1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
6 Center for Software Science
7 Department of Computer Science
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
11 TLS support written by Randolph Chung <tausq@debian.org>
13 This file is part of BFD, the Binary File Descriptor library.
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or
18 (at your option) any later version.
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
35 #include "elf32-hppa.h"
37 #include "elf32-hppa.h"
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
51 /* We use two hash tables to hold information for linking PA ELF objects.
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
61 There are a number of different stubs generated by the linker.
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
113 : ldw -24(%sp),%rp ; restore the original rp
116 : be,n 0(%sr0,%rp) ; inter-space return. */
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
129 bfd_hash_table "btab"
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
135 elf32_hppa_dyn_reloc_entry "hdh"
137 Always remember to use GNU Coding Style. */
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
143 static const bfd_byte plt_stub[] =
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
155 /* Section name for stubs is the associated section name plus this
157 #define STUB_SUFFIX ".stub"
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
171 #define ELIMINATE_COPY_RELOCS 1
173 enum elf32_hppa_stub_type
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
178 hppa_stub_import_shared,
183 struct elf32_hppa_stub_hash_entry
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
188 /* The stub section. */
191 /* Offset within stub_sec of the beginning of this stub. */
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
199 enum elf32_hppa_stub_type stub_type;
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
209 struct elf32_hppa_link_hash_entry
211 struct elf_link_hash_entry eh;
213 /* A pointer to the most recently used stub hash entry against this
215 struct elf32_hppa_stub_hash_entry *hsh_cache;
217 /* Used to count relocations for delayed sizing of relocation
219 struct elf32_hppa_dyn_reloc_entry
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *hdh_next;
224 /* The input section of the reloc. */
227 /* Number of relocs copied in this section. */
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count;
238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel:1;
245 struct elf32_hppa_link_hash_table
247 /* The main hash table. */
248 struct elf_link_hash_table etab;
250 /* The stub hash table. */
251 struct bfd_hash_table bstab;
253 /* Linker stub bfd. */
256 /* Linker call-backs. */
257 asection * (*add_stub_section) (const char *, asection *);
258 void (*layout_sections_again) (void);
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
264 /* This is the section to which stubs in the group will be
267 /* The stub section. */
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count;
274 asection **input_list;
275 Elf_Internal_Sym **all_local_syms;
277 /* Short-cuts to get to dynamic linker sections. */
285 /* Used during a final link to store the base of the text and data
286 segments so that we can perform SEGREL relocations. */
287 bfd_vma text_segment_base;
288 bfd_vma data_segment_base;
290 /* Whether we support multiple sub-spaces for shared libs. */
291 unsigned int multi_subspace:1;
293 /* Flags set when various size branches are detected. Used to
294 select suitable defaults for the stub group size. */
295 unsigned int has_12bit_branch:1;
296 unsigned int has_17bit_branch:1;
297 unsigned int has_22bit_branch:1;
299 /* Set if we need a .plt stub to support lazy dynamic linking. */
300 unsigned int need_plt_stub:1;
302 /* Small local sym to section mapping cache. */
303 struct sym_sec_cache sym_sec;
305 /* Data for LDM relocations. */
308 bfd_signed_vma refcount;
313 /* Various hash macros and functions. */
314 #define hppa_link_hash_table(p) \
315 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
317 #define hppa_elf_hash_entry(ent) \
318 ((struct elf32_hppa_link_hash_entry *)(ent))
320 #define hppa_stub_hash_entry(ent) \
321 ((struct elf32_hppa_stub_hash_entry *)(ent))
323 #define hppa_stub_hash_lookup(table, string, create, copy) \
324 ((struct elf32_hppa_stub_hash_entry *) \
325 bfd_hash_lookup ((table), (string), (create), (copy)))
327 #define hppa_elf_local_got_tls_type(abfd) \
328 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
330 #define hh_name(hh) \
331 (hh ? hh->eh.root.root.string : "<undef>")
333 #define eh_name(eh) \
334 (eh ? eh->root.root.string : "<undef>")
336 /* Assorted hash table functions. */
338 /* Initialize an entry in the stub hash table. */
340 static struct bfd_hash_entry *
341 stub_hash_newfunc (struct bfd_hash_entry *entry,
342 struct bfd_hash_table *table,
345 /* Allocate the structure if it has not already been allocated by a
349 entry = bfd_hash_allocate (table,
350 sizeof (struct elf32_hppa_stub_hash_entry));
355 /* Call the allocation method of the superclass. */
356 entry = bfd_hash_newfunc (entry, table, string);
359 struct elf32_hppa_stub_hash_entry *hsh;
361 /* Initialize the local fields. */
362 hsh = hppa_stub_hash_entry (entry);
363 hsh->stub_sec = NULL;
364 hsh->stub_offset = 0;
365 hsh->target_value = 0;
366 hsh->target_section = NULL;
367 hsh->stub_type = hppa_stub_long_branch;
375 /* Initialize an entry in the link hash table. */
377 static struct bfd_hash_entry *
378 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
379 struct bfd_hash_table *table,
382 /* Allocate the structure if it has not already been allocated by a
386 entry = bfd_hash_allocate (table,
387 sizeof (struct elf32_hppa_link_hash_entry));
392 /* Call the allocation method of the superclass. */
393 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
396 struct elf32_hppa_link_hash_entry *hh;
398 /* Initialize the local fields. */
399 hh = hppa_elf_hash_entry (entry);
400 hh->hsh_cache = NULL;
401 hh->dyn_relocs = NULL;
403 hh->tls_type = GOT_UNKNOWN;
409 /* Create the derived linker hash table. The PA ELF port uses the derived
410 hash table to keep information specific to the PA ELF linker (without
411 using static variables). */
413 static struct bfd_link_hash_table *
414 elf32_hppa_link_hash_table_create (bfd *abfd)
416 struct elf32_hppa_link_hash_table *htab;
417 bfd_size_type amt = sizeof (*htab);
419 htab = bfd_malloc (amt);
423 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
424 sizeof (struct elf32_hppa_link_hash_entry)))
430 /* Init the stub hash table too. */
431 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
432 sizeof (struct elf32_hppa_stub_hash_entry)))
435 htab->stub_bfd = NULL;
436 htab->add_stub_section = NULL;
437 htab->layout_sections_again = NULL;
438 htab->stub_group = NULL;
440 htab->srelgot = NULL;
442 htab->srelplt = NULL;
443 htab->sdynbss = NULL;
444 htab->srelbss = NULL;
445 htab->text_segment_base = (bfd_vma) -1;
446 htab->data_segment_base = (bfd_vma) -1;
447 htab->multi_subspace = 0;
448 htab->has_12bit_branch = 0;
449 htab->has_17bit_branch = 0;
450 htab->has_22bit_branch = 0;
451 htab->need_plt_stub = 0;
452 htab->sym_sec.abfd = NULL;
453 htab->tls_ldm_got.refcount = 0;
455 return &htab->etab.root;
458 /* Free the derived linker hash table. */
461 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
463 struct elf32_hppa_link_hash_table *htab
464 = (struct elf32_hppa_link_hash_table *) btab;
466 bfd_hash_table_free (&htab->bstab);
467 _bfd_generic_link_hash_table_free (btab);
470 /* Build a name for an entry in the stub hash table. */
473 hppa_stub_name (const asection *input_section,
474 const asection *sym_sec,
475 const struct elf32_hppa_link_hash_entry *hh,
476 const Elf_Internal_Rela *rela)
483 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
484 stub_name = bfd_malloc (len);
485 if (stub_name != NULL)
486 sprintf (stub_name, "%08x_%s+%x",
487 input_section->id & 0xffffffff,
489 (int) rela->r_addend & 0xffffffff);
493 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
494 stub_name = bfd_malloc (len);
495 if (stub_name != NULL)
496 sprintf (stub_name, "%08x_%x:%x+%x",
497 input_section->id & 0xffffffff,
498 sym_sec->id & 0xffffffff,
499 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
500 (int) rela->r_addend & 0xffffffff);
505 /* Look up an entry in the stub hash. Stub entries are cached because
506 creating the stub name takes a bit of time. */
508 static struct elf32_hppa_stub_hash_entry *
509 hppa_get_stub_entry (const asection *input_section,
510 const asection *sym_sec,
511 struct elf32_hppa_link_hash_entry *hh,
512 const Elf_Internal_Rela *rela,
513 struct elf32_hppa_link_hash_table *htab)
515 struct elf32_hppa_stub_hash_entry *hsh_entry;
516 const asection *id_sec;
518 /* If this input section is part of a group of sections sharing one
519 stub section, then use the id of the first section in the group.
520 Stub names need to include a section id, as there may well be
521 more than one stub used to reach say, printf, and we need to
522 distinguish between them. */
523 id_sec = htab->stub_group[input_section->id].link_sec;
525 if (hh != NULL && hh->hsh_cache != NULL
526 && hh->hsh_cache->hh == hh
527 && hh->hsh_cache->id_sec == id_sec)
529 hsh_entry = hh->hsh_cache;
535 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
536 if (stub_name == NULL)
539 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
540 stub_name, FALSE, FALSE);
542 hh->hsh_cache = hsh_entry;
550 /* Add a new stub entry to the stub hash. Not all fields of the new
551 stub entry are initialised. */
553 static struct elf32_hppa_stub_hash_entry *
554 hppa_add_stub (const char *stub_name,
556 struct elf32_hppa_link_hash_table *htab)
560 struct elf32_hppa_stub_hash_entry *hsh;
562 link_sec = htab->stub_group[section->id].link_sec;
563 stub_sec = htab->stub_group[section->id].stub_sec;
564 if (stub_sec == NULL)
566 stub_sec = htab->stub_group[link_sec->id].stub_sec;
567 if (stub_sec == NULL)
573 namelen = strlen (link_sec->name);
574 len = namelen + sizeof (STUB_SUFFIX);
575 s_name = bfd_alloc (htab->stub_bfd, len);
579 memcpy (s_name, link_sec->name, namelen);
580 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
581 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
582 if (stub_sec == NULL)
584 htab->stub_group[link_sec->id].stub_sec = stub_sec;
586 htab->stub_group[section->id].stub_sec = stub_sec;
589 /* Enter this entry into the linker stub hash table. */
590 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
594 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
600 hsh->stub_sec = stub_sec;
601 hsh->stub_offset = 0;
602 hsh->id_sec = link_sec;
606 /* Determine the type of stub needed, if any, for a call. */
608 static enum elf32_hppa_stub_type
609 hppa_type_of_stub (asection *input_sec,
610 const Elf_Internal_Rela *rela,
611 struct elf32_hppa_link_hash_entry *hh,
613 struct bfd_link_info *info)
616 bfd_vma branch_offset;
617 bfd_vma max_branch_offset;
621 && hh->eh.plt.offset != (bfd_vma) -1
622 && hh->eh.dynindx != -1
625 || !hh->eh.def_regular
626 || hh->eh.root.type == bfd_link_hash_defweak))
628 /* We need an import stub. Decide between hppa_stub_import
629 and hppa_stub_import_shared later. */
630 return hppa_stub_import;
633 /* Determine where the call point is. */
634 location = (input_sec->output_offset
635 + input_sec->output_section->vma
638 branch_offset = destination - location - 8;
639 r_type = ELF32_R_TYPE (rela->r_info);
641 /* Determine if a long branch stub is needed. parisc branch offsets
642 are relative to the second instruction past the branch, ie. +8
643 bytes on from the branch instruction location. The offset is
644 signed and counts in units of 4 bytes. */
645 if (r_type == (unsigned int) R_PARISC_PCREL17F)
646 max_branch_offset = (1 << (17 - 1)) << 2;
648 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
649 max_branch_offset = (1 << (12 - 1)) << 2;
651 else /* R_PARISC_PCREL22F. */
652 max_branch_offset = (1 << (22 - 1)) << 2;
654 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
655 return hppa_stub_long_branch;
657 return hppa_stub_none;
660 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
661 IN_ARG contains the link info pointer. */
663 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
664 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
666 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
667 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
668 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
670 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
671 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
672 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
673 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
675 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
676 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
678 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
679 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
680 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
681 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
683 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
684 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
685 #define NOP 0x08000240 /* nop */
686 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
687 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
688 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
695 #define LDW_R1_DLT LDW_R1_R19
697 #define LDW_R1_DLT LDW_R1_DP
701 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
703 struct elf32_hppa_stub_hash_entry *hsh;
704 struct bfd_link_info *info;
705 struct elf32_hppa_link_hash_table *htab;
715 /* Massage our args to the form they really have. */
716 hsh = hppa_stub_hash_entry (bh);
717 info = (struct bfd_link_info *)in_arg;
719 htab = hppa_link_hash_table (info);
720 stub_sec = hsh->stub_sec;
722 /* Make a note of the offset within the stubs for this entry. */
723 hsh->stub_offset = stub_sec->size;
724 loc = stub_sec->contents + hsh->stub_offset;
726 stub_bfd = stub_sec->owner;
728 switch (hsh->stub_type)
730 case hppa_stub_long_branch:
731 /* Create the long branch. A long branch is formed with "ldil"
732 loading the upper bits of the target address into a register,
733 then branching with "be" which adds in the lower bits.
