1 /* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 94, 95, 96, 97, 98, 1999 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
9 This file is part of BFD, the Binary File Descriptor library.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
26 different MIPS ELF from other targets. This matters when linking.
27 This file supports both, switching at runtime. */
37 /* Get the ECOFF swapping routines. */
39 #include "coff/symconst.h"
40 #include "coff/internal.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
44 #include "ecoffswap.h"
46 /* This structure is used to hold .got information when linking. It
47 is stored in the tdata field of the bfd_elf_section_data structure. */
51 /* The global symbol in the GOT with the lowest index in the dynamic
53 struct elf_link_hash_entry *global_gotsym;
54 /* The number of global .got entries. */
55 unsigned int global_gotno;
56 /* The number of local .got entries. */
57 unsigned int local_gotno;
58 /* The number of local .got entries we have used. */
59 unsigned int assigned_gotno;
62 /* The MIPS ELF linker needs additional information for each symbol in
63 the global hash table. */
65 struct mips_elf_link_hash_entry
67 struct elf_link_hash_entry root;
69 /* External symbol information. */
72 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
74 unsigned int possibly_dynamic_relocs;
76 /* The index of the first dynamic relocation (in the .rel.dyn
77 section) against this symbol. */
78 unsigned int min_dyn_reloc_index;
80 /* If there is a stub that 32 bit functions should use to call this
81 16 bit function, this points to the section containing the stub. */
84 /* Whether we need the fn_stub; this is set if this symbol appears
85 in any relocs other than a 16 bit call. */
88 /* If there is a stub that 16 bit functions should use to call this
89 32 bit function, this points to the section containing the stub. */
92 /* This is like the call_stub field, but it is used if the function
93 being called returns a floating point value. */
94 asection *call_fp_stub;
97 static bfd_reloc_status_type mips32_64bit_reloc
98 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
99 static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
100 PARAMS ((bfd *, bfd_reloc_code_real_type));
101 static reloc_howto_type *mips_rtype_to_howto
102 PARAMS ((unsigned int));
103 static void mips_info_to_howto_rel
104 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
105 static void mips_info_to_howto_rela
106 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
107 static void bfd_mips_elf32_swap_gptab_in
108 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
109 static void bfd_mips_elf32_swap_gptab_out
110 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
112 static void bfd_mips_elf_swap_msym_in
113 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
115 static void bfd_mips_elf_swap_msym_out
116 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
117 static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
118 static boolean mips_elf_create_procedure_table
119 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
120 struct ecoff_debug_info *));
121 static INLINE int elf_mips_isa PARAMS ((flagword));
122 static INLINE int elf_mips_mach PARAMS ((flagword));
123 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
124 static boolean mips_elf_is_local_label_name
125 PARAMS ((bfd *, const char *));
126 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
127 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
128 static int gptab_compare PARAMS ((const void *, const void *));
129 static bfd_reloc_status_type mips16_jump_reloc
130 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
131 static bfd_reloc_status_type mips16_gprel_reloc
132 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
133 static boolean mips_elf_create_compact_rel_section
134 PARAMS ((bfd *, struct bfd_link_info *));
135 static boolean mips_elf_create_got_section
136 PARAMS ((bfd *, struct bfd_link_info *));
137 static bfd_reloc_status_type mips_elf_final_gp
138 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
139 static bfd_byte *elf32_mips_get_relocated_section_contents
140 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
141 bfd_byte *, boolean, asymbol **));
142 static asection *mips_elf_create_msym_section
144 static void mips_elf_irix6_finish_dynamic_symbol
145 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
146 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
147 static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
148 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
149 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
150 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
151 static bfd_vma mips_elf_global_got_index
152 PARAMS ((bfd *, struct elf_link_hash_entry *));
153 static bfd_vma mips_elf_local_got_index
154 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
155 static bfd_vma mips_elf_got_offset_from_index
156 PARAMS ((bfd *, bfd *, bfd_vma));
157 static boolean mips_elf_record_global_got_symbol
158 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
159 struct mips_got_info *));
160 static bfd_vma mips_elf_got_page
161 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
162 static const Elf_Internal_Rela *mips_elf_next_relocation
163 PARAMS ((unsigned int, const Elf_Internal_Rela *,
164 const Elf_Internal_Rela *));
165 static bfd_reloc_status_type mips_elf_calculate_relocation
166 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
167 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
168 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
170 static bfd_vma mips_elf_obtain_contents
171 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
172 static boolean mips_elf_perform_relocation
173 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
174 const Elf_Internal_Rela *, bfd_vma,
175 bfd *, asection *, bfd_byte *, boolean));
176 static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
177 static boolean mips_elf_sort_hash_table_f
178 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
179 static boolean mips_elf_sort_hash_table
180 PARAMS ((struct bfd_link_info *, unsigned long));
181 static asection * mips_elf_got_section PARAMS ((bfd *));
182 static struct mips_got_info *mips_elf_got_info
183 PARAMS ((bfd *, asection **));
184 static boolean mips_elf_local_relocation_p
185 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean));
186 static bfd_vma mips_elf_create_local_got_entry
187 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
188 static bfd_vma mips_elf_got16_entry
189 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean));
190 static boolean mips_elf_create_dynamic_relocation
191 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
192 struct mips_elf_link_hash_entry *, asection *,
193 bfd_vma, bfd_vma *, asection *));
194 static void mips_elf_allocate_dynamic_relocations
195 PARAMS ((bfd *, unsigned int));
196 static boolean mips_elf_stub_section_p
197 PARAMS ((bfd *, asection *));
199 /* The level of IRIX compatibility we're striving for. */
207 /* Nonzero if ABFD is using the N32 ABI. */
209 #define ABI_N32_P(abfd) \
210 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
212 /* Nonzero if ABFD is using the 64-bit ABI. FIXME: This is never
214 #define ABI_64_P(abfd) \
215 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
217 /* What version of Irix we are trying to be compatible with. FIXME:
218 At the moment, we never generate "normal" MIPS ELF ABI executables;
219 we always use some version of Irix. */
221 #define IRIX_COMPAT(abfd) \
222 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5)
224 /* Whether we are trying to be compatible with IRIX at all. */
226 #define SGI_COMPAT(abfd) \
227 (IRIX_COMPAT (abfd) != ict_none)
229 /* The name of the msym section. */
230 #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
232 /* The name of the srdata section. */
233 #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
235 /* The name of the options section. */
236 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
237 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
239 /* The name of the stub section. */
240 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
241 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
243 /* The name of the dynamic relocation section. */
244 #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
246 /* The size of an external REL relocation. */
247 #define MIPS_ELF_REL_SIZE(abfd) \
248 (get_elf_backend_data (abfd)->s->sizeof_rel)
250 /* The size of an external dynamic table entry. */
251 #define MIPS_ELF_DYN_SIZE(abfd) \
252 (get_elf_backend_data (abfd)->s->sizeof_dyn)
254 /* The size of a GOT entry. */
255 #define MIPS_ELF_GOT_SIZE(abfd) \
256 (get_elf_backend_data (abfd)->s->arch_size / 8)
258 /* The size of a symbol-table entry. */
259 #define MIPS_ELF_SYM_SIZE(abfd) \
260 (get_elf_backend_data (abfd)->s->sizeof_sym)
262 /* The default alignment for sections, as a power of two. */
263 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
264 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
266 /* Get word-sized data. */
267 #define MIPS_ELF_GET_WORD(abfd, ptr) \
268 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
270 /* Put out word-sized data. */
271 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
273 ? bfd_put_64 (abfd, val, ptr) \
274 : bfd_put_32 (abfd, val, ptr))
276 /* Add a dynamic symbol table-entry. */
278 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
279 (ABI_64_P (elf_hash_table (info)->dynobj) \
280 ? bfd_elf64_add_dynamic_entry (info, tag, val) \
281 : bfd_elf32_add_dynamic_entry (info, tag, val))
283 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
284 (ABI_64_P (elf_hash_table (info)->dynobj) \
285 ? (abort (), false) \
286 : bfd_elf32_add_dynamic_entry (info, tag, val))
289 /* The number of local .got entries we reserve. */
290 #define MIPS_RESERVED_GOTNO (2)
292 /* Instructions which appear in a stub. For some reason the stub is
293 slightly different on an SGI system. */
294 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
295 #define STUB_LW(abfd) \
298 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
299 : 0x8f998010) /* lw t9,0x8010(gp) */ \
300 : 0x8f998000) /* lw t9,0x8000(gp) */
301 #define STUB_MOVE 0x03e07825 /* move t7,ra */
302 #define STUB_JALR 0x0320f809 /* jal t9 */
303 #define STUB_LI16 0x34180000 /* ori t8,zero,0 */
304 #define MIPS_FUNCTION_STUB_SIZE (16)
307 /* We no longer try to identify particular sections for the .dynsym
308 section. When we do, we wind up crashing if there are other random
309 sections with relocations. */
311 /* Names of sections which appear in the .dynsym section in an Irix 5
314 static const char * const mips_elf_dynsym_sec_names[] =
327 #define SIZEOF_MIPS_DYNSYM_SECNAMES \
328 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
330 /* The number of entries in mips_elf_dynsym_sec_names which go in the
333 #define MIPS_TEXT_DYNSYM_SECNO (3)
337 /* The names of the runtime procedure table symbols used on Irix 5. */
339 static const char * const mips_elf_dynsym_rtproc_names[] =
342 "_procedure_string_table",
343 "_procedure_table_size",
347 /* These structures are used to generate the .compact_rel section on
352 unsigned long id1; /* Always one? */
353 unsigned long num; /* Number of compact relocation entries. */
354 unsigned long id2; /* Always two? */
355 unsigned long offset; /* The file offset of the first relocation. */
356 unsigned long reserved0; /* Zero? */
357 unsigned long reserved1; /* Zero? */
366 bfd_byte reserved0[4];
367 bfd_byte reserved1[4];
368 } Elf32_External_compact_rel;
372 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
373 unsigned int rtype : 4; /* Relocation types. See below. */
374 unsigned int dist2to : 8;
375 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
376 unsigned long konst; /* KONST field. See below. */
377 unsigned long vaddr; /* VADDR to be relocated. */
382 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
383 unsigned int rtype : 4; /* Relocation types. See below. */
384 unsigned int dist2to : 8;
385 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
386 unsigned long konst; /* KONST field. See below. */
394 } Elf32_External_crinfo;
400 } Elf32_External_crinfo2;
402 /* These are the constants used to swap the bitfields in a crinfo. */
404 #define CRINFO_CTYPE (0x1)
405 #define CRINFO_CTYPE_SH (31)
406 #define CRINFO_RTYPE (0xf)
407 #define CRINFO_RTYPE_SH (27)
408 #define CRINFO_DIST2TO (0xff)
409 #define CRINFO_DIST2TO_SH (19)
410 #define CRINFO_RELVADDR (0x7ffff)
411 #define CRINFO_RELVADDR_SH (0)
413 /* A compact relocation info has long (3 words) or short (2 words)
414 formats. A short format doesn't have VADDR field and relvaddr
415 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
416 #define CRF_MIPS_LONG 1
417 #define CRF_MIPS_SHORT 0
419 /* There are 4 types of compact relocation at least. The value KONST
420 has different meaning for each type:
423 CT_MIPS_REL32 Address in data
424 CT_MIPS_WORD Address in word (XXX)
425 CT_MIPS_GPHI_LO GP - vaddr
426 CT_MIPS_JMPAD Address to jump
429 #define CRT_MIPS_REL32 0xa
430 #define CRT_MIPS_WORD 0xb
431 #define CRT_MIPS_GPHI_LO 0xc
432 #define CRT_MIPS_JMPAD 0xd
434 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
435 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
436 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
437 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
439 static void bfd_elf32_swap_compact_rel_out
440 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
441 static void bfd_elf32_swap_crinfo_out
442 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
444 #define USE_REL 1 /* MIPS uses REL relocations instead of RELA */
446 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
447 from smaller values. Start with zero, widen, *then* decrement. */
448 #define MINUS_ONE (((bfd_vma)0) - 1)
450 static reloc_howto_type elf_mips_howto_table[] =
453 HOWTO (R_MIPS_NONE, /* type */
455 0, /* size (0 = byte, 1 = short, 2 = long) */
457 false, /* pc_relative */
459 complain_overflow_dont, /* complain_on_overflow */
460 bfd_elf_generic_reloc, /* special_function */
461 "R_MIPS_NONE", /* name */
462 false, /* partial_inplace */
465 false), /* pcrel_offset */
467 /* 16 bit relocation. */
468 HOWTO (R_MIPS_16, /* type */
470 1, /* size (0 = byte, 1 = short, 2 = long) */
472 false, /* pc_relative */
474 complain_overflow_bitfield, /* complain_on_overflow */
475 bfd_elf_generic_reloc, /* special_function */
476 "R_MIPS_16", /* name */
477 true, /* partial_inplace */
478 0xffff, /* src_mask */
479 0xffff, /* dst_mask */
480 false), /* pcrel_offset */
482 /* 32 bit relocation. */
483 HOWTO (R_MIPS_32, /* type */
485 2, /* size (0 = byte, 1 = short, 2 = long) */
487 false, /* pc_relative */
489 complain_overflow_bitfield, /* complain_on_overflow */
490 bfd_elf_generic_reloc, /* special_function */
491 "R_MIPS_32", /* name */
492 true, /* partial_inplace */
493 0xffffffff, /* src_mask */
494 0xffffffff, /* dst_mask */
495 false), /* pcrel_offset */
497 /* 32 bit symbol relative relocation. */
498 HOWTO (R_MIPS_REL32, /* type */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
502 false, /* pc_relative */
504 complain_overflow_bitfield, /* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_MIPS_REL32", /* name */
507 true, /* partial_inplace */
508 0xffffffff, /* src_mask */
509 0xffffffff, /* dst_mask */
510 false), /* pcrel_offset */
512 /* 26 bit branch address. */
513 HOWTO (R_MIPS_26, /* type */
515 2, /* size (0 = byte, 1 = short, 2 = long) */
517 false, /* pc_relative */
519 complain_overflow_dont, /* complain_on_overflow */
520 /* This needs complex overflow
521 detection, because the upper four
522 bits must match the PC. */
523 bfd_elf_generic_reloc, /* special_function */
524 "R_MIPS_26", /* name */
525 true, /* partial_inplace */
526 0x3ffffff, /* src_mask */
527 0x3ffffff, /* dst_mask */
528 false), /* pcrel_offset */
530 /* High 16 bits of symbol value. */
531 HOWTO (R_MIPS_HI16, /* type */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
535 false, /* pc_relative */
537 complain_overflow_dont, /* complain_on_overflow */
538 _bfd_mips_elf_hi16_reloc, /* special_function */
539 "R_MIPS_HI16", /* name */
540 true, /* partial_inplace */
541 0xffff, /* src_mask */
542 0xffff, /* dst_mask */
543 false), /* pcrel_offset */
545 /* Low 16 bits of symbol value. */
546 HOWTO (R_MIPS_LO16, /* type */
548 2, /* size (0 = byte, 1 = short, 2 = long) */
550 false, /* pc_relative */
552 complain_overflow_dont, /* complain_on_overflow */
553 _bfd_mips_elf_lo16_reloc, /* special_function */
554 "R_MIPS_LO16", /* name */
555 true, /* partial_inplace */
556 0xffff, /* src_mask */
557 0xffff, /* dst_mask */
558 false), /* pcrel_offset */
560 /* GP relative reference. */
561 HOWTO (R_MIPS_GPREL16, /* type */
563 2, /* size (0 = byte, 1 = short, 2 = long) */
565 false, /* pc_relative */
567 complain_overflow_signed, /* complain_on_overflow */
568 _bfd_mips_elf_gprel16_reloc, /* special_function */
569 "R_MIPS_GPREL16", /* name */
570 true, /* partial_inplace */
571 0xffff, /* src_mask */
572 0xffff, /* dst_mask */
573 false), /* pcrel_offset */
575 /* Reference to literal section. */
576 HOWTO (R_MIPS_LITERAL, /* type */
578 2, /* size (0 = byte, 1 = short, 2 = long) */
580 false, /* pc_relative */
582 complain_overflow_signed, /* complain_on_overflow */
583 _bfd_mips_elf_gprel16_reloc, /* special_function */
584 "R_MIPS_LITERAL", /* name */
585 true, /* partial_inplace */
586 0xffff, /* src_mask */
587 0xffff, /* dst_mask */
588 false), /* pcrel_offset */
590 /* Reference to global offset table. */
591 HOWTO (R_MIPS_GOT16, /* type */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
595 false, /* pc_relative */
597 complain_overflow_signed, /* complain_on_overflow */
598 _bfd_mips_elf_got16_reloc, /* special_function */
599 "R_MIPS_GOT16", /* name */
600 false, /* partial_inplace */
601 0xffff, /* src_mask */
602 0xffff, /* dst_mask */
603 false), /* pcrel_offset */
605 /* 16 bit PC relative reference. */
606 HOWTO (R_MIPS_PC16, /* type */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
610 true, /* pc_relative */
612 complain_overflow_signed, /* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
614 "R_MIPS_PC16", /* name */
615 true, /* partial_inplace */
616 0xffff, /* src_mask */
617 0xffff, /* dst_mask */
618 true), /* pcrel_offset */
620 /* 16 bit call through global offset table. */
621 HOWTO (R_MIPS_CALL16, /* type */
623 2, /* size (0 = byte, 1 = short, 2 = long) */
625 false, /* pc_relative */
627 complain_overflow_signed, /* complain_on_overflow */
628 bfd_elf_generic_reloc, /* special_function */
629 "R_MIPS_CALL16", /* name */
630 false, /* partial_inplace */
631 0xffff, /* src_mask */
632 0xffff, /* dst_mask */
633 false), /* pcrel_offset */
635 /* 32 bit GP relative reference. */
636 HOWTO (R_MIPS_GPREL32, /* type */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
640 false, /* pc_relative */
642 complain_overflow_bitfield, /* complain_on_overflow */
643 _bfd_mips_elf_gprel32_reloc, /* special_function */
644 "R_MIPS_GPREL32", /* name */
645 true, /* partial_inplace */
646 0xffffffff, /* src_mask */
647 0xffffffff, /* dst_mask */
648 false), /* pcrel_offset */
650 /* The remaining relocs are defined on Irix 5, although they are
651 not defined by the ABI. */
656 /* A 5 bit shift field. */
657 HOWTO (R_MIPS_SHIFT5, /* type */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
661 false, /* pc_relative */
663 complain_overflow_bitfield, /* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_MIPS_SHIFT5", /* name */
666 true, /* partial_inplace */
667 0x000007c0, /* src_mask */
668 0x000007c0, /* dst_mask */
669 false), /* pcrel_offset */
671 /* A 6 bit shift field. */
672 /* FIXME: This is not handled correctly; a special function is
673 needed to put the most significant bit in the right place. */
674 HOWTO (R_MIPS_SHIFT6, /* type */
676 2, /* size (0 = byte, 1 = short, 2 = long) */
678 false, /* pc_relative */
680 complain_overflow_bitfield, /* complain_on_overflow */
681 bfd_elf_generic_reloc, /* special_function */
682 "R_MIPS_SHIFT6", /* name */
683 true, /* partial_inplace */
684 0x000007c4, /* src_mask */
685 0x000007c4, /* dst_mask */
686 false), /* pcrel_offset */
688 /* A 64 bit relocation. */
689 HOWTO (R_MIPS_64, /* type */
691 4, /* size (0 = byte, 1 = short, 2 = long) */
693 false, /* pc_relative */
695 complain_overflow_bitfield, /* complain_on_overflow */
696 mips32_64bit_reloc, /* special_function */
697 "R_MIPS_64", /* name */
698 true, /* partial_inplace */
699 MINUS_ONE, /* src_mask */
700 MINUS_ONE, /* dst_mask */
701 false), /* pcrel_offset */
703 /* Displacement in the global offset table. */
704 HOWTO (R_MIPS_GOT_DISP, /* type */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
708 false, /* pc_relative */
710 complain_overflow_bitfield, /* complain_on_overflow */
711 bfd_elf_generic_reloc, /* special_function */
712 "R_MIPS_GOT_DISP", /* name */
713 true, /* partial_inplace */
714 0x0000ffff, /* src_mask */
715 0x0000ffff, /* dst_mask */
716 false), /* pcrel_offset */
718 /* Displacement to page pointer in the global offset table. */
719 HOWTO (R_MIPS_GOT_PAGE, /* type */
721 2, /* size (0 = byte, 1 = short, 2 = long) */
723 false, /* pc_relative */
725 complain_overflow_bitfield, /* complain_on_overflow */
726 bfd_elf_generic_reloc, /* special_function */
727 "R_MIPS_GOT_PAGE", /* name */
728 true, /* partial_inplace */
729 0x0000ffff, /* src_mask */
730 0x0000ffff, /* dst_mask */
731 false), /* pcrel_offset */
733 /* Offset from page pointer in the global offset table. */
734 HOWTO (R_MIPS_GOT_OFST, /* type */
736 2, /* size (0 = byte, 1 = short, 2 = long) */
738 false, /* pc_relative */
740 complain_overflow_bitfield, /* complain_on_overflow */
741 bfd_elf_generic_reloc, /* special_function */
742 "R_MIPS_GOT_OFST", /* name */
743 true, /* partial_inplace */
744 0x0000ffff, /* src_mask */
745 0x0000ffff, /* dst_mask */
746 false), /* pcrel_offset */
748 /* High 16 bits of displacement in global offset table. */
749 HOWTO (R_MIPS_GOT_HI16, /* type */
751 2, /* size (0 = byte, 1 = short, 2 = long) */
753 false, /* pc_relative */
755 complain_overflow_dont, /* complain_on_overflow */
756 bfd_elf_generic_reloc, /* special_function */
757 "R_MIPS_GOT_HI16", /* name */
758 true, /* partial_inplace */
759 0x0000ffff, /* src_mask */
760 0x0000ffff, /* dst_mask */
761 false), /* pcrel_offset */
763 /* Low 16 bits of displacement in global offset table. */
764 HOWTO (R_MIPS_GOT_LO16, /* type */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
768 false, /* pc_relative */
770 complain_overflow_dont, /* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_MIPS_GOT_LO16", /* name */
773 true, /* partial_inplace */
774 0x0000ffff, /* src_mask */
775 0x0000ffff, /* dst_mask */
776 false), /* pcrel_offset */
778 /* 64 bit subtraction. Used in the N32 ABI. */
779 HOWTO (R_MIPS_SUB, /* type */
781 4, /* size (0 = byte, 1 = short, 2 = long) */
783 false, /* pc_relative */
785 complain_overflow_bitfield, /* complain_on_overflow */
786 bfd_elf_generic_reloc, /* special_function */
787 "R_MIPS_SUB", /* name */
788 true, /* partial_inplace */
789 MINUS_ONE, /* src_mask */
790 MINUS_ONE, /* dst_mask */
791 false), /* pcrel_offset */
793 /* Used to cause the linker to insert and delete instructions? */
794 EMPTY_HOWTO (R_MIPS_INSERT_A),
795 EMPTY_HOWTO (R_MIPS_INSERT_B),
796 EMPTY_HOWTO (R_MIPS_DELETE),
798 /* Get the higher value of a 64 bit addend. */
799 HOWTO (R_MIPS_HIGHER, /* type */
801 2, /* size (0 = byte, 1 = short, 2 = long) */
803 false, /* pc_relative */
805 complain_overflow_dont, /* complain_on_overflow */
806 bfd_elf_generic_reloc, /* special_function */
807 "R_MIPS_HIGHER", /* name */
808 true, /* partial_inplace */
810 0xffff, /* dst_mask */
811 false), /* pcrel_offset */
813 /* Get the highest value of a 64 bit addend. */
814 HOWTO (R_MIPS_HIGHEST, /* type */
816 2, /* size (0 = byte, 1 = short, 2 = long) */
818 false, /* pc_relative */
820 complain_overflow_dont, /* complain_on_overflow */
821 bfd_elf_generic_reloc, /* special_function */
822 "R_MIPS_HIGHEST", /* name */
823 true, /* partial_inplace */
825 0xffff, /* dst_mask */
826 false), /* pcrel_offset */
828 /* High 16 bits of displacement in global offset table. */
829 HOWTO (R_MIPS_CALL_HI16, /* type */
831 2, /* size (0 = byte, 1 = short, 2 = long) */
833 false, /* pc_relative */
835 complain_overflow_dont, /* complain_on_overflow */
836 bfd_elf_generic_reloc, /* special_function */
837 "R_MIPS_CALL_HI16", /* name */
838 true, /* partial_inplace */
839 0x0000ffff, /* src_mask */
840 0x0000ffff, /* dst_mask */
841 false), /* pcrel_offset */
843 /* Low 16 bits of displacement in global offset table. */
844 HOWTO (R_MIPS_CALL_LO16, /* type */
846 2, /* size (0 = byte, 1 = short, 2 = long) */
848 false, /* pc_relative */
850 complain_overflow_dont, /* complain_on_overflow */
851 bfd_elf_generic_reloc, /* special_function */
852 "R_MIPS_CALL_LO16", /* name */
853 true, /* partial_inplace */
854 0x0000ffff, /* src_mask */
855 0x0000ffff, /* dst_mask */
856 false), /* pcrel_offset */
858 /* Section displacement. */
859 HOWTO (R_MIPS_SCN_DISP, /* type */
