1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name
34 PARAMS ((bfd *, const char *));
35 static boolean elf_i386_grok_prstatus
36 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
37 static boolean elf_i386_grok_psinfo
38 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
39 static struct bfd_hash_entry *link_hash_newfunc
40 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
41 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
43 static boolean create_got_section
44 PARAMS((bfd *, struct bfd_link_info *));
45 static boolean elf_i386_create_dynamic_sections
46 PARAMS((bfd *, struct bfd_link_info *));
47 static void elf_i386_copy_indirect_symbol
48 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
49 static boolean elf_i386_check_relocs
50 PARAMS ((bfd *, struct bfd_link_info *, asection *,
51 const Elf_Internal_Rela *));
52 static asection *elf_i386_gc_mark_hook
53 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
54 struct elf_link_hash_entry *, Elf_Internal_Sym *));
55 static boolean elf_i386_gc_sweep_hook
56 PARAMS ((bfd *, struct bfd_link_info *, asection *,
57 const Elf_Internal_Rela *));
58 static boolean elf_i386_adjust_dynamic_symbol
59 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
60 static boolean allocate_dynrelocs
61 PARAMS ((struct elf_link_hash_entry *, PTR));
62 static boolean readonly_dynrelocs
63 PARAMS ((struct elf_link_hash_entry *, PTR));
64 static boolean elf_i386_fake_sections
65 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
66 static boolean elf_i386_size_dynamic_sections
67 PARAMS ((bfd *, struct bfd_link_info *));
68 static boolean elf_i386_relocate_section
69 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
70 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
71 static boolean elf_i386_finish_dynamic_symbol
72 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
74 static enum elf_reloc_type_class elf_i386_reloc_type_class
75 PARAMS ((const Elf_Internal_Rela *));
76 static boolean elf_i386_finish_dynamic_sections
77 PARAMS ((bfd *, struct bfd_link_info *));
79 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
83 static reloc_howto_type elf_howto_table[]=
85 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
86 bfd_elf_generic_reloc, "R_386_NONE",
87 true, 0x00000000, 0x00000000, false),
88 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
89 bfd_elf_generic_reloc, "R_386_32",
90 true, 0xffffffff, 0xffffffff, false),
91 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
92 bfd_elf_generic_reloc, "R_386_PC32",
93 true, 0xffffffff, 0xffffffff, true),
94 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
95 bfd_elf_generic_reloc, "R_386_GOT32",
96 true, 0xffffffff, 0xffffffff, false),
97 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_386_PLT32",
99 true, 0xffffffff, 0xffffffff, true),
100 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
101 bfd_elf_generic_reloc, "R_386_COPY",
102 true, 0xffffffff, 0xffffffff, false),
103 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
104 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
105 true, 0xffffffff, 0xffffffff, false),
106 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
108 true, 0xffffffff, 0xffffffff, false),
109 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_386_RELATIVE",
111 true, 0xffffffff, 0xffffffff, false),
112 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
113 bfd_elf_generic_reloc, "R_386_GOTOFF",
114 true, 0xffffffff, 0xffffffff, false),
115 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
116 bfd_elf_generic_reloc, "R_386_GOTPC",
117 true, 0xffffffff, 0xffffffff, true),
119 /* We have a gap in the reloc numbers here.
120 R_386_standard counts the number up to this point, and
121 R_386_ext_offset is the value to subtract from a reloc type of
122 R_386_16 thru R_386_PC8 to form an index into this table. */
123 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
124 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
126 /* The remaining relocs are a GNU extension. */
127 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
128 bfd_elf_generic_reloc, "R_386_16",
129 true, 0xffff, 0xffff, false),
130 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
131 bfd_elf_generic_reloc, "R_386_PC16",
132 true, 0xffff, 0xffff, true),
133 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
134 bfd_elf_generic_reloc, "R_386_8",
135 true, 0xff, 0xff, false),
136 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
137 bfd_elf_generic_reloc, "R_386_PC8",
138 true, 0xff, 0xff, true),
141 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
142 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
144 /* GNU extension to record C++ vtable hierarchy. */
145 HOWTO (R_386_GNU_VTINHERIT, /* type */
147 2, /* size (0 = byte, 1 = short, 2 = long) */
149 false, /* pc_relative */
151 complain_overflow_dont, /* complain_on_overflow */
152 NULL, /* special_function */
153 "R_386_GNU_VTINHERIT", /* name */
154 false, /* partial_inplace */
159 /* GNU extension to record C++ vtable member usage. */
160 HOWTO (R_386_GNU_VTENTRY, /* type */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
164 false, /* pc_relative */
166 complain_overflow_dont, /* complain_on_overflow */
167 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
168 "R_386_GNU_VTENTRY", /* name */
169 false, /* partial_inplace */
174 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
178 #ifdef DEBUG_GEN_RELOC
179 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
184 static reloc_howto_type *
185 elf_i386_reloc_type_lookup (abfd, code)
186 bfd *abfd ATTRIBUTE_UNUSED;
187 bfd_reloc_code_real_type code;
192 TRACE ("BFD_RELOC_NONE");
193 return &elf_howto_table[(unsigned int) R_386_NONE ];
196 TRACE ("BFD_RELOC_32");
197 return &elf_howto_table[(unsigned int) R_386_32 ];
200 TRACE ("BFD_RELOC_CTOR");
201 return &elf_howto_table[(unsigned int) R_386_32 ];
203 case BFD_RELOC_32_PCREL:
204 TRACE ("BFD_RELOC_PC32");
205 return &elf_howto_table[(unsigned int) R_386_PC32 ];
207 case BFD_RELOC_386_GOT32:
208 TRACE ("BFD_RELOC_386_GOT32");
209 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
211 case BFD_RELOC_386_PLT32:
212 TRACE ("BFD_RELOC_386_PLT32");
213 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
215 case BFD_RELOC_386_COPY:
216 TRACE ("BFD_RELOC_386_COPY");
217 return &elf_howto_table[(unsigned int) R_386_COPY ];
219 case BFD_RELOC_386_GLOB_DAT:
220 TRACE ("BFD_RELOC_386_GLOB_DAT");
221 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
223 case BFD_RELOC_386_JUMP_SLOT:
224 TRACE ("BFD_RELOC_386_JUMP_SLOT");
225 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
227 case BFD_RELOC_386_RELATIVE:
228 TRACE ("BFD_RELOC_386_RELATIVE");
229 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
231 case BFD_RELOC_386_GOTOFF:
232 TRACE ("BFD_RELOC_386_GOTOFF");
233 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
235 case BFD_RELOC_386_GOTPC:
236 TRACE ("BFD_RELOC_386_GOTPC");
237 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
239 /* The remaining relocs are a GNU extension. */
241 TRACE ("BFD_RELOC_16");
242 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
244 case BFD_RELOC_16_PCREL:
245 TRACE ("BFD_RELOC_16_PCREL");
246 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
249 TRACE ("BFD_RELOC_8");
250 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
252 case BFD_RELOC_8_PCREL:
253 TRACE ("BFD_RELOC_8_PCREL");
254 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
256 case BFD_RELOC_VTABLE_INHERIT:
257 TRACE ("BFD_RELOC_VTABLE_INHERIT");
258 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
261 case BFD_RELOC_VTABLE_ENTRY:
262 TRACE ("BFD_RELOC_VTABLE_ENTRY");
263 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
275 elf_i386_info_to_howto (abfd, cache_ptr, dst)
276 bfd *abfd ATTRIBUTE_UNUSED;
277 arelent *cache_ptr ATTRIBUTE_UNUSED;
278 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
284 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
285 bfd *abfd ATTRIBUTE_UNUSED;
287 Elf32_Internal_Rel *dst;
289 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
292 if ((indx = r_type) >= R_386_standard
293 && ((indx = r_type - R_386_ext_offset) - R_386_standard
294 >= R_386_ext - R_386_standard)
295 && ((indx = r_type - R_386_vt_offset) - R_386_ext
296 >= R_386_vt - R_386_ext))
298 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
299 bfd_archive_filename (abfd), (int) r_type);
300 indx = (unsigned int) R_386_NONE;
302 cache_ptr->howto = &elf_howto_table[indx];
305 /* Return whether a symbol name implies a local label. The UnixWare
306 2.1 cc generates temporary symbols that start with .X, so we
307 recognize them here. FIXME: do other SVR4 compilers also use .X?.
