1 /* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 94, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
28 /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
29 different MIPS ELF from other targets. This matters when linking.
30 This file supports both, switching at runtime. */
40 /* Get the ECOFF swapping routines. */
42 #include "coff/symconst.h"
43 #include "coff/internal.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46 #define ECOFF_SIGNED_32
47 #include "ecoffswap.h"
49 /* This structure is used to hold .got information when linking. It
50 is stored in the tdata field of the bfd_elf_section_data structure. */
52 struct mips_got_info {
53 /* The global symbol in the GOT with the lowest index in the dynamic
55 struct elf_link_hash_entry *global_gotsym;
56 /* The number of global .got entries. */
57 unsigned int global_gotno;
58 /* The number of local .got entries. */
59 unsigned int local_gotno;
60 /* The number of local .got entries we have used. */
61 unsigned int assigned_gotno;
64 /* The MIPS ELF linker needs additional information for each symbol in
65 the global hash table. */
67 struct mips_elf_link_hash_entry {
68 struct elf_link_hash_entry root;
70 /* External symbol information. */
73 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
75 unsigned int possibly_dynamic_relocs;
77 /* The index of the first dynamic relocation (in the .rel.dyn
78 section) against this symbol. */
79 unsigned int min_dyn_reloc_index;
81 /* If there is a stub that 32 bit functions should use to call this
82 16 bit function, this points to the section containing the stub. */
85 /* Whether we need the fn_stub; this is set if this symbol appears
86 in any relocs other than a 16 bit call. */
89 /* If there is a stub that 16 bit functions should use to call this
90 32 bit function, this points to the section containing the stub. */
93 /* This is like the call_stub field, but it is used if the function
94 being called returns a floating point value. */
95 asection *call_fp_stub;
98 static bfd_reloc_status_type mips32_64bit_reloc
99 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
100 static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
101 PARAMS ((bfd *, bfd_reloc_code_real_type));
102 static reloc_howto_type *mips_rtype_to_howto
103 PARAMS ((unsigned int));
104 static void mips_info_to_howto_rel
105 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
106 static void mips_info_to_howto_rela
107 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
108 static void bfd_mips_elf32_swap_gptab_in
109 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
110 static void bfd_mips_elf32_swap_gptab_out
111 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
113 static void bfd_mips_elf_swap_msym_in
114 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
116 static void bfd_mips_elf_swap_msym_out
117 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
118 static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
119 static boolean mips_elf_create_procedure_table
120 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
121 struct ecoff_debug_info *));
122 static INLINE int elf_mips_isa PARAMS ((flagword));
123 static INLINE int elf_mips_mach PARAMS ((flagword));
124 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
125 static boolean mips_elf_is_local_label_name
126 PARAMS ((bfd *, const char *));
127 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
128 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
129 static int gptab_compare PARAMS ((const void *, const void *));
130 static bfd_reloc_status_type mips16_jump_reloc
131 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
132 static bfd_reloc_status_type mips16_gprel_reloc
133 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
134 static boolean mips_elf_create_compact_rel_section
135 PARAMS ((bfd *, struct bfd_link_info *));
136 static boolean mips_elf_create_got_section
137 PARAMS ((bfd *, struct bfd_link_info *));
138 static bfd_reloc_status_type mips_elf_final_gp
139 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
140 static bfd_byte *elf32_mips_get_relocated_section_contents
141 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
142 bfd_byte *, boolean, asymbol **));
143 static asection *mips_elf_create_msym_section
145 static void mips_elf_irix6_finish_dynamic_symbol
146 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
147 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
148 static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
149 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
150 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
151 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
152 static bfd_vma mips_elf_global_got_index
153 PARAMS ((bfd *, struct elf_link_hash_entry *));
154 static bfd_vma mips_elf_local_got_index
155 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
156 static bfd_vma mips_elf_got_offset_from_index
157 PARAMS ((bfd *, bfd *, bfd_vma));
158 static boolean mips_elf_record_global_got_symbol
159 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
160 struct mips_got_info *));
161 static bfd_vma mips_elf_got_page
162 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
163 static const Elf_Internal_Rela *mips_elf_next_relocation
164 PARAMS ((unsigned int, const Elf_Internal_Rela *,
165 const Elf_Internal_Rela *));
166 static bfd_reloc_status_type mips_elf_calculate_relocation
167 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
168 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
169 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
171 static bfd_vma mips_elf_obtain_contents
172 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
173 static boolean mips_elf_perform_relocation
174 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
175 const Elf_Internal_Rela *, bfd_vma,
176 bfd *, asection *, bfd_byte *, boolean));
177 static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
178 static boolean mips_elf_sort_hash_table_f
179 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
180 static boolean mips_elf_sort_hash_table
181 PARAMS ((struct bfd_link_info *, unsigned long));
182 static asection * mips_elf_got_section PARAMS ((bfd *));
183 static struct mips_got_info *mips_elf_got_info
184 PARAMS ((bfd *, asection **));
185 static boolean mips_elf_local_relocation_p
186 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean));
187 static bfd_vma mips_elf_create_local_got_entry
188 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
189 static bfd_vma mips_elf_got16_entry
190 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean));
191 static boolean mips_elf_create_dynamic_relocation
192 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
193 struct mips_elf_link_hash_entry *, asection *,
194 bfd_vma, bfd_vma *, asection *, boolean local_p));
195 static void mips_elf_allocate_dynamic_relocations
196 PARAMS ((bfd *, unsigned int));
197 static boolean mips_elf_stub_section_p
198 PARAMS ((bfd *, asection *));
199 static int sort_dynamic_relocs
200 PARAMS ((const void *, const void *));
202 extern const bfd_target bfd_elf32_tradbigmips_vec;
204 /* The level of IRIX compatibility we're striving for. */
212 /* This will be used when we sort the dynamic relocation records. */
213 static bfd *reldyn_sorting_bfd;
215 /* Nonzero if ABFD is using the N32 ABI. */
217 #define ABI_N32_P(abfd) \
218 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
220 /* Nonzero if ABFD is using the 64-bit ABI. FIXME: This is never
222 #define ABI_64_P(abfd) \
223 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
225 /* Depending on the target vector we generate some version of Irix
226 executables or "normal" MIPS ELF ABI executables. */
228 #define IRIX_COMPAT(abfd) \
229 (abfd->xvec == &bfd_elf32_tradbigmips_vec ? ict_none : \
230 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
232 /* Whether we are trying to be compatible with IRIX at all. */
234 #define SGI_COMPAT(abfd) \
235 (IRIX_COMPAT (abfd) != ict_none)
237 /* The name of the msym section. */
238 #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
240 /* The name of the srdata section. */
241 #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
243 /* The name of the options section. */
244 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
245 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
247 /* The name of the stub section. */
248 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
249 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
251 /* The name of the dynamic relocation section. */
252 #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
254 /* The size of an external REL relocation. */
255 #define MIPS_ELF_REL_SIZE(abfd) \
256 (get_elf_backend_data (abfd)->s->sizeof_rel)
258 /* The size of an external dynamic table entry. */
259 #define MIPS_ELF_DYN_SIZE(abfd) \
260 (get_elf_backend_data (abfd)->s->sizeof_dyn)
262 /* The size of a GOT entry. */
263 #define MIPS_ELF_GOT_SIZE(abfd) \
264 (get_elf_backend_data (abfd)->s->arch_size / 8)
266 /* The size of a symbol-table entry. */
267 #define MIPS_ELF_SYM_SIZE(abfd) \
268 (get_elf_backend_data (abfd)->s->sizeof_sym)
270 /* The default alignment for sections, as a power of two. */
271 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
272 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
274 /* Get word-sized data. */
275 #define MIPS_ELF_GET_WORD(abfd, ptr) \
276 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
278 /* Put out word-sized data. */
279 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
281 ? bfd_put_64 (abfd, val, ptr) \
282 : bfd_put_32 (abfd, val, ptr))
284 /* Add a dynamic symbol table-entry. */
286 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
287 (ABI_64_P (elf_hash_table (info)->dynobj) \
288 ? bfd_elf64_add_dynamic_entry (info, tag, val) \
289 : bfd_elf32_add_dynamic_entry (info, tag, val))
291 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
292 (ABI_64_P (elf_hash_table (info)->dynobj) \
293 ? (abort (), false) \
294 : bfd_elf32_add_dynamic_entry (info, tag, val))
297 /* The number of local .got entries we reserve. */
298 #define MIPS_RESERVED_GOTNO (2)
300 /* Instructions which appear in a stub. For some reason the stub is
301 slightly different on an SGI system. */
302 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
303 #define STUB_LW(abfd) \
306 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
307 : 0x8f998010) /* lw t9,0x8010(gp) */ \
308 : 0x8f998010) /* lw t9,0x8000(gp) */
309 #define STUB_MOVE(abfd) \
310 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
311 #define STUB_JALR 0x0320f809 /* jal t9 */
312 #define STUB_LI16(abfd) \
313 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
314 #define MIPS_FUNCTION_STUB_SIZE (16)
317 /* We no longer try to identify particular sections for the .dynsym
318 section. When we do, we wind up crashing if there are other random
319 sections with relocations. */
321 /* Names of sections which appear in the .dynsym section in an Irix 5
324 static const char * const mips_elf_dynsym_sec_names[] = {
336 #define SIZEOF_MIPS_DYNSYM_SECNAMES \
337 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
339 /* The number of entries in mips_elf_dynsym_sec_names which go in the
342 #define MIPS_TEXT_DYNSYM_SECNO (3)
346 /* The names of the runtime procedure table symbols used on Irix 5. */
348 static const char * const mips_elf_dynsym_rtproc_names[] = {
350 "_procedure_string_table",
351 "_procedure_table_size",
355 /* These structures are used to generate the .compact_rel section on
359 unsigned long id1; /* Always one? */
360 unsigned long num; /* Number of compact relocation entries. */
361 unsigned long id2; /* Always two? */
362 unsigned long offset; /* The file offset of the first relocation. */
363 unsigned long reserved0; /* Zero? */
364 unsigned long reserved1; /* Zero? */
372 bfd_byte reserved0[4];
373 bfd_byte reserved1[4];
374 } Elf32_External_compact_rel;
377 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
378 unsigned int rtype : 4; /* Relocation types. See below. */
379 unsigned int dist2to : 8;
380 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
381 unsigned long konst; /* KONST field. See below. */
382 unsigned long vaddr; /* VADDR to be relocated. */
386 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
387 unsigned int rtype : 4; /* Relocation types. See below. */
388 unsigned int dist2to : 8;
389 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
390 unsigned long konst; /* KONST field. See below. */
397 } Elf32_External_crinfo;
402 } Elf32_External_crinfo2;
404 /* These are the constants used to swap the bitfields in a crinfo. */
406 #define CRINFO_CTYPE (0x1)
407 #define CRINFO_CTYPE_SH (31)
408 #define CRINFO_RTYPE (0xf)
409 #define CRINFO_RTYPE_SH (27)
410 #define CRINFO_DIST2TO (0xff)
411 #define CRINFO_DIST2TO_SH (19)
412 #define CRINFO_RELVADDR (0x7ffff)
413 #define CRINFO_RELVADDR_SH (0)
415 /* A compact relocation info has long (3 words) or short (2 words)
416 formats. A short format doesn't have VADDR field and relvaddr
417 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
418 #define CRF_MIPS_LONG 1
419 #define CRF_MIPS_SHORT 0
421 /* There are 4 types of compact relocation at least. The value KONST
422 has different meaning for each type:
425 CT_MIPS_REL32 Address in data
426 CT_MIPS_WORD Address in word (XXX)
427 CT_MIPS_GPHI_LO GP - vaddr
428 CT_MIPS_JMPAD Address to jump
431 #define CRT_MIPS_REL32 0xa
432 #define CRT_MIPS_WORD 0xb
433 #define CRT_MIPS_GPHI_LO 0xc
434 #define CRT_MIPS_JMPAD 0xd
436 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
437 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
438 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
439 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
441 static void bfd_elf32_swap_compact_rel_out
442 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
443 static void bfd_elf32_swap_crinfo_out
444 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
446 #define USE_REL 1 /* MIPS uses REL relocations instead of RELA */
448 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
449 from smaller values. Start with zero, widen, *then* decrement. */
450 #define MINUS_ONE (((bfd_vma)0) - 1)
452 static reloc_howto_type elf_mips_howto_table[] = {
454 HOWTO (R_MIPS_NONE, /* type */
456 0, /* size (0 = byte, 1 = short, 2 = long) */
458 false, /* pc_relative */
460 complain_overflow_dont, /* complain_on_overflow */
461 bfd_elf_generic_reloc, /* special_function */
462 "R_MIPS_NONE", /* name */
463 false, /* partial_inplace */
466 false), /* pcrel_offset */
468 /* 16 bit relocation. */
469 HOWTO (R_MIPS_16, /* type */
471 1, /* size (0 = byte, 1 = short, 2 = long) */
473 false, /* pc_relative */
475 complain_overflow_bitfield, /* complain_on_overflow */
476 bfd_elf_generic_reloc, /* special_function */
477 "R_MIPS_16", /* name */
478 true, /* partial_inplace */
479 0xffff, /* src_mask */
480 0xffff, /* dst_mask */
481 false), /* pcrel_offset */
483 /* 32 bit relocation. */
484 HOWTO (R_MIPS_32, /* type */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
488 false, /* pc_relative */
490 complain_overflow_bitfield, /* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_MIPS_32", /* name */
493 true, /* partial_inplace */
494 0xffffffff, /* src_mask */
495 0xffffffff, /* dst_mask */
496 false), /* pcrel_offset */
498 /* 32 bit symbol relative relocation. */
499 HOWTO (R_MIPS_REL32, /* type */
501 2, /* size (0 = byte, 1 = short, 2 = long) */
503 false, /* pc_relative */
505 complain_overflow_bitfield, /* complain_on_overflow */
506 bfd_elf_generic_reloc, /* special_function */
507 "R_MIPS_REL32", /* name */
508 true, /* partial_inplace */
509 0xffffffff, /* src_mask */
510 0xffffffff, /* dst_mask */
511 false), /* pcrel_offset */
513 /* 26 bit branch address. */
514 HOWTO (R_MIPS_26, /* type */
516 2, /* size (0 = byte, 1 = short, 2 = long) */
518 false, /* pc_relative */
520 complain_overflow_dont, /* complain_on_overflow */
521 /* This needs complex overflow
522 detection, because the upper four
523 bits must match the PC. */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_MIPS_26", /* name */
526 true, /* partial_inplace */
527 0x3ffffff, /* src_mask */
528 0x3ffffff, /* dst_mask */
529 false), /* pcrel_offset */
531 /* High 16 bits of symbol value. */
532 HOWTO (R_MIPS_HI16, /* type */
534 2, /* size (0 = byte, 1 = short, 2 = long) */
536 false, /* pc_relative */
538 complain_overflow_dont, /* complain_on_overflow */
539 _bfd_mips_elf_hi16_reloc, /* special_function */
540 "R_MIPS_HI16", /* name */
541 true, /* partial_inplace */
542 0xffff, /* src_mask */
543 0xffff, /* dst_mask */
544 false), /* pcrel_offset */
546 /* Low 16 bits of symbol value. */
547 HOWTO (R_MIPS_LO16, /* type */
549 2, /* size (0 = byte, 1 = short, 2 = long) */
551 false, /* pc_relative */
553 complain_overflow_dont, /* complain_on_overflow */
554 _bfd_mips_elf_lo16_reloc, /* special_function */
555 "R_MIPS_LO16", /* name */
556 true, /* partial_inplace */
557 0xffff, /* src_mask */
558 0xffff, /* dst_mask */
559 false), /* pcrel_offset */
561 /* GP relative reference. */
562 HOWTO (R_MIPS_GPREL16, /* type */
564 2, /* size (0 = byte, 1 = short, 2 = long) */
566 false, /* pc_relative */
568 complain_overflow_signed, /* complain_on_overflow */
569 _bfd_mips_elf_gprel16_reloc, /* special_function */
570 "R_MIPS_GPREL16", /* name */
571 true, /* partial_inplace */
572 0xffff, /* src_mask */
573 0xffff, /* dst_mask */
574 false), /* pcrel_offset */
576 /* Reference to literal section. */
577 HOWTO (R_MIPS_LITERAL, /* type */
579 2, /* size (0 = byte, 1 = short, 2 = long) */
581 false, /* pc_relative */
583 complain_overflow_signed, /* complain_on_overflow */
584 _bfd_mips_elf_gprel16_reloc, /* special_function */
585 "R_MIPS_LITERAL", /* name */
586 true, /* partial_inplace */
587 0xffff, /* src_mask */
588 0xffff, /* dst_mask */
589 false), /* pcrel_offset */
591 /* Reference to global offset table. */
592 HOWTO (R_MIPS_GOT16, /* type */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
596 false, /* pc_relative */
598 complain_overflow_signed, /* complain_on_overflow */
599 _bfd_mips_elf_got16_reloc, /* special_function */
600 "R_MIPS_GOT16", /* name */
601 false, /* partial_inplace */
602 0xffff, /* src_mask */
603 0xffff, /* dst_mask */
604 false), /* pcrel_offset */
606 /* 16 bit PC relative reference. */
607 HOWTO (R_MIPS_PC16, /* type */
609 2, /* size (0 = byte, 1 = short, 2 = long) */
611 true, /* pc_relative */
613 complain_overflow_signed, /* complain_on_overflow */
614 bfd_elf_generic_reloc, /* special_function */
615 "R_MIPS_PC16", /* name */
616 true, /* partial_inplace */
617 0xffff, /* src_mask */
618 0xffff, /* dst_mask */
619 true), /* pcrel_offset */
621 /* 16 bit call through global offset table. */
622 HOWTO (R_MIPS_CALL16, /* type */
624 2, /* size (0 = byte, 1 = short, 2 = long) */
626 false, /* pc_relative */
628 complain_overflow_signed, /* complain_on_overflow */
629 bfd_elf_generic_reloc, /* special_function */
630 "R_MIPS_CALL16", /* name */
631 false, /* partial_inplace */
632 0xffff, /* src_mask */
633 0xffff, /* dst_mask */
634 false), /* pcrel_offset */
636 /* 32 bit GP relative reference. */
637 HOWTO (R_MIPS_GPREL32, /* type */
639 2, /* size (0 = byte, 1 = short, 2 = long) */
641 false, /* pc_relative */
643 complain_overflow_bitfield, /* complain_on_overflow */
644 _bfd_mips_elf_gprel32_reloc, /* special_function */
645 "R_MIPS_GPREL32", /* name */
646 true, /* partial_inplace */
647 0xffffffff, /* src_mask */
648 0xffffffff, /* dst_mask */
649 false), /* pcrel_offset */
651 /* The remaining relocs are defined on Irix 5, although they are
652 not defined by the ABI. */
657 /* A 5 bit shift field. */
658 HOWTO (R_MIPS_SHIFT5, /* type */
660 2, /* size (0 = byte, 1 = short, 2 = long) */
662 false, /* pc_relative */
664 complain_overflow_bitfield, /* complain_on_overflow */
665 bfd_elf_generic_reloc, /* special_function */
666 "R_MIPS_SHIFT5", /* name */
667 true, /* partial_inplace */
668 0x000007c0, /* src_mask */
669 0x000007c0, /* dst_mask */
670 false), /* pcrel_offset */
672 /* A 6 bit shift field. */
673 /* FIXME: This is not handled correctly; a special function is
674 needed to put the most significant bit in the right place. */
675 HOWTO (R_MIPS_SHIFT6, /* type */
677 2, /* size (0 = byte, 1 = short, 2 = long) */
679 false, /* pc_relative */
681 complain_overflow_bitfield, /* complain_on_overflow */
682 bfd_elf_generic_reloc, /* special_function */
683 "R_MIPS_SHIFT6", /* name */
684 true, /* partial_inplace */
685 0x000007c4, /* src_mask */
686 0x000007c4, /* dst_mask */
687 false), /* pcrel_offset */
689 /* A 64 bit relocation. */
690 HOWTO (R_MIPS_64, /* type */
692 4, /* size (0 = byte, 1 = short, 2 = long) */
694 false, /* pc_relative */
696 complain_overflow_bitfield, /* complain_on_overflow */
697 mips32_64bit_reloc, /* special_function */
698 "R_MIPS_64", /* name */
699 true, /* partial_inplace */
700 MINUS_ONE, /* src_mask */
701 MINUS_ONE, /* dst_mask */
702 false), /* pcrel_offset */
704 /* Displacement in the global offset table. */
705 HOWTO (R_MIPS_GOT_DISP, /* type */
707 2, /* size (0 = byte, 1 = short, 2 = long) */
709 false, /* pc_relative */
711 complain_overflow_bitfield, /* complain_on_overflow */
712 bfd_elf_generic_reloc, /* special_function */
713 "R_MIPS_GOT_DISP", /* name */
714 true, /* partial_inplace */
715 0x0000ffff, /* src_mask */
716 0x0000ffff, /* dst_mask */
717 false), /* pcrel_offset */
719 /* Displacement to page pointer in the global offset table. */
720 HOWTO (R_MIPS_GOT_PAGE, /* type */
722 2, /* size (0 = byte, 1 = short, 2 = long) */
724 false, /* pc_relative */
726 complain_overflow_bitfield, /* complain_on_overflow */
727 bfd_elf_generic_reloc, /* special_function */
728 "R_MIPS_GOT_PAGE", /* name */
729 true, /* partial_inplace */
730 0x0000ffff, /* src_mask */
731 0x0000ffff, /* dst_mask */
732 false), /* pcrel_offset */
734 /* Offset from page pointer in the global offset table. */
735 HOWTO (R_MIPS_GOT_OFST, /* type */
737 2, /* size (0 = byte, 1 = short, 2 = long) */
739 false, /* pc_relative */
741 complain_overflow_bitfield, /* complain_on_overflow */
742 bfd_elf_generic_reloc, /* special_function */
743 "R_MIPS_GOT_OFST", /* name */
744 true, /* partial_inplace */
745 0x0000ffff, /* src_mask */
746 0x0000ffff, /* dst_mask */
747 false), /* pcrel_offset */
749 /* High 16 bits of displacement in global offset table. */
750 HOWTO (R_MIPS_GOT_HI16, /* type */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
754 false, /* pc_relative */
756 complain_overflow_dont, /* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_MIPS_GOT_HI16", /* name */
759 true, /* partial_inplace */
760 0x0000ffff, /* src_mask */
761 0x0000ffff, /* dst_mask */
762 false), /* pcrel_offset */
764 /* Low 16 bits of displacement in global offset table. */
765 HOWTO (R_MIPS_GOT_LO16, /* type */
767 2, /* size (0 = byte, 1 = short, 2 = long) */
769 false, /* pc_relative */
771 complain_overflow_dont, /* complain_on_overflow */
772 bfd_elf_generic_reloc, /* special_function */
773 "R_MIPS_GOT_LO16", /* name */
774 true, /* partial_inplace */
775 0x0000ffff, /* src_mask */
776 0x0000ffff, /* dst_mask */
777 false), /* pcrel_offset */
779 /* 64 bit subtraction. Used in the N32 ABI. */
780 HOWTO (R_MIPS_SUB, /* type */
782 4, /* size (0 = byte, 1 = short, 2 = long) */
784 false, /* pc_relative */
786 complain_overflow_bitfield, /* complain_on_overflow */
787 bfd_elf_generic_reloc, /* special_function */
788 "R_MIPS_SUB", /* name */
789 true, /* partial_inplace */
790 MINUS_ONE, /* src_mask */
791 MINUS_ONE, /* dst_mask */
792 false), /* pcrel_offset */
794 /* Used to cause the linker to insert and delete instructions? */
795 EMPTY_HOWTO (R_MIPS_INSERT_A),
796 EMPTY_HOWTO (R_MIPS_INSERT_B),
797 EMPTY_HOWTO (R_MIPS_DELETE),
799 /* Get the higher value of a 64 bit addend. */
800 HOWTO (R_MIPS_HIGHER, /* type */
802 2, /* size (0 = byte, 1 = short, 2 = long) */
804 false, /* pc_relative */
806 complain_overflow_dont, /* complain_on_overflow */
807 bfd_elf_generic_reloc, /* special_function */
808 "R_MIPS_HIGHER", /* name */
809 true, /* partial_inplace */
811 0xffff, /* dst_mask */
812 false), /* pcrel_offset */
814 /* Get the highest value of a 64 bit addend. */
815 HOWTO (R_MIPS_HIGHEST, /* type */
817 2, /* size (0 = byte, 1 = short, 2 = long) */
819 false, /* pc_relative */
821 complain_overflow_dont, /* complain_on_overflow */
822 bfd_elf_generic_reloc, /* special_function */
823 "R_MIPS_HIGHEST", /* name */
824 true, /* partial_inplace */
826 0xffff, /* dst_mask */
827 false), /* pcrel_offset */
829 /* High 16 bits of displacement in global offset table. */
830 HOWTO (R_MIPS_CALL_HI16, /* type */
832 2, /* size (0 = byte, 1 = short, 2 = long) */
834 false, /* pc_relative */
836 complain_overflow_dont, /* complain_on_overflow */
837 bfd_elf_generic_reloc, /* special_function */
838 "R_MIPS_CALL_HI16", /* name */
839 true, /* partial_inplace */
840 0x0000ffff, /* src_mask */
841 0x0000ffff, /* dst_mask */
842 false), /* pcrel_offset */
844 /* Low 16 bits of displacement in global offset table. */
845 HOWTO (R_MIPS_CALL_LO16, /* type */
847 2, /* size (0 = byte, 1 = short, 2 = long) */
849 false, /* pc_relative */
851 complain_overflow_dont, /* complain_on_overflow */
852 bfd_elf_generic_reloc, /* special_function */
853 "R_MIPS_CALL_LO16", /* name */
854 true, /* partial_inplace */
855 0x0000ffff, /* src_mask */
856 0x0000ffff, /* dst_mask */
857 false), /* pcrel_offset */
