removed_list->tail = new_r;
5900 while (r->from.target_offset < from->target_offset && r->next)
5906 new_r->next = next_r;
5908 removed_list->tail = new_r;
5913 map_removed_literal (removed_literal_list *removed_list)
5917 removed_literal_map_entry *map = NULL;
5918 removed_literal *r = removed_list->head;
5920 for (i = 0; r; ++i, r = r->next)
5924 n_map = (n_map * 2) + 2;
5925 map = bfd_realloc (map, n_map * sizeof (*map));
5927 map[i].addr = r->from.target_offset;
5930 removed_list->map = map;
5931 removed_list->n_map = i;
5935 removed_literal_compare (const void *a, const void *b)
5937 const removed_literal_map_entry *pa = a;
5938 const removed_literal_map_entry *pb = b;
5940 if (pa->addr == pb->addr)
5943 return pa->addr < pb->addr ? -1 : 1;
5946 /* Check if the list of removed literals contains an entry for the
5947 given address. Return the entry if found. */
5949 static removed_literal *
5950 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5952 removed_literal_map_entry *p;
5953 removed_literal *r = NULL;
5955 if (removed_list->map == NULL)
5956 map_removed_literal (removed_list);
5958 p = bsearch (&addr, removed_list->map, removed_list->n_map,
5959 sizeof (*removed_list->map), removed_literal_compare);
5962 while (p != removed_list->map && (p - 1)->addr == addr)
5973 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
5976 r = removed_list->head;
5978 fprintf (fp, "Removed Literals\n");
5979 for (; r != NULL; r = r->next)
5981 print_r_reloc (fp, &r->from);
5982 fprintf (fp, " => ");
5983 if (r->to.abfd == NULL)
5984 fprintf (fp, "REMOVED");
5986 print_r_reloc (fp, &r->to);
5994 /* Per-section data for relaxation. */
5996 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5998 struct xtensa_relax_info_struct
6000 bfd_boolean is_relaxable_literal_section;
6001 bfd_boolean is_relaxable_asm_section;
6002 int visited; /* Number of times visited. */
6004 source_reloc *src_relocs; /* Array[src_count]. */
6006 int src_next; /* Next src_relocs entry to assign. */
6008 removed_literal_list removed_list;
6009 text_action_list action_list;
6011 reloc_bfd_fix *fix_list;
6012 reloc_bfd_fix *fix_array;
6013 unsigned fix_array_count;
6015 /* Support for expanding the reloc array that is stored
6016 in the section structure. If the relocations have been
6017 reallocated, the newly allocated relocations will be referenced
6018 here along with the actual size allocated. The relocation
6019 count will always be found in the section structure. */
6020 Elf_Internal_Rela *allocated_relocs;
6021 unsigned relocs_count;
6022 unsigned allocated_relocs_count;
6025 struct elf_xtensa_section_data
6027 struct bfd_elf_section_data elf;
6028 xtensa_relax_info relax_info;
6033 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
6035 if (!sec->used_by_bfd)
6037 struct elf_xtensa_section_data *sdata;
6038 bfd_size_type amt = sizeof (*sdata);
6040 sdata = bfd_zalloc (abfd, amt);
6043 sec->used_by_bfd = sdata;
6046 return _bfd_elf_new_section_hook (abfd, sec);
6050 static xtensa_relax_info *
6051 get_xtensa_relax_info (asection *sec)
6053 struct elf_xtensa_section_data *section_data;
6055 /* No info available if no section or if it is an output section. */
6056 if (!sec || sec == sec->output_section)
6059 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
6060 return §ion_data->relax_info;
6065 init_xtensa_relax_info (asection *sec)
6067 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6069 relax_info->is_relaxable_literal_section = FALSE;
6070 relax_info->is_relaxable_asm_section = FALSE;
6071 relax_info->visited = 0;
6073 relax_info->src_relocs = NULL;
6074 relax_info->src_count = 0;
6075 relax_info->src_next = 0;
6077 relax_info->removed_list.head = NULL;
6078 relax_info->removed_list.tail = NULL;
6080 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6082 relax_info->action_list.map.n_entries = 0;
6083 relax_info->action_list.map.entry = NULL;
6085 relax_info->fix_list = NULL;
6086 relax_info->fix_array = NULL;
6087 relax_info->fix_array_count = 0;
6089 relax_info->allocated_relocs = NULL;
6090 relax_info->relocs_count = 0;
6091 relax_info->allocated_relocs_count = 0;
6095 /* Coalescing literals may require a relocation to refer to a section in
6096 a different input file, but the standard relocation information
6097 cannot express that. Instead, the reloc_bfd_fix structures are used
6098 to "fix" the relocations that refer to sections in other input files.
6099 These structures are kept on per-section lists. The "src_type" field
6100 records the relocation type in case there are multiple relocations on
6101 the same location. FIXME: This is ugly; an alternative might be to
6102 add new symbols with the "owner" field to some other input file. */
6104 struct reloc_bfd_fix_struct
6108 unsigned src_type; /* Relocation type. */
6110 asection *target_sec;
6111 bfd_vma target_offset;
6112 bfd_boolean translated;
6114 reloc_bfd_fix *next;
6118 static reloc_bfd_fix *
6119 reloc_bfd_fix_init (asection *src_sec,
6122 asection *target_sec,
6123 bfd_vma target_offset,
6124 bfd_boolean translated)
6128 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6129 fix->src_sec = src_sec;
6130 fix->src_offset = src_offset;
6131 fix->src_type = src_type;
6132 fix->target_sec = target_sec;
6133 fix->target_offset = target_offset;
6134 fix->translated = translated;
6141 add_fix (asection *src_sec, reloc_bfd_fix *fix)
6143 xtensa_relax_info *relax_info;
6145 relax_info = get_xtensa_relax_info (src_sec);
6146 fix->next = relax_info->fix_list;
6147 relax_info->fix_list = fix;
6152 fix_compare (const void *ap, const void *bp)
6154 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6155 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6157 if (a->src_offset != b->src_offset)
6158 return (a->src_offset - b->src_offset);
6159 return (a->src_type - b->src_type);
6164 cache_fix_array (asection *sec)
6166 unsigned i, count = 0;
6168 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6170 if (relax_info == NULL)
6172 if (relax_info->fix_list == NULL)
6175 for (r = relax_info->fix_list; r != NULL; r = r->next)
6178 relax_info->fix_array =
6179 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6180 relax_info->fix_array_count = count;
6182 r = relax_info->fix_list;
6183 for (i = 0; i < count; i++, r = r->next)
6185 relax_info->fix_array[count - 1 - i] = *r;
6186 relax_info->fix_array[count - 1 - i].next = NULL;
6189 qsort (relax_info->fix_array, relax_info->fix_array_count,
6190 sizeof (reloc_bfd_fix), fix_compare);
6194 static reloc_bfd_fix *
6195 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6197 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6201 if (relax_info == NULL)
6203 if (relax_info->fix_list == NULL)
6206 if (relax_info->fix_array == NULL)
6207 cache_fix_array (sec);
6209 key.src_offset = offset;
6210 key.src_type = type;
6211 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6212 sizeof (reloc_bfd_fix), fix_compare);
6217 /* Section caching. */
6219 typedef struct section_cache_struct section_cache_t;
6221 struct section_cache_struct
6225 bfd_byte *contents; /* Cache of the section contents. */
6226 bfd_size_type content_length;
6228 property_table_entry *ptbl; /* Cache of the section property table. */
6231 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6232 unsigned reloc_count;
6237 init_section_cache (section_cache_t *sec_cache)
6239 memset (sec_cache, 0, sizeof (*sec_cache));
6244 free_section_cache (section_cache_t *sec_cache)
6248 release_contents (sec_cache->sec, sec_cache->contents);
6249 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6250 if (sec_cache->ptbl)
6251 free (sec_cache->ptbl);
6257 section_cache_section (section_cache_t *sec_cache,
6259 struct bfd_link_info *link_info)
6262 property_table_entry *prop_table = NULL;
6264 bfd_byte *contents = NULL;
6265 Elf_Internal_Rela *internal_relocs = NULL;
6266 bfd_size_type sec_size;
6270 if (sec == sec_cache->sec)
6274 sec_size = bfd_get_section_limit (abfd, sec);
6276 /* Get the contents. */
6277 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6278 if (contents == NULL && sec_size != 0)
6281 /* Get the relocations. */
6282 internal_relocs = retrieve_internal_relocs (abfd, sec,
6283 link_info->keep_memory);
6285 /* Get the entry table. */
6286 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6287 XTENSA_PROP_SEC_NAME, FALSE);
6291 /* Fill in the new section cache. */
6292 free_section_cache (sec_cache);
6293 init_section_cache (sec_cache);
6295 sec_cache->sec = sec;
6296 sec_cache->contents = contents;
6297 sec_cache->content_length = sec_size;
6298 sec_cache->relocs = internal_relocs;
6299 sec_cache->reloc_count = sec->reloc_count;
6300 sec_cache->pte_count = ptblsize;
6301 sec_cache->ptbl = prop_table;
6306 release_contents (sec, contents);
6307 release_internal_relocs (sec, internal_relocs);
6314 /* Extended basic blocks. */
6316 /* An ebb_struct represents an Extended Basic Block. Within this
6317 range, we guarantee that all instructions are decodable, the
6318 property table entries are contiguous, and no property table
6319 specifies a segment that cannot have instructions moved. This
6320 structure contains caches of the contents, property table and
6321 relocations for the specified section for easy use. The range is
6322 specified by ranges of indices for the byte offset, property table
6323 offsets and relocation offsets. These must be consistent. */
6325 typedef struct ebb_struct ebb_t;
6331 bfd_byte *contents; /* Cache of the section contents. */
6332 bfd_size_type content_length;
6334 property_table_entry *ptbl; /* Cache of the section property table. */
6337 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6338 unsigned reloc_count;
6340 bfd_vma start_offset; /* Offset in section. */
6341 unsigned start_ptbl_idx; /* Offset in the property table. */
6342 unsigned start_reloc_idx; /* Offset in the relocations. */
6345 unsigned end_ptbl_idx;
6346 unsigned end_reloc_idx;
6348 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6350 /* The unreachable property table at the end of this set of blocks;
6351 NULL if the end is not an unreachable block. */
6352 property_table_entry *ends_unreachable;
6356 enum ebb_target_enum
6359 EBB_DESIRE_TGT_ALIGN,
6360 EBB_REQUIRE_TGT_ALIGN,
6361 EBB_REQUIRE_LOOP_ALIGN,
6366 /* proposed_action_struct is similar to the text_action_struct except
6367 that is represents a potential transformation, not one that will
6368 occur. We build a list of these for an extended basic block
6369 and use them to compute the actual actions desired. We must be
6370 careful that the entire set of actual actions we perform do not
6371 break any relocations that would fit if the actions were not
6374 typedef struct proposed_action_struct proposed_action;
6376 struct proposed_action_struct
6378 enum ebb_target_enum align_type; /* for the target alignment */
6379 bfd_vma alignment_pow;
6380 text_action_t action;
6383 bfd_boolean do_action; /* If false, then we will not perform the action. */
6387 /* The ebb_constraint_struct keeps a set of proposed actions for an
6388 extended basic block. */
6390 typedef struct ebb_constraint_struct ebb_constraint;
6392 struct ebb_constraint_struct
6395 bfd_boolean start_movable;
6397 /* Bytes of extra space at the beginning if movable. */
6398 int start_extra_space;
6400 enum ebb_target_enum start_align;
6402 bfd_boolean end_movable;
6404 /* Bytes of extra space at the end if movable. */
6405 int end_extra_space;
6407 unsigned action_count;
6408 unsigned action_allocated;
6410 /* Array of proposed actions. */
6411 proposed_action *actions;
6413 /* Action alignments -- one for each proposed action. */
6414 enum ebb_target_enum *action_aligns;
6419 init_ebb_constraint (ebb_constraint *c)
6421 memset (c, 0, sizeof (ebb_constraint));
6426 free_ebb_constraint (ebb_constraint *c)
6434 init_ebb (ebb_t *ebb,
6437 bfd_size_type content_length,
6438 property_table_entry *prop_table,
6440 Elf_Internal_Rela *internal_relocs,
6441 unsigned reloc_count)
6443 memset (ebb, 0, sizeof (ebb_t));
6445 ebb->contents = contents;
6446 ebb->content_length = content_length;
6447 ebb->ptbl = prop_table;
6448 ebb->pte_count = ptblsize;
6449 ebb->relocs = internal_relocs;
6450 ebb->reloc_count = reloc_count;
6451 ebb->start_offset = 0;
6452 ebb->end_offset = ebb->content_length - 1;
6453 ebb->start_ptbl_idx = 0;
6454 ebb->end_ptbl_idx = ptblsize;
6455 ebb->start_reloc_idx = 0;
6456 ebb->end_reloc_idx = reloc_count;
6460 /* Extend the ebb to all decodable contiguous sections. The algorithm
6461 for building a basic block around an instruction is to push it
6462 forward until we hit the end of a section, an unreachable block or
6463 a block that cannot be transformed. Then we push it backwards
6464 searching for similar conditions. */
6466 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6467 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6468 static bfd_size_type insn_block_decodable_len
6469 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6472 extend_ebb_bounds (ebb_t *ebb)
6474 if (!extend_ebb_bounds_forward (ebb))
6476 if (!extend_ebb_bounds_backward (ebb))
6483 extend_ebb_bounds_forward (ebb_t *ebb)
6485 property_table_entry *the_entry, *new_entry;
6487 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6489 /* Stop when (1) we cannot decode an instruction, (2) we are at
6490 the end of the property tables, (3) we hit a non-contiguous property
6491 table entry, (4) we hit a NO_TRANSFORM region. */
6496 bfd_size_type insn_block_len;
6498 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6500 insn_block_decodable_len (ebb->contents, ebb->content_length,
6502 entry_end - ebb->end_offset);
6503 if (insn_block_len != (entry_end - ebb->end_offset))
6506 /* xgettext:c-format */
6507 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6508 "possible configuration mismatch"),
6509 ebb->sec->owner, ebb->sec,
6510 (uint64_t) (ebb->end_offset + insn_block_len));
6513 ebb->end_offset += insn_block_len;
6515 if (ebb->end_offset == ebb->sec->size)
6516 ebb->ends_section = TRUE;
6518 /* Update the reloc counter. */
6519 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6520 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6523 ebb->end_reloc_idx++;
6526 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6529 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6530 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6531 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6532 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6535 if (the_entry->address + the_entry->size != new_entry->address)
6538 the_entry = new_entry;
6539 ebb->end_ptbl_idx++;
6542 /* Quick check for an unreachable or end of file just at the end. */
6543 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6545 if (ebb->end_offset == ebb->content_length)
6546 ebb->ends_section = TRUE;
6550 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6551 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6552 && the_entry->address + the_entry->size == new_entry->address)
6553 ebb->ends_unreachable = new_entry;
6556 /* Any other ending requires exact alignment. */
6562 extend_ebb_bounds_backward (ebb_t *ebb)
6564 property_table_entry *the_entry, *new_entry;
6566 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6568 /* Stop when (1) we cannot decode the instructions in the current entry.