734 The "be" has its delay slot nullified. */
735 sym_value = (hsh->target_value
736 + hsh->target_section->output_offset
737 + hsh->target_section->output_section->vma);
739 val = hppa_field_adjust (sym_value, 0, e_lrsel);
740 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
741 bfd_put_32 (stub_bfd, insn, loc);
743 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
744 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
745 bfd_put_32 (stub_bfd, insn, loc + 4);
750 case hppa_stub_long_branch_shared:
751 /* Branches are relative. This is where we are going to. */
752 sym_value = (hsh->target_value
753 + hsh->target_section->output_offset
754 + hsh->target_section->output_section->vma);
756 /* And this is where we are coming from, more or less. */
757 sym_value -= (hsh->stub_offset
758 + stub_sec->output_offset
759 + stub_sec->output_section->vma);
761 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
762 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
763 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
764 bfd_put_32 (stub_bfd, insn, loc + 4);
766 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
767 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
768 bfd_put_32 (stub_bfd, insn, loc + 8);
772 case hppa_stub_import:
773 case hppa_stub_import_shared:
774 off = hsh->hh->eh.plt.offset;
775 if (off >= (bfd_vma) -2)
778 off &= ~ (bfd_vma) 1;
780 + htab->splt->output_offset
781 + htab->splt->output_section->vma
782 - elf_gp (htab->splt->output_section->owner));
786 if (hsh->stub_type == hppa_stub_import_shared)
789 val = hppa_field_adjust (sym_value, 0, e_lrsel),
790 insn = hppa_rebuild_insn ((int) insn, val, 21);
791 bfd_put_32 (stub_bfd, insn, loc);
793 /* It is critical to use lrsel/rrsel here because we are using
794 two different offsets (+0 and +4) from sym_value. If we use
795 lsel/rsel then with unfortunate sym_values we will round
796 sym_value+4 up to the next 2k block leading to a mis-match
797 between the lsel and rsel value. */
798 val = hppa_field_adjust (sym_value, 0, e_rrsel);
799 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
800 bfd_put_32 (stub_bfd, insn, loc + 4);
802 if (htab->multi_subspace)
804 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
805 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
806 bfd_put_32 (stub_bfd, insn, loc + 8);
808 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
809 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
810 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
811 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
817 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
818 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
819 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
820 bfd_put_32 (stub_bfd, insn, loc + 12);
827 case hppa_stub_export:
828 /* Branches are relative. This is where we are going to. */
829 sym_value = (hsh->target_value
830 + hsh->target_section->output_offset
831 + hsh->target_section->output_section->vma);
833 /* And this is where we are coming from. */
834 sym_value -= (hsh->stub_offset
835 + stub_sec->output_offset
836 + stub_sec->output_section->vma);
838 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
839 && (!htab->has_22bit_branch
840 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
842 (*_bfd_error_handler)
843 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
844 hsh->target_section->owner,
846 (long) hsh->stub_offset,
847 hsh->bh_root.string);
848 bfd_set_error (bfd_error_bad_value);
852 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
853 if (!htab->has_22bit_branch)
854 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
856 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
857 bfd_put_32 (stub_bfd, insn, loc);
859 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
860 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
861 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
862 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
863 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
865 /* Point the function symbol at the stub. */
866 hsh->hh->eh.root.u.def.section = stub_sec;
867 hsh->hh->eh.root.u.def.value = stub_sec->size;
877 stub_sec->size += size;
902 /* As above, but don't actually build the stub. Just bump offset so
903 we know stub section sizes. */
906 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
908 struct elf32_hppa_stub_hash_entry *hsh;
909 struct elf32_hppa_link_hash_table *htab;
912 /* Massage our args to the form they really have. */
913 hsh = hppa_stub_hash_entry (bh);
916 if (hsh->stub_type == hppa_stub_long_branch)
918 else if (hsh->stub_type == hppa_stub_long_branch_shared)
920 else if (hsh->stub_type == hppa_stub_export)
922 else /* hppa_stub_import or hppa_stub_import_shared. */
924 if (htab->multi_subspace)
930 hsh->stub_sec->size += size;
934 /* Return nonzero if ABFD represents an HPPA ELF32 file.
935 Additionally we set the default architecture and machine. */
938 elf32_hppa_object_p (bfd *abfd)
940 Elf_Internal_Ehdr * i_ehdrp;
943 i_ehdrp = elf_elfheader (abfd);
944 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
946 /* GCC on hppa-linux produces binaries with OSABI=Linux,
947 but the kernel produces corefiles with OSABI=SysV. */
948 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
949 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
952 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
954 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
955 but the kernel produces corefiles with OSABI=SysV. */
956 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
957 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
962 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
966 flags = i_ehdrp->e_flags;
967 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
970 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
972 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
974 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
975 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
976 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
981 /* Create the .plt and .got sections, and set up our hash table
982 short-cuts to various dynamic sections. */
985 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
987 struct elf32_hppa_link_hash_table *htab;
988 struct elf_link_hash_entry *eh;
990 /* Don't try to create the .plt and .got twice. */
991 htab = hppa_link_hash_table (info);
992 if (htab->splt != NULL)
995 /* Call the generic code to do most of the work. */
996 if (! _bfd_elf_create_dynamic_sections (abfd, info))
999 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1000 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1002 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1003 htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
1008 | SEC_LINKER_CREATED
1010 if (htab->srelgot == NULL
1011 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1014 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1015 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1017 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1018 application, because __canonicalize_funcptr_for_compare needs it. */
1019 eh = elf_hash_table (info)->hgot;
1020 eh->forced_local = 0;
1021 eh->other = STV_DEFAULT;
1022 return bfd_elf_link_record_dynamic_symbol (info, eh);
1025 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1028 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1029 struct elf_link_hash_entry *eh_dir,
1030 struct elf_link_hash_entry *eh_ind)
1032 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1034 hh_dir = hppa_elf_hash_entry (eh_dir);
1035 hh_ind = hppa_elf_hash_entry (eh_ind);
1037 if (hh_ind->dyn_relocs != NULL)
1039 if (hh_dir->dyn_relocs != NULL)
1041 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1042 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1044 /* Add reloc counts against the indirect sym to the direct sym
1045 list. Merge any entries against the same section. */
1046 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1048 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1050 for (hdh_q = hh_dir->dyn_relocs;
1052 hdh_q = hdh_q->hdh_next)
1053 if (hdh_q->sec == hdh_p->sec)
1055 #if RELATIVE_DYNRELOCS
1056 hdh_q->relative_count += hdh_p->relative_count;
1058 hdh_q->count += hdh_p->count;
1059 *hdh_pp = hdh_p->hdh_next;
1063 hdh_pp = &hdh_p->hdh_next;
1065 *hdh_pp = hh_dir->dyn_relocs;
1068 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1069 hh_ind->dyn_relocs = NULL;
1072 if (ELIMINATE_COPY_RELOCS
1073 && eh_ind->root.type != bfd_link_hash_indirect
1074 && eh_dir->dynamic_adjusted)
1076 /* If called to transfer flags for a weakdef during processing
1077 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1078 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1079 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1080 eh_dir->ref_regular |= eh_ind->ref_regular;
1081 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1082 eh_dir->needs_plt |= eh_ind->needs_plt;
1086 if (eh_ind->root.type == bfd_link_hash_indirect
1087 && eh_dir->got.refcount <= 0)
1089 hh_dir->tls_type = hh_ind->tls_type;
1090 hh_ind->tls_type = GOT_UNKNOWN;
1093 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1098 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1099 int r_type, int is_local ATTRIBUTE_UNUSED)
1101 /* For now we don't support linker optimizations. */
1105 /* Look through the relocs for a section during the first phase, and
1106 calculate needed space in the global offset table, procedure linkage
1107 table, and dynamic reloc sections. At this point we haven't
1108 necessarily read all the input files. */
1111 elf32_hppa_check_relocs (bfd *abfd,
1112 struct bfd_link_info *info,
1114 const Elf_Internal_Rela *relocs)
1116 Elf_Internal_Shdr *symtab_hdr;
1117 struct elf_link_hash_entry **eh_syms;
1118 const Elf_Internal_Rela *rela;
1119 const Elf_Internal_Rela *rela_end;
1120 struct elf32_hppa_link_hash_table *htab;
1122 asection *stubreloc;
1123 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1125 if (info->relocatable)
1128 htab = hppa_link_hash_table (info);
1129 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1130 eh_syms = elf_sym_hashes (abfd);
1134 rela_end = relocs + sec->reloc_count;
1135 for (rela = relocs; rela < rela_end; rela++)
1144 unsigned int r_symndx, r_type;
1145 struct elf32_hppa_link_hash_entry *hh;
1148 r_symndx = ELF32_R_SYM (rela->r_info);
1150 if (r_symndx < symtab_hdr->sh_info)
1154 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1155 while (hh->eh.root.type == bfd_link_hash_indirect
1156 || hh->eh.root.type == bfd_link_hash_warning)
1157 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1160 r_type = ELF32_R_TYPE (rela->r_info);
1161 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1165 case R_PARISC_DLTIND14F:
1166 case R_PARISC_DLTIND14R:
1167 case R_PARISC_DLTIND21L:
1168 /* This symbol requires a global offset table entry. */
1169 need_entry = NEED_GOT;
1172 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1173 case R_PARISC_PLABEL21L:
1174 case R_PARISC_PLABEL32:
1175 /* If the addend is non-zero, we break badly. */
1176 if (rela->r_addend != 0)
1179 /* If we are creating a shared library, then we need to
1180 create a PLT entry for all PLABELs, because PLABELs with
1181 local symbols may be passed via a pointer to another
1182 object. Additionally, output a dynamic relocation
1183 pointing to the PLT entry.
1185 For executables, the original 32-bit ABI allowed two
1186 different styles of PLABELs (function pointers): For
1187 global functions, the PLABEL word points into the .plt
1188 two bytes past a (function address, gp) pair, and for
1189 local functions the PLABEL points directly at the
1190 function. The magic +2 for the first type allows us to
1191 differentiate between the two. As you can imagine, this
1192 is a real pain when it comes to generating code to call
1193 functions indirectly or to compare function pointers.
1194 We avoid the mess by always pointing a PLABEL into the
1195 .plt, even for local functions. */
1196 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1199 case R_PARISC_PCREL12F:
1200 htab->has_12bit_branch = 1;
1203 case R_PARISC_PCREL17C:
1204 case R_PARISC_PCREL17F:
1205 htab->has_17bit_branch = 1;
1208 case R_PARISC_PCREL22F:
1209 htab->has_22bit_branch = 1;
1211 /* Function calls might need to go through the .plt, and
1212 might require long branch stubs. */
1215 /* We know local syms won't need a .plt entry, and if
1216 they need a long branch stub we can't guarantee that
1217 we can reach the stub. So just flag an error later
1218 if we're doing a shared link and find we need a long
1224 /* Global symbols will need a .plt entry if they remain
1225 global, and in most cases won't need a long branch
1226 stub. Unfortunately, we have to cater for the case
1227 where a symbol is forced local by versioning, or due
1228 to symbolic linking, and we lose the .plt entry. */
1229 need_entry = NEED_PLT;
1230 if (hh->eh.type == STT_PARISC_MILLI)
1235 case R_PARISC_SEGBASE: /* Used to set segment base. */
1236 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1237 case R_PARISC_PCREL14F: /* PC relative load/store. */
1238 case R_PARISC_PCREL14R:
1239 case R_PARISC_PCREL17R: /* External branches. */
1240 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1241 case R_PARISC_PCREL32:
1242 /* We don't need to propagate the relocation if linking a
1243 shared object since these are section relative. */
1246 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1247 case R_PARISC_DPREL14R:
1248 case R_PARISC_DPREL21L:
1251 (*_bfd_error_handler)
1252 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1254 elf_hppa_howto_table[r_type].name);
1255 bfd_set_error (bfd_error_bad_value);
1260 case R_PARISC_DIR17F: /* Used for external branches. */
1261 case R_PARISC_DIR17R:
1262 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1263 case R_PARISC_DIR14R:
1264 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1265 case R_PARISC_DIR32: /* .word relocs. */
1266 /* We may want to output a dynamic relocation later. */
1267 need_entry = NEED_DYNREL;
1270 /* This relocation describes the C++ object vtable hierarchy.