859 /* Section displacement. */
860 HOWTO (R_MIPS_SCN_DISP, /* type */
862 2, /* size (0 = byte, 1 = short, 2 = long) */
864 false, /* pc_relative */
866 complain_overflow_dont, /* complain_on_overflow */
867 bfd_elf_generic_reloc, /* special_function */
868 "R_MIPS_SCN_DISP", /* name */
869 false, /* partial_inplace */
870 0xffffffff, /* src_mask */
871 0xffffffff, /* dst_mask */
872 false), /* pcrel_offset */
874 EMPTY_HOWTO (R_MIPS_REL16),
875 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
876 EMPTY_HOWTO (R_MIPS_PJUMP),
877 EMPTY_HOWTO (R_MIPS_RELGOT),
879 /* Protected jump conversion. This is an optimization hint. No
880 relocation is required for correctness. */
881 HOWTO (R_MIPS_JALR, /* type */
883 0, /* size (0 = byte, 1 = short, 2 = long) */
885 false, /* pc_relative */
887 complain_overflow_dont, /* complain_on_overflow */
888 bfd_elf_generic_reloc, /* special_function */
889 "R_MIPS_JALR", /* name */
890 false, /* partial_inplace */
891 0x00000000, /* src_mask */
892 0x00000000, /* dst_mask */
893 false), /* pcrel_offset */
896 /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
897 is a hack to make the linker think that we need 64 bit values. */
898 static reloc_howto_type elf_mips_ctor64_howto =
899 HOWTO (R_MIPS_64, /* type */
901 4, /* size (0 = byte, 1 = short, 2 = long) */
903 false, /* pc_relative */
905 complain_overflow_signed, /* complain_on_overflow */
906 mips32_64bit_reloc, /* special_function */
907 "R_MIPS_64", /* name */
908 true, /* partial_inplace */
909 0xffffffff, /* src_mask */
910 0xffffffff, /* dst_mask */
911 false); /* pcrel_offset */
913 /* The reloc used for the mips16 jump instruction. */
914 static reloc_howto_type elf_mips16_jump_howto =
915 HOWTO (R_MIPS16_26, /* type */
917 2, /* size (0 = byte, 1 = short, 2 = long) */
919 false, /* pc_relative */
921 complain_overflow_dont, /* complain_on_overflow */
922 /* This needs complex overflow
923 detection, because the upper four
924 bits must match the PC. */
925 mips16_jump_reloc, /* special_function */
926 "R_MIPS16_26", /* name */
927 true, /* partial_inplace */
928 0x3ffffff, /* src_mask */
929 0x3ffffff, /* dst_mask */
930 false); /* pcrel_offset */
932 /* The reloc used for the mips16 gprel instruction. */
933 static reloc_howto_type elf_mips16_gprel_howto =
934 HOWTO (R_MIPS16_GPREL, /* type */
936 2, /* size (0 = byte, 1 = short, 2 = long) */
938 false, /* pc_relative */
940 complain_overflow_signed, /* complain_on_overflow */
941 mips16_gprel_reloc, /* special_function */
942 "R_MIPS16_GPREL", /* name */
943 true, /* partial_inplace */
944 0x07ff001f, /* src_mask */
945 0x07ff001f, /* dst_mask */
946 false); /* pcrel_offset */
948 /* GNU extensions for embedded-pic. */
949 /* High 16 bits of symbol value, pc-relative. */
950 static reloc_howto_type elf_mips_gnu_rel_hi16 =
951 HOWTO (R_MIPS_GNU_REL_HI16, /* type */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
955 true, /* pc_relative */
957 complain_overflow_dont, /* complain_on_overflow */
958 _bfd_mips_elf_hi16_reloc, /* special_function */
959 "R_MIPS_GNU_REL_HI16", /* name */
960 true, /* partial_inplace */
961 0xffff, /* src_mask */
962 0xffff, /* dst_mask */
963 true); /* pcrel_offset */
965 /* Low 16 bits of symbol value, pc-relative. */
966 static reloc_howto_type elf_mips_gnu_rel_lo16 =
967 HOWTO (R_MIPS_GNU_REL_LO16, /* type */
969 2, /* size (0 = byte, 1 = short, 2 = long) */
971 true, /* pc_relative */
973 complain_overflow_dont, /* complain_on_overflow */
974 _bfd_mips_elf_lo16_reloc, /* special_function */
975 "R_MIPS_GNU_REL_LO16", /* name */
976 true, /* partial_inplace */
977 0xffff, /* src_mask */
978 0xffff, /* dst_mask */
979 true); /* pcrel_offset */
981 /* 16 bit offset for pc-relative branches. */
982 static reloc_howto_type elf_mips_gnu_rel16_s2 =
983 HOWTO (R_MIPS_GNU_REL16_S2, /* type */
985 2, /* size (0 = byte, 1 = short, 2 = long) */
987 true, /* pc_relative */
989 complain_overflow_signed, /* complain_on_overflow */
990 bfd_elf_generic_reloc, /* special_function */
991 "R_MIPS_GNU_REL16_S2", /* name */
992 true, /* partial_inplace */
993 0xffff, /* src_mask */
994 0xffff, /* dst_mask */
995 true); /* pcrel_offset */
997 /* 64 bit pc-relative. */
998 static reloc_howto_type elf_mips_gnu_pcrel64 =
999 HOWTO (R_MIPS_PC64, /* type */
1001 4, /* size (0 = byte, 1 = short, 2 = long) */
1003 true, /* pc_relative */
1005 complain_overflow_signed, /* complain_on_overflow */
1006 bfd_elf_generic_reloc, /* special_function */
1007 "R_MIPS_PC64", /* name */
1008 true, /* partial_inplace */
1009 MINUS_ONE, /* src_mask */
1010 MINUS_ONE, /* dst_mask */
1011 true); /* pcrel_offset */
1013 /* 32 bit pc-relative. */
1014 static reloc_howto_type elf_mips_gnu_pcrel32 =
1015 HOWTO (R_MIPS_PC32, /* type */
1017 2, /* size (0 = byte, 1 = short, 2 = long) */
1019 true, /* pc_relative */
1021 complain_overflow_signed, /* complain_on_overflow */
1022 bfd_elf_generic_reloc, /* special_function */
1023 "R_MIPS_PC32", /* name */
1024 true, /* partial_inplace */
1025 0xffffffff, /* src_mask */
1026 0xffffffff, /* dst_mask */
1027 true); /* pcrel_offset */
1029 /* GNU extension to record C++ vtable hierarchy */
1030 static reloc_howto_type elf_mips_gnu_vtinherit_howto =
1031 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1035 false, /* pc_relative */
1037 complain_overflow_dont, /* complain_on_overflow */
1038 NULL, /* special_function */
1039 "R_MIPS_GNU_VTINHERIT", /* name */
1040 false, /* partial_inplace */
1043 false); /* pcrel_offset */
1045 /* GNU extension to record C++ vtable member usage */
1046 static reloc_howto_type elf_mips_gnu_vtentry_howto =
1047 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
1049 2, /* size (0 = byte, 1 = short, 2 = long) */
1051 false, /* pc_relative */
1053 complain_overflow_dont, /* complain_on_overflow */
1054 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1055 "R_MIPS_GNU_VTENTRY", /* name */
1056 false, /* partial_inplace */
1059 false); /* pcrel_offset */
1061 /* Do a R_MIPS_HI16 relocation. This has to be done in combination
1062 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1063 the HI16. Here we just save the information we need; we do the
1064 actual relocation when we see the LO16. MIPS ELF requires that the
1065 LO16 immediately follow the HI16. As a GNU extension, we permit an
1066 arbitrary number of HI16 relocs to be associated with a single LO16
1067 reloc. This extension permits gcc to output the HI and LO relocs
1071 struct mips_hi16 *next;
1076 /* FIXME: This should not be a static variable. */
1078 static struct mips_hi16 *mips_hi16_list;
1080 bfd_reloc_status_type
1081 _bfd_mips_elf_hi16_reloc (abfd,
1088 bfd *abfd ATTRIBUTE_UNUSED;
1089 arelent *reloc_entry;
1092 asection *input_section;
1094 char **error_message;
1096 bfd_reloc_status_type ret;
1098 struct mips_hi16 *n;
1100 /* If we're relocating, and this an external symbol, we don't want
1101 to change anything. */
1102 if (output_bfd != (bfd *) NULL
1103 && (symbol->flags & BSF_SECTION_SYM) == 0
1104 && reloc_entry->addend == 0)
1106 reloc_entry->address += input_section->output_offset;
1107 return bfd_reloc_ok;
1112 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1114 boolean relocateable;
1117 if (ret == bfd_reloc_undefined)
1120 if (output_bfd != NULL)
1121 relocateable = true;
1124 relocateable = false;
1125 output_bfd = symbol->section->output_section->owner;
1128 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1129 error_message, &gp);
1130 if (ret != bfd_reloc_ok)
1133 relocation = gp - reloc_entry->address;
1137 if (bfd_is_und_section (symbol->section)
1138 && output_bfd == (bfd *) NULL)
1139 ret = bfd_reloc_undefined;
1141 if (bfd_is_com_section (symbol->section))
1144 relocation = symbol->value;
1147 relocation += symbol->section->output_section->vma;
1148 relocation += symbol->section->output_offset;
1149 relocation += reloc_entry->addend;
1151 if (reloc_entry->address > input_section->_cooked_size)
1152 return bfd_reloc_outofrange;
1154 /* Save the information, and let LO16 do the actual relocation. */
1155 n = (struct mips_hi16 *) bfd_malloc (sizeof *n);
1157 return bfd_reloc_outofrange;
1158 n->addr = (bfd_byte *) data + reloc_entry->address;
1159 n->addend = relocation;
1160 n->next = mips_hi16_list;
1163 if (output_bfd != (bfd *) NULL)
1164 reloc_entry->address += input_section->output_offset;
1169 /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1170 inplace relocation; this function exists in order to do the
1171 R_MIPS_HI16 relocation described above. */
1173 bfd_reloc_status_type
1174 _bfd_mips_elf_lo16_reloc (abfd,
1182 arelent *reloc_entry;
1185 asection *input_section;
1187 char **error_message;
1189 arelent gp_disp_relent;
1191 if (mips_hi16_list != NULL)
1193 struct mips_hi16 *l;
1200 unsigned long vallo;
1201 struct mips_hi16 *next;
1203 /* Do the HI16 relocation. Note that we actually don't need
1204 to know anything about the LO16 itself, except where to
1205 find the low 16 bits of the addend needed by the LO16. */
1206 insn = bfd_get_32 (abfd, l->addr);
1207 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1209 val = ((insn & 0xffff) << 16) + vallo;
1212 /* The low order 16 bits are always treated as a signed
1213 value. Therefore, a negative value in the low order bits
1214 requires an adjustment in the high order bits. We need
1215 to make this adjustment in two ways: once for the bits we
1216 took from the data, and once for the bits we are putting
1217 back in to the data. */
1218 if ((vallo & 0x8000) != 0)
1220 if ((val & 0x8000) != 0)
1223 insn = (insn & ~0xffff) | ((val >> 16) & 0xffff);
1224 bfd_put_32 (abfd, insn, l->addr);
1226 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1228 gp_disp_relent = *reloc_entry;
1229 reloc_entry = &gp_disp_relent;
1230 reloc_entry->addend = l->addend;
1238 mips_hi16_list = NULL;
1240 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1242 bfd_reloc_status_type ret;
1243 bfd_vma gp, relocation;
1245 /* FIXME: Does this case ever occur? */
1247 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1248 if (ret != bfd_reloc_ok)
1251 relocation = gp - reloc_entry->address;
1252 relocation += symbol->section->output_section->vma;
1253 relocation += symbol->section->output_offset;
1254 relocation += reloc_entry->addend;
1256 if (reloc_entry->address > input_section->_cooked_size)
1257 return bfd_reloc_outofrange;
1259 gp_disp_relent = *reloc_entry;
1260 reloc_entry = &gp_disp_relent;
1261 reloc_entry->addend = relocation - 4;
1264 /* Now do the LO16 reloc in the usual way. */
1265 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1266 input_section, output_bfd, error_message);
1269 /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1270 table used for PIC code. If the symbol is an external symbol, the
1271 instruction is modified to contain the offset of the appropriate
1272 entry in the global offset table. If the symbol is a section
1273 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1274 addends are combined to form the real addend against the section
1275 symbol; the GOT16 is modified to contain the offset of an entry in
1276 the global offset table, and the LO16 is modified to offset it
1277 appropriately. Thus an offset larger than 16 bits requires a
1278 modified value in the global offset table.
1280 This implementation suffices for the assembler, but the linker does
1281 not yet know how to create global offset tables. */
1283 bfd_reloc_status_type
1284 _bfd_mips_elf_got16_reloc (abfd,
1292 arelent *reloc_entry;
1295 asection *input_section;
1297 char **error_message;
1299 /* If we're relocating, and this an external symbol, we don't want
1300 to change anything. */
1301 if (output_bfd != (bfd *) NULL
1302 && (symbol->flags & BSF_SECTION_SYM) == 0
1303 && reloc_entry->addend == 0)
1305 reloc_entry->address += input_section->output_offset;
1306 return bfd_reloc_ok;
1309 /* If we're relocating, and this is a local symbol, we can handle it
1311 if (output_bfd != (bfd *) NULL
1312 && (symbol->flags & BSF_SECTION_SYM) != 0)
1313 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1314 input_section, output_bfd, error_message);
1319 /* Set the GP value for OUTPUT_BFD. Returns false if this is a
1320 dangerous relocation. */
1323 mips_elf_assign_gp (output_bfd, pgp)
1331 /* If we've already figured out what GP will be, just return it. */
1332 *pgp = _bfd_get_gp_value (output_bfd);
1336 count = bfd_get_symcount (output_bfd);
1337 sym = bfd_get_outsymbols (output_bfd);
1339 /* The linker script will have created a symbol named `_gp' with the
1340 appropriate value. */
1341 if (sym == (asymbol **) NULL)
1345 for (i = 0; i < count; i++, sym++)
1347 register CONST char *name;
1349 name = bfd_asymbol_name (*sym);
1350 if (*name == '_' && strcmp (name, "_gp") == 0)
1352 *pgp = bfd_asymbol_value (*sym);
1353 _bfd_set_gp_value (output_bfd, *pgp);
1361 /* Only get the error once. */
1363 _bfd_set_gp_value (output_bfd, *pgp);
1370 /* We have to figure out the gp value, so that we can adjust the
1371 symbol value correctly. We look up the symbol _gp in the output
1372 BFD. If we can't find it, we're stuck. We cache it in the ELF
1373 target data. We don't need to adjust the symbol value for an
1374 external symbol if we are producing relocateable output. */
1376 static bfd_reloc_status_type
1377 mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1380 boolean relocateable;
1381 char **error_message;
1384 if (bfd_is_und_section (symbol->section)
1388 return bfd_reloc_undefined;
1391 *pgp = _bfd_get_gp_value (output_bfd);
1394 || (symbol->flags & BSF_SECTION_SYM) != 0))
1398 /* Make up a value. */
1399 *pgp = symbol->section->output_section->vma + 0x4000;
1400 _bfd_set_gp_value (output_bfd, *pgp);
1402 else if (!mips_elf_assign_gp (output_bfd, pgp))
1405 (char *) _("GP relative relocation when _gp not defined");
1406 return bfd_reloc_dangerous;
1410 return bfd_reloc_ok;
1413 /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1414 become the offset from the gp register. This function also handles
1415 R_MIPS_LITERAL relocations, although those can be handled more
1416 cleverly because the entries in the .lit8 and .lit4 sections can be
1419 static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
1420 arelent *, asection *,
1421 boolean, PTR, bfd_vma));
1423 bfd_reloc_status_type
1424 _bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
1425 output_bfd, error_message)
1427 arelent *reloc_entry;
1430 asection *input_section;
1432 char **error_message;
1434 boolean relocateable;
1435 bfd_reloc_status_type ret;
1438 /* If we're relocating, and this is an external symbol with no
1439 addend, we don't want to change anything. We will only have an
1440 addend if this is a newly created reloc, not read from an ELF
1442 if (output_bfd != (bfd *) NULL
1443 && (symbol->flags & BSF_SECTION_SYM) == 0
1444 && reloc_entry->addend == 0)
1446 reloc_entry->address += input_section->output_offset;
1447 return bfd_reloc_ok;
1450 if (output_bfd != (bfd *) NULL)
1451 relocateable = true;
1454 relocateable = false;
1455 output_bfd = symbol->section->output_section->owner;
1458 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1460 if (ret != bfd_reloc_ok)
1463 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1464 relocateable, data, gp);
1467 static bfd_reloc_status_type
1468 gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1472 arelent *reloc_entry;
1473 asection *input_section;
1474 boolean relocateable;
1482 if (bfd_is_com_section (symbol->section))
1485 relocation = symbol->value;
1487 relocation += symbol->section->output_section->vma;
1488 relocation += symbol->section->output_offset;
1490 if (reloc_entry->address > input_section->_cooked_size)
1491 return bfd_reloc_outofrange;
1493 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1495 /* Set val to the offset into the section or symbol. */
1496 if (reloc_entry->howto->src_mask == 0)
1498 /* This case occurs with the 64-bit MIPS ELF ABI. */
1499 val = reloc_entry->addend;
1503 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1508 /* Adjust val for the final section location and GP value. If we
1509 are producing relocateable output, we don't want to do this for
1510 an external symbol. */
1512 || (symbol->flags & BSF_SECTION_SYM) != 0)
1513 val += relocation - gp;
1515 insn = (insn & ~0xffff) | (val & 0xffff);
1516 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1519 reloc_entry->address += input_section->output_offset;
1521 /* Make sure it fit in 16 bits. */
1522 if ((long) val >= 0x8000 || (long) val < -0x8000)
1523 return bfd_reloc_overflow;
1525 return bfd_reloc_ok;
1528 /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
1529 from the gp register? XXX */
1531 static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
1532 arelent *, asection *,
1533 boolean, PTR, bfd_vma));
1535 bfd_reloc_status_type
1536 _bfd_mips_elf_gprel32_reloc (abfd,
1544 arelent *reloc_entry;
1547 asection *input_section;
1549 char **error_message;
1551 boolean relocateable;
1552 bfd_reloc_status_type ret;
1555 /* If we're relocating, and this is an external symbol with no
1556 addend, we don't want to change anything. We will only have an
1557 addend if this is a newly created reloc, not read from an ELF
1559 if (output_bfd != (bfd *) NULL
1560 && (symbol->flags & BSF_SECTION_SYM) == 0
1561 && reloc_entry->addend == 0)
1563 *error_message = (char *)
1564 _("32bits gp relative relocation occurs for an external symbol");
1565 return bfd_reloc_outofrange;
1568 if (output_bfd != (bfd *) NULL)
1570 relocateable = true;
1571 gp = _bfd_get_gp_value (output_bfd);
1575 relocateable = false;
1576 output_bfd = symbol->section->output_section->owner;
1578 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1579 error_message, &gp);
1580 if (ret != bfd_reloc_ok)
1584 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
1585 relocateable, data, gp);
1588 static bfd_reloc_status_type
1589 gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1593 arelent *reloc_entry;
1594 asection *input_section;
1595 boolean relocateable;
1602 if (bfd_is_com_section (symbol->section))
1605 relocation = symbol->value;
1607 relocation += symbol->section->output_section->vma;
1608 relocation += symbol->section->output_offset;
1610 if (reloc_entry->address > input_section->_cooked_size)
1611 return bfd_reloc_outofrange;
1613 if (reloc_entry->howto->src_mask == 0)
1615 /* This case arises with the 64-bit MIPS ELF ABI. */
1619 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1621 /* Set val to the offset into the section or symbol. */
1622 val += reloc_entry->addend;
1624 /* Adjust val for the final section location and GP value. If we
1625 are producing relocateable output, we don't want to do this for
1626 an external symbol. */
1628 || (symbol->flags & BSF_SECTION_SYM) != 0)
1629 val += relocation - gp;
1631 bfd_put_32 (abfd, val, (bfd_byte *) data + reloc_entry->address);
1634 reloc_entry->address += input_section->output_offset;
1636 return bfd_reloc_ok;
1639 /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
1640 generated when addreses are 64 bits. The upper 32 bits are a simle
1643 static bfd_reloc_status_type
1644 mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
1645 output_bfd, error_message)
1647 arelent *reloc_entry;
1650 asection *input_section;
1652 char **error_message;
1654 bfd_reloc_status_type r;
1659 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1660 input_section, output_bfd, error_message);
1661 if (r != bfd_reloc_continue)
1664 /* Do a normal 32 bit relocation on the lower 32 bits. */
1665 reloc32 = *reloc_entry;
1666 if (bfd_big_endian (abfd))
1667 reloc32.address += 4;
1668 reloc32.howto = &elf_mips_howto_table[R_MIPS_32];
1669 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
1670 output_bfd, error_message);
1672 /* Sign extend into the upper 32 bits. */
1673 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
1674 if ((val & 0x80000000) != 0)
1678 addr = reloc_entry->address;
1679 if (bfd_little_endian (abfd))
1681 bfd_put_32 (abfd, val, (bfd_byte *) data + addr);
1686 /* Handle a mips16 jump. */
1688 static bfd_reloc_status_type
1689 mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
1690 output_bfd, error_message)
1691 bfd *abfd ATTRIBUTE_UNUSED;
1692 arelent *reloc_entry;
1694 PTR data ATTRIBUTE_UNUSED;
1695 asection *input_section;
1697 char **error_message ATTRIBUTE_UNUSED;
1699 if (output_bfd != (bfd *) NULL
1700 && (symbol->flags & BSF_SECTION_SYM) == 0
1701 && reloc_entry->addend == 0)
1703 reloc_entry->address += input_section->output_offset;
1704 return bfd_reloc_ok;
1709 static boolean warned;
1712 (*_bfd_error_handler)
1713 (_("Linking mips16 objects into %s format is not supported"),
1714 bfd_get_target (input_section->output_section->owner));
1718 return bfd_reloc_undefined;
1721 /* Handle a mips16 GP relative reloc. */
1723 static bfd_reloc_status_type
1724 mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
1725 output_bfd, error_message)
1727 arelent *reloc_entry;
1730 asection *input_section;
1732 char **error_message;
1734 boolean relocateable;
1735 bfd_reloc_status_type ret;
1737 unsigned short extend, insn;
1738 unsigned long final;
1740 /* If we're relocating, and this is an external symbol with no
1741 addend, we don't want to change anything. We will only have an
1742 addend if this is a newly created reloc, not read from an ELF
1744 if (output_bfd != NULL
1745 && (symbol->flags & BSF_SECTION_SYM) == 0
1746 && reloc_entry->addend == 0)
1748 reloc_entry->address += input_section->output_offset;
1749 return bfd_reloc_ok;
1752 if (output_bfd != NULL)
1753 relocateable = true;
1756 relocateable = false;
1757 output_bfd = symbol->section->output_section->owner;
1760 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1762 if (ret != bfd_reloc_ok)
1765 if (reloc_entry->address > input_section->_cooked_size)
1766 return bfd_reloc_outofrange;
1768 /* Pick up the mips16 extend instruction and the real instruction. */
1769 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
1770 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
1772 /* Stuff the current addend back as a 32 bit value, do the usual
1773 relocation, and then clean up. */
1775 (((extend & 0x1f) << 11)
1778 (bfd_byte *) data + reloc_entry->address);
1780 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1781 relocateable, data, gp);
1783 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1786 | ((final >> 11) & 0x1f)
1788 (bfd_byte *) data + reloc_entry->address);
1792 (bfd_byte *) data + reloc_entry->address + 2);
1797 /* Return the ISA for a MIPS e_flags value. */
1800 elf_mips_isa (flags)
1803 switch (flags & EF_MIPS_ARCH)
1813 case E_MIPS_ARCH_32:
1819 /* Return the MACH for a MIPS e_flags value. */
1822 elf_mips_mach (flags)
1825 switch (flags & EF_MIPS_MACH)
1827 case E_MIPS_MACH_3900:
1828 return bfd_mach_mips3900;
1830 case E_MIPS_MACH_4010:
1831 return bfd_mach_mips4010;
1833 case E_MIPS_MACH_4100:
1834 return bfd_mach_mips4100;
1836 case E_MIPS_MACH_4111:
1837 return bfd_mach_mips4111;
1839 case E_MIPS_MACH_4650:
1840 return bfd_mach_mips4650;
1842 case E_MIPS_MACH_MIPS32_4K:
1843 return bfd_mach_mips32_4k;
1846 switch (flags & EF_MIPS_ARCH)
1850 return bfd_mach_mips3000;
1854 return bfd_mach_mips6000;
1858 return bfd_mach_mips4000;
1862 return bfd_mach_mips8000;
1865 case E_MIPS_ARCH_32:
1866 return bfd_mach_mips32;
1874 /* Return printable name for ABI. */
1876 static INLINE char *
1877 elf_mips_abi_name (abfd)
1882 if (ABI_N32_P (abfd))
1884 else if (ABI_64_P (abfd))
1887 flags = elf_elfheader (abfd)->e_flags;
1888 switch (flags & EF_MIPS_ABI)
1892 case E_MIPS_ABI_O32:
1894 case E_MIPS_ABI_O64:
1896 case E_MIPS_ABI_EABI32:
1898 case E_MIPS_ABI_EABI64:
1901 return "unknown abi";
1905 /* A mapping from BFD reloc types to MIPS ELF reloc types. */
1907 struct elf_reloc_map {
1908 bfd_reloc_code_real_type bfd_reloc_val;
1909 enum elf_mips_reloc_type elf_reloc_val;
1912 static CONST struct elf_reloc_map mips_reloc_map[] = {
1913 { BFD_RELOC_NONE, R_MIPS_NONE, },
1914 { BFD_RELOC_16, R_MIPS_16 },
1915 { BFD_RELOC_32, R_MIPS_32 },
1916 { BFD_RELOC_64, R_MIPS_64 },
1917 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
1918 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
1919 { BFD_RELOC_LO16, R_MIPS_LO16 },
1920 { BFD_RELOC_MIPS_GPREL, R_MIPS_GPREL16 },
1921 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
1922 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
1923 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
1924 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
1925 { BFD_RELOC_MIPS_GPREL32, R_MIPS_GPREL32 },
1926 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
1927 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
1928 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
1929 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
1930 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
1931 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
1932 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
1933 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
1936 /* Given a BFD reloc type, return a howto structure. */
1938 static reloc_howto_type *
1939 bfd_elf32_bfd_reloc_type_lookup (abfd, code)
1941 bfd_reloc_code_real_type code;
1945 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
1947 if (mips_reloc_map[i].bfd_reloc_val == code)
1948 return &elf_mips_howto_table[(int) mips_reloc_map[i].elf_reloc_val];
1954 bfd_set_error (bfd_error_bad_value);
1957 case BFD_RELOC_CTOR:
1958 /* We need to handle BFD_RELOC_CTOR specially.
