1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
6 Center for Software Science
7 Department of Computer Science
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
11 TLS support written by Randolph Chung <tausq@debian.org>
13 This file is part of BFD, the Binary File Descriptor library.
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or
18 (at your option) any later version.
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
35 #include "elf32-hppa.h"
37 #include "elf32-hppa.h"
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
51 /* We use two hash tables to hold information for linking PA ELF objects.
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
61 There are a number of different stubs generated by the linker.
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
113 : ldw -24(%sp),%rp ; restore the original rp
116 : be,n 0(%sr0,%rp) ; inter-space return. */
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
129 bfd_hash_table "btab"
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
135 elf32_hppa_dyn_reloc_entry "hdh"
137 Always remember to use GNU Coding Style. */
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
143 static const bfd_byte plt_stub[] =
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
155 /* Section name for stubs is the associated section name plus this
157 #define STUB_SUFFIX ".stub"
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
171 #define ELIMINATE_COPY_RELOCS 1
173 enum elf32_hppa_stub_type
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
178 hppa_stub_import_shared,
183 struct elf32_hppa_stub_hash_entry
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
188 /* The stub section. */
191 /* Offset within stub_sec of the beginning of this stub. */
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
199 enum elf32_hppa_stub_type stub_type;
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
209 struct elf32_hppa_link_hash_entry
211 struct elf_link_hash_entry eh;
213 /* A pointer to the most recently used stub hash entry against this
215 struct elf32_hppa_stub_hash_entry *hsh_cache;
217 /* Used to count relocations for delayed sizing of relocation
219 struct elf32_hppa_dyn_reloc_entry
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *hdh_next;
224 /* The input section of the reloc. */
227 /* Number of relocs copied in this section. */
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count;
238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel:1;
245 struct elf32_hppa_link_hash_table
247 /* The main hash table. */
248 struct elf_link_hash_table etab;
250 /* The stub hash table. */
251 struct bfd_hash_table bstab;
253 /* Linker stub bfd. */
256 /* Linker call-backs. */
257 asection * (*add_stub_section) (const char *, asection *);
258 void (*layout_sections_again) (void);
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
264 /* This is the section to which stubs in the group will be
267 /* The stub section. */
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count;
274 asection **input_list;
275 Elf_Internal_Sym **all_local_syms;
277 /* Short-cuts to get to dynamic linker sections. */
285 /* Used during a final link to store the base of the text and data
286 segments so that we can perform SEGREL relocations. */
287 bfd_vma text_segment_base;
288 bfd_vma data_segment_base;
290 /* Whether we support multiple sub-spaces for shared libs. */
291 unsigned int multi_subspace:1;
293 /* Flags set when various size branches are detected. Used to
294 select suitable defaults for the stub group size. */
295 unsigned int has_12bit_branch:1;
296 unsigned int has_17bit_branch:1;
297 unsigned int has_22bit_branch:1;
299 /* Set if we need a .plt stub to support lazy dynamic linking. */
300 unsigned int need_plt_stub:1;
302 /* Small local sym to section mapping cache. */
303 struct sym_sec_cache sym_sec;
305 /* Data for LDM relocations. */
308 bfd_signed_vma refcount;
313 /* Various hash macros and functions. */
314 #define hppa_link_hash_table(p) \
315 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
317 #define hppa_elf_hash_entry(ent) \
318 ((struct elf32_hppa_link_hash_entry *)(ent))
320 #define hppa_stub_hash_entry(ent) \
321 ((struct elf32_hppa_stub_hash_entry *)(ent))
323 #define hppa_stub_hash_lookup(table, string, create, copy) \
324 ((struct elf32_hppa_stub_hash_entry *) \
325 bfd_hash_lookup ((table), (string), (create), (copy)))
327 #define hppa_elf_local_got_tls_type(abfd) \
328 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
330 #define hh_name(hh) \
331 (hh ? hh->eh.root.root.string : "<undef>")
333 #define eh_name(eh) \
334 (eh ? eh->root.root.string : "<undef>")
336 /* Assorted hash table functions. */
338 /* Initialize an entry in the stub hash table. */
340 static struct bfd_hash_entry *
341 stub_hash_newfunc (struct bfd_hash_entry *entry,
342 struct bfd_hash_table *table,
345 /* Allocate the structure if it has not already been allocated by a
349 entry = bfd_hash_allocate (table,
350 sizeof (struct elf32_hppa_stub_hash_entry));
355 /* Call the allocation method of the superclass. */
356 entry = bfd_hash_newfunc (entry, table, string);
359 struct elf32_hppa_stub_hash_entry *hsh;
361 /* Initialize the local fields. */
362 hsh = hppa_stub_hash_entry (entry);
363 hsh->stub_sec = NULL;
364 hsh->stub_offset = 0;
365 hsh->target_value = 0;
366 hsh->target_section = NULL;
367 hsh->stub_type = hppa_stub_long_branch;
375 /* Initialize an entry in the link hash table. */
377 static struct bfd_hash_entry *
378 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
379 struct bfd_hash_table *table,
382 /* Allocate the structure if it has not already been allocated by a
386 entry = bfd_hash_allocate (table,
387 sizeof (struct elf32_hppa_link_hash_entry));
392 /* Call the allocation method of the superclass. */
393 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
396 struct elf32_hppa_link_hash_entry *hh;
398 /* Initialize the local fields. */
399 hh = hppa_elf_hash_entry (entry);
400 hh->hsh_cache = NULL;
401 hh->dyn_relocs = NULL;
403 hh->tls_type = GOT_UNKNOWN;
409 /* Create the derived linker hash table. The PA ELF port uses the derived
410 hash table to keep information specific to the PA ELF linker (without
411 using static variables). */
413 static struct bfd_link_hash_table *
414 elf32_hppa_link_hash_table_create (bfd *abfd)
416 struct elf32_hppa_link_hash_table *htab;
417 bfd_size_type amt = sizeof (*htab);
419 htab = bfd_malloc (amt);
423 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
424 sizeof (struct elf32_hppa_link_hash_entry)))
430 /* Init the stub hash table too. */
431 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
432 sizeof (struct elf32_hppa_stub_hash_entry)))
435 htab->stub_bfd = NULL;
436 htab->add_stub_section = NULL;
437 htab->layout_sections_again = NULL;
438 htab->stub_group = NULL;
440 htab->srelgot = NULL;
442 htab->srelplt = NULL;
443 htab->sdynbss = NULL;
444 htab->srelbss = NULL;
445 htab->text_segment_base = (bfd_vma) -1;
446 htab->data_segment_base = (bfd_vma) -1;
447 htab->multi_subspace = 0;
448 htab->has_12bit_branch = 0;
449 htab->has_17bit_branch = 0;
450 htab->has_22bit_branch = 0;
451 htab->need_plt_stub = 0;
452 htab->sym_sec.abfd = NULL;
453 htab->tls_ldm_got.refcount = 0;
455 return &htab->etab.root;
458 /* Free the derived linker hash table. */
461 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
463 struct elf32_hppa_link_hash_table *htab
464 = (struct elf32_hppa_link_hash_table *) btab;
466 bfd_hash_table_free (&htab->bstab);
467 _bfd_generic_link_hash_table_free (btab);
470 /* Build a name for an entry in the stub hash table. */
473 hppa_stub_name (const asection *input_section,
474 const asection *sym_sec,
475 const struct elf32_hppa_link_hash_entry *hh,
476 const Elf_Internal_Rela *rela)
483 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
484 stub_name = bfd_malloc (len);
485 if (stub_name != NULL)
486 sprintf (stub_name, "%08x_%s+%x",
487 input_section->id & 0xffffffff,
489 (int) rela->r_addend & 0xffffffff);
493 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
494 stub_name = bfd_malloc (len);
495 if (stub_name != NULL)
496 sprintf (stub_name, "%08x_%x:%x+%x",
497 input_section->id & 0xffffffff,
498 sym_sec->id & 0xffffffff,
499 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
500 (int) rela->r_addend & 0xffffffff);
505 /* Look up an entry in the stub hash. Stub entries are cached because
506 creating the stub name takes a bit of time. */
508 static struct elf32_hppa_stub_hash_entry *
509 hppa_get_stub_entry (const asection *input_section,
510 const asection *sym_sec,
511 struct elf32_hppa_link_hash_entry *hh,
512 const Elf_Internal_Rela *rela,
513 struct elf32_hppa_link_hash_table *htab)
515 struct elf32_hppa_stub_hash_entry *hsh_entry;
516 const asection *id_sec;
518 /* If this input section is part of a group of sections sharing one
519 stub section, then use the id of the first section in the group.
520 Stub names need to include a section id, as there may well be
521 more than one stub used to reach say, printf, and we need to
522 distinguish between them. */
523 id_sec = htab->stub_group[input_section->id].link_sec;
525 if (hh != NULL && hh->hsh_cache != NULL
526 && hh->hsh_cache->hh == hh
527 && hh->hsh_cache->id_sec == id_sec)
529 hsh_entry = hh->hsh_cache;
535 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
536 if (stub_name == NULL)
539 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
540 stub_name, FALSE, FALSE);
542 hh->hsh_cache = hsh_entry;
550 /* Add a new stub entry to the stub hash. Not all fields of the new
551 stub entry are initialised. */
553 static struct elf32_hppa_stub_hash_entry *
554 hppa_add_stub (const char *stub_name,
556 struct elf32_hppa_link_hash_table *htab)
560 struct elf32_hppa_stub_hash_entry *hsh;
562 link_sec = htab->stub_group[section->id].link_sec;
563 stub_sec = htab->stub_group[section->id].stub_sec;
564 if (stub_sec == NULL)
566 stub_sec = htab->stub_group[link_sec->id].stub_sec;
567 if (stub_sec == NULL)
573 namelen = strlen (link_sec->name);
574 len = namelen + sizeof (STUB_SUFFIX);
575 s_name = bfd_alloc (htab->stub_bfd, len);
579 memcpy (s_name, link_sec->name, namelen);
580 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
581 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
582 if (stub_sec == NULL)
584 htab->stub_group[link_sec->id].stub_sec = stub_sec;
586 htab->stub_group[section->id].stub_sec = stub_sec;
589 /* Enter this entry into the linker stub hash table. */
590 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
594 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
600 hsh->stub_sec = stub_sec;
601 hsh->stub_offset = 0;
602 hsh->id_sec = link_sec;
606 /* Determine the type of stub needed, if any, for a call. */
608 static enum elf32_hppa_stub_type
609 hppa_type_of_stub (asection *input_sec,
610 const Elf_Internal_Rela *rela,
611 struct elf32_hppa_link_hash_entry *hh,
613 struct bfd_link_info *info)
616 bfd_vma branch_offset;
617 bfd_vma max_branch_offset;
621 && hh->eh.plt.offset != (bfd_vma) -1
622 && hh->eh.dynindx != -1
625 || !hh->eh.def_regular
626 || hh->eh.root.type == bfd_link_hash_defweak))
628 /* We need an import stub. Decide between hppa_stub_import
629 and hppa_stub_import_shared later. */
630 return hppa_stub_import;
633 /* Determine where the call point is. */
634 location = (input_sec->output_offset
635 + input_sec->output_section->vma
638 branch_offset = destination - location - 8;
639 r_type = ELF32_R_TYPE (rela->r_info);
641 /* Determine if a long branch stub is needed. parisc branch offsets
642 are relative to the second instruction past the branch, ie. +8
643 bytes on from the branch instruction location. The offset is
644 signed and counts in units of 4 bytes. */
645 if (r_type == (unsigned int) R_PARISC_PCREL17F)
646 max_branch_offset = (1 << (17 - 1)) << 2;
648 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
649 max_branch_offset = (1 << (12 - 1)) << 2;
651 else /* R_PARISC_PCREL22F. */
652 max_branch_offset = (1 << (22 - 1)) << 2;
654 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
655 return hppa_stub_long_branch;
657 return hppa_stub_none;
660 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
661 IN_ARG contains the link info pointer. */
663 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
664 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
666 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
667 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
668 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
670 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
671 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
672 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
673 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
675 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
676 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
678 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
679 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
680 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
681 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
683 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
684 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
685 #define NOP 0x08000240 /* nop */
686 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
687 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
688 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
695 #define LDW_R1_DLT LDW_R1_R19
697 #define LDW_R1_DLT LDW_R1_DP
701 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
703 struct elf32_hppa_stub_hash_entry *hsh;
704 struct bfd_link_info *info;
705 struct elf32_hppa_link_hash_table *htab;
715 /* Massage our args to the form they really have. */
716 hsh = hppa_stub_hash_entry (bh);
717 info = (struct bfd_link_info *)in_arg;
719 htab = hppa_link_hash_table (info);
720 stub_sec = hsh->stub_sec;
722 /* Make a note of the offset within the stubs for this entry. */
723 hsh->stub_offset = stub_sec->size;
724 loc = stub_sec->contents + hsh->stub_offset;
726 stub_bfd = stub_sec->owner;
728 switch (hsh->stub_type)
730 case hppa_stub_long_branch:
731 /* Create the long branch. A long branch is formed with "ldil"
732 loading the upper bits of the target address into a register,
733 then branching with "be" which adds in the lower bits.
