1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2016 Free Software Foundation, Inc.
5 Center for Software Science
6 Department of Computer Science
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
35 #include "elf32-hppa.h"
37 #include "elf32-hppa.h"
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
51 /* We use two hash tables to hold information for linking PA ELF objects.
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
61 There are a number of different stubs generated by the linker.
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
113 : ldw -24(%sp),%rp ; restore the original rp
116 : be,n 0(%sr0,%rp) ; inter-space return. */
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
129 bfd_hash_table "btab"
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
135 elf32_hppa_dyn_reloc_entry "hdh"
137 Always remember to use GNU Coding Style. */
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
143 static const bfd_byte plt_stub[] =
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
155 /* Section name for stubs is the associated section name plus this
157 #define STUB_SUFFIX ".stub"
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
171 #define ELIMINATE_COPY_RELOCS 1
173 enum elf32_hppa_stub_type
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
178 hppa_stub_import_shared,
183 struct elf32_hppa_stub_hash_entry
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
188 /* The stub section. */
191 /* Offset within stub_sec of the beginning of this stub. */
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
199 enum elf32_hppa_stub_type stub_type;
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
209 struct elf32_hppa_link_hash_entry
211 struct elf_link_hash_entry eh;
213 /* A pointer to the most recently used stub hash entry against this
215 struct elf32_hppa_stub_hash_entry *hsh_cache;
217 /* Used to count relocations for delayed sizing of relocation
219 struct elf32_hppa_dyn_reloc_entry
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *hdh_next;
224 /* The input section of the reloc. */
227 /* Number of relocs copied in this section. */
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count;
238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel:1;
245 struct elf32_hppa_link_hash_table
247 /* The main hash table. */
248 struct elf_link_hash_table etab;
250 /* The stub hash table. */
251 struct bfd_hash_table bstab;
253 /* Linker stub bfd. */
256 /* Linker call-backs. */
257 asection * (*add_stub_section) (const char *, asection *);
258 void (*layout_sections_again) (void);
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
264 /* This is the section to which stubs in the group will be
267 /* The stub section. */
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count;
273 unsigned int top_index;
274 asection **input_list;
275 Elf_Internal_Sym **all_local_syms;
277 /* Short-cuts to get to dynamic linker sections. */
285 /* Used during a final link to store the base of the text and data
286 segments so that we can perform SEGREL relocations. */
287 bfd_vma text_segment_base;
288 bfd_vma data_segment_base;
290 /* Whether we support multiple sub-spaces for shared libs. */
291 unsigned int multi_subspace:1;
293 /* Flags set when various size branches are detected. Used to
294 select suitable defaults for the stub group size. */
295 unsigned int has_12bit_branch:1;
296 unsigned int has_17bit_branch:1;
297 unsigned int has_22bit_branch:1;
299 /* Set if we need a .plt stub to support lazy dynamic linking. */
300 unsigned int need_plt_stub:1;
302 /* Small local sym cache. */
303 struct sym_cache sym_cache;
305 /* Data for LDM relocations. */
308 bfd_signed_vma refcount;
313 /* Various hash macros and functions. */
314 #define hppa_link_hash_table(p) \
315 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
316 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
318 #define hppa_elf_hash_entry(ent) \
319 ((struct elf32_hppa_link_hash_entry *)(ent))
321 #define hppa_stub_hash_entry(ent) \
322 ((struct elf32_hppa_stub_hash_entry *)(ent))
324 #define hppa_stub_hash_lookup(table, string, create, copy) \
325 ((struct elf32_hppa_stub_hash_entry *) \
326 bfd_hash_lookup ((table), (string), (create), (copy)))
328 #define hppa_elf_local_got_tls_type(abfd) \
329 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
331 #define hh_name(hh) \
332 (hh ? hh->eh.root.root.string : "<undef>")
334 #define eh_name(eh) \
335 (eh ? eh->root.root.string : "<undef>")
337 /* Assorted hash table functions. */
339 /* Initialize an entry in the stub hash table. */
341 static struct bfd_hash_entry *
342 stub_hash_newfunc (struct bfd_hash_entry *entry,
343 struct bfd_hash_table *table,
346 /* Allocate the structure if it has not already been allocated by a
350 entry = bfd_hash_allocate (table,
351 sizeof (struct elf32_hppa_stub_hash_entry));
356 /* Call the allocation method of the superclass. */
357 entry = bfd_hash_newfunc (entry, table, string);
360 struct elf32_hppa_stub_hash_entry *hsh;
362 /* Initialize the local fields. */
363 hsh = hppa_stub_hash_entry (entry);
364 hsh->stub_sec = NULL;
365 hsh->stub_offset = 0;
366 hsh->target_value = 0;
367 hsh->target_section = NULL;
368 hsh->stub_type = hppa_stub_long_branch;
376 /* Initialize an entry in the link hash table. */
378 static struct bfd_hash_entry *
379 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
380 struct bfd_hash_table *table,
383 /* Allocate the structure if it has not already been allocated by a
387 entry = bfd_hash_allocate (table,
388 sizeof (struct elf32_hppa_link_hash_entry));
393 /* Call the allocation method of the superclass. */
394 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
397 struct elf32_hppa_link_hash_entry *hh;
399 /* Initialize the local fields. */
400 hh = hppa_elf_hash_entry (entry);
401 hh->hsh_cache = NULL;
402 hh->dyn_relocs = NULL;
404 hh->tls_type = GOT_UNKNOWN;
410 /* Free the derived linker hash table. */
413 elf32_hppa_link_hash_table_free (bfd *obfd)
415 struct elf32_hppa_link_hash_table *htab
416 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
418 bfd_hash_table_free (&htab->bstab);
419 _bfd_elf_link_hash_table_free (obfd);
422 /* Create the derived linker hash table. The PA ELF port uses the derived
423 hash table to keep information specific to the PA ELF linker (without
424 using static variables). */
426 static struct bfd_link_hash_table *
427 elf32_hppa_link_hash_table_create (bfd *abfd)
429 struct elf32_hppa_link_hash_table *htab;
430 bfd_size_type amt = sizeof (*htab);
432 htab = bfd_zmalloc (amt);
436 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
437 sizeof (struct elf32_hppa_link_hash_entry),
444 /* Init the stub hash table too. */
445 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
446 sizeof (struct elf32_hppa_stub_hash_entry)))
448 _bfd_elf_link_hash_table_free (abfd);
451 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
453 htab->text_segment_base = (bfd_vma) -1;
454 htab->data_segment_base = (bfd_vma) -1;
455 return &htab->etab.root;
458 /* Initialize the linker stubs BFD so that we can use it for linker
459 created dynamic sections. */
462 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
464 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
466 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
467 htab->etab.dynobj = abfd;
470 /* Build a name for an entry in the stub hash table. */
473 hppa_stub_name (const asection *input_section,
474 const asection *sym_sec,
475 const struct elf32_hppa_link_hash_entry *hh,
476 const Elf_Internal_Rela *rela)
483 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
484 stub_name = bfd_malloc (len);
485 if (stub_name != NULL)
486 sprintf (stub_name, "%08x_%s+%x",
487 input_section->id & 0xffffffff,
489 (int) rela->r_addend & 0xffffffff);
493 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
494 stub_name = bfd_malloc (len);
495 if (stub_name != NULL)
496 sprintf (stub_name, "%08x_%x:%x+%x",
497 input_section->id & 0xffffffff,
498 sym_sec->id & 0xffffffff,
499 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
500 (int) rela->r_addend & 0xffffffff);
505 /* Look up an entry in the stub hash. Stub entries are cached because
506 creating the stub name takes a bit of time. */
508 static struct elf32_hppa_stub_hash_entry *
509 hppa_get_stub_entry (const asection *input_section,
510 const asection *sym_sec,
511 struct elf32_hppa_link_hash_entry *hh,
512 const Elf_Internal_Rela *rela,
513 struct elf32_hppa_link_hash_table *htab)
515 struct elf32_hppa_stub_hash_entry *hsh_entry;
516 const asection *id_sec;
518 /* If this input section is part of a group of sections sharing one
519 stub section, then use the id of the first section in the group.
520 Stub names need to include a section id, as there may well be
521 more than one stub used to reach say, printf, and we need to
522 distinguish between them. */
523 id_sec = htab->stub_group[input_section->id].link_sec;
525 if (hh != NULL && hh->hsh_cache != NULL
526 && hh->hsh_cache->hh == hh
527 && hh->hsh_cache->id_sec == id_sec)
529 hsh_entry = hh->hsh_cache;
535 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
536 if (stub_name == NULL)
539 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
540 stub_name, FALSE, FALSE);
542 hh->hsh_cache = hsh_entry;
550 /* Add a new stub entry to the stub hash. Not all fields of the new
551 stub entry are initialised. */
553 static struct elf32_hppa_stub_hash_entry *
554 hppa_add_stub (const char *stub_name,
556 struct elf32_hppa_link_hash_table *htab)
560 struct elf32_hppa_stub_hash_entry *hsh;
562 link_sec = htab->stub_group[section->id].link_sec;
563 stub_sec = htab->stub_group[section->id].stub_sec;
564 if (stub_sec == NULL)
566 stub_sec = htab->stub_group[link_sec->id].stub_sec;
567 if (stub_sec == NULL)
573 namelen = strlen (link_sec->name);
574 len = namelen + sizeof (STUB_SUFFIX);
575 s_name = bfd_alloc (htab->stub_bfd, len);
579 memcpy (s_name, link_sec->name, namelen);
580 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
581 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
582 if (stub_sec == NULL)
584 htab->stub_group[link_sec->id].stub_sec = stub_sec;
586 htab->stub_group[section->id].stub_sec = stub_sec;
589 /* Enter this entry into the linker stub hash table. */
590 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
594 _bfd_error_handler (_("%B: cannot create stub entry %s"),
595 section->owner, stub_name);
599 hsh->stub_sec = stub_sec;
600 hsh->stub_offset = 0;
601 hsh->id_sec = link_sec;
605 /* Determine the type of stub needed, if any, for a call. */
607 static enum elf32_hppa_stub_type
608 hppa_type_of_stub (asection *input_sec,
609 const Elf_Internal_Rela *rela,
610 struct elf32_hppa_link_hash_entry *hh,
612 struct bfd_link_info *info)
615 bfd_vma branch_offset;
616 bfd_vma max_branch_offset;
620 && hh->eh.plt.offset != (bfd_vma) -1
621 && hh->eh.dynindx != -1
623 && (bfd_link_pic (info)
624 || !hh->eh.def_regular
625 || hh->eh.root.type == bfd_link_hash_defweak))
627 /* We need an import stub. Decide between hppa_stub_import
628 and hppa_stub_import_shared later. */
629 return hppa_stub_import;
632 /* Determine where the call point is. */
633 location = (input_sec->output_offset
634 + input_sec->output_section->vma
637 branch_offset = destination - location - 8;
638 r_type = ELF32_R_TYPE (rela->r_info);
640 /* Determine if a long branch stub is needed. parisc branch offsets
641 are relative to the second instruction past the branch, ie. +8
642 bytes on from the branch instruction location. The offset is
643 signed and counts in units of 4 bytes. */
644 if (r_type == (unsigned int) R_PARISC_PCREL17F)
645 max_branch_offset = (1 << (17 - 1)) << 2;
647 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
648 max_branch_offset = (1 << (12 - 1)) << 2;
650 else /* R_PARISC_PCREL22F. */
651 max_branch_offset = (1 << (22 - 1)) << 2;
653 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
654 return hppa_stub_long_branch;
656 return hppa_stub_none;
659 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
660 IN_ARG contains the link info pointer. */
662 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
663 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
665 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
666 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
667 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
669 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
670 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
671 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
672 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
674 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
675 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
677 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
678 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
679 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
680 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
682 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
683 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
684 #define NOP 0x08000240 /* nop */
685 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
686 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
687 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
694 #define LDW_R1_DLT LDW_R1_R19
696 #define LDW_R1_DLT LDW_R1_DP
700 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
702 struct elf32_hppa_stub_hash_entry *hsh;
703 struct bfd_link_info *info;
704 struct elf32_hppa_link_hash_table *htab;
714 /* Massage our args to the form they really have. */
715 hsh = hppa_stub_hash_entry (bh);
716 info = (struct bfd_link_info *)in_arg;
718 htab = hppa_link_hash_table (info);
722 stub_sec = hsh->stub_sec;
724 /* Make a note of the offset within the stubs for this entry. */
725 hsh->stub_offset = stub_sec->size;
726 loc = stub_sec->contents + hsh->stub_offset;
728 stub_bfd = stub_sec->owner;
730 switch (hsh->stub_type)
732 case hppa_stub_long_branch:
733 /* Create the long branch. A long branch is formed with "ldil"
734 loading the upper bits of the target address into a register,
735 then branching with "be" which adds in the lower bits.