6569 (2) we are at the beginning of the property tables, (3) we hit a
6570 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6574 bfd_vma block_begin;
6575 bfd_size_type insn_block_len;
6577 block_begin = the_entry->address - ebb->sec->vma;
6579 insn_block_decodable_len (ebb->contents, ebb->content_length,
6581 ebb->start_offset - block_begin);
6582 if (insn_block_len != ebb->start_offset - block_begin)
6585 /* xgettext:c-format */
6586 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6587 "possible configuration mismatch"),
6588 ebb->sec->owner, ebb->sec,
6589 (uint64_t) (ebb->end_offset + insn_block_len));
6592 ebb->start_offset -= insn_block_len;
6594 /* Update the reloc counter. */
6595 while (ebb->start_reloc_idx > 0
6596 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6597 >= ebb->start_offset))
6599 ebb->start_reloc_idx--;
6602 if (ebb->start_ptbl_idx == 0)
6605 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6606 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6607 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6608 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6610 if (new_entry->address + new_entry->size != the_entry->address)
6613 the_entry = new_entry;
6614 ebb->start_ptbl_idx--;
6620 static bfd_size_type
6621 insn_block_decodable_len (bfd_byte *contents,
6622 bfd_size_type content_len,
6623 bfd_vma block_offset,
6624 bfd_size_type block_len)
6626 bfd_vma offset = block_offset;
6628 while (offset < block_offset + block_len)
6630 bfd_size_type insn_len = 0;
6632 insn_len = insn_decode_len (contents, content_len, offset);
6634 return (offset - block_offset);
6637 return (offset - block_offset);
6642 ebb_propose_action (ebb_constraint *c,
6643 enum ebb_target_enum align_type,
6644 bfd_vma alignment_pow,
6645 text_action_t action,
6648 bfd_boolean do_action)
6650 proposed_action *act;
6652 if (c->action_allocated <= c->action_count)
6654 unsigned new_allocated, i;
6655 proposed_action *new_actions;
6657 new_allocated = (c->action_count + 2) * 2;
6658 new_actions = (proposed_action *)
6659 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6661 for (i = 0; i < c->action_count; i++)
6662 new_actions[i] = c->actions[i];
6665 c->actions = new_actions;
6666 c->action_allocated = new_allocated;
6669 act = &c->actions[c->action_count];
6670 act->align_type = align_type;
6671 act->alignment_pow = alignment_pow;
6672 act->action = action;
6673 act->offset = offset;
6674 act->removed_bytes = removed_bytes;
6675 act->do_action = do_action;
6681 /* Access to internal relocations, section contents and symbols. */
6683 /* During relaxation, we need to modify relocations, section contents,
6684 and symbol definitions, and we need to keep the original values from
6685 being reloaded from the input files, i.e., we need to "pin" the
6686 modified values in memory. We also want to continue to observe the
6687 setting of the "keep-memory" flag. The following functions wrap the
6688 standard BFD functions to take care of this for us. */
6690 static Elf_Internal_Rela *
6691 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6693 Elf_Internal_Rela *internal_relocs;
6695 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6698 internal_relocs = elf_section_data (sec)->relocs;
6699 if (internal_relocs == NULL)
6700 internal_relocs = (_bfd_elf_link_read_relocs
6701 (abfd, sec, NULL, NULL, keep_memory));
6702 return internal_relocs;
6707 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6709 elf_section_data (sec)->relocs = internal_relocs;
6714 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6717 && elf_section_data (sec)->relocs != internal_relocs)
6718 free (internal_relocs);
6723 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6726 bfd_size_type sec_size;
6728 sec_size = bfd_get_section_limit (abfd, sec);
6729 contents = elf_section_data (sec)->this_hdr.contents;
6731 if (contents == NULL && sec_size != 0)
6733 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6740 elf_section_data (sec)->this_hdr.contents = contents;
6747 pin_contents (asection *sec, bfd_byte *contents)
6749 elf_section_data (sec)->this_hdr.contents = contents;
6754 release_contents (asection *sec, bfd_byte *contents)
6756 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6761 static Elf_Internal_Sym *
6762 retrieve_local_syms (bfd *input_bfd)
6764 Elf_Internal_Shdr *symtab_hdr;
6765 Elf_Internal_Sym *isymbuf;
6768 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6769 locsymcount = symtab_hdr->sh_info;
6771 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6772 if (isymbuf == NULL && locsymcount != 0)
6773 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6776 /* Save the symbols for this input file so they won't be read again. */
6777 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6778 symtab_hdr->contents = (unsigned char *) isymbuf;
6784 /* Code for link-time relaxation. */
6786 /* Initialization for relaxation: */
6787 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6788 static bfd_boolean find_relaxable_sections
6789 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6790 static bfd_boolean collect_source_relocs
6791 (bfd *, asection *, struct bfd_link_info *);
6792 static bfd_boolean is_resolvable_asm_expansion
6793 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6795 static Elf_Internal_Rela *find_associated_l32r_irel
6796 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6797 static bfd_boolean compute_text_actions
6798 (bfd *, asection *, struct bfd_link_info *);
6799 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6800 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6801 typedef struct reloc_range_list_struct reloc_range_list;
6802 static bfd_boolean check_section_ebb_pcrels_fit
6803 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6804 reloc_range_list *, const ebb_constraint *,
6805 const xtensa_opcode *);
6806 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6807 static void text_action_add_proposed
6808 (text_action_list *, const ebb_constraint *, asection *);
6811 static bfd_boolean compute_removed_literals
6812 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6813 static Elf_Internal_Rela *get_irel_at_offset
6814 (asection *, Elf_Internal_Rela *, bfd_vma);
6815 static bfd_boolean is_removable_literal
6816 (const source_reloc *, int, const source_reloc *, int, asection *,
6817 property_table_entry *, int);
6818 static bfd_boolean remove_dead_literal
6819 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6820 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6821 static bfd_boolean identify_literal_placement
6822 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6823 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6824 source_reloc *, property_table_entry *, int, section_cache_t *,
6826 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6827 static bfd_boolean coalesce_shared_literal
6828 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6829 static bfd_boolean move_shared_literal
6830 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6831 int, const r_reloc *, const literal_value *, section_cache_t *);
6834 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6835 static bfd_boolean translate_section_fixes (asection *);
6836 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6837 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6838 static void shrink_dynamic_reloc_sections
6839 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6840 static bfd_boolean move_literal
6841 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6842 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6843 static bfd_boolean relax_property_section
6844 (bfd *, asection *, struct bfd_link_info *);
6847 static bfd_boolean relax_section_symbols (bfd *, asection *);
6851 elf_xtensa_relax_section (bfd *abfd,
6853 struct bfd_link_info *link_info,
6856 static value_map_hash_table *values = NULL;
6857 static bfd_boolean relocations_analyzed = FALSE;
6858 xtensa_relax_info *relax_info;
6860 if (!relocations_analyzed)
6862 /* Do some overall initialization for relaxation. */
6863 values = value_map_hash_table_init ();
6866 relaxing_section = TRUE;
6867 if (!analyze_relocations (link_info))
6869 relocations_analyzed = TRUE;
6873 /* Don't mess with linker-created sections. */
6874 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6877 relax_info = get_xtensa_relax_info (sec);
6878 BFD_ASSERT (relax_info != NULL);
6880 switch (relax_info->visited)
6883 /* Note: It would be nice to fold this pass into
6884 analyze_relocations, but it is important for this step that the
6885 sections be examined in link order. */
6886 if (!compute_removed_literals (abfd, sec, link_info, values))
6893 value_map_hash_table_delete (values);
6895 if (!relax_section (abfd, sec, link_info))
6901 if (!relax_section_symbols (abfd, sec))
6906 relax_info->visited++;
6911 /* Initialization for relaxation. */
6913 /* This function is called once at the start of relaxation. It scans
6914 all the input sections and marks the ones that are relaxable (i.e.,
6915 literal sections with L32R relocations against them), and then
6916 collects source_reloc information for all the relocations against
6917 those relaxable sections. During this process, it also detects
6918 longcalls, i.e., calls relaxed by the assembler into indirect
6919 calls, that can be optimized back into direct calls. Within each
6920 extended basic block (ebb) containing an optimized longcall, it
6921 computes a set of "text actions" that can be performed to remove
6922 the L32R associated with the longcall while optionally preserving
6923 branch target alignments. */
6926 analyze_relocations (struct bfd_link_info *link_info)
6930 bfd_boolean is_relaxable = FALSE;
6932 /* Initialize the per-section relaxation info. */
6933 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6934 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6936 init_xtensa_relax_info (sec);
6939 /* Mark relaxable sections (and count relocations against each one). */
6940 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6941 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6943 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6947 /* Bail out if there are no relaxable sections. */
6951 /* Allocate space for source_relocs. */
6952 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6953 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6955 xtensa_relax_info *relax_info;
6957 relax_info = get_xtensa_relax_info (sec);
6958 if (relax_info->is_relaxable_literal_section
6959 || relax_info->is_relaxable_asm_section)
6961 relax_info->src_relocs = (source_reloc *)
6962 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6965 relax_info->src_count = 0;
6968 /* Collect info on relocations against each relaxable section. */
6969 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6970 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6972 if (!collect_source_relocs (abfd, sec, link_info))
6976 /* Compute the text actions. */
6977 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6978 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6980 if (!compute_text_actions (abfd, sec, link_info))
6988 /* Find all the sections that might be relaxed. The motivation for
6989 this pass is that collect_source_relocs() needs to record _all_ the
6990 relocations that target each relaxable section. That is expensive
6991 and unnecessary unless the target section is actually going to be
6992 relaxed. This pass identifies all such sections by checking if
6993 they have L32Rs pointing to them. In the process, the total number
6994 of relocations targeting each section is also counted so that we
6995 know how much space to allocate for source_relocs against each
6996 relaxable literal section. */
6999 find_relaxable_sections (bfd *abfd,
7001 struct bfd_link_info *link_info,
7002 bfd_boolean *is_relaxable_p)
7004 Elf_Internal_Rela *internal_relocs;
7006 bfd_boolean ok = TRUE;
7008 xtensa_relax_info *source_relax_info;
7009 bfd_boolean is_l32r_reloc;
7011 internal_relocs = retrieve_internal_relocs (abfd, sec,
7012 link_info->keep_memory);
7013 if (internal_relocs == NULL)
7016 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7017 if (contents == NULL && sec->size != 0)
7023 source_relax_info = get_xtensa_relax_info (sec);
7024 for (i = 0; i < sec->reloc_count; i++)
7026 Elf_Internal_Rela *irel = &internal_relocs[i];
7028 asection *target_sec;
7029 xtensa_relax_info *target_relax_info;
7031 /* If this section has not already been marked as "relaxable", and
7032 if it contains any ASM_EXPAND relocations (marking expanded
7033 longcalls) that can be optimized into direct calls, then mark
7034 the section as "relaxable". */
7035 if (source_relax_info
7036 && !source_relax_info->is_relaxable_asm_section
7037 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
7039 bfd_boolean is_reachable = FALSE;
7040 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
7041 link_info, &is_reachable)
7044 source_relax_info->is_relaxable_asm_section = TRUE;
7045 *is_relaxable_p = TRUE;
7049 r_reloc_init (&r_rel, abfd, irel, contents,
7050 bfd_get_section_limit (abfd, sec));
7052 target_sec = r_reloc_get_section (&r_rel);
7053 target_relax_info = get_xtensa_relax_info (target_sec);
7054 if (!target_relax_info)
7057 /* Count PC-relative operand relocations against the target section.
7058 Note: The conditions tested here must match the conditions under
7059 which init_source_reloc is called in collect_source_relocs(). */
7060 is_l32r_reloc = FALSE;
7061 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7063 xtensa_opcode opcode =
7064 get_relocation_opcode (abfd, sec, contents, irel);
7065 if (opcode != XTENSA_UNDEFINED)
7067 is_l32r_reloc = (opcode == get_l32r_opcode ());
7068 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7070 target_relax_info->src_count++;
7074 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
7076 /* Mark the target section as relaxable. */
7077 target_relax_info->is_relaxable_literal_section = TRUE;
7078 *is_relaxable_p = TRUE;
7083 release_contents (sec, contents);
7084 release_internal_relocs (sec, internal_relocs);
7089 /* Record _all_ the relocations that point to relaxable sections, and
7090 get rid of ASM_EXPAND relocs by either converting them to
7091 ASM_SIMPLIFY or by removing them. */
7094 collect_source_relocs (bfd *abfd,
7096 struct bfd_link_info *link_info)
7098 Elf_Internal_Rela *internal_relocs;
7100 bfd_boolean ok = TRUE;
7102 bfd_size_type sec_size;
7104 internal_relocs = retrieve_internal_relocs (abfd, sec,
7105 link_info->keep_memory);
7106 if (internal_relocs == NULL)
7109 sec_size = bfd_get_section_limit (abfd, sec);
7110 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7111 if (contents == NULL && sec_size != 0)
7117 /* Record relocations against relaxable literal sections. */
7118 for (i = 0; i < sec->reloc_count; i++)
7120 Elf_Internal_Rela *irel = &internal_relocs[i];
7122 asection *target_sec;
7123 xtensa_relax_info *target_relax_info;
7125 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7127 target_sec = r_reloc_get_section (&r_rel);
7128 target_relax_info = get_xtensa_relax_info (target_sec);
7130 if (target_relax_info
7131 && (target_relax_info->is_relaxable_literal_section
7132 || target_relax_info->is_relaxable_asm_section))
7134 xtensa_opcode opcode = XTENSA_UNDEFINED;
7136 bfd_boolean is_abs_literal = FALSE;
7138 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7140 /* None of the current alternate relocs are PC-relative,
7141 and only PC-relative relocs matter here. However, we
7142 still need to record the opcode for literal
7144 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7145 if (opcode == get_l32r_opcode ())
7147 is_abs_literal = TRUE;
7151 opcode = XTENSA_UNDEFINED;
7153 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7155 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7156 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7159 if (opcode != XTENSA_UNDEFINED)
7161 int src_next = target_relax_info->src_next++;
7162 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7164 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7170 /* Now get rid of ASM_EXPAND relocations. At this point, the
7171 src_relocs array for the target literal section may still be
7172 incomplete, but it must at least contain the entries for the L32R
7173 relocations associated with ASM_EXPANDs because they were just
7174 added in the preceding loop over the relocations. */
7176 for (i = 0; i < sec->reloc_count; i++)
7178 Elf_Internal_Rela *irel = &internal_relocs[i];
7179 bfd_boolean is_reachable;
7181 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7187 Elf_Internal_Rela *l32r_irel;
7189 asection *target_sec;
7190 xtensa_relax_info *target_relax_info;
7192 /* Mark the source_reloc for the L32R so that it will be
7193 removed in compute_removed_literals(), along with the
7194 associated literal. */
7195 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7196 irel, internal_relocs);
7197 if (l32r_irel == NULL)
7200 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7202 target_sec = r_reloc_get_section (&r_rel);
7203 target_relax_info = get_xtensa_relax_info (target_sec);
7205 if (target_relax_info
7206 && (target_relax_info->is_relaxable_literal_section
7207 || target_relax_info->is_relaxable_asm_section))
7209 source_reloc *s_reloc;
7211 /* Search the source_relocs for the entry corresponding to
7212 the l32r_irel. Note: The src_relocs array is not yet
7213 sorted, but it wouldn't matter anyway because we're
7214 searching by source offset instead of target offset. */
7215 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7216 target_relax_info->src_next,
7218 BFD_ASSERT (s_reloc);
7219 s_reloc->is_null = TRUE;
7222 /* Convert this reloc to ASM_SIMPLIFY. */
7223 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7224 R_XTENSA_ASM_SIMPLIFY);
7225 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7227 pin_internal_relocs (sec, internal_relocs);
7231 /* It is resolvable but doesn't reach. We resolve now
7232 by eliminating the relocation -- the call will remain
7233 expanded into L32R/CALLX. */
7234 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7235 pin_internal_relocs (sec, internal_relocs);
7240 release_contents (sec, contents);
7241 release_internal_relocs (sec, internal_relocs);
7246 /* Return TRUE if the asm expansion can be resolved. Generally it can
7247 be resolved on a final link or when a partial link locates it in the
7248 same section as the target. Set "is_reachable" flag if the target of
7249 the call is within the range of a direct call, given the current VMA
7250 for this section and the target section. */
7253 is_resolvable_asm_expansion (bfd *abfd,
7256 Elf_Internal_Rela *irel,
7257 struct bfd_link_info *link_info,
7258 bfd_boolean *is_reachable_p)
7260 asection *target_sec;
7264 unsigned int first_align;
7265 unsigned int adjust;
7266 bfd_vma target_offset;
7268 xtensa_opcode opcode, direct_call_opcode;
7269 bfd_vma self_address;
7270 bfd_vma dest_address;
7271 bfd_boolean uses_l32r;
7272 bfd_size_type sec_size;
7274 *is_reachable_p = FALSE;
7276 if (contents == NULL)
7279 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7282 sec_size = bfd_get_section_limit (abfd, sec);
7283 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7284 sec_size - irel->r_offset, &uses_l32r);
7285 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7289 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7290 if (direct_call_opcode == XTENSA_UNDEFINED)
7293 /* Check and see that the target resolves. */
7294 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7295 if (!r_reloc_is_defined (&r_rel))
7298 target_sec = r_reloc_get_section (&r_rel);
7299 target_offset = r_rel.target_offset;
7301 /* If the target is in a shared library, then it doesn't reach. This
7302 isn't supposed to come up because the compiler should never generate
7303 non-PIC calls on systems that use shared libraries, but the linker
7304 shouldn't crash regardless. */
7305 if (!target_sec->output_section)
7308 /* For relocatable sections, we can only simplify when the output
7309 section of the target is the same as the output section of the
7311 if (bfd_link_relocatable (link_info)
7312 && (target_sec->output_section != sec->output_section
7313 || is_reloc_sym_weak (abfd, irel)))
7316 if (target_sec->output_section != sec->output_section)
7318 /* If the two sections are sufficiently far away that relaxation
7319 might take the call out of range, we can't simplify. For
7320 example, a positive displacement call into another memory
7321 could get moved to a lower address due to literal removal,
7322 but the destination won't move, and so the displacment might
7325 If the displacement is negative, assume the destination could
7326 move as far back as the start of the output section. The
7327 self_address will be at least as far into the output section
7328 as it is prior to relaxation.