861 2, /* size (0 = byte, 1 = short, 2 = long) */
863 false, /* pc_relative */
865 complain_overflow_dont, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 "R_MIPS_SCN_DISP", /* name */
868 false, /* partial_inplace */
869 0xffffffff, /* src_mask */
870 0xffffffff, /* dst_mask */
871 false), /* pcrel_offset */
873 EMPTY_HOWTO (R_MIPS_REL16),
874 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
875 EMPTY_HOWTO (R_MIPS_PJUMP),
876 EMPTY_HOWTO (R_MIPS_RELGOT),
878 /* Protected jump conversion. This is an optimization hint. No
879 relocation is required for correctness. */
880 HOWTO (R_MIPS_JALR, /* type */
882 0, /* size (0 = byte, 1 = short, 2 = long) */
884 false, /* pc_relative */
886 complain_overflow_dont, /* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_MIPS_JALR", /* name */
889 false, /* partial_inplace */
890 0x00000000, /* src_mask */
891 0x00000000, /* dst_mask */
892 false), /* pcrel_offset */
895 /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
896 is a hack to make the linker think that we need 64 bit values. */
897 static reloc_howto_type elf_mips_ctor64_howto =
898 HOWTO (R_MIPS_64, /* type */
900 4, /* size (0 = byte, 1 = short, 2 = long) */
902 false, /* pc_relative */
904 complain_overflow_signed, /* complain_on_overflow */
905 mips32_64bit_reloc, /* special_function */
906 "R_MIPS_64", /* name */
907 true, /* partial_inplace */
908 0xffffffff, /* src_mask */
909 0xffffffff, /* dst_mask */
910 false); /* pcrel_offset */
912 /* The reloc used for the mips16 jump instruction. */
913 static reloc_howto_type elf_mips16_jump_howto =
914 HOWTO (R_MIPS16_26, /* type */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
918 false, /* pc_relative */
920 complain_overflow_dont, /* complain_on_overflow */
921 /* This needs complex overflow
922 detection, because the upper four
923 bits must match the PC. */
924 mips16_jump_reloc, /* special_function */
925 "R_MIPS16_26", /* name */
926 true, /* partial_inplace */
927 0x3ffffff, /* src_mask */
928 0x3ffffff, /* dst_mask */
929 false); /* pcrel_offset */
931 /* The reloc used for the mips16 gprel instruction. */
932 static reloc_howto_type elf_mips16_gprel_howto =
933 HOWTO (R_MIPS16_GPREL, /* type */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
937 false, /* pc_relative */
939 complain_overflow_signed, /* complain_on_overflow */
940 mips16_gprel_reloc, /* special_function */
941 "R_MIPS16_GPREL", /* name */
942 true, /* partial_inplace */
943 0x07ff001f, /* src_mask */
944 0x07ff001f, /* dst_mask */
945 false); /* pcrel_offset */
947 /* GNU extensions for embedded-pic. */
948 /* High 16 bits of symbol value, pc-relative. */
949 static reloc_howto_type elf_mips_gnu_rel_hi16 =
950 HOWTO (R_MIPS_GNU_REL_HI16, /* type */
952 2, /* size (0 = byte, 1 = short, 2 = long) */
954 true, /* pc_relative */
956 complain_overflow_dont, /* complain_on_overflow */
957 _bfd_mips_elf_hi16_reloc, /* special_function */
958 "R_MIPS_GNU_REL_HI16", /* name */
959 true, /* partial_inplace */
960 0xffff, /* src_mask */
961 0xffff, /* dst_mask */
962 true); /* pcrel_offset */
964 /* Low 16 bits of symbol value, pc-relative. */
965 static reloc_howto_type elf_mips_gnu_rel_lo16 =
966 HOWTO (R_MIPS_GNU_REL_LO16, /* type */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
970 true, /* pc_relative */
972 complain_overflow_dont, /* complain_on_overflow */
973 _bfd_mips_elf_lo16_reloc, /* special_function */
974 "R_MIPS_GNU_REL_LO16", /* name */
975 true, /* partial_inplace */
976 0xffff, /* src_mask */
977 0xffff, /* dst_mask */
978 true); /* pcrel_offset */
980 /* 16 bit offset for pc-relative branches. */
981 static reloc_howto_type elf_mips_gnu_rel16_s2 =
982 HOWTO (R_MIPS_GNU_REL16_S2, /* type */
984 2, /* size (0 = byte, 1 = short, 2 = long) */
986 true, /* pc_relative */
988 complain_overflow_signed, /* complain_on_overflow */
989 bfd_elf_generic_reloc, /* special_function */
990 "R_MIPS_GNU_REL16_S2", /* name */
991 true, /* partial_inplace */
992 0xffff, /* src_mask */
993 0xffff, /* dst_mask */
994 true); /* pcrel_offset */
996 /* 64 bit pc-relative. */
997 static reloc_howto_type elf_mips_gnu_pcrel64 =
998 HOWTO (R_MIPS_PC64, /* type */
1000 4, /* size (0 = byte, 1 = short, 2 = long) */
1002 true, /* pc_relative */
1004 complain_overflow_signed, /* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_MIPS_PC64", /* name */
1007 true, /* partial_inplace */
1008 MINUS_ONE, /* src_mask */
1009 MINUS_ONE, /* dst_mask */
1010 true); /* pcrel_offset */
1012 /* 32 bit pc-relative. */
1013 static reloc_howto_type elf_mips_gnu_pcrel32 =
1014 HOWTO (R_MIPS_PC32, /* type */
1016 2, /* size (0 = byte, 1 = short, 2 = long) */
1018 true, /* pc_relative */
1020 complain_overflow_signed, /* complain_on_overflow */
1021 bfd_elf_generic_reloc, /* special_function */
1022 "R_MIPS_PC32", /* name */
1023 true, /* partial_inplace */
1024 0xffffffff, /* src_mask */
1025 0xffffffff, /* dst_mask */
1026 true); /* pcrel_offset */
1028 /* GNU extension to record C++ vtable hierarchy */
1029 static reloc_howto_type elf_mips_gnu_vtinherit_howto =
1030 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
1032 2, /* size (0 = byte, 1 = short, 2 = long) */
1034 false, /* pc_relative */
1036 complain_overflow_dont, /* complain_on_overflow */
1037 NULL, /* special_function */
1038 "R_MIPS_GNU_VTINHERIT", /* name */
1039 false, /* partial_inplace */
1042 false); /* pcrel_offset */
1044 /* GNU extension to record C++ vtable member usage */
1045 static reloc_howto_type elf_mips_gnu_vtentry_howto =
1046 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
1048 2, /* size (0 = byte, 1 = short, 2 = long) */
1050 false, /* pc_relative */
1052 complain_overflow_dont, /* complain_on_overflow */
1053 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1054 "R_MIPS_GNU_VTENTRY", /* name */
1055 false, /* partial_inplace */
1058 false); /* pcrel_offset */
1060 /* Do a R_MIPS_HI16 relocation. This has to be done in combination
1061 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1062 the HI16. Here we just save the information we need; we do the
1063 actual relocation when we see the LO16. MIPS ELF requires that the
1064 LO16 immediately follow the HI16. As a GNU extension, we permit an
1065 arbitrary number of HI16 relocs to be associated with a single LO16
1066 reloc. This extension permits gcc to output the HI and LO relocs
1071 struct mips_hi16 *next;
1076 /* FIXME: This should not be a static variable. */
1078 static struct mips_hi16 *mips_hi16_list;
1080 bfd_reloc_status_type
1081 _bfd_mips_elf_hi16_reloc (abfd,
1088 bfd *abfd ATTRIBUTE_UNUSED;
1089 arelent *reloc_entry;
1092 asection *input_section;
1094 char **error_message;
1096 bfd_reloc_status_type ret;
1098 struct mips_hi16 *n;
1100 /* If we're relocating, and this an external symbol, we don't want
1101 to change anything. */
1102 if (output_bfd != (bfd *) NULL
1103 && (symbol->flags & BSF_SECTION_SYM) == 0
1104 && reloc_entry->addend == 0)
1106 reloc_entry->address += input_section->output_offset;
1107 return bfd_reloc_ok;
1112 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1114 boolean relocateable;
1117 if (ret == bfd_reloc_undefined)
1120 if (output_bfd != NULL)
1121 relocateable = true;
1124 relocateable = false;
1125 output_bfd = symbol->section->output_section->owner;
1128 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1129 error_message, &gp);
1130 if (ret != bfd_reloc_ok)
1133 relocation = gp - reloc_entry->address;
1137 if (bfd_is_und_section (symbol->section)
1138 && output_bfd == (bfd *) NULL)
1139 ret = bfd_reloc_undefined;
1141 if (bfd_is_com_section (symbol->section))
1144 relocation = symbol->value;
1147 relocation += symbol->section->output_section->vma;
1148 relocation += symbol->section->output_offset;
1149 relocation += reloc_entry->addend;
1151 if (reloc_entry->address > input_section->_cooked_size)
1152 return bfd_reloc_outofrange;
1154 /* Save the information, and let LO16 do the actual relocation. */
1155 n = (struct mips_hi16 *) bfd_malloc (sizeof *n);
1157 return bfd_reloc_outofrange;
1158 n->addr = (bfd_byte *) data + reloc_entry->address;
1159 n->addend = relocation;
1160 n->next = mips_hi16_list;
1163 if (output_bfd != (bfd *) NULL)
1164 reloc_entry->address += input_section->output_offset;
1169 /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1170 inplace relocation; this function exists in order to do the
1171 R_MIPS_HI16 relocation described above. */
1173 bfd_reloc_status_type
1174 _bfd_mips_elf_lo16_reloc (abfd,
1182 arelent *reloc_entry;
1185 asection *input_section;
1187 char **error_message;
1189 arelent gp_disp_relent;
1191 if (mips_hi16_list != NULL)
1193 struct mips_hi16 *l;
1200 unsigned long vallo;
1201 struct mips_hi16 *next;
1203 /* Do the HI16 relocation. Note that we actually don't need
1204 to know anything about the LO16 itself, except where to
1205 find the low 16 bits of the addend needed by the LO16. */
1206 insn = bfd_get_32 (abfd, l->addr);
1207 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1209 val = ((insn & 0xffff) << 16) + vallo;
1212 /* The low order 16 bits are always treated as a signed
1213 value. Therefore, a negative value in the low order bits
1214 requires an adjustment in the high order bits. We need
1215 to make this adjustment in two ways: once for the bits we
1216 took from the data, and once for the bits we are putting
1217 back in to the data. */
1218 if ((vallo & 0x8000) != 0)
1220 if ((val & 0x8000) != 0)
1223 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
1224 bfd_put_32 (abfd, insn, l->addr);
1226 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1228 gp_disp_relent = *reloc_entry;
1229 reloc_entry = &gp_disp_relent;
1230 reloc_entry->addend = l->addend;
1238 mips_hi16_list = NULL;
1240 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1242 bfd_reloc_status_type ret;
1243 bfd_vma gp, relocation;
1245 /* FIXME: Does this case ever occur? */
1247 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1248 if (ret != bfd_reloc_ok)
1251 relocation = gp - reloc_entry->address;
1252 relocation += symbol->section->output_section->vma;
1253 relocation += symbol->section->output_offset;
1254 relocation += reloc_entry->addend;
1256 if (reloc_entry->address > input_section->_cooked_size)
1257 return bfd_reloc_outofrange;
1259 gp_disp_relent = *reloc_entry;
1260 reloc_entry = &gp_disp_relent;
1261 reloc_entry->addend = relocation - 4;
1264 /* Now do the LO16 reloc in the usual way. */
1265 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1266 input_section, output_bfd, error_message);
1269 /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1270 table used for PIC code. If the symbol is an external symbol, the
1271 instruction is modified to contain the offset of the appropriate
1272 entry in the global offset table. If the symbol is a section
1273 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1274 addends are combined to form the real addend against the section
1275 symbol; the GOT16 is modified to contain the offset of an entry in
1276 the global offset table, and the LO16 is modified to offset it
1277 appropriately. Thus an offset larger than 16 bits requires a
1278 modified value in the global offset table.
1280 This implementation suffices for the assembler, but the linker does
1281 not yet know how to create global offset tables. */
1283 bfd_reloc_status_type
1284 _bfd_mips_elf_got16_reloc (abfd,
1292 arelent *reloc_entry;
1295 asection *input_section;
1297 char **error_message;
1299 /* If we're relocating, and this an external symbol, we don't want
1300 to change anything. */
1301 if (output_bfd != (bfd *) NULL
1302 && (symbol->flags & BSF_SECTION_SYM) == 0
1303 && reloc_entry->addend == 0)
1305 reloc_entry->address += input_section->output_offset;
1306 return bfd_reloc_ok;
1309 /* If we're relocating, and this is a local symbol, we can handle it
1311 if (output_bfd != (bfd *) NULL
1312 && (symbol->flags & BSF_SECTION_SYM) != 0)
1313 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1314 input_section, output_bfd, error_message);
1319 /* Set the GP value for OUTPUT_BFD. Returns false if this is a
1320 dangerous relocation. */
1323 mips_elf_assign_gp (output_bfd, pgp)
1331 /* If we've already figured out what GP will be, just return it. */
1332 *pgp = _bfd_get_gp_value (output_bfd);
1336 count = bfd_get_symcount (output_bfd);
1337 sym = bfd_get_outsymbols (output_bfd);
1339 /* The linker script will have created a symbol named `_gp' with the
1340 appropriate value. */
1341 if (sym == (asymbol **) NULL)
1345 for (i = 0; i < count; i++, sym++)
1347 register CONST char *name;
1349 name = bfd_asymbol_name (*sym);
1350 if (*name == '_' && strcmp (name, "_gp") == 0)
1352 *pgp = bfd_asymbol_value (*sym);
1353 _bfd_set_gp_value (output_bfd, *pgp);
1361 /* Only get the error once. */
1363 _bfd_set_gp_value (output_bfd, *pgp);
1370 /* We have to figure out the gp value, so that we can adjust the
1371 symbol value correctly. We look up the symbol _gp in the output
1372 BFD. If we can't find it, we're stuck. We cache it in the ELF
1373 target data. We don't need to adjust the symbol value for an
1374 external symbol if we are producing relocateable output. */
1376 static bfd_reloc_status_type
1377 mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1380 boolean relocateable;
1381 char **error_message;
1384 if (bfd_is_und_section (symbol->section)
1388 return bfd_reloc_undefined;
1391 *pgp = _bfd_get_gp_value (output_bfd);
1394 || (symbol->flags & BSF_SECTION_SYM) != 0))
1398 /* Make up a value. */
1399 *pgp = symbol->section->output_section->vma + 0x4000;
1400 _bfd_set_gp_value (output_bfd, *pgp);
1402 else if (!mips_elf_assign_gp (output_bfd, pgp))
1405 (char *) _("GP relative relocation when _gp not defined");
1406 return bfd_reloc_dangerous;
1410 return bfd_reloc_ok;
1413 /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1414 become the offset from the gp register. This function also handles
1415 R_MIPS_LITERAL relocations, although those can be handled more
1416 cleverly because the entries in the .lit8 and .lit4 sections can be
1419 static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
1420 arelent *, asection *,
1421 boolean, PTR, bfd_vma));
1423 bfd_reloc_status_type
1424 _bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
1425 output_bfd, error_message)
1427 arelent *reloc_entry;
1430 asection *input_section;
1432 char **error_message;
1434 boolean relocateable;
1435 bfd_reloc_status_type ret;
1438 /* If we're relocating, and this is an external symbol with no
1439 addend, we don't want to change anything. We will only have an
1440 addend if this is a newly created reloc, not read from an ELF
1442 if (output_bfd != (bfd *) NULL
1443 && (symbol->flags & BSF_SECTION_SYM) == 0
1444 && reloc_entry->addend == 0)
1446 reloc_entry->address += input_section->output_offset;
1447 return bfd_reloc_ok;
1450 if (output_bfd != (bfd *) NULL)
1451 relocateable = true;
1454 relocateable = false;
1455 output_bfd = symbol->section->output_section->owner;
1458 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1460 if (ret != bfd_reloc_ok)
1463 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1464 relocateable, data, gp);
1467 static bfd_reloc_status_type
1468 gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1472 arelent *reloc_entry;
1473 asection *input_section;
1474 boolean relocateable;
1482 if (bfd_is_com_section (symbol->section))
1485 relocation = symbol->value;
1487 relocation += symbol->section->output_section->vma;
1488 relocation += symbol->section->output_offset;
1490 if (reloc_entry->address > input_section->_cooked_size)
1491 return bfd_reloc_outofrange;
1493 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1495 /* Set val to the offset into the section or symbol. */
1496 if (reloc_entry->howto->src_mask == 0)
1498 /* This case occurs with the 64-bit MIPS ELF ABI. */
1499 val = reloc_entry->addend;
1503 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1508 /* Adjust val for the final section location and GP value. If we
1509 are producing relocateable output, we don't want to do this for
1510 an external symbol. */
1512 || (symbol->flags & BSF_SECTION_SYM) != 0)
1513 val += relocation - gp;
1515 insn = (insn &~ 0xffff) | (val & 0xffff);
1516 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1519 reloc_entry->address += input_section->output_offset;
1521 /* Make sure it fit in 16 bits. */
1522 if ((long) val >= 0x8000 || (long) val < -0x8000)
1523 return bfd_reloc_overflow;
1525 return bfd_reloc_ok;
1528 /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
1529 from the gp register? XXX */
1531 static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
1532 arelent *, asection *,
1533 boolean, PTR, bfd_vma));
1535 bfd_reloc_status_type
1536 _bfd_mips_elf_gprel32_reloc (abfd,
1544 arelent *reloc_entry;
1547 asection *input_section;
1549 char **error_message;
1551 boolean relocateable;
1552 bfd_reloc_status_type ret;
1555 /* If we're relocating, and this is an external symbol with no
1556 addend, we don't want to change anything. We will only have an
1557 addend if this is a newly created reloc, not read from an ELF
1559 if (output_bfd != (bfd *) NULL
1560 && (symbol->flags & BSF_SECTION_SYM) == 0
1561 && reloc_entry->addend == 0)
1563 *error_message = (char *)
1564 _("32bits gp relative relocation occurs for an external symbol");
1565 return bfd_reloc_outofrange;
1568 if (output_bfd != (bfd *) NULL)
1570 relocateable = true;
1571 gp = _bfd_get_gp_value (output_bfd);
1575 relocateable = false;
1576 output_bfd = symbol->section->output_section->owner;
1578 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1579 error_message, &gp);
1580 if (ret != bfd_reloc_ok)
1584 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
1585 relocateable, data, gp);
1588 static bfd_reloc_status_type
1589 gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1593 arelent *reloc_entry;
1594 asection *input_section;
1595 boolean relocateable;
1602 if (bfd_is_com_section (symbol->section))
1605 relocation = symbol->value;
1607 relocation += symbol->section->output_section->vma;
1608 relocation += symbol->section->output_offset;
1610 if (reloc_entry->address > input_section->_cooked_size)
1611 return bfd_reloc_outofrange;
1613 if (reloc_entry->howto->src_mask == 0)
1615 /* This case arises with the 64-bit MIPS ELF ABI. */
1619 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1621 /* Set val to the offset into the section or symbol. */
1622 val += reloc_entry->addend;
1624 /* Adjust val for the final section location and GP value. If we
1625 are producing relocateable output, we don't want to do this for
1626 an external symbol. */
1628 || (symbol->flags & BSF_SECTION_SYM) != 0)
1629 val += relocation - gp;
1631 bfd_put_32 (abfd, val, (bfd_byte *) data + reloc_entry->address);
1634 reloc_entry->address += input_section->output_offset;
1636 return bfd_reloc_ok;
1639 /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
1640 generated when addreses are 64 bits. The upper 32 bits are a simle
1643 static bfd_reloc_status_type
1644 mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
1645 output_bfd, error_message)
1647 arelent *reloc_entry;
1650 asection *input_section;
1652 char **error_message;
1654 bfd_reloc_status_type r;
1659 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1660 input_section, output_bfd, error_message);
1661 if (r != bfd_reloc_continue)
1664 /* Do a normal 32 bit relocation on the lower 32 bits. */
1665 reloc32 = *reloc_entry;
1666 if (bfd_big_endian (abfd))
1667 reloc32.address += 4;
1668 reloc32.howto = &elf_mips_howto_table[R_MIPS_32];
1669 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
1670 output_bfd, error_message);
1672 /* Sign extend into the upper 32 bits. */
1673 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
1674 if ((val & 0x80000000) != 0)
1678 addr = reloc_entry->address;
1679 if (bfd_little_endian (abfd))
1681 bfd_put_32 (abfd, val, (bfd_byte *) data + addr);
1686 /* Handle a mips16 jump. */
1688 static bfd_reloc_status_type
1689 mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
1690 output_bfd, error_message)
1691 bfd *abfd ATTRIBUTE_UNUSED;
1692 arelent *reloc_entry;
1694 PTR data ATTRIBUTE_UNUSED;
1695 asection *input_section;
1697 char **error_message ATTRIBUTE_UNUSED;
1699 if (output_bfd != (bfd *) NULL
1700 && (symbol->flags & BSF_SECTION_SYM) == 0
1701 && reloc_entry->addend == 0)
1703 reloc_entry->address += input_section->output_offset;
1704 return bfd_reloc_ok;
1709 static boolean warned;
1712 (*_bfd_error_handler)
1713 (_("Linking mips16 objects into %s format is not supported"),
1714 bfd_get_target (input_section->output_section->owner));
1718 return bfd_reloc_undefined;
1721 /* Handle a mips16 GP relative reloc. */
1723 static bfd_reloc_status_type
1724 mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
1725 output_bfd, error_message)
1727 arelent *reloc_entry;
1730 asection *input_section;
1732 char **error_message;
1734 boolean relocateable;
1735 bfd_reloc_status_type ret;
1737 unsigned short extend, insn;
1738 unsigned long final;
1740 /* If we're relocating, and this is an external symbol with no
1741 addend, we don't want to change anything. We will only have an
1742 addend if this is a newly created reloc, not read from an ELF
1744 if (output_bfd != NULL
1745 && (symbol->flags & BSF_SECTION_SYM) == 0
1746 && reloc_entry->addend == 0)
1748 reloc_entry->address += input_section->output_offset;
1749 return bfd_reloc_ok;
1752 if (output_bfd != NULL)
1753 relocateable = true;
1756 relocateable = false;
1757 output_bfd = symbol->section->output_section->owner;
1760 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1762 if (ret != bfd_reloc_ok)
1765 if (reloc_entry->address > input_section->_cooked_size)
1766 return bfd_reloc_outofrange;
1768 /* Pick up the mips16 extend instruction and the real instruction. */
1769 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
1770 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
1772 /* Stuff the current addend back as a 32 bit value, do the usual
1773 relocation, and then clean up. */
1775 (((extend & 0x1f) << 11)
1778 (bfd_byte *) data + reloc_entry->address);
1780 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1781 relocateable, data, gp);
1783 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1786 | ((final >> 11) & 0x1f)
1788 (bfd_byte *) data + reloc_entry->address);
1792 (bfd_byte *) data + reloc_entry->address + 2);
1797 /* Return the ISA for a MIPS e_flags value. */
1800 elf_mips_isa (flags)
1803 switch (flags & EF_MIPS_ARCH)
1817 /* Return the MACH for a MIPS e_flags value. */
1820 elf_mips_mach (flags)
1823 switch (flags & EF_MIPS_MACH)
1825 case E_MIPS_MACH_3900:
1826 return bfd_mach_mips3900;
1828 case E_MIPS_MACH_4010:
1829 return bfd_mach_mips4010;
1831 case E_MIPS_MACH_4100:
1832 return bfd_mach_mips4100;
1834 case E_MIPS_MACH_4111:
1835 return bfd_mach_mips4111;
1837 case E_MIPS_MACH_4650:
1838 return bfd_mach_mips4650;
1841 switch (flags & EF_MIPS_ARCH)
1845 return bfd_mach_mips3000;
1849 return bfd_mach_mips6000;
1853 return bfd_mach_mips4000;
1857 return bfd_mach_mips8000;
1865 /* Return printable name for ABI. */
1868 elf_mips_abi_name (abfd)
1873 if (ABI_N32_P (abfd))
1875 else if (ABI_64_P (abfd))
1878 flags = elf_elfheader (abfd)->e_flags;
1879 switch (flags & EF_MIPS_ABI)
1883 case E_MIPS_ABI_O32:
1885 case E_MIPS_ABI_O64:
1887 case E_MIPS_ABI_EABI32:
1889 case E_MIPS_ABI_EABI64:
1892 return "unknown abi";
1896 /* A mapping from BFD reloc types to MIPS ELF reloc types. */
1898 struct elf_reloc_map {
1899 bfd_reloc_code_real_type bfd_reloc_val;
1900 enum elf_mips_reloc_type elf_reloc_val;
1903 static CONST struct elf_reloc_map mips_reloc_map[] =
1905 { BFD_RELOC_NONE, R_MIPS_NONE, },
1906 { BFD_RELOC_16, R_MIPS_16 },
1907 { BFD_RELOC_32, R_MIPS_32 },
1908 { BFD_RELOC_64, R_MIPS_64 },
1909 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
1910 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
1911 { BFD_RELOC_LO16, R_MIPS_LO16 },
1912 { BFD_RELOC_MIPS_GPREL, R_MIPS_GPREL16 },
1913 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
1914 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
1915 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
1916 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
1917 { BFD_RELOC_MIPS_GPREL32, R_MIPS_GPREL32 },
1918 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
1919 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
1920 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
1921 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
1922 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
1923 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
1924 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
1925 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
1928 /* Given a BFD reloc type, return a howto structure. */
1930 static reloc_howto_type *
1931 bfd_elf32_bfd_reloc_type_lookup (abfd, code)
1933 bfd_reloc_code_real_type code;
1937 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
1939 if (mips_reloc_map[i].bfd_reloc_val == code)
1940 return &elf_mips_howto_table[(int) mips_reloc_map[i].elf_reloc_val];
1946 bfd_set_error (bfd_error_bad_value);
1949 case BFD_RELOC_CTOR:
1950 /* We need to handle BFD_RELOC_CTOR specially.
