1 /* Renesas RX specific support for 32-bit ELF.
2 Copyright (C) 2008-2016 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22 #include "bfd_stdint.h"
26 #include "libiberty.h"
29 #define RX_OPCODE_BIG_ENDIAN 0
31 /* This is a meta-target that's used only with objcopy, to avoid the
32 endian-swap we would otherwise get. We check for this in
34 const bfd_target rx_elf32_be_ns_vec;
35 const bfd_target rx_elf32_be_vec;
38 char * rx_get_reloc (long);
39 void rx_dump_symtab (bfd *, void *, void *);
42 #define RXREL(n,sz,bit,shift,complain,pcrel) \
43 HOWTO (R_RX_##n, shift, sz, bit, pcrel, 0, complain_overflow_ ## complain, \
44 bfd_elf_generic_reloc, "R_RX_" #n, FALSE, 0, ~0, FALSE)
46 /* Note that the relocations around 0x7f are internal to this file;
47 feel free to move them as needed to avoid conflicts with published
48 relocation numbers. */
50 static reloc_howto_type rx_elf_howto_table [] =
52 RXREL (NONE, 3, 0, 0, dont, FALSE),
53 RXREL (DIR32, 2, 32, 0, signed, FALSE),
54 RXREL (DIR24S, 2, 24, 0, signed, FALSE),
55 RXREL (DIR16, 1, 16, 0, dont, FALSE),
56 RXREL (DIR16U, 1, 16, 0, unsigned, FALSE),
57 RXREL (DIR16S, 1, 16, 0, signed, FALSE),
58 RXREL (DIR8, 0, 8, 0, dont, FALSE),
59 RXREL (DIR8U, 0, 8, 0, unsigned, FALSE),
60 RXREL (DIR8S, 0, 8, 0, signed, FALSE),
61 RXREL (DIR24S_PCREL, 2, 24, 0, signed, TRUE),
62 RXREL (DIR16S_PCREL, 1, 16, 0, signed, TRUE),
63 RXREL (DIR8S_PCREL, 0, 8, 0, signed, TRUE),
64 RXREL (DIR16UL, 1, 16, 2, unsigned, FALSE),
65 RXREL (DIR16UW, 1, 16, 1, unsigned, FALSE),
66 RXREL (DIR8UL, 0, 8, 2, unsigned, FALSE),
67 RXREL (DIR8UW, 0, 8, 1, unsigned, FALSE),
68 RXREL (DIR32_REV, 1, 16, 0, dont, FALSE),
69 RXREL (DIR16_REV, 1, 16, 0, dont, FALSE),
70 RXREL (DIR3U_PCREL, 0, 3, 0, dont, TRUE),
86 RXREL (RH_3_PCREL, 0, 3, 0, signed, TRUE),
87 RXREL (RH_16_OP, 1, 16, 0, signed, FALSE),
88 RXREL (RH_24_OP, 2, 24, 0, signed, FALSE),
89 RXREL (RH_32_OP, 2, 32, 0, signed, FALSE),
90 RXREL (RH_24_UNS, 2, 24, 0, unsigned, FALSE),
91 RXREL (RH_8_NEG, 0, 8, 0, signed, FALSE),
92 RXREL (RH_16_NEG, 1, 16, 0, signed, FALSE),
93 RXREL (RH_24_NEG, 2, 24, 0, signed, FALSE),
94 RXREL (RH_32_NEG, 2, 32, 0, signed, FALSE),
95 RXREL (RH_DIFF, 2, 32, 0, signed, FALSE),
96 RXREL (RH_GPRELB, 1, 16, 0, unsigned, FALSE),
97 RXREL (RH_GPRELW, 1, 16, 0, unsigned, FALSE),
98 RXREL (RH_GPRELL, 1, 16, 0, unsigned, FALSE),
99 RXREL (RH_RELAX, 0, 0, 0, dont, FALSE),
121 RXREL (ABS32, 2, 32, 0, dont, FALSE),
122 RXREL (ABS24S, 2, 24, 0, signed, FALSE),
123 RXREL (ABS16, 1, 16, 0, dont, FALSE),
124 RXREL (ABS16U, 1, 16, 0, unsigned, FALSE),
125 RXREL (ABS16S, 1, 16, 0, signed, FALSE),
126 RXREL (ABS8, 0, 8, 0, dont, FALSE),
127 RXREL (ABS8U, 0, 8, 0, unsigned, FALSE),
128 RXREL (ABS8S, 0, 8, 0, signed, FALSE),
129 RXREL (ABS24S_PCREL, 2, 24, 0, signed, TRUE),
130 RXREL (ABS16S_PCREL, 1, 16, 0, signed, TRUE),
131 RXREL (ABS8S_PCREL, 0, 8, 0, signed, TRUE),
132 RXREL (ABS16UL, 1, 16, 0, unsigned, FALSE),
133 RXREL (ABS16UW, 1, 16, 0, unsigned, FALSE),
134 RXREL (ABS8UL, 0, 8, 0, unsigned, FALSE),
135 RXREL (ABS8UW, 0, 8, 0, unsigned, FALSE),
136 RXREL (ABS32_REV, 2, 32, 0, dont, FALSE),
137 RXREL (ABS16_REV, 1, 16, 0, dont, FALSE),
139 #define STACK_REL_P(x) ((x) <= R_RX_ABS16_REV && (x) >= R_RX_ABS32)
180 /* These are internal. */
181 /* A 5-bit unsigned displacement to a B/W/L address, at bit position 8/12. */
182 /* ---- ---- 4--- 3210. */
183 #define R_RX_RH_ABS5p8B 0x78
184 RXREL (RH_ABS5p8B, 0, 0, 0, dont, FALSE),
185 #define R_RX_RH_ABS5p8W 0x79
186 RXREL (RH_ABS5p8W, 0, 0, 0, dont, FALSE),
187 #define R_RX_RH_ABS5p8L 0x7a
188 RXREL (RH_ABS5p8L, 0, 0, 0, dont, FALSE),
189 /* A 5-bit unsigned displacement to a B/W/L address, at bit position 5/12. */
190 /* ---- -432 1--- 0---. */
191 #define R_RX_RH_ABS5p5B 0x7b
192 RXREL (RH_ABS5p5B, 0, 0, 0, dont, FALSE),
193 #define R_RX_RH_ABS5p5W 0x7c
194 RXREL (RH_ABS5p5W, 0, 0, 0, dont, FALSE),
195 #define R_RX_RH_ABS5p5L 0x7d
196 RXREL (RH_ABS5p5L, 0, 0, 0, dont, FALSE),
197 /* A 4-bit unsigned immediate at bit position 8. */
198 #define R_RX_RH_UIMM4p8 0x7e
199 RXREL (RH_UIMM4p8, 0, 0, 0, dont, FALSE),
200 /* A 4-bit negative unsigned immediate at bit position 8. */
201 #define R_RX_RH_UNEG4p8 0x7f
202 RXREL (RH_UNEG4p8, 0, 0, 0, dont, FALSE),
203 /* End of internal relocs. */
205 RXREL (SYM, 2, 32, 0, dont, FALSE),
206 RXREL (OPneg, 2, 32, 0, dont, FALSE),
207 RXREL (OPadd, 2, 32, 0, dont, FALSE),
208 RXREL (OPsub, 2, 32, 0, dont, FALSE),
209 RXREL (OPmul, 2, 32, 0, dont, FALSE),
210 RXREL (OPdiv, 2, 32, 0, dont, FALSE),
211 RXREL (OPshla, 2, 32, 0, dont, FALSE),
212 RXREL (OPshra, 2, 32, 0, dont, FALSE),
213 RXREL (OPsctsize, 2, 32, 0, dont, FALSE),
214 RXREL (OPscttop, 2, 32, 0, dont, FALSE),
215 RXREL (OPand, 2, 32, 0, dont, FALSE),
216 RXREL (OPor, 2, 32, 0, dont, FALSE),
217 RXREL (OPxor, 2, 32, 0, dont, FALSE),
218 RXREL (OPnot, 2, 32, 0, dont, FALSE),
219 RXREL (OPmod, 2, 32, 0, dont, FALSE),
220 RXREL (OPromtop, 2, 32, 0, dont, FALSE),
221 RXREL (OPramtop, 2, 32, 0, dont, FALSE)
224 /* Map BFD reloc types to RX ELF reloc types. */
228 bfd_reloc_code_real_type bfd_reloc_val;
229 unsigned int rx_reloc_val;
232 static const struct rx_reloc_map rx_reloc_map [] =
234 { BFD_RELOC_NONE, R_RX_NONE },
235 { BFD_RELOC_8, R_RX_DIR8S },
236 { BFD_RELOC_16, R_RX_DIR16S },
237 { BFD_RELOC_24, R_RX_DIR24S },
238 { BFD_RELOC_32, R_RX_DIR32 },
239 { BFD_RELOC_RX_16_OP, R_RX_DIR16 },
240 { BFD_RELOC_RX_DIR3U_PCREL, R_RX_DIR3U_PCREL },
241 { BFD_RELOC_8_PCREL, R_RX_DIR8S_PCREL },
242 { BFD_RELOC_16_PCREL, R_RX_DIR16S_PCREL },
243 { BFD_RELOC_24_PCREL, R_RX_DIR24S_PCREL },
244 { BFD_RELOC_RX_8U, R_RX_DIR8U },
245 { BFD_RELOC_RX_16U, R_RX_DIR16U },
246 { BFD_RELOC_RX_24U, R_RX_RH_24_UNS },
247 { BFD_RELOC_RX_NEG8, R_RX_RH_8_NEG },
248 { BFD_RELOC_RX_NEG16, R_RX_RH_16_NEG },
249 { BFD_RELOC_RX_NEG24, R_RX_RH_24_NEG },
250 { BFD_RELOC_RX_NEG32, R_RX_RH_32_NEG },
251 { BFD_RELOC_RX_DIFF, R_RX_RH_DIFF },
252 { BFD_RELOC_RX_GPRELB, R_RX_RH_GPRELB },
253 { BFD_RELOC_RX_GPRELW, R_RX_RH_GPRELW },
254 { BFD_RELOC_RX_GPRELL, R_RX_RH_GPRELL },
255 { BFD_RELOC_RX_RELAX, R_RX_RH_RELAX },
256 { BFD_RELOC_RX_SYM, R_RX_SYM },
257 { BFD_RELOC_RX_OP_SUBTRACT, R_RX_OPsub },
258 { BFD_RELOC_RX_OP_NEG, R_RX_OPneg },
259 { BFD_RELOC_RX_ABS8, R_RX_ABS8 },
260 { BFD_RELOC_RX_ABS16, R_RX_ABS16 },
261 { BFD_RELOC_RX_ABS16_REV, R_RX_ABS16_REV },
262 { BFD_RELOC_RX_ABS32, R_RX_ABS32 },
263 { BFD_RELOC_RX_ABS32_REV, R_RX_ABS32_REV },
264 { BFD_RELOC_RX_ABS16UL, R_RX_ABS16UL },
265 { BFD_RELOC_RX_ABS16UW, R_RX_ABS16UW },
266 { BFD_RELOC_RX_ABS16U, R_RX_ABS16U }
269 #define BIGE(abfd) ((abfd)->xvec->byteorder == BFD_ENDIAN_BIG)
271 static reloc_howto_type *
272 rx_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED,
273 bfd_reloc_code_real_type code)
277 if (code == BFD_RELOC_RX_32_OP)
278 return rx_elf_howto_table + R_RX_DIR32;
280 for (i = ARRAY_SIZE (rx_reloc_map); i--;)
281 if (rx_reloc_map [i].bfd_reloc_val == code)
282 return rx_elf_howto_table + rx_reloc_map[i].rx_reloc_val;
287 static reloc_howto_type *
288 rx_reloc_name_lookup (bfd * abfd ATTRIBUTE_UNUSED, const char * r_name)
292 for (i = 0; i < ARRAY_SIZE (rx_elf_howto_table); i++)
293 if (rx_elf_howto_table[i].name != NULL
294 && strcasecmp (rx_elf_howto_table[i].name, r_name) == 0)
295 return rx_elf_howto_table + i;
300 /* Set the howto pointer for an RX ELF reloc. */
303 rx_info_to_howto_rela (bfd * abfd ATTRIBUTE_UNUSED,
305 Elf_Internal_Rela * dst)
309 r_type = ELF32_R_TYPE (dst->r_info);
310 if (r_type >= (unsigned int) R_RX_max)
312 _bfd_error_handler (_("%B: invalid RX reloc number: %d"), abfd, r_type);
315 cache_ptr->howto = rx_elf_howto_table + r_type;
319 get_symbol_value (const char * name,
320 bfd_reloc_status_type * status,
321 struct bfd_link_info * info,
323 asection * input_section,
327 struct bfd_link_hash_entry * h;
329 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, TRUE);
332 || (h->type != bfd_link_hash_defined
333 && h->type != bfd_link_hash_defweak))
334 * status = info->callbacks->undefined_symbol
335 (info, name, input_bfd, input_section, offset, TRUE);
337 value = (h->u.def.value
338 + h->u.def.section->output_section->vma
339 + h->u.def.section->output_offset);
344 get_symbol_value_maybe (const char * name,
345 struct bfd_link_info * info)
348 struct bfd_link_hash_entry * h;
350 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, TRUE);
353 || (h->type != bfd_link_hash_defined
354 && h->type != bfd_link_hash_defweak))
357 value = (h->u.def.value
358 + h->u.def.section->output_section->vma
359 + h->u.def.section->output_offset);
365 get_gp (bfd_reloc_status_type * status,
366 struct bfd_link_info * info,
371 static bfd_boolean cached = FALSE;
372 static bfd_vma cached_value = 0;
376 cached_value = get_symbol_value ("__gp", status, info, abfd, sec, offset);
383 get_romstart (bfd_reloc_status_type * status,
384 struct bfd_link_info * info,
389 static bfd_boolean cached = FALSE;
390 static bfd_vma cached_value = 0;
394 cached_value = get_symbol_value ("_start", status, info, abfd, sec, offset);
401 get_ramstart (bfd_reloc_status_type * status,
402 struct bfd_link_info * info,
407 static bfd_boolean cached = FALSE;
408 static bfd_vma cached_value = 0;
412 cached_value = get_symbol_value ("__datastart", status, info, abfd, sec, offset);
418 #define NUM_STACK_ENTRIES 16
419 static int32_t rx_stack [ NUM_STACK_ENTRIES ];
420 static unsigned int rx_stack_top;
422 #define RX_STACK_PUSH(val) \
425 if (rx_stack_top < NUM_STACK_ENTRIES) \
426 rx_stack [rx_stack_top ++] = (val); \
428 r = bfd_reloc_dangerous; \
432 #define RX_STACK_POP(dest) \
435 if (rx_stack_top > 0) \
436 (dest) = rx_stack [-- rx_stack_top]; \
438 (dest) = 0, r = bfd_reloc_dangerous; \
442 /* Relocate an RX ELF section.