7330 If the displacement is postive, assume the destination will be in
7331 it's pre-relaxed location (because relaxation only makes sections
7332 smaller). The self_address could go all the way to the beginning
7333 of the output section. */
7335 dest_address = target_sec->output_section->vma;
7336 self_address = sec->output_section->vma;
7338 if (sec->output_section->vma > target_sec->output_section->vma)
7339 self_address += sec->output_offset + irel->r_offset + 3;
7341 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7342 /* Call targets should be four-byte aligned. */
7343 dest_address = (dest_address + 3) & ~3;
7348 self_address = (sec->output_section->vma
7349 + sec->output_offset + irel->r_offset + 3);
7350 dest_address = (target_sec->output_section->vma
7351 + target_sec->output_offset + target_offset);
7354 /* Adjust addresses with alignments for the worst case to see if call insn
7355 can fit. Don't relax l32r + callx to call if the target can be out of
7356 range due to alignment.
7357 Caller and target addresses are highest and lowest address.
7358 Search all sections between caller and target, looking for max alignment.
7359 The adjustment is max alignment bytes. If the alignment at the lowest
7360 address is less than the adjustment, apply the adjustment to highest
7363 /* Start from lowest address.
7364 Lowest address aligmnet is from input section.
7365 Initial alignment (adjust) is from input section. */
7366 if (dest_address > self_address)
7368 s = sec->output_section;
7369 last_vma = dest_address;
7370 first_align = sec->alignment_power;
7371 adjust = target_sec->alignment_power;
7375 s = target_sec->output_section;
7376 last_vma = self_address;
7377 first_align = target_sec->alignment_power;
7378 adjust = sec->alignment_power;
7383 /* Find the largest alignment in output section list. */
7384 for (; s && s->vma >= first_vma && s->vma <= last_vma ; s = s->next)
7386 if (s->alignment_power > adjust)
7387 adjust = s->alignment_power;
7390 if (adjust > first_align)
7392 /* Alignment may enlarge the range, adjust highest address. */
7393 adjust = 1 << adjust;
7394 if (dest_address > self_address)
7396 dest_address += adjust;
7400 self_address += adjust;
7404 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7405 self_address, dest_address);
7407 if ((self_address >> CALL_SEGMENT_BITS) !=
7408 (dest_address >> CALL_SEGMENT_BITS))
7415 static Elf_Internal_Rela *
7416 find_associated_l32r_irel (bfd *abfd,
7419 Elf_Internal_Rela *other_irel,
7420 Elf_Internal_Rela *internal_relocs)
7424 for (i = 0; i < sec->reloc_count; i++)
7426 Elf_Internal_Rela *irel = &internal_relocs[i];
7428 if (irel == other_irel)
7430 if (irel->r_offset != other_irel->r_offset)
7432 if (is_l32r_relocation (abfd, sec, contents, irel))
7440 static xtensa_opcode *
7441 build_reloc_opcodes (bfd *abfd,
7444 Elf_Internal_Rela *internal_relocs)
7447 xtensa_opcode *reloc_opcodes =
7448 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7449 for (i = 0; i < sec->reloc_count; i++)
7451 Elf_Internal_Rela *irel = &internal_relocs[i];
7452 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7454 return reloc_opcodes;
7457 struct reloc_range_struct
7460 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7461 /* Original irel index in the array of relocations for a section. */
7462 unsigned irel_index;
7464 typedef struct reloc_range_struct reloc_range;
7466 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7467 struct reloc_range_list_entry_struct
7469 reloc_range_list_entry *next;
7470 reloc_range_list_entry *prev;
7471 Elf_Internal_Rela *irel;
7472 xtensa_opcode opcode;
7476 struct reloc_range_list_struct
7478 /* The rest of the structure is only meaningful when ok is TRUE. */
7481 unsigned n_range; /* Number of range markers. */
7482 reloc_range *range; /* Sorted range markers. */
7484 unsigned first; /* Index of a first range element in the list. */
7485 unsigned last; /* One past index of a last range element in the list. */
7487 unsigned n_list; /* Number of list elements. */
7488 reloc_range_list_entry *reloc; /* */
7489 reloc_range_list_entry list_root;
7493 reloc_range_compare (const void *a, const void *b)
7495 const reloc_range *ra = a;
7496 const reloc_range *rb = b;
7498 if (ra->addr != rb->addr)
7499 return ra->addr < rb->addr ? -1 : 1;
7500 if (ra->add != rb->add)
7501 return ra->add ? -1 : 1;
7506 build_reloc_ranges (bfd *abfd, asection *sec,
7508 Elf_Internal_Rela *internal_relocs,
7509 xtensa_opcode *reloc_opcodes,
7510 reloc_range_list *list)
7515 reloc_range *ranges = NULL;
7516 reloc_range_list_entry *reloc =
7517 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7519 memset (list, 0, sizeof (*list));
7522 for (i = 0; i < sec->reloc_count; i++)
7524 Elf_Internal_Rela *irel = &internal_relocs[i];
7525 int r_type = ELF32_R_TYPE (irel->r_info);
7526 reloc_howto_type *howto = &elf_howto_table[r_type];
7529 if (r_type == R_XTENSA_ASM_SIMPLIFY
7530 || r_type == R_XTENSA_32_PCREL
7531 || !howto->pc_relative)
7534 r_reloc_init (&r_rel, abfd, irel, contents,
7535 bfd_get_section_limit (abfd, sec));
7537 if (r_reloc_get_section (&r_rel) != sec)
7542 max_n = (max_n + 2) * 2;
7543 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7546 ranges[n].addr = irel->r_offset;
7547 ranges[n + 1].addr = r_rel.target_offset;
7549 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7550 ranges[n + 1].add = !ranges[n].add;
7552 ranges[n].irel_index = i;
7553 ranges[n + 1].irel_index = i;
7557 reloc[i].irel = irel;
7559 /* Every relocation won't possibly be checked in the optimized version of
7560 check_section_ebb_pcrels_fit, so this needs to be done here. */
7561 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7563 /* None of the current alternate relocs are PC-relative,
7564 and only PC-relative relocs matter here. */
7568 xtensa_opcode opcode;
7572 opcode = reloc_opcodes[i];
7574 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7576 if (opcode == XTENSA_UNDEFINED)
7582 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7583 if (opnum == XTENSA_UNDEFINED)
7589 /* Record relocation opcode and opnum as we've calculated them
7590 anyway and they won't change. */
7591 reloc[i].opcode = opcode;
7592 reloc[i].opnum = opnum;
7598 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7599 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7602 list->range = ranges;
7603 list->reloc = reloc;
7604 list->list_root.prev = &list->list_root;
7605 list->list_root.next = &list->list_root;
7614 static void reloc_range_list_append (reloc_range_list *list,
7615 unsigned irel_index)
7617 reloc_range_list_entry *entry = list->reloc + irel_index;
7619 entry->prev = list->list_root.prev;
7620 entry->next = &list->list_root;
7621 entry->prev->next = entry;
7622 entry->next->prev = entry;
7626 static void reloc_range_list_remove (reloc_range_list *list,
7627 unsigned irel_index)
7629 reloc_range_list_entry *entry = list->reloc + irel_index;
7631 entry->next->prev = entry->prev;
7632 entry->prev->next = entry->next;
7636 /* Update relocation list object so that it lists all relocations that cross
7637 [first; last] range. Range bounds should not decrease with successive
7639 static void reloc_range_list_update_range (reloc_range_list *list,
7640 bfd_vma first, bfd_vma last)
7642 /* This should not happen: EBBs are iterated from lower addresses to higher.
7643 But even if that happens there's no need to break: just flush current list
7644 and start from scratch. */
7645 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7646 (list->first > 0 && list->range[list->first - 1].addr >= first))
7651 list->list_root.next = &list->list_root;
7652 list->list_root.prev = &list->list_root;
7653 fprintf (stderr, "%s: move backwards requested\n", __func__);
7656 for (; list->last < list->n_range &&
7657 list->range[list->last].addr <= last; ++list->last)
7658 if (list->range[list->last].add)
7659 reloc_range_list_append (list, list->range[list->last].irel_index);
7661 for (; list->first < list->n_range &&
7662 list->range[list->first].addr < first; ++list->first)
7663 if (!list->range[list->first].add)
7664 reloc_range_list_remove (list, list->range[list->first].irel_index);
7667 static void free_reloc_range_list (reloc_range_list *list)
7673 /* The compute_text_actions function will build a list of potential
7674 transformation actions for code in the extended basic block of each
7675 longcall that is optimized to a direct call. From this list we
7676 generate a set of actions to actually perform that optimizes for
7677 space and, if not using size_opt, maintains branch target
7680 These actions to be performed are placed on a per-section list.
7681 The actual changes are performed by relax_section() in the second
7685 compute_text_actions (bfd *abfd,
7687 struct bfd_link_info *link_info)
7689 xtensa_opcode *reloc_opcodes = NULL;
7690 xtensa_relax_info *relax_info;
7692 Elf_Internal_Rela *internal_relocs;
7693 bfd_boolean ok = TRUE;
7695 property_table_entry *prop_table = 0;
7697 bfd_size_type sec_size;
7698 reloc_range_list relevant_relocs;
7700 relax_info = get_xtensa_relax_info (sec);
7701 BFD_ASSERT (relax_info);
7702 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7704 /* Do nothing if the section contains no optimized longcalls. */
7705 if (!relax_info->is_relaxable_asm_section)
7708 internal_relocs = retrieve_internal_relocs (abfd, sec,
7709 link_info->keep_memory);
7711 if (internal_relocs)
7712 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7713 internal_reloc_compare);
7715 sec_size = bfd_get_section_limit (abfd, sec);
7716 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7717 if (contents == NULL && sec_size != 0)
7723 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7724 XTENSA_PROP_SEC_NAME, FALSE);
7731 /* Precompute the opcode for each relocation. */
7732 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7734 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7737 for (i = 0; i < sec->reloc_count; i++)
7739 Elf_Internal_Rela *irel = &internal_relocs[i];
7741 property_table_entry *the_entry;
7744 ebb_constraint ebb_table;
7745 bfd_size_type simplify_size;
7747 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7749 r_offset = irel->r_offset;
7751 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7752 if (simplify_size == 0)
7755 /* xgettext:c-format */
7756 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for "
7757 "XTENSA_ASM_SIMPLIFY relocation; "
7758 "possible configuration mismatch"),
7759 sec->owner, sec, (uint64_t) r_offset);
7763 /* If the instruction table is not around, then don't do this
7765 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7766 sec->vma + irel->r_offset);
7767 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7769 text_action_add (&relax_info->action_list,
7770 ta_convert_longcall, sec, r_offset,
7775 /* If the next longcall happens to be at the same address as an
7776 unreachable section of size 0, then skip forward. */
7777 ptbl_idx = the_entry - prop_table;
7778 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7779 && the_entry->size == 0
7780 && ptbl_idx + 1 < ptblsize
7781 && (prop_table[ptbl_idx + 1].address
7782 == prop_table[ptbl_idx].address))
7788 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7789 /* NO_REORDER is OK */
7792 init_ebb_constraint (&ebb_table);
7793 ebb = &ebb_table.ebb;
7794 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7795 internal_relocs, sec->reloc_count);
7796 ebb->start_offset = r_offset + simplify_size;
7797 ebb->end_offset = r_offset + simplify_size;
7798 ebb->start_ptbl_idx = ptbl_idx;
7799 ebb->end_ptbl_idx = ptbl_idx;
7800 ebb->start_reloc_idx = i;
7801 ebb->end_reloc_idx = i;
7803 if (!extend_ebb_bounds (ebb)
7804 || !compute_ebb_proposed_actions (&ebb_table)
7805 || !compute_ebb_actions (&ebb_table)
7806 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7809 &ebb_table, reloc_opcodes)
7810 || !check_section_ebb_reduces (&ebb_table))
7812 /* If anything goes wrong or we get unlucky and something does
7813 not fit, with our plan because of expansion between
7814 critical branches, just convert to a NOP. */
7816 text_action_add (&relax_info->action_list,
7817 ta_convert_longcall, sec, r_offset, 0);
7818 i = ebb_table.ebb.end_reloc_idx;
7819 free_ebb_constraint (&ebb_table);
7823 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7825 /* Update the index so we do not go looking at the relocations
7826 we have already processed. */
7827 i = ebb_table.ebb.end_reloc_idx;
7828 free_ebb_constraint (&ebb_table);
7831 free_reloc_range_list (&relevant_relocs);
7834 if (action_list_count (&relax_info->action_list))
7835 print_action_list (stderr, &relax_info->action_list);
7839 release_contents (sec, contents);
7840 release_internal_relocs (sec, internal_relocs);
7844 free (reloc_opcodes);
7850 /* Do not widen an instruction if it is preceeded by a
7851 loop opcode. It might cause misalignment. */
7854 prev_instr_is_a_loop (bfd_byte *contents,
7855 bfd_size_type content_length,
7856 bfd_size_type offset)
7858 xtensa_opcode prev_opcode;
7862 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7863 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7867 /* Find all of the possible actions for an extended basic block. */
7870 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7872 const ebb_t *ebb = &ebb_table->ebb;
7873 unsigned rel_idx = ebb->start_reloc_idx;
7874 property_table_entry *entry, *start_entry, *end_entry;
7876 xtensa_isa isa = xtensa_default_isa;
7878 static xtensa_insnbuf insnbuf = NULL;
7879 static xtensa_insnbuf slotbuf = NULL;
7881 if (insnbuf == NULL)
7883 insnbuf = xtensa_insnbuf_alloc (isa);
7884 slotbuf = xtensa_insnbuf_alloc (isa);
7887 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7888 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7890 for (entry = start_entry; entry <= end_entry; entry++)
7892 bfd_vma start_offset, end_offset;
7893 bfd_size_type insn_len;
7895 start_offset = entry->address - ebb->sec->vma;
7896 end_offset = entry->address + entry->size - ebb->sec->vma;
7898 if (entry == start_entry)
7899 start_offset = ebb->start_offset;
7900 if (entry == end_entry)
7901 end_offset = ebb->end_offset;
7902 offset = start_offset;
7904 if (offset == entry->address - ebb->sec->vma
7905 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7907 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7908 BFD_ASSERT (offset != end_offset);
7909 if (offset == end_offset)
7912 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7917 if (check_branch_target_aligned_address (offset, insn_len))
7918 align_type = EBB_REQUIRE_TGT_ALIGN;
7920 ebb_propose_action (ebb_table, align_type, 0,
7921 ta_none, offset, 0, TRUE);
7924 while (offset != end_offset)
7926 Elf_Internal_Rela *irel;
7927 xtensa_opcode opcode;
7929 while (rel_idx < ebb->end_reloc_idx
7930 && (ebb->relocs[rel_idx].r_offset < offset
7931 || (ebb->relocs[rel_idx].r_offset == offset
7932 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7933 != R_XTENSA_ASM_SIMPLIFY))))
7936 /* Check for longcall. */
7937 irel = &ebb->relocs[rel_idx];
7938 if (irel->r_offset == offset
7939 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7941 bfd_size_type simplify_size;
7943 simplify_size = get_asm_simplify_size (ebb->contents,
7944 ebb->content_length,
7946 if (simplify_size == 0)
7949 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7950 ta_convert_longcall, offset, 0, TRUE);
7952 offset += simplify_size;
7956 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7958 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7959 ebb->content_length - offset);
7960 fmt = xtensa_format_decode (isa, insnbuf);
7961 if (fmt == XTENSA_UNDEFINED)
7963 insn_len = xtensa_format_length (isa, fmt);
7964 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7967 if (xtensa_format_num_slots (isa, fmt) != 1)
7973 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7974 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7975 if (opcode == XTENSA_UNDEFINED)
7978 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7979 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7980 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7982 /* Add an instruction narrow action. */
7983 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7984 ta_narrow_insn, offset, 0, FALSE);
7986 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7987 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7988 && ! prev_instr_is_a_loop (ebb->contents,
7989 ebb->content_length, offset))
7991 /* Add an instruction widen action. */
7992 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7993 ta_widen_insn, offset, 0, FALSE);
7995 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7997 /* Check for branch targets. */
7998 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7999 ta_none, offset, 0, TRUE);
8006 if (ebb->ends_unreachable)
8008 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8009 ta_fill, ebb->end_offset, 0, TRUE);
8016 /* xgettext:c-format */
8017 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
8018 "possible configuration mismatch"),
8019 ebb->sec->owner, ebb->sec, (uint64_t) offset);
8024 /* After all of the information has collected about the
8025 transformations possible in an EBB, compute the appropriate actions
8026 here in compute_ebb_actions. We still must check later to make
8027 sure that the actions do not break any relocations. The algorithm
8028 used here is pretty greedy. Basically, it removes as many no-ops
8029 as possible so that the end of the EBB has the same alignment
8030 characteristics as the original. First, it uses narrowing, then
8031 fill space at the end of the EBB, and finally widenings. If that
8032 does not work, it tries again with one fewer no-op removed. The
8033 optimization will only be performed if all of the branch targets
8034 that were aligned before transformation are also aligned after the
8037 When the size_opt flag is set, ignore the branch target alignments,
8038 narrow all wide instructions, and remove all no-ops unless the end
8039 of the EBB prevents it. */
8042 compute_ebb_actions (ebb_constraint *ebb_table)
8046 int removed_bytes = 0;
8047 ebb_t *ebb = &ebb_table->ebb;
8048 unsigned seg_idx_start = 0;
8049 unsigned seg_idx_end = 0;
8051 /* We perform this like the assembler relaxation algorithm: Start by
8052 assuming all instructions are narrow and all no-ops removed; then
8055 /* For each segment of this that has a solid constraint, check to
8056 see if there are any combinations that will keep the constraint.