734 The "be" has its delay slot nullified. */
735 sym_value = (hsh->target_value
736 + hsh->target_section->output_offset
737 + hsh->target_section->output_section->vma);
739 val = hppa_field_adjust (sym_value, 0, e_lrsel);
740 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
741 bfd_put_32 (stub_bfd, insn, loc);
743 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
744 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
745 bfd_put_32 (stub_bfd, insn, loc + 4);
750 case hppa_stub_long_branch_shared:
751 /* Branches are relative. This is where we are going to. */
752 sym_value = (hsh->target_value
753 + hsh->target_section->output_offset
754 + hsh->target_section->output_section->vma);
756 /* And this is where we are coming from, more or less. */
757 sym_value -= (hsh->stub_offset
758 + stub_sec->output_offset
759 + stub_sec->output_section->vma);
761 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
762 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
763 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
764 bfd_put_32 (stub_bfd, insn, loc + 4);
766 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
767 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
768 bfd_put_32 (stub_bfd, insn, loc + 8);
772 case hppa_stub_import:
773 case hppa_stub_import_shared:
774 off = hsh->hh->eh.plt.offset;
775 if (off >= (bfd_vma) -2)
778 off &= ~ (bfd_vma) 1;
780 + htab->splt->output_offset
781 + htab->splt->output_section->vma
782 - elf_gp (htab->splt->output_section->owner));
786 if (hsh->stub_type == hppa_stub_import_shared)
789 val = hppa_field_adjust (sym_value, 0, e_lrsel),
790 insn = hppa_rebuild_insn ((int) insn, val, 21);
791 bfd_put_32 (stub_bfd, insn, loc);
793 /* It is critical to use lrsel/rrsel here because we are using
794 two different offsets (+0 and +4) from sym_value. If we use
795 lsel/rsel then with unfortunate sym_values we will round
796 sym_value+4 up to the next 2k block leading to a mis-match
797 between the lsel and rsel value. */
798 val = hppa_field_adjust (sym_value, 0, e_rrsel);
799 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
800 bfd_put_32 (stub_bfd, insn, loc + 4);
802 if (htab->multi_subspace)
804 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
805 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
806 bfd_put_32 (stub_bfd, insn, loc + 8);
808 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
809 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
810 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
811 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
817 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
818 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
819 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
820 bfd_put_32 (stub_bfd, insn, loc + 12);
827 case hppa_stub_export:
828 /* Branches are relative. This is where we are going to. */
829 sym_value = (hsh->target_value
830 + hsh->target_section->output_offset
831 + hsh->target_section->output_section->vma);
833 /* And this is where we are coming from. */
834 sym_value -= (hsh->stub_offset
835 + stub_sec->output_offset
836 + stub_sec->output_section->vma);
838 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
839 && (!htab->has_22bit_branch
840 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
842 (*_bfd_error_handler)
843 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
844 hsh->target_section->owner,
846 (long) hsh->stub_offset,
847 hsh->bh_root.string);
848 bfd_set_error (bfd_error_bad_value);
852 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
853 if (!htab->has_22bit_branch)
854 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
856 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
857 bfd_put_32 (stub_bfd, insn, loc);
859 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
860 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
861 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
862 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
863 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
865 /* Point the function symbol at the stub. */
866 hsh->hh->eh.root.u.def.section = stub_sec;
867 hsh->hh->eh.root.u.def.value = stub_sec->size;
877 stub_sec->size += size;
902 /* As above, but don't actually build the stub. Just bump offset so
903 we know stub section sizes. */
906 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
908 struct elf32_hppa_stub_hash_entry *hsh;
909 struct elf32_hppa_link_hash_table *htab;
912 /* Massage our args to the form they really have. */
913 hsh = hppa_stub_hash_entry (bh);
916 if (hsh->stub_type == hppa_stub_long_branch)
918 else if (hsh->stub_type == hppa_stub_long_branch_shared)
920 else if (hsh->stub_type == hppa_stub_export)
922 else /* hppa_stub_import or hppa_stub_import_shared. */
924 if (htab->multi_subspace)
930 hsh->stub_sec->size += size;
934 /* Return nonzero if ABFD represents an HPPA ELF32 file.
935 Additionally we set the default architecture and machine. */
938 elf32_hppa_object_p (bfd *abfd)
940 Elf_Internal_Ehdr * i_ehdrp;
943 i_ehdrp = elf_elfheader (abfd);
944 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
946 /* GCC on hppa-linux produces binaries with OSABI=Linux,
947 but the kernel produces corefiles with OSABI=SysV. */
948 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
949 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
952 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
954 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
955 but the kernel produces corefiles with OSABI=SysV. */
956 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
957 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
962 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
966 flags = i_ehdrp->e_flags;
967 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
970 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
972 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
974 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
975 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
976 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
981 /* Create the .plt and .got sections, and set up our hash table
982 short-cuts to various dynamic sections. */
985 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
987 struct elf32_hppa_link_hash_table *htab;
988 struct elf_link_hash_entry *eh;
990 /* Don't try to create the .plt and .got twice. */
991 htab = hppa_link_hash_table (info);
992 if (htab->splt != NULL)
995 /* Call the generic code to do most of the work. */
996 if (! _bfd_elf_create_dynamic_sections (abfd, info))
999 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1000 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1002 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1003 htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
1008 | SEC_LINKER_CREATED
1010 if (htab->srelgot == NULL
1011 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1014 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1015 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1017 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1018 application, because __canonicalize_funcptr_for_compare needs it. */
1019 eh = elf_hash_table (info)->hgot;
1020 eh->forced_local = 0;
1021 eh->other = STV_DEFAULT;
1022 return bfd_elf_link_record_dynamic_symbol (info, eh);
1025 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1028 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1029 struct elf_link_hash_entry *eh_dir,
1030 struct elf_link_hash_entry *eh_ind)
1032 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1034 hh_dir = hppa_elf_hash_entry (eh_dir);
1035 hh_ind = hppa_elf_hash_entry (eh_ind);
1037 if (hh_ind->dyn_relocs != NULL)
1039 if (hh_dir->dyn_relocs != NULL)
1041 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1042 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1044 /* Add reloc counts against the indirect sym to the direct sym
1045 list. Merge any entries against the same section. */
1046 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1048 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1050 for (hdh_q = hh_dir->dyn_relocs;
1052 hdh_q = hdh_q->hdh_next)
1053 if (hdh_q->sec == hdh_p->sec)
1055 #if RELATIVE_DYNRELOCS
1056 hdh_q->relative_count += hdh_p->relative_count;
1058 hdh_q->count += hdh_p->count;
1059 *hdh_pp = hdh_p->hdh_next;
1063 hdh_pp = &hdh_p->hdh_next;
1065 *hdh_pp = hh_dir->dyn_relocs;
1068 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1069 hh_ind->dyn_relocs = NULL;
1072 if (ELIMINATE_COPY_RELOCS
1073 && eh_ind->root.type != bfd_link_hash_indirect
1074 && eh_dir->dynamic_adjusted)
1076 /* If called to transfer flags for a weakdef during processing
1077 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1078 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1079 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1080 eh_dir->ref_regular |= eh_ind->ref_regular;
1081 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1082 eh_dir->needs_plt |= eh_ind->needs_plt;
1086 if (eh_ind->root.type == bfd_link_hash_indirect
1087 && eh_dir->got.refcount <= 0)
1089 hh_dir->tls_type = hh_ind->tls_type;
1090 hh_ind->tls_type = GOT_UNKNOWN;
1093 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1098 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1099 int r_type, int is_local ATTRIBUTE_UNUSED)
1101 /* For now we don't support linker optimizations. */
1105 /* Look through the relocs for a section during the first phase, and
1106 calculate needed space in the global offset table, procedure linkage
1107 table, and dynamic reloc sections. At this point we haven't
1108 necessarily read all the input files. */
1111 elf32_hppa_check_relocs (bfd *abfd,
1112 struct bfd_link_info *info,
1114 const Elf_Internal_Rela *relocs)
1116 Elf_Internal_Shdr *symtab_hdr;
1117 struct elf_link_hash_entry **eh_syms;
1118 const Elf_Internal_Rela *rela;
1119 const Elf_Internal_Rela *rela_end;
1120 struct elf32_hppa_link_hash_table *htab;
1122 asection *stubreloc;
1123 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1125 if (info->relocatable)
1128 htab = hppa_link_hash_table (info);
1129 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1130 eh_syms = elf_sym_hashes (abfd);
1134 rela_end = relocs + sec->reloc_count;
1135 for (rela = relocs; rela < rela_end; rela++)
1144 unsigned int r_symndx, r_type;
1145 struct elf32_hppa_link_hash_entry *hh;
1148 r_symndx = ELF32_R_SYM (rela->r_info);
1150 if (r_symndx < symtab_hdr->sh_info)
1154 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1155 while (hh->eh.root.type == bfd_link_hash_indirect
1156 || hh->eh.root.type == bfd_link_hash_warning)
1157 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1160 r_type = ELF32_R_TYPE (rela->r_info);
1161 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1165 case R_PARISC_DLTIND14F:
1166 case R_PARISC_DLTIND14R:
1167 case R_PARISC_DLTIND21L:
1168 /* This symbol requires a global offset table entry. */
1169 need_entry = NEED_GOT;
1172 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1173 case R_PARISC_PLABEL21L:
1174 case R_PARISC_PLABEL32:
1175 /* If the addend is non-zero, we break badly. */
1176 if (rela->r_addend != 0)
1179 /* If we are creating a shared library, then we need to
1180 create a PLT entry for all PLABELs, because PLABELs with
1181 local symbols may be passed via a pointer to another
1182 object. Additionally, output a dynamic relocation
1183 pointing to the PLT entry.
1185 For executables, the original 32-bit ABI allowed two
1186 different styles of PLABELs (function pointers): For
1187 global functions, the PLABEL word points into the .plt
1188 two bytes past a (function address, gp) pair, and for
1189 local functions the PLABEL points directly at the
1190 function. The magic +2 for the first type allows us to
1191 differentiate between the two. As you can imagine, this
1192 is a real pain when it comes to generating code to call
1193 functions indirectly or to compare function pointers.
1194 We avoid the mess by always pointing a PLABEL into the
1195 .plt, even for local functions. */
1196 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1199 case R_PARISC_PCREL12F:
1200 htab->has_12bit_branch = 1;
1203 case R_PARISC_PCREL17C:
1204 case R_PARISC_PCREL17F:
1205 htab->has_17bit_branch = 1;
1208 case R_PARISC_PCREL22F:
1209 htab->has_22bit_branch = 1;
1211 /* Function calls might need to go through the .plt, and
1212 might require long branch stubs. */
1215 /* We know local syms won't need a .plt entry, and if
1216 they need a long branch stub we can't guarantee that
1217 we can reach the stub. So just flag an error later
1218 if we're doing a shared link and find we need a long
1224 /* Global symbols will need a .plt entry if they remain
1225 global, and in most cases won't need a long branch
1226 stub. Unfortunately, we have to cater for the case
1227 where a symbol is forced local by versioning, or due
1228 to symbolic linking, and we lose the .plt entry. */
1229 need_entry = NEED_PLT;
1230 if (hh->eh.type == STT_PARISC_MILLI)
1235 case R_PARISC_SEGBASE: /* Used to set segment base. */
1236 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1237 case R_PARISC_PCREL14F: /* PC relative load/store. */
1238 case R_PARISC_PCREL14R:
1239 case R_PARISC_PCREL17R: /* External branches. */
1240 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1241 case R_PARISC_PCREL32:
1242 /* We don't need to propagate the relocation if linking a
1243 shared object since these are section relative. */
1246 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1247 case R_PARISC_DPREL14R:
1248 case R_PARISC_DPREL21L:
1251 (*_bfd_error_handler)
1252 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1254 elf_hppa_howto_table[r_type].name);
1255 bfd_set_error (bfd_error_bad_value);
1260 case R_PARISC_DIR17F: /* Used for external branches. */
1261 case R_PARISC_DIR17R:
1262 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1263 case R_PARISC_DIR14R:
1264 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1265 case R_PARISC_DIR32: /* .word relocs. */
1266 /* We may want to output a dynamic relocation later. */
1267 need_entry = NEED_DYNREL;
1270 /* This relocation describes the C++ object vtable hierarchy.