443 There is some attempt to make this function usable for many architectures,
444 both USE_REL and USE_RELA ['twould be nice if such a critter existed],
445 if only to serve as a learning tool.
447 The RELOCATE_SECTION function is called by the new ELF backend linker
448 to handle the relocations for a section.
450 The relocs are always passed as Rela structures; if the section
451 actually uses Rel structures, the r_addend field will always be
454 This function is responsible for adjusting the section contents as
455 necessary, and (if using Rela relocs and generating a relocatable
456 output file) adjusting the reloc addend as necessary.
458 This function does not have to worry about setting the reloc
459 address or the reloc symbol index.
461 LOCAL_SYMS is a pointer to the swapped in local symbols.
463 LOCAL_SECTIONS is an array giving the section in the input file
464 corresponding to the st_shndx field of each local symbol.
466 The global hash table entry for the global symbols can be found
467 via elf_sym_hashes (input_bfd).
469 When generating relocatable output, this function must handle
470 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
471 going to be the section symbol corresponding to the output
472 section, which means that the addend must be adjusted
476 rx_elf_relocate_section
478 struct bfd_link_info * info,
480 asection * input_section,
482 Elf_Internal_Rela * relocs,
483 Elf_Internal_Sym * local_syms,
484 asection ** local_sections)
486 Elf_Internal_Shdr * symtab_hdr;
487 struct elf_link_hash_entry ** sym_hashes;
488 Elf_Internal_Rela * rel;
489 Elf_Internal_Rela * relend;
490 bfd_boolean pid_mode;
491 bfd_boolean saw_subtract = FALSE;
492 const char * table_default_cache = NULL;
493 bfd_vma table_start_cache = 0;
494 bfd_vma table_end_cache = 0;
496 if (elf_elfheader (output_bfd)->e_flags & E_FLAG_RX_PID)
501 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
502 sym_hashes = elf_sym_hashes (input_bfd);
503 relend = relocs + input_section->reloc_count;
504 for (rel = relocs; rel < relend; rel ++)
506 reloc_howto_type * howto;
507 unsigned long r_symndx;
508 Elf_Internal_Sym * sym;
510 struct elf_link_hash_entry * h;
512 bfd_reloc_status_type r;
513 const char * name = NULL;
514 bfd_boolean unresolved_reloc = TRUE;
517 r_type = ELF32_R_TYPE (rel->r_info);
518 r_symndx = ELF32_R_SYM (rel->r_info);
520 howto = rx_elf_howto_table + ELF32_R_TYPE (rel->r_info);
526 if (rx_stack_top == 0)
527 saw_subtract = FALSE;
529 if (r_symndx < symtab_hdr->sh_info)
531 sym = local_syms + r_symndx;
532 sec = local_sections [r_symndx];
533 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, & sec, rel);
535 name = bfd_elf_string_from_elf_section
536 (input_bfd, symtab_hdr->sh_link, sym->st_name);
537 name = (sym->st_name == 0) ? bfd_section_name (input_bfd, sec) : name;
541 bfd_boolean warned, ignored;
543 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
544 r_symndx, symtab_hdr, sym_hashes, h,
545 sec, relocation, unresolved_reloc,
548 name = h->root.root.string;
551 if (strncmp (name, "$tableentry$default$", 20) == 0)
556 bfd_reloc_status_type tstat = 0;
558 if (table_default_cache != name)
561 /* All relocs for a given table should be to the same
562 (weak) default symbol) so we can use it to detect a
563 cache miss. We use the offset into the table to find
564 the "real" symbol. Calculate and store the table's
567 table_default_cache = name;
569 /* We have already done error checking in rx_table_find(). */
571 buf = (char *) malloc (13 + strlen (name + 20));
573 sprintf (buf, "$tablestart$%s", name + 20);
575 table_start_cache = get_symbol_value (buf,
582 sprintf (buf, "$tableend$%s", name + 20);
584 table_end_cache = get_symbol_value (buf,
594 entry_vma = (input_section->output_section->vma
595 + input_section->output_offset
598 if (table_end_cache <= entry_vma || entry_vma < table_start_cache)
600 _bfd_error_handler (_("%B:%A: table entry %s outside table"),
601 input_bfd, input_section,
604 else if ((int) (entry_vma - table_start_cache) % 4)
606 _bfd_error_handler (_("%B:%A: table entry %s not word-aligned within table"),
607 input_bfd, input_section,
612 idx = (int) (entry_vma - table_start_cache) / 4;
614 /* This will look like $tableentry$<N>$<name> */
615 buf = (char *) malloc (12 + 20 + strlen (name + 20));
616 sprintf (buf, "$tableentry$%d$%s", idx, name + 20);
618 h = (struct elf_link_hash_entry *) bfd_link_hash_lookup (info->hash, buf, FALSE, FALSE, TRUE);
622 relocation = (h->root.u.def.value
623 + h->root.u.def.section->output_section->vma
624 + h->root.u.def.section->output_offset);;
631 if (sec != NULL && discarded_section (sec))
632 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
633 rel, 1, relend, howto, 0, contents);
635 if (bfd_link_relocatable (info))
637 /* This is a relocatable link. We don't have to change
638 anything, unless the reloc is against a section symbol,
639 in which case we have to adjust according to where the
640 section symbol winds up in the output section. */
641 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
642 rel->r_addend += sec->output_offset;
646 if (h != NULL && h->root.type == bfd_link_hash_undefweak)
647 /* If the symbol is undefined and weak
648 then the relocation resolves to zero. */
652 if (howto->pc_relative)
654 relocation -= (input_section->output_section->vma
655 + input_section->output_offset
657 if (r_type != R_RX_RH_3_PCREL
658 && r_type != R_RX_DIR3U_PCREL)
662 relocation += rel->r_addend;
667 #define RANGE(a,b) if (a > (long) relocation || (long) relocation > b) r = bfd_reloc_overflow
668 #define ALIGN(m) if (relocation & m) r = bfd_reloc_other;
669 #define OP(i) (contents[rel->r_offset + (i)])
670 #define WARN_REDHAT(type) \
671 _bfd_error_handler (_("%B:%A: Warning: deprecated Red Hat reloc " type " detected against: %s."), \
672 input_bfd, input_section, name)
674 /* Check for unsafe relocs in PID mode. These are any relocs where
675 an absolute address is being computed. There are special cases
676 for relocs against symbols that are known to be referenced in
677 crt0.o before the PID base address register has been initialised. */
678 #define UNSAFE_FOR_PID \
683 && sec->flags & SEC_READONLY \
684 && !(input_section->flags & SEC_DEBUGGING) \
685 && strcmp (name, "__pid_base") != 0 \
686 && strcmp (name, "__gp") != 0 \
687 && strcmp (name, "__romdatastart") != 0 \
689 _bfd_error_handler (_("%B(%A): unsafe PID relocation %s at 0x%08lx (against %s in %s)"), \
690 input_bfd, input_section, howto->name, \
691 input_section->output_section->vma + input_section->output_offset + rel->r_offset, \
696 /* Opcode relocs are always big endian. Data relocs are bi-endian. */
705 case R_RX_RH_3_PCREL:
706 WARN_REDHAT ("RX_RH_3_PCREL");
709 OP (0) |= relocation & 0x07;
713 WARN_REDHAT ("RX_RH_8_NEG");
714 relocation = - relocation;
715 case R_RX_DIR8S_PCREL:
734 WARN_REDHAT ("RX_RH_16_NEG");
735 relocation = - relocation;
736 case R_RX_DIR16S_PCREL:
738 RANGE (-32768, 32767);
739 #if RX_OPCODE_BIG_ENDIAN
742 OP (1) = relocation >> 8;
747 WARN_REDHAT ("RX_RH_16_OP");
749 RANGE (-32768, 32767);
750 #if RX_OPCODE_BIG_ENDIAN
752 OP (0) = relocation >> 8;
755 OP (1) = relocation >> 8;
761 RANGE (-32768, 65535);
762 if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE))
765 OP (0) = relocation >> 8;
770 OP (1) = relocation >> 8;
777 #if RX_OPCODE_BIG_ENDIAN
779 OP (0) = relocation >> 8;
782 OP (1) = relocation >> 8;
788 RANGE (-32768, 65536);
789 #if RX_OPCODE_BIG_ENDIAN
791 OP (0) = relocation >> 8;
794 OP (1) = relocation >> 8;
800 RANGE (-32768, 65536);
801 #if RX_OPCODE_BIG_ENDIAN
803 OP (1) = relocation >> 8;
806 OP (0) = relocation >> 8;
810 case R_RX_DIR3U_PCREL:
813 OP (0) |= relocation & 0x07;
818 WARN_REDHAT ("RX_RH_24_NEG");
819 relocation = - relocation;
820 case R_RX_DIR24S_PCREL:
821 RANGE (-0x800000, 0x7fffff);
822 #if RX_OPCODE_BIG_ENDIAN
824 OP (1) = relocation >> 8;
825 OP (0) = relocation >> 16;
828 OP (1) = relocation >> 8;
829 OP (2) = relocation >> 16;
835 WARN_REDHAT ("RX_RH_24_OP");
836 RANGE (-0x800000, 0x7fffff);
837 #if RX_OPCODE_BIG_ENDIAN
839 OP (1) = relocation >> 8;
840 OP (0) = relocation >> 16;
843 OP (1) = relocation >> 8;
844 OP (2) = relocation >> 16;
850 RANGE (-0x800000, 0x7fffff);
851 if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE))
854 OP (1) = relocation >> 8;
855 OP (0) = relocation >> 16;
860 OP (1) = relocation >> 8;
861 OP (2) = relocation >> 16;
867 WARN_REDHAT ("RX_RH_24_UNS");
869 #if RX_OPCODE_BIG_ENDIAN
871 OP (1) = relocation >> 8;
872 OP (0) = relocation >> 16;
875 OP (1) = relocation >> 8;
876 OP (2) = relocation >> 16;
882 WARN_REDHAT ("RX_RH_32_NEG");
883 relocation = - relocation;
884 #if RX_OPCODE_BIG_ENDIAN
886 OP (2) = relocation >> 8;
887 OP (1) = relocation >> 16;
888 OP (0) = relocation >> 24;
891 OP (1) = relocation >> 8;
892 OP (2) = relocation >> 16;
893 OP (3) = relocation >> 24;
899 WARN_REDHAT ("RX_RH_32_OP");
900 #if RX_OPCODE_BIG_ENDIAN
902 OP (2) = relocation >> 8;
903 OP (1) = relocation >> 16;
904 OP (0) = relocation >> 24;
907 OP (1) = relocation >> 8;
908 OP (2) = relocation >> 16;
909 OP (3) = relocation >> 24;
914 if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE))
917 OP (2) = relocation >> 8;
918 OP (1) = relocation >> 16;
919 OP (0) = relocation >> 24;
924 OP (1) = relocation >> 8;
925 OP (2) = relocation >> 16;
926 OP (3) = relocation >> 24;
931 if (BIGE (output_bfd))
934 OP (1) = relocation >> 8;
935 OP (2) = relocation >> 16;
936 OP (3) = relocation >> 24;
941 OP (2) = relocation >> 8;
942 OP (1) = relocation >> 16;
943 OP (0) = relocation >> 24;
950 WARN_REDHAT ("RX_RH_DIFF");
951 val = bfd_get_32 (output_bfd, & OP (0));
953 bfd_put_32 (output_bfd, val, & OP (0));
958 WARN_REDHAT ("RX_RH_GPRELB");
959 relocation -= get_gp (&r, info, input_bfd, input_section, rel->r_offset);
961 #if RX_OPCODE_BIG_ENDIAN
963 OP (0) = relocation >> 8;
966 OP (1) = relocation >> 8;
971 WARN_REDHAT ("RX_RH_GPRELW");
972 relocation -= get_gp (&r, info, input_bfd, input_section, rel->r_offset);
976 #if RX_OPCODE_BIG_ENDIAN
978 OP (0) = relocation >> 8;
981 OP (1) = relocation >> 8;
986 WARN_REDHAT ("RX_RH_GPRELL");
987 relocation -= get_gp (&r, info, input_bfd, input_section, rel->r_offset);