736 The "be" has its delay slot nullified. */
737 sym_value = (hsh->target_value
738 + hsh->target_section->output_offset
739 + hsh->target_section->output_section->vma);
741 val = hppa_field_adjust (sym_value, 0, e_lrsel);
742 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
743 bfd_put_32 (stub_bfd, insn, loc);
745 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
746 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
747 bfd_put_32 (stub_bfd, insn, loc + 4);
752 case hppa_stub_long_branch_shared:
753 /* Branches are relative. This is where we are going to. */
754 sym_value = (hsh->target_value
755 + hsh->target_section->output_offset
756 + hsh->target_section->output_section->vma);
758 /* And this is where we are coming from, more or less. */
759 sym_value -= (hsh->stub_offset
760 + stub_sec->output_offset
761 + stub_sec->output_section->vma);
763 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
764 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
765 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
766 bfd_put_32 (stub_bfd, insn, loc + 4);
768 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
769 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
770 bfd_put_32 (stub_bfd, insn, loc + 8);
774 case hppa_stub_import:
775 case hppa_stub_import_shared:
776 off = hsh->hh->eh.plt.offset;
777 if (off >= (bfd_vma) -2)
780 off &= ~ (bfd_vma) 1;
782 + htab->splt->output_offset
783 + htab->splt->output_section->vma
784 - elf_gp (htab->splt->output_section->owner));
788 if (hsh->stub_type == hppa_stub_import_shared)
791 val = hppa_field_adjust (sym_value, 0, e_lrsel),
792 insn = hppa_rebuild_insn ((int) insn, val, 21);
793 bfd_put_32 (stub_bfd, insn, loc);
795 /* It is critical to use lrsel/rrsel here because we are using
796 two different offsets (+0 and +4) from sym_value. If we use
797 lsel/rsel then with unfortunate sym_values we will round
798 sym_value+4 up to the next 2k block leading to a mis-match
799 between the lsel and rsel value. */
800 val = hppa_field_adjust (sym_value, 0, e_rrsel);
801 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
802 bfd_put_32 (stub_bfd, insn, loc + 4);
804 if (htab->multi_subspace)
806 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
807 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
808 bfd_put_32 (stub_bfd, insn, loc + 8);
810 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
811 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
812 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
813 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
819 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
820 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
821 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
822 bfd_put_32 (stub_bfd, insn, loc + 12);
829 case hppa_stub_export:
830 /* Branches are relative. This is where we are going to. */
831 sym_value = (hsh->target_value
832 + hsh->target_section->output_offset
833 + hsh->target_section->output_section->vma);
835 /* And this is where we are coming from. */
836 sym_value -= (hsh->stub_offset
837 + stub_sec->output_offset
838 + stub_sec->output_section->vma);
840 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
841 && (!htab->has_22bit_branch
842 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
845 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
846 hsh->target_section->owner,
848 (long) hsh->stub_offset,
849 hsh->bh_root.string);
850 bfd_set_error (bfd_error_bad_value);
854 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
855 if (!htab->has_22bit_branch)
856 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
858 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
859 bfd_put_32 (stub_bfd, insn, loc);
861 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
862 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
863 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
864 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
865 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
867 /* Point the function symbol at the stub. */
868 hsh->hh->eh.root.u.def.section = stub_sec;
869 hsh->hh->eh.root.u.def.value = stub_sec->size;
879 stub_sec->size += size;
904 /* As above, but don't actually build the stub. Just bump offset so
905 we know stub section sizes. */
908 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
910 struct elf32_hppa_stub_hash_entry *hsh;
911 struct elf32_hppa_link_hash_table *htab;
914 /* Massage our args to the form they really have. */
915 hsh = hppa_stub_hash_entry (bh);
918 if (hsh->stub_type == hppa_stub_long_branch)
920 else if (hsh->stub_type == hppa_stub_long_branch_shared)
922 else if (hsh->stub_type == hppa_stub_export)
924 else /* hppa_stub_import or hppa_stub_import_shared. */
926 if (htab->multi_subspace)
932 hsh->stub_sec->size += size;
936 /* Return nonzero if ABFD represents an HPPA ELF32 file.
937 Additionally we set the default architecture and machine. */
940 elf32_hppa_object_p (bfd *abfd)
942 Elf_Internal_Ehdr * i_ehdrp;
945 i_ehdrp = elf_elfheader (abfd);
946 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
948 /* GCC on hppa-linux produces binaries with OSABI=GNU,
949 but the kernel produces corefiles with OSABI=SysV. */
950 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
951 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
954 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
956 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
957 but the kernel produces corefiles with OSABI=SysV. */
958 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
959 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
964 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
968 flags = i_ehdrp->e_flags;
969 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
972 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
974 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
976 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
977 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
978 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
983 /* Create the .plt and .got sections, and set up our hash table
984 short-cuts to various dynamic sections. */
987 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
989 struct elf32_hppa_link_hash_table *htab;
990 struct elf_link_hash_entry *eh;
992 /* Don't try to create the .plt and .got twice. */
993 htab = hppa_link_hash_table (info);
996 if (htab->splt != NULL)
999 /* Call the generic code to do most of the work. */
1000 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1003 htab->splt = bfd_get_linker_section (abfd, ".plt");
1004 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
1006 htab->sgot = bfd_get_linker_section (abfd, ".got");
1007 htab->srelgot = bfd_get_linker_section (abfd, ".rela.got");
1009 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
1010 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
1012 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1013 application, because __canonicalize_funcptr_for_compare needs it. */
1014 eh = elf_hash_table (info)->hgot;
1015 eh->forced_local = 0;
1016 eh->other = STV_DEFAULT;
1017 return bfd_elf_link_record_dynamic_symbol (info, eh);
1020 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1023 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1024 struct elf_link_hash_entry *eh_dir,
1025 struct elf_link_hash_entry *eh_ind)
1027 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1029 hh_dir = hppa_elf_hash_entry (eh_dir);
1030 hh_ind = hppa_elf_hash_entry (eh_ind);
1032 if (hh_ind->dyn_relocs != NULL)
1034 if (hh_dir->dyn_relocs != NULL)
1036 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1037 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1039 /* Add reloc counts against the indirect sym to the direct sym
1040 list. Merge any entries against the same section. */
1041 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1043 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1045 for (hdh_q = hh_dir->dyn_relocs;
1047 hdh_q = hdh_q->hdh_next)
1048 if (hdh_q->sec == hdh_p->sec)
1050 #if RELATIVE_DYNRELOCS
1051 hdh_q->relative_count += hdh_p->relative_count;
1053 hdh_q->count += hdh_p->count;
1054 *hdh_pp = hdh_p->hdh_next;
1058 hdh_pp = &hdh_p->hdh_next;
1060 *hdh_pp = hh_dir->dyn_relocs;
1063 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1064 hh_ind->dyn_relocs = NULL;
1067 if (ELIMINATE_COPY_RELOCS
1068 && eh_ind->root.type != bfd_link_hash_indirect
1069 && eh_dir->dynamic_adjusted)
1071 /* If called to transfer flags for a weakdef during processing
1072 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1073 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1074 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1075 eh_dir->ref_regular |= eh_ind->ref_regular;
1076 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1077 eh_dir->needs_plt |= eh_ind->needs_plt;
1081 if (eh_ind->root.type == bfd_link_hash_indirect
1082 && eh_dir->got.refcount <= 0)
1084 hh_dir->tls_type = hh_ind->tls_type;
1085 hh_ind->tls_type = GOT_UNKNOWN;
1088 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1093 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1094 int r_type, int is_local ATTRIBUTE_UNUSED)
1096 /* For now we don't support linker optimizations. */
1100 /* Return a pointer to the local GOT, PLT and TLS reference counts
1101 for ABFD. Returns NULL if the storage allocation fails. */
1103 static bfd_signed_vma *
1104 hppa32_elf_local_refcounts (bfd *abfd)
1106 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1107 bfd_signed_vma *local_refcounts;
1109 local_refcounts = elf_local_got_refcounts (abfd);
1110 if (local_refcounts == NULL)
1114 /* Allocate space for local GOT and PLT reference
1115 counts. Done this way to save polluting elf_obj_tdata
1116 with another target specific pointer. */
1117 size = symtab_hdr->sh_info;
1118 size *= 2 * sizeof (bfd_signed_vma);
1119 /* Add in space to store the local GOT TLS types. */
1120 size += symtab_hdr->sh_info;
1121 local_refcounts = bfd_zalloc (abfd, size);
1122 if (local_refcounts == NULL)
1124 elf_local_got_refcounts (abfd) = local_refcounts;
1125 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1126 symtab_hdr->sh_info);
1128 return local_refcounts;
1132 /* Look through the relocs for a section during the first phase, and
1133 calculate needed space in the global offset table, procedure linkage
1134 table, and dynamic reloc sections. At this point we haven't
1135 necessarily read all the input files. */
1138 elf32_hppa_check_relocs (bfd *abfd,
1139 struct bfd_link_info *info,
1141 const Elf_Internal_Rela *relocs)
1143 Elf_Internal_Shdr *symtab_hdr;
1144 struct elf_link_hash_entry **eh_syms;
1145 const Elf_Internal_Rela *rela;
1146 const Elf_Internal_Rela *rela_end;
1147 struct elf32_hppa_link_hash_table *htab;
1149 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1151 if (bfd_link_relocatable (info))
1154 htab = hppa_link_hash_table (info);
1157 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1158 eh_syms = elf_sym_hashes (abfd);
1161 rela_end = relocs + sec->reloc_count;
1162 for (rela = relocs; rela < rela_end; rela++)
1171 unsigned int r_symndx, r_type;
1172 struct elf32_hppa_link_hash_entry *hh;
1175 r_symndx = ELF32_R_SYM (rela->r_info);
1177 if (r_symndx < symtab_hdr->sh_info)
1181 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1182 while (hh->eh.root.type == bfd_link_hash_indirect
1183 || hh->eh.root.type == bfd_link_hash_warning)
1184 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1186 /* PR15323, ref flags aren't set for references in the same
1188 hh->eh.root.non_ir_ref = 1;
1191 r_type = ELF32_R_TYPE (rela->r_info);
1192 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1196 case R_PARISC_DLTIND14F:
1197 case R_PARISC_DLTIND14R:
1198 case R_PARISC_DLTIND21L:
1199 /* This symbol requires a global offset table entry. */
1200 need_entry = NEED_GOT;
1203 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1204 case R_PARISC_PLABEL21L:
1205 case R_PARISC_PLABEL32:
1206 /* If the addend is non-zero, we break badly. */
1207 if (rela->r_addend != 0)
1210 /* If we are creating a shared library, then we need to
1211 create a PLT entry for all PLABELs, because PLABELs with
1212 local symbols may be passed via a pointer to another
1213 object. Additionally, output a dynamic relocation
1214 pointing to the PLT entry.
1216 For executables, the original 32-bit ABI allowed two
1217 different styles of PLABELs (function pointers): For
1218 global functions, the PLABEL word points into the .plt
1219 two bytes past a (function address, gp) pair, and for
1220 local functions the PLABEL points directly at the
1221 function. The magic +2 for the first type allows us to
1222 differentiate between the two. As you can imagine, this
1223 is a real pain when it comes to generating code to call
1224 functions indirectly or to compare function pointers.
1225 We avoid the mess by always pointing a PLABEL into the
1226 .plt, even for local functions. */
1227 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1230 case R_PARISC_PCREL12F:
1231 htab->has_12bit_branch = 1;
1234 case R_PARISC_PCREL17C:
1235 case R_PARISC_PCREL17F:
1236 htab->has_17bit_branch = 1;
1239 case R_PARISC_PCREL22F:
1240 htab->has_22bit_branch = 1;
1242 /* Function calls might need to go through the .plt, and
1243 might require long branch stubs. */
1246 /* We know local syms won't need a .plt entry, and if
1247 they need a long branch stub we can't guarantee that
1248 we can reach the stub. So just flag an error later
1249 if we're doing a shared link and find we need a long
1255 /* Global symbols will need a .plt entry if they remain
1256 global, and in most cases won't need a long branch
1257 stub. Unfortunately, we have to cater for the case
1258 where a symbol is forced local by versioning, or due
1259 to symbolic linking, and we lose the .plt entry. */
1260 need_entry = NEED_PLT;
1261 if (hh->eh.type == STT_PARISC_MILLI)
1266 case R_PARISC_SEGBASE: /* Used to set segment base. */
1267 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1268 case R_PARISC_PCREL14F: /* PC relative load/store. */
1269 case R_PARISC_PCREL14R:
1270 case R_PARISC_PCREL17R: /* External branches. */
1271 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1272 case R_PARISC_PCREL32:
1273 /* We don't need to propagate the relocation if linking a
1274 shared object since these are section relative. */
1277 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1278 case R_PARISC_DPREL14R:
1279 case R_PARISC_DPREL21L:
1280 if (bfd_link_pic (info))
1283 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1285 elf_hppa_howto_table[r_type].name);
1286 bfd_set_error (bfd_error_bad_value);
1291 case R_PARISC_DIR17F: /* Used for external branches. */
1292 case R_PARISC_DIR17R:
1293 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1294 case R_PARISC_DIR14R:
1295 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1296 case R_PARISC_DIR32: /* .word relocs. */
1297 /* We may want to output a dynamic relocation later. */
1298 need_entry = NEED_DYNREL;
1301 /* This relocation describes the C++ object vtable hierarchy.