8058 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
8060 bfd_boolean requires_text_end_align = FALSE;
8061 unsigned longcall_count = 0;
8062 unsigned longcall_convert_count = 0;
8063 unsigned narrowable_count = 0;
8064 unsigned narrowable_convert_count = 0;
8065 unsigned widenable_count = 0;
8066 unsigned widenable_convert_count = 0;
8068 proposed_action *action = NULL;
8069 int align = (1 << ebb_table->ebb.sec->alignment_power);
8071 seg_idx_start = seg_idx_end;
8073 for (i = seg_idx_start; i < ebb_table->action_count; i++)
8075 action = &ebb_table->actions[i];
8076 if (action->action == ta_convert_longcall)
8078 if (action->action == ta_narrow_insn)
8080 if (action->action == ta_widen_insn)
8082 if (action->action == ta_fill)
8084 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8086 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8087 && !elf32xtensa_size_opt)
8092 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8093 requires_text_end_align = TRUE;
8095 if (elf32xtensa_size_opt && !requires_text_end_align
8096 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8097 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8099 longcall_convert_count = longcall_count;
8100 narrowable_convert_count = narrowable_count;
8101 widenable_convert_count = 0;
8105 /* There is a constraint. Convert the max number of longcalls. */
8106 narrowable_convert_count = 0;
8107 longcall_convert_count = 0;
8108 widenable_convert_count = 0;
8110 for (j = 0; j < longcall_count; j++)
8112 int removed = (longcall_count - j) * 3 & (align - 1);
8113 unsigned desire_narrow = (align - removed) & (align - 1);
8114 unsigned desire_widen = removed;
8115 if (desire_narrow <= narrowable_count)
8117 narrowable_convert_count = desire_narrow;
8118 narrowable_convert_count +=
8119 (align * ((narrowable_count - narrowable_convert_count)
8121 longcall_convert_count = (longcall_count - j);
8122 widenable_convert_count = 0;
8125 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8127 narrowable_convert_count = 0;
8128 longcall_convert_count = longcall_count - j;
8129 widenable_convert_count = desire_widen;
8135 /* Now the number of conversions are saved. Do them. */
8136 for (i = seg_idx_start; i < seg_idx_end; i++)
8138 action = &ebb_table->actions[i];
8139 switch (action->action)
8141 case ta_convert_longcall:
8142 if (longcall_convert_count != 0)
8144 action->action = ta_remove_longcall;
8145 action->do_action = TRUE;
8146 action->removed_bytes += 3;
8147 longcall_convert_count--;
8150 case ta_narrow_insn:
8151 if (narrowable_convert_count != 0)
8153 action->do_action = TRUE;
8154 action->removed_bytes += 1;
8155 narrowable_convert_count--;
8159 if (widenable_convert_count != 0)
8161 action->do_action = TRUE;
8162 action->removed_bytes -= 1;
8163 widenable_convert_count--;
8172 /* Now we move on to some local opts. Try to remove each of the
8173 remaining longcalls. */
8175 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8178 for (i = 0; i < ebb_table->action_count; i++)
8180 int old_removed_bytes = removed_bytes;
8181 proposed_action *action = &ebb_table->actions[i];
8183 if (action->do_action && action->action == ta_convert_longcall)
8185 bfd_boolean bad_alignment = FALSE;
8187 for (j = i + 1; j < ebb_table->action_count; j++)
8189 proposed_action *new_action = &ebb_table->actions[j];
8190 bfd_vma offset = new_action->offset;
8191 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8193 if (!check_branch_target_aligned
8194 (ebb_table->ebb.contents,
8195 ebb_table->ebb.content_length,
8196 offset, offset - removed_bytes))
8198 bad_alignment = TRUE;
8202 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8204 if (!check_loop_aligned (ebb_table->ebb.contents,
8205 ebb_table->ebb.content_length,
8207 offset - removed_bytes))
8209 bad_alignment = TRUE;
8213 if (new_action->action == ta_narrow_insn
8214 && !new_action->do_action
8215 && ebb_table->ebb.sec->alignment_power == 2)
8217 /* Narrow an instruction and we are done. */
8218 new_action->do_action = TRUE;
8219 new_action->removed_bytes += 1;
8220 bad_alignment = FALSE;
8223 if (new_action->action == ta_widen_insn
8224 && new_action->do_action
8225 && ebb_table->ebb.sec->alignment_power == 2)
8227 /* Narrow an instruction and we are done. */
8228 new_action->do_action = FALSE;
8229 new_action->removed_bytes += 1;
8230 bad_alignment = FALSE;
8233 if (new_action->do_action)
8234 removed_bytes += new_action->removed_bytes;
8238 action->removed_bytes += 3;
8239 action->action = ta_remove_longcall;
8240 action->do_action = TRUE;
8243 removed_bytes = old_removed_bytes;
8244 if (action->do_action)
8245 removed_bytes += action->removed_bytes;
8250 for (i = 0; i < ebb_table->action_count; ++i)
8252 proposed_action *action = &ebb_table->actions[i];
8253 if (action->do_action)
8254 removed_bytes += action->removed_bytes;
8257 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8258 && ebb->ends_unreachable)
8260 proposed_action *action;
8264 BFD_ASSERT (ebb_table->action_count != 0);
8265 action = &ebb_table->actions[ebb_table->action_count - 1];
8266 BFD_ASSERT (action->action == ta_fill);
8267 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8269 extra_space = xtensa_compute_fill_extra_space (ebb->ends_unreachable);
8270 br = action->removed_bytes + removed_bytes + extra_space;
8271 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8273 action->removed_bytes = extra_space - br;
8279 /* The xlate_map is a sorted array of address mappings designed to
8280 answer the offset_with_removed_text() query with a binary search instead
8281 of a linear search through the section's action_list. */
8283 typedef struct xlate_map_entry xlate_map_entry_t;
8284 typedef struct xlate_map xlate_map_t;
8286 struct xlate_map_entry
8288 bfd_vma orig_address;
8289 bfd_vma new_address;
8295 unsigned entry_count;
8296 xlate_map_entry_t *entry;
8301 xlate_compare (const void *a_v, const void *b_v)
8303 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8304 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8305 if (a->orig_address < b->orig_address)
8307 if (a->orig_address > (b->orig_address + b->size - 1))
8314 xlate_offset_with_removed_text (const xlate_map_t *map,
8315 text_action_list *action_list,
8319 xlate_map_entry_t *e;
8320 struct xlate_map_entry se;
8323 return offset_with_removed_text (action_list, offset);
8325 if (map->entry_count == 0)
8328 se.orig_address = offset;
8329 r = bsearch (&se, map->entry, map->entry_count,
8330 sizeof (xlate_map_entry_t), &xlate_compare);
8331 e = (xlate_map_entry_t *) r;
8333 /* There could be a jump past the end of the section,
8334 allow it using the last xlate map entry to translate its address. */
8337 e = map->entry + map->entry_count - 1;
8338 if (xlate_compare (&se, e) <= 0)
8341 BFD_ASSERT (e != NULL);
8344 return e->new_address - e->orig_address + offset;
8347 typedef struct xlate_map_context_struct xlate_map_context;
8348 struct xlate_map_context_struct
8351 xlate_map_entry_t *current_entry;
8356 xlate_map_fn (splay_tree_node node, void *p)
8358 text_action *r = (text_action *)node->value;
8359 xlate_map_context *ctx = p;
8360 unsigned orig_size = 0;
8365 case ta_remove_insn:
8366 case ta_convert_longcall:
8367 case ta_remove_literal:
8368 case ta_add_literal:
8370 case ta_remove_longcall:
8373 case ta_narrow_insn:
8382 ctx->current_entry->size =
8383 r->offset + orig_size - ctx->current_entry->orig_address;
8384 if (ctx->current_entry->size != 0)
8386 ctx->current_entry++;
8387 ctx->map->entry_count++;
8389 ctx->current_entry->orig_address = r->offset + orig_size;
8390 ctx->removed += r->removed_bytes;
8391 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8392 ctx->current_entry->size = 0;
8396 /* Build a binary searchable offset translation map from a section's
8399 static xlate_map_t *
8400 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8402 text_action_list *action_list = &relax_info->action_list;
8403 unsigned num_actions = 0;
8404 xlate_map_context ctx;
8406 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8408 if (ctx.map == NULL)
8411 num_actions = action_list_count (action_list);
8412 ctx.map->entry = (xlate_map_entry_t *)
8413 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8414 if (ctx.map->entry == NULL)
8419 ctx.map->entry_count = 0;
8422 ctx.current_entry = &ctx.map->entry[0];
8424 ctx.current_entry->orig_address = 0;
8425 ctx.current_entry->new_address = 0;
8426 ctx.current_entry->size = 0;
8428 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
8430 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8431 - ctx.current_entry->orig_address);
8432 if (ctx.current_entry->size != 0)
8433 ctx.map->entry_count++;
8439 /* Free an offset translation map. */
8442 free_xlate_map (xlate_map_t *map)
8444 if (map && map->entry)
8451 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8452 relocations in a section will fit if a proposed set of actions
8456 check_section_ebb_pcrels_fit (bfd *abfd,
8459 Elf_Internal_Rela *internal_relocs,
8460 reloc_range_list *relevant_relocs,
8461 const ebb_constraint *constraint,
8462 const xtensa_opcode *reloc_opcodes)
8465 unsigned n = sec->reloc_count;
8466 Elf_Internal_Rela *irel;
8467 xlate_map_t *xmap = NULL;
8468 bfd_boolean ok = TRUE;
8469 xtensa_relax_info *relax_info;
8470 reloc_range_list_entry *entry = NULL;
8472 relax_info = get_xtensa_relax_info (sec);
8474 if (relax_info && sec->reloc_count > 100)
8476 xmap = build_xlate_map (sec, relax_info);
8477 /* NULL indicates out of memory, but the slow version
8478 can still be used. */
8481 if (relevant_relocs && constraint->action_count)
8483 if (!relevant_relocs->ok)
8490 bfd_vma min_offset, max_offset;
8491 min_offset = max_offset = constraint->actions[0].offset;
8493 for (i = 1; i < constraint->action_count; ++i)
8495 proposed_action *action = &constraint->actions[i];
8496 bfd_vma offset = action->offset;
8498 if (offset < min_offset)
8499 min_offset = offset;
8500 if (offset > max_offset)
8501 max_offset = offset;
8503 reloc_range_list_update_range (relevant_relocs, min_offset,
8505 n = relevant_relocs->n_list;
8506 entry = &relevant_relocs->list_root;
8511 relevant_relocs = NULL;
8514 for (i = 0; i < n; i++)
8517 bfd_vma orig_self_offset, orig_target_offset;
8518 bfd_vma self_offset, target_offset;
8520 reloc_howto_type *howto;
8521 int self_removed_bytes, target_removed_bytes;
8523 if (relevant_relocs)
8525 entry = entry->next;
8530 irel = internal_relocs + i;
8532 r_type = ELF32_R_TYPE (irel->r_info);
8534 howto = &elf_howto_table[r_type];
8535 /* We maintain the required invariant: PC-relative relocations
8536 that fit before linking must fit after linking. Thus we only
8537 need to deal with relocations to the same section that are
8539 if (r_type == R_XTENSA_ASM_SIMPLIFY
8540 || r_type == R_XTENSA_32_PCREL
8541 || !howto->pc_relative)
8544 r_reloc_init (&r_rel, abfd, irel, contents,
8545 bfd_get_section_limit (abfd, sec));
8547 if (r_reloc_get_section (&r_rel) != sec)
8550 orig_self_offset = irel->r_offset;
8551 orig_target_offset = r_rel.target_offset;
8553 self_offset = orig_self_offset;
8554 target_offset = orig_target_offset;
8559 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8562 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8563 orig_target_offset);
8566 self_removed_bytes = 0;
8567 target_removed_bytes = 0;
8569 for (j = 0; j < constraint->action_count; ++j)
8571 proposed_action *action = &constraint->actions[j];
8572 bfd_vma offset = action->offset;
8573 int removed_bytes = action->removed_bytes;
8574 if (offset < orig_self_offset
8575 || (offset == orig_self_offset && action->action == ta_fill
8576 && action->removed_bytes < 0))
8577 self_removed_bytes += removed_bytes;
8578 if (offset < orig_target_offset
8579 || (offset == orig_target_offset && action->action == ta_fill
8580 && action->removed_bytes < 0))
8581 target_removed_bytes += removed_bytes;
8583 self_offset -= self_removed_bytes;
8584 target_offset -= target_removed_bytes;
8586 /* Try to encode it. Get the operand and check. */
8587 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8589 /* None of the current alternate relocs are PC-relative,
8590 and only PC-relative relocs matter here. */
8594 xtensa_opcode opcode;
8597 if (relevant_relocs)
8599 opcode = entry->opcode;
8600 opnum = entry->opnum;
8605 opcode = reloc_opcodes[relevant_relocs ?