991 #if RX_OPCODE_BIG_ENDIAN
993 OP (0) = relocation >> 8;
996 OP (1) = relocation >> 8;
1000 /* Internal relocations just for relaxation: */
1001 case R_RX_RH_ABS5p5B:
1002 RX_STACK_POP (relocation);
1005 OP (0) |= relocation >> 2;
1007 OP (1) |= (relocation << 6) & 0x80;
1008 OP (1) |= (relocation << 3) & 0x08;
1011 case R_RX_RH_ABS5p5W:
1012 RX_STACK_POP (relocation);
1017 OP (0) |= relocation >> 2;
1019 OP (1) |= (relocation << 6) & 0x80;
1020 OP (1) |= (relocation << 3) & 0x08;
1023 case R_RX_RH_ABS5p5L:
1024 RX_STACK_POP (relocation);
1029 OP (0) |= relocation >> 2;
1031 OP (1) |= (relocation << 6) & 0x80;
1032 OP (1) |= (relocation << 3) & 0x08;
1035 case R_RX_RH_ABS5p8B:
1036 RX_STACK_POP (relocation);
1039 OP (0) |= (relocation << 3) & 0x80;
1040 OP (0) |= relocation & 0x0f;
1043 case R_RX_RH_ABS5p8W:
1044 RX_STACK_POP (relocation);
1049 OP (0) |= (relocation << 3) & 0x80;
1050 OP (0) |= relocation & 0x0f;
1053 case R_RX_RH_ABS5p8L:
1054 RX_STACK_POP (relocation);
1059 OP (0) |= (relocation << 3) & 0x80;
1060 OP (0) |= relocation & 0x0f;
1063 case R_RX_RH_UIMM4p8:
1066 OP (0) |= relocation << 4;
1069 case R_RX_RH_UNEG4p8:
1072 OP (0) |= (-relocation) << 4;
1075 /* Complex reloc handling: */
1079 RX_STACK_POP (relocation);
1080 #if RX_OPCODE_BIG_ENDIAN
1081 OP (3) = relocation;
1082 OP (2) = relocation >> 8;
1083 OP (1) = relocation >> 16;
1084 OP (0) = relocation >> 24;
1086 OP (0) = relocation;
1087 OP (1) = relocation >> 8;
1088 OP (2) = relocation >> 16;
1089 OP (3) = relocation >> 24;
1093 case R_RX_ABS32_REV:
1095 RX_STACK_POP (relocation);
1096 #if RX_OPCODE_BIG_ENDIAN
1097 OP (0) = relocation;
1098 OP (1) = relocation >> 8;
1099 OP (2) = relocation >> 16;
1100 OP (3) = relocation >> 24;
1102 OP (3) = relocation;
1103 OP (2) = relocation >> 8;
1104 OP (1) = relocation >> 16;
1105 OP (0) = relocation >> 24;
1109 case R_RX_ABS24S_PCREL:
1112 RX_STACK_POP (relocation);
1113 RANGE (-0x800000, 0x7fffff);
1114 if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE))
1116 OP (2) = relocation;
1117 OP (1) = relocation >> 8;
1118 OP (0) = relocation >> 16;
1122 OP (0) = relocation;
1123 OP (1) = relocation >> 8;
1124 OP (2) = relocation >> 16;
1130 RX_STACK_POP (relocation);
1131 RANGE (-32768, 65535);
1132 #if RX_OPCODE_BIG_ENDIAN
1133 OP (1) = relocation;
1134 OP (0) = relocation >> 8;
1136 OP (0) = relocation;
1137 OP (1) = relocation >> 8;
1141 case R_RX_ABS16_REV:
1143 RX_STACK_POP (relocation);
1144 RANGE (-32768, 65535);
1145 #if RX_OPCODE_BIG_ENDIAN
1146 OP (0) = relocation;
1147 OP (1) = relocation >> 8;
1149 OP (1) = relocation;
1150 OP (0) = relocation >> 8;
1154 case R_RX_ABS16S_PCREL:
1156 RX_STACK_POP (relocation);
1157 RANGE (-32768, 32767);
1158 if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE))
1160 OP (1) = relocation;
1161 OP (0) = relocation >> 8;
1165 OP (0) = relocation;
1166 OP (1) = relocation >> 8;
1172 RX_STACK_POP (relocation);
1174 #if RX_OPCODE_BIG_ENDIAN
1175 OP (1) = relocation;
1176 OP (0) = relocation >> 8;
1178 OP (0) = relocation;
1179 OP (1) = relocation >> 8;
1185 RX_STACK_POP (relocation);
1188 #if RX_OPCODE_BIG_ENDIAN
1189 OP (1) = relocation;
1190 OP (0) = relocation >> 8;
1192 OP (0) = relocation;
1193 OP (1) = relocation >> 8;
1199 RX_STACK_POP (relocation);
1202 #if RX_OPCODE_BIG_ENDIAN
1203 OP (1) = relocation;
1204 OP (0) = relocation >> 8;
1206 OP (0) = relocation;
1207 OP (1) = relocation >> 8;
1213 RX_STACK_POP (relocation);
1215 OP (0) = relocation;
1220 RX_STACK_POP (relocation);
1222 OP (0) = relocation;
1227 RX_STACK_POP (relocation);
1230 OP (0) = relocation;
1235 RX_STACK_POP (relocation);
1238 OP (0) = relocation;
1243 case R_RX_ABS8S_PCREL:
1244 RX_STACK_POP (relocation);
1246 OP (0) = relocation;
1250 if (r_symndx < symtab_hdr->sh_info)
1251 RX_STACK_PUSH (sec->output_section->vma
1252 + sec->output_offset
1258 && (h->root.type == bfd_link_hash_defined
1259 || h->root.type == bfd_link_hash_defweak))
1260 RX_STACK_PUSH (h->root.u.def.value
1261 + sec->output_section->vma
1262 + sec->output_offset
1265 _bfd_error_handler (_("Warning: RX_SYM reloc with an unknown symbol"));
1273 saw_subtract = TRUE;
1276 RX_STACK_PUSH (tmp);
1284 RX_STACK_POP (tmp1);
1285 RX_STACK_POP (tmp2);
1287 RX_STACK_PUSH (tmp1);
1295 saw_subtract = TRUE;
1296 RX_STACK_POP (tmp1);
1297 RX_STACK_POP (tmp2);
1299 RX_STACK_PUSH (tmp2);
1307 RX_STACK_POP (tmp1);
1308 RX_STACK_POP (tmp2);
1310 RX_STACK_PUSH (tmp1);
1318 RX_STACK_POP (tmp1);
1319 RX_STACK_POP (tmp2);
1321 RX_STACK_PUSH (tmp1);
1329 RX_STACK_POP (tmp1);
1330 RX_STACK_POP (tmp2);
1332 RX_STACK_PUSH (tmp1);
1340 RX_STACK_POP (tmp1);
1341 RX_STACK_POP (tmp2);
1343 RX_STACK_PUSH (tmp1);
1347 case R_RX_OPsctsize:
1348 RX_STACK_PUSH (input_section->size);
1352 RX_STACK_PUSH (input_section->output_section->vma);
1359 RX_STACK_POP (tmp1);
1360 RX_STACK_POP (tmp2);
1362 RX_STACK_PUSH (tmp1);
1370 RX_STACK_POP (tmp1);
1371 RX_STACK_POP (tmp2);
1373 RX_STACK_PUSH (tmp1);
1381 RX_STACK_POP (tmp1);
1382 RX_STACK_POP (tmp2);
1384 RX_STACK_PUSH (tmp1);
1394 RX_STACK_PUSH (tmp);
1402 RX_STACK_POP (tmp1);
1403 RX_STACK_POP (tmp2);
1405 RX_STACK_PUSH (tmp1);
1410 RX_STACK_PUSH (get_romstart (&r, info, input_bfd, input_section, rel->r_offset));
1414 RX_STACK_PUSH (get_ramstart (&r, info, input_bfd, input_section, rel->r_offset));
1418 r = bfd_reloc_notsupported;
1422 if (r != bfd_reloc_ok)
1424 const char * msg = NULL;
1428 case bfd_reloc_overflow:
1429 /* Catch the case of a missing function declaration
1430 and emit a more helpful error message. */
1431 if (r_type == R_RX_DIR24S_PCREL)
1432 msg = _("%B(%A): error: call to undefined function '%s'");
1434 r = info->callbacks->reloc_overflow
1435 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
1436 input_bfd, input_section, rel->r_offset);
1439 case bfd_reloc_undefined:
1440 r = info->callbacks->undefined_symbol
1441 (info, name, input_bfd, input_section, rel->r_offset,
1445 case bfd_reloc_other:
1446 msg = _("%B(%A): warning: unaligned access to symbol '%s' in the small data area");
1449 case bfd_reloc_outofrange:
1450 msg = _("%B(%A): internal error: out of range error");
1453 case bfd_reloc_notsupported:
1454 msg = _("%B(%A): internal error: unsupported relocation error");
1457 case bfd_reloc_dangerous:
1458 msg = _("%B(%A): internal error: dangerous relocation");
1462 msg = _("%B(%A): internal error: unknown error");
1467 _bfd_error_handler (msg, input_bfd, input_section, name);
1477 /* Relaxation Support. */
1479 /* Progression of relocations from largest operand size to smallest
1483 next_smaller_reloc (int r)
1487 case R_RX_DIR32: return R_RX_DIR24S;
1488 case R_RX_DIR24S: return R_RX_DIR16S;
1489 case R_RX_DIR16S: return R_RX_DIR8S;
1490 case R_RX_DIR8S: return R_RX_NONE;
1492 case R_RX_DIR16: return R_RX_DIR8;
1493 case R_RX_DIR8: return R_RX_NONE;
1495 case R_RX_DIR16U: return R_RX_DIR8U;
1496 case R_RX_DIR8U: return R_RX_NONE;
1498 case R_RX_DIR24S_PCREL: return R_RX_DIR16S_PCREL;
1499 case R_RX_DIR16S_PCREL: return R_RX_DIR8S_PCREL;
1500 case R_RX_DIR8S_PCREL: return R_RX_DIR3U_PCREL;
1502 case R_RX_DIR16UL: return R_RX_DIR8UL;
1503 case R_RX_DIR8UL: return R_RX_NONE;
1504 case R_RX_DIR16UW: return R_RX_DIR8UW;
1505 case R_RX_DIR8UW: return R_RX_NONE;
1507 case R_RX_RH_32_OP: return R_RX_RH_24_OP;
1508 case R_RX_RH_24_OP: return R_RX_RH_16_OP;
1509 case R_RX_RH_16_OP: return R_RX_DIR8;
1511 case R_RX_ABS32: return R_RX_ABS24S;
1512 case R_RX_ABS24S: return R_RX_ABS16S;
1513 case R_RX_ABS16: return R_RX_ABS8;
1514 case R_RX_ABS16U: return R_RX_ABS8U;
1515 case R_RX_ABS16S: return R_RX_ABS8S;
1516 case R_RX_ABS8: return R_RX_NONE;
1517 case R_RX_ABS8U: return R_RX_NONE;
1518 case R_RX_ABS8S: return R_RX_NONE;
1519 case R_RX_ABS24S_PCREL: return R_RX_ABS16S_PCREL;
1520 case R_RX_ABS16S_PCREL: return R_RX_ABS8S_PCREL;
1521 case R_RX_ABS8S_PCREL: return R_RX_NONE;
1522 case R_RX_ABS16UL: return R_RX_ABS8UL;
1523 case R_RX_ABS16UW: return R_RX_ABS8UW;
1524 case R_RX_ABS8UL: return R_RX_NONE;
1525 case R_RX_ABS8UW: return R_RX_NONE;
1530 /* Delete some bytes from a section while relaxing. */
1533 elf32_rx_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, int count,
1534 Elf_Internal_Rela *alignment_rel, int force_snip,
1535 Elf_Internal_Rela *irelstart)
1537 Elf_Internal_Shdr * symtab_hdr;
1538 unsigned int sec_shndx;
1539 bfd_byte * contents;
1540 Elf_Internal_Rela * irel;
1541 Elf_Internal_Rela * irelend;
1542 Elf_Internal_Sym * isym;
1543 Elf_Internal_Sym * isymend;
1545 unsigned int symcount;
1546 struct elf_link_hash_entry ** sym_hashes;
1547 struct elf_link_hash_entry ** end_hashes;
1552 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
1554 contents = elf_section_data (sec)->this_hdr.contents;
1556 /* The deletion must stop at the next alignment boundary, if
1557 ALIGNMENT_REL is non-NULL. */
1560 toaddr = alignment_rel->r_offset;
1562 BFD_ASSERT (toaddr > addr);
1564 /* Actually delete the bytes. */
1565 memmove (contents + addr, contents + addr + count,
1566 (size_t) (toaddr - addr - count));
1568 /* If we don't have an alignment marker to worry about, we can just
1569 shrink the section. Otherwise, we have to fill in the newly
1570 created gap with NOP insns (0x03). */
1574 memset (contents + toaddr - count, 0x03, count);
1577 BFD_ASSERT (irel != NULL || sec->reloc_count == 0);
1578 irelend = irel + sec->reloc_count;
1580 /* Adjust all the relocs. */
1581 for (; irel < irelend; irel++)
1583 /* Get the new reloc address. */
1584 if (irel->r_offset > addr
1585 && (irel->r_offset < toaddr
1586 || (force_snip && irel->r_offset == toaddr)))
1587 irel->r_offset -= count;
1589 /* If we see an ALIGN marker at the end of the gap, we move it
1590 to the beginning of the gap, since marking these gaps is what
1592 if (irel->r_offset == toaddr
1593 && ELF32_R_TYPE (irel->r_info) == R_RX_RH_RELAX
1594 && irel->r_addend & RX_RELAXA_ALIGN)
1595 irel->r_offset -= count;
1598 /* Adjust the local symbols defined in this section. */
1599 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1600 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
1601 isymend = isym + symtab_hdr->sh_info;
1603 for (; isym < isymend; isym++)
