1 /* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 94, 95, 96, 97, 98, 1999 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
9 This file is part of BFD, the Binary File Descriptor library.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
26 different MIPS ELF from other targets. This matters when linking.
27 This file supports both, switching at runtime. */
37 /* Get the ECOFF swapping routines. */
39 #include "coff/symconst.h"
40 #include "coff/internal.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
44 #include "ecoffswap.h"
46 /* This structure is used to hold .got information when linking. It
47 is stored in the tdata field of the bfd_elf_section_data structure. */
51 /* The global symbol in the GOT with the lowest index in the dynamic
53 struct elf_link_hash_entry *global_gotsym;
54 /* The number of global .got entries. */
55 unsigned int global_gotno;
56 /* The number of local .got entries. */
57 unsigned int local_gotno;
58 /* The number of local .got entries we have used. */
59 unsigned int assigned_gotno;
62 /* The MIPS ELF linker needs additional information for each symbol in
63 the global hash table. */
65 struct mips_elf_link_hash_entry
67 struct elf_link_hash_entry root;
69 /* External symbol information. */
72 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
74 unsigned int possibly_dynamic_relocs;
76 /* The index of the first dynamic relocation (in the .rel.dyn
77 section) against this symbol. */
78 unsigned int min_dyn_reloc_index;
80 /* If there is a stub that 32 bit functions should use to call this
81 16 bit function, this points to the section containing the stub. */
84 /* Whether we need the fn_stub; this is set if this symbol appears
85 in any relocs other than a 16 bit call. */
88 /* If there is a stub that 16 bit functions should use to call this
89 32 bit function, this points to the section containing the stub. */
92 /* This is like the call_stub field, but it is used if the function
93 being called returns a floating point value. */
94 asection *call_fp_stub;
97 static bfd_reloc_status_type mips32_64bit_reloc
98 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
99 static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
100 PARAMS ((bfd *, bfd_reloc_code_real_type));
101 static reloc_howto_type *mips_rtype_to_howto
102 PARAMS ((unsigned int));
103 static void mips_info_to_howto_rel
104 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
105 static void mips_info_to_howto_rela
106 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
107 static void bfd_mips_elf32_swap_gptab_in
108 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
109 static void bfd_mips_elf32_swap_gptab_out
110 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
112 static void bfd_mips_elf_swap_msym_in
113 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
115 static void bfd_mips_elf_swap_msym_out
116 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
117 static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
118 static boolean mips_elf_create_procedure_table
119 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
120 struct ecoff_debug_info *));
121 static INLINE int elf_mips_isa PARAMS ((flagword));
122 static INLINE int elf_mips_mach PARAMS ((flagword));
123 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
124 static boolean mips_elf_is_local_label_name
125 PARAMS ((bfd *, const char *));
126 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
127 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
128 static int gptab_compare PARAMS ((const void *, const void *));
129 static bfd_reloc_status_type mips16_jump_reloc
130 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
131 static bfd_reloc_status_type mips16_gprel_reloc
132 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
133 static boolean mips_elf_create_compact_rel_section
134 PARAMS ((bfd *, struct bfd_link_info *));
135 static boolean mips_elf_create_got_section
136 PARAMS ((bfd *, struct bfd_link_info *));
137 static bfd_reloc_status_type mips_elf_final_gp
138 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
139 static bfd_byte *elf32_mips_get_relocated_section_contents
140 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
141 bfd_byte *, boolean, asymbol **));
142 static asection *mips_elf_create_msym_section
144 static void mips_elf_irix6_finish_dynamic_symbol
145 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
146 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
147 static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
148 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
149 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
150 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
151 static bfd_vma mips_elf_global_got_index
152 PARAMS ((bfd *, struct elf_link_hash_entry *));
153 static bfd_vma mips_elf_local_got_index
154 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
155 static bfd_vma mips_elf_got_offset_from_index
156 PARAMS ((bfd *, bfd *, bfd_vma));
157 static boolean mips_elf_record_global_got_symbol
158 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
159 struct mips_got_info *));
160 static bfd_vma mips_elf_got_page
161 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
162 static const Elf_Internal_Rela *mips_elf_next_relocation
163 PARAMS ((unsigned int, const Elf_Internal_Rela *,
164 const Elf_Internal_Rela *));
165 static bfd_reloc_status_type mips_elf_calculate_relocation
166 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
167 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
168 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
170 static bfd_vma mips_elf_obtain_contents
171 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
172 static boolean mips_elf_perform_relocation
173 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
174 const Elf_Internal_Rela *, bfd_vma,
175 bfd *, asection *, bfd_byte *, boolean));
176 static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
177 static boolean mips_elf_sort_hash_table_f
178 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
179 static boolean mips_elf_sort_hash_table
180 PARAMS ((struct bfd_link_info *, unsigned long));
181 static asection * mips_elf_got_section PARAMS ((bfd *));
182 static struct mips_got_info *mips_elf_got_info
183 PARAMS ((bfd *, asection **));
184 static boolean mips_elf_local_relocation_p
185 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **));
186 static bfd_vma mips_elf_create_local_got_entry
187 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
188 static bfd_vma mips_elf_got16_entry
189 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
190 static boolean mips_elf_create_dynamic_relocation
191 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
192 struct mips_elf_link_hash_entry *, asection *,
193 bfd_vma, bfd_vma *, asection *));
194 static void mips_elf_allocate_dynamic_relocations
195 PARAMS ((bfd *, unsigned int));
196 static boolean mips_elf_stub_section_p
197 PARAMS ((bfd *, asection *));
199 /* The level of IRIX compatibility we're striving for. */
207 /* Nonzero if ABFD is using the N32 ABI. */
209 #define ABI_N32_P(abfd) \
210 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
212 /* Nonzero if ABFD is using the 64-bit ABI. FIXME: This is never
214 #define ABI_64_P(abfd) \
215 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
217 /* What version of Irix we are trying to be compatible with. FIXME:
218 At the moment, we never generate "normal" MIPS ELF ABI executables;
219 we always use some version of Irix. */
221 #define IRIX_COMPAT(abfd) \
222 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5)
224 /* Whether we are trying to be compatible with IRIX at all. */
226 #define SGI_COMPAT(abfd) \
227 (IRIX_COMPAT (abfd) != ict_none)
229 /* The name of the msym section. */
230 #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
232 /* The name of the srdata section. */
233 #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
235 /* The name of the options section. */
236 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
237 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
239 /* The name of the stub section. */
240 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
241 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
243 /* The name of the dynamic relocation section. */
244 #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
246 /* The size of an external REL relocation. */
247 #define MIPS_ELF_REL_SIZE(abfd) \
248 (get_elf_backend_data (abfd)->s->sizeof_rel)
250 /* The size of an external dynamic table entry. */
251 #define MIPS_ELF_DYN_SIZE(abfd) \
252 (get_elf_backend_data (abfd)->s->sizeof_dyn)
254 /* The size of a GOT entry. */
255 #define MIPS_ELF_GOT_SIZE(abfd) \
256 (get_elf_backend_data (abfd)->s->arch_size / 8)
258 /* The size of a symbol-table entry. */
259 #define MIPS_ELF_SYM_SIZE(abfd) \
260 (get_elf_backend_data (abfd)->s->sizeof_sym)
262 /* The default alignment for sections, as a power of two. */
263 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
264 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
266 /* Get word-sized data. */
267 #define MIPS_ELF_GET_WORD(abfd, ptr) \
268 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
270 /* Put out word-sized data. */
271 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
273 ? bfd_put_64 (abfd, val, ptr) \
274 : bfd_put_32 (abfd, val, ptr))
276 /* Add a dynamic symbol table-entry. */
278 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
279 (ABI_64_P (elf_hash_table (info)->dynobj) \
280 ? bfd_elf64_add_dynamic_entry (info, tag, val) \
281 : bfd_elf32_add_dynamic_entry (info, tag, val))
283 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
284 (ABI_64_P (elf_hash_table (info)->dynobj) \
285 ? (abort (), false) \
286 : bfd_elf32_add_dynamic_entry (info, tag, val))
289 /* The number of local .got entries we reserve. */
290 #define MIPS_RESERVED_GOTNO (2)
292 /* Instructions which appear in a stub. For some reason the stub is
293 slightly different on an SGI system. */
294 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
295 #define STUB_LW(abfd) \
298 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
299 : 0x8f998010) /* lw t9,0x8010(gp) */ \
300 : 0x8f998000) /* lw t9,0x8000(gp) */
301 #define STUB_MOVE 0x03e07825 /* move t7,ra */
302 #define STUB_JALR 0x0320f809 /* jal t9 */
303 #define STUB_LI16 0x34180000 /* ori t8,zero,0 */
304 #define MIPS_FUNCTION_STUB_SIZE (16)
307 /* We no longer try to identify particular sections for the .dynsym
308 section. When we do, we wind up crashing if there are other random
309 sections with relocations. */
311 /* Names of sections which appear in the .dynsym section in an Irix 5
314 static const char * const mips_elf_dynsym_sec_names[] =
327 #define SIZEOF_MIPS_DYNSYM_SECNAMES \
328 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
330 /* The number of entries in mips_elf_dynsym_sec_names which go in the
333 #define MIPS_TEXT_DYNSYM_SECNO (3)
337 /* The names of the runtime procedure table symbols used on Irix 5. */
339 static const char * const mips_elf_dynsym_rtproc_names[] =
342 "_procedure_string_table",
343 "_procedure_table_size",
347 /* These structures are used to generate the .compact_rel section on
352 unsigned long id1; /* Always one? */
353 unsigned long num; /* Number of compact relocation entries. */
354 unsigned long id2; /* Always two? */
355 unsigned long offset; /* The file offset of the first relocation. */
356 unsigned long reserved0; /* Zero? */
357 unsigned long reserved1; /* Zero? */
366 bfd_byte reserved0[4];
367 bfd_byte reserved1[4];
368 } Elf32_External_compact_rel;
372 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
373 unsigned int rtype : 4; /* Relocation types. See below. */
374 unsigned int dist2to : 8;
375 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
376 unsigned long konst; /* KONST field. See below. */
377 unsigned long vaddr; /* VADDR to be relocated. */
382 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
383 unsigned int rtype : 4; /* Relocation types. See below. */
384 unsigned int dist2to : 8;
385 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
386 unsigned long konst; /* KONST field. See below. */
394 } Elf32_External_crinfo;
400 } Elf32_External_crinfo2;
402 /* These are the constants used to swap the bitfields in a crinfo. */
404 #define CRINFO_CTYPE (0x1)
405 #define CRINFO_CTYPE_SH (31)
406 #define CRINFO_RTYPE (0xf)
407 #define CRINFO_RTYPE_SH (27)
408 #define CRINFO_DIST2TO (0xff)
409 #define CRINFO_DIST2TO_SH (19)
410 #define CRINFO_RELVADDR (0x7ffff)
411 #define CRINFO_RELVADDR_SH (0)
413 /* A compact relocation info has long (3 words) or short (2 words)
414 formats. A short format doesn't have VADDR field and relvaddr
415 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
416 #define CRF_MIPS_LONG 1
417 #define CRF_MIPS_SHORT 0
419 /* There are 4 types of compact relocation at least. The value KONST
420 has different meaning for each type:
423 CT_MIPS_REL32 Address in data
424 CT_MIPS_WORD Address in word (XXX)
425 CT_MIPS_GPHI_LO GP - vaddr
426 CT_MIPS_JMPAD Address to jump
429 #define CRT_MIPS_REL32 0xa
430 #define CRT_MIPS_WORD 0xb
431 #define CRT_MIPS_GPHI_LO 0xc
432 #define CRT_MIPS_JMPAD 0xd
434 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
435 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
436 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
437 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
439 static void bfd_elf32_swap_compact_rel_out
440 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
441 static void bfd_elf32_swap_crinfo_out
442 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
444 #define USE_REL 1 /* MIPS uses REL relocations instead of RELA */
446 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
447 from smaller values. Start with zero, widen, *then* decrement. */
448 #define MINUS_ONE (((bfd_vma)0) - 1)
450 static reloc_howto_type elf_mips_howto_table[] =
453 HOWTO (R_MIPS_NONE, /* type */
455 0, /* size (0 = byte, 1 = short, 2 = long) */
457 false, /* pc_relative */
459 complain_overflow_dont, /* complain_on_overflow */
460 bfd_elf_generic_reloc, /* special_function */
461 "R_MIPS_NONE", /* name */
462 false, /* partial_inplace */
465 false), /* pcrel_offset */
467 /* 16 bit relocation. */
468 HOWTO (R_MIPS_16, /* type */
470 1, /* size (0 = byte, 1 = short, 2 = long) */
472 false, /* pc_relative */
474 complain_overflow_bitfield, /* complain_on_overflow */
475 bfd_elf_generic_reloc, /* special_function */
476 "R_MIPS_16", /* name */
477 true, /* partial_inplace */
478 0xffff, /* src_mask */
479 0xffff, /* dst_mask */
480 false), /* pcrel_offset */
482 /* 32 bit relocation. */
483 HOWTO (R_MIPS_32, /* type */
485 2, /* size (0 = byte, 1 = short, 2 = long) */
487 false, /* pc_relative */
489 complain_overflow_bitfield, /* complain_on_overflow */
490 bfd_elf_generic_reloc, /* special_function */
491 "R_MIPS_32", /* name */
492 true, /* partial_inplace */
493 0xffffffff, /* src_mask */
494 0xffffffff, /* dst_mask */
495 false), /* pcrel_offset */
497 /* 32 bit symbol relative relocation. */
498 HOWTO (R_MIPS_REL32, /* type */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
502 false, /* pc_relative */
504 complain_overflow_bitfield, /* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_MIPS_REL32", /* name */
507 true, /* partial_inplace */
508 0xffffffff, /* src_mask */
509 0xffffffff, /* dst_mask */
510 false), /* pcrel_offset */
512 /* 26 bit branch address. */
513 HOWTO (R_MIPS_26, /* type */
515 2, /* size (0 = byte, 1 = short, 2 = long) */
517 false, /* pc_relative */
519 complain_overflow_dont, /* complain_on_overflow */
520 /* This needs complex overflow
521 detection, because the upper four
522 bits must match the PC. */
523 bfd_elf_generic_reloc, /* special_function */
524 "R_MIPS_26", /* name */
525 true, /* partial_inplace */
526 0x3ffffff, /* src_mask */
527 0x3ffffff, /* dst_mask */
528 false), /* pcrel_offset */
530 /* High 16 bits of symbol value. */
531 HOWTO (R_MIPS_HI16, /* type */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
535 false, /* pc_relative */
537 complain_overflow_dont, /* complain_on_overflow */
538 _bfd_mips_elf_hi16_reloc, /* special_function */
539 "R_MIPS_HI16", /* name */
540 true, /* partial_inplace */
541 0xffff, /* src_mask */
542 0xffff, /* dst_mask */
543 false), /* pcrel_offset */
545 /* Low 16 bits of symbol value. */
546 HOWTO (R_MIPS_LO16, /* type */
548 2, /* size (0 = byte, 1 = short, 2 = long) */
550 false, /* pc_relative */
552 complain_overflow_dont, /* complain_on_overflow */
553 _bfd_mips_elf_lo16_reloc, /* special_function */
554 "R_MIPS_LO16", /* name */
555 true, /* partial_inplace */
556 0xffff, /* src_mask */
557 0xffff, /* dst_mask */
558 false), /* pcrel_offset */
560 /* GP relative reference. */
561 HOWTO (R_MIPS_GPREL16, /* type */
563 2, /* size (0 = byte, 1 = short, 2 = long) */
565 false, /* pc_relative */
567 complain_overflow_signed, /* complain_on_overflow */
568 _bfd_mips_elf_gprel16_reloc, /* special_function */
569 "R_MIPS_GPREL16", /* name */
570 true, /* partial_inplace */
571 0xffff, /* src_mask */
572 0xffff, /* dst_mask */
573 false), /* pcrel_offset */
575 /* Reference to literal section. */
576 HOWTO (R_MIPS_LITERAL, /* type */
578 2, /* size (0 = byte, 1 = short, 2 = long) */
580 false, /* pc_relative */
582 complain_overflow_signed, /* complain_on_overflow */
583 _bfd_mips_elf_gprel16_reloc, /* special_function */
584 "R_MIPS_LITERAL", /* name */
585 true, /* partial_inplace */
586 0xffff, /* src_mask */
587 0xffff, /* dst_mask */
588 false), /* pcrel_offset */
590 /* Reference to global offset table. */
591 HOWTO (R_MIPS_GOT16, /* type */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
595 false, /* pc_relative */
597 complain_overflow_signed, /* complain_on_overflow */
598 _bfd_mips_elf_got16_reloc, /* special_function */
599 "R_MIPS_GOT16", /* name */
600 false, /* partial_inplace */
601 0xffff, /* src_mask */
602 0xffff, /* dst_mask */
603 false), /* pcrel_offset */
605 /* 16 bit PC relative reference. */
606 HOWTO (R_MIPS_PC16, /* type */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
610 true, /* pc_relative */
612 complain_overflow_signed, /* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
614 "R_MIPS_PC16", /* name */
615 true, /* partial_inplace */
616 0xffff, /* src_mask */
617 0xffff, /* dst_mask */
618 true), /* pcrel_offset */
620 /* 16 bit call through global offset table. */
621 HOWTO (R_MIPS_CALL16, /* type */
623 2, /* size (0 = byte, 1 = short, 2 = long) */
625 false, /* pc_relative */
627 complain_overflow_signed, /* complain_on_overflow */
628 bfd_elf_generic_reloc, /* special_function */
629 "R_MIPS_CALL16", /* name */
630 false, /* partial_inplace */
631 0xffff, /* src_mask */
632 0xffff, /* dst_mask */
633 false), /* pcrel_offset */
635 /* 32 bit GP relative reference. */
636 HOWTO (R_MIPS_GPREL32, /* type */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
640 false, /* pc_relative */
642 complain_overflow_bitfield, /* complain_on_overflow */
643 _bfd_mips_elf_gprel32_reloc, /* special_function */
644 "R_MIPS_GPREL32", /* name */
645 true, /* partial_inplace */
646 0xffffffff, /* src_mask */
647 0xffffffff, /* dst_mask */
648 false), /* pcrel_offset */
650 /* The remaining relocs are defined on Irix 5, although they are
651 not defined by the ABI. */
656 /* A 5 bit shift field. */
657 HOWTO (R_MIPS_SHIFT5, /* type */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
661 false, /* pc_relative */
663 complain_overflow_bitfield, /* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_MIPS_SHIFT5", /* name */
666 true, /* partial_inplace */
667 0x000007c0, /* src_mask */
668 0x000007c0, /* dst_mask */
669 false), /* pcrel_offset */
671 /* A 6 bit shift field. */
672 /* FIXME: This is not handled correctly; a special function is
673 needed to put the most significant bit in the right place. */
674 HOWTO (R_MIPS_SHIFT6, /* type */
676 2, /* size (0 = byte, 1 = short, 2 = long) */
678 false, /* pc_relative */
680 complain_overflow_bitfield, /* complain_on_overflow */
681 bfd_elf_generic_reloc, /* special_function */
682 "R_MIPS_SHIFT6", /* name */
683 true, /* partial_inplace */
684 0x000007c4, /* src_mask */
685 0x000007c4, /* dst_mask */
686 false), /* pcrel_offset */
688 /* A 64 bit relocation. */
689 HOWTO (R_MIPS_64, /* type */
691 4, /* size (0 = byte, 1 = short, 2 = long) */
693 false, /* pc_relative */
695 complain_overflow_bitfield, /* complain_on_overflow */
696 mips32_64bit_reloc, /* special_function */
697 "R_MIPS_64", /* name */
698 true, /* partial_inplace */
699 MINUS_ONE, /* src_mask */
700 MINUS_ONE, /* dst_mask */
701 false), /* pcrel_offset */
703 /* Displacement in the global offset table. */
704 HOWTO (R_MIPS_GOT_DISP, /* type */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
708 false, /* pc_relative */
710 complain_overflow_bitfield, /* complain_on_overflow */
711 bfd_elf_generic_reloc, /* special_function */
712 "R_MIPS_GOT_DISP", /* name */
713 true, /* partial_inplace */
714 0x0000ffff, /* src_mask */
715 0x0000ffff, /* dst_mask */
716 false), /* pcrel_offset */
718 /* Displacement to page pointer in the global offset table. */
719 HOWTO (R_MIPS_GOT_PAGE, /* type */
721 2, /* size (0 = byte, 1 = short, 2 = long) */
723 false, /* pc_relative */
725 complain_overflow_bitfield, /* complain_on_overflow */
726 bfd_elf_generic_reloc, /* special_function */
727 "R_MIPS_GOT_PAGE", /* name */
728 true, /* partial_inplace */
729 0x0000ffff, /* src_mask */
730 0x0000ffff, /* dst_mask */
731 false), /* pcrel_offset */
733 /* Offset from page pointer in the global offset table. */
734 HOWTO (R_MIPS_GOT_OFST, /* type */
736 2, /* size (0 = byte, 1 = short, 2 = long) */
738 false, /* pc_relative */
740 complain_overflow_bitfield, /* complain_on_overflow */
741 bfd_elf_generic_reloc, /* special_function */
742 "R_MIPS_GOT_OFST", /* name */
743 true, /* partial_inplace */
744 0x0000ffff, /* src_mask */
745 0x0000ffff, /* dst_mask */
746 false), /* pcrel_offset */
748 /* High 16 bits of displacement in global offset table. */
749 HOWTO (R_MIPS_GOT_HI16, /* type */
751 2, /* size (0 = byte, 1 = short, 2 = long) */
753 false, /* pc_relative */
755 complain_overflow_dont, /* complain_on_overflow */
756 bfd_elf_generic_reloc, /* special_function */
757 "R_MIPS_GOT_HI16", /* name */
758 true, /* partial_inplace */
759 0x0000ffff, /* src_mask */
760 0x0000ffff, /* dst_mask */
761 false), /* pcrel_offset */
763 /* Low 16 bits of displacement in global offset table. */
764 HOWTO (R_MIPS_GOT_LO16, /* type */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
768 false, /* pc_relative */
770 complain_overflow_dont, /* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_MIPS_GOT_LO16", /* name */
773 true, /* partial_inplace */
774 0x0000ffff, /* src_mask */
775 0x0000ffff, /* dst_mask */
776 false), /* pcrel_offset */
778 /* 64 bit subtraction. Used in the N32 ABI. */
779 HOWTO (R_MIPS_SUB, /* type */
781 4, /* size (0 = byte, 1 = short, 2 = long) */
783 false, /* pc_relative */
785 complain_overflow_bitfield, /* complain_on_overflow */
786 bfd_elf_generic_reloc, /* special_function */
787 "R_MIPS_SUB", /* name */
788 true, /* partial_inplace */
789 MINUS_ONE, /* src_mask */
790 MINUS_ONE, /* dst_mask */
791 false), /* pcrel_offset */
793 /* Used to cause the linker to insert and delete instructions? */
794 EMPTY_HOWTO (R_MIPS_INSERT_A),
795 EMPTY_HOWTO (R_MIPS_INSERT_B),
796 EMPTY_HOWTO (R_MIPS_DELETE),
798 /* Get the higher value of a 64 bit addend. */
799 HOWTO (R_MIPS_HIGHER, /* type */
801 2, /* size (0 = byte, 1 = short, 2 = long) */
803 false, /* pc_relative */
805 complain_overflow_dont, /* complain_on_overflow */
806 bfd_elf_generic_reloc, /* special_function */
807 "R_MIPS_HIGHER", /* name */
808 true, /* partial_inplace */
810 0xffff, /* dst_mask */
811 false), /* pcrel_offset */
813 /* Get the highest value of a 64 bit addend. */
814 HOWTO (R_MIPS_HIGHEST, /* type */
816 2, /* size (0 = byte, 1 = short, 2 = long) */
818 false, /* pc_relative */
820 complain_overflow_dont, /* complain_on_overflow */
821 bfd_elf_generic_reloc, /* special_function */
822 "R_MIPS_HIGHEST", /* name */
823 true, /* partial_inplace */
825 0xffff, /* dst_mask */
826 false), /* pcrel_offset */
828 /* High 16 bits of displacement in global offset table. */
829 HOWTO (R_MIPS_CALL_HI16, /* type */
831 2, /* size (0 = byte, 1 = short, 2 = long) */
833 false, /* pc_relative */
835 complain_overflow_dont, /* complain_on_overflow */
836 bfd_elf_generic_reloc, /* special_function */
837 "R_MIPS_CALL_HI16", /* name */
838 true, /* partial_inplace */
839 0x0000ffff, /* src_mask */
840 0x0000ffff, /* dst_mask */
841 false), /* pcrel_offset */
843 /* Low 16 bits of displacement in global offset table. */
844 HOWTO (R_MIPS_CALL_LO16, /* type */
846 2, /* size (0 = byte, 1 = short, 2 = long) */
848 false, /* pc_relative */
850 complain_overflow_dont, /* complain_on_overflow */
851 bfd_elf_generic_reloc, /* special_function */
852 "R_MIPS_CALL_LO16", /* name */
853 true, /* partial_inplace */
854 0x0000ffff, /* src_mask */
855 0x0000ffff, /* dst_mask */
856 false), /* pcrel_offset */
858 /* Section displacement. */
859 HOWTO (R_MIPS_SCN_DISP, /* type */