308 If so, we should move the .X recognition into
309 _bfd_elf_is_local_label_name. */
312 elf_i386_is_local_label_name (abfd, name)
316 if (name[0] == '.' && name[1] == 'X')
319 return _bfd_elf_is_local_label_name (abfd, name);
322 /* Support for core dump NOTE sections. */
324 elf_i386_grok_prstatus (abfd, note)
326 Elf_Internal_Note *note;
331 switch (note->descsz)
336 case 144: /* Linux/i386 */
338 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
341 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
350 /* Make a ".reg/999" section. */
351 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
352 raw_size, note->descpos + offset);
356 elf_i386_grok_psinfo (abfd, note)
358 Elf_Internal_Note *note;
360 switch (note->descsz)
365 case 128: /* Linux/MIPS elf_prpsinfo */
366 elf_tdata (abfd)->core_program
367 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
368 elf_tdata (abfd)->core_command
369 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
372 /* Note that for some reason, a spurious space is tacked
373 onto the end of the args in some (at least one anyway)
374 implementations, so strip it off if it exists. */
377 char *command = elf_tdata (abfd)->core_command;
378 int n = strlen (command);
380 if (0 < n && command[n - 1] == ' ')
381 command[n - 1] = '\0';
387 /* Functions for the i386 ELF linker.
389 In order to gain some understanding of code in this file without
390 knowing all the intricate details of the linker, note the
393 Functions named elf_i386_* are called by external routines, other
394 functions are only called locally. elf_i386_* functions appear
395 in this file more or less in the order in which they are called
396 from external routines. eg. elf_i386_check_relocs is called
397 early in the link process, elf_i386_finish_dynamic_sections is
398 one of the last functions. */
401 /* The name of the dynamic interpreter. This is put in the .interp
404 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
406 /* The size in bytes of an entry in the procedure linkage table. */
408 #define PLT_ENTRY_SIZE 16
410 /* The first entry in an absolute procedure linkage table looks like
411 this. See the SVR4 ABI i386 supplement to see how this works. */
413 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
415 0xff, 0x35, /* pushl contents of address */
416 0, 0, 0, 0, /* replaced with address of .got + 4. */
417 0xff, 0x25, /* jmp indirect */
418 0, 0, 0, 0, /* replaced with address of .got + 8. */
419 0, 0, 0, 0 /* pad out to 16 bytes. */
422 /* Subsequent entries in an absolute procedure linkage table look like
425 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
427 0xff, 0x25, /* jmp indirect */
428 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
429 0x68, /* pushl immediate */
430 0, 0, 0, 0, /* replaced with offset into relocation table. */
431 0xe9, /* jmp relative */
432 0, 0, 0, 0 /* replaced with offset to start of .plt. */
435 /* The first entry in a PIC procedure linkage table look like this. */
437 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
439 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
440 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
441 0, 0, 0, 0 /* pad out to 16 bytes. */
444 /* Subsequent entries in a PIC procedure linkage table look like this. */
446 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
448 0xff, 0xa3, /* jmp *offset(%ebx) */
449 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
450 0x68, /* pushl immediate */
451 0, 0, 0, 0, /* replaced with offset into relocation table. */
452 0xe9, /* jmp relative */
453 0, 0, 0, 0 /* replaced with offset to start of .plt. */
456 /* The i386 linker needs to keep track of the number of relocs that it
457 decides to copy as dynamic relocs in check_relocs for each symbol.
458 This is so that it can later discard them if they are found to be
459 unnecessary. We store the information in a field extending the
460 regular ELF linker hash table. */
462 struct elf_i386_dyn_relocs
464 struct elf_i386_dyn_relocs *next;
466 /* The input section of the reloc. */
469 /* Total number of relocs copied for the input section. */
472 /* Number of pc-relative relocs copied for the input section. */
473 bfd_size_type pc_count;
476 /* i386 ELF linker hash entry. */
478 struct elf_i386_link_hash_entry
480 struct elf_link_hash_entry elf;
482 /* Track dynamic relocs copied for this symbol. */
483 struct elf_i386_dyn_relocs *dyn_relocs;
486 /* i386 ELF linker hash table. */
488 struct elf_i386_link_hash_table
490 struct elf_link_hash_table elf;
492 /* Short-cuts to get to dynamic linker sections. */
502 /* Get the i386 ELF linker hash table from a link_info structure. */
504 #define elf_i386_hash_table(p) \
505 ((struct elf_i386_link_hash_table *) ((p)->hash))
507 /* Create an entry in an i386 ELF linker hash table. */
509 static struct bfd_hash_entry *
510 link_hash_newfunc (entry, table, string)
511 struct bfd_hash_entry *entry;
512 struct bfd_hash_table *table;
515 /* Allocate the structure if it has not already been allocated by a
519 entry = bfd_hash_allocate (table,
520 sizeof (struct elf_i386_link_hash_entry));
525 /* Call the allocation method of the superclass. */
526 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
529 struct elf_i386_link_hash_entry *eh;
531 eh = (struct elf_i386_link_hash_entry *) entry;
532 eh->dyn_relocs = NULL;
538 /* Create an i386 ELF linker hash table. */
540 static struct bfd_link_hash_table *
541 elf_i386_link_hash_table_create (abfd)
544 struct elf_i386_link_hash_table *ret;
545 bfd_size_type amt = sizeof (struct elf_i386_link_hash_table);
547 ret = (struct elf_i386_link_hash_table *) bfd_alloc (abfd, amt);
551 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
553 bfd_release (abfd, ret);
565 return &ret->elf.root;
568 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
569 shortcuts to them in our hash table. */
572 create_got_section (dynobj, info)
574 struct bfd_link_info *info;
576 struct elf_i386_link_hash_table *htab;
578 if (! _bfd_elf_create_got_section (dynobj, info))
581 htab = elf_i386_hash_table (info);
582 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
583 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
584 if (!htab->sgot || !htab->sgotplt)
587 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
588 if (htab->srelgot == NULL
589 || ! bfd_set_section_flags (dynobj, htab->srelgot,
590 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
591 | SEC_IN_MEMORY | SEC_LINKER_CREATED
593 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
598 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
599 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
603 elf_i386_create_dynamic_sections (dynobj, info)
605 struct bfd_link_info *info;
607 struct elf_i386_link_hash_table *htab;
609 htab = elf_i386_hash_table (info);
610 if (!htab->sgot && !create_got_section (dynobj, info))
613 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
616 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
617 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
618 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