1959 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
1960 size of addresses on this architecture. */
1961 if (bfd_arch_bits_per_address (abfd) == 32)
1962 return &elf_mips_howto_table[(int) R_MIPS_32];
1964 return &elf_mips_ctor64_howto;
1966 case BFD_RELOC_MIPS16_JMP:
1967 return &elf_mips16_jump_howto;
1968 case BFD_RELOC_MIPS16_GPREL:
1969 return &elf_mips16_gprel_howto;
1970 case BFD_RELOC_VTABLE_INHERIT:
1971 return &elf_mips_gnu_vtinherit_howto;
1972 case BFD_RELOC_VTABLE_ENTRY:
1973 return &elf_mips_gnu_vtentry_howto;
1974 case BFD_RELOC_PCREL_HI16_S:
1975 return &elf_mips_gnu_rel_hi16;
1976 case BFD_RELOC_PCREL_LO16:
1977 return &elf_mips_gnu_rel_lo16;
1978 case BFD_RELOC_16_PCREL_S2:
1979 return &elf_mips_gnu_rel16_s2;
1980 case BFD_RELOC_64_PCREL:
1981 return &elf_mips_gnu_pcrel64;
1982 case BFD_RELOC_32_PCREL:
1983 return &elf_mips_gnu_pcrel32;
1987 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
1989 static reloc_howto_type *
1990 mips_rtype_to_howto (r_type)
1991 unsigned int r_type;
1996 return &elf_mips16_jump_howto;
1998 case R_MIPS16_GPREL:
1999 return &elf_mips16_gprel_howto;
2001 case R_MIPS_GNU_VTINHERIT:
2002 return &elf_mips_gnu_vtinherit_howto;
2004 case R_MIPS_GNU_VTENTRY:
2005 return &elf_mips_gnu_vtentry_howto;
2007 case R_MIPS_GNU_REL_HI16:
2008 return &elf_mips_gnu_rel_hi16;
2010 case R_MIPS_GNU_REL_LO16:
2011 return &elf_mips_gnu_rel_lo16;
2013 case R_MIPS_GNU_REL16_S2:
2014 return &elf_mips_gnu_rel16_s2;
2017 return &elf_mips_gnu_pcrel64;
2020 return &elf_mips_gnu_pcrel32;
2024 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
2025 return &elf_mips_howto_table[r_type];
2030 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2033 mips_info_to_howto_rel (abfd, cache_ptr, dst)
2036 Elf32_Internal_Rel *dst;
2038 unsigned int r_type;
2040 r_type = ELF32_R_TYPE (dst->r_info);
2041 cache_ptr->howto = mips_rtype_to_howto (r_type);
2043 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2044 value for the object file. We get the addend now, rather than
2045 when we do the relocation, because the symbol manipulations done
2046 by the linker may cause us to lose track of the input BFD. */
2047 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
2048 && (r_type == (unsigned int) R_MIPS_GPREL16
2049 || r_type == (unsigned int) R_MIPS_LITERAL))
2050 cache_ptr->addend = elf_gp (abfd);
2053 /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2056 mips_info_to_howto_rela (abfd, cache_ptr, dst)
2059 Elf32_Internal_Rela *dst;
2061 /* Since an Elf32_Internal_Rel is an initial prefix of an
2062 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2064 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
2066 /* If we ever need to do any extra processing with dst->r_addend
2067 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2070 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2071 routines swap this structure in and out. They are used outside of
2072 BFD, so they are globally visible. */
2075 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
2077 const Elf32_External_RegInfo *ex;
2080 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2081 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2082 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2083 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2084 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2085 in->ri_gp_value = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gp_value);
2089 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
2091 const Elf32_RegInfo *in;
2092 Elf32_External_RegInfo *ex;
2094 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2095 (bfd_byte *) ex->ri_gprmask);
2096 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2097 (bfd_byte *) ex->ri_cprmask[0]);
2098 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2099 (bfd_byte *) ex->ri_cprmask[1]);
2100 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2101 (bfd_byte *) ex->ri_cprmask[2]);
2102 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2103 (bfd_byte *) ex->ri_cprmask[3]);
2104 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gp_value,
2105 (bfd_byte *) ex->ri_gp_value);
2108 /* In the 64 bit ABI, the .MIPS.options section holds register
2109 information in an Elf64_Reginfo structure. These routines swap
2110 them in and out. They are globally visible because they are used
2111 outside of BFD. These routines are here so that gas can call them
2112 without worrying about whether the 64 bit ABI has been included. */
2115 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2117 const Elf64_External_RegInfo *ex;
2118 Elf64_Internal_RegInfo *in;
2120 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2121 in->ri_pad = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_pad);
2122 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2123 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2124 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2125 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2126 in->ri_gp_value = bfd_h_get_64 (abfd, (bfd_byte *) ex->ri_gp_value);
2130 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2132 const Elf64_Internal_RegInfo *in;
2133 Elf64_External_RegInfo *ex;
2135 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2136 (bfd_byte *) ex->ri_gprmask);
2137 bfd_h_put_32 (abfd, (bfd_vma) in->ri_pad,
2138 (bfd_byte *) ex->ri_pad);
2139 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2140 (bfd_byte *) ex->ri_cprmask[0]);
2141 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2142 (bfd_byte *) ex->ri_cprmask[1]);
2143 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2144 (bfd_byte *) ex->ri_cprmask[2]);
2145 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2146 (bfd_byte *) ex->ri_cprmask[3]);
2147 bfd_h_put_64 (abfd, (bfd_vma) in->ri_gp_value,
2148 (bfd_byte *) ex->ri_gp_value);
2151 /* Swap an entry in a .gptab section. Note that these routines rely
2152 on the equivalence of the two elements of the union. */
2155 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2157 const Elf32_External_gptab *ex;
2160 in->gt_entry.gt_g_value = bfd_h_get_32 (abfd, ex->gt_entry.gt_g_value);
2161 in->gt_entry.gt_bytes = bfd_h_get_32 (abfd, ex->gt_entry.gt_bytes);
2165 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2167 const Elf32_gptab *in;
2168 Elf32_External_gptab *ex;
2170 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_g_value,
2171 ex->gt_entry.gt_g_value);
2172 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_bytes,
2173 ex->gt_entry.gt_bytes);
2177 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2179 const Elf32_compact_rel *in;
2180 Elf32_External_compact_rel *ex;
2182 bfd_h_put_32 (abfd, (bfd_vma) in->id1, ex->id1);
2183 bfd_h_put_32 (abfd, (bfd_vma) in->num, ex->num);
2184 bfd_h_put_32 (abfd, (bfd_vma) in->id2, ex->id2);
2185 bfd_h_put_32 (abfd, (bfd_vma) in->offset, ex->offset);
2186 bfd_h_put_32 (abfd, (bfd_vma) in->reserved0, ex->reserved0);
2187 bfd_h_put_32 (abfd, (bfd_vma) in->reserved1, ex->reserved1);
2191 bfd_elf32_swap_crinfo_out (abfd, in, ex)
2193 const Elf32_crinfo *in;
2194 Elf32_External_crinfo *ex;
2198 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2199 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2200 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2201 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2202 bfd_h_put_32 (abfd, (bfd_vma) l, ex->info);
2203 bfd_h_put_32 (abfd, (bfd_vma) in->konst, ex->konst);
2204 bfd_h_put_32 (abfd, (bfd_vma) in->vaddr, ex->vaddr);
2207 /* Swap in an options header. */
2210 bfd_mips_elf_swap_options_in (abfd, ex, in)
2212 const Elf_External_Options *ex;
2213 Elf_Internal_Options *in;
2215 in->kind = bfd_h_get_8 (abfd, ex->kind);
2216 in->size = bfd_h_get_8 (abfd, ex->size);
2217 in->section = bfd_h_get_16 (abfd, ex->section);
2218 in->info = bfd_h_get_32 (abfd, ex->info);
2221 /* Swap out an options header. */
2224 bfd_mips_elf_swap_options_out (abfd, in, ex)
2226 const Elf_Internal_Options *in;
2227 Elf_External_Options *ex;
2229 bfd_h_put_8 (abfd, in->kind, ex->kind);
2230 bfd_h_put_8 (abfd, in->size, ex->size);
2231 bfd_h_put_16 (abfd, in->section, ex->section);
2232 bfd_h_put_32 (abfd, in->info, ex->info);
2235 /* Swap in an MSYM entry. */
2238 bfd_mips_elf_swap_msym_in (abfd, ex, in)
2240 const Elf32_External_Msym *ex;
2241 Elf32_Internal_Msym *in;
2243 in->ms_hash_value = bfd_h_get_32 (abfd, ex->ms_hash_value);
2244 in->ms_info = bfd_h_get_32 (abfd, ex->ms_info);
2247 /* Swap out an MSYM entry. */
2250 bfd_mips_elf_swap_msym_out (abfd, in, ex)
2252 const Elf32_Internal_Msym *in;
2253 Elf32_External_Msym *ex;
2255 bfd_h_put_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2256 bfd_h_put_32 (abfd, in->ms_info, ex->ms_info);
2259 /* Determine whether a symbol is global for the purposes of splitting
2260 the symbol table into global symbols and local symbols. At least
2261 on Irix 5, this split must be between section symbols and all other
2262 symbols. On most ELF targets the split is between static symbols
2263 and externally visible symbols. */
2266 mips_elf_sym_is_global (abfd, sym)
2267 bfd *abfd ATTRIBUTE_UNUSED;
2270 return (sym->flags & BSF_SECTION_SYM) == 0 ? true : false;
2273 /* Set the right machine number for a MIPS ELF file. This is used for
2274 both the 32-bit and the 64-bit ABI. */
2277 _bfd_mips_elf_object_p (abfd)
2280 /* Irix 5 and 6 is broken. Object file symbol tables are not always
2281 sorted correctly such that local symbols precede global symbols,
2282 and the sh_info field in the symbol table is not always right. */
2283 elf_bad_symtab (abfd) = true;
2285 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2286 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2290 /* The final processing done just before writing out a MIPS ELF object
2291 file. This gets the MIPS architecture right based on the machine
2292 number. This is used by both the 32-bit and the 64-bit ABI. */
2295 _bfd_mips_elf_final_write_processing (abfd, linker)
2297 boolean linker ATTRIBUTE_UNUSED;
2301 Elf_Internal_Shdr **hdrpp;
2305 switch (bfd_get_mach (abfd))
2308 case bfd_mach_mips3000:
2309 val = E_MIPS_ARCH_1;
2312 case bfd_mach_mips3900:
2313 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2316 case bfd_mach_mips6000:
2317 val = E_MIPS_ARCH_2;
2320 case bfd_mach_mips4000:
2321 case bfd_mach_mips4300:
2322 val = E_MIPS_ARCH_3;
2325 case bfd_mach_mips4010:
2326 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2329 case bfd_mach_mips4100:
2330 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2333 case bfd_mach_mips4111:
2334 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2337 case bfd_mach_mips4650:
2338 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2341 case bfd_mach_mips8000:
2342 val = E_MIPS_ARCH_4;
2345 case bfd_mach_mips32:
2346 val = E_MIPS_ARCH_32;
2349 case bfd_mach_mips32_4k:
2350 val = E_MIPS_ARCH_32 | E_MIPS_MACH_MIPS32_4K;
2354 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2355 elf_elfheader (abfd)->e_flags |= val;
2357 /* Set the sh_info field for .gptab sections and other appropriate
2358 info for each special section. */
2359 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2360 i < elf_elfheader (abfd)->e_shnum;
2363 switch ((*hdrpp)->sh_type)
2366 case SHT_MIPS_LIBLIST:
2367 sec = bfd_get_section_by_name (abfd, ".dynstr");
2369 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2372 case SHT_MIPS_GPTAB:
2373 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2374 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2375 BFD_ASSERT (name != NULL
2376 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2377 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2378 BFD_ASSERT (sec != NULL);
2379 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2382 case SHT_MIPS_CONTENT:
2383 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2384 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2385 BFD_ASSERT (name != NULL
2386 && strncmp (name, ".MIPS.content",
2387 sizeof ".MIPS.content" - 1) == 0);
2388 sec = bfd_get_section_by_name (abfd,
2389 name + sizeof ".MIPS.content" - 1);
2390 BFD_ASSERT (sec != NULL);
2391 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2394 case SHT_MIPS_SYMBOL_LIB:
2395 sec = bfd_get_section_by_name (abfd, ".dynsym");
2397 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2398 sec = bfd_get_section_by_name (abfd, ".liblist");
2400 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2403 case SHT_MIPS_EVENTS:
2404 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2405 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2406 BFD_ASSERT (name != NULL);
2407 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
2408 sec = bfd_get_section_by_name (abfd,
2409 name + sizeof ".MIPS.events" - 1);
2412 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
2413 sizeof ".MIPS.post_rel" - 1) == 0);
2414 sec = bfd_get_section_by_name (abfd,
2416 + sizeof ".MIPS.post_rel" - 1));
2418 BFD_ASSERT (sec != NULL);
2419 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2426 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
2429 _bfd_mips_elf_set_private_flags (abfd, flags)
2433 BFD_ASSERT (!elf_flags_init (abfd)
2434 || elf_elfheader (abfd)->e_flags == flags);
2436 elf_elfheader (abfd)->e_flags = flags;
2437 elf_flags_init (abfd) = true;
2441 /* Copy backend specific data from one object module to another */
2444 _bfd_mips_elf_copy_private_bfd_data (ibfd, obfd)
2448 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2449 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2452 BFD_ASSERT (!elf_flags_init (obfd)
2453 || (elf_elfheader (obfd)->e_flags
2454 == elf_elfheader (ibfd)->e_flags));
2456 elf_gp (obfd) = elf_gp (ibfd);
2457 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2458 elf_flags_init (obfd) = true;
2462 /* Merge backend specific data from an object file to the output
2463 object file when linking. */
2466 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
2474 /* Check if we have the same endianess */
2475 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2478 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2479 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2482 new_flags = elf_elfheader (ibfd)->e_flags;
2483 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
2484 old_flags = elf_elfheader (obfd)->e_flags;
2486 if (! elf_flags_init (obfd))
2488 elf_flags_init (obfd) = true;
2489 elf_elfheader (obfd)->e_flags = new_flags;
2490 elf_elfheader (obfd)->e_ident[EI_CLASS]
2491 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
2493 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2494 && bfd_get_arch_info (obfd)->the_default)
2496 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2497 bfd_get_mach (ibfd)))
2504 /* Check flag compatibility. */
2506 new_flags &= ~EF_MIPS_NOREORDER;
2507 old_flags &= ~EF_MIPS_NOREORDER;
2509 if (new_flags == old_flags)
2514 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
2516 new_flags &= ~EF_MIPS_PIC;
2517 old_flags &= ~EF_MIPS_PIC;
2518 (*_bfd_error_handler)
2519 (_("%s: linking PIC files with non-PIC files"),
2520 bfd_get_filename (ibfd));
2524 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
2526 new_flags &= ~EF_MIPS_CPIC;
2527 old_flags &= ~EF_MIPS_CPIC;
2528 (*_bfd_error_handler)
2529 (_("%s: linking abicalls files with non-abicalls files"),
2530 bfd_get_filename (ibfd));
2534 /* Compare the ISA's. */
2535 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
2536 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
2538 int new_mach = new_flags & EF_MIPS_MACH;
2539 int old_mach = old_flags & EF_MIPS_MACH;
2540 int new_isa = elf_mips_isa (new_flags);
2541 int old_isa = elf_mips_isa (old_flags);
2543 /* If either has no machine specified, just compare the general isa's.
2544 Some combinations of machines are ok, if the isa's match. */
2547 || new_mach == old_mach
2550 /* Don't warn about mixing code using 32-bit ISAs, or mixing code
2551 using 64-bit ISAs. They will normally use the same data sizes
2552 and calling conventions. */
2554 if (( (new_isa == 1 || new_isa == 2 || new_isa == 32)
2555 ^ (old_isa == 1 || old_isa == 2 || old_isa == 32)) != 0)
2557 (*_bfd_error_handler)
2558 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
2559 bfd_get_filename (ibfd), new_isa, old_isa);
2566 (*_bfd_error_handler)
2567 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
2568 bfd_get_filename (ibfd),
2569 elf_mips_mach (new_flags),
2570 elf_mips_mach (old_flags));
2574 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2575 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2578 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
2579 does set EI_CLASS differently from any 32-bit ABI. */
2580 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
2581 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2582 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2584 /* Only error if both are set (to different values). */
2585 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
2586 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2587 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2589 (*_bfd_error_handler)
2590 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
2591 bfd_get_filename (ibfd),
2592 elf_mips_abi_name (ibfd),
2593 elf_mips_abi_name (obfd));
2596 new_flags &= ~EF_MIPS_ABI;
2597 old_flags &= ~EF_MIPS_ABI;
2600 /* Warn about any other mismatches */
2601 if (new_flags != old_flags)
2603 (*_bfd_error_handler)
2604 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2605 bfd_get_filename (ibfd), (unsigned long) new_flags,
2606 (unsigned long) old_flags);
2612 bfd_set_error (bfd_error_bad_value);
2620 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
2624 FILE *file = (FILE *) ptr;
2626 BFD_ASSERT (abfd != NULL && ptr != NULL);
2628 /* Print normal ELF private data. */
2629 _bfd_elf_print_private_bfd_data (abfd, ptr);
2631 /* xgettext:c-format */
2632 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2634 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
2635 fprintf (file, _(" [abi=O32]"));
2636 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
2637 fprintf (file, _(" [abi=O64]"));
2638 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
2639 fprintf (file, _(" [abi=EABI32]"));
2640 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
2641 fprintf (file, _(" [abi=EABI64]"));
2642 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
2643 fprintf (file, _(" [abi unknown]"));
2644 else if (ABI_N32_P (abfd))
2645 fprintf (file, _(" [abi=N32]"));
2646 else if (ABI_64_P (abfd))
2647 fprintf (file, _(" [abi=64]"));
2649 fprintf (file, _(" [no abi set]"));
2651 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
2652 fprintf (file, _(" [mips1]"));
2653 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
2654 fprintf (file, _(" [mips2]"));
2655 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
2656 fprintf (file, _(" [mips3]"));
2657 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
2658 fprintf (file, _(" [mips4]"));
2659 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
2660 fprintf (file, _ (" [mips32]"));
2662 fprintf (file, _(" [unknown ISA]"));
2664 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
2665 fprintf (file, _(" [32bitmode]"));
2667 fprintf (file, _(" [not 32bitmode]"));
2674 /* Handle a MIPS specific section when reading an object file. This
2675 is called when elfcode.h finds a section with an unknown type.
2676 This routine supports both the 32-bit and 64-bit ELF ABI.
2678 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
2682 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
2684 Elf_Internal_Shdr *hdr;
2689 /* There ought to be a place to keep ELF backend specific flags, but
2690 at the moment there isn't one. We just keep track of the
2691 sections by their name, instead. Fortunately, the ABI gives
2692 suggested names for all the MIPS specific sections, so we will
2693 probably get away with this. */
2694 switch (hdr->sh_type)
2696 case SHT_MIPS_LIBLIST:
2697 if (strcmp (name, ".liblist") != 0)
2701 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
2704 case SHT_MIPS_CONFLICT:
2705 if (strcmp (name, ".conflict") != 0)
2708 case SHT_MIPS_GPTAB:
2709 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
2712 case SHT_MIPS_UCODE:
2713 if (strcmp (name, ".ucode") != 0)
2716 case SHT_MIPS_DEBUG:
2717 if (strcmp (name, ".mdebug") != 0)
2719 flags = SEC_DEBUGGING;
2721 case SHT_MIPS_REGINFO:
2722 if (strcmp (name, ".reginfo") != 0
2723 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
2725 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
2727 case SHT_MIPS_IFACE:
2728 if (strcmp (name, ".MIPS.interfaces") != 0)
2731 case SHT_MIPS_CONTENT:
2732 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
2735 case SHT_MIPS_OPTIONS:
2736 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
2739 case SHT_MIPS_DWARF:
2740 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
2743 case SHT_MIPS_SYMBOL_LIB:
2744 if (strcmp (name, ".MIPS.symlib") != 0)
2747 case SHT_MIPS_EVENTS:
2748 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
2749 && strncmp (name, ".MIPS.post_rel",
2750 sizeof ".MIPS.post_rel" - 1) != 0)
2757 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2762 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
2763 (bfd_get_section_flags (abfd,
2769 /* FIXME: We should record sh_info for a .gptab section. */
2771 /* For a .reginfo section, set the gp value in the tdata information
2772 from the contents of this section. We need the gp value while
2773 processing relocs, so we just get it now. The .reginfo section
2774 is not used in the 64-bit MIPS ELF ABI. */
2775 if (hdr->sh_type == SHT_MIPS_REGINFO)
2777 Elf32_External_RegInfo ext;
2780 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
2781 (file_ptr) 0, sizeof ext))
2783 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
2784 elf_gp (abfd) = s.ri_gp_value;
2787 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
2788 set the gp value based on what we find. We may see both
2789 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
2790 they should agree. */
2791 if (hdr->sh_type == SHT_MIPS_OPTIONS)
2793 bfd_byte *contents, *l, *lend;
2795 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
2796 if (contents == NULL)
2798 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
2799 (file_ptr) 0, hdr->sh_size))
2805 lend = contents + hdr->sh_size;
2806 while (l + sizeof (Elf_External_Options) <= lend)
2808 Elf_Internal_Options intopt;
2810 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2812 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2814 Elf64_Internal_RegInfo intreg;
2816 bfd_mips_elf64_swap_reginfo_in
2818 ((Elf64_External_RegInfo *)
2819 (l + sizeof (Elf_External_Options))),
2821 elf_gp (abfd) = intreg.ri_gp_value;
2823 else if (intopt.kind == ODK_REGINFO)
2825 Elf32_RegInfo intreg;
2827 bfd_mips_elf32_swap_reginfo_in
2829 ((Elf32_External_RegInfo *)
2830 (l + sizeof (Elf_External_Options))),
2832 elf_gp (abfd) = intreg.ri_gp_value;
2842 /* Set the correct type for a MIPS ELF section. We do this by the
2843 section name, which is a hack, but ought to work. This routine is
2844 used by both the 32-bit and the 64-bit ABI. */
2847 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
2849 Elf32_Internal_Shdr *hdr;
2852 register const char *name;
2854 name = bfd_get_section_name (abfd, sec);
2856 if (strcmp (name, ".liblist") == 0)
2858 hdr->sh_type = SHT_MIPS_LIBLIST;
2859 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
2860 /* The sh_link field is set in final_write_processing. */
2862 else if (strcmp (name, ".conflict") == 0)
2863 hdr->sh_type = SHT_MIPS_CONFLICT;
2864 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
2866 hdr->sh_type = SHT_MIPS_GPTAB;
2867 hdr->sh_entsize = sizeof (Elf32_External_gptab);
2868 /* The sh_info field is set in final_write_processing. */
2870 else if (strcmp (name, ".ucode") == 0)
2871 hdr->sh_type = SHT_MIPS_UCODE;
2872 else if (strcmp (name, ".mdebug") == 0)
2874 hdr->sh_type = SHT_MIPS_DEBUG;
2875 /* In a shared object on Irix 5.3, the .mdebug section has an
2876 entsize of 0. FIXME: Does this matter? */
2877 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2878 hdr->sh_entsize = 0;
2880 hdr->sh_entsize = 1;
2882 else if (strcmp (name, ".reginfo") == 0)
2884 hdr->sh_type = SHT_MIPS_REGINFO;
2885 /* In a shared object on Irix 5.3, the .reginfo section has an
2886 entsize of 0x18. FIXME: Does this matter? */
2887 if (SGI_COMPAT (abfd))
2889 if ((abfd->flags & DYNAMIC) != 0)
2890 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2892 hdr->sh_entsize = 1;
2895 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2897 else if (SGI_COMPAT (abfd)
2898 && (strcmp (name, ".hash") == 0
2899 || strcmp (name, ".dynamic") == 0
2900 || strcmp (name, ".dynstr") == 0))
2902 if (SGI_COMPAT (abfd))
2903 hdr->sh_entsize = 0;
2905 /* This isn't how the Irix 6 linker behaves. */
2906 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
2909 else if (strcmp (name, ".got") == 0
2910 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
2911 || strcmp (name, ".sdata") == 0
2912 || strcmp (name, ".sbss") == 0
2913 || strcmp (name, ".lit4") == 0
2914 || strcmp (name, ".lit8") == 0)
2915 hdr->sh_flags |= SHF_MIPS_GPREL;
2916 else if (strcmp (name, ".MIPS.interfaces") == 0)
2918 hdr->sh_type = SHT_MIPS_IFACE;
2919 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2921 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
2923 hdr->sh_type = SHT_MIPS_CONTENT;
2924 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2925 /* The sh_info field is set in final_write_processing. */
2927 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
2929 hdr->sh_type = SHT_MIPS_OPTIONS;
2930 hdr->sh_entsize = 1;
2931 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2933 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
2934 hdr->sh_type = SHT_MIPS_DWARF;
2935 else if (strcmp (name, ".MIPS.symlib") == 0)
2937 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
2938 /* The sh_link and sh_info fields are set in
2939 final_write_processing. */
2941 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
2942 || strncmp (name, ".MIPS.post_rel",
2943 sizeof ".MIPS.post_rel" - 1) == 0)
2945 hdr->sh_type = SHT_MIPS_EVENTS;
2946 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2947 /* The sh_link field is set in final_write_processing. */
2949 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
2951 hdr->sh_type = SHT_MIPS_MSYM;
2952 hdr->sh_flags |= SHF_ALLOC;
2953 hdr->sh_entsize = 8;
2956 /* The generic elf_fake_sections will set up REL_HDR using the
2957 default kind of relocations. But, we may actually need both
2958 kinds of relocations, so we set up the second header here. */
2959 if ((sec->flags & SEC_RELOC) != 0)
2961 struct bfd_elf_section_data *esd;
2963 esd = elf_section_data (sec);
2964 BFD_ASSERT (esd->rel_hdr2 == NULL);
2966 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2969 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
2970 !elf_section_data (sec)->use_rela_p);
2976 /* Given a BFD section, try to locate the corresponding ELF section
2977 index. This is used by both the 32-bit and the 64-bit ABI.
2978 Actually, it's not clear to me that the 64-bit ABI supports these,
2979 but for non-PIC objects we will certainly want support for at least
2980 the .scommon section. */
2983 _bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
2984 bfd *abfd ATTRIBUTE_UNUSED;
2985 Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
2989 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
2991 *retval = SHN_MIPS_SCOMMON;
2994 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
2996 *retval = SHN_MIPS_ACOMMON;
3002 /* When are writing out the .options or .MIPS.options section,
3003 remember the bytes we are writing out, so that we can install the
3004 GP value in the section_processing routine. */
3007 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
3012 bfd_size_type count;
3014 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3018 if (elf_section_data (section) == NULL)
3020 section->used_by_bfd =
3021 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
3022 if (elf_section_data (section) == NULL)
3025 c = (bfd_byte *) elf_section_data (section)->tdata;
3030 if (section->_cooked_size != 0)
3031 size = section->_cooked_size;
3033 size = section->_raw_size;
3034 c = (bfd_byte *) bfd_zalloc (abfd, size);
3037 elf_section_data (section)->tdata = (PTR) c;
3040 memcpy (c + offset, location, count);
3043 return _bfd_elf_set_section_contents (abfd, section, location, offset,
3047 /* Work over a section just before writing it out. This routine is
3048 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3049 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3053 _bfd_mips_elf_section_processing (abfd, hdr)
3055 Elf_Internal_Shdr *hdr;
3057 if (hdr->sh_type == SHT_MIPS_REGINFO
3058 && hdr->sh_size > 0)
3062 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3063 BFD_ASSERT (hdr->contents == NULL);
3066 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
3069 bfd_h_put_32 (abfd, (bfd_vma) elf_gp (abfd), buf);
3070 if (bfd_write (buf, (bfd_size_type) 1, (bfd_size_type) 4, abfd) != 4)
3074 if (hdr->sh_type == SHT_MIPS_OPTIONS
3075 && hdr->bfd_section != NULL
3076 && elf_section_data (hdr->bfd_section) != NULL
3077 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3079 bfd_byte *contents, *l, *lend;
3081 /* We stored the section contents in the elf_section_data tdata
3082 field in the set_section_contents routine. We save the
3083 section contents so that we don't have to read them again.
3084 At this point we know that elf_gp is set, so we can look
3085 through the section contents to see if there is an
3086 ODK_REGINFO structure. */
3088 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3090 lend = contents + hdr->sh_size;
3091 while (l + sizeof (Elf_External_Options) <= lend)
3093 Elf_Internal_Options intopt;
3095 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3097 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3104 + sizeof (Elf_External_Options)
3105 + (sizeof (Elf64_External_RegInfo) - 8)),
3108 bfd_h_put_64 (abfd, elf_gp (abfd), buf);
3109 if (bfd_write (buf, 1, 8, abfd) != 8)
3112 else if (intopt.kind == ODK_REGINFO)
3119 + sizeof (Elf_External_Options)
3120 + (sizeof (Elf32_External_RegInfo) - 4)),
3123 bfd_h_put_32 (abfd, elf_gp (abfd), buf);
3124 if (bfd_write (buf, 1, 4, abfd) != 4)
3131 if (hdr->bfd_section != NULL)
3133 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3135 if (strcmp (name, ".sdata") == 0
3136 || strcmp (name, ".lit8") == 0
3137 || strcmp (name, ".lit4") == 0)
3139 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3140 hdr->sh_type = SHT_PROGBITS;
3142 else if (strcmp (name, ".sbss") == 0)
3144 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3145 hdr->sh_type = SHT_NOBITS;
3147 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3149 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3150 hdr->sh_type = SHT_PROGBITS;
3152 else if (strcmp (name, ".compact_rel") == 0)
3155 hdr->sh_type = SHT_PROGBITS;
3157 else if (strcmp (name, ".rtproc") == 0)
3159 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3161 unsigned int adjust;
3163 adjust = hdr->sh_size % hdr->sh_addralign;
3165 hdr->sh_size += hdr->sh_addralign - adjust;
3173 /* MIPS ELF uses two common sections. One is the usual one, and the
3174 other is for small objects. All the small objects are kept
3175 together, and then referenced via the gp pointer, which yields
3176 faster assembler code. This is what we use for the small common
3177 section. This approach is copied from ecoff.c. */
3178 static asection mips_elf_scom_section;
3179 static asymbol mips_elf_scom_symbol;
3180 static asymbol *mips_elf_scom_symbol_ptr;
3182 /* MIPS ELF also uses an acommon section, which represents an
3183 allocated common symbol which may be overridden by a
3184 definition in a shared library. */
3185 static asection mips_elf_acom_section;
3186 static asymbol mips_elf_acom_symbol;
3187 static asymbol *mips_elf_acom_symbol_ptr;
3189 /* Handle the special MIPS section numbers that a symbol may use.
3190 This is used for both the 32-bit and the 64-bit ABI. */
3193 _bfd_mips_elf_symbol_processing (abfd, asym)
3197 elf_symbol_type *elfsym;
3199 elfsym = (elf_symbol_type *) asym;
3200 switch (elfsym->internal_elf_sym.st_shndx)
3202 case SHN_MIPS_ACOMMON:
3203 /* This section is used in a dynamically linked executable file.
3204 It is an allocated common section. The dynamic linker can
3205 either resolve these symbols to something in a shared
3206 library, or it can just leave them here. For our purposes,
3207 we can consider these symbols to be in a new section. */
3208 if (mips_elf_acom_section.name == NULL)
3210 /* Initialize the acommon section. */
3211 mips_elf_acom_section.name = ".acommon";
3212 mips_elf_acom_section.flags = SEC_ALLOC;
3213 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3214 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3215 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3216 mips_elf_acom_symbol.name = ".acommon";
3217 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3218 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3219 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3221 asym->section = &mips_elf_acom_section;
3225 /* Common symbols less than the GP size are automatically
3226 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3227 if (asym->value > elf_gp_size (abfd)
3228 || IRIX_COMPAT (abfd) == ict_irix6)
3231 case SHN_MIPS_SCOMMON:
3232 if (mips_elf_scom_section.name == NULL)
3234 /* Initialize the small common section. */
3235 mips_elf_scom_section.name = ".scommon";
3236 mips_elf_scom_section.flags = SEC_IS_COMMON;
3237 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3238 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3239 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3240 mips_elf_scom_symbol.name = ".scommon";
3241 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3242 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3243 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3245 asym->section = &mips_elf_scom_section;
3246 asym->value = elfsym->internal_elf_sym.st_size;
3249 case SHN_MIPS_SUNDEFINED:
3250 asym->section = bfd_und_section_ptr;
3253 #if 0 /* for SGI_COMPAT */
3255 asym->section = mips_elf_text_section_ptr;
3259 asym->section = mips_elf_data_section_ptr;
3265 /* When creating an Irix 5 executable, we need REGINFO and RTPROC
3269 _bfd_mips_elf_additional_program_headers (abfd)
3275 /* See if we need a PT_MIPS_REGINFO segment. */
3276 s = bfd_get_section_by_name (abfd, ".reginfo");
3277 if (s && (s->flags & SEC_LOAD))
3280 /* See if we need a PT_MIPS_OPTIONS segment. */
3281 if (IRIX_COMPAT (abfd) == ict_irix6
3282 && bfd_get_section_by_name (abfd,
3283 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3286 /* See if we need a PT_MIPS_RTPROC segment. */
3287 if (IRIX_COMPAT (abfd) == ict_irix5
3288 && bfd_get_section_by_name (abfd, ".dynamic")
3289 && bfd_get_section_by_name (abfd, ".mdebug"))
3295 /* Modify the segment map for an Irix 5 executable. */
3298 _bfd_mips_elf_modify_segment_map (abfd)
3302 struct elf_segment_map *m, **pm;
3304 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3306 s = bfd_get_section_by_name (abfd, ".reginfo");
3307 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3309 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3310 if (m->p_type == PT_MIPS_REGINFO)
3314 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3318 m->p_type = PT_MIPS_REGINFO;
3322 /* We want to put it after the PHDR and INTERP segments. */
3323 pm = &elf_tdata (abfd)->segment_map;
3325 && ((*pm)->p_type == PT_PHDR
3326 || (*pm)->p_type == PT_INTERP))
3334 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3335 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3336 PT_OPTIONS segement immediately following the program header
3338 if (IRIX_COMPAT (abfd) == ict_irix6)
3342 for (s = abfd->sections; s; s = s->next)
3343 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
3348 struct elf_segment_map *options_segment;
3350 /* Usually, there's a program header table. But, sometimes
3351 there's not (like when running the `ld' testsuite). So,
3352 if there's no program header table, we just put the
3353 options segement at the end. */
3354 for (pm = &elf_tdata (abfd)->segment_map;
3357 if ((*pm)->p_type == PT_PHDR)
3360 options_segment = bfd_zalloc (abfd,
3361 sizeof (struct elf_segment_map));
3362 options_segment->next = *pm;
3363 options_segment->p_type = PT_MIPS_OPTIONS;
3364 options_segment->p_flags = PF_R;
3365 options_segment->p_flags_valid = true;
3366 options_segment->count = 1;
3367 options_segment->sections[0] = s;
3368 *pm = options_segment;
3373 if (IRIX_COMPAT (abfd) == ict_irix5)
3375 /* If there are .dynamic and .mdebug sections, we make a room
3376 for the RTPROC header. FIXME: Rewrite without section names. */
3377 if (bfd_get_section_by_name (abfd, ".interp") == NULL
3378 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
3379 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
3381 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3382 if (m->p_type == PT_MIPS_RTPROC)
3386 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3390 m->p_type = PT_MIPS_RTPROC;
3392 s = bfd_get_section_by_name (abfd, ".rtproc");
3397 m->p_flags_valid = 1;
3405 /* We want to put it after the DYNAMIC segment. */
3406 pm = &elf_tdata (abfd)->segment_map;
3407 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
3417 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
3418 .dynstr, .dynsym, and .hash sections, and everything in
3420 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
3422 if ((*pm)->p_type == PT_DYNAMIC)
3425 if (IRIX_COMPAT (abfd) == ict_none)
3427 /* For a normal mips executable the permissions for the PT_DYNAMIC
3428 segment are read, write and execute. We do that here since
3429 the code in elf.c sets only the read permission. This matters
3430 sometimes for the dynamic linker. */
3431 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3433 m->p_flags = PF_R | PF_W | PF_X;
3434 m->p_flags_valid = 1;
3438 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
3440 static const char *sec_names[] = {
3441 ".dynamic", ".dynstr", ".dynsym", ".hash"
3445 struct elf_segment_map *n;
3449 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
3451 s = bfd_get_section_by_name (abfd, sec_names[i]);
3452 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3458 sz = s->_cooked_size;
3461 if (high < s->vma + sz)
3467 for (s = abfd->sections; s != NULL; s = s->next)
3468 if ((s->flags & SEC_LOAD) != 0
3471 + (s->_cooked_size !=
3472 0 ? s->_cooked_size : s->_raw_size)) <= high))
3475 n = ((struct elf_segment_map *)
3476 bfd_zalloc (abfd, sizeof *n + (c - 1) * sizeof (asection *)));
3483 for (s = abfd->sections; s != NULL; s = s->next)
3485 if ((s->flags & SEC_LOAD) != 0
3488 + (s->_cooked_size != 0 ?
