1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2016 Free Software Foundation, Inc.
5 Center for Software Science
6 Department of Computer Science
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
35 #include "elf32-hppa.h"
37 #include "elf32-hppa.h"
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
51 /* We use two hash tables to hold information for linking PA ELF objects.
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
61 There are a number of different stubs generated by the linker.
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
113 : ldw -24(%sp),%rp ; restore the original rp
116 : be,n 0(%sr0,%rp) ; inter-space return. */
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
129 bfd_hash_table "btab"
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
135 elf32_hppa_dyn_reloc_entry "hdh"
137 Always remember to use GNU Coding Style. */
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
143 static const bfd_byte plt_stub[] =
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
155 /* Section name for stubs is the associated section name plus this
157 #define STUB_SUFFIX ".stub"
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
171 #define ELIMINATE_COPY_RELOCS 1
173 enum elf32_hppa_stub_type
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
178 hppa_stub_import_shared,
183 struct elf32_hppa_stub_hash_entry
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
188 /* The stub section. */
191 /* Offset within stub_sec of the beginning of this stub. */
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
199 enum elf32_hppa_stub_type stub_type;
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
209 struct elf32_hppa_link_hash_entry
211 struct elf_link_hash_entry eh;
213 /* A pointer to the most recently used stub hash entry against this
215 struct elf32_hppa_stub_hash_entry *hsh_cache;
217 /* Used to count relocations for delayed sizing of relocation
219 struct elf32_hppa_dyn_reloc_entry
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *hdh_next;
224 /* The input section of the reloc. */
227 /* Number of relocs copied in this section. */
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count;
238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel:1;
245 struct elf32_hppa_link_hash_table
247 /* The main hash table. */
248 struct elf_link_hash_table etab;
250 /* The stub hash table. */
251 struct bfd_hash_table bstab;
253 /* Linker stub bfd. */
256 /* Linker call-backs. */
257 asection * (*add_stub_section) (const char *, asection *);
258 void (*layout_sections_again) (void);
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
264 /* This is the section to which stubs in the group will be
267 /* The stub section. */
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count;
273 unsigned int top_index;
274 asection **input_list;
275 Elf_Internal_Sym **all_local_syms;
277 /* Short-cuts to get to dynamic linker sections. */
285 /* Used during a final link to store the base of the text and data
286 segments so that we can perform SEGREL relocations. */
287 bfd_vma text_segment_base;
288 bfd_vma data_segment_base;
290 /* Whether we support multiple sub-spaces for shared libs. */
291 unsigned int multi_subspace:1;
293 /* Flags set when various size branches are detected. Used to
294 select suitable defaults for the stub group size. */
295 unsigned int has_12bit_branch:1;
296 unsigned int has_17bit_branch:1;
297 unsigned int has_22bit_branch:1;
299 /* Set if we need a .plt stub to support lazy dynamic linking. */
300 unsigned int need_plt_stub:1;
302 /* Small local sym cache. */
303 struct sym_cache sym_cache;
305 /* Data for LDM relocations. */
308 bfd_signed_vma refcount;
313 /* Various hash macros and functions. */
314 #define hppa_link_hash_table(p) \
315 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
316 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
318 #define hppa_elf_hash_entry(ent) \
319 ((struct elf32_hppa_link_hash_entry *)(ent))
321 #define hppa_stub_hash_entry(ent) \
322 ((struct elf32_hppa_stub_hash_entry *)(ent))
324 #define hppa_stub_hash_lookup(table, string, create, copy) \
325 ((struct elf32_hppa_stub_hash_entry *) \
326 bfd_hash_lookup ((table), (string), (create), (copy)))
328 #define hppa_elf_local_got_tls_type(abfd) \
329 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
331 #define hh_name(hh) \
332 (hh ? hh->eh.root.root.string : "<undef>")
334 #define eh_name(eh) \
335 (eh ? eh->root.root.string : "<undef>")
337 /* Assorted hash table functions. */
339 /* Initialize an entry in the stub hash table. */
341 static struct bfd_hash_entry *
342 stub_hash_newfunc (struct bfd_hash_entry *entry,
343 struct bfd_hash_table *table,
346 /* Allocate the structure if it has not already been allocated by a
350 entry = bfd_hash_allocate (table,
351 sizeof (struct elf32_hppa_stub_hash_entry));
356 /* Call the allocation method of the superclass. */
357 entry = bfd_hash_newfunc (entry, table, string);
360 struct elf32_hppa_stub_hash_entry *hsh;
362 /* Initialize the local fields. */
363 hsh = hppa_stub_hash_entry (entry);
364 hsh->stub_sec = NULL;
365 hsh->stub_offset = 0;
366 hsh->target_value = 0;
367 hsh->target_section = NULL;
368 hsh->stub_type = hppa_stub_long_branch;
376 /* Initialize an entry in the link hash table. */
378 static struct bfd_hash_entry *
379 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
380 struct bfd_hash_table *table,
383 /* Allocate the structure if it has not already been allocated by a
387 entry = bfd_hash_allocate (table,
388 sizeof (struct elf32_hppa_link_hash_entry));
393 /* Call the allocation method of the superclass. */
394 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
397 struct elf32_hppa_link_hash_entry *hh;
399 /* Initialize the local fields. */
400 hh = hppa_elf_hash_entry (entry);
401 hh->hsh_cache = NULL;
402 hh->dyn_relocs = NULL;
404 hh->tls_type = GOT_UNKNOWN;
410 /* Free the derived linker hash table. */
413 elf32_hppa_link_hash_table_free (bfd *obfd)
415 struct elf32_hppa_link_hash_table *htab
416 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
418 bfd_hash_table_free (&htab->bstab);
419 _bfd_elf_link_hash_table_free (obfd);
422 /* Create the derived linker hash table. The PA ELF port uses the derived
423 hash table to keep information specific to the PA ELF linker (without
424 using static variables). */
426 static struct bfd_link_hash_table *
427 elf32_hppa_link_hash_table_create (bfd *abfd)
429 struct elf32_hppa_link_hash_table *htab;
430 bfd_size_type amt = sizeof (*htab);
432 htab = bfd_zmalloc (amt);
436 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
437 sizeof (struct elf32_hppa_link_hash_entry),
444 /* Init the stub hash table too. */
445 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
446 sizeof (struct elf32_hppa_stub_hash_entry)))
448 _bfd_elf_link_hash_table_free (abfd);
451 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
453 htab->text_segment_base = (bfd_vma) -1;
454 htab->data_segment_base = (bfd_vma) -1;
455 return &htab->etab.root;
458 /* Initialize the linker stubs BFD so that we can use it for linker
459 created dynamic sections. */
462 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
464 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
466 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
467 htab->etab.dynobj = abfd;
470 /* Build a name for an entry in the stub hash table. */
473 hppa_stub_name (const asection *input_section,
474 const asection *sym_sec,
475 const struct elf32_hppa_link_hash_entry *hh,
476 const Elf_Internal_Rela *rela)
483 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
484 stub_name = bfd_malloc (len);
485 if (stub_name != NULL)
486 sprintf (stub_name, "%08x_%s+%x",
487 input_section->id & 0xffffffff,
489 (int) rela->r_addend & 0xffffffff);
493 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
494 stub_name = bfd_malloc (len);
495 if (stub_name != NULL)
496 sprintf (stub_name, "%08x_%x:%x+%x",
497 input_section->id & 0xffffffff,
498 sym_sec->id & 0xffffffff,
499 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
500 (int) rela->r_addend & 0xffffffff);
505 /* Look up an entry in the stub hash. Stub entries are cached because
506 creating the stub name takes a bit of time. */
508 static struct elf32_hppa_stub_hash_entry *
509 hppa_get_stub_entry (const asection *input_section,
510 const asection *sym_sec,
511 struct elf32_hppa_link_hash_entry *hh,
512 const Elf_Internal_Rela *rela,
513 struct elf32_hppa_link_hash_table *htab)
515 struct elf32_hppa_stub_hash_entry *hsh_entry;
516 const asection *id_sec;
518 /* If this input section is part of a group of sections sharing one
519 stub section, then use the id of the first section in the group.
520 Stub names need to include a section id, as there may well be
521 more than one stub used to reach say, printf, and we need to
522 distinguish between them. */
523 id_sec = htab->stub_group[input_section->id].link_sec;
525 if (hh != NULL && hh->hsh_cache != NULL
526 && hh->hsh_cache->hh == hh
527 && hh->hsh_cache->id_sec == id_sec)
529 hsh_entry = hh->hsh_cache;
535 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
536 if (stub_name == NULL)
539 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
540 stub_name, FALSE, FALSE);
542 hh->hsh_cache = hsh_entry;
550 /* Add a new stub entry to the stub hash. Not all fields of the new
551 stub entry are initialised. */
553 static struct elf32_hppa_stub_hash_entry *
554 hppa_add_stub (const char *stub_name,
556 struct elf32_hppa_link_hash_table *htab)
560 struct elf32_hppa_stub_hash_entry *hsh;
562 link_sec = htab->stub_group[section->id].link_sec;
563 stub_sec = htab->stub_group[section->id].stub_sec;
564 if (stub_sec == NULL)
566 stub_sec = htab->stub_group[link_sec->id].stub_sec;
567 if (stub_sec == NULL)
573 namelen = strlen (link_sec->name);
574 len = namelen + sizeof (STUB_SUFFIX);
575 s_name = bfd_alloc (htab->stub_bfd, len);
579 memcpy (s_name, link_sec->name, namelen);
580 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
581 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
582 if (stub_sec == NULL)
584 htab->stub_group[link_sec->id].stub_sec = stub_sec;
586 htab->stub_group[section->id].stub_sec = stub_sec;
589 /* Enter this entry into the linker stub hash table. */
590 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
594 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
600 hsh->stub_sec = stub_sec;
601 hsh->stub_offset = 0;
602 hsh->id_sec = link_sec;
606 /* Determine the type of stub needed, if any, for a call. */
608 static enum elf32_hppa_stub_type
609 hppa_type_of_stub (asection *input_sec,
610 const Elf_Internal_Rela *rela,
611 struct elf32_hppa_link_hash_entry *hh,
613 struct bfd_link_info *info)
616 bfd_vma branch_offset;
617 bfd_vma max_branch_offset;
621 && hh->eh.plt.offset != (bfd_vma) -1
622 && hh->eh.dynindx != -1
624 && (bfd_link_pic (info)
625 || !hh->eh.def_regular
626 || hh->eh.root.type == bfd_link_hash_defweak))
628 /* We need an import stub. Decide between hppa_stub_import
629 and hppa_stub_import_shared later. */
630 return hppa_stub_import;
633 /* Determine where the call point is. */
634 location = (input_sec->output_offset
635 + input_sec->output_section->vma
638 branch_offset = destination - location - 8;
639 r_type = ELF32_R_TYPE (rela->r_info);
641 /* Determine if a long branch stub is needed. parisc branch offsets
642 are relative to the second instruction past the branch, ie. +8
643 bytes on from the branch instruction location. The offset is
644 signed and counts in units of 4 bytes. */
645 if (r_type == (unsigned int) R_PARISC_PCREL17F)
646 max_branch_offset = (1 << (17 - 1)) << 2;
648 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
649 max_branch_offset = (1 << (12 - 1)) << 2;
651 else /* R_PARISC_PCREL22F. */
652 max_branch_offset = (1 << (22 - 1)) << 2;
654 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
655 return hppa_stub_long_branch;
657 return hppa_stub_none;
660 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
661 IN_ARG contains the link info pointer. */
663 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
664 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
666 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
667 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
668 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
670 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
671 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
672 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
673 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
675 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
676 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
678 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
679 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
680 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
681 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
683 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
684 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
685 #define NOP 0x08000240 /* nop */
686 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
687 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
688 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
695 #define LDW_R1_DLT LDW_R1_R19
697 #define LDW_R1_DLT LDW_R1_DP
701 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
703 struct elf32_hppa_stub_hash_entry *hsh;
704 struct bfd_link_info *info;
705 struct elf32_hppa_link_hash_table *htab;
715 /* Massage our args to the form they really have. */
716 hsh = hppa_stub_hash_entry (bh);
717 info = (struct bfd_link_info *)in_arg;
719 htab = hppa_link_hash_table (info);
723 stub_sec = hsh->stub_sec;
725 /* Make a note of the offset within the stubs for this entry. */
726 hsh->stub_offset = stub_sec->size;
727 loc = stub_sec->contents + hsh->stub_offset;
729 stub_bfd = stub_sec->owner;
731 switch (hsh->stub_type)
733 case hppa_stub_long_branch:
734 /* Create the long branch. A long branch is formed with "ldil"
735 loading the upper bits of the target address into a register,
736 then branching with "be" which adds in the lower bits.