1271 Reconstruct it for later use during GC. */
1272 case R_PARISC_GNU_VTINHERIT:
1273 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1277 /* This relocation describes which C++ vtable entries are actually
1278 used. Record for later use during GC. */
1279 case R_PARISC_GNU_VTENTRY:
1280 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1284 case R_PARISC_TLS_GD21L:
1285 case R_PARISC_TLS_GD14R:
1286 case R_PARISC_TLS_LDM21L:
1287 case R_PARISC_TLS_LDM14R:
1288 need_entry = NEED_GOT;
1291 case R_PARISC_TLS_IE21L:
1292 case R_PARISC_TLS_IE14R:
1294 info->flags |= DF_STATIC_TLS;
1295 need_entry = NEED_GOT;
1302 /* Now carry out our orders. */
1303 if (need_entry & NEED_GOT)
1308 tls_type = GOT_NORMAL;
1310 case R_PARISC_TLS_GD21L:
1311 case R_PARISC_TLS_GD14R:
1312 tls_type |= GOT_TLS_GD;
1314 case R_PARISC_TLS_LDM21L:
1315 case R_PARISC_TLS_LDM14R:
1316 tls_type |= GOT_TLS_LDM;
1318 case R_PARISC_TLS_IE21L:
1319 case R_PARISC_TLS_IE14R:
1320 tls_type |= GOT_TLS_IE;
1324 /* Allocate space for a GOT entry, as well as a dynamic
1325 relocation for this entry. */
1326 if (htab->sgot == NULL)
1328 if (htab->etab.dynobj == NULL)
1329 htab->etab.dynobj = abfd;
1330 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1334 if (r_type == R_PARISC_TLS_LDM21L
1335 || r_type == R_PARISC_TLS_LDM14R)
1336 hppa_link_hash_table (info)->tls_ldm_got.refcount += 1;
1341 hh->eh.got.refcount += 1;
1342 old_tls_type = hh->tls_type;
1346 bfd_signed_vma *local_got_refcounts;
1348 /* This is a global offset table entry for a local symbol. */
1349 local_got_refcounts = elf_local_got_refcounts (abfd);
1350 if (local_got_refcounts == NULL)
1354 /* Allocate space for local got offsets and local
1355 plt offsets. Done this way to save polluting
1356 elf_obj_tdata with another target specific
1358 size = symtab_hdr->sh_info;
1359 size *= 2 * sizeof (bfd_signed_vma);
1360 /* Add in space to store the local GOT TLS types. */
1361 size += symtab_hdr->sh_info;
1362 local_got_refcounts = bfd_zalloc (abfd, size);
1363 if (local_got_refcounts == NULL)
1365 elf_local_got_refcounts (abfd) = local_got_refcounts;
1366 memset (hppa_elf_local_got_tls_type (abfd),
1367 GOT_UNKNOWN, symtab_hdr->sh_info);
1369 local_got_refcounts[r_symndx] += 1;
1371 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1374 tls_type |= old_tls_type;
1376 if (old_tls_type != tls_type)
1379 hh->tls_type = tls_type;
1381 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1387 if (need_entry & NEED_PLT)
1389 /* If we are creating a shared library, and this is a reloc
1390 against a weak symbol or a global symbol in a dynamic
1391 object, then we will be creating an import stub and a
1392 .plt entry for the symbol. Similarly, on a normal link
1393 to symbols defined in a dynamic object we'll need the
1394 import stub and a .plt entry. We don't know yet whether
1395 the symbol is defined or not, so make an entry anyway and
1396 clean up later in adjust_dynamic_symbol. */
1397 if ((sec->flags & SEC_ALLOC) != 0)
1401 hh->eh.needs_plt = 1;
1402 hh->eh.plt.refcount += 1;
1404 /* If this .plt entry is for a plabel, mark it so
1405 that adjust_dynamic_symbol will keep the entry
1406 even if it appears to be local. */
1407 if (need_entry & PLT_PLABEL)
1410 else if (need_entry & PLT_PLABEL)
1412 bfd_signed_vma *local_got_refcounts;
1413 bfd_signed_vma *local_plt_refcounts;
1415 local_got_refcounts = elf_local_got_refcounts (abfd);
1416 if (local_got_refcounts == NULL)
1420 /* Allocate space for local got offsets and local
1422 size = symtab_hdr->sh_info;
1423 size *= 2 * sizeof (bfd_signed_vma);
1424 /* Add in space to store the local GOT TLS types. */
1425 size += symtab_hdr->sh_info;
1426 local_got_refcounts = bfd_zalloc (abfd, size);
1427 if (local_got_refcounts == NULL)
1429 elf_local_got_refcounts (abfd) = local_got_refcounts;
1431 local_plt_refcounts = (local_got_refcounts
1432 + symtab_hdr->sh_info);
1433 local_plt_refcounts[r_symndx] += 1;
1438 if (need_entry & NEED_DYNREL)
1440 /* Flag this symbol as having a non-got, non-plt reference
1441 so that we generate copy relocs if it turns out to be
1443 if (hh != NULL && !info->shared)
1444 hh->eh.non_got_ref = 1;
1446 /* If we are creating a shared library then we need to copy
1447 the reloc into the shared library. However, if we are
1448 linking with -Bsymbolic, we need only copy absolute
1449 relocs or relocs against symbols that are not defined in
1450 an object we are including in the link. PC- or DP- or
1451 DLT-relative relocs against any local sym or global sym
1452 with DEF_REGULAR set, can be discarded. At this point we
1453 have not seen all the input files, so it is possible that
1454 DEF_REGULAR is not set now but will be set later (it is
1455 never cleared). We account for that possibility below by
1456 storing information in the dyn_relocs field of the
1459 A similar situation to the -Bsymbolic case occurs when
1460 creating shared libraries and symbol visibility changes
1461 render the symbol local.
1463 As it turns out, all the relocs we will be creating here
1464 are absolute, so we cannot remove them on -Bsymbolic
1465 links or visibility changes anyway. A STUB_REL reloc
1466 is absolute too, as in that case it is the reloc in the
1467 stub we will be creating, rather than copying the PCREL
1468 reloc in the branch.
1470 If on the other hand, we are creating an executable, we
1471 may need to keep relocations for symbols satisfied by a
1472 dynamic library if we manage to avoid copy relocs for the
1475 && (sec->flags & SEC_ALLOC) != 0
1476 && (IS_ABSOLUTE_RELOC (r_type)
1479 || hh->eh.root.type == bfd_link_hash_defweak
1480 || !hh->eh.def_regular))))
1481 || (ELIMINATE_COPY_RELOCS
1483 && (sec->flags & SEC_ALLOC) != 0
1485 && (hh->eh.root.type == bfd_link_hash_defweak
1486 || !hh->eh.def_regular)))
1488 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1489 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1491 /* Create a reloc section in dynobj and make room for
1498 name = (bfd_elf_string_from_elf_section
1500 elf_elfheader (abfd)->e_shstrndx,
1501 elf_section_data (sec)->rel_hdr.sh_name));
1504 (*_bfd_error_handler)
1505 (_("Could not find relocation section for %s"),
1507 bfd_set_error (bfd_error_bad_value);
1511 if (htab->etab.dynobj == NULL)
1512 htab->etab.dynobj = abfd;
1514 dynobj = htab->etab.dynobj;
1515 sreloc = bfd_get_section_by_name (dynobj, name);
1520 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1521 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1522 if ((sec->flags & SEC_ALLOC) != 0)
1523 flags |= SEC_ALLOC | SEC_LOAD;
1524 sreloc = bfd_make_section_with_flags (dynobj,
1528 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1532 elf_section_data (sec)->sreloc = sreloc;
1535 /* If this is a global symbol, we count the number of
1536 relocations we need for this symbol. */
1539 hdh_head = &hh->dyn_relocs;
1543 /* Track dynamic relocs needed for local syms too.
1544 We really need local syms available to do this
1550 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1555 vpp = &elf_section_data (sr)->local_dynrel;
1556 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1560 if (hdh_p == NULL || hdh_p->sec != sec)
1562 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1565 hdh_p->hdh_next = *hdh_head;
1569 #if RELATIVE_DYNRELOCS
1570 hdh_p->relative_count = 0;
1575 #if RELATIVE_DYNRELOCS
1576 if (!IS_ABSOLUTE_RELOC (rtype))
1577 hdh_p->relative_count += 1;
1586 /* Return the section that should be marked against garbage collection
1587 for a given relocation. */
1590 elf32_hppa_gc_mark_hook (asection *sec,
1591 struct bfd_link_info *info,
1592 Elf_Internal_Rela *rela,
1593 struct elf_link_hash_entry *hh,
1594 Elf_Internal_Sym *sym)
1597 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1599 case R_PARISC_GNU_VTINHERIT:
1600 case R_PARISC_GNU_VTENTRY:
1604 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1607 /* Update the got and plt entry reference counts for the section being
1611 elf32_hppa_gc_sweep_hook (bfd *abfd,
1612 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1614 const Elf_Internal_Rela *relocs)
1616 Elf_Internal_Shdr *symtab_hdr;
1617 struct elf_link_hash_entry **eh_syms;
1618 bfd_signed_vma *local_got_refcounts;
1619 bfd_signed_vma *local_plt_refcounts;
1620 const Elf_Internal_Rela *rela, *relend;
1622 elf_section_data (sec)->local_dynrel = NULL;
1624 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1625 eh_syms = elf_sym_hashes (abfd);
1626 local_got_refcounts = elf_local_got_refcounts (abfd);
1627 local_plt_refcounts = local_got_refcounts;
1628 if (local_plt_refcounts != NULL)
1629 local_plt_refcounts += symtab_hdr->sh_info;
1631 relend = relocs + sec->reloc_count;
1632 for (rela = relocs; rela < relend; rela++)
1634 unsigned long r_symndx;
1635 unsigned int r_type;
1636 struct elf_link_hash_entry *eh = NULL;
1638 r_symndx = ELF32_R_SYM (rela->r_info);
1639 if (r_symndx >= symtab_hdr->sh_info)
1641 struct elf32_hppa_link_hash_entry *hh;
1642 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1643 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1645 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1646 while (eh->root.type == bfd_link_hash_indirect
1647 || eh->root.type == bfd_link_hash_warning)
1648 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1649 hh = hppa_elf_hash_entry (eh);
1651 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1652 if (hdh_p->sec == sec)
1654 /* Everything must go for SEC. */
1655 *hdh_pp = hdh_p->hdh_next;
1660 r_type = ELF32_R_TYPE (rela->r_info);
1661 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1665 case R_PARISC_DLTIND14F:
1666 case R_PARISC_DLTIND14R:
1667 case R_PARISC_DLTIND21L:
1668 case R_PARISC_TLS_GD21L:
1669 case R_PARISC_TLS_GD14R:
1670 case R_PARISC_TLS_IE21L:
1671 case R_PARISC_TLS_IE14R:
1674 if (eh->got.refcount > 0)
1675 eh->got.refcount -= 1;
1677 else if (local_got_refcounts != NULL)
1679 if (local_got_refcounts[r_symndx] > 0)
1680 local_got_refcounts[r_symndx] -= 1;
1684 case R_PARISC_TLS_LDM21L:
1685 case R_PARISC_TLS_LDM14R:
1686 hppa_link_hash_table (info)->tls_ldm_got.refcount -= 1;
1689 case R_PARISC_PCREL12F:
1690 case R_PARISC_PCREL17C:
1691 case R_PARISC_PCREL17F:
1692 case R_PARISC_PCREL22F:
1695 if (eh->plt.refcount > 0)
1696 eh->plt.refcount -= 1;
1700 case R_PARISC_PLABEL14R:
1701 case R_PARISC_PLABEL21L:
1702 case R_PARISC_PLABEL32:
1705 if (eh->plt.refcount > 0)
1706 eh->plt.refcount -= 1;
1708 else if (local_plt_refcounts != NULL)
1710 if (local_plt_refcounts[r_symndx] > 0)
1711 local_plt_refcounts[r_symndx] -= 1;
1723 /* Support for core dump NOTE sections. */
1726 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1731 switch (note->descsz)
1736 case 396: /* Linux/hppa */
1738 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1741 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1750 /* Make a ".reg/999" section. */
1751 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1752 size, note->descpos + offset);
1756 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1758 switch (note->descsz)
1763 case 124: /* Linux/hppa elf_prpsinfo. */
1764 elf_tdata (abfd)->core_program
1765 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1766 elf_tdata (abfd)->core_command
1767 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1770 /* Note that for some reason, a spurious space is tacked
1771 onto the end of the args in some (at least one anyway)
1772 implementations, so strip it off if it exists. */
1774 char *command = elf_tdata (abfd)->core_command;
1775 int n = strlen (command);
1777 if (0 < n && command[n - 1] == ' ')
1778 command[n - 1] = '\0';
1784 /* Our own version of hide_symbol, so that we can keep plt entries for
1788 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1789 struct elf_link_hash_entry *eh,
1790 bfd_boolean force_local)
1794 eh->forced_local = 1;
1795 if (eh->dynindx != -1)
1798 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1803 if (! hppa_elf_hash_entry (eh)->plabel)
1806 eh->plt = elf_hash_table (info)->init_plt_refcount;
1810 /* Adjust a symbol defined by a dynamic object and referenced by a
1811 regular object. The current definition is in some section of the
1812 dynamic object, but we're not including those sections. We have to
1813 change the definition to something the rest of the link can
1817 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1818 struct elf_link_hash_entry *eh)
1820 struct elf32_hppa_link_hash_table *htab;
1822 unsigned int power_of_two;
1824 /* If this is a function, put it in the procedure linkage table. We
1825 will fill in the contents of the procedure linkage table later. */
1826 if (eh->type == STT_FUNC
1829 if (eh->plt.refcount <= 0
1831 && eh->root.type != bfd_link_hash_defweak
1832 && ! hppa_elf_hash_entry (eh)->plabel
1833 && (!info->shared || info->symbolic)))
1835 /* The .plt entry is not needed when:
1836 a) Garbage collection has removed all references to the
1838 b) We know for certain the symbol is defined in this
1839 object, and it's not a weak definition, nor is the symbol
1840 used by a plabel relocation. Either this object is the
1841 application or we are doing a shared symbolic link. */
1843 eh->plt.offset = (bfd_vma) -1;
1850 eh->plt.offset = (bfd_vma) -1;
1852 /* If this is a weak symbol, and there is a real definition, the
1853 processor independent code will have arranged for us to see the
1854 real definition first, and we can just use the same value. */
1855 if (eh->u.weakdef != NULL)
1857 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1858 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1860 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1861 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1862 if (ELIMINATE_COPY_RELOCS)
1863 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1867 /* This is a reference to a symbol defined by a dynamic object which
1868 is not a function. */
1870 /* If we are creating a shared library, we must presume that the
1871 only references to the symbol are via the global offset table.