1302 Reconstruct it for later use during GC. */
1303 case R_PARISC_GNU_VTINHERIT:
1304 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1308 /* This relocation describes which C++ vtable entries are actually
1309 used. Record for later use during GC. */
1310 case R_PARISC_GNU_VTENTRY:
1311 BFD_ASSERT (hh != NULL);
1313 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1317 case R_PARISC_TLS_GD21L:
1318 case R_PARISC_TLS_GD14R:
1319 case R_PARISC_TLS_LDM21L:
1320 case R_PARISC_TLS_LDM14R:
1321 need_entry = NEED_GOT;
1324 case R_PARISC_TLS_IE21L:
1325 case R_PARISC_TLS_IE14R:
1326 if (bfd_link_pic (info))
1327 info->flags |= DF_STATIC_TLS;
1328 need_entry = NEED_GOT;
1335 /* Now carry out our orders. */
1336 if (need_entry & NEED_GOT)
1341 tls_type = GOT_NORMAL;
1343 case R_PARISC_TLS_GD21L:
1344 case R_PARISC_TLS_GD14R:
1345 tls_type |= GOT_TLS_GD;
1347 case R_PARISC_TLS_LDM21L:
1348 case R_PARISC_TLS_LDM14R:
1349 tls_type |= GOT_TLS_LDM;
1351 case R_PARISC_TLS_IE21L:
1352 case R_PARISC_TLS_IE14R:
1353 tls_type |= GOT_TLS_IE;
1357 /* Allocate space for a GOT entry, as well as a dynamic
1358 relocation for this entry. */
1359 if (htab->sgot == NULL)
1361 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1365 if (r_type == R_PARISC_TLS_LDM21L
1366 || r_type == R_PARISC_TLS_LDM14R)
1367 htab->tls_ldm_got.refcount += 1;
1372 hh->eh.got.refcount += 1;
1373 old_tls_type = hh->tls_type;
1377 bfd_signed_vma *local_got_refcounts;
1379 /* This is a global offset table entry for a local symbol. */
1380 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1381 if (local_got_refcounts == NULL)
1383 local_got_refcounts[r_symndx] += 1;
1385 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1388 tls_type |= old_tls_type;
1390 if (old_tls_type != tls_type)
1393 hh->tls_type = tls_type;
1395 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1401 if (need_entry & NEED_PLT)
1403 /* If we are creating a shared library, and this is a reloc
1404 against a weak symbol or a global symbol in a dynamic
1405 object, then we will be creating an import stub and a
1406 .plt entry for the symbol. Similarly, on a normal link
1407 to symbols defined in a dynamic object we'll need the
1408 import stub and a .plt entry. We don't know yet whether
1409 the symbol is defined or not, so make an entry anyway and
1410 clean up later in adjust_dynamic_symbol. */
1411 if ((sec->flags & SEC_ALLOC) != 0)
1415 hh->eh.needs_plt = 1;
1416 hh->eh.plt.refcount += 1;
1418 /* If this .plt entry is for a plabel, mark it so
1419 that adjust_dynamic_symbol will keep the entry
1420 even if it appears to be local. */
1421 if (need_entry & PLT_PLABEL)
1424 else if (need_entry & PLT_PLABEL)
1426 bfd_signed_vma *local_got_refcounts;
1427 bfd_signed_vma *local_plt_refcounts;
1429 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1430 if (local_got_refcounts == NULL)
1432 local_plt_refcounts = (local_got_refcounts
1433 + symtab_hdr->sh_info);
1434 local_plt_refcounts[r_symndx] += 1;
1439 if (need_entry & NEED_DYNREL)
1441 /* Flag this symbol as having a non-got, non-plt reference
1442 so that we generate copy relocs if it turns out to be
1444 if (hh != NULL && !bfd_link_pic (info))
1445 hh->eh.non_got_ref = 1;
1447 /* If we are creating a shared library then we need to copy
1448 the reloc into the shared library. However, if we are
1449 linking with -Bsymbolic, we need only copy absolute
1450 relocs or relocs against symbols that are not defined in
1451 an object we are including in the link. PC- or DP- or
1452 DLT-relative relocs against any local sym or global sym
1453 with DEF_REGULAR set, can be discarded. At this point we
1454 have not seen all the input files, so it is possible that
1455 DEF_REGULAR is not set now but will be set later (it is
1456 never cleared). We account for that possibility below by
1457 storing information in the dyn_relocs field of the
1460 A similar situation to the -Bsymbolic case occurs when
1461 creating shared libraries and symbol visibility changes
1462 render the symbol local.
1464 As it turns out, all the relocs we will be creating here
1465 are absolute, so we cannot remove them on -Bsymbolic
1466 links or visibility changes anyway. A STUB_REL reloc
1467 is absolute too, as in that case it is the reloc in the
1468 stub we will be creating, rather than copying the PCREL
1469 reloc in the branch.
1471 If on the other hand, we are creating an executable, we
1472 may need to keep relocations for symbols satisfied by a
1473 dynamic library if we manage to avoid copy relocs for the
1475 if ((bfd_link_pic (info)
1476 && (sec->flags & SEC_ALLOC) != 0
1477 && (IS_ABSOLUTE_RELOC (r_type)
1479 && (!SYMBOLIC_BIND (info, &hh->eh)
1480 || hh->eh.root.type == bfd_link_hash_defweak
1481 || !hh->eh.def_regular))))
1482 || (ELIMINATE_COPY_RELOCS
1483 && !bfd_link_pic (info)
1484 && (sec->flags & SEC_ALLOC) != 0
1486 && (hh->eh.root.type == bfd_link_hash_defweak
1487 || !hh->eh.def_regular)))
1489 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1490 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1492 /* Create a reloc section in dynobj and make room for
1496 sreloc = _bfd_elf_make_dynamic_reloc_section
1497 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1501 bfd_set_error (bfd_error_bad_value);
1506 /* If this is a global symbol, we count the number of
1507 relocations we need for this symbol. */
1510 hdh_head = &hh->dyn_relocs;
1514 /* Track dynamic relocs needed for local syms too.
1515 We really need local syms available to do this
1519 Elf_Internal_Sym *isym;
1521 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1526 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1530 vpp = &elf_section_data (sr)->local_dynrel;
1531 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1535 if (hdh_p == NULL || hdh_p->sec != sec)
1537 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1540 hdh_p->hdh_next = *hdh_head;
1544 #if RELATIVE_DYNRELOCS
1545 hdh_p->relative_count = 0;
1550 #if RELATIVE_DYNRELOCS
1551 if (!IS_ABSOLUTE_RELOC (rtype))
1552 hdh_p->relative_count += 1;
1561 /* Return the section that should be marked against garbage collection
1562 for a given relocation. */
1565 elf32_hppa_gc_mark_hook (asection *sec,
1566 struct bfd_link_info *info,
1567 Elf_Internal_Rela *rela,
1568 struct elf_link_hash_entry *hh,
1569 Elf_Internal_Sym *sym)
1572 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1574 case R_PARISC_GNU_VTINHERIT:
1575 case R_PARISC_GNU_VTENTRY:
1579 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1582 /* Update the got and plt entry reference counts for the section being
1586 elf32_hppa_gc_sweep_hook (bfd *abfd,
1587 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1589 const Elf_Internal_Rela *relocs)
1591 Elf_Internal_Shdr *symtab_hdr;
1592 struct elf_link_hash_entry **eh_syms;
1593 bfd_signed_vma *local_got_refcounts;
1594 bfd_signed_vma *local_plt_refcounts;
1595 const Elf_Internal_Rela *rela, *relend;
1596 struct elf32_hppa_link_hash_table *htab;
1598 if (bfd_link_relocatable (info))
1601 htab = hppa_link_hash_table (info);
1605 elf_section_data (sec)->local_dynrel = NULL;
1607 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1608 eh_syms = elf_sym_hashes (abfd);
1609 local_got_refcounts = elf_local_got_refcounts (abfd);
1610 local_plt_refcounts = local_got_refcounts;
1611 if (local_plt_refcounts != NULL)
1612 local_plt_refcounts += symtab_hdr->sh_info;
1614 relend = relocs + sec->reloc_count;
1615 for (rela = relocs; rela < relend; rela++)
1617 unsigned long r_symndx;
1618 unsigned int r_type;
1619 struct elf_link_hash_entry *eh = NULL;
1621 r_symndx = ELF32_R_SYM (rela->r_info);
1622 if (r_symndx >= symtab_hdr->sh_info)
1624 struct elf32_hppa_link_hash_entry *hh;
1625 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1626 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1628 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1629 while (eh->root.type == bfd_link_hash_indirect
1630 || eh->root.type == bfd_link_hash_warning)
1631 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1632 hh = hppa_elf_hash_entry (eh);
1634 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1635 if (hdh_p->sec == sec)
1637 /* Everything must go for SEC. */
1638 *hdh_pp = hdh_p->hdh_next;
1643 r_type = ELF32_R_TYPE (rela->r_info);
1644 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1648 case R_PARISC_DLTIND14F:
1649 case R_PARISC_DLTIND14R:
1650 case R_PARISC_DLTIND21L:
1651 case R_PARISC_TLS_GD21L:
1652 case R_PARISC_TLS_GD14R:
1653 case R_PARISC_TLS_IE21L:
1654 case R_PARISC_TLS_IE14R:
1657 if (eh->got.refcount > 0)
1658 eh->got.refcount -= 1;
1660 else if (local_got_refcounts != NULL)
1662 if (local_got_refcounts[r_symndx] > 0)
1663 local_got_refcounts[r_symndx] -= 1;
1667 case R_PARISC_TLS_LDM21L:
1668 case R_PARISC_TLS_LDM14R:
1669 htab->tls_ldm_got.refcount -= 1;
1672 case R_PARISC_PCREL12F:
1673 case R_PARISC_PCREL17C:
1674 case R_PARISC_PCREL17F:
1675 case R_PARISC_PCREL22F:
1678 if (eh->plt.refcount > 0)
1679 eh->plt.refcount -= 1;
1683 case R_PARISC_PLABEL14R:
1684 case R_PARISC_PLABEL21L:
1685 case R_PARISC_PLABEL32:
1688 if (eh->plt.refcount > 0)
1689 eh->plt.refcount -= 1;
1691 else if (local_plt_refcounts != NULL)
1693 if (local_plt_refcounts[r_symndx] > 0)
1694 local_plt_refcounts[r_symndx] -= 1;
1706 /* Support for core dump NOTE sections. */
1709 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1714 switch (note->descsz)
1719 case 396: /* Linux/hppa */
1721 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1724 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1733 /* Make a ".reg/999" section. */
1734 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1735 size, note->descpos + offset);
1739 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1741 switch (note->descsz)
1746 case 124: /* Linux/hppa elf_prpsinfo. */
1747 elf_tdata (abfd)->core->program
1748 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1749 elf_tdata (abfd)->core->command
1750 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1753 /* Note that for some reason, a spurious space is tacked
1754 onto the end of the args in some (at least one anyway)
1755 implementations, so strip it off if it exists. */
1757 char *command = elf_tdata (abfd)->core->command;
1758 int n = strlen (command);
1760 if (0 < n && command[n - 1] == ' ')
1761 command[n - 1] = '\0';
1767 /* Our own version of hide_symbol, so that we can keep plt entries for
1771 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1772 struct elf_link_hash_entry *eh,
1773 bfd_boolean force_local)
1777 eh->forced_local = 1;
1778 if (eh->dynindx != -1)
1781 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1785 /* PR 16082: Remove version information from hidden symbol. */
1786 eh->verinfo.verdef = NULL;
1787 eh->verinfo.vertree = NULL;
1790 /* STT_GNU_IFUNC symbol must go through PLT. */
1791 if (! hppa_elf_hash_entry (eh)->plabel
1792 && eh->type != STT_GNU_IFUNC)
1795 eh->plt = elf_hash_table (info)->init_plt_offset;
1799 /* Adjust a symbol defined by a dynamic object and referenced by a
1800 regular object. The current definition is in some section of the
1801 dynamic object, but we're not including those sections. We have to
1802 change the definition to something the rest of the link can
1806 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1807 struct elf_link_hash_entry *eh)
1809 struct elf32_hppa_link_hash_table *htab;
1812 /* If this is a function, put it in the procedure linkage table. We
1813 will fill in the contents of the procedure linkage table later. */
1814 if (eh->type == STT_FUNC
1817 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1818 The refcounts are not reliable when it has been hidden since
1819 hide_symbol can be called before the plabel flag is set. */
1820 if (hppa_elf_hash_entry (eh)->plabel
1821 && eh->plt.refcount <= 0)
1822 eh->plt.refcount = 1;
1824 if (eh->plt.refcount <= 0
1826 && eh->root.type != bfd_link_hash_defweak
1827 && ! hppa_elf_hash_entry (eh)->plabel
1828 && (!bfd_link_pic (info) || SYMBOLIC_BIND (info, eh))))
1830 /* The .plt entry is not needed when:
1831 a) Garbage collection has removed all references to the
1833 b) We know for certain the symbol is defined in this
1834 object, and it's not a weak definition, nor is the symbol
1835 used by a plabel relocation. Either this object is the
1836 application or we are doing a shared symbolic link. */
1838 eh->plt.offset = (bfd_vma) -1;
1845 eh->plt.offset = (bfd_vma) -1;
1847 /* If this is a weak symbol, and there is a real definition, the
1848 processor independent code will have arranged for us to see the
1849 real definition first, and we can just use the same value. */
1850 if (eh->u.weakdef != NULL)
1852 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1853 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1855 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1856 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1857 if (ELIMINATE_COPY_RELOCS)
1858 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1862 /* This is a reference to a symbol defined by a dynamic object which
1863 is not a function. */
1865 /* If we are creating a shared library, we must presume that the
1866 only references to the symbol are via the global offset table.