737 The "be" has its delay slot nullified. */
738 sym_value = (hsh->target_value
739 + hsh->target_section->output_offset
740 + hsh->target_section->output_section->vma);
742 val = hppa_field_adjust (sym_value, 0, e_lrsel);
743 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
744 bfd_put_32 (stub_bfd, insn, loc);
746 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
747 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
748 bfd_put_32 (stub_bfd, insn, loc + 4);
753 case hppa_stub_long_branch_shared:
754 /* Branches are relative. This is where we are going to. */
755 sym_value = (hsh->target_value
756 + hsh->target_section->output_offset
757 + hsh->target_section->output_section->vma);
759 /* And this is where we are coming from, more or less. */
760 sym_value -= (hsh->stub_offset
761 + stub_sec->output_offset
762 + stub_sec->output_section->vma);
764 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
765 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
766 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
767 bfd_put_32 (stub_bfd, insn, loc + 4);
769 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
770 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
771 bfd_put_32 (stub_bfd, insn, loc + 8);
775 case hppa_stub_import:
776 case hppa_stub_import_shared:
777 off = hsh->hh->eh.plt.offset;
778 if (off >= (bfd_vma) -2)
781 off &= ~ (bfd_vma) 1;
783 + htab->splt->output_offset
784 + htab->splt->output_section->vma
785 - elf_gp (htab->splt->output_section->owner));
789 if (hsh->stub_type == hppa_stub_import_shared)
792 val = hppa_field_adjust (sym_value, 0, e_lrsel),
793 insn = hppa_rebuild_insn ((int) insn, val, 21);
794 bfd_put_32 (stub_bfd, insn, loc);
796 /* It is critical to use lrsel/rrsel here because we are using
797 two different offsets (+0 and +4) from sym_value. If we use
798 lsel/rsel then with unfortunate sym_values we will round
799 sym_value+4 up to the next 2k block leading to a mis-match
800 between the lsel and rsel value. */
801 val = hppa_field_adjust (sym_value, 0, e_rrsel);
802 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
803 bfd_put_32 (stub_bfd, insn, loc + 4);
805 if (htab->multi_subspace)
807 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
808 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
809 bfd_put_32 (stub_bfd, insn, loc + 8);
811 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
812 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
813 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
814 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
820 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
821 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
822 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
823 bfd_put_32 (stub_bfd, insn, loc + 12);
830 case hppa_stub_export:
831 /* Branches are relative. This is where we are going to. */
832 sym_value = (hsh->target_value
833 + hsh->target_section->output_offset
834 + hsh->target_section->output_section->vma);
836 /* And this is where we are coming from. */
837 sym_value -= (hsh->stub_offset
838 + stub_sec->output_offset
839 + stub_sec->output_section->vma);
841 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
842 && (!htab->has_22bit_branch
843 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
845 (*_bfd_error_handler)
846 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
847 hsh->target_section->owner,
849 (long) hsh->stub_offset,
850 hsh->bh_root.string);
851 bfd_set_error (bfd_error_bad_value);
855 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
856 if (!htab->has_22bit_branch)
857 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
859 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
860 bfd_put_32 (stub_bfd, insn, loc);
862 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
863 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
864 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
865 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
866 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
868 /* Point the function symbol at the stub. */
869 hsh->hh->eh.root.u.def.section = stub_sec;
870 hsh->hh->eh.root.u.def.value = stub_sec->size;
880 stub_sec->size += size;
905 /* As above, but don't actually build the stub. Just bump offset so
906 we know stub section sizes. */
909 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
911 struct elf32_hppa_stub_hash_entry *hsh;
912 struct elf32_hppa_link_hash_table *htab;
915 /* Massage our args to the form they really have. */
916 hsh = hppa_stub_hash_entry (bh);
919 if (hsh->stub_type == hppa_stub_long_branch)
921 else if (hsh->stub_type == hppa_stub_long_branch_shared)
923 else if (hsh->stub_type == hppa_stub_export)
925 else /* hppa_stub_import or hppa_stub_import_shared. */
927 if (htab->multi_subspace)
933 hsh->stub_sec->size += size;
937 /* Return nonzero if ABFD represents an HPPA ELF32 file.
938 Additionally we set the default architecture and machine. */
941 elf32_hppa_object_p (bfd *abfd)
943 Elf_Internal_Ehdr * i_ehdrp;
946 i_ehdrp = elf_elfheader (abfd);
947 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
949 /* GCC on hppa-linux produces binaries with OSABI=GNU,
950 but the kernel produces corefiles with OSABI=SysV. */
951 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
952 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
955 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
957 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
958 but the kernel produces corefiles with OSABI=SysV. */
959 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
960 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
965 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
969 flags = i_ehdrp->e_flags;
970 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
973 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
975 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
977 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
978 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
979 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
984 /* Create the .plt and .got sections, and set up our hash table
985 short-cuts to various dynamic sections. */
988 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
990 struct elf32_hppa_link_hash_table *htab;
991 struct elf_link_hash_entry *eh;
993 /* Don't try to create the .plt and .got twice. */
994 htab = hppa_link_hash_table (info);
997 if (htab->splt != NULL)
1000 /* Call the generic code to do most of the work. */
1001 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1004 htab->splt = bfd_get_linker_section (abfd, ".plt");
1005 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
1007 htab->sgot = bfd_get_linker_section (abfd, ".got");
1008 htab->srelgot = bfd_get_linker_section (abfd, ".rela.got");
1010 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
1011 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
1013 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1014 application, because __canonicalize_funcptr_for_compare needs it. */
1015 eh = elf_hash_table (info)->hgot;
1016 eh->forced_local = 0;
1017 eh->other = STV_DEFAULT;
1018 return bfd_elf_link_record_dynamic_symbol (info, eh);
1021 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1024 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1025 struct elf_link_hash_entry *eh_dir,
1026 struct elf_link_hash_entry *eh_ind)
1028 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1030 hh_dir = hppa_elf_hash_entry (eh_dir);
1031 hh_ind = hppa_elf_hash_entry (eh_ind);
1033 if (hh_ind->dyn_relocs != NULL)
1035 if (hh_dir->dyn_relocs != NULL)
1037 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1038 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1040 /* Add reloc counts against the indirect sym to the direct sym
1041 list. Merge any entries against the same section. */
1042 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1044 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1046 for (hdh_q = hh_dir->dyn_relocs;
1048 hdh_q = hdh_q->hdh_next)
1049 if (hdh_q->sec == hdh_p->sec)
1051 #if RELATIVE_DYNRELOCS
1052 hdh_q->relative_count += hdh_p->relative_count;
1054 hdh_q->count += hdh_p->count;
1055 *hdh_pp = hdh_p->hdh_next;
1059 hdh_pp = &hdh_p->hdh_next;
1061 *hdh_pp = hh_dir->dyn_relocs;
1064 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1065 hh_ind->dyn_relocs = NULL;
1068 if (ELIMINATE_COPY_RELOCS
1069 && eh_ind->root.type != bfd_link_hash_indirect
1070 && eh_dir->dynamic_adjusted)
1072 /* If called to transfer flags for a weakdef during processing
1073 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1074 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1075 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1076 eh_dir->ref_regular |= eh_ind->ref_regular;
1077 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1078 eh_dir->needs_plt |= eh_ind->needs_plt;
1082 if (eh_ind->root.type == bfd_link_hash_indirect
1083 && eh_dir->got.refcount <= 0)
1085 hh_dir->tls_type = hh_ind->tls_type;
1086 hh_ind->tls_type = GOT_UNKNOWN;
1089 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1094 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1095 int r_type, int is_local ATTRIBUTE_UNUSED)
1097 /* For now we don't support linker optimizations. */
1101 /* Return a pointer to the local GOT, PLT and TLS reference counts
1102 for ABFD. Returns NULL if the storage allocation fails. */
1104 static bfd_signed_vma *
1105 hppa32_elf_local_refcounts (bfd *abfd)
1107 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1108 bfd_signed_vma *local_refcounts;
1110 local_refcounts = elf_local_got_refcounts (abfd);
1111 if (local_refcounts == NULL)
1115 /* Allocate space for local GOT and PLT reference
1116 counts. Done this way to save polluting elf_obj_tdata
1117 with another target specific pointer. */
1118 size = symtab_hdr->sh_info;
1119 size *= 2 * sizeof (bfd_signed_vma);
1120 /* Add in space to store the local GOT TLS types. */
1121 size += symtab_hdr->sh_info;
1122 local_refcounts = bfd_zalloc (abfd, size);
1123 if (local_refcounts == NULL)
1125 elf_local_got_refcounts (abfd) = local_refcounts;
1126 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1127 symtab_hdr->sh_info);
1129 return local_refcounts;
1133 /* Look through the relocs for a section during the first phase, and
1134 calculate needed space in the global offset table, procedure linkage
1135 table, and dynamic reloc sections. At this point we haven't
1136 necessarily read all the input files. */
1139 elf32_hppa_check_relocs (bfd *abfd,
1140 struct bfd_link_info *info,
1142 const Elf_Internal_Rela *relocs)
1144 Elf_Internal_Shdr *symtab_hdr;
1145 struct elf_link_hash_entry **eh_syms;
1146 const Elf_Internal_Rela *rela;
1147 const Elf_Internal_Rela *rela_end;
1148 struct elf32_hppa_link_hash_table *htab;
1150 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1152 if (bfd_link_relocatable (info))
1155 htab = hppa_link_hash_table (info);
1158 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1159 eh_syms = elf_sym_hashes (abfd);
1162 rela_end = relocs + sec->reloc_count;
1163 for (rela = relocs; rela < rela_end; rela++)
1172 unsigned int r_symndx, r_type;
1173 struct elf32_hppa_link_hash_entry *hh;
1176 r_symndx = ELF32_R_SYM (rela->r_info);
1178 if (r_symndx < symtab_hdr->sh_info)
1182 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1183 while (hh->eh.root.type == bfd_link_hash_indirect
1184 || hh->eh.root.type == bfd_link_hash_warning)
1185 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1187 /* PR15323, ref flags aren't set for references in the same
1189 hh->eh.root.non_ir_ref = 1;
1192 r_type = ELF32_R_TYPE (rela->r_info);
1193 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1197 case R_PARISC_DLTIND14F:
1198 case R_PARISC_DLTIND14R:
1199 case R_PARISC_DLTIND21L:
1200 /* This symbol requires a global offset table entry. */
1201 need_entry = NEED_GOT;
1204 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1205 case R_PARISC_PLABEL21L:
1206 case R_PARISC_PLABEL32:
1207 /* If the addend is non-zero, we break badly. */
1208 if (rela->r_addend != 0)
1211 /* If we are creating a shared library, then we need to
1212 create a PLT entry for all PLABELs, because PLABELs with
1213 local symbols may be passed via a pointer to another
1214 object. Additionally, output a dynamic relocation
1215 pointing to the PLT entry.
1217 For executables, the original 32-bit ABI allowed two
1218 different styles of PLABELs (function pointers): For
1219 global functions, the PLABEL word points into the .plt
1220 two bytes past a (function address, gp) pair, and for
1221 local functions the PLABEL points directly at the
1222 function. The magic +2 for the first type allows us to
1223 differentiate between the two. As you can imagine, this
1224 is a real pain when it comes to generating code to call
1225 functions indirectly or to compare function pointers.
1226 We avoid the mess by always pointing a PLABEL into the
1227 .plt, even for local functions. */
1228 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1231 case R_PARISC_PCREL12F:
1232 htab->has_12bit_branch = 1;
1235 case R_PARISC_PCREL17C:
1236 case R_PARISC_PCREL17F:
1237 htab->has_17bit_branch = 1;
1240 case R_PARISC_PCREL22F:
1241 htab->has_22bit_branch = 1;
1243 /* Function calls might need to go through the .plt, and
1244 might require long branch stubs. */
1247 /* We know local syms won't need a .plt entry, and if
1248 they need a long branch stub we can't guarantee that
1249 we can reach the stub. So just flag an error later
1250 if we're doing a shared link and find we need a long
1256 /* Global symbols will need a .plt entry if they remain
1257 global, and in most cases won't need a long branch
1258 stub. Unfortunately, we have to cater for the case
1259 where a symbol is forced local by versioning, or due
1260 to symbolic linking, and we lose the .plt entry. */
1261 need_entry = NEED_PLT;
1262 if (hh->eh.type == STT_PARISC_MILLI)
1267 case R_PARISC_SEGBASE: /* Used to set segment base. */
1268 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1269 case R_PARISC_PCREL14F: /* PC relative load/store. */
1270 case R_PARISC_PCREL14R:
1271 case R_PARISC_PCREL17R: /* External branches. */
1272 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1273 case R_PARISC_PCREL32:
1274 /* We don't need to propagate the relocation if linking a
1275 shared object since these are section relative. */
1278 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1279 case R_PARISC_DPREL14R:
1280 case R_PARISC_DPREL21L:
1281 if (bfd_link_pic (info))
1283 (*_bfd_error_handler)
1284 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1286 elf_hppa_howto_table[r_type].name);
1287 bfd_set_error (bfd_error_bad_value);
1292 case R_PARISC_DIR17F: /* Used for external branches. */
1293 case R_PARISC_DIR17R:
1294 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1295 case R_PARISC_DIR14R:
1296 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1297 case R_PARISC_DIR32: /* .word relocs. */
1298 /* We may want to output a dynamic relocation later. */
1299 need_entry = NEED_DYNREL;
1302 /* This relocation describes the C++ object vtable hierarchy.