3489 s->_cooked_size : s->_raw_size)) <= high))
3503 /* The structure of the runtime procedure descriptor created by the
3504 loader for use by the static exception system. */
3506 typedef struct runtime_pdr {
3507 bfd_vma adr; /* memory address of start of procedure */
3508 long regmask; /* save register mask */
3509 long regoffset; /* save register offset */
3510 long fregmask; /* save floating point register mask */
3511 long fregoffset; /* save floating point register offset */
3512 long frameoffset; /* frame size */
3513 short framereg; /* frame pointer register */
3514 short pcreg; /* offset or reg of return pc */
3515 long irpss; /* index into the runtime string table */
3517 struct exception_info *exception_info;/* pointer to exception array */
3519 #define cbRPDR sizeof (RPDR)
3520 #define rpdNil ((pRPDR) 0)
3522 /* Swap RPDR (runtime procedure table entry) for output. */
3524 static void ecoff_swap_rpdr_out
3525 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
3528 ecoff_swap_rpdr_out (abfd, in, ex)
3531 struct rpdr_ext *ex;
3533 /* ecoff_put_off was defined in ecoffswap.h. */
3534 ecoff_put_off (abfd, in->adr, (bfd_byte *) ex->p_adr);
3535 bfd_h_put_32 (abfd, in->regmask, (bfd_byte *) ex->p_regmask);
3536 bfd_h_put_32 (abfd, in->regoffset, (bfd_byte *) ex->p_regoffset);
3537 bfd_h_put_32 (abfd, in->fregmask, (bfd_byte *) ex->p_fregmask);
3538 bfd_h_put_32 (abfd, in->fregoffset, (bfd_byte *) ex->p_fregoffset);
3539 bfd_h_put_32 (abfd, in->frameoffset, (bfd_byte *) ex->p_frameoffset);
3541 bfd_h_put_16 (abfd, in->framereg, (bfd_byte *) ex->p_framereg);
3542 bfd_h_put_16 (abfd, in->pcreg, (bfd_byte *) ex->p_pcreg);
3544 bfd_h_put_32 (abfd, in->irpss, (bfd_byte *) ex->p_irpss);
3546 ecoff_put_off (abfd, in->exception_info, (bfd_byte *) ex->p_exception_info);
3550 /* Read ECOFF debugging information from a .mdebug section into a
3551 ecoff_debug_info structure. */
3554 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
3557 struct ecoff_debug_info *debug;
3560 const struct ecoff_debug_swap *swap;
3561 char *ext_hdr = NULL;
3563 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3564 memset (debug, 0, sizeof (*debug));
3566 ext_hdr = (char *) bfd_malloc ((size_t) swap->external_hdr_size);
3567 if (ext_hdr == NULL && swap->external_hdr_size != 0)
3570 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
3571 swap->external_hdr_size)
3575 symhdr = &debug->symbolic_header;
3576 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
3578 /* The symbolic header contains absolute file offsets and sizes to
3580 #define READ(ptr, offset, count, size, type) \
3581 if (symhdr->count == 0) \
3582 debug->ptr = NULL; \
3585 debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \
3586 if (debug->ptr == NULL) \
3587 goto error_return; \
3588 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
3589 || (bfd_read (debug->ptr, size, symhdr->count, \
3590 abfd) != size * symhdr->count)) \
3591 goto error_return; \
3594 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
3595 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
3596 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
3597 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
3598 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
3599 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
3601 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
3602 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
3603 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
3604 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
3605 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
3609 debug->adjust = NULL;
3614 if (ext_hdr != NULL)
3616 if (debug->line != NULL)
3618 if (debug->external_dnr != NULL)
3619 free (debug->external_dnr);
3620 if (debug->external_pdr != NULL)
3621 free (debug->external_pdr);
3622 if (debug->external_sym != NULL)
3623 free (debug->external_sym);
3624 if (debug->external_opt != NULL)
3625 free (debug->external_opt);
3626 if (debug->external_aux != NULL)
3627 free (debug->external_aux);
3628 if (debug->ss != NULL)
3630 if (debug->ssext != NULL)
3631 free (debug->ssext);
3632 if (debug->external_fdr != NULL)
3633 free (debug->external_fdr);
3634 if (debug->external_rfd != NULL)
3635 free (debug->external_rfd);
3636 if (debug->external_ext != NULL)
3637 free (debug->external_ext);
3641 /* MIPS ELF local labels start with '$', not 'L'. */
3644 mips_elf_is_local_label_name (abfd, name)
3651 /* On Irix 6, the labels go back to starting with '.', so we accept
3652 the generic ELF local label syntax as well. */
3653 return _bfd_elf_is_local_label_name (abfd, name);
3656 /* MIPS ELF uses a special find_nearest_line routine in order the
3657 handle the ECOFF debugging information. */
3659 struct mips_elf_find_line {
3660 struct ecoff_debug_info d;
3661 struct ecoff_find_line i;
3665 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
3666 functionname_ptr, line_ptr)
3671 const char **filename_ptr;
3672 const char **functionname_ptr;
3673 unsigned int *line_ptr;
3677 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
3678 filename_ptr, functionname_ptr,
3682 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3683 filename_ptr, functionname_ptr,
3685 ABI_64_P (abfd) ? 8 : 0))
3688 msec = bfd_get_section_by_name (abfd, ".mdebug");
3692 struct mips_elf_find_line *fi;
3693 const struct ecoff_debug_swap * const swap =
3694 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3696 /* If we are called during a link, mips_elf_final_link may have
3697 cleared the SEC_HAS_CONTENTS field. We force it back on here
3698 if appropriate (which it normally will be). */
3699 origflags = msec->flags;
3700 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
3701 msec->flags |= SEC_HAS_CONTENTS;
3703 fi = elf_tdata (abfd)->find_line_info;
3706 bfd_size_type external_fdr_size;
3709 struct fdr *fdr_ptr;
3711 fi = ((struct mips_elf_find_line *)
3712 bfd_zalloc (abfd, sizeof (struct mips_elf_find_line)));
3715 msec->flags = origflags;
3719 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
3721 msec->flags = origflags;
3725 /* Swap in the FDR information. */
3726 fi->d.fdr = ((struct fdr *)
3728 (fi->d.symbolic_header.ifdMax *
3729 sizeof (struct fdr))));
3730 if (fi->d.fdr == NULL)
3732 msec->flags = origflags;
3735 external_fdr_size = swap->external_fdr_size;
3736 fdr_ptr = fi->d.fdr;
3737 fraw_src = (char *) fi->d.external_fdr;
3738 fraw_end = (fraw_src
3739 + fi->d.symbolic_header.ifdMax * external_fdr_size);
3740 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
3741 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
3743 elf_tdata (abfd)->find_line_info = fi;
3745 /* Note that we don't bother to ever free this information.
3746 find_nearest_line is either called all the time, as in
3747 objdump -l, so the information should be saved, or it is
3748 rarely called, as in ld error messages, so the memory
3749 wasted is unimportant. Still, it would probably be a
3750 good idea for free_cached_info to throw it away. */
3753 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
3754 &fi->i, filename_ptr, functionname_ptr,
3757 msec->flags = origflags;
3761 msec->flags = origflags;
3764 /* Fall back on the generic ELF find_nearest_line routine. */
3766 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
3767 filename_ptr, functionname_ptr,
3771 /* The mips16 compiler uses a couple of special sections to handle
3772 floating point arguments.
3774 Section names that look like .mips16.fn.FNNAME contain stubs that
3775 copy floating point arguments from the fp regs to the gp regs and
3776 then jump to FNNAME. If any 32 bit function calls FNNAME, the
3777 call should be redirected to the stub instead. If no 32 bit
3778 function calls FNNAME, the stub should be discarded. We need to
3779 consider any reference to the function, not just a call, because
3780 if the address of the function is taken we will need the stub,
3781 since the address might be passed to a 32 bit function.
3783 Section names that look like .mips16.call.FNNAME contain stubs
3784 that copy floating point arguments from the gp regs to the fp
3785 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
3786 then any 16 bit function that calls FNNAME should be redirected
3787 to the stub instead. If FNNAME is not a 32 bit function, the
3788 stub should be discarded.
3790 .mips16.call.fp.FNNAME sections are similar, but contain stubs
3791 which call FNNAME and then copy the return value from the fp regs
3792 to the gp regs. These stubs store the return value in $18 while
3793 calling FNNAME; any function which might call one of these stubs
3794 must arrange to save $18 around the call. (This case is not
3795 needed for 32 bit functions that call 16 bit functions, because
3796 16 bit functions always return floating point values in both
3799 Note that in all cases FNNAME might be defined statically.
3800 Therefore, FNNAME is not used literally. Instead, the relocation
3801 information will indicate which symbol the section is for.
3803 We record any stubs that we find in the symbol table. */
3805 #define FN_STUB ".mips16.fn."
3806 #define CALL_STUB ".mips16.call."
3807 #define CALL_FP_STUB ".mips16.call.fp."
3809 /* MIPS ELF linker hash table. */
3811 struct mips_elf_link_hash_table {
3812 struct elf_link_hash_table root;
3814 /* We no longer use this. */
3815 /* String section indices for the dynamic section symbols. */
3816 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
3818 /* The number of .rtproc entries. */
3819 bfd_size_type procedure_count;
3820 /* The size of the .compact_rel section (if SGI_COMPAT). */
3821 bfd_size_type compact_rel_size;
3822 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
3823 entry is set to the address of __rld_obj_head as in Irix 5. */
3824 boolean use_rld_obj_head;
3825 /* This is the value of the __rld_map or __rld_obj_head symbol. */
3827 /* This is set if we see any mips16 stub sections. */
3828 boolean mips16_stubs_seen;
3831 /* Look up an entry in a MIPS ELF linker hash table. */
3833 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
3834 ((struct mips_elf_link_hash_entry *) \
3835 elf_link_hash_lookup (&(table)->root, (string), (create), \
3838 /* Traverse a MIPS ELF linker hash table. */
3840 #define mips_elf_link_hash_traverse(table, func, info) \
3841 (elf_link_hash_traverse \
3843 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
3846 /* Get the MIPS ELF linker hash table from a link_info structure. */
3848 #define mips_elf_hash_table(p) \
3849 ((struct mips_elf_link_hash_table *) ((p)->hash))
3851 static boolean mips_elf_output_extsym
3852 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
3854 /* Create an entry in a MIPS ELF linker hash table. */
3856 static struct bfd_hash_entry *
3857 mips_elf_link_hash_newfunc (entry, table, string)
3858 struct bfd_hash_entry *entry;
3859 struct bfd_hash_table *table;
3862 struct mips_elf_link_hash_entry *ret =
3863 (struct mips_elf_link_hash_entry *) entry;
3865 /* Allocate the structure if it has not already been allocated by a
3867 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3868 ret = ((struct mips_elf_link_hash_entry *)
3869 bfd_hash_allocate (table,
3870 sizeof (struct mips_elf_link_hash_entry)));
3871 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3872 return (struct bfd_hash_entry *) ret;
3874 /* Call the allocation method of the superclass. */
3875 ret = ((struct mips_elf_link_hash_entry *)
3876 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3878 if (ret != (struct mips_elf_link_hash_entry *) NULL)
3880 /* Set local fields. */
3881 memset (&ret->esym, 0, sizeof (EXTR));
3882 /* We use -2 as a marker to indicate that the information has
3883 not been set. -1 means there is no associated ifd. */
3885 ret->possibly_dynamic_relocs = 0;
3886 ret->min_dyn_reloc_index = 0;
3887 ret->fn_stub = NULL;
3888 ret->need_fn_stub = false;
3889 ret->call_stub = NULL;
3890 ret->call_fp_stub = NULL;
3893 return (struct bfd_hash_entry *) ret;
3897 _bfd_mips_elf_hide_symbol (info, h)
3898 struct bfd_link_info *info;
3899 struct mips_elf_link_hash_entry *h;
3903 struct mips_got_info *g;
3904 dynobj = elf_hash_table (info)->dynobj;
3905 got = bfd_get_section_by_name (dynobj, ".got");
3906 g = (struct mips_got_info *) elf_section_data (got)->tdata;
3908 h->root.elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3909 h->root.plt.offset = (bfd_vma) -1;
3910 h->root.dynindx = -1;
3912 /* FIXME: Do we allocate too much GOT space here? */
3914 got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
3917 /* Create a MIPS ELF linker hash table. */
3919 struct bfd_link_hash_table *
3920 _bfd_mips_elf_link_hash_table_create (abfd)
3923 struct mips_elf_link_hash_table *ret;
3925 ret = ((struct mips_elf_link_hash_table *)
3926 bfd_alloc (abfd, sizeof (struct mips_elf_link_hash_table)));
3927 if (ret == (struct mips_elf_link_hash_table *) NULL)
3930 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
3931 mips_elf_link_hash_newfunc))
3933 bfd_release (abfd, ret);
3938 /* We no longer use this. */
3939 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
3940 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
3942 ret->procedure_count = 0;
3943 ret->compact_rel_size = 0;
3944 ret->use_rld_obj_head = false;
3946 ret->mips16_stubs_seen = false;
3948 return &ret->root.root;
3951 /* Hook called by the linker routine which adds symbols from an object
3952 file. We must handle the special MIPS section numbers here. */
3955 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
3957 struct bfd_link_info *info;
3958 const Elf_Internal_Sym *sym;
3960 flagword *flagsp ATTRIBUTE_UNUSED;
3964 if (SGI_COMPAT (abfd)
3965 && (abfd->flags & DYNAMIC) != 0
3966 && strcmp (*namep, "_rld_new_interface") == 0)
3968 /* Skip Irix 5 rld entry name. */
3973 switch (sym->st_shndx)
3976 /* Common symbols less than the GP size are automatically
3977 treated as SHN_MIPS_SCOMMON symbols. */
3978 if (sym->st_size > elf_gp_size (abfd)
3979 || IRIX_COMPAT (abfd) == ict_irix6)
3982 case SHN_MIPS_SCOMMON:
3983 *secp = bfd_make_section_old_way (abfd, ".scommon");
3984 (*secp)->flags |= SEC_IS_COMMON;
3985 *valp = sym->st_size;
3989 /* This section is used in a shared object. */
3990 if (elf_tdata (abfd)->elf_text_section == NULL)
3992 asymbol *elf_text_symbol;
3993 asection *elf_text_section;
3995 elf_text_section = bfd_zalloc (abfd, sizeof (asection));
3996 if (elf_text_section == NULL)
3999 elf_text_symbol = bfd_zalloc (abfd, sizeof (asymbol));
4000 if (elf_text_symbol == NULL)
4003 /* Initialize the section. */
4005 elf_tdata (abfd)->elf_text_section = elf_text_section;
4006 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4008 elf_text_section->symbol = elf_text_symbol;
4009 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4011 elf_text_section->name = ".text";
4012 elf_text_section->flags = SEC_NO_FLAGS;
4013 elf_text_section->output_section = NULL;
4014 elf_text_section->owner = abfd;
4015 elf_text_symbol->name = ".text";
4016 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4017 elf_text_symbol->section = elf_text_section;
4019 /* This code used to do *secp = bfd_und_section_ptr if
4020 info->shared. I don't know why, and that doesn't make sense,
4021 so I took it out. */
4022 *secp = elf_tdata (abfd)->elf_text_section;
4025 case SHN_MIPS_ACOMMON:
4026 /* Fall through. XXX Can we treat this as allocated data? */
4028 /* This section is used in a shared object. */
4029 if (elf_tdata (abfd)->elf_data_section == NULL)
4031 asymbol *elf_data_symbol;
4032 asection *elf_data_section;
4034 elf_data_section = bfd_zalloc (abfd, sizeof (asection));
4035 if (elf_data_section == NULL)
4038 elf_data_symbol = bfd_zalloc (abfd, sizeof (asymbol));
4039 if (elf_data_symbol == NULL)
4042 /* Initialize the section. */
4044 elf_tdata (abfd)->elf_data_section = elf_data_section;
4045 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4047 elf_data_section->symbol = elf_data_symbol;
4048 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4050 elf_data_section->name = ".data";
4051 elf_data_section->flags = SEC_NO_FLAGS;
4052 elf_data_section->output_section = NULL;
4053 elf_data_section->owner = abfd;
4054 elf_data_symbol->name = ".data";
4055 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4056 elf_data_symbol->section = elf_data_section;
4058 /* This code used to do *secp = bfd_und_section_ptr if
4059 info->shared. I don't know why, and that doesn't make sense,
4060 so I took it out. */
4061 *secp = elf_tdata (abfd)->elf_data_section;
4064 case SHN_MIPS_SUNDEFINED:
4065 *secp = bfd_und_section_ptr;
4069 if (SGI_COMPAT (abfd)
4071 && info->hash->creator == abfd->xvec
4072 && strcmp (*namep, "__rld_obj_head") == 0)
4074 struct elf_link_hash_entry *h;
4076 /* Mark __rld_obj_head as dynamic. */
4078 if (! (_bfd_generic_link_add_one_symbol
4079 (info, abfd, *namep, BSF_GLOBAL, *secp,
4080 (bfd_vma) *valp, (const char *) NULL, false,
4081 get_elf_backend_data (abfd)->collect,
4082 (struct bfd_link_hash_entry **) &h)))
4084 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4085 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4086 h->type = STT_OBJECT;
4088 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4091 mips_elf_hash_table (info)->use_rld_obj_head = true;
4094 /* If this is a mips16 text symbol, add 1 to the value to make it
4095 odd. This will cause something like .word SYM to come up with
4096 the right value when it is loaded into the PC. */
4097 if (sym->st_other == STO_MIPS16)
4103 /* Structure used to pass information to mips_elf_output_extsym. */
4105 struct extsym_info {
4107 struct bfd_link_info *info;
4108 struct ecoff_debug_info *debug;
4109 const struct ecoff_debug_swap *swap;
4113 /* This routine is used to write out ECOFF debugging external symbol
4114 information. It is called via mips_elf_link_hash_traverse. The
4115 ECOFF external symbol information must match the ELF external
4116 symbol information. Unfortunately, at this point we don't know
4117 whether a symbol is required by reloc information, so the two
4118 tables may wind up being different. We must sort out the external
4119 symbol information before we can set the final size of the .mdebug
4120 section, and we must set the size of the .mdebug section before we
4121 can relocate any sections, and we can't know which symbols are
4122 required by relocation until we relocate the sections.
4123 Fortunately, it is relatively unlikely that any symbol will be
4124 stripped but required by a reloc. In particular, it can not happen
4125 when generating a final executable. */
4128 mips_elf_output_extsym (h, data)
4129 struct mips_elf_link_hash_entry *h;
4132 struct extsym_info *einfo = (struct extsym_info *) data;
4134 asection *sec, *output_section;
4136 if (h->root.indx == -2)
4138 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4139 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4140 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4141 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4143 else if (einfo->info->strip == strip_all
4144 || (einfo->info->strip == strip_some
4145 && bfd_hash_lookup (einfo->info->keep_hash,
4146 h->root.root.root.string,
4147 false, false) == NULL))
4155 if (h->esym.ifd == -2)
4158 h->esym.cobol_main = 0;
4159 h->esym.weakext = 0;
4160 h->esym.reserved = 0;
4161 h->esym.ifd = ifdNil;
4162 h->esym.asym.value = 0;
4163 h->esym.asym.st = stGlobal;
4165 if (h->root.root.type == bfd_link_hash_undefined
4166 || h->root.root.type == bfd_link_hash_undefweak)
4170 /* Use undefined class. Also, set class and type for some
4172 name = h->root.root.root.string;
4173 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4174 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4176 h->esym.asym.sc = scData;
4177 h->esym.asym.st = stLabel;
4178 h->esym.asym.value = 0;
4180 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4182 h->esym.asym.sc = scAbs;
4183 h->esym.asym.st = stLabel;
4184 h->esym.asym.value =
4185 mips_elf_hash_table (einfo->info)->procedure_count;
4187 else if (strcmp (name, "_gp_disp") == 0)
4189 h->esym.asym.sc = scAbs;
4190 h->esym.asym.st = stLabel;
4191 h->esym.asym.value = elf_gp (einfo->abfd);
4194 h->esym.asym.sc = scUndefined;
4196 else if (h->root.root.type != bfd_link_hash_defined
4197 && h->root.root.type != bfd_link_hash_defweak)
4198 h->esym.asym.sc = scAbs;
4203 sec = h->root.root.u.def.section;
4204 output_section = sec->output_section;
4206 /* When making a shared library and symbol h is the one from
4207 the another shared library, OUTPUT_SECTION may be null. */
4208 if (output_section == NULL)
4209 h->esym.asym.sc = scUndefined;
4212 name = bfd_section_name (output_section->owner, output_section);
4214 if (strcmp (name, ".text") == 0)
4215 h->esym.asym.sc = scText;
4216 else if (strcmp (name, ".data") == 0)
4217 h->esym.asym.sc = scData;
4218 else if (strcmp (name, ".sdata") == 0)
4219 h->esym.asym.sc = scSData;
4220 else if (strcmp (name, ".rodata") == 0
4221 || strcmp (name, ".rdata") == 0)
4222 h->esym.asym.sc = scRData;
4223 else if (strcmp (name, ".bss") == 0)
4224 h->esym.asym.sc = scBss;
4225 else if (strcmp (name, ".sbss") == 0)
4226 h->esym.asym.sc = scSBss;
4227 else if (strcmp (name, ".init") == 0)
4228 h->esym.asym.sc = scInit;
4229 else if (strcmp (name, ".fini") == 0)
4230 h->esym.asym.sc = scFini;
4232 h->esym.asym.sc = scAbs;
4236 h->esym.asym.reserved = 0;
4237 h->esym.asym.index = indexNil;
4240 if (h->root.root.type == bfd_link_hash_common)
4241 h->esym.asym.value = h->root.root.u.c.size;
4242 else if (h->root.root.type == bfd_link_hash_defined
4243 || h->root.root.type == bfd_link_hash_defweak)
4245 if (h->esym.asym.sc == scCommon)
4246 h->esym.asym.sc = scBss;
4247 else if (h->esym.asym.sc == scSCommon)
4248 h->esym.asym.sc = scSBss;
4250 sec = h->root.root.u.def.section;
4251 output_section = sec->output_section;
4252 if (output_section != NULL)
4253 h->esym.asym.value = (h->root.root.u.def.value
4254 + sec->output_offset
4255 + output_section->vma);
4257 h->esym.asym.value = 0;
4259 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4261 /* Set type and value for a symbol with a function stub. */
4262 h->esym.asym.st = stProc;
4263 sec = h->root.root.u.def.section;
4265 h->esym.asym.value = 0;
4268 output_section = sec->output_section;
4269 if (output_section != NULL)
4270 h->esym.asym.value = (h->root.plt.offset
4271 + sec->output_offset
4272 + output_section->vma);
4274 h->esym.asym.value = 0;
4281 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4282 h->root.root.root.string,
4285 einfo->failed = true;
4292 /* Create a runtime procedure table from the .mdebug section. */
4295 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4298 struct bfd_link_info *info;
4300 struct ecoff_debug_info *debug;
4302 const struct ecoff_debug_swap *swap;
4303 HDRR *hdr = &debug->symbolic_header;
4305 struct rpdr_ext *erp;
4307 struct pdr_ext *epdr;
4308 struct sym_ext *esym;
4311 unsigned long size, count;
4312 unsigned long sindex;
4316 const char *no_name_func = _("static procedure (no name)");
4324 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4326 sindex = strlen (no_name_func) + 1;
4327 count = hdr->ipdMax;
4330 size = swap->external_pdr_size;
4332 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4336 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4339 size = sizeof (RPDR);
4340 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4344 sv = (char **) bfd_malloc (sizeof (char *) * count);
4348 count = hdr->isymMax;
4349 size = swap->external_sym_size;
4350 esym = (struct sym_ext *) bfd_malloc (size * count);
4354 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
4357 count = hdr->issMax;
4358 ss = (char *) bfd_malloc (count);
4361 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
4364 count = hdr->ipdMax;
4365 for (i = 0; i < count; i++, rp++)
4367 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
4368 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
4369 rp->adr = sym.value;
4370 rp->regmask = pdr.regmask;
4371 rp->regoffset = pdr.regoffset;
4372 rp->fregmask = pdr.fregmask;
4373 rp->fregoffset = pdr.fregoffset;
4374 rp->frameoffset = pdr.frameoffset;
4375 rp->framereg = pdr.framereg;
4376 rp->pcreg = pdr.pcreg;
4378 sv[i] = ss + sym.iss;
4379 sindex += strlen (sv[i]) + 1;
4383 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
4384 size = BFD_ALIGN (size, 16);
4385 rtproc = (PTR) bfd_alloc (abfd, size);
4388 mips_elf_hash_table (info)->procedure_count = 0;
4392 mips_elf_hash_table (info)->procedure_count = count + 2;
4394 erp = (struct rpdr_ext *) rtproc;
4395 memset (erp, 0, sizeof (struct rpdr_ext));
4397 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
4398 strcpy (str, no_name_func);
4399 str += strlen (no_name_func) + 1;
4400 for (i = 0; i < count; i++)
4402 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
4403 strcpy (str, sv[i]);
4404 str += strlen (sv[i]) + 1;
4406 ecoff_put_off (abfd, (bfd_vma) -1, (bfd_byte *) (erp + count)->p_adr);
4408 /* Set the size and contents of .rtproc section. */
4409 s->_raw_size = size;
4410 s->contents = (bfd_byte *) rtproc;
4412 /* Skip this section later on (I don't think this currently
4413 matters, but someday it might). */
4414 s->link_order_head = (struct bfd_link_order *) NULL;
4443 /* A comparison routine used to sort .gptab entries. */
4446 gptab_compare (p1, p2)
4450 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
4451 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
4453 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
4456 /* We need to use a special link routine to handle the .reginfo and
4457 the .mdebug sections. We need to merge all instances of these
4458 sections together, not write them all out sequentially. */
4461 _bfd_mips_elf_final_link (abfd, info)
4463 struct bfd_link_info *info;
4467 struct bfd_link_order *p;
4468 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
4469 asection *rtproc_sec;
4470 Elf32_RegInfo reginfo;
4471 struct ecoff_debug_info debug;
4472 const struct ecoff_debug_swap *swap
4473 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4474 HDRR *symhdr = &debug.symbolic_header;
4475 PTR mdebug_handle = NULL;
4480 static const char * const name[] = {
4481 ".text", ".init", ".fini", ".data",
4482 ".rodata", ".sdata", ".sbss", ".bss"
4484 static const int sc[] = {
4485 scText, scInit, scFini, scData,
4486 scRData, scSData, scSBss, scBss
4489 /* If all the things we linked together were PIC, but we're
4490 producing an executable (rather than a shared object), then the
4491 resulting file is CPIC (i.e., it calls PIC code.) */
4493 && !info->relocateable
4494 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
4496 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
4497 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
4500 /* We'd carefully arranged the dynamic symbol indices, and then the
4501 generic size_dynamic_sections renumbered them out from under us.