1271 Reconstruct it for later use during GC. */
1272 case R_PARISC_GNU_VTINHERIT:
1273 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1277 /* This relocation describes which C++ vtable entries are actually
1278 used. Record for later use during GC. */
1279 case R_PARISC_GNU_VTENTRY:
1280 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1284 case R_PARISC_TLS_GD21L:
1285 case R_PARISC_TLS_GD14R:
1286 case R_PARISC_TLS_LDM21L:
1287 case R_PARISC_TLS_LDM14R:
1288 need_entry = NEED_GOT;
1291 case R_PARISC_TLS_IE21L:
1292 case R_PARISC_TLS_IE14R:
1294 info->flags |= DF_STATIC_TLS;
1295 need_entry = NEED_GOT;
1302 /* Now carry out our orders. */
1303 if (need_entry & NEED_GOT)
1308 tls_type = GOT_NORMAL;
1310 case R_PARISC_TLS_GD21L:
1311 case R_PARISC_TLS_GD14R:
1312 tls_type |= GOT_TLS_GD;
1314 case R_PARISC_TLS_LDM21L:
1315 case R_PARISC_TLS_LDM14R:
1316 tls_type |= GOT_TLS_LDM;
1318 case R_PARISC_TLS_IE21L:
1319 case R_PARISC_TLS_IE14R:
1320 tls_type |= GOT_TLS_IE;
1324 /* Allocate space for a GOT entry, as well as a dynamic
1325 relocation for this entry. */
1326 if (htab->sgot == NULL)
1328 if (htab->etab.dynobj == NULL)
1329 htab->etab.dynobj = abfd;
1330 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1334 if (r_type == R_PARISC_TLS_LDM21L
1335 || r_type == R_PARISC_TLS_LDM14R)
1336 hppa_link_hash_table (info)->tls_ldm_got.refcount += 1;
1341 hh->eh.got.refcount += 1;
1342 old_tls_type = hh->tls_type;
1346 bfd_signed_vma *local_got_refcounts;
1348 /* This is a global offset table entry for a local symbol. */
1349 local_got_refcounts = elf_local_got_refcounts (abfd);
1350 if (local_got_refcounts == NULL)
1354 /* Allocate space for local got offsets and local
1355 plt offsets. Done this way to save polluting
1356 elf_obj_tdata with another target specific
1358 size = symtab_hdr->sh_info;
1359 size *= 2 * sizeof (bfd_signed_vma);
1360 /* Add in space to store the local GOT TLS types. */
1361 size += symtab_hdr->sh_info;
1362 local_got_refcounts = bfd_zalloc (abfd, size);
1363 if (local_got_refcounts == NULL)
1365 elf_local_got_refcounts (abfd) = local_got_refcounts;
1366 memset (hppa_elf_local_got_tls_type (abfd),
1367 GOT_UNKNOWN, symtab_hdr->sh_info);
1369 local_got_refcounts[r_symndx] += 1;
1371 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1374 tls_type |= old_tls_type;
1376 if (old_tls_type != tls_type)
1379 hh->tls_type = tls_type;
1381 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1387 if (need_entry & NEED_PLT)
1389 /* If we are creating a shared library, and this is a reloc
1390 against a weak symbol or a global symbol in a dynamic
1391 object, then we will be creating an import stub and a
1392 .plt entry for the symbol. Similarly, on a normal link
1393 to symbols defined in a dynamic object we'll need the
1394 import stub and a .plt entry. We don't know yet whether
1395 the symbol is defined or not, so make an entry anyway and
1396 clean up later in adjust_dynamic_symbol. */
1397 if ((sec->flags & SEC_ALLOC) != 0)
1401 hh->eh.needs_plt = 1;
1402 hh->eh.plt.refcount += 1;
1404 /* If this .plt entry is for a plabel, mark it so
1405 that adjust_dynamic_symbol will keep the entry
1406 even if it appears to be local. */
1407 if (need_entry & PLT_PLABEL)
1410 else if (need_entry & PLT_PLABEL)
1412 bfd_signed_vma *local_got_refcounts;
1413 bfd_signed_vma *local_plt_refcounts;
1415 local_got_refcounts = elf_local_got_refcounts (abfd);
1416 if (local_got_refcounts == NULL)
1420 /* Allocate space for local got offsets and local
1422 size = symtab_hdr->sh_info;
1423 size *= 2 * sizeof (bfd_signed_vma);
1424 /* Add in space to store the local GOT TLS types. */
1425 size += symtab_hdr->sh_info;
1426 local_got_refcounts = bfd_zalloc (abfd, size);
1427 if (local_got_refcounts == NULL)
1429 elf_local_got_refcounts (abfd) = local_got_refcounts;
1431 local_plt_refcounts = (local_got_refcounts
1432 + symtab_hdr->sh_info);
1433 local_plt_refcounts[r_symndx] += 1;
1438 if (need_entry & NEED_DYNREL)
1440 /* Flag this symbol as having a non-got, non-plt reference
1441 so that we generate copy relocs if it turns out to be
1443 if (hh != NULL && !info->shared)
1444 hh->eh.non_got_ref = 1;
1446 /* If we are creating a shared library then we need to copy
1447 the reloc into the shared library. However, if we are
1448 linking with -Bsymbolic, we need only copy absolute
1449 relocs or relocs against symbols that are not defined in
1450 an object we are including in the link. PC- or DP- or
1451 DLT-relative relocs against any local sym or global sym
1452 with DEF_REGULAR set, can be discarded. At this point we
1453 have not seen all the input files, so it is possible that
1454 DEF_REGULAR is not set now but will be set later (it is
1455 never cleared). We account for that possibility below by
1456 storing information in the dyn_relocs field of the
1459 A similar situation to the -Bsymbolic case occurs when
1460 creating shared libraries and symbol visibility changes
1461 render the symbol local.
1463 As it turns out, all the relocs we will be creating here
1464 are absolute, so we cannot remove them on -Bsymbolic
1465 links or visibility changes anyway. A STUB_REL reloc
1466 is absolute too, as in that case it is the reloc in the
1467 stub we will be creating, rather than copying the PCREL
1468 reloc in the branch.
1470 If on the other hand, we are creating an executable, we
1471 may need to keep relocations for symbols satisfied by a
1472 dynamic library if we manage to avoid copy relocs for the
1475 && (sec->flags & SEC_ALLOC) != 0
1476 && (IS_ABSOLUTE_RELOC (r_type)
1479 || hh->eh.root.type == bfd_link_hash_defweak
1480 || !hh->eh.def_regular))))
1481 || (ELIMINATE_COPY_RELOCS
1483 && (sec->flags & SEC_ALLOC) != 0
1485 && (hh->eh.root.type == bfd_link_hash_defweak
1486 || !hh->eh.def_regular)))
1488 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1489 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1491 /* Create a reloc section in dynobj and make room for
1498 name = (bfd_elf_string_from_elf_section
1500 elf_elfheader (abfd)->e_shstrndx,
1501 elf_section_data (sec)->rel_hdr.sh_name));
1504 (*_bfd_error_handler)
1505 (_("Could not find relocation section for %s"),
1507 bfd_set_error (bfd_error_bad_value);
1511 if (htab->etab.dynobj == NULL)
1512 htab->etab.dynobj = abfd;
1514 dynobj = htab->etab.dynobj;
1515 sreloc = bfd_get_section_by_name (dynobj, name);
1520 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1521 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1522 if ((sec->flags & SEC_ALLOC) != 0)
1523 flags |= SEC_ALLOC | SEC_LOAD;
1524 sreloc = bfd_make_section_with_flags (dynobj,
1528 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1532 elf_section_data (sec)->sreloc = sreloc;
1535 /* If this is a global symbol, we count the number of
1536 relocations we need for this symbol. */
1539 hdh_head = &hh->dyn_relocs;
1543 /* Track dynamic relocs needed for local syms too.
1544 We really need local syms available to do this
1550 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1555 vpp = &elf_section_data (sr)->local_dynrel;
1556 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1560 if (hdh_p == NULL || hdh_p->sec != sec)
1562 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1565 hdh_p->hdh_next = *hdh_head;
1569 #if RELATIVE_DYNRELOCS
1570 hdh_p->relative_count = 0;
1575 #if RELATIVE_DYNRELOCS
1576 if (!IS_ABSOLUTE_RELOC (rtype))
1577 hdh_p->relative_count += 1;
1586 /* Return the section that should be marked against garbage collection
1587 for a given relocation. */
1590 elf32_hppa_gc_mark_hook (asection *sec,
1591 struct bfd_link_info *info,
1592 Elf_Internal_Rela *rela,
1593 struct elf_link_hash_entry *hh,
1594 Elf_Internal_Sym *sym)
1597 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1599 case R_PARISC_GNU_VTINHERIT:
1600 case R_PARISC_GNU_VTENTRY:
1604 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1607 /* Update the got and plt entry reference counts for the section being
1611 elf32_hppa_gc_sweep_hook (bfd *abfd,
1612 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1614 const Elf_Internal_Rela *relocs)
1616 Elf_Internal_Shdr *symtab_hdr;
1617 struct elf_link_hash_entry **eh_syms;
1618 bfd_signed_vma *local_got_refcounts;
1619 bfd_signed_vma *local_plt_refcounts;
1620 const Elf_Internal_Rela *rela, *relend;
1622 elf_section_data (sec)->local_dynrel = NULL;
1624 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1625 eh_syms = elf_sym_hashes (abfd);
1626 local_got_refcounts = elf_local_got_refcounts (abfd);
1627 local_plt_refcounts = local_got_refcounts;
1628 if (local_plt_refcounts != NULL)
1629 local_plt_refcounts += symtab_hdr->sh_info;
1631 relend = relocs + sec->reloc_count;
1632 for (rela = relocs; rela < relend; rela++)
1634 unsigned long r_symndx;
1635 unsigned int r_type;
1636 struct elf_link_hash_entry *eh = NULL;
1638 r_symndx = ELF32_R_SYM (rela->r_info);
1639 if (r_symndx >= symtab_hdr->sh_info)
1641 struct elf32_hppa_link_hash_entry *hh;
1642 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1643 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1645 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1646 while (eh->root.type == bfd_link_hash_indirect
1647 || eh->root.type == bfd_link_hash_warning)
1648 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1649 hh = hppa_elf_hash_entry (eh);
1651 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1652 if (hdh_p->sec == sec)
1654 /* Everything must go for SEC. */
1655 *hdh_pp = hdh_p->hdh_next;
1660 r_type = ELF32_R_TYPE (rela->r_info);
1661 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1665 case R_PARISC_DLTIND14F:
1666 case R_PARISC_DLTIND14R:
1667 case R_PARISC_DLTIND21L:
1668 case R_PARISC_TLS_GD21L:
1669 case R_PARISC_TLS_GD14R:
1670 case R_PARISC_TLS_IE21L:
1671 case R_PARISC_TLS_IE14R:
1674 if (eh->got.refcount > 0)
1675 eh->got.refcount -= 1;
1677 else if (local_got_refcounts != NULL)
1679 if (local_got_refcounts[r_symndx] > 0)
1680 local_got_refcounts[r_symndx] -= 1;
1684 case R_PARISC_TLS_LDM21L:
1685 case R_PARISC_TLS_LDM14R:
1686 hppa_link_hash_table (info)->tls_ldm_got.refcount -= 1;
1689 case R_PARISC_PCREL12F:
1690 case R_PARISC_PCREL17C:
1691 case R_PARISC_PCREL17F:
1692 case R_PARISC_PCREL22F:
1695 if (eh->plt.refcount > 0)
1696 eh->plt.refcount -= 1;
1700 case R_PARISC_PLABEL14R:
1701 case R_PARISC_PLABEL21L:
1702 case R_PARISC_PLABEL32:
1705 if (eh->plt.refcount > 0)
1706 eh->plt.refcount -= 1;
1708 else if (local_plt_refcounts != NULL)
1710 if (local_plt_refcounts[r_symndx] > 0)
1711 local_plt_refcounts[r_symndx] -= 1;
1723 /* Support for core dump NOTE sections. */
1726 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1731 switch (note->descsz)
1736 case 396: /* Linux/hppa */
1738 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1741 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1750 /* Make a ".reg/999" section. */
1751 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1752 size, note->descpos + offset);
1756 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1758 switch (note->descsz)
1763 case 124: /* Linux/hppa elf_prpsinfo. */
1764 elf_tdata (abfd)->core_program
1765 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1766 elf_tdata (abfd)->core_command
1767 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1770 /* Note that for some reason, a spurious space is tacked
1771 onto the end of the args in some (at least one anyway)
1772 implementations, so strip it off if it exists. */
1774 char *command = elf_tdata (abfd)->core_command;
1775 int n = strlen (command);
1777 if (0 < n && command[n - 1] == ' ')
1778 command[n - 1] = '\0';
1784 /* Our own version of hide_symbol, so that we can keep plt entries for
1788 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1789 struct elf_link_hash_entry *eh,
1790 bfd_boolean force_local)
1794 eh->forced_local = 1;
1795 if (eh->dynindx != -1)
1798 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1803 if (! hppa_elf_hash_entry (eh)->plabel)
1806 eh->plt = elf_hash_table (info)->init_plt_refcount;
1810 /* Adjust a symbol defined by a dynamic object and referenced by a
1811 regular object. The current definition is in some section of the
1812 dynamic object, but we're not including those sections. We have to
1813 change the definition to something the rest of the link can
1817 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1818 struct elf_link_hash_entry *eh)
1820 struct elf32_hppa_link_hash_table *htab;
1823 /* If this is a function, put it in the procedure linkage table. We
1824 will fill in the contents of the procedure linkage table later. */
1825 if (eh->type == STT_FUNC
1828 if (eh->plt.refcount <= 0
1830 && eh->root.type != bfd_link_hash_defweak
1831 && ! hppa_elf_hash_entry (eh)->plabel
1832 && (!info->shared || info->symbolic)))
1834 /* The .plt entry is not needed when:
1835 a) Garbage collection has removed all references to the
1837 b) We know for certain the symbol is defined in this
1838 object, and it's not a weak definition, nor is the symbol
1839 used by a plabel relocation. Either this object is the
1840 application or we are doing a shared symbolic link. */
1842 eh->plt.offset = (bfd_vma) -1;
1849 eh->plt.offset = (bfd_vma) -1;
1851 /* If this is a weak symbol, and there is a real definition, the
1852 processor independent code will have arranged for us to see the
1853 real definition first, and we can just use the same value. */
1854 if (eh->u.weakdef != NULL)
1856 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1857 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1859 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1860 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1861 if (ELIMINATE_COPY_RELOCS)
1862 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1866 /* This is a reference to a symbol defined by a dynamic object which
1867 is not a function. */
1869 /* If we are creating a shared library, we must presume that the
1870 only references to the symbol are via the global offset table.