620 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
622 if (!htab->splt || !htab->srelplt || !htab->sdynbss
623 || (!info->shared && !htab->srelbss))
629 /* Copy the extra info we tack onto an elf_link_hash_entry. */
632 elf_i386_copy_indirect_symbol (dir, ind)
633 struct elf_link_hash_entry *dir, *ind;
635 struct elf_i386_link_hash_entry *edir, *eind;
637 edir = (struct elf_i386_link_hash_entry *) dir;
638 eind = (struct elf_i386_link_hash_entry *) ind;
640 if (eind->dyn_relocs != NULL)
642 if (edir->dyn_relocs != NULL)
644 struct elf_i386_dyn_relocs **pp;
645 struct elf_i386_dyn_relocs *p;
647 if (ind->root.type == bfd_link_hash_indirect)
650 /* Add reloc counts against the weak sym to the strong sym
651 list. Merge any entries against the same section. */
652 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
654 struct elf_i386_dyn_relocs *q;
656 for (q = edir->dyn_relocs; q != NULL; q = q->next)
657 if (q->sec == p->sec)
659 q->pc_count += p->pc_count;
660 q->count += p->count;
667 *pp = edir->dyn_relocs;
670 edir->dyn_relocs = eind->dyn_relocs;
671 eind->dyn_relocs = NULL;
674 _bfd_elf_link_hash_copy_indirect (dir, ind);
677 /* Look through the relocs for a section during the first phase, and
678 calculate needed space in the global offset table, procedure linkage
679 table, and dynamic reloc sections. */
682 elf_i386_check_relocs (abfd, info, sec, relocs)
684 struct bfd_link_info *info;
686 const Elf_Internal_Rela *relocs;
688 struct elf_i386_link_hash_table *htab;
689 Elf_Internal_Shdr *symtab_hdr;
690 struct elf_link_hash_entry **sym_hashes;
691 const Elf_Internal_Rela *rel;
692 const Elf_Internal_Rela *rel_end;
695 if (info->relocateable)
698 htab = elf_i386_hash_table (info);
699 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
700 sym_hashes = elf_sym_hashes (abfd);
704 rel_end = relocs + sec->reloc_count;
705 for (rel = relocs; rel < rel_end; rel++)
707 unsigned long r_symndx;
708 struct elf_link_hash_entry *h;
710 r_symndx = ELF32_R_SYM (rel->r_info);
712 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
714 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
715 bfd_archive_filename (abfd),
720 if (r_symndx < symtab_hdr->sh_info)
723 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
725 switch (ELF32_R_TYPE (rel->r_info))
728 /* This symbol requires a global offset table entry. */
731 h->got.refcount += 1;
735 bfd_signed_vma *local_got_refcounts;
737 /* This is a global offset table entry for a local symbol. */
738 local_got_refcounts = elf_local_got_refcounts (abfd);
739 if (local_got_refcounts == NULL)
743 size = symtab_hdr->sh_info;
744 size *= sizeof (bfd_signed_vma);
745 local_got_refcounts = ((bfd_signed_vma *)
746 bfd_zalloc (abfd, size));
747 if (local_got_refcounts == NULL)
749 elf_local_got_refcounts (abfd) = local_got_refcounts;
751 local_got_refcounts[r_symndx] += 1;
757 if (htab->sgot == NULL)
759 if (htab->elf.dynobj == NULL)
760 htab->elf.dynobj = abfd;
761 if (!create_got_section (htab->elf.dynobj, info))
767 /* This symbol requires a procedure linkage table entry. We
768 actually build the entry in adjust_dynamic_symbol,
769 because this might be a case of linking PIC code which is
770 never referenced by a dynamic object, in which case we
771 don't need to generate a procedure linkage table entry
774 /* If this is a local symbol, we resolve it directly without
775 creating a procedure linkage table entry. */
779 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
780 h->plt.refcount += 1;
785 if (h != NULL && !info->shared)
787 /* If this reloc is in a read-only section, we might
788 need a copy reloc. We can't check reliably at this
789 stage whether the section is read-only, as input
790 sections have not yet been mapped to output sections.
791 Tentatively set the flag for now, and correct in
792 adjust_dynamic_symbol. */
793 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
795 /* We may need a .plt entry if the function this reloc
796 refers to is in a shared lib. */
797 h->plt.refcount += 1;
800 /* If we are creating a shared library, and this is a reloc
801 against a global symbol, or a non PC relative reloc
802 against a local symbol, then we need to copy the reloc
803 into the shared library. However, if we are linking with
804 -Bsymbolic, we do not need to copy a reloc against a
805 global symbol which is defined in an object we are
806 including in the link (i.e., DEF_REGULAR is set). At
807 this point we have not seen all the input files, so it is
808 possible that DEF_REGULAR is not set now but will be set
809 later (it is never cleared). In case of a weak definition,
810 DEF_REGULAR may be cleared later by a strong definition in
811 a shared library. We account for that possibility below by
812 storing information in the relocs_copied field of the hash
813 table entry. A similar situation occurs when creating
814 shared libraries and symbol visibility changes render the
817 If on the other hand, we are creating an executable, we
818 may need to keep relocations for symbols satisfied by a
819 dynamic library if we manage to avoid copy relocs for the
822 && (sec->flags & SEC_ALLOC) != 0
823 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
826 || h->root.type == bfd_link_hash_defweak
827 || (h->elf_link_hash_flags
828 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
830 && (sec->flags & SEC_ALLOC) != 0
832 && (h->root.type == bfd_link_hash_defweak
833 || (h->elf_link_hash_flags
834 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
836 /* We must copy these reloc types into the output file.
837 Create a reloc section in dynobj and make room for
844 name = (bfd_elf_string_from_elf_section
846 elf_elfheader (abfd)->e_shstrndx,
847 elf_section_data (sec)->rel_hdr.sh_name));
851 if (strncmp (name, ".rel", 4) != 0
852 || strcmp (bfd_get_section_name (abfd, sec),
855 (*_bfd_error_handler)
856 (_("%s: bad relocation section name `%s\'"),
857 bfd_archive_filename (abfd), name);
860 if (htab->elf.dynobj == NULL)
861 htab->elf.dynobj = abfd;
863 dynobj = htab->elf.dynobj;
864 sreloc = bfd_get_section_by_name (dynobj, name);
869 sreloc = bfd_make_section (dynobj, name);
870 flags = (SEC_HAS_CONTENTS | SEC_READONLY
871 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
872 if ((sec->flags & SEC_ALLOC) != 0)
873 flags |= SEC_ALLOC | SEC_LOAD;
875 || ! bfd_set_section_flags (dynobj, sreloc, flags)
876 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
879 elf_section_data (sec)->sreloc = sreloc;
882 /* If this is a global symbol, we count the number of
883 relocations we need for this symbol. */
886 struct elf_i386_link_hash_entry *eh;
887 struct elf_i386_dyn_relocs *p;
889 eh = (struct elf_i386_link_hash_entry *) h;
892 if (p == NULL || p->sec != sec)
894 bfd_size_type amt = sizeof *p;
895 p = ((struct elf_i386_dyn_relocs *)
896 bfd_alloc (htab->elf.dynobj, amt));
899 p->next = eh->dyn_relocs;
907 if (ELF32_R_TYPE (rel->r_info) == R_386_PC32)
912 /* Track dynamic relocs needed for local syms too. */
913 elf_section_data (sec)->local_dynrel += 1;
918 /* This relocation describes the C++ object vtable hierarchy.