1867 For such cases we need not do anything here; the relocations will
1868 be handled correctly by relocate_section. */
1869 if (bfd_link_pic (info))
1872 /* If there are no references to this symbol that do not use the
1873 GOT, we don't need to generate a copy reloc. */
1874 if (!eh->non_got_ref)
1877 if (ELIMINATE_COPY_RELOCS)
1879 struct elf32_hppa_link_hash_entry *hh;
1880 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1882 hh = hppa_elf_hash_entry (eh);
1883 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1885 sec = hdh_p->sec->output_section;
1886 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1890 /* If we didn't find any dynamic relocs in read-only sections, then
1891 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1894 eh->non_got_ref = 0;
1899 /* We must allocate the symbol in our .dynbss section, which will
1900 become part of the .bss section of the executable. There will be
1901 an entry for this symbol in the .dynsym section. The dynamic
1902 object will contain position independent code, so all references
1903 from the dynamic object to this symbol will go through the global
1904 offset table. The dynamic linker will use the .dynsym entry to
1905 determine the address it must put in the global offset table, so
1906 both the dynamic object and the regular object will refer to the
1907 same memory location for the variable. */
1909 htab = hppa_link_hash_table (info);
1913 /* We must generate a COPY reloc to tell the dynamic linker to
1914 copy the initial value out of the dynamic object and into the
1915 runtime process image. */
1916 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1918 htab->srelbss->size += sizeof (Elf32_External_Rela);
1922 sec = htab->sdynbss;
1924 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1927 /* Allocate space in the .plt for entries that won't have relocations.
1928 ie. plabel entries. */
1931 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1933 struct bfd_link_info *info;
1934 struct elf32_hppa_link_hash_table *htab;
1935 struct elf32_hppa_link_hash_entry *hh;
1938 if (eh->root.type == bfd_link_hash_indirect)
1941 info = (struct bfd_link_info *) inf;
1942 hh = hppa_elf_hash_entry (eh);
1943 htab = hppa_link_hash_table (info);
1947 if (htab->etab.dynamic_sections_created
1948 && eh->plt.refcount > 0)
1950 /* Make sure this symbol is output as a dynamic symbol.
1951 Undefined weak syms won't yet be marked as dynamic. */
1952 if (eh->dynindx == -1
1953 && !eh->forced_local
1954 && eh->type != STT_PARISC_MILLI)
1956 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1960 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1962 /* Allocate these later. From this point on, h->plabel
1963 means that the plt entry is only used by a plabel.
1964 We'll be using a normal plt entry for this symbol, so
1965 clear the plabel indicator. */
1969 else if (hh->plabel)
1971 /* Make an entry in the .plt section for plabel references
1972 that won't have a .plt entry for other reasons. */
1974 eh->plt.offset = sec->size;
1975 sec->size += PLT_ENTRY_SIZE;
1979 /* No .plt entry needed. */
1980 eh->plt.offset = (bfd_vma) -1;
1986 eh->plt.offset = (bfd_vma) -1;
1993 /* Allocate space in .plt, .got and associated reloc sections for
1997 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1999 struct bfd_link_info *info;
2000 struct elf32_hppa_link_hash_table *htab;
2002 struct elf32_hppa_link_hash_entry *hh;
2003 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2005 if (eh->root.type == bfd_link_hash_indirect)
2009 htab = hppa_link_hash_table (info);
2013 hh = hppa_elf_hash_entry (eh);
2015 if (htab->etab.dynamic_sections_created
2016 && eh->plt.offset != (bfd_vma) -1
2018 && eh->plt.refcount > 0)
2020 /* Make an entry in the .plt section. */
2022 eh->plt.offset = sec->size;
2023 sec->size += PLT_ENTRY_SIZE;
2025 /* We also need to make an entry in the .rela.plt section. */
2026 htab->srelplt->size += sizeof (Elf32_External_Rela);
2027 htab->need_plt_stub = 1;
2030 if (eh->got.refcount > 0)
2032 /* Make sure this symbol is output as a dynamic symbol.
2033 Undefined weak syms won't yet be marked as dynamic. */
2034 if (eh->dynindx == -1
2035 && !eh->forced_local
2036 && eh->type != STT_PARISC_MILLI)
2038 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2043 eh->got.offset = sec->size;
2044 sec->size += GOT_ENTRY_SIZE;
2045 /* R_PARISC_TLS_GD* needs two GOT entries */
2046 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2047 sec->size += GOT_ENTRY_SIZE * 2;
2048 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2049 sec->size += GOT_ENTRY_SIZE;
2050 if (htab->etab.dynamic_sections_created
2051 && (bfd_link_pic (info)
2052 || (eh->dynindx != -1
2053 && !eh->forced_local)))
2055 htab->srelgot->size += sizeof (Elf32_External_Rela);
2056 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2057 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2058 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2059 htab->srelgot->size += sizeof (Elf32_External_Rela);
2063 eh->got.offset = (bfd_vma) -1;
2065 if (hh->dyn_relocs == NULL)
2068 /* If this is a -Bsymbolic shared link, then we need to discard all
2069 space allocated for dynamic pc-relative relocs against symbols
2070 defined in a regular object. For the normal shared case, discard
2071 space for relocs that have become local due to symbol visibility
2073 if (bfd_link_pic (info))
2075 #if RELATIVE_DYNRELOCS
2076 if (SYMBOL_CALLS_LOCAL (info, eh))
2078 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2080 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2082 hdh_p->count -= hdh_p->relative_count;
2083 hdh_p->relative_count = 0;
2084 if (hdh_p->count == 0)
2085 *hdh_pp = hdh_p->hdh_next;
2087 hdh_pp = &hdh_p->hdh_next;
2092 /* Also discard relocs on undefined weak syms with non-default
2094 if (hh->dyn_relocs != NULL
2095 && eh->root.type == bfd_link_hash_undefweak)
2097 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2098 hh->dyn_relocs = NULL;
2100 /* Make sure undefined weak symbols are output as a dynamic
2102 else if (eh->dynindx == -1
2103 && !eh->forced_local)
2105 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2112 /* For the non-shared case, discard space for relocs against
2113 symbols which turn out to need copy relocs or are not
2116 if (!eh->non_got_ref
2117 && ((ELIMINATE_COPY_RELOCS
2119 && !eh->def_regular)
2120 || (htab->etab.dynamic_sections_created
2121 && (eh->root.type == bfd_link_hash_undefweak
2122 || eh->root.type == bfd_link_hash_undefined))))
2124 /* Make sure this symbol is output as a dynamic symbol.
2125 Undefined weak syms won't yet be marked as dynamic. */
2126 if (eh->dynindx == -1
2127 && !eh->forced_local
2128 && eh->type != STT_PARISC_MILLI)
2130 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2134 /* If that succeeded, we know we'll be keeping all the
2136 if (eh->dynindx != -1)
2140 hh->dyn_relocs = NULL;
2146 /* Finally, allocate space. */
2147 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2149 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2150 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2156 /* This function is called via elf_link_hash_traverse to force
2157 millicode symbols local so they do not end up as globals in the
2158 dynamic symbol table. We ought to be able to do this in
2159 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2160 for all dynamic symbols. Arguably, this is a bug in
2161 elf_adjust_dynamic_symbol. */
2164 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2165 struct bfd_link_info *info)
2167 if (eh->type == STT_PARISC_MILLI
2168 && !eh->forced_local)
2170 elf32_hppa_hide_symbol (info, eh, TRUE);
2175 /* Find any dynamic relocs that apply to read-only sections. */
2178 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2180 struct elf32_hppa_link_hash_entry *hh;
2181 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2183 hh = hppa_elf_hash_entry (eh);
2184 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2186 asection *sec = hdh_p->sec->output_section;
2188 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2190 struct bfd_link_info *info = inf;
2192 info->flags |= DF_TEXTREL;
2194 /* Not an error, just cut short the traversal. */
2201 /* Set the sizes of the dynamic sections. */
2204 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2205 struct bfd_link_info *info)
2207 struct elf32_hppa_link_hash_table *htab;
2213 htab = hppa_link_hash_table (info);
2217 dynobj = htab->etab.dynobj;
2221 if (htab->etab.dynamic_sections_created)
2223 /* Set the contents of the .interp section to the interpreter. */
2224 if (bfd_link_executable (info) && !info->nointerp)
2226 sec = bfd_get_linker_section (dynobj, ".interp");
2229 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2230 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2233 /* Force millicode symbols local. */
2234 elf_link_hash_traverse (&htab->etab,
2235 clobber_millicode_symbols,
2239 /* Set up .got and .plt offsets for local syms, and space for local
2241 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2243 bfd_signed_vma *local_got;
2244 bfd_signed_vma *end_local_got;
2245 bfd_signed_vma *local_plt;
2246 bfd_signed_vma *end_local_plt;
2247 bfd_size_type locsymcount;
2248 Elf_Internal_Shdr *symtab_hdr;
2250 char *local_tls_type;
2252 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2255 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2257 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2259 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2260 elf_section_data (sec)->local_dynrel);
2262 hdh_p = hdh_p->hdh_next)
2264 if (!bfd_is_abs_section (hdh_p->sec)
2265 && bfd_is_abs_section (hdh_p->sec->output_section))
2267 /* Input section has been discarded, either because
2268 it is a copy of a linkonce section or due to
2269 linker script /DISCARD/, so we'll be discarding
2272 else if (hdh_p->count != 0)
2274 srel = elf_section_data (hdh_p->sec)->sreloc;
2275 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2276 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2277 info->flags |= DF_TEXTREL;
2282 local_got = elf_local_got_refcounts (ibfd);
2286 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2287 locsymcount = symtab_hdr->sh_info;
2288 end_local_got = local_got + locsymcount;
2289 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2291 srel = htab->srelgot;
2292 for (; local_got < end_local_got; ++local_got)
2296 *local_got = sec->size;
2297 sec->size += GOT_ENTRY_SIZE;
2298 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2299 sec->size += 2 * GOT_ENTRY_SIZE;
2300 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2301 sec->size += GOT_ENTRY_SIZE;
2302 if (bfd_link_pic (info))
2304 srel->size += sizeof (Elf32_External_Rela);
2305 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2306 srel->size += 2 * sizeof (Elf32_External_Rela);
2307 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2308 srel->size += sizeof (Elf32_External_Rela);
2312 *local_got = (bfd_vma) -1;
2317 local_plt = end_local_got;
2318 end_local_plt = local_plt + locsymcount;
2319 if (! htab->etab.dynamic_sections_created)
2321 /* Won't be used, but be safe. */
2322 for (; local_plt < end_local_plt; ++local_plt)
2323 *local_plt = (bfd_vma) -1;
2328 srel = htab->srelplt;
2329 for (; local_plt < end_local_plt; ++local_plt)
2333 *local_plt = sec->size;
2334 sec->size += PLT_ENTRY_SIZE;
2335 if (bfd_link_pic (info))
2336 srel->size += sizeof (Elf32_External_Rela);
2339 *local_plt = (bfd_vma) -1;
2344 if (htab->tls_ldm_got.refcount > 0)
2346 /* Allocate 2 got entries and 1 dynamic reloc for
2347 R_PARISC_TLS_DTPMOD32 relocs. */
2348 htab->tls_ldm_got.offset = htab->sgot->size;
2349 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2350 htab->srelgot->size += sizeof (Elf32_External_Rela);
2353 htab->tls_ldm_got.offset = -1;
2355 /* Do all the .plt entries without relocs first. The dynamic linker
2356 uses the last .plt reloc to find the end of the .plt (and hence
2357 the start of the .got) for lazy linking. */
2358 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2360 /* Allocate global sym .plt and .got entries, and space for global
2361 sym dynamic relocs. */
2362 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2364 /* The check_relocs and adjust_dynamic_symbol entry points have
2365 determined the sizes of the various dynamic sections. Allocate
2368 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2370 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2373 if (sec == htab->splt)
2375 if (htab->need_plt_stub)
2377 /* Make space for the plt stub at the end of the .plt
2378 section. We want this stub right at the end, up
2379 against the .got section. */
2380 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2381 int pltalign = bfd_section_alignment (dynobj, sec);
2384 if (gotalign > pltalign)
2385 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2386 mask = ((bfd_size_type) 1 << gotalign) - 1;
2387 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2390 else if (sec == htab->sgot
2391 || sec == htab->sdynbss)
2393 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2397 /* Remember whether there are any reloc sections other
2399 if (sec != htab->srelplt)
2402 /* We use the reloc_count field as a counter if we need
2403 to copy relocs into the output file. */
2404 sec->reloc_count = 0;
2409 /* It's not one of our sections, so don't allocate space. */
2415 /* If we don't need this section, strip it from the
2416 output file. This is mostly to handle .rela.bss and
2417 .rela.plt. We must create both sections in
2418 create_dynamic_sections, because they must be created
2419 before the linker maps input sections to output
2420 sections. The linker does that before
2421 adjust_dynamic_symbol is called, and it is that
2422 function which decides whether anything needs to go
2423 into these sections. */
2424 sec->flags |= SEC_EXCLUDE;
2428 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2431 /* Allocate memory for the section contents. Zero it, because
2432 we may not fill in all the reloc sections. */
2433 sec->contents = bfd_zalloc (dynobj, sec->size);
2434 if (sec->contents == NULL)
2438 if (htab->etab.dynamic_sections_created)
2440 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2441 actually has nothing to do with the PLT, it is how we
2442 communicate the LTP value of a load module to the dynamic
2444 #define add_dynamic_entry(TAG, VAL) \
2445 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2447 if (!add_dynamic_entry (DT_PLTGOT, 0))
2450 /* Add some entries to the .dynamic section. We fill in the
2451 values later, in elf32_hppa_finish_dynamic_sections, but we
2452 must add the entries now so that we get the correct size for
2453 the .dynamic section. The DT_DEBUG entry is filled in by the
2454 dynamic linker and used by the debugger. */
2455 if (bfd_link_executable (info))
2457 if (!add_dynamic_entry (DT_DEBUG, 0))
2461 if (htab->srelplt->size != 0)
2463 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2464 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2465 || !add_dynamic_entry (DT_JMPREL, 0))
2471 if (!add_dynamic_entry (DT_RELA, 0)
2472 || !add_dynamic_entry (DT_RELASZ, 0)
2473 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2476 /* If any dynamic relocs apply to a read-only section,
2477 then we need a DT_TEXTREL entry. */
2478 if ((info->flags & DF_TEXTREL) == 0)
2479 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2481 if ((info->flags & DF_TEXTREL) != 0)
2483 if (!add_dynamic_entry (DT_TEXTREL, 0))
2488 #undef add_dynamic_entry
2493 /* External entry points for sizing and building linker stubs. */
2495 /* Set up various things so that we can make a list of input sections
2496 for each output section included in the link. Returns -1 on error,
2497 0 when no stubs will be needed, and 1 on success. */
2500 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2503 unsigned int bfd_count;
2504 unsigned int top_id, top_index;
2506 asection **input_list, **list;
2508 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2513 /* Count the number of input BFDs and find the top input section id. */
2514 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2516 input_bfd = input_bfd->link.next)
2519 for (section = input_bfd->sections;
2521 section = section->next)
2523 if (top_id < section->id)
2524 top_id = section->id;
2527 htab->bfd_count = bfd_count;
2529 amt = sizeof (struct map_stub) * (top_id + 1);
2530 htab->stub_group = bfd_zmalloc (amt);
2531 if (htab->stub_group == NULL)
2534 /* We can't use output_bfd->section_count here to find the top output
2535 section index as some sections may have been removed, and
2536 strip_excluded_output_sections doesn't renumber the indices. */
2537 for (section = output_bfd->sections, top_index = 0;
2539 section = section->next)
2541 if (top_index < section->index)
2542 top_index = section->index;
2545 htab->top_index = top_index;
2546 amt = sizeof (asection *) * (top_index + 1);
2547 input_list = bfd_malloc (amt);
2548 htab->input_list = input_list;
2549 if (input_list == NULL)
2552 /* For sections we aren't interested in, mark their entries with a
2553 value we can check later. */
2554 list = input_list + top_index;
2556 *list = bfd_abs_section_ptr;
2557 while (list-- != input_list);
2559 for (section = output_bfd->sections;
2561 section = section->next)
2563 if ((section->flags & SEC_CODE) != 0)
2564 input_list[section->index] = NULL;
2570 /* The linker repeatedly calls this function for each input section,
2571 in the order that input sections are linked into output sections.