1951 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
1952 size of addresses on this architecture. */
1953 if (bfd_arch_bits_per_address (abfd) == 32)
1954 return &elf_mips_howto_table[(int) R_MIPS_32];
1956 return &elf_mips_ctor64_howto;
1958 case BFD_RELOC_MIPS16_JMP:
1959 return &elf_mips16_jump_howto;
1960 case BFD_RELOC_MIPS16_GPREL:
1961 return &elf_mips16_gprel_howto;
1962 case BFD_RELOC_VTABLE_INHERIT:
1963 return &elf_mips_gnu_vtinherit_howto;
1964 case BFD_RELOC_VTABLE_ENTRY:
1965 return &elf_mips_gnu_vtentry_howto;
1966 case BFD_RELOC_PCREL_HI16_S:
1967 return &elf_mips_gnu_rel_hi16;
1968 case BFD_RELOC_PCREL_LO16:
1969 return &elf_mips_gnu_rel_lo16;
1970 case BFD_RELOC_16_PCREL_S2:
1971 return &elf_mips_gnu_rel16_s2;
1972 case BFD_RELOC_64_PCREL:
1973 return &elf_mips_gnu_pcrel64;
1974 case BFD_RELOC_32_PCREL:
1975 return &elf_mips_gnu_pcrel32;
1979 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
1981 static reloc_howto_type *
1982 mips_rtype_to_howto (r_type)
1983 unsigned int r_type;
1988 return &elf_mips16_jump_howto;
1990 case R_MIPS16_GPREL:
1991 return &elf_mips16_gprel_howto;
1993 case R_MIPS_GNU_VTINHERIT:
1994 return &elf_mips_gnu_vtinherit_howto;
1996 case R_MIPS_GNU_VTENTRY:
1997 return &elf_mips_gnu_vtentry_howto;
1999 case R_MIPS_GNU_REL_HI16:
2000 return &elf_mips_gnu_rel_hi16;
2002 case R_MIPS_GNU_REL_LO16:
2003 return &elf_mips_gnu_rel_lo16;
2005 case R_MIPS_GNU_REL16_S2:
2006 return &elf_mips_gnu_rel16_s2;
2009 return &elf_mips_gnu_pcrel64;
2012 return &elf_mips_gnu_pcrel32;
2016 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
2017 return &elf_mips_howto_table[r_type];
2022 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2025 mips_info_to_howto_rel (abfd, cache_ptr, dst)
2028 Elf32_Internal_Rel *dst;
2030 unsigned int r_type;
2032 r_type = ELF32_R_TYPE (dst->r_info);
2033 cache_ptr->howto = mips_rtype_to_howto (r_type);
2035 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2036 value for the object file. We get the addend now, rather than
2037 when we do the relocation, because the symbol manipulations done
2038 by the linker may cause us to lose track of the input BFD. */
2039 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
2040 && (r_type == (unsigned int) R_MIPS_GPREL16
2041 || r_type == (unsigned int) R_MIPS_LITERAL))
2042 cache_ptr->addend = elf_gp (abfd);
2045 /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2048 mips_info_to_howto_rela (abfd, cache_ptr, dst)
2051 Elf32_Internal_Rela *dst;
2053 /* Since an Elf32_Internal_Rel is an initial prefix of an
2054 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2056 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
2058 /* If we ever need to do any extra processing with dst->r_addend
2059 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2062 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2063 routines swap this structure in and out. They are used outside of
2064 BFD, so they are globally visible. */
2067 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
2069 const Elf32_External_RegInfo *ex;
2072 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2073 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2074 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2075 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2076 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2077 in->ri_gp_value = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gp_value);
2081 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
2083 const Elf32_RegInfo *in;
2084 Elf32_External_RegInfo *ex;
2086 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2087 (bfd_byte *) ex->ri_gprmask);
2088 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2089 (bfd_byte *) ex->ri_cprmask[0]);
2090 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2091 (bfd_byte *) ex->ri_cprmask[1]);
2092 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2093 (bfd_byte *) ex->ri_cprmask[2]);
2094 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2095 (bfd_byte *) ex->ri_cprmask[3]);
2096 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gp_value,
2097 (bfd_byte *) ex->ri_gp_value);
2100 /* In the 64 bit ABI, the .MIPS.options section holds register
2101 information in an Elf64_Reginfo structure. These routines swap
2102 them in and out. They are globally visible because they are used
2103 outside of BFD. These routines are here so that gas can call them
2104 without worrying about whether the 64 bit ABI has been included. */
2107 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2109 const Elf64_External_RegInfo *ex;
2110 Elf64_Internal_RegInfo *in;
2112 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2113 in->ri_pad = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_pad);
2114 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2115 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2116 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2117 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2118 in->ri_gp_value = bfd_h_get_64 (abfd, (bfd_byte *) ex->ri_gp_value);
2122 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2124 const Elf64_Internal_RegInfo *in;
2125 Elf64_External_RegInfo *ex;
2127 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2128 (bfd_byte *) ex->ri_gprmask);
2129 bfd_h_put_32 (abfd, (bfd_vma) in->ri_pad,
2130 (bfd_byte *) ex->ri_pad);
2131 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2132 (bfd_byte *) ex->ri_cprmask[0]);
2133 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2134 (bfd_byte *) ex->ri_cprmask[1]);
2135 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2136 (bfd_byte *) ex->ri_cprmask[2]);
2137 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2138 (bfd_byte *) ex->ri_cprmask[3]);
2139 bfd_h_put_64 (abfd, (bfd_vma) in->ri_gp_value,
2140 (bfd_byte *) ex->ri_gp_value);
2143 /* Swap an entry in a .gptab section. Note that these routines rely
2144 on the equivalence of the two elements of the union. */
2147 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2149 const Elf32_External_gptab *ex;
2152 in->gt_entry.gt_g_value = bfd_h_get_32 (abfd, ex->gt_entry.gt_g_value);
2153 in->gt_entry.gt_bytes = bfd_h_get_32 (abfd, ex->gt_entry.gt_bytes);
2157 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2159 const Elf32_gptab *in;
2160 Elf32_External_gptab *ex;
2162 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_g_value,
2163 ex->gt_entry.gt_g_value);
2164 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_bytes,
2165 ex->gt_entry.gt_bytes);
2169 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2171 const Elf32_compact_rel *in;
2172 Elf32_External_compact_rel *ex;
2174 bfd_h_put_32 (abfd, (bfd_vma) in->id1, ex->id1);
2175 bfd_h_put_32 (abfd, (bfd_vma) in->num, ex->num);
2176 bfd_h_put_32 (abfd, (bfd_vma) in->id2, ex->id2);
2177 bfd_h_put_32 (abfd, (bfd_vma) in->offset, ex->offset);
2178 bfd_h_put_32 (abfd, (bfd_vma) in->reserved0, ex->reserved0);
2179 bfd_h_put_32 (abfd, (bfd_vma) in->reserved1, ex->reserved1);
2183 bfd_elf32_swap_crinfo_out (abfd, in, ex)
2185 const Elf32_crinfo *in;
2186 Elf32_External_crinfo *ex;
2190 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2191 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2192 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2193 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2194 bfd_h_put_32 (abfd, (bfd_vma) l, ex->info);
2195 bfd_h_put_32 (abfd, (bfd_vma) in->konst, ex->konst);
2196 bfd_h_put_32 (abfd, (bfd_vma) in->vaddr, ex->vaddr);
2199 /* Swap in an options header. */
2202 bfd_mips_elf_swap_options_in (abfd, ex, in)
2204 const Elf_External_Options *ex;
2205 Elf_Internal_Options *in;
2207 in->kind = bfd_h_get_8 (abfd, ex->kind);
2208 in->size = bfd_h_get_8 (abfd, ex->size);
2209 in->section = bfd_h_get_16 (abfd, ex->section);
2210 in->info = bfd_h_get_32 (abfd, ex->info);
2213 /* Swap out an options header. */
2216 bfd_mips_elf_swap_options_out (abfd, in, ex)
2218 const Elf_Internal_Options *in;
2219 Elf_External_Options *ex;
2221 bfd_h_put_8 (abfd, in->kind, ex->kind);
2222 bfd_h_put_8 (abfd, in->size, ex->size);
2223 bfd_h_put_16 (abfd, in->section, ex->section);
2224 bfd_h_put_32 (abfd, in->info, ex->info);
2227 /* Swap in an MSYM entry. */
2230 bfd_mips_elf_swap_msym_in (abfd, ex, in)
2232 const Elf32_External_Msym *ex;
2233 Elf32_Internal_Msym *in;
2235 in->ms_hash_value = bfd_h_get_32 (abfd, ex->ms_hash_value);
2236 in->ms_info = bfd_h_get_32 (abfd, ex->ms_info);
2239 /* Swap out an MSYM entry. */
2242 bfd_mips_elf_swap_msym_out (abfd, in, ex)
2244 const Elf32_Internal_Msym *in;
2245 Elf32_External_Msym *ex;
2247 bfd_h_put_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2248 bfd_h_put_32 (abfd, in->ms_info, ex->ms_info);
2252 /* Determine whether a symbol is global for the purposes of splitting
2253 the symbol table into global symbols and local symbols. At least
2254 on Irix 5, this split must be between section symbols and all other
2255 symbols. On most ELF targets the split is between static symbols
2256 and externally visible symbols. */
2260 mips_elf_sym_is_global (abfd, sym)
2261 bfd *abfd ATTRIBUTE_UNUSED;
2264 return (sym->flags & BSF_SECTION_SYM) == 0 ? true : false;
2267 /* Set the right machine number for a MIPS ELF file. This is used for
2268 both the 32-bit and the 64-bit ABI. */
2271 _bfd_mips_elf_object_p (abfd)
2274 /* Irix 5 and 6 is broken. Object file symbol tables are not always
2275 sorted correctly such that local symbols precede global symbols,
2276 and the sh_info field in the symbol table is not always right. */
2277 elf_bad_symtab (abfd) = true;
2279 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2280 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2284 /* The final processing done just before writing out a MIPS ELF object
2285 file. This gets the MIPS architecture right based on the machine
2286 number. This is used by both the 32-bit and the 64-bit ABI. */
2290 _bfd_mips_elf_final_write_processing (abfd, linker)
2292 boolean linker ATTRIBUTE_UNUSED;
2296 Elf_Internal_Shdr **hdrpp;
2300 switch (bfd_get_mach (abfd))
2303 case bfd_mach_mips3000:
2304 val = E_MIPS_ARCH_1;
2307 case bfd_mach_mips3900:
2308 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2311 case bfd_mach_mips6000:
2312 val = E_MIPS_ARCH_2;
2315 case bfd_mach_mips4000:
2316 case bfd_mach_mips4300:
2317 val = E_MIPS_ARCH_3;
2320 case bfd_mach_mips4010:
2321 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2324 case bfd_mach_mips4100:
2325 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2328 case bfd_mach_mips4111:
2329 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2332 case bfd_mach_mips4650:
2333 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2336 case bfd_mach_mips8000:
2337 val = E_MIPS_ARCH_4;
2341 elf_elfheader (abfd)->e_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2342 elf_elfheader (abfd)->e_flags |= val;
2344 /* Set the sh_info field for .gptab sections and other appropriate
2345 info for each special section. */
2346 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2347 i < elf_elfheader (abfd)->e_shnum;
2350 switch ((*hdrpp)->sh_type)
2353 case SHT_MIPS_LIBLIST:
2354 sec = bfd_get_section_by_name (abfd, ".dynstr");
2356 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2359 case SHT_MIPS_GPTAB:
2360 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2361 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2362 BFD_ASSERT (name != NULL
2363 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2364 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2365 BFD_ASSERT (sec != NULL);
2366 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2369 case SHT_MIPS_CONTENT:
2370 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2371 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2372 BFD_ASSERT (name != NULL
2373 && strncmp (name, ".MIPS.content",
2374 sizeof ".MIPS.content" - 1) == 0);
2375 sec = bfd_get_section_by_name (abfd,
2376 name + sizeof ".MIPS.content" - 1);
2377 BFD_ASSERT (sec != NULL);
2378 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2381 case SHT_MIPS_SYMBOL_LIB:
2382 sec = bfd_get_section_by_name (abfd, ".dynsym");
2384 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2385 sec = bfd_get_section_by_name (abfd, ".liblist");
2387 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2390 case SHT_MIPS_EVENTS:
2391 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2392 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2393 BFD_ASSERT (name != NULL);
2394 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
2395 sec = bfd_get_section_by_name (abfd,
2396 name + sizeof ".MIPS.events" - 1);
2399 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
2400 sizeof ".MIPS.post_rel" - 1) == 0);
2401 sec = bfd_get_section_by_name (abfd,
2403 + sizeof ".MIPS.post_rel" - 1));
2405 BFD_ASSERT (sec != NULL);
2406 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2413 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
2416 _bfd_mips_elf_set_private_flags (abfd, flags)
2420 BFD_ASSERT (!elf_flags_init (abfd)
2421 || elf_elfheader (abfd)->e_flags == flags);
2423 elf_elfheader (abfd)->e_flags = flags;
2424 elf_flags_init (abfd) = true;
2428 /* Copy backend specific data from one object module to another */
2431 _bfd_mips_elf_copy_private_bfd_data (ibfd, obfd)
2435 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2436 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2439 BFD_ASSERT (!elf_flags_init (obfd)
2440 || (elf_elfheader (obfd)->e_flags
2441 == elf_elfheader (ibfd)->e_flags));
2443 elf_gp (obfd) = elf_gp (ibfd);
2444 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2445 elf_flags_init (obfd) = true;
2449 /* Merge backend specific data from an object file to the output
2450 object file when linking. */
2453 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
2461 /* Check if we have the same endianess */
2462 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2465 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2466 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2469 new_flags = elf_elfheader (ibfd)->e_flags;
2470 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
2471 old_flags = elf_elfheader (obfd)->e_flags;
2473 if (! elf_flags_init (obfd))
2475 elf_flags_init (obfd) = true;
2476 elf_elfheader (obfd)->e_flags = new_flags;
2477 elf_elfheader (obfd)->e_ident[EI_CLASS]
2478 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
2480 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2481 && bfd_get_arch_info (obfd)->the_default)
2483 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2484 bfd_get_mach (ibfd)))
2491 /* Check flag compatibility. */
2493 new_flags &= ~EF_MIPS_NOREORDER;
2494 old_flags &= ~EF_MIPS_NOREORDER;
2496 if (new_flags == old_flags)
2501 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
2503 new_flags &= ~EF_MIPS_PIC;
2504 old_flags &= ~EF_MIPS_PIC;
2505 (*_bfd_error_handler)
2506 (_("%s: linking PIC files with non-PIC files"),
2507 bfd_get_filename (ibfd));
2511 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
2513 new_flags &= ~EF_MIPS_CPIC;
2514 old_flags &= ~EF_MIPS_CPIC;
2515 (*_bfd_error_handler)
2516 (_("%s: linking abicalls files with non-abicalls files"),
2517 bfd_get_filename (ibfd));
2521 /* Compare the ISA's. */
2522 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
2523 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
2525 int new_mach = new_flags & EF_MIPS_MACH;
2526 int old_mach = old_flags & EF_MIPS_MACH;
2527 int new_isa = elf_mips_isa (new_flags);
2528 int old_isa = elf_mips_isa (old_flags);
2530 /* If either has no machine specified, just compare the general isa's.
2531 Some combinations of machines are ok, if the isa's match. */
2534 || new_mach == old_mach
2537 /* Don't warn about mixing -mips1 and -mips2 code, or mixing -mips3
2538 and -mips4 code. They will normally use the same data sizes and
2539 calling conventions. */
2541 if ((new_isa == 1 || new_isa == 2)
2542 ? (old_isa != 1 && old_isa != 2)
2543 : (old_isa == 1 || old_isa == 2))
2545 (*_bfd_error_handler)
2546 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
2547 bfd_get_filename (ibfd), new_isa, old_isa);
2554 (*_bfd_error_handler)
2555 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
2556 bfd_get_filename (ibfd),
2557 elf_mips_mach (new_flags),
2558 elf_mips_mach (old_flags));
2562 new_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2563 old_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2566 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
2567 does set EI_CLASS differently from any 32-bit ABI. */
2568 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
2569 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2570 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2572 /* Only error if both are set (to different values). */
2573 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
2574 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2575 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2577 (*_bfd_error_handler)
2578 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
2579 bfd_get_filename (ibfd),
2580 elf_mips_abi_name (ibfd),
2581 elf_mips_abi_name (obfd));
2584 new_flags &= ~EF_MIPS_ABI;
2585 old_flags &= ~EF_MIPS_ABI;
2588 /* Warn about any other mismatches */
2589 if (new_flags != old_flags)
2591 (*_bfd_error_handler)
2592 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2593 bfd_get_filename (ibfd), (unsigned long) new_flags,
2594 (unsigned long) old_flags);
2600 bfd_set_error (bfd_error_bad_value);
2608 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
2612 FILE *file = (FILE *) ptr;
2614 BFD_ASSERT (abfd != NULL && ptr != NULL);
2616 /* Print normal ELF private data. */
2617 _bfd_elf_print_private_bfd_data (abfd, ptr);
2619 /* xgettext:c-format */
2620 fprintf (file, _ ("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2622 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
2623 fprintf (file, _ (" [abi=O32]"));
2624 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
2625 fprintf (file, _ (" [abi=O64]"));
2626 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
2627 fprintf (file, _ (" [abi=EABI32]"));
2628 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
2629 fprintf (file, _ (" [abi=EABI64]"));
2630 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
2631 fprintf (file, _ (" [abi unknown]"));
2632 else if (ABI_N32_P (abfd))
2633 fprintf (file, _ (" [abi=N32]"));
2634 else if (ABI_64_P (abfd))
2635 fprintf (file, _ (" [abi=64]"));
2637 fprintf (file, _ (" [no abi set]"));
2639 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
2640 fprintf (file, _ (" [mips1]"));
2641 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
2642 fprintf (file, _ (" [mips2]"));
2643 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
2644 fprintf (file, _ (" [mips3]"));
2645 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
2646 fprintf (file, _ (" [mips4]"));
2648 fprintf (file, _ (" [unknown ISA]"));
2650 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
2651 fprintf (file, _ (" [32bitmode]"));
2653 fprintf (file, _ (" [not 32bitmode]"));
2660 /* Handle a MIPS specific section when reading an object file. This
2661 is called when elfcode.h finds a section with an unknown type.
2662 This routine supports both the 32-bit and 64-bit ELF ABI.
2664 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
2668 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
2670 Elf_Internal_Shdr *hdr;
2675 /* There ought to be a place to keep ELF backend specific flags, but
2676 at the moment there isn't one. We just keep track of the
2677 sections by their name, instead. Fortunately, the ABI gives
2678 suggested names for all the MIPS specific sections, so we will
2679 probably get away with this. */
2680 switch (hdr->sh_type)
2682 case SHT_MIPS_LIBLIST:
2683 if (strcmp (name, ".liblist") != 0)
2687 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
2690 case SHT_MIPS_CONFLICT:
2691 if (strcmp (name, ".conflict") != 0)
2694 case SHT_MIPS_GPTAB:
2695 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
2698 case SHT_MIPS_UCODE:
2699 if (strcmp (name, ".ucode") != 0)
2702 case SHT_MIPS_DEBUG:
2703 if (strcmp (name, ".mdebug") != 0)
2705 flags = SEC_DEBUGGING;
2707 case SHT_MIPS_REGINFO:
2708 if (strcmp (name, ".reginfo") != 0
2709 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
2711 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
2713 case SHT_MIPS_IFACE:
2714 if (strcmp (name, ".MIPS.interfaces") != 0)
2717 case SHT_MIPS_CONTENT:
2718 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
2721 case SHT_MIPS_OPTIONS:
2722 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
2725 case SHT_MIPS_DWARF:
2726 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
2729 case SHT_MIPS_SYMBOL_LIB:
2730 if (strcmp (name, ".MIPS.symlib") != 0)
2733 case SHT_MIPS_EVENTS:
2734 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
2735 && strncmp (name, ".MIPS.post_rel",
2736 sizeof ".MIPS.post_rel" - 1) != 0)
2743 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2748 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
2749 (bfd_get_section_flags (abfd,
2755 /* FIXME: We should record sh_info for a .gptab section. */
2757 /* For a .reginfo section, set the gp value in the tdata information
2758 from the contents of this section. We need the gp value while
2759 processing relocs, so we just get it now. The .reginfo section
2760 is not used in the 64-bit MIPS ELF ABI. */
2761 if (hdr->sh_type == SHT_MIPS_REGINFO)
2763 Elf32_External_RegInfo ext;
2766 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
2767 (file_ptr) 0, sizeof ext))
2769 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
2770 elf_gp (abfd) = s.ri_gp_value;
2773 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
2774 set the gp value based on what we find. We may see both
2775 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
2776 they should agree. */
2777 if (hdr->sh_type == SHT_MIPS_OPTIONS)
2779 bfd_byte *contents, *l, *lend;
2781 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
2782 if (contents == NULL)
2784 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
2785 (file_ptr) 0, hdr->sh_size))
2791 lend = contents + hdr->sh_size;
2792 while (l + sizeof (Elf_External_Options) <= lend)
2794 Elf_Internal_Options intopt;
2796 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2798 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2800 Elf64_Internal_RegInfo intreg;
2802 bfd_mips_elf64_swap_reginfo_in
2804 ((Elf64_External_RegInfo *)
2805 (l + sizeof (Elf_External_Options))),
2807 elf_gp (abfd) = intreg.ri_gp_value;
2809 else if (intopt.kind == ODK_REGINFO)
2811 Elf32_RegInfo intreg;
2813 bfd_mips_elf32_swap_reginfo_in
2815 ((Elf32_External_RegInfo *)
2816 (l + sizeof (Elf_External_Options))),
2818 elf_gp (abfd) = intreg.ri_gp_value;
2828 /* Set the correct type for a MIPS ELF section. We do this by the
2829 section name, which is a hack, but ought to work. This routine is
2830 used by both the 32-bit and the 64-bit ABI. */
2833 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
2835 Elf32_Internal_Shdr *hdr;
2838 register const char *name;
2840 name = bfd_get_section_name (abfd, sec);
2842 if (strcmp (name, ".liblist") == 0)
2844 hdr->sh_type = SHT_MIPS_LIBLIST;
2845 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
2846 /* The sh_link field is set in final_write_processing. */
2848 else if (strcmp (name, ".conflict") == 0)
2849 hdr->sh_type = SHT_MIPS_CONFLICT;
2850 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
2852 hdr->sh_type = SHT_MIPS_GPTAB;
2853 hdr->sh_entsize = sizeof (Elf32_External_gptab);
2854 /* The sh_info field is set in final_write_processing. */
2856 else if (strcmp (name, ".ucode") == 0)
2857 hdr->sh_type = SHT_MIPS_UCODE;
2858 else if (strcmp (name, ".mdebug") == 0)
2860 hdr->sh_type = SHT_MIPS_DEBUG;
2861 /* In a shared object on Irix 5.3, the .mdebug section has an
2862 entsize of 0. FIXME: Does this matter? */
2863 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2864 hdr->sh_entsize = 0;
2866 hdr->sh_entsize = 1;
2868 else if (strcmp (name, ".reginfo") == 0)
2870 hdr->sh_type = SHT_MIPS_REGINFO;
2871 /* In a shared object on Irix 5.3, the .reginfo section has an
2872 entsize of 0x18. FIXME: Does this matter? */
2873 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2874 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2876 hdr->sh_entsize = 1;
2878 else if (SGI_COMPAT (abfd)
2879 && (strcmp (name, ".hash") == 0
2880 || strcmp (name, ".dynamic") == 0
2881 || strcmp (name, ".dynstr") == 0))
2883 hdr->sh_entsize = 0;
2885 /* This isn't how the Irix 6 linker behaves. */
2886 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
2889 else if (strcmp (name, ".got") == 0
2890 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
2891 || strcmp (name, ".sdata") == 0
2892 || strcmp (name, ".sbss") == 0
2893 || strcmp (name, ".lit4") == 0
2894 || strcmp (name, ".lit8") == 0)
2895 hdr->sh_flags |= SHF_MIPS_GPREL;
2896 else if (strcmp (name, ".MIPS.interfaces") == 0)
2898 hdr->sh_type = SHT_MIPS_IFACE;
2899 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2901 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
2903 hdr->sh_type = SHT_MIPS_CONTENT;
2904 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2905 /* The sh_info field is set in final_write_processing. */
2907 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
2909 hdr->sh_type = SHT_MIPS_OPTIONS;
2910 hdr->sh_entsize = 1;
2911 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2913 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
2914 hdr->sh_type = SHT_MIPS_DWARF;
2915 else if (strcmp (name, ".MIPS.symlib") == 0)
2917 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
2918 /* The sh_link and sh_info fields are set in
2919 final_write_processing. */
2921 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
2922 || strncmp (name, ".MIPS.post_rel",
2923 sizeof ".MIPS.post_rel" - 1) == 0)
2925 hdr->sh_type = SHT_MIPS_EVENTS;
2926 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2927 /* The sh_link field is set in final_write_processing. */
2929 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
2931 hdr->sh_type = SHT_MIPS_MSYM;
2932 hdr->sh_flags |= SHF_ALLOC;
2933 hdr->sh_entsize = 8;
2936 /* The generic elf_fake_sections will set up REL_HDR using the
2937 default kind of relocations. But, we may actually need both
2938 kinds of relocations, so we set up the second header here. */
2939 if ((sec->flags & SEC_RELOC) != 0)
2941 struct bfd_elf_section_data *esd;
2943 esd = elf_section_data (sec);
2944 BFD_ASSERT (esd->rel_hdr2 == NULL);
2946 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2949 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
2950 !elf_section_data (sec)->use_rela_p);
2956 /* Given a BFD section, try to locate the corresponding ELF section
2957 index. This is used by both the 32-bit and the 64-bit ABI.
2958 Actually, it's not clear to me that the 64-bit ABI supports these,
2959 but for non-PIC objects we will certainly want support for at least
2960 the .scommon section. */
2963 _bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
2964 bfd *abfd ATTRIBUTE_UNUSED;
2965 Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
2969 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
2971 *retval = SHN_MIPS_SCOMMON;
2974 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
2976 *retval = SHN_MIPS_ACOMMON;
2982 /* When are writing out the .options or .MIPS.options section,
2983 remember the bytes we are writing out, so that we can install the
2984 GP value in the section_processing routine. */
2987 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
2992 bfd_size_type count;
2994 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
2998 if (elf_section_data (section) == NULL)
3000 section->used_by_bfd =
3001 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
3002 if (elf_section_data (section) == NULL)
3005 c = (bfd_byte *) elf_section_data (section)->tdata;
3010 if (section->_cooked_size != 0)
3011 size = section->_cooked_size;
3013 size = section->_raw_size;
3014 c = (bfd_byte *) bfd_zalloc (abfd, size);
3017 elf_section_data (section)->tdata = (PTR) c;
3020 memcpy (c + offset, location, count);
3023 return _bfd_elf_set_section_contents (abfd, section, location, offset,
3027 /* Work over a section just before writing it out. This routine is
3028 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3029 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3033 _bfd_mips_elf_section_processing (abfd, hdr)
3035 Elf_Internal_Shdr *hdr;
3037 if (hdr->sh_type == SHT_MIPS_REGINFO
3038 && hdr->sh_size > 0)
3042 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3043 BFD_ASSERT (hdr->contents == NULL);
3046 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
3049 bfd_h_put_32 (abfd, (bfd_vma) elf_gp (abfd), buf);
3050 if (bfd_write (buf, (bfd_size_type) 1, (bfd_size_type) 4, abfd) != 4)
3054 if (hdr->sh_type == SHT_MIPS_OPTIONS
3055 && hdr->bfd_section != NULL
3056 && elf_section_data (hdr->bfd_section) != NULL
3057 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3059 bfd_byte *contents, *l, *lend;
3061 /* We stored the section contents in the elf_section_data tdata
3062 field in the set_section_contents routine. We save the
3063 section contents so that we don't have to read them again.
3064 At this point we know that elf_gp is set, so we can look
3065 through the section contents to see if there is an
3066 ODK_REGINFO structure. */
3068 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3070 lend = contents + hdr->sh_size;
3071 while (l + sizeof (Elf_External_Options) <= lend)
3073 Elf_Internal_Options intopt;
3075 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3077 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3084 + sizeof (Elf_External_Options)
3085 + (sizeof (Elf64_External_RegInfo) - 8)),
3088 bfd_h_put_64 (abfd, elf_gp (abfd), buf);
3089 if (bfd_write (buf, 1, 8, abfd) != 8)
3092 else if (intopt.kind == ODK_REGINFO)
3099 + sizeof (Elf_External_Options)
3100 + (sizeof (Elf32_External_RegInfo) - 4)),
3103 bfd_h_put_32 (abfd, elf_gp (abfd), buf);
3104 if (bfd_write (buf, 1, 4, abfd) != 4)
3111 if (hdr->bfd_section != NULL)
3113 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3115 if (strcmp (name, ".sdata") == 0
3116 || strcmp (name, ".lit8") == 0
3117 || strcmp (name, ".lit4") == 0)
3119 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3120 hdr->sh_type = SHT_PROGBITS;
3122 else if (strcmp (name, ".sbss") == 0)
3124 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3125 hdr->sh_type = SHT_NOBITS;
3127 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3129 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3130 hdr->sh_type = SHT_PROGBITS;
3132 else if (strcmp (name, ".compact_rel") == 0)
3135 hdr->sh_type = SHT_PROGBITS;
3137 else if (strcmp (name, ".rtproc") == 0)
3139 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3141 unsigned int adjust;
3143 adjust = hdr->sh_size % hdr->sh_addralign;
3145 hdr->sh_size += hdr->sh_addralign - adjust;
3154 /* MIPS ELF uses two common sections. One is the usual one, and the
3155 other is for small objects. All the small objects are kept
3156 together, and then referenced via the gp pointer, which yields
3157 faster assembler code. This is what we use for the small common
3158 section. This approach is copied from ecoff.c. */
3159 static asection mips_elf_scom_section;
3160 static asymbol mips_elf_scom_symbol;
3161 static asymbol *mips_elf_scom_symbol_ptr;
3163 /* MIPS ELF also uses an acommon section, which represents an
3164 allocated common symbol which may be overridden by a
3165 definition in a shared library. */
3166 static asection mips_elf_acom_section;
3167 static asymbol mips_elf_acom_symbol;
3168 static asymbol *mips_elf_acom_symbol_ptr;
3170 /* Handle the special MIPS section numbers that a symbol may use.
3171 This is used for both the 32-bit and the 64-bit ABI. */
3174 _bfd_mips_elf_symbol_processing (abfd, asym)
3178 elf_symbol_type *elfsym;
3180 elfsym = (elf_symbol_type *) asym;
3181 switch (elfsym->internal_elf_sym.st_shndx)
3183 case SHN_MIPS_ACOMMON:
3184 /* This section is used in a dynamically linked executable file.
3185 It is an allocated common section. The dynamic linker can
3186 either resolve these symbols to something in a shared
3187 library, or it can just leave them here. For our purposes,
3188 we can consider these symbols to be in a new section. */
3189 if (mips_elf_acom_section.name == NULL)
3191 /* Initialize the acommon section. */
3192 mips_elf_acom_section.name = ".acommon";
3193 mips_elf_acom_section.flags = SEC_ALLOC;
3194 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3195 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3196 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3197 mips_elf_acom_symbol.name = ".acommon";
3198 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3199 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3200 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3202 asym->section = &mips_elf_acom_section;
3206 /* Common symbols less than the GP size are automatically
3207 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3208 if (asym->value > elf_gp_size (abfd)
3209 || IRIX_COMPAT (abfd) == ict_irix6)
3212 case SHN_MIPS_SCOMMON:
3213 if (mips_elf_scom_section.name == NULL)
3215 /* Initialize the small common section. */
3216 mips_elf_scom_section.name = ".scommon";
3217 mips_elf_scom_section.flags = SEC_IS_COMMON;
3218 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3219 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3220 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3221 mips_elf_scom_symbol.name = ".scommon";
3222 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3223 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3224 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3226 asym->section = &mips_elf_scom_section;
3227 asym->value = elfsym->internal_elf_sym.st_size;
3230 case SHN_MIPS_SUNDEFINED:
3231 asym->section = bfd_und_section_ptr;
3234 #if 0 /* for SGI_COMPAT */
3236 asym->section = mips_elf_text_section_ptr;
3240 asym->section = mips_elf_data_section_ptr;
3246 /* When creating an Irix 5 executable, we need REGINFO and RTPROC
3250 _bfd_mips_elf_additional_program_headers (abfd)
3256 if (!SGI_COMPAT (abfd))
3259 /* See if we need a PT_MIPS_REGINFO segment. */
3260 s = bfd_get_section_by_name (abfd, ".reginfo");
3261 if (s && (s->flags & SEC_LOAD))
3264 /* See if we need a PT_MIPS_OPTIONS segment. */
3265 if (IRIX_COMPAT (abfd) == ict_irix6
3266 && bfd_get_section_by_name (abfd,
3267 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3270 /* See if we need a PT_MIPS_RTPROC segment. */
3271 if (IRIX_COMPAT (abfd) == ict_irix5
3272 && bfd_get_section_by_name (abfd, ".dynamic")
3273 && bfd_get_section_by_name (abfd, ".mdebug"))
3279 /* Modify the segment map for an Irix 5 executable. */
3282 _bfd_mips_elf_modify_segment_map (abfd)
3286 struct elf_segment_map *m, **pm;
3288 if (! SGI_COMPAT (abfd))
3291 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3293 s = bfd_get_section_by_name (abfd, ".reginfo");
3294 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3296 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3297 if (m->p_type == PT_MIPS_REGINFO)
3301 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3305 m->p_type = PT_MIPS_REGINFO;
3309 /* We want to put it after the PHDR and INTERP segments. */
3310 pm = &elf_tdata (abfd)->segment_map;
3312 && ((*pm)->p_type == PT_PHDR
3313 || (*pm)->p_type == PT_INTERP))
3321 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3322 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3323 PT_OPTIONS segement immediately following the program header
3325 if (IRIX_COMPAT (abfd) == ict_irix6)
3329 for (s = abfd->sections; s; s = s->next)
3330 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
3335 struct elf_segment_map *options_segment;
3337 /* Usually, there's a program header table. But, sometimes
3338 there's not (like when running the `ld' testsuite). So,
3339 if there's no program header table, we just put the
3340 options segement at the end. */
3341 for (pm = &elf_tdata (abfd)->segment_map;
3344 if ((*pm)->p_type == PT_PHDR)
3347 options_segment = bfd_zalloc (abfd,
3348 sizeof (struct elf_segment_map));
3349 options_segment->next = *pm;
3350 options_segment->p_type = PT_MIPS_OPTIONS;
3351 options_segment->p_flags = PF_R;
3352 options_segment->p_flags_valid = true;
3353 options_segment->count = 1;
3354 options_segment->sections[0] = s;
3355 *pm = options_segment;
3360 /* If there are .dynamic and .mdebug sections, we make a room
3361 for the RTPROC header. FIXME: Rewrite without section names. */
3362 if (bfd_get_section_by_name (abfd, ".interp") == NULL
3363 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
3364 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
3366 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3367 if (m->p_type == PT_MIPS_RTPROC)
3371 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3375 m->p_type = PT_MIPS_RTPROC;
3377 s = bfd_get_section_by_name (abfd, ".rtproc");
3382 m->p_flags_valid = 1;
3390 /* We want to put it after the DYNAMIC segment. */
3391 pm = &elf_tdata (abfd)->segment_map;
3392 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
3402 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
3403 .dynstr, .dynsym, and .hash sections, and everything in
3405 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
3406 if ((*pm)->p_type == PT_DYNAMIC)
3411 && strcmp (m->sections[0]->name, ".dynamic") == 0)
3413 static const char *sec_names[] =
3414 { ".dynamic", ".dynstr", ".dynsym", ".hash" };
3417 struct elf_segment_map *n;
3421 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
3423 s = bfd_get_section_by_name (abfd, sec_names[i]);
3424 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3430 sz = s->_cooked_size;
3433 if (high < s->vma + sz)
3439 for (s = abfd->sections; s != NULL; s = s->next)
3440 if ((s->flags & SEC_LOAD) != 0
3443 + (s->_cooked_size != 0 ? s->_cooked_size : s->_raw_size))
3447 n = ((struct elf_segment_map *)
3448 bfd_zalloc (abfd, sizeof *n + (c - 1) * sizeof (asection *)));
3455 for (s = abfd->sections; s != NULL; s = s->next)
3457 if ((s->flags & SEC_LOAD) != 0
3460 + (s->_cooked_size != 0 ?