919 Reconstruct it for later use during GC. */
920 case R_386_GNU_VTINHERIT:
921 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
925 /* This relocation describes which C++ vtable entries are actually
926 used. Record for later use during GC. */
927 case R_386_GNU_VTENTRY:
928 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
940 /* Return the section that should be marked against GC for a given
944 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
946 struct bfd_link_info *info ATTRIBUTE_UNUSED;
947 Elf_Internal_Rela *rel;
948 struct elf_link_hash_entry *h;
949 Elf_Internal_Sym *sym;
953 switch (ELF32_R_TYPE (rel->r_info))
955 case R_386_GNU_VTINHERIT:
956 case R_386_GNU_VTENTRY:
960 switch (h->root.type)
962 case bfd_link_hash_defined:
963 case bfd_link_hash_defweak:
964 return h->root.u.def.section;
966 case bfd_link_hash_common:
967 return h->root.u.c.p->section;
976 if (!(elf_bad_symtab (abfd)
977 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
978 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
979 && sym->st_shndx != SHN_COMMON))
981 return bfd_section_from_elf_index (abfd, sym->st_shndx);
988 /* Update the got entry reference counts for the section being removed. */
991 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
993 struct bfd_link_info *info;
995 const Elf_Internal_Rela *relocs;
997 Elf_Internal_Shdr *symtab_hdr;
998 struct elf_link_hash_entry **sym_hashes;
999 bfd_signed_vma *local_got_refcounts;
1000 const Elf_Internal_Rela *rel, *relend;
1001 unsigned long r_symndx;
1002 struct elf_link_hash_entry *h;
1005 elf_section_data (sec)->local_dynrel = 0;
1007 dynobj = elf_hash_table (info)->dynobj;
1011 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1012 sym_hashes = elf_sym_hashes (abfd);
1013 local_got_refcounts = elf_local_got_refcounts (abfd);
1015 relend = relocs + sec->reloc_count;
1016 for (rel = relocs; rel < relend; rel++)
1017 switch (ELF32_R_TYPE (rel->r_info))
1022 r_symndx = ELF32_R_SYM (rel->r_info);
1023 if (r_symndx >= symtab_hdr->sh_info)
1025 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1026 if (h->got.refcount > 0)
1027 h->got.refcount -= 1;
1029 else if (local_got_refcounts != NULL)
1031 if (local_got_refcounts[r_symndx] > 0)
1032 local_got_refcounts[r_symndx] -= 1;
1038 r_symndx = ELF32_R_SYM (rel->r_info);
1039 if (r_symndx >= symtab_hdr->sh_info)
1041 struct elf_i386_link_hash_entry *eh;
1042 struct elf_i386_dyn_relocs **pp;
1043 struct elf_i386_dyn_relocs *p;
1045 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1047 if (!info->shared && h->plt.refcount > 0)
1048 h->plt.refcount -= 1;
1050 eh = (struct elf_i386_link_hash_entry *) h;
1052 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1055 if (ELF32_R_TYPE (rel->r_info) == R_386_PC32)
1066 r_symndx = ELF32_R_SYM (rel->r_info);
1067 if (r_symndx >= symtab_hdr->sh_info)
1069 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1070 if (h->plt.refcount > 0)
1071 h->plt.refcount -= 1;
1082 /* Adjust a symbol defined by a dynamic object and referenced by a
1083 regular object. The current definition is in some section of the
1084 dynamic object, but we're not including those sections. We have to
1085 change the definition to something the rest of the link can
1089 elf_i386_adjust_dynamic_symbol (info, h)
1090 struct bfd_link_info *info;
1091 struct elf_link_hash_entry *h;
1093 struct elf_i386_link_hash_table *htab;
1094 struct elf_i386_link_hash_entry * eh;
1095 struct elf_i386_dyn_relocs *p;
1097 unsigned int power_of_two;
1099 /* If this is a function, put it in the procedure linkage table. We
1100 will fill in the contents of the procedure linkage table later,
1101 when we know the address of the .got section. */
1102 if (h->type == STT_FUNC
1103 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1105 if (h->plt.refcount <= 0
1107 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1108 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
1110 /* This case can occur if we saw a PLT32 reloc in an input
1111 file, but the symbol was never referred to by a dynamic
1112 object, or if all references were garbage collected. In
1113 such a case, we don't actually need to build a procedure
1114 linkage table, and we can just do a PC32 reloc instead. */
1115 h->plt.offset = (bfd_vma) -1;
1116 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1122 /* It's possible that we incorrectly decided a .plt reloc was
1123 needed for an R_386_PC32 reloc to a non-function sym in
1124 check_relocs. We can't decide accurately between function and
1125 non-function syms in check-relocs; Objects loaded later in
1126 the link may change h->type. So fix it now. */
1127 h->plt.offset = (bfd_vma) -1;
1129 /* If this is a weak symbol, and there is a real definition, the
1130 processor independent code will have arranged for us to see the
1131 real definition first, and we can just use the same value. */
1132 if (h->weakdef != NULL)
1134 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1135 || h->weakdef->root.type == bfd_link_hash_defweak);
1136 h->root.u.def.section = h->weakdef->root.u.def.section;
1137 h->root.u.def.value = h->weakdef->root.u.def.value;
1141 /* This is a reference to a symbol defined by a dynamic object which
1142 is not a function. */
1144 /* If we are creating a shared library, we must presume that the
1145 only references to the symbol are via the global offset table.