8606 (unsigned)(entry - relevant_relocs->reloc) : i];
8608 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8609 if (opcode == XTENSA_UNDEFINED)
8615 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8616 if (opnum == XTENSA_UNDEFINED)
8623 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8632 free_xlate_map (xmap);
8639 check_section_ebb_reduces (const ebb_constraint *constraint)
8644 for (i = 0; i < constraint->action_count; i++)
8646 const proposed_action *action = &constraint->actions[i];
8647 if (action->do_action)
8648 removed += action->removed_bytes;
8658 text_action_add_proposed (text_action_list *l,
8659 const ebb_constraint *ebb_table,
8664 for (i = 0; i < ebb_table->action_count; i++)
8666 proposed_action *action = &ebb_table->actions[i];
8668 if (!action->do_action)
8670 switch (action->action)
8672 case ta_remove_insn:
8673 case ta_remove_longcall:
8674 case ta_convert_longcall:
8675 case ta_narrow_insn:
8678 case ta_remove_literal:
8679 text_action_add (l, action->action, sec, action->offset,
8680 action->removed_bytes);
8693 xtensa_compute_fill_extra_space (property_table_entry *entry)
8695 int fill_extra_space;
8700 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8703 fill_extra_space = entry->size;
8704 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8706 /* Fill bytes for alignment:
8707 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8708 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8709 int nsm = (1 << pow) - 1;
8710 bfd_vma addr = entry->address + entry->size;
8711 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8712 fill_extra_space += align_fill;
8714 return fill_extra_space;
8718 /* First relaxation pass. */
8720 /* If the section contains relaxable literals, check each literal to
8721 see if it has the same value as another literal that has already
8722 been seen, either in the current section or a previous one. If so,
8723 add an entry to the per-section list of removed literals. The
8724 actual changes are deferred until the next pass. */
8727 compute_removed_literals (bfd *abfd,
8729 struct bfd_link_info *link_info,
8730 value_map_hash_table *values)
8732 xtensa_relax_info *relax_info;
8734 Elf_Internal_Rela *internal_relocs;
8735 source_reloc *src_relocs, *rel;
8736 bfd_boolean ok = TRUE;
8737 property_table_entry *prop_table = NULL;
8740 bfd_boolean last_loc_is_prev = FALSE;
8741 bfd_vma last_target_offset = 0;
8742 section_cache_t target_sec_cache;
8743 bfd_size_type sec_size;
8745 init_section_cache (&target_sec_cache);
8747 /* Do nothing if it is not a relaxable literal section. */
8748 relax_info = get_xtensa_relax_info (sec);
8749 BFD_ASSERT (relax_info);
8750 if (!relax_info->is_relaxable_literal_section)
8753 internal_relocs = retrieve_internal_relocs (abfd, sec,
8754 link_info->keep_memory);
8756 sec_size = bfd_get_section_limit (abfd, sec);
8757 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8758 if (contents == NULL && sec_size != 0)
8764 /* Sort the source_relocs by target offset. */
8765 src_relocs = relax_info->src_relocs;
8766 qsort (src_relocs, relax_info->src_count,
8767 sizeof (source_reloc), source_reloc_compare);
8768 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8769 internal_reloc_compare);
8771 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8772 XTENSA_PROP_SEC_NAME, FALSE);
8780 for (i = 0; i < relax_info->src_count; i++)
8782 Elf_Internal_Rela *irel = NULL;
8784 rel = &src_relocs[i];
8785 if (get_l32r_opcode () != rel->opcode)
8787 irel = get_irel_at_offset (sec, internal_relocs,
8788 rel->r_rel.target_offset);
8790 /* If the relocation on this is not a simple R_XTENSA_32 or
8791 R_XTENSA_PLT then do not consider it. This may happen when
8792 the difference of two symbols is used in a literal. */
8793 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8794 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8797 /* If the target_offset for this relocation is the same as the
8798 previous relocation, then we've already considered whether the
8799 literal can be coalesced. Skip to the next one.... */
8800 if (i != 0 && prev_i != -1
8801 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8805 if (last_loc_is_prev &&
8806 last_target_offset + 4 != rel->r_rel.target_offset)
8807 last_loc_is_prev = FALSE;
8809 /* Check if the relocation was from an L32R that is being removed
8810 because a CALLX was converted to a direct CALL, and check if
8811 there are no other relocations to the literal. */
8812 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8813 sec, prop_table, ptblsize))
8815 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8816 irel, rel, prop_table, ptblsize))
8821 last_target_offset = rel->r_rel.target_offset;
8825 if (!identify_literal_placement (abfd, sec, contents, link_info,
8827 &last_loc_is_prev, irel,
8828 relax_info->src_count - i, rel,
8829 prop_table, ptblsize,
8830 &target_sec_cache, rel->is_abs_literal))
8835 last_target_offset = rel->r_rel.target_offset;
8839 print_removed_literals (stderr, &relax_info->removed_list);
8840 print_action_list (stderr, &relax_info->action_list);
8846 free_section_cache (&target_sec_cache);
8848 release_contents (sec, contents);
8849 release_internal_relocs (sec, internal_relocs);
8854 static Elf_Internal_Rela *
8855 get_irel_at_offset (asection *sec,
8856 Elf_Internal_Rela *internal_relocs,
8860 Elf_Internal_Rela *irel;
8862 Elf_Internal_Rela key;
8864 if (!internal_relocs)
8867 key.r_offset = offset;
8868 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8869 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8873 /* bsearch does not guarantee which will be returned if there are
8874 multiple matches. We need the first that is not an alignment. */
8875 i = irel - internal_relocs;
8878 if (internal_relocs[i-1].r_offset != offset)
8882 for ( ; i < sec->reloc_count; i++)
8884 irel = &internal_relocs[i];
8885 r_type = ELF32_R_TYPE (irel->r_info);
8886 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8895 is_removable_literal (const source_reloc *rel,
8897 const source_reloc *src_relocs,
8900 property_table_entry *prop_table,
8903 const source_reloc *curr_rel;
8904 property_table_entry *entry;
8909 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8910 sec->vma + rel->r_rel.target_offset);
8911 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8914 for (++i; i < src_count; ++i)
8916 curr_rel = &src_relocs[i];
8917 /* If all others have the same target offset.... */
8918 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8921 if (!curr_rel->is_null
8922 && !xtensa_is_property_section (curr_rel->source_sec)
8923 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8931 remove_dead_literal (bfd *abfd,
8933 struct bfd_link_info *link_info,
8934 Elf_Internal_Rela *internal_relocs,
8935 Elf_Internal_Rela *irel,
8937 property_table_entry *prop_table,
8940 property_table_entry *entry;
8941 xtensa_relax_info *relax_info;
8943 relax_info = get_xtensa_relax_info (sec);
8947 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8948 sec->vma + rel->r_rel.target_offset);
8950 /* Mark the unused literal so that it will be removed. */
8951 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8953 text_action_add (&relax_info->action_list,
8954 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8956 /* If the section is 4-byte aligned, do not add fill. */
8957 if (sec->alignment_power > 2)
8959 int fill_extra_space;
8960 bfd_vma entry_sec_offset;
8962 property_table_entry *the_add_entry;
8966 entry_sec_offset = entry->address - sec->vma + entry->size;
8968 entry_sec_offset = rel->r_rel.target_offset + 4;
8970 /* If the literal range is at the end of the section,
8972 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8974 fill_extra_space = xtensa_compute_fill_extra_space (the_add_entry);
8976 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8977 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8978 -4, fill_extra_space);
8980 adjust_fill_action (fa, removed_diff);
8982 text_action_add (&relax_info->action_list,
8983 ta_fill, sec, entry_sec_offset, removed_diff);
8986 /* Zero out the relocation on this literal location. */
8989 if (elf_hash_table (link_info)->dynamic_sections_created)
8990 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8992 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8993 pin_internal_relocs (sec, internal_relocs);
8996 /* Do not modify "last_loc_is_prev". */
9002 identify_literal_placement (bfd *abfd,
9005 struct bfd_link_info *link_info,
9006 value_map_hash_table *values,
9007 bfd_boolean *last_loc_is_prev_p,
9008 Elf_Internal_Rela *irel,
9009 int remaining_src_rels,
9011 property_table_entry *prop_table,
9013 section_cache_t *target_sec_cache,
9014 bfd_boolean is_abs_literal)
9018 xtensa_relax_info *relax_info;
9019 bfd_boolean literal_placed = FALSE;
9021 unsigned long value;
9022 bfd_boolean final_static_link;
9023 bfd_size_type sec_size;
9025 relax_info = get_xtensa_relax_info (sec);
9029 sec_size = bfd_get_section_limit (abfd, sec);
9032 (!bfd_link_relocatable (link_info)
9033 && !elf_hash_table (link_info)->dynamic_sections_created);
9035 /* The placement algorithm first checks to see if the literal is
9036 already in the value map. If so and the value map is reachable
9037 from all uses, then the literal is moved to that location. If
9038 not, then we identify the last location where a fresh literal was
9039 placed. If the literal can be safely moved there, then we do so.
9040 If not, then we assume that the literal is not to move and leave
9041 the literal where it is, marking it as the last literal
9044 /* Find the literal value. */
9046 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9049 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
9050 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
9052 init_literal_value (&val, &r_rel, value, is_abs_literal);
9054 /* Check if we've seen another literal with the same value that
9055 is in the same output section. */
9056 val_map = value_map_get_cached_value (values, &val, final_static_link);
9059 && (r_reloc_get_section (&val_map->loc)->output_section
9060 == sec->output_section)
9061 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
9062 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
9064 /* No change to last_loc_is_prev. */
9065 literal_placed = TRUE;
9068 /* For relocatable links, do not try to move literals. To do it
9069 correctly might increase the number of relocations in an input
9070 section making the default relocatable linking fail. */
9071 if (!bfd_link_relocatable (link_info) && !literal_placed
9072 && values->has_last_loc && !(*last_loc_is_prev_p))
9074 asection *target_sec = r_reloc_get_section (&values->last_loc);
9075 if (target_sec && target_sec->output_section == sec->output_section)
9077 /* Increment the virtual offset. */
9078 r_reloc try_loc = values->last_loc;
9079 try_loc.virtual_offset += 4;
9081 /* There is a last loc that was in the same output section. */
9082 if (relocations_reach (rel, remaining_src_rels, &try_loc)
9083 && move_shared_literal (sec, link_info, rel,
9084 prop_table, ptblsize,
9085 &try_loc, &val, target_sec_cache))
9087 values->last_loc.virtual_offset += 4;
9088 literal_placed = TRUE;
9090 val_map = add_value_map (values, &val, &try_loc,
9093 val_map->loc = try_loc;
9098 if (!literal_placed)
9100 /* Nothing worked, leave the literal alone but update the last loc. */
9101 values->has_last_loc = TRUE;
9102 values->last_loc = rel->r_rel;
9104 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
9106 val_map->loc = rel->r_rel;
9107 *last_loc_is_prev_p = TRUE;
9114 /* Check if the original relocations (presumably on L32R instructions)
9115 identified by reloc[0..N] can be changed to reference the literal
9116 identified by r_rel. If r_rel is out of range for any of the
9117 original relocations, then we don't want to coalesce the original
9118 literal with the one at r_rel. We only check reloc[0..N], where the
9119 offsets are all the same as for reloc[0] (i.e., they're all
9120 referencing the same literal) and where N is also bounded by the
9121 number of remaining entries in the "reloc" array. The "reloc" array
9122 is sorted by target offset so we know all the entries for the same
9123 literal will be contiguous. */
9126 relocations_reach (source_reloc *reloc,
9127 int remaining_relocs,
9128 const r_reloc *r_rel)
9130 bfd_vma from_offset, source_address, dest_address;
9134 if (!r_reloc_is_defined (r_rel))
9137 sec = r_reloc_get_section (r_rel);
9138 from_offset = reloc[0].r_rel.target_offset;
9140 for (i = 0; i < remaining_relocs; i++)
9142 if (reloc[i].r_rel.target_offset != from_offset)
9145 /* Ignore relocations that have been removed. */
9146 if (reloc[i].is_null)
9149 /* The original and new output section for these must be the same
9150 in order to coalesce. */
9151 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9152 != sec->output_section)
9155 /* Absolute literals in the same output section can always be
9157 if (reloc[i].is_abs_literal)
9160 /* A literal with no PC-relative relocations can be moved anywhere. */
9161 if (reloc[i].opnd != -1)
9163 /* Otherwise, check to see that it fits. */
9164 source_address = (reloc[i].source_sec->output_section->vma
9165 + reloc[i].source_sec->output_offset
9166 + reloc[i].r_rel.rela.r_offset);
9167 dest_address = (sec->output_section->vma
9168 + sec->output_offset
9169 + r_rel->target_offset);
9171 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9172 source_address, dest_address))
9181 /* Move a literal to another literal location because it is
9182 the same as the other literal value. */
9185 coalesce_shared_literal (asection *sec,
9187 property_table_entry *prop_table,
9191 property_table_entry *entry;
9193 property_table_entry *the_add_entry;
9195 xtensa_relax_info *relax_info;
9197 relax_info = get_xtensa_relax_info (sec);
9201 entry = elf_xtensa_find_property_entry
9202 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9203 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
9206 /* Mark that the literal will be coalesced. */
9207 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9209 text_action_add (&relax_info->action_list,
9210 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9212 /* If the section is 4-byte aligned, do not add fill. */
9213 if (sec->alignment_power > 2)
9215 int fill_extra_space;
9216 bfd_vma entry_sec_offset;
9219 entry_sec_offset = entry->address - sec->vma + entry->size;
9221 entry_sec_offset = rel->r_rel.target_offset + 4;
9223 /* If the literal range is at the end of the section,
9225 fill_extra_space = 0;
9226 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9228 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9229 fill_extra_space = the_add_entry->size;
9231 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9232 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9233 -4, fill_extra_space);
9235 adjust_fill_action (fa, removed_diff);
9237 text_action_add (&relax_info->action_list,
9238 ta_fill, sec, entry_sec_offset, removed_diff);
9245 /* Move a literal to another location. This may actually increase the
9246 total amount of space used because of alignments so we need to do
9247 this carefully. Also, it may make a branch go out of range. */
9250 move_shared_literal (asection *sec,
9251 struct bfd_link_info *link_info,
9253 property_table_entry *prop_table,
9255 const r_reloc *target_loc,
9256 const literal_value *lit_value,
9257 section_cache_t *target_sec_cache)
9259 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9260 text_action *fa, *target_fa;
9262 xtensa_relax_info *relax_info, *target_relax_info;
9263 asection *target_sec;
9265 ebb_constraint ebb_table;
9266 bfd_boolean relocs_fit;
9268 /* If this routine always returns FALSE, the literals that cannot be
9269 coalesced will not be moved. */
9270 if (elf32xtensa_no_literal_movement)
9273 relax_info = get_xtensa_relax_info (sec);
9277 target_sec = r_reloc_get_section (target_loc);
9278 target_relax_info = get_xtensa_relax_info (target_sec);
9280 /* Literals to undefined sections may not be moved because they
9281 must report an error. */
9282 if (bfd_is_und_section (target_sec))
9285 src_entry = elf_xtensa_find_property_entry
9286 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9288 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9291 target_entry = elf_xtensa_find_property_entry
9292 (target_sec_cache->ptbl, target_sec_cache->pte_count,
9293 target_sec->vma + target_loc->target_offset);
9298 /* Make sure that we have not broken any branches. */
9301 init_ebb_constraint (&ebb_table);
9302 ebb = &ebb_table.ebb;
9303 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9304 target_sec_cache->content_length,
9305 target_sec_cache->ptbl, target_sec_cache->pte_count,
9306 target_sec_cache->relocs, target_sec_cache->reloc_count);
9308 /* Propose to add 4 bytes + worst-case alignment size increase to
9310 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9311 ta_fill, target_loc->target_offset,
9312 -4 - (1 << target_sec->alignment_power), TRUE);
9314 /* Check all of the PC-relative relocations to make sure they still fit. */
9315 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9316 target_sec_cache->contents,
9317 target_sec_cache->relocs, NULL,
9323 text_action_add_literal (&target_relax_info->action_list,
9324 ta_add_literal, target_loc, lit_value, -4);
9326 if (target_sec->alignment_power > 2 && target_entry != src_entry)
9328 /* May need to add or remove some fill to maintain alignment. */
9329 int fill_extra_space;
9330 bfd_vma entry_sec_offset;
9333 target_entry->address - target_sec->vma + target_entry->size;
9335 /* If the literal range is at the end of the section,
9337 fill_extra_space = 0;
9339 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9340 target_sec_cache->pte_count,
9342 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9343 fill_extra_space = the_add_entry->size;
9345 target_fa = find_fill_action (&target_relax_info->action_list,
9346 target_sec, entry_sec_offset);
9347 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9348 entry_sec_offset, 4,
9351 adjust_fill_action (target_fa, removed_diff);
9353 text_action_add (&target_relax_info->action_list,
9354 ta_fill, target_sec, entry_sec_offset, removed_diff);
9357 /* Mark that the literal will be moved to the new location. */
9358 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9360 /* Remove the literal. */
9361 text_action_add (&relax_info->action_list,
9362 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9364 /* If the section is 4-byte aligned, do not add fill. */
9365 if (sec->alignment_power > 2 && target_entry != src_entry)
9367 int fill_extra_space;
9368 bfd_vma entry_sec_offset;
9371 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9373 entry_sec_offset = rel->r_rel.target_offset+4;
9375 /* If the literal range is at the end of the section,
9377 fill_extra_space = 0;
9378 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9380 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9381 fill_extra_space = the_add_entry->size;
9383 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9384 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9385 -4, fill_extra_space);
9387 adjust_fill_action (fa, removed_diff);
9389 text_action_add (&relax_info->action_list,
9390 ta_fill, sec, entry_sec_offset, removed_diff);
9397 /* Second relaxation pass. */
9400 action_remove_bytes_fn (splay_tree_node node, void *p)
9402 bfd_size_type *final_size = p;
9403 text_action *action = (text_action *)node->value;
9405 *final_size -= action->removed_bytes;
9409 /* Modify all of the relocations to point to the right spot, and if this
9410 is a relaxable section, delete the unwanted literals and fix the
9414 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9416 Elf_Internal_Rela *internal_relocs;
9417 xtensa_relax_info *relax_info;
9419 bfd_boolean ok = TRUE;
9421 bfd_boolean rv = FALSE;
9422 bfd_boolean virtual_action;
9423 bfd_size_type sec_size;
9425 sec_size = bfd_get_section_limit (abfd, sec);
9426 relax_info = get_xtensa_relax_info (sec);
9427 BFD_ASSERT (relax_info);
9429 /* First translate any of the fixes that have been added already. */
9430 translate_section_fixes (sec);
9432 /* Handle property sections (e.g., literal tables) specially. */
9433 if (xtensa_is_property_section (sec))
9435 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9436 return relax_property_section (abfd, sec, link_info);
9439 internal_relocs = retrieve_internal_relocs (abfd, sec,
9440 link_info->keep_memory);
9441 if (!internal_relocs && !action_list_count (&relax_info->action_list))
9444 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9445 if (contents == NULL && sec_size != 0)
9451 if (internal_relocs)
9453 for (i = 0; i < sec->reloc_count; i++)
9455 Elf_Internal_Rela *irel;
9456 xtensa_relax_info *target_relax_info;
9457 bfd_vma source_offset, old_source_offset;
9460 asection *target_sec;
9462 /* Locally change the source address.