2572 Build lists of input sections to determine groupings between which
2573 we may insert linker stubs. */
2576 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2578 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2583 if (isec->output_section->index <= htab->top_index)
2585 asection **list = htab->input_list + isec->output_section->index;
2586 if (*list != bfd_abs_section_ptr)
2588 /* Steal the link_sec pointer for our list. */
2589 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2590 /* This happens to make the list in reverse order,
2591 which is what we want. */
2592 PREV_SEC (isec) = *list;
2598 /* See whether we can group stub sections together. Grouping stub
2599 sections may result in fewer stubs. More importantly, we need to
2600 put all .init* and .fini* stubs at the beginning of the .init or
2601 .fini output sections respectively, because glibc splits the
2602 _init and _fini functions into multiple parts. Putting a stub in
2603 the middle of a function is not a good idea. */
2606 group_sections (struct elf32_hppa_link_hash_table *htab,
2607 bfd_size_type stub_group_size,
2608 bfd_boolean stubs_always_before_branch)
2610 asection **list = htab->input_list + htab->top_index;
2613 asection *tail = *list;
2614 if (tail == bfd_abs_section_ptr)
2616 while (tail != NULL)
2620 bfd_size_type total;
2621 bfd_boolean big_sec;
2625 big_sec = total >= stub_group_size;
2627 while ((prev = PREV_SEC (curr)) != NULL
2628 && ((total += curr->output_offset - prev->output_offset)
2632 /* OK, the size from the start of CURR to the end is less
2633 than 240000 bytes and thus can be handled by one stub
2634 section. (or the tail section is itself larger than
2635 240000 bytes, in which case we may be toast.)
2636 We should really be keeping track of the total size of
2637 stubs added here, as stubs contribute to the final output
2638 section size. That's a little tricky, and this way will
2639 only break if stubs added total more than 22144 bytes, or
2640 2768 long branch stubs. It seems unlikely for more than
2641 2768 different functions to be called, especially from
2642 code only 240000 bytes long. This limit used to be
2643 250000, but c++ code tends to generate lots of little
2644 functions, and sometimes violated the assumption. */
2647 prev = PREV_SEC (tail);
2648 /* Set up this stub group. */
2649 htab->stub_group[tail->id].link_sec = curr;
2651 while (tail != curr && (tail = prev) != NULL);
2653 /* But wait, there's more! Input sections up to 240000
2654 bytes before the stub section can be handled by it too.
2655 Don't do this if we have a really large section after the
2656 stubs, as adding more stubs increases the chance that
2657 branches may not reach into the stub section. */
2658 if (!stubs_always_before_branch && !big_sec)
2662 && ((total += tail->output_offset - prev->output_offset)
2666 prev = PREV_SEC (tail);
2667 htab->stub_group[tail->id].link_sec = curr;
2673 while (list-- != htab->input_list);
2674 free (htab->input_list);
2678 /* Read in all local syms for all input bfds, and create hash entries
2679 for export stubs if we are building a multi-subspace shared lib.
2680 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2683 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2685 unsigned int bfd_indx;
2686 Elf_Internal_Sym *local_syms, **all_local_syms;
2687 int stub_changed = 0;
2688 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2693 /* We want to read in symbol extension records only once. To do this
2694 we need to read in the local symbols in parallel and save them for
2695 later use; so hold pointers to the local symbols in an array. */
2696 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2697 all_local_syms = bfd_zmalloc (amt);
2698 htab->all_local_syms = all_local_syms;
2699 if (all_local_syms == NULL)
2702 /* Walk over all the input BFDs, swapping in local symbols.
2703 If we are creating a shared library, create hash entries for the
2707 input_bfd = input_bfd->link.next, bfd_indx++)
2709 Elf_Internal_Shdr *symtab_hdr;
2711 /* We'll need the symbol table in a second. */
2712 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2713 if (symtab_hdr->sh_info == 0)
2716 /* We need an array of the local symbols attached to the input bfd. */
2717 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2718 if (local_syms == NULL)
2720 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2721 symtab_hdr->sh_info, 0,
2723 /* Cache them for elf_link_input_bfd. */
2724 symtab_hdr->contents = (unsigned char *) local_syms;
2726 if (local_syms == NULL)
2729 all_local_syms[bfd_indx] = local_syms;
2731 if (bfd_link_pic (info) && htab->multi_subspace)
2733 struct elf_link_hash_entry **eh_syms;
2734 struct elf_link_hash_entry **eh_symend;
2735 unsigned int symcount;
2737 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2738 - symtab_hdr->sh_info);
2739 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2740 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2742 /* Look through the global syms for functions; We need to
2743 build export stubs for all globally visible functions. */
2744 for (; eh_syms < eh_symend; eh_syms++)
2746 struct elf32_hppa_link_hash_entry *hh;
2748 hh = hppa_elf_hash_entry (*eh_syms);
2750 while (hh->eh.root.type == bfd_link_hash_indirect
2751 || hh->eh.root.type == bfd_link_hash_warning)
2752 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2754 /* At this point in the link, undefined syms have been
2755 resolved, so we need to check that the symbol was
2756 defined in this BFD. */
2757 if ((hh->eh.root.type == bfd_link_hash_defined
2758 || hh->eh.root.type == bfd_link_hash_defweak)
2759 && hh->eh.type == STT_FUNC
2760 && hh->eh.root.u.def.section->output_section != NULL
2761 && (hh->eh.root.u.def.section->output_section->owner
2763 && hh->eh.root.u.def.section->owner == input_bfd
2764 && hh->eh.def_regular
2765 && !hh->eh.forced_local
2766 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2769 const char *stub_name;
2770 struct elf32_hppa_stub_hash_entry *hsh;
2772 sec = hh->eh.root.u.def.section;
2773 stub_name = hh_name (hh);
2774 hsh = hppa_stub_hash_lookup (&htab->bstab,
2779 hsh = hppa_add_stub (stub_name, sec, htab);
2783 hsh->target_value = hh->eh.root.u.def.value;
2784 hsh->target_section = hh->eh.root.u.def.section;
2785 hsh->stub_type = hppa_stub_export;
2791 _bfd_error_handler (_("%B: duplicate export stub %s"),
2792 input_bfd, stub_name);
2799 return stub_changed;
2802 /* Determine and set the size of the stub section for a final link.
2804 The basic idea here is to examine all the relocations looking for
2805 PC-relative calls to a target that is unreachable with a "bl"
2809 elf32_hppa_size_stubs
2810 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2811 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2812 asection * (*add_stub_section) (const char *, asection *),
2813 void (*layout_sections_again) (void))
2815 bfd_size_type stub_group_size;
2816 bfd_boolean stubs_always_before_branch;
2817 bfd_boolean stub_changed;
2818 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2823 /* Stash our params away. */
2824 htab->stub_bfd = stub_bfd;
2825 htab->multi_subspace = multi_subspace;
2826 htab->add_stub_section = add_stub_section;
2827 htab->layout_sections_again = layout_sections_again;
2828 stubs_always_before_branch = group_size < 0;
2830 stub_group_size = -group_size;
2832 stub_group_size = group_size;
2833 if (stub_group_size == 1)
2835 /* Default values. */
2836 if (stubs_always_before_branch)
2838 stub_group_size = 7680000;
2839 if (htab->has_17bit_branch || htab->multi_subspace)
2840 stub_group_size = 240000;
2841 if (htab->has_12bit_branch)
2842 stub_group_size = 7500;
2846 stub_group_size = 6971392;
2847 if (htab->has_17bit_branch || htab->multi_subspace)
2848 stub_group_size = 217856;
2849 if (htab->has_12bit_branch)
2850 stub_group_size = 6808;
2854 group_sections (htab, stub_group_size, stubs_always_before_branch);
2856 switch (get_local_syms (output_bfd, info->input_bfds, info))
2859 if (htab->all_local_syms)
2860 goto error_ret_free_local;
2864 stub_changed = FALSE;
2868 stub_changed = TRUE;
2875 unsigned int bfd_indx;
2878 for (input_bfd = info->input_bfds, bfd_indx = 0;
2880 input_bfd = input_bfd->link.next, bfd_indx++)
2882 Elf_Internal_Shdr *symtab_hdr;
2884 Elf_Internal_Sym *local_syms;
2886 /* We'll need the symbol table in a second. */
2887 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2888 if (symtab_hdr->sh_info == 0)
2891 local_syms = htab->all_local_syms[bfd_indx];
2893 /* Walk over each section attached to the input bfd. */
2894 for (section = input_bfd->sections;
2896 section = section->next)
2898 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2900 /* If there aren't any relocs, then there's nothing more
2902 if ((section->flags & SEC_RELOC) == 0
2903 || section->reloc_count == 0)
2906 /* If this section is a link-once section that will be
2907 discarded, then don't create any stubs. */
2908 if (section->output_section == NULL
2909 || section->output_section->owner != output_bfd)
2912 /* Get the relocs. */
2914 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2916 if (internal_relocs == NULL)
2917 goto error_ret_free_local;
2919 /* Now examine each relocation. */
2920 irela = internal_relocs;
2921 irelaend = irela + section->reloc_count;
2922 for (; irela < irelaend; irela++)
2924 unsigned int r_type, r_indx;
2925 enum elf32_hppa_stub_type stub_type;
2926 struct elf32_hppa_stub_hash_entry *hsh;
2929 bfd_vma destination;
2930 struct elf32_hppa_link_hash_entry *hh;
2932 const asection *id_sec;
2934 r_type = ELF32_R_TYPE (irela->r_info);
2935 r_indx = ELF32_R_SYM (irela->r_info);
2937 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2939 bfd_set_error (bfd_error_bad_value);
2940 error_ret_free_internal:
2941 if (elf_section_data (section)->relocs == NULL)
2942 free (internal_relocs);
2943 goto error_ret_free_local;
2946 /* Only look for stubs on call instructions. */
2947 if (r_type != (unsigned int) R_PARISC_PCREL12F
2948 && r_type != (unsigned int) R_PARISC_PCREL17F
2949 && r_type != (unsigned int) R_PARISC_PCREL22F)
2952 /* Now determine the call target, its name, value,
2958 if (r_indx < symtab_hdr->sh_info)
2960 /* It's a local symbol. */
2961 Elf_Internal_Sym *sym;
2962 Elf_Internal_Shdr *hdr;
2965 sym = local_syms + r_indx;
2966 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2967 sym_value = sym->st_value;
2968 shndx = sym->st_shndx;
2969 if (shndx < elf_numsections (input_bfd))
2971 hdr = elf_elfsections (input_bfd)[shndx];
2972 sym_sec = hdr->bfd_section;
2973 destination = (sym_value + irela->r_addend
2974 + sym_sec->output_offset
2975 + sym_sec->output_section->vma);
2980 /* It's an external symbol. */
2983 e_indx = r_indx - symtab_hdr->sh_info;
2984 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2986 while (hh->eh.root.type == bfd_link_hash_indirect
2987 || hh->eh.root.type == bfd_link_hash_warning)
2988 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2990 if (hh->eh.root.type == bfd_link_hash_defined
2991 || hh->eh.root.type == bfd_link_hash_defweak)
2993 sym_sec = hh->eh.root.u.def.section;
2994 sym_value = hh->eh.root.u.def.value;
2995 if (sym_sec->output_section != NULL)
2996 destination = (sym_value + irela->r_addend
2997 + sym_sec->output_offset
2998 + sym_sec->output_section->vma);
3000 else if (hh->eh.root.type == bfd_link_hash_undefweak)
3002 if (! bfd_link_pic (info))
3005 else if (hh->eh.root.type == bfd_link_hash_undefined)
3007 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3008 && (ELF_ST_VISIBILITY (hh->eh.other)
3010 && hh->eh.type != STT_PARISC_MILLI))
3015 bfd_set_error (bfd_error_bad_value);
3016 goto error_ret_free_internal;
3020 /* Determine what (if any) linker stub is needed. */
3021 stub_type = hppa_type_of_stub (section, irela, hh,
3023 if (stub_type == hppa_stub_none)
3026 /* Support for grouping stub sections. */
3027 id_sec = htab->stub_group[section->id].link_sec;
3029 /* Get the name of this stub. */
3030 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3032 goto error_ret_free_internal;
3034 hsh = hppa_stub_hash_lookup (&htab->bstab,
3039 /* The proper stub has already been created. */
3044 hsh = hppa_add_stub (stub_name, section, htab);
3048 goto error_ret_free_internal;
3051 hsh->target_value = sym_value;
3052 hsh->target_section = sym_sec;
3053 hsh->stub_type = stub_type;
3054 if (bfd_link_pic (info))
3056 if (stub_type == hppa_stub_import)
3057 hsh->stub_type = hppa_stub_import_shared;
3058 else if (stub_type == hppa_stub_long_branch)
3059 hsh->stub_type = hppa_stub_long_branch_shared;
3062 stub_changed = TRUE;
3065 /* We're done with the internal relocs, free them. */
3066 if (elf_section_data (section)->relocs == NULL)
3067 free (internal_relocs);
3074 /* OK, we've added some stubs. Find out the new size of the
3076 for (stub_sec = htab->stub_bfd->sections;