1605 /* If the symbol is in the range of memory we just moved, we
1606 have to adjust its value. */
1607 if (isym->st_shndx == sec_shndx
1608 && isym->st_value > addr
1609 && isym->st_value < toaddr)
1610 isym->st_value -= count;
1612 /* If the symbol *spans* the bytes we just deleted (i.e. it's
1613 *end* is in the moved bytes but it's *start* isn't), then we
1614 must adjust its size. */
1615 if (isym->st_shndx == sec_shndx
1616 && isym->st_value < addr
1617 && isym->st_value + isym->st_size > addr
1618 && isym->st_value + isym->st_size < toaddr)
1619 isym->st_size -= count;
1622 /* Now adjust the global symbols defined in this section. */
1623 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
1624 - symtab_hdr->sh_info);
1625 sym_hashes = elf_sym_hashes (abfd);
1626 end_hashes = sym_hashes + symcount;
1628 for (; sym_hashes < end_hashes; sym_hashes++)
1630 struct elf_link_hash_entry *sym_hash = *sym_hashes;
1632 if ((sym_hash->root.type == bfd_link_hash_defined
1633 || sym_hash->root.type == bfd_link_hash_defweak)
1634 && sym_hash->root.u.def.section == sec)
1636 /* As above, adjust the value if needed. */
1637 if (sym_hash->root.u.def.value > addr
1638 && sym_hash->root.u.def.value < toaddr)
1639 sym_hash->root.u.def.value -= count;
1641 /* As above, adjust the size if needed. */
1642 if (sym_hash->root.u.def.value < addr
1643 && sym_hash->root.u.def.value + sym_hash->size > addr
1644 && sym_hash->root.u.def.value + sym_hash->size < toaddr)
1645 sym_hash->size -= count;
1652 /* Used to sort relocs by address. If relocs have the same address,
1653 we maintain their relative order, except that R_RX_RH_RELAX
1654 alignment relocs must be the first reloc for any given address. */
1657 reloc_bubblesort (Elf_Internal_Rela * r, int count)
1661 bfd_boolean swappit;
1663 /* This is almost a classic bubblesort. It's the slowest sort, but
1664 we're taking advantage of the fact that the relocations are
1665 mostly in order already (the assembler emits them that way) and
1666 we need relocs with the same address to remain in the same
1672 for (i = 0; i < count - 1; i ++)
1674 if (r[i].r_offset > r[i + 1].r_offset)
1676 else if (r[i].r_offset < r[i + 1].r_offset)
1678 else if (ELF32_R_TYPE (r[i + 1].r_info) == R_RX_RH_RELAX
1679 && (r[i + 1].r_addend & RX_RELAXA_ALIGN))
1681 else if (ELF32_R_TYPE (r[i + 1].r_info) == R_RX_RH_RELAX
1682 && (r[i + 1].r_addend & RX_RELAXA_ELIGN)
1683 && !(ELF32_R_TYPE (r[i].r_info) == R_RX_RH_RELAX
1684 && (r[i].r_addend & RX_RELAXA_ALIGN)))
1691 Elf_Internal_Rela tmp;
1696 /* If we do move a reloc back, re-scan to see if it
1697 needs to be moved even further back. This avoids
1698 most of the O(n^2) behavior for our cases. */
1708 #define OFFSET_FOR_RELOC(rel, lrel, scale) \
1709 rx_offset_for_reloc (abfd, rel + 1, symtab_hdr, shndx_buf, intsyms, \
1710 lrel, abfd, sec, link_info, scale)
1713 rx_offset_for_reloc (bfd * abfd,
1714 Elf_Internal_Rela * rel,
1715 Elf_Internal_Shdr * symtab_hdr,
1716 Elf_External_Sym_Shndx * shndx_buf ATTRIBUTE_UNUSED,
1717 Elf_Internal_Sym * intsyms,
1718 Elf_Internal_Rela ** lrel,
1720 asection * input_section,
1721 struct bfd_link_info * info,
1725 bfd_reloc_status_type r;
1729 /* REL is the first of 1..N relocations. We compute the symbol
1730 value for each relocation, then combine them if needed. LREL
1731 gets a pointer to the last relocation used. */
1736 /* Get the value of the symbol referred to by the reloc. */
1737 if (ELF32_R_SYM (rel->r_info) < symtab_hdr->sh_info)
1739 /* A local symbol. */
1740 Elf_Internal_Sym *isym;
1743 isym = intsyms + ELF32_R_SYM (rel->r_info);
1745 if (isym->st_shndx == SHN_UNDEF)
1746 ssec = bfd_und_section_ptr;
1747 else if (isym->st_shndx == SHN_ABS)
1748 ssec = bfd_abs_section_ptr;
1749 else if (isym->st_shndx == SHN_COMMON)
1750 ssec = bfd_com_section_ptr;
1752 ssec = bfd_section_from_elf_index (abfd,
1755 /* Initial symbol value. */
1756 symval = isym->st_value;
1758 /* GAS may have made this symbol relative to a section, in
1759 which case, we have to add the addend to find the
1761 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
1762 symval += rel->r_addend;
1766 if ((ssec->flags & SEC_MERGE)
1767 && ssec->sec_info_type == SEC_INFO_TYPE_MERGE)
1768 symval = _bfd_merged_section_offset (abfd, & ssec,
1769 elf_section_data (ssec)->sec_info,
1773 /* Now make the offset relative to where the linker is putting it. */
1776 ssec->output_section->vma + ssec->output_offset;
1778 symval += rel->r_addend;
1783 struct elf_link_hash_entry * h;
1785 /* An external symbol. */
1786 indx = ELF32_R_SYM (rel->r_info) - symtab_hdr->sh_info;
1787 h = elf_sym_hashes (abfd)[indx];
1788 BFD_ASSERT (h != NULL);
1790 if (h->root.type != bfd_link_hash_defined
1791 && h->root.type != bfd_link_hash_defweak)
1793 /* This appears to be a reference to an undefined
1794 symbol. Just ignore it--it will be caught by the
1795 regular reloc processing. */
1801 symval = (h->root.u.def.value
1802 + h->root.u.def.section->output_section->vma
1803 + h->root.u.def.section->output_offset);
1805 symval += rel->r_addend;
1808 switch (ELF32_R_TYPE (rel->r_info))
1811 RX_STACK_PUSH (symval);
1815 RX_STACK_POP (tmp1);
1817 RX_STACK_PUSH (tmp1);
1821 RX_STACK_POP (tmp1);
1822 RX_STACK_POP (tmp2);
1824 RX_STACK_PUSH (tmp1);
1828 RX_STACK_POP (tmp1);
1829 RX_STACK_POP (tmp2);
1831 RX_STACK_PUSH (tmp2);
1835 RX_STACK_POP (tmp1);
1836 RX_STACK_POP (tmp2);
1838 RX_STACK_PUSH (tmp1);
1842 RX_STACK_POP (tmp1);
1843 RX_STACK_POP (tmp2);
1845 RX_STACK_PUSH (tmp1);
1849 RX_STACK_POP (tmp1);
1850 RX_STACK_POP (tmp2);
1852 RX_STACK_PUSH (tmp1);
1856 RX_STACK_POP (tmp1);
1857 RX_STACK_POP (tmp2);
1859 RX_STACK_PUSH (tmp1);
1862 case R_RX_OPsctsize:
1863 RX_STACK_PUSH (input_section->size);
1867 RX_STACK_PUSH (input_section->output_section->vma);
1871 RX_STACK_POP (tmp1);
1872 RX_STACK_POP (tmp2);
1874 RX_STACK_PUSH (tmp1);
1878 RX_STACK_POP (tmp1);
1879 RX_STACK_POP (tmp2);
1881 RX_STACK_PUSH (tmp1);
1885 RX_STACK_POP (tmp1);
1886 RX_STACK_POP (tmp2);
1888 RX_STACK_PUSH (tmp1);
1892 RX_STACK_POP (tmp1);
1894 RX_STACK_PUSH (tmp1);
1898 RX_STACK_POP (tmp1);
1899 RX_STACK_POP (tmp2);
1901 RX_STACK_PUSH (tmp1);
1905 RX_STACK_PUSH (get_romstart (&r, info, input_bfd, input_section, rel->r_offset));
1909 RX_STACK_PUSH (get_ramstart (&r, info, input_bfd, input_section, rel->r_offset));
1917 RX_STACK_POP (symval);
1928 RX_STACK_POP (symval);
1936 RX_STACK_POP (symval);
1947 move_reloc (Elf_Internal_Rela * irel, Elf_Internal_Rela * srel, int delta)
1949 bfd_vma old_offset = srel->r_offset;
1952 while (irel <= srel)
1954 if (irel->r_offset == old_offset)
1955 irel->r_offset += delta;
1960 /* Relax one section. */
1963 elf32_rx_relax_section (bfd * abfd,
1965 struct bfd_link_info * link_info,
1966 bfd_boolean * again,
1967 bfd_boolean allow_pcrel3)
1969 Elf_Internal_Shdr * symtab_hdr;
1970 Elf_Internal_Shdr * shndx_hdr;
1971 Elf_Internal_Rela * internal_relocs;
1972 Elf_Internal_Rela * irel;
1973 Elf_Internal_Rela * srel;
1974 Elf_Internal_Rela * irelend;
1975 Elf_Internal_Rela * next_alignment;
1976 Elf_Internal_Rela * prev_alignment;
1977 bfd_byte * contents = NULL;
1978 bfd_byte * free_contents = NULL;
1979 Elf_Internal_Sym * intsyms = NULL;
1980 Elf_Internal_Sym * free_intsyms = NULL;
1981 Elf_External_Sym_Shndx * shndx_buf = NULL;
1987 int section_alignment_glue;
1988 /* how much to scale the relocation by - 1, 2, or 4. */
1991 /* Assume nothing changes. */
1994 /* We don't have to do anything for a relocatable link, if
1995 this section does not have relocs, or if this is not a
1997 if (bfd_link_relocatable (link_info)
1998 || (sec->flags & SEC_RELOC) == 0
1999 || sec->reloc_count == 0
2000 || (sec->flags & SEC_CODE) == 0)
2003 symtab_hdr = & elf_symtab_hdr (abfd);
2004 if (elf_symtab_shndx_list (abfd))
2005 shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
2009 sec_start = sec->output_section->vma + sec->output_offset;
2011 /* Get the section contents. */
2012 if (elf_section_data (sec)->this_hdr.contents != NULL)
2013 contents = elf_section_data (sec)->this_hdr.contents;
2014 /* Go get them off disk. */
2017 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
2019 elf_section_data (sec)->this_hdr.contents = contents;
2022 /* Read this BFD's symbols. */
2023 /* Get cached copy if it exists. */
2024 if (symtab_hdr->contents != NULL)
2025 intsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
2028 intsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL);
2029 symtab_hdr->contents = (bfd_byte *) intsyms;
2032 if (shndx_hdr && shndx_hdr->sh_size != 0)
2036 amt = symtab_hdr->sh_info;
2037 amt *= sizeof (Elf_External_Sym_Shndx);
2038 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
2039 if (shndx_buf == NULL)
2041 if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
2042 || bfd_bread (shndx_buf, amt, abfd) != amt)
2044 shndx_hdr->contents = (bfd_byte *) shndx_buf;
2047 /* Get a copy of the native relocations. */
2048 /* Note - we ignore the setting of link_info->keep_memory when reading
2049 in these relocs. We have to maintain a permanent copy of the relocs
2050 because we are going to walk over them multiple times, adjusting them
2051 as bytes are deleted from the section, and with this relaxation
2052 function itself being called multiple times on the same section... */
2053 internal_relocs = _bfd_elf_link_read_relocs
2054 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, TRUE);
2055 if (internal_relocs == NULL)
2058 /* The RL_ relocs must be just before the operand relocs they go
2059 with, so we must sort them to guarantee this. We use bubblesort
2060 instead of qsort so we can guarantee that relocs with the same
2061 address remain in the same relative order. */
2062 reloc_bubblesort (internal_relocs, sec->reloc_count);
2064 /* Walk through them looking for relaxing opportunities. */
2065 irelend = internal_relocs + sec->reloc_count;
2067 /* This will either be NULL or a pointer to the next alignment
2069 next_alignment = internal_relocs;
2070 /* This will be the previous alignment, although at first it points
2071 to the first real relocation. */
2072 prev_alignment = internal_relocs;
2074 /* We calculate worst case shrinkage caused by alignment directives.