1872 For such cases we need not do anything here; the relocations will
1873 be handled correctly by relocate_section. */
1877 /* If there are no references to this symbol that do not use the
1878 GOT, we don't need to generate a copy reloc. */
1879 if (!eh->non_got_ref)
1882 if (ELIMINATE_COPY_RELOCS)
1884 struct elf32_hppa_link_hash_entry *hh;
1885 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1887 hh = hppa_elf_hash_entry (eh);
1888 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1890 sec = hdh_p->sec->output_section;
1891 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1895 /* If we didn't find any dynamic relocs in read-only sections, then
1896 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1899 eh->non_got_ref = 0;
1906 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1907 eh->root.root.string);
1911 /* We must allocate the symbol in our .dynbss section, which will
1912 become part of the .bss section of the executable. There will be
1913 an entry for this symbol in the .dynsym section. The dynamic
1914 object will contain position independent code, so all references
1915 from the dynamic object to this symbol will go through the global
1916 offset table. The dynamic linker will use the .dynsym entry to
1917 determine the address it must put in the global offset table, so
1918 both the dynamic object and the regular object will refer to the
1919 same memory location for the variable. */
1921 htab = hppa_link_hash_table (info);
1923 /* We must generate a COPY reloc to tell the dynamic linker to
1924 copy the initial value out of the dynamic object and into the
1925 runtime process image. */
1926 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1928 htab->srelbss->size += sizeof (Elf32_External_Rela);
1932 /* We need to figure out the alignment required for this symbol. I
1933 have no idea how other ELF linkers handle this. */
1935 power_of_two = bfd_log2 (eh->size);
1936 if (power_of_two > 3)
1939 /* Apply the required alignment. */
1940 sec = htab->sdynbss;
1941 sec->size = BFD_ALIGN (sec->size, (bfd_size_type) (1 << power_of_two));
1942 if (power_of_two > bfd_get_section_alignment (htab->etab.dynobj, sec))
1944 if (! bfd_set_section_alignment (htab->etab.dynobj, sec, power_of_two))
1948 /* Define the symbol as being at this point in the section. */
1949 eh->root.u.def.section = sec;
1950 eh->root.u.def.value = sec->size;
1952 /* Increment the section size to make room for the symbol. */
1953 sec->size += eh->size;
1958 /* Allocate space in the .plt for entries that won't have relocations.
1959 ie. plabel entries. */
1962 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1964 struct bfd_link_info *info;
1965 struct elf32_hppa_link_hash_table *htab;
1966 struct elf32_hppa_link_hash_entry *hh;
1969 if (eh->root.type == bfd_link_hash_indirect)
1972 if (eh->root.type == bfd_link_hash_warning)
1973 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1975 info = (struct bfd_link_info *) inf;
1976 hh = hppa_elf_hash_entry (eh);
1977 htab = hppa_link_hash_table (info);
1978 if (htab->etab.dynamic_sections_created
1979 && eh->plt.refcount > 0)
1981 /* Make sure this symbol is output as a dynamic symbol.
1982 Undefined weak syms won't yet be marked as dynamic. */
1983 if (eh->dynindx == -1
1984 && !eh->forced_local
1985 && eh->type != STT_PARISC_MILLI)
1987 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1991 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1993 /* Allocate these later. From this point on, h->plabel
1994 means that the plt entry is only used by a plabel.
1995 We'll be using a normal plt entry for this symbol, so
1996 clear the plabel indicator. */
2000 else if (hh->plabel)
2002 /* Make an entry in the .plt section for plabel references
2003 that won't have a .plt entry for other reasons. */
2005 eh->plt.offset = sec->size;
2006 sec->size += PLT_ENTRY_SIZE;
2010 /* No .plt entry needed. */
2011 eh->plt.offset = (bfd_vma) -1;
2017 eh->plt.offset = (bfd_vma) -1;
2024 /* Allocate space in .plt, .got and associated reloc sections for
2028 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2030 struct bfd_link_info *info;
2031 struct elf32_hppa_link_hash_table *htab;
2033 struct elf32_hppa_link_hash_entry *hh;
2034 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2036 if (eh->root.type == bfd_link_hash_indirect)
2039 if (eh->root.type == bfd_link_hash_warning)
2040 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2043 htab = hppa_link_hash_table (info);
2044 hh = hppa_elf_hash_entry (eh);
2046 if (htab->etab.dynamic_sections_created
2047 && eh->plt.offset != (bfd_vma) -1
2049 && eh->plt.refcount > 0)
2051 /* Make an entry in the .plt section. */
2053 eh->plt.offset = sec->size;
2054 sec->size += PLT_ENTRY_SIZE;
2056 /* We also need to make an entry in the .rela.plt section. */
2057 htab->srelplt->size += sizeof (Elf32_External_Rela);
2058 htab->need_plt_stub = 1;
2061 if (eh->got.refcount > 0)
2063 /* Make sure this symbol is output as a dynamic symbol.
2064 Undefined weak syms won't yet be marked as dynamic. */
2065 if (eh->dynindx == -1
2066 && !eh->forced_local
2067 && eh->type != STT_PARISC_MILLI)
2069 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2074 eh->got.offset = sec->size;
2075 sec->size += GOT_ENTRY_SIZE;
2076 /* R_PARISC_TLS_GD* needs two GOT entries */
2077 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2078 sec->size += GOT_ENTRY_SIZE * 2;
2079 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2080 sec->size += GOT_ENTRY_SIZE;
2081 if (htab->etab.dynamic_sections_created
2083 || (eh->dynindx != -1
2084 && !eh->forced_local)))
2086 htab->srelgot->size += sizeof (Elf32_External_Rela);
2087 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2088 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2089 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2090 htab->srelgot->size += sizeof (Elf32_External_Rela);
2094 eh->got.offset = (bfd_vma) -1;
2096 if (hh->dyn_relocs == NULL)
2099 /* If this is a -Bsymbolic shared link, then we need to discard all
2100 space allocated for dynamic pc-relative relocs against symbols
2101 defined in a regular object. For the normal shared case, discard
2102 space for relocs that have become local due to symbol visibility
2106 #if RELATIVE_DYNRELOCS
2107 if (SYMBOL_CALLS_LOCAL (info, eh))
2109 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2111 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2113 hdh_p->count -= hdh_p->relative_count;
2114 hdh_p->relative_count = 0;
2115 if (hdh_p->count == 0)
2116 *hdh_pp = hdh_p->hdh_next;
2118 hdh_pp = &hdh_p->hdh_next;
2123 /* Also discard relocs on undefined weak syms with non-default
2125 if (hh->dyn_relocs != NULL
2126 && eh->root.type == bfd_link_hash_undefweak)
2128 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2129 hh->dyn_relocs = NULL;
2131 /* Make sure undefined weak symbols are output as a dynamic
2133 else if (eh->dynindx == -1
2134 && !eh->forced_local)
2136 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2143 /* For the non-shared case, discard space for relocs against
2144 symbols which turn out to need copy relocs or are not
2147 if (!eh->non_got_ref
2148 && ((ELIMINATE_COPY_RELOCS
2150 && !eh->def_regular)
2151 || (htab->etab.dynamic_sections_created
2152 && (eh->root.type == bfd_link_hash_undefweak
2153 || eh->root.type == bfd_link_hash_undefined))))
2155 /* Make sure this symbol is output as a dynamic symbol.
2156 Undefined weak syms won't yet be marked as dynamic. */
2157 if (eh->dynindx == -1
2158 && !eh->forced_local
2159 && eh->type != STT_PARISC_MILLI)
2161 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2165 /* If that succeeded, we know we'll be keeping all the
2167 if (eh->dynindx != -1)
2171 hh->dyn_relocs = NULL;
2177 /* Finally, allocate space. */
2178 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2180 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2181 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2187 /* This function is called via elf_link_hash_traverse to force
2188 millicode symbols local so they do not end up as globals in the
2189 dynamic symbol table. We ought to be able to do this in
2190 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2191 for all dynamic symbols. Arguably, this is a bug in
2192 elf_adjust_dynamic_symbol. */
2195 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2196 struct bfd_link_info *info)
2198 if (eh->root.type == bfd_link_hash_warning)
2199 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2201 if (eh->type == STT_PARISC_MILLI
2202 && !eh->forced_local)
2204 elf32_hppa_hide_symbol (info, eh, TRUE);
2209 /* Find any dynamic relocs that apply to read-only sections. */
2212 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2214 struct elf32_hppa_link_hash_entry *hh;
2215 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2217 if (eh->root.type == bfd_link_hash_warning)
2218 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2220 hh = hppa_elf_hash_entry (eh);
2221 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2223 asection *sec = hdh_p->sec->output_section;
2225 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2227 struct bfd_link_info *info = inf;
2229 info->flags |= DF_TEXTREL;
2231 /* Not an error, just cut short the traversal. */
2238 /* Set the sizes of the dynamic sections. */
2241 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2242 struct bfd_link_info *info)
2244 struct elf32_hppa_link_hash_table *htab;
2250 htab = hppa_link_hash_table (info);
2251 dynobj = htab->etab.dynobj;
2255 if (htab->etab.dynamic_sections_created)
2257 /* Set the contents of the .interp section to the interpreter. */
2258 if (info->executable)
2260 sec = bfd_get_section_by_name (dynobj, ".interp");
2263 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2264 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2267 /* Force millicode symbols local. */
2268 elf_link_hash_traverse (&htab->etab,
2269 clobber_millicode_symbols,
2273 /* Set up .got and .plt offsets for local syms, and space for local
2275 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2277 bfd_signed_vma *local_got;
2278 bfd_signed_vma *end_local_got;
2279 bfd_signed_vma *local_plt;
2280 bfd_signed_vma *end_local_plt;
2281 bfd_size_type locsymcount;
2282 Elf_Internal_Shdr *symtab_hdr;
2284 char *local_tls_type;
2286 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2289 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2291 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2293 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2294 elf_section_data (sec)->local_dynrel);
2296 hdh_p = hdh_p->hdh_next)
2298 if (!bfd_is_abs_section (hdh_p->sec)
2299 && bfd_is_abs_section (hdh_p->sec->output_section))
2301 /* Input section has been discarded, either because
2302 it is a copy of a linkonce section or due to
2303 linker script /DISCARD/, so we'll be discarding
2306 else if (hdh_p->count != 0)
2308 srel = elf_section_data (hdh_p->sec)->sreloc;
2309 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2310 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2311 info->flags |= DF_TEXTREL;
2316 local_got = elf_local_got_refcounts (ibfd);
2320 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2321 locsymcount = symtab_hdr->sh_info;
2322 end_local_got = local_got + locsymcount;
2323 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2325 srel = htab->srelgot;
2326 for (; local_got < end_local_got; ++local_got)
2330 *local_got = sec->size;
2331 sec->size += GOT_ENTRY_SIZE;
2332 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2333 sec->size += 2 * GOT_ENTRY_SIZE;
2334 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2335 sec->size += GOT_ENTRY_SIZE;
2338 srel->size += sizeof (Elf32_External_Rela);
2339 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2340 srel->size += 2 * sizeof (Elf32_External_Rela);
2341 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2342 srel->size += sizeof (Elf32_External_Rela);
2346 *local_got = (bfd_vma) -1;
2351 local_plt = end_local_got;
2352 end_local_plt = local_plt + locsymcount;
2353 if (! htab->etab.dynamic_sections_created)
2355 /* Won't be used, but be safe. */
2356 for (; local_plt < end_local_plt; ++local_plt)
2357 *local_plt = (bfd_vma) -1;
2362 srel = htab->srelplt;
2363 for (; local_plt < end_local_plt; ++local_plt)
2367 *local_plt = sec->size;
2368 sec->size += PLT_ENTRY_SIZE;
2370 srel->size += sizeof (Elf32_External_Rela);
2373 *local_plt = (bfd_vma) -1;
2378 if (htab->tls_ldm_got.refcount > 0)
2380 /* Allocate 2 got entries and 1 dynamic reloc for
2381 R_PARISC_TLS_DTPMOD32 relocs. */
2382 htab->tls_ldm_got.offset = htab->sgot->size;
2383 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2384 htab->srelgot->size += sizeof (Elf32_External_Rela);
2387 htab->tls_ldm_got.offset = -1;
2389 /* Do all the .plt entries without relocs first. The dynamic linker
2390 uses the last .plt reloc to find the end of the .plt (and hence
2391 the start of the .got) for lazy linking. */
2392 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2394 /* Allocate global sym .plt and .got entries, and space for global
2395 sym dynamic relocs. */
2396 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2398 /* The check_relocs and adjust_dynamic_symbol entry points have
2399 determined the sizes of the various dynamic sections. Allocate
2402 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2404 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2407 if (sec == htab->splt)
2409 if (htab->need_plt_stub)
2411 /* Make space for the plt stub at the end of the .plt
2412 section. We want this stub right at the end, up
2413 against the .got section. */
2414 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2415 int pltalign = bfd_section_alignment (dynobj, sec);
2418 if (gotalign > pltalign)
2419 bfd_set_section_alignment (dynobj, sec, gotalign);
2420 mask = ((bfd_size_type) 1 << gotalign) - 1;
2421 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2424 else if (sec == htab->sgot
2425 || sec == htab->sdynbss)
2427 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2431 /* Remember whether there are any reloc sections other
2433 if (sec != htab->srelplt)
2436 /* We use the reloc_count field as a counter if we need
2437 to copy relocs into the output file. */
2438 sec->reloc_count = 0;
2443 /* It's not one of our sections, so don't allocate space. */
2449 /* If we don't need this section, strip it from the
2450 output file. This is mostly to handle .rela.bss and
2451 .rela.plt. We must create both sections in
2452 create_dynamic_sections, because they must be created
2453 before the linker maps input sections to output
2454 sections. The linker does that before
2455 adjust_dynamic_symbol is called, and it is that
2456 function which decides whether anything needs to go
2457 into these sections. */
2458 sec->flags |= SEC_EXCLUDE;
2462 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2465 /* Allocate memory for the section contents. Zero it, because
2466 we may not fill in all the reloc sections. */
2467 sec->contents = bfd_zalloc (dynobj, sec->size);
2468 if (sec->contents == NULL)
2472 if (htab->etab.dynamic_sections_created)
2474 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2475 actually has nothing to do with the PLT, it is how we
2476 communicate the LTP value of a load module to the dynamic
2478 #define add_dynamic_entry(TAG, VAL) \
2479 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2481 if (!add_dynamic_entry (DT_PLTGOT, 0))
2484 /* Add some entries to the .dynamic section. We fill in the
2485 values later, in elf32_hppa_finish_dynamic_sections, but we
2486 must add the entries now so that we get the correct size for
2487 the .dynamic section. The DT_DEBUG entry is filled in by the
2488 dynamic linker and used by the debugger. */
2489 if (info->executable)
2491 if (!add_dynamic_entry (DT_DEBUG, 0))
2495 if (htab->srelplt->size != 0)
2497 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2498 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2499 || !add_dynamic_entry (DT_JMPREL, 0))
2505 if (!add_dynamic_entry (DT_RELA, 0)
2506 || !add_dynamic_entry (DT_RELASZ, 0)
2507 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2510 /* If any dynamic relocs apply to a read-only section,
2511 then we need a DT_TEXTREL entry. */
2512 if ((info->flags & DF_TEXTREL) == 0)
2513 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2515 if ((info->flags & DF_TEXTREL) != 0)
2517 if (!add_dynamic_entry (DT_TEXTREL, 0))
2522 #undef add_dynamic_entry
2527 /* External entry points for sizing and building linker stubs. */
2529 /* Set up various things so that we can make a list of input sections
2530 for each output section included in the link. Returns -1 on error,
2531 0 when no stubs will be needed, and 1 on success. */
2534 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2537 unsigned int bfd_count;
2538 int top_id, top_index;
2540 asection **input_list, **list;
2542 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2544 /* Count the number of input BFDs and find the top input section id. */
2545 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2547 input_bfd = input_bfd->link_next)
2550 for (section = input_bfd->sections;
2552 section = section->next)
2554 if (top_id < section->id)
2555 top_id = section->id;
2558 htab->bfd_count = bfd_count;
2560 amt = sizeof (struct map_stub) * (top_id + 1);
2561 htab->stub_group = bfd_zmalloc (amt);
2562 if (htab->stub_group == NULL)
2565 /* We can't use output_bfd->section_count here to find the top output
2566 section index as some sections may have been removed, and
2567 strip_excluded_output_sections doesn't renumber the indices. */
2568 for (section = output_bfd->sections, top_index = 0;
2570 section = section->next)
2572 if (top_index < section->index)
2573 top_index = section->index;
2576 htab->top_index = top_index;
2577 amt = sizeof (asection *) * (top_index + 1);
2578 input_list = bfd_malloc (amt);
2579 htab->input_list = input_list;
2580 if (input_list == NULL)
2583 /* For sections we aren't interested in, mark their entries with a
2584 value we can check later. */
2585 list = input_list + top_index;
2587 *list = bfd_abs_section_ptr;
2588 while (list-- != input_list);
2590 for (section = output_bfd->sections;
2592 section = section->next)
2594 if ((section->flags & SEC_CODE) != 0)
2595 input_list[section->index] = NULL;
2601 /* The linker repeatedly calls this function for each input section,
2602 in the order that input sections are linked into output sections.