3078 stub_sec = stub_sec->next)
3079 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
3082 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3084 /* Ask the linker to do its stuff. */
3085 (*htab->layout_sections_again) ();
3086 stub_changed = FALSE;
3089 free (htab->all_local_syms);
3092 error_ret_free_local:
3093 free (htab->all_local_syms);
3097 /* For a final link, this function is called after we have sized the
3098 stubs to provide a value for __gp. */
3101 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3103 struct bfd_link_hash_entry *h;
3104 asection *sec = NULL;
3106 struct elf32_hppa_link_hash_table *htab;
3108 htab = hppa_link_hash_table (info);
3112 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3115 && (h->type == bfd_link_hash_defined
3116 || h->type == bfd_link_hash_defweak))
3118 gp_val = h->u.def.value;
3119 sec = h->u.def.section;
3123 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3124 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3126 /* Choose to point our LTP at, in this order, one of .plt, .got,
3127 or .data, if these sections exist. In the case of choosing
3128 .plt try to make the LTP ideal for addressing anywhere in the
3129 .plt or .got with a 14 bit signed offset. Typically, the end
3130 of the .plt is the start of the .got, so choose .plt + 0x2000
3131 if either the .plt or .got is larger than 0x2000. If both
3132 the .plt and .got are smaller than 0x2000, choose the end of
3133 the .plt section. */
3134 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3139 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3149 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3151 /* We know we don't have a .plt. If .got is large,
3153 if (sec->size > 0x2000)
3159 /* No .plt or .got. Who cares what the LTP is? */
3160 sec = bfd_get_section_by_name (abfd, ".data");
3166 h->type = bfd_link_hash_defined;
3167 h->u.def.value = gp_val;
3169 h->u.def.section = sec;
3171 h->u.def.section = bfd_abs_section_ptr;
3175 if (sec != NULL && sec->output_section != NULL)
3176 gp_val += sec->output_section->vma + sec->output_offset;
3178 elf_gp (abfd) = gp_val;
3182 /* Build all the stubs associated with the current output file. The
3183 stubs are kept in a hash table attached to the main linker hash
3184 table. We also set up the .plt entries for statically linked PIC
3185 functions here. This function is called via hppaelf_finish in the
3189 elf32_hppa_build_stubs (struct bfd_link_info *info)
3192 struct bfd_hash_table *table;
3193 struct elf32_hppa_link_hash_table *htab;
3195 htab = hppa_link_hash_table (info);
3199 for (stub_sec = htab->stub_bfd->sections;
3201 stub_sec = stub_sec->next)
3202 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3203 && stub_sec->size != 0)
3205 /* Allocate memory to hold the linker stubs. */
3206 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3207 if (stub_sec->contents == NULL)
3212 /* Build the stubs as directed by the stub hash table. */
3213 table = &htab->bstab;
3214 bfd_hash_traverse (table, hppa_build_one_stub, info);
3219 /* Return the base vma address which should be subtracted from the real
3220 address when resolving a dtpoff relocation.
3221 This is PT_TLS segment p_vaddr. */
3224 dtpoff_base (struct bfd_link_info *info)
3226 /* If tls_sec is NULL, we should have signalled an error already. */
3227 if (elf_hash_table (info)->tls_sec == NULL)
3229 return elf_hash_table (info)->tls_sec->vma;
3232 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3235 tpoff (struct bfd_link_info *info, bfd_vma address)
3237 struct elf_link_hash_table *htab = elf_hash_table (info);
3239 /* If tls_sec is NULL, we should have signalled an error already. */
3240 if (htab->tls_sec == NULL)
3242 /* hppa TLS ABI is variant I and static TLS block start just after
3243 tcbhead structure which has 2 pointer fields. */
3244 return (address - htab->tls_sec->vma
3245 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3248 /* Perform a final link. */
3251 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3255 /* Invoke the regular ELF linker to do all the work. */
3256 if (!bfd_elf_final_link (abfd, info))
3259 /* If we're producing a final executable, sort the contents of the
3261 if (bfd_link_relocatable (info))
3264 /* Do not attempt to sort non-regular files. This is here
3265 especially for configure scripts and kernel builds which run
3266 tests with "ld [...] -o /dev/null". */
3267 if (stat (abfd->filename, &buf) != 0
3268 || !S_ISREG(buf.st_mode))
3271 return elf_hppa_sort_unwind (abfd);
3274 /* Record the lowest address for the data and text segments. */
3277 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3279 struct elf32_hppa_link_hash_table *htab;
3281 htab = (struct elf32_hppa_link_hash_table*) data;
3285 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3288 Elf_Internal_Phdr *p;
3290 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3291 BFD_ASSERT (p != NULL);
3294 if ((section->flags & SEC_READONLY) != 0)
3296 if (value < htab->text_segment_base)
3297 htab->text_segment_base = value;
3301 if (value < htab->data_segment_base)
3302 htab->data_segment_base = value;
3307 /* Perform a relocation as part of a final link. */
3309 static bfd_reloc_status_type
3310 final_link_relocate (asection *input_section,
3312 const Elf_Internal_Rela *rela,
3314 struct elf32_hppa_link_hash_table *htab,
3316 struct elf32_hppa_link_hash_entry *hh,
3317 struct bfd_link_info *info)
3320 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3321 unsigned int orig_r_type = r_type;
3322 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3323 int r_format = howto->bitsize;
3324 enum hppa_reloc_field_selector_type_alt r_field;
3325 bfd *input_bfd = input_section->owner;
3326 bfd_vma offset = rela->r_offset;
3327 bfd_vma max_branch_offset = 0;
3328 bfd_byte *hit_data = contents + offset;
3329 bfd_signed_vma addend = rela->r_addend;
3331 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3334 if (r_type == R_PARISC_NONE)
3335 return bfd_reloc_ok;
3337 insn = bfd_get_32 (input_bfd, hit_data);
3339 /* Find out where we are and where we're going. */
3340 location = (offset +
3341 input_section->output_offset +
3342 input_section->output_section->vma);
3344 /* If we are not building a shared library, convert DLTIND relocs to
3346 if (!bfd_link_pic (info))
3350 case R_PARISC_DLTIND21L:
3351 case R_PARISC_TLS_GD21L:
3352 case R_PARISC_TLS_LDM21L:
3353 case R_PARISC_TLS_IE21L:
3354 r_type = R_PARISC_DPREL21L;
3357 case R_PARISC_DLTIND14R:
3358 case R_PARISC_TLS_GD14R:
3359 case R_PARISC_TLS_LDM14R:
3360 case R_PARISC_TLS_IE14R:
3361 r_type = R_PARISC_DPREL14R;
3364 case R_PARISC_DLTIND14F:
3365 r_type = R_PARISC_DPREL14F;
3372 case R_PARISC_PCREL12F:
3373 case R_PARISC_PCREL17F:
3374 case R_PARISC_PCREL22F:
3375 /* If this call should go via the plt, find the import stub in
3378 || sym_sec->output_section == NULL
3380 && hh->eh.plt.offset != (bfd_vma) -1
3381 && hh->eh.dynindx != -1
3383 && (bfd_link_pic (info)
3384 || !hh->eh.def_regular
3385 || hh->eh.root.type == bfd_link_hash_defweak)))
3387 hsh = hppa_get_stub_entry (input_section, sym_sec,
3391 value = (hsh->stub_offset
3392 + hsh->stub_sec->output_offset
3393 + hsh->stub_sec->output_section->vma);
3396 else if (sym_sec == NULL && hh != NULL
3397 && hh->eh.root.type == bfd_link_hash_undefweak)
3399 /* It's OK if undefined weak. Calls to undefined weak
3400 symbols behave as if the "called" function
3401 immediately returns. We can thus call to a weak
3402 function without first checking whether the function
3408 return bfd_reloc_undefined;
3412 case R_PARISC_PCREL21L:
3413 case R_PARISC_PCREL17C:
3414 case R_PARISC_PCREL17R:
3415 case R_PARISC_PCREL14R:
3416 case R_PARISC_PCREL14F:
3417 case R_PARISC_PCREL32:
3418 /* Make it a pc relative offset. */
3423 case R_PARISC_DPREL21L:
3424 case R_PARISC_DPREL14R:
3425 case R_PARISC_DPREL14F:
3426 /* Convert instructions that use the linkage table pointer (r19) to
3427 instructions that use the global data pointer (dp). This is the
3428 most efficient way of using PIC code in an incomplete executable,
3429 but the user must follow the standard runtime conventions for
3430 accessing data for this to work. */
3431 if (orig_r_type != r_type)
3433 if (r_type == R_PARISC_DPREL21L)
3435 /* GCC sometimes uses a register other than r19 for the
3436 operation, so we must convert any addil instruction
3437 that uses this relocation. */
3438 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3441 /* We must have a ldil instruction. It's too hard to find
3442 and convert the associated add instruction, so issue an
3445 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3452 else if (r_type == R_PARISC_DPREL14F)
3454 /* This must be a format 1 load/store. Change the base
3456 insn = (insn & 0xfc1ffff) | (27 << 21);
3460 /* For all the DP relative relocations, we need to examine the symbol's
3461 section. If it has no section or if it's a code section, then
3462 "data pointer relative" makes no sense. In that case we don't
3463 adjust the "value", and for 21 bit addil instructions, we change the
3464 source addend register from %dp to %r0. This situation commonly
3465 arises for undefined weak symbols and when a variable's "constness"
3466 is declared differently from the way the variable is defined. For
3467 instance: "extern int foo" with foo defined as "const int foo". */
3468 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3470 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3471 == (((int) OP_ADDIL << 26) | (27 << 21)))
3473 insn &= ~ (0x1f << 21);
3475 /* Now try to make things easy for the dynamic linker. */
3481 case R_PARISC_DLTIND21L:
3482 case R_PARISC_DLTIND14R:
3483 case R_PARISC_DLTIND14F:
3484 case R_PARISC_TLS_GD21L:
3485 case R_PARISC_TLS_LDM21L:
3486 case R_PARISC_TLS_IE21L:
3487 case R_PARISC_TLS_GD14R:
3488 case R_PARISC_TLS_LDM14R:
3489 case R_PARISC_TLS_IE14R:
3490 value -= elf_gp (input_section->output_section->owner);
3493 case R_PARISC_SEGREL32:
3494 if ((sym_sec->flags & SEC_CODE) != 0)
3495 value -= htab->text_segment_base;
3497 value -= htab->data_segment_base;
3506 case R_PARISC_DIR32:
3507 case R_PARISC_DIR14F:
3508 case R_PARISC_DIR17F:
3509 case R_PARISC_PCREL17C:
3510 case R_PARISC_PCREL14F:
3511 case R_PARISC_PCREL32:
3512 case R_PARISC_DPREL14F:
3513 case R_PARISC_PLABEL32:
3514 case R_PARISC_DLTIND14F:
3515 case R_PARISC_SEGBASE:
3516 case R_PARISC_SEGREL32:
3517 case R_PARISC_TLS_DTPMOD32:
3518 case R_PARISC_TLS_DTPOFF32:
3519 case R_PARISC_TLS_TPREL32:
3523 case R_PARISC_DLTIND21L:
3524 case R_PARISC_PCREL21L:
3525 case R_PARISC_PLABEL21L:
3529 case R_PARISC_DIR21L:
3530 case R_PARISC_DPREL21L:
3531 case R_PARISC_TLS_GD21L:
3532 case R_PARISC_TLS_LDM21L:
3533 case R_PARISC_TLS_LDO21L:
3534 case R_PARISC_TLS_IE21L:
3535 case R_PARISC_TLS_LE21L:
3539 case R_PARISC_PCREL17R:
3540 case R_PARISC_PCREL14R:
3541 case R_PARISC_PLABEL14R:
3542 case R_PARISC_DLTIND14R:
3546 case R_PARISC_DIR17R:
3547 case R_PARISC_DIR14R:
3548 case R_PARISC_DPREL14R:
3549 case R_PARISC_TLS_GD14R:
3550 case R_PARISC_TLS_LDM14R:
3551 case R_PARISC_TLS_LDO14R:
3552 case R_PARISC_TLS_IE14R:
3553 case R_PARISC_TLS_LE14R:
3557 case R_PARISC_PCREL12F:
3558 case R_PARISC_PCREL17F:
3559 case R_PARISC_PCREL22F:
3562 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3564 max_branch_offset = (1 << (17-1)) << 2;
3566 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3568 max_branch_offset = (1 << (12-1)) << 2;
3572 max_branch_offset = (1 << (22-1)) << 2;
3575 /* sym_sec is NULL on undefined weak syms or when shared on
3576 undefined syms. We've already checked for a stub for the
3577 shared undefined case. */
3578 if (sym_sec == NULL)
3581 /* If the branch is out of reach, then redirect the
3582 call to the local stub for this function. */
3583 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3585 hsh = hppa_get_stub_entry (input_section, sym_sec,
3588 return bfd_reloc_undefined;
3590 /* Munge up the value and addend so that we call the stub
3591 rather than the procedure directly. */
3592 value = (hsh->stub_offset
3593 + hsh->stub_sec->output_offset
3594 + hsh->stub_sec->output_section->vma
3600 /* Something we don't know how to handle. */
3602 return bfd_reloc_notsupported;
3605 /* Make sure we can reach the stub. */
3606 if (max_branch_offset != 0
3607 && value + addend + max_branch_offset >= 2*max_branch_offset)
3610 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3614 hsh->bh_root.string);
3615 bfd_set_error (bfd_error_bad_value);
3616 return bfd_reloc_notsupported;
3619 val = hppa_field_adjust (value, addend, r_field);
3623 case R_PARISC_PCREL12F:
3624 case R_PARISC_PCREL17C:
3625 case R_PARISC_PCREL17F:
3626 case R_PARISC_PCREL17R:
3627 case R_PARISC_PCREL22F:
3628 case R_PARISC_DIR17F:
3629 case R_PARISC_DIR17R:
3630 /* This is a branch. Divide the offset by four.