4502 Rather than trying somehow to prevent the renumbering, just do
4504 if (elf_hash_table (info)->dynamic_sections_created)
4508 struct mips_got_info *g;
4510 /* When we resort, we must tell mips_elf_sort_hash_table what
4511 the lowest index it may use is. That's the number of section
4512 symbols we're going to add. The generic ELF linker only
4513 adds these symbols when building a shared object. Note that
4514 we count the sections after (possibly) removing the .options
4516 if (!mips_elf_sort_hash_table (info, (info->shared
4517 ? bfd_count_sections (abfd) + 1
4521 /* Make sure we didn't grow the global .got region. */
4522 dynobj = elf_hash_table (info)->dynobj;
4523 got = bfd_get_section_by_name (dynobj, ".got");
4524 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4526 if (g->global_gotsym != NULL)
4527 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
4528 - g->global_gotsym->dynindx)
4529 <= g->global_gotno);
4532 /* On IRIX5, we omit the .options section. On IRIX6, however, we
4533 include it, even though we don't process it quite right. (Some
4534 entries are supposed to be merged.) Empirically, we seem to be
4535 better off including it then not. */
4536 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4537 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
4539 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4541 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
4542 if (p->type == bfd_indirect_link_order)
4543 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
4544 (*secpp)->link_order_head = NULL;
4545 *secpp = (*secpp)->next;
4546 --abfd->section_count;
4552 /* Get a value for the GP register. */
4553 if (elf_gp (abfd) == 0)
4555 struct bfd_link_hash_entry *h;
4557 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
4558 if (h != (struct bfd_link_hash_entry *) NULL
4559 && h->type == bfd_link_hash_defined)
4560 elf_gp (abfd) = (h->u.def.value
4561 + h->u.def.section->output_section->vma
4562 + h->u.def.section->output_offset);
4563 else if (info->relocateable)
4567 /* Find the GP-relative section with the lowest offset. */
4569 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4571 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
4574 /* And calculate GP relative to that. */
4575 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
4579 /* If the relocate_section function needs to do a reloc
4580 involving the GP value, it should make a reloc_dangerous
4581 callback to warn that GP is not defined. */
4585 /* Go through the sections and collect the .reginfo and .mdebug
4589 gptab_data_sec = NULL;
4590 gptab_bss_sec = NULL;
4591 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4593 if (strcmp (o->name, ".reginfo") == 0)
4595 memset (®info, 0, sizeof reginfo);
4597 /* We have found the .reginfo section in the output file.
4598 Look through all the link_orders comprising it and merge
4599 the information together. */
4600 for (p = o->link_order_head;
4601 p != (struct bfd_link_order *) NULL;
4604 asection *input_section;
4606 Elf32_External_RegInfo ext;
4609 if (p->type != bfd_indirect_link_order)
4611 if (p->type == bfd_fill_link_order)
4616 input_section = p->u.indirect.section;
4617 input_bfd = input_section->owner;
4619 /* The linker emulation code has probably clobbered the
4620 size to be zero bytes. */
4621 if (input_section->_raw_size == 0)
4622 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
4624 if (! bfd_get_section_contents (input_bfd, input_section,
4630 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
4632 reginfo.ri_gprmask |= sub.ri_gprmask;
4633 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
4634 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
4635 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
4636 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
4638 /* ri_gp_value is set by the function
4639 mips_elf32_section_processing when the section is
4640 finally written out. */
4642 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4643 elf_link_input_bfd ignores this section. */
4644 input_section->flags &= ~SEC_HAS_CONTENTS;
4647 /* Size has been set in mips_elf_always_size_sections */
4648 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
4650 /* Skip this section later on (I don't think this currently
4651 matters, but someday it might). */
4652 o->link_order_head = (struct bfd_link_order *) NULL;
4657 if (strcmp (o->name, ".mdebug") == 0)
4659 struct extsym_info einfo;
4661 /* We have found the .mdebug section in the output file.
4662 Look through all the link_orders comprising it and merge
4663 the information together. */
4664 symhdr->magic = swap->sym_magic;
4665 /* FIXME: What should the version stamp be? */
4667 symhdr->ilineMax = 0;
4671 symhdr->isymMax = 0;
4672 symhdr->ioptMax = 0;
4673 symhdr->iauxMax = 0;
4675 symhdr->issExtMax = 0;
4678 symhdr->iextMax = 0;
4680 /* We accumulate the debugging information itself in the
4681 debug_info structure. */
4683 debug.external_dnr = NULL;
4684 debug.external_pdr = NULL;
4685 debug.external_sym = NULL;
4686 debug.external_opt = NULL;
4687 debug.external_aux = NULL;
4689 debug.ssext = debug.ssext_end = NULL;
4690 debug.external_fdr = NULL;
4691 debug.external_rfd = NULL;
4692 debug.external_ext = debug.external_ext_end = NULL;
4694 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
4695 if (mdebug_handle == (PTR) NULL)
4699 esym.cobol_main = 0;
4703 esym.asym.iss = issNil;
4704 esym.asym.st = stLocal;
4705 esym.asym.reserved = 0;
4706 esym.asym.index = indexNil;
4708 for (i = 0; i < 8; i++)
4710 esym.asym.sc = sc[i];
4711 s = bfd_get_section_by_name (abfd, name[i]);
4714 esym.asym.value = s->vma;
4715 last = s->vma + s->_raw_size;
4718 esym.asym.value = last;
4719 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
4724 for (p = o->link_order_head;
4725 p != (struct bfd_link_order *) NULL;
4728 asection *input_section;
4730 const struct ecoff_debug_swap *input_swap;
4731 struct ecoff_debug_info input_debug;
4735 if (p->type != bfd_indirect_link_order)
4737 if (p->type == bfd_fill_link_order)
4742 input_section = p->u.indirect.section;
4743 input_bfd = input_section->owner;
4745 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
4746 || (get_elf_backend_data (input_bfd)
4747 ->elf_backend_ecoff_debug_swap) == NULL)
4749 /* I don't know what a non MIPS ELF bfd would be
4750 doing with a .mdebug section, but I don't really
4751 want to deal with it. */
4755 input_swap = (get_elf_backend_data (input_bfd)
4756 ->elf_backend_ecoff_debug_swap);
4758 BFD_ASSERT (p->size == input_section->_raw_size);
4760 /* The ECOFF linking code expects that we have already
4761 read in the debugging information and set up an
4762 ecoff_debug_info structure, so we do that now. */
4763 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
4767 if (! (bfd_ecoff_debug_accumulate
4768 (mdebug_handle, abfd, &debug, swap, input_bfd,
4769 &input_debug, input_swap, info)))
4772 /* Loop through the external symbols. For each one with
4773 interesting information, try to find the symbol in
4774 the linker global hash table and save the information
4775 for the output external symbols. */
4776 eraw_src = input_debug.external_ext;
4777 eraw_end = (eraw_src
4778 + (input_debug.symbolic_header.iextMax
4779 * input_swap->external_ext_size));
4781 eraw_src < eraw_end;
4782 eraw_src += input_swap->external_ext_size)
4786 struct mips_elf_link_hash_entry *h;
4788 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
4789 if (ext.asym.sc == scNil
4790 || ext.asym.sc == scUndefined
4791 || ext.asym.sc == scSUndefined)
4794 name = input_debug.ssext + ext.asym.iss;
4795 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
4796 name, false, false, true);
4797 if (h == NULL || h->esym.ifd != -2)
4803 < input_debug.symbolic_header.ifdMax);
4804 ext.ifd = input_debug.ifdmap[ext.ifd];
4810 /* Free up the information we just read. */
4811 free (input_debug.line);
4812 free (input_debug.external_dnr);
4813 free (input_debug.external_pdr);
4814 free (input_debug.external_sym);
4815 free (input_debug.external_opt);
4816 free (input_debug.external_aux);
4817 free (input_debug.ss);
4818 free (input_debug.ssext);
4819 free (input_debug.external_fdr);
4820 free (input_debug.external_rfd);
4821 free (input_debug.external_ext);
4823 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4824 elf_link_input_bfd ignores this section. */
4825 input_section->flags &= ~SEC_HAS_CONTENTS;
4828 if (SGI_COMPAT (abfd) && info->shared)
4830 /* Create .rtproc section. */
4831 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
4832 if (rtproc_sec == NULL)
4834 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
4835 | SEC_LINKER_CREATED | SEC_READONLY);
4837 rtproc_sec = bfd_make_section (abfd, ".rtproc");
4838 if (rtproc_sec == NULL
4839 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
4840 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
4844 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
4845 info, rtproc_sec, &debug))
4849 /* Build the external symbol information. */
4852 einfo.debug = &debug;
4854 einfo.failed = false;
4855 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
4856 mips_elf_output_extsym,
4861 /* Set the size of the .mdebug section. */
4862 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
4864 /* Skip this section later on (I don't think this currently
4865 matters, but someday it might). */
4866 o->link_order_head = (struct bfd_link_order *) NULL;
4871 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
4873 const char *subname;
4876 Elf32_External_gptab *ext_tab;
4879 /* The .gptab.sdata and .gptab.sbss sections hold
4880 information describing how the small data area would
4881 change depending upon the -G switch. These sections
4882 not used in executables files. */
4883 if (! info->relocateable)
4887 for (p = o->link_order_head;
4888 p != (struct bfd_link_order *) NULL;
4891 asection *input_section;
4893 if (p->type != bfd_indirect_link_order)
4895 if (p->type == bfd_fill_link_order)
4900 input_section = p->u.indirect.section;
4902 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4903 elf_link_input_bfd ignores this section. */
4904 input_section->flags &= ~SEC_HAS_CONTENTS;
4907 /* Skip this section later on (I don't think this
4908 currently matters, but someday it might). */
4909 o->link_order_head = (struct bfd_link_order *) NULL;
4911 /* Really remove the section. */
4912 for (secpp = &abfd->sections;
4914 secpp = &(*secpp)->next)
4916 *secpp = (*secpp)->next;
4917 --abfd->section_count;
4922 /* There is one gptab for initialized data, and one for
4923 uninitialized data. */
4924 if (strcmp (o->name, ".gptab.sdata") == 0)
4926 else if (strcmp (o->name, ".gptab.sbss") == 0)
4930 (*_bfd_error_handler)
4931 (_("%s: illegal section name `%s'"),
4932 bfd_get_filename (abfd), o->name);
4933 bfd_set_error (bfd_error_nonrepresentable_section);
4937 /* The linker script always combines .gptab.data and
4938 .gptab.sdata into .gptab.sdata, and likewise for
4939 .gptab.bss and .gptab.sbss. It is possible that there is
4940 no .sdata or .sbss section in the output file, in which
4941 case we must change the name of the output section. */
4942 subname = o->name + sizeof ".gptab" - 1;
4943 if (bfd_get_section_by_name (abfd, subname) == NULL)
4945 if (o == gptab_data_sec)
4946 o->name = ".gptab.data";
4948 o->name = ".gptab.bss";
4949 subname = o->name + sizeof ".gptab" - 1;
4950 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
4953 /* Set up the first entry. */
4955 tab = (Elf32_gptab *) bfd_malloc (c * sizeof (Elf32_gptab));
4958 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
4959 tab[0].gt_header.gt_unused = 0;
4961 /* Combine the input sections. */
4962 for (p = o->link_order_head;
4963 p != (struct bfd_link_order *) NULL;
4966 asection *input_section;
4970 bfd_size_type gpentry;
4972 if (p->type != bfd_indirect_link_order)
4974 if (p->type == bfd_fill_link_order)
4979 input_section = p->u.indirect.section;
4980 input_bfd = input_section->owner;
4982 /* Combine the gptab entries for this input section one
4983 by one. We know that the input gptab entries are
4984 sorted by ascending -G value. */
4985 size = bfd_section_size (input_bfd, input_section);
4987 for (gpentry = sizeof (Elf32_External_gptab);
4989 gpentry += sizeof (Elf32_External_gptab))
4991 Elf32_External_gptab ext_gptab;
4992 Elf32_gptab int_gptab;
4998 if (! (bfd_get_section_contents
4999 (input_bfd, input_section, (PTR) &ext_gptab,
5000 gpentry, sizeof (Elf32_External_gptab))))
5006 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
5008 val = int_gptab.gt_entry.gt_g_value;
5009 add = int_gptab.gt_entry.gt_bytes - last;
5012 for (look = 1; look < c; look++)
5014 if (tab[look].gt_entry.gt_g_value >= val)
5015 tab[look].gt_entry.gt_bytes += add;
5017 if (tab[look].gt_entry.gt_g_value == val)
5023 Elf32_gptab *new_tab;
5026 /* We need a new table entry. */
5027 new_tab = ((Elf32_gptab *)
5028 bfd_realloc ((PTR) tab,
5029 (c + 1) * sizeof (Elf32_gptab)));
5030 if (new_tab == NULL)
5036 tab[c].gt_entry.gt_g_value = val;
5037 tab[c].gt_entry.gt_bytes = add;
5039 /* Merge in the size for the next smallest -G
5040 value, since that will be implied by this new
5043 for (look = 1; look < c; look++)
5045 if (tab[look].gt_entry.gt_g_value < val
5047 || (tab[look].gt_entry.gt_g_value
5048 > tab[max].gt_entry.gt_g_value)))
5052 tab[c].gt_entry.gt_bytes +=
5053 tab[max].gt_entry.gt_bytes;
5058 last = int_gptab.gt_entry.gt_bytes;
5061 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5062 elf_link_input_bfd ignores this section. */
5063 input_section->flags &= ~SEC_HAS_CONTENTS;
5066 /* The table must be sorted by -G value. */
5068 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
5070 /* Swap out the table. */
5071 ext_tab = ((Elf32_External_gptab *)
5072 bfd_alloc (abfd, c * sizeof (Elf32_External_gptab)));
5073 if (ext_tab == NULL)
5079 for (i = 0; i < c; i++)
5080 bfd_mips_elf32_swap_gptab_out (abfd, tab + i, ext_tab + i);
5083 o->_raw_size = c * sizeof (Elf32_External_gptab);
5084 o->contents = (bfd_byte *) ext_tab;
5086 /* Skip this section later on (I don't think this currently
5087 matters, but someday it might). */
5088 o->link_order_head = (struct bfd_link_order *) NULL;
5092 /* Invoke the regular ELF backend linker to do all the work. */
5093 if (ABI_64_P (abfd))
5096 if (!bfd_elf64_bfd_final_link (abfd, info))
5103 else if (!bfd_elf32_bfd_final_link (abfd, info))
5106 /* Now write out the computed sections. */
5108 if (reginfo_sec != (asection *) NULL)
5110 Elf32_External_RegInfo ext;
5112 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
5113 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
5114 (file_ptr) 0, sizeof ext))
5118 if (mdebug_sec != (asection *) NULL)
5120 BFD_ASSERT (abfd->output_has_begun);
5121 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5123 mdebug_sec->filepos))
5126 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5129 if (gptab_data_sec != (asection *) NULL)
5131 if (! bfd_set_section_contents (abfd, gptab_data_sec,
5132 gptab_data_sec->contents,
5134 gptab_data_sec->_raw_size))
5138 if (gptab_bss_sec != (asection *) NULL)
5140 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
5141 gptab_bss_sec->contents,
5143 gptab_bss_sec->_raw_size))
5147 if (SGI_COMPAT (abfd))
5149 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5150 if (rtproc_sec != NULL)
5152 if (! bfd_set_section_contents (abfd, rtproc_sec,
5153 rtproc_sec->contents,
5155 rtproc_sec->_raw_size))
5163 /* This function is called via qsort() to sort the dynamic relocation
5164 entries by increasing r_symndx value. */
5167 sort_dynamic_relocs (arg1, arg2)
5171 const Elf32_External_Rel *ext_reloc1 = (const Elf32_External_Rel *) arg1;
5172 const Elf32_External_Rel *ext_reloc2 = (const Elf32_External_Rel *) arg2;
5174 Elf_Internal_Rel int_reloc1;
5175 Elf_Internal_Rel int_reloc2;
5177 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc1, &int_reloc1);
5178 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc2, &int_reloc2);
5180 return (ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info));
5183 /* Returns the GOT section for ABFD. */
5186 mips_elf_got_section (abfd)
5189 return bfd_get_section_by_name (abfd, ".got");
5192 /* Returns the GOT information associated with the link indicated by
5193 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5196 static struct mips_got_info *
5197 mips_elf_got_info (abfd, sgotp)
5202 struct mips_got_info *g;
5204 sgot = mips_elf_got_section (abfd);
5205 BFD_ASSERT (sgot != NULL);
5206 BFD_ASSERT (elf_section_data (sgot) != NULL);
5207 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5208 BFD_ASSERT (g != NULL);
5215 /* Return whether a relocation is against a local symbol. */
5218 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
5221 const Elf_Internal_Rela *relocation;
5222 asection **local_sections;
5223 boolean check_forced;
5225 unsigned long r_symndx;
5226 Elf_Internal_Shdr *symtab_hdr;
5227 struct mips_elf_link_hash_entry *h;
5230 r_symndx = ELF32_R_SYM (relocation->r_info);
5231 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5232 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5234 if (r_symndx < extsymoff)
5236 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5241 /* Look up the hash table to check whether the symbol
5242 was forced local. */
5243 h = (struct mips_elf_link_hash_entry *)
5244 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
5245 /* Find the real hash-table entry for this symbol. */
5246 while (h->root.root.type == bfd_link_hash_indirect
5247 || h->root.root.type == bfd_link_hash_warning)
5248 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5249 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5256 /* Sign-extend VALUE, which has the indicated number of BITS. */
5259 mips_elf_sign_extend (value, bits)
5263 if (value & ((bfd_vma) 1 << (bits - 1)))
5264 /* VALUE is negative. */
5265 value |= ((bfd_vma) - 1) << bits;
5270 /* Return non-zero if the indicated VALUE has overflowed the maximum
5271 range expressable by a signed number with the indicated number of
5275 mips_elf_overflow_p (value, bits)
5279 bfd_signed_vma svalue = (bfd_signed_vma) value;
5281 if (svalue > (1 << (bits - 1)) - 1)
5282 /* The value is too big. */
5284 else if (svalue < -(1 << (bits - 1)))
5285 /* The value is too small. */
5292 /* Calculate the %high function. */
5295 mips_elf_high (value)
5298 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5301 /* Calculate the %higher function. */
5304 mips_elf_higher (value)
5305 bfd_vma value ATTRIBUTE_UNUSED;
5308 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5311 return (bfd_vma) -1;
5315 /* Calculate the %highest function. */
5318 mips_elf_highest (value)
5319 bfd_vma value ATTRIBUTE_UNUSED;
5322 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
5325 return (bfd_vma) -1;
5329 /* Returns the GOT index for the global symbol indicated by H. */
5332 mips_elf_global_got_index (abfd, h)
5334 struct elf_link_hash_entry *h;
5338 struct mips_got_info *g;
5340 g = mips_elf_got_info (abfd, &sgot);
5342 /* Once we determine the global GOT entry with the lowest dynamic
5343 symbol table index, we must put all dynamic symbols with greater
5344 indices into the GOT. That makes it easy to calculate the GOT
5346 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
5347 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
5348 * MIPS_ELF_GOT_SIZE (abfd));
5349 BFD_ASSERT (index < sgot->_raw_size);
5354 /* Returns the offset for the entry at the INDEXth position
5358 mips_elf_got_offset_from_index (dynobj, output_bfd, index)
5366 sgot = mips_elf_got_section (dynobj);
5367 gp = _bfd_get_gp_value (output_bfd);
5368 return (sgot->output_section->vma + sgot->output_offset + index -
5372 /* If H is a symbol that needs a global GOT entry, but has a dynamic
5373 symbol table index lower than any we've seen to date, record it for
5377 mips_elf_record_global_got_symbol (h, info, g)
5378 struct elf_link_hash_entry *h;
5379 struct bfd_link_info *info;
5380 struct mips_got_info *g ATTRIBUTE_UNUSED;
5382 /* A global symbol in the GOT must also be in the dynamic symbol
5384 if (h->dynindx == -1
5385 && !bfd_elf32_link_record_dynamic_symbol (info, h))
5388 /* If we've already marked this entry as need GOT space, we don't
5389 need to do it again. */
5390 if (h->got.offset != (bfd_vma) - 1)
5393 /* By setting this to a value other than -1, we are indicating that
5394 there needs to be a GOT entry for H. */
5400 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
5401 the dynamic symbols. */
5403 struct mips_elf_hash_sort_data {
5404 /* The symbol in the global GOT with the lowest dynamic symbol table
5406 struct elf_link_hash_entry *low;
5407 /* The least dynamic symbol table index corresponding to a symbol
5408 with a GOT entry. */
5409 long min_got_dynindx;
5410 /* The greatest dynamic symbol table index not corresponding to a
5411 symbol without a GOT entry. */
5412 long max_non_got_dynindx;
5415 /* If H needs a GOT entry, assign it the highest available dynamic
5416 index. Otherwise, assign it the lowest available dynamic
5420 mips_elf_sort_hash_table_f (h, data)
5421 struct mips_elf_link_hash_entry *h;
5424 struct mips_elf_hash_sort_data *hsd
5425 = (struct mips_elf_hash_sort_data *) data;
5427 /* Symbols without dynamic symbol table entries aren't interesting
5429 if (h->root.dynindx == -1)
5432 if (h->root.got.offset != 0)
5433 h->root.dynindx = hsd->max_non_got_dynindx++;
5436 h->root.dynindx = --hsd->min_got_dynindx;
5437 hsd->low = (struct elf_link_hash_entry *) h;
5443 /* Sort the dynamic symbol table so that symbols that need GOT entries
5444 appear towards the end. This reduces the amount of GOT space
5445 required. MAX_LOCAL is used to set the number of local symbols
5446 known to be in the dynamic symbol table. During
5447 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
5448 section symbols are added and the count is higher. */
5451 mips_elf_sort_hash_table (info, max_local)
5452 struct bfd_link_info *info;
5453 unsigned long max_local;
5455 struct mips_elf_hash_sort_data hsd;
5456 struct mips_got_info *g;
5459 dynobj = elf_hash_table (info)->dynobj;
5462 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
5463 hsd.max_non_got_dynindx = max_local;
5464 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
5465 elf_hash_table (info)),
5466 mips_elf_sort_hash_table_f,
5469 /* There shoud have been enough room in the symbol table to
5470 accomodate both the GOT and non-GOT symbols. */
5471 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
5473 /* Now we know which dynamic symbol has the lowest dynamic symbol
5474 table index in the GOT. */
5475 g = mips_elf_got_info (dynobj, NULL);
5476 g->global_gotsym = hsd.low;
5481 /* Create a local GOT entry for VALUE. Return the index of the entry,
5482 or -1 if it could not be created. */
5485 mips_elf_create_local_got_entry (abfd, g, sgot, value)
5487 struct mips_got_info *g;
5491 if (g->assigned_gotno >= g->local_gotno)
5493 /* We didn't allocate enough space in the GOT. */
5494 (*_bfd_error_handler)
5495 (_("not enough GOT space for local GOT entries"));
5496 bfd_set_error (bfd_error_bad_value);
5497 return (bfd_vma) -1;
5500 MIPS_ELF_PUT_WORD (abfd, value,
5502 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
5503 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
5506 /* Returns the GOT offset at which the indicated address can be found.
5507 If there is not yet a GOT entry for this value, create one. Returns
5508 -1 if no satisfactory GOT offset can be found. */
5511 mips_elf_local_got_index (abfd, info, value)
5513 struct bfd_link_info *info;
5517 struct mips_got_info *g;
5520 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5522 /* Look to see if we already have an appropriate entry. */
5523 for (entry = (sgot->contents
5524 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5525 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5526 entry += MIPS_ELF_GOT_SIZE (abfd))
5528 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
5529 if (address == value)
5530 return entry - sgot->contents;
5533 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
5536 /* Find a GOT entry that is within 32KB of the VALUE. These entries
5537 are supposed to be placed at small offsets in the GOT, i.e.,
5538 within 32KB of GP. Return the index into the GOT for this page,
5539 and store the offset from this entry to the desired address in
5540 OFFSETP, if it is non-NULL. */
5543 mips_elf_got_page (abfd, info, value, offsetp)
5545 struct bfd_link_info *info;
5550 struct mips_got_info *g;
5552 bfd_byte *last_entry;
5556 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5558 /* Look to see if we aleady have an appropriate entry. */
5559 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5560 for (entry = (sgot->contents
5561 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5562 entry != last_entry;
5563 entry += MIPS_ELF_GOT_SIZE (abfd))
5565 address = MIPS_ELF_GET_WORD (abfd, entry);
5567 if (!mips_elf_overflow_p (value - address, 16))
5569 /* This entry will serve as the page pointer. We can add a
5570 16-bit number to it to get the actual address. */
5571 index = entry - sgot->contents;
5576 /* If we didn't have an appropriate entry, we create one now. */
5577 if (entry == last_entry)
5578 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5582 address = MIPS_ELF_GET_WORD (abfd, entry);
5583 *offsetp = value - address;
5589 /* Find a GOT entry whose higher-order 16 bits are the same as those
5590 for value. Return the index into the GOT for this entry. */
5593 mips_elf_got16_entry (abfd, info, value, external)
5595 struct bfd_link_info *info;
5600 struct mips_got_info *g;
5602 bfd_byte *last_entry;
5608 /* Although the ABI says that it is "the high-order 16 bits" that we
5609 want, it is really the %high value. The complete value is
5610 calculated with a `addiu' of a LO16 relocation, just as with a
5612 value = mips_elf_high (value) << 16;
5615 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5617 /* Look to see if we already have an appropriate entry. */
5618 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5619 for (entry = (sgot->contents
5620 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5621 entry != last_entry;
5622 entry += MIPS_ELF_GOT_SIZE (abfd))
5624 address = MIPS_ELF_GET_WORD (abfd, entry);
5625 if (address == value)
5627 /* This entry has the right high-order 16 bits, and the low-order
5628 16 bits are set to zero. */
5629 index = entry - sgot->contents;
5634 /* If we didn't have an appropriate entry, we create one now. */
5635 if (entry == last_entry)
5636 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5641 /* Returns the first relocation of type r_type found, beginning with
5642 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5644 static const Elf_Internal_Rela *
5645 mips_elf_next_relocation (r_type, relocation, relend)
5646 unsigned int r_type;
5647 const Elf_Internal_Rela *relocation;
5648 const Elf_Internal_Rela *relend;
5650 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
5651 immediately following. However, for the IRIX6 ABI, the next
5652 relocation may be a composed relocation consisting of several
5653 relocations for the same address. In that case, the R_MIPS_LO16
5654 relocation may occur as one of these. We permit a similar
5655 extension in general, as that is useful for GCC. */
5656 while (relocation < relend)
5658 if (ELF32_R_TYPE (relocation->r_info) == r_type)
5664 /* We didn't find it. */
5665 bfd_set_error (bfd_error_bad_value);
5669 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5670 is the original relocation, which is now being transformed into a
5671 dynamic relocation. The ADDENDP is adjusted if necessary; the
5672 caller should store the result in place of the original addend. */
5675 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
5676 symbol, addendp, input_section, local_p)
5678 struct bfd_link_info *info;
5679 const Elf_Internal_Rela *rel;
5680 struct mips_elf_link_hash_entry *h;
5684 asection *input_section;
5687 Elf_Internal_Rel outrel;
5693 r_type = ELF32_R_TYPE (rel->r_info);
5694 dynobj = elf_hash_table (info)->dynobj;
5696 = bfd_get_section_by_name (dynobj,
5697 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
5698 BFD_ASSERT (sreloc != NULL);
5699 BFD_ASSERT (sreloc->contents != NULL);
5703 /* We begin by assuming that the offset for the dynamic relocation
5704 is the same as for the original relocation. We'll adjust this
5705 later to reflect the correct output offsets. */
5706 if (elf_section_data (input_section)->stab_info == NULL)
5707 outrel.r_offset = rel->r_offset;
5710 /* Except that in a stab section things are more complex.
5711 Because we compress stab information, the offset given in the
5712 relocation may not be the one we want; we must let the stabs
5713 machinery tell us the offset. */
5715 = (_bfd_stab_section_offset
5716 (output_bfd, &elf_hash_table (info)->stab_info,
5718 &elf_section_data (input_section)->stab_info,
5720 /* If we didn't need the relocation at all, this value will be
5722 if (outrel.r_offset == (bfd_vma) -1)
5726 /* If we've decided to skip this relocation, just output an empty
5727 record. Note that R_MIPS_NONE == 0, so that this call to memset
5728 is a way of setting R_TYPE to R_MIPS_NONE. */
5730 memset (&outrel, 0, sizeof (outrel));
5734 bfd_vma section_offset;
5736 /* We must now calculate the dynamic symbol table index to use
5737 in the relocation. */
5739 && (! info->symbolic || (h->root.elf_link_hash_flags
5740 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5742 indx = h->root.dynindx;
5743 /* h->root.dynindx may be -1 if this symbol was marked to
5750 if (sec != NULL && bfd_is_abs_section (sec))
5752 else if (sec == NULL || sec->owner == NULL)
5754 bfd_set_error (bfd_error_bad_value);
5759 indx = elf_section_data (sec->output_section)->dynindx;
5764 /* Figure out how far the target of the relocation is from
5765 the beginning of its section. */
5766 section_offset = symbol - sec->output_section->vma;
5767 /* The relocation we're building is section-relative.