1303 Reconstruct it for later use during GC. */
1304 case R_PARISC_GNU_VTINHERIT:
1305 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1309 /* This relocation describes which C++ vtable entries are actually
1310 used. Record for later use during GC. */
1311 case R_PARISC_GNU_VTENTRY:
1312 BFD_ASSERT (hh != NULL);
1314 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1318 case R_PARISC_TLS_GD21L:
1319 case R_PARISC_TLS_GD14R:
1320 case R_PARISC_TLS_LDM21L:
1321 case R_PARISC_TLS_LDM14R:
1322 need_entry = NEED_GOT;
1325 case R_PARISC_TLS_IE21L:
1326 case R_PARISC_TLS_IE14R:
1327 if (bfd_link_pic (info))
1328 info->flags |= DF_STATIC_TLS;
1329 need_entry = NEED_GOT;
1336 /* Now carry out our orders. */
1337 if (need_entry & NEED_GOT)
1342 tls_type = GOT_NORMAL;
1344 case R_PARISC_TLS_GD21L:
1345 case R_PARISC_TLS_GD14R:
1346 tls_type |= GOT_TLS_GD;
1348 case R_PARISC_TLS_LDM21L:
1349 case R_PARISC_TLS_LDM14R:
1350 tls_type |= GOT_TLS_LDM;
1352 case R_PARISC_TLS_IE21L:
1353 case R_PARISC_TLS_IE14R:
1354 tls_type |= GOT_TLS_IE;
1358 /* Allocate space for a GOT entry, as well as a dynamic
1359 relocation for this entry. */
1360 if (htab->sgot == NULL)
1362 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1366 if (r_type == R_PARISC_TLS_LDM21L
1367 || r_type == R_PARISC_TLS_LDM14R)
1368 htab->tls_ldm_got.refcount += 1;
1373 hh->eh.got.refcount += 1;
1374 old_tls_type = hh->tls_type;
1378 bfd_signed_vma *local_got_refcounts;
1380 /* This is a global offset table entry for a local symbol. */
1381 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1382 if (local_got_refcounts == NULL)
1384 local_got_refcounts[r_symndx] += 1;
1386 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1389 tls_type |= old_tls_type;
1391 if (old_tls_type != tls_type)
1394 hh->tls_type = tls_type;
1396 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1402 if (need_entry & NEED_PLT)
1404 /* If we are creating a shared library, and this is a reloc
1405 against a weak symbol or a global symbol in a dynamic
1406 object, then we will be creating an import stub and a
1407 .plt entry for the symbol. Similarly, on a normal link
1408 to symbols defined in a dynamic object we'll need the
1409 import stub and a .plt entry. We don't know yet whether
1410 the symbol is defined or not, so make an entry anyway and
1411 clean up later in adjust_dynamic_symbol. */
1412 if ((sec->flags & SEC_ALLOC) != 0)
1416 hh->eh.needs_plt = 1;
1417 hh->eh.plt.refcount += 1;
1419 /* If this .plt entry is for a plabel, mark it so
1420 that adjust_dynamic_symbol will keep the entry
1421 even if it appears to be local. */
1422 if (need_entry & PLT_PLABEL)
1425 else if (need_entry & PLT_PLABEL)
1427 bfd_signed_vma *local_got_refcounts;
1428 bfd_signed_vma *local_plt_refcounts;
1430 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1431 if (local_got_refcounts == NULL)
1433 local_plt_refcounts = (local_got_refcounts
1434 + symtab_hdr->sh_info);
1435 local_plt_refcounts[r_symndx] += 1;
1440 if (need_entry & NEED_DYNREL)
1442 /* Flag this symbol as having a non-got, non-plt reference
1443 so that we generate copy relocs if it turns out to be
1445 if (hh != NULL && !bfd_link_pic (info))
1446 hh->eh.non_got_ref = 1;
1448 /* If we are creating a shared library then we need to copy
1449 the reloc into the shared library. However, if we are
1450 linking with -Bsymbolic, we need only copy absolute
1451 relocs or relocs against symbols that are not defined in
1452 an object we are including in the link. PC- or DP- or
1453 DLT-relative relocs against any local sym or global sym
1454 with DEF_REGULAR set, can be discarded. At this point we
1455 have not seen all the input files, so it is possible that
1456 DEF_REGULAR is not set now but will be set later (it is
1457 never cleared). We account for that possibility below by
1458 storing information in the dyn_relocs field of the
1461 A similar situation to the -Bsymbolic case occurs when
1462 creating shared libraries and symbol visibility changes
1463 render the symbol local.
1465 As it turns out, all the relocs we will be creating here
1466 are absolute, so we cannot remove them on -Bsymbolic
1467 links or visibility changes anyway. A STUB_REL reloc
1468 is absolute too, as in that case it is the reloc in the
1469 stub we will be creating, rather than copying the PCREL
1470 reloc in the branch.
1472 If on the other hand, we are creating an executable, we
1473 may need to keep relocations for symbols satisfied by a
1474 dynamic library if we manage to avoid copy relocs for the
1476 if ((bfd_link_pic (info)
1477 && (sec->flags & SEC_ALLOC) != 0
1478 && (IS_ABSOLUTE_RELOC (r_type)
1480 && (!SYMBOLIC_BIND (info, &hh->eh)
1481 || hh->eh.root.type == bfd_link_hash_defweak
1482 || !hh->eh.def_regular))))
1483 || (ELIMINATE_COPY_RELOCS
1484 && !bfd_link_pic (info)
1485 && (sec->flags & SEC_ALLOC) != 0
1487 && (hh->eh.root.type == bfd_link_hash_defweak
1488 || !hh->eh.def_regular)))
1490 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1491 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1493 /* Create a reloc section in dynobj and make room for
1497 sreloc = _bfd_elf_make_dynamic_reloc_section
1498 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1502 bfd_set_error (bfd_error_bad_value);
1507 /* If this is a global symbol, we count the number of
1508 relocations we need for this symbol. */
1511 hdh_head = &hh->dyn_relocs;
1515 /* Track dynamic relocs needed for local syms too.
1516 We really need local syms available to do this
1520 Elf_Internal_Sym *isym;
1522 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1527 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1531 vpp = &elf_section_data (sr)->local_dynrel;
1532 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1536 if (hdh_p == NULL || hdh_p->sec != sec)
1538 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1541 hdh_p->hdh_next = *hdh_head;
1545 #if RELATIVE_DYNRELOCS
1546 hdh_p->relative_count = 0;
1551 #if RELATIVE_DYNRELOCS
1552 if (!IS_ABSOLUTE_RELOC (rtype))
1553 hdh_p->relative_count += 1;
1562 /* Return the section that should be marked against garbage collection
1563 for a given relocation. */
1566 elf32_hppa_gc_mark_hook (asection *sec,
1567 struct bfd_link_info *info,
1568 Elf_Internal_Rela *rela,
1569 struct elf_link_hash_entry *hh,
1570 Elf_Internal_Sym *sym)
1573 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1575 case R_PARISC_GNU_VTINHERIT:
1576 case R_PARISC_GNU_VTENTRY:
1580 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1583 /* Update the got and plt entry reference counts for the section being
1587 elf32_hppa_gc_sweep_hook (bfd *abfd,
1588 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1590 const Elf_Internal_Rela *relocs)
1592 Elf_Internal_Shdr *symtab_hdr;
1593 struct elf_link_hash_entry **eh_syms;
1594 bfd_signed_vma *local_got_refcounts;
1595 bfd_signed_vma *local_plt_refcounts;
1596 const Elf_Internal_Rela *rela, *relend;
1597 struct elf32_hppa_link_hash_table *htab;
1599 if (bfd_link_relocatable (info))
1602 htab = hppa_link_hash_table (info);
1606 elf_section_data (sec)->local_dynrel = NULL;
1608 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1609 eh_syms = elf_sym_hashes (abfd);
1610 local_got_refcounts = elf_local_got_refcounts (abfd);
1611 local_plt_refcounts = local_got_refcounts;
1612 if (local_plt_refcounts != NULL)
1613 local_plt_refcounts += symtab_hdr->sh_info;
1615 relend = relocs + sec->reloc_count;
1616 for (rela = relocs; rela < relend; rela++)
1618 unsigned long r_symndx;
1619 unsigned int r_type;
1620 struct elf_link_hash_entry *eh = NULL;
1622 r_symndx = ELF32_R_SYM (rela->r_info);
1623 if (r_symndx >= symtab_hdr->sh_info)
1625 struct elf32_hppa_link_hash_entry *hh;
1626 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1627 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1629 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1630 while (eh->root.type == bfd_link_hash_indirect
1631 || eh->root.type == bfd_link_hash_warning)
1632 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1633 hh = hppa_elf_hash_entry (eh);
1635 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1636 if (hdh_p->sec == sec)
1638 /* Everything must go for SEC. */
1639 *hdh_pp = hdh_p->hdh_next;
1644 r_type = ELF32_R_TYPE (rela->r_info);
1645 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1649 case R_PARISC_DLTIND14F:
1650 case R_PARISC_DLTIND14R:
1651 case R_PARISC_DLTIND21L:
1652 case R_PARISC_TLS_GD21L:
1653 case R_PARISC_TLS_GD14R:
1654 case R_PARISC_TLS_IE21L:
1655 case R_PARISC_TLS_IE14R:
1658 if (eh->got.refcount > 0)
1659 eh->got.refcount -= 1;
1661 else if (local_got_refcounts != NULL)
1663 if (local_got_refcounts[r_symndx] > 0)
1664 local_got_refcounts[r_symndx] -= 1;
1668 case R_PARISC_TLS_LDM21L:
1669 case R_PARISC_TLS_LDM14R:
1670 htab->tls_ldm_got.refcount -= 1;
1673 case R_PARISC_PCREL12F:
1674 case R_PARISC_PCREL17C:
1675 case R_PARISC_PCREL17F:
1676 case R_PARISC_PCREL22F:
1679 if (eh->plt.refcount > 0)
1680 eh->plt.refcount -= 1;
1684 case R_PARISC_PLABEL14R:
1685 case R_PARISC_PLABEL21L:
1686 case R_PARISC_PLABEL32:
1689 if (eh->plt.refcount > 0)
1690 eh->plt.refcount -= 1;
1692 else if (local_plt_refcounts != NULL)
1694 if (local_plt_refcounts[r_symndx] > 0)
1695 local_plt_refcounts[r_symndx] -= 1;
1707 /* Support for core dump NOTE sections. */
1710 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1715 switch (note->descsz)
1720 case 396: /* Linux/hppa */
1722 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1725 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1734 /* Make a ".reg/999" section. */
1735 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1736 size, note->descpos + offset);
1740 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1742 switch (note->descsz)
1747 case 124: /* Linux/hppa elf_prpsinfo. */
1748 elf_tdata (abfd)->core->program
1749 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1750 elf_tdata (abfd)->core->command
1751 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1754 /* Note that for some reason, a spurious space is tacked
1755 onto the end of the args in some (at least one anyway)
1756 implementations, so strip it off if it exists. */
1758 char *command = elf_tdata (abfd)->core->command;
1759 int n = strlen (command);
1761 if (0 < n && command[n - 1] == ' ')
1762 command[n - 1] = '\0';
1768 /* Our own version of hide_symbol, so that we can keep plt entries for
1772 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1773 struct elf_link_hash_entry *eh,
1774 bfd_boolean force_local)
1778 eh->forced_local = 1;
1779 if (eh->dynindx != -1)
1782 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1786 /* PR 16082: Remove version information from hidden symbol. */
1787 eh->verinfo.verdef = NULL;
1788 eh->verinfo.vertree = NULL;
1791 /* STT_GNU_IFUNC symbol must go through PLT. */
1792 if (! hppa_elf_hash_entry (eh)->plabel
1793 && eh->type != STT_GNU_IFUNC)
1796 eh->plt = elf_hash_table (info)->init_plt_offset;
1800 /* Adjust a symbol defined by a dynamic object and referenced by a
1801 regular object. The current definition is in some section of the
1802 dynamic object, but we're not including those sections. We have to
1803 change the definition to something the rest of the link can
1807 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1808 struct elf_link_hash_entry *eh)
1810 struct elf32_hppa_link_hash_table *htab;
1813 /* If this is a function, put it in the procedure linkage table. We
1814 will fill in the contents of the procedure linkage table later. */
1815 if (eh->type == STT_FUNC
1818 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1819 The refcounts are not reliable when it has been hidden since
1820 hide_symbol can be called before the plabel flag is set. */
1821 if (hppa_elf_hash_entry (eh)->plabel
1822 && eh->plt.refcount <= 0)
1823 eh->plt.refcount = 1;
1825 if (eh->plt.refcount <= 0
1827 && eh->root.type != bfd_link_hash_defweak
1828 && ! hppa_elf_hash_entry (eh)->plabel
1829 && (!bfd_link_pic (info) || SYMBOLIC_BIND (info, eh))))
1831 /* The .plt entry is not needed when:
1832 a) Garbage collection has removed all references to the
1834 b) We know for certain the symbol is defined in this
1835 object, and it's not a weak definition, nor is the symbol
1836 used by a plabel relocation. Either this object is the
1837 application or we are doing a shared symbolic link. */
1839 eh->plt.offset = (bfd_vma) -1;
1846 eh->plt.offset = (bfd_vma) -1;
1848 /* If this is a weak symbol, and there is a real definition, the
1849 processor independent code will have arranged for us to see the
1850 real definition first, and we can just use the same value. */
1851 if (eh->u.weakdef != NULL)
1853 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1854 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1856 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1857 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1858 if (ELIMINATE_COPY_RELOCS)
1859 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1863 /* This is a reference to a symbol defined by a dynamic object which
1864 is not a function. */
1866 /* If we are creating a shared library, we must presume that the
1867 only references to the symbol are via the global offset table.