3631 Note that we need to decide whether it's a branch or
3632 otherwise by inspecting the reloc. Inspecting insn won't
3633 work as insn might be from a .word directive. */
3641 insn = hppa_rebuild_insn (insn, val, r_format);
3643 /* Update the instruction word. */
3644 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3645 return bfd_reloc_ok;
3648 /* Relocate an HPPA ELF section. */
3651 elf32_hppa_relocate_section (bfd *output_bfd,
3652 struct bfd_link_info *info,
3654 asection *input_section,
3656 Elf_Internal_Rela *relocs,
3657 Elf_Internal_Sym *local_syms,
3658 asection **local_sections)
3660 bfd_vma *local_got_offsets;
3661 struct elf32_hppa_link_hash_table *htab;
3662 Elf_Internal_Shdr *symtab_hdr;
3663 Elf_Internal_Rela *rela;
3664 Elf_Internal_Rela *relend;
3666 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3668 htab = hppa_link_hash_table (info);
3672 local_got_offsets = elf_local_got_offsets (input_bfd);
3675 relend = relocs + input_section->reloc_count;
3676 for (; rela < relend; rela++)
3678 unsigned int r_type;
3679 reloc_howto_type *howto;
3680 unsigned int r_symndx;
3681 struct elf32_hppa_link_hash_entry *hh;
3682 Elf_Internal_Sym *sym;
3685 bfd_reloc_status_type rstatus;
3686 const char *sym_name;
3688 bfd_boolean warned_undef;
3690 r_type = ELF32_R_TYPE (rela->r_info);
3691 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3693 bfd_set_error (bfd_error_bad_value);
3696 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3697 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3700 r_symndx = ELF32_R_SYM (rela->r_info);
3704 warned_undef = FALSE;
3705 if (r_symndx < symtab_hdr->sh_info)
3707 /* This is a local symbol, h defaults to NULL. */
3708 sym = local_syms + r_symndx;
3709 sym_sec = local_sections[r_symndx];
3710 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3714 struct elf_link_hash_entry *eh;
3715 bfd_boolean unresolved_reloc, ignored;
3716 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3718 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3719 r_symndx, symtab_hdr, sym_hashes,
3720 eh, sym_sec, relocation,
3721 unresolved_reloc, warned_undef,
3724 if (!bfd_link_relocatable (info)
3726 && eh->root.type != bfd_link_hash_defined
3727 && eh->root.type != bfd_link_hash_defweak
3728 && eh->root.type != bfd_link_hash_undefweak)
3730 if (info->unresolved_syms_in_objects == RM_IGNORE
3731 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3732 && eh->type == STT_PARISC_MILLI)
3734 (*info->callbacks->undefined_symbol)
3735 (info, eh_name (eh), input_bfd,
3736 input_section, rela->r_offset, FALSE);
3737 warned_undef = TRUE;
3740 hh = hppa_elf_hash_entry (eh);
3743 if (sym_sec != NULL && discarded_section (sym_sec))
3744 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3746 elf_hppa_howto_table + r_type, 0,
3749 if (bfd_link_relocatable (info))
3752 /* Do any required modifications to the relocation value, and
3753 determine what types of dynamic info we need to output, if
3758 case R_PARISC_DLTIND14F:
3759 case R_PARISC_DLTIND14R:
3760 case R_PARISC_DLTIND21L:
3763 bfd_boolean do_got = 0;
3765 /* Relocation is to the entry for this symbol in the
3766 global offset table. */
3771 off = hh->eh.got.offset;
3772 dyn = htab->etab.dynamic_sections_created;
3773 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3774 bfd_link_pic (info),
3777 /* If we aren't going to call finish_dynamic_symbol,
3778 then we need to handle initialisation of the .got
3779 entry and create needed relocs here. Since the
3780 offset must always be a multiple of 4, we use the
3781 least significant bit to record whether we have
3782 initialised it already. */
3787 hh->eh.got.offset |= 1;
3794 /* Local symbol case. */
3795 if (local_got_offsets == NULL)
3798 off = local_got_offsets[r_symndx];
3800 /* The offset must always be a multiple of 4. We use
3801 the least significant bit to record whether we have
3802 already generated the necessary reloc. */
3807 local_got_offsets[r_symndx] |= 1;
3814 if (bfd_link_pic (info))
3816 /* Output a dynamic relocation for this GOT entry.
3817 In this case it is relative to the base of the
3818 object because the symbol index is zero. */
3819 Elf_Internal_Rela outrel;
3821 asection *sec = htab->srelgot;
3823 outrel.r_offset = (off
3824 + htab->sgot->output_offset
3825 + htab->sgot->output_section->vma);
3826 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3827 outrel.r_addend = relocation;
3828 loc = sec->contents;
3829 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3830 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3833 bfd_put_32 (output_bfd, relocation,
3834 htab->sgot->contents + off);
3837 if (off >= (bfd_vma) -2)
3840 /* Add the base of the GOT to the relocation value. */
3842 + htab->sgot->output_offset
3843 + htab->sgot->output_section->vma);
3847 case R_PARISC_SEGREL32:
3848 /* If this is the first SEGREL relocation, then initialize
3849 the segment base values. */
3850 if (htab->text_segment_base == (bfd_vma) -1)
3851 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3854 case R_PARISC_PLABEL14R:
3855 case R_PARISC_PLABEL21L:
3856 case R_PARISC_PLABEL32:
3857 if (htab->etab.dynamic_sections_created)
3860 bfd_boolean do_plt = 0;
3861 /* If we have a global symbol with a PLT slot, then
3862 redirect this relocation to it. */
3865 off = hh->eh.plt.offset;
3866 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3867 bfd_link_pic (info),
3870 /* In a non-shared link, adjust_dynamic_symbols
3871 isn't called for symbols forced local. We
3872 need to write out the plt entry here. */
3877 hh->eh.plt.offset |= 1;
3884 bfd_vma *local_plt_offsets;
3886 if (local_got_offsets == NULL)
3889 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3890 off = local_plt_offsets[r_symndx];
3892 /* As for the local .got entry case, we use the last
3893 bit to record whether we've already initialised
3894 this local .plt entry. */
3899 local_plt_offsets[r_symndx] |= 1;
3906 if (bfd_link_pic (info))
3908 /* Output a dynamic IPLT relocation for this
3910 Elf_Internal_Rela outrel;
3912 asection *s = htab->srelplt;
3914 outrel.r_offset = (off
3915 + htab->splt->output_offset
3916 + htab->splt->output_section->vma);
3917 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3918 outrel.r_addend = relocation;
3920 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3921 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3925 bfd_put_32 (output_bfd,
3927 htab->splt->contents + off);
3928 bfd_put_32 (output_bfd,
3929 elf_gp (htab->splt->output_section->owner),
3930 htab->splt->contents + off + 4);
3934 if (off >= (bfd_vma) -2)
3937 /* PLABELs contain function pointers. Relocation is to
3938 the entry for the function in the .plt. The magic +2
3939 offset signals to $$dyncall that the function pointer
3940 is in the .plt and thus has a gp pointer too.
3941 Exception: Undefined PLABELs should have a value of
3944 || (hh->eh.root.type != bfd_link_hash_undefweak
3945 && hh->eh.root.type != bfd_link_hash_undefined))
3948 + htab->splt->output_offset
3949 + htab->splt->output_section->vma
3954 /* Fall through and possibly emit a dynamic relocation. */
3956 case R_PARISC_DIR17F:
3957 case R_PARISC_DIR17R:
3958 case R_PARISC_DIR14F:
3959 case R_PARISC_DIR14R:
3960 case R_PARISC_DIR21L:
3961 case R_PARISC_DPREL14F:
3962 case R_PARISC_DPREL14R:
3963 case R_PARISC_DPREL21L:
3964 case R_PARISC_DIR32:
3965 if ((input_section->flags & SEC_ALLOC) == 0)
3968 /* The reloc types handled here and this conditional
3969 expression must match the code in ..check_relocs and
3970 allocate_dynrelocs. ie. We need exactly the same condition
3971 as in ..check_relocs, with some extra conditions (dynindx
3972 test in this case) to cater for relocs removed by
3973 allocate_dynrelocs. If you squint, the non-shared test
3974 here does indeed match the one in ..check_relocs, the
3975 difference being that here we test DEF_DYNAMIC as well as
3976 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3977 which is why we can't use just that test here.