2075 No fool-proof, but better than either ignoring the problem or
2076 doing heavy duty analysis of all the alignment markers in all
2078 section_alignment_glue = 0;
2079 for (irel = internal_relocs; irel < irelend; irel++)
2080 if (ELF32_R_TYPE (irel->r_info) == R_RX_RH_RELAX
2081 && irel->r_addend & RX_RELAXA_ALIGN)
2083 int this_glue = 1 << (irel->r_addend & RX_RELAXA_ANUM);
2085 if (section_alignment_glue < this_glue)
2086 section_alignment_glue = this_glue;
2088 /* Worst case is all 0..N alignments, in order, causing 2*N-1 byte
2090 section_alignment_glue *= 2;
2092 for (irel = internal_relocs; irel < irelend; irel++)
2094 unsigned char *insn;
2097 /* The insns we care about are all marked with one of these. */
2098 if (ELF32_R_TYPE (irel->r_info) != R_RX_RH_RELAX)
2101 if (irel->r_addend & RX_RELAXA_ALIGN
2102 || next_alignment == internal_relocs)
2104 /* When we delete bytes, we need to maintain all the alignments
2105 indicated. In addition, we need to be careful about relaxing
2106 jumps across alignment boundaries - these displacements
2107 *grow* when we delete bytes. For now, don't shrink
2108 displacements across an alignment boundary, just in case.
2109 Note that this only affects relocations to the same
2111 prev_alignment = next_alignment;
2112 next_alignment += 2;
2113 while (next_alignment < irelend
2114 && (ELF32_R_TYPE (next_alignment->r_info) != R_RX_RH_RELAX
2115 || !(next_alignment->r_addend & RX_RELAXA_ELIGN)))
2117 if (next_alignment >= irelend || next_alignment->r_offset == 0)
2118 next_alignment = NULL;
2121 /* When we hit alignment markers, see if we've shrunk enough
2122 before them to reduce the gap without violating the alignment
2124 if (irel->r_addend & RX_RELAXA_ALIGN)
2126 /* At this point, the next relocation *should* be the ELIGN
2128 Elf_Internal_Rela *erel = irel + 1;
2129 unsigned int alignment, nbytes;
2131 if (ELF32_R_TYPE (erel->r_info) != R_RX_RH_RELAX)
2133 if (!(erel->r_addend & RX_RELAXA_ELIGN))
2136 alignment = 1 << (irel->r_addend & RX_RELAXA_ANUM);
2138 if (erel->r_offset - irel->r_offset < alignment)
2141 nbytes = erel->r_offset - irel->r_offset;
2142 nbytes /= alignment;
2143 nbytes *= alignment;
2145 elf32_rx_relax_delete_bytes (abfd, sec, erel->r_offset-nbytes, nbytes, next_alignment,
2146 erel->r_offset == sec->size, internal_relocs);
2152 if (irel->r_addend & RX_RELAXA_ELIGN)
2155 insn = contents + irel->r_offset;
2157 nrelocs = irel->r_addend & RX_RELAXA_RNUM;
2159 /* At this point, we have an insn that is a candidate for linker
2160 relaxation. There are NRELOCS relocs following that may be
2161 relaxed, although each reloc may be made of more than one
2162 reloc entry (such as gp-rel symbols). */
2164 /* Get the value of the symbol referred to by the reloc. Just
2165 in case this is the last reloc in the list, use the RL's
2166 addend to choose between this reloc (no addend) or the next
2167 (yes addend, which means at least one following reloc). */
2169 /* srel points to the "current" reloction for this insn -
2170 actually the last reloc for a given operand, which is the one
2171 we need to update. We check the relaxations in the same
2172 order that the relocations happen, so we'll just push it
2176 pc = sec->output_section->vma + sec->output_offset
2180 symval = OFFSET_FOR_RELOC (srel, &srel, &scale); \
2181 pcrel = symval - pc + srel->r_addend; \
2184 #define SNIPNR(offset, nbytes) \
2185 elf32_rx_relax_delete_bytes (abfd, sec, (insn - contents) + offset, nbytes, next_alignment, 0, internal_relocs);
2186 #define SNIP(offset, nbytes, newtype) \
2187 SNIPNR (offset, nbytes); \
2188 srel->r_info = ELF32_R_INFO (ELF32_R_SYM (srel->r_info), newtype)
2190 /* The order of these bit tests must match the order that the
2191 relocs appear in. Since we sorted those by offset, we can
2194 /* Note that the numbers in, say, DSP6 are the bit offsets of
2195 the code fields that describe the operand. Bits number 0 for
2196 the MSB of insn[0]. */
2203 if (irel->r_addend & RX_RELAXA_DSP6)
2208 if (code == 2 && symval/scale <= 255)
2210 unsigned int newrel = ELF32_R_TYPE (srel->r_info);
2213 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
2214 if (newrel != ELF32_R_TYPE (srel->r_info))
2216 SNIP (3, 1, newrel);
2221 else if (code == 1 && symval == 0)
2224 SNIP (2, 1, R_RX_NONE);
2228 /* Special case DSP:5 format: MOV.bwl dsp:5[Rsrc],Rdst. */
2229 else if (code == 1 && symval/scale <= 31
2230 /* Decodable bits. */
2231 && (insn[0] & 0xcc) == 0xcc
2233 && (insn[0] & 0x30) != 0x30
2234 /* Register MSBs. */
2235 && (insn[1] & 0x88) == 0x00)
2239 insn[0] = 0x88 | (insn[0] & 0x30);
2240 /* The register fields are in the right place already. */
2242 /* We can't relax this new opcode. */
2245 switch ((insn[0] & 0x30) >> 4)
2248 newrel = R_RX_RH_ABS5p5B;
2251 newrel = R_RX_RH_ABS5p5W;
2254 newrel = R_RX_RH_ABS5p5L;
2258 move_reloc (irel, srel, -2);
2259 SNIP (2, 1, newrel);
2262 /* Special case DSP:5 format: MOVU.bw dsp:5[Rsrc],Rdst. */
2263 else if (code == 1 && symval/scale <= 31
2264 /* Decodable bits. */
2265 && (insn[0] & 0xf8) == 0x58
2266 /* Register MSBs. */
2267 && (insn[1] & 0x88) == 0x00)
2271 insn[0] = 0xb0 | ((insn[0] & 0x04) << 1);
2272 /* The register fields are in the right place already. */
2274 /* We can't relax this new opcode. */
2277 switch ((insn[0] & 0x08) >> 3)
2280 newrel = R_RX_RH_ABS5p5B;
2283 newrel = R_RX_RH_ABS5p5W;
2287 move_reloc (irel, srel, -2);
2288 SNIP (2, 1, newrel);
2292 /* A DSP4 operand always follows a DSP6 operand, even if there's
2293 no relocation for it. We have to read the code out of the
2294 opcode to calculate the offset of the operand. */
2295 if (irel->r_addend & RX_RELAXA_DSP4)
2297 int code6, offset = 0;
2301 code6 = insn[0] & 0x03;
2304 case 0: offset = 2; break;
2305 case 1: offset = 3; break;
2306 case 2: offset = 4; break;
2307 case 3: offset = 2; break;
2310 code = (insn[0] & 0x0c) >> 2;
2312 if (code == 2 && symval / scale <= 255)
2314 unsigned int newrel = ELF32_R_TYPE (srel->r_info);
2318 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
2319 if (newrel != ELF32_R_TYPE (srel->r_info))
2321 SNIP (offset+1, 1, newrel);
2326 else if (code == 1 && symval == 0)
2329 SNIP (offset, 1, R_RX_NONE);
2332 /* Special case DSP:5 format: MOV.bwl Rsrc,dsp:5[Rdst] */
2333 else if (code == 1 && symval/scale <= 31
2334 /* Decodable bits. */
2335 && (insn[0] & 0xc3) == 0xc3
2337 && (insn[0] & 0x30) != 0x30
2338 /* Register MSBs. */
2339 && (insn[1] & 0x88) == 0x00)
2343 insn[0] = 0x80 | (insn[0] & 0x30);
2344 /* The register fields are in the right place already. */
2346 /* We can't relax this new opcode. */
2349 switch ((insn[0] & 0x30) >> 4)
2352 newrel = R_RX_RH_ABS5p5B;
2355 newrel = R_RX_RH_ABS5p5W;
2358 newrel = R_RX_RH_ABS5p5L;
2362 move_reloc (irel, srel, -2);
2363 SNIP (2, 1, newrel);
2367 /* These always occur alone, but the offset depends on whether
2368 it's a MEMEX opcode (0x06) or not. */
2369 if (irel->r_addend & RX_RELAXA_DSP14)
2374 if (insn[0] == 0x06)
2381 if (code == 2 && symval / scale <= 255)
2383 unsigned int newrel = ELF32_R_TYPE (srel->r_info);
2387 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
2388 if (newrel != ELF32_R_TYPE (srel->r_info))
2390 SNIP (offset, 1, newrel);
2394 else if (code == 1 && symval == 0)
2397 SNIP (offset, 1, R_RX_NONE);
2408 /* These always occur alone. */
2409 if (irel->r_addend & RX_RELAXA_IMM6)
2415 /* These relocations sign-extend, so we must do signed compares. */
2416 ssymval = (long) symval;
2418 code = insn[0] & 0x03;
2420 if (code == 0 && ssymval <= 8388607 && ssymval >= -8388608)
2422 unsigned int newrel = ELF32_R_TYPE (srel->r_info);
2426 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
2427 if (newrel != ELF32_R_TYPE (srel->r_info))
2429 SNIP (2, 1, newrel);
2434 else if (code == 3 && ssymval <= 32767 && ssymval >= -32768)
2436 unsigned int newrel = ELF32_R_TYPE (srel->r_info);
2440 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
2441 if (newrel != ELF32_R_TYPE (srel->r_info))
2443 SNIP (2, 1, newrel);
2448 /* Special case UIMM8 format: CMP #uimm8,Rdst. */
2449 else if (code == 2 && ssymval <= 255 && ssymval >= 16
2450 /* Decodable bits. */
2451 && (insn[0] & 0xfc) == 0x74
2452 /* Decodable bits. */
2453 && ((insn[1] & 0xf0) == 0x00))
2458 insn[1] = 0x50 | (insn[1] & 0x0f);
2460 /* We can't relax this new opcode. */
2463 if (STACK_REL_P (ELF32_R_TYPE (srel->r_info)))
2464 newrel = R_RX_ABS8U;
2466 newrel = R_RX_DIR8U;
2468 SNIP (2, 1, newrel);
2472 else if (code == 2 && ssymval <= 127 && ssymval >= -128)
2474 unsigned int newrel = ELF32_R_TYPE (srel->r_info);
2478 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
2479 if (newrel != ELF32_R_TYPE (srel->r_info))
2481 SNIP (2, 1, newrel);
2486 /* Special case UIMM4 format: CMP, MUL, AND, OR. */
2487 else if (code == 1 && ssymval <= 15 && ssymval >= 0
2488 /* Decodable bits and immediate type. */
2490 /* Decodable bits. */
2491 && (insn[1] & 0xc0) == 0x00)
2493 static const int newop[4] = { 1, 3, 4, 5 };
2495 insn[0] = 0x60 | newop[insn[1] >> 4];
2496 /* The register number doesn't move. */
2498 /* We can't relax this new opcode. */
2501 move_reloc (irel, srel, -1);
2503 SNIP (2, 1, R_RX_RH_UIMM4p8);
2507 /* Special case UIMM4 format: ADD -> ADD/SUB. */
2508 else if (code == 1 && ssymval <= 15 && ssymval >= -15
2509 /* Decodable bits and immediate type. */
2511 /* Same register for source and destination. */
2512 && ((insn[1] >> 4) == (insn[1] & 0x0f)))
2516 /* Note that we can't turn "add $0,Rs" into a NOP
2517 because the flags need to be set right. */
2521 insn[0] = 0x60; /* Subtract. */
2522 newrel = R_RX_RH_UNEG4p8;
2526 insn[0] = 0x62; /* Add. */
2527 newrel = R_RX_RH_UIMM4p8;
2530 /* The register number is in the right place. */
2532 /* We can't relax this new opcode. */
2535 move_reloc (irel, srel, -1);
2537 SNIP (2, 1, newrel);
2542 /* These are either matched with a DSP6 (2-byte base) or an id24
2544 if (irel->r_addend & RX_RELAXA_IMM12)
2546 int dspcode, offset = 0;
2551 if ((insn[0] & 0xfc) == 0xfc)
2552 dspcode = 1; /* Just something with one byte operand. */
2554 dspcode = insn[0] & 3;
2557 case 0: offset = 2; break;
2558 case 1: offset = 3; break;
2559 case 2: offset = 4; break;
2560 case 3: offset = 2; break;
2563 /* These relocations sign-extend, so we must do signed compares. */
2564 ssymval = (long) symval;
2566 code = (insn[1] >> 2) & 3;
2567 if (code == 0 && ssymval <= 8388607 && ssymval >= -8388608)