861 2, /* size (0 = byte, 1 = short, 2 = long) */
863 false, /* pc_relative */
865 complain_overflow_dont, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 "R_MIPS_SCN_DISP", /* name */
868 false, /* partial_inplace */
869 0xffffffff, /* src_mask */
870 0xffffffff, /* dst_mask */
871 false), /* pcrel_offset */
873 EMPTY_HOWTO (R_MIPS_REL16),
874 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
875 EMPTY_HOWTO (R_MIPS_PJUMP),
876 EMPTY_HOWTO (R_MIPS_RELGOT),
878 /* Protected jump conversion. This is an optimization hint. No
879 relocation is required for correctness. */
880 HOWTO (R_MIPS_JALR, /* type */
882 0, /* size (0 = byte, 1 = short, 2 = long) */
884 false, /* pc_relative */
886 complain_overflow_dont, /* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_MIPS_JALR", /* name */
889 false, /* partial_inplace */
890 0x00000000, /* src_mask */
891 0x00000000, /* dst_mask */
892 false), /* pcrel_offset */
895 /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
896 is a hack to make the linker think that we need 64 bit values. */
897 static reloc_howto_type elf_mips_ctor64_howto =
898 HOWTO (R_MIPS_64, /* type */
900 4, /* size (0 = byte, 1 = short, 2 = long) */
902 false, /* pc_relative */
904 complain_overflow_signed, /* complain_on_overflow */
905 mips32_64bit_reloc, /* special_function */
906 "R_MIPS_64", /* name */
907 true, /* partial_inplace */
908 0xffffffff, /* src_mask */
909 0xffffffff, /* dst_mask */
910 false); /* pcrel_offset */
912 /* The reloc used for the mips16 jump instruction. */
913 static reloc_howto_type elf_mips16_jump_howto =
914 HOWTO (R_MIPS16_26, /* type */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
918 false, /* pc_relative */
920 complain_overflow_dont, /* complain_on_overflow */
921 /* This needs complex overflow
922 detection, because the upper four
923 bits must match the PC. */
924 mips16_jump_reloc, /* special_function */
925 "R_MIPS16_26", /* name */
926 true, /* partial_inplace */
927 0x3ffffff, /* src_mask */
928 0x3ffffff, /* dst_mask */
929 false); /* pcrel_offset */
931 /* The reloc used for the mips16 gprel instruction. */
932 static reloc_howto_type elf_mips16_gprel_howto =
933 HOWTO (R_MIPS16_GPREL, /* type */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
937 false, /* pc_relative */
939 complain_overflow_signed, /* complain_on_overflow */
940 mips16_gprel_reloc, /* special_function */
941 "R_MIPS16_GPREL", /* name */
942 true, /* partial_inplace */
943 0x07ff001f, /* src_mask */
944 0x07ff001f, /* dst_mask */
945 false); /* pcrel_offset */
948 /* GNU extensions for embedded-pic. */
949 /* High 16 bits of symbol value, pc-relative. */
950 static reloc_howto_type elf_mips_gnu_rel_hi16 =
951 HOWTO (R_MIPS_GNU_REL_HI16, /* type */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
955 true, /* pc_relative */
957 complain_overflow_dont, /* complain_on_overflow */
958 _bfd_mips_elf_hi16_reloc, /* special_function */
959 "R_MIPS_GNU_REL_HI16", /* name */
960 true, /* partial_inplace */
961 0xffff, /* src_mask */
962 0xffff, /* dst_mask */
963 true); /* pcrel_offset */
965 /* Low 16 bits of symbol value, pc-relative. */
966 static reloc_howto_type elf_mips_gnu_rel_lo16 =
967 HOWTO (R_MIPS_GNU_REL_LO16, /* type */
969 2, /* size (0 = byte, 1 = short, 2 = long) */
971 true, /* pc_relative */
973 complain_overflow_dont, /* complain_on_overflow */
974 _bfd_mips_elf_lo16_reloc, /* special_function */
975 "R_MIPS_GNU_REL_LO16", /* name */
976 true, /* partial_inplace */
977 0xffff, /* src_mask */
978 0xffff, /* dst_mask */
979 true); /* pcrel_offset */
981 /* 16 bit offset for pc-relative branches. */
982 static reloc_howto_type elf_mips_gnu_rel16_s2 =
983 HOWTO (R_MIPS_GNU_REL16_S2, /* type */
985 2, /* size (0 = byte, 1 = short, 2 = long) */
987 true, /* pc_relative */
989 complain_overflow_signed, /* complain_on_overflow */
990 bfd_elf_generic_reloc, /* special_function */
991 "R_MIPS_GNU_REL16_S2", /* name */
992 true, /* partial_inplace */
993 0xffff, /* src_mask */
994 0xffff, /* dst_mask */
995 true); /* pcrel_offset */
997 /* 64 bit pc-relative. */
998 static reloc_howto_type elf_mips_gnu_pcrel64 =
999 HOWTO (R_MIPS_PC64, /* type */
1001 4, /* size (0 = byte, 1 = short, 2 = long) */
1003 true, /* pc_relative */
1005 complain_overflow_signed, /* complain_on_overflow */
1006 bfd_elf_generic_reloc, /* special_function */
1007 "R_MIPS_PC64", /* name */
1008 true, /* partial_inplace */
1009 MINUS_ONE, /* src_mask */
1010 MINUS_ONE, /* dst_mask */
1011 true); /* pcrel_offset */
1013 /* 32 bit pc-relative. */
1014 static reloc_howto_type elf_mips_gnu_pcrel32 =
1015 HOWTO (R_MIPS_PC32, /* type */
1017 2, /* size (0 = byte, 1 = short, 2 = long) */
1019 true, /* pc_relative */
1021 complain_overflow_signed, /* complain_on_overflow */
1022 bfd_elf_generic_reloc, /* special_function */
1023 "R_MIPS_PC32", /* name */
1024 true, /* partial_inplace */
1025 0xffffffff, /* src_mask */
1026 0xffffffff, /* dst_mask */
1027 true); /* pcrel_offset */
1029 /* GNU extension to record C++ vtable hierarchy */
1030 static reloc_howto_type elf_mips_gnu_vtinherit_howto =
1031 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1035 false, /* pc_relative */
1037 complain_overflow_dont, /* complain_on_overflow */
1038 NULL, /* special_function */
1039 "R_MIPS_GNU_VTINHERIT", /* name */
1040 false, /* partial_inplace */
1043 false); /* pcrel_offset */
1045 /* GNU extension to record C++ vtable member usage */
1046 static reloc_howto_type elf_mips_gnu_vtentry_howto =
1047 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
1049 2, /* size (0 = byte, 1 = short, 2 = long) */
1051 false, /* pc_relative */
1053 complain_overflow_dont, /* complain_on_overflow */
1054 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1055 "R_MIPS_GNU_VTENTRY", /* name */
1056 false, /* partial_inplace */
1059 false); /* pcrel_offset */
1061 /* Do a R_MIPS_HI16 relocation. This has to be done in combination
1062 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1063 the HI16. Here we just save the information we need; we do the
1064 actual relocation when we see the LO16. MIPS ELF requires that the
1065 LO16 immediately follow the HI16. As a GNU extension, we permit an
1066 arbitrary number of HI16 relocs to be associated with a single LO16
1067 reloc. This extension permits gcc to output the HI and LO relocs
1072 struct mips_hi16 *next;
1077 /* FIXME: This should not be a static variable. */
1079 static struct mips_hi16 *mips_hi16_list;
1081 bfd_reloc_status_type
1082 _bfd_mips_elf_hi16_reloc (abfd,
1089 bfd *abfd ATTRIBUTE_UNUSED;
1090 arelent *reloc_entry;
1093 asection *input_section;
1095 char **error_message;
1097 bfd_reloc_status_type ret;
1099 struct mips_hi16 *n;
1101 /* If we're relocating, and this an external symbol, we don't want
1102 to change anything. */
1103 if (output_bfd != (bfd *) NULL
1104 && (symbol->flags & BSF_SECTION_SYM) == 0
1105 && reloc_entry->addend == 0)
1107 reloc_entry->address += input_section->output_offset;
1108 return bfd_reloc_ok;
1113 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1115 boolean relocateable;
1118 if (ret == bfd_reloc_undefined)
1121 if (output_bfd != NULL)
1122 relocateable = true;
1125 relocateable = false;
1126 output_bfd = symbol->section->output_section->owner;
1129 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1130 error_message, &gp);
1131 if (ret != bfd_reloc_ok)
1134 relocation = gp - reloc_entry->address;
1138 if (bfd_is_und_section (symbol->section)
1139 && output_bfd == (bfd *) NULL)
1140 ret = bfd_reloc_undefined;
1142 if (bfd_is_com_section (symbol->section))
1145 relocation = symbol->value;
1148 relocation += symbol->section->output_section->vma;
1149 relocation += symbol->section->output_offset;
1150 relocation += reloc_entry->addend;
1152 if (reloc_entry->address > input_section->_cooked_size)
1153 return bfd_reloc_outofrange;
1155 /* Save the information, and let LO16 do the actual relocation. */
1156 n = (struct mips_hi16 *) bfd_malloc (sizeof *n);
1158 return bfd_reloc_outofrange;
1159 n->addr = (bfd_byte *) data + reloc_entry->address;
1160 n->addend = relocation;
1161 n->next = mips_hi16_list;
1164 if (output_bfd != (bfd *) NULL)
1165 reloc_entry->address += input_section->output_offset;
1170 /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1171 inplace relocation; this function exists in order to do the
1172 R_MIPS_HI16 relocation described above. */
1174 bfd_reloc_status_type
1175 _bfd_mips_elf_lo16_reloc (abfd,
1183 arelent *reloc_entry;
1186 asection *input_section;
1188 char **error_message;
1190 arelent gp_disp_relent;
1192 if (mips_hi16_list != NULL)
1194 struct mips_hi16 *l;
1201 unsigned long vallo;
1202 struct mips_hi16 *next;
1204 /* Do the HI16 relocation. Note that we actually don't need
1205 to know anything about the LO16 itself, except where to
1206 find the low 16 bits of the addend needed by the LO16. */
1207 insn = bfd_get_32 (abfd, l->addr);
1208 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1210 val = ((insn & 0xffff) << 16) + vallo;
1213 /* The low order 16 bits are always treated as a signed
1214 value. Therefore, a negative value in the low order bits
1215 requires an adjustment in the high order bits. We need
1216 to make this adjustment in two ways: once for the bits we
1217 took from the data, and once for the bits we are putting
1218 back in to the data. */
1219 if ((vallo & 0x8000) != 0)
1221 if ((val & 0x8000) != 0)
1224 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
1225 bfd_put_32 (abfd, insn, l->addr);
1227 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1229 gp_disp_relent = *reloc_entry;
1230 reloc_entry = &gp_disp_relent;
1231 reloc_entry->addend = l->addend;
1239 mips_hi16_list = NULL;
1241 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1243 bfd_reloc_status_type ret;
1244 bfd_vma gp, relocation;
1246 /* FIXME: Does this case ever occur? */
1248 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1249 if (ret != bfd_reloc_ok)
1252 relocation = gp - reloc_entry->address;
1253 relocation += symbol->section->output_section->vma;
1254 relocation += symbol->section->output_offset;
1255 relocation += reloc_entry->addend;
1257 if (reloc_entry->address > input_section->_cooked_size)
1258 return bfd_reloc_outofrange;
1260 gp_disp_relent = *reloc_entry;
1261 reloc_entry = &gp_disp_relent;
1262 reloc_entry->addend = relocation - 4;
1265 /* Now do the LO16 reloc in the usual way. */
1266 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1267 input_section, output_bfd, error_message);
1270 /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1271 table used for PIC code. If the symbol is an external symbol, the
1272 instruction is modified to contain the offset of the appropriate
1273 entry in the global offset table. If the symbol is a section
1274 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1275 addends are combined to form the real addend against the section
1276 symbol; the GOT16 is modified to contain the offset of an entry in
1277 the global offset table, and the LO16 is modified to offset it
1278 appropriately. Thus an offset larger than 16 bits requires a
1279 modified value in the global offset table.
1281 This implementation suffices for the assembler, but the linker does
1282 not yet know how to create global offset tables. */
1284 bfd_reloc_status_type
1285 _bfd_mips_elf_got16_reloc (abfd,
1293 arelent *reloc_entry;
1296 asection *input_section;
1298 char **error_message;
1300 /* If we're relocating, and this an external symbol, we don't want
1301 to change anything. */
1302 if (output_bfd != (bfd *) NULL
1303 && (symbol->flags & BSF_SECTION_SYM) == 0
1304 && reloc_entry->addend == 0)
1306 reloc_entry->address += input_section->output_offset;
1307 return bfd_reloc_ok;
1310 /* If we're relocating, and this is a local symbol, we can handle it
1312 if (output_bfd != (bfd *) NULL
1313 && (symbol->flags & BSF_SECTION_SYM) != 0)
1314 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1315 input_section, output_bfd, error_message);
1320 /* Set the GP value for OUTPUT_BFD. Returns false if this is a
1321 dangerous relocation. */
1324 mips_elf_assign_gp (output_bfd, pgp)
1332 /* If we've already figured out what GP will be, just return it. */
1333 *pgp = _bfd_get_gp_value (output_bfd);
1337 count = bfd_get_symcount (output_bfd);
1338 sym = bfd_get_outsymbols (output_bfd);
1340 /* The linker script will have created a symbol named `_gp' with the
1341 appropriate value. */
1342 if (sym == (asymbol **) NULL)
1346 for (i = 0; i < count; i++, sym++)
1348 register CONST char *name;
1350 name = bfd_asymbol_name (*sym);
1351 if (*name == '_' && strcmp (name, "_gp") == 0)
1353 *pgp = bfd_asymbol_value (*sym);
1354 _bfd_set_gp_value (output_bfd, *pgp);
1362 /* Only get the error once. */
1364 _bfd_set_gp_value (output_bfd, *pgp);
1371 /* We have to figure out the gp value, so that we can adjust the
1372 symbol value correctly. We look up the symbol _gp in the output
1373 BFD. If we can't find it, we're stuck. We cache it in the ELF
1374 target data. We don't need to adjust the symbol value for an
1375 external symbol if we are producing relocateable output. */
1377 static bfd_reloc_status_type
1378 mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1381 boolean relocateable;
1382 char **error_message;
1385 if (bfd_is_und_section (symbol->section)
1389 return bfd_reloc_undefined;
1392 *pgp = _bfd_get_gp_value (output_bfd);
1395 || (symbol->flags & BSF_SECTION_SYM) != 0))
1399 /* Make up a value. */
1400 *pgp = symbol->section->output_section->vma + 0x4000;
1401 _bfd_set_gp_value (output_bfd, *pgp);
1403 else if (!mips_elf_assign_gp (output_bfd, pgp))
1406 (char *) _("GP relative relocation when _gp not defined");
1407 return bfd_reloc_dangerous;
1411 return bfd_reloc_ok;
1414 /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1415 become the offset from the gp register. This function also handles
1416 R_MIPS_LITERAL relocations, although those can be handled more
1417 cleverly because the entries in the .lit8 and .lit4 sections can be
1420 static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
1421 arelent *, asection *,
1422 boolean, PTR, bfd_vma));
1424 bfd_reloc_status_type
1425 _bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
1426 output_bfd, error_message)
1428 arelent *reloc_entry;
1431 asection *input_section;
1433 char **error_message;
1435 boolean relocateable;
1436 bfd_reloc_status_type ret;
1439 /* If we're relocating, and this is an external symbol with no
1440 addend, we don't want to change anything. We will only have an
1441 addend if this is a newly created reloc, not read from an ELF
1443 if (output_bfd != (bfd *) NULL
1444 && (symbol->flags & BSF_SECTION_SYM) == 0
1445 && reloc_entry->addend == 0)
1447 reloc_entry->address += input_section->output_offset;
1448 return bfd_reloc_ok;
1451 if (output_bfd != (bfd *) NULL)
1452 relocateable = true;
1455 relocateable = false;
1456 output_bfd = symbol->section->output_section->owner;
1459 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1461 if (ret != bfd_reloc_ok)
1464 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1465 relocateable, data, gp);
1468 static bfd_reloc_status_type
1469 gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1473 arelent *reloc_entry;
1474 asection *input_section;
1475 boolean relocateable;
1483 if (bfd_is_com_section (symbol->section))
1486 relocation = symbol->value;
1488 relocation += symbol->section->output_section->vma;
1489 relocation += symbol->section->output_offset;
1491 if (reloc_entry->address > input_section->_cooked_size)
1492 return bfd_reloc_outofrange;
1494 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1496 /* Set val to the offset into the section or symbol. */
1497 if (reloc_entry->howto->src_mask == 0)
1499 /* This case occurs with the 64-bit MIPS ELF ABI. */
1500 val = reloc_entry->addend;
1504 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1509 /* Adjust val for the final section location and GP value. If we
1510 are producing relocateable output, we don't want to do this for
1511 an external symbol. */
1513 || (symbol->flags & BSF_SECTION_SYM) != 0)
1514 val += relocation - gp;
1516 insn = (insn &~ 0xffff) | (val & 0xffff);
1517 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1520 reloc_entry->address += input_section->output_offset;
1522 /* Make sure it fit in 16 bits. */
1523 if ((long) val >= 0x8000 || (long) val < -0x8000)
1524 return bfd_reloc_overflow;
1526 return bfd_reloc_ok;
1529 /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
1530 from the gp register? XXX */
1532 static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
1533 arelent *, asection *,
1534 boolean, PTR, bfd_vma));
1536 bfd_reloc_status_type
1537 _bfd_mips_elf_gprel32_reloc (abfd,
1545 arelent *reloc_entry;
1548 asection *input_section;
1550 char **error_message;
1552 boolean relocateable;
1553 bfd_reloc_status_type ret;
1556 /* If we're relocating, and this is an external symbol with no
1557 addend, we don't want to change anything. We will only have an
1558 addend if this is a newly created reloc, not read from an ELF
1560 if (output_bfd != (bfd *) NULL
1561 && (symbol->flags & BSF_SECTION_SYM) == 0
1562 && reloc_entry->addend == 0)
1564 *error_message = (char *)
1565 _("32bits gp relative relocation occurs for an external symbol");
1566 return bfd_reloc_outofrange;
1569 if (output_bfd != (bfd *) NULL)
1571 relocateable = true;
1572 gp = _bfd_get_gp_value (output_bfd);
1576 relocateable = false;
1577 output_bfd = symbol->section->output_section->owner;
1579 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1580 error_message, &gp);
1581 if (ret != bfd_reloc_ok)
1585 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
1586 relocateable, data, gp);
1589 static bfd_reloc_status_type
1590 gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1594 arelent *reloc_entry;
1595 asection *input_section;
1596 boolean relocateable;
1603 if (bfd_is_com_section (symbol->section))
1606 relocation = symbol->value;
1608 relocation += symbol->section->output_section->vma;
1609 relocation += symbol->section->output_offset;
1611 if (reloc_entry->address > input_section->_cooked_size)
1612 return bfd_reloc_outofrange;
1614 if (reloc_entry->howto->src_mask == 0)
1616 /* This case arises with the 64-bit MIPS ELF ABI. */
1620 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1622 /* Set val to the offset into the section or symbol. */
1623 val += reloc_entry->addend;
1625 /* Adjust val for the final section location and GP value. If we
1626 are producing relocateable output, we don't want to do this for
1627 an external symbol. */
1629 || (symbol->flags & BSF_SECTION_SYM) != 0)
1630 val += relocation - gp;
1632 bfd_put_32 (abfd, val, (bfd_byte *) data + reloc_entry->address);
1635 reloc_entry->address += input_section->output_offset;
1637 return bfd_reloc_ok;
1640 /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
1641 generated when addreses are 64 bits. The upper 32 bits are a simle
1644 static bfd_reloc_status_type
1645 mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
1646 output_bfd, error_message)
1648 arelent *reloc_entry;
1651 asection *input_section;
1653 char **error_message;
1655 bfd_reloc_status_type r;
1660 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1661 input_section, output_bfd, error_message);
1662 if (r != bfd_reloc_continue)
1665 /* Do a normal 32 bit relocation on the lower 32 bits. */
1666 reloc32 = *reloc_entry;
1667 if (bfd_big_endian (abfd))
1668 reloc32.address += 4;
1669 reloc32.howto = &elf_mips_howto_table[R_MIPS_32];
1670 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
1671 output_bfd, error_message);
1673 /* Sign extend into the upper 32 bits. */
1674 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
1675 if ((val & 0x80000000) != 0)
1679 addr = reloc_entry->address;
1680 if (bfd_little_endian (abfd))
1682 bfd_put_32 (abfd, val, (bfd_byte *) data + addr);
1687 /* Handle a mips16 jump. */
1689 static bfd_reloc_status_type
1690 mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
1691 output_bfd, error_message)
1692 bfd *abfd ATTRIBUTE_UNUSED;
1693 arelent *reloc_entry;
1695 PTR data ATTRIBUTE_UNUSED;
1696 asection *input_section;
1698 char **error_message ATTRIBUTE_UNUSED;
1700 if (output_bfd != (bfd *) NULL
1701 && (symbol->flags & BSF_SECTION_SYM) == 0
1702 && reloc_entry->addend == 0)
1704 reloc_entry->address += input_section->output_offset;
1705 return bfd_reloc_ok;
1710 static boolean warned;
1713 (*_bfd_error_handler)
1714 (_("Linking mips16 objects into %s format is not supported"),
1715 bfd_get_target (input_section->output_section->owner));
1719 return bfd_reloc_undefined;
1722 /* Handle a mips16 GP relative reloc. */
1724 static bfd_reloc_status_type
1725 mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
1726 output_bfd, error_message)
1728 arelent *reloc_entry;
1731 asection *input_section;
1733 char **error_message;
1735 boolean relocateable;
1736 bfd_reloc_status_type ret;
1738 unsigned short extend, insn;
1739 unsigned long final;
1741 /* If we're relocating, and this is an external symbol with no
1742 addend, we don't want to change anything. We will only have an
1743 addend if this is a newly created reloc, not read from an ELF
1745 if (output_bfd != NULL
1746 && (symbol->flags & BSF_SECTION_SYM) == 0
1747 && reloc_entry->addend == 0)
1749 reloc_entry->address += input_section->output_offset;
1750 return bfd_reloc_ok;
1753 if (output_bfd != NULL)
1754 relocateable = true;
1757 relocateable = false;
1758 output_bfd = symbol->section->output_section->owner;
1761 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1763 if (ret != bfd_reloc_ok)
1766 if (reloc_entry->address > input_section->_cooked_size)
1767 return bfd_reloc_outofrange;
1769 /* Pick up the mips16 extend instruction and the real instruction. */
1770 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
1771 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
1773 /* Stuff the current addend back as a 32 bit value, do the usual
1774 relocation, and then clean up. */
1776 (((extend & 0x1f) << 11)
1779 (bfd_byte *) data + reloc_entry->address);
1781 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1782 relocateable, data, gp);
1784 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1787 | ((final >> 11) & 0x1f)
1789 (bfd_byte *) data + reloc_entry->address);
1793 (bfd_byte *) data + reloc_entry->address + 2);
1798 /* Return the ISA for a MIPS e_flags value. */
1801 elf_mips_isa (flags)
1804 switch (flags & EF_MIPS_ARCH)
1818 /* Return the MACH for a MIPS e_flags value. */
1821 elf_mips_mach (flags)
1824 switch (flags & EF_MIPS_MACH)
1826 case E_MIPS_MACH_3900:
1827 return bfd_mach_mips3900;
1829 case E_MIPS_MACH_4010:
1830 return bfd_mach_mips4010;
1832 case E_MIPS_MACH_4100:
1833 return bfd_mach_mips4100;
1835 case E_MIPS_MACH_4111:
1836 return bfd_mach_mips4111;
1838 case E_MIPS_MACH_4650:
1839 return bfd_mach_mips4650;
1842 switch (flags & EF_MIPS_ARCH)
1846 return bfd_mach_mips3000;
1850 return bfd_mach_mips6000;
1854 return bfd_mach_mips4000;
1858 return bfd_mach_mips8000;
1866 /* Return printable name for ABI. */
1869 elf_mips_abi_name (abfd)
1874 if (ABI_N32_P (abfd))
1876 else if (ABI_64_P (abfd))
1879 flags = elf_elfheader (abfd)->e_flags;
1880 switch (flags & EF_MIPS_ABI)
1884 case E_MIPS_ABI_O32:
1886 case E_MIPS_ABI_O64:
1888 case E_MIPS_ABI_EABI32:
1890 case E_MIPS_ABI_EABI64:
1893 return "unknown abi";
1897 /* A mapping from BFD reloc types to MIPS ELF reloc types. */
1899 struct elf_reloc_map {
1900 bfd_reloc_code_real_type bfd_reloc_val;
1901 enum elf_mips_reloc_type elf_reloc_val;
1904 static CONST struct elf_reloc_map mips_reloc_map[] =
1906 { BFD_RELOC_NONE, R_MIPS_NONE, },
1907 { BFD_RELOC_16, R_MIPS_16 },
1908 { BFD_RELOC_32, R_MIPS_32 },
1909 { BFD_RELOC_64, R_MIPS_64 },
1910 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
1911 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
1912 { BFD_RELOC_LO16, R_MIPS_LO16 },
1913 { BFD_RELOC_MIPS_GPREL, R_MIPS_GPREL16 },
1914 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
1915 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
1916 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
1917 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
1918 { BFD_RELOC_MIPS_GPREL32, R_MIPS_GPREL32 },
1919 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
1920 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
1921 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
1922 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
1923 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
1924 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
1925 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
1926 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
1929 /* Given a BFD reloc type, return a howto structure. */
1931 static reloc_howto_type *
1932 bfd_elf32_bfd_reloc_type_lookup (abfd, code)
1934 bfd_reloc_code_real_type code;
1938 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
1940 if (mips_reloc_map[i].bfd_reloc_val == code)
1941 return &elf_mips_howto_table[(int) mips_reloc_map[i].elf_reloc_val];
1947 bfd_set_error (bfd_error_bad_value);
1950 case BFD_RELOC_CTOR:
1951 /* We need to handle BFD_RELOC_CTOR specially.