9463 Translate the target to the new target address.
9464 If it points to this section and has been removed,
9468 irel = &internal_relocs[i];
9469 source_offset = irel->r_offset;
9470 old_source_offset = source_offset;
9472 r_type = ELF32_R_TYPE (irel->r_info);
9473 r_reloc_init (&r_rel, abfd, irel, contents,
9474 bfd_get_section_limit (abfd, sec));
9476 /* If this section could have changed then we may need to
9477 change the relocation's offset. */
9479 if (relax_info->is_relaxable_literal_section
9480 || relax_info->is_relaxable_asm_section)
9482 pin_internal_relocs (sec, internal_relocs);
9484 if (r_type != R_XTENSA_NONE
9485 && find_removed_literal (&relax_info->removed_list,
9488 /* Remove this relocation. */
9489 if (elf_hash_table (link_info)->dynamic_sections_created)
9490 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9491 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9492 irel->r_offset = offset_with_removed_text_map
9493 (&relax_info->action_list, irel->r_offset);
9497 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9499 text_action *action =
9500 find_insn_action (&relax_info->action_list,
9502 if (action && (action->action == ta_convert_longcall
9503 || action->action == ta_remove_longcall))
9505 bfd_reloc_status_type retval;
9506 char *error_message = NULL;
9508 retval = contract_asm_expansion (contents, sec_size,
9509 irel, &error_message);
9510 if (retval != bfd_reloc_ok)
9512 (*link_info->callbacks->reloc_dangerous)
9513 (link_info, error_message, abfd, sec,
9517 /* Update the action so that the code that moves
9518 the contents will do the right thing. */
9519 /* ta_remove_longcall and ta_remove_insn actions are
9520 grouped together in the tree as well as
9521 ta_convert_longcall and ta_none, so that changes below
9522 can be done w/o removing and reinserting action into
9525 if (action->action == ta_remove_longcall)
9526 action->action = ta_remove_insn;
9528 action->action = ta_none;
9529 /* Refresh the info in the r_rel. */
9530 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9531 r_type = ELF32_R_TYPE (irel->r_info);
9535 source_offset = offset_with_removed_text_map
9536 (&relax_info->action_list, irel->r_offset);
9537 irel->r_offset = source_offset;
9540 /* If the target section could have changed then
9541 we may need to change the relocation's target offset. */
9543 target_sec = r_reloc_get_section (&r_rel);
9545 /* For a reference to a discarded section from a DWARF section,
9546 i.e., where action_discarded is PRETEND, the symbol will
9547 eventually be modified to refer to the kept section (at least if
9548 the kept and discarded sections are the same size). Anticipate
9549 that here and adjust things accordingly. */
9550 if (! elf_xtensa_ignore_discarded_relocs (sec)
9551 && elf_xtensa_action_discarded (sec) == PRETEND
9552 && sec->sec_info_type != SEC_INFO_TYPE_STABS
9553 && target_sec != NULL
9554 && discarded_section (target_sec))
9556 /* It would be natural to call _bfd_elf_check_kept_section
9557 here, but it's not exported from elflink.c. It's also a
9558 fairly expensive check. Adjusting the relocations to the
9559 discarded section is fairly harmless; it will only adjust
9560 some addends and difference values. If it turns out that
9561 _bfd_elf_check_kept_section fails later, it won't matter,
9562 so just compare the section names to find the right group
9564 asection *kept = target_sec->kept_section;
9567 if ((kept->flags & SEC_GROUP) != 0)
9569 asection *first = elf_next_in_group (kept);
9570 asection *s = first;
9575 if (strcmp (s->name, target_sec->name) == 0)
9580 s = elf_next_in_group (s);
9587 && ((target_sec->rawsize != 0
9588 ? target_sec->rawsize : target_sec->size)
9589 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9593 target_relax_info = get_xtensa_relax_info (target_sec);
9594 if (target_relax_info
9595 && (target_relax_info->is_relaxable_literal_section
9596 || target_relax_info->is_relaxable_asm_section))
9599 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9601 if (r_type == R_XTENSA_DIFF8
9602 || r_type == R_XTENSA_DIFF16
9603 || r_type == R_XTENSA_DIFF32)
9605 bfd_signed_vma diff_value = 0;
9606 bfd_vma new_end_offset, diff_mask = 0;
9608 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9610 (*link_info->callbacks->reloc_dangerous)
9611 (link_info, _("invalid relocation address"),
9612 abfd, sec, old_source_offset);
9618 case R_XTENSA_DIFF8:
9620 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9622 case R_XTENSA_DIFF16:
9624 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9626 case R_XTENSA_DIFF32:
9628 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9632 new_end_offset = offset_with_removed_text_map
9633 (&target_relax_info->action_list,
9634 r_rel.target_offset + diff_value);
9635 diff_value = new_end_offset - new_reloc.target_offset;
9639 case R_XTENSA_DIFF8:
9641 bfd_put_signed_8 (abfd, diff_value,
9642 &contents[old_source_offset]);
9644 case R_XTENSA_DIFF16:
9646 bfd_put_signed_16 (abfd, diff_value,
9647 &contents[old_source_offset]);
9649 case R_XTENSA_DIFF32:
9650 diff_mask = 0x7fffffff;
9651 bfd_put_signed_32 (abfd, diff_value,
9652 &contents[old_source_offset]);
9656 /* Check for overflow. Sign bits must be all zeroes or all ones */
9657 if ((diff_value & ~diff_mask) != 0 &&
9658 (diff_value & ~diff_mask) != (-1 & ~diff_mask))
9660 (*link_info->callbacks->reloc_dangerous)
9661 (link_info, _("overflow after relaxation"),
9662 abfd, sec, old_source_offset);
9666 pin_contents (sec, contents);
9669 /* If the relocation still references a section in the same
9670 input file, modify the relocation directly instead of
9671 adding a "fix" record. */
9672 if (target_sec->owner == abfd)
9674 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9675 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9676 irel->r_addend = new_reloc.rela.r_addend;
9677 pin_internal_relocs (sec, internal_relocs);
9681 bfd_vma addend_displacement;
9684 addend_displacement =
9685 new_reloc.target_offset + new_reloc.virtual_offset;
9686 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9688 addend_displacement, TRUE);
9695 if ((relax_info->is_relaxable_literal_section
9696 || relax_info->is_relaxable_asm_section)
9697 && action_list_count (&relax_info->action_list))
9699 /* Walk through the planned actions and build up a table
9700 of move, copy and fill records. Use the move, copy and
9701 fill records to perform the actions once. */
9703 bfd_size_type final_size, copy_size, orig_insn_size;
9704 bfd_byte *scratch = NULL;
9705 bfd_byte *dup_contents = NULL;
9706 bfd_size_type orig_size = sec->size;
9707 bfd_vma orig_dot = 0;
9708 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9709 orig dot in physical memory. */
9710 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9711 bfd_vma dup_dot = 0;
9713 text_action *action;
9715 final_size = sec->size;
9717 splay_tree_foreach (relax_info->action_list.tree,
9718 action_remove_bytes_fn, &final_size);
9719 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9720 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9722 /* The dot is the current fill location. */
9724 print_action_list (stderr, &relax_info->action_list);
9727 for (action = action_first (&relax_info->action_list); action;
9728 action = action_next (&relax_info->action_list, action))
9730 virtual_action = FALSE;
9731 if (action->offset > orig_dot)
9733 orig_dot += orig_dot_copied;
9734 orig_dot_copied = 0;
9736 /* Out of the virtual world. */
9739 if (action->offset > orig_dot)
9741 copy_size = action->offset - orig_dot;
9742 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9743 orig_dot += copy_size;
9744 dup_dot += copy_size;
9745 BFD_ASSERT (action->offset == orig_dot);
9747 else if (action->offset < orig_dot)
9749 if (action->action == ta_fill
9750 && action->offset - action->removed_bytes == orig_dot)
9752 /* This is OK because the fill only effects the dup_dot. */
9754 else if (action->action == ta_add_literal)
9756 /* TBD. Might need to handle this. */
9759 if (action->offset == orig_dot)
9761 if (action->virtual_offset > orig_dot_vo)
9763 if (orig_dot_vo == 0)
9765 /* Need to copy virtual_offset bytes. Probably four. */
9766 copy_size = action->virtual_offset - orig_dot_vo;
9767 memmove (&dup_contents[dup_dot],
9768 &contents[orig_dot], copy_size);
9769 orig_dot_copied = copy_size;
9770 dup_dot += copy_size;
9772 virtual_action = TRUE;
9775 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9777 switch (action->action)
9779 case ta_remove_literal:
9780 case ta_remove_insn:
9781 BFD_ASSERT (action->removed_bytes >= 0);
9782 orig_dot += action->removed_bytes;
9785 case ta_narrow_insn:
9788 memmove (scratch, &contents[orig_dot], orig_insn_size);
9789 BFD_ASSERT (action->removed_bytes == 1);
9790 rv = narrow_instruction (scratch, final_size, 0);
9792 memmove (&dup_contents[dup_dot], scratch, copy_size);
9793 orig_dot += orig_insn_size;
9794 dup_dot += copy_size;
9798 if (action->removed_bytes >= 0)
9799 orig_dot += action->removed_bytes;
9802 /* Already zeroed in dup_contents. Just bump the
9804 dup_dot += (-action->removed_bytes);
9809 BFD_ASSERT (action->removed_bytes == 0);
9812 case ta_convert_longcall:
9813 case ta_remove_longcall:
9814 /* These will be removed or converted before we get here. */
9821 memmove (scratch, &contents[orig_dot], orig_insn_size);
9822 BFD_ASSERT (action->removed_bytes == -1);
9823 rv = widen_instruction (scratch, final_size, 0);
9825 memmove (&dup_contents[dup_dot], scratch, copy_size);
9826 orig_dot += orig_insn_size;
9827 dup_dot += copy_size;
9830 case ta_add_literal:
9833 BFD_ASSERT (action->removed_bytes == -4);
9834 /* TBD -- place the literal value here and insert
9836 memset (&dup_contents[dup_dot], 0, 4);
9837 pin_internal_relocs (sec, internal_relocs);
9838 pin_contents (sec, contents);
9840 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9841 relax_info, &internal_relocs, &action->value))
9845 orig_dot_vo += copy_size;
9847 orig_dot += orig_insn_size;
9848 dup_dot += copy_size;
9852 /* Not implemented yet. */
9857 BFD_ASSERT (dup_dot <= final_size);
9858 BFD_ASSERT (orig_dot <= orig_size);
9861 orig_dot += orig_dot_copied;
9862 orig_dot_copied = 0;
9864 if (orig_dot != orig_size)
9866 copy_size = orig_size - orig_dot;
9867 BFD_ASSERT (orig_size > orig_dot);
9868 BFD_ASSERT (dup_dot + copy_size == final_size);
9869 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9870 orig_dot += copy_size;
9871 dup_dot += copy_size;
9873 BFD_ASSERT (orig_size == orig_dot);
9874 BFD_ASSERT (final_size == dup_dot);
9876 /* Move the dup_contents back. */
9877 if (final_size > orig_size)
9879 /* Contents need to be reallocated. Swap the dup_contents into
9881 sec->contents = dup_contents;
9883 contents = dup_contents;
9884 pin_contents (sec, contents);
9888 BFD_ASSERT (final_size <= orig_size);
9889 memset (contents, 0, orig_size);
9890 memcpy (contents, dup_contents, final_size);
9891 free (dup_contents);
9894 pin_contents (sec, contents);
9896 if (sec->rawsize == 0)
9897 sec->rawsize = sec->size;
9898 sec->size = final_size;
9902 release_internal_relocs (sec, internal_relocs);
9903 release_contents (sec, contents);
9909 translate_section_fixes (asection *sec)
9911 xtensa_relax_info *relax_info;
9914 relax_info = get_xtensa_relax_info (sec);
9918 for (r = relax_info->fix_list; r != NULL; r = r->next)
9919 if (!translate_reloc_bfd_fix (r))
9926 /* Translate a fix given the mapping in the relax info for the target
9927 section. If it has already been translated, no work is required. */
9930 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9932 reloc_bfd_fix new_fix;
9934 xtensa_relax_info *relax_info;
9935 removed_literal *removed;
9936 bfd_vma new_offset, target_offset;
9938 if (fix->translated)
9941 sec = fix->target_sec;
9942 target_offset = fix->target_offset;
9944 relax_info = get_xtensa_relax_info (sec);
9947 fix->translated = TRUE;
9953 /* The fix does not need to be translated if the section cannot change. */
9954 if (!relax_info->is_relaxable_literal_section
9955 && !relax_info->is_relaxable_asm_section)
9957 fix->translated = TRUE;
9961 /* If the literal has been moved and this relocation was on an
9962 opcode, then the relocation should move to the new literal
9963 location. Otherwise, the relocation should move within the
9967 if (is_operand_relocation (fix->src_type))
9969 /* Check if the original relocation is against a literal being
9971 removed = find_removed_literal (&relax_info->removed_list,
9979 /* The fact that there is still a relocation to this literal indicates
9980 that the literal is being coalesced, not simply removed. */
9981 BFD_ASSERT (removed->to.abfd != NULL);
9983 /* This was moved to some other address (possibly another section). */
9984 new_sec = r_reloc_get_section (&removed->to);
9988 relax_info = get_xtensa_relax_info (sec);
9990 (!relax_info->is_relaxable_literal_section
9991 && !relax_info->is_relaxable_asm_section))
9993 target_offset = removed->to.target_offset;
9994 new_fix.target_sec = new_sec;
9995 new_fix.target_offset = target_offset;
9996 new_fix.translated = TRUE;
10001 target_offset = removed->to.target_offset;
10002 new_fix.target_sec = new_sec;
10005 /* The target address may have been moved within its section. */
10006 new_offset = offset_with_removed_text (&relax_info->action_list,
10009 new_fix.target_offset = new_offset;
10010 new_fix.target_offset = new_offset;
10011 new_fix.translated = TRUE;
10017 /* Fix up a relocation to take account of removed literals. */
10020 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
10022 xtensa_relax_info *relax_info;
10023 removed_literal *removed;
10024 bfd_vma target_offset, base_offset;
10026 *new_rel = *orig_rel;
10028 if (!r_reloc_is_defined (orig_rel))
10031 relax_info = get_xtensa_relax_info (sec);
10032 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
10033 || relax_info->is_relaxable_asm_section));
10035 target_offset = orig_rel->target_offset;
10038 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
10040 /* Check if the original relocation is against a literal being
10042 removed = find_removed_literal (&relax_info->removed_list,
10045 if (removed && removed->to.abfd)
10049 /* The fact that there is still a relocation to this literal indicates
10050 that the literal is being coalesced, not simply removed. */
10051 BFD_ASSERT (removed->to.abfd != NULL);
10053 /* This was moved to some other address
10054 (possibly in another section). */
10055 *new_rel = removed->to;
10056 new_sec = r_reloc_get_section (new_rel);
10057 if (new_sec != sec)
10060 relax_info = get_xtensa_relax_info (sec);
10062 || (!relax_info->is_relaxable_literal_section
10063 && !relax_info->is_relaxable_asm_section))
10066 target_offset = new_rel->target_offset;
10069 /* Find the base offset of the reloc symbol, excluding any addend from the
10070 reloc or from the section contents (for a partial_inplace reloc). Then
10071 find the adjusted values of the offsets due to relaxation. The base
10072 offset is needed to determine the change to the reloc's addend; the reloc
10073 addend should not be adjusted due to relaxations located before the base
10076 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
10077 if (base_offset <= target_offset)
10079 int base_removed = removed_by_actions_map (&relax_info->action_list,
10080 base_offset, FALSE);
10081 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10082 target_offset, FALSE) -
10085 new_rel->target_offset = target_offset - base_removed - addend_removed;
10086 new_rel->rela.r_addend -= addend_removed;
10090 /* Handle a negative addend. The base offset comes first. */
10091 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
10092 target_offset, FALSE);
10093 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10094 base_offset, FALSE) -
10097 new_rel->target_offset = target_offset - tgt_removed;
10098 new_rel->rela.r_addend += addend_removed;
10105 /* For dynamic links, there may be a dynamic relocation for each
10106 literal. The number of dynamic relocations must be computed in
10107 size_dynamic_sections, which occurs before relaxation. When a
10108 literal is removed, this function checks if there is a corresponding
10109 dynamic relocation and shrinks the size of the appropriate dynamic
10110 relocation section accordingly. At this point, the contents of the
10111 dynamic relocation sections have not yet been filled in, so there's
10112 nothing else that needs to be done. */
10115 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10117 asection *input_section,
10118 Elf_Internal_Rela *rel)
10120 struct elf_xtensa_link_hash_table *htab;
10121 Elf_Internal_Shdr *symtab_hdr;
10122 struct elf_link_hash_entry **sym_hashes;
10123 unsigned long r_symndx;
10125 struct elf_link_hash_entry *h;
10126 bfd_boolean dynamic_symbol;
10128 htab = elf_xtensa_hash_table (info);
10132 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10133 sym_hashes = elf_sym_hashes (abfd);
10135 r_type = ELF32_R_TYPE (rel->r_info);
10136 r_symndx = ELF32_R_SYM (rel->r_info);
10138 if (r_symndx < symtab_hdr->sh_info)
10141 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10143 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
10145 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10146 && (input_section->flags & SEC_ALLOC) != 0
10147 && (dynamic_symbol || bfd_link_pic (info))
10148 && (!h || h->root.type != bfd_link_hash_undefweak
10150 && (bfd_link_dll (info) || info->export_dynamic))))
10153 bfd_boolean is_plt = FALSE;
10155 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10157 srel = htab->elf.srelplt;
10161 srel = htab->elf.srelgot;
10163 /* Reduce size of the .rela.* section by one reloc. */
10164 BFD_ASSERT (srel != NULL);
10165 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10166 srel->size -= sizeof (Elf32_External_Rela);
10170 asection *splt, *sgotplt, *srelgot;
10171 int reloc_index, chunk;
10173 /* Find the PLT reloc index of the entry being removed. This
10174 is computed from the size of ".rela.plt". It is needed to
10175 figure out which PLT chunk to resize. Usually "last index
10176 = size - 1" since the index starts at zero, but in this
10177 context, the size has just been decremented so there's no
10178 need to subtract one. */
10179 reloc_index = srel->size / sizeof (Elf32_External_Rela);
10181 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
10182 splt = elf_xtensa_get_plt_section (info, chunk);
10183 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
10184 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10186 /* Check if an entire PLT chunk has just been eliminated. */
10187 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10189 /* The two magic GOT entries for that chunk can go away. */
10190 srelgot = htab->elf.srelgot;
10191 BFD_ASSERT (srelgot != NULL);
10192 srelgot->reloc_count -= 2;
10193 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10194 sgotplt->size -= 8;
10196 /* There should be only one entry left (and it will be
10198 BFD_ASSERT (sgotplt->size == 4);
10199 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
10202 BFD_ASSERT (sgotplt->size >= 4);
10203 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
10205 sgotplt->size -= 4;
10206 splt->size -= PLT_ENTRY_SIZE;
10212 /* Take an r_rel and move it to another section. This usually
10213 requires extending the interal_relocation array and pinning it. If
10214 the original r_rel is from the same BFD, we can complete this here.