1871 For such cases we need not do anything here; the relocations will
1872 be handled correctly by relocate_section. */
1876 /* If there are no references to this symbol that do not use the
1877 GOT, we don't need to generate a copy reloc. */
1878 if (!eh->non_got_ref)
1881 if (ELIMINATE_COPY_RELOCS)
1883 struct elf32_hppa_link_hash_entry *hh;
1884 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1886 hh = hppa_elf_hash_entry (eh);
1887 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1889 sec = hdh_p->sec->output_section;
1890 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1894 /* If we didn't find any dynamic relocs in read-only sections, then
1895 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1898 eh->non_got_ref = 0;
1905 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1906 eh->root.root.string);
1910 /* We must allocate the symbol in our .dynbss section, which will
1911 become part of the .bss section of the executable. There will be
1912 an entry for this symbol in the .dynsym section. The dynamic
1913 object will contain position independent code, so all references
1914 from the dynamic object to this symbol will go through the global
1915 offset table. The dynamic linker will use the .dynsym entry to
1916 determine the address it must put in the global offset table, so
1917 both the dynamic object and the regular object will refer to the
1918 same memory location for the variable. */
1920 htab = hppa_link_hash_table (info);
1922 /* We must generate a COPY reloc to tell the dynamic linker to
1923 copy the initial value out of the dynamic object and into the
1924 runtime process image. */
1925 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1927 htab->srelbss->size += sizeof (Elf32_External_Rela);
1931 sec = htab->sdynbss;
1933 return _bfd_elf_adjust_dynamic_copy (eh, sec);
1936 /* Allocate space in the .plt for entries that won't have relocations.
1937 ie. plabel entries. */
1940 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1942 struct bfd_link_info *info;
1943 struct elf32_hppa_link_hash_table *htab;
1944 struct elf32_hppa_link_hash_entry *hh;
1947 if (eh->root.type == bfd_link_hash_indirect)
1950 if (eh->root.type == bfd_link_hash_warning)
1951 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1953 info = (struct bfd_link_info *) inf;
1954 hh = hppa_elf_hash_entry (eh);
1955 htab = hppa_link_hash_table (info);
1956 if (htab->etab.dynamic_sections_created
1957 && eh->plt.refcount > 0)
1959 /* Make sure this symbol is output as a dynamic symbol.
1960 Undefined weak syms won't yet be marked as dynamic. */
1961 if (eh->dynindx == -1
1962 && !eh->forced_local
1963 && eh->type != STT_PARISC_MILLI)
1965 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1969 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1971 /* Allocate these later. From this point on, h->plabel
1972 means that the plt entry is only used by a plabel.
1973 We'll be using a normal plt entry for this symbol, so
1974 clear the plabel indicator. */
1978 else if (hh->plabel)
1980 /* Make an entry in the .plt section for plabel references
1981 that won't have a .plt entry for other reasons. */
1983 eh->plt.offset = sec->size;
1984 sec->size += PLT_ENTRY_SIZE;
1988 /* No .plt entry needed. */
1989 eh->plt.offset = (bfd_vma) -1;
1995 eh->plt.offset = (bfd_vma) -1;
2002 /* Allocate space in .plt, .got and associated reloc sections for
2006 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2008 struct bfd_link_info *info;
2009 struct elf32_hppa_link_hash_table *htab;
2011 struct elf32_hppa_link_hash_entry *hh;
2012 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2014 if (eh->root.type == bfd_link_hash_indirect)
2017 if (eh->root.type == bfd_link_hash_warning)
2018 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2021 htab = hppa_link_hash_table (info);
2022 hh = hppa_elf_hash_entry (eh);
2024 if (htab->etab.dynamic_sections_created
2025 && eh->plt.offset != (bfd_vma) -1
2027 && eh->plt.refcount > 0)
2029 /* Make an entry in the .plt section. */
2031 eh->plt.offset = sec->size;
2032 sec->size += PLT_ENTRY_SIZE;
2034 /* We also need to make an entry in the .rela.plt section. */
2035 htab->srelplt->size += sizeof (Elf32_External_Rela);
2036 htab->need_plt_stub = 1;
2039 if (eh->got.refcount > 0)
2041 /* Make sure this symbol is output as a dynamic symbol.
2042 Undefined weak syms won't yet be marked as dynamic. */
2043 if (eh->dynindx == -1
2044 && !eh->forced_local
2045 && eh->type != STT_PARISC_MILLI)
2047 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2052 eh->got.offset = sec->size;
2053 sec->size += GOT_ENTRY_SIZE;
2054 /* R_PARISC_TLS_GD* needs two GOT entries */
2055 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2056 sec->size += GOT_ENTRY_SIZE * 2;
2057 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2058 sec->size += GOT_ENTRY_SIZE;
2059 if (htab->etab.dynamic_sections_created
2061 || (eh->dynindx != -1
2062 && !eh->forced_local)))
2064 htab->srelgot->size += sizeof (Elf32_External_Rela);
2065 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2066 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2067 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2068 htab->srelgot->size += sizeof (Elf32_External_Rela);
2072 eh->got.offset = (bfd_vma) -1;
2074 if (hh->dyn_relocs == NULL)
2077 /* If this is a -Bsymbolic shared link, then we need to discard all
2078 space allocated for dynamic pc-relative relocs against symbols
2079 defined in a regular object. For the normal shared case, discard
2080 space for relocs that have become local due to symbol visibility
2084 #if RELATIVE_DYNRELOCS
2085 if (SYMBOL_CALLS_LOCAL (info, eh))
2087 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2089 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2091 hdh_p->count -= hdh_p->relative_count;
2092 hdh_p->relative_count = 0;
2093 if (hdh_p->count == 0)
2094 *hdh_pp = hdh_p->hdh_next;
2096 hdh_pp = &hdh_p->hdh_next;
2101 /* Also discard relocs on undefined weak syms with non-default
2103 if (hh->dyn_relocs != NULL
2104 && eh->root.type == bfd_link_hash_undefweak)
2106 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2107 hh->dyn_relocs = NULL;
2109 /* Make sure undefined weak symbols are output as a dynamic
2111 else if (eh->dynindx == -1
2112 && !eh->forced_local)
2114 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2121 /* For the non-shared case, discard space for relocs against
2122 symbols which turn out to need copy relocs or are not
2125 if (!eh->non_got_ref
2126 && ((ELIMINATE_COPY_RELOCS
2128 && !eh->def_regular)
2129 || (htab->etab.dynamic_sections_created
2130 && (eh->root.type == bfd_link_hash_undefweak
2131 || eh->root.type == bfd_link_hash_undefined))))
2133 /* Make sure this symbol is output as a dynamic symbol.
2134 Undefined weak syms won't yet be marked as dynamic. */
2135 if (eh->dynindx == -1
2136 && !eh->forced_local
2137 && eh->type != STT_PARISC_MILLI)
2139 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2143 /* If that succeeded, we know we'll be keeping all the
2145 if (eh->dynindx != -1)
2149 hh->dyn_relocs = NULL;
2155 /* Finally, allocate space. */
2156 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2158 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2159 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2165 /* This function is called via elf_link_hash_traverse to force
2166 millicode symbols local so they do not end up as globals in the
2167 dynamic symbol table. We ought to be able to do this in
2168 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2169 for all dynamic symbols. Arguably, this is a bug in
2170 elf_adjust_dynamic_symbol. */
2173 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2174 struct bfd_link_info *info)
2176 if (eh->root.type == bfd_link_hash_warning)
2177 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2179 if (eh->type == STT_PARISC_MILLI
2180 && !eh->forced_local)
2182 elf32_hppa_hide_symbol (info, eh, TRUE);
2187 /* Find any dynamic relocs that apply to read-only sections. */
2190 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2192 struct elf32_hppa_link_hash_entry *hh;
2193 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2195 if (eh->root.type == bfd_link_hash_warning)
2196 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2198 hh = hppa_elf_hash_entry (eh);
2199 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2201 asection *sec = hdh_p->sec->output_section;
2203 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2205 struct bfd_link_info *info = inf;
2207 info->flags |= DF_TEXTREL;
2209 /* Not an error, just cut short the traversal. */
2216 /* Set the sizes of the dynamic sections. */
2219 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2220 struct bfd_link_info *info)
2222 struct elf32_hppa_link_hash_table *htab;
2228 htab = hppa_link_hash_table (info);
2229 dynobj = htab->etab.dynobj;
2233 if (htab->etab.dynamic_sections_created)
2235 /* Set the contents of the .interp section to the interpreter. */
2236 if (info->executable)
2238 sec = bfd_get_section_by_name (dynobj, ".interp");
2241 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2242 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2245 /* Force millicode symbols local. */
2246 elf_link_hash_traverse (&htab->etab,
2247 clobber_millicode_symbols,
2251 /* Set up .got and .plt offsets for local syms, and space for local
2253 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2255 bfd_signed_vma *local_got;
2256 bfd_signed_vma *end_local_got;
2257 bfd_signed_vma *local_plt;
2258 bfd_signed_vma *end_local_plt;
2259 bfd_size_type locsymcount;
2260 Elf_Internal_Shdr *symtab_hdr;
2262 char *local_tls_type;
2264 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2267 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2269 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2271 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2272 elf_section_data (sec)->local_dynrel);
2274 hdh_p = hdh_p->hdh_next)
2276 if (!bfd_is_abs_section (hdh_p->sec)
2277 && bfd_is_abs_section (hdh_p->sec->output_section))
2279 /* Input section has been discarded, either because
2280 it is a copy of a linkonce section or due to
2281 linker script /DISCARD/, so we'll be discarding
2284 else if (hdh_p->count != 0)
2286 srel = elf_section_data (hdh_p->sec)->sreloc;
2287 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2288 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2289 info->flags |= DF_TEXTREL;
2294 local_got = elf_local_got_refcounts (ibfd);
2298 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2299 locsymcount = symtab_hdr->sh_info;
2300 end_local_got = local_got + locsymcount;
2301 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2303 srel = htab->srelgot;
2304 for (; local_got < end_local_got; ++local_got)
2308 *local_got = sec->size;
2309 sec->size += GOT_ENTRY_SIZE;
2310 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2311 sec->size += 2 * GOT_ENTRY_SIZE;
2312 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2313 sec->size += GOT_ENTRY_SIZE;
2316 srel->size += sizeof (Elf32_External_Rela);
2317 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2318 srel->size += 2 * sizeof (Elf32_External_Rela);
2319 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2320 srel->size += sizeof (Elf32_External_Rela);
2324 *local_got = (bfd_vma) -1;
2329 local_plt = end_local_got;
2330 end_local_plt = local_plt + locsymcount;
2331 if (! htab->etab.dynamic_sections_created)
2333 /* Won't be used, but be safe. */
2334 for (; local_plt < end_local_plt; ++local_plt)
2335 *local_plt = (bfd_vma) -1;
2340 srel = htab->srelplt;
2341 for (; local_plt < end_local_plt; ++local_plt)
2345 *local_plt = sec->size;
2346 sec->size += PLT_ENTRY_SIZE;
2348 srel->size += sizeof (Elf32_External_Rela);
2351 *local_plt = (bfd_vma) -1;
2356 if (htab->tls_ldm_got.refcount > 0)
2358 /* Allocate 2 got entries and 1 dynamic reloc for
2359 R_PARISC_TLS_DTPMOD32 relocs. */
2360 htab->tls_ldm_got.offset = htab->sgot->size;
2361 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2362 htab->srelgot->size += sizeof (Elf32_External_Rela);
2365 htab->tls_ldm_got.offset = -1;
2367 /* Do all the .plt entries without relocs first. The dynamic linker
2368 uses the last .plt reloc to find the end of the .plt (and hence
2369 the start of the .got) for lazy linking. */
2370 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2372 /* Allocate global sym .plt and .got entries, and space for global
2373 sym dynamic relocs. */
2374 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2376 /* The check_relocs and adjust_dynamic_symbol entry points have
2377 determined the sizes of the various dynamic sections. Allocate
2380 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2382 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2385 if (sec == htab->splt)
2387 if (htab->need_plt_stub)
2389 /* Make space for the plt stub at the end of the .plt
2390 section. We want this stub right at the end, up
2391 against the .got section. */
2392 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2393 int pltalign = bfd_section_alignment (dynobj, sec);
2396 if (gotalign > pltalign)
2397 bfd_set_section_alignment (dynobj, sec, gotalign);
2398 mask = ((bfd_size_type) 1 << gotalign) - 1;
2399 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2402 else if (sec == htab->sgot
2403 || sec == htab->sdynbss)
2405 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2409 /* Remember whether there are any reloc sections other
2411 if (sec != htab->srelplt)
2414 /* We use the reloc_count field as a counter if we need
2415 to copy relocs into the output file. */
2416 sec->reloc_count = 0;
2421 /* It's not one of our sections, so don't allocate space. */
2427 /* If we don't need this section, strip it from the
2428 output file. This is mostly to handle .rela.bss and
2429 .rela.plt. We must create both sections in
2430 create_dynamic_sections, because they must be created
2431 before the linker maps input sections to output
2432 sections. The linker does that before
2433 adjust_dynamic_symbol is called, and it is that
2434 function which decides whether anything needs to go
2435 into these sections. */
2436 sec->flags |= SEC_EXCLUDE;
2440 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2443 /* Allocate memory for the section contents. Zero it, because
2444 we may not fill in all the reloc sections. */
2445 sec->contents = bfd_zalloc (dynobj, sec->size);
2446 if (sec->contents == NULL)
2450 if (htab->etab.dynamic_sections_created)
2452 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2453 actually has nothing to do with the PLT, it is how we
2454 communicate the LTP value of a load module to the dynamic
2456 #define add_dynamic_entry(TAG, VAL) \
2457 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2459 if (!add_dynamic_entry (DT_PLTGOT, 0))
2462 /* Add some entries to the .dynamic section. We fill in the
2463 values later, in elf32_hppa_finish_dynamic_sections, but we
2464 must add the entries now so that we get the correct size for
2465 the .dynamic section. The DT_DEBUG entry is filled in by the
2466 dynamic linker and used by the debugger. */
2467 if (info->executable)
2469 if (!add_dynamic_entry (DT_DEBUG, 0))
2473 if (htab->srelplt->size != 0)
2475 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2476 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2477 || !add_dynamic_entry (DT_JMPREL, 0))
2483 if (!add_dynamic_entry (DT_RELA, 0)
2484 || !add_dynamic_entry (DT_RELASZ, 0)
2485 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2488 /* If any dynamic relocs apply to a read-only section,
2489 then we need a DT_TEXTREL entry. */
2490 if ((info->flags & DF_TEXTREL) == 0)
2491 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2493 if ((info->flags & DF_TEXTREL) != 0)
2495 if (!add_dynamic_entry (DT_TEXTREL, 0))
2500 #undef add_dynamic_entry
2505 /* External entry points for sizing and building linker stubs. */
2507 /* Set up various things so that we can make a list of input sections
2508 for each output section included in the link. Returns -1 on error,
2509 0 when no stubs will be needed, and 1 on success. */
2512 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2515 unsigned int bfd_count;
2516 int top_id, top_index;
2518 asection **input_list, **list;
2520 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2522 /* Count the number of input BFDs and find the top input section id. */
2523 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2525 input_bfd = input_bfd->link_next)
2528 for (section = input_bfd->sections;
2530 section = section->next)
2532 if (top_id < section->id)
2533 top_id = section->id;
2536 htab->bfd_count = bfd_count;
2538 amt = sizeof (struct map_stub) * (top_id + 1);
2539 htab->stub_group = bfd_zmalloc (amt);
2540 if (htab->stub_group == NULL)
2543 /* We can't use output_bfd->section_count here to find the top output
2544 section index as some sections may have been removed, and
2545 strip_excluded_output_sections doesn't renumber the indices. */
2546 for (section = output_bfd->sections, top_index = 0;
2548 section = section->next)
2550 if (top_index < section->index)
2551 top_index = section->index;
2554 htab->top_index = top_index;
2555 amt = sizeof (asection *) * (top_index + 1);
2556 input_list = bfd_malloc (amt);
2557 htab->input_list = input_list;
2558 if (input_list == NULL)
2561 /* For sections we aren't interested in, mark their entries with a
2562 value we can check later. */
2563 list = input_list + top_index;
2565 *list = bfd_abs_section_ptr;
2566 while (list-- != input_list);
2568 for (section = output_bfd->sections;
2570 section = section->next)
2572 if ((section->flags & SEC_CODE) != 0)
2573 input_list[section->index] = NULL;
2579 /* The linker repeatedly calls this function for each input section,
2580 in the order that input sections are linked into output sections.