3461 s->_cooked_size : s->_raw_size))
3476 /* The structure of the runtime procedure descriptor created by the
3477 loader for use by the static exception system. */
3479 typedef struct runtime_pdr {
3480 bfd_vma adr; /* memory address of start of procedure */
3481 long regmask; /* save register mask */
3482 long regoffset; /* save register offset */
3483 long fregmask; /* save floating point register mask */
3484 long fregoffset; /* save floating point register offset */
3485 long frameoffset; /* frame size */
3486 short framereg; /* frame pointer register */
3487 short pcreg; /* offset or reg of return pc */
3488 long irpss; /* index into the runtime string table */
3490 struct exception_info *exception_info;/* pointer to exception array */
3492 #define cbRPDR sizeof(RPDR)
3493 #define rpdNil ((pRPDR) 0)
3495 /* Swap RPDR (runtime procedure table entry) for output. */
3497 static void ecoff_swap_rpdr_out
3498 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
3501 ecoff_swap_rpdr_out (abfd, in, ex)
3504 struct rpdr_ext *ex;
3506 /* ecoff_put_off was defined in ecoffswap.h. */
3507 ecoff_put_off (abfd, in->adr, (bfd_byte *) ex->p_adr);
3508 bfd_h_put_32 (abfd, in->regmask, (bfd_byte *) ex->p_regmask);
3509 bfd_h_put_32 (abfd, in->regoffset, (bfd_byte *) ex->p_regoffset);
3510 bfd_h_put_32 (abfd, in->fregmask, (bfd_byte *) ex->p_fregmask);
3511 bfd_h_put_32 (abfd, in->fregoffset, (bfd_byte *) ex->p_fregoffset);
3512 bfd_h_put_32 (abfd, in->frameoffset, (bfd_byte *) ex->p_frameoffset);
3514 bfd_h_put_16 (abfd, in->framereg, (bfd_byte *) ex->p_framereg);
3515 bfd_h_put_16 (abfd, in->pcreg, (bfd_byte *) ex->p_pcreg);
3517 bfd_h_put_32 (abfd, in->irpss, (bfd_byte *) ex->p_irpss);
3519 ecoff_put_off (abfd, in->exception_info, (bfd_byte *) ex->p_exception_info);
3523 /* Read ECOFF debugging information from a .mdebug section into a
3524 ecoff_debug_info structure. */
3527 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
3530 struct ecoff_debug_info *debug;
3533 const struct ecoff_debug_swap *swap;
3534 char *ext_hdr = NULL;
3536 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3537 memset (debug, 0, sizeof(*debug));
3539 ext_hdr = (char *) bfd_malloc ((size_t) swap->external_hdr_size);
3540 if (ext_hdr == NULL && swap->external_hdr_size != 0)
3543 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
3544 swap->external_hdr_size)
3548 symhdr = &debug->symbolic_header;
3549 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
3551 /* The symbolic header contains absolute file offsets and sizes to
3553 #define READ(ptr, offset, count, size, type) \
3554 if (symhdr->count == 0) \
3555 debug->ptr = NULL; \
3558 debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \
3559 if (debug->ptr == NULL) \
3560 goto error_return; \
3561 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
3562 || (bfd_read (debug->ptr, size, symhdr->count, \
3563 abfd) != size * symhdr->count)) \
3564 goto error_return; \
3567 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
3568 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
3569 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
3570 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
3571 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
3572 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
3574 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
3575 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
3576 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
3577 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
3578 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
3582 debug->adjust = NULL;
3587 if (ext_hdr != NULL)
3589 if (debug->line != NULL)
3591 if (debug->external_dnr != NULL)
3592 free (debug->external_dnr);
3593 if (debug->external_pdr != NULL)
3594 free (debug->external_pdr);
3595 if (debug->external_sym != NULL)
3596 free (debug->external_sym);
3597 if (debug->external_opt != NULL)
3598 free (debug->external_opt);
3599 if (debug->external_aux != NULL)
3600 free (debug->external_aux);
3601 if (debug->ss != NULL)
3603 if (debug->ssext != NULL)
3604 free (debug->ssext);
3605 if (debug->external_fdr != NULL)
3606 free (debug->external_fdr);
3607 if (debug->external_rfd != NULL)
3608 free (debug->external_rfd);
3609 if (debug->external_ext != NULL)
3610 free (debug->external_ext);
3614 /* MIPS ELF local labels start with '$', not 'L'. */
3618 mips_elf_is_local_label_name (abfd, name)
3625 /* On Irix 6, the labels go back to starting with '.', so we accept
3626 the generic ELF local label syntax as well. */
3627 return _bfd_elf_is_local_label_name (abfd, name);
3630 /* MIPS ELF uses a special find_nearest_line routine in order the
3631 handle the ECOFF debugging information. */
3633 struct mips_elf_find_line
3635 struct ecoff_debug_info d;
3636 struct ecoff_find_line i;
3640 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
3641 functionname_ptr, line_ptr)
3646 const char **filename_ptr;
3647 const char **functionname_ptr;
3648 unsigned int *line_ptr;
3652 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
3653 filename_ptr, functionname_ptr,
3657 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3658 filename_ptr, functionname_ptr,
3660 ABI_64_P (abfd) ? 8 : 0))
3663 msec = bfd_get_section_by_name (abfd, ".mdebug");
3667 struct mips_elf_find_line *fi;
3668 const struct ecoff_debug_swap * const swap =
3669 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3671 /* If we are called during a link, mips_elf_final_link may have
3672 cleared the SEC_HAS_CONTENTS field. We force it back on here
3673 if appropriate (which it normally will be). */
3674 origflags = msec->flags;
3675 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
3676 msec->flags |= SEC_HAS_CONTENTS;
3678 fi = elf_tdata (abfd)->find_line_info;
3681 bfd_size_type external_fdr_size;
3684 struct fdr *fdr_ptr;
3686 fi = ((struct mips_elf_find_line *)
3687 bfd_zalloc (abfd, sizeof (struct mips_elf_find_line)));
3690 msec->flags = origflags;
3694 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
3696 msec->flags = origflags;
3700 /* Swap in the FDR information. */
3701 fi->d.fdr = ((struct fdr *)
3703 (fi->d.symbolic_header.ifdMax *
3704 sizeof (struct fdr))));
3705 if (fi->d.fdr == NULL)
3707 msec->flags = origflags;
3710 external_fdr_size = swap->external_fdr_size;
3711 fdr_ptr = fi->d.fdr;
3712 fraw_src = (char *) fi->d.external_fdr;
3713 fraw_end = (fraw_src
3714 + fi->d.symbolic_header.ifdMax * external_fdr_size);
3715 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
3716 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
3718 elf_tdata (abfd)->find_line_info = fi;
3720 /* Note that we don't bother to ever free this information.
3721 find_nearest_line is either called all the time, as in
3722 objdump -l, so the information should be saved, or it is
3723 rarely called, as in ld error messages, so the memory
3724 wasted is unimportant. Still, it would probably be a
3725 good idea for free_cached_info to throw it away. */
3728 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
3729 &fi->i, filename_ptr, functionname_ptr,
3732 msec->flags = origflags;
3736 msec->flags = origflags;
3739 /* Fall back on the generic ELF find_nearest_line routine. */
3741 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
3742 filename_ptr, functionname_ptr,
3746 /* The mips16 compiler uses a couple of special sections to handle
3747 floating point arguments.
3749 Section names that look like .mips16.fn.FNNAME contain stubs that
3750 copy floating point arguments from the fp regs to the gp regs and
3751 then jump to FNNAME. If any 32 bit function calls FNNAME, the
3752 call should be redirected to the stub instead. If no 32 bit
3753 function calls FNNAME, the stub should be discarded. We need to
3754 consider any reference to the function, not just a call, because
3755 if the address of the function is taken we will need the stub,
3756 since the address might be passed to a 32 bit function.
3758 Section names that look like .mips16.call.FNNAME contain stubs
3759 that copy floating point arguments from the gp regs to the fp
3760 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
3761 then any 16 bit function that calls FNNAME should be redirected
3762 to the stub instead. If FNNAME is not a 32 bit function, the
3763 stub should be discarded.
3765 .mips16.call.fp.FNNAME sections are similar, but contain stubs
3766 which call FNNAME and then copy the return value from the fp regs
3767 to the gp regs. These stubs store the return value in $18 while
3768 calling FNNAME; any function which might call one of these stubs
3769 must arrange to save $18 around the call. (This case is not
3770 needed for 32 bit functions that call 16 bit functions, because
3771 16 bit functions always return floating point values in both
3774 Note that in all cases FNNAME might be defined statically.
3775 Therefore, FNNAME is not used literally. Instead, the relocation
3776 information will indicate which symbol the section is for.
3778 We record any stubs that we find in the symbol table. */
3780 #define FN_STUB ".mips16.fn."
3781 #define CALL_STUB ".mips16.call."
3782 #define CALL_FP_STUB ".mips16.call.fp."
3784 /* MIPS ELF linker hash table. */
3786 struct mips_elf_link_hash_table
3788 struct elf_link_hash_table root;
3790 /* We no longer use this. */
3791 /* String section indices for the dynamic section symbols. */
3792 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
3794 /* The number of .rtproc entries. */
3795 bfd_size_type procedure_count;
3796 /* The size of the .compact_rel section (if SGI_COMPAT). */
3797 bfd_size_type compact_rel_size;
3798 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
3799 entry is set to the address of __rld_obj_head as in Irix 5. */
3800 boolean use_rld_obj_head;
3801 /* This is the value of the __rld_map or __rld_obj_head symbol. */
3803 /* This is set if we see any mips16 stub sections. */
3804 boolean mips16_stubs_seen;
3807 /* Look up an entry in a MIPS ELF linker hash table. */
3809 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
3810 ((struct mips_elf_link_hash_entry *) \
3811 elf_link_hash_lookup (&(table)->root, (string), (create), \
3814 /* Traverse a MIPS ELF linker hash table. */
3816 #define mips_elf_link_hash_traverse(table, func, info) \
3817 (elf_link_hash_traverse \
3819 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
3822 /* Get the MIPS ELF linker hash table from a link_info structure. */
3824 #define mips_elf_hash_table(p) \
3825 ((struct mips_elf_link_hash_table *) ((p)->hash))
3827 static boolean mips_elf_output_extsym
3828 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
3830 /* Create an entry in a MIPS ELF linker hash table. */
3832 static struct bfd_hash_entry *
3833 mips_elf_link_hash_newfunc (entry, table, string)
3834 struct bfd_hash_entry *entry;
3835 struct bfd_hash_table *table;
3838 struct mips_elf_link_hash_entry *ret =
3839 (struct mips_elf_link_hash_entry *) entry;
3841 /* Allocate the structure if it has not already been allocated by a
3843 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3844 ret = ((struct mips_elf_link_hash_entry *)
3845 bfd_hash_allocate (table,
3846 sizeof (struct mips_elf_link_hash_entry)));
3847 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3848 return (struct bfd_hash_entry *) ret;
3850 /* Call the allocation method of the superclass. */
3851 ret = ((struct mips_elf_link_hash_entry *)
3852 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3854 if (ret != (struct mips_elf_link_hash_entry *) NULL)
3856 /* Set local fields. */
3857 memset (&ret->esym, 0, sizeof (EXTR));
3858 /* We use -2 as a marker to indicate that the information has
3859 not been set. -1 means there is no associated ifd. */
3861 ret->possibly_dynamic_relocs = 0;
3862 ret->min_dyn_reloc_index = 0;
3863 ret->fn_stub = NULL;
3864 ret->need_fn_stub = false;
3865 ret->call_stub = NULL;
3866 ret->call_fp_stub = NULL;
3869 return (struct bfd_hash_entry *) ret;
3873 _bfd_mips_elf_hide_symbol(info, h)
3874 struct bfd_link_info *info;
3875 struct mips_elf_link_hash_entry *h;
3879 struct mips_got_info *g;
3880 dynobj = elf_hash_table (info)->dynobj;
3881 got = bfd_get_section_by_name (dynobj, ".got");
3882 g = (struct mips_got_info *) elf_section_data (got)->tdata;
3884 h->root.elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3885 h->root.plt.offset = (bfd_vma) -1;
3886 h->root.dynindx = -1;
3888 /* FIXME: Do we allocate too much GOT space here? */
3890 got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
3893 /* Create a MIPS ELF linker hash table. */
3895 struct bfd_link_hash_table *
3896 _bfd_mips_elf_link_hash_table_create (abfd)
3899 struct mips_elf_link_hash_table *ret;
3901 ret = ((struct mips_elf_link_hash_table *)
3902 bfd_alloc (abfd, sizeof (struct mips_elf_link_hash_table)));
3903 if (ret == (struct mips_elf_link_hash_table *) NULL)
3906 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
3907 mips_elf_link_hash_newfunc))
3909 bfd_release (abfd, ret);
3914 /* We no longer use this. */
3915 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
3916 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
3918 ret->procedure_count = 0;
3919 ret->compact_rel_size = 0;
3920 ret->use_rld_obj_head = false;
3922 ret->mips16_stubs_seen = false;
3924 return &ret->root.root;
3927 /* Hook called by the linker routine which adds symbols from an object
3928 file. We must handle the special MIPS section numbers here. */
3932 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
3934 struct bfd_link_info *info;
3935 const Elf_Internal_Sym *sym;
3937 flagword *flagsp ATTRIBUTE_UNUSED;
3941 if (SGI_COMPAT (abfd)
3942 && (abfd->flags & DYNAMIC) != 0
3943 && strcmp (*namep, "_rld_new_interface") == 0)
3945 /* Skip Irix 5 rld entry name. */
3950 switch (sym->st_shndx)
3953 /* Common symbols less than the GP size are automatically
3954 treated as SHN_MIPS_SCOMMON symbols. */
3955 if (sym->st_size > elf_gp_size (abfd)
3956 || IRIX_COMPAT (abfd) == ict_irix6)
3959 case SHN_MIPS_SCOMMON:
3960 *secp = bfd_make_section_old_way (abfd, ".scommon");
3961 (*secp)->flags |= SEC_IS_COMMON;
3962 *valp = sym->st_size;
3966 /* This section is used in a shared object. */
3967 if (elf_tdata (abfd)->elf_text_section == NULL)
3969 asymbol *elf_text_symbol;
3970 asection *elf_text_section;
3972 elf_text_section = bfd_zalloc (abfd, sizeof (asection));
3973 if (elf_text_section == NULL)
3976 elf_text_symbol = bfd_zalloc (abfd, sizeof (asymbol));
3977 if (elf_text_symbol == NULL)
3980 /* Initialize the section. */
3982 elf_tdata (abfd)->elf_text_section = elf_text_section;
3983 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
3985 elf_text_section->symbol = elf_text_symbol;
3986 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
3988 elf_text_section->name = ".text";
3989 elf_text_section->flags = SEC_NO_FLAGS;
3990 elf_text_section->output_section = NULL;
3991 elf_text_section->owner = abfd;
3992 elf_text_symbol->name = ".text";
3993 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
3994 elf_text_symbol->section = elf_text_section;
3996 /* This code used to do *secp = bfd_und_section_ptr if
3997 info->shared. I don't know why, and that doesn't make sense,
3998 so I took it out. */
3999 *secp = elf_tdata (abfd)->elf_text_section;
4002 case SHN_MIPS_ACOMMON:
4003 /* Fall through. XXX Can we treat this as allocated data? */
4005 /* This section is used in a shared object. */
4006 if (elf_tdata (abfd)->elf_data_section == NULL)
4008 asymbol *elf_data_symbol;
4009 asection *elf_data_section;
4011 elf_data_section = bfd_zalloc (abfd, sizeof (asection));
4012 if (elf_data_section == NULL)
4015 elf_data_symbol = bfd_zalloc (abfd, sizeof (asymbol));
4016 if (elf_data_symbol == NULL)
4019 /* Initialize the section. */
4021 elf_tdata (abfd)->elf_data_section = elf_data_section;
4022 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4024 elf_data_section->symbol = elf_data_symbol;
4025 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4027 elf_data_section->name = ".data";
4028 elf_data_section->flags = SEC_NO_FLAGS;
4029 elf_data_section->output_section = NULL;
4030 elf_data_section->owner = abfd;
4031 elf_data_symbol->name = ".data";
4032 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4033 elf_data_symbol->section = elf_data_section;
4035 /* This code used to do *secp = bfd_und_section_ptr if
4036 info->shared. I don't know why, and that doesn't make sense,
4037 so I took it out. */
4038 *secp = elf_tdata (abfd)->elf_data_section;
4041 case SHN_MIPS_SUNDEFINED:
4042 *secp = bfd_und_section_ptr;
4046 if (SGI_COMPAT (abfd)
4048 && info->hash->creator == abfd->xvec
4049 && strcmp (*namep, "__rld_obj_head") == 0)
4051 struct elf_link_hash_entry *h;
4053 /* Mark __rld_obj_head as dynamic. */
4055 if (! (_bfd_generic_link_add_one_symbol
4056 (info, abfd, *namep, BSF_GLOBAL, *secp,
4057 (bfd_vma) *valp, (const char *) NULL, false,
4058 get_elf_backend_data (abfd)->collect,
4059 (struct bfd_link_hash_entry **) &h)))
4061 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
4062 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4063 h->type = STT_OBJECT;
4065 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4068 mips_elf_hash_table (info)->use_rld_obj_head = true;
4071 /* If this is a mips16 text symbol, add 1 to the value to make it
4072 odd. This will cause something like .word SYM to come up with
4073 the right value when it is loaded into the PC. */
4074 if (sym->st_other == STO_MIPS16)
4080 /* Structure used to pass information to mips_elf_output_extsym. */
4085 struct bfd_link_info *info;
4086 struct ecoff_debug_info *debug;
4087 const struct ecoff_debug_swap *swap;
4091 /* This routine is used to write out ECOFF debugging external symbol
4092 information. It is called via mips_elf_link_hash_traverse. The
4093 ECOFF external symbol information must match the ELF external
4094 symbol information. Unfortunately, at this point we don't know
4095 whether a symbol is required by reloc information, so the two
4096 tables may wind up being different. We must sort out the external
4097 symbol information before we can set the final size of the .mdebug
4098 section, and we must set the size of the .mdebug section before we
4099 can relocate any sections, and we can't know which symbols are
4100 required by relocation until we relocate the sections.
4101 Fortunately, it is relatively unlikely that any symbol will be
4102 stripped but required by a reloc. In particular, it can not happen
4103 when generating a final executable. */
4106 mips_elf_output_extsym (h, data)
4107 struct mips_elf_link_hash_entry *h;
4110 struct extsym_info *einfo = (struct extsym_info *) data;
4112 asection *sec, *output_section;
4114 if (h->root.indx == -2)
4116 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4117 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4118 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4119 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4121 else if (einfo->info->strip == strip_all
4122 || (einfo->info->strip == strip_some
4123 && bfd_hash_lookup (einfo->info->keep_hash,
4124 h->root.root.root.string,
4125 false, false) == NULL))
4133 if (h->esym.ifd == -2)
4136 h->esym.cobol_main = 0;
4137 h->esym.weakext = 0;
4138 h->esym.reserved = 0;
4139 h->esym.ifd = ifdNil;
4140 h->esym.asym.value = 0;
4141 h->esym.asym.st = stGlobal;
4143 if (SGI_COMPAT (einfo->abfd)
4144 && (h->root.root.type == bfd_link_hash_undefined
4145 || h->root.root.type == bfd_link_hash_undefweak))
4149 /* Use undefined class. Also, set class and type for some
4151 name = h->root.root.root.string;
4152 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4153 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4155 h->esym.asym.sc = scData;
4156 h->esym.asym.st = stLabel;
4157 h->esym.asym.value = 0;
4159 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4161 h->esym.asym.sc = scAbs;
4162 h->esym.asym.st = stLabel;
4163 h->esym.asym.value =
4164 mips_elf_hash_table (einfo->info)->procedure_count;
4166 else if (strcmp (name, "_gp_disp") == 0)
4168 h->esym.asym.sc = scAbs;
4169 h->esym.asym.st = stLabel;
4170 h->esym.asym.value = elf_gp (einfo->abfd);
4173 h->esym.asym.sc = scUndefined;
4175 else if (h->root.root.type != bfd_link_hash_defined
4176 && h->root.root.type != bfd_link_hash_defweak)
4177 h->esym.asym.sc = scAbs;
4182 sec = h->root.root.u.def.section;
4183 output_section = sec->output_section;
4185 /* When making a shared library and symbol h is the one from
4186 the another shared library, OUTPUT_SECTION may be null. */
4187 if (output_section == NULL)
4188 h->esym.asym.sc = scUndefined;
4191 name = bfd_section_name (output_section->owner, output_section);
4193 if (strcmp (name, ".text") == 0)
4194 h->esym.asym.sc = scText;
4195 else if (strcmp (name, ".data") == 0)
4196 h->esym.asym.sc = scData;
4197 else if (strcmp (name, ".sdata") == 0)
4198 h->esym.asym.sc = scSData;
4199 else if (strcmp (name, ".rodata") == 0
4200 || strcmp (name, ".rdata") == 0)
4201 h->esym.asym.sc = scRData;
4202 else if (strcmp (name, ".bss") == 0)
4203 h->esym.asym.sc = scBss;
4204 else if (strcmp (name, ".sbss") == 0)
4205 h->esym.asym.sc = scSBss;
4206 else if (strcmp (name, ".init") == 0)
4207 h->esym.asym.sc = scInit;
4208 else if (strcmp (name, ".fini") == 0)
4209 h->esym.asym.sc = scFini;
4211 h->esym.asym.sc = scAbs;
4215 h->esym.asym.reserved = 0;
4216 h->esym.asym.index = indexNil;
4219 if (h->root.root.type == bfd_link_hash_common)
4220 h->esym.asym.value = h->root.root.u.c.size;
4221 else if (h->root.root.type == bfd_link_hash_defined
4222 || h->root.root.type == bfd_link_hash_defweak)
4224 if (h->esym.asym.sc == scCommon)
4225 h->esym.asym.sc = scBss;
4226 else if (h->esym.asym.sc == scSCommon)
4227 h->esym.asym.sc = scSBss;
4229 sec = h->root.root.u.def.section;
4230 output_section = sec->output_section;
4231 if (output_section != NULL)
4232 h->esym.asym.value = (h->root.root.u.def.value
4233 + sec->output_offset
4234 + output_section->vma);
4236 h->esym.asym.value = 0;
4238 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4240 /* Set type and value for a symbol with a function stub. */
4241 h->esym.asym.st = stProc;
4242 sec = h->root.root.u.def.section;
4244 h->esym.asym.value = 0;
4247 output_section = sec->output_section;
4248 if (output_section != NULL)
4249 h->esym.asym.value = (h->root.plt.offset
4250 + sec->output_offset
4251 + output_section->vma);
4253 h->esym.asym.value = 0;
4260 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4261 h->root.root.root.string,
4264 einfo->failed = true;
4271 /* Create a runtime procedure table from the .mdebug section. */
4274 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4277 struct bfd_link_info *info;
4279 struct ecoff_debug_info *debug;
4281 const struct ecoff_debug_swap *swap;
4282 HDRR *hdr = &debug->symbolic_header;
4284 struct rpdr_ext *erp;
4286 struct pdr_ext *epdr;
4287 struct sym_ext *esym;
4290 unsigned long size, count;
4291 unsigned long sindex;
4295 const char *no_name_func = _("static procedure (no name)");
4303 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4305 sindex = strlen (no_name_func) + 1;
4306 count = hdr->ipdMax;
4309 size = swap->external_pdr_size;
4311 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4315 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4318 size = sizeof (RPDR);
4319 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4323 sv = (char **) bfd_malloc (sizeof (char *) * count);
4327 count = hdr->isymMax;
4328 size = swap->external_sym_size;
4329 esym = (struct sym_ext *) bfd_malloc (size * count);
4333 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
4336 count = hdr->issMax;
4337 ss = (char *) bfd_malloc (count);
4340 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
4343 count = hdr->ipdMax;
4344 for (i = 0; i < count; i++, rp++)
4346 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
4347 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
4348 rp->adr = sym.value;
4349 rp->regmask = pdr.regmask;
4350 rp->regoffset = pdr.regoffset;
4351 rp->fregmask = pdr.fregmask;
4352 rp->fregoffset = pdr.fregoffset;
4353 rp->frameoffset = pdr.frameoffset;
4354 rp->framereg = pdr.framereg;
4355 rp->pcreg = pdr.pcreg;
4357 sv[i] = ss + sym.iss;
4358 sindex += strlen (sv[i]) + 1;
4362 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
4363 size = BFD_ALIGN (size, 16);
4364 rtproc = (PTR) bfd_alloc (abfd, size);
4367 mips_elf_hash_table (info)->procedure_count = 0;
4371 mips_elf_hash_table (info)->procedure_count = count + 2;
4373 erp = (struct rpdr_ext *) rtproc;
4374 memset (erp, 0, sizeof (struct rpdr_ext));
4376 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
4377 strcpy (str, no_name_func);
4378 str += strlen (no_name_func) + 1;
4379 for (i = 0; i < count; i++)
4381 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
4382 strcpy (str, sv[i]);
4383 str += strlen (sv[i]) + 1;
4385 ecoff_put_off (abfd, (bfd_vma) -1, (bfd_byte *) (erp + count)->p_adr);
4387 /* Set the size and contents of .rtproc section. */
4388 s->_raw_size = size;
4389 s->contents = (bfd_byte *) rtproc;
4391 /* Skip this section later on (I don't think this currently
4392 matters, but someday it might). */
4393 s->link_order_head = (struct bfd_link_order *) NULL;
4422 /* A comparison routine used to sort .gptab entries. */
4425 gptab_compare (p1, p2)
4429 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
4430 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
4432 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
4435 /* We need to use a special link routine to handle the .reginfo and
4436 the .mdebug sections. We need to merge all instances of these
4437 sections together, not write them all out sequentially. */
4440 _bfd_mips_elf_final_link (abfd, info)
4442 struct bfd_link_info *info;
4446 struct bfd_link_order *p;
4447 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
4448 asection *rtproc_sec;
4449 Elf32_RegInfo reginfo;
4450 struct ecoff_debug_info debug;
4451 const struct ecoff_debug_swap *swap
4452 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4453 HDRR *symhdr = &debug.symbolic_header;
4454 PTR mdebug_handle = NULL;
4456 /* If all the things we linked together were PIC, but we're
4457 producing an executable (rather than a shared object), then the
4458 resulting file is CPIC (i.e., it calls PIC code.) */
4460 && !info->relocateable
4461 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
4463 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
4464 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
4467 /* We'd carefully arranged the dynamic symbol indices, and then the
4468 generic size_dynamic_sections renumbered them out from under us.