2603 Build lists of input sections to determine groupings between which
2604 we may insert linker stubs. */
2607 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2609 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2611 if (isec->output_section->index <= htab->top_index)
2613 asection **list = htab->input_list + isec->output_section->index;
2614 if (*list != bfd_abs_section_ptr)
2616 /* Steal the link_sec pointer for our list. */
2617 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2618 /* This happens to make the list in reverse order,
2619 which is what we want. */
2620 PREV_SEC (isec) = *list;
2626 /* See whether we can group stub sections together. Grouping stub
2627 sections may result in fewer stubs. More importantly, we need to
2628 put all .init* and .fini* stubs at the beginning of the .init or
2629 .fini output sections respectively, because glibc splits the
2630 _init and _fini functions into multiple parts. Putting a stub in
2631 the middle of a function is not a good idea. */
2634 group_sections (struct elf32_hppa_link_hash_table *htab,
2635 bfd_size_type stub_group_size,
2636 bfd_boolean stubs_always_before_branch)
2638 asection **list = htab->input_list + htab->top_index;
2641 asection *tail = *list;
2642 if (tail == bfd_abs_section_ptr)
2644 while (tail != NULL)
2648 bfd_size_type total;
2649 bfd_boolean big_sec;
2653 big_sec = total >= stub_group_size;
2655 while ((prev = PREV_SEC (curr)) != NULL
2656 && ((total += curr->output_offset - prev->output_offset)
2660 /* OK, the size from the start of CURR to the end is less
2661 than 240000 bytes and thus can be handled by one stub
2662 section. (or the tail section is itself larger than
2663 240000 bytes, in which case we may be toast.)
2664 We should really be keeping track of the total size of
2665 stubs added here, as stubs contribute to the final output
2666 section size. That's a little tricky, and this way will
2667 only break if stubs added total more than 22144 bytes, or
2668 2768 long branch stubs. It seems unlikely for more than
2669 2768 different functions to be called, especially from
2670 code only 240000 bytes long. This limit used to be
2671 250000, but c++ code tends to generate lots of little
2672 functions, and sometimes violated the assumption. */
2675 prev = PREV_SEC (tail);
2676 /* Set up this stub group. */
2677 htab->stub_group[tail->id].link_sec = curr;
2679 while (tail != curr && (tail = prev) != NULL);
2681 /* But wait, there's more! Input sections up to 240000
2682 bytes before the stub section can be handled by it too.
2683 Don't do this if we have a really large section after the
2684 stubs, as adding more stubs increases the chance that
2685 branches may not reach into the stub section. */
2686 if (!stubs_always_before_branch && !big_sec)
2690 && ((total += tail->output_offset - prev->output_offset)
2694 prev = PREV_SEC (tail);
2695 htab->stub_group[tail->id].link_sec = curr;
2701 while (list-- != htab->input_list);
2702 free (htab->input_list);
2706 /* Read in all local syms for all input bfds, and create hash entries
2707 for export stubs if we are building a multi-subspace shared lib.
2708 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2711 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2713 unsigned int bfd_indx;
2714 Elf_Internal_Sym *local_syms, **all_local_syms;
2715 int stub_changed = 0;
2716 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2718 /* We want to read in symbol extension records only once. To do this
2719 we need to read in the local symbols in parallel and save them for
2720 later use; so hold pointers to the local symbols in an array. */
2721 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2722 all_local_syms = bfd_zmalloc (amt);
2723 htab->all_local_syms = all_local_syms;
2724 if (all_local_syms == NULL)
2727 /* Walk over all the input BFDs, swapping in local symbols.
2728 If we are creating a shared library, create hash entries for the
2732 input_bfd = input_bfd->link_next, bfd_indx++)
2734 Elf_Internal_Shdr *symtab_hdr;
2736 /* We'll need the symbol table in a second. */
2737 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2738 if (symtab_hdr->sh_info == 0)
2741 /* We need an array of the local symbols attached to the input bfd. */
2742 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2743 if (local_syms == NULL)
2745 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2746 symtab_hdr->sh_info, 0,
2748 /* Cache them for elf_link_input_bfd. */
2749 symtab_hdr->contents = (unsigned char *) local_syms;
2751 if (local_syms == NULL)
2754 all_local_syms[bfd_indx] = local_syms;
2756 if (info->shared && htab->multi_subspace)
2758 struct elf_link_hash_entry **eh_syms;
2759 struct elf_link_hash_entry **eh_symend;
2760 unsigned int symcount;
2762 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2763 - symtab_hdr->sh_info);
2764 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2765 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2767 /* Look through the global syms for functions; We need to
2768 build export stubs for all globally visible functions. */
2769 for (; eh_syms < eh_symend; eh_syms++)
2771 struct elf32_hppa_link_hash_entry *hh;
2773 hh = hppa_elf_hash_entry (*eh_syms);
2775 while (hh->eh.root.type == bfd_link_hash_indirect
2776 || hh->eh.root.type == bfd_link_hash_warning)
2777 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2779 /* At this point in the link, undefined syms have been
2780 resolved, so we need to check that the symbol was
2781 defined in this BFD. */
2782 if ((hh->eh.root.type == bfd_link_hash_defined
2783 || hh->eh.root.type == bfd_link_hash_defweak)
2784 && hh->eh.type == STT_FUNC
2785 && hh->eh.root.u.def.section->output_section != NULL
2786 && (hh->eh.root.u.def.section->output_section->owner
2788 && hh->eh.root.u.def.section->owner == input_bfd
2789 && hh->eh.def_regular
2790 && !hh->eh.forced_local
2791 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2794 const char *stub_name;
2795 struct elf32_hppa_stub_hash_entry *hsh;
2797 sec = hh->eh.root.u.def.section;
2798 stub_name = hh_name (hh);
2799 hsh = hppa_stub_hash_lookup (&htab->bstab,
2804 hsh = hppa_add_stub (stub_name, sec, htab);
2808 hsh->target_value = hh->eh.root.u.def.value;
2809 hsh->target_section = hh->eh.root.u.def.section;
2810 hsh->stub_type = hppa_stub_export;
2816 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2825 return stub_changed;
2828 /* Determine and set the size of the stub section for a final link.