5768 Therefore, the original addend must be adjusted by the
5770 *addendp += symbol - sec->output_section->vma;
5771 /* Now, the relocation is just against the section. */
5772 symbol = sec->output_section->vma;
5775 /* If the relocation is against a local symbol was previously an
5776 absolute relocation, we must adjust it by the value we give
5777 it in the dynamic symbol table. */
5778 if (local_p && r_type != R_MIPS_REL32)
5781 /* The relocation is always an REL32 relocation because we don't
5782 know where the shared library will wind up at load-time. */
5783 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
5785 /* Adjust the output offset of the relocation to reference the
5786 correct location in the output file. */
5787 outrel.r_offset += (input_section->output_section->vma
5788 + input_section->output_offset);
5791 /* Put the relocation back out. We have to use the special
5792 relocation outputter in the 64-bit case since the 64-bit
5793 relocation format is non-standard. */
5794 if (ABI_64_P (output_bfd))
5796 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5797 (output_bfd, &outrel,
5799 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5802 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
5803 (((Elf32_External_Rel *)
5805 + sreloc->reloc_count));
5807 /* Record the index of the first relocation referencing H. This
5808 information is later emitted in the .msym section. */
5810 && (h->min_dyn_reloc_index == 0
5811 || sreloc->reloc_count < h->min_dyn_reloc_index))
5812 h->min_dyn_reloc_index = sreloc->reloc_count;
5814 /* We've now added another relocation. */
5815 ++sreloc->reloc_count;
5817 /* Make sure the output section is writable. The dynamic linker
5818 will be writing to it. */
5819 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5822 /* On IRIX5, make an entry of compact relocation info. */
5823 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
5825 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5830 Elf32_crinfo cptrel;
5832 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5833 cptrel.vaddr = (rel->r_offset
5834 + input_section->output_section->vma
5835 + input_section->output_offset);
5836 if (r_type == R_MIPS_REL32)
5837 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5839 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5840 mips_elf_set_cr_dist2to (cptrel, 0);
5841 cptrel.konst = *addendp;
5843 cr = (scpt->contents
5844 + sizeof (Elf32_External_compact_rel));
5845 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5846 ((Elf32_External_crinfo *) cr
5847 + scpt->reloc_count));
5848 ++scpt->reloc_count;
5855 /* Calculate the value produced by the RELOCATION (which comes from
5856 the INPUT_BFD). The ADDEND is the addend to use for this
5857 RELOCATION; RELOCATION->R_ADDEND is ignored.
5859 The result of the relocation calculation is stored in VALUEP.
5860 REQUIRE_JALXP indicates whether or not the opcode used with this
5861 relocation must be JALX.
5863 This function returns bfd_reloc_continue if the caller need take no
5864 further action regarding this relocation, bfd_reloc_notsupported if
5865 something goes dramatically wrong, bfd_reloc_overflow if an
5866 overflow occurs, and bfd_reloc_ok to indicate success. */
5868 static bfd_reloc_status_type
5869 mips_elf_calculate_relocation (abfd,
5883 asection *input_section;
5884 struct bfd_link_info *info;
5885 const Elf_Internal_Rela *relocation;
5887 reloc_howto_type *howto;
5888 Elf_Internal_Sym *local_syms;
5889 asection **local_sections;
5892 boolean *require_jalxp;
5894 /* The eventual value we will return. */
5896 /* The address of the symbol against which the relocation is
5899 /* The final GP value to be used for the relocatable, executable, or
5900 shared object file being produced. */
5901 bfd_vma gp = (bfd_vma) - 1;
5902 /* The place (section offset or address) of the storage unit being
5905 /* The value of GP used to create the relocatable object. */
5906 bfd_vma gp0 = (bfd_vma) - 1;
5907 /* The offset into the global offset table at which the address of
5908 the relocation entry symbol, adjusted by the addend, resides
5909 during execution. */
5910 bfd_vma g = (bfd_vma) - 1;
5911 /* The section in which the symbol referenced by the relocation is
5913 asection *sec = NULL;
5914 struct mips_elf_link_hash_entry *h = NULL;
5915 /* True if the symbol referred to by this relocation is a local
5918 /* True if the symbol referred to by this relocation is "_gp_disp". */
5919 boolean gp_disp_p = false;
5920 Elf_Internal_Shdr *symtab_hdr;
5922 unsigned long r_symndx;
5924 /* True if overflow occurred during the calculation of the
5925 relocation value. */
5926 boolean overflowed_p;
5927 /* True if this relocation refers to a MIPS16 function. */
5928 boolean target_is_16_bit_code_p = false;
5930 /* Parse the relocation. */
5931 r_symndx = ELF32_R_SYM (relocation->r_info);
5932 r_type = ELF32_R_TYPE (relocation->r_info);
5933 p = (input_section->output_section->vma
5934 + input_section->output_offset
5935 + relocation->r_offset);
5937 /* Assume that there will be no overflow. */
5938 overflowed_p = false;
5940 /* Figure out whether or not the symbol is local, and get the offset
5941 used in the array of hash table entries. */
5942 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5943 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5944 local_sections, false);
5945 if (! elf_bad_symtab (input_bfd))
5946 extsymoff = symtab_hdr->sh_info;
5949 /* The symbol table does not follow the rule that local symbols
5950 must come before globals. */
5954 /* Figure out the value of the symbol. */
5957 Elf_Internal_Sym *sym;
5959 sym = local_syms + r_symndx;
5960 sec = local_sections[r_symndx];
5962 symbol = sec->output_section->vma + sec->output_offset;
5963 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5964 symbol += sym->st_value;
5966 /* MIPS16 text labels should be treated as odd. */
5967 if (sym->st_other == STO_MIPS16)
5970 /* Record the name of this symbol, for our caller. */
5971 *namep = bfd_elf_string_from_elf_section (input_bfd,
5972 symtab_hdr->sh_link,
5975 *namep = bfd_section_name (input_bfd, sec);
5977 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
5981 /* For global symbols we look up the symbol in the hash-table. */
5982 h = ((struct mips_elf_link_hash_entry *)
5983 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5984 /* Find the real hash-table entry for this symbol. */
5985 while (h->root.root.type == bfd_link_hash_indirect
5986 || h->root.root.type == bfd_link_hash_warning)
5987 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5989 /* Record the name of this symbol, for our caller. */
5990 *namep = h->root.root.root.string;
5992 /* See if this is the special _gp_disp symbol. Note that such a
5993 symbol must always be a global symbol. */
5994 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
5996 /* Relocations against _gp_disp are permitted only with
5997 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5998 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
5999 return bfd_reloc_notsupported;
6003 /* If this symbol is defined, calculate its address. Note that
6004 _gp_disp is a magic symbol, always implicitly defined by the
6005 linker, so it's inappropriate to check to see whether or not
6007 else if ((h->root.root.type == bfd_link_hash_defined
6008 || h->root.root.type == bfd_link_hash_defweak)
6009 && h->root.root.u.def.section)
6011 sec = h->root.root.u.def.section;
6012 if (sec->output_section)
6013 symbol = (h->root.root.u.def.value
6014 + sec->output_section->vma
6015 + sec->output_offset);
6017 symbol = h->root.root.u.def.value;
6019 else if (h->root.root.type == bfd_link_hash_undefweak)
6020 /* We allow relocations against undefined weak symbols, giving
6021 it the value zero, so that you can undefined weak functions
6022 and check to see if they exist by looking at their
6025 else if (info->shared && !info->symbolic && !info->no_undefined
6026 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
6028 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
6029 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
6031 /* If this is a dynamic link, we should have created a
6032 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
6033 in in mips_elf_create_dynamic_sections.
6034 Otherwise, we should define the symbol with a value of 0.
6035 FIXME: It should probably get into the symbol table
6037 BFD_ASSERT (! info->shared);
6038 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
6043 if (! ((*info->callbacks->undefined_symbol)
6044 (info, h->root.root.root.string, input_bfd,
6045 input_section, relocation->r_offset,
6046 (!info->shared || info->no_undefined
6047 || ELF_ST_VISIBILITY (h->root.other)))))
6048 return bfd_reloc_undefined;
6052 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
6055 /* If this is a 32-bit call to a 16-bit function with a stub, we
6056 need to redirect the call to the stub, unless we're already *in*
6058 if (r_type != R_MIPS16_26 && !info->relocateable
6059 && ((h != NULL && h->fn_stub != NULL)
6060 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
6061 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
6062 && !mips_elf_stub_section_p (input_bfd, input_section))
6064 /* This is a 32-bit call to a 16-bit function. We should
6065 have already noticed that we were going to need the
6068 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
6071 BFD_ASSERT (h->need_fn_stub);
6075 symbol = sec->output_section->vma + sec->output_offset;
6077 /* If this is a 16-bit call to a 32-bit function with a stub, we
6078 need to redirect the call to the stub. */
6079 else if (r_type == R_MIPS16_26 && !info->relocateable
6081 && (h->call_stub != NULL || h->call_fp_stub != NULL)
6082 && !target_is_16_bit_code_p)
6084 /* If both call_stub and call_fp_stub are defined, we can figure
6085 out which one to use by seeing which one appears in the input
6087 if (h->call_stub != NULL && h->call_fp_stub != NULL)
6092 for (o = input_bfd->sections; o != NULL; o = o->next)
6094 if (strncmp (bfd_get_section_name (input_bfd, o),
6095 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6097 sec = h->call_fp_stub;
6104 else if (h->call_stub != NULL)
6107 sec = h->call_fp_stub;
6109 BFD_ASSERT (sec->_raw_size > 0);
6110 symbol = sec->output_section->vma + sec->output_offset;
6113 /* Calls from 16-bit code to 32-bit code and vice versa require the
6114 special jalx instruction. */
6115 *require_jalxp = (!info->relocateable
6116 && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p));
6118 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6119 local_sections, true);
6121 /* If we haven't already determined the GOT offset, or the GP value,
6122 and we're going to need it, get it now. */
6127 case R_MIPS_GOT_DISP:
6128 case R_MIPS_GOT_HI16:
6129 case R_MIPS_CALL_HI16:
6130 case R_MIPS_GOT_LO16:
6131 case R_MIPS_CALL_LO16:
6132 /* Find the index into the GOT where this value is located. */
6135 BFD_ASSERT (addend == 0);
6136 g = mips_elf_global_got_index
6137 (elf_hash_table (info)->dynobj,
6138 (struct elf_link_hash_entry *) h);
6139 if (! elf_hash_table(info)->dynamic_sections_created
6141 && (info->symbolic || h->root.dynindx == -1)
6142 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6144 /* This is a static link or a -Bsymbolic link. The
6145 symbol is defined locally, or was forced to be local.
6146 We must initialize this entry in the GOT. */
6147 asection *sgot = mips_elf_got_section(elf_hash_table
6149 MIPS_ELF_PUT_WORD (elf_hash_table (info)->dynobj,
6150 symbol + addend, sgot->contents + g);
6153 else if (r_type == R_MIPS_GOT16)
6154 /* There's no need to create a local GOT entry here; the
6155 calculation for a local GOT16 entry does not involve G. */
6159 g = mips_elf_local_got_index (abfd, info, symbol + addend);
6160 if (g == (bfd_vma) -1)
6164 /* Convert GOT indices to actual offsets. */
6165 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6171 case R_MIPS_GPREL16:
6172 case R_MIPS_GPREL32:
6173 case R_MIPS_LITERAL:
6174 gp0 = _bfd_get_gp_value (input_bfd);
6175 gp = _bfd_get_gp_value (abfd);
6182 /* Figure out what kind of relocation is being performed. */
6186 return bfd_reloc_continue;
6189 value = symbol + mips_elf_sign_extend (addend, 16);
6190 overflowed_p = mips_elf_overflow_p (value, 16);
6197 || (elf_hash_table (info)->dynamic_sections_created
6199 && ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
6201 && (input_section->flags & SEC_ALLOC) != 0)
6203 /* If we're creating a shared library, or this relocation is
6204 against a symbol in a shared library, then we can't know
6205 where the symbol will end up. So, we create a relocation
6206 record in the output, and leave the job up to the dynamic
6209 if (!mips_elf_create_dynamic_relocation (abfd,
6216 input_section, local_p))
6221 if (r_type != R_MIPS_REL32)
6222 value = symbol + addend;
6226 value &= howto->dst_mask;
6231 case R_MIPS_GNU_REL_LO16:
6232 value = symbol + addend - p;
6233 value &= howto->dst_mask;
6236 case R_MIPS_GNU_REL16_S2:
6237 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
6238 overflowed_p = mips_elf_overflow_p (value, 18);
6239 value = (value >> 2) & howto->dst_mask;
6242 case R_MIPS_GNU_REL_HI16:
6243 value = mips_elf_high (addend + symbol - p);
6244 value &= howto->dst_mask;
6248 /* The calculation for R_MIPS_26 is just the same as for an
6249 R_MIPS_26. It's only the storage of the relocated field into
6250 the output file that's different. That's handled in
6251 mips_elf_perform_relocation. So, we just fall through to the
6252 R_MIPS_26 case here. */
6255 value = (((addend << 2) | (p & 0xf0000000)) + symbol) >> 2;
6257 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6258 value &= howto->dst_mask;
6264 value = mips_elf_high (addend + symbol);
6265 value &= howto->dst_mask;
6269 value = mips_elf_high (addend + gp - p);
6270 overflowed_p = mips_elf_overflow_p (value, 16);
6276 value = (symbol + addend) & howto->dst_mask;
6279 value = addend + gp - p + 4;
6280 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6281 for overflow. But, on, say, Irix 5, relocations against
6282 _gp_disp are normally generated from the .cpload
6283 pseudo-op. It generates code that normally looks like
6286 lui $gp,%hi(_gp_disp)
6287 addiu $gp,$gp,%lo(_gp_disp)
6290 Here $t9 holds the address of the function being called,
6291 as required by the MIPS ELF ABI. The R_MIPS_LO16
6292 relocation can easily overflow in this situation, but the
6293 R_MIPS_HI16 relocation will handle the overflow.
6294 Therefore, we consider this a bug in the MIPS ABI, and do
6295 not check for overflow here. */
6299 case R_MIPS_LITERAL:
6300 /* Because we don't merge literal sections, we can handle this
6301 just like R_MIPS_GPREL16. In the long run, we should merge
6302 shared literals, and then we will need to additional work
6307 case R_MIPS16_GPREL:
6308 /* The R_MIPS16_GPREL performs the same calculation as
6309 R_MIPS_GPREL16, but stores the relocated bits in a different
6310 order. We don't need to do anything special here; the
6311 differences are handled in mips_elf_perform_relocation. */
6312 case R_MIPS_GPREL16:
6314 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6316 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6317 overflowed_p = mips_elf_overflow_p (value, 16);
6325 /* The special case is when the symbol is forced to be local. We
6326 need the full address in the GOT since no R_MIPS_LO16 relocation
6328 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
6329 local_sections, false);
6330 value = mips_elf_got16_entry (abfd, info, symbol + addend, forced);
6331 if (value == (bfd_vma) -1)
6334 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6337 overflowed_p = mips_elf_overflow_p (value, 16);
6344 case R_MIPS_GOT_DISP:
6346 overflowed_p = mips_elf_overflow_p (value, 16);
6349 case R_MIPS_GPREL32:
6350 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
6354 value = mips_elf_sign_extend (addend, 16) + symbol - p;
6355 value = (bfd_vma) ((bfd_signed_vma) value / 4);
6356 overflowed_p = mips_elf_overflow_p (value, 16);
6359 case R_MIPS_GOT_HI16:
6360 case R_MIPS_CALL_HI16:
6361 /* We're allowed to handle these two relocations identically.
6362 The dynamic linker is allowed to handle the CALL relocations
6363 differently by creating a lazy evaluation stub. */
6365 value = mips_elf_high (value);
6366 value &= howto->dst_mask;
6369 case R_MIPS_GOT_LO16:
6370 case R_MIPS_CALL_LO16:
6371 value = g & howto->dst_mask;
6374 case R_MIPS_GOT_PAGE:
6375 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
6376 if (value == (bfd_vma) -1)
6378 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6381 overflowed_p = mips_elf_overflow_p (value, 16);
6384 case R_MIPS_GOT_OFST:
6385 mips_elf_got_page (abfd, info, symbol + addend, &value);
6386 overflowed_p = mips_elf_overflow_p (value, 16);
6390 value = symbol - addend;
6391 value &= howto->dst_mask;
6395 value = mips_elf_higher (addend + symbol);
6396 value &= howto->dst_mask;
6399 case R_MIPS_HIGHEST:
6400 value = mips_elf_highest (addend + symbol);
6401 value &= howto->dst_mask;
6404 case R_MIPS_SCN_DISP:
6405 value = symbol + addend - sec->output_offset;
6406 value &= howto->dst_mask;
6411 /* Both of these may be ignored. R_MIPS_JALR is an optimization
6412 hint; we could improve performance by honoring that hint. */
6413 return bfd_reloc_continue;
6415 case R_MIPS_GNU_VTINHERIT:
6416 case R_MIPS_GNU_VTENTRY:
6417 /* We don't do anything with these at present. */
6418 return bfd_reloc_continue;
6421 /* An unrecognized relocation type. */
6422 return bfd_reloc_notsupported;
6425 /* Store the VALUE for our caller. */
6427 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6430 /* Obtain the field relocated by RELOCATION. */
6433 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
6434 reloc_howto_type *howto;
6435 const Elf_Internal_Rela *relocation;
6440 bfd_byte *location = contents + relocation->r_offset;
6442 /* Obtain the bytes. */
6443 x = bfd_get (8 * bfd_get_reloc_size (howto), input_bfd, location);
6445 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
6446 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
6447 && bfd_little_endian (input_bfd))
6448 /* The two 16-bit words will be reversed on a little-endian
6449 system. See mips_elf_perform_relocation for more details. */
6450 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6455 /* It has been determined that the result of the RELOCATION is the
6456 VALUE. Use HOWTO to place VALUE into the output file at the
6457 appropriate position. The SECTION is the section to which the
6458 relocation applies. If REQUIRE_JALX is true, then the opcode used
6459 for the relocation must be either JAL or JALX, and it is
6460 unconditionally converted to JALX.
6462 Returns false if anything goes wrong. */
6465 mips_elf_perform_relocation (info, howto, relocation, value,
6466 input_bfd, input_section,
6467 contents, require_jalx)
6468 struct bfd_link_info *info;
6469 reloc_howto_type *howto;
6470 const Elf_Internal_Rela *relocation;
6473 asection *input_section;
6475 boolean require_jalx;
6479 int r_type = ELF32_R_TYPE (relocation->r_info);
6481 /* Figure out where the relocation is occurring. */
6482 location = contents + relocation->r_offset;
6484 /* Obtain the current value. */
6485 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6487 /* Clear the field we are setting. */
6488 x &= ~howto->dst_mask;
6490 /* If this is the R_MIPS16_26 relocation, we must store the
6491 value in a funny way. */
6492 if (r_type == R_MIPS16_26)
6494 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
6495 Most mips16 instructions are 16 bits, but these instructions
6498 The format of these instructions is:
6500 +--------------+--------------------------------+
6501 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
6502 +--------------+--------------------------------+
6504 +-----------------------------------------------+
6506 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
6507 Note that the immediate value in the first word is swapped.
6509 When producing a relocateable object file, R_MIPS16_26 is
6510 handled mostly like R_MIPS_26. In particular, the addend is
6511 stored as a straight 26-bit value in a 32-bit instruction.
6512 (gas makes life simpler for itself by never adjusting a
6513 R_MIPS16_26 reloc to be against a section, so the addend is
6514 always zero). However, the 32 bit instruction is stored as 2
6515 16-bit values, rather than a single 32-bit value. In a
6516 big-endian file, the result is the same; in a little-endian
6517 file, the two 16-bit halves of the 32 bit value are swapped.
6518 This is so that a disassembler can recognize the jal
6521 When doing a final link, R_MIPS16_26 is treated as a 32 bit
6522 instruction stored as two 16-bit values. The addend A is the
6523 contents of the targ26 field. The calculation is the same as
6524 R_MIPS_26. When storing the calculated value, reorder the
6525 immediate value as shown above, and don't forget to store the
6526 value as two 16-bit values.
6528 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
6532 +--------+----------------------+
6536 +--------+----------------------+
6539 +----------+------+-------------+
6543 +----------+--------------------+
6544 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
6545 ((sub1 << 16) | sub2)).
6547 When producing a relocateable object file, the calculation is
6548 (((A < 2) | (P & 0xf0000000) + S) >> 2)
6549 When producing a fully linked file, the calculation is
6550 let R = (((A < 2) | (P & 0xf0000000) + S) >> 2)
6551 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
6553 if (!info->relocateable)
6554 /* Shuffle the bits according to the formula above. */
6555 value = (((value & 0x1f0000) << 5)
6556 | ((value & 0x3e00000) >> 5)
6557 | (value & 0xffff));
6560 else if (r_type == R_MIPS16_GPREL)
6562 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
6563 mode. A typical instruction will have a format like this:
6565 +--------------+--------------------------------+
6566 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
6567 +--------------+--------------------------------+
6568 ! Major ! rx ! ry ! Imm 4:0 !
6569 +--------------+--------------------------------+
6571 EXTEND is the five bit value 11110. Major is the instruction
6574 This is handled exactly like R_MIPS_GPREL16, except that the
6575 addend is retrieved and stored as shown in this diagram; that
6576 is, the Imm fields above replace the V-rel16 field.
6578 All we need to do here is shuffle the bits appropriately. As
6579 above, the two 16-bit halves must be swapped on a
6580 little-endian system. */
6581 value = (((value & 0x7e0) << 16)
6582 | ((value & 0xf800) << 5)
6586 /* Set the field. */
6587 x |= (value & howto->dst_mask);
6589 /* If required, turn JAL into JALX. */
6593 bfd_vma opcode = x >> 26;
6594 bfd_vma jalx_opcode;
6596 /* Check to see if the opcode is already JAL or JALX. */
6597 if (r_type == R_MIPS16_26)
6599 ok = ((opcode == 0x6) || (opcode == 0x7));
6604 ok = ((opcode == 0x3) || (opcode == 0x1d));
6608 /* If the opcode is not JAL or JALX, there's a problem. */
6611 (*_bfd_error_handler)
6612 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
6613 bfd_get_filename (input_bfd),
6614 input_section->name,
6615 (unsigned long) relocation->r_offset);
6616 bfd_set_error (bfd_error_bad_value);
6620 /* Make this the JALX opcode. */
6621 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6624 /* Swap the high- and low-order 16 bits on little-endian systems
6625 when doing a MIPS16 relocation. */
6626 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
6627 && bfd_little_endian (input_bfd))
6628 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6630 /* Put the value into the output. */
6631 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6635 /* Returns true if SECTION is a MIPS16 stub section. */
6638 mips_elf_stub_section_p (abfd, section)
6639 bfd *abfd ATTRIBUTE_UNUSED;
6642 const char *name = bfd_get_section_name (abfd, section);
6644 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
6645 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6646 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
6649 /* Relocate a MIPS ELF section. */
6652 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6653 contents, relocs, local_syms, local_sections)
6655 struct bfd_link_info *info;
6657 asection *input_section;
6659 Elf_Internal_Rela *relocs;
6660 Elf_Internal_Sym *local_syms;
6661 asection **local_sections;
6663 Elf_Internal_Rela *rel;
6664 const Elf_Internal_Rela *relend;
6666 boolean use_saved_addend_p = false;
6667 struct elf_backend_data *bed;
6669 bed = get_elf_backend_data (output_bfd);
6670 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6671 for (rel = relocs; rel < relend; ++rel)
6675 reloc_howto_type *howto;
6676 boolean require_jalx;
6677 /* True if the relocation is a RELA relocation, rather than a
6679 boolean rela_relocation_p = true;
6680 int r_type = ELF32_R_TYPE (rel->r_info);
6682 /* Find the relocation howto for this relocation. */
6683 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6685 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6686 64-bit code, but make sure all their addresses are in the
6687 lowermost or uppermost 32-bit section of the 64-bit address
6688 space. Thus, when they use an R_MIPS_64 they mean what is
6689 usually meant by R_MIPS_32, with the exception that the
6690 stored value is sign-extended to 64 bits. */
6691 howto = elf_mips_howto_table + R_MIPS_32;
6693 /* On big-endian systems, we need to lie about the position
6695 if (bfd_big_endian (input_bfd))
6699 howto = mips_rtype_to_howto (r_type);
6701 if (!use_saved_addend_p)
6703 Elf_Internal_Shdr *rel_hdr;
6705 /* If these relocations were originally of the REL variety,
6706 we must pull the addend out of the field that will be
6707 relocated. Otherwise, we simply use the contents of the
6708 RELA relocation. To determine which flavor or relocation
6709 this is, we depend on the fact that the INPUT_SECTION's
6710 REL_HDR is read before its REL_HDR2. */
6711 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6712 if ((size_t) (rel - relocs)
6713 >= (rel_hdr->sh_size / rel_hdr->sh_entsize
6714 * bed->s->int_rels_per_ext_rel))
6715 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6716 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6718 /* Note that this is a REL relocation. */
6719 rela_relocation_p = false;
6721 /* Get the addend, which is stored in the input file. */
6722 addend = mips_elf_obtain_contents (howto,
6726 addend &= howto->src_mask;
6728 /* For some kinds of relocations, the ADDEND is a
6729 combination of the addend stored in two different
6731 if (r_type == R_MIPS_HI16
6732 || r_type == R_MIPS_GNU_REL_HI16
6733 || (r_type == R_MIPS_GOT16
6734 && mips_elf_local_relocation_p (input_bfd, rel,
6735 local_sections, false)))
6738 const Elf_Internal_Rela *lo16_relocation;
6739 reloc_howto_type *lo16_howto;
6742 /* The combined value is the sum of the HI16 addend,
6743 left-shifted by sixteen bits, and the LO16
6744 addend, sign extended. (Usually, the code does
6745 a `lui' of the HI16 value, and then an `addiu' of
6748 Scan ahead to find a matching LO16 relocation. */
6749 if (r_type == R_MIPS_GNU_REL_HI16)
6750 lo = R_MIPS_GNU_REL_LO16;
6754 = mips_elf_next_relocation (lo, rel, relend);
6755 if (lo16_relocation == NULL)
6758 /* Obtain the addend kept there. */
6759 lo16_howto = mips_rtype_to_howto (lo);
6760 l = mips_elf_obtain_contents (lo16_howto,
6762 input_bfd, contents);
6763 l &= lo16_howto->src_mask;
6764 l = mips_elf_sign_extend (l, 16);
6768 /* Compute the combined addend. */
6771 else if (r_type == R_MIPS16_GPREL)
6773 /* The addend is scrambled in the object file. See
6774 mips_elf_perform_relocation for details on the
6776 addend = (((addend & 0x1f0000) >> 5)
6777 | ((addend & 0x7e00000) >> 16)
6782 addend = rel->r_addend;
6785 if (info->relocateable)
6787 Elf_Internal_Sym *sym;
6788 unsigned long r_symndx;
6790 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
6791 && bfd_big_endian (input_bfd))
6794 /* Since we're just relocating, all we need to do is copy
6795 the relocations back out to the object file, unless
6796 they're against a section symbol, in which case we need
6797 to adjust by the section offset, or unless they're GP
6798 relative in which case we need to adjust by the amount
6799 that we're adjusting GP in this relocateable object. */
6801 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6803 /* There's nothing to do for non-local relocations. */
6806 if (r_type == R_MIPS16_GPREL
6807 || r_type == R_MIPS_GPREL16
6808 || r_type == R_MIPS_GPREL32
6809 || r_type == R_MIPS_LITERAL)
6810 addend -= (_bfd_get_gp_value (output_bfd)
6811 - _bfd_get_gp_value (input_bfd));
6812 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6813 || r_type == R_MIPS_GNU_REL16_S2)
6814 /* The addend is stored without its two least
6815 significant bits (which are always zero.) In a
6816 non-relocateable link, calculate_relocation will do
6817 this shift; here, we must do it ourselves. */
6820 r_symndx = ELF32_R_SYM (rel->r_info);
6821 sym = local_syms + r_symndx;
6822 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6823 /* Adjust the addend appropriately. */
6824 addend += local_sections[r_symndx]->output_offset;
6826 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6827 then we only want to write out the high-order 16 bits.
6828 The subsequent R_MIPS_LO16 will handle the low-order bits. */
6829 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6830 || r_type == R_MIPS_GNU_REL_HI16)
6831 addend = mips_elf_high (addend);
6832 /* If the relocation is for an R_MIPS_26 relocation, then
6833 the two low-order bits are not stored in the object file;
6834 they are implicitly zero. */
6835 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6836 || r_type == R_MIPS_GNU_REL16_S2)
6839 if (rela_relocation_p)
6840 /* If this is a RELA relocation, just update the addend.