1868 For such cases we need not do anything here; the relocations will
1869 be handled correctly by relocate_section. */
1870 if (bfd_link_pic (info))
1873 /* If there are no references to this symbol that do not use the
1874 GOT, we don't need to generate a copy reloc. */
1875 if (!eh->non_got_ref)
1878 if (ELIMINATE_COPY_RELOCS)
1880 struct elf32_hppa_link_hash_entry *hh;
1881 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1883 hh = hppa_elf_hash_entry (eh);
1884 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1886 sec = hdh_p->sec->output_section;
1887 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1891 /* If we didn't find any dynamic relocs in read-only sections, then
1892 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1895 eh->non_got_ref = 0;
1900 /* We must allocate the symbol in our .dynbss section, which will
1901 become part of the .bss section of the executable. There will be
1902 an entry for this symbol in the .dynsym section. The dynamic
1903 object will contain position independent code, so all references
1904 from the dynamic object to this symbol will go through the global
1905 offset table. The dynamic linker will use the .dynsym entry to
1906 determine the address it must put in the global offset table, so
1907 both the dynamic object and the regular object will refer to the
1908 same memory location for the variable. */
1910 htab = hppa_link_hash_table (info);
1914 /* We must generate a COPY reloc to tell the dynamic linker to
1915 copy the initial value out of the dynamic object and into the
1916 runtime process image. */
1917 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1919 htab->srelbss->size += sizeof (Elf32_External_Rela);
1923 sec = htab->sdynbss;
1925 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1928 /* Allocate space in the .plt for entries that won't have relocations.
1929 ie. plabel entries. */
1932 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1934 struct bfd_link_info *info;
1935 struct elf32_hppa_link_hash_table *htab;
1936 struct elf32_hppa_link_hash_entry *hh;
1939 if (eh->root.type == bfd_link_hash_indirect)
1942 info = (struct bfd_link_info *) inf;
1943 hh = hppa_elf_hash_entry (eh);
1944 htab = hppa_link_hash_table (info);
1948 if (htab->etab.dynamic_sections_created
1949 && eh->plt.refcount > 0)
1951 /* Make sure this symbol is output as a dynamic symbol.
1952 Undefined weak syms won't yet be marked as dynamic. */
1953 if (eh->dynindx == -1
1954 && !eh->forced_local
1955 && eh->type != STT_PARISC_MILLI)
1957 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1961 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1963 /* Allocate these later. From this point on, h->plabel
1964 means that the plt entry is only used by a plabel.
1965 We'll be using a normal plt entry for this symbol, so
1966 clear the plabel indicator. */
1970 else if (hh->plabel)
1972 /* Make an entry in the .plt section for plabel references
1973 that won't have a .plt entry for other reasons. */
1975 eh->plt.offset = sec->size;
1976 sec->size += PLT_ENTRY_SIZE;
1980 /* No .plt entry needed. */
1981 eh->plt.offset = (bfd_vma) -1;
1987 eh->plt.offset = (bfd_vma) -1;
1994 /* Allocate space in .plt, .got and associated reloc sections for
1998 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2000 struct bfd_link_info *info;
2001 struct elf32_hppa_link_hash_table *htab;
2003 struct elf32_hppa_link_hash_entry *hh;
2004 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2006 if (eh->root.type == bfd_link_hash_indirect)
2010 htab = hppa_link_hash_table (info);
2014 hh = hppa_elf_hash_entry (eh);
2016 if (htab->etab.dynamic_sections_created
2017 && eh->plt.offset != (bfd_vma) -1
2019 && eh->plt.refcount > 0)
2021 /* Make an entry in the .plt section. */
2023 eh->plt.offset = sec->size;
2024 sec->size += PLT_ENTRY_SIZE;
2026 /* We also need to make an entry in the .rela.plt section. */
2027 htab->srelplt->size += sizeof (Elf32_External_Rela);
2028 htab->need_plt_stub = 1;
2031 if (eh->got.refcount > 0)
2033 /* Make sure this symbol is output as a dynamic symbol.
2034 Undefined weak syms won't yet be marked as dynamic. */
2035 if (eh->dynindx == -1
2036 && !eh->forced_local
2037 && eh->type != STT_PARISC_MILLI)
2039 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2044 eh->got.offset = sec->size;
2045 sec->size += GOT_ENTRY_SIZE;
2046 /* R_PARISC_TLS_GD* needs two GOT entries */
2047 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2048 sec->size += GOT_ENTRY_SIZE * 2;
2049 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2050 sec->size += GOT_ENTRY_SIZE;
2051 if (htab->etab.dynamic_sections_created
2052 && (bfd_link_pic (info)
2053 || (eh->dynindx != -1
2054 && !eh->forced_local)))
2056 htab->srelgot->size += sizeof (Elf32_External_Rela);
2057 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2058 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2059 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2060 htab->srelgot->size += sizeof (Elf32_External_Rela);
2064 eh->got.offset = (bfd_vma) -1;
2066 if (hh->dyn_relocs == NULL)
2069 /* If this is a -Bsymbolic shared link, then we need to discard all
2070 space allocated for dynamic pc-relative relocs against symbols
2071 defined in a regular object. For the normal shared case, discard
2072 space for relocs that have become local due to symbol visibility
2074 if (bfd_link_pic (info))
2076 #if RELATIVE_DYNRELOCS
2077 if (SYMBOL_CALLS_LOCAL (info, eh))
2079 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2081 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2083 hdh_p->count -= hdh_p->relative_count;
2084 hdh_p->relative_count = 0;
2085 if (hdh_p->count == 0)
2086 *hdh_pp = hdh_p->hdh_next;
2088 hdh_pp = &hdh_p->hdh_next;
2093 /* Also discard relocs on undefined weak syms with non-default
2095 if (hh->dyn_relocs != NULL
2096 && eh->root.type == bfd_link_hash_undefweak)
2098 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2099 hh->dyn_relocs = NULL;
2101 /* Make sure undefined weak symbols are output as a dynamic
2103 else if (eh->dynindx == -1
2104 && !eh->forced_local)
2106 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2113 /* For the non-shared case, discard space for relocs against
2114 symbols which turn out to need copy relocs or are not
2117 if (!eh->non_got_ref
2118 && ((ELIMINATE_COPY_RELOCS
2120 && !eh->def_regular)
2121 || (htab->etab.dynamic_sections_created
2122 && (eh->root.type == bfd_link_hash_undefweak
2123 || eh->root.type == bfd_link_hash_undefined))))
2125 /* Make sure this symbol is output as a dynamic symbol.
2126 Undefined weak syms won't yet be marked as dynamic. */
2127 if (eh->dynindx == -1
2128 && !eh->forced_local
2129 && eh->type != STT_PARISC_MILLI)
2131 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2135 /* If that succeeded, we know we'll be keeping all the
2137 if (eh->dynindx != -1)
2141 hh->dyn_relocs = NULL;
2147 /* Finally, allocate space. */
2148 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2150 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2151 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2157 /* This function is called via elf_link_hash_traverse to force
2158 millicode symbols local so they do not end up as globals in the
2159 dynamic symbol table. We ought to be able to do this in
2160 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2161 for all dynamic symbols. Arguably, this is a bug in
2162 elf_adjust_dynamic_symbol. */
2165 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2166 struct bfd_link_info *info)
2168 if (eh->type == STT_PARISC_MILLI
2169 && !eh->forced_local)
2171 elf32_hppa_hide_symbol (info, eh, TRUE);
2176 /* Find any dynamic relocs that apply to read-only sections. */
2179 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2181 struct elf32_hppa_link_hash_entry *hh;
2182 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2184 hh = hppa_elf_hash_entry (eh);
2185 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2187 asection *sec = hdh_p->sec->output_section;
2189 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2191 struct bfd_link_info *info = inf;
2193 info->flags |= DF_TEXTREL;
2195 /* Not an error, just cut short the traversal. */
2202 /* Set the sizes of the dynamic sections. */
2205 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2206 struct bfd_link_info *info)
2208 struct elf32_hppa_link_hash_table *htab;
2214 htab = hppa_link_hash_table (info);
2218 dynobj = htab->etab.dynobj;
2222 if (htab->etab.dynamic_sections_created)
2224 /* Set the contents of the .interp section to the interpreter. */
2225 if (bfd_link_executable (info) && !info->nointerp)
2227 sec = bfd_get_linker_section (dynobj, ".interp");
2230 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2231 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2234 /* Force millicode symbols local. */
2235 elf_link_hash_traverse (&htab->etab,
2236 clobber_millicode_symbols,
2240 /* Set up .got and .plt offsets for local syms, and space for local
2242 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2244 bfd_signed_vma *local_got;
2245 bfd_signed_vma *end_local_got;
2246 bfd_signed_vma *local_plt;
2247 bfd_signed_vma *end_local_plt;
2248 bfd_size_type locsymcount;
2249 Elf_Internal_Shdr *symtab_hdr;
2251 char *local_tls_type;
2253 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2256 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2258 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2260 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2261 elf_section_data (sec)->local_dynrel);
2263 hdh_p = hdh_p->hdh_next)
2265 if (!bfd_is_abs_section (hdh_p->sec)
2266 && bfd_is_abs_section (hdh_p->sec->output_section))
2268 /* Input section has been discarded, either because
2269 it is a copy of a linkonce section or due to
2270 linker script /DISCARD/, so we'll be discarding
2273 else if (hdh_p->count != 0)
2275 srel = elf_section_data (hdh_p->sec)->sreloc;
2276 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2277 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2278 info->flags |= DF_TEXTREL;
2283 local_got = elf_local_got_refcounts (ibfd);
2287 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2288 locsymcount = symtab_hdr->sh_info;
2289 end_local_got = local_got + locsymcount;
2290 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2292 srel = htab->srelgot;
2293 for (; local_got < end_local_got; ++local_got)
2297 *local_got = sec->size;
2298 sec->size += GOT_ENTRY_SIZE;
2299 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2300 sec->size += 2 * GOT_ENTRY_SIZE;
2301 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2302 sec->size += GOT_ENTRY_SIZE;
2303 if (bfd_link_pic (info))
2305 srel->size += sizeof (Elf32_External_Rela);
2306 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2307 srel->size += 2 * sizeof (Elf32_External_Rela);
2308 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2309 srel->size += sizeof (Elf32_External_Rela);
2313 *local_got = (bfd_vma) -1;
2318 local_plt = end_local_got;
2319 end_local_plt = local_plt + locsymcount;
2320 if (! htab->etab.dynamic_sections_created)
2322 /* Won't be used, but be safe. */
2323 for (; local_plt < end_local_plt; ++local_plt)
2324 *local_plt = (bfd_vma) -1;
2329 srel = htab->srelplt;
2330 for (; local_plt < end_local_plt; ++local_plt)
2334 *local_plt = sec->size;
2335 sec->size += PLT_ENTRY_SIZE;
2336 if (bfd_link_pic (info))
2337 srel->size += sizeof (Elf32_External_Rela);
2340 *local_plt = (bfd_vma) -1;
2345 if (htab->tls_ldm_got.refcount > 0)
2347 /* Allocate 2 got entries and 1 dynamic reloc for
2348 R_PARISC_TLS_DTPMOD32 relocs. */
2349 htab->tls_ldm_got.offset = htab->sgot->size;
2350 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2351 htab->srelgot->size += sizeof (Elf32_External_Rela);
2354 htab->tls_ldm_got.offset = -1;
2356 /* Do all the .plt entries without relocs first. The dynamic linker
2357 uses the last .plt reloc to find the end of the .plt (and hence
2358 the start of the .got) for lazy linking. */
2359 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2361 /* Allocate global sym .plt and .got entries, and space for global
2362 sym dynamic relocs. */
2363 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2365 /* The check_relocs and adjust_dynamic_symbol entry points have
2366 determined the sizes of the various dynamic sections. Allocate
2369 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2371 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2374 if (sec == htab->splt)
2376 if (htab->need_plt_stub)
2378 /* Make space for the plt stub at the end of the .plt
2379 section. We want this stub right at the end, up
2380 against the .got section. */
2381 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2382 int pltalign = bfd_section_alignment (dynobj, sec);
2385 if (gotalign > pltalign)
2386 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2387 mask = ((bfd_size_type) 1 << gotalign) - 1;
2388 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2391 else if (sec == htab->sgot
2392 || sec == htab->sdynbss)
2394 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2398 /* Remember whether there are any reloc sections other
2400 if (sec != htab->srelplt)
2403 /* We use the reloc_count field as a counter if we need
2404 to copy relocs into the output file. */
2405 sec->reloc_count = 0;
2410 /* It's not one of our sections, so don't allocate space. */
2416 /* If we don't need this section, strip it from the
2417 output file. This is mostly to handle .rela.bss and
2418 .rela.plt. We must create both sections in
2419 create_dynamic_sections, because they must be created
2420 before the linker maps input sections to output
2421 sections. The linker does that before
2422 adjust_dynamic_symbol is called, and it is that
2423 function which decides whether anything needs to go
2424 into these sections. */
2425 sec->flags |= SEC_EXCLUDE;
2429 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2432 /* Allocate memory for the section contents. Zero it, because
2433 we may not fill in all the reloc sections. */
2434 sec->contents = bfd_zalloc (dynobj, sec->size);
2435 if (sec->contents == NULL)
2439 if (htab->etab.dynamic_sections_created)
2441 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2442 actually has nothing to do with the PLT, it is how we
2443 communicate the LTP value of a load module to the dynamic
2445 #define add_dynamic_entry(TAG, VAL) \
2446 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2448 if (!add_dynamic_entry (DT_PLTGOT, 0))
2451 /* Add some entries to the .dynamic section. We fill in the
2452 values later, in elf32_hppa_finish_dynamic_sections, but we
2453 must add the entries now so that we get the correct size for
2454 the .dynamic section. The DT_DEBUG entry is filled in by the
2455 dynamic linker and used by the debugger. */
2456 if (bfd_link_executable (info))
2458 if (!add_dynamic_entry (DT_DEBUG, 0))
2462 if (htab->srelplt->size != 0)
2464 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2465 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2466 || !add_dynamic_entry (DT_JMPREL, 0))
2472 if (!add_dynamic_entry (DT_RELA, 0)
2473 || !add_dynamic_entry (DT_RELASZ, 0)
2474 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2477 /* If any dynamic relocs apply to a read-only section,
2478 then we need a DT_TEXTREL entry. */
2479 if ((info->flags & DF_TEXTREL) == 0)
2480 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2482 if ((info->flags & DF_TEXTREL) != 0)
2484 if (!add_dynamic_entry (DT_TEXTREL, 0))
2489 #undef add_dynamic_entry
2494 /* External entry points for sizing and building linker stubs. */
2496 /* Set up various things so that we can make a list of input sections
2497 for each output section included in the link. Returns -1 on error,
2498 0 when no stubs will be needed, and 1 on success. */
2501 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2504 unsigned int bfd_count;
2505 unsigned int top_id, top_index;
2507 asection **input_list, **list;
2509 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2514 /* Count the number of input BFDs and find the top input section id. */
2515 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2517 input_bfd = input_bfd->link.next)
2520 for (section = input_bfd->sections;
2522 section = section->next)
2524 if (top_id < section->id)
2525 top_id = section->id;
2528 htab->bfd_count = bfd_count;
2530 amt = sizeof (struct map_stub) * (top_id + 1);
2531 htab->stub_group = bfd_zmalloc (amt);
2532 if (htab->stub_group == NULL)
2535 /* We can't use output_bfd->section_count here to find the top output
2536 section index as some sections may have been removed, and
2537 strip_excluded_output_sections doesn't renumber the indices. */
2538 for (section = output_bfd->sections, top_index = 0;
2540 section = section->next)
2542 if (top_index < section->index)
2543 top_index = section->index;
2546 htab->top_index = top_index;
2547 amt = sizeof (asection *) * (top_index + 1);
2548 input_list = bfd_malloc (amt);
2549 htab->input_list = input_list;
2550 if (input_list == NULL)
2553 /* For sections we aren't interested in, mark their entries with a
2554 value we can check later. */
2555 list = input_list + top_index;
2557 *list = bfd_abs_section_ptr;
2558 while (list-- != input_list);
2560 for (section = output_bfd->sections;
2562 section = section->next)
2564 if ((section->flags & SEC_CODE) != 0)
2565 input_list[section->index] = NULL;
2571 /* The linker repeatedly calls this function for each input section,
2572 in the order that input sections are linked into output sections.