2581 Build lists of input sections to determine groupings between which
2582 we may insert linker stubs. */
2585 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2587 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2589 if (isec->output_section->index <= htab->top_index)
2591 asection **list = htab->input_list + isec->output_section->index;
2592 if (*list != bfd_abs_section_ptr)
2594 /* Steal the link_sec pointer for our list. */
2595 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2596 /* This happens to make the list in reverse order,
2597 which is what we want. */
2598 PREV_SEC (isec) = *list;
2604 /* See whether we can group stub sections together. Grouping stub
2605 sections may result in fewer stubs. More importantly, we need to
2606 put all .init* and .fini* stubs at the beginning of the .init or
2607 .fini output sections respectively, because glibc splits the
2608 _init and _fini functions into multiple parts. Putting a stub in
2609 the middle of a function is not a good idea. */
2612 group_sections (struct elf32_hppa_link_hash_table *htab,
2613 bfd_size_type stub_group_size,
2614 bfd_boolean stubs_always_before_branch)
2616 asection **list = htab->input_list + htab->top_index;
2619 asection *tail = *list;
2620 if (tail == bfd_abs_section_ptr)
2622 while (tail != NULL)
2626 bfd_size_type total;
2627 bfd_boolean big_sec;
2631 big_sec = total >= stub_group_size;
2633 while ((prev = PREV_SEC (curr)) != NULL
2634 && ((total += curr->output_offset - prev->output_offset)
2638 /* OK, the size from the start of CURR to the end is less
2639 than 240000 bytes and thus can be handled by one stub
2640 section. (or the tail section is itself larger than
2641 240000 bytes, in which case we may be toast.)
2642 We should really be keeping track of the total size of
2643 stubs added here, as stubs contribute to the final output
2644 section size. That's a little tricky, and this way will
2645 only break if stubs added total more than 22144 bytes, or
2646 2768 long branch stubs. It seems unlikely for more than
2647 2768 different functions to be called, especially from
2648 code only 240000 bytes long. This limit used to be
2649 250000, but c++ code tends to generate lots of little
2650 functions, and sometimes violated the assumption. */
2653 prev = PREV_SEC (tail);
2654 /* Set up this stub group. */
2655 htab->stub_group[tail->id].link_sec = curr;
2657 while (tail != curr && (tail = prev) != NULL);
2659 /* But wait, there's more! Input sections up to 240000
2660 bytes before the stub section can be handled by it too.
2661 Don't do this if we have a really large section after the
2662 stubs, as adding more stubs increases the chance that
2663 branches may not reach into the stub section. */
2664 if (!stubs_always_before_branch && !big_sec)
2668 && ((total += tail->output_offset - prev->output_offset)
2672 prev = PREV_SEC (tail);
2673 htab->stub_group[tail->id].link_sec = curr;
2679 while (list-- != htab->input_list);
2680 free (htab->input_list);
2684 /* Read in all local syms for all input bfds, and create hash entries
2685 for export stubs if we are building a multi-subspace shared lib.
2686 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2689 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2691 unsigned int bfd_indx;
2692 Elf_Internal_Sym *local_syms, **all_local_syms;
2693 int stub_changed = 0;
2694 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2696 /* We want to read in symbol extension records only once. To do this
2697 we need to read in the local symbols in parallel and save them for
2698 later use; so hold pointers to the local symbols in an array. */
2699 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2700 all_local_syms = bfd_zmalloc (amt);
2701 htab->all_local_syms = all_local_syms;
2702 if (all_local_syms == NULL)
2705 /* Walk over all the input BFDs, swapping in local symbols.
2706 If we are creating a shared library, create hash entries for the
2710 input_bfd = input_bfd->link_next, bfd_indx++)
2712 Elf_Internal_Shdr *symtab_hdr;
2714 /* We'll need the symbol table in a second. */
2715 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2716 if (symtab_hdr->sh_info == 0)
2719 /* We need an array of the local symbols attached to the input bfd. */
2720 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2721 if (local_syms == NULL)
2723 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2724 symtab_hdr->sh_info, 0,
2726 /* Cache them for elf_link_input_bfd. */
2727 symtab_hdr->contents = (unsigned char *) local_syms;
2729 if (local_syms == NULL)
2732 all_local_syms[bfd_indx] = local_syms;
2734 if (info->shared && htab->multi_subspace)
2736 struct elf_link_hash_entry **eh_syms;
2737 struct elf_link_hash_entry **eh_symend;
2738 unsigned int symcount;
2740 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2741 - symtab_hdr->sh_info);
2742 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2743 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2745 /* Look through the global syms for functions; We need to
2746 build export stubs for all globally visible functions. */
2747 for (; eh_syms < eh_symend; eh_syms++)
2749 struct elf32_hppa_link_hash_entry *hh;
2751 hh = hppa_elf_hash_entry (*eh_syms);
2753 while (hh->eh.root.type == bfd_link_hash_indirect
2754 || hh->eh.root.type == bfd_link_hash_warning)
2755 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2757 /* At this point in the link, undefined syms have been
2758 resolved, so we need to check that the symbol was
2759 defined in this BFD. */
2760 if ((hh->eh.root.type == bfd_link_hash_defined
2761 || hh->eh.root.type == bfd_link_hash_defweak)
2762 && hh->eh.type == STT_FUNC
2763 && hh->eh.root.u.def.section->output_section != NULL
2764 && (hh->eh.root.u.def.section->output_section->owner
2766 && hh->eh.root.u.def.section->owner == input_bfd
2767 && hh->eh.def_regular
2768 && !hh->eh.forced_local
2769 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2772 const char *stub_name;
2773 struct elf32_hppa_stub_hash_entry *hsh;
2775 sec = hh->eh.root.u.def.section;
2776 stub_name = hh_name (hh);
2777 hsh = hppa_stub_hash_lookup (&htab->bstab,
2782 hsh = hppa_add_stub (stub_name, sec, htab);
2786 hsh->target_value = hh->eh.root.u.def.value;
2787 hsh->target_section = hh->eh.root.u.def.section;
2788 hsh->stub_type = hppa_stub_export;
2794 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2803 return stub_changed;
2806 /* Determine and set the size of the stub section for a final link.