6841 We have to cast away constness for REL. */
6842 rel->r_addend = addend;
6845 /* Otherwise, we have to write the value back out. Note
6846 that we use the source mask, rather than the
6847 destination mask because the place to which we are
6848 writing will be source of the addend in the final
6850 addend &= howto->src_mask;
6852 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6853 /* See the comment above about using R_MIPS_64 in the 32-bit
6854 ABI. Here, we need to update the addend. It would be
6855 possible to get away with just using the R_MIPS_32 reloc
6856 but for endianness. */
6862 if (addend & ((bfd_vma) 1 << 31))
6863 sign_bits = ((bfd_vma) 1 << 32) - 1;
6867 /* If we don't know that we have a 64-bit type,
6868 do two separate stores. */
6869 if (bfd_big_endian (input_bfd))
6871 /* Store the sign-bits (which are most significant)
6873 low_bits = sign_bits;
6879 high_bits = sign_bits;
6881 bfd_put_32 (input_bfd, low_bits,
6882 contents + rel->r_offset);
6883 bfd_put_32 (input_bfd, high_bits,
6884 contents + rel->r_offset + 4);
6888 if (!mips_elf_perform_relocation (info, howto, rel, addend,
6889 input_bfd, input_section,
6894 /* Go on to the next relocation. */
6898 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6899 relocations for the same offset. In that case we are
6900 supposed to treat the output of each relocation as the addend
6902 if (rel + 1 < relend
6903 && rel->r_offset == rel[1].r_offset
6904 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
6905 use_saved_addend_p = true;
6907 use_saved_addend_p = false;
6909 /* Figure out what value we are supposed to relocate. */
6910 switch (mips_elf_calculate_relocation (output_bfd,
6923 case bfd_reloc_continue:
6924 /* There's nothing to do. */
6927 case bfd_reloc_undefined:
6928 /* mips_elf_calculate_relocation already called the
6929 undefined_symbol callback. There's no real point in
6930 trying to perform the relocation at this point, so we
6931 just skip ahead to the next relocation. */
6934 case bfd_reloc_notsupported:
6938 case bfd_reloc_overflow:
6939 if (use_saved_addend_p)
6940 /* Ignore overflow until we reach the last relocation for
6941 a given location. */
6945 BFD_ASSERT (name != NULL);
6946 if (! ((*info->callbacks->reloc_overflow)
6947 (info, name, howto->name, (bfd_vma) 0,
6948 input_bfd, input_section, rel->r_offset)))
6961 /* If we've got another relocation for the address, keep going
6962 until we reach the last one. */
6963 if (use_saved_addend_p)
6969 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6970 /* See the comment above about using R_MIPS_64 in the 32-bit
6971 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6972 that calculated the right value. Now, however, we
6973 sign-extend the 32-bit result to 64-bits, and store it as a
6974 64-bit value. We are especially generous here in that we
6975 go to extreme lengths to support this usage on systems with
6976 only a 32-bit VMA. */
6982 if (value & ((bfd_vma) 1 << 31))
6983 sign_bits = ((bfd_vma) 1 << 32) - 1;
6987 /* If we don't know that we have a 64-bit type,
6988 do two separate stores. */
6989 if (bfd_big_endian (input_bfd))
6991 /* Undo what we did above. */
6993 /* Store the sign-bits (which are most significant)
6995 low_bits = sign_bits;
7001 high_bits = sign_bits;
7003 bfd_put_32 (input_bfd, low_bits,
7004 contents + rel->r_offset);
7005 bfd_put_32 (input_bfd, high_bits,
7006 contents + rel->r_offset + 4);
7010 /* Actually perform the relocation. */
7011 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
7012 input_section, contents,
7020 /* This hook function is called before the linker writes out a global
7021 symbol. We mark symbols as small common if appropriate. This is
7022 also where we undo the increment of the value for a mips16 symbol. */
7025 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
7026 bfd *abfd ATTRIBUTE_UNUSED;
7027 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7028 const char *name ATTRIBUTE_UNUSED;
7029 Elf_Internal_Sym *sym;
7030 asection *input_sec;
7032 /* If we see a common symbol, which implies a relocatable link, then
7033 if a symbol was small common in an input file, mark it as small
7034 common in the output file. */
7035 if (sym->st_shndx == SHN_COMMON
7036 && strcmp (input_sec->name, ".scommon") == 0)
7037 sym->st_shndx = SHN_MIPS_SCOMMON;
7039 if (sym->st_other == STO_MIPS16
7040 && (sym->st_value & 1) != 0)
7046 /* Functions for the dynamic linker. */
7048 /* The name of the dynamic interpreter. This is put in the .interp
7051 #define ELF_DYNAMIC_INTERPRETER(abfd) \
7052 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
7053 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
7054 : "/usr/lib/libc.so.1")
7056 /* Create dynamic sections when linking against a dynamic object. */
7059 _bfd_mips_elf_create_dynamic_sections (abfd, info)
7061 struct bfd_link_info *info;
7063 struct elf_link_hash_entry *h;
7065 register asection *s;
7066 const char * const *namep;
7068 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7069 | SEC_LINKER_CREATED | SEC_READONLY);
7071 /* Mips ABI requests the .dynamic section to be read only. */
7072 s = bfd_get_section_by_name (abfd, ".dynamic");
7075 if (! bfd_set_section_flags (abfd, s, flags))
7079 /* We need to create .got section. */
7080 if (! mips_elf_create_got_section (abfd, info))
7083 /* Create the .msym section on IRIX6. It is used by the dynamic
7084 linker to speed up dynamic relocations, and to avoid computing
7085 the ELF hash for symbols. */
7086 if (IRIX_COMPAT (abfd) == ict_irix6
7087 && !mips_elf_create_msym_section (abfd))
7090 /* Create .stub section. */
7091 if (bfd_get_section_by_name (abfd,
7092 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
7094 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
7096 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
7097 || ! bfd_set_section_alignment (abfd, s,
7098 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7102 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7104 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7106 s = bfd_make_section (abfd, ".rld_map");
7108 || ! bfd_set_section_flags (abfd, s, flags & ~SEC_READONLY)
7109 || ! bfd_set_section_alignment (abfd, s,
7110 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7114 /* On IRIX5, we adjust add some additional symbols and change the
7115 alignments of several sections. There is no ABI documentation
7116 indicating that this is necessary on IRIX6, nor any evidence that
7117 the linker takes such action. */
7118 if (IRIX_COMPAT (abfd) == ict_irix5)
7120 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7123 if (! (_bfd_generic_link_add_one_symbol
7124 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
7125 (bfd_vma) 0, (const char *) NULL, false,
7126 get_elf_backend_data (abfd)->collect,
7127 (struct bfd_link_hash_entry **) &h)))
7129 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7130 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7131 h->type = STT_SECTION;
7133 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7137 /* We need to create a .compact_rel section. */
7138 if (SGI_COMPAT (abfd))
7140 if (!mips_elf_create_compact_rel_section (abfd, info))
7144 /* Change aligments of some sections. */
7145 s = bfd_get_section_by_name (abfd, ".hash");
7147 bfd_set_section_alignment (abfd, s, 4);
7148 s = bfd_get_section_by_name (abfd, ".dynsym");
7150 bfd_set_section_alignment (abfd, s, 4);
7151 s = bfd_get_section_by_name (abfd, ".dynstr");
7153 bfd_set_section_alignment (abfd, s, 4);
7154 s = bfd_get_section_by_name (abfd, ".reginfo");
7156 bfd_set_section_alignment (abfd, s, 4);
7157 s = bfd_get_section_by_name (abfd, ".dynamic");
7159 bfd_set_section_alignment (abfd, s, 4);
7165 if (SGI_COMPAT (abfd))
7167 if (!(_bfd_generic_link_add_one_symbol
7168 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
7169 (bfd_vma) 0, (const char *) NULL, false,
7170 get_elf_backend_data (abfd)->collect,
7171 (struct bfd_link_hash_entry **) &h)))
7176 /* For normal mips it is _DYNAMIC_LINKING. */
7177 if (!(_bfd_generic_link_add_one_symbol
7178 (info, abfd, "_DYNAMIC_LINKING", BSF_GLOBAL,
7179 bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false,
7180 get_elf_backend_data (abfd)->collect,
7181 (struct bfd_link_hash_entry **) &h)))
7184 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7185 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7186 h->type = STT_SECTION;
7188 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7191 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7193 /* __rld_map is a four byte word located in the .data section
7194 and is filled in by the rtld to contain a pointer to
7195 the _r_debug structure. Its symbol value will be set in
7196 mips_elf_finish_dynamic_symbol. */
7197 s = bfd_get_section_by_name (abfd, ".rld_map");
7198 BFD_ASSERT (s != NULL);
7201 if (SGI_COMPAT (abfd))
7203 if (!(_bfd_generic_link_add_one_symbol
7204 (info, abfd, "__rld_map", BSF_GLOBAL, s,
7205 (bfd_vma) 0, (const char *) NULL, false,
7206 get_elf_backend_data (abfd)->collect,
7207 (struct bfd_link_hash_entry **) &h)))
7212 /* For normal mips the symbol is __RLD_MAP. */
7213 if (!(_bfd_generic_link_add_one_symbol
7214 (info, abfd, "__RLD_MAP", BSF_GLOBAL, s,
7215 (bfd_vma) 0, (const char *) NULL, false,
7216 get_elf_backend_data (abfd)->collect,
7217 (struct bfd_link_hash_entry **) &h)))
7220 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7221 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7222 h->type = STT_OBJECT;
7224 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7232 /* Create the .compact_rel section. */
7235 mips_elf_create_compact_rel_section (abfd, info)
7237 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7240 register asection *s;
7242 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
7244 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
7247 s = bfd_make_section (abfd, ".compact_rel");
7249 || ! bfd_set_section_flags (abfd, s, flags)
7250 || ! bfd_set_section_alignment (abfd, s,
7251 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7254 s->_raw_size = sizeof (Elf32_External_compact_rel);
7260 /* Create the .got section to hold the global offset table. */
7263 mips_elf_create_got_section (abfd, info)
7265 struct bfd_link_info *info;
7268 register asection *s;
7269 struct elf_link_hash_entry *h;
7270 struct mips_got_info *g;
7272 /* This function may be called more than once. */
7273 if (mips_elf_got_section (abfd))
7276 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7277 | SEC_LINKER_CREATED);
7279 s = bfd_make_section (abfd, ".got");
7281 || ! bfd_set_section_flags (abfd, s, flags)
7282 || ! bfd_set_section_alignment (abfd, s, 4))
7285 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7286 linker script because we don't want to define the symbol if we
7287 are not creating a global offset table. */
7289 if (! (_bfd_generic_link_add_one_symbol
7290 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7291 (bfd_vma) 0, (const char *) NULL, false,
7292 get_elf_backend_data (abfd)->collect,
7293 (struct bfd_link_hash_entry **) &h)))
7295 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7296 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7297 h->type = STT_OBJECT;
7300 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7303 /* The first several global offset table entries are reserved. */
7304 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
7306 g = (struct mips_got_info *) bfd_alloc (abfd,
7307 sizeof (struct mips_got_info));
7310 g->global_gotsym = NULL;
7311 g->local_gotno = MIPS_RESERVED_GOTNO;
7312 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7313 if (elf_section_data (s) == NULL)
7316 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
7317 if (elf_section_data (s) == NULL)
7320 elf_section_data (s)->tdata = (PTR) g;
7321 elf_section_data (s)->this_hdr.sh_flags
7322 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7327 /* Returns the .msym section for ABFD, creating it if it does not
7328 already exist. Returns NULL to indicate error. */
7331 mips_elf_create_msym_section (abfd)
7336 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7339 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7341 || !bfd_set_section_flags (abfd, s,
7345 | SEC_LINKER_CREATED
7347 || !bfd_set_section_alignment (abfd, s,
7348 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7355 /* Add room for N relocations to the .rel.dyn section in ABFD. */
7358 mips_elf_allocate_dynamic_relocations (abfd, n)
7364 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
7365 BFD_ASSERT (s != NULL);
7367 if (s->_raw_size == 0)
7369 /* Make room for a null element. */
7370 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
7373 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
7376 /* Look through the relocs for a section during the first phase, and
7377 allocate space in the global offset table. */
7380 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
7382 struct bfd_link_info *info;
7384 const Elf_Internal_Rela *relocs;
7388 Elf_Internal_Shdr *symtab_hdr;
7389 struct elf_link_hash_entry **sym_hashes;
7390 struct mips_got_info *g;
7392 const Elf_Internal_Rela *rel;
7393 const Elf_Internal_Rela *rel_end;
7396 struct elf_backend_data *bed;
7398 if (info->relocateable)
7401 dynobj = elf_hash_table (info)->dynobj;
7402 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7403 sym_hashes = elf_sym_hashes (abfd);
7404 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7406 /* Check for the mips16 stub sections. */
7408 name = bfd_get_section_name (abfd, sec);
7409 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
7411 unsigned long r_symndx;
7413 /* Look at the relocation information to figure out which symbol
7416 r_symndx = ELF32_R_SYM (relocs->r_info);
7418 if (r_symndx < extsymoff
7419 || sym_hashes[r_symndx - extsymoff] == NULL)
7423 /* This stub is for a local symbol. This stub will only be
7424 needed if there is some relocation in this BFD, other
7425 than a 16 bit function call, which refers to this symbol. */
7426 for (o = abfd->sections; o != NULL; o = o->next)
7428 Elf_Internal_Rela *sec_relocs;
7429 const Elf_Internal_Rela *r, *rend;
7431 /* We can ignore stub sections when looking for relocs. */
7432 if ((o->flags & SEC_RELOC) == 0
7433 || o->reloc_count == 0
7434 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
7435 sizeof FN_STUB - 1) == 0
7436 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
7437 sizeof CALL_STUB - 1) == 0
7438 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
7439 sizeof CALL_FP_STUB - 1) == 0)
7442 sec_relocs = (_bfd_elf32_link_read_relocs
7443 (abfd, o, (PTR) NULL,
7444 (Elf_Internal_Rela *) NULL,
7445 info->keep_memory));
7446 if (sec_relocs == NULL)
7449 rend = sec_relocs + o->reloc_count;
7450 for (r = sec_relocs; r < rend; r++)
7451 if (ELF32_R_SYM (r->r_info) == r_symndx
7452 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
7455 if (! info->keep_memory)
7464 /* There is no non-call reloc for this stub, so we do
7465 not need it. Since this function is called before
7466 the linker maps input sections to output sections, we
7467 can easily discard it by setting the SEC_EXCLUDE
7469 sec->flags |= SEC_EXCLUDE;
7473 /* Record this stub in an array of local symbol stubs for
7475 if (elf_tdata (abfd)->local_stubs == NULL)
7477 unsigned long symcount;
7480 if (elf_bad_symtab (abfd))
7481 symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
7483 symcount = symtab_hdr->sh_info;
7484 n = (asection **) bfd_zalloc (abfd,
7485 symcount * sizeof (asection *));
7488 elf_tdata (abfd)->local_stubs = n;
7491 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7493 /* We don't need to set mips16_stubs_seen in this case.
7494 That flag is used to see whether we need to look through
7495 the global symbol table for stubs. We don't need to set
7496 it here, because we just have a local stub. */
7500 struct mips_elf_link_hash_entry *h;
7502 h = ((struct mips_elf_link_hash_entry *)
7503 sym_hashes[r_symndx - extsymoff]);
7505 /* H is the symbol this stub is for. */
7508 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7511 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7512 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7514 unsigned long r_symndx;
7515 struct mips_elf_link_hash_entry *h;
7518 /* Look at the relocation information to figure out which symbol
7521 r_symndx = ELF32_R_SYM (relocs->r_info);
7523 if (r_symndx < extsymoff
7524 || sym_hashes[r_symndx - extsymoff] == NULL)
7526 /* This stub was actually built for a static symbol defined
7527 in the same file. We assume that all static symbols in
7528 mips16 code are themselves mips16, so we can simply
7529 discard this stub. Since this function is called before
7530 the linker maps input sections to output sections, we can
7531 easily discard it by setting the SEC_EXCLUDE flag. */
7532 sec->flags |= SEC_EXCLUDE;
7536 h = ((struct mips_elf_link_hash_entry *)
7537 sym_hashes[r_symndx - extsymoff]);
7539 /* H is the symbol this stub is for. */
7541 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7542 loc = &h->call_fp_stub;
7544 loc = &h->call_stub;
7546 /* If we already have an appropriate stub for this function, we
7547 don't need another one, so we can discard this one. Since
7548 this function is called before the linker maps input sections
7549 to output sections, we can easily discard it by setting the
7550 SEC_EXCLUDE flag. We can also discard this section if we
7551 happen to already know that this is a mips16 function; it is
7552 not necessary to check this here, as it is checked later, but
7553 it is slightly faster to check now. */
7554 if (*loc != NULL || h->root.other == STO_MIPS16)
7556 sec->flags |= SEC_EXCLUDE;
7561 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7571 sgot = mips_elf_got_section (dynobj);
7576 BFD_ASSERT (elf_section_data (sgot) != NULL);
7577 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
7578 BFD_ASSERT (g != NULL);
7583 bed = get_elf_backend_data (abfd);
7584 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7585 for (rel = relocs; rel < rel_end; ++rel)
7587 unsigned long r_symndx;
7589 struct elf_link_hash_entry *h;
7591 r_symndx = ELF32_R_SYM (rel->r_info);
7592 r_type = ELF32_R_TYPE (rel->r_info);
7594 if (r_symndx < extsymoff)
7596 else if (r_symndx >= extsymoff + (symtab_hdr->sh_size / symtab_hdr->sh_entsize))
7598 (*_bfd_error_handler)
7599 (_("Malformed reloc detected for section %s"), name);
7600 bfd_set_error (bfd_error_bad_value);
7605 h = sym_hashes[r_symndx - extsymoff];
7607 /* This may be an indirect symbol created because of a version. */
7610 while (h->root.type == bfd_link_hash_indirect)
7611 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7615 /* Some relocs require a global offset table. */
7616 if (dynobj == NULL || sgot == NULL)
7622 case R_MIPS_CALL_HI16:
7623 case R_MIPS_CALL_LO16:
7624 case R_MIPS_GOT_HI16:
7625 case R_MIPS_GOT_LO16:
7626 case R_MIPS_GOT_PAGE:
7627 case R_MIPS_GOT_OFST:
7628 case R_MIPS_GOT_DISP:
7630 elf_hash_table (info)->dynobj = dynobj = abfd;
7631 if (! mips_elf_create_got_section (dynobj, info))
7633 g = mips_elf_got_info (dynobj, &sgot);
7640 && (info->shared || h != NULL)
7641 && (sec->flags & SEC_ALLOC) != 0)
7642 elf_hash_table (info)->dynobj = dynobj = abfd;
7650 if (!h && (r_type == R_MIPS_CALL_LO16
7651 || r_type == R_MIPS_GOT_LO16
7652 || r_type == R_MIPS_GOT_DISP))
7654 /* We may need a local GOT entry for this relocation. We
7655 don't count R_MIPS_GOT_PAGE because we can estimate the
7656 maximum number of pages needed by looking at the size of
7657 the segment. Similar comments apply to R_MIPS_GOT16. We
7658 don't count R_MIPS_GOT_HI16, or R_MIPS_CALL_HI16 because
7659 these are always followed by an R_MIPS_GOT_LO16 or
7662 This estimation is very conservative since we can merge
7663 duplicate entries in the GOT. In order to be less
7664 conservative, we could actually build the GOT here,
7665 rather than in relocate_section. */
7667 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
7675 (*_bfd_error_handler)
7676 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
7677 bfd_get_filename (abfd), (unsigned long) rel->r_offset);
7678 bfd_set_error (bfd_error_bad_value);
7683 case R_MIPS_CALL_HI16:
7684 case R_MIPS_CALL_LO16:
7687 /* This symbol requires a global offset table entry. */
7688 if (!mips_elf_record_global_got_symbol (h, info, g))
7691 /* We need a stub, not a plt entry for the undefined
7692 function. But we record it as if it needs plt. See
7693 elf_adjust_dynamic_symbol in elflink.h. */
7694 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
7700 case R_MIPS_GOT_HI16:
7701 case R_MIPS_GOT_LO16:
7702 case R_MIPS_GOT_DISP:
7703 /* This symbol requires a global offset table entry. */
7704 if (h && !mips_elf_record_global_got_symbol (h, info, g))
7711 if ((info->shared || h != NULL)
7712 && (sec->flags & SEC_ALLOC) != 0)
7716 const char *name = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
7718 sreloc = bfd_get_section_by_name (dynobj, name);
7721 sreloc = bfd_make_section (dynobj, name);
7723 || ! bfd_set_section_flags (dynobj, sreloc,
7728 | SEC_LINKER_CREATED
7730 || ! bfd_set_section_alignment (dynobj, sreloc,
7736 /* When creating a shared object, we must copy these
7737 reloc types into the output file as R_MIPS_REL32
7738 relocs. We make room for this reloc in the
7739 .rel.dyn reloc section. */
7740 mips_elf_allocate_dynamic_relocations (dynobj, 1);
7743 struct mips_elf_link_hash_entry *hmips;
7745 /* We only need to copy this reloc if the symbol is
7746 defined in a dynamic object. */
7747 hmips = (struct mips_elf_link_hash_entry *) h;
7748 ++hmips->possibly_dynamic_relocs;
7751 /* Even though we don't directly need a GOT entry for
7752 this symbol, a symbol must have a dynamic symbol
7753 table index greater that DT_MIPS_GOTSYM if there are
7754 dynamic relocations against it. */
7756 && !mips_elf_record_global_got_symbol (h, info, g))
7760 if (SGI_COMPAT (abfd))
7761 mips_elf_hash_table (info)->compact_rel_size +=
7762 sizeof (Elf32_External_crinfo);
7766 case R_MIPS_GPREL16:
7767 case R_MIPS_LITERAL:
7768 case R_MIPS_GPREL32:
7769 if (SGI_COMPAT (abfd))
7770 mips_elf_hash_table (info)->compact_rel_size +=
7771 sizeof (Elf32_External_crinfo);
7774 /* This relocation describes the C++ object vtable hierarchy.
7775 Reconstruct it for later use during GC. */
7776 case R_MIPS_GNU_VTINHERIT:
7777 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7781 /* This relocation describes which C++ vtable entries are actually
7782 used. Record for later use during GC. */
7783 case R_MIPS_GNU_VTENTRY:
7784 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7792 /* If this reloc is not a 16 bit call, and it has a global
7793 symbol, then we will need the fn_stub if there is one.
7794 References from a stub section do not count. */
7796 && r_type != R_MIPS16_26
7797 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
7798 sizeof FN_STUB - 1) != 0
7799 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
7800 sizeof CALL_STUB - 1) != 0
7801 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
7802 sizeof CALL_FP_STUB - 1) != 0)
7804 struct mips_elf_link_hash_entry *mh;
7806 mh = (struct mips_elf_link_hash_entry *) h;
7807 mh->need_fn_stub = true;
7814 /* Return the section that should be marked against GC for a given
7818 _bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
7820 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7821 Elf_Internal_Rela *rel;
7822 struct elf_link_hash_entry *h;
7823 Elf_Internal_Sym *sym;
7825 /* ??? Do mips16 stub sections need to be handled special? */
7829 switch (ELF32_R_TYPE (rel->r_info))
7831 case R_MIPS_GNU_VTINHERIT:
7832 case R_MIPS_GNU_VTENTRY:
7836 switch (h->root.type)
7838 case bfd_link_hash_defined:
7839 case bfd_link_hash_defweak:
7840 return h->root.u.def.section;
7842 case bfd_link_hash_common:
7843 return h->root.u.c.p->section;
7852 if (!(elf_bad_symtab (abfd)
7853 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7854 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
7855 && sym->st_shndx != SHN_COMMON))
7857 return bfd_section_from_elf_index (abfd, sym->st_shndx);
7864 /* Update the got entry reference counts for the section being removed. */
7867 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7868 bfd *abfd ATTRIBUTE_UNUSED;
7869 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7870 asection *sec ATTRIBUTE_UNUSED;
7871 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7874 Elf_Internal_Shdr *symtab_hdr;
7875 struct elf_link_hash_entry **sym_hashes;
7876 bfd_signed_vma *local_got_refcounts;
7877 const Elf_Internal_Rela *rel, *relend;
7878 unsigned long r_symndx;
7879 struct elf_link_hash_entry *h;
7881 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7882 sym_hashes = elf_sym_hashes (abfd);
7883 local_got_refcounts = elf_local_got_refcounts (abfd);
7885 relend = relocs + sec->reloc_count;
7886 for (rel = relocs; rel < relend; rel++)
7887 switch (ELF32_R_TYPE (rel->r_info))
7891 case R_MIPS_CALL_HI16:
7892 case R_MIPS_CALL_LO16:
7893 case R_MIPS_GOT_HI16:
7894 case R_MIPS_GOT_LO16:
7895 /* ??? It would seem that the existing MIPS code does no sort
7896 of reference counting or whatnot on its GOT and PLT entries,
7897 so it is not possible to garbage collect them at this time. */
7908 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7909 hiding the old indirect symbol. Process additional relocation
7913 _bfd_mips_elf_copy_indirect_symbol (dir, ind)
7914 struct elf_link_hash_entry *dir, *ind;
7916 struct mips_elf_link_hash_entry *dirmips, *indmips;
7918 _bfd_elf_link_hash_copy_indirect (dir, ind);
7920 dirmips = (struct mips_elf_link_hash_entry *) dir;
7921 indmips = (struct mips_elf_link_hash_entry *) ind;
7922 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7923 if (dirmips->min_dyn_reloc_index == 0
7924 || (indmips->min_dyn_reloc_index != 0
7925 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
7926 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
7929 /* Adjust a symbol defined by a dynamic object and referenced by a
7930 regular object. The current definition is in some section of the
7931 dynamic object, but we're not including those sections. We have to
7932 change the definition to something the rest of the link can
7936 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
7937 struct bfd_link_info *info;
7938 struct elf_link_hash_entry *h;
7941 struct mips_elf_link_hash_entry *hmips;
7944 dynobj = elf_hash_table (info)->dynobj;
7946 /* Make sure we know what is going on here. */
7947 BFD_ASSERT (dynobj != NULL
7948 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
7949 || h->weakdef != NULL
7950 || ((h->elf_link_hash_flags
7951 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
7952 && (h->elf_link_hash_flags
7953 & ELF_LINK_HASH_REF_REGULAR) != 0
7954 && (h->elf_link_hash_flags
7955 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
7957 /* If this symbol is defined in a dynamic object, we need to copy
7958 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
7960 hmips = (struct mips_elf_link_hash_entry *) h;
7961 if (! info->relocateable
7962 && hmips->possibly_dynamic_relocs != 0
7963 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
7964 mips_elf_allocate_dynamic_relocations (dynobj,
7965 hmips->possibly_dynamic_relocs);
7967 /* For a function, create a stub, if needed. */
7968 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
7970 if (! elf_hash_table (info)->dynamic_sections_created)
7973 /* If this symbol is not defined in a regular file, then set
7974 the symbol to the stub location. This is required to make
7975 function pointers compare as equal between the normal
7976 executable and the shared library. */
7977 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
7979 /* We need .stub section. */
7980 s = bfd_get_section_by_name (dynobj,
7981 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7982 BFD_ASSERT (s != NULL);
7984 h->root.u.def.section = s;
7985 h->root.u.def.value = s->_raw_size;
7987 /* XXX Write this stub address somewhere. */
7988 h->plt.offset = s->_raw_size;
7990 /* Make room for this stub code. */
7991 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
7993 /* The last half word of the stub will be filled with the index
7994 of this symbol in .dynsym section. */
7998 else if ((h->type == STT_FUNC)
7999 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
8001 /* This will set the entry for this symbol in the GOT to 0, and
8002 the dynamic linker will take care of this. */
8003 h->root.u.def.value = 0;
8007 /* If this is a weak symbol, and there is a real definition, the
8008 processor independent code will have arranged for us to see the
8009 real definition first, and we can just use the same value. */
8010 if (h->weakdef != NULL)
8012 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
8013 || h->weakdef->root.type == bfd_link_hash_defweak);
8014 h->root.u.def.section = h->weakdef->root.u.def.section;
8015 h->root.u.def.value = h->weakdef->root.u.def.value;
8019 /* This is a reference to a symbol defined by a dynamic object which
8020 is not a function. */
8025 /* This function is called after all the input files have been read,
8026 and the input sections have been assigned to output sections. We
8027 check for any mips16 stub sections that we can discard. */
8029 static boolean mips_elf_check_mips16_stubs
8030 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
8033 _bfd_mips_elf_always_size_sections (output_bfd, info)
8035 struct bfd_link_info *info;
8039 /* The .reginfo section has a fixed size. */
8040 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8042 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8044 if (info->relocateable
8045 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
8048 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8049 mips_elf_check_mips16_stubs,
8055 /* Check the mips16 stubs for a particular symbol, and see if we can
8059 mips_elf_check_mips16_stubs (h, data)
8060 struct mips_elf_link_hash_entry *h;
8061 PTR data ATTRIBUTE_UNUSED;
8063 if (h->fn_stub != NULL
8064 && ! h->need_fn_stub)
8066 /* We don't need the fn_stub; the only references to this symbol
8067 are 16 bit calls. Clobber the size to 0 to prevent it from
8068 being included in the link. */
8069 h->fn_stub->_raw_size = 0;
8070 h->fn_stub->_cooked_size = 0;
8071 h->fn_stub->flags &= ~SEC_RELOC;
8072 h->fn_stub->reloc_count = 0;
8073 h->fn_stub->flags |= SEC_EXCLUDE;
8076 if (h->call_stub != NULL
8077 && h->root.other == STO_MIPS16)
8079 /* We don't need the call_stub; this is a 16 bit function, so
8080 calls from other 16 bit functions are OK. Clobber the size
8081 to 0 to prevent it from being included in the link. */
8082 h->call_stub->_raw_size = 0;
8083 h->call_stub->_cooked_size = 0;
8084 h->call_stub->flags &= ~SEC_RELOC;
8085 h->call_stub->reloc_count = 0;
8086 h->call_stub->flags |= SEC_EXCLUDE;
8089 if (h->call_fp_stub != NULL
8090 && h->root.other == STO_MIPS16)
8092 /* We don't need the call_stub; this is a 16 bit function, so
8093 calls from other 16 bit functions are OK. Clobber the size
8094 to 0 to prevent it from being included in the link. */
8095 h->call_fp_stub->_raw_size = 0;
8096 h->call_fp_stub->_cooked_size = 0;
8097 h->call_fp_stub->flags &= ~SEC_RELOC;
8098 h->call_fp_stub->reloc_count = 0;
8099 h->call_fp_stub->flags |= SEC_EXCLUDE;
8105 /* Set the sizes of the dynamic sections. */
8108 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
8110 struct bfd_link_info *info;
8115 struct mips_got_info *g = NULL;
8117 dynobj = elf_hash_table (info)->dynobj;
8118 BFD_ASSERT (dynobj != NULL);
8120 if (elf_hash_table (info)->dynamic_sections_created)
8122 /* Set the contents of the .interp section to the interpreter. */
8125 s = bfd_get_section_by_name (dynobj, ".interp");
8126 BFD_ASSERT (s != NULL);
8128 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8130 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8134 /* The check_relocs and adjust_dynamic_symbol entry points have
8135 determined the sizes of the various dynamic sections. Allocate
8138 for (s = dynobj->sections; s != NULL; s = s->next)
8143 /* It's OK to base decisions on the section name, because none
8144 of the dynobj section names depend upon the input files. */
8145 name = bfd_get_section_name (dynobj, s);
8147 if ((s->flags & SEC_LINKER_CREATED) == 0)
8152 if (strncmp (name, ".rel", 4) == 0)
8154 if (s->_raw_size == 0)
8156 /* We only strip the section if the output section name
8157 has the same name. Otherwise, there might be several
8158 input sections for this output section. FIXME: This
8159 code is probably not needed these days anyhow, since
8160 the linker now does not create empty output sections. */
8161 if (s->output_section != NULL
8163 bfd_get_section_name (s->output_section->owner,
8164 s->output_section)) == 0)
8169 const char *outname;
8172 /* If this relocation section applies to a read only
8173 section, then we probably need a DT_TEXTREL entry.