2573 Build lists of input sections to determine groupings between which
2574 we may insert linker stubs. */
2577 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2579 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2584 if (isec->output_section->index <= htab->top_index)
2586 asection **list = htab->input_list + isec->output_section->index;
2587 if (*list != bfd_abs_section_ptr)
2589 /* Steal the link_sec pointer for our list. */
2590 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2591 /* This happens to make the list in reverse order,
2592 which is what we want. */
2593 PREV_SEC (isec) = *list;
2599 /* See whether we can group stub sections together. Grouping stub
2600 sections may result in fewer stubs. More importantly, we need to
2601 put all .init* and .fini* stubs at the beginning of the .init or
2602 .fini output sections respectively, because glibc splits the
2603 _init and _fini functions into multiple parts. Putting a stub in
2604 the middle of a function is not a good idea. */
2607 group_sections (struct elf32_hppa_link_hash_table *htab,
2608 bfd_size_type stub_group_size,
2609 bfd_boolean stubs_always_before_branch)
2611 asection **list = htab->input_list + htab->top_index;
2614 asection *tail = *list;
2615 if (tail == bfd_abs_section_ptr)
2617 while (tail != NULL)
2621 bfd_size_type total;
2622 bfd_boolean big_sec;
2626 big_sec = total >= stub_group_size;
2628 while ((prev = PREV_SEC (curr)) != NULL
2629 && ((total += curr->output_offset - prev->output_offset)
2633 /* OK, the size from the start of CURR to the end is less
2634 than 240000 bytes and thus can be handled by one stub
2635 section. (or the tail section is itself larger than
2636 240000 bytes, in which case we may be toast.)
2637 We should really be keeping track of the total size of
2638 stubs added here, as stubs contribute to the final output
2639 section size. That's a little tricky, and this way will
2640 only break if stubs added total more than 22144 bytes, or
2641 2768 long branch stubs. It seems unlikely for more than
2642 2768 different functions to be called, especially from
2643 code only 240000 bytes long. This limit used to be
2644 250000, but c++ code tends to generate lots of little
2645 functions, and sometimes violated the assumption. */
2648 prev = PREV_SEC (tail);
2649 /* Set up this stub group. */
2650 htab->stub_group[tail->id].link_sec = curr;
2652 while (tail != curr && (tail = prev) != NULL);
2654 /* But wait, there's more! Input sections up to 240000
2655 bytes before the stub section can be handled by it too.
2656 Don't do this if we have a really large section after the
2657 stubs, as adding more stubs increases the chance that
2658 branches may not reach into the stub section. */
2659 if (!stubs_always_before_branch && !big_sec)
2663 && ((total += tail->output_offset - prev->output_offset)
2667 prev = PREV_SEC (tail);
2668 htab->stub_group[tail->id].link_sec = curr;
2674 while (list-- != htab->input_list);
2675 free (htab->input_list);
2679 /* Read in all local syms for all input bfds, and create hash entries
2680 for export stubs if we are building a multi-subspace shared lib.
2681 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2684 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2686 unsigned int bfd_indx;
2687 Elf_Internal_Sym *local_syms, **all_local_syms;
2688 int stub_changed = 0;
2689 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2694 /* We want to read in symbol extension records only once. To do this
2695 we need to read in the local symbols in parallel and save them for
2696 later use; so hold pointers to the local symbols in an array. */
2697 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2698 all_local_syms = bfd_zmalloc (amt);
2699 htab->all_local_syms = all_local_syms;
2700 if (all_local_syms == NULL)
2703 /* Walk over all the input BFDs, swapping in local symbols.
2704 If we are creating a shared library, create hash entries for the
2708 input_bfd = input_bfd->link.next, bfd_indx++)
2710 Elf_Internal_Shdr *symtab_hdr;
2712 /* We'll need the symbol table in a second. */
2713 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2714 if (symtab_hdr->sh_info == 0)
2717 /* We need an array of the local symbols attached to the input bfd. */
2718 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2719 if (local_syms == NULL)
2721 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2722 symtab_hdr->sh_info, 0,
2724 /* Cache them for elf_link_input_bfd. */
2725 symtab_hdr->contents = (unsigned char *) local_syms;
2727 if (local_syms == NULL)
2730 all_local_syms[bfd_indx] = local_syms;
2732 if (bfd_link_pic (info) && htab->multi_subspace)
2734 struct elf_link_hash_entry **eh_syms;
2735 struct elf_link_hash_entry **eh_symend;
2736 unsigned int symcount;
2738 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2739 - symtab_hdr->sh_info);
2740 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2741 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2743 /* Look through the global syms for functions; We need to
2744 build export stubs for all globally visible functions. */
2745 for (; eh_syms < eh_symend; eh_syms++)
2747 struct elf32_hppa_link_hash_entry *hh;
2749 hh = hppa_elf_hash_entry (*eh_syms);
2751 while (hh->eh.root.type == bfd_link_hash_indirect
2752 || hh->eh.root.type == bfd_link_hash_warning)
2753 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2755 /* At this point in the link, undefined syms have been
2756 resolved, so we need to check that the symbol was
2757 defined in this BFD. */
2758 if ((hh->eh.root.type == bfd_link_hash_defined
2759 || hh->eh.root.type == bfd_link_hash_defweak)
2760 && hh->eh.type == STT_FUNC
2761 && hh->eh.root.u.def.section->output_section != NULL
2762 && (hh->eh.root.u.def.section->output_section->owner
2764 && hh->eh.root.u.def.section->owner == input_bfd
2765 && hh->eh.def_regular
2766 && !hh->eh.forced_local
2767 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2770 const char *stub_name;
2771 struct elf32_hppa_stub_hash_entry *hsh;
2773 sec = hh->eh.root.u.def.section;
2774 stub_name = hh_name (hh);
2775 hsh = hppa_stub_hash_lookup (&htab->bstab,
2780 hsh = hppa_add_stub (stub_name, sec, htab);
2784 hsh->target_value = hh->eh.root.u.def.value;
2785 hsh->target_section = hh->eh.root.u.def.section;
2786 hsh->stub_type = hppa_stub_export;
2792 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2801 return stub_changed;
2804 /* Determine and set the size of the stub section for a final link.