4469 Rather than trying somehow to prevent the renumbering, just do
4471 if (elf_hash_table (info)->dynamic_sections_created)
4475 struct mips_got_info *g;
4477 /* When we resort, we must tell mips_elf_sort_hash_table what
4478 the lowest index it may use is. That's the number of section
4479 symbols we're going to add. The generic ELF linker only
4480 adds these symbols when building a shared object. Note that
4481 we count the sections after (possibly) removing the .options
4483 if (!mips_elf_sort_hash_table (info, (info->shared
4484 ? bfd_count_sections (abfd) + 1
4488 /* Make sure we didn't grow the global .got region. */
4489 dynobj = elf_hash_table (info)->dynobj;
4490 got = bfd_get_section_by_name (dynobj, ".got");
4491 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4493 if (g->global_gotsym != NULL)
4494 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
4495 - g->global_gotsym->dynindx)
4496 <= g->global_gotno);
4499 /* On IRIX5, we omit the .options section. On IRIX6, however, we
4500 include it, even though we don't process it quite right. (Some
4501 entries are supposed to be merged.) Empirically, we seem to be
4502 better off including it then not. */
4503 if (IRIX_COMPAT (abfd) == ict_irix5)
4504 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
4506 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4508 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
4509 if (p->type == bfd_indirect_link_order)
4510 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
4511 (*secpp)->link_order_head = NULL;
4512 *secpp = (*secpp)->next;
4513 --abfd->section_count;
4519 /* Get a value for the GP register. */
4520 if (elf_gp (abfd) == 0)
4522 struct bfd_link_hash_entry *h;
4524 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
4525 if (h != (struct bfd_link_hash_entry *) NULL
4526 && h->type == bfd_link_hash_defined)
4527 elf_gp (abfd) = (h->u.def.value
4528 + h->u.def.section->output_section->vma
4529 + h->u.def.section->output_offset);
4530 else if (info->relocateable)
4534 /* Find the GP-relative section with the lowest offset. */
4536 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4538 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
4541 /* And calculate GP relative to that. */
4542 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
4546 /* If the relocate_section function needs to do a reloc
4547 involving the GP value, it should make a reloc_dangerous
4548 callback to warn that GP is not defined. */
4552 /* Go through the sections and collect the .reginfo and .mdebug
4556 gptab_data_sec = NULL;
4557 gptab_bss_sec = NULL;
4558 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4560 if (strcmp (o->name, ".reginfo") == 0)
4562 memset (®info, 0, sizeof reginfo);
4564 /* We have found the .reginfo section in the output file.
4565 Look through all the link_orders comprising it and merge
4566 the information together. */
4567 for (p = o->link_order_head;
4568 p != (struct bfd_link_order *) NULL;
4571 asection *input_section;
4573 Elf32_External_RegInfo ext;
4576 if (p->type != bfd_indirect_link_order)
4578 if (p->type == bfd_fill_link_order)
4583 input_section = p->u.indirect.section;
4584 input_bfd = input_section->owner;
4586 /* The linker emulation code has probably clobbered the
4587 size to be zero bytes. */
4588 if (input_section->_raw_size == 0)
4589 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
4591 if (! bfd_get_section_contents (input_bfd, input_section,
4597 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
4599 reginfo.ri_gprmask |= sub.ri_gprmask;
4600 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
4601 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
4602 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
4603 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
4605 /* ri_gp_value is set by the function
4606 mips_elf32_section_processing when the section is
4607 finally written out. */
4609 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4610 elf_link_input_bfd ignores this section. */
4611 input_section->flags &=~ SEC_HAS_CONTENTS;
4614 /* Size has been set in mips_elf_always_size_sections */
4615 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
4617 /* Skip this section later on (I don't think this currently
4618 matters, but someday it might). */
4619 o->link_order_head = (struct bfd_link_order *) NULL;
4624 if (strcmp (o->name, ".mdebug") == 0)
4626 struct extsym_info einfo;
4628 /* We have found the .mdebug section in the output file.
4629 Look through all the link_orders comprising it and merge
4630 the information together. */
4631 symhdr->magic = swap->sym_magic;
4632 /* FIXME: What should the version stamp be? */
4634 symhdr->ilineMax = 0;
4638 symhdr->isymMax = 0;
4639 symhdr->ioptMax = 0;
4640 symhdr->iauxMax = 0;
4642 symhdr->issExtMax = 0;
4645 symhdr->iextMax = 0;
4647 /* We accumulate the debugging information itself in the
4648 debug_info structure. */
4650 debug.external_dnr = NULL;
4651 debug.external_pdr = NULL;
4652 debug.external_sym = NULL;
4653 debug.external_opt = NULL;
4654 debug.external_aux = NULL;
4656 debug.ssext = debug.ssext_end = NULL;
4657 debug.external_fdr = NULL;
4658 debug.external_rfd = NULL;
4659 debug.external_ext = debug.external_ext_end = NULL;
4661 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
4662 if (mdebug_handle == (PTR) NULL)
4665 if (SGI_COMPAT (abfd))
4671 static const char * const name[] =
4672 { ".text", ".init", ".fini", ".data",
4673 ".rodata", ".sdata", ".sbss", ".bss" };
4674 static const int sc[] = { scText, scInit, scFini, scData,
4675 scRData, scSData, scSBss, scBss };
4678 esym.cobol_main = 0;
4682 esym.asym.iss = issNil;
4683 esym.asym.st = stLocal;
4684 esym.asym.reserved = 0;
4685 esym.asym.index = indexNil;
4687 for (i = 0; i < 8; i++)
4689 esym.asym.sc = sc[i];
4690 s = bfd_get_section_by_name (abfd, name[i]);
4693 esym.asym.value = s->vma;
4694 last = s->vma + s->_raw_size;
4697 esym.asym.value = last;
4699 if (! bfd_ecoff_debug_one_external (abfd, &debug, swap,
4705 for (p = o->link_order_head;
4706 p != (struct bfd_link_order *) NULL;
4709 asection *input_section;
4711 const struct ecoff_debug_swap *input_swap;
4712 struct ecoff_debug_info input_debug;
4716 if (p->type != bfd_indirect_link_order)
4718 if (p->type == bfd_fill_link_order)
4723 input_section = p->u.indirect.section;
4724 input_bfd = input_section->owner;
4726 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
4727 || (get_elf_backend_data (input_bfd)
4728 ->elf_backend_ecoff_debug_swap) == NULL)
4730 /* I don't know what a non MIPS ELF bfd would be
4731 doing with a .mdebug section, but I don't really
4732 want to deal with it. */
4736 input_swap = (get_elf_backend_data (input_bfd)
4737 ->elf_backend_ecoff_debug_swap);
4739 BFD_ASSERT (p->size == input_section->_raw_size);
4741 /* The ECOFF linking code expects that we have already
4742 read in the debugging information and set up an
4743 ecoff_debug_info structure, so we do that now. */
4744 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
4748 if (! (bfd_ecoff_debug_accumulate
4749 (mdebug_handle, abfd, &debug, swap, input_bfd,
4750 &input_debug, input_swap, info)))
4753 /* Loop through the external symbols. For each one with
4754 interesting information, try to find the symbol in
4755 the linker global hash table and save the information
4756 for the output external symbols. */
4757 eraw_src = input_debug.external_ext;
4758 eraw_end = (eraw_src
4759 + (input_debug.symbolic_header.iextMax
4760 * input_swap->external_ext_size));
4762 eraw_src < eraw_end;
4763 eraw_src += input_swap->external_ext_size)
4767 struct mips_elf_link_hash_entry *h;
4769 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
4770 if (ext.asym.sc == scNil
4771 || ext.asym.sc == scUndefined
4772 || ext.asym.sc == scSUndefined)
4775 name = input_debug.ssext + ext.asym.iss;
4776 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
4777 name, false, false, true);
4778 if (h == NULL || h->esym.ifd != -2)
4784 < input_debug.symbolic_header.ifdMax);
4785 ext.ifd = input_debug.ifdmap[ext.ifd];
4791 /* Free up the information we just read. */
4792 free (input_debug.line);
4793 free (input_debug.external_dnr);
4794 free (input_debug.external_pdr);
4795 free (input_debug.external_sym);
4796 free (input_debug.external_opt);
4797 free (input_debug.external_aux);
4798 free (input_debug.ss);
4799 free (input_debug.ssext);
4800 free (input_debug.external_fdr);
4801 free (input_debug.external_rfd);
4802 free (input_debug.external_ext);
4804 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4805 elf_link_input_bfd ignores this section. */
4806 input_section->flags &=~ SEC_HAS_CONTENTS;
4809 if (SGI_COMPAT (abfd) && info->shared)
4811 /* Create .rtproc section. */
4812 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
4813 if (rtproc_sec == NULL)
4815 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
4816 | SEC_LINKER_CREATED | SEC_READONLY);
4818 rtproc_sec = bfd_make_section (abfd, ".rtproc");
4819 if (rtproc_sec == NULL
4820 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
4821 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
4825 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
4826 info, rtproc_sec, &debug))
4830 /* Build the external symbol information. */
4833 einfo.debug = &debug;
4835 einfo.failed = false;
4836 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
4837 mips_elf_output_extsym,
4842 /* Set the size of the .mdebug section. */
4843 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
4845 /* Skip this section later on (I don't think this currently
4846 matters, but someday it might). */
4847 o->link_order_head = (struct bfd_link_order *) NULL;
4852 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
4854 const char *subname;
4857 Elf32_External_gptab *ext_tab;
4860 /* The .gptab.sdata and .gptab.sbss sections hold
4861 information describing how the small data area would
4862 change depending upon the -G switch. These sections
4863 not used in executables files. */
4864 if (! info->relocateable)
4868 for (p = o->link_order_head;
4869 p != (struct bfd_link_order *) NULL;
4872 asection *input_section;
4874 if (p->type != bfd_indirect_link_order)
4876 if (p->type == bfd_fill_link_order)
4881 input_section = p->u.indirect.section;
4883 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4884 elf_link_input_bfd ignores this section. */
4885 input_section->flags &=~ SEC_HAS_CONTENTS;
4888 /* Skip this section later on (I don't think this
4889 currently matters, but someday it might). */
4890 o->link_order_head = (struct bfd_link_order *) NULL;
4892 /* Really remove the section. */
4893 for (secpp = &abfd->sections;
4895 secpp = &(*secpp)->next)
4897 *secpp = (*secpp)->next;
4898 --abfd->section_count;
4903 /* There is one gptab for initialized data, and one for
4904 uninitialized data. */
4905 if (strcmp (o->name, ".gptab.sdata") == 0)
4907 else if (strcmp (o->name, ".gptab.sbss") == 0)
4911 (*_bfd_error_handler)
4912 (_("%s: illegal section name `%s'"),
4913 bfd_get_filename (abfd), o->name);
4914 bfd_set_error (bfd_error_nonrepresentable_section);
4918 /* The linker script always combines .gptab.data and
4919 .gptab.sdata into .gptab.sdata, and likewise for
4920 .gptab.bss and .gptab.sbss. It is possible that there is
4921 no .sdata or .sbss section in the output file, in which
4922 case we must change the name of the output section. */
4923 subname = o->name + sizeof ".gptab" - 1;
4924 if (bfd_get_section_by_name (abfd, subname) == NULL)
4926 if (o == gptab_data_sec)
4927 o->name = ".gptab.data";
4929 o->name = ".gptab.bss";
4930 subname = o->name + sizeof ".gptab" - 1;
4931 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
4934 /* Set up the first entry. */
4936 tab = (Elf32_gptab *) bfd_malloc (c * sizeof (Elf32_gptab));
4939 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
4940 tab[0].gt_header.gt_unused = 0;
4942 /* Combine the input sections. */
4943 for (p = o->link_order_head;
4944 p != (struct bfd_link_order *) NULL;
4947 asection *input_section;
4951 bfd_size_type gpentry;
4953 if (p->type != bfd_indirect_link_order)
4955 if (p->type == bfd_fill_link_order)
4960 input_section = p->u.indirect.section;
4961 input_bfd = input_section->owner;
4963 /* Combine the gptab entries for this input section one
4964 by one. We know that the input gptab entries are
4965 sorted by ascending -G value. */
4966 size = bfd_section_size (input_bfd, input_section);
4968 for (gpentry = sizeof (Elf32_External_gptab);
4970 gpentry += sizeof (Elf32_External_gptab))
4972 Elf32_External_gptab ext_gptab;
4973 Elf32_gptab int_gptab;
4979 if (! (bfd_get_section_contents
4980 (input_bfd, input_section, (PTR) &ext_gptab,
4981 gpentry, sizeof (Elf32_External_gptab))))
4987 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
4989 val = int_gptab.gt_entry.gt_g_value;
4990 add = int_gptab.gt_entry.gt_bytes - last;
4993 for (look = 1; look < c; look++)
4995 if (tab[look].gt_entry.gt_g_value >= val)
4996 tab[look].gt_entry.gt_bytes += add;
4998 if (tab[look].gt_entry.gt_g_value == val)
5004 Elf32_gptab *new_tab;
5007 /* We need a new table entry. */
5008 new_tab = ((Elf32_gptab *)
5009 bfd_realloc ((PTR) tab,
5010 (c + 1) * sizeof (Elf32_gptab)));
5011 if (new_tab == NULL)
5017 tab[c].gt_entry.gt_g_value = val;
5018 tab[c].gt_entry.gt_bytes = add;
5020 /* Merge in the size for the next smallest -G
5021 value, since that will be implied by this new
5024 for (look = 1; look < c; look++)
5026 if (tab[look].gt_entry.gt_g_value < val
5028 || (tab[look].gt_entry.gt_g_value
5029 > tab[max].gt_entry.gt_g_value)))
5033 tab[c].gt_entry.gt_bytes +=
5034 tab[max].gt_entry.gt_bytes;
5039 last = int_gptab.gt_entry.gt_bytes;
5042 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5043 elf_link_input_bfd ignores this section. */
5044 input_section->flags &=~ SEC_HAS_CONTENTS;
5047 /* The table must be sorted by -G value. */
5049 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
5051 /* Swap out the table. */
5052 ext_tab = ((Elf32_External_gptab *)
5053 bfd_alloc (abfd, c * sizeof (Elf32_External_gptab)));
5054 if (ext_tab == NULL)
5060 for (i = 0; i < c; i++)
5061 bfd_mips_elf32_swap_gptab_out (abfd, tab + i, ext_tab + i);
5064 o->_raw_size = c * sizeof (Elf32_External_gptab);
5065 o->contents = (bfd_byte *) ext_tab;
5067 /* Skip this section later on (I don't think this currently
5068 matters, but someday it might). */
5069 o->link_order_head = (struct bfd_link_order *) NULL;
5073 /* Invoke the regular ELF backend linker to do all the work. */
5074 if (ABI_64_P (abfd))
5077 if (!bfd_elf64_bfd_final_link (abfd, info))
5084 else if (!bfd_elf32_bfd_final_link (abfd, info))
5087 /* Now write out the computed sections. */
5089 if (reginfo_sec != (asection *) NULL)
5091 Elf32_External_RegInfo ext;
5093 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
5094 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
5095 (file_ptr) 0, sizeof ext))
5099 if (mdebug_sec != (asection *) NULL)
5101 BFD_ASSERT (abfd->output_has_begun);
5102 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5104 mdebug_sec->filepos))
5107 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5110 if (gptab_data_sec != (asection *) NULL)
5112 if (! bfd_set_section_contents (abfd, gptab_data_sec,
5113 gptab_data_sec->contents,
5115 gptab_data_sec->_raw_size))
5119 if (gptab_bss_sec != (asection *) NULL)
5121 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
5122 gptab_bss_sec->contents,
5124 gptab_bss_sec->_raw_size))
5128 if (SGI_COMPAT (abfd))
5130 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5131 if (rtproc_sec != NULL)
5133 if (! bfd_set_section_contents (abfd, rtproc_sec,
5134 rtproc_sec->contents,
5136 rtproc_sec->_raw_size))
5144 /* Returns the GOT section for ABFD. */
5147 mips_elf_got_section (abfd)
5150 return bfd_get_section_by_name (abfd, ".got");
5153 /* Returns the GOT information associated with the link indicated by
5154 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5157 static struct mips_got_info *
5158 mips_elf_got_info (abfd, sgotp)
5163 struct mips_got_info *g;
5165 sgot = mips_elf_got_section (abfd);
5166 BFD_ASSERT (sgot != NULL);
5167 BFD_ASSERT (elf_section_data (sgot) != NULL);
5168 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5169 BFD_ASSERT (g != NULL);
5176 /* Return whether a relocation is against a local symbol. */
5179 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
5182 const Elf_Internal_Rela *relocation;
5183 asection **local_sections;
5184 boolean check_forced;
5186 unsigned long r_symndx;
5187 Elf_Internal_Shdr *symtab_hdr;
5188 struct mips_elf_link_hash_entry* h;
5191 r_symndx = ELF32_R_SYM (relocation->r_info);
5192 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5193 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5195 if (r_symndx < extsymoff)
5197 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5202 /* Look up the hash table to check whether the symbol
5203 was forced local. */
5204 h = (struct mips_elf_link_hash_entry *)
5205 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
5206 /* Find the real hash-table entry for this symbol. */
5207 while (h->root.root.type == bfd_link_hash_indirect
5208 || h->root.root.type == bfd_link_hash_warning)
5209 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5210 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5217 /* Sign-extend VALUE, which has the indicated number of BITS. */
5220 mips_elf_sign_extend (value, bits)
5224 if (value & ((bfd_vma)1 << (bits - 1)))
5225 /* VALUE is negative. */
5226 value |= ((bfd_vma) - 1) << bits;
5231 /* Return non-zero if the indicated VALUE has overflowed the maximum
5232 range expressable by a signed number with the indicated number of
5236 mips_elf_overflow_p (value, bits)
5240 bfd_signed_vma svalue = (bfd_signed_vma) value;
5242 if (svalue > (1 << (bits - 1)) - 1)
5243 /* The value is too big. */
5245 else if (svalue < -(1 << (bits - 1)))
5246 /* The value is too small. */
5253 /* Calculate the %high function. */
5256 mips_elf_high (value)
5259 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5262 /* Calculate the %higher function. */
5265 mips_elf_higher (value)
5266 bfd_vma value ATTRIBUTE_UNUSED;
5269 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5272 return (bfd_vma) -1;
5276 /* Calculate the %highest function. */
5279 mips_elf_highest (value)
5280 bfd_vma value ATTRIBUTE_UNUSED;
5283 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
5286 return (bfd_vma) -1;
5290 /* Returns the GOT index for the global symbol indicated by H. */
5293 mips_elf_global_got_index (abfd, h)
5295 struct elf_link_hash_entry *h;
5299 struct mips_got_info *g;
5301 g = mips_elf_got_info (abfd, &sgot);
5303 /* Once we determine the global GOT entry with the lowest dynamic
5304 symbol table index, we must put all dynamic symbols with greater
5305 indices into the GOT. That makes it easy to calculate the GOT
5307 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
5308 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
5309 * MIPS_ELF_GOT_SIZE (abfd));
5310 BFD_ASSERT (index < sgot->_raw_size);
5315 /* Returns the offset for the entry at the INDEXth position
5319 mips_elf_got_offset_from_index (dynobj, output_bfd, index)
5327 sgot = mips_elf_got_section (dynobj);
5328 gp = _bfd_get_gp_value (output_bfd);
5329 return (sgot->output_section->vma + sgot->output_offset + index -
5333 /* If H is a symbol that needs a global GOT entry, but has a dynamic
5334 symbol table index lower than any we've seen to date, record it for
5338 mips_elf_record_global_got_symbol (h, info, g)
5339 struct elf_link_hash_entry *h;
5340 struct bfd_link_info *info;
5341 struct mips_got_info *g ATTRIBUTE_UNUSED;
5343 /* A global symbol in the GOT must also be in the dynamic symbol
5345 if (h->dynindx == -1
5346 && !bfd_elf32_link_record_dynamic_symbol (info, h))
5349 /* If we've already marked this entry as need GOT space, we don't
5350 need to do it again. */
5351 if (h->got.offset != (bfd_vma) - 1)
5354 /* By setting this to a value other than -1, we are indicating that
5355 there needs to be a GOT entry for H. */
5361 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
5362 the dynamic symbols. */
5364 struct mips_elf_hash_sort_data
5366 /* The symbol in the global GOT with the lowest dynamic symbol table
5368 struct elf_link_hash_entry *low;
5369 /* The least dynamic symbol table index corresponding to a symbol
5370 with a GOT entry. */
5371 long min_got_dynindx;
5372 /* The greatest dynamic symbol table index not corresponding to a
5373 symbol without a GOT entry. */
5374 long max_non_got_dynindx;
5377 /* If H needs a GOT entry, assign it the highest available dynamic
5378 index. Otherwise, assign it the lowest available dynamic
5382 mips_elf_sort_hash_table_f (h, data)
5383 struct mips_elf_link_hash_entry *h;
5386 struct mips_elf_hash_sort_data *hsd
5387 = (struct mips_elf_hash_sort_data *) data;
5389 /* Symbols without dynamic symbol table entries aren't interesting
5391 if (h->root.dynindx == -1)
5394 if (h->root.got.offset != 0)
5395 h->root.dynindx = hsd->max_non_got_dynindx++;
5398 h->root.dynindx = --hsd->min_got_dynindx;
5399 hsd->low = (struct elf_link_hash_entry *) h;
5405 /* Sort the dynamic symbol table so that symbols that need GOT entries
5406 appear towards the end. This reduces the amount of GOT space
5407 required. MAX_LOCAL is used to set the number of local symbols
5408 known to be in the dynamic symbol table. During
5409 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
5410 section symbols are added and the count is higher. */
5413 mips_elf_sort_hash_table (info, max_local)
5414 struct bfd_link_info *info;
5415 unsigned long max_local;
5417 struct mips_elf_hash_sort_data hsd;
5418 struct mips_got_info *g;
5421 dynobj = elf_hash_table (info)->dynobj;
5424 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
5425 hsd.max_non_got_dynindx = max_local;
5426 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
5427 elf_hash_table (info)),
5428 mips_elf_sort_hash_table_f,
5431 /* There shoud have been enough room in the symbol table to
5432 accomodate both the GOT and non-GOT symbols. */
5433 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
5435 /* Now we know which dynamic symbol has the lowest dynamic symbol
5436 table index in the GOT. */
5437 g = mips_elf_got_info (dynobj, NULL);
5438 g->global_gotsym = hsd.low;
5443 /* Create a local GOT entry for VALUE. Return the index of the entry,
5444 or -1 if it could not be created. */
5447 mips_elf_create_local_got_entry (abfd, g, sgot, value)
5449 struct mips_got_info *g;
5453 if (g->assigned_gotno >= g->local_gotno)
5455 /* We didn't allocate enough space in the GOT. */
5456 (*_bfd_error_handler)
5457 (_("not enough GOT space for local GOT entries"));
5458 bfd_set_error (bfd_error_bad_value);
5459 return (bfd_vma) -1;
5462 MIPS_ELF_PUT_WORD (abfd, value,
5464 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
5465 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
5468 /* Returns the GOT offset at which the indicated address can be found.
5469 If there is not yet a GOT entry for this value, create one. Returns
5470 -1 if no satisfactory GOT offset can be found. */
5473 mips_elf_local_got_index (abfd, info, value)
5475 struct bfd_link_info *info;
5479 struct mips_got_info *g;
5482 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5484 /* Look to see if we already have an appropriate entry. */
5485 for (entry = (sgot->contents
5486 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5487 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5488 entry += MIPS_ELF_GOT_SIZE (abfd))
5490 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
5491 if (address == value)
5492 return entry - sgot->contents;
5495 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
5498 /* Find a GOT entry that is within 32KB of the VALUE. These entries
5499 are supposed to be placed at small offsets in the GOT, i.e.,
5500 within 32KB of GP. Return the index into the GOT for this page,
5501 and store the offset from this entry to the desired address in
5502 OFFSETP, if it is non-NULL. */
5505 mips_elf_got_page (abfd, info, value, offsetp)
5507 struct bfd_link_info *info;
5512 struct mips_got_info *g;
5514 bfd_byte *last_entry;
5518 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5520 /* Look to see if we aleady have an appropriate entry. */
5521 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5522 for (entry = (sgot->contents
5523 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5524 entry != last_entry;
5525 entry += MIPS_ELF_GOT_SIZE (abfd))
5527 address = MIPS_ELF_GET_WORD (abfd, entry);
5529 if (!mips_elf_overflow_p (value - address, 16))
5531 /* This entry will serve as the page pointer. We can add a
5532 16-bit number to it to get the actual address. */
5533 index = entry - sgot->contents;
5538 /* If we didn't have an appropriate entry, we create one now. */
5539 if (entry == last_entry)
5540 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5544 address = MIPS_ELF_GET_WORD (abfd, entry);
5545 *offsetp = value - address;
5551 /* Find a GOT entry whose higher-order 16 bits are the same as those
5552 for value. Return the index into the GOT for this entry. */
5555 mips_elf_got16_entry (abfd, info, value, external)
5557 struct bfd_link_info *info;
5562 struct mips_got_info *g;
5564 bfd_byte *last_entry;
5570 /* Although the ABI says that it is "the high-order 16 bits" that we
5571 want, it is really the %high value. The complete value is
5572 calculated with a `addiu' of a LO16 relocation, just as with a
5574 value = mips_elf_high (value) << 16;
5577 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5579 /* Look to see if we already have an appropriate entry. */
5580 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5581 for (entry = (sgot->contents
5582 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5583 entry != last_entry;
5584 entry += MIPS_ELF_GOT_SIZE (abfd))
5586 address = MIPS_ELF_GET_WORD (abfd, entry);
5587 if (address == value)
5589 /* This entry has the right high-order 16 bits, and the low-order
5590 16 bits are set to zero. */
5591 index = entry - sgot->contents;
5596 /* If we didn't have an appropriate entry, we create one now. */
5597 if (entry == last_entry)
5598 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5603 /* Returns the first relocation of type r_type found, beginning with
5604 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5606 static const Elf_Internal_Rela *
5607 mips_elf_next_relocation (r_type, relocation, relend)
5608 unsigned int r_type;
5609 const Elf_Internal_Rela *relocation;
5610 const Elf_Internal_Rela *relend;
5612 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
5613 immediately following. However, for the IRIX6 ABI, the next
5614 relocation may be a composed relocation consisting of several
5615 relocations for the same address. In that case, the R_MIPS_LO16
5616 relocation may occur as one of these. We permit a similar
5617 extension in general, as that is useful for GCC. */
5618 while (relocation < relend)
5620 if (ELF32_R_TYPE (relocation->r_info) == r_type)
5626 /* We didn't find it. */
5627 bfd_set_error (bfd_error_bad_value);
5631 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5632 is the original relocation, which is now being transformed into a
5633 dynamic relocation. The ADDENDP is adjusted if necessary; the
5634 caller should store the result in place of the original addend. */
5637 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
5638 symbol, addendp, input_section)
5640 struct bfd_link_info *info;
5641 const Elf_Internal_Rela *rel;
5642 struct mips_elf_link_hash_entry *h;
5646 asection *input_section;
5648 Elf_Internal_Rel outrel;
5654 r_type = ELF32_R_TYPE (rel->r_info);
5655 dynobj = elf_hash_table (info)->dynobj;
5657 = bfd_get_section_by_name (dynobj,
5658 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
5659 BFD_ASSERT (sreloc != NULL);
5660 BFD_ASSERT (sreloc->contents != NULL);
5664 /* We begin by assuming that the offset for the dynamic relocation
5665 is the same as for the original relocation. We'll adjust this
5666 later to reflect the correct output offsets. */
5667 if (elf_section_data (input_section)->stab_info == NULL)
5668 outrel.r_offset = rel->r_offset;
5671 /* Except that in a stab section things are more complex.