2808 The basic idea here is to examine all the relocations looking for
2809 PC-relative calls to a target that is unreachable with a "bl"
2813 elf32_hppa_size_stubs
2814 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2815 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2816 asection * (*add_stub_section) (const char *, asection *),
2817 void (*layout_sections_again) (void))
2819 bfd_size_type stub_group_size;
2820 bfd_boolean stubs_always_before_branch;
2821 bfd_boolean stub_changed;
2822 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2824 /* Stash our params away. */
2825 htab->stub_bfd = stub_bfd;
2826 htab->multi_subspace = multi_subspace;
2827 htab->add_stub_section = add_stub_section;
2828 htab->layout_sections_again = layout_sections_again;
2829 stubs_always_before_branch = group_size < 0;
2831 stub_group_size = -group_size;
2833 stub_group_size = group_size;
2834 if (stub_group_size == 1)
2836 /* Default values. */
2837 if (stubs_always_before_branch)
2839 stub_group_size = 7680000;
2840 if (htab->has_17bit_branch || htab->multi_subspace)
2841 stub_group_size = 240000;
2842 if (htab->has_12bit_branch)
2843 stub_group_size = 7500;
2847 stub_group_size = 6971392;
2848 if (htab->has_17bit_branch || htab->multi_subspace)
2849 stub_group_size = 217856;
2850 if (htab->has_12bit_branch)
2851 stub_group_size = 6808;
2855 group_sections (htab, stub_group_size, stubs_always_before_branch);
2857 switch (get_local_syms (output_bfd, info->input_bfds, info))
2860 if (htab->all_local_syms)
2861 goto error_ret_free_local;
2865 stub_changed = FALSE;
2869 stub_changed = TRUE;
2876 unsigned int bfd_indx;
2879 for (input_bfd = info->input_bfds, bfd_indx = 0;
2881 input_bfd = input_bfd->link_next, bfd_indx++)
2883 Elf_Internal_Shdr *symtab_hdr;
2885 Elf_Internal_Sym *local_syms;
2887 /* We'll need the symbol table in a second. */
2888 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2889 if (symtab_hdr->sh_info == 0)
2892 local_syms = htab->all_local_syms[bfd_indx];
2894 /* Walk over each section attached to the input bfd. */
2895 for (section = input_bfd->sections;
2897 section = section->next)
2899 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2901 /* If there aren't any relocs, then there's nothing more
2903 if ((section->flags & SEC_RELOC) == 0
2904 || section->reloc_count == 0)
2907 /* If this section is a link-once section that will be
2908 discarded, then don't create any stubs. */
2909 if (section->output_section == NULL
2910 || section->output_section->owner != output_bfd)
2913 /* Get the relocs. */
2915 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2917 if (internal_relocs == NULL)
2918 goto error_ret_free_local;
2920 /* Now examine each relocation. */
2921 irela = internal_relocs;
2922 irelaend = irela + section->reloc_count;
2923 for (; irela < irelaend; irela++)
2925 unsigned int r_type, r_indx;
2926 enum elf32_hppa_stub_type stub_type;
2927 struct elf32_hppa_stub_hash_entry *hsh;
2930 bfd_vma destination;
2931 struct elf32_hppa_link_hash_entry *hh;
2933 const asection *id_sec;
2935 r_type = ELF32_R_TYPE (irela->r_info);
2936 r_indx = ELF32_R_SYM (irela->r_info);
2938 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2940 bfd_set_error (bfd_error_bad_value);
2941 error_ret_free_internal:
2942 if (elf_section_data (section)->relocs == NULL)
2943 free (internal_relocs);
2944 goto error_ret_free_local;
2947 /* Only look for stubs on call instructions. */
2948 if (r_type != (unsigned int) R_PARISC_PCREL12F
2949 && r_type != (unsigned int) R_PARISC_PCREL17F
2950 && r_type != (unsigned int) R_PARISC_PCREL22F)
2953 /* Now determine the call target, its name, value,
2959 if (r_indx < symtab_hdr->sh_info)
2961 /* It's a local symbol. */
2962 Elf_Internal_Sym *sym;
2963 Elf_Internal_Shdr *hdr;
2965 sym = local_syms + r_indx;
2966 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2967 sym_sec = hdr->bfd_section;
2968 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2969 sym_value = sym->st_value;
2970 destination = (sym_value + irela->r_addend
2971 + sym_sec->output_offset
2972 + sym_sec->output_section->vma);
2976 /* It's an external symbol. */
2979 e_indx = r_indx - symtab_hdr->sh_info;
2980 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2982 while (hh->eh.root.type == bfd_link_hash_indirect
2983 || hh->eh.root.type == bfd_link_hash_warning)
2984 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2986 if (hh->eh.root.type == bfd_link_hash_defined
2987 || hh->eh.root.type == bfd_link_hash_defweak)
2989 sym_sec = hh->eh.root.u.def.section;
2990 sym_value = hh->eh.root.u.def.value;
2991 if (sym_sec->output_section != NULL)
2992 destination = (sym_value + irela->r_addend
2993 + sym_sec->output_offset
2994 + sym_sec->output_section->vma);
2996 else if (hh->eh.root.type == bfd_link_hash_undefweak)
3001 else if (hh->eh.root.type == bfd_link_hash_undefined)
3003 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3004 && (ELF_ST_VISIBILITY (hh->eh.other)
3006 && hh->eh.type != STT_PARISC_MILLI))
3011 bfd_set_error (bfd_error_bad_value);
3012 goto error_ret_free_internal;
3016 /* Determine what (if any) linker stub is needed. */
3017 stub_type = hppa_type_of_stub (section, irela, hh,
3019 if (stub_type == hppa_stub_none)
3022 /* Support for grouping stub sections. */
3023 id_sec = htab->stub_group[section->id].link_sec;
3025 /* Get the name of this stub. */
3026 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3028 goto error_ret_free_internal;
3030 hsh = hppa_stub_hash_lookup (&htab->bstab,
3035 /* The proper stub has already been created. */
3040 hsh = hppa_add_stub (stub_name, section, htab);
3044 goto error_ret_free_internal;
3047 hsh->target_value = sym_value;
3048 hsh->target_section = sym_sec;
3049 hsh->stub_type = stub_type;
3052 if (stub_type == hppa_stub_import)
3053 hsh->stub_type = hppa_stub_import_shared;
3054 else if (stub_type == hppa_stub_long_branch)
3055 hsh->stub_type = hppa_stub_long_branch_shared;
3058 stub_changed = TRUE;
3061 /* We're done with the internal relocs, free them. */
3062 if (elf_section_data (section)->relocs == NULL)
3063 free (internal_relocs);
3070 /* OK, we've added some stubs. Find out the new size of the
3072 for (stub_sec = htab->stub_bfd->sections;
3074 stub_sec = stub_sec->next)
3077 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3079 /* Ask the linker to do its stuff. */
3080 (*htab->layout_sections_again) ();
3081 stub_changed = FALSE;
3084 free (htab->all_local_syms);
3087 error_ret_free_local:
3088 free (htab->all_local_syms);
3092 /* For a final link, this function is called after we have sized the
3093 stubs to provide a value for __gp. */
3096 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3098 struct bfd_link_hash_entry *h;
3099 asection *sec = NULL;
3101 struct elf32_hppa_link_hash_table *htab;
3103 htab = hppa_link_hash_table (info);
3104 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3107 && (h->type == bfd_link_hash_defined
3108 || h->type == bfd_link_hash_defweak))
3110 gp_val = h->u.def.value;
3111 sec = h->u.def.section;
3115 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3116 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3118 /* Choose to point our LTP at, in this order, one of .plt, .got,
3119 or .data, if these sections exist. In the case of choosing
3120 .plt try to make the LTP ideal for addressing anywhere in the
3121 .plt or .got with a 14 bit signed offset. Typically, the end
3122 of the .plt is the start of the .got, so choose .plt + 0x2000
3123 if either the .plt or .got is larger than 0x2000. If both
3124 the .plt and .got are smaller than 0x2000, choose the end of
3125 the .plt section. */
3126 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3131 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3141 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3143 /* We know we don't have a .plt. If .got is large,
3145 if (sec->size > 0x2000)
3151 /* No .plt or .got. Who cares what the LTP is? */
3152 sec = bfd_get_section_by_name (abfd, ".data");
3158 h->type = bfd_link_hash_defined;
3159 h->u.def.value = gp_val;
3161 h->u.def.section = sec;
3163 h->u.def.section = bfd_abs_section_ptr;
3167 if (sec != NULL && sec->output_section != NULL)
3168 gp_val += sec->output_section->vma + sec->output_offset;
3170 elf_gp (abfd) = gp_val;
3174 /* Build all the stubs associated with the current output file. The
3175 stubs are kept in a hash table attached to the main linker hash
3176 table. We also set up the .plt entries for statically linked PIC
3177 functions here. This function is called via hppaelf_finish in the
3181 elf32_hppa_build_stubs (struct bfd_link_info *info)
3184 struct bfd_hash_table *table;
3185 struct elf32_hppa_link_hash_table *htab;
3187 htab = hppa_link_hash_table (info);
3189 for (stub_sec = htab->stub_bfd->sections;
3191 stub_sec = stub_sec->next)
3195 /* Allocate memory to hold the linker stubs. */
3196 size = stub_sec->size;
3197 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3198 if (stub_sec->contents == NULL && size != 0)
3203 /* Build the stubs as directed by the stub hash table. */
3204 table = &htab->bstab;
3205 bfd_hash_traverse (table, hppa_build_one_stub, info);
3210 /* Return the base vma address which should be subtracted from the real
3211 address when resolving a dtpoff relocation.
3212 This is PT_TLS segment p_vaddr. */
3215 dtpoff_base (struct bfd_link_info *info)
3217 /* If tls_sec is NULL, we should have signalled an error already. */
3218 if (elf_hash_table (info)->tls_sec == NULL)
3220 return elf_hash_table (info)->tls_sec->vma;
3223 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3226 tpoff (struct bfd_link_info *info, bfd_vma address)
3228 struct elf_link_hash_table *htab = elf_hash_table (info);
3230 /* If tls_sec is NULL, we should have signalled an error already. */
3231 if (htab->tls_sec == NULL)
3233 /* hppa TLS ABI is variant I and static TLS block start just after
3234 tcbhead structure which has 2 pointer fields. */
3235 return (address - htab->tls_sec->vma
3236 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3239 /* Perform a final link. */
3242 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3244 /* Invoke the regular ELF linker to do all the work. */
3245 if (!bfd_elf_final_link (abfd, info))
3248 /* If we're producing a final executable, sort the contents of the
3250 return elf_hppa_sort_unwind (abfd);
3253 /* Record the lowest address for the data and text segments. */
3256 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3260 struct elf32_hppa_link_hash_table *htab;
3262 htab = (struct elf32_hppa_link_hash_table*) data;
3264 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3266 bfd_vma value = section->vma - section->filepos;
3268 if ((section->flags & SEC_READONLY) != 0)
3270 if (value < htab->text_segment_base)
3271 htab->text_segment_base = value;
3275 if (value < htab->data_segment_base)
3276 htab->data_segment_base = value;
3281 /* Perform a relocation as part of a final link. */
3283 static bfd_reloc_status_type
3284 final_link_relocate (asection *input_section,
3286 const Elf_Internal_Rela *rela,
3288 struct elf32_hppa_link_hash_table *htab,
3290 struct elf32_hppa_link_hash_entry *hh,
3291 struct bfd_link_info *info)
3294 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3295 unsigned int orig_r_type = r_type;
3296 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3297 int r_format = howto->bitsize;
3298 enum hppa_reloc_field_selector_type_alt r_field;
3299 bfd *input_bfd = input_section->owner;
3300 bfd_vma offset = rela->r_offset;
3301 bfd_vma max_branch_offset = 0;
3302 bfd_byte *hit_data = contents + offset;
3303 bfd_signed_vma addend = rela->r_addend;
3305 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3308 if (r_type == R_PARISC_NONE)
3309 return bfd_reloc_ok;
3311 insn = bfd_get_32 (input_bfd, hit_data);
3313 /* Find out where we are and where we're going. */
3314 location = (offset +
3315 input_section->output_offset +
3316 input_section->output_section->vma);
3318 /* If we are not building a shared library, convert DLTIND relocs to
3324 case R_PARISC_DLTIND21L:
3325 r_type = R_PARISC_DPREL21L;
3328 case R_PARISC_DLTIND14R:
3329 r_type = R_PARISC_DPREL14R;
3332 case R_PARISC_DLTIND14F:
3333 r_type = R_PARISC_DPREL14F;
3340 case R_PARISC_PCREL12F:
3341 case R_PARISC_PCREL17F:
3342 case R_PARISC_PCREL22F:
3343 /* If this call should go via the plt, find the import stub in
3346 || sym_sec->output_section == NULL
3348 && hh->eh.plt.offset != (bfd_vma) -1
3349 && hh->eh.dynindx != -1
3352 || !hh->eh.def_regular
3353 || hh->eh.root.type == bfd_link_hash_defweak)))
3355 hsh = hppa_get_stub_entry (input_section, sym_sec,
3359 value = (hsh->stub_offset
3360 + hsh->stub_sec->output_offset
3361 + hsh->stub_sec->output_section->vma);
3364 else if (sym_sec == NULL && hh != NULL
3365 && hh->eh.root.type == bfd_link_hash_undefweak)
3367 /* It's OK if undefined weak. Calls to undefined weak
3368 symbols behave as if the "called" function
3369 immediately returns. We can thus call to a weak
3370 function without first checking whether the function
3376 return bfd_reloc_undefined;
3380 case R_PARISC_PCREL21L:
3381 case R_PARISC_PCREL17C:
3382 case R_PARISC_PCREL17R:
3383 case R_PARISC_PCREL14R:
3384 case R_PARISC_PCREL14F:
3385 case R_PARISC_PCREL32:
3386 /* Make it a pc relative offset. */
3391 case R_PARISC_DPREL21L:
3392 case R_PARISC_DPREL14R:
3393 case R_PARISC_DPREL14F:
3394 /* Convert instructions that use the linkage table pointer (r19) to
3395 instructions that use the global data pointer (dp). This is the
3396 most efficient way of using PIC code in an incomplete executable,
3397 but the user must follow the standard runtime conventions for
3398 accessing data for this to work. */
3399 if (orig_r_type == R_PARISC_DLTIND21L)
3401 /* Convert addil instructions if the original reloc was a
3402 DLTIND21L. GCC sometimes uses a register other than r19 for
3403 the operation, so we must convert any addil instruction
3404 that uses this relocation. */
3405 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3408 /* We must have a ldil instruction. It's too hard to find
3409 and convert the associated add instruction, so issue an
3411 (*_bfd_error_handler)
3412 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3419 else if (orig_r_type == R_PARISC_DLTIND14F)
3421 /* This must be a format 1 load/store. Change the base
3423 insn = (insn & 0xfc1ffff) | (27 << 21);
3426 /* For all the DP relative relocations, we need to examine the symbol's
3427 section. If it has no section or if it's a code section, then
3428 "data pointer relative" makes no sense. In that case we don't
3429 adjust the "value", and for 21 bit addil instructions, we change the
3430 source addend register from %dp to %r0. This situation commonly
3431 arises for undefined weak symbols and when a variable's "constness"
3432 is declared differently from the way the variable is defined. For
3433 instance: "extern int foo" with foo defined as "const int foo". */
3434 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3436 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3437 == (((int) OP_ADDIL << 26) | (27 << 21)))
3439 insn &= ~ (0x1f << 21);
3441 /* Now try to make things easy for the dynamic linker. */
3447 case R_PARISC_DLTIND21L:
3448 case R_PARISC_DLTIND14R:
3449 case R_PARISC_DLTIND14F:
3450 case R_PARISC_TLS_GD21L:
3451 case R_PARISC_TLS_GD14R:
3452 case R_PARISC_TLS_LDM21L:
3453 case R_PARISC_TLS_LDM14R:
3454 case R_PARISC_TLS_IE21L:
3455 case R_PARISC_TLS_IE14R:
3456 value -= elf_gp (input_section->output_section->owner);
3459 case R_PARISC_SEGREL32:
3460 if ((sym_sec->flags & SEC_CODE) != 0)
3461 value -= htab->text_segment_base;
3463 value -= htab->data_segment_base;
3472 case R_PARISC_DIR32:
3473 case R_PARISC_DIR14F:
3474 case R_PARISC_DIR17F:
3475 case R_PARISC_PCREL17C:
3476 case R_PARISC_PCREL14F:
3477 case R_PARISC_PCREL32:
3478 case R_PARISC_DPREL14F:
3479 case R_PARISC_PLABEL32:
3480 case R_PARISC_DLTIND14F:
3481 case R_PARISC_SEGBASE:
3482 case R_PARISC_SEGREL32:
3483 case R_PARISC_TLS_DTPMOD32:
3484 case R_PARISC_TLS_DTPOFF32:
3485 case R_PARISC_TLS_TPREL32:
3489 case R_PARISC_DLTIND21L:
3490 case R_PARISC_PCREL21L:
3491 case R_PARISC_PLABEL21L:
3495 case R_PARISC_DIR21L:
3496 case R_PARISC_DPREL21L:
3497 case R_PARISC_TLS_GD21L:
3498 case R_PARISC_TLS_LDM21L:
3499 case R_PARISC_TLS_LDO21L:
3500 case R_PARISC_TLS_IE21L:
3501 case R_PARISC_TLS_LE21L:
3505 case R_PARISC_PCREL17R:
3506 case R_PARISC_PCREL14R:
3507 case R_PARISC_PLABEL14R:
3508 case R_PARISC_DLTIND14R:
3512 case R_PARISC_DIR17R:
3513 case R_PARISC_DIR14R:
3514 case R_PARISC_DPREL14R:
3515 case R_PARISC_TLS_GD14R:
3516 case R_PARISC_TLS_LDM14R:
3517 case R_PARISC_TLS_LDO14R:
3518 case R_PARISC_TLS_IE14R:
3519 case R_PARISC_TLS_LE14R:
3523 case R_PARISC_PCREL12F:
3524 case R_PARISC_PCREL17F:
3525 case R_PARISC_PCREL22F:
3528 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3530 max_branch_offset = (1 << (17-1)) << 2;
3532 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3534 max_branch_offset = (1 << (12-1)) << 2;
3538 max_branch_offset = (1 << (22-1)) << 2;
3541 /* sym_sec is NULL on undefined weak syms or when shared on
3542 undefined syms. We've already checked for a stub for the
3543 shared undefined case. */
3544 if (sym_sec == NULL)
3547 /* If the branch is out of reach, then redirect the
3548 call to the local stub for this function. */
3549 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3551 hsh = hppa_get_stub_entry (input_section, sym_sec,
3554 return bfd_reloc_undefined;
3556 /* Munge up the value and addend so that we call the stub
3557 rather than the procedure directly. */
3558 value = (hsh->stub_offset
3559 + hsh->stub_sec->output_offset
3560 + hsh->stub_sec->output_section->vma
3566 /* Something we don't know how to handle. */
3568 return bfd_reloc_notsupported;
3571 /* Make sure we can reach the stub. */
3572 if (max_branch_offset != 0
3573 && value + addend + max_branch_offset >= 2*max_branch_offset)
3575 (*_bfd_error_handler)
3576 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3580 hsh->bh_root.string);
3581 bfd_set_error (bfd_error_bad_value);
3582 return bfd_reloc_notsupported;
3585 val = hppa_field_adjust (value, addend, r_field);
3589 case R_PARISC_PCREL12F:
3590 case R_PARISC_PCREL17C:
3591 case R_PARISC_PCREL17F:
3592 case R_PARISC_PCREL17R:
3593 case R_PARISC_PCREL22F:
3594 case R_PARISC_DIR17F:
3595 case R_PARISC_DIR17R:
3596 /* This is a branch. Divide the offset by four.