2806 The basic idea here is to examine all the relocations looking for
2807 PC-relative calls to a target that is unreachable with a "bl"
2811 elf32_hppa_size_stubs
2812 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2813 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2814 asection * (*add_stub_section) (const char *, asection *),
2815 void (*layout_sections_again) (void))
2817 bfd_size_type stub_group_size;
2818 bfd_boolean stubs_always_before_branch;
2819 bfd_boolean stub_changed;
2820 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2825 /* Stash our params away. */
2826 htab->stub_bfd = stub_bfd;
2827 htab->multi_subspace = multi_subspace;
2828 htab->add_stub_section = add_stub_section;
2829 htab->layout_sections_again = layout_sections_again;
2830 stubs_always_before_branch = group_size < 0;
2832 stub_group_size = -group_size;
2834 stub_group_size = group_size;
2835 if (stub_group_size == 1)
2837 /* Default values. */
2838 if (stubs_always_before_branch)
2840 stub_group_size = 7680000;
2841 if (htab->has_17bit_branch || htab->multi_subspace)
2842 stub_group_size = 240000;
2843 if (htab->has_12bit_branch)
2844 stub_group_size = 7500;
2848 stub_group_size = 6971392;
2849 if (htab->has_17bit_branch || htab->multi_subspace)
2850 stub_group_size = 217856;
2851 if (htab->has_12bit_branch)
2852 stub_group_size = 6808;
2856 group_sections (htab, stub_group_size, stubs_always_before_branch);
2858 switch (get_local_syms (output_bfd, info->input_bfds, info))
2861 if (htab->all_local_syms)
2862 goto error_ret_free_local;
2866 stub_changed = FALSE;
2870 stub_changed = TRUE;
2877 unsigned int bfd_indx;
2880 for (input_bfd = info->input_bfds, bfd_indx = 0;
2882 input_bfd = input_bfd->link.next, bfd_indx++)
2884 Elf_Internal_Shdr *symtab_hdr;
2886 Elf_Internal_Sym *local_syms;
2888 /* We'll need the symbol table in a second. */
2889 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2890 if (symtab_hdr->sh_info == 0)
2893 local_syms = htab->all_local_syms[bfd_indx];
2895 /* Walk over each section attached to the input bfd. */
2896 for (section = input_bfd->sections;
2898 section = section->next)
2900 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2902 /* If there aren't any relocs, then there's nothing more
2904 if ((section->flags & SEC_RELOC) == 0
2905 || section->reloc_count == 0)
2908 /* If this section is a link-once section that will be
2909 discarded, then don't create any stubs. */
2910 if (section->output_section == NULL
2911 || section->output_section->owner != output_bfd)
2914 /* Get the relocs. */
2916 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2918 if (internal_relocs == NULL)
2919 goto error_ret_free_local;
2921 /* Now examine each relocation. */
2922 irela = internal_relocs;
2923 irelaend = irela + section->reloc_count;
2924 for (; irela < irelaend; irela++)
2926 unsigned int r_type, r_indx;
2927 enum elf32_hppa_stub_type stub_type;
2928 struct elf32_hppa_stub_hash_entry *hsh;
2931 bfd_vma destination;
2932 struct elf32_hppa_link_hash_entry *hh;
2934 const asection *id_sec;
2936 r_type = ELF32_R_TYPE (irela->r_info);
2937 r_indx = ELF32_R_SYM (irela->r_info);
2939 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2941 bfd_set_error (bfd_error_bad_value);
2942 error_ret_free_internal:
2943 if (elf_section_data (section)->relocs == NULL)
2944 free (internal_relocs);
2945 goto error_ret_free_local;
2948 /* Only look for stubs on call instructions. */
2949 if (r_type != (unsigned int) R_PARISC_PCREL12F
2950 && r_type != (unsigned int) R_PARISC_PCREL17F
2951 && r_type != (unsigned int) R_PARISC_PCREL22F)
2954 /* Now determine the call target, its name, value,
2960 if (r_indx < symtab_hdr->sh_info)
2962 /* It's a local symbol. */
2963 Elf_Internal_Sym *sym;
2964 Elf_Internal_Shdr *hdr;
2967 sym = local_syms + r_indx;
2968 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2969 sym_value = sym->st_value;
2970 shndx = sym->st_shndx;
2971 if (shndx < elf_numsections (input_bfd))
2973 hdr = elf_elfsections (input_bfd)[shndx];
2974 sym_sec = hdr->bfd_section;
2975 destination = (sym_value + irela->r_addend
2976 + sym_sec->output_offset
2977 + sym_sec->output_section->vma);
2982 /* It's an external symbol. */
2985 e_indx = r_indx - symtab_hdr->sh_info;
2986 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2988 while (hh->eh.root.type == bfd_link_hash_indirect
2989 || hh->eh.root.type == bfd_link_hash_warning)
2990 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2992 if (hh->eh.root.type == bfd_link_hash_defined
2993 || hh->eh.root.type == bfd_link_hash_defweak)
2995 sym_sec = hh->eh.root.u.def.section;
2996 sym_value = hh->eh.root.u.def.value;
2997 if (sym_sec->output_section != NULL)
2998 destination = (sym_value + irela->r_addend
2999 + sym_sec->output_offset
3000 + sym_sec->output_section->vma);
3002 else if (hh->eh.root.type == bfd_link_hash_undefweak)
3004 if (! bfd_link_pic (info))
3007 else if (hh->eh.root.type == bfd_link_hash_undefined)
3009 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3010 && (ELF_ST_VISIBILITY (hh->eh.other)
3012 && hh->eh.type != STT_PARISC_MILLI))
3017 bfd_set_error (bfd_error_bad_value);
3018 goto error_ret_free_internal;
3022 /* Determine what (if any) linker stub is needed. */
3023 stub_type = hppa_type_of_stub (section, irela, hh,
3025 if (stub_type == hppa_stub_none)
3028 /* Support for grouping stub sections. */
3029 id_sec = htab->stub_group[section->id].link_sec;
3031 /* Get the name of this stub. */
3032 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3034 goto error_ret_free_internal;
3036 hsh = hppa_stub_hash_lookup (&htab->bstab,
3041 /* The proper stub has already been created. */
3046 hsh = hppa_add_stub (stub_name, section, htab);
3050 goto error_ret_free_internal;
3053 hsh->target_value = sym_value;
3054 hsh->target_section = sym_sec;
3055 hsh->stub_type = stub_type;
3056 if (bfd_link_pic (info))
3058 if (stub_type == hppa_stub_import)
3059 hsh->stub_type = hppa_stub_import_shared;
3060 else if (stub_type == hppa_stub_long_branch)
3061 hsh->stub_type = hppa_stub_long_branch_shared;
3064 stub_changed = TRUE;
3067 /* We're done with the internal relocs, free them. */
3068 if (elf_section_data (section)->relocs == NULL)
3069 free (internal_relocs);
3076 /* OK, we've added some stubs. Find out the new size of the
3078 for (stub_sec = htab->stub_bfd->sections;
3080 stub_sec = stub_sec->next)
3081 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
3084 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3086 /* Ask the linker to do its stuff. */
3087 (*htab->layout_sections_again) ();
3088 stub_changed = FALSE;
3091 free (htab->all_local_syms);
3094 error_ret_free_local:
3095 free (htab->all_local_syms);
3099 /* For a final link, this function is called after we have sized the
3100 stubs to provide a value for __gp. */
3103 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3105 struct bfd_link_hash_entry *h;
3106 asection *sec = NULL;
3108 struct elf32_hppa_link_hash_table *htab;
3110 htab = hppa_link_hash_table (info);
3114 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3117 && (h->type == bfd_link_hash_defined
3118 || h->type == bfd_link_hash_defweak))
3120 gp_val = h->u.def.value;
3121 sec = h->u.def.section;
3125 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3126 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3128 /* Choose to point our LTP at, in this order, one of .plt, .got,
3129 or .data, if these sections exist. In the case of choosing
3130 .plt try to make the LTP ideal for addressing anywhere in the
3131 .plt or .got with a 14 bit signed offset. Typically, the end
3132 of the .plt is the start of the .got, so choose .plt + 0x2000
3133 if either the .plt or .got is larger than 0x2000. If both
3134 the .plt and .got are smaller than 0x2000, choose the end of
3135 the .plt section. */
3136 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3141 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3151 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3153 /* We know we don't have a .plt. If .got is large,
3155 if (sec->size > 0x2000)
3161 /* No .plt or .got. Who cares what the LTP is? */
3162 sec = bfd_get_section_by_name (abfd, ".data");
3168 h->type = bfd_link_hash_defined;
3169 h->u.def.value = gp_val;
3171 h->u.def.section = sec;
3173 h->u.def.section = bfd_abs_section_ptr;
3177 if (sec != NULL && sec->output_section != NULL)
3178 gp_val += sec->output_section->vma + sec->output_offset;
3180 elf_gp (abfd) = gp_val;
3184 /* Build all the stubs associated with the current output file. The
3185 stubs are kept in a hash table attached to the main linker hash
3186 table. We also set up the .plt entries for statically linked PIC
3187 functions here. This function is called via hppaelf_finish in the
3191 elf32_hppa_build_stubs (struct bfd_link_info *info)
3194 struct bfd_hash_table *table;
3195 struct elf32_hppa_link_hash_table *htab;
3197 htab = hppa_link_hash_table (info);
3201 for (stub_sec = htab->stub_bfd->sections;
3203 stub_sec = stub_sec->next)
3204 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3205 && stub_sec->size != 0)
3207 /* Allocate memory to hold the linker stubs. */
3208 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3209 if (stub_sec->contents == NULL)
3214 /* Build the stubs as directed by the stub hash table. */
3215 table = &htab->bstab;
3216 bfd_hash_traverse (table, hppa_build_one_stub, info);
3221 /* Return the base vma address which should be subtracted from the real
3222 address when resolving a dtpoff relocation.
3223 This is PT_TLS segment p_vaddr. */
3226 dtpoff_base (struct bfd_link_info *info)
3228 /* If tls_sec is NULL, we should have signalled an error already. */
3229 if (elf_hash_table (info)->tls_sec == NULL)
3231 return elf_hash_table (info)->tls_sec->vma;
3234 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3237 tpoff (struct bfd_link_info *info, bfd_vma address)
3239 struct elf_link_hash_table *htab = elf_hash_table (info);
3241 /* If tls_sec is NULL, we should have signalled an error already. */
3242 if (htab->tls_sec == NULL)
3244 /* hppa TLS ABI is variant I and static TLS block start just after
3245 tcbhead structure which has 2 pointer fields. */
3246 return (address - htab->tls_sec->vma
3247 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3250 /* Perform a final link. */
3253 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3257 /* Invoke the regular ELF linker to do all the work. */
3258 if (!bfd_elf_final_link (abfd, info))
3261 /* If we're producing a final executable, sort the contents of the
3263 if (bfd_link_relocatable (info))
3266 /* Do not attempt to sort non-regular files. This is here
3267 especially for configure scripts and kernel builds which run
3268 tests with "ld [...] -o /dev/null". */
3269 if (stat (abfd->filename, &buf) != 0
3270 || !S_ISREG(buf.st_mode))
3273 return elf_hppa_sort_unwind (abfd);
3276 /* Record the lowest address for the data and text segments. */
3279 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3281 struct elf32_hppa_link_hash_table *htab;
3283 htab = (struct elf32_hppa_link_hash_table*) data;
3287 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3290 Elf_Internal_Phdr *p;
3292 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3293 BFD_ASSERT (p != NULL);
3296 if ((section->flags & SEC_READONLY) != 0)
3298 if (value < htab->text_segment_base)
3299 htab->text_segment_base = value;
3303 if (value < htab->data_segment_base)
3304 htab->data_segment_base = value;
3309 /* Perform a relocation as part of a final link. */
3311 static bfd_reloc_status_type
3312 final_link_relocate (asection *input_section,
3314 const Elf_Internal_Rela *rela,
3316 struct elf32_hppa_link_hash_table *htab,
3318 struct elf32_hppa_link_hash_entry *hh,
3319 struct bfd_link_info *info)
3322 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3323 unsigned int orig_r_type = r_type;
3324 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3325 int r_format = howto->bitsize;
3326 enum hppa_reloc_field_selector_type_alt r_field;
3327 bfd *input_bfd = input_section->owner;
3328 bfd_vma offset = rela->r_offset;
3329 bfd_vma max_branch_offset = 0;
3330 bfd_byte *hit_data = contents + offset;
3331 bfd_signed_vma addend = rela->r_addend;
3333 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3336 if (r_type == R_PARISC_NONE)
3337 return bfd_reloc_ok;
3339 insn = bfd_get_32 (input_bfd, hit_data);
3341 /* Find out where we are and where we're going. */
3342 location = (offset +
3343 input_section->output_offset +
3344 input_section->output_section->vma);
3346 /* If we are not building a shared library, convert DLTIND relocs to
3348 if (!bfd_link_pic (info))
3352 case R_PARISC_DLTIND21L:
3353 case R_PARISC_TLS_GD21L:
3354 case R_PARISC_TLS_LDM21L:
3355 case R_PARISC_TLS_IE21L:
3356 r_type = R_PARISC_DPREL21L;
3359 case R_PARISC_DLTIND14R:
3360 case R_PARISC_TLS_GD14R:
3361 case R_PARISC_TLS_LDM14R:
3362 case R_PARISC_TLS_IE14R:
3363 r_type = R_PARISC_DPREL14R;
3366 case R_PARISC_DLTIND14F:
3367 r_type = R_PARISC_DPREL14F;
3374 case R_PARISC_PCREL12F:
3375 case R_PARISC_PCREL17F:
3376 case R_PARISC_PCREL22F:
3377 /* If this call should go via the plt, find the import stub in
3380 || sym_sec->output_section == NULL
3382 && hh->eh.plt.offset != (bfd_vma) -1
3383 && hh->eh.dynindx != -1
3385 && (bfd_link_pic (info)
3386 || !hh->eh.def_regular
3387 || hh->eh.root.type == bfd_link_hash_defweak)))
3389 hsh = hppa_get_stub_entry (input_section, sym_sec,
3393 value = (hsh->stub_offset
3394 + hsh->stub_sec->output_offset
3395 + hsh->stub_sec->output_section->vma);
3398 else if (sym_sec == NULL && hh != NULL