5672 Because we compress stab information, the offset given in the
5673 relocation may not be the one we want; we must let the stabs
5674 machinery tell us the offset. */
5676 = (_bfd_stab_section_offset
5677 (output_bfd, &elf_hash_table (info)->stab_info,
5679 &elf_section_data (input_section)->stab_info,
5681 /* If we didn't need the relocation at all, this value will be
5683 if (outrel.r_offset == (bfd_vma) -1)
5687 /* If we've decided to skip this relocation, just output an empty
5688 record. Note that R_MIPS_NONE == 0, so that this call to memset
5689 is a way of setting R_TYPE to R_MIPS_NONE. */
5691 memset (&outrel, 0, sizeof (outrel));
5695 bfd_vma section_offset;
5697 /* We must now calculate the dynamic symbol table index to use
5698 in the relocation. */
5700 && (! info->symbolic || (h->root.elf_link_hash_flags
5701 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5703 indx = h->root.dynindx;
5704 /* h->root.dynindx may be -1 if this symbol was marked to
5711 if (sec != NULL && bfd_is_abs_section (sec))
5713 else if (sec == NULL || sec->owner == NULL)
5715 bfd_set_error (bfd_error_bad_value);
5720 indx = elf_section_data (sec->output_section)->dynindx;
5725 /* Figure out how far the target of the relocation is from
5726 the beginning of its section. */
5727 section_offset = symbol - sec->output_section->vma;
5728 /* The relocation we're building is section-relative.
5729 Therefore, the original addend must be adjusted by the
5731 *addendp += symbol - sec->output_section->vma;
5732 /* Now, the relocation is just against the section. */
5733 symbol = sec->output_section->vma;
5736 /* If the relocation was previously an absolute relocation, we
5737 must adjust it by the value we give it in the dynamic symbol
5739 if (r_type != R_MIPS_REL32)
5742 /* The relocation is always an REL32 relocation because we don't
5743 know where the shared library will wind up at load-time. */
5744 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
5746 /* Adjust the output offset of the relocation to reference the
5747 correct location in the output file. */
5748 outrel.r_offset += (input_section->output_section->vma
5749 + input_section->output_offset);
5752 /* Put the relocation back out. We have to use the special
5753 relocation outputter in the 64-bit case since the 64-bit
5754 relocation format is non-standard. */
5755 if (ABI_64_P (output_bfd))
5757 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5758 (output_bfd, &outrel,
5760 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5763 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
5764 (((Elf32_External_Rel *)
5766 + sreloc->reloc_count));
5768 /* Record the index of the first relocation referencing H. This
5769 information is later emitted in the .msym section. */
5771 && (h->min_dyn_reloc_index == 0
5772 || sreloc->reloc_count < h->min_dyn_reloc_index))
5773 h->min_dyn_reloc_index = sreloc->reloc_count;
5775 /* We've now added another relocation. */
5776 ++sreloc->reloc_count;
5778 /* Make sure the output section is writable. The dynamic linker
5779 will be writing to it. */
5780 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5783 /* On IRIX5, make an entry of compact relocation info. */
5784 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
5786 asection* scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5791 Elf32_crinfo cptrel;
5793 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5794 cptrel.vaddr = (rel->r_offset
5795 + input_section->output_section->vma
5796 + input_section->output_offset);
5797 if (r_type == R_MIPS_REL32)
5798 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5800 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5801 mips_elf_set_cr_dist2to (cptrel, 0);
5802 cptrel.konst = *addendp;
5804 cr = (scpt->contents
5805 + sizeof (Elf32_External_compact_rel));
5806 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5807 ((Elf32_External_crinfo *) cr
5808 + scpt->reloc_count));
5809 ++scpt->reloc_count;
5816 /* Calculate the value produced by the RELOCATION (which comes from
5817 the INPUT_BFD). The ADDEND is the addend to use for this
5818 RELOCATION; RELOCATION->R_ADDEND is ignored.
5820 The result of the relocation calculation is stored in VALUEP.
5821 REQUIRE_JALXP indicates whether or not the opcode used with this
5822 relocation must be JALX.
5824 This function returns bfd_reloc_continue if the caller need take no
5825 further action regarding this relocation, bfd_reloc_notsupported if
5826 something goes dramatically wrong, bfd_reloc_overflow if an
5827 overflow occurs, and bfd_reloc_ok to indicate success. */
5829 static bfd_reloc_status_type
5830 mips_elf_calculate_relocation (abfd,
5844 asection *input_section;
5845 struct bfd_link_info *info;
5846 const Elf_Internal_Rela *relocation;
5848 reloc_howto_type *howto;
5849 Elf_Internal_Sym *local_syms;
5850 asection **local_sections;
5853 boolean *require_jalxp;
5855 /* The eventual value we will return. */
5857 /* The address of the symbol against which the relocation is
5860 /* The final GP value to be used for the relocatable, executable, or
5861 shared object file being produced. */
5862 bfd_vma gp = (bfd_vma) - 1;
5863 /* The place (section offset or address) of the storage unit being
5866 /* The value of GP used to create the relocatable object. */
5867 bfd_vma gp0 = (bfd_vma) - 1;
5868 /* The offset into the global offset table at which the address of
5869 the relocation entry symbol, adjusted by the addend, resides
5870 during execution. */
5871 bfd_vma g = (bfd_vma) - 1;
5872 /* The section in which the symbol referenced by the relocation is
5874 asection *sec = NULL;
5875 struct mips_elf_link_hash_entry* h = NULL;
5876 /* True if the symbol referred to by this relocation is a local
5879 /* True if the symbol referred to by this relocation is "_gp_disp". */
5880 boolean gp_disp_p = false;
5881 Elf_Internal_Shdr *symtab_hdr;
5883 unsigned long r_symndx;
5885 /* True if overflow occurred during the calculation of the
5886 relocation value. */
5887 boolean overflowed_p;
5888 /* True if this relocation refers to a MIPS16 function. */
5889 boolean target_is_16_bit_code_p = false;
5891 /* Parse the relocation. */
5892 r_symndx = ELF32_R_SYM (relocation->r_info);
5893 r_type = ELF32_R_TYPE (relocation->r_info);
5894 p = (input_section->output_section->vma
5895 + input_section->output_offset
5896 + relocation->r_offset);
5898 /* Assume that there will be no overflow. */
5899 overflowed_p = false;
5901 /* Figure out whether or not the symbol is local, and get the offset
5902 used in the array of hash table entries. */
5903 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5904 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5905 local_sections, false);
5906 if (! elf_bad_symtab (input_bfd))
5907 extsymoff = symtab_hdr->sh_info;
5910 /* The symbol table does not follow the rule that local symbols
5911 must come before globals. */
5915 /* Figure out the value of the symbol. */
5918 Elf_Internal_Sym *sym;
5920 sym = local_syms + r_symndx;
5921 sec = local_sections[r_symndx];
5923 symbol = sec->output_section->vma + sec->output_offset;
5924 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5925 symbol += sym->st_value;
5927 /* MIPS16 text labels should be treated as odd. */
5928 if (sym->st_other == STO_MIPS16)
5931 /* Record the name of this symbol, for our caller. */
5932 *namep = bfd_elf_string_from_elf_section (input_bfd,
5933 symtab_hdr->sh_link,
5936 *namep = bfd_section_name (input_bfd, sec);
5938 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
5942 /* For global symbols we look up the symbol in the hash-table. */
5943 h = ((struct mips_elf_link_hash_entry *)
5944 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5945 /* Find the real hash-table entry for this symbol. */
5946 while (h->root.root.type == bfd_link_hash_indirect
5947 || h->root.root.type == bfd_link_hash_warning)
5948 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5950 /* Record the name of this symbol, for our caller. */
5951 *namep = h->root.root.root.string;
5953 /* See if this is the special _gp_disp symbol. Note that such a
5954 symbol must always be a global symbol. */
5955 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
5957 /* Relocations against _gp_disp are permitted only with
5958 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5959 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
5960 return bfd_reloc_notsupported;
5964 /* If this symbol is defined, calculate its address. Note that
5965 _gp_disp is a magic symbol, always implicitly defined by the
5966 linker, so it's inappropriate to check to see whether or not
5968 else if ((h->root.root.type == bfd_link_hash_defined
5969 || h->root.root.type == bfd_link_hash_defweak)
5970 && h->root.root.u.def.section)
5972 sec = h->root.root.u.def.section;
5973 if (sec->output_section)
5974 symbol = (h->root.root.u.def.value
5975 + sec->output_section->vma
5976 + sec->output_offset);
5978 symbol = h->root.root.u.def.value;
5980 else if (h->root.root.type == bfd_link_hash_undefweak)
5981 /* We allow relocations against undefined weak symbols, giving
5982 it the value zero, so that you can undefined weak functions
5983 and check to see if they exist by looking at their
5986 else if (info->shared && !info->symbolic && !info->no_undefined
5987 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5989 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0)
5991 /* If this is a dynamic link, we should have created a
5992 _DYNAMIC_LINK symbol in mips_elf_create_dynamic_sections.
5993 Otherwise, we should define the symbol with a value of 0.
5994 FIXME: It should probably get into the symbol table
5996 BFD_ASSERT (! info->shared);
5997 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
6002 if (! ((*info->callbacks->undefined_symbol)
6003 (info, h->root.root.root.string, input_bfd,
6004 input_section, relocation->r_offset,
6005 (!info->shared || info->no_undefined
6006 || ELF_ST_VISIBILITY (h->root.other)))))
6007 return bfd_reloc_undefined;
6011 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
6014 /* If this is a 32-bit call to a 16-bit function with a stub, we
6015 need to redirect the call to the stub, unless we're already *in*
6017 if (r_type != R_MIPS16_26 && !info->relocateable
6018 && ((h != NULL && h->fn_stub != NULL)
6019 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
6020 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
6021 && !mips_elf_stub_section_p (input_bfd, input_section))
6023 /* This is a 32-bit call to a 16-bit function. We should
6024 have already noticed that we were going to need the
6027 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
6030 BFD_ASSERT (h->need_fn_stub);
6034 symbol = sec->output_section->vma + sec->output_offset;
6036 /* If this is a 16-bit call to a 32-bit function with a stub, we
6037 need to redirect the call to the stub. */
6038 else if (r_type == R_MIPS16_26 && !info->relocateable
6040 && (h->call_stub != NULL || h->call_fp_stub != NULL)
6041 && !target_is_16_bit_code_p)
6043 /* If both call_stub and call_fp_stub are defined, we can figure
6044 out which one to use by seeing which one appears in the input
6046 if (h->call_stub != NULL && h->call_fp_stub != NULL)
6051 for (o = input_bfd->sections; o != NULL; o = o->next)
6053 if (strncmp (bfd_get_section_name (input_bfd, o),
6054 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6056 sec = h->call_fp_stub;
6063 else if (h->call_stub != NULL)
6066 sec = h->call_fp_stub;
6068 BFD_ASSERT (sec->_raw_size > 0);
6069 symbol = sec->output_section->vma + sec->output_offset;
6072 /* Calls from 16-bit code to 32-bit code and vice versa require the
6073 special jalx instruction. */
6074 *require_jalxp = (!info->relocateable
6075 && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p));
6077 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6078 local_sections, true);
6080 /* If we haven't already determined the GOT offset, or the GP value,
6081 and we're going to need it, get it now. */
6086 case R_MIPS_GOT_DISP:
6087 case R_MIPS_GOT_HI16:
6088 case R_MIPS_CALL_HI16:
6089 case R_MIPS_GOT_LO16:
6090 case R_MIPS_CALL_LO16:
6091 /* Find the index into the GOT where this value is located. */
6094 BFD_ASSERT (addend == 0);
6095 g = mips_elf_global_got_index
6096 (elf_hash_table (info)->dynobj,
6097 (struct elf_link_hash_entry*) h);
6098 if (! elf_hash_table(info)->dynamic_sections_created
6100 && (info->symbolic || h->root.dynindx == -1)
6101 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6103 /* This is a static link or a -Bsymbolic link. The
6104 symbol is defined locally, or was forced to be local.
6105 We must initialize this entry in the GOT. */
6106 asection *sgot = mips_elf_got_section(elf_hash_table
6108 MIPS_ELF_PUT_WORD (elf_hash_table (info)->dynobj,
6109 symbol + addend, sgot->contents + g);
6112 else if (r_type == R_MIPS_GOT16)
6113 /* There's no need to create a local GOT entry here; the
6114 calculation for a local GOT16 entry does not involve G. */
6118 g = mips_elf_local_got_index (abfd, info, symbol + addend);
6119 if (g == (bfd_vma) -1)
6123 /* Convert GOT indices to actual offsets. */
6124 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6130 case R_MIPS_GPREL16:
6131 case R_MIPS_GPREL32:
6132 case R_MIPS_LITERAL:
6133 gp0 = _bfd_get_gp_value (input_bfd);
6134 gp = _bfd_get_gp_value (abfd);
6141 /* Figure out what kind of relocation is being performed. */
6145 return bfd_reloc_continue;
6148 value = symbol + mips_elf_sign_extend (addend, 16);
6149 overflowed_p = mips_elf_overflow_p (value, 16);
6156 || (elf_hash_table (info)->dynamic_sections_created
6158 && ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
6160 && (input_section->flags & SEC_ALLOC) != 0)
6162 /* If we're creating a shared library, or this relocation is
6163 against a symbol in a shared library, then we can't know
6164 where the symbol will end up. So, we create a relocation
6165 record in the output, and leave the job up to the dynamic
6168 if (!mips_elf_create_dynamic_relocation (abfd,
6180 if (r_type != R_MIPS_REL32)
6181 value = symbol + addend;
6185 value &= howto->dst_mask;
6190 case R_MIPS_GNU_REL_LO16:
6191 value = symbol + addend - p;
6192 value &= howto->dst_mask;
6195 case R_MIPS_GNU_REL16_S2:
6196 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
6197 overflowed_p = mips_elf_overflow_p (value, 18);
6198 value = (value >> 2) & howto->dst_mask;
6201 case R_MIPS_GNU_REL_HI16:
6202 value = mips_elf_high (addend + symbol - p);
6203 value &= howto->dst_mask;
6207 /* The calculation for R_MIPS_26 is just the same as for an
6208 R_MIPS_26. It's only the storage of the relocated field into
6209 the output file that's different. That's handled in
6210 mips_elf_perform_relocation. So, we just fall through to the
6211 R_MIPS_26 case here. */
6214 value = (((addend << 2) | (p & 0xf0000000)) + symbol) >> 2;
6216 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6217 value &= howto->dst_mask;
6223 value = mips_elf_high (addend + symbol);
6224 value &= howto->dst_mask;
6228 value = mips_elf_high (addend + gp - p);
6229 overflowed_p = mips_elf_overflow_p (value, 16);
6235 value = (symbol + addend) & howto->dst_mask;
6238 value = addend + gp - p + 4;
6239 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6240 for overflow. But, on, say, Irix 5, relocations against
6241 _gp_disp are normally generated from the .cpload
6242 pseudo-op. It generates code that normally looks like
6245 lui $gp,%hi(_gp_disp)
6246 addiu $gp,$gp,%lo(_gp_disp)
6249 Here $t9 holds the address of the function being called,
6250 as required by the MIPS ELF ABI. The R_MIPS_LO16
6251 relocation can easily overflow in this situation, but the
6252 R_MIPS_HI16 relocation will handle the overflow.
6253 Therefore, we consider this a bug in the MIPS ABI, and do
6254 not check for overflow here. */
6258 case R_MIPS_LITERAL:
6259 /* Because we don't merge literal sections, we can handle this
6260 just like R_MIPS_GPREL16. In the long run, we should merge
6261 shared literals, and then we will need to additional work
6266 case R_MIPS16_GPREL:
6267 /* The R_MIPS16_GPREL performs the same calculation as
6268 R_MIPS_GPREL16, but stores the relocated bits in a different
6269 order. We don't need to do anything special here; the
6270 differences are handled in mips_elf_perform_relocation. */
6271 case R_MIPS_GPREL16:
6273 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6275 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6276 overflowed_p = mips_elf_overflow_p (value, 16);
6284 /* The special case is when the symbol is forced to be local. We
6285 need the full address in the GOT since no R_MIPS_LO16 relocation
6287 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
6288 local_sections, false);
6289 value = mips_elf_got16_entry (abfd, info, symbol + addend, forced);
6290 if (value == (bfd_vma) -1)
6293 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6296 overflowed_p = mips_elf_overflow_p (value, 16);
6303 case R_MIPS_GOT_DISP:
6305 overflowed_p = mips_elf_overflow_p (value, 16);
6308 case R_MIPS_GPREL32:
6309 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
6313 value = mips_elf_sign_extend (addend, 16) + symbol - p;
6314 value = (bfd_vma) ((bfd_signed_vma) value / 4);
6315 overflowed_p = mips_elf_overflow_p (value, 16);
6318 case R_MIPS_GOT_HI16:
6319 case R_MIPS_CALL_HI16:
6320 /* We're allowed to handle these two relocations identically.
6321 The dynamic linker is allowed to handle the CALL relocations
6322 differently by creating a lazy evaluation stub. */
6324 value = mips_elf_high (value);
6325 value &= howto->dst_mask;
6328 case R_MIPS_GOT_LO16:
6329 case R_MIPS_CALL_LO16:
6330 value = g & howto->dst_mask;
6333 case R_MIPS_GOT_PAGE:
6334 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
6335 if (value == (bfd_vma) -1)
6337 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6340 overflowed_p = mips_elf_overflow_p (value, 16);
6343 case R_MIPS_GOT_OFST:
6344 mips_elf_got_page (abfd, info, symbol + addend, &value);
6345 overflowed_p = mips_elf_overflow_p (value, 16);
6349 value = symbol - addend;
6350 value &= howto->dst_mask;
6354 value = mips_elf_higher (addend + symbol);
6355 value &= howto->dst_mask;
6358 case R_MIPS_HIGHEST:
6359 value = mips_elf_highest (addend + symbol);
6360 value &= howto->dst_mask;
6363 case R_MIPS_SCN_DISP:
6364 value = symbol + addend - sec->output_offset;
6365 value &= howto->dst_mask;
6370 /* Both of these may be ignored. R_MIPS_JALR is an optimization
6371 hint; we could improve performance by honoring that hint. */
6372 return bfd_reloc_continue;
6374 case R_MIPS_GNU_VTINHERIT:
6375 case R_MIPS_GNU_VTENTRY:
6376 /* We don't do anything with these at present. */
6377 return bfd_reloc_continue;
6380 /* An unrecognized relocation type. */
6381 return bfd_reloc_notsupported;
6384 /* Store the VALUE for our caller. */
6386 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6389 /* Obtain the field relocated by RELOCATION. */
6392 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
6393 reloc_howto_type *howto;
6394 const Elf_Internal_Rela *relocation;
6399 bfd_byte *location = contents + relocation->r_offset;
6401 /* Obtain the bytes. */
6402 x = bfd_get (8 * bfd_get_reloc_size (howto), input_bfd, location);
6404 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
6405 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
6406 && bfd_little_endian (input_bfd))
6407 /* The two 16-bit words will be reversed on a little-endian
6408 system. See mips_elf_perform_relocation for more details. */
6409 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6414 /* It has been determined that the result of the RELOCATION is the
6415 VALUE. Use HOWTO to place VALUE into the output file at the
6416 appropriate position. The SECTION is the section to which the
6417 relocation applies. If REQUIRE_JALX is true, then the opcode used
6418 for the relocation must be either JAL or JALX, and it is
6419 unconditionally converted to JALX.
6421 Returns false if anything goes wrong. */
6424 mips_elf_perform_relocation (info, howto, relocation, value,
6425 input_bfd, input_section,
6426 contents, require_jalx)
6427 struct bfd_link_info *info;
6428 reloc_howto_type *howto;
6429 const Elf_Internal_Rela *relocation;
6432 asection *input_section;
6434 boolean require_jalx;
6438 int r_type = ELF32_R_TYPE (relocation->r_info);
6440 /* Figure out where the relocation is occurring. */
6441 location = contents + relocation->r_offset;
6443 /* Obtain the current value. */
6444 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6446 /* Clear the field we are setting. */
6447 x &= ~howto->dst_mask;
6449 /* If this is the R_MIPS16_26 relocation, we must store the
6450 value in a funny way. */
6451 if (r_type == R_MIPS16_26)
6453 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
6454 Most mips16 instructions are 16 bits, but these instructions
6457 The format of these instructions is:
6459 +--------------+--------------------------------+
6460 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
6461 +--------------+--------------------------------+
6463 +-----------------------------------------------+
6465 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
6466 Note that the immediate value in the first word is swapped.
6468 When producing a relocateable object file, R_MIPS16_26 is
6469 handled mostly like R_MIPS_26. In particular, the addend is
6470 stored as a straight 26-bit value in a 32-bit instruction.
6471 (gas makes life simpler for itself by never adjusting a
6472 R_MIPS16_26 reloc to be against a section, so the addend is
6473 always zero). However, the 32 bit instruction is stored as 2
6474 16-bit values, rather than a single 32-bit value. In a
6475 big-endian file, the result is the same; in a little-endian
6476 file, the two 16-bit halves of the 32 bit value are swapped.
6477 This is so that a disassembler can recognize the jal
6480 When doing a final link, R_MIPS16_26 is treated as a 32 bit
6481 instruction stored as two 16-bit values. The addend A is the
6482 contents of the targ26 field. The calculation is the same as
6483 R_MIPS_26. When storing the calculated value, reorder the
6484 immediate value as shown above, and don't forget to store the
6485 value as two 16-bit values.
6487 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
6491 +--------+----------------------+
6495 +--------+----------------------+
6498 +----------+------+-------------+
6502 +----------+--------------------+
6503 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
6504 ((sub1 << 16) | sub2)).
6506 When producing a relocateable object file, the calculation is
6507 (((A < 2) | (P & 0xf0000000) + S) >> 2)
6508 When producing a fully linked file, the calculation is
6509 let R = (((A < 2) | (P & 0xf0000000) + S) >> 2)
6510 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
6512 if (!info->relocateable)
6513 /* Shuffle the bits according to the formula above. */
6514 value = (((value & 0x1f0000) << 5)
6515 | ((value & 0x3e00000) >> 5)
6516 | (value & 0xffff));
6519 else if (r_type == R_MIPS16_GPREL)
6521 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
6522 mode. A typical instruction will have a format like this:
6524 +--------------+--------------------------------+
6525 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
6526 +--------------+--------------------------------+
6527 ! Major ! rx ! ry ! Imm 4:0 !
6528 +--------------+--------------------------------+
6530 EXTEND is the five bit value 11110. Major is the instruction
6533 This is handled exactly like R_MIPS_GPREL16, except that the
6534 addend is retrieved and stored as shown in this diagram; that
6535 is, the Imm fields above replace the V-rel16 field.
6537 All we need to do here is shuffle the bits appropriately. As
6538 above, the two 16-bit halves must be swapped on a
6539 little-endian system. */
6540 value = (((value & 0x7e0) << 16)
6541 | ((value & 0xf800) << 5)
6545 /* Set the field. */
6546 x |= (value & howto->dst_mask);
6548 /* If required, turn JAL into JALX. */
6552 bfd_vma opcode = x >> 26;
6553 bfd_vma jalx_opcode;
6555 /* Check to see if the opcode is already JAL or JALX. */
6556 if (r_type == R_MIPS16_26)
6558 ok = ((opcode == 0x6) || (opcode == 0x7));
6563 ok = ((opcode == 0x3) || (opcode == 0x1d));
6567 /* If the opcode is not JAL or JALX, there's a problem. */
6570 (*_bfd_error_handler)
6571 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
6572 bfd_get_filename (input_bfd),
6573 input_section->name,
6574 (unsigned long) relocation->r_offset);
6575 bfd_set_error (bfd_error_bad_value);
6579 /* Make this the JALX opcode. */
6580 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6583 /* Swap the high- and low-order 16 bits on little-endian systems
6584 when doing a MIPS16 relocation. */
6585 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
6586 && bfd_little_endian (input_bfd))
6587 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6589 /* Put the value into the output. */
6590 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6594 /* Returns true if SECTION is a MIPS16 stub section. */
6597 mips_elf_stub_section_p (abfd, section)
6598 bfd *abfd ATTRIBUTE_UNUSED;
6601 const char *name = bfd_get_section_name (abfd, section);
6603 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
6604 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6605 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
6608 /* Relocate a MIPS ELF section. */
6611 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6612 contents, relocs, local_syms, local_sections)
6614 struct bfd_link_info *info;
6616 asection *input_section;
6618 Elf_Internal_Rela *relocs;
6619 Elf_Internal_Sym *local_syms;
6620 asection **local_sections;
6622 Elf_Internal_Rela *rel;
6623 const Elf_Internal_Rela *relend;
6625 boolean use_saved_addend_p = false;
6626 struct elf_backend_data *bed;
6628 bed = get_elf_backend_data (output_bfd);
6629 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6630 for (rel = relocs; rel < relend; ++rel)
6634 reloc_howto_type *howto;
6635 boolean require_jalx;
6636 /* True if the relocation is a RELA relocation, rather than a
6638 boolean rela_relocation_p = true;
6639 int r_type = ELF32_R_TYPE (rel->r_info);
6641 /* Find the relocation howto for this relocation. */
6642 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6644 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6645 64-bit code, but make sure all their addresses are in the
6646 lowermost or uppermost 32-bit section of the 64-bit address
6647 space. Thus, when they use an R_MIPS_64 they mean what is
6648 usually meant by R_MIPS_32, with the exception that the
6649 stored value is sign-extended to 64 bits. */
6650 howto = elf_mips_howto_table + R_MIPS_32;
6652 /* On big-endian systems, we need to lie about the position
6654 if (bfd_big_endian (input_bfd))
6658 howto = mips_rtype_to_howto (r_type);
6660 if (!use_saved_addend_p)
6662 Elf_Internal_Shdr *rel_hdr;
6664 /* If these relocations were originally of the REL variety,
6665 we must pull the addend out of the field that will be
6666 relocated. Otherwise, we simply use the contents of the
6667 RELA relocation. To determine which flavor or relocation
6668 this is, we depend on the fact that the INPUT_SECTION's
6669 REL_HDR is read before its REL_HDR2. */
6670 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6671 if ((size_t) (rel - relocs)
6672 >= (rel_hdr->sh_size / rel_hdr->sh_entsize
6673 * bed->s->int_rels_per_ext_rel))
6674 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6675 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6677 /* Note that this is a REL relocation. */
6678 rela_relocation_p = false;
6680 /* Get the addend, which is stored in the input file. */
6681 addend = mips_elf_obtain_contents (howto,
6685 addend &= howto->src_mask;
6687 /* For some kinds of relocations, the ADDEND is a
6688 combination of the addend stored in two different
6690 if (r_type == R_MIPS_HI16
6691 || r_type == R_MIPS_GNU_REL_HI16
6692 || (r_type == R_MIPS_GOT16
6693 && mips_elf_local_relocation_p (input_bfd, rel,
6694 local_sections, false)))
6697 const Elf_Internal_Rela *lo16_relocation;
6698 reloc_howto_type *lo16_howto;
6701 /* The combined value is the sum of the HI16 addend,
6702 left-shifted by sixteen bits, and the LO16
6703 addend, sign extended. (Usually, the code does
6704 a `lui' of the HI16 value, and then an `addiu' of
6707 Scan ahead to find a matching LO16 relocation. */
6708 if (r_type == R_MIPS_GNU_REL_HI16)
6709 lo = R_MIPS_GNU_REL_LO16;
6713 = mips_elf_next_relocation (lo, rel, relend);
6714 if (lo16_relocation == NULL)
6717 /* Obtain the addend kept there. */
6718 lo16_howto = mips_rtype_to_howto (lo);
6719 l = mips_elf_obtain_contents (lo16_howto,
6721 input_bfd, contents);
6722 l &= lo16_howto->src_mask;
6723 l = mips_elf_sign_extend (l, 16);
6727 /* Compute the combined addend. */
6730 else if (r_type == R_MIPS16_GPREL)
6732 /* The addend is scrambled in the object file. See
6733 mips_elf_perform_relocation for details on the
6735 addend = (((addend & 0x1f0000) >> 5)
6736 | ((addend & 0x7e00000) >> 16)
6741 addend = rel->r_addend;
6744 if (info->relocateable)
6746 Elf_Internal_Sym *sym;
6747 unsigned long r_symndx;
6749 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
6750 && bfd_big_endian (input_bfd))
6753 /* Since we're just relocating, all we need to do is copy
6754 the relocations back out to the object file, unless
6755 they're against a section symbol, in which case we need
6756 to adjust by the section offset, or unless they're GP
6757 relative in which case we need to adjust by the amount
6758 that we're adjusting GP in this relocateable object. */
6760 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6762 /* There's nothing to do for non-local relocations. */
6765 if (r_type == R_MIPS16_GPREL
6766 || r_type == R_MIPS_GPREL16
6767 || r_type == R_MIPS_GPREL32
6768 || r_type == R_MIPS_LITERAL)
6769 addend -= (_bfd_get_gp_value (output_bfd)
6770 - _bfd_get_gp_value (input_bfd));
6771 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6772 || r_type == R_MIPS_GNU_REL16_S2)
6773 /* The addend is stored without its two least
6774 significant bits (which are always zero.) In a
6775 non-relocateable link, calculate_relocation will do
6776 this shift; here, we must do it ourselves. */
6779 r_symndx = ELF32_R_SYM (rel->r_info);
6780 sym = local_syms + r_symndx;
6781 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6782 /* Adjust the addend appropriately. */
6783 addend += local_sections[r_symndx]->output_offset;
6785 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6786 then we only want to write out the high-order 16 bits.