2569 unsigned int newrel = ELF32_R_TYPE (srel->r_info);
2573 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
2574 if (newrel != ELF32_R_TYPE (srel->r_info))
2576 SNIP (offset, 1, newrel);
2581 else if (code == 3 && ssymval <= 32767 && ssymval >= -32768)
2583 unsigned int newrel = ELF32_R_TYPE (srel->r_info);
2587 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
2588 if (newrel != ELF32_R_TYPE (srel->r_info))
2590 SNIP (offset, 1, newrel);
2595 /* Special case UIMM8 format: MOV #uimm8,Rdst. */
2596 else if (code == 2 && ssymval <= 255 && ssymval >= 16
2597 /* Decodable bits. */
2599 /* Decodable bits. */
2600 && ((insn[1] & 0x03) == 0x02))
2605 insn[1] = 0x40 | (insn[1] >> 4);
2607 /* We can't relax this new opcode. */
2610 if (STACK_REL_P (ELF32_R_TYPE (srel->r_info)))
2611 newrel = R_RX_ABS8U;
2613 newrel = R_RX_DIR8U;
2615 SNIP (2, 1, newrel);
2619 else if (code == 2 && ssymval <= 127 && ssymval >= -128)
2621 unsigned int newrel = ELF32_R_TYPE(srel->r_info);
2625 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
2626 if (newrel != ELF32_R_TYPE(srel->r_info))
2628 SNIP (offset, 1, newrel);
2633 /* Special case UIMM4 format: MOV #uimm4,Rdst. */
2634 else if (code == 1 && ssymval <= 15 && ssymval >= 0
2635 /* Decodable bits. */
2637 /* Decodable bits. */
2638 && ((insn[1] & 0x03) == 0x02))
2641 insn[1] = insn[1] >> 4;
2643 /* We can't relax this new opcode. */
2646 move_reloc (irel, srel, -1);
2648 SNIP (2, 1, R_RX_RH_UIMM4p8);
2653 if (irel->r_addend & RX_RELAXA_BRA)
2655 unsigned int newrel = ELF32_R_TYPE (srel->r_info);
2657 int alignment_glue = 0;
2661 /* Branches over alignment chunks are problematic, as
2662 deleting bytes here makes the branch *further* away. We
2663 can be agressive with branches within this alignment
2664 block, but not branches outside it. */
2665 if ((prev_alignment == NULL
2666 || symval < (bfd_vma)(sec_start + prev_alignment->r_offset))
2667 && (next_alignment == NULL
2668 || symval > (bfd_vma)(sec_start + next_alignment->r_offset)))
2669 alignment_glue = section_alignment_glue;
2671 if (ELF32_R_TYPE(srel[1].r_info) == R_RX_RH_RELAX
2672 && srel[1].r_addend & RX_RELAXA_BRA
2673 && srel[1].r_offset < irel->r_offset + pcrel)
2676 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
2678 /* The values we compare PCREL with are not what you'd
2679 expect; they're off by a little to compensate for (1)
2680 where the reloc is relative to the insn, and (2) how much
2681 the insn is going to change when we relax it. */
2683 /* These we have to decode. */
2686 case 0x04: /* BRA pcdsp:24 */
2687 if (-32768 + alignment_glue <= pcrel
2688 && pcrel <= 32765 - alignment_glue)
2691 SNIP (3, 1, newrel);
2696 case 0x38: /* BRA pcdsp:16 */
2697 if (-128 + alignment_glue <= pcrel
2698 && pcrel <= 127 - alignment_glue)
2701 SNIP (2, 1, newrel);
2706 case 0x2e: /* BRA pcdsp:8 */
2707 /* Note that there's a risk here of shortening things so
2708 much that we no longer fit this reloc; it *should*
2709 only happen when you branch across a branch, and that
2710 branch also devolves into BRA.S. "Real" code should
2712 if (max_pcrel3 + alignment_glue <= pcrel
2713 && pcrel <= 10 - alignment_glue
2717 SNIP (1, 1, newrel);
2718 move_reloc (irel, srel, -1);
2723 case 0x05: /* BSR pcdsp:24 */
2724 if (-32768 + alignment_glue <= pcrel
2725 && pcrel <= 32765 - alignment_glue)
2728 SNIP (1, 1, newrel);
2733 case 0x3a: /* BEQ.W pcdsp:16 */
2734 case 0x3b: /* BNE.W pcdsp:16 */
2735 if (-128 + alignment_glue <= pcrel
2736 && pcrel <= 127 - alignment_glue)
2738 insn[0] = 0x20 | (insn[0] & 1);
2739 SNIP (1, 1, newrel);
2744 case 0x20: /* BEQ.B pcdsp:8 */
2745 case 0x21: /* BNE.B pcdsp:8 */
2746 if (max_pcrel3 + alignment_glue <= pcrel
2747 && pcrel - alignment_glue <= 10
2750 insn[0] = 0x10 | ((insn[0] & 1) << 3);
2751 SNIP (1, 1, newrel);
2752 move_reloc (irel, srel, -1);
2757 case 0x16: /* synthetic BNE dsp24 */
2758 case 0x1e: /* synthetic BEQ dsp24 */
2759 if (-32767 + alignment_glue <= pcrel
2760 && pcrel <= 32766 - alignment_glue
2763 if (insn[0] == 0x16)
2767 /* We snip out the bytes at the end else the reloc
2768 will get moved too, and too much. */
2769 SNIP (3, 2, newrel);
2770 move_reloc (irel, srel, -1);
2776 /* Special case - synthetic conditional branches, pcrel24.
2777 Note that EQ and NE have been handled above. */
2778 if ((insn[0] & 0xf0) == 0x20
2781 && srel->r_offset != irel->r_offset + 1
2782 && -32767 + alignment_glue <= pcrel
2783 && pcrel <= 32766 - alignment_glue)
2787 SNIP (5, 1, newrel);
2791 /* Special case - synthetic conditional branches, pcrel16 */
2792 if ((insn[0] & 0xf0) == 0x20
2795 && srel->r_offset != irel->r_offset + 1
2796 && -127 + alignment_glue <= pcrel
2797 && pcrel <= 126 - alignment_glue)
2799 int cond = (insn[0] & 0x0f) ^ 0x01;
2801 insn[0] = 0x20 | cond;
2802 /* By moving the reloc first, we avoid having
2803 delete_bytes move it also. */
2804 move_reloc (irel, srel, -2);
2805 SNIP (2, 3, newrel);
2810 BFD_ASSERT (nrelocs == 0);
2812 /* Special case - check MOV.bwl #IMM, dsp[reg] and see if we can
2813 use MOV.bwl #uimm:8, dsp:5[r7] format. This is tricky
2814 because it may have one or two relocations. */
2815 if ((insn[0] & 0xfc) == 0xf8
2816 && (insn[1] & 0x80) == 0x00
2817 && (insn[0] & 0x03) != 0x03)
2819 int dcode, icode, reg, ioff, dscale, ilen;
2820 bfd_vma disp_val = 0;
2822 Elf_Internal_Rela * disp_rel = 0;
2823 Elf_Internal_Rela * imm_rel = 0;
2828 dcode = insn[0] & 0x03;
2829 icode = (insn[1] >> 2) & 0x03;
2830 reg = (insn[1] >> 4) & 0x0f;
2832 ioff = dcode == 1 ? 3 : dcode == 2 ? 4 : 2;
2834 /* Figure out what the dispacement is. */
2835 if (dcode == 1 || dcode == 2)
2837 /* There's a displacement. See if there's a reloc for it. */
2838 if (srel[1].r_offset == irel->r_offset + 2)
2850 #if RX_OPCODE_BIG_ENDIAN
2851 disp_val = insn[2] * 256 + insn[3];
2853 disp_val = insn[2] + insn[3] * 256;
2856 switch (insn[1] & 3)
2872 /* Figure out what the immediate is. */
2873 if (srel[1].r_offset == irel->r_offset + ioff)
2876 imm_val = (long) symval;
2881 unsigned char * ip = insn + ioff;
2886 /* For byte writes, we don't sign extend. Makes the math easier later. */
2890 imm_val = (char) ip[0];
2893 #if RX_OPCODE_BIG_ENDIAN
2894 imm_val = ((char) ip[0] << 8) | ip[1];
2896 imm_val = ((char) ip[1] << 8) | ip[0];
2900 #if RX_OPCODE_BIG_ENDIAN
2901 imm_val = ((char) ip[0] << 16) | (ip[1] << 8) | ip[2];
2903 imm_val = ((char) ip[2] << 16) | (ip[1] << 8) | ip[0];
2907 #if RX_OPCODE_BIG_ENDIAN
2908 imm_val = (ip[0] << 24) | (ip[1] << 16) | (ip[2] << 8) | ip[3];
2910 imm_val = (ip[3] << 24) | (ip[2] << 16) | (ip[1] << 8) | ip[0];
2944 /* The shortcut happens when the immediate is 0..255,
2945 register r0 to r7, and displacement (scaled) 0..31. */
2947 if (0 <= imm_val && imm_val <= 255
2948 && 0 <= reg && reg <= 7
2949 && disp_val / dscale <= 31)
2951 insn[0] = 0x3c | (insn[1] & 0x03);
2952 insn[1] = (((disp_val / dscale) << 3) & 0x80) | (reg << 4) | ((disp_val/dscale) & 0x0f);
2957 int newrel = R_RX_NONE;
2962 newrel = R_RX_RH_ABS5p8B;
2965 newrel = R_RX_RH_ABS5p8W;
2968 newrel = R_RX_RH_ABS5p8L;
2971 disp_rel->r_info = ELF32_R_INFO (ELF32_R_SYM (disp_rel->r_info), newrel);
2972 move_reloc (irel, disp_rel, -1);
2976 imm_rel->r_info = ELF32_R_INFO (ELF32_R_SYM (imm_rel->r_info), R_RX_DIR8U);
2977 move_reloc (disp_rel ? disp_rel : irel,
2979 irel->r_offset - imm_rel->r_offset + 2);
2982 SNIPNR (3, ilen - 3);
2985 /* We can't relax this new opcode. */
2991 /* We can't reliably relax branches to DIR3U_PCREL unless we know
2992 whatever they're branching over won't shrink any more. If we're
2993 basically done here, do one more pass just for branches - but
2994 don't request a pass after that one! */
2995 if (!*again && !allow_pcrel3)
2997 bfd_boolean ignored;
2999 elf32_rx_relax_section (abfd, sec, link_info, &ignored, TRUE);
3005 if (free_contents != NULL)
3006 free (free_contents);
3008 if (shndx_buf != NULL)
3010 shndx_hdr->contents = NULL;
3014 if (free_intsyms != NULL)
3015 free (free_intsyms);
3021 elf32_rx_relax_section_wrapper (bfd * abfd,
3023 struct bfd_link_info * link_info,
3024 bfd_boolean * again)
3026 return elf32_rx_relax_section (abfd, sec, link_info, again, FALSE);
3029 /* Function to set the ELF flag bits. */
3032 rx_elf_set_private_flags (bfd * abfd, flagword flags)
3034 elf_elfheader (abfd)->e_flags = flags;
3035 elf_flags_init (abfd) = TRUE;
3039 static bfd_boolean no_warn_mismatch = FALSE;
3040 static bfd_boolean ignore_lma = TRUE;
3042 void bfd_elf32_rx_set_target_flags (bfd_boolean, bfd_boolean);
3045 bfd_elf32_rx_set_target_flags (bfd_boolean user_no_warn_mismatch,
3046 bfd_boolean user_ignore_lma)
3048 no_warn_mismatch = user_no_warn_mismatch;
3049 ignore_lma = user_ignore_lma;
3052 /* Converts FLAGS into a descriptive string.
3053 Returns a static pointer. */
3056 describe_flags (flagword flags)
3058 static char buf [128];
3062 if (flags & E_FLAG_RX_64BIT_DOUBLES)
3063 strcat (buf, "64-bit doubles");
3065 strcat (buf, "32-bit doubles");
3067 if (flags & E_FLAG_RX_DSP)
3068 strcat (buf, ", dsp");
3070 strcat (buf, ", no dsp");
3072 if (flags & E_FLAG_RX_PID)
3073 strcat (buf, ", pid");
3075 strcat (buf, ", no pid");
3077 if (flags & E_FLAG_RX_ABI)
3078 strcat (buf, ", RX ABI");
3080 strcat (buf, ", GCC ABI");
3082 if (flags & E_FLAG_RX_SINSNS_SET)
3083 strcat (buf, flags & E_FLAG_RX_SINSNS_YES ? ", uses String instructions" : ", bans String instructions");
3088 /* Merge backend specific data from an object file to the output
3089 object file when linking. */
3092 rx_elf_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
3096 bfd_boolean error = FALSE;
3098 new_flags = elf_elfheader (ibfd)->e_flags;
3099 old_flags = elf_elfheader (obfd)->e_flags;
3101 if (!elf_flags_init (obfd))
3103 /* First call, no flags set. */
3104 elf_flags_init (obfd) = TRUE;
3105 elf_elfheader (obfd)->e_flags = new_flags;
3107 else if (old_flags != new_flags)
3109 flagword known_flags;
3111 if (old_flags & E_FLAG_RX_SINSNS_SET)
3113 if ((new_flags & E_FLAG_RX_SINSNS_SET) == 0)
3115 new_flags &= ~ E_FLAG_RX_SINSNS_MASK;
3116 new_flags |= (old_flags & E_FLAG_RX_SINSNS_MASK);
3119 else if (new_flags & E_FLAG_RX_SINSNS_SET)
3121 old_flags &= ~ E_FLAG_RX_SINSNS_MASK;
3122 old_flags |= (new_flags & E_FLAG_RX_SINSNS_MASK);
3125 known_flags = E_FLAG_RX_ABI | E_FLAG_RX_64BIT_DOUBLES
3126 | E_FLAG_RX_DSP | E_FLAG_RX_PID | E_FLAG_RX_SINSNS_MASK;
3128 if ((old_flags ^ new_flags) & known_flags)
3130 /* Only complain if flag bits we care about do not match.