3399 && hh->eh.root.type == bfd_link_hash_undefweak)
3401 /* It's OK if undefined weak. Calls to undefined weak
3402 symbols behave as if the "called" function
3403 immediately returns. We can thus call to a weak
3404 function without first checking whether the function
3410 return bfd_reloc_undefined;
3414 case R_PARISC_PCREL21L:
3415 case R_PARISC_PCREL17C:
3416 case R_PARISC_PCREL17R:
3417 case R_PARISC_PCREL14R:
3418 case R_PARISC_PCREL14F:
3419 case R_PARISC_PCREL32:
3420 /* Make it a pc relative offset. */
3425 case R_PARISC_DPREL21L:
3426 case R_PARISC_DPREL14R:
3427 case R_PARISC_DPREL14F:
3428 /* Convert instructions that use the linkage table pointer (r19) to
3429 instructions that use the global data pointer (dp). This is the
3430 most efficient way of using PIC code in an incomplete executable,
3431 but the user must follow the standard runtime conventions for
3432 accessing data for this to work. */
3433 if (orig_r_type != r_type)
3435 if (r_type == R_PARISC_DPREL21L)
3437 /* GCC sometimes uses a register other than r19 for the
3438 operation, so we must convert any addil instruction
3439 that uses this relocation. */
3440 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3443 /* We must have a ldil instruction. It's too hard to find
3444 and convert the associated add instruction, so issue an
3446 (*_bfd_error_handler)
3447 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3454 else if (r_type == R_PARISC_DPREL14F)
3456 /* This must be a format 1 load/store. Change the base
3458 insn = (insn & 0xfc1ffff) | (27 << 21);
3462 /* For all the DP relative relocations, we need to examine the symbol's
3463 section. If it has no section or if it's a code section, then
3464 "data pointer relative" makes no sense. In that case we don't
3465 adjust the "value", and for 21 bit addil instructions, we change the
3466 source addend register from %dp to %r0. This situation commonly
3467 arises for undefined weak symbols and when a variable's "constness"
3468 is declared differently from the way the variable is defined. For
3469 instance: "extern int foo" with foo defined as "const int foo". */
3470 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3472 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3473 == (((int) OP_ADDIL << 26) | (27 << 21)))
3475 insn &= ~ (0x1f << 21);
3477 /* Now try to make things easy for the dynamic linker. */
3483 case R_PARISC_DLTIND21L:
3484 case R_PARISC_DLTIND14R:
3485 case R_PARISC_DLTIND14F:
3486 case R_PARISC_TLS_GD21L:
3487 case R_PARISC_TLS_LDM21L:
3488 case R_PARISC_TLS_IE21L:
3489 case R_PARISC_TLS_GD14R:
3490 case R_PARISC_TLS_LDM14R:
3491 case R_PARISC_TLS_IE14R:
3492 value -= elf_gp (input_section->output_section->owner);
3495 case R_PARISC_SEGREL32:
3496 if ((sym_sec->flags & SEC_CODE) != 0)
3497 value -= htab->text_segment_base;
3499 value -= htab->data_segment_base;
3508 case R_PARISC_DIR32:
3509 case R_PARISC_DIR14F:
3510 case R_PARISC_DIR17F:
3511 case R_PARISC_PCREL17C:
3512 case R_PARISC_PCREL14F:
3513 case R_PARISC_PCREL32:
3514 case R_PARISC_DPREL14F:
3515 case R_PARISC_PLABEL32:
3516 case R_PARISC_DLTIND14F:
3517 case R_PARISC_SEGBASE:
3518 case R_PARISC_SEGREL32:
3519 case R_PARISC_TLS_DTPMOD32:
3520 case R_PARISC_TLS_DTPOFF32:
3521 case R_PARISC_TLS_TPREL32:
3525 case R_PARISC_DLTIND21L:
3526 case R_PARISC_PCREL21L:
3527 case R_PARISC_PLABEL21L:
3531 case R_PARISC_DIR21L:
3532 case R_PARISC_DPREL21L:
3533 case R_PARISC_TLS_GD21L:
3534 case R_PARISC_TLS_LDM21L:
3535 case R_PARISC_TLS_LDO21L:
3536 case R_PARISC_TLS_IE21L:
3537 case R_PARISC_TLS_LE21L:
3541 case R_PARISC_PCREL17R:
3542 case R_PARISC_PCREL14R:
3543 case R_PARISC_PLABEL14R:
3544 case R_PARISC_DLTIND14R:
3548 case R_PARISC_DIR17R:
3549 case R_PARISC_DIR14R:
3550 case R_PARISC_DPREL14R:
3551 case R_PARISC_TLS_GD14R:
3552 case R_PARISC_TLS_LDM14R:
3553 case R_PARISC_TLS_LDO14R:
3554 case R_PARISC_TLS_IE14R:
3555 case R_PARISC_TLS_LE14R:
3559 case R_PARISC_PCREL12F:
3560 case R_PARISC_PCREL17F:
3561 case R_PARISC_PCREL22F:
3564 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3566 max_branch_offset = (1 << (17-1)) << 2;
3568 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3570 max_branch_offset = (1 << (12-1)) << 2;
3574 max_branch_offset = (1 << (22-1)) << 2;
3577 /* sym_sec is NULL on undefined weak syms or when shared on
3578 undefined syms. We've already checked for a stub for the
3579 shared undefined case. */
3580 if (sym_sec == NULL)
3583 /* If the branch is out of reach, then redirect the
3584 call to the local stub for this function. */
3585 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3587 hsh = hppa_get_stub_entry (input_section, sym_sec,
3590 return bfd_reloc_undefined;
3592 /* Munge up the value and addend so that we call the stub
3593 rather than the procedure directly. */
3594 value = (hsh->stub_offset
3595 + hsh->stub_sec->output_offset
3596 + hsh->stub_sec->output_section->vma
3602 /* Something we don't know how to handle. */
3604 return bfd_reloc_notsupported;
3607 /* Make sure we can reach the stub. */
3608 if (max_branch_offset != 0
3609 && value + addend + max_branch_offset >= 2*max_branch_offset)
3611 (*_bfd_error_handler)
3612 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3616 hsh->bh_root.string);
3617 bfd_set_error (bfd_error_bad_value);
3618 return bfd_reloc_notsupported;
3621 val = hppa_field_adjust (value, addend, r_field);
3625 case R_PARISC_PCREL12F:
3626 case R_PARISC_PCREL17C:
3627 case R_PARISC_PCREL17F:
3628 case R_PARISC_PCREL17R:
3629 case R_PARISC_PCREL22F:
3630 case R_PARISC_DIR17F:
3631 case R_PARISC_DIR17R:
3632 /* This is a branch. Divide the offset by four.
3633 Note that we need to decide whether it's a branch or
3634 otherwise by inspecting the reloc. Inspecting insn won't
3635 work as insn might be from a .word directive. */
3643 insn = hppa_rebuild_insn (insn, val, r_format);
3645 /* Update the instruction word. */
3646 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3647 return bfd_reloc_ok;
3650 /* Relocate an HPPA ELF section. */
3653 elf32_hppa_relocate_section (bfd *output_bfd,
3654 struct bfd_link_info *info,
3656 asection *input_section,
3658 Elf_Internal_Rela *relocs,
3659 Elf_Internal_Sym *local_syms,
3660 asection **local_sections)
3662 bfd_vma *local_got_offsets;
3663 struct elf32_hppa_link_hash_table *htab;
3664 Elf_Internal_Shdr *symtab_hdr;
3665 Elf_Internal_Rela *rela;
3666 Elf_Internal_Rela *relend;
3668 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3670 htab = hppa_link_hash_table (info);
3674 local_got_offsets = elf_local_got_offsets (input_bfd);
3677 relend = relocs + input_section->reloc_count;
3678 for (; rela < relend; rela++)
3680 unsigned int r_type;
3681 reloc_howto_type *howto;
3682 unsigned int r_symndx;
3683 struct elf32_hppa_link_hash_entry *hh;
3684 Elf_Internal_Sym *sym;
3687 bfd_reloc_status_type rstatus;
3688 const char *sym_name;
3690 bfd_boolean warned_undef;
3692 r_type = ELF32_R_TYPE (rela->r_info);
3693 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3695 bfd_set_error (bfd_error_bad_value);
3698 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3699 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3702 r_symndx = ELF32_R_SYM (rela->r_info);
3706 warned_undef = FALSE;
3707 if (r_symndx < symtab_hdr->sh_info)
3709 /* This is a local symbol, h defaults to NULL. */
3710 sym = local_syms + r_symndx;
3711 sym_sec = local_sections[r_symndx];
3712 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3716 struct elf_link_hash_entry *eh;
3717 bfd_boolean unresolved_reloc, ignored;
3718 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3720 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3721 r_symndx, symtab_hdr, sym_hashes,
3722 eh, sym_sec, relocation,
3723 unresolved_reloc, warned_undef,
3726 if (!bfd_link_relocatable (info)
3728 && eh->root.type != bfd_link_hash_defined
3729 && eh->root.type != bfd_link_hash_defweak
3730 && eh->root.type != bfd_link_hash_undefweak)
3732 if (info->unresolved_syms_in_objects == RM_IGNORE
3733 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3734 && eh->type == STT_PARISC_MILLI)
3736 (*info->callbacks->undefined_symbol)
3737 (info, eh_name (eh), input_bfd,
3738 input_section, rela->r_offset, FALSE);
3739 warned_undef = TRUE;
3742 hh = hppa_elf_hash_entry (eh);
3745 if (sym_sec != NULL && discarded_section (sym_sec))
3746 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3748 elf_hppa_howto_table + r_type, 0,
3751 if (bfd_link_relocatable (info))
3754 /* Do any required modifications to the relocation value, and
3755 determine what types of dynamic info we need to output, if
3760 case R_PARISC_DLTIND14F:
3761 case R_PARISC_DLTIND14R:
3762 case R_PARISC_DLTIND21L:
3765 bfd_boolean do_got = 0;
3767 /* Relocation is to the entry for this symbol in the
3768 global offset table. */
3773 off = hh->eh.got.offset;
3774 dyn = htab->etab.dynamic_sections_created;
3775 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3776 bfd_link_pic (info),
3779 /* If we aren't going to call finish_dynamic_symbol,
3780 then we need to handle initialisation of the .got
3781 entry and create needed relocs here. Since the
3782 offset must always be a multiple of 4, we use the
3783 least significant bit to record whether we have
3784 initialised it already. */
3789 hh->eh.got.offset |= 1;
3796 /* Local symbol case. */
3797 if (local_got_offsets == NULL)
3800 off = local_got_offsets[r_symndx];
3802 /* The offset must always be a multiple of 4. We use
3803 the least significant bit to record whether we have
3804 already generated the necessary reloc. */
3809 local_got_offsets[r_symndx] |= 1;
3816 if (bfd_link_pic (info))
3818 /* Output a dynamic relocation for this GOT entry.
3819 In this case it is relative to the base of the
3820 object because the symbol index is zero. */
3821 Elf_Internal_Rela outrel;
3823 asection *sec = htab->srelgot;
3825 outrel.r_offset = (off
3826 + htab->sgot->output_offset
3827 + htab->sgot->output_section->vma);
3828 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3829 outrel.r_addend = relocation;
3830 loc = sec->contents;
3831 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3832 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3835 bfd_put_32 (output_bfd, relocation,
3836 htab->sgot->contents + off);
3839 if (off >= (bfd_vma) -2)
3842 /* Add the base of the GOT to the relocation value. */
3844 + htab->sgot->output_offset
3845 + htab->sgot->output_section->vma);
3849 case R_PARISC_SEGREL32:
3850 /* If this is the first SEGREL relocation, then initialize
3851 the segment base values. */
3852 if (htab->text_segment_base == (bfd_vma) -1)
3853 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3856 case R_PARISC_PLABEL14R:
3857 case R_PARISC_PLABEL21L:
3858 case R_PARISC_PLABEL32:
3859 if (htab->etab.dynamic_sections_created)
3862 bfd_boolean do_plt = 0;
3863 /* If we have a global symbol with a PLT slot, then
3864 redirect this relocation to it. */
3867 off = hh->eh.plt.offset;
3868 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3869 bfd_link_pic (info),
3872 /* In a non-shared link, adjust_dynamic_symbols
3873 isn't called for symbols forced local. We
3874 need to write out the plt entry here. */
3879 hh->eh.plt.offset |= 1;
3886 bfd_vma *local_plt_offsets;
3888 if (local_got_offsets == NULL)
3891 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3892 off = local_plt_offsets[r_symndx];
3894 /* As for the local .got entry case, we use the last
3895 bit to record whether we've already initialised
3896 this local .plt entry. */
3901 local_plt_offsets[r_symndx] |= 1;
3908 if (bfd_link_pic (info))
3910 /* Output a dynamic IPLT relocation for this
3912 Elf_Internal_Rela outrel;
3914 asection *s = htab->srelplt;
3916 outrel.r_offset = (off
3917 + htab->splt->output_offset
3918 + htab->splt->output_section->vma);
3919 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3920 outrel.r_addend = relocation;
3922 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3923 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3927 bfd_put_32 (output_bfd,
3929 htab->splt->contents + off);
3930 bfd_put_32 (output_bfd,
3931 elf_gp (htab->splt->output_section->owner),
3932 htab->splt->contents + off + 4);
3936 if (off >= (bfd_vma) -2)
3939 /* PLABELs contain function pointers. Relocation is to
3940 the entry for the function in the .plt. The magic +2
3941 offset signals to $$dyncall that the function pointer
3942 is in the .plt and thus has a gp pointer too.
3943 Exception: Undefined PLABELs should have a value of
3946 || (hh->eh.root.type != bfd_link_hash_undefweak
3947 && hh->eh.root.type != bfd_link_hash_undefined))
3950 + htab->splt->output_offset
3951 + htab->splt->output_section->vma
3956 /* Fall through and possibly emit a dynamic relocation. */
3958 case R_PARISC_DIR17F:
3959 case R_PARISC_DIR17R:
3960 case R_PARISC_DIR14F:
3961 case R_PARISC_DIR14R:
3962 case R_PARISC_DIR21L:
3963 case R_PARISC_DPREL14F:
3964 case R_PARISC_DPREL14R:
3965 case R_PARISC_DPREL21L:
3966 case R_PARISC_DIR32:
3967 if ((input_section->flags & SEC_ALLOC) == 0)
3970 /* The reloc types handled here and this conditional
3971 expression must match the code in ..check_relocs and
3972 allocate_dynrelocs. ie. We need exactly the same condition
3973 as in ..check_relocs, with some extra conditions (dynindx
3974 test in this case) to cater for relocs removed by
3975 allocate_dynrelocs. If you squint, the non-shared test
3976 here does indeed match the one in ..check_relocs, the
3977 difference being that here we test DEF_DYNAMIC as well as
3978 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3979 which is why we can't use just that test here.