6787 The subsequent R_MIPS_LO16 will handle the low-order bits. */
6788 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6789 || r_type == R_MIPS_GNU_REL_HI16)
6790 addend = mips_elf_high (addend);
6791 /* If the relocation is for an R_MIPS_26 relocation, then
6792 the two low-order bits are not stored in the object file;
6793 they are implicitly zero. */
6794 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6795 || r_type == R_MIPS_GNU_REL16_S2)
6798 if (rela_relocation_p)
6799 /* If this is a RELA relocation, just update the addend.
6800 We have to cast away constness for REL. */
6801 rel->r_addend = addend;
6804 /* Otherwise, we have to write the value back out. Note
6805 that we use the source mask, rather than the
6806 destination mask because the place to which we are
6807 writing will be source of the addend in the final
6809 addend &= howto->src_mask;
6811 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6812 /* See the comment above about using R_MIPS_64 in the 32-bit
6813 ABI. Here, we need to update the addend. It would be
6814 possible to get away with just using the R_MIPS_32 reloc
6815 but for endianness. */
6821 if (addend & ((bfd_vma) 1 << 31))
6822 sign_bits = ((bfd_vma) 1 << 32) - 1;
6826 /* If we don't know that we have a 64-bit type,
6827 do two separate stores. */
6828 if (bfd_big_endian (input_bfd))
6830 /* Store the sign-bits (which are most significant)
6832 low_bits = sign_bits;
6838 high_bits = sign_bits;
6840 bfd_put_32 (input_bfd, low_bits,
6841 contents + rel->r_offset);
6842 bfd_put_32 (input_bfd, high_bits,
6843 contents + rel->r_offset + 4);
6847 if (!mips_elf_perform_relocation (info, howto, rel, addend,
6848 input_bfd, input_section,
6853 /* Go on to the next relocation. */
6857 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6858 relocations for the same offset. In that case we are
6859 supposed to treat the output of each relocation as the addend
6861 if (rel + 1 < relend
6862 && rel->r_offset == rel[1].r_offset
6863 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
6864 use_saved_addend_p = true;
6866 use_saved_addend_p = false;
6868 /* Figure out what value we are supposed to relocate. */
6869 switch (mips_elf_calculate_relocation (output_bfd,
6882 case bfd_reloc_continue:
6883 /* There's nothing to do. */
6886 case bfd_reloc_undefined:
6887 /* mips_elf_calculate_relocation already called the
6888 undefined_symbol callback. There's no real point in
6889 trying to perform the relocation at this point, so we
6890 just skip ahead to the next relocation. */
6893 case bfd_reloc_notsupported:
6897 case bfd_reloc_overflow:
6898 if (use_saved_addend_p)
6899 /* Ignore overflow until we reach the last relocation for
6900 a given location. */
6904 BFD_ASSERT (name != NULL);
6905 if (! ((*info->callbacks->reloc_overflow)
6906 (info, name, howto->name, (bfd_vma) 0,
6907 input_bfd, input_section, rel->r_offset)))
6920 /* If we've got another relocation for the address, keep going
6921 until we reach the last one. */
6922 if (use_saved_addend_p)
6928 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6929 /* See the comment above about using R_MIPS_64 in the 32-bit
6930 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6931 that calculated the right value. Now, however, we
6932 sign-extend the 32-bit result to 64-bits, and store it as a
6933 64-bit value. We are especially generous here in that we
6934 go to extreme lengths to support this usage on systems with
6935 only a 32-bit VMA. */
6941 if (value & ((bfd_vma) 1 << 31))
6942 sign_bits = ((bfd_vma) 1 << 32) - 1;
6946 /* If we don't know that we have a 64-bit type,
6947 do two separate stores. */
6948 if (bfd_big_endian (input_bfd))
6950 /* Undo what we did above. */
6952 /* Store the sign-bits (which are most significant)
6954 low_bits = sign_bits;
6960 high_bits = sign_bits;
6962 bfd_put_32 (input_bfd, low_bits,
6963 contents + rel->r_offset);
6964 bfd_put_32 (input_bfd, high_bits,
6965 contents + rel->r_offset + 4);
6969 /* Actually perform the relocation. */
6970 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
6971 input_section, contents,
6979 /* This hook function is called before the linker writes out a global
6980 symbol. We mark symbols as small common if appropriate. This is
6981 also where we undo the increment of the value for a mips16 symbol. */
6985 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
6986 bfd *abfd ATTRIBUTE_UNUSED;
6987 struct bfd_link_info *info ATTRIBUTE_UNUSED;
6988 const char *name ATTRIBUTE_UNUSED;
6989 Elf_Internal_Sym *sym;
6990 asection *input_sec;
6992 /* If we see a common symbol, which implies a relocatable link, then
6993 if a symbol was small common in an input file, mark it as small
6994 common in the output file. */
6995 if (sym->st_shndx == SHN_COMMON
6996 && strcmp (input_sec->name, ".scommon") == 0)
6997 sym->st_shndx = SHN_MIPS_SCOMMON;
6999 if (sym->st_other == STO_MIPS16
7000 && (sym->st_value & 1) != 0)
7006 /* Functions for the dynamic linker. */
7008 /* The name of the dynamic interpreter. This is put in the .interp
7011 #define ELF_DYNAMIC_INTERPRETER(abfd) \
7012 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
7013 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
7014 : "/usr/lib/libc.so.1")
7016 /* Create dynamic sections when linking against a dynamic object. */
7019 _bfd_mips_elf_create_dynamic_sections (abfd, info)
7021 struct bfd_link_info *info;
7023 struct elf_link_hash_entry *h;
7025 register asection *s;
7026 const char * const *namep;
7028 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7029 | SEC_LINKER_CREATED | SEC_READONLY);
7031 /* Mips ABI requests the .dynamic section to be read only. */
7032 s = bfd_get_section_by_name (abfd, ".dynamic");
7035 if (! bfd_set_section_flags (abfd, s, flags))
7039 /* We need to create .got section. */
7040 if (! mips_elf_create_got_section (abfd, info))
7043 /* Create the .msym section on IRIX6. It is used by the dynamic
7044 linker to speed up dynamic relocations, and to avoid computing
7045 the ELF hash for symbols. */
7046 if (IRIX_COMPAT (abfd) == ict_irix6
7047 && !mips_elf_create_msym_section (abfd))
7050 /* Create .stub section. */
7051 if (bfd_get_section_by_name (abfd,
7052 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
7054 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
7056 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
7057 || ! bfd_set_section_alignment (abfd, s,
7058 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7062 if (IRIX_COMPAT (abfd) == ict_irix5
7064 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7066 s = bfd_make_section (abfd, ".rld_map");
7068 || ! bfd_set_section_flags (abfd, s, flags & ~SEC_READONLY)
7069 || ! bfd_set_section_alignment (abfd, s,
7070 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7074 /* On IRIX5, we adjust add some additional symbols and change the
7075 alignments of several sections. There is no ABI documentation
7076 indicating that this is necessary on IRIX6, nor any evidence that
7077 the linker takes such action. */
7078 if (IRIX_COMPAT (abfd) == ict_irix5)
7080 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7083 if (! (_bfd_generic_link_add_one_symbol
7084 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
7085 (bfd_vma) 0, (const char *) NULL, false,
7086 get_elf_backend_data (abfd)->collect,
7087 (struct bfd_link_hash_entry **) &h)))
7089 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7090 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7091 h->type = STT_SECTION;
7093 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7097 /* We need to create a .compact_rel section. */
7098 if (! mips_elf_create_compact_rel_section (abfd, info))
7101 /* Change aligments of some sections. */
7102 s = bfd_get_section_by_name (abfd, ".hash");
7104 bfd_set_section_alignment (abfd, s, 4);
7105 s = bfd_get_section_by_name (abfd, ".dynsym");
7107 bfd_set_section_alignment (abfd, s, 4);
7108 s = bfd_get_section_by_name (abfd, ".dynstr");
7110 bfd_set_section_alignment (abfd, s, 4);
7111 s = bfd_get_section_by_name (abfd, ".reginfo");
7113 bfd_set_section_alignment (abfd, s, 4);
7114 s = bfd_get_section_by_name (abfd, ".dynamic");
7116 bfd_set_section_alignment (abfd, s, 4);
7122 if (! (_bfd_generic_link_add_one_symbol
7123 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
7124 (bfd_vma) 0, (const char *) NULL, false,
7125 get_elf_backend_data (abfd)->collect,
7126 (struct bfd_link_hash_entry **) &h)))
7128 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7129 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7130 h->type = STT_SECTION;
7132 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7135 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7137 /* __rld_map is a four byte word located in the .data section
7138 and is filled in by the rtld to contain a pointer to
7139 the _r_debug structure. Its symbol value will be set in
7140 mips_elf_finish_dynamic_symbol. */
7141 s = bfd_get_section_by_name (abfd, ".rld_map");
7142 BFD_ASSERT (s != NULL);
7145 if (! (_bfd_generic_link_add_one_symbol
7146 (info, abfd, "__rld_map", BSF_GLOBAL, s,
7147 (bfd_vma) 0, (const char *) NULL, false,
7148 get_elf_backend_data (abfd)->collect,
7149 (struct bfd_link_hash_entry **) &h)))
7151 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7152 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7153 h->type = STT_OBJECT;
7155 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7163 /* Create the .compact_rel section. */
7166 mips_elf_create_compact_rel_section (abfd, info)
7168 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7171 register asection *s;
7173 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
7175 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
7178 s = bfd_make_section (abfd, ".compact_rel");
7180 || ! bfd_set_section_flags (abfd, s, flags)
7181 || ! bfd_set_section_alignment (abfd, s,
7182 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7185 s->_raw_size = sizeof (Elf32_External_compact_rel);
7191 /* Create the .got section to hold the global offset table. */
7194 mips_elf_create_got_section (abfd, info)
7196 struct bfd_link_info *info;
7199 register asection *s;
7200 struct elf_link_hash_entry *h;
7201 struct mips_got_info *g;
7203 /* This function may be called more than once. */
7204 if (mips_elf_got_section (abfd))
7207 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7208 | SEC_LINKER_CREATED);
7210 s = bfd_make_section (abfd, ".got");
7212 || ! bfd_set_section_flags (abfd, s, flags)
7213 || ! bfd_set_section_alignment (abfd, s, 4))
7216 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7217 linker script because we don't want to define the symbol if we
7218 are not creating a global offset table. */
7220 if (! (_bfd_generic_link_add_one_symbol
7221 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7222 (bfd_vma) 0, (const char *) NULL, false,
7223 get_elf_backend_data (abfd)->collect,
7224 (struct bfd_link_hash_entry **) &h)))
7226 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7227 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7228 h->type = STT_OBJECT;
7231 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7234 /* The first several global offset table entries are reserved. */
7235 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
7237 g = (struct mips_got_info *) bfd_alloc (abfd,
7238 sizeof (struct mips_got_info));
7241 g->global_gotsym = NULL;
7242 g->local_gotno = MIPS_RESERVED_GOTNO;
7243 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7244 if (elf_section_data (s) == NULL)
7247 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
7248 if (elf_section_data (s) == NULL)
7251 elf_section_data (s)->tdata = (PTR) g;
7252 elf_section_data (s)->this_hdr.sh_flags
7253 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7258 /* Returns the .msym section for ABFD, creating it if it does not
7259 already exist. Returns NULL to indicate error. */
7262 mips_elf_create_msym_section (abfd)
7267 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7270 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7272 || !bfd_set_section_flags (abfd, s,
7276 | SEC_LINKER_CREATED
7278 || !bfd_set_section_alignment (abfd, s,
7279 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7286 /* Add room for N relocations to the .rel.dyn section in ABFD. */
7289 mips_elf_allocate_dynamic_relocations (abfd, n)
7295 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
7296 BFD_ASSERT (s != NULL);
7298 if (s->_raw_size == 0)
7300 /* Make room for a null element. */
7301 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
7304 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
7307 /* Look through the relocs for a section during the first phase, and
7308 allocate space in the global offset table. */
7311 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
7313 struct bfd_link_info *info;
7315 const Elf_Internal_Rela *relocs;
7319 Elf_Internal_Shdr *symtab_hdr;
7320 struct elf_link_hash_entry **sym_hashes;
7321 struct mips_got_info *g;
7323 const Elf_Internal_Rela *rel;
7324 const Elf_Internal_Rela *rel_end;
7327 struct elf_backend_data *bed;
7329 if (info->relocateable)
7332 dynobj = elf_hash_table (info)->dynobj;
7333 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7334 sym_hashes = elf_sym_hashes (abfd);
7335 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7337 /* Check for the mips16 stub sections. */
7339 name = bfd_get_section_name (abfd, sec);
7340 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
7342 unsigned long r_symndx;
7344 /* Look at the relocation information to figure out which symbol
7347 r_symndx = ELF32_R_SYM (relocs->r_info);
7349 if (r_symndx < extsymoff
7350 || sym_hashes[r_symndx - extsymoff] == NULL)
7354 /* This stub is for a local symbol. This stub will only be
7355 needed if there is some relocation in this BFD, other
7356 than a 16 bit function call, which refers to this symbol. */
7357 for (o = abfd->sections; o != NULL; o = o->next)
7359 Elf_Internal_Rela *sec_relocs;
7360 const Elf_Internal_Rela *r, *rend;
7362 /* We can ignore stub sections when looking for relocs. */
7363 if ((o->flags & SEC_RELOC) == 0
7364 || o->reloc_count == 0
7365 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
7366 sizeof FN_STUB - 1) == 0
7367 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
7368 sizeof CALL_STUB - 1) == 0
7369 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
7370 sizeof CALL_FP_STUB - 1) == 0)
7373 sec_relocs = (_bfd_elf32_link_read_relocs
7374 (abfd, o, (PTR) NULL,
7375 (Elf_Internal_Rela *) NULL,
7376 info->keep_memory));
7377 if (sec_relocs == NULL)
7380 rend = sec_relocs + o->reloc_count;
7381 for (r = sec_relocs; r < rend; r++)
7382 if (ELF32_R_SYM (r->r_info) == r_symndx
7383 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
7386 if (! info->keep_memory)
7395 /* There is no non-call reloc for this stub, so we do
7396 not need it. Since this function is called before
7397 the linker maps input sections to output sections, we
7398 can easily discard it by setting the SEC_EXCLUDE
7400 sec->flags |= SEC_EXCLUDE;
7404 /* Record this stub in an array of local symbol stubs for
7406 if (elf_tdata (abfd)->local_stubs == NULL)
7408 unsigned long symcount;
7411 if (elf_bad_symtab (abfd))
7412 symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
7414 symcount = symtab_hdr->sh_info;
7415 n = (asection **) bfd_zalloc (abfd,
7416 symcount * sizeof (asection *));
7419 elf_tdata (abfd)->local_stubs = n;
7422 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7424 /* We don't need to set mips16_stubs_seen in this case.
7425 That flag is used to see whether we need to look through
7426 the global symbol table for stubs. We don't need to set
7427 it here, because we just have a local stub. */
7431 struct mips_elf_link_hash_entry *h;
7433 h = ((struct mips_elf_link_hash_entry *)
7434 sym_hashes[r_symndx - extsymoff]);
7436 /* H is the symbol this stub is for. */
7439 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7442 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7443 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7445 unsigned long r_symndx;
7446 struct mips_elf_link_hash_entry *h;
7449 /* Look at the relocation information to figure out which symbol
7452 r_symndx = ELF32_R_SYM (relocs->r_info);
7454 if (r_symndx < extsymoff
7455 || sym_hashes[r_symndx - extsymoff] == NULL)
7457 /* This stub was actually built for a static symbol defined
7458 in the same file. We assume that all static symbols in
7459 mips16 code are themselves mips16, so we can simply
7460 discard this stub. Since this function is called before
7461 the linker maps input sections to output sections, we can
7462 easily discard it by setting the SEC_EXCLUDE flag. */
7463 sec->flags |= SEC_EXCLUDE;
7467 h = ((struct mips_elf_link_hash_entry *)
7468 sym_hashes[r_symndx - extsymoff]);
7470 /* H is the symbol this stub is for. */
7472 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7473 loc = &h->call_fp_stub;
7475 loc = &h->call_stub;
7477 /* If we already have an appropriate stub for this function, we
7478 don't need another one, so we can discard this one. Since
7479 this function is called before the linker maps input sections
7480 to output sections, we can easily discard it by setting the
7481 SEC_EXCLUDE flag. We can also discard this section if we
7482 happen to already know that this is a mips16 function; it is
7483 not necessary to check this here, as it is checked later, but
7484 it is slightly faster to check now. */
7485 if (*loc != NULL || h->root.other == STO_MIPS16)
7487 sec->flags |= SEC_EXCLUDE;
7492 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7502 sgot = mips_elf_got_section (dynobj);
7507 BFD_ASSERT (elf_section_data (sgot) != NULL);
7508 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
7509 BFD_ASSERT (g != NULL);
7514 bed = get_elf_backend_data (abfd);
7515 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7516 for (rel = relocs; rel < rel_end; ++rel)
7518 unsigned long r_symndx;
7520 struct elf_link_hash_entry *h;
7522 r_symndx = ELF32_R_SYM (rel->r_info);
7523 r_type = ELF32_R_TYPE (rel->r_info);
7525 if (r_symndx < extsymoff)
7529 h = sym_hashes[r_symndx - extsymoff];
7531 /* This may be an indirect symbol created because of a version. */
7534 while (h->root.type == bfd_link_hash_indirect)
7535 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7539 /* Some relocs require a global offset table. */
7540 if (dynobj == NULL || sgot == NULL)
7546 case R_MIPS_CALL_HI16:
7547 case R_MIPS_CALL_LO16:
7548 case R_MIPS_GOT_HI16:
7549 case R_MIPS_GOT_LO16:
7550 case R_MIPS_GOT_PAGE:
7551 case R_MIPS_GOT_OFST:
7552 case R_MIPS_GOT_DISP:
7554 elf_hash_table (info)->dynobj = dynobj = abfd;
7555 if (! mips_elf_create_got_section (dynobj, info))
7557 g = mips_elf_got_info (dynobj, &sgot);
7564 && (info->shared || h != NULL)
7565 && (sec->flags & SEC_ALLOC) != 0)
7566 elf_hash_table (info)->dynobj = dynobj = abfd;
7574 if (!h && (r_type == R_MIPS_CALL_LO16
7575 || r_type == R_MIPS_GOT_LO16
7576 || r_type == R_MIPS_GOT_DISP))
7578 /* We may need a local GOT entry for this relocation. We
7579 don't count R_MIPS_GOT_PAGE because we can estimate the
7580 maximum number of pages needed by looking at the size of
7581 the segment. Similar comments apply to R_MIPS_GOT16. We
7582 don't count R_MIPS_GOT_HI16, or R_MIPS_CALL_HI16 because
7583 these are always followed by an R_MIPS_GOT_LO16 or
7586 This estimation is very conservative since we can merge
7587 duplicate entries in the GOT. In order to be less
7588 conservative, we could actually build the GOT here,
7589 rather than in relocate_section. */
7591 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
7599 (*_bfd_error_handler)
7600 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
7601 bfd_get_filename (abfd), (unsigned long) rel->r_offset);
7602 bfd_set_error (bfd_error_bad_value);
7607 case R_MIPS_CALL_HI16:
7608 case R_MIPS_CALL_LO16:
7611 /* This symbol requires a global offset table entry. */
7612 if (!mips_elf_record_global_got_symbol (h, info, g))
7615 /* We need a stub, not a plt entry for the undefined
7616 function. But we record it as if it needs plt. See
7617 elf_adjust_dynamic_symbol in elflink.h. */
7618 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
7624 case R_MIPS_GOT_HI16:
7625 case R_MIPS_GOT_LO16:
7626 case R_MIPS_GOT_DISP:
7627 /* This symbol requires a global offset table entry. */
7628 if (h && !mips_elf_record_global_got_symbol (h, info, g))
7635 if ((info->shared || h != NULL)
7636 && (sec->flags & SEC_ALLOC) != 0)
7640 const char *name = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
7642 sreloc = bfd_get_section_by_name (dynobj, name);
7645 sreloc = bfd_make_section (dynobj, name);
7647 || ! bfd_set_section_flags (dynobj, sreloc,
7652 | SEC_LINKER_CREATED
7654 || ! bfd_set_section_alignment (dynobj, sreloc,
7660 /* When creating a shared object, we must copy these
7661 reloc types into the output file as R_MIPS_REL32
7662 relocs. We make room for this reloc in the
7663 .rel.dyn reloc section. */
7664 mips_elf_allocate_dynamic_relocations (dynobj, 1);
7667 struct mips_elf_link_hash_entry *hmips;
7669 /* We only need to copy this reloc if the symbol is
7670 defined in a dynamic object. */
7671 hmips = (struct mips_elf_link_hash_entry *) h;
7672 ++hmips->possibly_dynamic_relocs;
7675 /* Even though we don't directly need a GOT entry for
7676 this symbol, a symbol must have a dynamic symbol
7677 table index greater that DT_MIPS_GOTSYM if there are
7678 dynamic relocations against it. */
7680 && !mips_elf_record_global_got_symbol (h, info, g))
7684 if (SGI_COMPAT (dynobj))
7685 mips_elf_hash_table (info)->compact_rel_size +=
7686 sizeof (Elf32_External_crinfo);
7690 case R_MIPS_GPREL16:
7691 case R_MIPS_LITERAL:
7692 case R_MIPS_GPREL32:
7693 if (SGI_COMPAT (dynobj))
7694 mips_elf_hash_table (info)->compact_rel_size +=
7695 sizeof (Elf32_External_crinfo);
7698 /* This relocation describes the C++ object vtable hierarchy.
7699 Reconstruct it for later use during GC. */
7700 case R_MIPS_GNU_VTINHERIT:
7701 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7705 /* This relocation describes which C++ vtable entries are actually
7706 used. Record for later use during GC. */
7707 case R_MIPS_GNU_VTENTRY:
7708 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7716 /* If this reloc is not a 16 bit call, and it has a global
7717 symbol, then we will need the fn_stub if there is one.
7718 References from a stub section do not count. */
7720 && r_type != R_MIPS16_26
7721 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
7722 sizeof FN_STUB - 1) != 0
7723 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
7724 sizeof CALL_STUB - 1) != 0
7725 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
7726 sizeof CALL_FP_STUB - 1) != 0)
7728 struct mips_elf_link_hash_entry *mh;
7730 mh = (struct mips_elf_link_hash_entry *) h;
7731 mh->need_fn_stub = true;
7738 /* Return the section that should be marked against GC for a given
7742 _bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
7744 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7745 Elf_Internal_Rela *rel;
7746 struct elf_link_hash_entry *h;
7747 Elf_Internal_Sym *sym;
7749 /* ??? Do mips16 stub sections need to be handled special? */
7753 switch (ELF32_R_TYPE (rel->r_info))
7755 case R_MIPS_GNU_VTINHERIT:
7756 case R_MIPS_GNU_VTENTRY:
7760 switch (h->root.type)
7762 case bfd_link_hash_defined:
7763 case bfd_link_hash_defweak:
7764 return h->root.u.def.section;
7766 case bfd_link_hash_common:
7767 return h->root.u.c.p->section;
7776 if (!(elf_bad_symtab (abfd)
7777 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7778 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
7779 && sym->st_shndx != SHN_COMMON))
7781 return bfd_section_from_elf_index (abfd, sym->st_shndx);
7788 /* Update the got entry reference counts for the section being removed. */
7791 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7792 bfd *abfd ATTRIBUTE_UNUSED;
7793 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7794 asection *sec ATTRIBUTE_UNUSED;
7795 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7798 Elf_Internal_Shdr *symtab_hdr;
7799 struct elf_link_hash_entry **sym_hashes;
7800 bfd_signed_vma *local_got_refcounts;
7801 const Elf_Internal_Rela *rel, *relend;
7802 unsigned long r_symndx;
7803 struct elf_link_hash_entry *h;
7805 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7806 sym_hashes = elf_sym_hashes (abfd);
7807 local_got_refcounts = elf_local_got_refcounts (abfd);
7809 relend = relocs + sec->reloc_count;
7810 for (rel = relocs; rel < relend; rel++)
7811 switch (ELF32_R_TYPE (rel->r_info))
7815 case R_MIPS_CALL_HI16:
7816 case R_MIPS_CALL_LO16:
7817 case R_MIPS_GOT_HI16:
7818 case R_MIPS_GOT_LO16:
7819 /* ??? It would seem that the existing MIPS code does no sort
7820 of reference counting or whatnot on its GOT and PLT entries,
7821 so it is not possible to garbage collect them at this time. */
7832 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7833 hiding the old indirect symbol. Process additional relocation
7837 _bfd_mips_elf_copy_indirect_symbol (dir, ind)
7838 struct elf_link_hash_entry *dir, *ind;
7840 struct mips_elf_link_hash_entry *dirmips, *indmips;
7842 _bfd_elf_link_hash_copy_indirect (dir, ind);
7844 dirmips = (struct mips_elf_link_hash_entry *) dir;
7845 indmips = (struct mips_elf_link_hash_entry *) ind;
7846 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7847 if (dirmips->min_dyn_reloc_index == 0
7848 || (indmips->min_dyn_reloc_index != 0
7849 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
7850 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
7853 /* Adjust a symbol defined by a dynamic object and referenced by a
7854 regular object. The current definition is in some section of the
7855 dynamic object, but we're not including those sections. We have to
7856 change the definition to something the rest of the link can
7860 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
7861 struct bfd_link_info *info;
7862 struct elf_link_hash_entry *h;
7865 struct mips_elf_link_hash_entry *hmips;
7868 dynobj = elf_hash_table (info)->dynobj;
7870 /* Make sure we know what is going on here. */
7871 BFD_ASSERT (dynobj != NULL
7872 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
7873 || h->weakdef != NULL
7874 || ((h->elf_link_hash_flags
7875 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
7876 && (h->elf_link_hash_flags
7877 & ELF_LINK_HASH_REF_REGULAR) != 0
7878 && (h->elf_link_hash_flags
7879 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
7881 /* If this symbol is defined in a dynamic object, we need to copy
7882 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
7884 hmips = (struct mips_elf_link_hash_entry *) h;
7885 if (! info->relocateable
7886 && hmips->possibly_dynamic_relocs != 0
7887 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
7888 mips_elf_allocate_dynamic_relocations (dynobj,
7889 hmips->possibly_dynamic_relocs);
7891 /* For a function, create a stub, if needed. */
7892 if (h->type == STT_FUNC
7893 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
7895 if (! elf_hash_table (info)->dynamic_sections_created)
7898 /* If this symbol is not defined in a regular file, then set
7899 the symbol to the stub location. This is required to make
7900 function pointers compare as equal between the normal
7901 executable and the shared library. */
7902 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
7904 /* We need .stub section. */
7905 s = bfd_get_section_by_name (dynobj,
7906 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7907 BFD_ASSERT (s != NULL);
7909 h->root.u.def.section = s;
7910 h->root.u.def.value = s->_raw_size;
7912 /* XXX Write this stub address somewhere. */
7913 h->plt.offset = s->_raw_size;
7915 /* Make room for this stub code. */
7916 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
7918 /* The last half word of the stub will be filled with the index
7919 of this symbol in .dynsym section. */
7924 /* If this is a weak symbol, and there is a real definition, the
7925 processor independent code will have arranged for us to see the
7926 real definition first, and we can just use the same value. */
7927 if (h->weakdef != NULL)
7929 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
7930 || h->weakdef->root.type == bfd_link_hash_defweak);
7931 h->root.u.def.section = h->weakdef->root.u.def.section;
7932 h->root.u.def.value = h->weakdef->root.u.def.value;
7936 /* This is a reference to a symbol defined by a dynamic object which
7937 is not a function. */
7942 /* This function is called after all the input files have been read,
7943 and the input sections have been assigned to output sections. We
7944 check for any mips16 stub sections that we can discard. */
7946 static boolean mips_elf_check_mips16_stubs
7947 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
7950 _bfd_mips_elf_always_size_sections (output_bfd, info)
7952 struct bfd_link_info *info;
7956 /* The .reginfo section has a fixed size. */
7957 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7959 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7961 if (info->relocateable
7962 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
7965 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7966 mips_elf_check_mips16_stubs,
7972 /* Check the mips16 stubs for a particular symbol, and see if we can
7977 mips_elf_check_mips16_stubs (h, data)
7978 struct mips_elf_link_hash_entry *h;
7979 PTR data ATTRIBUTE_UNUSED;
7981 if (h->fn_stub != NULL
7982 && ! h->need_fn_stub)
7984 /* We don't need the fn_stub; the only references to this symbol
7985 are 16 bit calls. Clobber the size to 0 to prevent it from
7986 being included in the link. */
7987 h->fn_stub->_raw_size = 0;
7988 h->fn_stub->_cooked_size = 0;
7989 h->fn_stub->flags &= ~ SEC_RELOC;
7990 h->fn_stub->reloc_count = 0;
7991 h->fn_stub->flags |= SEC_EXCLUDE;
7994 if (h->call_stub != NULL
7995 && h->root.other == STO_MIPS16)
7997 /* We don't need the call_stub; this is a 16 bit function, so
7998 calls from other 16 bit functions are OK. Clobber the size
7999 to 0 to prevent it from being included in the link. */
8000 h->call_stub->_raw_size = 0;
8001 h->call_stub->_cooked_size = 0;
8002 h->call_stub->flags &= ~ SEC_RELOC;
8003 h->call_stub->reloc_count = 0;
8004 h->call_stub->flags |= SEC_EXCLUDE;
8007 if (h->call_fp_stub != NULL
8008 && h->root.other == STO_MIPS16)
8010 /* We don't need the call_stub; this is a 16 bit function, so
8011 calls from other 16 bit functions are OK. Clobber the size
8012 to 0 to prevent it from being included in the link. */
8013 h->call_fp_stub->_raw_size = 0;
8014 h->call_fp_stub->_cooked_size = 0;
8015 h->call_fp_stub->flags &= ~ SEC_RELOC;
8016 h->call_fp_stub->reloc_count = 0;
8017 h->call_fp_stub->flags |= SEC_EXCLUDE;
8023 /* Set the sizes of the dynamic sections. */
8026 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
8028 struct bfd_link_info *info;
8033 struct mips_got_info *g = NULL;
8035 dynobj = elf_hash_table (info)->dynobj;
8036 BFD_ASSERT (dynobj != NULL);
8038 if (elf_hash_table (info)->dynamic_sections_created)
8040 /* Set the contents of the .interp section to the interpreter. */
8043 s = bfd_get_section_by_name (dynobj, ".interp");
8044 BFD_ASSERT (s != NULL);
8046 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8048 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8052 /* The check_relocs and adjust_dynamic_symbol entry points have
8053 determined the sizes of the various dynamic sections. Allocate
8056 for (s = dynobj->sections; s != NULL; s = s->next)
8061 /* It's OK to base decisions on the section name, because none
8062 of the dynobj section names depend upon the input files. */
8063 name = bfd_get_section_name (dynobj, s);
8065 if ((s->flags & SEC_LINKER_CREATED) == 0)
8070 if (strncmp (name, ".rel", 4) == 0)
8072 if (s->_raw_size == 0)
8074 /* We only strip the section if the output section name
8075 has the same name. Otherwise, there might be several
8076 input sections for this output section. FIXME: This
8077 code is probably not needed these days anyhow, since
8078 the linker now does not create empty output sections. */
8079 if (s->output_section != NULL
8081 bfd_get_section_name (s->output_section->owner,
8082 s->output_section)) == 0)
8087 const char *outname;
8090 /* If this relocation section applies to a read only
8091 section, then we probably need a DT_TEXTREL entry.