1952 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
1953 size of addresses on this architecture. */
1954 if (bfd_arch_bits_per_address (abfd) == 32)
1955 return &elf_mips_howto_table[(int) R_MIPS_32];
1957 return &elf_mips_ctor64_howto;
1959 case BFD_RELOC_MIPS16_JMP:
1960 return &elf_mips16_jump_howto;
1961 case BFD_RELOC_MIPS16_GPREL:
1962 return &elf_mips16_gprel_howto;
1963 case BFD_RELOC_VTABLE_INHERIT:
1964 return &elf_mips_gnu_vtinherit_howto;
1965 case BFD_RELOC_VTABLE_ENTRY:
1966 return &elf_mips_gnu_vtentry_howto;
1967 case BFD_RELOC_PCREL_HI16_S:
1968 return &elf_mips_gnu_rel_hi16;
1969 case BFD_RELOC_PCREL_LO16:
1970 return &elf_mips_gnu_rel_lo16;
1971 case BFD_RELOC_16_PCREL_S2:
1972 return &elf_mips_gnu_rel16_s2;
1973 case BFD_RELOC_64_PCREL:
1974 return &elf_mips_gnu_pcrel64;
1975 case BFD_RELOC_32_PCREL:
1976 return &elf_mips_gnu_pcrel32;
1980 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
1982 static reloc_howto_type *
1983 mips_rtype_to_howto (r_type)
1984 unsigned int r_type;
1989 return &elf_mips16_jump_howto;
1991 case R_MIPS16_GPREL:
1992 return &elf_mips16_gprel_howto;
1994 case R_MIPS_GNU_VTINHERIT:
1995 return &elf_mips_gnu_vtinherit_howto;
1997 case R_MIPS_GNU_VTENTRY:
1998 return &elf_mips_gnu_vtentry_howto;
2000 case R_MIPS_GNU_REL_HI16:
2001 return &elf_mips_gnu_rel_hi16;
2003 case R_MIPS_GNU_REL_LO16:
2004 return &elf_mips_gnu_rel_lo16;
2006 case R_MIPS_GNU_REL16_S2:
2007 return &elf_mips_gnu_rel16_s2;
2010 return &elf_mips_gnu_pcrel64;
2013 return &elf_mips_gnu_pcrel32;
2017 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
2018 return &elf_mips_howto_table[r_type];
2023 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2026 mips_info_to_howto_rel (abfd, cache_ptr, dst)
2029 Elf32_Internal_Rel *dst;
2031 unsigned int r_type;
2033 r_type = ELF32_R_TYPE (dst->r_info);
2034 cache_ptr->howto = mips_rtype_to_howto (r_type);
2036 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2037 value for the object file. We get the addend now, rather than
2038 when we do the relocation, because the symbol manipulations done
2039 by the linker may cause us to lose track of the input BFD. */
2040 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
2041 && (r_type == (unsigned int) R_MIPS_GPREL16
2042 || r_type == (unsigned int) R_MIPS_LITERAL))
2043 cache_ptr->addend = elf_gp (abfd);
2046 /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2049 mips_info_to_howto_rela (abfd, cache_ptr, dst)
2052 Elf32_Internal_Rela *dst;
2054 /* Since an Elf32_Internal_Rel is an initial prefix of an
2055 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2057 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
2059 /* If we ever need to do any extra processing with dst->r_addend
2060 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2063 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2064 routines swap this structure in and out. They are used outside of
2065 BFD, so they are globally visible. */
2068 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
2070 const Elf32_External_RegInfo *ex;
2073 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2074 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2075 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2076 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2077 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2078 in->ri_gp_value = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gp_value);
2082 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
2084 const Elf32_RegInfo *in;
2085 Elf32_External_RegInfo *ex;
2087 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2088 (bfd_byte *) ex->ri_gprmask);
2089 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2090 (bfd_byte *) ex->ri_cprmask[0]);
2091 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2092 (bfd_byte *) ex->ri_cprmask[1]);
2093 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2094 (bfd_byte *) ex->ri_cprmask[2]);
2095 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2096 (bfd_byte *) ex->ri_cprmask[3]);
2097 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gp_value,
2098 (bfd_byte *) ex->ri_gp_value);
2101 /* In the 64 bit ABI, the .MIPS.options section holds register
2102 information in an Elf64_Reginfo structure. These routines swap
2103 them in and out. They are globally visible because they are used
2104 outside of BFD. These routines are here so that gas can call them
2105 without worrying about whether the 64 bit ABI has been included. */
2108 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2110 const Elf64_External_RegInfo *ex;
2111 Elf64_Internal_RegInfo *in;
2113 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2114 in->ri_pad = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_pad);
2115 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2116 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2117 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2118 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2119 in->ri_gp_value = bfd_h_get_64 (abfd, (bfd_byte *) ex->ri_gp_value);
2123 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2125 const Elf64_Internal_RegInfo *in;
2126 Elf64_External_RegInfo *ex;
2128 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2129 (bfd_byte *) ex->ri_gprmask);
2130 bfd_h_put_32 (abfd, (bfd_vma) in->ri_pad,
2131 (bfd_byte *) ex->ri_pad);
2132 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2133 (bfd_byte *) ex->ri_cprmask[0]);
2134 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2135 (bfd_byte *) ex->ri_cprmask[1]);
2136 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2137 (bfd_byte *) ex->ri_cprmask[2]);
2138 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2139 (bfd_byte *) ex->ri_cprmask[3]);
2140 bfd_h_put_64 (abfd, (bfd_vma) in->ri_gp_value,
2141 (bfd_byte *) ex->ri_gp_value);
2144 /* Swap an entry in a .gptab section. Note that these routines rely
2145 on the equivalence of the two elements of the union. */
2148 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2150 const Elf32_External_gptab *ex;
2153 in->gt_entry.gt_g_value = bfd_h_get_32 (abfd, ex->gt_entry.gt_g_value);
2154 in->gt_entry.gt_bytes = bfd_h_get_32 (abfd, ex->gt_entry.gt_bytes);
2158 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2160 const Elf32_gptab *in;
2161 Elf32_External_gptab *ex;
2163 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_g_value,
2164 ex->gt_entry.gt_g_value);
2165 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_bytes,
2166 ex->gt_entry.gt_bytes);
2170 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2172 const Elf32_compact_rel *in;
2173 Elf32_External_compact_rel *ex;
2175 bfd_h_put_32 (abfd, (bfd_vma) in->id1, ex->id1);
2176 bfd_h_put_32 (abfd, (bfd_vma) in->num, ex->num);
2177 bfd_h_put_32 (abfd, (bfd_vma) in->id2, ex->id2);
2178 bfd_h_put_32 (abfd, (bfd_vma) in->offset, ex->offset);
2179 bfd_h_put_32 (abfd, (bfd_vma) in->reserved0, ex->reserved0);
2180 bfd_h_put_32 (abfd, (bfd_vma) in->reserved1, ex->reserved1);
2184 bfd_elf32_swap_crinfo_out (abfd, in, ex)
2186 const Elf32_crinfo *in;
2187 Elf32_External_crinfo *ex;
2191 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2192 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2193 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2194 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2195 bfd_h_put_32 (abfd, (bfd_vma) l, ex->info);
2196 bfd_h_put_32 (abfd, (bfd_vma) in->konst, ex->konst);
2197 bfd_h_put_32 (abfd, (bfd_vma) in->vaddr, ex->vaddr);
2200 /* Swap in an options header. */
2203 bfd_mips_elf_swap_options_in (abfd, ex, in)
2205 const Elf_External_Options *ex;
2206 Elf_Internal_Options *in;
2208 in->kind = bfd_h_get_8 (abfd, ex->kind);
2209 in->size = bfd_h_get_8 (abfd, ex->size);
2210 in->section = bfd_h_get_16 (abfd, ex->section);
2211 in->info = bfd_h_get_32 (abfd, ex->info);
2214 /* Swap out an options header. */
2217 bfd_mips_elf_swap_options_out (abfd, in, ex)
2219 const Elf_Internal_Options *in;
2220 Elf_External_Options *ex;
2222 bfd_h_put_8 (abfd, in->kind, ex->kind);
2223 bfd_h_put_8 (abfd, in->size, ex->size);
2224 bfd_h_put_16 (abfd, in->section, ex->section);
2225 bfd_h_put_32 (abfd, in->info, ex->info);
2228 /* Swap in an MSYM entry. */
2231 bfd_mips_elf_swap_msym_in (abfd, ex, in)
2233 const Elf32_External_Msym *ex;
2234 Elf32_Internal_Msym *in;
2236 in->ms_hash_value = bfd_h_get_32 (abfd, ex->ms_hash_value);
2237 in->ms_info = bfd_h_get_32 (abfd, ex->ms_info);
2240 /* Swap out an MSYM entry. */
2243 bfd_mips_elf_swap_msym_out (abfd, in, ex)
2245 const Elf32_Internal_Msym *in;
2246 Elf32_External_Msym *ex;
2248 bfd_h_put_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2249 bfd_h_put_32 (abfd, in->ms_info, ex->ms_info);
2253 /* Determine whether a symbol is global for the purposes of splitting
2254 the symbol table into global symbols and local symbols. At least
2255 on Irix 5, this split must be between section symbols and all other
2256 symbols. On most ELF targets the split is between static symbols
2257 and externally visible symbols. */
2261 mips_elf_sym_is_global (abfd, sym)
2262 bfd *abfd ATTRIBUTE_UNUSED;
2265 return (sym->flags & BSF_SECTION_SYM) == 0 ? true : false;
2268 /* Set the right machine number for a MIPS ELF file. This is used for
2269 both the 32-bit and the 64-bit ABI. */
2272 _bfd_mips_elf_object_p (abfd)
2275 /* Irix 5 and 6 is broken. Object file symbol tables are not always
2276 sorted correctly such that local symbols precede global symbols,
2277 and the sh_info field in the symbol table is not always right. */
2278 elf_bad_symtab (abfd) = true;
2280 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2281 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2285 /* The final processing done just before writing out a MIPS ELF object
2286 file. This gets the MIPS architecture right based on the machine
2287 number. This is used by both the 32-bit and the 64-bit ABI. */
2291 _bfd_mips_elf_final_write_processing (abfd, linker)
2293 boolean linker ATTRIBUTE_UNUSED;
2297 Elf_Internal_Shdr **hdrpp;
2301 switch (bfd_get_mach (abfd))
2304 case bfd_mach_mips3000:
2305 val = E_MIPS_ARCH_1;
2308 case bfd_mach_mips3900:
2309 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2312 case bfd_mach_mips6000:
2313 val = E_MIPS_ARCH_2;
2316 case bfd_mach_mips4000:
2317 case bfd_mach_mips4300:
2318 val = E_MIPS_ARCH_3;
2321 case bfd_mach_mips4010:
2322 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2325 case bfd_mach_mips4100:
2326 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2329 case bfd_mach_mips4111:
2330 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2333 case bfd_mach_mips4650:
2334 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2337 case bfd_mach_mips8000:
2338 val = E_MIPS_ARCH_4;
2342 elf_elfheader (abfd)->e_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2343 elf_elfheader (abfd)->e_flags |= val;
2345 /* Set the sh_info field for .gptab sections and other appropriate
2346 info for each special section. */
2347 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2348 i < elf_elfheader (abfd)->e_shnum;
2351 switch ((*hdrpp)->sh_type)
2354 case SHT_MIPS_LIBLIST:
2355 sec = bfd_get_section_by_name (abfd, ".dynstr");
2357 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2360 case SHT_MIPS_GPTAB:
2361 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2362 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2363 BFD_ASSERT (name != NULL
2364 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2365 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2366 BFD_ASSERT (sec != NULL);
2367 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2370 case SHT_MIPS_CONTENT:
2371 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2372 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2373 BFD_ASSERT (name != NULL
2374 && strncmp (name, ".MIPS.content",
2375 sizeof ".MIPS.content" - 1) == 0);
2376 sec = bfd_get_section_by_name (abfd,
2377 name + sizeof ".MIPS.content" - 1);
2378 BFD_ASSERT (sec != NULL);
2379 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2382 case SHT_MIPS_SYMBOL_LIB:
2383 sec = bfd_get_section_by_name (abfd, ".dynsym");
2385 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2386 sec = bfd_get_section_by_name (abfd, ".liblist");
2388 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2391 case SHT_MIPS_EVENTS:
2392 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2393 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2394 BFD_ASSERT (name != NULL);
2395 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
2396 sec = bfd_get_section_by_name (abfd,
2397 name + sizeof ".MIPS.events" - 1);
2400 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
2401 sizeof ".MIPS.post_rel" - 1) == 0);
2402 sec = bfd_get_section_by_name (abfd,
2404 + sizeof ".MIPS.post_rel" - 1));
2406 BFD_ASSERT (sec != NULL);
2407 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2414 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
2417 _bfd_mips_elf_set_private_flags (abfd, flags)
2421 BFD_ASSERT (!elf_flags_init (abfd)
2422 || elf_elfheader (abfd)->e_flags == flags);
2424 elf_elfheader (abfd)->e_flags = flags;
2425 elf_flags_init (abfd) = true;
2429 /* Copy backend specific data from one object module to another */
2432 _bfd_mips_elf_copy_private_bfd_data (ibfd, obfd)
2436 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2437 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2440 BFD_ASSERT (!elf_flags_init (obfd)
2441 || (elf_elfheader (obfd)->e_flags
2442 == elf_elfheader (ibfd)->e_flags));
2444 elf_gp (obfd) = elf_gp (ibfd);
2445 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2446 elf_flags_init (obfd) = true;
2450 /* Merge backend specific data from an object file to the output
2451 object file when linking. */
2454 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
2462 /* Check if we have the same endianess */
2463 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2466 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2467 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2470 new_flags = elf_elfheader (ibfd)->e_flags;
2471 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
2472 old_flags = elf_elfheader (obfd)->e_flags;
2474 if (! elf_flags_init (obfd))
2476 elf_flags_init (obfd) = true;
2477 elf_elfheader (obfd)->e_flags = new_flags;
2478 elf_elfheader (obfd)->e_ident[EI_CLASS]
2479 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
2481 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2482 && bfd_get_arch_info (obfd)->the_default)
2484 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2485 bfd_get_mach (ibfd)))
2492 /* Check flag compatibility. */
2494 new_flags &= ~EF_MIPS_NOREORDER;
2495 old_flags &= ~EF_MIPS_NOREORDER;
2497 if (new_flags == old_flags)
2502 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
2504 new_flags &= ~EF_MIPS_PIC;
2505 old_flags &= ~EF_MIPS_PIC;
2506 (*_bfd_error_handler)
2507 (_("%s: linking PIC files with non-PIC files"),
2508 bfd_get_filename (ibfd));
2512 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
2514 new_flags &= ~EF_MIPS_CPIC;
2515 old_flags &= ~EF_MIPS_CPIC;
2516 (*_bfd_error_handler)
2517 (_("%s: linking abicalls files with non-abicalls files"),
2518 bfd_get_filename (ibfd));
2522 /* Compare the ISA's. */
2523 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
2524 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
2526 int new_mach = new_flags & EF_MIPS_MACH;
2527 int old_mach = old_flags & EF_MIPS_MACH;
2528 int new_isa = elf_mips_isa (new_flags);
2529 int old_isa = elf_mips_isa (old_flags);
2531 /* If either has no machine specified, just compare the general isa's.
2532 Some combinations of machines are ok, if the isa's match. */
2535 || new_mach == old_mach
2538 /* Don't warn about mixing -mips1 and -mips2 code, or mixing -mips3
2539 and -mips4 code. They will normally use the same data sizes and
2540 calling conventions. */
2542 if ((new_isa == 1 || new_isa == 2)
2543 ? (old_isa != 1 && old_isa != 2)
2544 : (old_isa == 1 || old_isa == 2))
2546 (*_bfd_error_handler)
2547 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
2548 bfd_get_filename (ibfd), new_isa, old_isa);
2555 (*_bfd_error_handler)
2556 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
2557 bfd_get_filename (ibfd),
2558 elf_mips_mach (new_flags),
2559 elf_mips_mach (old_flags));
2563 new_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2564 old_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2567 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
2568 does set EI_CLASS differently from any 32-bit ABI. */
2569 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
2570 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2571 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2573 /* Only error if both are set (to different values). */
2574 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
2575 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2576 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2578 (*_bfd_error_handler)
2579 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
2580 bfd_get_filename (ibfd),
2581 elf_mips_abi_name (ibfd),
2582 elf_mips_abi_name (obfd));
2585 new_flags &= ~EF_MIPS_ABI;
2586 old_flags &= ~EF_MIPS_ABI;
2589 /* Warn about any other mismatches */
2590 if (new_flags != old_flags)
2592 (*_bfd_error_handler)
2593 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2594 bfd_get_filename (ibfd), (unsigned long) new_flags,
2595 (unsigned long) old_flags);
2601 bfd_set_error (bfd_error_bad_value);
2609 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
2613 FILE *file = (FILE *) ptr;
2615 BFD_ASSERT (abfd != NULL && ptr != NULL);
2617 /* Print normal ELF private data. */
2618 _bfd_elf_print_private_bfd_data (abfd, ptr);
2620 /* xgettext:c-format */
2621 fprintf (file, _ ("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2623 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
2624 fprintf (file, _ (" [abi=O32]"));
2625 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
2626 fprintf (file, _ (" [abi=O64]"));
2627 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
2628 fprintf (file, _ (" [abi=EABI32]"));
2629 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
2630 fprintf (file, _ (" [abi=EABI64]"));
2631 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
2632 fprintf (file, _ (" [abi unknown]"));
2633 else if (ABI_N32_P (abfd))
2634 fprintf (file, _ (" [abi=N32]"));
2635 else if (ABI_64_P (abfd))
2636 fprintf (file, _ (" [abi=64]"));
2638 fprintf (file, _ (" [no abi set]"));
2640 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
2641 fprintf (file, _ (" [mips1]"));
2642 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
2643 fprintf (file, _ (" [mips2]"));
2644 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
2645 fprintf (file, _ (" [mips3]"));
2646 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
2647 fprintf (file, _ (" [mips4]"));
2649 fprintf (file, _ (" [unknown ISA]"));
2651 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
2652 fprintf (file, _ (" [32bitmode]"));
2654 fprintf (file, _ (" [not 32bitmode]"));
2661 /* Handle a MIPS specific section when reading an object file. This
2662 is called when elfcode.h finds a section with an unknown type.
2663 This routine supports both the 32-bit and 64-bit ELF ABI.
2665 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
2669 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
2671 Elf_Internal_Shdr *hdr;
2676 /* There ought to be a place to keep ELF backend specific flags, but
2677 at the moment there isn't one. We just keep track of the
2678 sections by their name, instead. Fortunately, the ABI gives
2679 suggested names for all the MIPS specific sections, so we will
2680 probably get away with this. */
2681 switch (hdr->sh_type)
2683 case SHT_MIPS_LIBLIST:
2684 if (strcmp (name, ".liblist") != 0)
2688 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
2691 case SHT_MIPS_CONFLICT:
2692 if (strcmp (name, ".conflict") != 0)
2695 case SHT_MIPS_GPTAB:
2696 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
2699 case SHT_MIPS_UCODE:
2700 if (strcmp (name, ".ucode") != 0)
2703 case SHT_MIPS_DEBUG:
2704 if (strcmp (name, ".mdebug") != 0)
2706 flags = SEC_DEBUGGING;
2708 case SHT_MIPS_REGINFO:
2709 if (strcmp (name, ".reginfo") != 0
2710 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
2712 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
2714 case SHT_MIPS_IFACE:
2715 if (strcmp (name, ".MIPS.interfaces") != 0)
2718 case SHT_MIPS_CONTENT:
2719 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
2722 case SHT_MIPS_OPTIONS:
2723 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
2726 case SHT_MIPS_DWARF:
2727 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
2730 case SHT_MIPS_SYMBOL_LIB:
2731 if (strcmp (name, ".MIPS.symlib") != 0)
2734 case SHT_MIPS_EVENTS:
2735 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
2736 && strncmp (name, ".MIPS.post_rel",
2737 sizeof ".MIPS.post_rel" - 1) != 0)
2744 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2749 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
2750 (bfd_get_section_flags (abfd,
2756 /* FIXME: We should record sh_info for a .gptab section. */
2758 /* For a .reginfo section, set the gp value in the tdata information
2759 from the contents of this section. We need the gp value while
2760 processing relocs, so we just get it now. The .reginfo section
2761 is not used in the 64-bit MIPS ELF ABI. */
2762 if (hdr->sh_type == SHT_MIPS_REGINFO)
2764 Elf32_External_RegInfo ext;
2767 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
2768 (file_ptr) 0, sizeof ext))
2770 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
2771 elf_gp (abfd) = s.ri_gp_value;
2774 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
2775 set the gp value based on what we find. We may see both
2776 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
2777 they should agree. */
2778 if (hdr->sh_type == SHT_MIPS_OPTIONS)
2780 bfd_byte *contents, *l, *lend;
2782 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
2783 if (contents == NULL)
2785 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
2786 (file_ptr) 0, hdr->sh_size))
2792 lend = contents + hdr->sh_size;
2793 while (l + sizeof (Elf_External_Options) <= lend)
2795 Elf_Internal_Options intopt;
2797 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2799 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2801 Elf64_Internal_RegInfo intreg;
2803 bfd_mips_elf64_swap_reginfo_in
2805 ((Elf64_External_RegInfo *)
2806 (l + sizeof (Elf_External_Options))),
2808 elf_gp (abfd) = intreg.ri_gp_value;
2810 else if (intopt.kind == ODK_REGINFO)
2812 Elf32_RegInfo intreg;
2814 bfd_mips_elf32_swap_reginfo_in
2816 ((Elf32_External_RegInfo *)
2817 (l + sizeof (Elf_External_Options))),
2819 elf_gp (abfd) = intreg.ri_gp_value;
2829 /* Set the correct type for a MIPS ELF section. We do this by the
2830 section name, which is a hack, but ought to work. This routine is
2831 used by both the 32-bit and the 64-bit ABI. */
2834 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
2836 Elf32_Internal_Shdr *hdr;
2839 register const char *name;
2841 name = bfd_get_section_name (abfd, sec);
2843 if (strcmp (name, ".liblist") == 0)
2845 hdr->sh_type = SHT_MIPS_LIBLIST;
2846 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
2847 /* The sh_link field is set in final_write_processing. */
2849 else if (strcmp (name, ".conflict") == 0)
2850 hdr->sh_type = SHT_MIPS_CONFLICT;
2851 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
2853 hdr->sh_type = SHT_MIPS_GPTAB;
2854 hdr->sh_entsize = sizeof (Elf32_External_gptab);
2855 /* The sh_info field is set in final_write_processing. */
2857 else if (strcmp (name, ".ucode") == 0)
2858 hdr->sh_type = SHT_MIPS_UCODE;
2859 else if (strcmp (name, ".mdebug") == 0)
2861 hdr->sh_type = SHT_MIPS_DEBUG;
2862 /* In a shared object on Irix 5.3, the .mdebug section has an
2863 entsize of 0. FIXME: Does this matter? */
2864 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2865 hdr->sh_entsize = 0;
2867 hdr->sh_entsize = 1;
2869 else if (strcmp (name, ".reginfo") == 0)
2871 hdr->sh_type = SHT_MIPS_REGINFO;
2872 /* In a shared object on Irix 5.3, the .reginfo section has an
2873 entsize of 0x18. FIXME: Does this matter? */
2874 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2875 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2877 hdr->sh_entsize = 1;
2879 else if (SGI_COMPAT (abfd)
2880 && (strcmp (name, ".hash") == 0
2881 || strcmp (name, ".dynamic") == 0
2882 || strcmp (name, ".dynstr") == 0))
2884 hdr->sh_entsize = 0;
2886 /* This isn't how the Irix 6 linker behaves. */
2887 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
2890 else if (strcmp (name, ".got") == 0
2891 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
2892 || strcmp (name, ".sdata") == 0
2893 || strcmp (name, ".sbss") == 0
2894 || strcmp (name, ".lit4") == 0
2895 || strcmp (name, ".lit8") == 0)
2896 hdr->sh_flags |= SHF_MIPS_GPREL;
2897 else if (strcmp (name, ".MIPS.interfaces") == 0)
2899 hdr->sh_type = SHT_MIPS_IFACE;
2900 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2902 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
2904 hdr->sh_type = SHT_MIPS_CONTENT;
2905 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2906 /* The sh_info field is set in final_write_processing. */
2908 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
2910 hdr->sh_type = SHT_MIPS_OPTIONS;
2911 hdr->sh_entsize = 1;
2912 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2914 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
2915 hdr->sh_type = SHT_MIPS_DWARF;
2916 else if (strcmp (name, ".MIPS.symlib") == 0)
2918 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
2919 /* The sh_link and sh_info fields are set in
2920 final_write_processing. */
2922 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
2923 || strncmp (name, ".MIPS.post_rel",
2924 sizeof ".MIPS.post_rel" - 1) == 0)
2926 hdr->sh_type = SHT_MIPS_EVENTS;
2927 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2928 /* The sh_link field is set in final_write_processing. */
2930 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
2932 hdr->sh_type = SHT_MIPS_MSYM;
2933 hdr->sh_flags |= SHF_ALLOC;
2934 hdr->sh_entsize = 8;
2937 /* The generic elf_fake_sections will set up REL_HDR using the
2938 default kind of relocations. But, we may actually need both
2939 kinds of relocations, so we set up the second header here. */
2940 if ((sec->flags & SEC_RELOC) != 0)
2942 struct bfd_elf_section_data *esd;
2944 esd = elf_section_data (sec);
2945 BFD_ASSERT (esd->rel_hdr2 == NULL);
2947 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2950 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
2951 !elf_section_data (sec)->use_rela_p);
2957 /* Given a BFD section, try to locate the corresponding ELF section
2958 index. This is used by both the 32-bit and the 64-bit ABI.
2959 Actually, it's not clear to me that the 64-bit ABI supports these,
2960 but for non-PIC objects we will certainly want support for at least
2961 the .scommon section. */
2964 _bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
2965 bfd *abfd ATTRIBUTE_UNUSED;
2966 Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
2970 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
2972 *retval = SHN_MIPS_SCOMMON;
2975 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
2977 *retval = SHN_MIPS_ACOMMON;
2983 /* When are writing out the .options or .MIPS.options section,
2984 remember the bytes we are writing out, so that we can install the
2985 GP value in the section_processing routine. */
2988 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
2993 bfd_size_type count;
2995 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
2999 if (elf_section_data (section) == NULL)
3001 section->used_by_bfd =
3002 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
3003 if (elf_section_data (section) == NULL)
3006 c = (bfd_byte *) elf_section_data (section)->tdata;
3011 if (section->_cooked_size != 0)
3012 size = section->_cooked_size;
3014 size = section->_raw_size;
3015 c = (bfd_byte *) bfd_zalloc (abfd, size);
3018 elf_section_data (section)->tdata = (PTR) c;
3021 memcpy (c + offset, location, count);
3024 return _bfd_elf_set_section_contents (abfd, section, location, offset,
3028 /* Work over a section just before writing it out. This routine is
3029 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3030 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3034 _bfd_mips_elf_section_processing (abfd, hdr)
3036 Elf_Internal_Shdr *hdr;
3038 if (hdr->sh_type == SHT_MIPS_REGINFO
3039 && hdr->sh_size > 0)
3043 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3044 BFD_ASSERT (hdr->contents == NULL);
3047 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
3050 bfd_h_put_32 (abfd, (bfd_vma) elf_gp (abfd), buf);
3051 if (bfd_write (buf, (bfd_size_type) 1, (bfd_size_type) 4, abfd) != 4)
3055 if (hdr->sh_type == SHT_MIPS_OPTIONS
3056 && hdr->bfd_section != NULL
3057 && elf_section_data (hdr->bfd_section) != NULL
3058 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3060 bfd_byte *contents, *l, *lend;
3062 /* We stored the section contents in the elf_section_data tdata
3063 field in the set_section_contents routine. We save the
3064 section contents so that we don't have to read them again.
3065 At this point we know that elf_gp is set, so we can look
3066 through the section contents to see if there is an
3067 ODK_REGINFO structure. */
3069 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3071 lend = contents + hdr->sh_size;
3072 while (l + sizeof (Elf_External_Options) <= lend)
3074 Elf_Internal_Options intopt;
3076 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3078 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3085 + sizeof (Elf_External_Options)
3086 + (sizeof (Elf64_External_RegInfo) - 8)),
3089 bfd_h_put_64 (abfd, elf_gp (abfd), buf);
3090 if (bfd_write (buf, 1, 8, abfd) != 8)
3093 else if (intopt.kind == ODK_REGINFO)
3100 + sizeof (Elf_External_Options)
3101 + (sizeof (Elf32_External_RegInfo) - 4)),
3104 bfd_h_put_32 (abfd, elf_gp (abfd), buf);
3105 if (bfd_write (buf, 1, 4, abfd) != 4)
3112 if (hdr->bfd_section != NULL)
3114 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3116 if (strcmp (name, ".sdata") == 0
3117 || strcmp (name, ".lit8") == 0
3118 || strcmp (name, ".lit4") == 0)
3120 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3121 hdr->sh_type = SHT_PROGBITS;
3123 else if (strcmp (name, ".sbss") == 0)
3125 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3126 hdr->sh_type = SHT_NOBITS;
3128 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3130 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3131 hdr->sh_type = SHT_PROGBITS;
3133 else if (strcmp (name, ".compact_rel") == 0)
3136 hdr->sh_type = SHT_PROGBITS;
3138 else if (strcmp (name, ".rtproc") == 0)
3140 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3142 unsigned int adjust;
3144 adjust = hdr->sh_size % hdr->sh_addralign;
3146 hdr->sh_size += hdr->sh_addralign - adjust;
3155 /* MIPS ELF uses two common sections. One is the usual one, and the
3156 other is for small objects. All the small objects are kept
3157 together, and then referenced via the gp pointer, which yields
3158 faster assembler code. This is what we use for the small common
3159 section. This approach is copied from ecoff.c. */
3160 static asection mips_elf_scom_section;
3161 static asymbol mips_elf_scom_symbol;
3162 static asymbol *mips_elf_scom_symbol_ptr;
3164 /* MIPS ELF also uses an acommon section, which represents an
3165 allocated common symbol which may be overridden by a
3166 definition in a shared library. */
3167 static asection mips_elf_acom_section;
3168 static asymbol mips_elf_acom_symbol;
3169 static asymbol *mips_elf_acom_symbol_ptr;
3171 /* The Irix 5 support uses two virtual sections, which represent
3172 text/data symbols defined in dynamic objects. */
3173 static asection mips_elf_text_section;
3174 static asection *mips_elf_text_section_ptr;
3175 static asymbol mips_elf_text_symbol;
3176 static asymbol *mips_elf_text_symbol_ptr;
3178 static asection mips_elf_data_section;
3179 static asection *mips_elf_data_section_ptr;
3180 static asymbol mips_elf_data_symbol;
3181 static asymbol *mips_elf_data_symbol_ptr;
3183 /* Handle the special MIPS section numbers that a symbol may use.
3184 This is used for both the 32-bit and the 64-bit ABI. */
3187 _bfd_mips_elf_symbol_processing (abfd, asym)
3191 elf_symbol_type *elfsym;
3193 elfsym = (elf_symbol_type *) asym;
3194 switch (elfsym->internal_elf_sym.st_shndx)
3196 case SHN_MIPS_ACOMMON:
3197 /* This section is used in a dynamically linked executable file.