2830 The basic idea here is to examine all the relocations looking for
2831 PC-relative calls to a target that is unreachable with a "bl"
2835 elf32_hppa_size_stubs
2836 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2837 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2838 asection * (*add_stub_section) (const char *, asection *),
2839 void (*layout_sections_again) (void))
2841 bfd_size_type stub_group_size;
2842 bfd_boolean stubs_always_before_branch;
2843 bfd_boolean stub_changed;
2844 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2846 /* Stash our params away. */
2847 htab->stub_bfd = stub_bfd;
2848 htab->multi_subspace = multi_subspace;
2849 htab->add_stub_section = add_stub_section;
2850 htab->layout_sections_again = layout_sections_again;
2851 stubs_always_before_branch = group_size < 0;
2853 stub_group_size = -group_size;
2855 stub_group_size = group_size;
2856 if (stub_group_size == 1)
2858 /* Default values. */
2859 if (stubs_always_before_branch)
2861 stub_group_size = 7680000;
2862 if (htab->has_17bit_branch || htab->multi_subspace)
2863 stub_group_size = 240000;
2864 if (htab->has_12bit_branch)
2865 stub_group_size = 7500;
2869 stub_group_size = 6971392;
2870 if (htab->has_17bit_branch || htab->multi_subspace)
2871 stub_group_size = 217856;
2872 if (htab->has_12bit_branch)
2873 stub_group_size = 6808;
2877 group_sections (htab, stub_group_size, stubs_always_before_branch);
2879 switch (get_local_syms (output_bfd, info->input_bfds, info))
2882 if (htab->all_local_syms)
2883 goto error_ret_free_local;
2887 stub_changed = FALSE;
2891 stub_changed = TRUE;
2898 unsigned int bfd_indx;
2901 for (input_bfd = info->input_bfds, bfd_indx = 0;
2903 input_bfd = input_bfd->link_next, bfd_indx++)
2905 Elf_Internal_Shdr *symtab_hdr;
2907 Elf_Internal_Sym *local_syms;
2909 /* We'll need the symbol table in a second. */
2910 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2911 if (symtab_hdr->sh_info == 0)
2914 local_syms = htab->all_local_syms[bfd_indx];
2916 /* Walk over each section attached to the input bfd. */
2917 for (section = input_bfd->sections;
2919 section = section->next)
2921 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2923 /* If there aren't any relocs, then there's nothing more
2925 if ((section->flags & SEC_RELOC) == 0
2926 || section->reloc_count == 0)
2929 /* If this section is a link-once section that will be
2930 discarded, then don't create any stubs. */
2931 if (section->output_section == NULL
2932 || section->output_section->owner != output_bfd)
2935 /* Get the relocs. */
2937 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2939 if (internal_relocs == NULL)
2940 goto error_ret_free_local;
2942 /* Now examine each relocation. */
2943 irela = internal_relocs;
2944 irelaend = irela + section->reloc_count;
2945 for (; irela < irelaend; irela++)
2947 unsigned int r_type, r_indx;
2948 enum elf32_hppa_stub_type stub_type;
2949 struct elf32_hppa_stub_hash_entry *hsh;
2952 bfd_vma destination;
2953 struct elf32_hppa_link_hash_entry *hh;
2955 const asection *id_sec;
2957 r_type = ELF32_R_TYPE (irela->r_info);
2958 r_indx = ELF32_R_SYM (irela->r_info);
2960 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2962 bfd_set_error (bfd_error_bad_value);
2963 error_ret_free_internal:
2964 if (elf_section_data (section)->relocs == NULL)
2965 free (internal_relocs);
2966 goto error_ret_free_local;
2969 /* Only look for stubs on call instructions. */
2970 if (r_type != (unsigned int) R_PARISC_PCREL12F
2971 && r_type != (unsigned int) R_PARISC_PCREL17F
2972 && r_type != (unsigned int) R_PARISC_PCREL22F)
2975 /* Now determine the call target, its name, value,
2981 if (r_indx < symtab_hdr->sh_info)
2983 /* It's a local symbol. */
2984 Elf_Internal_Sym *sym;
2985 Elf_Internal_Shdr *hdr;
2987 sym = local_syms + r_indx;
2988 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2989 sym_sec = hdr->bfd_section;
2990 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2991 sym_value = sym->st_value;
2992 destination = (sym_value + irela->r_addend
2993 + sym_sec->output_offset
2994 + sym_sec->output_section->vma);
2998 /* It's an external symbol. */
3001 e_indx = r_indx - symtab_hdr->sh_info;
3002 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
3004 while (hh->eh.root.type == bfd_link_hash_indirect
3005 || hh->eh.root.type == bfd_link_hash_warning)
3006 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
3008 if (hh->eh.root.type == bfd_link_hash_defined
3009 || hh->eh.root.type == bfd_link_hash_defweak)
3011 sym_sec = hh->eh.root.u.def.section;
3012 sym_value = hh->eh.root.u.def.value;
3013 if (sym_sec->output_section != NULL)
3014 destination = (sym_value + irela->r_addend
3015 + sym_sec->output_offset
3016 + sym_sec->output_section->vma);
3018 else if (hh->eh.root.type == bfd_link_hash_undefweak)
3023 else if (hh->eh.root.type == bfd_link_hash_undefined)
3025 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3026 && (ELF_ST_VISIBILITY (hh->eh.other)
3028 && hh->eh.type != STT_PARISC_MILLI))
3033 bfd_set_error (bfd_error_bad_value);
3034 goto error_ret_free_internal;
3038 /* Determine what (if any) linker stub is needed. */
3039 stub_type = hppa_type_of_stub (section, irela, hh,
3041 if (stub_type == hppa_stub_none)
3044 /* Support for grouping stub sections. */
3045 id_sec = htab->stub_group[section->id].link_sec;
3047 /* Get the name of this stub. */
3048 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3050 goto error_ret_free_internal;
3052 hsh = hppa_stub_hash_lookup (&htab->bstab,
3057 /* The proper stub has already been created. */
3062 hsh = hppa_add_stub (stub_name, section, htab);
3066 goto error_ret_free_internal;
3069 hsh->target_value = sym_value;
3070 hsh->target_section = sym_sec;
3071 hsh->stub_type = stub_type;
3074 if (stub_type == hppa_stub_import)
3075 hsh->stub_type = hppa_stub_import_shared;
3076 else if (stub_type == hppa_stub_long_branch)
3077 hsh->stub_type = hppa_stub_long_branch_shared;
3080 stub_changed = TRUE;
3083 /* We're done with the internal relocs, free them. */
3084 if (elf_section_data (section)->relocs == NULL)
3085 free (internal_relocs);
3092 /* OK, we've added some stubs. Find out the new size of the
3094 for (stub_sec = htab->stub_bfd->sections;
3096 stub_sec = stub_sec->next)
3099 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3101 /* Ask the linker to do its stuff. */
3102 (*htab->layout_sections_again) ();
3103 stub_changed = FALSE;
3106 free (htab->all_local_syms);
3109 error_ret_free_local:
3110 free (htab->all_local_syms);
3114 /* For a final link, this function is called after we have sized the
3115 stubs to provide a value for __gp. */
3118 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3120 struct bfd_link_hash_entry *h;
3121 asection *sec = NULL;
3123 struct elf32_hppa_link_hash_table *htab;
3125 htab = hppa_link_hash_table (info);
3126 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3129 && (h->type == bfd_link_hash_defined
3130 || h->type == bfd_link_hash_defweak))
3132 gp_val = h->u.def.value;
3133 sec = h->u.def.section;
3137 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3138 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3140 /* Choose to point our LTP at, in this order, one of .plt, .got,
3141 or .data, if these sections exist. In the case of choosing
3142 .plt try to make the LTP ideal for addressing anywhere in the
3143 .plt or .got with a 14 bit signed offset. Typically, the end
3144 of the .plt is the start of the .got, so choose .plt + 0x2000
3145 if either the .plt or .got is larger than 0x2000. If both
3146 the .plt and .got are smaller than 0x2000, choose the end of
3147 the .plt section. */
3148 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3153 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3163 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3165 /* We know we don't have a .plt. If .got is large,
3167 if (sec->size > 0x2000)
3173 /* No .plt or .got. Who cares what the LTP is? */
3174 sec = bfd_get_section_by_name (abfd, ".data");
3180 h->type = bfd_link_hash_defined;
3181 h->u.def.value = gp_val;
3183 h->u.def.section = sec;
3185 h->u.def.section = bfd_abs_section_ptr;
3189 if (sec != NULL && sec->output_section != NULL)
3190 gp_val += sec->output_section->vma + sec->output_offset;
3192 elf_gp (abfd) = gp_val;
3196 /* Build all the stubs associated with the current output file. The
3197 stubs are kept in a hash table attached to the main linker hash
3198 table. We also set up the .plt entries for statically linked PIC
3199 functions here. This function is called via hppaelf_finish in the
3203 elf32_hppa_build_stubs (struct bfd_link_info *info)
3206 struct bfd_hash_table *table;
3207 struct elf32_hppa_link_hash_table *htab;
3209 htab = hppa_link_hash_table (info);
3211 for (stub_sec = htab->stub_bfd->sections;
3213 stub_sec = stub_sec->next)
3217 /* Allocate memory to hold the linker stubs. */
3218 size = stub_sec->size;
3219 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3220 if (stub_sec->contents == NULL && size != 0)
3225 /* Build the stubs as directed by the stub hash table. */
3226 table = &htab->bstab;
3227 bfd_hash_traverse (table, hppa_build_one_stub, info);
3232 /* Return the base vma address which should be subtracted from the real
3233 address when resolving a dtpoff relocation.
3234 This is PT_TLS segment p_vaddr. */
3237 dtpoff_base (struct bfd_link_info *info)
3239 /* If tls_sec is NULL, we should have signalled an error already. */
3240 if (elf_hash_table (info)->tls_sec == NULL)
3242 return elf_hash_table (info)->tls_sec->vma;
3245 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3248 tpoff (struct bfd_link_info *info, bfd_vma address)
3250 struct elf_link_hash_table *htab = elf_hash_table (info);
3252 /* If tls_sec is NULL, we should have signalled an error already. */
3253 if (htab->tls_sec == NULL)
3255 /* hppa TLS ABI is variant I and static TLS block start just after
3256 tcbhead structure which has 2 pointer fields. */
3257 return (address - htab->tls_sec->vma
3258 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3261 /* Perform a final link. */
3264 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3266 /* Invoke the regular ELF linker to do all the work. */
3267 if (!bfd_elf_final_link (abfd, info))
3270 /* If we're producing a final executable, sort the contents of the
3272 return elf_hppa_sort_unwind (abfd);
3275 /* Record the lowest address for the data and text segments. */
3278 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3282 struct elf32_hppa_link_hash_table *htab;
3284 htab = (struct elf32_hppa_link_hash_table*) data;
3286 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3288 bfd_vma value = section->vma - section->filepos;
3290 if ((section->flags & SEC_READONLY) != 0)
3292 if (value < htab->text_segment_base)
3293 htab->text_segment_base = value;
3297 if (value < htab->data_segment_base)
3298 htab->data_segment_base = value;
3303 /* Perform a relocation as part of a final link. */
3305 static bfd_reloc_status_type
3306 final_link_relocate (asection *input_section,
3308 const Elf_Internal_Rela *rela,
3310 struct elf32_hppa_link_hash_table *htab,
3312 struct elf32_hppa_link_hash_entry *hh,
3313 struct bfd_link_info *info)
3316 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3317 unsigned int orig_r_type = r_type;
3318 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3319 int r_format = howto->bitsize;
3320 enum hppa_reloc_field_selector_type_alt r_field;
3321 bfd *input_bfd = input_section->owner;
3322 bfd_vma offset = rela->r_offset;
3323 bfd_vma max_branch_offset = 0;
3324 bfd_byte *hit_data = contents + offset;
3325 bfd_signed_vma addend = rela->r_addend;
3327 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3330 if (r_type == R_PARISC_NONE)
3331 return bfd_reloc_ok;
3333 insn = bfd_get_32 (input_bfd, hit_data);
3335 /* Find out where we are and where we're going. */
3336 location = (offset +
3337 input_section->output_offset +
3338 input_section->output_section->vma);
3340 /* If we are not building a shared library, convert DLTIND relocs to
3346 case R_PARISC_DLTIND21L:
3347 r_type = R_PARISC_DPREL21L;
3350 case R_PARISC_DLTIND14R:
3351 r_type = R_PARISC_DPREL14R;
3354 case R_PARISC_DLTIND14F:
3355 r_type = R_PARISC_DPREL14F;
3362 case R_PARISC_PCREL12F:
3363 case R_PARISC_PCREL17F:
3364 case R_PARISC_PCREL22F:
3365 /* If this call should go via the plt, find the import stub in
3368 || sym_sec->output_section == NULL
3370 && hh->eh.plt.offset != (bfd_vma) -1
3371 && hh->eh.dynindx != -1
3374 || !hh->eh.def_regular
3375 || hh->eh.root.type == bfd_link_hash_defweak)))
3377 hsh = hppa_get_stub_entry (input_section, sym_sec,
3381 value = (hsh->stub_offset
3382 + hsh->stub_sec->output_offset
3383 + hsh->stub_sec->output_section->vma);
3386 else if (sym_sec == NULL && hh != NULL
3387 && hh->eh.root.type == bfd_link_hash_undefweak)
3389 /* It's OK if undefined weak. Calls to undefined weak
3390 symbols behave as if the "called" function
3391 immediately returns. We can thus call to a weak
3392 function without first checking whether the function
3398 return bfd_reloc_undefined;
3402 case R_PARISC_PCREL21L:
3403 case R_PARISC_PCREL17C:
3404 case R_PARISC_PCREL17R:
3405 case R_PARISC_PCREL14R:
3406 case R_PARISC_PCREL14F:
3407 case R_PARISC_PCREL32:
3408 /* Make it a pc relative offset. */
3413 case R_PARISC_DPREL21L:
3414 case R_PARISC_DPREL14R:
3415 case R_PARISC_DPREL14F:
3416 /* Convert instructions that use the linkage table pointer (r19) to
3417 instructions that use the global data pointer (dp). This is the
3418 most efficient way of using PIC code in an incomplete executable,
3419 but the user must follow the standard runtime conventions for
3420 accessing data for this to work. */
3421 if (orig_r_type == R_PARISC_DLTIND21L)
3423 /* Convert addil instructions if the original reloc was a
3424 DLTIND21L. GCC sometimes uses a register other than r19 for
3425 the operation, so we must convert any addil instruction
3426 that uses this relocation. */
3427 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3430 /* We must have a ldil instruction. It's too hard to find
3431 and convert the associated add instruction, so issue an
3433 (*_bfd_error_handler)
3434 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3441 else if (orig_r_type == R_PARISC_DLTIND14F)
3443 /* This must be a format 1 load/store. Change the base
3445 insn = (insn & 0xfc1ffff) | (27 << 21);
3448 /* For all the DP relative relocations, we need to examine the symbol's
3449 section. If it has no section or if it's a code section, then
3450 "data pointer relative" makes no sense. In that case we don't
3451 adjust the "value", and for 21 bit addil instructions, we change the
3452 source addend register from %dp to %r0. This situation commonly
3453 arises for undefined weak symbols and when a variable's "constness"
3454 is declared differently from the way the variable is defined. For
3455 instance: "extern int foo" with foo defined as "const int foo". */
3456 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3458 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3459 == (((int) OP_ADDIL << 26) | (27 << 21)))
3461 insn &= ~ (0x1f << 21);
3463 /* Now try to make things easy for the dynamic linker. */
3469 case R_PARISC_DLTIND21L:
3470 case R_PARISC_DLTIND14R:
3471 case R_PARISC_DLTIND14F:
3472 case R_PARISC_TLS_GD21L:
3473 case R_PARISC_TLS_GD14R:
3474 case R_PARISC_TLS_LDM21L:
3475 case R_PARISC_TLS_LDM14R:
3476 case R_PARISC_TLS_IE21L:
3477 case R_PARISC_TLS_IE14R:
3478 value -= elf_gp (input_section->output_section->owner);
3481 case R_PARISC_SEGREL32:
3482 if ((sym_sec->flags & SEC_CODE) != 0)
3483 value -= htab->text_segment_base;
3485 value -= htab->data_segment_base;
3494 case R_PARISC_DIR32:
3495 case R_PARISC_DIR14F:
3496 case R_PARISC_DIR17F:
3497 case R_PARISC_PCREL17C:
3498 case R_PARISC_PCREL14F:
3499 case R_PARISC_PCREL32:
3500 case R_PARISC_DPREL14F:
3501 case R_PARISC_PLABEL32:
3502 case R_PARISC_DLTIND14F:
3503 case R_PARISC_SEGBASE:
3504 case R_PARISC_SEGREL32:
3505 case R_PARISC_TLS_DTPMOD32:
3506 case R_PARISC_TLS_DTPOFF32:
3507 case R_PARISC_TLS_TPREL32:
3511 case R_PARISC_DLTIND21L:
3512 case R_PARISC_PCREL21L:
3513 case R_PARISC_PLABEL21L:
3517 case R_PARISC_DIR21L:
3518 case R_PARISC_DPREL21L:
3519 case R_PARISC_TLS_GD21L:
3520 case R_PARISC_TLS_LDM21L:
3521 case R_PARISC_TLS_LDO21L:
3522 case R_PARISC_TLS_IE21L:
3523 case R_PARISC_TLS_LE21L:
3527 case R_PARISC_PCREL17R:
3528 case R_PARISC_PCREL14R:
3529 case R_PARISC_PLABEL14R:
3530 case R_PARISC_DLTIND14R:
3534 case R_PARISC_DIR17R:
3535 case R_PARISC_DIR14R:
3536 case R_PARISC_DPREL14R:
3537 case R_PARISC_TLS_GD14R:
3538 case R_PARISC_TLS_LDM14R:
3539 case R_PARISC_TLS_LDO14R:
3540 case R_PARISC_TLS_IE14R:
3541 case R_PARISC_TLS_LE14R:
3545 case R_PARISC_PCREL12F:
3546 case R_PARISC_PCREL17F:
3547 case R_PARISC_PCREL22F:
3550 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3552 max_branch_offset = (1 << (17-1)) << 2;
3554 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3556 max_branch_offset = (1 << (12-1)) << 2;
3560 max_branch_offset = (1 << (22-1)) << 2;
3563 /* sym_sec is NULL on undefined weak syms or when shared on
3564 undefined syms. We've already checked for a stub for the
3565 shared undefined case. */
3566 if (sym_sec == NULL)
3569 /* If the branch is out of reach, then redirect the
3570 call to the local stub for this function. */
3571 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3573 hsh = hppa_get_stub_entry (input_section, sym_sec,
3576 return bfd_reloc_undefined;
3578 /* Munge up the value and addend so that we call the stub
3579 rather than the procedure directly. */
3580 value = (hsh->stub_offset
3581 + hsh->stub_sec->output_offset
3582 + hsh->stub_sec->output_section->vma
3588 /* Something we don't know how to handle. */
3590 return bfd_reloc_notsupported;
3593 /* Make sure we can reach the stub. */
3594 if (max_branch_offset != 0
3595 && value + addend + max_branch_offset >= 2*max_branch_offset)
3597 (*_bfd_error_handler)
3598 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3602 hsh->bh_root.string);
3603 bfd_set_error (bfd_error_bad_value);
3604 return bfd_reloc_notsupported;
3607 val = hppa_field_adjust (value, addend, r_field);
3611 case R_PARISC_PCREL12F:
3612 case R_PARISC_PCREL17C:
3613 case R_PARISC_PCREL17F:
3614 case R_PARISC_PCREL17R:
3615 case R_PARISC_PCREL22F:
3616 case R_PARISC_DIR17F:
3617 case R_PARISC_DIR17R:
3618 /* This is a branch. Divide the offset by four.