8092 If the relocation section is .rel.dyn, we always
8093 assert a DT_TEXTREL entry rather than testing whether
8094 there exists a relocation to a read only section or
8096 outname = bfd_get_section_name (output_bfd,
8098 target = bfd_get_section_by_name (output_bfd, outname + 4);
8100 && (target->flags & SEC_READONLY) != 0
8101 && (target->flags & SEC_ALLOC) != 0)
8103 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
8106 /* We use the reloc_count field as a counter if we need
8107 to copy relocs into the output file. */
8109 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
8113 else if (strncmp (name, ".got", 4) == 0)
8116 bfd_size_type loadable_size = 0;
8117 bfd_size_type local_gotno;
8120 BFD_ASSERT (elf_section_data (s) != NULL);
8121 g = (struct mips_got_info *) elf_section_data (s)->tdata;
8122 BFD_ASSERT (g != NULL);
8124 /* Calculate the total loadable size of the output. That
8125 will give us the maximum number of GOT_PAGE entries
8127 for (sub = info->input_bfds; sub; sub = sub->link_next)
8129 asection *subsection;
8131 for (subsection = sub->sections;
8133 subsection = subsection->next)
8135 if ((subsection->flags & SEC_ALLOC) == 0)
8137 loadable_size += (subsection->_raw_size + 0xf) & ~0xf;
8140 loadable_size += MIPS_FUNCTION_STUB_SIZE;
8142 /* Assume there are two loadable segments consisting of
8143 contiguous sections. Is 5 enough? */
8144 local_gotno = (loadable_size >> 16) + 5;
8145 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8146 /* It's possible we will need GOT_PAGE entries as well as
8147 GOT16 entries. Often, these will be able to share GOT
8148 entries, but not always. */
8151 g->local_gotno += local_gotno;
8152 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
8154 /* There has to be a global GOT entry for every symbol with
8155 a dynamic symbol table index of DT_MIPS_GOTSYM or
8156 higher. Therefore, it make sense to put those symbols
8157 that need GOT entries at the end of the symbol table. We
8159 if (!mips_elf_sort_hash_table (info, 1))
8162 if (g->global_gotsym != NULL)
8163 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
8165 /* If there are no global symbols, or none requiring
8166 relocations, then GLOBAL_GOTSYM will be NULL. */
8168 g->global_gotno = i;
8169 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
8171 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
8173 /* Irix rld assumes that the function stub isn't at the end
8174 of .text section. So put a dummy. XXX */
8175 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8177 else if (! info->shared
8178 && ! mips_elf_hash_table (info)->use_rld_obj_head
8179 && strncmp (name, ".rld_map", 8) == 0)
8181 /* We add a room for __rld_map. It will be filled in by the
8182 rtld to contain a pointer to the _r_debug structure. */
8185 else if (SGI_COMPAT (output_bfd)
8186 && strncmp (name, ".compact_rel", 12) == 0)
8187 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
8188 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
8190 s->_raw_size = (sizeof (Elf32_External_Msym)
8191 * (elf_hash_table (info)->dynsymcount
8192 + bfd_count_sections (output_bfd)));
8193 else if (strncmp (name, ".init", 5) != 0)
8195 /* It's not one of our sections, so don't allocate space. */
8201 _bfd_strip_section_from_output (info, s);
8205 /* Allocate memory for the section contents. */
8206 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
8207 if (s->contents == NULL && s->_raw_size != 0)
8209 bfd_set_error (bfd_error_no_memory);
8214 if (elf_hash_table (info)->dynamic_sections_created)
8216 /* Add some entries to the .dynamic section. We fill in the
8217 values later, in elf_mips_finish_dynamic_sections, but we
8218 must add the entries now so that we get the correct size for
8219 the .dynamic section. The DT_DEBUG entry is filled in by the
8220 dynamic linker and used by the debugger. */
8223 if (SGI_COMPAT (output_bfd))
8225 /* SGI object has the equivalence of DT_DEBUG in the
8226 DT_MIPS_RLD_MAP entry. */
8227 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8231 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8237 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8241 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8244 if (bfd_get_section_by_name (dynobj,
8245 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
8247 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8250 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8253 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8257 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
8260 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
8263 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
8265 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
8268 s = bfd_get_section_by_name (dynobj, ".liblist");
8269 BFD_ASSERT (s != NULL);
8271 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
8275 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8278 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8282 /* Time stamps in executable files are a bad idea. */
8283 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
8288 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
8293 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
8297 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8300 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8303 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8306 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8309 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8312 if (IRIX_COMPAT (dynobj) == ict_irix5
8313 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8316 if (IRIX_COMPAT (dynobj) == ict_irix6
8317 && (bfd_get_section_by_name
8318 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8319 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8322 if (bfd_get_section_by_name (dynobj,
8323 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
8324 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
8331 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8332 adjust it appropriately now. */
8335 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
8336 bfd *abfd ATTRIBUTE_UNUSED;
8338 Elf_Internal_Sym *sym;
8340 /* The linker script takes care of providing names and values for
8341 these, but we must place them into the right sections. */
8342 static const char* const text_section_symbols[] = {
8345 "__dso_displacement",
8347 "__program_header_table",
8351 static const char* const data_section_symbols[] = {
8359 const char* const *p;
8362 for (i = 0; i < 2; ++i)
8363 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8366 if (strcmp (*p, name) == 0)
8368 /* All of these symbols are given type STT_SECTION by the
8370 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8372 /* The IRIX linker puts these symbols in special sections. */
8374 sym->st_shndx = SHN_MIPS_TEXT;
8376 sym->st_shndx = SHN_MIPS_DATA;
8382 /* Finish up dynamic symbol handling. We set the contents of various
8383 dynamic sections here. */
8386 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
8388 struct bfd_link_info *info;
8389 struct elf_link_hash_entry *h;
8390 Elf_Internal_Sym *sym;
8396 struct mips_got_info *g;
8398 struct mips_elf_link_hash_entry *mh;
8400 dynobj = elf_hash_table (info)->dynobj;
8401 gval = sym->st_value;
8402 mh = (struct mips_elf_link_hash_entry *) h;
8404 if (h->plt.offset != (bfd_vma) -1)
8408 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
8410 /* This symbol has a stub. Set it up. */
8412 BFD_ASSERT (h->dynindx != -1);
8414 s = bfd_get_section_by_name (dynobj,
8415 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8416 BFD_ASSERT (s != NULL);
8418 /* Fill the stub. */
8420 bfd_put_32 (output_bfd, STUB_LW(output_bfd), p);
8422 bfd_put_32 (output_bfd, STUB_MOVE, p);
8425 /* FIXME: Can h->dynindex be more than 64K? */
8426 if (h->dynindx & 0xffff0000)
8429 bfd_put_32 (output_bfd, STUB_JALR, p);
8431 bfd_put_32 (output_bfd, STUB_LI16 + h->dynindx, p);
8433 BFD_ASSERT (h->plt.offset <= s->_raw_size);
8434 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8436 /* Mark the symbol as undefined. plt.offset != -1 occurs
8437 only for the referenced symbol. */
8438 sym->st_shndx = SHN_UNDEF;
8440 /* The run-time linker uses the st_value field of the symbol
8441 to reset the global offset table entry for this external
8442 to its stub address when unlinking a shared object. */
8443 gval = s->output_section->vma + s->output_offset + h->plt.offset;
8444 sym->st_value = gval;
8447 BFD_ASSERT (h->dynindx != -1
8448 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
8450 sgot = mips_elf_got_section (dynobj);
8451 BFD_ASSERT (sgot != NULL);
8452 BFD_ASSERT (elf_section_data (sgot) != NULL);
8453 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8454 BFD_ASSERT (g != NULL);
8456 /* Run through the global symbol table, creating GOT entries for all
8457 the symbols that need them. */
8458 if (g->global_gotsym != NULL
8459 && h->dynindx >= g->global_gotsym->dynindx)
8465 value = sym->st_value;
8467 /* For an entity defined in a shared object, this will be
8468 NULL. (For functions in shared objects for
8469 which we have created stubs, ST_VALUE will be non-NULL.
8470 That's because such the functions are now no longer defined
8471 in a shared object.) */
8472 value = h->root.u.def.value;
8474 offset = mips_elf_global_got_index (dynobj, h);
8475 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8478 /* Create a .msym entry, if appropriate. */
8479 smsym = bfd_get_section_by_name (dynobj,
8480 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8483 Elf32_Internal_Msym msym;
8485 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
8486 /* It is undocumented what the `1' indicates, but IRIX6 uses
8488 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
8489 bfd_mips_elf_swap_msym_out
8491 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
8494 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8495 name = h->root.root.string;
8496 if (strcmp (name, "_DYNAMIC") == 0
8497 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
8498 sym->st_shndx = SHN_ABS;
8499 else if (strcmp (name, "_DYNAMIC_LINK") == 0)
8501 sym->st_shndx = SHN_ABS;
8502 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8505 else if (SGI_COMPAT (output_bfd))
8507 if (strcmp (name, "_gp_disp") == 0)
8509 sym->st_shndx = SHN_ABS;
8510 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8511 sym->st_value = elf_gp (output_bfd);
8513 else if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8514 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8516 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8517 sym->st_other = STO_PROTECTED;
8519 sym->st_shndx = SHN_MIPS_DATA;
8521 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8523 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8524 sym->st_other = STO_PROTECTED;
8525 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8526 sym->st_shndx = SHN_ABS;
8528 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8530 if (h->type == STT_FUNC)
8531 sym->st_shndx = SHN_MIPS_TEXT;
8532 else if (h->type == STT_OBJECT)
8533 sym->st_shndx = SHN_MIPS_DATA;
8537 /* Handle the IRIX6-specific symbols. */
8538 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8539 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8541 if (SGI_COMPAT (output_bfd)
8544 if (! mips_elf_hash_table (info)->use_rld_obj_head
8545 && strcmp (name, "__rld_map") == 0)
8547 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8548 BFD_ASSERT (s != NULL);
8549 sym->st_value = s->output_section->vma + s->output_offset;
8550 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
8551 if (mips_elf_hash_table (info)->rld_value == 0)
8552 mips_elf_hash_table (info)->rld_value = sym->st_value;
8554 else if (mips_elf_hash_table (info)->use_rld_obj_head
8555 && strcmp (name, "__rld_obj_head") == 0)
8557 /* IRIX6 does not use a .rld_map section. */
8558 if (IRIX_COMPAT (output_bfd) == ict_irix5)
8559 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8561 mips_elf_hash_table (info)->rld_value = sym->st_value;
8565 /* If this is a mips16 symbol, force the value to be even. */
8566 if (sym->st_other == STO_MIPS16
8567 && (sym->st_value & 1) != 0)
8573 /* Finish up the dynamic sections. */
8576 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
8578 struct bfd_link_info *info;
8583 struct mips_got_info *g;
8585 dynobj = elf_hash_table (info)->dynobj;
8587 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8589 sgot = mips_elf_got_section (dynobj);
8594 BFD_ASSERT (elf_section_data (sgot) != NULL);
8595 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8596 BFD_ASSERT (g != NULL);
8599 if (elf_hash_table (info)->dynamic_sections_created)
8603 BFD_ASSERT (sdyn != NULL);
8604 BFD_ASSERT (g != NULL);
8606 for (b = sdyn->contents;
8607 b < sdyn->contents + sdyn->_raw_size;
8608 b += MIPS_ELF_DYN_SIZE (dynobj))
8610 Elf_Internal_Dyn dyn;
8616 /* Read in the current dynamic entry. */
8617 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8619 /* Assume that we're going to modify it and write it out. */
8625 s = (bfd_get_section_by_name
8627 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
8628 BFD_ASSERT (s != NULL);
8629 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8633 /* Rewrite DT_STRSZ. */
8635 _bfd_stringtab_size (elf_hash_table (info)->dynstr);
8641 case DT_MIPS_CONFLICT:
8644 case DT_MIPS_LIBLIST:
8647 s = bfd_get_section_by_name (output_bfd, name);
8648 BFD_ASSERT (s != NULL);
8649 dyn.d_un.d_ptr = s->vma;
8652 case DT_MIPS_RLD_VERSION:
8653 dyn.d_un.d_val = 1; /* XXX */
8657 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8660 case DT_MIPS_CONFLICTNO:
8662 elemsize = sizeof (Elf32_Conflict);
8665 case DT_MIPS_LIBLISTNO:
8667 elemsize = sizeof (Elf32_Lib);
8669 s = bfd_get_section_by_name (output_bfd, name);
8672 if (s->_cooked_size != 0)
8673 dyn.d_un.d_val = s->_cooked_size / elemsize;
8675 dyn.d_un.d_val = s->_raw_size / elemsize;
8681 case DT_MIPS_TIME_STAMP:
8682 time ((time_t *) &dyn.d_un.d_val);
8685 case DT_MIPS_ICHECKSUM:
8690 case DT_MIPS_IVERSION:
8695 case DT_MIPS_BASE_ADDRESS:
8696 s = output_bfd->sections;
8697 BFD_ASSERT (s != NULL);
8698 dyn.d_un.d_ptr = s->vma & ~(0xffff);
8701 case DT_MIPS_LOCAL_GOTNO:
8702 dyn.d_un.d_val = g->local_gotno;
8705 case DT_MIPS_UNREFEXTNO:
8706 /* The index into the dynamic symbol table which is the
8707 entry of the first external symbol that is not
8708 referenced within the same object. */
8709 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8712 case DT_MIPS_GOTSYM:
8713 if (g->global_gotsym)
8715 dyn.d_un.d_val = g->global_gotsym->dynindx;
8718 /* In case if we don't have global got symbols we default
8719 to setting DT_MIPS_GOTSYM to the same value as
8720 DT_MIPS_SYMTABNO, so we just fall through. */
8722 case DT_MIPS_SYMTABNO:
8724 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8725 s = bfd_get_section_by_name (output_bfd, name);
8726 BFD_ASSERT (s != NULL);
8728 if (s->_cooked_size != 0)
8729 dyn.d_un.d_val = s->_cooked_size / elemsize;
8731 dyn.d_un.d_val = s->_raw_size / elemsize;
8734 case DT_MIPS_HIPAGENO:
8735 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
8738 case DT_MIPS_RLD_MAP:
8739 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8742 case DT_MIPS_OPTIONS:
8743 s = (bfd_get_section_by_name
8744 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8745 dyn.d_un.d_ptr = s->vma;
8749 s = (bfd_get_section_by_name
8750 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
8751 dyn.d_un.d_ptr = s->vma;
8760 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8765 /* The first entry of the global offset table will be filled at
8766 runtime. The second entry will be used by some runtime loaders.
8767 This isn't the case of Irix rld. */
8768 if (sgot != NULL && sgot->_raw_size > 0)
8770 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8771 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8772 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8776 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8777 = MIPS_ELF_GOT_SIZE (output_bfd);
8782 Elf32_compact_rel cpt;
8784 /* ??? The section symbols for the output sections were set up in
8785 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
8786 symbols. Should we do so? */
8788 smsym = bfd_get_section_by_name (dynobj,
8789 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8792 Elf32_Internal_Msym msym;
8794 msym.ms_hash_value = 0;
8795 msym.ms_info = ELF32_MS_INFO (0, 1);
8797 for (s = output_bfd->sections; s != NULL; s = s->next)
8799 long dynindx = elf_section_data (s)->dynindx;
8801 bfd_mips_elf_swap_msym_out
8803 (((Elf32_External_Msym *) smsym->contents)
8808 if (SGI_COMPAT (output_bfd))
8810 /* Write .compact_rel section out. */
8811 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8815 cpt.num = s->reloc_count;
8817 cpt.offset = (s->output_section->filepos
8818 + sizeof (Elf32_External_compact_rel));
8821 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8822 ((Elf32_External_compact_rel *)
8825 /* Clean up a dummy stub function entry in .text. */
8826 s = bfd_get_section_by_name (dynobj,
8827 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8830 file_ptr dummy_offset;
8832 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
8833 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
8834 memset (s->contents + dummy_offset, 0,
8835 MIPS_FUNCTION_STUB_SIZE);
8840 /* Clean up a first relocation in .rel.dyn. */
8841 s = bfd_get_section_by_name (dynobj,
8842 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
8843 if (s != NULL && s->_raw_size > 0)
8844 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
8850 /* This is almost identical to bfd_generic_get_... except that some
8851 MIPS relocations need to be handled specially. Sigh. */
8854 elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
8855 relocateable, symbols)
8857 struct bfd_link_info *link_info;
8858 struct bfd_link_order *link_order;
8860 boolean relocateable;
8863 /* Get enough memory to hold the stuff */
8864 bfd *input_bfd = link_order->u.indirect.section->owner;
8865 asection *input_section = link_order->u.indirect.section;
8867 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8868 arelent **reloc_vector = NULL;
8874 reloc_vector = (arelent **) bfd_malloc (reloc_size);
8875 if (reloc_vector == NULL && reloc_size != 0)
8878 /* read in the section */
8879 if (!bfd_get_section_contents (input_bfd,
8883 input_section->_raw_size))
8886 /* We're not relaxing the section, so just copy the size info */
8887 input_section->_cooked_size = input_section->_raw_size;
8888 input_section->reloc_done = true;
8890 reloc_count = bfd_canonicalize_reloc (input_bfd,
8894 if (reloc_count < 0)
8897 if (reloc_count > 0)
8902 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8905 struct bfd_hash_entry *h;
8906 struct bfd_link_hash_entry *lh;
8907 /* Skip all this stuff if we aren't mixing formats. */
8908 if (abfd && input_bfd
8909 && abfd->xvec == input_bfd->xvec)
8913 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
8914 lh = (struct bfd_link_hash_entry *) h;
8921 case bfd_link_hash_undefined:
8922 case bfd_link_hash_undefweak:
8923 case bfd_link_hash_common:
8926 case bfd_link_hash_defined:
8927 case bfd_link_hash_defweak:
8929 gp = lh->u.def.value;
8931 case bfd_link_hash_indirect:
8932 case bfd_link_hash_warning:
8934 /* @@FIXME ignoring warning for now */
8936 case bfd_link_hash_new:
8945 for (parent = reloc_vector; *parent != (arelent *) NULL;
8948 char *error_message = (char *) NULL;
8949 bfd_reloc_status_type r;
8951 /* Specific to MIPS: Deal with relocation types that require
8952 knowing the gp of the output bfd. */
8953 asymbol *sym = *(*parent)->sym_ptr_ptr;
8954 if (bfd_is_abs_section (sym->section) && abfd)
8956 /* The special_function wouldn't get called anyways. */
8960 /* The gp isn't there; let the special function code
8961 fall over on its own. */
8963 else if ((*parent)->howto->special_function
8964 == _bfd_mips_elf_gprel16_reloc)
8966 /* bypass special_function call */
8967 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
8968 relocateable, (PTR) data, gp);
8969 goto skip_bfd_perform_relocation;
8971 /* end mips specific stuff */
8973 r = bfd_perform_relocation (input_bfd,
8977 relocateable ? abfd : (bfd *) NULL,
8979 skip_bfd_perform_relocation:
8983 asection *os = input_section->output_section;
8985 /* A partial link, so keep the relocs */
8986 os->orelocation[os->reloc_count] = *parent;
8990 if (r != bfd_reloc_ok)
8994 case bfd_reloc_undefined:
8995 if (!((*link_info->callbacks->undefined_symbol)
8996 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8997 input_bfd, input_section, (*parent)->address,
9001 case bfd_reloc_dangerous:
9002 BFD_ASSERT (error_message != (char *) NULL);
9003 if (!((*link_info->callbacks->reloc_dangerous)
9004 (link_info, error_message, input_bfd, input_section,
9005 (*parent)->address)))
9008 case bfd_reloc_overflow:
9009 if (!((*link_info->callbacks->reloc_overflow)
9010 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9011 (*parent)->howto->name, (*parent)->addend,
9012 input_bfd, input_section, (*parent)->address)))
9015 case bfd_reloc_outofrange:
9024 if (reloc_vector != NULL)
9025 free (reloc_vector);
9029 if (reloc_vector != NULL)
9030 free (reloc_vector);
9033 #define bfd_elf32_bfd_get_relocated_section_contents \
9034 elf32_mips_get_relocated_section_contents
9036 /* ECOFF swapping routines. These are used when dealing with the
9037 .mdebug section, which is in the ECOFF debugging format. */
9038 static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap =
9040 /* Symbol table magic number. */
9042 /* Alignment of debugging information. E.g., 4. */
9044 /* Sizes of external symbolic information. */
9045 sizeof (struct hdr_ext),
9046 sizeof (struct dnr_ext),
9047 sizeof (struct pdr_ext),
9048 sizeof (struct sym_ext),
9049 sizeof (struct opt_ext),
9050 sizeof (struct fdr_ext),
9051 sizeof (struct rfd_ext),
9052 sizeof (struct ext_ext),
9053 /* Functions to swap in external symbolic data. */
9062 _bfd_ecoff_swap_tir_in,
9063 _bfd_ecoff_swap_rndx_in,
9064 /* Functions to swap out external symbolic data. */
9073 _bfd_ecoff_swap_tir_out,
9074 _bfd_ecoff_swap_rndx_out,
9075 /* Function to read in symbolic data. */
9076 _bfd_mips_elf_read_ecoff_info
9079 #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
9080 #define TARGET_LITTLE_NAME "elf32-littlemips"
9081 #define TARGET_BIG_SYM bfd_elf32_bigmips_vec
9082 #define TARGET_BIG_NAME "elf32-bigmips"
9083 #define ELF_ARCH bfd_arch_mips
9084 #define ELF_MACHINE_CODE EM_MIPS
9086 /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
9087 a value of 0x1000, and we are compatible. */
9088 #define ELF_MAXPAGESIZE 0x1000
9090 #define elf_backend_collect true
9091 #define elf_backend_type_change_ok true
9092 #define elf_backend_can_gc_sections true
9093 #define elf_backend_sign_extend_vma true
9094 #define elf_info_to_howto mips_info_to_howto_rela
9095 #define elf_info_to_howto_rel mips_info_to_howto_rel
9096 #define elf_backend_sym_is_global mips_elf_sym_is_global
9097 #define elf_backend_object_p _bfd_mips_elf_object_p
9098 #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
9099 #define elf_backend_fake_sections _bfd_mips_elf_fake_sections
9100 #define elf_backend_section_from_bfd_section \
9101 _bfd_mips_elf_section_from_bfd_section
9102 #define elf_backend_section_processing _bfd_mips_elf_section_processing
9103 #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
9104 #define elf_backend_additional_program_headers \
9105 _bfd_mips_elf_additional_program_headers
9106 #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
9107 #define elf_backend_final_write_processing \
9108 _bfd_mips_elf_final_write_processing
9109 #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
9110 #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
9111 #define elf_backend_create_dynamic_sections \
9112 _bfd_mips_elf_create_dynamic_sections
9113 #define elf_backend_check_relocs _bfd_mips_elf_check_relocs
9114 #define elf_backend_adjust_dynamic_symbol \
9115 _bfd_mips_elf_adjust_dynamic_symbol
9116 #define elf_backend_always_size_sections \
9117 _bfd_mips_elf_always_size_sections
9118 #define elf_backend_size_dynamic_sections \
9119 _bfd_mips_elf_size_dynamic_sections
9120 #define elf_backend_relocate_section _bfd_mips_elf_relocate_section
9121 #define elf_backend_link_output_symbol_hook \
9122 _bfd_mips_elf_link_output_symbol_hook
9123 #define elf_backend_finish_dynamic_symbol \
9124 _bfd_mips_elf_finish_dynamic_symbol
9125 #define elf_backend_finish_dynamic_sections \
9126 _bfd_mips_elf_finish_dynamic_sections
9127 #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
9128 #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
9130 #define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO)
9131 #define elf_backend_plt_header_size 0
9133 #define elf_backend_copy_indirect_symbol \
9134 _bfd_mips_elf_copy_indirect_symbol
9136 #define elf_backend_hide_symbol _bfd_mips_elf_hide_symbol
9138 #define bfd_elf32_bfd_is_local_label_name \
9139 mips_elf_is_local_label_name
9140 #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
9141 #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
9142 #define bfd_elf32_bfd_link_hash_table_create \
9143 _bfd_mips_elf_link_hash_table_create
9144 #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
9145 #define bfd_elf32_bfd_copy_private_bfd_data \
9146 _bfd_mips_elf_copy_private_bfd_data
9147 #define bfd_elf32_bfd_merge_private_bfd_data \
9148 _bfd_mips_elf_merge_private_bfd_data
9149 #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
9150 #define bfd_elf32_bfd_print_private_bfd_data \
9151 _bfd_mips_elf_print_private_bfd_data
9152 #include "elf32-target.h"