8174 If the relocation section is .rel.dyn, we always
8175 assert a DT_TEXTREL entry rather than testing whether
8176 there exists a relocation to a read only section or
8178 outname = bfd_get_section_name (output_bfd,
8180 target = bfd_get_section_by_name (output_bfd, outname + 4);
8182 && (target->flags & SEC_READONLY) != 0
8183 && (target->flags & SEC_ALLOC) != 0)
8185 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
8188 /* We use the reloc_count field as a counter if we need
8189 to copy relocs into the output file. */
8191 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
8195 else if (strncmp (name, ".got", 4) == 0)
8198 bfd_size_type loadable_size = 0;
8199 bfd_size_type local_gotno;
8202 BFD_ASSERT (elf_section_data (s) != NULL);
8203 g = (struct mips_got_info *) elf_section_data (s)->tdata;
8204 BFD_ASSERT (g != NULL);
8206 /* Calculate the total loadable size of the output. That
8207 will give us the maximum number of GOT_PAGE entries
8209 for (sub = info->input_bfds; sub; sub = sub->link_next)
8211 asection *subsection;
8213 for (subsection = sub->sections;
8215 subsection = subsection->next)
8217 if ((subsection->flags & SEC_ALLOC) == 0)
8219 loadable_size += (subsection->_raw_size + 0xf) & ~0xf;
8222 loadable_size += MIPS_FUNCTION_STUB_SIZE;
8224 /* Assume there are two loadable segments consisting of
8225 contiguous sections. Is 5 enough? */
8226 local_gotno = (loadable_size >> 16) + 5;
8227 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8228 /* It's possible we will need GOT_PAGE entries as well as
8229 GOT16 entries. Often, these will be able to share GOT
8230 entries, but not always. */
8233 g->local_gotno += local_gotno;
8234 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
8236 /* There has to be a global GOT entry for every symbol with
8237 a dynamic symbol table index of DT_MIPS_GOTSYM or
8238 higher. Therefore, it make sense to put those symbols
8239 that need GOT entries at the end of the symbol table. We
8241 if (!mips_elf_sort_hash_table (info, 1))
8244 if (g->global_gotsym != NULL)
8245 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
8247 /* If there are no global symbols, or none requiring
8248 relocations, then GLOBAL_GOTSYM will be NULL. */
8250 g->global_gotno = i;
8251 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
8253 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
8255 /* Irix rld assumes that the function stub isn't at the end
8256 of .text section. So put a dummy. XXX */
8257 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8259 else if (! info->shared
8260 && ! mips_elf_hash_table (info)->use_rld_obj_head
8261 && strncmp (name, ".rld_map", 8) == 0)
8263 /* We add a room for __rld_map. It will be filled in by the
8264 rtld to contain a pointer to the _r_debug structure. */
8267 else if (SGI_COMPAT (output_bfd)
8268 && strncmp (name, ".compact_rel", 12) == 0)
8269 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
8270 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
8272 s->_raw_size = (sizeof (Elf32_External_Msym)
8273 * (elf_hash_table (info)->dynsymcount
8274 + bfd_count_sections (output_bfd)));
8275 else if (strncmp (name, ".init", 5) != 0)
8277 /* It's not one of our sections, so don't allocate space. */
8283 _bfd_strip_section_from_output (info, s);
8287 /* Allocate memory for the section contents. */
8288 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
8289 if (s->contents == NULL && s->_raw_size != 0)
8291 bfd_set_error (bfd_error_no_memory);
8296 if (elf_hash_table (info)->dynamic_sections_created)
8298 /* Add some entries to the .dynamic section. We fill in the
8299 values later, in elf_mips_finish_dynamic_sections, but we
8300 must add the entries now so that we get the correct size for
8301 the .dynamic section. The DT_DEBUG entry is filled in by the
8302 dynamic linker and used by the debugger. */
8305 /* SGI object has the equivalence of DT_DEBUG in the
8306 DT_MIPS_RLD_MAP entry. */
8307 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8309 if (!SGI_COMPAT (output_bfd))
8311 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8317 /* Shared libraries on traditional mips have DT_DEBUG. */
8318 if (!SGI_COMPAT (output_bfd))
8320 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8324 if (reltext && SGI_COMPAT (output_bfd))
8326 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8328 info->flags |= DF_TEXTREL;
8331 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8334 if (bfd_get_section_by_name (dynobj,
8335 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
8337 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8340 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8343 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8347 if (SGI_COMPAT (output_bfd))
8349 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
8353 if (SGI_COMPAT (output_bfd))
8355 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
8359 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
8361 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
8364 s = bfd_get_section_by_name (dynobj, ".liblist");
8365 BFD_ASSERT (s != NULL);
8367 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
8371 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8374 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8378 /* Time stamps in executable files are a bad idea. */
8379 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
8384 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
8389 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
8393 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8396 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8399 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8402 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8405 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8408 if (IRIX_COMPAT (dynobj) == ict_irix5
8409 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8412 if (IRIX_COMPAT (dynobj) == ict_irix6
8413 && (bfd_get_section_by_name
8414 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8415 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8418 if (bfd_get_section_by_name (dynobj,
8419 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
8420 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
8427 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8428 adjust it appropriately now. */
8431 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
8432 bfd *abfd ATTRIBUTE_UNUSED;
8434 Elf_Internal_Sym *sym;
8436 /* The linker script takes care of providing names and values for
8437 these, but we must place them into the right sections. */
8438 static const char* const text_section_symbols[] = {
8441 "__dso_displacement",
8443 "__program_header_table",
8447 static const char* const data_section_symbols[] = {
8455 const char* const *p;
8458 for (i = 0; i < 2; ++i)
8459 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8462 if (strcmp (*p, name) == 0)
8464 /* All of these symbols are given type STT_SECTION by the
8466 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8468 /* The IRIX linker puts these symbols in special sections. */
8470 sym->st_shndx = SHN_MIPS_TEXT;
8472 sym->st_shndx = SHN_MIPS_DATA;
8478 /* Finish up dynamic symbol handling. We set the contents of various
8479 dynamic sections here. */
8482 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
8484 struct bfd_link_info *info;
8485 struct elf_link_hash_entry *h;
8486 Elf_Internal_Sym *sym;
8492 struct mips_got_info *g;
8494 struct mips_elf_link_hash_entry *mh;
8496 dynobj = elf_hash_table (info)->dynobj;
8497 gval = sym->st_value;
8498 mh = (struct mips_elf_link_hash_entry *) h;
8500 if (h->plt.offset != (bfd_vma) -1)
8504 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
8506 /* This symbol has a stub. Set it up. */
8508 BFD_ASSERT (h->dynindx != -1);
8510 s = bfd_get_section_by_name (dynobj,
8511 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8512 BFD_ASSERT (s != NULL);
8514 /* Fill the stub. */
8516 bfd_put_32 (output_bfd, STUB_LW (output_bfd), p);
8518 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), p);
8521 /* FIXME: Can h->dynindex be more than 64K? */
8522 if (h->dynindx & 0xffff0000)
8525 bfd_put_32 (output_bfd, STUB_JALR, p);
8527 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, p);
8529 BFD_ASSERT (h->plt.offset <= s->_raw_size);
8530 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8532 /* Mark the symbol as undefined. plt.offset != -1 occurs
8533 only for the referenced symbol. */
8534 sym->st_shndx = SHN_UNDEF;
8536 /* The run-time linker uses the st_value field of the symbol
8537 to reset the global offset table entry for this external
8538 to its stub address when unlinking a shared object. */
8539 gval = s->output_section->vma + s->output_offset + h->plt.offset;
8540 sym->st_value = gval;
8543 BFD_ASSERT (h->dynindx != -1
8544 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
8546 sgot = mips_elf_got_section (dynobj);
8547 BFD_ASSERT (sgot != NULL);
8548 BFD_ASSERT (elf_section_data (sgot) != NULL);
8549 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8550 BFD_ASSERT (g != NULL);
8552 /* Run through the global symbol table, creating GOT entries for all
8553 the symbols that need them. */
8554 if (g->global_gotsym != NULL
8555 && h->dynindx >= g->global_gotsym->dynindx)
8561 value = sym->st_value;
8564 /* For an entity defined in a shared object, this will be
8565 NULL. (For functions in shared objects for
8566 which we have created stubs, ST_VALUE will be non-NULL.
8567 That's because such the functions are now no longer defined
8568 in a shared object.) */
8570 if (info->shared && h->root.type == bfd_link_hash_undefined)
8573 value = h->root.u.def.value;
8575 offset = mips_elf_global_got_index (dynobj, h);
8576 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8579 /* Create a .msym entry, if appropriate. */
8580 smsym = bfd_get_section_by_name (dynobj,
8581 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8584 Elf32_Internal_Msym msym;
8586 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
8587 /* It is undocumented what the `1' indicates, but IRIX6 uses
8589 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
8590 bfd_mips_elf_swap_msym_out
8592 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
8595 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8596 name = h->root.root.string;
8597 if (strcmp (name, "_DYNAMIC") == 0
8598 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
8599 sym->st_shndx = SHN_ABS;
8600 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8601 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8603 sym->st_shndx = SHN_ABS;
8604 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8607 else if (strcmp (name, "_gp_disp") == 0)
8609 sym->st_shndx = SHN_ABS;
8610 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8611 sym->st_value = elf_gp (output_bfd);
8613 else if (SGI_COMPAT (output_bfd))
8615 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8616 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8618 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8619 sym->st_other = STO_PROTECTED;
8621 sym->st_shndx = SHN_MIPS_DATA;
8623 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8625 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8626 sym->st_other = STO_PROTECTED;
8627 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8628 sym->st_shndx = SHN_ABS;
8630 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8632 if (h->type == STT_FUNC)
8633 sym->st_shndx = SHN_MIPS_TEXT;
8634 else if (h->type == STT_OBJECT)
8635 sym->st_shndx = SHN_MIPS_DATA;
8639 /* Handle the IRIX6-specific symbols. */
8640 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8641 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8645 if (! mips_elf_hash_table (info)->use_rld_obj_head
8646 && (strcmp (name, "__rld_map") == 0
8647 || strcmp (name, "__RLD_MAP") == 0))
8649 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8650 BFD_ASSERT (s != NULL);
8651 sym->st_value = s->output_section->vma + s->output_offset;
8652 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
8653 if (mips_elf_hash_table (info)->rld_value == 0)
8654 mips_elf_hash_table (info)->rld_value = sym->st_value;
8656 else if (mips_elf_hash_table (info)->use_rld_obj_head
8657 && strcmp (name, "__rld_obj_head") == 0)
8659 /* IRIX6 does not use a .rld_map section. */
8660 if (IRIX_COMPAT (output_bfd) == ict_irix5
8661 || IRIX_COMPAT (output_bfd) == ict_none)
8662 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8664 mips_elf_hash_table (info)->rld_value = sym->st_value;
8668 /* If this is a mips16 symbol, force the value to be even. */
8669 if (sym->st_other == STO_MIPS16
8670 && (sym->st_value & 1) != 0)
8676 /* Finish up the dynamic sections. */
8679 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
8681 struct bfd_link_info *info;
8686 struct mips_got_info *g;
8688 dynobj = elf_hash_table (info)->dynobj;
8690 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8692 sgot = mips_elf_got_section (dynobj);
8697 BFD_ASSERT (elf_section_data (sgot) != NULL);
8698 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8699 BFD_ASSERT (g != NULL);
8702 if (elf_hash_table (info)->dynamic_sections_created)
8706 BFD_ASSERT (sdyn != NULL);
8707 BFD_ASSERT (g != NULL);
8709 for (b = sdyn->contents;
8710 b < sdyn->contents + sdyn->_raw_size;
8711 b += MIPS_ELF_DYN_SIZE (dynobj))
8713 Elf_Internal_Dyn dyn;
8719 /* Read in the current dynamic entry. */
8720 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8722 /* Assume that we're going to modify it and write it out. */
8728 s = (bfd_get_section_by_name
8730 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
8731 BFD_ASSERT (s != NULL);
8732 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8736 /* Rewrite DT_STRSZ. */
8738 _bfd_stringtab_size (elf_hash_table (info)->dynstr);
8744 case DT_MIPS_CONFLICT:
8747 case DT_MIPS_LIBLIST:
8750 s = bfd_get_section_by_name (output_bfd, name);
8751 BFD_ASSERT (s != NULL);
8752 dyn.d_un.d_ptr = s->vma;
8755 case DT_MIPS_RLD_VERSION:
8756 dyn.d_un.d_val = 1; /* XXX */
8760 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8763 case DT_MIPS_CONFLICTNO:
8765 elemsize = sizeof (Elf32_Conflict);
8768 case DT_MIPS_LIBLISTNO:
8770 elemsize = sizeof (Elf32_Lib);
8772 s = bfd_get_section_by_name (output_bfd, name);
8775 if (s->_cooked_size != 0)
8776 dyn.d_un.d_val = s->_cooked_size / elemsize;
8778 dyn.d_un.d_val = s->_raw_size / elemsize;
8784 case DT_MIPS_TIME_STAMP:
8785 time ((time_t *) &dyn.d_un.d_val);
8788 case DT_MIPS_ICHECKSUM:
8793 case DT_MIPS_IVERSION:
8798 case DT_MIPS_BASE_ADDRESS:
8799 s = output_bfd->sections;
8800 BFD_ASSERT (s != NULL);
8801 dyn.d_un.d_ptr = s->vma & ~(0xffff);
8804 case DT_MIPS_LOCAL_GOTNO:
8805 dyn.d_un.d_val = g->local_gotno;
8808 case DT_MIPS_UNREFEXTNO:
8809 /* The index into the dynamic symbol table which is the
8810 entry of the first external symbol that is not
8811 referenced within the same object. */
8812 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8815 case DT_MIPS_GOTSYM:
8816 if (g->global_gotsym)
8818 dyn.d_un.d_val = g->global_gotsym->dynindx;
8821 /* In case if we don't have global got symbols we default
8822 to setting DT_MIPS_GOTSYM to the same value as
8823 DT_MIPS_SYMTABNO, so we just fall through. */
8825 case DT_MIPS_SYMTABNO:
8827 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8828 s = bfd_get_section_by_name (output_bfd, name);
8829 BFD_ASSERT (s != NULL);
8831 if (s->_cooked_size != 0)
8832 dyn.d_un.d_val = s->_cooked_size / elemsize;
8834 dyn.d_un.d_val = s->_raw_size / elemsize;
8837 case DT_MIPS_HIPAGENO:
8838 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
8841 case DT_MIPS_RLD_MAP:
8842 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8845 case DT_MIPS_OPTIONS:
8846 s = (bfd_get_section_by_name
8847 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8848 dyn.d_un.d_ptr = s->vma;
8852 s = (bfd_get_section_by_name
8853 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
8854 dyn.d_un.d_ptr = s->vma;
8863 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8868 /* The first entry of the global offset table will be filled at
8869 runtime. The second entry will be used by some runtime loaders.
8870 This isn't the case of Irix rld. */
8871 if (sgot != NULL && sgot->_raw_size > 0)
8873 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8874 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8875 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8879 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8880 = MIPS_ELF_GOT_SIZE (output_bfd);
8885 Elf32_compact_rel cpt;
8887 /* ??? The section symbols for the output sections were set up in
8888 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
8889 symbols. Should we do so? */
8891 smsym = bfd_get_section_by_name (dynobj,
8892 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8895 Elf32_Internal_Msym msym;
8897 msym.ms_hash_value = 0;
8898 msym.ms_info = ELF32_MS_INFO (0, 1);
8900 for (s = output_bfd->sections; s != NULL; s = s->next)
8902 long dynindx = elf_section_data (s)->dynindx;
8904 bfd_mips_elf_swap_msym_out
8906 (((Elf32_External_Msym *) smsym->contents)
8911 if (SGI_COMPAT (output_bfd))
8913 /* Write .compact_rel section out. */
8914 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8918 cpt.num = s->reloc_count;
8920 cpt.offset = (s->output_section->filepos
8921 + sizeof (Elf32_External_compact_rel));
8924 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8925 ((Elf32_External_compact_rel *)
8928 /* Clean up a dummy stub function entry in .text. */
8929 s = bfd_get_section_by_name (dynobj,
8930 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8933 file_ptr dummy_offset;
8935 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
8936 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
8937 memset (s->contents + dummy_offset, 0,
8938 MIPS_FUNCTION_STUB_SIZE);
8943 /* We need to sort the entries of the dynamic relocation section. */
8945 if (!ABI_64_P (output_bfd))
8949 reldyn = bfd_get_section_by_name (dynobj,
8950 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
8951 if (reldyn != NULL && reldyn->reloc_count > 2)
8953 reldyn_sorting_bfd = output_bfd;
8954 qsort ((Elf32_External_Rel *) reldyn->contents + 1,
8955 (size_t) reldyn->reloc_count - 1,
8956 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
8960 /* Clean up a first relocation in .rel.dyn. */
8961 s = bfd_get_section_by_name (dynobj,
8962 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
8963 if (s != NULL && s->_raw_size > 0)
8964 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
8970 /* This is almost identical to bfd_generic_get_... except that some
8971 MIPS relocations need to be handled specially. Sigh. */
8974 elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
8975 relocateable, symbols)
8977 struct bfd_link_info *link_info;
8978 struct bfd_link_order *link_order;
8980 boolean relocateable;
8983 /* Get enough memory to hold the stuff */
8984 bfd *input_bfd = link_order->u.indirect.section->owner;
8985 asection *input_section = link_order->u.indirect.section;
8987 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8988 arelent **reloc_vector = NULL;
8994 reloc_vector = (arelent **) bfd_malloc (reloc_size);
8995 if (reloc_vector == NULL && reloc_size != 0)
8998 /* read in the section */
8999 if (!bfd_get_section_contents (input_bfd,
9003 input_section->_raw_size))
9006 /* We're not relaxing the section, so just copy the size info */
9007 input_section->_cooked_size = input_section->_raw_size;
9008 input_section->reloc_done = true;
9010 reloc_count = bfd_canonicalize_reloc (input_bfd,
9014 if (reloc_count < 0)
9017 if (reloc_count > 0)
9022 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9025 struct bfd_hash_entry *h;
9026 struct bfd_link_hash_entry *lh;
9027 /* Skip all this stuff if we aren't mixing formats. */
9028 if (abfd && input_bfd
9029 && abfd->xvec == input_bfd->xvec)
9033 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
9034 lh = (struct bfd_link_hash_entry *) h;
9041 case bfd_link_hash_undefined:
9042 case bfd_link_hash_undefweak:
9043 case bfd_link_hash_common:
9046 case bfd_link_hash_defined:
9047 case bfd_link_hash_defweak:
9049 gp = lh->u.def.value;
9051 case bfd_link_hash_indirect:
9052 case bfd_link_hash_warning:
9054 /* @@FIXME ignoring warning for now */
9056 case bfd_link_hash_new:
9065 for (parent = reloc_vector; *parent != (arelent *) NULL;
9068 char *error_message = (char *) NULL;
9069 bfd_reloc_status_type r;
9071 /* Specific to MIPS: Deal with relocation types that require
9072 knowing the gp of the output bfd. */
9073 asymbol *sym = *(*parent)->sym_ptr_ptr;
9074 if (bfd_is_abs_section (sym->section) && abfd)
9076 /* The special_function wouldn't get called anyways. */
9080 /* The gp isn't there; let the special function code
9081 fall over on its own. */
9083 else if ((*parent)->howto->special_function
9084 == _bfd_mips_elf_gprel16_reloc)
9086 /* bypass special_function call */
9087 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
9088 relocateable, (PTR) data, gp);
9089 goto skip_bfd_perform_relocation;
9091 /* end mips specific stuff */
9093 r = bfd_perform_relocation (input_bfd,
9097 relocateable ? abfd : (bfd *) NULL,
9099 skip_bfd_perform_relocation:
9103 asection *os = input_section->output_section;
9105 /* A partial link, so keep the relocs */
9106 os->orelocation[os->reloc_count] = *parent;
9110 if (r != bfd_reloc_ok)
9114 case bfd_reloc_undefined:
9115 if (!((*link_info->callbacks->undefined_symbol)
9116 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9117 input_bfd, input_section, (*parent)->address,
9121 case bfd_reloc_dangerous:
9122 BFD_ASSERT (error_message != (char *) NULL);
9123 if (!((*link_info->callbacks->reloc_dangerous)
9124 (link_info, error_message, input_bfd, input_section,
9125 (*parent)->address)))
9128 case bfd_reloc_overflow:
9129 if (!((*link_info->callbacks->reloc_overflow)
9130 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9131 (*parent)->howto->name, (*parent)->addend,
9132 input_bfd, input_section, (*parent)->address)))
9135 case bfd_reloc_outofrange:
9144 if (reloc_vector != NULL)
9145 free (reloc_vector);
9149 if (reloc_vector != NULL)
9150 free (reloc_vector);
9154 #define bfd_elf32_bfd_get_relocated_section_contents \
9155 elf32_mips_get_relocated_section_contents
9157 /* ECOFF swapping routines. These are used when dealing with the
9158 .mdebug section, which is in the ECOFF debugging format. */
9159 static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap = {
9160 /* Symbol table magic number. */
9162 /* Alignment of debugging information. E.g., 4. */
9164 /* Sizes of external symbolic information. */
9165 sizeof (struct hdr_ext),
9166 sizeof (struct dnr_ext),
9167 sizeof (struct pdr_ext),
9168 sizeof (struct sym_ext),
9169 sizeof (struct opt_ext),
9170 sizeof (struct fdr_ext),
9171 sizeof (struct rfd_ext),
9172 sizeof (struct ext_ext),
9173 /* Functions to swap in external symbolic data. */
9182 _bfd_ecoff_swap_tir_in,
9183 _bfd_ecoff_swap_rndx_in,
9184 /* Functions to swap out external symbolic data. */
9193 _bfd_ecoff_swap_tir_out,
9194 _bfd_ecoff_swap_rndx_out,
9195 /* Function to read in symbolic data. */
9196 _bfd_mips_elf_read_ecoff_info
9199 #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
9200 #define TARGET_LITTLE_NAME "elf32-littlemips"
9201 #define TARGET_BIG_SYM bfd_elf32_bigmips_vec
9202 #define TARGET_BIG_NAME "elf32-bigmips"
9203 #define ELF_ARCH bfd_arch_mips
9204 #define ELF_MACHINE_CODE EM_MIPS
9206 /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
9207 a value of 0x1000, and we are compatible. */
9208 #define ELF_MAXPAGESIZE 0x1000
9210 #define elf_backend_collect true
9211 #define elf_backend_type_change_ok true
9212 #define elf_backend_can_gc_sections true
9213 #define elf_backend_sign_extend_vma true
9214 #define elf_info_to_howto mips_info_to_howto_rela
9215 #define elf_info_to_howto_rel mips_info_to_howto_rel
9216 #define elf_backend_sym_is_global mips_elf_sym_is_global
9217 #define elf_backend_object_p _bfd_mips_elf_object_p
9218 #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
9219 #define elf_backend_fake_sections _bfd_mips_elf_fake_sections
9220 #define elf_backend_section_from_bfd_section \
9221 _bfd_mips_elf_section_from_bfd_section
9222 #define elf_backend_section_processing _bfd_mips_elf_section_processing
9223 #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
9224 #define elf_backend_additional_program_headers \
9225 _bfd_mips_elf_additional_program_headers
9226 #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
9227 #define elf_backend_final_write_processing \
9228 _bfd_mips_elf_final_write_processing
9229 #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
9230 #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
9231 #define elf_backend_create_dynamic_sections \
9232 _bfd_mips_elf_create_dynamic_sections
9233 #define elf_backend_check_relocs _bfd_mips_elf_check_relocs
9234 #define elf_backend_adjust_dynamic_symbol \
9235 _bfd_mips_elf_adjust_dynamic_symbol
9236 #define elf_backend_always_size_sections \
9237 _bfd_mips_elf_always_size_sections
9238 #define elf_backend_size_dynamic_sections \
9239 _bfd_mips_elf_size_dynamic_sections
9240 #define elf_backend_relocate_section _bfd_mips_elf_relocate_section
9241 #define elf_backend_link_output_symbol_hook \
9242 _bfd_mips_elf_link_output_symbol_hook
9243 #define elf_backend_finish_dynamic_symbol \
9244 _bfd_mips_elf_finish_dynamic_symbol
9245 #define elf_backend_finish_dynamic_sections \
9246 _bfd_mips_elf_finish_dynamic_sections
9247 #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
9248 #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
9250 #define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO)
9251 #define elf_backend_plt_header_size 0
9253 #define elf_backend_copy_indirect_symbol \
9254 _bfd_mips_elf_copy_indirect_symbol
9256 #define elf_backend_hide_symbol _bfd_mips_elf_hide_symbol
9258 #define bfd_elf32_bfd_is_local_label_name \
9259 mips_elf_is_local_label_name
9260 #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
9261 #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
9262 #define bfd_elf32_bfd_link_hash_table_create \
9263 _bfd_mips_elf_link_hash_table_create
9264 #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
9265 #define bfd_elf32_bfd_copy_private_bfd_data \
9266 _bfd_mips_elf_copy_private_bfd_data
9267 #define bfd_elf32_bfd_merge_private_bfd_data \
9268 _bfd_mips_elf_merge_private_bfd_data
9269 #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
9270 #define bfd_elf32_bfd_print_private_bfd_data \
9271 _bfd_mips_elf_print_private_bfd_data
9272 #include "elf32-target.h"
9274 /* Support for traditional mips targets */
9276 #define INCLUDED_TARGET_FILE /* More a type of flag */
9278 #undef TARGET_LITTLE_SYM
9279 #undef TARGET_LITTLE_NAME
9280 #undef TARGET_BIG_SYM
9281 #undef TARGET_BIG_NAME
9283 #define TARGET_LITTLE_SYM bfd_elf32_tradlittlemips_vec
9284 #define TARGET_LITTLE_NAME "elf32-tradlittlemips"
9285 #define TARGET_BIG_SYM bfd_elf32_tradbigmips_vec
9286 #define TARGET_BIG_NAME "elf32-tradbigmips"
9288 /* Include the target file again for this target */
9289 #include "elf32-target.h"