3131 Other bits may be set, since older binaries did use some
3132 deprecated flags. */
3133 if (no_warn_mismatch)
3135 elf_elfheader (obfd)->e_flags = (new_flags | old_flags) & known_flags;
3139 _bfd_error_handler ("There is a conflict merging the ELF header flags from %s",
3140 bfd_get_filename (ibfd));
3141 _bfd_error_handler (" the input file's flags: %s",
3142 describe_flags (new_flags));
3143 _bfd_error_handler (" the output file's flags: %s",
3144 describe_flags (old_flags));
3149 elf_elfheader (obfd)->e_flags = new_flags & known_flags;
3153 bfd_set_error (bfd_error_bad_value);
3159 rx_elf_print_private_bfd_data (bfd * abfd, void * ptr)
3161 FILE * file = (FILE *) ptr;
3164 BFD_ASSERT (abfd != NULL && ptr != NULL);
3166 /* Print normal ELF private data. */
3167 _bfd_elf_print_private_bfd_data (abfd, ptr);
3169 flags = elf_elfheader (abfd)->e_flags;
3170 fprintf (file, _("private flags = 0x%lx:"), (long) flags);
3172 fprintf (file, "%s", describe_flags (flags));
3176 /* Return the MACH for an e_flags value. */
3179 elf32_rx_machine (bfd * abfd ATTRIBUTE_UNUSED)
3181 #if 0 /* FIXME: EF_RX_CPU_MASK collides with E_FLAG_RX_...
3182 Need to sort out how these flag bits are used.
3183 For now we assume that the flags are OK. */
3184 if ((elf_elfheader (abfd)->e_flags & EF_RX_CPU_MASK) == EF_RX_CPU_RX)
3192 rx_elf_object_p (bfd * abfd)
3196 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
3197 int nphdrs = elf_elfheader (abfd)->e_phnum;
3199 static int saw_be = FALSE;
3201 /* We never want to automatically choose the non-swapping big-endian
3202 target. The user can only get that explicitly, such as with -I
3204 if (abfd->xvec == &rx_elf32_be_ns_vec
3205 && abfd->target_defaulted)
3208 /* BFD->target_defaulted is not set to TRUE when a target is chosen
3209 as a fallback, so we check for "scanning" to know when to stop
3210 using the non-swapping target. */
3211 if (abfd->xvec == &rx_elf32_be_ns_vec
3214 if (abfd->xvec == &rx_elf32_be_vec)
3217 bfd_default_set_arch_mach (abfd, bfd_arch_rx,
3218 elf32_rx_machine (abfd));
3220 /* For each PHDR in the object, we must find some section that
3221 corresponds (based on matching file offsets) and use its VMA
3222 information to reconstruct the p_vaddr field we clobbered when we
3224 for (i=0; i<nphdrs; i++)
3226 for (u=0; u<elf_tdata(abfd)->num_elf_sections; u++)
3228 Elf_Internal_Shdr *sec = elf_tdata(abfd)->elf_sect_ptr[u];
3230 if (phdr[i].p_filesz
3231 && phdr[i].p_offset <= (bfd_vma) sec->sh_offset
3233 && sec->sh_type != SHT_NOBITS
3234 && (bfd_vma)sec->sh_offset <= phdr[i].p_offset + (phdr[i].p_filesz - 1))
3236 /* Found one! The difference between the two addresses,
3237 plus the difference between the two file offsets, is
3238 enough information to reconstruct the lma. */
3240 /* Example where they aren't:
3241 PHDR[1] = lma fffc0100 offset 00002010 size 00000100
3242 SEC[6] = vma 00000050 offset 00002050 size 00000040
3244 The correct LMA for the section is fffc0140 + (2050-2010).
3247 phdr[i].p_vaddr = sec->sh_addr + (sec->sh_offset - phdr[i].p_offset);
3252 /* We must update the bfd sections as well, so we don't stop
3254 bsec = abfd->sections;
3257 if (phdr[i].p_filesz
3258 && phdr[i].p_vaddr <= bsec->vma
3259 && bsec->vma <= phdr[i].p_vaddr + (phdr[i].p_filesz - 1))
3261 bsec->lma = phdr[i].p_paddr + (bsec->vma - phdr[i].p_vaddr);
3273 rx_dump_symtab (bfd * abfd, void * internal_syms, void * external_syms)
3276 Elf_Internal_Sym * isymbuf;
3277 Elf_Internal_Sym * isymend;
3278 Elf_Internal_Sym * isym;
3279 Elf_Internal_Shdr * symtab_hdr;
3280 bfd_boolean free_internal = FALSE, free_external = FALSE;
3282 char * st_info_stb_str;
3283 char * st_other_str;
3284 char * st_shndx_str;
3286 if (! internal_syms)
3288 internal_syms = bfd_malloc (1000);
3291 if (! external_syms)
3293 external_syms = bfd_malloc (1000);
3297 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3298 locsymcount = symtab_hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3300 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
3301 symtab_hdr->sh_info, 0,
3302 internal_syms, external_syms, NULL);
3304 isymbuf = internal_syms;
3305 isymend = isymbuf + locsymcount;
3307 for (isym = isymbuf ; isym < isymend ; isym++)
3309 switch (ELF_ST_TYPE (isym->st_info))
3311 case STT_FUNC: st_info_str = "STT_FUNC"; break;
3312 case STT_SECTION: st_info_str = "STT_SECTION"; break;
3313 case STT_FILE: st_info_str = "STT_FILE"; break;
3314 case STT_OBJECT: st_info_str = "STT_OBJECT"; break;
3315 case STT_TLS: st_info_str = "STT_TLS"; break;
3316 default: st_info_str = "";
3318 switch (ELF_ST_BIND (isym->st_info))
3320 case STB_LOCAL: st_info_stb_str = "STB_LOCAL"; break;
3321 case STB_GLOBAL: st_info_stb_str = "STB_GLOBAL"; break;
3322 default: st_info_stb_str = "";
3324 switch (ELF_ST_VISIBILITY (isym->st_other))
3326 case STV_DEFAULT: st_other_str = "STV_DEFAULT"; break;
3327 case STV_INTERNAL: st_other_str = "STV_INTERNAL"; break;
3328 case STV_PROTECTED: st_other_str = "STV_PROTECTED"; break;
3329 default: st_other_str = "";
3331 switch (isym->st_shndx)
3333 case SHN_ABS: st_shndx_str = "SHN_ABS"; break;
3334 case SHN_COMMON: st_shndx_str = "SHN_COMMON"; break;
3335 case SHN_UNDEF: st_shndx_str = "SHN_UNDEF"; break;
3336 default: st_shndx_str = "";
3339 printf ("isym = %p st_value = %lx st_size = %lx st_name = (%lu) %s "
3340 "st_info = (%d) %s %s st_other = (%d) %s st_shndx = (%d) %s\n",
3342 (unsigned long) isym->st_value,
3343 (unsigned long) isym->st_size,
3345 bfd_elf_string_from_elf_section (abfd, symtab_hdr->sh_link,
3347 isym->st_info, st_info_str, st_info_stb_str,
3348 isym->st_other, st_other_str,
3349 isym->st_shndx, st_shndx_str);
3352 free (internal_syms);
3354 free (external_syms);
3358 rx_get_reloc (long reloc)
3360 if (0 <= reloc && reloc < R_RX_max)
3361 return rx_elf_howto_table[reloc].name;
3367 /* We must take care to keep the on-disk copy of any code sections
3368 that are fully linked swapped if the target is big endian, to match
3369 the Renesas tools. */
3371 /* The rule is: big endian object that are final-link executables,
3372 have code sections stored with 32-bit words swapped relative to
3373 what you'd get by default. */
3376 rx_get_section_contents (bfd * abfd,
3380 bfd_size_type count)
3382 int exec = (abfd->flags & EXEC_P) ? 1 : 0;
3383 int s_code = (section->flags & SEC_CODE) ? 1 : 0;
3387 fprintf (stderr, "dj: get %ld %ld from %s %s e%d sc%d %08lx:%08lx\n",
3388 (long) offset, (long) count, section->name,
3389 bfd_big_endian(abfd) ? "be" : "le",
3390 exec, s_code, (long unsigned) section->filepos,
3391 (long unsigned) offset);
3394 if (exec && s_code && bfd_big_endian (abfd))
3396 char * cloc = (char *) location;
3397 bfd_size_type cnt, end_cnt;
3401 /* Fetch and swap unaligned bytes at the beginning. */
3406 rv = _bfd_generic_get_section_contents (abfd, section, buf,
3411 bfd_putb32 (bfd_getl32 (buf), buf);
3413 cnt = 4 - (offset % 4);
3417 memcpy (location, buf + (offset % 4), cnt);
3424 end_cnt = count % 4;
3426 /* Fetch and swap the middle bytes. */
3429 rv = _bfd_generic_get_section_contents (abfd, section, cloc, offset,
3434 for (cnt = count; cnt >= 4; cnt -= 4, cloc += 4)
3435 bfd_putb32 (bfd_getl32 (cloc), cloc);
3438 /* Fetch and swap the end bytes. */
3443 /* Fetch the end bytes. */
3444 rv = _bfd_generic_get_section_contents (abfd, section, buf,
3445 offset + count - end_cnt, 4);
3449 bfd_putb32 (bfd_getl32 (buf), buf);
3450 memcpy (cloc, buf, end_cnt);
3454 rv = _bfd_generic_get_section_contents (abfd, section, location, offset, count);
3461 rx2_set_section_contents (bfd * abfd,
3463 const void * location,
3465 bfd_size_type count)
3469 fprintf (stderr, " set sec %s %08x loc %p offset %#x count %#x\n",
3470 section->name, (unsigned) section->vma, location, (int) offset, (int) count);
3471 for (i = 0; i < count; i++)
3473 if (i % 16 == 0 && i > 0)
3474 fprintf (stderr, "\n");
3476 if (i % 16 && i % 4 == 0)
3477 fprintf (stderr, " ");
3480 fprintf (stderr, " %08x:", (int) (section->vma + offset + i));
3482 fprintf (stderr, " %02x", ((unsigned char *) location)[i]);
3484 fprintf (stderr, "\n");
3486 return _bfd_elf_set_section_contents (abfd, section, location, offset, count);
3488 #define _bfd_elf_set_section_contents rx2_set_section_contents
3492 rx_set_section_contents (bfd * abfd,
3494 const void * location,
3496 bfd_size_type count)
3498 bfd_boolean exec = (abfd->flags & EXEC_P) ? TRUE : FALSE;
3499 bfd_boolean s_code = (section->flags & SEC_CODE) ? TRUE : FALSE;
3501 char * swapped_data = NULL;
3503 bfd_vma caddr = section->vma + offset;
3505 bfd_size_type scount;
3510 fprintf (stderr, "\ndj: set %ld %ld to %s %s e%d sc%d\n",
3511 (long) offset, (long) count, section->name,
3512 bfd_big_endian (abfd) ? "be" : "le",
3515 for (i = 0; i < count; i++)
3517 int a = section->vma + offset + i;
3519 if (a % 16 == 0 && a > 0)
3520 fprintf (stderr, "\n");
3522 if (a % 16 && a % 4 == 0)
3523 fprintf (stderr, " ");
3525 if (a % 16 == 0 || i == 0)
3526 fprintf (stderr, " %08x:", (int) (section->vma + offset + i));
3528 fprintf (stderr, " %02x", ((unsigned char *) location)[i]);
3531 fprintf (stderr, "\n");
3534 if (! exec || ! s_code || ! bfd_big_endian (abfd))
3535 return _bfd_elf_set_section_contents (abfd, section, location, offset, count);
3537 while (count > 0 && caddr > 0 && caddr % 4)
3541 case 0: faddr = offset + 3; break;
3542 case 1: faddr = offset + 1; break;
3543 case 2: faddr = offset - 1; break;
3544 case 3: faddr = offset - 3; break;
3547 rv = _bfd_elf_set_section_contents (abfd, section, location, faddr, 1);
3557 scount = (int)(count / 4) * 4;
3560 char * cloc = (char *) location;
3562 swapped_data = (char *) bfd_alloc (abfd, count);
3564 for (i = 0; i < count; i += 4)
3566 bfd_vma v = bfd_getl32 (cloc + i);
3567 bfd_putb32 (v, swapped_data + i);
3570 rv = _bfd_elf_set_section_contents (abfd, section, swapped_data, offset, scount);
3582 caddr = section->vma + offset;
3587 case 0: faddr = offset + 3; break;
3588 case 1: faddr = offset + 1; break;
3589 case 2: faddr = offset - 1; break;
3590 case 3: faddr = offset - 3; break;
3592 rv = _bfd_elf_set_section_contents (abfd, section, location, faddr, 1);
3607 rx_final_link (bfd * abfd, struct bfd_link_info * info)
3611 for (o = abfd->sections; o != NULL; o = o->next)
3614 fprintf (stderr, "sec %s fl %x vma %lx lma %lx size %lx raw %lx\n",
3615 o->name, o->flags, o->vma, o->lma, o->size, o->rawsize);
3617 if (o->flags & SEC_CODE
3618 && bfd_big_endian (abfd)
3622 fprintf (stderr, "adjusting...\n");
3624 o->size += 4 - (o->size % 4);
3628 return bfd_elf_final_link (abfd, info);
3632 elf32_rx_modify_program_headers (bfd * abfd ATTRIBUTE_UNUSED,
3633 struct bfd_link_info * info ATTRIBUTE_UNUSED)
3635 const struct elf_backend_data * bed;
3636 struct elf_obj_tdata * tdata;
3637 Elf_Internal_Phdr * phdr;