3198 It is an allocated common section. The dynamic linker can
3199 either resolve these symbols to something in a shared
3200 library, or it can just leave them here. For our purposes,
3201 we can consider these symbols to be in a new section. */
3202 if (mips_elf_acom_section.name == NULL)
3204 /* Initialize the acommon section. */
3205 mips_elf_acom_section.name = ".acommon";
3206 mips_elf_acom_section.flags = SEC_ALLOC;
3207 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3208 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3209 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3210 mips_elf_acom_symbol.name = ".acommon";
3211 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3212 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3213 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3215 asym->section = &mips_elf_acom_section;
3219 /* Common symbols less than the GP size are automatically
3220 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3221 if (asym->value > elf_gp_size (abfd)
3222 || IRIX_COMPAT (abfd) == ict_irix6)
3225 case SHN_MIPS_SCOMMON:
3226 if (mips_elf_scom_section.name == NULL)
3228 /* Initialize the small common section. */
3229 mips_elf_scom_section.name = ".scommon";
3230 mips_elf_scom_section.flags = SEC_IS_COMMON;
3231 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3232 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3233 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3234 mips_elf_scom_symbol.name = ".scommon";
3235 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3236 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3237 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3239 asym->section = &mips_elf_scom_section;
3240 asym->value = elfsym->internal_elf_sym.st_size;
3243 case SHN_MIPS_SUNDEFINED:
3244 asym->section = bfd_und_section_ptr;
3247 #if 0 /* for SGI_COMPAT */
3249 asym->section = mips_elf_text_section_ptr;
3253 asym->section = mips_elf_data_section_ptr;
3259 /* When creating an Irix 5 executable, we need REGINFO and RTPROC
3263 _bfd_mips_elf_additional_program_headers (abfd)
3269 if (!SGI_COMPAT (abfd))
3272 /* See if we need a PT_MIPS_REGINFO segment. */
3273 s = bfd_get_section_by_name (abfd, ".reginfo");
3274 if (s && (s->flags & SEC_LOAD))
3277 /* See if we need a PT_MIPS_OPTIONS segment. */
3278 if (IRIX_COMPAT (abfd) == ict_irix6
3279 && bfd_get_section_by_name (abfd,
3280 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3283 /* See if we need a PT_MIPS_RTPROC segment. */
3284 if (IRIX_COMPAT (abfd) == ict_irix5
3285 && bfd_get_section_by_name (abfd, ".dynamic")
3286 && bfd_get_section_by_name (abfd, ".mdebug"))
3292 /* Modify the segment map for an Irix 5 executable. */
3295 _bfd_mips_elf_modify_segment_map (abfd)
3299 struct elf_segment_map *m, **pm;
3301 if (! SGI_COMPAT (abfd))
3304 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3306 s = bfd_get_section_by_name (abfd, ".reginfo");
3307 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3309 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3310 if (m->p_type == PT_MIPS_REGINFO)
3314 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3318 m->p_type = PT_MIPS_REGINFO;
3322 /* We want to put it after the PHDR and INTERP segments. */
3323 pm = &elf_tdata (abfd)->segment_map;
3325 && ((*pm)->p_type == PT_PHDR
3326 || (*pm)->p_type == PT_INTERP))
3334 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3335 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3336 PT_OPTIONS segement immediately following the program header
3338 if (IRIX_COMPAT (abfd) == ict_irix6)
3342 for (s = abfd->sections; s; s = s->next)
3343 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
3348 struct elf_segment_map *options_segment;
3350 /* Usually, there's a program header table. But, sometimes
3351 there's not (like when running the `ld' testsuite). So,
3352 if there's no program header table, we just put the
3353 options segement at the end. */
3354 for (pm = &elf_tdata (abfd)->segment_map;
3357 if ((*pm)->p_type == PT_PHDR)
3360 options_segment = bfd_zalloc (abfd,
3361 sizeof (struct elf_segment_map));
3362 options_segment->next = *pm;
3363 options_segment->p_type = PT_MIPS_OPTIONS;
3364 options_segment->p_flags = PF_R;
3365 options_segment->p_flags_valid = true;
3366 options_segment->count = 1;
3367 options_segment->sections[0] = s;
3368 *pm = options_segment;
3373 /* If there are .dynamic and .mdebug sections, we make a room
3374 for the RTPROC header. FIXME: Rewrite without section names. */
3375 if (bfd_get_section_by_name (abfd, ".interp") == NULL
3376 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
3377 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
3379 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3380 if (m->p_type == PT_MIPS_RTPROC)
3384 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3388 m->p_type = PT_MIPS_RTPROC;
3390 s = bfd_get_section_by_name (abfd, ".rtproc");
3395 m->p_flags_valid = 1;
3403 /* We want to put it after the DYNAMIC segment. */
3404 pm = &elf_tdata (abfd)->segment_map;
3405 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
3415 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
3416 .dynstr, .dynsym, and .hash sections, and everything in
3418 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
3419 if ((*pm)->p_type == PT_DYNAMIC)
3424 && strcmp (m->sections[0]->name, ".dynamic") == 0)
3426 static const char *sec_names[] =
3427 { ".dynamic", ".dynstr", ".dynsym", ".hash" };
3430 struct elf_segment_map *n;
3434 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
3436 s = bfd_get_section_by_name (abfd, sec_names[i]);
3437 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3443 sz = s->_cooked_size;
3446 if (high < s->vma + sz)
3452 for (s = abfd->sections; s != NULL; s = s->next)
3453 if ((s->flags & SEC_LOAD) != 0
3456 + (s->_cooked_size != 0 ? s->_cooked_size : s->_raw_size))
3460 n = ((struct elf_segment_map *)
3461 bfd_zalloc (abfd, sizeof *n + (c - 1) * sizeof (asection *)));
3468 for (s = abfd->sections; s != NULL; s = s->next)
3470 if ((s->flags & SEC_LOAD) != 0
3473 + (s->_cooked_size != 0 ?
3474 s->_cooked_size : s->_raw_size))
3489 /* The structure of the runtime procedure descriptor created by the
3490 loader for use by the static exception system. */
3492 typedef struct runtime_pdr {
3493 bfd_vma adr; /* memory address of start of procedure */
3494 long regmask; /* save register mask */
3495 long regoffset; /* save register offset */
3496 long fregmask; /* save floating point register mask */
3497 long fregoffset; /* save floating point register offset */
3498 long frameoffset; /* frame size */
3499 short framereg; /* frame pointer register */
3500 short pcreg; /* offset or reg of return pc */
3501 long irpss; /* index into the runtime string table */
3503 struct exception_info *exception_info;/* pointer to exception array */
3505 #define cbRPDR sizeof(RPDR)
3506 #define rpdNil ((pRPDR) 0)
3508 /* Swap RPDR (runtime procedure table entry) for output. */
3510 static void ecoff_swap_rpdr_out
3511 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
3514 ecoff_swap_rpdr_out (abfd, in, ex)
3517 struct rpdr_ext *ex;
3519 /* ecoff_put_off was defined in ecoffswap.h. */
3520 ecoff_put_off (abfd, in->adr, (bfd_byte *) ex->p_adr);
3521 bfd_h_put_32 (abfd, in->regmask, (bfd_byte *) ex->p_regmask);
3522 bfd_h_put_32 (abfd, in->regoffset, (bfd_byte *) ex->p_regoffset);
3523 bfd_h_put_32 (abfd, in->fregmask, (bfd_byte *) ex->p_fregmask);
3524 bfd_h_put_32 (abfd, in->fregoffset, (bfd_byte *) ex->p_fregoffset);
3525 bfd_h_put_32 (abfd, in->frameoffset, (bfd_byte *) ex->p_frameoffset);
3527 bfd_h_put_16 (abfd, in->framereg, (bfd_byte *) ex->p_framereg);
3528 bfd_h_put_16 (abfd, in->pcreg, (bfd_byte *) ex->p_pcreg);
3530 bfd_h_put_32 (abfd, in->irpss, (bfd_byte *) ex->p_irpss);
3532 ecoff_put_off (abfd, in->exception_info, (bfd_byte *) ex->p_exception_info);
3536 /* Read ECOFF debugging information from a .mdebug section into a
3537 ecoff_debug_info structure. */
3540 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
3543 struct ecoff_debug_info *debug;
3546 const struct ecoff_debug_swap *swap;
3547 char *ext_hdr = NULL;
3549 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3550 memset (debug, 0, sizeof(*debug));
3552 ext_hdr = (char *) bfd_malloc ((size_t) swap->external_hdr_size);
3553 if (ext_hdr == NULL && swap->external_hdr_size != 0)
3556 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
3557 swap->external_hdr_size)
3561 symhdr = &debug->symbolic_header;
3562 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
3564 /* The symbolic header contains absolute file offsets and sizes to
3566 #define READ(ptr, offset, count, size, type) \
3567 if (symhdr->count == 0) \
3568 debug->ptr = NULL; \
3571 debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \
3572 if (debug->ptr == NULL) \
3573 goto error_return; \
3574 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
3575 || (bfd_read (debug->ptr, size, symhdr->count, \
3576 abfd) != size * symhdr->count)) \
3577 goto error_return; \
3580 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
3581 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
3582 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
3583 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
3584 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
3585 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
3587 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
3588 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
3589 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
3590 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
3591 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
3595 debug->adjust = NULL;
3600 if (ext_hdr != NULL)
3602 if (debug->line != NULL)
3604 if (debug->external_dnr != NULL)
3605 free (debug->external_dnr);
3606 if (debug->external_pdr != NULL)
3607 free (debug->external_pdr);
3608 if (debug->external_sym != NULL)
3609 free (debug->external_sym);
3610 if (debug->external_opt != NULL)
3611 free (debug->external_opt);
3612 if (debug->external_aux != NULL)
3613 free (debug->external_aux);
3614 if (debug->ss != NULL)
3616 if (debug->ssext != NULL)
3617 free (debug->ssext);
3618 if (debug->external_fdr != NULL)
3619 free (debug->external_fdr);
3620 if (debug->external_rfd != NULL)
3621 free (debug->external_rfd);
3622 if (debug->external_ext != NULL)
3623 free (debug->external_ext);
3627 /* MIPS ELF local labels start with '$', not 'L'. */
3631 mips_elf_is_local_label_name (abfd, name)
3638 /* On Irix 6, the labels go back to starting with '.', so we accept
3639 the generic ELF local label syntax as well. */
3640 return _bfd_elf_is_local_label_name (abfd, name);
3643 /* MIPS ELF uses a special find_nearest_line routine in order the
3644 handle the ECOFF debugging information. */
3646 struct mips_elf_find_line
3648 struct ecoff_debug_info d;
3649 struct ecoff_find_line i;
3653 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
3654 functionname_ptr, line_ptr)
3659 const char **filename_ptr;
3660 const char **functionname_ptr;
3661 unsigned int *line_ptr;
3665 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
3666 filename_ptr, functionname_ptr,
3670 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3671 filename_ptr, functionname_ptr,
3673 ABI_64_P (abfd) ? 8 : 0))
3676 msec = bfd_get_section_by_name (abfd, ".mdebug");
3680 struct mips_elf_find_line *fi;
3681 const struct ecoff_debug_swap * const swap =
3682 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3684 /* If we are called during a link, mips_elf_final_link may have
3685 cleared the SEC_HAS_CONTENTS field. We force it back on here
3686 if appropriate (which it normally will be). */
3687 origflags = msec->flags;
3688 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
3689 msec->flags |= SEC_HAS_CONTENTS;
3691 fi = elf_tdata (abfd)->find_line_info;
3694 bfd_size_type external_fdr_size;
3697 struct fdr *fdr_ptr;
3699 fi = ((struct mips_elf_find_line *)
3700 bfd_zalloc (abfd, sizeof (struct mips_elf_find_line)));
3703 msec->flags = origflags;
3707 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
3709 msec->flags = origflags;
3713 /* Swap in the FDR information. */
3714 fi->d.fdr = ((struct fdr *)
3716 (fi->d.symbolic_header.ifdMax *
3717 sizeof (struct fdr))));
3718 if (fi->d.fdr == NULL)
3720 msec->flags = origflags;
3723 external_fdr_size = swap->external_fdr_size;
3724 fdr_ptr = fi->d.fdr;
3725 fraw_src = (char *) fi->d.external_fdr;
3726 fraw_end = (fraw_src
3727 + fi->d.symbolic_header.ifdMax * external_fdr_size);
3728 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
3729 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
3731 elf_tdata (abfd)->find_line_info = fi;
3733 /* Note that we don't bother to ever free this information.
3734 find_nearest_line is either called all the time, as in
3735 objdump -l, so the information should be saved, or it is
3736 rarely called, as in ld error messages, so the memory
3737 wasted is unimportant. Still, it would probably be a
3738 good idea for free_cached_info to throw it away. */
3741 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
3742 &fi->i, filename_ptr, functionname_ptr,
3745 msec->flags = origflags;
3749 msec->flags = origflags;
3752 /* Fall back on the generic ELF find_nearest_line routine. */
3754 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
3755 filename_ptr, functionname_ptr,
3759 /* The mips16 compiler uses a couple of special sections to handle
3760 floating point arguments.
3762 Section names that look like .mips16.fn.FNNAME contain stubs that
3763 copy floating point arguments from the fp regs to the gp regs and
3764 then jump to FNNAME. If any 32 bit function calls FNNAME, the
3765 call should be redirected to the stub instead. If no 32 bit
3766 function calls FNNAME, the stub should be discarded. We need to
3767 consider any reference to the function, not just a call, because
3768 if the address of the function is taken we will need the stub,
3769 since the address might be passed to a 32 bit function.
3771 Section names that look like .mips16.call.FNNAME contain stubs
3772 that copy floating point arguments from the gp regs to the fp
3773 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
3774 then any 16 bit function that calls FNNAME should be redirected
3775 to the stub instead. If FNNAME is not a 32 bit function, the
3776 stub should be discarded.
3778 .mips16.call.fp.FNNAME sections are similar, but contain stubs
3779 which call FNNAME and then copy the return value from the fp regs
3780 to the gp regs. These stubs store the return value in $18 while
3781 calling FNNAME; any function which might call one of these stubs
3782 must arrange to save $18 around the call. (This case is not
3783 needed for 32 bit functions that call 16 bit functions, because
3784 16 bit functions always return floating point values in both
3787 Note that in all cases FNNAME might be defined statically.
3788 Therefore, FNNAME is not used literally. Instead, the relocation
3789 information will indicate which symbol the section is for.
3791 We record any stubs that we find in the symbol table. */
3793 #define FN_STUB ".mips16.fn."
3794 #define CALL_STUB ".mips16.call."
3795 #define CALL_FP_STUB ".mips16.call.fp."
3797 /* MIPS ELF linker hash table. */
3799 struct mips_elf_link_hash_table
3801 struct elf_link_hash_table root;
3803 /* We no longer use this. */
3804 /* String section indices for the dynamic section symbols. */
3805 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
3807 /* The number of .rtproc entries. */
3808 bfd_size_type procedure_count;
3809 /* The size of the .compact_rel section (if SGI_COMPAT). */
3810 bfd_size_type compact_rel_size;
3811 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
3812 entry is set to the address of __rld_obj_head as in Irix 5. */
3813 boolean use_rld_obj_head;
3814 /* This is the value of the __rld_map or __rld_obj_head symbol. */
3816 /* This is set if we see any mips16 stub sections. */
3817 boolean mips16_stubs_seen;
3820 /* Look up an entry in a MIPS ELF linker hash table. */
3822 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
3823 ((struct mips_elf_link_hash_entry *) \
3824 elf_link_hash_lookup (&(table)->root, (string), (create), \
3827 /* Traverse a MIPS ELF linker hash table. */
3829 #define mips_elf_link_hash_traverse(table, func, info) \
3830 (elf_link_hash_traverse \
3832 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
3835 /* Get the MIPS ELF linker hash table from a link_info structure. */
3837 #define mips_elf_hash_table(p) \
3838 ((struct mips_elf_link_hash_table *) ((p)->hash))
3840 static boolean mips_elf_output_extsym
3841 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
3843 /* Create an entry in a MIPS ELF linker hash table. */
3845 static struct bfd_hash_entry *
3846 mips_elf_link_hash_newfunc (entry, table, string)
3847 struct bfd_hash_entry *entry;
3848 struct bfd_hash_table *table;
3851 struct mips_elf_link_hash_entry *ret =
3852 (struct mips_elf_link_hash_entry *) entry;
3854 /* Allocate the structure if it has not already been allocated by a
3856 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3857 ret = ((struct mips_elf_link_hash_entry *)
3858 bfd_hash_allocate (table,
3859 sizeof (struct mips_elf_link_hash_entry)));
3860 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3861 return (struct bfd_hash_entry *) ret;
3863 /* Call the allocation method of the superclass. */
3864 ret = ((struct mips_elf_link_hash_entry *)
3865 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3867 if (ret != (struct mips_elf_link_hash_entry *) NULL)
3869 /* Set local fields. */
3870 memset (&ret->esym, 0, sizeof (EXTR));
3871 /* We use -2 as a marker to indicate that the information has
3872 not been set. -1 means there is no associated ifd. */
3874 ret->possibly_dynamic_relocs = 0;
3875 ret->min_dyn_reloc_index = 0;
3876 ret->fn_stub = NULL;
3877 ret->need_fn_stub = false;
3878 ret->call_stub = NULL;
3879 ret->call_fp_stub = NULL;
3882 return (struct bfd_hash_entry *) ret;
3885 /* Create a MIPS ELF linker hash table. */
3887 struct bfd_link_hash_table *
3888 _bfd_mips_elf_link_hash_table_create (abfd)
3891 struct mips_elf_link_hash_table *ret;
3893 ret = ((struct mips_elf_link_hash_table *)
3894 bfd_alloc (abfd, sizeof (struct mips_elf_link_hash_table)));
3895 if (ret == (struct mips_elf_link_hash_table *) NULL)
3898 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
3899 mips_elf_link_hash_newfunc))
3901 bfd_release (abfd, ret);
3906 /* We no longer use this. */
3907 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
3908 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
3910 ret->procedure_count = 0;
3911 ret->compact_rel_size = 0;
3912 ret->use_rld_obj_head = false;
3914 ret->mips16_stubs_seen = false;
3916 return &ret->root.root;
3919 /* Hook called by the linker routine which adds symbols from an object
3920 file. We must handle the special MIPS section numbers here. */
3924 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
3926 struct bfd_link_info *info;
3927 const Elf_Internal_Sym *sym;
3929 flagword *flagsp ATTRIBUTE_UNUSED;
3933 if (SGI_COMPAT (abfd)
3934 && (abfd->flags & DYNAMIC) != 0
3935 && strcmp (*namep, "_rld_new_interface") == 0)
3937 /* Skip Irix 5 rld entry name. */
3942 switch (sym->st_shndx)
3945 /* Common symbols less than the GP size are automatically
3946 treated as SHN_MIPS_SCOMMON symbols. */
3947 if (sym->st_size > elf_gp_size (abfd)
3948 || IRIX_COMPAT (abfd) == ict_irix6)
3951 case SHN_MIPS_SCOMMON:
3952 *secp = bfd_make_section_old_way (abfd, ".scommon");
3953 (*secp)->flags |= SEC_IS_COMMON;
3954 *valp = sym->st_size;
3958 /* This section is used in a shared object. */
3959 if (mips_elf_text_section_ptr == NULL)
3961 /* Initialize the section. */
3962 mips_elf_text_section.name = ".text";
3963 mips_elf_text_section.flags = SEC_NO_FLAGS;
3964 mips_elf_text_section.output_section = NULL;
3965 mips_elf_text_section.symbol = &mips_elf_text_symbol;
3966 mips_elf_text_section.symbol_ptr_ptr = &mips_elf_text_symbol_ptr;
3967 mips_elf_text_symbol.name = ".text";
3968 mips_elf_text_symbol.flags = BSF_SECTION_SYM | BSF_DYNAMIC;
3969 mips_elf_text_symbol.section = &mips_elf_text_section;
3970 mips_elf_text_symbol_ptr = &mips_elf_text_symbol;
3971 mips_elf_text_section_ptr = &mips_elf_text_section;
3973 /* This code used to do *secp = bfd_und_section_ptr if
3974 info->shared. I don't know why, and that doesn't make sense,
3975 so I took it out. */
3976 *secp = mips_elf_text_section_ptr;
3979 case SHN_MIPS_ACOMMON:
3980 /* Fall through. XXX Can we treat this as allocated data? */
3982 /* This section is used in a shared object. */
3983 if (mips_elf_data_section_ptr == NULL)
3985 /* Initialize the section. */
3986 mips_elf_data_section.name = ".data";
3987 mips_elf_data_section.flags = SEC_NO_FLAGS;
3988 mips_elf_data_section.output_section = NULL;
3989 mips_elf_data_section.symbol = &mips_elf_data_symbol;
3990 mips_elf_data_section.symbol_ptr_ptr = &mips_elf_data_symbol_ptr;
3991 mips_elf_data_symbol.name = ".data";
3992 mips_elf_data_symbol.flags = BSF_SECTION_SYM | BSF_DYNAMIC;
3993 mips_elf_data_symbol.section = &mips_elf_data_section;
3994 mips_elf_data_symbol_ptr = &mips_elf_data_symbol;
3995 mips_elf_data_section_ptr = &mips_elf_data_section;
3997 /* This code used to do *secp = bfd_und_section_ptr if
3998 info->shared. I don't know why, and that doesn't make sense,
3999 so I took it out. */
4000 *secp = mips_elf_data_section_ptr;
4003 case SHN_MIPS_SUNDEFINED:
4004 *secp = bfd_und_section_ptr;
4008 if (SGI_COMPAT (abfd)
4010 && info->hash->creator == abfd->xvec
4011 && strcmp (*namep, "__rld_obj_head") == 0)
4013 struct elf_link_hash_entry *h;
4015 /* Mark __rld_obj_head as dynamic. */
4017 if (! (_bfd_generic_link_add_one_symbol
4018 (info, abfd, *namep, BSF_GLOBAL, *secp,
4019 (bfd_vma) *valp, (const char *) NULL, false,
4020 get_elf_backend_data (abfd)->collect,
4021 (struct bfd_link_hash_entry **) &h)))
4023 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
4024 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4025 h->type = STT_OBJECT;
4027 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4030 mips_elf_hash_table (info)->use_rld_obj_head = true;
4033 /* If this is a mips16 text symbol, add 1 to the value to make it
4034 odd. This will cause something like .word SYM to come up with
4035 the right value when it is loaded into the PC. */
4036 if (sym->st_other == STO_MIPS16)
4042 /* Structure used to pass information to mips_elf_output_extsym. */
4047 struct bfd_link_info *info;
4048 struct ecoff_debug_info *debug;
4049 const struct ecoff_debug_swap *swap;
4053 /* This routine is used to write out ECOFF debugging external symbol
4054 information. It is called via mips_elf_link_hash_traverse. The
4055 ECOFF external symbol information must match the ELF external
4056 symbol information. Unfortunately, at this point we don't know
4057 whether a symbol is required by reloc information, so the two
4058 tables may wind up being different. We must sort out the external
4059 symbol information before we can set the final size of the .mdebug
4060 section, and we must set the size of the .mdebug section before we
4061 can relocate any sections, and we can't know which symbols are
4062 required by relocation until we relocate the sections.
4063 Fortunately, it is relatively unlikely that any symbol will be
4064 stripped but required by a reloc. In particular, it can not happen
4065 when generating a final executable. */
4068 mips_elf_output_extsym (h, data)
4069 struct mips_elf_link_hash_entry *h;
4072 struct extsym_info *einfo = (struct extsym_info *) data;
4074 asection *sec, *output_section;
4076 if (h->root.indx == -2)
4078 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4079 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4080 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4081 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4083 else if (einfo->info->strip == strip_all
4084 || (einfo->info->strip == strip_some
4085 && bfd_hash_lookup (einfo->info->keep_hash,
4086 h->root.root.root.string,
4087 false, false) == NULL))
4095 if (h->esym.ifd == -2)
4098 h->esym.cobol_main = 0;
4099 h->esym.weakext = 0;
4100 h->esym.reserved = 0;
4101 h->esym.ifd = ifdNil;
4102 h->esym.asym.value = 0;
4103 h->esym.asym.st = stGlobal;
4105 if (SGI_COMPAT (einfo->abfd)
4106 && (h->root.root.type == bfd_link_hash_undefined
4107 || h->root.root.type == bfd_link_hash_undefweak))
4111 /* Use undefined class. Also, set class and type for some
4113 name = h->root.root.root.string;
4114 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4115 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4117 h->esym.asym.sc = scData;
4118 h->esym.asym.st = stLabel;
4119 h->esym.asym.value = 0;
4121 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4123 h->esym.asym.sc = scAbs;
4124 h->esym.asym.st = stLabel;
4125 h->esym.asym.value =
4126 mips_elf_hash_table (einfo->info)->procedure_count;
4128 else if (strcmp (name, "_gp_disp") == 0)
4130 h->esym.asym.sc = scAbs;
4131 h->esym.asym.st = stLabel;
4132 h->esym.asym.value = elf_gp (einfo->abfd);
4135 h->esym.asym.sc = scUndefined;
4137 else if (h->root.root.type != bfd_link_hash_defined
4138 && h->root.root.type != bfd_link_hash_defweak)
4139 h->esym.asym.sc = scAbs;
4144 sec = h->root.root.u.def.section;
4145 output_section = sec->output_section;
4147 /* When making a shared library and symbol h is the one from
4148 the another shared library, OUTPUT_SECTION may be null. */
4149 if (output_section == NULL)
4150 h->esym.asym.sc = scUndefined;
4153 name = bfd_section_name (output_section->owner, output_section);
4155 if (strcmp (name, ".text") == 0)
4156 h->esym.asym.sc = scText;
4157 else if (strcmp (name, ".data") == 0)
4158 h->esym.asym.sc = scData;
4159 else if (strcmp (name, ".sdata") == 0)
4160 h->esym.asym.sc = scSData;
4161 else if (strcmp (name, ".rodata") == 0
4162 || strcmp (name, ".rdata") == 0)
4163 h->esym.asym.sc = scRData;
4164 else if (strcmp (name, ".bss") == 0)
4165 h->esym.asym.sc = scBss;
4166 else if (strcmp (name, ".sbss") == 0)
4167 h->esym.asym.sc = scSBss;
4168 else if (strcmp (name, ".init") == 0)
4169 h->esym.asym.sc = scInit;
4170 else if (strcmp (name, ".fini") == 0)
4171 h->esym.asym.sc = scFini;
4173 h->esym.asym.sc = scAbs;
4177 h->esym.asym.reserved = 0;
4178 h->esym.asym.index = indexNil;
4181 if (h->root.root.type == bfd_link_hash_common)
4182 h->esym.asym.value = h->root.root.u.c.size;
4183 else if (h->root.root.type == bfd_link_hash_defined
4184 || h->root.root.type == bfd_link_hash_defweak)
4186 if (h->esym.asym.sc == scCommon)
4187 h->esym.asym.sc = scBss;
4188 else if (h->esym.asym.sc == scSCommon)
4189 h->esym.asym.sc = scSBss;
4191 sec = h->root.root.u.def.section;
4192 output_section = sec->output_section;
4193 if (output_section != NULL)
4194 h->esym.asym.value = (h->root.root.u.def.value
4195 + sec->output_offset
4196 + output_section->vma);
4198 h->esym.asym.value = 0;
4200 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4202 /* Set type and value for a symbol with a function stub. */
4203 h->esym.asym.st = stProc;
4204 sec = h->root.root.u.def.section;
4206 h->esym.asym.value = 0;
4209 output_section = sec->output_section;
4210 if (output_section != NULL)
4211 h->esym.asym.value = (h->root.plt.offset
4212 + sec->output_offset
4213 + output_section->vma);
4215 h->esym.asym.value = 0;
4222 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4223 h->root.root.root.string,
4226 einfo->failed = true;
4233 /* Create a runtime procedure table from the .mdebug section. */
4236 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4239 struct bfd_link_info *info;
4241 struct ecoff_debug_info *debug;
4243 const struct ecoff_debug_swap *swap;
4244 HDRR *hdr = &debug->symbolic_header;
4246 struct rpdr_ext *erp;
4248 struct pdr_ext *epdr;
4249 struct sym_ext *esym;
4252 unsigned long size, count;
4253 unsigned long sindex;
4257 const char *no_name_func = _("static procedure (no name)");
4265 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4267 sindex = strlen (no_name_func) + 1;
4268 count = hdr->ipdMax;
4271 size = swap->external_pdr_size;
4273 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4277 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4280 size = sizeof (RPDR);
4281 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4285 sv = (char **) bfd_malloc (sizeof (char *) * count);
4289 count = hdr->isymMax;
4290 size = swap->external_sym_size;
4291 esym = (struct sym_ext *) bfd_malloc (size * count);
4295 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
4298 count = hdr->issMax;
4299 ss = (char *) bfd_malloc (count);
4302 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
4305 count = hdr->ipdMax;
4306 for (i = 0; i < count; i++, rp++)
4308 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
4309 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
4310 rp->adr = sym.value;
4311 rp->regmask = pdr.regmask;
4312 rp->regoffset = pdr.regoffset;
4313 rp->fregmask = pdr.fregmask;
4314 rp->fregoffset = pdr.fregoffset;
4315 rp->frameoffset = pdr.frameoffset;
4316 rp->framereg = pdr.framereg;
4317 rp->pcreg = pdr.pcreg;
4319 sv[i] = ss + sym.iss;
4320 sindex += strlen (sv[i]) + 1;
4324 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
4325 size = BFD_ALIGN (size, 16);
4326 rtproc = (PTR) bfd_alloc (abfd, size);
4329 mips_elf_hash_table (info)->procedure_count = 0;
4333 mips_elf_hash_table (info)->procedure_count = count + 2;
4335 erp = (struct rpdr_ext *) rtproc;
4336 memset (erp, 0, sizeof (struct rpdr_ext));
4338 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
4339 strcpy (str, no_name_func);
4340 str += strlen (no_name_func) + 1;
4341 for (i = 0; i < count; i++)
4343 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
4344 strcpy (str, sv[i]);
4345 str += strlen (sv[i]) + 1;
4347 ecoff_put_off (abfd, (bfd_vma) -1, (bfd_byte *) (erp + count)->p_adr);
4349 /* Set the size and contents of .rtproc section. */
4350 s->_raw_size = size;
4351 s->contents = (bfd_byte *) rtproc;
4353 /* Skip this section later on (I don't think this currently
4354 matters, but someday it might). */
4355 s->link_order_head = (struct bfd_link_order *) NULL;
4384 /* A comparison routine used to sort .gptab entries. */
4387 gptab_compare (p1, p2)
4391 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
4392 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
4394 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
4397 /* We need to use a special link routine to handle the .reginfo and
4398 the .mdebug sections. We need to merge all instances of these
4399 sections together, not write them all out sequentially. */
4402 _bfd_mips_elf_final_link (abfd, info)
4404 struct bfd_link_info *info;
4408 struct bfd_link_order *p;
4409 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
4410 asection *rtproc_sec;
4411 Elf32_RegInfo reginfo;
4412 struct ecoff_debug_info debug;
4413 const struct ecoff_debug_swap *swap
4414 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4415 HDRR *symhdr = &debug.symbolic_header;
4416 PTR mdebug_handle = NULL;
4418 /* If all the things we linked together were PIC, but we're
4419 producing an executable (rather than a shared object), then the
4420 resulting file is CPIC (i.e., it calls PIC code.) */
4422 && !info->relocateable
4423 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
4425 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
4426 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
4429 /* We'd carefully arranged the dynamic symbol indices, and then the
4430 generic size_dynamic_sections renumbered them out from under us.