3619 Note that we need to decide whether it's a branch or
3620 otherwise by inspecting the reloc. Inspecting insn won't
3621 work as insn might be from a .word directive. */
3629 insn = hppa_rebuild_insn (insn, val, r_format);
3631 /* Update the instruction word. */
3632 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3633 return bfd_reloc_ok;
3636 /* Relocate an HPPA ELF section. */
3639 elf32_hppa_relocate_section (bfd *output_bfd,
3640 struct bfd_link_info *info,
3642 asection *input_section,
3644 Elf_Internal_Rela *relocs,
3645 Elf_Internal_Sym *local_syms,
3646 asection **local_sections)
3648 bfd_vma *local_got_offsets;
3649 struct elf32_hppa_link_hash_table *htab;
3650 Elf_Internal_Shdr *symtab_hdr;
3651 Elf_Internal_Rela *rela;
3652 Elf_Internal_Rela *relend;
3654 if (info->relocatable)
3657 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3659 htab = hppa_link_hash_table (info);
3660 local_got_offsets = elf_local_got_offsets (input_bfd);
3663 relend = relocs + input_section->reloc_count;
3664 for (; rela < relend; rela++)
3666 unsigned int r_type;
3667 reloc_howto_type *howto;
3668 unsigned int r_symndx;
3669 struct elf32_hppa_link_hash_entry *hh;
3670 Elf_Internal_Sym *sym;
3673 bfd_reloc_status_type rstatus;
3674 const char *sym_name;
3676 bfd_boolean warned_undef;
3678 r_type = ELF32_R_TYPE (rela->r_info);
3679 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3681 bfd_set_error (bfd_error_bad_value);
3684 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3685 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3688 /* This is a final link. */
3689 r_symndx = ELF32_R_SYM (rela->r_info);
3693 warned_undef = FALSE;
3694 if (r_symndx < symtab_hdr->sh_info)
3696 /* This is a local symbol, h defaults to NULL. */
3697 sym = local_syms + r_symndx;
3698 sym_sec = local_sections[r_symndx];
3699 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3703 struct elf_link_hash_entry *eh;
3704 bfd_boolean unresolved_reloc;
3705 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3707 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3708 r_symndx, symtab_hdr, sym_hashes,
3709 eh, sym_sec, relocation,
3710 unresolved_reloc, warned_undef);
3713 && eh->root.type != bfd_link_hash_defined
3714 && eh->root.type != bfd_link_hash_defweak
3715 && eh->root.type != bfd_link_hash_undefweak)
3717 if (info->unresolved_syms_in_objects == RM_IGNORE
3718 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3719 && eh->type == STT_PARISC_MILLI)
3721 if (! info->callbacks->undefined_symbol
3722 (info, eh_name (eh), input_bfd,
3723 input_section, rela->r_offset, FALSE))
3725 warned_undef = TRUE;
3728 hh = hppa_elf_hash_entry (eh);
3731 /* Do any required modifications to the relocation value, and
3732 determine what types of dynamic info we need to output, if
3737 case R_PARISC_DLTIND14F:
3738 case R_PARISC_DLTIND14R:
3739 case R_PARISC_DLTIND21L:
3742 bfd_boolean do_got = 0;
3744 /* Relocation is to the entry for this symbol in the
3745 global offset table. */
3750 off = hh->eh.got.offset;
3751 dyn = htab->etab.dynamic_sections_created;
3752 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3755 /* If we aren't going to call finish_dynamic_symbol,
3756 then we need to handle initialisation of the .got
3757 entry and create needed relocs here. Since the
3758 offset must always be a multiple of 4, we use the
3759 least significant bit to record whether we have
3760 initialised it already. */
3765 hh->eh.got.offset |= 1;
3772 /* Local symbol case. */
3773 if (local_got_offsets == NULL)
3776 off = local_got_offsets[r_symndx];
3778 /* The offset must always be a multiple of 4. We use
3779 the least significant bit to record whether we have
3780 already generated the necessary reloc. */
3785 local_got_offsets[r_symndx] |= 1;
3794 /* Output a dynamic relocation for this GOT entry.
3795 In this case it is relative to the base of the
3796 object because the symbol index is zero. */
3797 Elf_Internal_Rela outrel;
3799 asection *sec = htab->srelgot;
3801 outrel.r_offset = (off
3802 + htab->sgot->output_offset
3803 + htab->sgot->output_section->vma);
3804 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3805 outrel.r_addend = relocation;
3806 loc = sec->contents;
3807 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3808 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3811 bfd_put_32 (output_bfd, relocation,
3812 htab->sgot->contents + off);
3815 if (off >= (bfd_vma) -2)
3818 /* Add the base of the GOT to the relocation value. */
3820 + htab->sgot->output_offset
3821 + htab->sgot->output_section->vma);
3825 case R_PARISC_SEGREL32:
3826 /* If this is the first SEGREL relocation, then initialize
3827 the segment base values. */
3828 if (htab->text_segment_base == (bfd_vma) -1)
3829 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3832 case R_PARISC_PLABEL14R:
3833 case R_PARISC_PLABEL21L:
3834 case R_PARISC_PLABEL32:
3835 if (htab->etab.dynamic_sections_created)
3838 bfd_boolean do_plt = 0;
3839 /* If we have a global symbol with a PLT slot, then
3840 redirect this relocation to it. */
3843 off = hh->eh.plt.offset;
3844 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3847 /* In a non-shared link, adjust_dynamic_symbols
3848 isn't called for symbols forced local. We
3849 need to write out the plt entry here. */
3854 hh->eh.plt.offset |= 1;
3861 bfd_vma *local_plt_offsets;
3863 if (local_got_offsets == NULL)
3866 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3867 off = local_plt_offsets[r_symndx];
3869 /* As for the local .got entry case, we use the last
3870 bit to record whether we've already initialised
3871 this local .plt entry. */
3876 local_plt_offsets[r_symndx] |= 1;
3885 /* Output a dynamic IPLT relocation for this
3887 Elf_Internal_Rela outrel;
3889 asection *s = htab->srelplt;
3891 outrel.r_offset = (off
3892 + htab->splt->output_offset
3893 + htab->splt->output_section->vma);
3894 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3895 outrel.r_addend = relocation;
3897 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3898 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3902 bfd_put_32 (output_bfd,
3904 htab->splt->contents + off);
3905 bfd_put_32 (output_bfd,
3906 elf_gp (htab->splt->output_section->owner),
3907 htab->splt->contents + off + 4);
3911 if (off >= (bfd_vma) -2)
3914 /* PLABELs contain function pointers. Relocation is to
3915 the entry for the function in the .plt. The magic +2
3916 offset signals to $$dyncall that the function pointer
3917 is in the .plt and thus has a gp pointer too.
3918 Exception: Undefined PLABELs should have a value of
3921 || (hh->eh.root.type != bfd_link_hash_undefweak
3922 && hh->eh.root.type != bfd_link_hash_undefined))
3925 + htab->splt->output_offset
3926 + htab->splt->output_section->vma
3931 /* Fall through and possibly emit a dynamic relocation. */
3933 case R_PARISC_DIR17F:
3934 case R_PARISC_DIR17R:
3935 case R_PARISC_DIR14F:
3936 case R_PARISC_DIR14R:
3937 case R_PARISC_DIR21L:
3938 case R_PARISC_DPREL14F:
3939 case R_PARISC_DPREL14R:
3940 case R_PARISC_DPREL21L:
3941 case R_PARISC_DIR32:
3942 /* r_symndx will be zero only for relocs against symbols
3943 from removed linkonce sections, or sections discarded by
3947 _bfd_clear_contents (elf_hppa_howto_table + r_type, input_bfd,
3948 contents + rela->r_offset);
3952 if ((input_section->flags & SEC_ALLOC) == 0)
3955 /* The reloc types handled here and this conditional
3956 expression must match the code in ..check_relocs and
3957 allocate_dynrelocs. ie. We need exactly the same condition
3958 as in ..check_relocs, with some extra conditions (dynindx
3959 test in this case) to cater for relocs removed by
3960 allocate_dynrelocs. If you squint, the non-shared test
3961 here does indeed match the one in ..check_relocs, the
3962 difference being that here we test DEF_DYNAMIC as well as
3963 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3964 which is why we can't use just that test here.