1146 For such cases we need not do anything here; the relocations will
1147 be handled correctly by relocate_section. */
1151 /* If there are no references to this symbol that do not use the
1152 GOT, we don't need to generate a copy reloc. */
1153 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1156 /* If -z nocopyreloc was given, we won't generate them either. */
1157 if (info->nocopyreloc)
1159 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1163 eh = (struct elf_i386_link_hash_entry *) h;
1164 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1166 s = p->sec->output_section;
1167 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1171 /* If we didn't find any dynamic relocs in read-only sections, then
1172 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1175 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1179 /* We must allocate the symbol in our .dynbss section, which will
1180 become part of the .bss section of the executable. There will be
1181 an entry for this symbol in the .dynsym section. The dynamic
1182 object will contain position independent code, so all references
1183 from the dynamic object to this symbol will go through the global
1184 offset table. The dynamic linker will use the .dynsym entry to
1185 determine the address it must put in the global offset table, so
1186 both the dynamic object and the regular object will refer to the
1187 same memory location for the variable. */
1189 htab = elf_i386_hash_table (info);
1191 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1192 copy the initial value out of the dynamic object and into the
1193 runtime process image. */
1194 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1196 htab->srelbss->_raw_size += sizeof (Elf32_External_Rel);
1197 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1200 /* We need to figure out the alignment required for this symbol. I
1201 have no idea how ELF linkers handle this. */
1202 power_of_two = bfd_log2 (h->size);
1203 if (power_of_two > 3)
1206 /* Apply the required alignment. */
1208 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
1209 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1211 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1215 /* Define the symbol as being at this point in the section. */
1216 h->root.u.def.section = s;
1217 h->root.u.def.value = s->_raw_size;
1219 /* Increment the section size to make room for the symbol. */
1220 s->_raw_size += h->size;
1225 /* This is the condition under which elf_i386_finish_dynamic_symbol
1226 will be called from elflink.h. If elflink.h doesn't call our
1227 finish_dynamic_symbol routine, we'll need to do something about
1228 initializing any .plt and .got entries in elf_i386_relocate_section. */
1229 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1231 && ((INFO)->shared \
1232 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1233 && ((H)->dynindx != -1 \
1234 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1236 /* Allocate space in .plt, .got and associated reloc sections for
1240 allocate_dynrelocs (h, inf)
1241 struct elf_link_hash_entry *h;
1244 struct bfd_link_info *info;
1245 struct elf_i386_link_hash_table *htab;
1246 struct elf_i386_link_hash_entry *eh;
1247 struct elf_i386_dyn_relocs *p;
1249 if (h->root.type == bfd_link_hash_indirect
1250 || h->root.type == bfd_link_hash_warning)
1253 info = (struct bfd_link_info *) inf;
1254 htab = elf_i386_hash_table (info);
1256 if (htab->elf.dynamic_sections_created
1257 && h->plt.refcount > 0)
1259 /* Make sure this symbol is output as a dynamic symbol.
1260 Undefined weak syms won't yet be marked as dynamic. */
1261 if (h->dynindx == -1
1262 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1264 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1268 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1270 asection *s = htab->splt;
1272 /* If this is the first .plt entry, make room for the special
1274 if (s->_raw_size == 0)
1275 s->_raw_size += PLT_ENTRY_SIZE;
1277 h->plt.offset = s->_raw_size;
1279 /* If this symbol is not defined in a regular file, and we are
1280 not generating a shared library, then set the symbol to this
1281 location in the .plt. This is required to make function
1282 pointers compare as equal between the normal executable and
1283 the shared library. */
1285 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1287 h->root.u.def.section = s;
1288 h->root.u.def.value = h->plt.offset;
1291 /* Make room for this entry. */
1292 s->_raw_size += PLT_ENTRY_SIZE;
1294 /* We also need to make an entry in the .got.plt section, which
1295 will be placed in the .got section by the linker script. */
1296 htab->sgotplt->_raw_size += 4;
1298 /* We also need to make an entry in the .rel.plt section. */
1299 htab->srelplt->_raw_size += sizeof (Elf32_External_Rel);
1303 h->plt.offset = (bfd_vma) -1;
1304 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1309 h->plt.offset = (bfd_vma) -1;
1310 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1313 if (h->got.refcount > 0)
1318 /* Make sure this symbol is output as a dynamic symbol.
1319 Undefined weak syms won't yet be marked as dynamic. */
1320 if (h->dynindx == -1
1321 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1323 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1328 h->got.offset = s->_raw_size;
1330 dyn = htab->elf.dynamic_sections_created;
1331 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1332 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1335 h->got.offset = (bfd_vma) -1;
1337 eh = (struct elf_i386_link_hash_entry *) h;
1338 if (eh->dyn_relocs == NULL)
1341 /* In the shared -Bsymbolic case, discard space allocated for
1342 dynamic pc-relative relocs against symbols which turn out to be
1343 defined in regular objects. For the normal shared case, discard
1344 space for pc-relative relocs that have become local due to symbol
1345 visibility changes. */
1349 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1350 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1353 struct elf_i386_dyn_relocs **pp;
1355 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1357 p->count -= p->pc_count;
1368 /* For the non-shared case, discard space for relocs against
1369 symbols which turn out to need copy relocs or are not
1372 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1373 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1374 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1375 || (htab->elf.dynamic_sections_created
1376 && (h->root.type == bfd_link_hash_undefweak
1377 || h->root.type == bfd_link_hash_undefined))))
1379 /* Make sure this symbol is output as a dynamic symbol.
1380 Undefined weak syms won't yet be marked as dynamic. */
1381 if (h->dynindx == -1
1382 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1384 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1388 /* If that succeeded, we know we'll be keeping all the
1390 if (h->dynindx != -1)
1394 eh->dyn_relocs = NULL;
1399 /* Finally, allocate space. */
1400 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1402 asection *sreloc = elf_section_data (p->sec)->sreloc;
1403 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rel);
1409 /* Find any dynamic relocs that apply to read-only sections. */
1412 readonly_dynrelocs (h, inf)
1413 struct elf_link_hash_entry *h;
1416 struct elf_i386_link_hash_entry *eh;
1417 struct elf_i386_dyn_relocs *p;
1419 eh = (struct elf_i386_link_hash_entry *) h;
1420 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1422 asection *s = p->sec->output_section;
1424 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1426 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1428 info->flags |= DF_TEXTREL;
1430 /* Not an error, just cut short the traversal. */
1437 /* Set the sizes of the dynamic sections. */
1440 elf_i386_size_dynamic_sections (output_bfd, info)
1441 bfd *output_bfd ATTRIBUTE_UNUSED;
1442 struct bfd_link_info *info;
1444 struct elf_i386_link_hash_table *htab;
1450 htab = elf_i386_hash_table (info);
1451 dynobj = htab->elf.dynobj;
1455 if (htab->elf.dynamic_sections_created)
1457 /* Set the contents of the .interp section to the interpreter. */
1460 s = bfd_get_section_by_name (dynobj, ".interp");
1463 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1464 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1468 /* Set up .got offsets for local syms, and space for local dynamic
1470 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1472 bfd_signed_vma *local_got;
1473 bfd_signed_vma *end_local_got;
1474 bfd_size_type locsymcount;
1475 Elf_Internal_Shdr *symtab_hdr;
1478 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1481 for (s = ibfd->sections; s != NULL; s = s->next)
1483 bfd_size_type count = elf_section_data (s)->local_dynrel;
1487 srel = elf_section_data (s)->sreloc;
1488 srel->_raw_size += count * sizeof (Elf32_External_Rel);
1492 local_got = elf_local_got_refcounts (ibfd);
1496 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1497 locsymcount = symtab_hdr->sh_info;
1498 end_local_got = local_got + locsymcount;
1500 srel = htab->srelgot;
1501 for (; local_got < end_local_got; ++local_got)
1505 *local_got = s->_raw_size;
1508 srel->_raw_size += sizeof (Elf32_External_Rel);
1511 *local_got = (bfd_vma) -1;
1515 /* Allocate global sym .plt and .got entries, and space for global
1516 sym dynamic relocs. */
1517 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1519 /* We now have determined the sizes of the various dynamic sections.