10215 Otherwise, we add a fix record to let the final link fix the
10216 appropriate address. Contents and internal relocations for the
10217 section must be pinned after calling this routine. */
10220 move_literal (bfd *abfd,
10221 struct bfd_link_info *link_info,
10224 bfd_byte *contents,
10225 xtensa_relax_info *relax_info,
10226 Elf_Internal_Rela **internal_relocs_p,
10227 const literal_value *lit)
10229 Elf_Internal_Rela *new_relocs = NULL;
10230 size_t new_relocs_count = 0;
10231 Elf_Internal_Rela this_rela;
10232 const r_reloc *r_rel;
10234 r_rel = &lit->r_rel;
10235 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10237 if (r_reloc_is_const (r_rel))
10238 bfd_put_32 (abfd, lit->value, contents + offset);
10243 reloc_bfd_fix *fix;
10244 unsigned insert_at;
10246 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
10248 /* This is the difficult case. We have to create a fix up. */
10249 this_rela.r_offset = offset;
10250 this_rela.r_info = ELF32_R_INFO (0, r_type);
10251 this_rela.r_addend =
10252 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10253 bfd_put_32 (abfd, lit->value, contents + offset);
10255 /* Currently, we cannot move relocations during a relocatable link. */
10256 BFD_ASSERT (!bfd_link_relocatable (link_info));
10257 fix = reloc_bfd_fix_init (sec, offset, r_type,
10258 r_reloc_get_section (r_rel),
10259 r_rel->target_offset + r_rel->virtual_offset,
10261 /* We also need to mark that relocations are needed here. */
10262 sec->flags |= SEC_RELOC;
10264 translate_reloc_bfd_fix (fix);
10265 /* This fix has not yet been translated. */
10266 add_fix (sec, fix);
10268 /* Add the relocation. If we have already allocated our own
10269 space for the relocations and we have room for more, then use
10270 it. Otherwise, allocate new space and move the literals. */
10271 insert_at = sec->reloc_count;
10272 for (i = 0; i < sec->reloc_count; ++i)
10274 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10281 if (*internal_relocs_p != relax_info->allocated_relocs
10282 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10284 BFD_ASSERT (relax_info->allocated_relocs == NULL
10285 || sec->reloc_count == relax_info->relocs_count);
10287 if (relax_info->allocated_relocs_count == 0)
10288 new_relocs_count = (sec->reloc_count + 2) * 2;
10290 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10292 new_relocs = (Elf_Internal_Rela *)
10293 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10297 /* We could handle this more quickly by finding the split point. */
10298 if (insert_at != 0)
10299 memcpy (new_relocs, *internal_relocs_p,
10300 insert_at * sizeof (Elf_Internal_Rela));
10302 new_relocs[insert_at] = this_rela;
10304 if (insert_at != sec->reloc_count)
10305 memcpy (new_relocs + insert_at + 1,
10306 (*internal_relocs_p) + insert_at,
10307 (sec->reloc_count - insert_at)
10308 * sizeof (Elf_Internal_Rela));
10310 if (*internal_relocs_p != relax_info->allocated_relocs)
10312 /* The first time we re-allocate, we can only free the
10313 old relocs if they were allocated with bfd_malloc.
10314 This is not true when keep_memory is in effect. */
10315 if (!link_info->keep_memory)
10316 free (*internal_relocs_p);
10319 free (*internal_relocs_p);
10320 relax_info->allocated_relocs = new_relocs;
10321 relax_info->allocated_relocs_count = new_relocs_count;
10322 elf_section_data (sec)->relocs = new_relocs;
10323 sec->reloc_count++;
10324 relax_info->relocs_count = sec->reloc_count;
10325 *internal_relocs_p = new_relocs;
10329 if (insert_at != sec->reloc_count)
10332 for (idx = sec->reloc_count; idx > insert_at; idx--)
10333 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10335 (*internal_relocs_p)[insert_at] = this_rela;
10336 sec->reloc_count++;
10337 if (relax_info->allocated_relocs)
10338 relax_info->relocs_count = sec->reloc_count;
10345 /* This is similar to relax_section except that when a target is moved,
10346 we shift addresses up. We also need to modify the size. This
10347 algorithm does NOT allow for relocations into the middle of the
10348 property sections. */
10351 relax_property_section (bfd *abfd,
10353 struct bfd_link_info *link_info)
10355 Elf_Internal_Rela *internal_relocs;
10356 bfd_byte *contents;
10358 bfd_boolean ok = TRUE;
10359 bfd_boolean is_full_prop_section;
10360 size_t last_zfill_target_offset = 0;
10361 asection *last_zfill_target_sec = NULL;
10362 bfd_size_type sec_size;
10363 bfd_size_type entry_size;
10365 sec_size = bfd_get_section_limit (abfd, sec);
10366 internal_relocs = retrieve_internal_relocs (abfd, sec,
10367 link_info->keep_memory);
10368 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10369 if (contents == NULL && sec_size != 0)
10375 is_full_prop_section = xtensa_is_proptable_section (sec);
10376 if (is_full_prop_section)
10381 if (internal_relocs)
10383 for (i = 0; i < sec->reloc_count; i++)
10385 Elf_Internal_Rela *irel;
10386 xtensa_relax_info *target_relax_info;
10388 asection *target_sec;
10390 bfd_byte *size_p, *flags_p;
10392 /* Locally change the source address.
10393 Translate the target to the new target address.
10394 If it points to this section and has been removed, MOVE IT.
10395 Also, don't forget to modify the associated SIZE at
10398 irel = &internal_relocs[i];
10399 r_type = ELF32_R_TYPE (irel->r_info);
10400 if (r_type == R_XTENSA_NONE)
10403 /* Find the literal value. */
10404 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10405 size_p = &contents[irel->r_offset + 4];
10407 if (is_full_prop_section)
10408 flags_p = &contents[irel->r_offset + 8];
10409 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10411 target_sec = r_reloc_get_section (&val.r_rel);
10412 target_relax_info = get_xtensa_relax_info (target_sec);
10414 if (target_relax_info
10415 && (target_relax_info->is_relaxable_literal_section
10416 || target_relax_info->is_relaxable_asm_section ))
10418 /* Translate the relocation's destination. */
10419 bfd_vma old_offset = val.r_rel.target_offset;
10420 bfd_vma new_offset;
10421 long old_size, new_size;
10422 int removed_by_old_offset =
10423 removed_by_actions_map (&target_relax_info->action_list,
10424 old_offset, FALSE);
10425 new_offset = old_offset - removed_by_old_offset;
10427 /* Assert that we are not out of bounds. */
10428 old_size = bfd_get_32 (abfd, size_p);
10429 new_size = old_size;
10433 /* Only the first zero-sized unreachable entry is
10434 allowed to expand. In this case the new offset
10435 should be the offset before the fill and the new
10436 size is the expansion size. For other zero-sized
10437 entries the resulting size should be zero with an
10438 offset before or after the fill address depending
10439 on whether the expanding unreachable entry
10441 if (last_zfill_target_sec == 0
10442 || last_zfill_target_sec != target_sec
10443 || last_zfill_target_offset != old_offset)
10445 bfd_vma new_end_offset = new_offset;
10447 /* Recompute the new_offset, but this time don't
10448 include any fill inserted by relaxation. */
10449 removed_by_old_offset =
10450 removed_by_actions_map (&target_relax_info->action_list,
10452 new_offset = old_offset - removed_by_old_offset;
10454 /* If it is not unreachable and we have not yet
10455 seen an unreachable at this address, place it
10456 before the fill address. */
10457 if (flags_p && (bfd_get_32 (abfd, flags_p)
10458 & XTENSA_PROP_UNREACHABLE) != 0)
10460 new_size = new_end_offset - new_offset;
10462 last_zfill_target_sec = target_sec;
10463 last_zfill_target_offset = old_offset;
10469 int removed_by_old_offset_size =
10470 removed_by_actions_map (&target_relax_info->action_list,
10471 old_offset + old_size, TRUE);
10472 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10475 if (new_size != old_size)
10477 bfd_put_32 (abfd, new_size, size_p);
10478 pin_contents (sec, contents);
10481 if (new_offset != old_offset)
10483 bfd_vma diff = new_offset - old_offset;
10484 irel->r_addend += diff;
10485 pin_internal_relocs (sec, internal_relocs);
10491 /* Combine adjacent property table entries. This is also done in
10492 finish_dynamic_sections() but at that point it's too late to
10493 reclaim the space in the output section, so we do this twice. */
10495 if (internal_relocs && (!bfd_link_relocatable (link_info)
10496 || xtensa_is_littable_section (sec)))
10498 Elf_Internal_Rela *last_irel = NULL;
10499 Elf_Internal_Rela *irel, *next_rel, *rel_end;
10500 int removed_bytes = 0;
10502 flagword predef_flags;
10504 predef_flags = xtensa_get_property_predef_flags (sec);
10506 /* Walk over memory and relocations at the same time.
10507 This REQUIRES that the internal_relocs be sorted by offset. */
10508 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10509 internal_reloc_compare);
10511 pin_internal_relocs (sec, internal_relocs);
10512 pin_contents (sec, contents);
10514 next_rel = internal_relocs;
10515 rel_end = internal_relocs + sec->reloc_count;
10517 BFD_ASSERT (sec->size % entry_size == 0);
10519 for (offset = 0; offset < sec->size; offset += entry_size)
10521 Elf_Internal_Rela *offset_rel, *extra_rel;
10522 bfd_vma bytes_to_remove, size, actual_offset;
10523 bfd_boolean remove_this_rel;
10526 /* Find the first relocation for the entry at the current offset.
10527 Adjust the offsets of any extra relocations for the previous
10532 for (irel = next_rel; irel < rel_end; irel++)
10534 if ((irel->r_offset == offset
10535 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10536 || irel->r_offset > offset)
10541 irel->r_offset -= removed_bytes;
10545 /* Find the next relocation (if there are any left). */
10549 for (irel = offset_rel + 1; irel < rel_end; irel++)
10551 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10559 /* Check if there are relocations on the current entry. There
10560 should usually be a relocation on the offset field. If there
10561 are relocations on the size or flags, then we can't optimize
10562 this entry. Also, find the next relocation to examine on the
10566 if (offset_rel->r_offset >= offset + entry_size)
10568 next_rel = offset_rel;
10569 /* There are no relocations on the current entry, but we
10570 might still be able to remove it if the size is zero. */
10573 else if (offset_rel->r_offset > offset
10575 && extra_rel->r_offset < offset + entry_size))
10577 /* There is a relocation on the size or flags, so we can't
10578 do anything with this entry. Continue with the next. */
10579 next_rel = offset_rel;
10584 BFD_ASSERT (offset_rel->r_offset == offset);
10585 offset_rel->r_offset -= removed_bytes;
10586 next_rel = offset_rel + 1;
10592 remove_this_rel = FALSE;
10593 bytes_to_remove = 0;
10594 actual_offset = offset - removed_bytes;
10595 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10597 if (is_full_prop_section)
10598 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10600 flags = predef_flags;
10603 && (flags & XTENSA_PROP_ALIGN) == 0
10604 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10606 /* Always remove entries with zero size and no alignment. */
10607 bytes_to_remove = entry_size;
10609 remove_this_rel = TRUE;
10611 else if (offset_rel
10612 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10616 flagword old_flags;
10618 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10619 bfd_vma old_address =
10620 (last_irel->r_addend
10621 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10622 bfd_vma new_address =
10623 (offset_rel->r_addend
10624 + bfd_get_32 (abfd, &contents[actual_offset]));
10625 if (is_full_prop_section)
10626 old_flags = bfd_get_32
10627 (abfd, &contents[last_irel->r_offset + 8]);
10629 old_flags = predef_flags;
10631 if ((ELF32_R_SYM (offset_rel->r_info)
10632 == ELF32_R_SYM (last_irel->r_info))
10633 && old_address + old_size == new_address
10634 && old_flags == flags
10635 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10636 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10638 /* Fix the old size. */
10639 bfd_put_32 (abfd, old_size + size,
10640 &contents[last_irel->r_offset + 4]);
10641 bytes_to_remove = entry_size;
10642 remove_this_rel = TRUE;
10645 last_irel = offset_rel;
10648 last_irel = offset_rel;
10651 if (remove_this_rel)
10653 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10654 offset_rel->r_offset = 0;
10657 if (bytes_to_remove != 0)
10659 removed_bytes += bytes_to_remove;
10660 if (offset + bytes_to_remove < sec->size)
10661 memmove (&contents[actual_offset],
10662 &contents[actual_offset + bytes_to_remove],
10663 sec->size - offset - bytes_to_remove);
10669 /* Fix up any extra relocations on the last entry. */
10670 for (irel = next_rel; irel < rel_end; irel++)
10671 irel->r_offset -= removed_bytes;
10673 /* Clear the removed bytes. */
10674 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10676 if (sec->rawsize == 0)
10677 sec->rawsize = sec->size;
10678 sec->size -= removed_bytes;
10680 if (xtensa_is_littable_section (sec))
10682 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10684 sgotloc->size -= removed_bytes;
10690 release_internal_relocs (sec, internal_relocs);
10691 release_contents (sec, contents);
10696 /* Third relaxation pass. */
10698 /* Change symbol values to account for removed literals. */
10701 relax_section_symbols (bfd *abfd, asection *sec)
10703 xtensa_relax_info *relax_info;
10704 unsigned int sec_shndx;
10705 Elf_Internal_Shdr *symtab_hdr;
10706 Elf_Internal_Sym *isymbuf;
10707 unsigned i, num_syms, num_locals;
10709 relax_info = get_xtensa_relax_info (sec);
10710 BFD_ASSERT (relax_info);
10712 if (!relax_info->is_relaxable_literal_section
10713 && !relax_info->is_relaxable_asm_section)
10716 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10718 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10719 isymbuf = retrieve_local_syms (abfd);
10721 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10722 num_locals = symtab_hdr->sh_info;
10724 /* Adjust the local symbols defined in this section. */
10725 for (i = 0; i < num_locals; i++)
10727 Elf_Internal_Sym *isym = &isymbuf[i];
10729 if (isym->st_shndx == sec_shndx)
10731 bfd_vma orig_addr = isym->st_value;
10732 int removed = removed_by_actions_map (&relax_info->action_list,
10735 isym->st_value -= removed;
10736 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10738 removed_by_actions_map (&relax_info->action_list,
10739 orig_addr + isym->st_size, FALSE) -
10744 /* Now adjust the global symbols defined in this section. */
10745 for (i = 0; i < (num_syms - num_locals); i++)
10747 struct elf_link_hash_entry *sym_hash;
10749 sym_hash = elf_sym_hashes (abfd)[i];
10751 if (sym_hash->root.type == bfd_link_hash_warning)
10752 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10754 if ((sym_hash->root.type == bfd_link_hash_defined
10755 || sym_hash->root.type == bfd_link_hash_defweak)
10756 && sym_hash->root.u.def.section == sec)
10758 bfd_vma orig_addr = sym_hash->root.u.def.value;
10759 int removed = removed_by_actions_map (&relax_info->action_list,
10762 sym_hash->root.u.def.value -= removed;
10764 if (sym_hash->type == STT_FUNC)
10766 removed_by_actions_map (&relax_info->action_list,
10767 orig_addr + sym_hash->size, FALSE) -
10776 /* "Fix" handling functions, called while performing relocations. */
10779 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10781 asection *input_section,
10782 bfd_byte *contents)
10785 asection *sec, *old_sec;
10786 bfd_vma old_offset;
10787 int r_type = ELF32_R_TYPE (rel->r_info);
10788 reloc_bfd_fix *fix;
10790 if (r_type == R_XTENSA_NONE)
10793 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10797 r_reloc_init (&r_rel, input_bfd, rel, contents,
10798 bfd_get_section_limit (input_bfd, input_section));
10799 old_sec = r_reloc_get_section (&r_rel);
10800 old_offset = r_rel.target_offset;
10802 if (!old_sec || !r_reloc_is_defined (&r_rel))
10804 if (r_type != R_XTENSA_ASM_EXPAND)
10807 /* xgettext:c-format */
10808 (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"),
10809 input_bfd, input_section, (uint64_t) rel->r_offset,
10810 elf_howto_table[r_type].name);
10813 /* Leave it be. Resolution will happen in a later stage. */
10817 sec = fix->target_sec;
10818 rel->r_addend += ((sec->output_offset + fix->target_offset)
10819 - (old_sec->output_offset + old_offset));
10826 do_fix_for_final_link (Elf_Internal_Rela *rel,
10828 asection *input_section,
10829 bfd_byte *contents,
10830 bfd_vma *relocationp)
10833 int r_type = ELF32_R_TYPE (rel->r_info);
10834 reloc_bfd_fix *fix;
10835 bfd_vma fixup_diff;
10837 if (r_type == R_XTENSA_NONE)
10840 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10844 sec = fix->target_sec;
10846 fixup_diff = rel->r_addend;
10847 if (elf_howto_table[fix->src_type].partial_inplace)
10849 bfd_vma inplace_val;
10850 BFD_ASSERT (fix->src_offset
10851 < bfd_get_section_limit (input_bfd, input_section));
10852 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10853 fixup_diff += inplace_val;
10856 *relocationp = (sec->output_section->vma
10857 + sec->output_offset
10858 + fix->target_offset - fixup_diff);
10862 /* Miscellaneous utility functions.... */
10865 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10871 return elf_hash_table (info)->splt;
10873 dynobj = elf_hash_table (info)->dynobj;
10874 sprintf (plt_name, ".plt.%u", chunk);
10875 return bfd_get_linker_section (dynobj, plt_name);
10880 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10886 return elf_hash_table (info)->sgotplt;
10888 dynobj = elf_hash_table (info)->dynobj;
10889 sprintf (got_name, ".got.plt.%u", chunk);
10890 return bfd_get_linker_section (dynobj, got_name);
10894 /* Get the input section for a given symbol index.