3978 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3979 there all files have not been loaded. */
3980 if ((bfd_link_pic (info)
3982 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3983 || hh->eh.root.type != bfd_link_hash_undefweak)
3984 && (IS_ABSOLUTE_RELOC (r_type)
3985 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3986 || (!bfd_link_pic (info)
3988 && hh->eh.dynindx != -1
3989 && !hh->eh.non_got_ref
3990 && ((ELIMINATE_COPY_RELOCS
3991 && hh->eh.def_dynamic
3992 && !hh->eh.def_regular)
3993 || hh->eh.root.type == bfd_link_hash_undefweak
3994 || hh->eh.root.type == bfd_link_hash_undefined)))
3996 Elf_Internal_Rela outrel;
4001 /* When generating a shared object, these relocations
4002 are copied into the output file to be resolved at run
4005 outrel.r_addend = rela->r_addend;
4007 _bfd_elf_section_offset (output_bfd, info, input_section,
4009 skip = (outrel.r_offset == (bfd_vma) -1
4010 || outrel.r_offset == (bfd_vma) -2);
4011 outrel.r_offset += (input_section->output_offset
4012 + input_section->output_section->vma);
4016 memset (&outrel, 0, sizeof (outrel));
4019 && hh->eh.dynindx != -1
4021 || !IS_ABSOLUTE_RELOC (r_type)
4022 || !bfd_link_pic (info)
4023 || !SYMBOLIC_BIND (info, &hh->eh)
4024 || !hh->eh.def_regular))
4026 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4028 else /* It's a local symbol, or one marked to become local. */
4032 /* Add the absolute offset of the symbol. */
4033 outrel.r_addend += relocation;
4035 /* Global plabels need to be processed by the
4036 dynamic linker so that functions have at most one
4037 fptr. For this reason, we need to differentiate
4038 between global and local plabels, which we do by
4039 providing the function symbol for a global plabel
4040 reloc, and no symbol for local plabels. */
4043 && sym_sec->output_section != NULL
4044 && ! bfd_is_abs_section (sym_sec))
4048 osec = sym_sec->output_section;
4049 indx = elf_section_data (osec)->dynindx;
4052 osec = htab->etab.text_index_section;
4053 indx = elf_section_data (osec)->dynindx;
4055 BFD_ASSERT (indx != 0);
4057 /* We are turning this relocation into one
4058 against a section symbol, so subtract out the
4059 output section's address but not the offset
4060 of the input section in the output section. */
4061 outrel.r_addend -= osec->vma;
4064 outrel.r_info = ELF32_R_INFO (indx, r_type);
4066 sreloc = elf_section_data (input_section)->sreloc;
4070 loc = sreloc->contents;
4071 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4072 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4076 case R_PARISC_TLS_LDM21L:
4077 case R_PARISC_TLS_LDM14R:
4081 off = htab->tls_ldm_got.offset;
4086 Elf_Internal_Rela outrel;
4089 outrel.r_offset = (off
4090 + htab->sgot->output_section->vma
4091 + htab->sgot->output_offset);
4092 outrel.r_addend = 0;
4093 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4094 loc = htab->srelgot->contents;
4095 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4097 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4098 htab->tls_ldm_got.offset |= 1;
4101 /* Add the base of the GOT to the relocation value. */
4103 + htab->sgot->output_offset
4104 + htab->sgot->output_section->vma);
4109 case R_PARISC_TLS_LDO21L:
4110 case R_PARISC_TLS_LDO14R:
4111 relocation -= dtpoff_base (info);
4114 case R_PARISC_TLS_GD21L:
4115 case R_PARISC_TLS_GD14R:
4116 case R_PARISC_TLS_IE21L:
4117 case R_PARISC_TLS_IE14R:
4127 dyn = htab->etab.dynamic_sections_created;
4129 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
4130 bfd_link_pic (info),
4132 && (!bfd_link_pic (info)
4133 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4135 indx = hh->eh.dynindx;
4137 off = hh->eh.got.offset;
4138 tls_type = hh->tls_type;
4142 off = local_got_offsets[r_symndx];
4143 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4146 if (tls_type == GOT_UNKNOWN)
4153 bfd_boolean need_relocs = FALSE;
4154 Elf_Internal_Rela outrel;
4155 bfd_byte *loc = NULL;
4158 /* The GOT entries have not been initialized yet. Do it
4159 now, and emit any relocations. If both an IE GOT and a
4160 GD GOT are necessary, we emit the GD first. */
4162 if ((bfd_link_pic (info) || indx != 0)
4164 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4165 || hh->eh.root.type != bfd_link_hash_undefweak))
4168 loc = htab->srelgot->contents;
4169 /* FIXME (CAO): Should this be reloc_count++ ? */
4170 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4173 if (tls_type & GOT_TLS_GD)
4177 outrel.r_offset = (cur_off
4178 + htab->sgot->output_section->vma
4179 + htab->sgot->output_offset);
4180 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4181 outrel.r_addend = 0;
4182 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4183 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4184 htab->srelgot->reloc_count++;
4185 loc += sizeof (Elf32_External_Rela);
4188 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4189 htab->sgot->contents + cur_off + 4);
4192 bfd_put_32 (output_bfd, 0,
4193 htab->sgot->contents + cur_off + 4);
4194 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4195 outrel.r_offset += 4;
4196 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4197 htab->srelgot->reloc_count++;
4198 loc += sizeof (Elf32_External_Rela);
4203 /* If we are not emitting relocations for a
4204 general dynamic reference, then we must be in a
4205 static link or an executable link with the
4206 symbol binding locally. Mark it as belonging
4207 to module 1, the executable. */
4208 bfd_put_32 (output_bfd, 1,
4209 htab->sgot->contents + cur_off);
4210 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4211 htab->sgot->contents + cur_off + 4);
4218 if (tls_type & GOT_TLS_IE)
4222 outrel.r_offset = (cur_off
4223 + htab->sgot->output_section->vma
4224 + htab->sgot->output_offset);
4225 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4228 outrel.r_addend = relocation - dtpoff_base (info);
4230 outrel.r_addend = 0;
4232 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4233 htab->srelgot->reloc_count++;
4234 loc += sizeof (Elf32_External_Rela);
4237 bfd_put_32 (output_bfd, tpoff (info, relocation),
4238 htab->sgot->contents + cur_off);
4244 hh->eh.got.offset |= 1;
4246 local_got_offsets[r_symndx] |= 1;
4249 if ((tls_type & GOT_TLS_GD)
4250 && r_type != R_PARISC_TLS_GD21L
4251 && r_type != R_PARISC_TLS_GD14R)
4252 off += 2 * GOT_ENTRY_SIZE;
4254 /* Add the base of the GOT to the relocation value. */
4256 + htab->sgot->output_offset
4257 + htab->sgot->output_section->vma);
4262 case R_PARISC_TLS_LE21L:
4263 case R_PARISC_TLS_LE14R:
4265 relocation = tpoff (info, relocation);
4274 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4275 htab, sym_sec, hh, info);
4277 if (rstatus == bfd_reloc_ok)
4281 sym_name = hh_name (hh);
4284 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4285 symtab_hdr->sh_link,
4287 if (sym_name == NULL)
4289 if (*sym_name == '\0')
4290 sym_name = bfd_section_name (input_bfd, sym_sec);
4293 howto = elf_hppa_howto_table + r_type;
4295 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4297 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4300 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4303 (long) rela->r_offset,
4306 bfd_set_error (bfd_error_bad_value);
4311 (*info->callbacks->reloc_overflow)
4312 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4313 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4319 /* Finish up dynamic symbol handling. We set the contents of various
4320 dynamic sections here. */
4323 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4324 struct bfd_link_info *info,
4325 struct elf_link_hash_entry *eh,
4326 Elf_Internal_Sym *sym)
4328 struct elf32_hppa_link_hash_table *htab;
4329 Elf_Internal_Rela rela;
4332 htab = hppa_link_hash_table (info);
4336 if (eh->plt.offset != (bfd_vma) -1)
4340 if (eh->plt.offset & 1)
4343 /* This symbol has an entry in the procedure linkage table. Set
4346 The format of a plt entry is
4351 if (eh->root.type == bfd_link_hash_defined
4352 || eh->root.type == bfd_link_hash_defweak)
4354 value = eh->root.u.def.value;
4355 if (eh->root.u.def.section->output_section != NULL)
4356 value += (eh->root.u.def.section->output_offset
4357 + eh->root.u.def.section->output_section->vma);
4360 /* Create a dynamic IPLT relocation for this entry. */
4361 rela.r_offset = (eh->plt.offset
4362 + htab->splt->output_offset
4363 + htab->splt->output_section->vma);
4364 if (eh->dynindx != -1)
4366 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4371 /* This symbol has been marked to become local, and is
4372 used by a plabel so must be kept in the .plt. */
4373 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4374 rela.r_addend = value;
4377 loc = htab->srelplt->contents;
4378 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4379 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4381 if (!eh->def_regular)
4383 /* Mark the symbol as undefined, rather than as defined in
4384 the .plt section. Leave the value alone. */
4385 sym->st_shndx = SHN_UNDEF;
4389 if (eh->got.offset != (bfd_vma) -1
4390 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4391 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4393 /* This symbol has an entry in the global offset table. Set it
4396 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4397 + htab->sgot->output_offset
4398 + htab->sgot->output_section->vma);
4400 /* If this is a -Bsymbolic link and the symbol is defined
4401 locally or was forced to be local because of a version file,
4402 we just want to emit a RELATIVE reloc. The entry in the
4403 global offset table will already have been initialized in the
4404 relocate_section function. */
4405 if (bfd_link_pic (info)
4406 && (SYMBOLIC_BIND (info, eh) || eh->dynindx == -1)
4409 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4410 rela.r_addend = (eh->root.u.def.value
4411 + eh->root.u.def.section->output_offset
4412 + eh->root.u.def.section->output_section->vma);
4416 if ((eh->got.offset & 1) != 0)
4419 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4420 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4424 loc = htab->srelgot->contents;
4425 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4426 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4433 /* This symbol needs a copy reloc. Set it up. */
4435 if (! (eh->dynindx != -1
4436 && (eh->root.type == bfd_link_hash_defined
4437 || eh->root.type == bfd_link_hash_defweak)))
4440 sec = htab->srelbss;
4442 rela.r_offset = (eh->root.u.def.value
4443 + eh->root.u.def.section->output_offset
4444 + eh->root.u.def.section->output_section->vma);
4446 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4447 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4448 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4451 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4452 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4454 sym->st_shndx = SHN_ABS;
4460 /* Used to decide how to sort relocs in an optimal manner for the
4461 dynamic linker, before writing them out. */
4463 static enum elf_reloc_type_class
4464 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4465 const asection *rel_sec ATTRIBUTE_UNUSED,
4466 const Elf_Internal_Rela *rela)
4468 /* Handle TLS relocs first; we don't want them to be marked
4469 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4471 switch ((int) ELF32_R_TYPE (rela->r_info))
4473 case R_PARISC_TLS_DTPMOD32:
4474 case R_PARISC_TLS_DTPOFF32:
4475 case R_PARISC_TLS_TPREL32:
4476 return reloc_class_normal;
4479 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4480 return reloc_class_relative;
4482 switch ((int) ELF32_R_TYPE (rela->r_info))
4485 return reloc_class_plt;
4487 return reloc_class_copy;
4489 return reloc_class_normal;
4493 /* Finish up the dynamic sections. */
4496 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4497 struct bfd_link_info *info)
4500 struct elf32_hppa_link_hash_table *htab;
4504 htab = hppa_link_hash_table (info);
4508 dynobj = htab->etab.dynobj;
4511 /* A broken linker script might have discarded the dynamic sections.
4512 Catch this here so that we do not seg-fault later on. */
4513 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4516 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4518 if (htab->etab.dynamic_sections_created)
4520 Elf32_External_Dyn *dyncon, *dynconend;
4525 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4526 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4527 for (; dyncon < dynconend; dyncon++)
4529 Elf_Internal_Dyn dyn;
4532 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4540 /* Use PLTGOT to set the GOT register. */
4541 dyn.d_un.d_ptr = elf_gp (output_bfd);
4546 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4551 dyn.d_un.d_val = s->size;
4555 /* Don't count procedure linkage table relocs in the
4556 overall reloc count. */
4560 dyn.d_un.d_val -= s->size;
4564 /* We may not be using the standard ELF linker script.
4565 If .rela.plt is the first .rela section, we adjust
4566 DT_RELA to not include it. */
4570 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4572 dyn.d_un.d_ptr += s->size;
4576 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4580 if (sgot != NULL && sgot->size != 0)
4582 /* Fill in the first entry in the global offset table.
4583 We use it to point to our dynamic section, if we have one. */
4584 bfd_put_32 (output_bfd,
4585 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4588 /* The second entry is reserved for use by the dynamic linker. */
4589 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4591 /* Set .got entry size. */
4592 elf_section_data (sgot->output_section)
4593 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4596 if (htab->splt != NULL && htab->splt->size != 0)
4598 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4599 plt stubs and as such the section does not hold a table of fixed-size
4601 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize = 0;
4603 if (htab->need_plt_stub)
4605 /* Set up the .plt stub. */
4606 memcpy (htab->splt->contents
4607 + htab->splt->size - sizeof (plt_stub),
4608 plt_stub, sizeof (plt_stub));
4610 if ((htab->splt->output_offset
4611 + htab->splt->output_section->vma
4613 != (sgot->output_offset
4614 + sgot->output_section->vma))
4617 (_(".got section not immediately after .plt section"));
4626 /* Called when writing out an object file to decide the type of a
4629 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4631 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4632 return STT_PARISC_MILLI;
4637 /* Misc BFD support code. */
4638 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4639 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4640 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4641 #define elf_info_to_howto elf_hppa_info_to_howto
4642 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4644 /* Stuff for the BFD linker. */
4645 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4646 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4647 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4648 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4649 #define elf_backend_check_relocs elf32_hppa_check_relocs
4650 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4651 #define elf_backend_fake_sections elf_hppa_fake_sections
4652 #define elf_backend_relocate_section elf32_hppa_relocate_section
4653 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4654 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4655 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4656 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4657 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4658 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4659 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4660 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4661 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4662 #define elf_backend_object_p elf32_hppa_object_p
4663 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4664 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4665 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4666 #define elf_backend_action_discarded elf_hppa_action_discarded
4668 #define elf_backend_can_gc_sections 1
4669 #define elf_backend_can_refcount 1
4670 #define elf_backend_plt_alignment 2
4671 #define elf_backend_want_got_plt 0
4672 #define elf_backend_plt_readonly 0
4673 #define elf_backend_want_plt_sym 0
4674 #define elf_backend_got_header_size 8
4675 #define elf_backend_rela_normal 1
4677 #define TARGET_BIG_SYM hppa_elf32_vec
4678 #define TARGET_BIG_NAME "elf32-hppa"
4679 #define ELF_ARCH bfd_arch_hppa
4680 #define ELF_TARGET_ID HPPA32_ELF_DATA
4681 #define ELF_MACHINE_CODE EM_PARISC
4682 #define ELF_MAXPAGESIZE 0x1000
4683 #define ELF_OSABI ELFOSABI_HPUX
4684 #define elf32_bed elf32_hppa_hpux_bed
4686 #include "elf32-target.h"
4688 #undef TARGET_BIG_SYM
4689 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4690 #undef TARGET_BIG_NAME
4691 #define TARGET_BIG_NAME "elf32-hppa-linux"
4693 #define ELF_OSABI ELFOSABI_GNU
4695 #define elf32_bed elf32_hppa_linux_bed
4697 #include "elf32-target.h"
4699 #undef TARGET_BIG_SYM
4700 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4701 #undef TARGET_BIG_NAME
4702 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4704 #define ELF_OSABI ELFOSABI_NETBSD
4706 #define elf32_bed elf32_hppa_netbsd_bed
4708 #include "elf32-target.h"