1520 Allocate memory for them. */
1522 for (s = dynobj->sections; s != NULL; s = s->next)
1524 if ((s->flags & SEC_LINKER_CREATED) == 0)
1529 || s == htab->sgotplt)
1531 /* Strip this section if we don't need it; see the
1534 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1536 if (s->_raw_size != 0 && s != htab->srelplt)
1539 /* We use the reloc_count field as a counter if we need
1540 to copy relocs into the output file. */
1545 /* It's not one of our sections, so don't allocate space. */
1549 if (s->_raw_size == 0)
1551 /* If we don't need this section, strip it from the
1552 output file. This is mostly to handle .rel.bss and
1553 .rel.plt. We must create both sections in
1554 create_dynamic_sections, because they must be created
1555 before the linker maps input sections to output
1556 sections. The linker does that before
1557 adjust_dynamic_symbol is called, and it is that
1558 function which decides whether anything needs to go
1559 into these sections. */
1561 _bfd_strip_section_from_output (info, s);
1565 /* Allocate memory for the section contents. We use bfd_zalloc
1566 here in case unused entries are not reclaimed before the
1567 section's contents are written out. This should not happen,
1568 but this way if it does, we get a R_386_NONE reloc instead
1570 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1571 if (s->contents == NULL)
1575 if (htab->elf.dynamic_sections_created)
1577 /* Add some entries to the .dynamic section. We fill in the
1578 values later, in elf_i386_finish_dynamic_sections, but we
1579 must add the entries now so that we get the correct size for
1580 the .dynamic section. The DT_DEBUG entry is filled in by the
1581 dynamic linker and used by the debugger. */
1582 #define add_dynamic_entry(TAG, VAL) \
1583 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1587 if (!add_dynamic_entry (DT_DEBUG, 0))
1591 if (htab->splt->_raw_size != 0)
1593 if (!add_dynamic_entry (DT_PLTGOT, 0)
1594 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1595 || !add_dynamic_entry (DT_PLTREL, DT_REL)
1596 || !add_dynamic_entry (DT_JMPREL, 0))
1602 if (!add_dynamic_entry (DT_REL, 0)
1603 || !add_dynamic_entry (DT_RELSZ, 0)
1604 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
1607 /* If any dynamic relocs apply to a read-only section,
1608 then we need a DT_TEXTREL entry. */
1609 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info);
1611 if ((info->flags & DF_TEXTREL) != 0)
1613 if (!add_dynamic_entry (DT_TEXTREL, 0))
1618 #undef add_dynamic_entry
1623 /* Set the correct type for an x86 ELF section. We do this by the
1624 section name, which is a hack, but ought to work. */
1627 elf_i386_fake_sections (abfd, hdr, sec)
1628 bfd *abfd ATTRIBUTE_UNUSED;
1629 Elf32_Internal_Shdr *hdr;
1632 register const char *name;
1634 name = bfd_get_section_name (abfd, sec);
1636 /* This is an ugly, but unfortunately necessary hack that is
1637 needed when producing EFI binaries on x86. It tells
1638 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1639 containing ELF relocation info. We need this hack in order to
1640 be able to generate ELF binaries that can be translated into
1641 EFI applications (which are essentially COFF objects). Those
1642 files contain a COFF ".reloc" section inside an ELFNN object,
1643 which would normally cause BFD to segfault because it would
1644 attempt to interpret this section as containing relocation
1645 entries for section "oc". With this hack enabled, ".reloc"
1646 will be treated as a normal data section, which will avoid the
1647 segfault. However, you won't be able to create an ELFNN binary
1648 with a section named "oc" that needs relocations, but that's
1649 the kind of ugly side-effects you get when detecting section
1650 types based on their names... In practice, this limitation is
1651 unlikely to bite. */
1652 if (strcmp (name, ".reloc") == 0)
1653 hdr->sh_type = SHT_PROGBITS;
1658 /* Relocate an i386 ELF section. */
1661 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1662 contents, relocs, local_syms, local_sections)
1664 struct bfd_link_info *info;
1666 asection *input_section;
1668 Elf_Internal_Rela *relocs;
1669 Elf_Internal_Sym *local_syms;
1670 asection **local_sections;
1672 struct elf_i386_link_hash_table *htab;
1673 Elf_Internal_Shdr *symtab_hdr;
1674 struct elf_link_hash_entry **sym_hashes;
1675 bfd_vma *local_got_offsets;
1676 Elf_Internal_Rela *rel;
1677 Elf_Internal_Rela *relend;
1679 htab = elf_i386_hash_table (info);
1680 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1681 sym_hashes = elf_sym_hashes (input_bfd);
1682 local_got_offsets = elf_local_got_offsets (input_bfd);
1685 relend = relocs + input_section->reloc_count;
1686 for (; rel < relend; rel++)
1689 reloc_howto_type *howto;
1690 unsigned long r_symndx;
1691 struct elf_link_hash_entry *h;
1692 Elf_Internal_Sym *sym;
1696 boolean unresolved_reloc;
1697 bfd_reloc_status_type r;
1700 r_type = ELF32_R_TYPE (rel->r_info);
1701 if (r_type == (int) R_386_GNU_VTINHERIT
1702 || r_type == (int) R_386_GNU_VTENTRY)
1705 if ((indx = (unsigned) r_type) >= R_386_standard
1706 && ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
1707 >= R_386_ext - R_386_standard))
1709 bfd_set_error (bfd_error_bad_value);
1712 howto = elf_howto_table + indx;
1714 r_symndx = ELF32_R_SYM (rel->r_info);
1716 if (info->relocateable)
1718 /* This is a relocatable link. We don't have to change
1719 anything, unless the reloc is against a section symbol,
1720 in which case we have to adjust according to where the
1721 section symbol winds up in the output section. */
1722 if (r_symndx < symtab_hdr->sh_info)
1724 sym = local_syms + r_symndx;
1725 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1729 sec = local_sections[r_symndx];
1730 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1731 val += sec->output_offset + sym->st_value;
1732 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1738 /* This is a final link. */
1742 unresolved_reloc = false;
1743 if (r_symndx < symtab_hdr->sh_info)
1745 sym = local_syms + r_symndx;
1746 sec = local_sections[r_symndx];
1747 relocation = (sec->output_section->vma
1748 + sec->output_offset
1753 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1754 while (h->root.type == bfd_link_hash_indirect
1755 || h->root.type == bfd_link_hash_warning)
1756 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1759 if (h->root.type == bfd_link_hash_defined
1760 || h->root.type == bfd_link_hash_defweak)
1762 sec = h->root.u.def.section;
1763 if (sec->output_section == NULL)
1764 /* Set a flag that will be cleared later if we find a
1765 relocation value for this symbol. output_section
1766 is typically NULL for symbols satisfied by a shared
1768 unresolved_reloc = true;
1770 relocation = (h->root.u.def.value
1771 + sec->output_section->vma
1772 + sec->output_offset);
1774 else if (h->root.type == bfd_link_hash_undefweak)
1776 else if (info->shared
1777 && (!info->symbolic || info->allow_shlib_undefined)
1778 && !info->no_undefined
1779 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1783 if (! ((*info->callbacks->undefined_symbol)
1784 (info, h->root.root.string, input_bfd,
1785 input_section, rel->r_offset,
1786 (!info->shared || info->no_undefined
1787 || ELF_ST_VISIBILITY (h->other)))))
1795 /* Relocation is to the entry for this symbol in the global
1797 if (htab->sgot == NULL)
1804 off = h->got.offset;
1805 dyn = htab->elf.dynamic_sections_created;
1806 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1810 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1811 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1813 /* This is actually a static link, or it is a
1814 -Bsymbolic link and the symbol is defined
1815 locally, or the symbol was forced to be local
1816 because of a version file. We must initialize
1817 this entry in the global offset table. Since the
1818 offset must always be a multiple of 4, we use the
1819 least significant bit to record whether we have
1820 initialized it already.