4431 Rather than trying somehow to prevent the renumbering, just do
4433 if (elf_hash_table (info)->dynamic_sections_created)
4437 struct mips_got_info *g;
4439 /* When we resort, we must tell mips_elf_sort_hash_table what
4440 the lowest index it may use is. That's the number of section
4441 symbols we're going to add. The generic ELF linker only
4442 adds these symbols when building a shared object. Note that
4443 we count the sections after (possibly) removing the .options
4445 if (!mips_elf_sort_hash_table (info, (info->shared
4446 ? bfd_count_sections (abfd) + 1
4450 /* Make sure we didn't grow the global .got region. */
4451 dynobj = elf_hash_table (info)->dynobj;
4452 got = bfd_get_section_by_name (dynobj, ".got");
4453 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4455 if (g->global_gotsym != NULL)
4456 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
4457 - g->global_gotsym->dynindx)
4458 <= g->global_gotno);
4461 /* On IRIX5, we omit the .options section. On IRIX6, however, we
4462 include it, even though we don't process it quite right. (Some
4463 entries are supposed to be merged.) Empirically, we seem to be
4464 better off including it then not. */
4465 if (IRIX_COMPAT (abfd) == ict_irix5)
4466 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
4468 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4470 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
4471 if (p->type == bfd_indirect_link_order)
4472 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
4473 (*secpp)->link_order_head = NULL;
4474 *secpp = (*secpp)->next;
4475 --abfd->section_count;
4481 /* Get a value for the GP register. */
4482 if (elf_gp (abfd) == 0)
4484 struct bfd_link_hash_entry *h;
4486 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
4487 if (h != (struct bfd_link_hash_entry *) NULL
4488 && h->type == bfd_link_hash_defined)
4489 elf_gp (abfd) = (h->u.def.value
4490 + h->u.def.section->output_section->vma
4491 + h->u.def.section->output_offset);
4492 else if (info->relocateable)
4496 /* Find the GP-relative section with the lowest offset. */
4498 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4500 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
4503 /* And calculate GP relative to that. */
4504 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
4508 /* If the relocate_section function needs to do a reloc
4509 involving the GP value, it should make a reloc_dangerous
4510 callback to warn that GP is not defined. */
4514 /* Go through the sections and collect the .reginfo and .mdebug
4518 gptab_data_sec = NULL;
4519 gptab_bss_sec = NULL;
4520 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4522 if (strcmp (o->name, ".reginfo") == 0)
4524 memset (®info, 0, sizeof reginfo);
4526 /* We have found the .reginfo section in the output file.
4527 Look through all the link_orders comprising it and merge
4528 the information together. */
4529 for (p = o->link_order_head;
4530 p != (struct bfd_link_order *) NULL;
4533 asection *input_section;
4535 Elf32_External_RegInfo ext;
4538 if (p->type != bfd_indirect_link_order)
4540 if (p->type == bfd_fill_link_order)
4545 input_section = p->u.indirect.section;
4546 input_bfd = input_section->owner;
4548 /* The linker emulation code has probably clobbered the
4549 size to be zero bytes. */
4550 if (input_section->_raw_size == 0)
4551 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
4553 if (! bfd_get_section_contents (input_bfd, input_section,
4559 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
4561 reginfo.ri_gprmask |= sub.ri_gprmask;
4562 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
4563 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
4564 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
4565 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
4567 /* ri_gp_value is set by the function
4568 mips_elf32_section_processing when the section is
4569 finally written out. */
4571 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4572 elf_link_input_bfd ignores this section. */
4573 input_section->flags &=~ SEC_HAS_CONTENTS;
4576 /* Size has been set in mips_elf_always_size_sections */
4577 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
4579 /* Skip this section later on (I don't think this currently
4580 matters, but someday it might). */
4581 o->link_order_head = (struct bfd_link_order *) NULL;
4586 if (strcmp (o->name, ".mdebug") == 0)
4588 struct extsym_info einfo;
4590 /* We have found the .mdebug section in the output file.
4591 Look through all the link_orders comprising it and merge
4592 the information together. */
4593 symhdr->magic = swap->sym_magic;
4594 /* FIXME: What should the version stamp be? */
4596 symhdr->ilineMax = 0;
4600 symhdr->isymMax = 0;
4601 symhdr->ioptMax = 0;
4602 symhdr->iauxMax = 0;
4604 symhdr->issExtMax = 0;
4607 symhdr->iextMax = 0;
4609 /* We accumulate the debugging information itself in the
4610 debug_info structure. */
4612 debug.external_dnr = NULL;
4613 debug.external_pdr = NULL;
4614 debug.external_sym = NULL;
4615 debug.external_opt = NULL;
4616 debug.external_aux = NULL;
4618 debug.ssext = debug.ssext_end = NULL;
4619 debug.external_fdr = NULL;
4620 debug.external_rfd = NULL;
4621 debug.external_ext = debug.external_ext_end = NULL;
4623 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
4624 if (mdebug_handle == (PTR) NULL)
4627 if (SGI_COMPAT (abfd))
4633 static const char * const name[] =
4634 { ".text", ".init", ".fini", ".data",
4635 ".rodata", ".sdata", ".sbss", ".bss" };
4636 static const int sc[] = { scText, scInit, scFini, scData,
4637 scRData, scSData, scSBss, scBss };
4640 esym.cobol_main = 0;
4644 esym.asym.iss = issNil;
4645 esym.asym.st = stLocal;
4646 esym.asym.reserved = 0;
4647 esym.asym.index = indexNil;
4649 for (i = 0; i < 8; i++)
4651 esym.asym.sc = sc[i];
4652 s = bfd_get_section_by_name (abfd, name[i]);
4655 esym.asym.value = s->vma;
4656 last = s->vma + s->_raw_size;
4659 esym.asym.value = last;
4661 if (! bfd_ecoff_debug_one_external (abfd, &debug, swap,
4667 for (p = o->link_order_head;
4668 p != (struct bfd_link_order *) NULL;
4671 asection *input_section;
4673 const struct ecoff_debug_swap *input_swap;
4674 struct ecoff_debug_info input_debug;
4678 if (p->type != bfd_indirect_link_order)
4680 if (p->type == bfd_fill_link_order)
4685 input_section = p->u.indirect.section;
4686 input_bfd = input_section->owner;
4688 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
4689 || (get_elf_backend_data (input_bfd)
4690 ->elf_backend_ecoff_debug_swap) == NULL)
4692 /* I don't know what a non MIPS ELF bfd would be
4693 doing with a .mdebug section, but I don't really
4694 want to deal with it. */
4698 input_swap = (get_elf_backend_data (input_bfd)
4699 ->elf_backend_ecoff_debug_swap);
4701 BFD_ASSERT (p->size == input_section->_raw_size);
4703 /* The ECOFF linking code expects that we have already
4704 read in the debugging information and set up an
4705 ecoff_debug_info structure, so we do that now. */
4706 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
4710 if (! (bfd_ecoff_debug_accumulate
4711 (mdebug_handle, abfd, &debug, swap, input_bfd,
4712 &input_debug, input_swap, info)))
4715 /* Loop through the external symbols. For each one with
4716 interesting information, try to find the symbol in
4717 the linker global hash table and save the information
4718 for the output external symbols. */
4719 eraw_src = input_debug.external_ext;
4720 eraw_end = (eraw_src
4721 + (input_debug.symbolic_header.iextMax
4722 * input_swap->external_ext_size));
4724 eraw_src < eraw_end;
4725 eraw_src += input_swap->external_ext_size)
4729 struct mips_elf_link_hash_entry *h;
4731 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
4732 if (ext.asym.sc == scNil
4733 || ext.asym.sc == scUndefined
4734 || ext.asym.sc == scSUndefined)
4737 name = input_debug.ssext + ext.asym.iss;
4738 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
4739 name, false, false, true);
4740 if (h == NULL || h->esym.ifd != -2)
4746 < input_debug.symbolic_header.ifdMax);
4747 ext.ifd = input_debug.ifdmap[ext.ifd];
4753 /* Free up the information we just read. */
4754 free (input_debug.line);
4755 free (input_debug.external_dnr);
4756 free (input_debug.external_pdr);
4757 free (input_debug.external_sym);
4758 free (input_debug.external_opt);
4759 free (input_debug.external_aux);
4760 free (input_debug.ss);
4761 free (input_debug.ssext);
4762 free (input_debug.external_fdr);
4763 free (input_debug.external_rfd);
4764 free (input_debug.external_ext);
4766 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4767 elf_link_input_bfd ignores this section. */
4768 input_section->flags &=~ SEC_HAS_CONTENTS;
4771 if (SGI_COMPAT (abfd) && info->shared)
4773 /* Create .rtproc section. */
4774 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
4775 if (rtproc_sec == NULL)
4777 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
4778 | SEC_LINKER_CREATED | SEC_READONLY);
4780 rtproc_sec = bfd_make_section (abfd, ".rtproc");
4781 if (rtproc_sec == NULL
4782 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
4783 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
4787 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
4788 info, rtproc_sec, &debug))
4792 /* Build the external symbol information. */
4795 einfo.debug = &debug;
4797 einfo.failed = false;
4798 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
4799 mips_elf_output_extsym,
4804 /* Set the size of the .mdebug section. */
4805 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
4807 /* Skip this section later on (I don't think this currently
4808 matters, but someday it might). */
4809 o->link_order_head = (struct bfd_link_order *) NULL;
4814 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
4816 const char *subname;
4819 Elf32_External_gptab *ext_tab;
4822 /* The .gptab.sdata and .gptab.sbss sections hold
4823 information describing how the small data area would
4824 change depending upon the -G switch. These sections
4825 not used in executables files. */
4826 if (! info->relocateable)
4830 for (p = o->link_order_head;
4831 p != (struct bfd_link_order *) NULL;
4834 asection *input_section;
4836 if (p->type != bfd_indirect_link_order)
4838 if (p->type == bfd_fill_link_order)
4843 input_section = p->u.indirect.section;
4845 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4846 elf_link_input_bfd ignores this section. */
4847 input_section->flags &=~ SEC_HAS_CONTENTS;
4850 /* Skip this section later on (I don't think this
4851 currently matters, but someday it might). */
4852 o->link_order_head = (struct bfd_link_order *) NULL;
4854 /* Really remove the section. */
4855 for (secpp = &abfd->sections;
4857 secpp = &(*secpp)->next)
4859 *secpp = (*secpp)->next;
4860 --abfd->section_count;
4865 /* There is one gptab for initialized data, and one for
4866 uninitialized data. */
4867 if (strcmp (o->name, ".gptab.sdata") == 0)
4869 else if (strcmp (o->name, ".gptab.sbss") == 0)
4873 (*_bfd_error_handler)
4874 (_("%s: illegal section name `%s'"),
4875 bfd_get_filename (abfd), o->name);
4876 bfd_set_error (bfd_error_nonrepresentable_section);
4880 /* The linker script always combines .gptab.data and
4881 .gptab.sdata into .gptab.sdata, and likewise for
4882 .gptab.bss and .gptab.sbss. It is possible that there is
4883 no .sdata or .sbss section in the output file, in which
4884 case we must change the name of the output section. */
4885 subname = o->name + sizeof ".gptab" - 1;
4886 if (bfd_get_section_by_name (abfd, subname) == NULL)
4888 if (o == gptab_data_sec)
4889 o->name = ".gptab.data";
4891 o->name = ".gptab.bss";
4892 subname = o->name + sizeof ".gptab" - 1;
4893 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
4896 /* Set up the first entry. */
4898 tab = (Elf32_gptab *) bfd_malloc (c * sizeof (Elf32_gptab));
4901 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
4902 tab[0].gt_header.gt_unused = 0;
4904 /* Combine the input sections. */
4905 for (p = o->link_order_head;
4906 p != (struct bfd_link_order *) NULL;
4909 asection *input_section;
4913 bfd_size_type gpentry;
4915 if (p->type != bfd_indirect_link_order)
4917 if (p->type == bfd_fill_link_order)
4922 input_section = p->u.indirect.section;
4923 input_bfd = input_section->owner;
4925 /* Combine the gptab entries for this input section one
4926 by one. We know that the input gptab entries are
4927 sorted by ascending -G value. */
4928 size = bfd_section_size (input_bfd, input_section);
4930 for (gpentry = sizeof (Elf32_External_gptab);
4932 gpentry += sizeof (Elf32_External_gptab))
4934 Elf32_External_gptab ext_gptab;
4935 Elf32_gptab int_gptab;
4941 if (! (bfd_get_section_contents
4942 (input_bfd, input_section, (PTR) &ext_gptab,
4943 gpentry, sizeof (Elf32_External_gptab))))
4949 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
4951 val = int_gptab.gt_entry.gt_g_value;
4952 add = int_gptab.gt_entry.gt_bytes - last;
4955 for (look = 1; look < c; look++)
4957 if (tab[look].gt_entry.gt_g_value >= val)
4958 tab[look].gt_entry.gt_bytes += add;
4960 if (tab[look].gt_entry.gt_g_value == val)
4966 Elf32_gptab *new_tab;
4969 /* We need a new table entry. */
4970 new_tab = ((Elf32_gptab *)
4971 bfd_realloc ((PTR) tab,
4972 (c + 1) * sizeof (Elf32_gptab)));
4973 if (new_tab == NULL)
4979 tab[c].gt_entry.gt_g_value = val;
4980 tab[c].gt_entry.gt_bytes = add;
4982 /* Merge in the size for the next smallest -G
4983 value, since that will be implied by this new
4986 for (look = 1; look < c; look++)
4988 if (tab[look].gt_entry.gt_g_value < val
4990 || (tab[look].gt_entry.gt_g_value
4991 > tab[max].gt_entry.gt_g_value)))
4995 tab[c].gt_entry.gt_bytes +=
4996 tab[max].gt_entry.gt_bytes;
5001 last = int_gptab.gt_entry.gt_bytes;
5004 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5005 elf_link_input_bfd ignores this section. */
5006 input_section->flags &=~ SEC_HAS_CONTENTS;
5009 /* The table must be sorted by -G value. */
5011 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
5013 /* Swap out the table. */
5014 ext_tab = ((Elf32_External_gptab *)
5015 bfd_alloc (abfd, c * sizeof (Elf32_External_gptab)));
5016 if (ext_tab == NULL)
5022 for (i = 0; i < c; i++)
5023 bfd_mips_elf32_swap_gptab_out (abfd, tab + i, ext_tab + i);
5026 o->_raw_size = c * sizeof (Elf32_External_gptab);
5027 o->contents = (bfd_byte *) ext_tab;
5029 /* Skip this section later on (I don't think this currently
5030 matters, but someday it might). */
5031 o->link_order_head = (struct bfd_link_order *) NULL;
5035 /* Invoke the regular ELF backend linker to do all the work. */
5036 if (ABI_64_P (abfd))
5039 if (!bfd_elf64_bfd_final_link (abfd, info))
5046 else if (!bfd_elf32_bfd_final_link (abfd, info))
5049 /* Now write out the computed sections. */
5051 if (reginfo_sec != (asection *) NULL)
5053 Elf32_External_RegInfo ext;
5055 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
5056 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
5057 (file_ptr) 0, sizeof ext))
5061 if (mdebug_sec != (asection *) NULL)
5063 BFD_ASSERT (abfd->output_has_begun);
5064 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5066 mdebug_sec->filepos))
5069 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5072 if (gptab_data_sec != (asection *) NULL)
5074 if (! bfd_set_section_contents (abfd, gptab_data_sec,
5075 gptab_data_sec->contents,
5077 gptab_data_sec->_raw_size))
5081 if (gptab_bss_sec != (asection *) NULL)
5083 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
5084 gptab_bss_sec->contents,
5086 gptab_bss_sec->_raw_size))
5090 if (SGI_COMPAT (abfd))
5092 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5093 if (rtproc_sec != NULL)
5095 if (! bfd_set_section_contents (abfd, rtproc_sec,
5096 rtproc_sec->contents,
5098 rtproc_sec->_raw_size))
5106 /* Returns the GOT section for ABFD. */
5109 mips_elf_got_section (abfd)
5112 return bfd_get_section_by_name (abfd, ".got");
5115 /* Returns the GOT information associated with the link indicated by
5116 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5119 static struct mips_got_info *
5120 mips_elf_got_info (abfd, sgotp)
5125 struct mips_got_info *g;
5127 sgot = mips_elf_got_section (abfd);
5128 BFD_ASSERT (sgot != NULL);
5129 BFD_ASSERT (elf_section_data (sgot) != NULL);
5130 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5131 BFD_ASSERT (g != NULL);
5138 /* Return whether a relocation is against a local symbol. */
5141 mips_elf_local_relocation_p (input_bfd, relocation, local_sections)
5143 const Elf_Internal_Rela *relocation;
5144 asection **local_sections;
5146 unsigned long r_symndx;
5147 Elf_Internal_Shdr *symtab_hdr;
5149 r_symndx = ELF32_R_SYM (relocation->r_info);
5150 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5151 if (! elf_bad_symtab (input_bfd))
5152 return r_symndx < symtab_hdr->sh_info;
5155 /* The symbol table does not follow the rule that local symbols
5156 must come before globals. */
5157 return local_sections[r_symndx] != NULL;
5161 /* Sign-extend VALUE, which has the indicated number of BITS. */
5164 mips_elf_sign_extend (value, bits)
5168 if (value & ((bfd_vma)1 << (bits - 1)))
5169 /* VALUE is negative. */
5170 value |= ((bfd_vma) - 1) << bits;
5175 /* Return non-zero if the indicated VALUE has overflowed the maximum
5176 range expressable by a signed number with the indicated number of
5180 mips_elf_overflow_p (value, bits)
5184 bfd_signed_vma svalue = (bfd_signed_vma) value;
5186 if (svalue > (1 << (bits - 1)) - 1)
5187 /* The value is too big. */
5189 else if (svalue < -(1 << (bits - 1)))
5190 /* The value is too small. */
5197 /* Calculate the %high function. */
5200 mips_elf_high (value)
5203 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5206 /* Calculate the %higher function. */
5209 mips_elf_higher (value)
5210 bfd_vma value ATTRIBUTE_UNUSED;
5213 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5216 return (bfd_vma) -1;
5220 /* Calculate the %highest function. */
5223 mips_elf_highest (value)
5224 bfd_vma value ATTRIBUTE_UNUSED;
5227 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
5230 return (bfd_vma) -1;
5234 /* Returns the GOT index for the global symbol indicated by H. */
5237 mips_elf_global_got_index (abfd, h)
5239 struct elf_link_hash_entry *h;
5243 struct mips_got_info *g;
5245 g = mips_elf_got_info (abfd, &sgot);
5247 /* Once we determine the global GOT entry with the lowest dynamic
5248 symbol table index, we must put all dynamic symbols with greater
5249 indices into the GOT. That makes it easy to calculate the GOT
5251 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
5252 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
5253 * MIPS_ELF_GOT_SIZE (abfd));
5254 BFD_ASSERT (index < sgot->_raw_size);
5259 /* Returns the offset for the entry at the INDEXth position
5263 mips_elf_got_offset_from_index (dynobj, output_bfd, index)
5271 sgot = mips_elf_got_section (dynobj);
5272 gp = _bfd_get_gp_value (output_bfd);
5273 return (sgot->output_section->vma + sgot->output_offset + index -
5277 /* If H is a symbol that needs a global GOT entry, but has a dynamic
5278 symbol table index lower than any we've seen to date, record it for
5282 mips_elf_record_global_got_symbol (h, info, g)
5283 struct elf_link_hash_entry *h;
5284 struct bfd_link_info *info;
5285 struct mips_got_info *g ATTRIBUTE_UNUSED;
5287 /* A global symbol in the GOT must also be in the dynamic symbol
5289 if (h->dynindx == -1
5290 && !bfd_elf32_link_record_dynamic_symbol (info, h))
5293 /* If we've already marked this entry as need GOT space, we don't
5294 need to do it again. */
5295 if (h->got.offset != (bfd_vma) - 1)
5298 /* By setting this to a value other than -1, we are indicating that
5299 there needs to be a GOT entry for H. */
5305 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
5306 the dynamic symbols. */
5308 struct mips_elf_hash_sort_data
5310 /* The symbol in the global GOT with the lowest dynamic symbol table
5312 struct elf_link_hash_entry *low;
5313 /* The least dynamic symbol table index corresponding to a symbol
5314 with a GOT entry. */
5315 long min_got_dynindx;
5316 /* The greatest dynamic symbol table index not corresponding to a
5317 symbol without a GOT entry. */
5318 long max_non_got_dynindx;
5321 /* If H needs a GOT entry, assign it the highest available dynamic
5322 index. Otherwise, assign it the lowest available dynamic
5326 mips_elf_sort_hash_table_f (h, data)
5327 struct mips_elf_link_hash_entry *h;
5330 struct mips_elf_hash_sort_data *hsd
5331 = (struct mips_elf_hash_sort_data *) data;
5333 /* Symbols without dynamic symbol table entries aren't interesting
5335 if (h->root.dynindx == -1)
5338 if (h->root.got.offset != 0)
5339 h->root.dynindx = hsd->max_non_got_dynindx++;
5342 h->root.dynindx = --hsd->min_got_dynindx;
5343 hsd->low = (struct elf_link_hash_entry *) h;
5349 /* Sort the dynamic symbol table so that symbols that need GOT entries
5350 appear towards the end. This reduces the amount of GOT space
5351 required. MAX_LOCAL is used to set the number of local symbols
5352 known to be in the dynamic symbol table. During
5353 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
5354 section symbols are added and the count is higher. */
5357 mips_elf_sort_hash_table (info, max_local)
5358 struct bfd_link_info *info;
5359 unsigned long max_local;
5361 struct mips_elf_hash_sort_data hsd;
5362 struct mips_got_info *g;
5365 dynobj = elf_hash_table (info)->dynobj;
5368 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
5369 hsd.max_non_got_dynindx = max_local;
5370 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
5371 elf_hash_table (info)),
5372 mips_elf_sort_hash_table_f,
5375 /* There shoud have been enough room in the symbol table to
5376 accomodate both the GOT and non-GOT symbols. */
5377 BFD_ASSERT (hsd.min_got_dynindx == hsd.max_non_got_dynindx);
5379 /* Now we know which dynamic symbol has the lowest dynamic symbol
5380 table index in the GOT. */
5381 g = mips_elf_got_info (dynobj, NULL);
5382 g->global_gotsym = hsd.low;
5387 /* Create a local GOT entry for VALUE. Return the index of the entry,
5388 or -1 if it could not be created. */
5391 mips_elf_create_local_got_entry (abfd, g, sgot, value)
5393 struct mips_got_info *g;
5397 if (g->assigned_gotno >= g->local_gotno)
5399 /* We didn't allocate enough space in the GOT. */
5400 (*_bfd_error_handler)
5401 (_("not enough GOT space for local GOT entries"));
5402 bfd_set_error (bfd_error_bad_value);
5403 return (bfd_vma) -1;
5406 MIPS_ELF_PUT_WORD (abfd, value,
5408 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
5409 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
5412 /* Returns the GOT offset at which the indicated address can be found.
5413 If there is not yet a GOT entry for this value, create one. Returns
5414 -1 if no satisfactory GOT offset can be found. */
5417 mips_elf_local_got_index (abfd, info, value)
5419 struct bfd_link_info *info;
5423 struct mips_got_info *g;
5426 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5428 /* Look to see if we already have an appropriate entry. */
5429 for (entry = (sgot->contents
5430 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5431 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5432 entry += MIPS_ELF_GOT_SIZE (abfd))
5434 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
5435 if (address == value)
5436 return entry - sgot->contents;
5439 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
5442 /* Find a GOT entry that is within 32KB of the VALUE. These entries
5443 are supposed to be placed at small offsets in the GOT, i.e.,
5444 within 32KB of GP. Return the index into the GOT for this page,
5445 and store the offset from this entry to the desired address in
5446 OFFSETP, if it is non-NULL. */
5449 mips_elf_got_page (abfd, info, value, offsetp)
5451 struct bfd_link_info *info;
5456 struct mips_got_info *g;
5458 bfd_byte *last_entry;
5462 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5464 /* Look to see if we aleady have an appropriate entry. */
5465 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5466 for (entry = (sgot->contents
5467 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5468 entry != last_entry;
5469 entry += MIPS_ELF_GOT_SIZE (abfd))
5471 address = MIPS_ELF_GET_WORD (abfd, entry);
5473 if (!mips_elf_overflow_p (value - address, 16))
5475 /* This entry will serve as the page pointer. We can add a
5476 16-bit number to it to get the actual address. */
5477 index = entry - sgot->contents;
5482 /* If we didn't have an appropriate entry, we create one now. */
5483 if (entry == last_entry)
5484 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5488 address = MIPS_ELF_GET_WORD (abfd, entry);
5489 *offsetp = value - address;
5495 /* Find a GOT entry whose higher-order 16 bits are the same as those
5496 for value. Return the index into the GOT for this entry. */
5499 mips_elf_got16_entry (abfd, info, value)
5501 struct bfd_link_info *info;
5505 struct mips_got_info *g;
5507 bfd_byte *last_entry;
5511 /* Although the ABI says that it is "the high-order 16 bits" that we
5512 want, it is really the %high value. The complete value is
5513 calculated with a `addiu' of a LO16 relocation, just as with a
5515 value = mips_elf_high (value) << 16;
5516 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5518 /* Look to see if we already have an appropriate entry. */
5519 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5520 for (entry = (sgot->contents
5521 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5522 entry != last_entry;
5523 entry += MIPS_ELF_GOT_SIZE (abfd))
5525 address = MIPS_ELF_GET_WORD (abfd, entry);
5526 if ((address & 0xffff0000) == value)
5528 /* This entry has the right high-order 16 bits. */
5529 index = entry - sgot->contents;
5534 /* If we didn't have an appropriate entry, we create one now. */
5535 if (entry == last_entry)
5536 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5541 /* Returns the first relocation of type r_type found, beginning with
5542 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5544 static const Elf_Internal_Rela *
5545 mips_elf_next_relocation (r_type, relocation, relend)
5546 unsigned int r_type;
5547 const Elf_Internal_Rela *relocation;
5548 const Elf_Internal_Rela *relend;
5550 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
5551 immediately following. However, for the IRIX6 ABI, the next
5552 relocation may be a composed relocation consisting of several
5553 relocations for the same address. In that case, the R_MIPS_LO16
5554 relocation may occur as one of these. We permit a similar
5555 extension in general, as that is useful for GCC. */
5556 while (relocation < relend)
5558 if (ELF32_R_TYPE (relocation->r_info) == r_type)
5564 /* We didn't find it. */
5565 bfd_set_error (bfd_error_bad_value);
5569 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5570 is the original relocation, which is now being transformed into a
5571 dyanmic relocation. The ADDENDP is adjusted if necessary; the
5572 caller should store the result in place of the original addend. */
5575 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
5576 symbol, addendp, input_section)
5578 struct bfd_link_info *info;
5579 const Elf_Internal_Rela *rel;
5580 struct mips_elf_link_hash_entry *h;
5584 asection *input_section;
5586 Elf_Internal_Rel outrel;
5592 r_type = ELF32_R_TYPE (rel->r_info);
5593 dynobj = elf_hash_table (info)->dynobj;
5595 = bfd_get_section_by_name (dynobj,
5596 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
5597 BFD_ASSERT (sreloc != NULL);
5601 /* We begin by assuming that the offset for the dynamic relocation
5602 is the same as for the original relocation. We'll adjust this
5603 later to reflect the correct output offsets. */
5604 if (elf_section_data (input_section)->stab_info == NULL)
5605 outrel.r_offset = rel->r_offset;
5608 /* Except that in a stab section things are more complex.