3965 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3966 there all files have not been loaded. */
3969 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3970 || hh->eh.root.type != bfd_link_hash_undefweak)
3971 && (IS_ABSOLUTE_RELOC (r_type)
3972 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3975 && hh->eh.dynindx != -1
3976 && !hh->eh.non_got_ref
3977 && ((ELIMINATE_COPY_RELOCS
3978 && hh->eh.def_dynamic
3979 && !hh->eh.def_regular)
3980 || hh->eh.root.type == bfd_link_hash_undefweak
3981 || hh->eh.root.type == bfd_link_hash_undefined)))
3983 Elf_Internal_Rela outrel;
3988 /* When generating a shared object, these relocations
3989 are copied into the output file to be resolved at run
3992 outrel.r_addend = rela->r_addend;
3994 _bfd_elf_section_offset (output_bfd, info, input_section,
3996 skip = (outrel.r_offset == (bfd_vma) -1
3997 || outrel.r_offset == (bfd_vma) -2);
3998 outrel.r_offset += (input_section->output_offset
3999 + input_section->output_section->vma);
4003 memset (&outrel, 0, sizeof (outrel));
4006 && hh->eh.dynindx != -1
4008 || !IS_ABSOLUTE_RELOC (r_type)
4011 || !hh->eh.def_regular))
4013 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4015 else /* It's a local symbol, or one marked to become local. */
4019 /* Add the absolute offset of the symbol. */
4020 outrel.r_addend += relocation;
4022 /* Global plabels need to be processed by the
4023 dynamic linker so that functions have at most one
4024 fptr. For this reason, we need to differentiate
4025 between global and local plabels, which we do by
4026 providing the function symbol for a global plabel
4027 reloc, and no symbol for local plabels. */
4030 && sym_sec->output_section != NULL
4031 && ! bfd_is_abs_section (sym_sec))
4035 osec = sym_sec->output_section;
4036 indx = elf_section_data (osec)->dynindx;
4039 osec = htab->etab.text_index_section;
4040 indx = elf_section_data (osec)->dynindx;
4042 BFD_ASSERT (indx != 0);
4044 /* We are turning this relocation into one
4045 against a section symbol, so subtract out the
4046 output section's address but not the offset
4047 of the input section in the output section. */
4048 outrel.r_addend -= osec->vma;
4051 outrel.r_info = ELF32_R_INFO (indx, r_type);
4053 sreloc = elf_section_data (input_section)->sreloc;
4057 loc = sreloc->contents;
4058 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4059 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4063 case R_PARISC_TLS_LDM21L:
4064 case R_PARISC_TLS_LDM14R:
4068 off = htab->tls_ldm_got.offset;
4073 Elf_Internal_Rela outrel;
4076 outrel.r_offset = (off
4077 + htab->sgot->output_section->vma
4078 + htab->sgot->output_offset);
4079 outrel.r_addend = 0;
4080 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4081 loc = htab->srelgot->contents;
4082 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4084 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4085 htab->tls_ldm_got.offset |= 1;
4088 /* Add the base of the GOT to the relocation value. */
4090 + htab->sgot->output_offset
4091 + htab->sgot->output_section->vma);
4096 case R_PARISC_TLS_LDO21L:
4097 case R_PARISC_TLS_LDO14R:
4098 relocation -= dtpoff_base (info);
4101 case R_PARISC_TLS_GD21L:
4102 case R_PARISC_TLS_GD14R:
4103 case R_PARISC_TLS_IE21L:
4104 case R_PARISC_TLS_IE14R:
4114 dyn = htab->etab.dynamic_sections_created;
4116 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4118 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4120 indx = hh->eh.dynindx;
4122 off = hh->eh.got.offset;
4123 tls_type = hh->tls_type;
4127 off = local_got_offsets[r_symndx];
4128 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4131 if (tls_type == GOT_UNKNOWN)
4138 bfd_boolean need_relocs = FALSE;
4139 Elf_Internal_Rela outrel;
4140 bfd_byte *loc = NULL;
4143 /* The GOT entries have not been initialized yet. Do it
4144 now, and emit any relocations. If both an IE GOT and a
4145 GD GOT are necessary, we emit the GD first. */
4147 if ((info->shared || indx != 0)
4149 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4150 || hh->eh.root.type != bfd_link_hash_undefweak))
4153 loc = htab->srelgot->contents;
4154 /* FIXME (CAO): Should this be reloc_count++ ? */
4155 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4158 if (tls_type & GOT_TLS_GD)
4162 outrel.r_offset = (cur_off
4163 + htab->sgot->output_section->vma
4164 + htab->sgot->output_offset);
4165 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4166 outrel.r_addend = 0;
4167 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4168 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4169 htab->srelgot->reloc_count++;
4170 loc += sizeof (Elf32_External_Rela);
4173 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4174 htab->sgot->contents + cur_off + 4);
4177 bfd_put_32 (output_bfd, 0,
4178 htab->sgot->contents + cur_off + 4);
4179 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4180 outrel.r_offset += 4;
4181 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4182 htab->srelgot->reloc_count++;
4183 loc += sizeof (Elf32_External_Rela);
4188 /* If we are not emitting relocations for a
4189 general dynamic reference, then we must be in a
4190 static link or an executable link with the
4191 symbol binding locally. Mark it as belonging
4192 to module 1, the executable. */
4193 bfd_put_32 (output_bfd, 1,
4194 htab->sgot->contents + cur_off);
4195 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4196 htab->sgot->contents + cur_off + 4);
4203 if (tls_type & GOT_TLS_IE)
4207 outrel.r_offset = (cur_off
4208 + htab->sgot->output_section->vma
4209 + htab->sgot->output_offset);
4210 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4213 outrel.r_addend = relocation - dtpoff_base (info);
4215 outrel.r_addend = 0;
4217 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4218 htab->srelgot->reloc_count++;
4219 loc += sizeof (Elf32_External_Rela);
4222 bfd_put_32 (output_bfd, tpoff (info, relocation),
4223 htab->sgot->contents + cur_off);
4229 hh->eh.got.offset |= 1;
4231 local_got_offsets[r_symndx] |= 1;
4234 if ((tls_type & GOT_TLS_GD)
4235 && r_type != R_PARISC_TLS_GD21L
4236 && r_type != R_PARISC_TLS_GD14R)
4237 off += 2 * GOT_ENTRY_SIZE;
4239 /* Add the base of the GOT to the relocation value. */
4241 + htab->sgot->output_offset
4242 + htab->sgot->output_section->vma);
4247 case R_PARISC_TLS_LE21L:
4248 case R_PARISC_TLS_LE14R:
4250 relocation = tpoff (info, relocation);
4259 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4260 htab, sym_sec, hh, info);
4262 if (rstatus == bfd_reloc_ok)
4266 sym_name = hh_name (hh);
4269 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4270 symtab_hdr->sh_link,
4272 if (sym_name == NULL)
4274 if (*sym_name == '\0')
4275 sym_name = bfd_section_name (input_bfd, sym_sec);
4278 howto = elf_hppa_howto_table + r_type;
4280 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4282 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4284 (*_bfd_error_handler)
4285 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4288 (long) rela->r_offset,
4291 bfd_set_error (bfd_error_bad_value);
4297 if (!((*info->callbacks->reloc_overflow)
4298 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4299 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4307 /* Finish up dynamic symbol handling. We set the contents of various
4308 dynamic sections here. */
4311 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4312 struct bfd_link_info *info,
4313 struct elf_link_hash_entry *eh,
4314 Elf_Internal_Sym *sym)
4316 struct elf32_hppa_link_hash_table *htab;
4317 Elf_Internal_Rela rela;
4320 htab = hppa_link_hash_table (info);
4322 if (eh->plt.offset != (bfd_vma) -1)
4326 if (eh->plt.offset & 1)
4329 /* This symbol has an entry in the procedure linkage table. Set
4332 The format of a plt entry is
4337 if (eh->root.type == bfd_link_hash_defined
4338 || eh->root.type == bfd_link_hash_defweak)
4340 value = eh->root.u.def.value;
4341 if (eh->root.u.def.section->output_section != NULL)
4342 value += (eh->root.u.def.section->output_offset
4343 + eh->root.u.def.section->output_section->vma);
4346 /* Create a dynamic IPLT relocation for this entry. */
4347 rela.r_offset = (eh->plt.offset
4348 + htab->splt->output_offset
4349 + htab->splt->output_section->vma);
4350 if (eh->dynindx != -1)
4352 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4357 /* This symbol has been marked to become local, and is
4358 used by a plabel so must be kept in the .plt. */
4359 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4360 rela.r_addend = value;
4363 loc = htab->srelplt->contents;
4364 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4365 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4367 if (!eh->def_regular)
4369 /* Mark the symbol as undefined, rather than as defined in
4370 the .plt section. Leave the value alone. */
4371 sym->st_shndx = SHN_UNDEF;
4375 if (eh->got.offset != (bfd_vma) -1
4376 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4377 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4379 /* This symbol has an entry in the global offset table. Set it
4382 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4383 + htab->sgot->output_offset
4384 + htab->sgot->output_section->vma);
4386 /* If this is a -Bsymbolic link and the symbol is defined
4387 locally or was forced to be local because of a version file,
4388 we just want to emit a RELATIVE reloc. The entry in the
4389 global offset table will already have been initialized in the
4390 relocate_section function. */
4392 && (info->symbolic || eh->dynindx == -1)
4395 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4396 rela.r_addend = (eh->root.u.def.value
4397 + eh->root.u.def.section->output_offset
4398 + eh->root.u.def.section->output_section->vma);
4402 if ((eh->got.offset & 1) != 0)
4405 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4406 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4410 loc = htab->srelgot->contents;
4411 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4412 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4419 /* This symbol needs a copy reloc. Set it up. */
4421 if (! (eh->dynindx != -1
4422 && (eh->root.type == bfd_link_hash_defined
4423 || eh->root.type == bfd_link_hash_defweak)))
4426 sec = htab->srelbss;
4428 rela.r_offset = (eh->root.u.def.value
4429 + eh->root.u.def.section->output_offset
4430 + eh->root.u.def.section->output_section->vma);
4432 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4433 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4434 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4437 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4438 if (eh_name (eh)[0] == '_'
4439 && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4440 || eh == htab->etab.hgot))
4442 sym->st_shndx = SHN_ABS;
4448 /* Used to decide how to sort relocs in an optimal manner for the
4449 dynamic linker, before writing them out. */
4451 static enum elf_reloc_type_class
4452 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4454 /* Handle TLS relocs first; we don't want them to be marked
4455 relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
4457 switch ((int) ELF32_R_TYPE (rela->r_info))
4459 case R_PARISC_TLS_DTPMOD32:
4460 case R_PARISC_TLS_DTPOFF32:
4461 case R_PARISC_TLS_TPREL32:
4462 return reloc_class_normal;
4465 if (ELF32_R_SYM (rela->r_info) == 0)
4466 return reloc_class_relative;
4468 switch ((int) ELF32_R_TYPE (rela->r_info))
4471 return reloc_class_plt;
4473 return reloc_class_copy;
4475 return reloc_class_normal;
4479 /* Finish up the dynamic sections. */
4482 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4483 struct bfd_link_info *info)
4486 struct elf32_hppa_link_hash_table *htab;
4489 htab = hppa_link_hash_table (info);
4490 dynobj = htab->etab.dynobj;
4492 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4494 if (htab->etab.dynamic_sections_created)
4496 Elf32_External_Dyn *dyncon, *dynconend;
4501 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4502 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4503 for (; dyncon < dynconend; dyncon++)
4505 Elf_Internal_Dyn dyn;
4508 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4516 /* Use PLTGOT to set the GOT register. */
4517 dyn.d_un.d_ptr = elf_gp (output_bfd);
4522 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4527 dyn.d_un.d_val = s->size;
4531 /* Don't count procedure linkage table relocs in the
4532 overall reloc count. */
4536 dyn.d_un.d_val -= s->size;
4540 /* We may not be using the standard ELF linker script.
4541 If .rela.plt is the first .rela section, we adjust
4542 DT_RELA to not include it. */
4546 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4548 dyn.d_un.d_ptr += s->size;
4552 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4556 if (htab->sgot != NULL && htab->sgot->size != 0)
4558 /* Fill in the first entry in the global offset table.
4559 We use it to point to our dynamic section, if we have one. */
4560 bfd_put_32 (output_bfd,
4561 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4562 htab->sgot->contents);
4564 /* The second entry is reserved for use by the dynamic linker. */
4565 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4567 /* Set .got entry size. */
4568 elf_section_data (htab->sgot->output_section)
4569 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4572 if (htab->splt != NULL && htab->splt->size != 0)
4574 /* Set plt entry size. */
4575 elf_section_data (htab->splt->output_section)
4576 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4578 if (htab->need_plt_stub)
4580 /* Set up the .plt stub. */
4581 memcpy (htab->splt->contents
4582 + htab->splt->size - sizeof (plt_stub),
4583 plt_stub, sizeof (plt_stub));
4585 if ((htab->splt->output_offset
4586 + htab->splt->output_section->vma
4588 != (htab->sgot->output_offset
4589 + htab->sgot->output_section->vma))
4591 (*_bfd_error_handler)
4592 (_(".got section not immediately after .plt section"));
4601 /* Tweak the OSABI field of the elf header. */
4604 elf32_hppa_post_process_headers (bfd *abfd,
4605 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4607 Elf_Internal_Ehdr * i_ehdrp;
4609 i_ehdrp = elf_elfheader (abfd);
4611 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4613 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4615 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
4617 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NETBSD;
4621 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4625 /* Called when writing out an object file to decide the type of a
4628 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4630 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4631 return STT_PARISC_MILLI;
4636 /* Misc BFD support code. */
4637 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4638 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4639 #define elf_info_to_howto elf_hppa_info_to_howto
4640 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4642 /* Stuff for the BFD linker. */
4643 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4644 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4645 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4646 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4647 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4648 #define elf_backend_check_relocs elf32_hppa_check_relocs
4649 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4650 #define elf_backend_fake_sections elf_hppa_fake_sections
4651 #define elf_backend_relocate_section elf32_hppa_relocate_section
4652 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4653 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4654 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4655 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4656 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4657 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4658 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4659 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4660 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4661 #define elf_backend_object_p elf32_hppa_object_p
4662 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4663 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4664 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4665 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4666 #define elf_backend_action_discarded elf_hppa_action_discarded
4668 #define elf_backend_can_gc_sections 1
4669 #define elf_backend_can_refcount 1
4670 #define elf_backend_plt_alignment 2
4671 #define elf_backend_want_got_plt 0
4672 #define elf_backend_plt_readonly 0
4673 #define elf_backend_want_plt_sym 0
4674 #define elf_backend_got_header_size 8
4675 #define elf_backend_rela_normal 1
4677 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4678 #define TARGET_BIG_NAME "elf32-hppa"
4679 #define ELF_ARCH bfd_arch_hppa
4680 #define ELF_MACHINE_CODE EM_PARISC
4681 #define ELF_MAXPAGESIZE 0x1000
4683 #include "elf32-target.h"
4685 #undef TARGET_BIG_SYM
4686 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4687 #undef TARGET_BIG_NAME
4688 #define TARGET_BIG_NAME "elf32-hppa-linux"
4690 #define INCLUDED_TARGET_FILE 1
4691 #include "elf32-target.h"
4693 #undef TARGET_BIG_SYM
4694 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4695 #undef TARGET_BIG_NAME
4696 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4698 #include "elf32-target.h"