1822 When doing a dynamic link, we create a .rel.got
1823 relocation entry to initialize the value. This
1824 is done in the finish_dynamic_symbol routine. */
1829 bfd_put_32 (output_bfd, relocation,
1830 htab->sgot->contents + off);
1835 unresolved_reloc = false;
1839 if (local_got_offsets == NULL)
1842 off = local_got_offsets[r_symndx];
1844 /* The offset must always be a multiple of 4. We use
1845 the least significant bit to record whether we have
1846 already generated the necessary reloc. */
1851 bfd_put_32 (output_bfd, relocation,
1852 htab->sgot->contents + off);
1857 Elf_Internal_Rel outrel;
1858 Elf32_External_Rel *loc;
1860 srelgot = htab->srelgot;
1861 if (srelgot == NULL)
1864 outrel.r_offset = (htab->sgot->output_section->vma
1865 + htab->sgot->output_offset
1867 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1868 loc = (Elf32_External_Rel *) srelgot->contents;
1869 loc += srelgot->reloc_count++;
1870 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1873 local_got_offsets[r_symndx] |= 1;
1877 if (off >= (bfd_vma) -2)
1880 relocation = htab->sgot->output_offset + off;
1884 /* Relocation is relative to the start of the global offset
1887 /* Note that sgot->output_offset is not involved in this
1888 calculation. We always want the start of .got. If we
1889 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1890 permitted by the ABI, we might have to change this
1892 relocation -= htab->sgot->output_section->vma;
1896 /* Use global offset table as symbol value. */
1897 relocation = htab->sgot->output_section->vma;
1898 unresolved_reloc = false;
1902 /* Relocation is to the entry for this symbol in the
1903 procedure linkage table. */
1905 /* Resolve a PLT32 reloc against a local symbol directly,
1906 without using the procedure linkage table. */
1910 if (h->plt.offset == (bfd_vma) -1
1911 || htab->splt == NULL)
1913 /* We didn't make a PLT entry for this symbol. This
1914 happens when statically linking PIC code, or when
1915 using -Bsymbolic. */
1919 relocation = (htab->splt->output_section->vma
1920 + htab->splt->output_offset
1922 unresolved_reloc = false;
1928 && (input_section->flags & SEC_ALLOC) != 0
1929 && (r_type != R_386_PC32
1932 && (! info->symbolic
1933 || (h->elf_link_hash_flags
1934 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1936 && (input_section->flags & SEC_ALLOC) != 0
1939 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1940 && (((h->elf_link_hash_flags
1941 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1942 && (h->elf_link_hash_flags
1943 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1944 || h->root.type == bfd_link_hash_undefweak
1945 || h->root.type == bfd_link_hash_undefined)))
1947 Elf_Internal_Rel outrel;
1948 boolean skip, relocate;
1950 Elf32_External_Rel *loc;
1952 /* When generating a shared object, these relocations
1953 are copied into the output file to be resolved at run
1958 if (elf_section_data (input_section)->stab_info == NULL)
1959 outrel.r_offset = rel->r_offset;
1962 off = (_bfd_stab_section_offset
1963 (output_bfd, htab->elf.stab_info, input_section,
1964 &elf_section_data (input_section)->stab_info,
1966 if (off == (bfd_vma) -1)
1968 outrel.r_offset = off;
1971 outrel.r_offset += (input_section->output_section->vma
1972 + input_section->output_offset);
1976 memset (&outrel, 0, sizeof outrel);
1981 && (r_type == R_386_PC32
1984 || (h->elf_link_hash_flags
1985 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1989 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1993 /* This symbol is local, or marked to become local. */
1995 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1998 sreloc = elf_section_data (input_section)->sreloc;
2002 loc = (Elf32_External_Rel *) sreloc->contents;
2003 loc += sreloc->reloc_count++;
2004 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2006 /* If this reloc is against an external symbol, we do
2007 not want to fiddle with the addend. Otherwise, we
2008 need to include the symbol value so that it becomes
2009 an addend for the dynamic reloc. */
2020 /* FIXME: Why do we allow debugging sections to escape this error?
2021 More importantly, why do we not emit dynamic relocs for
2022 R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
2023 If we had emitted the dynamic reloc, we could remove the
2025 if (unresolved_reloc
2027 && (input_section->flags & SEC_DEBUGGING) != 0
2028 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2029 (*_bfd_error_handler)
2030 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2031 bfd_archive_filename (input_bfd),
2032 bfd_get_section_name (input_bfd, input_section),
2033 (long) rel->r_offset,
2034 h->root.root.string);
2036 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2037 contents, rel->r_offset,
2038 relocation, (bfd_vma) 0);
2045 case bfd_reloc_overflow:
2050 name = h->root.root.string;
2053 name = bfd_elf_string_from_elf_section (input_bfd,
2054 symtab_hdr->sh_link,
2059 name = bfd_section_name (input_bfd, sec);
2061 if (! ((*info->callbacks->reloc_overflow)
2062 (info, name, howto->name, (bfd_vma) 0,
2063 input_bfd, input_section, rel->r_offset)))
2069 case bfd_reloc_outofrange:
2078 /* Finish up dynamic symbol handling. We set the contents of various
2079 dynamic sections here. */
2082 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
2084 struct bfd_link_info *info;
2085 struct elf_link_hash_entry *h;
2086 Elf_Internal_Sym *sym;
2088 struct elf_i386_link_hash_table *htab;
2090 htab = elf_i386_hash_table (info);
2092 if (h->plt.offset != (bfd_vma) -1)
2096 Elf_Internal_Rel rel;
2097 Elf32_External_Rel *loc;
2099 /* This symbol has an entry in the procedure linkage table. Set
2102 if (h->dynindx == -1
2103 || htab->splt == NULL
2104 || htab->sgotplt == NULL
2105 || htab->srelplt == NULL)
2108 /* Get the index in the procedure linkage table which
2109 corresponds to this symbol. This is the index of this symbol
2110 in all the symbols for which we are making plt entries. The
2111 first entry in the procedure linkage table is reserved. */
2112 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2114 /* Get the offset into the .got table of the entry that
2115 corresponds to this function. Each .got entry is 4 bytes.