5609 Because we compress stab information, the offset given in the
5610 relocation may not be the one we want; we must let the stabs
5611 machinery tell us the offset. */
5613 = (_bfd_stab_section_offset
5614 (output_bfd, &elf_hash_table (info)->stab_info,
5616 &elf_section_data (input_section)->stab_info,
5618 /* If we didn't need the relocation at all, this value will be
5620 if (outrel.r_offset == (bfd_vma) -1)
5624 /* If we've decided to skip this relocation, just output an emtpy
5625 record. Note that R_MIPS_NONE == 0, so that this call to memset
5626 is a way of setting R_TYPE to R_MIPS_NONE. */
5628 memset (&outrel, 0, sizeof (outrel));
5632 bfd_vma section_offset;
5634 /* We must now calculate the dynamic symbol table index to use
5635 in the relocation. */
5637 && (! info->symbolic || (h->root.elf_link_hash_flags
5638 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5640 indx = h->root.dynindx;
5641 BFD_ASSERT (indx != -1);
5645 if (sec != NULL && bfd_is_abs_section (sec))
5647 else if (sec == NULL || sec->owner == NULL)
5649 bfd_set_error (bfd_error_bad_value);
5654 indx = elf_section_data (sec->output_section)->dynindx;
5659 /* Figure out how far the target of the relocation is from
5660 the beginning of its section. */
5661 section_offset = symbol - sec->output_section->vma;
5662 /* The relocation we're building is section-relative.
5663 Therefore, the original addend must be adjusted by the
5665 *addendp += symbol - sec->output_section->vma;
5666 /* Now, the relocation is just against the section. */
5667 symbol = sec->output_section->vma;
5670 /* If the relocation was previously an absolute relocation, we
5671 must adjust it by the value we give it in the dynamic symbol
5673 if (r_type != R_MIPS_REL32)
5676 /* The relocation is always an REL32 relocation because we don't
5677 know where the shared library will wind up at load-time. */
5678 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
5680 /* Adjust the output offset of the relocation to reference the
5681 correct location in the output file. */
5682 outrel.r_offset += (input_section->output_section->vma
5683 + input_section->output_offset);
5686 /* Put the relocation back out. We have to use the special
5687 relocation outputter in the 64-bit case since the 64-bit
5688 relocation format is non-standard. */
5689 if (ABI_64_P (output_bfd))
5691 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5692 (output_bfd, &outrel,
5694 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5697 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
5698 (((Elf32_External_Rel *)
5700 + sreloc->reloc_count));
5702 /* Record the index of the first relocation referencing H. This
5703 information is later emitted in the .msym section. */
5705 && (h->min_dyn_reloc_index == 0
5706 || sreloc->reloc_count < h->min_dyn_reloc_index))
5707 h->min_dyn_reloc_index = sreloc->reloc_count;
5709 /* We've now added another relocation. */
5710 ++sreloc->reloc_count;
5712 /* Make sure the output section is writable. The dynamic linker
5713 will be writing to it. */
5714 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5717 /* On IRIX5, make an entry of compact relocation info. */
5718 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
5720 asection* scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5725 Elf32_crinfo cptrel;
5727 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5728 cptrel.vaddr = (rel->r_offset
5729 + input_section->output_section->vma
5730 + input_section->output_offset);
5731 if (r_type == R_MIPS_REL32)
5732 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5734 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5735 mips_elf_set_cr_dist2to (cptrel, 0);
5736 cptrel.konst = *addendp;
5738 cr = (scpt->contents
5739 + sizeof (Elf32_External_compact_rel));
5740 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5741 ((Elf32_External_crinfo *) cr
5742 + scpt->reloc_count));
5743 ++scpt->reloc_count;
5750 /* Calculate the value produced by the RELOCATION (which comes from
5751 the INPUT_BFD). The ADDEND is the addend to use for this
5752 RELOCATION; RELOCATION->R_ADDEND is ignored.
5754 The result of the relocation calculation is stored in VALUEP.
5755 REQUIRE_JALXP indicates whether or not the opcode used with this
5756 relocation must be JALX.
5758 This function returns bfd_reloc_continue if the caller need take no
5759 further action regarding this relocation, bfd_reloc_notsupported if
5760 something goes dramatically wrong, bfd_reloc_overflow if an
5761 overflow occurs, and bfd_reloc_ok to indicate success. */
5763 static bfd_reloc_status_type
5764 mips_elf_calculate_relocation (abfd,
5778 asection *input_section;
5779 struct bfd_link_info *info;
5780 const Elf_Internal_Rela *relocation;
5782 reloc_howto_type *howto;
5783 Elf_Internal_Sym *local_syms;
5784 asection **local_sections;
5787 boolean *require_jalxp;
5789 /* The eventual value we will return. */
5791 /* The address of the symbol against which the relocation is
5794 /* The final GP value to be used for the relocatable, executable, or
5795 shared object file being produced. */
5796 bfd_vma gp = (bfd_vma) - 1;
5797 /* The place (section offset or address) of the storage unit being
5800 /* The value of GP used to create the relocatable object. */
5801 bfd_vma gp0 = (bfd_vma) - 1;
5802 /* The offset into the global offset table at which the address of
5803 the relocation entry symbol, adjusted by the addend, resides
5804 during execution. */
5805 bfd_vma g = (bfd_vma) - 1;
5806 /* The section in which the symbol referenced by the relocation is
5808 asection *sec = NULL;
5809 struct mips_elf_link_hash_entry* h = NULL;
5810 /* True if the symbol referred to by this relocation is a local
5813 /* True if the symbol referred to by this relocation is "_gp_disp". */
5814 boolean gp_disp_p = false;
5815 Elf_Internal_Shdr *symtab_hdr;
5817 unsigned long r_symndx;
5819 /* True if overflow occurred during the calculation of the
5820 relocation value. */
5821 boolean overflowed_p;
5822 /* True if this relocation refers to a MIPS16 function. */
5823 boolean target_is_16_bit_code_p = false;
5825 /* Parse the relocation. */
5826 r_symndx = ELF32_R_SYM (relocation->r_info);
5827 r_type = ELF32_R_TYPE (relocation->r_info);
5828 p = (input_section->output_section->vma
5829 + input_section->output_offset
5830 + relocation->r_offset);
5832 /* Assume that there will be no overflow. */
5833 overflowed_p = false;
5835 /* Figure out whether or not the symbol is local, and get the offset
5836 used in the array of hash table entries. */
5837 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5838 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5840 if (! elf_bad_symtab (input_bfd))
5841 extsymoff = symtab_hdr->sh_info;
5844 /* The symbol table does not follow the rule that local symbols
5845 must come before globals. */
5849 /* Figure out the value of the symbol. */
5852 Elf_Internal_Sym *sym;
5854 sym = local_syms + r_symndx;
5855 sec = local_sections[r_symndx];
5857 symbol = sec->output_section->vma + sec->output_offset;
5858 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5859 symbol += sym->st_value;
5861 /* MIPS16 text labels should be treated as odd. */
5862 if (sym->st_other == STO_MIPS16)
5865 /* Record the name of this symbol, for our caller. */
5866 *namep = bfd_elf_string_from_elf_section (input_bfd,
5867 symtab_hdr->sh_link,
5870 *namep = bfd_section_name (input_bfd, sec);
5872 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
5876 /* For global symbols we look up the symbol in the hash-table. */
5877 h = ((struct mips_elf_link_hash_entry *)
5878 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5879 /* Find the real hash-table entry for this symbol. */
5880 while (h->root.type == bfd_link_hash_indirect
5881 || h->root.type == bfd_link_hash_warning)
5882 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5884 /* Record the name of this symbol, for our caller. */
5885 *namep = h->root.root.root.string;
5887 /* See if this is the special _gp_disp symbol. Note that such a
5888 symbol must always be a global symbol. */
5889 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
5891 /* Relocations against _gp_disp are permitted only with
5892 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5893 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
5894 return bfd_reloc_notsupported;
5898 /* If this symbol is defined, calculate its address. Note that
5899 _gp_disp is a magic symbol, always implicitly defined by the
5900 linker, so it's inappropriate to check to see whether or not
5902 else if ((h->root.root.type == bfd_link_hash_defined
5903 || h->root.root.type == bfd_link_hash_defweak)
5904 && h->root.root.u.def.section)
5906 sec = h->root.root.u.def.section;
5907 if (sec->output_section)
5908 symbol = (h->root.root.u.def.value
5909 + sec->output_section->vma
5910 + sec->output_offset);
5912 symbol = h->root.root.u.def.value;
5914 else if (h->root.root.type == bfd_link_hash_undefweak)
5915 /* We allow relocations against undefined weak symbols, giving
5916 it the value zero, so that you can undefined weak functions
5917 and check to see if they exist by looking at their
5920 else if (info->shared && !info->symbolic && !info->no_undefined
5921 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5923 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0)
5925 /* If this is a dynamic link, we should have created a
5926 _DYNAMIC_LINK symbol in mips_elf_create_dynamic_sections.
5927 Otherwise, we should define the symbol with a value of 0.
5928 FIXME: It should probably get into the symbol table
5930 BFD_ASSERT (! info->shared);
5931 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5936 if (! ((*info->callbacks->undefined_symbol)
5937 (info, h->root.root.root.string, input_bfd,
5938 input_section, relocation->r_offset,
5939 (!info->shared || info->no_undefined
5940 || ELF_ST_VISIBILITY (h->root.other)))))
5941 return bfd_reloc_undefined;
5945 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
5948 /* If this is a 32-bit call to a 16-bit function with a stub, we
5949 need to redirect the call to the stub, unless we're already *in*
5951 if (r_type != R_MIPS16_26 && !info->relocateable
5952 && ((h != NULL && h->fn_stub != NULL)
5953 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
5954 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5955 && !mips_elf_stub_section_p (input_bfd, input_section))
5957 /* This is a 32-bit call to a 16-bit function. We should
5958 have already noticed that we were going to need the
5961 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5964 BFD_ASSERT (h->need_fn_stub);
5968 symbol = sec->output_section->vma + sec->output_offset;
5970 /* If this is a 16-bit call to a 32-bit function with a stub, we
5971 need to redirect the call to the stub. */
5972 else if (r_type == R_MIPS16_26 && !info->relocateable
5974 && (h->call_stub != NULL || h->call_fp_stub != NULL)
5975 && !target_is_16_bit_code_p)
5977 /* If both call_stub and call_fp_stub are defined, we can figure
5978 out which one to use by seeing which one appears in the input
5980 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5985 for (o = input_bfd->sections; o != NULL; o = o->next)
5987 if (strncmp (bfd_get_section_name (input_bfd, o),
5988 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5990 sec = h->call_fp_stub;
5997 else if (h->call_stub != NULL)
6000 sec = h->call_fp_stub;
6002 BFD_ASSERT (sec->_raw_size > 0);
6003 symbol = sec->output_section->vma + sec->output_offset;
6006 /* Calls from 16-bit code to 32-bit code and vice versa require the
6007 special jalx instruction. */
6008 *require_jalxp = (!info->relocateable
6009 && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p));
6011 /* If we haven't already determined the GOT offset, or the GP value,
6012 and we're going to need it, get it now. */
6017 case R_MIPS_GOT_DISP:
6018 case R_MIPS_GOT_HI16:
6019 case R_MIPS_CALL_HI16:
6020 case R_MIPS_GOT_LO16:
6021 case R_MIPS_CALL_LO16:
6022 /* Find the index into the GOT where this value is located. */
6025 BFD_ASSERT (addend == 0);
6026 g = mips_elf_global_got_index
6027 (elf_hash_table (info)->dynobj,
6028 (struct elf_link_hash_entry*) h);
6030 else if (r_type == R_MIPS_GOT16)
6031 /* There's no need to create a local GOT entry here; the
6032 calculation for a local GOT16 entry does not involve G. */
6036 g = mips_elf_local_got_index (abfd, info, symbol + addend);
6037 if (g == (bfd_vma) -1)
6041 /* Convert GOT indices to actual offsets. */
6042 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6048 case R_MIPS_GPREL16:
6049 case R_MIPS_GPREL32:
6050 case R_MIPS_LITERAL:
6051 gp0 = _bfd_get_gp_value (input_bfd);
6052 gp = _bfd_get_gp_value (abfd);
6059 /* Figure out what kind of relocation is being performed. */
6063 return bfd_reloc_continue;
6066 value = symbol + mips_elf_sign_extend (addend, 16);
6067 overflowed_p = mips_elf_overflow_p (value, 16);
6074 || (elf_hash_table (info)->dynamic_sections_created
6076 && ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
6078 && (input_section->flags & SEC_ALLOC) != 0)
6080 /* If we're creating a shared library, or this relocation is
6081 against a symbol in a shared library, then we can't know
6082 where the symbol will end up. So, we create a relocation
6083 record in the output, and leave the job up to the dynamic
6086 if (!mips_elf_create_dynamic_relocation (abfd,
6098 if (r_type != R_MIPS_REL32)
6099 value = symbol + addend;
6103 value &= howto->dst_mask;
6108 case R_MIPS_GNU_REL_LO16:
6109 value = symbol + addend - p;
6110 value &= howto->dst_mask;
6113 case R_MIPS_GNU_REL16_S2:
6114 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
6115 overflowed_p = mips_elf_overflow_p (value, 18);
6116 value = (value >> 2) & howto->dst_mask;
6119 case R_MIPS_GNU_REL_HI16:
6120 value = mips_elf_high (addend + symbol - p);
6121 value &= howto->dst_mask;
6125 /* The calculation for R_MIPS_26 is just the same as for an
6126 R_MIPS_26. It's only the storage of the relocated field into
6127 the output file that's different. That's handled in
6128 mips_elf_perform_relocation. So, we just fall through to the
6129 R_MIPS_26 case here. */
6132 value = (((addend << 2) | (p & 0xf0000000)) + symbol) >> 2;
6134 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6135 value &= howto->dst_mask;
6141 value = mips_elf_high (addend + symbol);
6142 value &= howto->dst_mask;
6146 value = mips_elf_high (addend + gp - p);
6147 overflowed_p = mips_elf_overflow_p (value, 16);
6153 value = (symbol + addend) & howto->dst_mask;
6156 value = addend + gp - p + 4;
6157 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6158 for overflow. But, on, say, Irix 5, relocations against
6159 _gp_disp are normally generated from the .cpload
6160 pseudo-op. It generates code that normally looks like
6163 lui $gp,%hi(_gp_disp)
6164 addiu $gp,$gp,%lo(_gp_disp)
6167 Here $t9 holds the address of the function being called,
6168 as required by the MIPS ELF ABI. The R_MIPS_LO16
6169 relocation can easily overflow in this situation, but the
6170 R_MIPS_HI16 relocation will handle the overflow.
6171 Therefore, we consider this a bug in the MIPS ABI, and do
6172 not check for overflow here. */
6176 case R_MIPS_LITERAL:
6177 /* Because we don't merge literal sections, we can handle this
6178 just like R_MIPS_GPREL16. In the long run, we should merge
6179 shared literals, and then we will need to additional work
6184 case R_MIPS16_GPREL:
6185 /* The R_MIPS16_GPREL performs the same calculation as
6186 R_MIPS_GPREL16, but stores the relocated bits in a different
6187 order. We don't need to do anything special here; the
6188 differences are handled in mips_elf_perform_relocation. */
6189 case R_MIPS_GPREL16:
6191 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6193 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6194 overflowed_p = mips_elf_overflow_p (value, 16);
6200 value = mips_elf_got16_entry (abfd, info, symbol + addend);
6201 if (value == (bfd_vma) -1)
6204 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6207 overflowed_p = mips_elf_overflow_p (value, 16);
6214 case R_MIPS_GOT_DISP:
6216 overflowed_p = mips_elf_overflow_p (value, 16);
6219 case R_MIPS_GPREL32:
6220 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
6224 value = mips_elf_sign_extend (addend, 16) + symbol - p;
6225 value = (bfd_vma) ((bfd_signed_vma) value / 4);
6226 overflowed_p = mips_elf_overflow_p (value, 16);
6229 case R_MIPS_GOT_HI16:
6230 case R_MIPS_CALL_HI16:
6231 /* We're allowed to handle these two relocations identically.
6232 The dynamic linker is allowed to handle the CALL relocations
6233 differently by creating a lazy evaluation stub. */
6235 value = mips_elf_high (value);
6236 value &= howto->dst_mask;
6239 case R_MIPS_GOT_LO16:
6240 case R_MIPS_CALL_LO16:
6241 value = g & howto->dst_mask;
6244 case R_MIPS_GOT_PAGE:
6245 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
6246 if (value == (bfd_vma) -1)
6248 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6251 overflowed_p = mips_elf_overflow_p (value, 16);
6254 case R_MIPS_GOT_OFST:
6255 mips_elf_got_page (abfd, info, symbol + addend, &value);
6256 overflowed_p = mips_elf_overflow_p (value, 16);
6260 value = symbol - addend;
6261 value &= howto->dst_mask;
6265 value = mips_elf_higher (addend + symbol);
6266 value &= howto->dst_mask;
6269 case R_MIPS_HIGHEST:
6270 value = mips_elf_highest (addend + symbol);
6271 value &= howto->dst_mask;
6274 case R_MIPS_SCN_DISP:
6275 value = symbol + addend - sec->output_offset;
6276 value &= howto->dst_mask;
6281 /* Both of these may be ignored. R_MIPS_JALR is an optimization
6282 hint; we could improve performance by honoring that hint. */
6283 return bfd_reloc_continue;
6285 case R_MIPS_GNU_VTINHERIT:
6286 case R_MIPS_GNU_VTENTRY:
6287 /* We don't do anything with these at present. */
6288 return bfd_reloc_continue;
6291 /* An unrecognized relocation type. */
6292 return bfd_reloc_notsupported;
6295 /* Store the VALUE for our caller. */
6297 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6300 /* Obtain the field relocated by RELOCATION. */
6303 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
6304 reloc_howto_type *howto;
6305 const Elf_Internal_Rela *relocation;
6310 bfd_byte *location = contents + relocation->r_offset;
6312 /* Obtain the bytes. */
6313 x = bfd_get (8 * bfd_get_reloc_size (howto), input_bfd, location);
6315 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
6316 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
6317 && bfd_little_endian (input_bfd))
6318 /* The two 16-bit words will be reversed on a little-endian
6319 system. See mips_elf_perform_relocation for more details. */
6320 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6325 /* It has been determined that the result of the RELOCATION is the
6326 VALUE. Use HOWTO to place VALUE into the output file at the
6327 appropriate position. The SECTION is the section to which the
6328 relocation applies. If REQUIRE_JALX is true, then the opcode used
6329 for the relocation must be either JAL or JALX, and it is
6330 unconditionally converted to JALX.
6332 Returns false if anything goes wrong. */
6335 mips_elf_perform_relocation (info, howto, relocation, value,
6336 input_bfd, input_section,
6337 contents, require_jalx)
6338 struct bfd_link_info *info;
6339 reloc_howto_type *howto;
6340 const Elf_Internal_Rela *relocation;
6343 asection *input_section;
6345 boolean require_jalx;
6349 int r_type = ELF32_R_TYPE (relocation->r_info);
6351 /* Figure out where the relocation is occurring. */
6352 location = contents + relocation->r_offset;
6354 /* Obtain the current value. */
6355 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6357 /* Clear the field we are setting. */
6358 x &= ~howto->dst_mask;
6360 /* If this is the R_MIPS16_26 relocation, we must store the
6361 value in a funny way. */
6362 if (r_type == R_MIPS16_26)
6364 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
6365 Most mips16 instructions are 16 bits, but these instructions
6368 The format of these instructions is:
6370 +--------------+--------------------------------+
6371 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
6372 +--------------+--------------------------------+
6374 +-----------------------------------------------+
6376 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
6377 Note that the immediate value in the first word is swapped.
6379 When producing a relocateable object file, R_MIPS16_26 is
6380 handled mostly like R_MIPS_26. In particular, the addend is
6381 stored as a straight 26-bit value in a 32-bit instruction.
6382 (gas makes life simpler for itself by never adjusting a
6383 R_MIPS16_26 reloc to be against a section, so the addend is
6384 always zero). However, the 32 bit instruction is stored as 2
6385 16-bit values, rather than a single 32-bit value. In a
6386 big-endian file, the result is the same; in a little-endian
6387 file, the two 16-bit halves of the 32 bit value are swapped.
6388 This is so that a disassembler can recognize the jal
6391 When doing a final link, R_MIPS16_26 is treated as a 32 bit
6392 instruction stored as two 16-bit values. The addend A is the
6393 contents of the targ26 field. The calculation is the same as
6394 R_MIPS_26. When storing the calculated value, reorder the
6395 immediate value as shown above, and don't forget to store the
6396 value as two 16-bit values.
6398 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
6402 +--------+----------------------+
6406 +--------+----------------------+
6409 +----------+------+-------------+
6413 +----------+--------------------+
6414 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
6415 ((sub1 << 16) | sub2)).
6417 When producing a relocateable object file, the calculation is
6418 (((A < 2) | (P & 0xf0000000) + S) >> 2)
6419 When producing a fully linked file, the calculation is
6420 let R = (((A < 2) | (P & 0xf0000000) + S) >> 2)
6421 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
6423 if (!info->relocateable)
6424 /* Shuffle the bits according to the formula above. */
6425 value = (((value & 0x1f0000) << 5)
6426 | ((value & 0x3e00000) >> 5)
6427 | (value & 0xffff));
6430 else if (r_type == R_MIPS16_GPREL)
6432 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
6433 mode. A typical instruction will have a format like this:
6435 +--------------+--------------------------------+
6436 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
6437 +--------------+--------------------------------+
6438 ! Major ! rx ! ry ! Imm 4:0 !
6439 +--------------+--------------------------------+
6441 EXTEND is the five bit value 11110. Major is the instruction
6444 This is handled exactly like R_MIPS_GPREL16, except that the
6445 addend is retrieved and stored as shown in this diagram; that
6446 is, the Imm fields above replace the V-rel16 field.
6448 All we need to do here is shuffle the bits appropriately. As
6449 above, the two 16-bit halves must be swapped on a
6450 little-endian system. */
6451 value = (((value & 0x7e0) << 16)
6452 | ((value & 0xf800) << 5)
6456 /* Set the field. */
6457 x |= (value & howto->dst_mask);
6459 /* If required, turn JAL into JALX. */
6463 bfd_vma opcode = x >> 26;
6464 bfd_vma jalx_opcode;
6466 /* Check to see if the opcode is already JAL or JALX. */
6467 if (r_type == R_MIPS16_26)
6469 ok = ((opcode == 0x6) || (opcode == 0x7));
6474 ok = ((opcode == 0x3) || (opcode == 0x1d));
6478 /* If the opcode is not JAL or JALX, there's a problem. */
6481 (*_bfd_error_handler)
6482 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
6483 bfd_get_filename (input_bfd),
6484 input_section->name,
6485 (unsigned long) relocation->r_offset);
6486 bfd_set_error (bfd_error_bad_value);
6490 /* Make this the JALX opcode. */
6491 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6494 /* Swap the high- and low-order 16 bits on little-endian systems
6495 when doing a MIPS16 relocation. */
6496 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
6497 && bfd_little_endian (input_bfd))
6498 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6500 /* Put the value into the output. */
6501 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6505 /* Returns true if SECTION is a MIPS16 stub section. */
6508 mips_elf_stub_section_p (abfd, section)
6509 bfd *abfd ATTRIBUTE_UNUSED;
6512 const char *name = bfd_get_section_name (abfd, section);
6514 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
6515 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6516 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
6519 /* Relocate a MIPS ELF section. */
6522 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6523 contents, relocs, local_syms, local_sections)
6525 struct bfd_link_info *info;
6527 asection *input_section;
6529 Elf_Internal_Rela *relocs;
6530 Elf_Internal_Sym *local_syms;
6531 asection **local_sections;
6533 Elf_Internal_Rela *rel;
6534 const Elf_Internal_Rela *relend;
6536 boolean use_saved_addend_p = false;
6537 struct elf_backend_data *bed;
6539 bed = get_elf_backend_data (output_bfd);
6540 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6541 for (rel = relocs; rel < relend; ++rel)
6545 reloc_howto_type *howto;
6546 boolean require_jalx;
6547 /* True if the relocation is a RELA relocation, rather than a
6549 boolean rela_relocation_p = true;
6550 int r_type = ELF32_R_TYPE (rel->r_info);
6552 /* Find the relocation howto for this relocation. */
6553 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6555 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6556 64-bit code, but make sure all their addresses are in the
6557 lowermost or uppermost 32-bit section of the 64-bit address
6558 space. Thus, when they use an R_MIPS_64 they mean what is
6559 usually meant by R_MIPS_32, with the exception that the
6560 stored value is sign-extended to 64 bits. */
6561 howto = elf_mips_howto_table + R_MIPS_32;
6563 /* On big-endian systems, we need to lie about the position
6565 if (bfd_big_endian (input_bfd))
6569 howto = mips_rtype_to_howto (r_type);
6571 if (!use_saved_addend_p)
6573 Elf_Internal_Shdr *rel_hdr;
6575 /* If these relocations were originally of the REL variety,
6576 we must pull the addend out of the field that will be
6577 relocated. Otherwise, we simply use the contents of the
6578 RELA relocation. To determine which flavor or relocation
6579 this is, we depend on the fact that the INPUT_SECTION's
6580 REL_HDR is read before its REL_HDR2. */
6581 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6582 if ((size_t) (rel - relocs)
6583 >= (rel_hdr->sh_size / rel_hdr->sh_entsize
6584 * bed->s->int_rels_per_ext_rel))
6585 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6586 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6588 /* Note that this is a REL relocation. */
6589 rela_relocation_p = false;
6591 /* Get the addend, which is stored in the input file. */
6592 addend = mips_elf_obtain_contents (howto,
6596 addend &= howto->src_mask;
6598 /* For some kinds of relocations, the ADDEND is a
6599 combination of the addend stored in two different
6601 if (r_type == R_MIPS_HI16
6602 || r_type == R_MIPS_GNU_REL_HI16
6603 || (r_type == R_MIPS_GOT16
6604 && mips_elf_local_relocation_p (input_bfd, rel,
6608 const Elf_Internal_Rela *lo16_relocation;
6609 reloc_howto_type *lo16_howto;
6612 /* The combined value is the sum of the HI16 addend,
6613 left-shifted by sixteen bits, and the LO16
6614 addend, sign extended. (Usually, the code does
6615 a `lui' of the HI16 value, and then an `addiu' of
6618 Scan ahead to find a matching LO16 relocation. */
6619 if (r_type == R_MIPS_GNU_REL_HI16)
6620 lo = R_MIPS_GNU_REL_LO16;
6624 = mips_elf_next_relocation (lo, rel, relend);
6625 if (lo16_relocation == NULL)
6628 /* Obtain the addend kept there. */
6629 lo16_howto = mips_rtype_to_howto (lo);
6630 l = mips_elf_obtain_contents (lo16_howto,
6632 input_bfd, contents);
6633 l &= lo16_howto->src_mask;
6634 l = mips_elf_sign_extend (l, 16);
6638 /* Compute the combined addend. */
6641 else if (r_type == R_MIPS16_GPREL)
6643 /* The addend is scrambled in the object file. See
6644 mips_elf_perform_relocation for details on the
6646 addend = (((addend & 0x1f0000) >> 5)
6647 | ((addend & 0x7e00000) >> 16)
6652 addend = rel->r_addend;
6655 if (info->relocateable)
6657 Elf_Internal_Sym *sym;
6658 unsigned long r_symndx;
6660 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
6661 && bfd_big_endian (input_bfd))
6664 /* Since we're just relocating, all we need to do is copy
6665 the relocations back out to the object file, unless
6666 they're against a section symbol, in which case we need
6667 to adjust by the section offset, or unless they're GP
6668 relative in which case we need to adjust by the amount
6669 that we're adjusting GP in this relocateable object. */
6671 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections))
6672 /* There's nothing to do for non-local relocations. */
6675 if (r_type == R_MIPS16_GPREL
6676 || r_type == R_MIPS_GPREL16
6677 || r_type == R_MIPS_GPREL32
6678 || r_type == R_MIPS_LITERAL)
6679 addend -= (_bfd_get_gp_value (output_bfd)
6680 - _bfd_get_gp_value (input_bfd));
6681 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6682 || r_type == R_MIPS_GNU_REL16_S2)
6683 /* The addend is stored without its two least
6684 significant bits (which are always zero.) In a
6685 non-relocateable link, calculate_relocation will do
6686 this shift; here, we must do it ourselves. */
6689 r_symndx = ELF32_R_SYM (rel->r_info);
6690 sym = local_syms + r_symndx;
6691 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6692 /* Adjust the addend appropriately. */
6693 addend += local_sections[r_symndx]->output_offset;
6695 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6696 then we only want to write out the high-order 16 bits.