3597 Note that we need to decide whether it's a branch or
3598 otherwise by inspecting the reloc. Inspecting insn won't
3599 work as insn might be from a .word directive. */
3607 insn = hppa_rebuild_insn (insn, val, r_format);
3609 /* Update the instruction word. */
3610 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3611 return bfd_reloc_ok;
3614 /* Relocate an HPPA ELF section. */
3617 elf32_hppa_relocate_section (bfd *output_bfd,
3618 struct bfd_link_info *info,
3620 asection *input_section,
3622 Elf_Internal_Rela *relocs,
3623 Elf_Internal_Sym *local_syms,
3624 asection **local_sections)
3626 bfd_vma *local_got_offsets;
3627 struct elf32_hppa_link_hash_table *htab;
3628 Elf_Internal_Shdr *symtab_hdr;
3629 Elf_Internal_Rela *rela;
3630 Elf_Internal_Rela *relend;
3632 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3634 htab = hppa_link_hash_table (info);
3635 local_got_offsets = elf_local_got_offsets (input_bfd);
3638 relend = relocs + input_section->reloc_count;
3639 for (; rela < relend; rela++)
3641 unsigned int r_type;
3642 reloc_howto_type *howto;
3643 unsigned int r_symndx;
3644 struct elf32_hppa_link_hash_entry *hh;
3645 Elf_Internal_Sym *sym;
3648 bfd_reloc_status_type rstatus;
3649 const char *sym_name;
3651 bfd_boolean warned_undef;
3653 r_type = ELF32_R_TYPE (rela->r_info);
3654 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3656 bfd_set_error (bfd_error_bad_value);
3659 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3660 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3663 r_symndx = ELF32_R_SYM (rela->r_info);
3667 warned_undef = FALSE;
3668 if (r_symndx < symtab_hdr->sh_info)
3670 /* This is a local symbol, h defaults to NULL. */
3671 sym = local_syms + r_symndx;
3672 sym_sec = local_sections[r_symndx];
3673 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3677 struct elf_link_hash_entry *eh;
3678 bfd_boolean unresolved_reloc;
3679 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3681 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3682 r_symndx, symtab_hdr, sym_hashes,
3683 eh, sym_sec, relocation,
3684 unresolved_reloc, warned_undef);
3686 if (!info->relocatable
3688 && eh->root.type != bfd_link_hash_defined
3689 && eh->root.type != bfd_link_hash_defweak
3690 && eh->root.type != bfd_link_hash_undefweak)
3692 if (info->unresolved_syms_in_objects == RM_IGNORE
3693 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3694 && eh->type == STT_PARISC_MILLI)
3696 if (! info->callbacks->undefined_symbol
3697 (info, eh_name (eh), input_bfd,
3698 input_section, rela->r_offset, FALSE))
3700 warned_undef = TRUE;
3703 hh = hppa_elf_hash_entry (eh);
3706 if (sym_sec != NULL && elf_discarded_section (sym_sec))
3708 /* For relocs against symbols from removed linkonce
3709 sections, or sections discarded by a linker script,
3710 we just want the section contents zeroed. Avoid any
3711 special processing. */
3712 _bfd_clear_contents (elf_hppa_howto_table + r_type, input_bfd,
3713 contents + rela->r_offset);
3719 if (info->relocatable)
3722 /* Do any required modifications to the relocation value, and
3723 determine what types of dynamic info we need to output, if
3728 case R_PARISC_DLTIND14F:
3729 case R_PARISC_DLTIND14R:
3730 case R_PARISC_DLTIND21L:
3733 bfd_boolean do_got = 0;
3735 /* Relocation is to the entry for this symbol in the
3736 global offset table. */
3741 off = hh->eh.got.offset;
3742 dyn = htab->etab.dynamic_sections_created;
3743 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3746 /* If we aren't going to call finish_dynamic_symbol,
3747 then we need to handle initialisation of the .got
3748 entry and create needed relocs here. Since the
3749 offset must always be a multiple of 4, we use the
3750 least significant bit to record whether we have
3751 initialised it already. */
3756 hh->eh.got.offset |= 1;
3763 /* Local symbol case. */
3764 if (local_got_offsets == NULL)
3767 off = local_got_offsets[r_symndx];
3769 /* The offset must always be a multiple of 4. We use
3770 the least significant bit to record whether we have
3771 already generated the necessary reloc. */
3776 local_got_offsets[r_symndx] |= 1;
3785 /* Output a dynamic relocation for this GOT entry.
3786 In this case it is relative to the base of the
3787 object because the symbol index is zero. */
3788 Elf_Internal_Rela outrel;
3790 asection *sec = htab->srelgot;
3792 outrel.r_offset = (off
3793 + htab->sgot->output_offset
3794 + htab->sgot->output_section->vma);
3795 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3796 outrel.r_addend = relocation;
3797 loc = sec->contents;
3798 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3799 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3802 bfd_put_32 (output_bfd, relocation,
3803 htab->sgot->contents + off);
3806 if (off >= (bfd_vma) -2)
3809 /* Add the base of the GOT to the relocation value. */
3811 + htab->sgot->output_offset
3812 + htab->sgot->output_section->vma);
3816 case R_PARISC_SEGREL32:
3817 /* If this is the first SEGREL relocation, then initialize
3818 the segment base values. */
3819 if (htab->text_segment_base == (bfd_vma) -1)
3820 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3823 case R_PARISC_PLABEL14R:
3824 case R_PARISC_PLABEL21L:
3825 case R_PARISC_PLABEL32:
3826 if (htab->etab.dynamic_sections_created)
3829 bfd_boolean do_plt = 0;
3830 /* If we have a global symbol with a PLT slot, then
3831 redirect this relocation to it. */
3834 off = hh->eh.plt.offset;
3835 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3838 /* In a non-shared link, adjust_dynamic_symbols
3839 isn't called for symbols forced local. We
3840 need to write out the plt entry here. */
3845 hh->eh.plt.offset |= 1;
3852 bfd_vma *local_plt_offsets;
3854 if (local_got_offsets == NULL)
3857 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3858 off = local_plt_offsets[r_symndx];
3860 /* As for the local .got entry case, we use the last
3861 bit to record whether we've already initialised
3862 this local .plt entry. */
3867 local_plt_offsets[r_symndx] |= 1;
3876 /* Output a dynamic IPLT relocation for this
3878 Elf_Internal_Rela outrel;
3880 asection *s = htab->srelplt;
3882 outrel.r_offset = (off
3883 + htab->splt->output_offset
3884 + htab->splt->output_section->vma);
3885 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3886 outrel.r_addend = relocation;
3888 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3889 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3893 bfd_put_32 (output_bfd,
3895 htab->splt->contents + off);
3896 bfd_put_32 (output_bfd,
3897 elf_gp (htab->splt->output_section->owner),
3898 htab->splt->contents + off + 4);
3902 if (off >= (bfd_vma) -2)
3905 /* PLABELs contain function pointers. Relocation is to
3906 the entry for the function in the .plt. The magic +2
3907 offset signals to $$dyncall that the function pointer
3908 is in the .plt and thus has a gp pointer too.
3909 Exception: Undefined PLABELs should have a value of
3912 || (hh->eh.root.type != bfd_link_hash_undefweak
3913 && hh->eh.root.type != bfd_link_hash_undefined))
3916 + htab->splt->output_offset
3917 + htab->splt->output_section->vma
3922 /* Fall through and possibly emit a dynamic relocation. */
3924 case R_PARISC_DIR17F:
3925 case R_PARISC_DIR17R:
3926 case R_PARISC_DIR14F:
3927 case R_PARISC_DIR14R:
3928 case R_PARISC_DIR21L:
3929 case R_PARISC_DPREL14F:
3930 case R_PARISC_DPREL14R:
3931 case R_PARISC_DPREL21L:
3932 case R_PARISC_DIR32:
3933 if ((input_section->flags & SEC_ALLOC) == 0)
3936 /* The reloc types handled here and this conditional
3937 expression must match the code in ..check_relocs and
3938 allocate_dynrelocs. ie. We need exactly the same condition
3939 as in ..check_relocs, with some extra conditions (dynindx
3940 test in this case) to cater for relocs removed by
3941 allocate_dynrelocs. If you squint, the non-shared test
3942 here does indeed match the one in ..check_relocs, the
3943 difference being that here we test DEF_DYNAMIC as well as
3944 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3945 which is why we can't use just that test here.