3641 bed = get_elf_backend_data (abfd);
3642 tdata = elf_tdata (abfd);
3644 count = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
3647 for (i = count; i-- != 0;)
3648 if (phdr[i].p_type == PT_LOAD)
3650 /* The Renesas tools expect p_paddr to be zero. However,
3651 there is no other way to store the writable data in ROM for
3652 startup initialization. So, we let the linker *think*
3653 we're using paddr and vaddr the "usual" way, but at the
3654 last minute we move the paddr into the vaddr (which is what
3655 the simulator uses) and zero out paddr. Note that this
3656 does not affect the section headers, just the program
3657 headers. We hope. */
3658 phdr[i].p_vaddr = phdr[i].p_paddr;
3659 #if 0 /* If we zero out p_paddr, then the LMA in the section table
3661 phdr[i].p_paddr = 0;
3668 /* The default literal sections should always be marked as "code" (i.e.,
3669 SHF_EXECINSTR). This is particularly important for big-endian mode
3670 when we do not want their contents byte reversed. */
3671 static const struct bfd_elf_special_section elf32_rx_special_sections[] =
3673 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_EXECINSTR },
3674 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_EXECINSTR },
3675 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_EXECINSTR },
3676 { NULL, 0, 0, 0, 0 }
3681 struct bfd_link_info *info;
3682 bfd_vma table_start;
3684 bfd_vma *table_handlers;
3685 bfd_vma table_default_handler;
3686 struct bfd_link_hash_entry **table_entries;
3687 struct bfd_link_hash_entry *table_default_entry;
3692 rx_table_find (struct bfd_hash_entry *vent, void *vinfo)
3694 RX_Table_Info *info = (RX_Table_Info *)vinfo;
3695 struct bfd_link_hash_entry *ent = (struct bfd_link_hash_entry *)vent;
3696 const char *name; /* of the symbol we've found */
3700 const char *tname; /* name of the table */
3701 bfd_vma start_addr, end_addr;
3703 struct bfd_link_hash_entry * h;
3705 /* We're looking for globally defined symbols of the form
3706 $tablestart$<NAME>. */
3707 if (ent->type != bfd_link_hash_defined
3708 && ent->type != bfd_link_hash_defweak)
3711 name = ent->root.string;
3712 sec = ent->u.def.section;
3715 if (strncmp (name, "$tablestart$", 12))
3718 sec->flags |= SEC_KEEP;
3722 start_addr = ent->u.def.value;
3724 /* At this point, we can't build the table but we can (and must)
3725 find all the related symbols and mark their sections as SEC_KEEP
3726 so we don't garbage collect them. */
3728 buf = (char *) malloc (12 + 10 + strlen (tname));
3730 sprintf (buf, "$tableend$%s", tname);
3731 h = bfd_link_hash_lookup (info->info->hash, buf, FALSE, FALSE, TRUE);
3732 if (!h || (h->type != bfd_link_hash_defined
3733 && h->type != bfd_link_hash_defweak))
3735 _bfd_error_handler (_("%B:%A: table %s missing corresponding %s"),
3736 abfd, sec, name, buf);
3740 if (h->u.def.section != ent->u.def.section)
3742 _bfd_error_handler (_("%B:%A: %s and %s must be in the same input section"),
3743 h->u.def.section->owner, h->u.def.section,
3748 end_addr = h->u.def.value;
3750 sprintf (buf, "$tableentry$default$%s", tname);
3751 h = bfd_link_hash_lookup (info->info->hash, buf, FALSE, FALSE, TRUE);
3752 if (h && (h->type == bfd_link_hash_defined
3753 || h->type == bfd_link_hash_defweak))
3755 h->u.def.section->flags |= SEC_KEEP;
3758 for (idx = 0; idx < (int) (end_addr - start_addr) / 4; idx ++)
3760 sprintf (buf, "$tableentry$%d$%s", idx, tname);
3761 h = bfd_link_hash_lookup (info->info->hash, buf, FALSE, FALSE, TRUE);
3762 if (h && (h->type == bfd_link_hash_defined
3763 || h->type == bfd_link_hash_defweak))
3765 h->u.def.section->flags |= SEC_KEEP;
3769 /* Return TRUE to keep scanning, FALSE to end the traversal. */
3773 /* We need to check for table entry symbols and build the tables, and
3774 we need to do it before the linker does garbage collection. This function is
3775 called once per input object file. */
3778 (bfd * abfd ATTRIBUTE_UNUSED,
3779 struct bfd_link_info * info ATTRIBUTE_UNUSED)
3781 RX_Table_Info stuff;
3785 bfd_hash_traverse (&(info->hash->table), rx_table_find, &stuff);
3792 rx_table_map_2 (struct bfd_hash_entry *vent, void *vinfo)
3794 RX_Table_Info *info = (RX_Table_Info *)vinfo;
3795 struct bfd_link_hash_entry *ent = (struct bfd_link_hash_entry *)vent;
3800 /* See if the symbol ENT has an address listed in the table, and
3801 isn't a debug/special symbol. If so, put it in the table. */
3803 if (ent->type != bfd_link_hash_defined
3804 && ent->type != bfd_link_hash_defweak)
3807 name = ent->root.string;
3809 if (name[0] == '$' || name[0] == '.' || name[0] < ' ')
3812 addr = (ent->u.def.value
3813 + ent->u.def.section->output_section->vma
3814 + ent->u.def.section->output_offset);
3816 for (idx = 0; idx < info->table_size; idx ++)
3817 if (addr == info->table_handlers[idx])
3818 info->table_entries[idx] = ent;
3820 if (addr == info->table_default_handler)
3821 info->table_default_entry = ent;
3827 rx_table_map (struct bfd_hash_entry *vent, void *vinfo)
3829 RX_Table_Info *info = (RX_Table_Info *)vinfo;
3830 struct bfd_link_hash_entry *ent = (struct bfd_link_hash_entry *)vent;
3831 const char *name; /* of the symbol we've found */
3833 const char *tname; /* name of the table */
3834 bfd_vma start_addr, end_addr;
3836 struct bfd_link_hash_entry * h;
3839 /* We're looking for globally defined symbols of the form
3840 $tablestart$<NAME>. */
3841 if (ent->type != bfd_link_hash_defined
3842 && ent->type != bfd_link_hash_defweak)
3845 name = ent->root.string;
3847 if (strncmp (name, "$tablestart$", 12))
3851 start_addr = (ent->u.def.value
3852 + ent->u.def.section->output_section->vma
3853 + ent->u.def.section->output_offset);
3855 buf = (char *) malloc (12 + 10 + strlen (tname));
3857 sprintf (buf, "$tableend$%s", tname);
3858 end_addr = get_symbol_value_maybe (buf, info->info);
3860 sprintf (buf, "$tableentry$default$%s", tname);
3861 h = bfd_link_hash_lookup (info->info->hash, buf, FALSE, FALSE, TRUE);
3864 info->table_default_handler = (h->u.def.value
3865 + h->u.def.section->output_section->vma
3866 + h->u.def.section->output_offset);
3869 /* Zero is a valid handler address! */
3870 info->table_default_handler = (bfd_vma) (-1);
3871 info->table_default_entry = NULL;
3873 info->table_start = start_addr;
3874 info->table_size = (int) (end_addr - start_addr) / 4;
3875 info->table_handlers = (bfd_vma *) malloc (info->table_size * sizeof (bfd_vma));
3876 info->table_entries = (struct bfd_link_hash_entry **) malloc (info->table_size * sizeof (struct bfd_link_hash_entry));
3878 for (idx = 0; idx < (int) (end_addr - start_addr) / 4; idx ++)
3880 sprintf (buf, "$tableentry$%d$%s", idx, tname);
3881 h = bfd_link_hash_lookup (info->info->hash, buf, FALSE, FALSE, TRUE);
3882 if (h && (h->type == bfd_link_hash_defined
3883 || h->type == bfd_link_hash_defweak))
3885 info->table_handlers[idx] = (h->u.def.value
3886 + h->u.def.section->output_section->vma
3887 + h->u.def.section->output_offset);
3890 info->table_handlers[idx] = info->table_default_handler;
3891 info->table_entries[idx] = NULL;
3896 bfd_hash_traverse (&(info->info->hash->table), rx_table_map_2, info);
3898 fprintf (info->mapfile, "\nRX Vector Table: %s has %d entries at 0x%08" BFD_VMA_FMT "x\n\n",
3899 tname, info->table_size, start_addr);
3901 if (info->table_default_entry)
3902 fprintf (info->mapfile, " default handler is: %s at 0x%08" BFD_VMA_FMT "x\n",
3903 info->table_default_entry->root.string,
3904 info->table_default_handler);
3905 else if (info->table_default_handler != (bfd_vma)(-1))
3906 fprintf (info->mapfile, " default handler is at 0x%08" BFD_VMA_FMT "x\n",
3907 info->table_default_handler);
3909 fprintf (info->mapfile, " no default handler\n");
3912 for (idx = 0; idx < info->table_size; idx ++)
3914 if (info->table_handlers[idx] == info->table_default_handler)
3917 fprintf (info->mapfile, " . . .\n");
3923 fprintf (info->mapfile, " 0x%08" BFD_VMA_FMT "x [%3d] ", start_addr + 4 * idx, idx);
3925 if (info->table_handlers[idx] == (bfd_vma) (-1))
3926 fprintf (info->mapfile, "(no handler found)\n");
3928 else if (info->table_handlers[idx] == info->table_default_handler)
3930 if (info->table_default_entry)
3931 fprintf (info->mapfile, "(default)\n");
3933 fprintf (info->mapfile, "(default)\n");
3936 else if (info->table_entries[idx])
3938 fprintf (info->mapfile, "0x%08" BFD_VMA_FMT "x %s\n", info->table_handlers[idx], info->table_entries[idx]->root.string);
3943 fprintf (info->mapfile, "0x%08" BFD_VMA_FMT "x ???\n", info->table_handlers[idx]);
3947 fprintf (info->mapfile, " . . .\n");
3953 rx_additional_link_map_text (bfd *obfd, struct bfd_link_info *info, FILE *mapfile)
3955 /* We scan the symbol table looking for $tableentry$'s, and for
3956 each, try to deduce which handlers go with which entries. */
3958 RX_Table_Info stuff;
3962 stuff.mapfile = mapfile;
3963 bfd_hash_traverse (&(info->hash->table), rx_table_map, &stuff);
3967 #define ELF_ARCH bfd_arch_rx
3968 #define ELF_MACHINE_CODE EM_RX
3969 #define ELF_MAXPAGESIZE 0x1000
3971 #define TARGET_BIG_SYM rx_elf32_be_vec
3972 #define TARGET_BIG_NAME "elf32-rx-be"
3974 #define TARGET_LITTLE_SYM rx_elf32_le_vec
3975 #define TARGET_LITTLE_NAME "elf32-rx-le"
3977 #define elf_info_to_howto_rel NULL
3978 #define elf_info_to_howto rx_info_to_howto_rela
3979 #define elf_backend_object_p rx_elf_object_p
3980 #define elf_backend_relocate_section rx_elf_relocate_section
3981 #define elf_symbol_leading_char ('_')
3982 #define elf_backend_can_gc_sections 1
3983 #define elf_backend_modify_program_headers elf32_rx_modify_program_headers
3985 #define bfd_elf32_bfd_reloc_type_lookup rx_reloc_type_lookup
3986 #define bfd_elf32_bfd_reloc_name_lookup rx_reloc_name_lookup
3987 #define bfd_elf32_bfd_set_private_flags rx_elf_set_private_flags
3988 #define bfd_elf32_bfd_merge_private_bfd_data rx_elf_merge_private_bfd_data
3989 #define bfd_elf32_bfd_print_private_bfd_data rx_elf_print_private_bfd_data
3990 #define bfd_elf32_get_section_contents rx_get_section_contents
3991 #define bfd_elf32_set_section_contents rx_set_section_contents
3992 #define bfd_elf32_bfd_final_link rx_final_link
3993 #define bfd_elf32_bfd_relax_section elf32_rx_relax_section_wrapper
3994 #define elf_backend_special_sections elf32_rx_special_sections
3995 #define elf_backend_check_directives rx_check_directives
3997 #include "elf32-target.h"
3999 /* We define a second big-endian target that doesn't have the custom
4000 section get/set hooks, for times when we want to preserve the
4001 pre-swapped .text sections (like objcopy). */
4003 #undef TARGET_BIG_SYM
4004 #define TARGET_BIG_SYM rx_elf32_be_ns_vec
4005 #undef TARGET_BIG_NAME
4006 #define TARGET_BIG_NAME "elf32-rx-be-ns"
4007 #undef TARGET_LITTLE_SYM
4009 #undef bfd_elf32_get_section_contents
4010 #undef bfd_elf32_set_section_contents
4013 #define elf32_bed elf32_rx_be_ns_bed
4015 #include "elf32-target.h"