6697 The subsequent R_MIPS_LO16 will handle the low-order bits. */
6698 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6699 || r_type == R_MIPS_GNU_REL_HI16)
6700 addend = mips_elf_high (addend);
6701 /* If the relocation is for an R_MIPS_26 relocation, then
6702 the two low-order bits are not stored in the object file;
6703 they are implicitly zero. */
6704 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6705 || r_type == R_MIPS_GNU_REL16_S2)
6708 if (rela_relocation_p)
6709 /* If this is a RELA relocation, just update the addend.
6710 We have to cast away constness for REL. */
6711 rel->r_addend = addend;
6714 /* Otherwise, we have to write the value back out. Note
6715 that we use the source mask, rather than the
6716 destination mask because the place to which we are
6717 writing will be source of the addend in the final
6719 addend &= howto->src_mask;
6721 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6722 /* See the comment above about using R_MIPS_64 in the 32-bit
6723 ABI. Here, we need to update the addend. It would be
6724 possible to get away with just using the R_MIPS_32 reloc
6725 but for endianness. */
6731 if (addend & ((bfd_vma) 1 << 31))
6732 sign_bits = ((bfd_vma) 1 << 32) - 1;
6736 /* If we don't know that we have a 64-bit type,
6737 do two separate stores. */
6738 if (bfd_big_endian (input_bfd))
6740 /* Store the sign-bits (which are most significant)
6742 low_bits = sign_bits;
6748 high_bits = sign_bits;
6750 bfd_put_32 (input_bfd, low_bits,
6751 contents + rel->r_offset);
6752 bfd_put_32 (input_bfd, high_bits,
6753 contents + rel->r_offset + 4);
6757 if (!mips_elf_perform_relocation (info, howto, rel, addend,
6758 input_bfd, input_section,
6763 /* Go on to the next relocation. */
6767 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6768 relocations for the same offset. In that case we are
6769 supposed to treat the output of each relocation as the addend
6771 if (rel + 1 < relend
6772 && rel->r_offset == rel[1].r_offset
6773 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
6774 use_saved_addend_p = true;
6776 use_saved_addend_p = false;
6778 /* Figure out what value we are supposed to relocate. */
6779 switch (mips_elf_calculate_relocation (output_bfd,
6792 case bfd_reloc_continue:
6793 /* There's nothing to do. */
6796 case bfd_reloc_undefined:
6797 /* mips_elf_calculate_relocation already called the
6798 undefined_symbol callback. There's no real point in
6799 trying to perform the relocation at this point, so we
6800 just skip ahead to the next relocation. */
6803 case bfd_reloc_notsupported:
6807 case bfd_reloc_overflow:
6808 if (use_saved_addend_p)
6809 /* Ignore overflow until we reach the last relocation for
6810 a given location. */
6814 BFD_ASSERT (name != NULL);
6815 if (! ((*info->callbacks->reloc_overflow)
6816 (info, name, howto->name, (bfd_vma) 0,
6817 input_bfd, input_section, rel->r_offset)))
6830 /* If we've got another relocation for the address, keep going
6831 until we reach the last one. */
6832 if (use_saved_addend_p)
6838 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6839 /* See the comment above about using R_MIPS_64 in the 32-bit
6840 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6841 that calculated the right value. Now, however, we
6842 sign-extend the 32-bit result to 64-bits, and store it as a
6843 64-bit value. We are especially generous here in that we
6844 go to extreme lengths to support this usage on systems with
6845 only a 32-bit VMA. */
6851 if (value & ((bfd_vma) 1 << 31))
6852 sign_bits = ((bfd_vma) 1 << 32) - 1;
6856 /* If we don't know that we have a 64-bit type,
6857 do two separate stores. */
6858 if (bfd_big_endian (input_bfd))
6860 /* Undo what we did above. */
6862 /* Store the sign-bits (which are most significant)
6864 low_bits = sign_bits;
6870 high_bits = sign_bits;
6872 bfd_put_32 (input_bfd, low_bits,
6873 contents + rel->r_offset);
6874 bfd_put_32 (input_bfd, high_bits,
6875 contents + rel->r_offset + 4);
6879 /* Actually perform the relocation. */
6880 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
6881 input_section, contents,
6889 /* This hook function is called before the linker writes out a global
6890 symbol. We mark symbols as small common if appropriate. This is
6891 also where we undo the increment of the value for a mips16 symbol. */
6895 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
6896 bfd *abfd ATTRIBUTE_UNUSED;
6897 struct bfd_link_info *info ATTRIBUTE_UNUSED;
6898 const char *name ATTRIBUTE_UNUSED;
6899 Elf_Internal_Sym *sym;
6900 asection *input_sec;
6902 /* If we see a common symbol, which implies a relocatable link, then
6903 if a symbol was small common in an input file, mark it as small
6904 common in the output file. */
6905 if (sym->st_shndx == SHN_COMMON
6906 && strcmp (input_sec->name, ".scommon") == 0)
6907 sym->st_shndx = SHN_MIPS_SCOMMON;
6909 if (sym->st_other == STO_MIPS16
6910 && (sym->st_value & 1) != 0)
6916 /* Functions for the dynamic linker. */
6918 /* The name of the dynamic interpreter. This is put in the .interp
6921 #define ELF_DYNAMIC_INTERPRETER(abfd) \
6922 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
6923 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
6924 : "/usr/lib/libc.so.1")
6926 /* Create dynamic sections when linking against a dynamic object. */
6929 _bfd_mips_elf_create_dynamic_sections (abfd, info)
6931 struct bfd_link_info *info;
6933 struct elf_link_hash_entry *h;
6935 register asection *s;
6936 const char * const *namep;
6938 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6939 | SEC_LINKER_CREATED | SEC_READONLY);
6941 /* Mips ABI requests the .dynamic section to be read only. */
6942 s = bfd_get_section_by_name (abfd, ".dynamic");
6945 if (! bfd_set_section_flags (abfd, s, flags))
6949 /* We need to create .got section. */
6950 if (! mips_elf_create_got_section (abfd, info))
6953 /* Create the .msym section on IRIX6. It is used by the dynamic
6954 linker to speed up dynamic relocations, and to avoid computing
6955 the ELF hash for symbols. */
6956 if (IRIX_COMPAT (abfd) == ict_irix6
6957 && !mips_elf_create_msym_section (abfd))
6960 /* Create .stub section. */
6961 if (bfd_get_section_by_name (abfd,
6962 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
6964 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
6966 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
6967 || ! bfd_set_section_alignment (abfd, s,
6968 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6972 if (IRIX_COMPAT (abfd) == ict_irix5
6974 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6976 s = bfd_make_section (abfd, ".rld_map");
6978 || ! bfd_set_section_flags (abfd, s, flags & ~SEC_READONLY)
6979 || ! bfd_set_section_alignment (abfd, s,
6980 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6984 /* On IRIX5, we adjust add some additional symbols and change the
6985 alignments of several sections. There is no ABI documentation
6986 indicating that this is necessary on IRIX6, nor any evidence that
6987 the linker takes such action. */
6988 if (IRIX_COMPAT (abfd) == ict_irix5)
6990 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6993 if (! (_bfd_generic_link_add_one_symbol
6994 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
6995 (bfd_vma) 0, (const char *) NULL, false,
6996 get_elf_backend_data (abfd)->collect,
6997 (struct bfd_link_hash_entry **) &h)))
6999 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7000 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7001 h->type = STT_SECTION;
7003 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7007 /* We need to create a .compact_rel section. */
7008 if (! mips_elf_create_compact_rel_section (abfd, info))
7011 /* Change aligments of some sections. */
7012 s = bfd_get_section_by_name (abfd, ".hash");
7014 bfd_set_section_alignment (abfd, s, 4);
7015 s = bfd_get_section_by_name (abfd, ".dynsym");
7017 bfd_set_section_alignment (abfd, s, 4);
7018 s = bfd_get_section_by_name (abfd, ".dynstr");
7020 bfd_set_section_alignment (abfd, s, 4);
7021 s = bfd_get_section_by_name (abfd, ".reginfo");
7023 bfd_set_section_alignment (abfd, s, 4);
7024 s = bfd_get_section_by_name (abfd, ".dynamic");
7026 bfd_set_section_alignment (abfd, s, 4);
7032 if (! (_bfd_generic_link_add_one_symbol
7033 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
7034 (bfd_vma) 0, (const char *) NULL, false,
7035 get_elf_backend_data (abfd)->collect,
7036 (struct bfd_link_hash_entry **) &h)))
7038 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7039 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7040 h->type = STT_SECTION;
7042 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7045 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7047 /* __rld_map is a four byte word located in the .data section
7048 and is filled in by the rtld to contain a pointer to
7049 the _r_debug structure. Its symbol value will be set in
7050 mips_elf_finish_dynamic_symbol. */
7051 s = bfd_get_section_by_name (abfd, ".rld_map");
7052 BFD_ASSERT (s != NULL);
7055 if (! (_bfd_generic_link_add_one_symbol
7056 (info, abfd, "__rld_map", BSF_GLOBAL, s,
7057 (bfd_vma) 0, (const char *) NULL, false,
7058 get_elf_backend_data (abfd)->collect,
7059 (struct bfd_link_hash_entry **) &h)))
7061 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7062 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7063 h->type = STT_OBJECT;
7065 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7073 /* Create the .compact_rel section. */
7076 mips_elf_create_compact_rel_section (abfd, info)
7078 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7081 register asection *s;
7083 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
7085 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
7088 s = bfd_make_section (abfd, ".compact_rel");
7090 || ! bfd_set_section_flags (abfd, s, flags)
7091 || ! bfd_set_section_alignment (abfd, s,
7092 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7095 s->_raw_size = sizeof (Elf32_External_compact_rel);
7101 /* Create the .got section to hold the global offset table. */
7104 mips_elf_create_got_section (abfd, info)
7106 struct bfd_link_info *info;
7109 register asection *s;
7110 struct elf_link_hash_entry *h;
7111 struct mips_got_info *g;
7113 /* This function may be called more than once. */
7114 if (mips_elf_got_section (abfd))
7117 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7118 | SEC_LINKER_CREATED);
7120 s = bfd_make_section (abfd, ".got");
7122 || ! bfd_set_section_flags (abfd, s, flags)
7123 || ! bfd_set_section_alignment (abfd, s, 4))
7126 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7127 linker script because we don't want to define the symbol if we
7128 are not creating a global offset table. */
7130 if (! (_bfd_generic_link_add_one_symbol
7131 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7132 (bfd_vma) 0, (const char *) NULL, false,
7133 get_elf_backend_data (abfd)->collect,
7134 (struct bfd_link_hash_entry **) &h)))
7136 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7137 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7138 h->type = STT_OBJECT;
7141 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7144 /* The first several global offset table entries are reserved. */
7145 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
7147 g = (struct mips_got_info *) bfd_alloc (abfd,
7148 sizeof (struct mips_got_info));
7151 g->global_gotsym = NULL;
7152 g->local_gotno = MIPS_RESERVED_GOTNO;
7153 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7154 if (elf_section_data (s) == NULL)
7157 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
7158 if (elf_section_data (s) == NULL)
7161 elf_section_data (s)->tdata = (PTR) g;
7162 elf_section_data (s)->this_hdr.sh_flags
7163 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7168 /* Returns the .msym section for ABFD, creating it if it does not
7169 already exist. Returns NULL to indicate error. */
7172 mips_elf_create_msym_section (abfd)
7177 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7180 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7182 || !bfd_set_section_flags (abfd, s,
7186 | SEC_LINKER_CREATED
7188 || !bfd_set_section_alignment (abfd, s,
7189 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7196 /* Add room for N relocations to the .rel.dyn section in ABFD. */
7199 mips_elf_allocate_dynamic_relocations (abfd, n)
7205 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
7206 BFD_ASSERT (s != NULL);
7208 if (s->_raw_size == 0)
7210 /* Make room for a null element. */
7211 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
7214 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
7217 /* Look through the relocs for a section during the first phase, and
7218 allocate space in the global offset table. */
7221 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
7223 struct bfd_link_info *info;
7225 const Elf_Internal_Rela *relocs;
7229 Elf_Internal_Shdr *symtab_hdr;
7230 struct elf_link_hash_entry **sym_hashes;
7231 struct mips_got_info *g;
7233 const Elf_Internal_Rela *rel;
7234 const Elf_Internal_Rela *rel_end;
7237 struct elf_backend_data *bed;
7239 if (info->relocateable)
7242 dynobj = elf_hash_table (info)->dynobj;
7243 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7244 sym_hashes = elf_sym_hashes (abfd);
7245 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7247 /* Check for the mips16 stub sections. */
7249 name = bfd_get_section_name (abfd, sec);
7250 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
7252 unsigned long r_symndx;
7254 /* Look at the relocation information to figure out which symbol
7257 r_symndx = ELF32_R_SYM (relocs->r_info);
7259 if (r_symndx < extsymoff
7260 || sym_hashes[r_symndx - extsymoff] == NULL)
7264 /* This stub is for a local symbol. This stub will only be
7265 needed if there is some relocation in this BFD, other
7266 than a 16 bit function call, which refers to this symbol. */
7267 for (o = abfd->sections; o != NULL; o = o->next)
7269 Elf_Internal_Rela *sec_relocs;
7270 const Elf_Internal_Rela *r, *rend;
7272 /* We can ignore stub sections when looking for relocs. */
7273 if ((o->flags & SEC_RELOC) == 0
7274 || o->reloc_count == 0
7275 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
7276 sizeof FN_STUB - 1) == 0
7277 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
7278 sizeof CALL_STUB - 1) == 0
7279 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
7280 sizeof CALL_FP_STUB - 1) == 0)
7283 sec_relocs = (_bfd_elf32_link_read_relocs
7284 (abfd, o, (PTR) NULL,
7285 (Elf_Internal_Rela *) NULL,
7286 info->keep_memory));
7287 if (sec_relocs == NULL)
7290 rend = sec_relocs + o->reloc_count;
7291 for (r = sec_relocs; r < rend; r++)
7292 if (ELF32_R_SYM (r->r_info) == r_symndx
7293 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
7296 if (! info->keep_memory)
7305 /* There is no non-call reloc for this stub, so we do
7306 not need it. Since this function is called before
7307 the linker maps input sections to output sections, we
7308 can easily discard it by setting the SEC_EXCLUDE
7310 sec->flags |= SEC_EXCLUDE;
7314 /* Record this stub in an array of local symbol stubs for
7316 if (elf_tdata (abfd)->local_stubs == NULL)
7318 unsigned long symcount;
7321 if (elf_bad_symtab (abfd))
7322 symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
7324 symcount = symtab_hdr->sh_info;
7325 n = (asection **) bfd_zalloc (abfd,
7326 symcount * sizeof (asection *));
7329 elf_tdata (abfd)->local_stubs = n;
7332 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7334 /* We don't need to set mips16_stubs_seen in this case.
7335 That flag is used to see whether we need to look through
7336 the global symbol table for stubs. We don't need to set
7337 it here, because we just have a local stub. */
7341 struct mips_elf_link_hash_entry *h;
7343 h = ((struct mips_elf_link_hash_entry *)
7344 sym_hashes[r_symndx - extsymoff]);
7346 /* H is the symbol this stub is for. */
7349 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7352 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7353 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7355 unsigned long r_symndx;
7356 struct mips_elf_link_hash_entry *h;
7359 /* Look at the relocation information to figure out which symbol
7362 r_symndx = ELF32_R_SYM (relocs->r_info);
7364 if (r_symndx < extsymoff
7365 || sym_hashes[r_symndx - extsymoff] == NULL)
7367 /* This stub was actually built for a static symbol defined
7368 in the same file. We assume that all static symbols in
7369 mips16 code are themselves mips16, so we can simply
7370 discard this stub. Since this function is called before
7371 the linker maps input sections to output sections, we can
7372 easily discard it by setting the SEC_EXCLUDE flag. */
7373 sec->flags |= SEC_EXCLUDE;
7377 h = ((struct mips_elf_link_hash_entry *)
7378 sym_hashes[r_symndx - extsymoff]);
7380 /* H is the symbol this stub is for. */
7382 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7383 loc = &h->call_fp_stub;
7385 loc = &h->call_stub;
7387 /* If we already have an appropriate stub for this function, we
7388 don't need another one, so we can discard this one. Since
7389 this function is called before the linker maps input sections
7390 to output sections, we can easily discard it by setting the
7391 SEC_EXCLUDE flag. We can also discard this section if we
7392 happen to already know that this is a mips16 function; it is
7393 not necessary to check this here, as it is checked later, but
7394 it is slightly faster to check now. */
7395 if (*loc != NULL || h->root.other == STO_MIPS16)
7397 sec->flags |= SEC_EXCLUDE;
7402 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7412 sgot = mips_elf_got_section (dynobj);
7417 BFD_ASSERT (elf_section_data (sgot) != NULL);
7418 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
7419 BFD_ASSERT (g != NULL);
7424 bed = get_elf_backend_data (abfd);
7425 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7426 for (rel = relocs; rel < rel_end; ++rel)
7428 unsigned long r_symndx;
7430 struct elf_link_hash_entry *h;
7432 r_symndx = ELF32_R_SYM (rel->r_info);
7433 r_type = ELF32_R_TYPE (rel->r_info);
7435 if (r_symndx < extsymoff)
7439 h = sym_hashes[r_symndx - extsymoff];
7441 /* This may be an indirect symbol created because of a version. */
7444 while (h->root.type == bfd_link_hash_indirect)
7445 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7449 /* Some relocs require a global offset table. */
7450 if (dynobj == NULL || sgot == NULL)
7456 case R_MIPS_CALL_HI16:
7457 case R_MIPS_CALL_LO16:
7458 case R_MIPS_GOT_HI16:
7459 case R_MIPS_GOT_LO16:
7460 case R_MIPS_GOT_PAGE:
7461 case R_MIPS_GOT_OFST:
7462 case R_MIPS_GOT_DISP:
7464 elf_hash_table (info)->dynobj = dynobj = abfd;
7465 if (! mips_elf_create_got_section (dynobj, info))
7467 g = mips_elf_got_info (dynobj, &sgot);
7474 && (info->shared || h != NULL)
7475 && (sec->flags & SEC_ALLOC) != 0)
7476 elf_hash_table (info)->dynobj = dynobj = abfd;
7484 if (!h && (r_type == R_MIPS_CALL_LO16
7485 || r_type == R_MIPS_GOT_LO16
7486 || r_type == R_MIPS_GOT_DISP))
7488 /* We may need a local GOT entry for this relocation. We
7489 don't count R_MIPS_GOT_PAGE because we can estimate the
7490 maximum number of pages needed by looking at the size of
7491 the segment. Similar comments apply to R_MIPS_GOT16. We
7492 don't count R_MIPS_GOT_HI16, or R_MIPS_CALL_HI16 because
7493 these are always followed by an R_MIPS_GOT_LO16 or
7496 This estimation is very conservative since we can merge
7497 duplicate entries in the GOT. In order to be less
7498 conservative, we could actually build the GOT here,
7499 rather than in relocate_section. */
7501 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
7509 (*_bfd_error_handler)
7510 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
7511 bfd_get_filename (abfd), (unsigned long) rel->r_offset);
7512 bfd_set_error (bfd_error_bad_value);
7517 case R_MIPS_CALL_HI16:
7518 case R_MIPS_CALL_LO16:
7521 /* This symbol requires a global offset table entry. */
7522 if (!mips_elf_record_global_got_symbol (h, info, g))
7525 /* We need a stub, not a plt entry for the undefined
7526 function. But we record it as if it needs plt. See
7527 elf_adjust_dynamic_symbol in elflink.h. */
7528 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
7534 case R_MIPS_GOT_HI16:
7535 case R_MIPS_GOT_LO16:
7536 case R_MIPS_GOT_DISP:
7537 /* This symbol requires a global offset table entry. */
7538 if (h && !mips_elf_record_global_got_symbol (h, info, g))
7545 if ((info->shared || h != NULL)
7546 && (sec->flags & SEC_ALLOC) != 0)
7550 const char *name = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
7552 sreloc = bfd_get_section_by_name (dynobj, name);
7555 sreloc = bfd_make_section (dynobj, name);
7557 || ! bfd_set_section_flags (dynobj, sreloc,
7562 | SEC_LINKER_CREATED
7564 || ! bfd_set_section_alignment (dynobj, sreloc,
7570 /* When creating a shared object, we must copy these
7571 reloc types into the output file as R_MIPS_REL32
7572 relocs. We make room for this reloc in the
7573 .rel.dyn reloc section. */
7574 mips_elf_allocate_dynamic_relocations (dynobj, 1);
7577 struct mips_elf_link_hash_entry *hmips;
7579 /* We only need to copy this reloc if the symbol is
7580 defined in a dynamic object. */
7581 hmips = (struct mips_elf_link_hash_entry *) h;
7582 ++hmips->possibly_dynamic_relocs;
7585 /* Even though we don't directly need a GOT entry for
7586 this symbol, a symbol must have a dynamic symbol
7587 table index greater that DT_MIPS_GOTSYM if there are
7588 dynamic relocations against it. */
7590 && !mips_elf_record_global_got_symbol (h, info, g))
7594 if (SGI_COMPAT (dynobj))
7595 mips_elf_hash_table (info)->compact_rel_size +=
7596 sizeof (Elf32_External_crinfo);
7600 case R_MIPS_GPREL16:
7601 case R_MIPS_LITERAL:
7602 case R_MIPS_GPREL32:
7603 if (SGI_COMPAT (dynobj))
7604 mips_elf_hash_table (info)->compact_rel_size +=
7605 sizeof (Elf32_External_crinfo);
7608 /* This relocation describes the C++ object vtable hierarchy.
7609 Reconstruct it for later use during GC. */
7610 case R_MIPS_GNU_VTINHERIT:
7611 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7615 /* This relocation describes which C++ vtable entries are actually
7616 used. Record for later use during GC. */
7617 case R_MIPS_GNU_VTENTRY:
7618 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7626 /* If this reloc is not a 16 bit call, and it has a global
7627 symbol, then we will need the fn_stub if there is one.
7628 References from a stub section do not count. */
7630 && r_type != R_MIPS16_26
7631 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
7632 sizeof FN_STUB - 1) != 0
7633 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
7634 sizeof CALL_STUB - 1) != 0
7635 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
7636 sizeof CALL_FP_STUB - 1) != 0)
7638 struct mips_elf_link_hash_entry *mh;
7640 mh = (struct mips_elf_link_hash_entry *) h;
7641 mh->need_fn_stub = true;
7648 /* Return the section that should be marked against GC for a given
7652 _bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
7654 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7655 Elf_Internal_Rela *rel;
7656 struct elf_link_hash_entry *h;
7657 Elf_Internal_Sym *sym;
7659 /* ??? Do mips16 stub sections need to be handled special? */
7663 switch (ELF32_R_TYPE (rel->r_info))
7665 case R_MIPS_GNU_VTINHERIT:
7666 case R_MIPS_GNU_VTENTRY:
7670 switch (h->root.type)
7672 case bfd_link_hash_defined:
7673 case bfd_link_hash_defweak:
7674 return h->root.u.def.section;
7676 case bfd_link_hash_common:
7677 return h->root.u.c.p->section;
7686 if (!(elf_bad_symtab (abfd)
7687 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7688 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
7689 && sym->st_shndx != SHN_COMMON))
7691 return bfd_section_from_elf_index (abfd, sym->st_shndx);
7698 /* Update the got entry reference counts for the section being removed. */
7701 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7702 bfd *abfd ATTRIBUTE_UNUSED;
7703 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7704 asection *sec ATTRIBUTE_UNUSED;
7705 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7708 Elf_Internal_Shdr *symtab_hdr;
7709 struct elf_link_hash_entry **sym_hashes;
7710 bfd_signed_vma *local_got_refcounts;
7711 const Elf_Internal_Rela *rel, *relend;
7712 unsigned long r_symndx;
7713 struct elf_link_hash_entry *h;
7715 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7716 sym_hashes = elf_sym_hashes (abfd);
7717 local_got_refcounts = elf_local_got_refcounts (abfd);
7719 relend = relocs + sec->reloc_count;
7720 for (rel = relocs; rel < relend; rel++)
7721 switch (ELF32_R_TYPE (rel->r_info))
7725 case R_MIPS_CALL_HI16:
7726 case R_MIPS_CALL_LO16:
7727 case R_MIPS_GOT_HI16:
7728 case R_MIPS_GOT_LO16:
7729 /* ??? It would seem that the existing MIPS code does no sort
7730 of reference counting or whatnot on its GOT and PLT entries,
7731 so it is not possible to garbage collect them at this time. */
7743 /* Adjust a symbol defined by a dynamic object and referenced by a
7744 regular object. The current definition is in some section of the
7745 dynamic object, but we're not including those sections. We have to
7746 change the definition to something the rest of the link can
7750 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
7751 struct bfd_link_info *info;
7752 struct elf_link_hash_entry *h;
7755 struct mips_elf_link_hash_entry *hmips;
7758 dynobj = elf_hash_table (info)->dynobj;
7760 /* Make sure we know what is going on here. */
7761 BFD_ASSERT (dynobj != NULL
7762 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
7763 || h->weakdef != NULL
7764 || ((h->elf_link_hash_flags
7765 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
7766 && (h->elf_link_hash_flags
7767 & ELF_LINK_HASH_REF_REGULAR) != 0
7768 && (h->elf_link_hash_flags
7769 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
7771 /* If this symbol is defined in a dynamic object, we need to copy
7772 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
7774 hmips = (struct mips_elf_link_hash_entry *) h;
7775 if (! info->relocateable
7776 && hmips->possibly_dynamic_relocs != 0
7777 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
7778 mips_elf_allocate_dynamic_relocations (dynobj,
7779 hmips->possibly_dynamic_relocs);
7781 /* For a function, create a stub, if needed. */
7782 if (h->type == STT_FUNC
7783 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
7785 if (! elf_hash_table (info)->dynamic_sections_created)
7788 /* If this symbol is not defined in a regular file, then set
7789 the symbol to the stub location. This is required to make
7790 function pointers compare as equal between the normal
7791 executable and the shared library. */
7792 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
7794 /* We need .stub section. */
7795 s = bfd_get_section_by_name (dynobj,
7796 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7797 BFD_ASSERT (s != NULL);
7799 h->root.u.def.section = s;
7800 h->root.u.def.value = s->_raw_size;
7802 /* XXX Write this stub address somewhere. */
7803 h->plt.offset = s->_raw_size;
7805 /* Make room for this stub code. */
7806 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
7808 /* The last half word of the stub will be filled with the index
7809 of this symbol in .dynsym section. */
7814 /* If this is a weak symbol, and there is a real definition, the
7815 processor independent code will have arranged for us to see the
7816 real definition first, and we can just use the same value. */
7817 if (h->weakdef != NULL)
7819 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
7820 || h->weakdef->root.type == bfd_link_hash_defweak);
7821 h->root.u.def.section = h->weakdef->root.u.def.section;
7822 h->root.u.def.value = h->weakdef->root.u.def.value;
7826 /* This is a reference to a symbol defined by a dynamic object which
7827 is not a function. */
7832 /* This function is called after all the input files have been read,
7833 and the input sections have been assigned to output sections. We
7834 check for any mips16 stub sections that we can discard. */
7836 static boolean mips_elf_check_mips16_stubs
7837 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
7840 _bfd_mips_elf_always_size_sections (output_bfd, info)
7842 struct bfd_link_info *info;
7846 /* The .reginfo section has a fixed size. */
7847 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7849 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7851 if (info->relocateable
7852 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
7855 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7856 mips_elf_check_mips16_stubs,
7862 /* Check the mips16 stubs for a particular symbol, and see if we can
7867 mips_elf_check_mips16_stubs (h, data)
7868 struct mips_elf_link_hash_entry *h;
7869 PTR data ATTRIBUTE_UNUSED;
7871 if (h->fn_stub != NULL
7872 && ! h->need_fn_stub)
7874 /* We don't need the fn_stub; the only references to this symbol
7875 are 16 bit calls. Clobber the size to 0 to prevent it from
7876 being included in the link. */
7877 h->fn_stub->_raw_size = 0;
7878 h->fn_stub->_cooked_size = 0;
7879 h->fn_stub->flags &= ~ SEC_RELOC;
7880 h->fn_stub->reloc_count = 0;
7881 h->fn_stub->flags |= SEC_EXCLUDE;
7884 if (h->call_stub != NULL
7885 && h->root.other == STO_MIPS16)
7887 /* We don't need the call_stub; this is a 16 bit function, so
7888 calls from other 16 bit functions are OK. Clobber the size
7889 to 0 to prevent it from being included in the link. */
7890 h->call_stub->_raw_size = 0;
7891 h->call_stub->_cooked_size = 0;
7892 h->call_stub->flags &= ~ SEC_RELOC;
7893 h->call_stub->reloc_count = 0;
7894 h->call_stub->flags |= SEC_EXCLUDE;
7897 if (h->call_fp_stub != NULL
7898 && h->root.other == STO_MIPS16)
7900 /* We don't need the call_stub; this is a 16 bit function, so
7901 calls from other 16 bit functions are OK. Clobber the size
7902 to 0 to prevent it from being included in the link. */
7903 h->call_fp_stub->_raw_size = 0;
7904 h->call_fp_stub->_cooked_size = 0;
7905 h->call_fp_stub->flags &= ~ SEC_RELOC;
7906 h->call_fp_stub->reloc_count = 0;
7907 h->call_fp_stub->flags |= SEC_EXCLUDE;
7913 /* Set the sizes of the dynamic sections. */
7916 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
7918 struct bfd_link_info *info;
7923 struct mips_got_info *g = NULL;
7925 dynobj = elf_hash_table (info)->dynobj;
7926 BFD_ASSERT (dynobj != NULL);
7928 if (elf_hash_table (info)->dynamic_sections_created)
7930 /* Set the contents of the .interp section to the interpreter. */
7933 s = bfd_get_section_by_name (dynobj, ".interp");
7934 BFD_ASSERT (s != NULL);
7936 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7938 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7942 /* The check_relocs and adjust_dynamic_symbol entry points have
7943 determined the sizes of the various dynamic sections. Allocate
7946 for (s = dynobj->sections; s != NULL; s = s->next)
7951 /* It's OK to base decisions on the section name, because none
7952 of the dynobj section names depend upon the input files. */
7953 name = bfd_get_section_name (dynobj, s);
7955 if ((s->flags & SEC_LINKER_CREATED) == 0)
7960 if (strncmp (name, ".rel", 4) == 0)
7962 if (s->_raw_size == 0)
7964 /* We only strip the section if the output section name
7965 has the same name. Otherwise, there might be several
7966 input sections for this output section. FIXME: This
7967 code is probably not needed these days anyhow, since
7968 the linker now does not create empty output sections. */
7969 if (s->output_section != NULL
7971 bfd_get_section_name (s->output_section->owner,
7972 s->output_section)) == 0)
7977 const char *outname;
7980 /* If this relocation section applies to a read only
7981 section, then we probably need a DT_TEXTREL entry.