2116 The first three are reserved. */
2117 got_offset = (plt_index + 3) * 4;
2119 /* Fill in the entry in the procedure linkage table. */
2122 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
2124 bfd_put_32 (output_bfd,
2125 (htab->sgotplt->output_section->vma
2126 + htab->sgotplt->output_offset
2128 htab->splt->contents + h->plt.offset + 2);
2132 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
2134 bfd_put_32 (output_bfd, got_offset,
2135 htab->splt->contents + h->plt.offset + 2);
2138 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
2139 htab->splt->contents + h->plt.offset + 7);
2140 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
2141 htab->splt->contents + h->plt.offset + 12);
2143 /* Fill in the entry in the global offset table. */
2144 bfd_put_32 (output_bfd,
2145 (htab->splt->output_section->vma
2146 + htab->splt->output_offset
2149 htab->sgotplt->contents + got_offset);
2151 /* Fill in the entry in the .rel.plt section. */
2152 rel.r_offset = (htab->sgotplt->output_section->vma
2153 + htab->sgotplt->output_offset
2155 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
2156 loc = (Elf32_External_Rel *) htab->srelplt->contents + plt_index;
2157 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2159 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2161 /* Mark the symbol as undefined, rather than as defined in
2162 the .plt section. Leave the value alone. This is a clue
2163 for the dynamic linker, to make function pointer
2164 comparisons work between an application and shared
2166 sym->st_shndx = SHN_UNDEF;
2170 if (h->got.offset != (bfd_vma) -1)
2172 Elf_Internal_Rel rel;
2173 Elf32_External_Rel *loc;
2175 /* This symbol has an entry in the global offset table. Set it
2178 if (htab->sgot == NULL || htab->srelgot == NULL)
2181 rel.r_offset = (htab->sgot->output_section->vma
2182 + htab->sgot->output_offset
2183 + (h->got.offset & ~(bfd_vma) 1));
2185 /* If this is a static link, or it is a -Bsymbolic link and the
2186 symbol is defined locally or was forced to be local because
2187 of a version file, we just want to emit a RELATIVE reloc.
2188 The entry in the global offset table will already have been
2189 initialized in the relocate_section function. */
2193 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2194 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2196 BFD_ASSERT((h->got.offset & 1) != 0);
2197 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2201 BFD_ASSERT((h->got.offset & 1) == 0);
2202 bfd_put_32 (output_bfd, (bfd_vma) 0,
2203 htab->sgot->contents + h->got.offset);
2204 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
2207 loc = (Elf32_External_Rel *) htab->srelgot->contents;
2208 loc += htab->srelgot->reloc_count++;
2209 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2212 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2214 Elf_Internal_Rel rel;
2215 Elf32_External_Rel *loc;
2217 /* This symbol needs a copy reloc. Set it up. */
2219 if (h->dynindx == -1
2220 || (h->root.type != bfd_link_hash_defined
2221 && h->root.type != bfd_link_hash_defweak)
2222 || htab->srelbss == NULL)
2225 rel.r_offset = (h->root.u.def.value
2226 + h->root.u.def.section->output_section->vma
2227 + h->root.u.def.section->output_offset);
2228 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
2229 loc = (Elf32_External_Rel *) htab->srelbss->contents;
2230 loc += htab->srelbss->reloc_count++;
2231 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2234 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2235 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2236 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2237 sym->st_shndx = SHN_ABS;
2242 /* Used to decide how to sort relocs in an optimal manner for the
2243 dynamic linker, before writing them out. */
2245 static enum elf_reloc_type_class
2246 elf_i386_reloc_type_class (rela)
2247 const Elf_Internal_Rela *rela;
2249 switch ((int) ELF32_R_TYPE (rela->r_info))
2251 case R_386_RELATIVE:
2252 return reloc_class_relative;
2253 case R_386_JUMP_SLOT:
2254 return reloc_class_plt;
2256 return reloc_class_copy;
2258 return reloc_class_normal;
2262 /* Finish up the dynamic sections. */
2265 elf_i386_finish_dynamic_sections (output_bfd, info)
2267 struct bfd_link_info *info;
2269 struct elf_i386_link_hash_table *htab;
2273 htab = elf_i386_hash_table (info);
2274 dynobj = htab->elf.dynobj;
2275 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2277 if (htab->elf.dynamic_sections_created)
2279 Elf32_External_Dyn *dyncon, *dynconend;
2281 if (sdyn == NULL || htab->sgot == NULL)
2284 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2285 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2286 for (; dyncon < dynconend; dyncon++)
2288 Elf_Internal_Dyn dyn;
2291 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2299 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2303 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2307 s = htab->srelplt->output_section;
2308 if (s->_cooked_size != 0)
2309 dyn.d_un.d_val = s->_cooked_size;
2311 dyn.d_un.d_val = s->_raw_size;
2315 /* My reading of the SVR4 ABI indicates that the
2316 procedure linkage table relocs (DT_JMPREL) should be
2317 included in the overall relocs (DT_REL). This is
2318 what Solaris does. However, UnixWare can not handle
2319 that case. Therefore, we override the DT_RELSZ entry
2320 here to make it not include the JMPREL relocs. Since
2321 the linker script arranges for .rel.plt to follow all
2322 other relocation sections, we don't have to worry
2323 about changing the DT_REL entry. */
2324 if (htab->srelplt != NULL)
2326 s = htab->srelplt->output_section;
2327 if (s->_cooked_size != 0)
2328 dyn.d_un.d_val -= s->_cooked_size;
2330 dyn.d_un.d_val -= s->_raw_size;
2335 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2338 /* Fill in the first entry in the procedure linkage table. */
2339 if (htab->splt && htab->splt->_raw_size > 0)
2342 memcpy (htab->splt->contents,
2343 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
2346 memcpy (htab->splt->contents,
2347 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
2348 bfd_put_32 (output_bfd,
2349 (htab->sgotplt->output_section->vma
2350 + htab->sgotplt->output_offset
2352 htab->splt->contents + 2);
2353 bfd_put_32 (output_bfd,
2354 (htab->sgotplt->output_section->vma
2355 + htab->sgotplt->output_offset
2357 htab->splt->contents + 8);
2360 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2361 really seem like the right value. */
2362 elf_section_data (htab->splt->output_section)
2363 ->this_hdr.sh_entsize = 4;
2369 /* Fill in the first three entries in the global offset table. */
2370 if (htab->sgotplt->_raw_size > 0)
2372 bfd_put_32 (output_bfd,
2373 (sdyn == NULL ? (bfd_vma) 0
2374 : sdyn->output_section->vma + sdyn->output_offset),
2375 htab->sgotplt->contents);
2376 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
2377 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2380 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
2385 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2386 #define TARGET_LITTLE_NAME "elf32-i386"
2387 #define ELF_ARCH bfd_arch_i386
2388 #define ELF_MACHINE_CODE EM_386
2389 #define ELF_MAXPAGESIZE 0x1000
2391 #define elf_backend_can_gc_sections 1
2392 #define elf_backend_can_refcount 1
2393 #define elf_backend_want_got_plt 1
2394 #define elf_backend_plt_readonly 1
2395 #define elf_backend_want_plt_sym 0
2396 #define elf_backend_got_header_size 12
2397 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2399 #define elf_info_to_howto elf_i386_info_to_howto
2400 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2402 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2403 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2404 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2406 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2407 #define elf_backend_check_relocs elf_i386_check_relocs
2408 #define elf_backend_copy_indirect_symbol elf_i386_copy_indirect_symbol
2409 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
2410 #define elf_backend_fake_sections elf_i386_fake_sections
2411 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2412 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2413 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2414 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2415 #define elf_backend_grok_prstatus elf_i386_grok_prstatus
2416 #define elf_backend_grok_psinfo elf_i386_grok_psinfo
2417 #define elf_backend_reloc_type_class elf_i386_reloc_type_class
2418 #define elf_backend_relocate_section elf_i386_relocate_section
2419 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2421 #include "elf32-target.h"