3946 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3947 there all files have not been loaded. */
3950 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3951 || hh->eh.root.type != bfd_link_hash_undefweak)
3952 && (IS_ABSOLUTE_RELOC (r_type)
3953 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3956 && hh->eh.dynindx != -1
3957 && !hh->eh.non_got_ref
3958 && ((ELIMINATE_COPY_RELOCS
3959 && hh->eh.def_dynamic
3960 && !hh->eh.def_regular)
3961 || hh->eh.root.type == bfd_link_hash_undefweak
3962 || hh->eh.root.type == bfd_link_hash_undefined)))
3964 Elf_Internal_Rela outrel;
3969 /* When generating a shared object, these relocations
3970 are copied into the output file to be resolved at run
3973 outrel.r_addend = rela->r_addend;
3975 _bfd_elf_section_offset (output_bfd, info, input_section,
3977 skip = (outrel.r_offset == (bfd_vma) -1
3978 || outrel.r_offset == (bfd_vma) -2);
3979 outrel.r_offset += (input_section->output_offset
3980 + input_section->output_section->vma);
3984 memset (&outrel, 0, sizeof (outrel));
3987 && hh->eh.dynindx != -1
3989 || !IS_ABSOLUTE_RELOC (r_type)
3992 || !hh->eh.def_regular))
3994 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3996 else /* It's a local symbol, or one marked to become local. */
4000 /* Add the absolute offset of the symbol. */
4001 outrel.r_addend += relocation;
4003 /* Global plabels need to be processed by the
4004 dynamic linker so that functions have at most one
4005 fptr. For this reason, we need to differentiate
4006 between global and local plabels, which we do by
4007 providing the function symbol for a global plabel
4008 reloc, and no symbol for local plabels. */
4011 && sym_sec->output_section != NULL
4012 && ! bfd_is_abs_section (sym_sec))
4016 osec = sym_sec->output_section;
4017 indx = elf_section_data (osec)->dynindx;
4020 osec = htab->etab.text_index_section;
4021 indx = elf_section_data (osec)->dynindx;
4023 BFD_ASSERT (indx != 0);
4025 /* We are turning this relocation into one
4026 against a section symbol, so subtract out the
4027 output section's address but not the offset
4028 of the input section in the output section. */
4029 outrel.r_addend -= osec->vma;
4032 outrel.r_info = ELF32_R_INFO (indx, r_type);
4034 sreloc = elf_section_data (input_section)->sreloc;
4038 loc = sreloc->contents;
4039 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4040 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4044 case R_PARISC_TLS_LDM21L:
4045 case R_PARISC_TLS_LDM14R:
4049 off = htab->tls_ldm_got.offset;
4054 Elf_Internal_Rela outrel;
4057 outrel.r_offset = (off
4058 + htab->sgot->output_section->vma
4059 + htab->sgot->output_offset);
4060 outrel.r_addend = 0;
4061 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4062 loc = htab->srelgot->contents;
4063 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4065 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4066 htab->tls_ldm_got.offset |= 1;
4069 /* Add the base of the GOT to the relocation value. */
4071 + htab->sgot->output_offset
4072 + htab->sgot->output_section->vma);
4077 case R_PARISC_TLS_LDO21L:
4078 case R_PARISC_TLS_LDO14R:
4079 relocation -= dtpoff_base (info);
4082 case R_PARISC_TLS_GD21L:
4083 case R_PARISC_TLS_GD14R:
4084 case R_PARISC_TLS_IE21L:
4085 case R_PARISC_TLS_IE14R:
4095 dyn = htab->etab.dynamic_sections_created;
4097 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4099 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4101 indx = hh->eh.dynindx;
4103 off = hh->eh.got.offset;
4104 tls_type = hh->tls_type;
4108 off = local_got_offsets[r_symndx];
4109 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4112 if (tls_type == GOT_UNKNOWN)
4119 bfd_boolean need_relocs = FALSE;
4120 Elf_Internal_Rela outrel;
4121 bfd_byte *loc = NULL;
4124 /* The GOT entries have not been initialized yet. Do it
4125 now, and emit any relocations. If both an IE GOT and a
4126 GD GOT are necessary, we emit the GD first. */
4128 if ((info->shared || indx != 0)
4130 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4131 || hh->eh.root.type != bfd_link_hash_undefweak))
4134 loc = htab->srelgot->contents;
4135 /* FIXME (CAO): Should this be reloc_count++ ? */
4136 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4139 if (tls_type & GOT_TLS_GD)
4143 outrel.r_offset = (cur_off
4144 + htab->sgot->output_section->vma
4145 + htab->sgot->output_offset);
4146 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4147 outrel.r_addend = 0;
4148 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4149 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4150 htab->srelgot->reloc_count++;
4151 loc += sizeof (Elf32_External_Rela);
4154 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4155 htab->sgot->contents + cur_off + 4);
4158 bfd_put_32 (output_bfd, 0,
4159 htab->sgot->contents + cur_off + 4);
4160 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4161 outrel.r_offset += 4;
4162 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4163 htab->srelgot->reloc_count++;
4164 loc += sizeof (Elf32_External_Rela);
4169 /* If we are not emitting relocations for a
4170 general dynamic reference, then we must be in a
4171 static link or an executable link with the
4172 symbol binding locally. Mark it as belonging
4173 to module 1, the executable. */
4174 bfd_put_32 (output_bfd, 1,
4175 htab->sgot->contents + cur_off);
4176 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4177 htab->sgot->contents + cur_off + 4);
4184 if (tls_type & GOT_TLS_IE)
4188 outrel.r_offset = (cur_off
4189 + htab->sgot->output_section->vma
4190 + htab->sgot->output_offset);
4191 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4194 outrel.r_addend = relocation - dtpoff_base (info);
4196 outrel.r_addend = 0;
4198 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4199 htab->srelgot->reloc_count++;
4200 loc += sizeof (Elf32_External_Rela);
4203 bfd_put_32 (output_bfd, tpoff (info, relocation),
4204 htab->sgot->contents + cur_off);
4210 hh->eh.got.offset |= 1;
4212 local_got_offsets[r_symndx] |= 1;
4215 if ((tls_type & GOT_TLS_GD)
4216 && r_type != R_PARISC_TLS_GD21L
4217 && r_type != R_PARISC_TLS_GD14R)
4218 off += 2 * GOT_ENTRY_SIZE;
4220 /* Add the base of the GOT to the relocation value. */
4222 + htab->sgot->output_offset
4223 + htab->sgot->output_section->vma);
4228 case R_PARISC_TLS_LE21L:
4229 case R_PARISC_TLS_LE14R:
4231 relocation = tpoff (info, relocation);
4240 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4241 htab, sym_sec, hh, info);
4243 if (rstatus == bfd_reloc_ok)
4247 sym_name = hh_name (hh);
4250 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4251 symtab_hdr->sh_link,
4253 if (sym_name == NULL)
4255 if (*sym_name == '\0')
4256 sym_name = bfd_section_name (input_bfd, sym_sec);
4259 howto = elf_hppa_howto_table + r_type;
4261 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4263 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4265 (*_bfd_error_handler)
4266 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4269 (long) rela->r_offset,
4272 bfd_set_error (bfd_error_bad_value);
4278 if (!((*info->callbacks->reloc_overflow)
4279 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4280 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4288 /* Finish up dynamic symbol handling. We set the contents of various
4289 dynamic sections here. */
4292 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4293 struct bfd_link_info *info,
4294 struct elf_link_hash_entry *eh,
4295 Elf_Internal_Sym *sym)
4297 struct elf32_hppa_link_hash_table *htab;
4298 Elf_Internal_Rela rela;
4301 htab = hppa_link_hash_table (info);
4303 if (eh->plt.offset != (bfd_vma) -1)
4307 if (eh->plt.offset & 1)
4310 /* This symbol has an entry in the procedure linkage table. Set
4313 The format of a plt entry is
4318 if (eh->root.type == bfd_link_hash_defined
4319 || eh->root.type == bfd_link_hash_defweak)
4321 value = eh->root.u.def.value;
4322 if (eh->root.u.def.section->output_section != NULL)
4323 value += (eh->root.u.def.section->output_offset
4324 + eh->root.u.def.section->output_section->vma);
4327 /* Create a dynamic IPLT relocation for this entry. */
4328 rela.r_offset = (eh->plt.offset
4329 + htab->splt->output_offset
4330 + htab->splt->output_section->vma);
4331 if (eh->dynindx != -1)
4333 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4338 /* This symbol has been marked to become local, and is
4339 used by a plabel so must be kept in the .plt. */
4340 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4341 rela.r_addend = value;
4344 loc = htab->srelplt->contents;
4345 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4346 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4348 if (!eh->def_regular)
4350 /* Mark the symbol as undefined, rather than as defined in
4351 the .plt section. Leave the value alone. */
4352 sym->st_shndx = SHN_UNDEF;
4356 if (eh->got.offset != (bfd_vma) -1
4357 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4358 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4360 /* This symbol has an entry in the global offset table. Set it
4363 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4364 + htab->sgot->output_offset
4365 + htab->sgot->output_section->vma);
4367 /* If this is a -Bsymbolic link and the symbol is defined
4368 locally or was forced to be local because of a version file,
4369 we just want to emit a RELATIVE reloc. The entry in the
4370 global offset table will already have been initialized in the
4371 relocate_section function. */
4373 && (info->symbolic || eh->dynindx == -1)
4376 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4377 rela.r_addend = (eh->root.u.def.value
4378 + eh->root.u.def.section->output_offset
4379 + eh->root.u.def.section->output_section->vma);
4383 if ((eh->got.offset & 1) != 0)
4386 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4387 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4391 loc = htab->srelgot->contents;
4392 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4393 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4400 /* This symbol needs a copy reloc. Set it up. */
4402 if (! (eh->dynindx != -1
4403 && (eh->root.type == bfd_link_hash_defined
4404 || eh->root.type == bfd_link_hash_defweak)))
4407 sec = htab->srelbss;
4409 rela.r_offset = (eh->root.u.def.value
4410 + eh->root.u.def.section->output_offset
4411 + eh->root.u.def.section->output_section->vma);
4413 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4414 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4415 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4418 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4419 if (eh_name (eh)[0] == '_'
4420 && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4421 || eh == htab->etab.hgot))
4423 sym->st_shndx = SHN_ABS;
4429 /* Used to decide how to sort relocs in an optimal manner for the
4430 dynamic linker, before writing them out. */
4432 static enum elf_reloc_type_class
4433 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4435 /* Handle TLS relocs first; we don't want them to be marked
4436 relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
4438 switch ((int) ELF32_R_TYPE (rela->r_info))
4440 case R_PARISC_TLS_DTPMOD32:
4441 case R_PARISC_TLS_DTPOFF32:
4442 case R_PARISC_TLS_TPREL32:
4443 return reloc_class_normal;
4446 if (ELF32_R_SYM (rela->r_info) == 0)
4447 return reloc_class_relative;
4449 switch ((int) ELF32_R_TYPE (rela->r_info))
4452 return reloc_class_plt;
4454 return reloc_class_copy;
4456 return reloc_class_normal;
4460 /* Finish up the dynamic sections. */
4463 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4464 struct bfd_link_info *info)
4467 struct elf32_hppa_link_hash_table *htab;
4470 htab = hppa_link_hash_table (info);
4471 dynobj = htab->etab.dynobj;
4473 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4475 if (htab->etab.dynamic_sections_created)
4477 Elf32_External_Dyn *dyncon, *dynconend;
4482 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4483 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4484 for (; dyncon < dynconend; dyncon++)
4486 Elf_Internal_Dyn dyn;
4489 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4497 /* Use PLTGOT to set the GOT register. */
4498 dyn.d_un.d_ptr = elf_gp (output_bfd);
4503 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4508 dyn.d_un.d_val = s->size;
4512 /* Don't count procedure linkage table relocs in the
4513 overall reloc count. */
4517 dyn.d_un.d_val -= s->size;
4521 /* We may not be using the standard ELF linker script.
4522 If .rela.plt is the first .rela section, we adjust
4523 DT_RELA to not include it. */
4527 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4529 dyn.d_un.d_ptr += s->size;
4533 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4537 if (htab->sgot != NULL && htab->sgot->size != 0)
4539 /* Fill in the first entry in the global offset table.
4540 We use it to point to our dynamic section, if we have one. */
4541 bfd_put_32 (output_bfd,
4542 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4543 htab->sgot->contents);
4545 /* The second entry is reserved for use by the dynamic linker. */
4546 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4548 /* Set .got entry size. */
4549 elf_section_data (htab->sgot->output_section)
4550 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4553 if (htab->splt != NULL && htab->splt->size != 0)
4555 /* Set plt entry size. */
4556 elf_section_data (htab->splt->output_section)
4557 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4559 if (htab->need_plt_stub)
4561 /* Set up the .plt stub. */
4562 memcpy (htab->splt->contents
4563 + htab->splt->size - sizeof (plt_stub),
4564 plt_stub, sizeof (plt_stub));
4566 if ((htab->splt->output_offset
4567 + htab->splt->output_section->vma
4569 != (htab->sgot->output_offset
4570 + htab->sgot->output_section->vma))
4572 (*_bfd_error_handler)
4573 (_(".got section not immediately after .plt section"));
4582 /* Called when writing out an object file to decide the type of a
4585 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4587 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4588 return STT_PARISC_MILLI;
4593 /* Misc BFD support code. */
4594 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4595 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4596 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4597 #define elf_info_to_howto elf_hppa_info_to_howto
4598 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4600 /* Stuff for the BFD linker. */
4601 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4602 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4603 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4604 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4605 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4606 #define elf_backend_check_relocs elf32_hppa_check_relocs
4607 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4608 #define elf_backend_fake_sections elf_hppa_fake_sections
4609 #define elf_backend_relocate_section elf32_hppa_relocate_section
4610 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4611 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4612 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4613 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4614 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4615 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4616 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4617 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4618 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4619 #define elf_backend_object_p elf32_hppa_object_p
4620 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4621 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4622 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4623 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4624 #define elf_backend_action_discarded elf_hppa_action_discarded
4626 #define elf_backend_can_gc_sections 1
4627 #define elf_backend_can_refcount 1
4628 #define elf_backend_plt_alignment 2
4629 #define elf_backend_want_got_plt 0
4630 #define elf_backend_plt_readonly 0
4631 #define elf_backend_want_plt_sym 0
4632 #define elf_backend_got_header_size 8
4633 #define elf_backend_rela_normal 1
4635 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4636 #define TARGET_BIG_NAME "elf32-hppa"
4637 #define ELF_ARCH bfd_arch_hppa
4638 #define ELF_MACHINE_CODE EM_PARISC
4639 #define ELF_MAXPAGESIZE 0x1000
4640 #define ELF_OSABI ELFOSABI_HPUX
4641 #define elf32_bed elf32_hppa_hpux_bed
4643 #include "elf32-target.h"
4645 #undef TARGET_BIG_SYM
4646 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4647 #undef TARGET_BIG_NAME
4648 #define TARGET_BIG_NAME "elf32-hppa-linux"
4650 #define ELF_OSABI ELFOSABI_LINUX
4652 #define elf32_bed elf32_hppa_linux_bed
4654 #include "elf32-target.h"
4656 #undef TARGET_BIG_SYM
4657 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4658 #undef TARGET_BIG_NAME
4659 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4661 #define ELF_OSABI ELFOSABI_NETBSD
4663 #define elf32_bed elf32_hppa_netbsd_bed
4665 #include "elf32-target.h"