7982 If the relocation section is .rel.dyn, we always
7983 assert a DT_TEXTREL entry rather than testing whether
7984 there exists a relocation to a read only section or
7986 outname = bfd_get_section_name (output_bfd,
7988 target = bfd_get_section_by_name (output_bfd, outname + 4);
7990 && (target->flags & SEC_READONLY) != 0
7991 && (target->flags & SEC_ALLOC) != 0)
7993 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
7996 /* We use the reloc_count field as a counter if we need
7997 to copy relocs into the output file. */
7999 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
8003 else if (strncmp (name, ".got", 4) == 0)
8006 bfd_size_type loadable_size = 0;
8007 bfd_size_type local_gotno;
8010 BFD_ASSERT (elf_section_data (s) != NULL);
8011 g = (struct mips_got_info *) elf_section_data (s)->tdata;
8012 BFD_ASSERT (g != NULL);
8014 /* Calculate the total loadable size of the output. That
8015 will give us the maximum number of GOT_PAGE entries
8017 for (sub = info->input_bfds; sub; sub = sub->link_next)
8019 asection *subsection;
8021 for (subsection = sub->sections;
8023 subsection = subsection->next)
8025 if ((subsection->flags & SEC_ALLOC) == 0)
8027 loadable_size += (subsection->_raw_size + 0xf) & ~0xf;
8030 loadable_size += MIPS_FUNCTION_STUB_SIZE;
8032 /* Assume there are two loadable segments consisting of
8033 contiguous sections. Is 5 enough? */
8034 local_gotno = (loadable_size >> 16) + 5;
8035 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8036 /* It's possible we will need GOT_PAGE entries as well as
8037 GOT16 entries. Often, these will be able to share GOT
8038 entries, but not always. */
8041 g->local_gotno += local_gotno;
8042 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
8044 /* There has to be a global GOT entry for every symbol with
8045 a dynamic symbol table index of DT_MIPS_GOTSYM or
8046 higher. Therefore, it make sense to put those symbols
8047 that need GOT entries at the end of the symbol table. We
8049 if (!mips_elf_sort_hash_table (info, 1))
8052 if (g->global_gotsym != NULL)
8053 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
8055 /* If there are no global symbols, or none requiring
8056 relocations, then GLOBAL_GOTSYM will be NULL. */
8058 g->global_gotno = i;
8059 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
8061 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
8063 /* Irix rld assumes that the function stub isn't at the end
8064 of .text section. So put a dummy. XXX */
8065 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8067 else if (! info->shared
8068 && ! mips_elf_hash_table (info)->use_rld_obj_head
8069 && strncmp (name, ".rld_map", 8) == 0)
8071 /* We add a room for __rld_map. It will be filled in by the
8072 rtld to contain a pointer to the _r_debug structure. */
8075 else if (SGI_COMPAT (output_bfd)
8076 && strncmp (name, ".compact_rel", 12) == 0)
8077 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
8078 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
8080 s->_raw_size = (sizeof (Elf32_External_Msym)
8081 * (elf_hash_table (info)->dynsymcount
8082 + bfd_count_sections (output_bfd)));
8083 else if (strncmp (name, ".init", 5) != 0)
8085 /* It's not one of our sections, so don't allocate space. */
8091 _bfd_strip_section_from_output (info, s);
8095 /* Allocate memory for the section contents. */
8096 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
8097 if (s->contents == NULL && s->_raw_size != 0)
8099 bfd_set_error (bfd_error_no_memory);
8104 if (elf_hash_table (info)->dynamic_sections_created)
8106 /* Add some entries to the .dynamic section. We fill in the
8107 values later, in elf_mips_finish_dynamic_sections, but we
8108 must add the entries now so that we get the correct size for
8109 the .dynamic section. The DT_DEBUG entry is filled in by the
8110 dynamic linker and used by the debugger. */
8113 if (SGI_COMPAT (output_bfd))
8115 /* SGI object has the equivalence of DT_DEBUG in the
8116 DT_MIPS_RLD_MAP entry. */
8117 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8121 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8127 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8131 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8134 if (bfd_get_section_by_name (dynobj,
8135 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
8137 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8140 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8143 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8147 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
8150 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
8153 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
8155 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
8158 s = bfd_get_section_by_name (dynobj, ".liblist");
8159 BFD_ASSERT (s != NULL);
8161 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
8165 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8168 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8172 /* Time stamps in executable files are a bad idea. */
8173 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
8178 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
8183 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
8187 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8193 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8202 if (IRIX_COMPAT (dynobj) == ict_irix5
8203 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8206 if (IRIX_COMPAT (dynobj) == ict_irix6
8207 && (bfd_get_section_by_name
8208 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8209 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8212 if (bfd_get_section_by_name (dynobj,
8213 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
8214 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
8221 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8222 adjust it appropriately now. */
8225 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
8226 bfd *abfd ATTRIBUTE_UNUSED;
8228 Elf_Internal_Sym *sym;
8230 /* The linker script takes care of providing names and values for
8231 these, but we must place them into the right sections. */
8232 static const char* const text_section_symbols[] = {
8235 "__dso_displacement",
8237 "__program_header_table",
8241 static const char* const data_section_symbols[] = {
8249 const char* const *p;
8252 for (i = 0; i < 2; ++i)
8253 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8256 if (strcmp (*p, name) == 0)
8258 /* All of these symbols are given type STT_SECTION by the
8260 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8262 /* The IRIX linker puts these symbols in special sections. */
8264 sym->st_shndx = SHN_MIPS_TEXT;
8266 sym->st_shndx = SHN_MIPS_DATA;
8272 /* Finish up dynamic symbol handling. We set the contents of various
8273 dynamic sections here. */
8276 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
8278 struct bfd_link_info *info;
8279 struct elf_link_hash_entry *h;
8280 Elf_Internal_Sym *sym;
8286 struct mips_got_info *g;
8288 struct mips_elf_link_hash_entry *mh;
8290 dynobj = elf_hash_table (info)->dynobj;
8291 gval = sym->st_value;
8292 mh = (struct mips_elf_link_hash_entry *) h;
8294 if (h->plt.offset != (bfd_vma) -1)
8298 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
8300 /* This symbol has a stub. Set it up. */
8302 BFD_ASSERT (h->dynindx != -1);
8304 s = bfd_get_section_by_name (dynobj,
8305 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8306 BFD_ASSERT (s != NULL);
8308 /* Fill the stub. */
8310 bfd_put_32 (output_bfd, STUB_LW(output_bfd), p);
8312 bfd_put_32 (output_bfd, STUB_MOVE, p);
8315 /* FIXME: Can h->dynindex be more than 64K? */
8316 if (h->dynindx & 0xffff0000)
8319 bfd_put_32 (output_bfd, STUB_JALR, p);
8321 bfd_put_32 (output_bfd, STUB_LI16 + h->dynindx, p);
8323 BFD_ASSERT (h->plt.offset <= s->_raw_size);
8324 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8326 /* Mark the symbol as undefined. plt.offset != -1 occurs
8327 only for the referenced symbol. */
8328 sym->st_shndx = SHN_UNDEF;
8330 /* The run-time linker uses the st_value field of the symbol
8331 to reset the global offset table entry for this external
8332 to its stub address when unlinking a shared object. */
8333 gval = s->output_section->vma + s->output_offset + h->plt.offset;
8334 sym->st_value = gval;
8337 BFD_ASSERT (h->dynindx != -1);
8339 sgot = mips_elf_got_section (dynobj);
8340 BFD_ASSERT (sgot != NULL);
8341 BFD_ASSERT (elf_section_data (sgot) != NULL);
8342 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8343 BFD_ASSERT (g != NULL);
8345 /* Run through the global symbol table, creating GOT entries for all
8346 the symbols that need them. */
8347 if (g->global_gotsym != NULL
8348 && h->dynindx >= g->global_gotsym->dynindx)
8354 value = sym->st_value;
8356 /* For an entity defined in a shared object, this will be
8357 NULL. (For functions in shared objects for
8358 which we have created stubs, ST_VALUE will be non-NULL.
8359 That's because such the functions are now no longer defined
8360 in a shared object.) */
8361 value = h->root.u.def.value;
8363 offset = mips_elf_global_got_index (dynobj, h);
8364 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8367 /* Create a .msym entry, if appropriate. */
8368 smsym = bfd_get_section_by_name (dynobj,
8369 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8372 Elf32_Internal_Msym msym;
8374 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
8375 /* It is undocumented what the `1' indicates, but IRIX6 uses
8377 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
8378 bfd_mips_elf_swap_msym_out
8380 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
8383 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8384 name = h->root.root.string;
8385 if (strcmp (name, "_DYNAMIC") == 0
8386 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
8387 sym->st_shndx = SHN_ABS;
8388 else if (strcmp (name, "_DYNAMIC_LINK") == 0)
8390 sym->st_shndx = SHN_ABS;
8391 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8394 else if (SGI_COMPAT (output_bfd))
8396 if (strcmp (name, "_gp_disp") == 0)
8398 sym->st_shndx = SHN_ABS;
8399 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8400 sym->st_value = elf_gp (output_bfd);
8402 else if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8403 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8405 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8406 sym->st_other = STO_PROTECTED;
8408 sym->st_shndx = SHN_MIPS_DATA;
8410 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8412 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8413 sym->st_other = STO_PROTECTED;
8414 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8415 sym->st_shndx = SHN_ABS;
8417 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8419 if (h->type == STT_FUNC)
8420 sym->st_shndx = SHN_MIPS_TEXT;
8421 else if (h->type == STT_OBJECT)
8422 sym->st_shndx = SHN_MIPS_DATA;
8426 /* Handle the IRIX6-specific symbols. */
8427 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8428 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8430 if (SGI_COMPAT (output_bfd)
8433 if (! mips_elf_hash_table (info)->use_rld_obj_head
8434 && strcmp (name, "__rld_map") == 0)
8436 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8437 BFD_ASSERT (s != NULL);
8438 sym->st_value = s->output_section->vma + s->output_offset;
8439 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
8440 if (mips_elf_hash_table (info)->rld_value == 0)
8441 mips_elf_hash_table (info)->rld_value = sym->st_value;
8443 else if (mips_elf_hash_table (info)->use_rld_obj_head
8444 && strcmp (name, "__rld_obj_head") == 0)
8446 /* IRIX6 does not use a .rld_map section. */
8447 if (IRIX_COMPAT (output_bfd) == ict_irix5)
8448 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8450 mips_elf_hash_table (info)->rld_value = sym->st_value;
8454 /* If this is a mips16 symbol, force the value to be even. */
8455 if (sym->st_other == STO_MIPS16
8456 && (sym->st_value & 1) != 0)
8462 /* Finish up the dynamic sections. */
8465 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
8467 struct bfd_link_info *info;
8472 struct mips_got_info *g;
8474 dynobj = elf_hash_table (info)->dynobj;
8476 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8478 sgot = mips_elf_got_section (dynobj);
8483 BFD_ASSERT (elf_section_data (sgot) != NULL);
8484 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8485 BFD_ASSERT (g != NULL);
8488 if (elf_hash_table (info)->dynamic_sections_created)
8492 BFD_ASSERT (sdyn != NULL);
8493 BFD_ASSERT (g != NULL);
8495 for (b = sdyn->contents;
8496 b < sdyn->contents + sdyn->_raw_size;
8497 b += MIPS_ELF_DYN_SIZE (dynobj))
8499 Elf_Internal_Dyn dyn;
8505 /* Read in the current dynamic entry. */
8506 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8508 /* Assume that we're going to modify it and write it out. */
8514 s = (bfd_get_section_by_name
8516 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
8517 BFD_ASSERT (s != NULL);
8518 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8522 /* Rewrite DT_STRSZ. */
8524 _bfd_stringtab_size (elf_hash_table (info)->dynstr);
8530 case DT_MIPS_CONFLICT:
8533 case DT_MIPS_LIBLIST:
8536 s = bfd_get_section_by_name (output_bfd, name);
8537 BFD_ASSERT (s != NULL);
8538 dyn.d_un.d_ptr = s->vma;
8541 case DT_MIPS_RLD_VERSION:
8542 dyn.d_un.d_val = 1; /* XXX */
8546 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8549 case DT_MIPS_CONFLICTNO:
8551 elemsize = sizeof (Elf32_Conflict);
8554 case DT_MIPS_LIBLISTNO:
8556 elemsize = sizeof (Elf32_Lib);
8558 s = bfd_get_section_by_name (output_bfd, name);
8561 if (s->_cooked_size != 0)
8562 dyn.d_un.d_val = s->_cooked_size / elemsize;
8564 dyn.d_un.d_val = s->_raw_size / elemsize;
8570 case DT_MIPS_TIME_STAMP:
8571 time ((time_t *) &dyn.d_un.d_val);
8574 case DT_MIPS_ICHECKSUM:
8579 case DT_MIPS_IVERSION:
8584 case DT_MIPS_BASE_ADDRESS:
8585 s = output_bfd->sections;
8586 BFD_ASSERT (s != NULL);
8587 dyn.d_un.d_ptr = s->vma & ~(0xffff);
8590 case DT_MIPS_LOCAL_GOTNO:
8591 dyn.d_un.d_val = g->local_gotno;
8594 case DT_MIPS_UNREFEXTNO:
8595 /* The index into the dynamic symbol table which is the
8596 entry of the first external symbol that is not
8597 referenced within the same object. */
8598 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8601 case DT_MIPS_GOTSYM:
8602 if (g->global_gotsym)
8604 dyn.d_un.d_val = g->global_gotsym->dynindx;
8607 /* In case if we don't have global got symbols we default
8608 to setting DT_MIPS_GOTSYM to the same value as
8609 DT_MIPS_SYMTABNO, so we just fall through. */
8611 case DT_MIPS_SYMTABNO:
8613 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8614 s = bfd_get_section_by_name (output_bfd, name);
8615 BFD_ASSERT (s != NULL);
8617 if (s->_cooked_size != 0)
8618 dyn.d_un.d_val = s->_cooked_size / elemsize;
8620 dyn.d_un.d_val = s->_raw_size / elemsize;
8623 case DT_MIPS_HIPAGENO:
8624 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
8627 case DT_MIPS_RLD_MAP:
8628 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8631 case DT_MIPS_OPTIONS:
8632 s = (bfd_get_section_by_name
8633 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8634 dyn.d_un.d_ptr = s->vma;
8638 s = (bfd_get_section_by_name
8639 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
8640 dyn.d_un.d_ptr = s->vma;
8649 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8654 /* The first entry of the global offset table will be filled at
8655 runtime. The second entry will be used by some runtime loaders.
8656 This isn't the case of Irix rld. */
8657 if (sgot != NULL && sgot->_raw_size > 0)
8659 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8660 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8661 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8665 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8666 = MIPS_ELF_GOT_SIZE (output_bfd);
8671 Elf32_compact_rel cpt;
8673 /* ??? The section symbols for the output sections were set up in
8674 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
8675 symbols. Should we do so? */
8677 smsym = bfd_get_section_by_name (dynobj,
8678 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8681 Elf32_Internal_Msym msym;
8683 msym.ms_hash_value = 0;
8684 msym.ms_info = ELF32_MS_INFO (0, 1);
8686 for (s = output_bfd->sections; s != NULL; s = s->next)
8688 long dynindx = elf_section_data (s)->dynindx;
8690 bfd_mips_elf_swap_msym_out
8692 (((Elf32_External_Msym *) smsym->contents)
8697 if (SGI_COMPAT (output_bfd))
8699 /* Write .compact_rel section out. */
8700 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8704 cpt.num = s->reloc_count;
8706 cpt.offset = (s->output_section->filepos
8707 + sizeof (Elf32_External_compact_rel));
8710 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8711 ((Elf32_External_compact_rel *)
8714 /* Clean up a dummy stub function entry in .text. */
8715 s = bfd_get_section_by_name (dynobj,
8716 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8719 file_ptr dummy_offset;
8721 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
8722 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
8723 memset (s->contents + dummy_offset, 0,
8724 MIPS_FUNCTION_STUB_SIZE);
8729 /* Clean up a first relocation in .rel.dyn. */
8730 s = bfd_get_section_by_name (dynobj,
8731 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
8732 if (s != NULL && s->_raw_size > 0)
8733 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
8739 /* This is almost identical to bfd_generic_get_... except that some
8740 MIPS relocations need to be handled specially. Sigh. */
8743 elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
8744 relocateable, symbols)
8746 struct bfd_link_info *link_info;
8747 struct bfd_link_order *link_order;
8749 boolean relocateable;
8752 /* Get enough memory to hold the stuff */
8753 bfd *input_bfd = link_order->u.indirect.section->owner;
8754 asection *input_section = link_order->u.indirect.section;
8756 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8757 arelent **reloc_vector = NULL;
8763 reloc_vector = (arelent **) bfd_malloc (reloc_size);
8764 if (reloc_vector == NULL && reloc_size != 0)
8767 /* read in the section */
8768 if (!bfd_get_section_contents (input_bfd,
8772 input_section->_raw_size))
8775 /* We're not relaxing the section, so just copy the size info */
8776 input_section->_cooked_size = input_section->_raw_size;
8777 input_section->reloc_done = true;
8779 reloc_count = bfd_canonicalize_reloc (input_bfd,
8783 if (reloc_count < 0)
8786 if (reloc_count > 0)
8791 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8794 struct bfd_hash_entry *h;
8795 struct bfd_link_hash_entry *lh;
8796 /* Skip all this stuff if we aren't mixing formats. */
8797 if (abfd && input_bfd
8798 && abfd->xvec == input_bfd->xvec)
8802 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
8803 lh = (struct bfd_link_hash_entry *) h;
8810 case bfd_link_hash_undefined:
8811 case bfd_link_hash_undefweak:
8812 case bfd_link_hash_common:
8815 case bfd_link_hash_defined:
8816 case bfd_link_hash_defweak:
8818 gp = lh->u.def.value;
8820 case bfd_link_hash_indirect:
8821 case bfd_link_hash_warning:
8823 /* @@FIXME ignoring warning for now */
8825 case bfd_link_hash_new:
8834 for (parent = reloc_vector; *parent != (arelent *) NULL;
8837 char *error_message = (char *) NULL;
8838 bfd_reloc_status_type r;
8840 /* Specific to MIPS: Deal with relocation types that require
8841 knowing the gp of the output bfd. */
8842 asymbol *sym = *(*parent)->sym_ptr_ptr;
8843 if (bfd_is_abs_section (sym->section) && abfd)
8845 /* The special_function wouldn't get called anyways. */
8849 /* The gp isn't there; let the special function code
8850 fall over on its own. */
8852 else if ((*parent)->howto->special_function
8853 == _bfd_mips_elf_gprel16_reloc)
8855 /* bypass special_function call */
8856 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
8857 relocateable, (PTR) data, gp);
8858 goto skip_bfd_perform_relocation;
8860 /* end mips specific stuff */
8862 r = bfd_perform_relocation (input_bfd,
8866 relocateable ? abfd : (bfd *) NULL,
8868 skip_bfd_perform_relocation:
8872 asection *os = input_section->output_section;
8874 /* A partial link, so keep the relocs */
8875 os->orelocation[os->reloc_count] = *parent;
8879 if (r != bfd_reloc_ok)
8883 case bfd_reloc_undefined:
8884 if (!((*link_info->callbacks->undefined_symbol)
8885 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8886 input_bfd, input_section, (*parent)->address,
8890 case bfd_reloc_dangerous:
8891 BFD_ASSERT (error_message != (char *) NULL);
8892 if (!((*link_info->callbacks->reloc_dangerous)
8893 (link_info, error_message, input_bfd, input_section,
8894 (*parent)->address)))
8897 case bfd_reloc_overflow:
8898 if (!((*link_info->callbacks->reloc_overflow)
8899 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8900 (*parent)->howto->name, (*parent)->addend,
8901 input_bfd, input_section, (*parent)->address)))
8904 case bfd_reloc_outofrange:
8913 if (reloc_vector != NULL)
8914 free (reloc_vector);
8918 if (reloc_vector != NULL)
8919 free (reloc_vector);
8922 #define bfd_elf32_bfd_get_relocated_section_contents \
8923 elf32_mips_get_relocated_section_contents
8925 /* ECOFF swapping routines. These are used when dealing with the
8926 .mdebug section, which is in the ECOFF debugging format. */
8927 static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap =
8929 /* Symbol table magic number. */
8931 /* Alignment of debugging information. E.g., 4. */
8933 /* Sizes of external symbolic information. */
8934 sizeof (struct hdr_ext),
8935 sizeof (struct dnr_ext),
8936 sizeof (struct pdr_ext),
8937 sizeof (struct sym_ext),
8938 sizeof (struct opt_ext),
8939 sizeof (struct fdr_ext),
8940 sizeof (struct rfd_ext),
8941 sizeof (struct ext_ext),
8942 /* Functions to swap in external symbolic data. */
8951 _bfd_ecoff_swap_tir_in,
8952 _bfd_ecoff_swap_rndx_in,
8953 /* Functions to swap out external symbolic data. */
8962 _bfd_ecoff_swap_tir_out,
8963 _bfd_ecoff_swap_rndx_out,
8964 /* Function to read in symbolic data. */
8965 _bfd_mips_elf_read_ecoff_info
8968 #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
8969 #define TARGET_LITTLE_NAME "elf32-littlemips"
8970 #define TARGET_BIG_SYM bfd_elf32_bigmips_vec
8971 #define TARGET_BIG_NAME "elf32-bigmips"
8972 #define ELF_ARCH bfd_arch_mips
8973 #define ELF_MACHINE_CODE EM_MIPS
8975 /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
8976 a value of 0x1000, and we are compatible. */
8977 #define ELF_MAXPAGESIZE 0x1000
8979 #define elf_backend_collect true
8980 #define elf_backend_type_change_ok true
8981 #define elf_backend_can_gc_sections true
8982 #define elf_backend_sign_extend_vma true
8983 #define elf_info_to_howto mips_info_to_howto_rela
8984 #define elf_info_to_howto_rel mips_info_to_howto_rel
8985 #define elf_backend_sym_is_global mips_elf_sym_is_global
8986 #define elf_backend_object_p _bfd_mips_elf_object_p
8987 #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
8988 #define elf_backend_fake_sections _bfd_mips_elf_fake_sections
8989 #define elf_backend_section_from_bfd_section \
8990 _bfd_mips_elf_section_from_bfd_section
8991 #define elf_backend_section_processing _bfd_mips_elf_section_processing
8992 #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
8993 #define elf_backend_additional_program_headers \
8994 _bfd_mips_elf_additional_program_headers
8995 #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
8996 #define elf_backend_final_write_processing \
8997 _bfd_mips_elf_final_write_processing
8998 #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
8999 #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
9000 #define elf_backend_create_dynamic_sections \
9001 _bfd_mips_elf_create_dynamic_sections
9002 #define elf_backend_check_relocs _bfd_mips_elf_check_relocs
9003 #define elf_backend_adjust_dynamic_symbol \
9004 _bfd_mips_elf_adjust_dynamic_symbol
9005 #define elf_backend_always_size_sections \
9006 _bfd_mips_elf_always_size_sections
9007 #define elf_backend_size_dynamic_sections \
9008 _bfd_mips_elf_size_dynamic_sections
9009 #define elf_backend_relocate_section _bfd_mips_elf_relocate_section
9010 #define elf_backend_link_output_symbol_hook \
9011 _bfd_mips_elf_link_output_symbol_hook
9012 #define elf_backend_finish_dynamic_symbol \
9013 _bfd_mips_elf_finish_dynamic_symbol
9014 #define elf_backend_finish_dynamic_sections \
9015 _bfd_mips_elf_finish_dynamic_sections
9016 #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
9017 #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
9019 #define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO)
9020 #define elf_backend_plt_header_size 0
9022 #define bfd_elf32_bfd_is_local_label_name \
9023 mips_elf_is_local_label_name
9024 #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
9025 #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
9026 #define bfd_elf32_bfd_link_hash_table_create \
9027 _bfd_mips_elf_link_hash_table_create
9028 #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
9029 #define bfd_elf32_bfd_copy_private_bfd_data \
9030 _bfd_mips_elf_copy_private_bfd_data
9031 #define bfd_elf32_bfd_merge_private_bfd_data \
9032 _bfd_mips_elf_merge_private_bfd_data
9033 #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
9034 #define bfd_elf32_bfd_print_private_bfd_data \
9035 _bfd_mips_elf_print_private_bfd_data
9036 #include "elf32-target.h"