10896 . a section symbol, return the section;
10897 . a common symbol, return the common section;
10898 . an undefined symbol, return the undefined section;
10899 . an indirect symbol, follow the links;
10900 . an absolute value, return the absolute section. */
10903 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10905 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10906 asection *target_sec = NULL;
10907 if (r_symndx < symtab_hdr->sh_info)
10909 Elf_Internal_Sym *isymbuf;
10910 unsigned int section_index;
10912 isymbuf = retrieve_local_syms (abfd);
10913 section_index = isymbuf[r_symndx].st_shndx;
10915 if (section_index == SHN_UNDEF)
10916 target_sec = bfd_und_section_ptr;
10917 else if (section_index == SHN_ABS)
10918 target_sec = bfd_abs_section_ptr;
10919 else if (section_index == SHN_COMMON)
10920 target_sec = bfd_com_section_ptr;
10922 target_sec = bfd_section_from_elf_index (abfd, section_index);
10926 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10927 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10929 while (h->root.type == bfd_link_hash_indirect
10930 || h->root.type == bfd_link_hash_warning)
10931 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10933 switch (h->root.type)
10935 case bfd_link_hash_defined:
10936 case bfd_link_hash_defweak:
10937 target_sec = h->root.u.def.section;
10939 case bfd_link_hash_common:
10940 target_sec = bfd_com_section_ptr;
10942 case bfd_link_hash_undefined:
10943 case bfd_link_hash_undefweak:
10944 target_sec = bfd_und_section_ptr;
10946 default: /* New indirect warning. */
10947 target_sec = bfd_und_section_ptr;
10955 static struct elf_link_hash_entry *
10956 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10958 unsigned long indx;
10959 struct elf_link_hash_entry *h;
10960 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10962 if (r_symndx < symtab_hdr->sh_info)
10965 indx = r_symndx - symtab_hdr->sh_info;
10966 h = elf_sym_hashes (abfd)[indx];
10967 while (h->root.type == bfd_link_hash_indirect
10968 || h->root.type == bfd_link_hash_warning)
10969 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10974 /* Get the section-relative offset for a symbol number. */
10977 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10979 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10980 bfd_vma offset = 0;
10982 if (r_symndx < symtab_hdr->sh_info)
10984 Elf_Internal_Sym *isymbuf;
10985 isymbuf = retrieve_local_syms (abfd);
10986 offset = isymbuf[r_symndx].st_value;
10990 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10991 struct elf_link_hash_entry *h =
10992 elf_sym_hashes (abfd)[indx];
10994 while (h->root.type == bfd_link_hash_indirect
10995 || h->root.type == bfd_link_hash_warning)
10996 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10997 if (h->root.type == bfd_link_hash_defined
10998 || h->root.type == bfd_link_hash_defweak)
10999 offset = h->root.u.def.value;
11006 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
11008 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
11009 struct elf_link_hash_entry *h;
11011 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
11012 if (h && h->root.type == bfd_link_hash_defweak)
11019 pcrel_reloc_fits (xtensa_opcode opc,
11021 bfd_vma self_address,
11022 bfd_vma dest_address)
11024 xtensa_isa isa = xtensa_default_isa;
11025 uint32 valp = dest_address;
11026 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
11027 || xtensa_operand_encode (isa, opc, opnd, &valp))
11034 xtensa_is_property_section (asection *sec)
11036 if (xtensa_is_insntable_section (sec)
11037 || xtensa_is_littable_section (sec)
11038 || xtensa_is_proptable_section (sec))
11046 xtensa_is_insntable_section (asection *sec)
11048 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
11049 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
11057 xtensa_is_littable_section (asection *sec)
11059 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
11060 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
11068 xtensa_is_proptable_section (asection *sec)
11070 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
11071 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
11079 internal_reloc_compare (const void *ap, const void *bp)
11081 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11082 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11084 if (a->r_offset != b->r_offset)
11085 return (a->r_offset - b->r_offset);
11087 /* We don't need to sort on these criteria for correctness,
11088 but enforcing a more strict ordering prevents unstable qsort
11089 from behaving differently with different implementations.
11090 Without the code below we get correct but different results
11091 on Solaris 2.7 and 2.8. We would like to always produce the
11092 same results no matter the host. */
11094 if (a->r_info != b->r_info)
11095 return (a->r_info - b->r_info);
11097 return (a->r_addend - b->r_addend);
11102 internal_reloc_matches (const void *ap, const void *bp)
11104 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11105 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11107 /* Check if one entry overlaps with the other; this shouldn't happen
11108 except when searching for a match. */
11109 return (a->r_offset - b->r_offset);
11113 /* Predicate function used to look up a section in a particular group. */
11116 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11118 const char *gname = inf;
11119 const char *group_name = elf_group_name (sec);
11121 return (group_name == gname
11122 || (group_name != NULL
11124 && strcmp (group_name, gname) == 0));
11129 xtensa_add_names (const char *base, const char *suffix)
11133 size_t base_len = strlen (base);
11134 size_t suffix_len = strlen (suffix);
11135 char *str = bfd_malloc (base_len + suffix_len + 1);
11137 memcpy (str, base, base_len);
11138 memcpy (str + base_len, suffix, suffix_len + 1);
11143 return strdup (base);
11147 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11150 xtensa_property_section_name (asection *sec, const char *base_name,
11151 bfd_boolean separate_sections)
11153 const char *suffix, *group_name;
11154 char *prop_sec_name;
11156 group_name = elf_group_name (sec);
11159 suffix = strrchr (sec->name, '.');
11160 if (suffix == sec->name)
11162 prop_sec_name = xtensa_add_names (base_name, suffix);
11164 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
11166 char *linkonce_kind = 0;
11168 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
11169 linkonce_kind = "x.";
11170 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
11171 linkonce_kind = "p.";
11172 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11173 linkonce_kind = "prop.";
11177 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11178 + strlen (linkonce_kind) + 1);
11179 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
11180 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
11182 suffix = sec->name + linkonce_len;
11183 /* For backward compatibility, replace "t." instead of inserting
11184 the new linkonce_kind (but not for "prop" sections). */
11185 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
11187 strcat (prop_sec_name + linkonce_len, suffix);
11191 prop_sec_name = xtensa_add_names (base_name,
11192 separate_sections ? sec->name : NULL);
11195 return prop_sec_name;
11200 xtensa_get_separate_property_section (asection *sec, const char *base_name,
11201 bfd_boolean separate_section)
11203 char *prop_sec_name;
11204 asection *prop_sec;
11206 prop_sec_name = xtensa_property_section_name (sec, base_name,
11208 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11209 match_section_group,
11210 (void *) elf_group_name (sec));
11211 free (prop_sec_name);
11216 xtensa_get_property_section (asection *sec, const char *base_name)
11218 asection *prop_sec;
11220 /* Try individual property section first. */
11221 prop_sec = xtensa_get_separate_property_section (sec, base_name, TRUE);
11223 /* Refer to a common property section if individual is not present. */
11225 prop_sec = xtensa_get_separate_property_section (sec, base_name, FALSE);
11232 xtensa_make_property_section (asection *sec, const char *base_name)
11234 char *prop_sec_name;
11235 asection *prop_sec;
11237 /* Check if the section already exists. */
11238 prop_sec_name = xtensa_property_section_name (sec, base_name,
11239 elf32xtensa_separate_props);
11240 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11241 match_section_group,
11242 (void *) elf_group_name (sec));
11243 /* If not, create it. */
11246 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11247 flags |= (bfd_get_section_flags (sec->owner, sec)
11248 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11250 prop_sec = bfd_make_section_anyway_with_flags
11251 (sec->owner, strdup (prop_sec_name), flags);
11255 elf_group_name (prop_sec) = elf_group_name (sec);
11258 free (prop_sec_name);
11264 xtensa_get_property_predef_flags (asection *sec)
11266 if (xtensa_is_insntable_section (sec))
11267 return (XTENSA_PROP_INSN
11268 | XTENSA_PROP_NO_TRANSFORM
11269 | XTENSA_PROP_INSN_NO_REORDER);
11271 if (xtensa_is_littable_section (sec))
11272 return (XTENSA_PROP_LITERAL
11273 | XTENSA_PROP_NO_TRANSFORM
11274 | XTENSA_PROP_INSN_NO_REORDER);
11280 /* Other functions called directly by the linker. */
11283 xtensa_callback_required_dependence (bfd *abfd,
11285 struct bfd_link_info *link_info,
11286 deps_callback_t callback,
11289 Elf_Internal_Rela *internal_relocs;
11290 bfd_byte *contents;
11292 bfd_boolean ok = TRUE;
11293 bfd_size_type sec_size;
11295 sec_size = bfd_get_section_limit (abfd, sec);
11297 /* ".plt*" sections have no explicit relocations but they contain L32R
11298 instructions that reference the corresponding ".got.plt*" sections. */
11299 if ((sec->flags & SEC_LINKER_CREATED) != 0
11300 && CONST_STRNEQ (sec->name, ".plt"))
11304 /* Find the corresponding ".got.plt*" section. */
11305 if (sec->name[4] == '\0')
11306 sgotplt = elf_hash_table (link_info)->sgotplt;
11312 BFD_ASSERT (sec->name[4] == '.');
11313 chunk = strtol (&sec->name[5], NULL, 10);
11315 sprintf (got_name, ".got.plt.%u", chunk);
11316 sgotplt = bfd_get_linker_section (sec->owner, got_name);
11318 BFD_ASSERT (sgotplt);
11320 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11321 section referencing a literal at the very beginning of
11322 ".got.plt". This is very close to the real dependence, anyway. */
11323 (*callback) (sec, sec_size, sgotplt, 0, closure);
11326 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11327 when building uclibc, which runs "ld -b binary /dev/null". */
11328 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11331 internal_relocs = retrieve_internal_relocs (abfd, sec,
11332 link_info->keep_memory);
11333 if (internal_relocs == NULL
11334 || sec->reloc_count == 0)
11337 /* Cache the contents for the duration of this scan. */
11338 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11339 if (contents == NULL && sec_size != 0)
11345 if (!xtensa_default_isa)
11346 xtensa_default_isa = xtensa_isa_init (0, 0);
11348 for (i = 0; i < sec->reloc_count; i++)
11350 Elf_Internal_Rela *irel = &internal_relocs[i];
11351 if (is_l32r_relocation (abfd, sec, contents, irel))
11354 asection *target_sec;
11355 bfd_vma target_offset;
11357 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11360 /* L32Rs must be local to the input file. */
11361 if (r_reloc_is_defined (&l32r_rel))
11363 target_sec = r_reloc_get_section (&l32r_rel);
11364 target_offset = l32r_rel.target_offset;
11366 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11372 release_internal_relocs (sec, internal_relocs);
11373 release_contents (sec, contents);
11377 /* The default literal sections should always be marked as "code" (i.e.,
11378 SHF_EXECINSTR). This is particularly important for the Linux kernel
11379 module loader so that the literals are not placed after the text. */
11380 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11382 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11383 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11384 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11385 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11386 { NULL, 0, 0, 0, 0 }
11389 #define ELF_TARGET_ID XTENSA_ELF_DATA
11391 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11392 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11393 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11394 #define TARGET_BIG_NAME "elf32-xtensa-be"
11395 #define ELF_ARCH bfd_arch_xtensa
11397 #define ELF_MACHINE_CODE EM_XTENSA
11398 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11400 #define ELF_MAXPAGESIZE 0x1000
11401 #endif /* ELF_ARCH */
11403 #define elf_backend_can_gc_sections 1
11404 #define elf_backend_can_refcount 1
11405 #define elf_backend_plt_readonly 1
11406 #define elf_backend_got_header_size 4
11407 #define elf_backend_want_dynbss 0
11408 #define elf_backend_want_got_plt 1
11409 #define elf_backend_dtrel_excludes_plt 1
11411 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11413 #define bfd_elf32_mkobject elf_xtensa_mkobject
11415 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11416 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11417 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11418 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11419 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11420 #define bfd_elf32_bfd_reloc_name_lookup \
11421 elf_xtensa_reloc_name_lookup
11422 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11423 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11425 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11426 #define elf_backend_check_relocs elf_xtensa_check_relocs
11427 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11428 #define elf_backend_discard_info elf_xtensa_discard_info
11429 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11430 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11431 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11432 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11433 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11434 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11435 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11436 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11437 #define elf_backend_object_p elf_xtensa_object_p
11438 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11439 #define elf_backend_relocate_section elf_xtensa_relocate_section
11440 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11441 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11442 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
11443 #define elf_backend_special_sections elf_xtensa_special_sections
11444 #define elf_backend_action_discarded elf_xtensa_action_discarded
11445 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11447 #include "elf32-target.h"