3980 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3981 there all files have not been loaded. */
3982 if ((bfd_link_pic (info)
3984 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3985 || hh->eh.root.type != bfd_link_hash_undefweak)
3986 && (IS_ABSOLUTE_RELOC (r_type)
3987 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3988 || (!bfd_link_pic (info)
3990 && hh->eh.dynindx != -1
3991 && !hh->eh.non_got_ref
3992 && ((ELIMINATE_COPY_RELOCS
3993 && hh->eh.def_dynamic
3994 && !hh->eh.def_regular)
3995 || hh->eh.root.type == bfd_link_hash_undefweak
3996 || hh->eh.root.type == bfd_link_hash_undefined)))
3998 Elf_Internal_Rela outrel;
4003 /* When generating a shared object, these relocations
4004 are copied into the output file to be resolved at run
4007 outrel.r_addend = rela->r_addend;
4009 _bfd_elf_section_offset (output_bfd, info, input_section,
4011 skip = (outrel.r_offset == (bfd_vma) -1
4012 || outrel.r_offset == (bfd_vma) -2);
4013 outrel.r_offset += (input_section->output_offset
4014 + input_section->output_section->vma);
4018 memset (&outrel, 0, sizeof (outrel));
4021 && hh->eh.dynindx != -1
4023 || !IS_ABSOLUTE_RELOC (r_type)
4024 || !bfd_link_pic (info)
4025 || !SYMBOLIC_BIND (info, &hh->eh)
4026 || !hh->eh.def_regular))
4028 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4030 else /* It's a local symbol, or one marked to become local. */
4034 /* Add the absolute offset of the symbol. */
4035 outrel.r_addend += relocation;
4037 /* Global plabels need to be processed by the
4038 dynamic linker so that functions have at most one
4039 fptr. For this reason, we need to differentiate
4040 between global and local plabels, which we do by
4041 providing the function symbol for a global plabel
4042 reloc, and no symbol for local plabels. */
4045 && sym_sec->output_section != NULL
4046 && ! bfd_is_abs_section (sym_sec))
4050 osec = sym_sec->output_section;
4051 indx = elf_section_data (osec)->dynindx;
4054 osec = htab->etab.text_index_section;
4055 indx = elf_section_data (osec)->dynindx;
4057 BFD_ASSERT (indx != 0);
4059 /* We are turning this relocation into one
4060 against a section symbol, so subtract out the
4061 output section's address but not the offset
4062 of the input section in the output section. */
4063 outrel.r_addend -= osec->vma;
4066 outrel.r_info = ELF32_R_INFO (indx, r_type);
4068 sreloc = elf_section_data (input_section)->sreloc;
4072 loc = sreloc->contents;
4073 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4074 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4078 case R_PARISC_TLS_LDM21L:
4079 case R_PARISC_TLS_LDM14R:
4083 off = htab->tls_ldm_got.offset;
4088 Elf_Internal_Rela outrel;
4091 outrel.r_offset = (off
4092 + htab->sgot->output_section->vma
4093 + htab->sgot->output_offset);
4094 outrel.r_addend = 0;
4095 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4096 loc = htab->srelgot->contents;
4097 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4099 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4100 htab->tls_ldm_got.offset |= 1;
4103 /* Add the base of the GOT to the relocation value. */
4105 + htab->sgot->output_offset
4106 + htab->sgot->output_section->vma);
4111 case R_PARISC_TLS_LDO21L:
4112 case R_PARISC_TLS_LDO14R:
4113 relocation -= dtpoff_base (info);
4116 case R_PARISC_TLS_GD21L:
4117 case R_PARISC_TLS_GD14R:
4118 case R_PARISC_TLS_IE21L:
4119 case R_PARISC_TLS_IE14R:
4129 dyn = htab->etab.dynamic_sections_created;
4131 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
4132 bfd_link_pic (info),
4134 && (!bfd_link_pic (info)
4135 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4137 indx = hh->eh.dynindx;
4139 off = hh->eh.got.offset;
4140 tls_type = hh->tls_type;
4144 off = local_got_offsets[r_symndx];
4145 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4148 if (tls_type == GOT_UNKNOWN)
4155 bfd_boolean need_relocs = FALSE;
4156 Elf_Internal_Rela outrel;
4157 bfd_byte *loc = NULL;
4160 /* The GOT entries have not been initialized yet. Do it
4161 now, and emit any relocations. If both an IE GOT and a
4162 GD GOT are necessary, we emit the GD first. */
4164 if ((bfd_link_pic (info) || indx != 0)
4166 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4167 || hh->eh.root.type != bfd_link_hash_undefweak))
4170 loc = htab->srelgot->contents;
4171 /* FIXME (CAO): Should this be reloc_count++ ? */
4172 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4175 if (tls_type & GOT_TLS_GD)
4179 outrel.r_offset = (cur_off
4180 + htab->sgot->output_section->vma
4181 + htab->sgot->output_offset);
4182 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4183 outrel.r_addend = 0;
4184 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4185 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4186 htab->srelgot->reloc_count++;
4187 loc += sizeof (Elf32_External_Rela);
4190 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4191 htab->sgot->contents + cur_off + 4);
4194 bfd_put_32 (output_bfd, 0,
4195 htab->sgot->contents + cur_off + 4);
4196 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4197 outrel.r_offset += 4;
4198 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4199 htab->srelgot->reloc_count++;
4200 loc += sizeof (Elf32_External_Rela);
4205 /* If we are not emitting relocations for a
4206 general dynamic reference, then we must be in a
4207 static link or an executable link with the
4208 symbol binding locally. Mark it as belonging
4209 to module 1, the executable. */
4210 bfd_put_32 (output_bfd, 1,
4211 htab->sgot->contents + cur_off);
4212 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4213 htab->sgot->contents + cur_off + 4);
4220 if (tls_type & GOT_TLS_IE)
4224 outrel.r_offset = (cur_off
4225 + htab->sgot->output_section->vma
4226 + htab->sgot->output_offset);
4227 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4230 outrel.r_addend = relocation - dtpoff_base (info);
4232 outrel.r_addend = 0;
4234 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4235 htab->srelgot->reloc_count++;
4236 loc += sizeof (Elf32_External_Rela);
4239 bfd_put_32 (output_bfd, tpoff (info, relocation),
4240 htab->sgot->contents + cur_off);
4246 hh->eh.got.offset |= 1;
4248 local_got_offsets[r_symndx] |= 1;
4251 if ((tls_type & GOT_TLS_GD)
4252 && r_type != R_PARISC_TLS_GD21L
4253 && r_type != R_PARISC_TLS_GD14R)
4254 off += 2 * GOT_ENTRY_SIZE;
4256 /* Add the base of the GOT to the relocation value. */
4258 + htab->sgot->output_offset
4259 + htab->sgot->output_section->vma);
4264 case R_PARISC_TLS_LE21L:
4265 case R_PARISC_TLS_LE14R:
4267 relocation = tpoff (info, relocation);
4276 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4277 htab, sym_sec, hh, info);
4279 if (rstatus == bfd_reloc_ok)
4283 sym_name = hh_name (hh);
4286 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4287 symtab_hdr->sh_link,
4289 if (sym_name == NULL)
4291 if (*sym_name == '\0')
4292 sym_name = bfd_section_name (input_bfd, sym_sec);
4295 howto = elf_hppa_howto_table + r_type;
4297 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4299 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4301 (*_bfd_error_handler)
4302 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4305 (long) rela->r_offset,
4308 bfd_set_error (bfd_error_bad_value);
4313 (*info->callbacks->reloc_overflow)
4314 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4315 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4321 /* Finish up dynamic symbol handling. We set the contents of various
4322 dynamic sections here. */
4325 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4326 struct bfd_link_info *info,
4327 struct elf_link_hash_entry *eh,
4328 Elf_Internal_Sym *sym)
4330 struct elf32_hppa_link_hash_table *htab;
4331 Elf_Internal_Rela rela;
4334 htab = hppa_link_hash_table (info);
4338 if (eh->plt.offset != (bfd_vma) -1)
4342 if (eh->plt.offset & 1)
4345 /* This symbol has an entry in the procedure linkage table. Set
4348 The format of a plt entry is
4353 if (eh->root.type == bfd_link_hash_defined
4354 || eh->root.type == bfd_link_hash_defweak)
4356 value = eh->root.u.def.value;
4357 if (eh->root.u.def.section->output_section != NULL)
4358 value += (eh->root.u.def.section->output_offset
4359 + eh->root.u.def.section->output_section->vma);
4362 /* Create a dynamic IPLT relocation for this entry. */
4363 rela.r_offset = (eh->plt.offset
4364 + htab->splt->output_offset
4365 + htab->splt->output_section->vma);
4366 if (eh->dynindx != -1)
4368 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4373 /* This symbol has been marked to become local, and is
4374 used by a plabel so must be kept in the .plt. */
4375 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4376 rela.r_addend = value;
4379 loc = htab->srelplt->contents;
4380 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4381 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4383 if (!eh->def_regular)
4385 /* Mark the symbol as undefined, rather than as defined in
4386 the .plt section. Leave the value alone. */
4387 sym->st_shndx = SHN_UNDEF;
4391 if (eh->got.offset != (bfd_vma) -1
4392 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4393 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4395 /* This symbol has an entry in the global offset table. Set it
4398 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4399 + htab->sgot->output_offset
4400 + htab->sgot->output_section->vma);
4402 /* If this is a -Bsymbolic link and the symbol is defined
4403 locally or was forced to be local because of a version file,
4404 we just want to emit a RELATIVE reloc. The entry in the
4405 global offset table will already have been initialized in the
4406 relocate_section function. */
4407 if (bfd_link_pic (info)
4408 && (SYMBOLIC_BIND (info, eh) || eh->dynindx == -1)
4411 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4412 rela.r_addend = (eh->root.u.def.value
4413 + eh->root.u.def.section->output_offset
4414 + eh->root.u.def.section->output_section->vma);
4418 if ((eh->got.offset & 1) != 0)
4421 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4422 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4426 loc = htab->srelgot->contents;
4427 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4428 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4435 /* This symbol needs a copy reloc. Set it up. */
4437 if (! (eh->dynindx != -1
4438 && (eh->root.type == bfd_link_hash_defined
4439 || eh->root.type == bfd_link_hash_defweak)))
4442 sec = htab->srelbss;
4444 rela.r_offset = (eh->root.u.def.value
4445 + eh->root.u.def.section->output_offset
4446 + eh->root.u.def.section->output_section->vma);
4448 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4449 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4450 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4453 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4454 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4456 sym->st_shndx = SHN_ABS;
4462 /* Used to decide how to sort relocs in an optimal manner for the
4463 dynamic linker, before writing them out. */
4465 static enum elf_reloc_type_class
4466 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4467 const asection *rel_sec ATTRIBUTE_UNUSED,
4468 const Elf_Internal_Rela *rela)
4470 /* Handle TLS relocs first; we don't want them to be marked
4471 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4473 switch ((int) ELF32_R_TYPE (rela->r_info))
4475 case R_PARISC_TLS_DTPMOD32:
4476 case R_PARISC_TLS_DTPOFF32:
4477 case R_PARISC_TLS_TPREL32:
4478 return reloc_class_normal;
4481 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4482 return reloc_class_relative;
4484 switch ((int) ELF32_R_TYPE (rela->r_info))
4487 return reloc_class_plt;
4489 return reloc_class_copy;
4491 return reloc_class_normal;
4495 /* Finish up the dynamic sections. */
4498 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4499 struct bfd_link_info *info)
4502 struct elf32_hppa_link_hash_table *htab;
4506 htab = hppa_link_hash_table (info);
4510 dynobj = htab->etab.dynobj;
4513 /* A broken linker script might have discarded the dynamic sections.
4514 Catch this here so that we do not seg-fault later on. */
4515 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4518 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4520 if (htab->etab.dynamic_sections_created)
4522 Elf32_External_Dyn *dyncon, *dynconend;
4527 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4528 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4529 for (; dyncon < dynconend; dyncon++)
4531 Elf_Internal_Dyn dyn;
4534 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4542 /* Use PLTGOT to set the GOT register. */
4543 dyn.d_un.d_ptr = elf_gp (output_bfd);
4548 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4553 dyn.d_un.d_val = s->size;
4557 /* Don't count procedure linkage table relocs in the
4558 overall reloc count. */
4562 dyn.d_un.d_val -= s->size;
4566 /* We may not be using the standard ELF linker script.
4567 If .rela.plt is the first .rela section, we adjust
4568 DT_RELA to not include it. */
4572 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4574 dyn.d_un.d_ptr += s->size;
4578 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4582 if (sgot != NULL && sgot->size != 0)
4584 /* Fill in the first entry in the global offset table.
4585 We use it to point to our dynamic section, if we have one. */
4586 bfd_put_32 (output_bfd,
4587 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4590 /* The second entry is reserved for use by the dynamic linker. */
4591 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4593 /* Set .got entry size. */
4594 elf_section_data (sgot->output_section)
4595 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4598 if (htab->splt != NULL && htab->splt->size != 0)
4600 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4601 plt stubs and as such the section does not hold a table of fixed-size
4603 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize = 0;
4605 if (htab->need_plt_stub)
4607 /* Set up the .plt stub. */
4608 memcpy (htab->splt->contents
4609 + htab->splt->size - sizeof (plt_stub),
4610 plt_stub, sizeof (plt_stub));
4612 if ((htab->splt->output_offset
4613 + htab->splt->output_section->vma
4615 != (sgot->output_offset
4616 + sgot->output_section->vma))
4618 (*_bfd_error_handler)
4619 (_(".got section not immediately after .plt section"));
4628 /* Called when writing out an object file to decide the type of a
4631 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4633 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4634 return STT_PARISC_MILLI;
4639 /* Misc BFD support code. */
4640 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4641 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4642 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4643 #define elf_info_to_howto elf_hppa_info_to_howto
4644 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4646 /* Stuff for the BFD linker. */
4647 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4648 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4649 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4650 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4651 #define elf_backend_check_relocs elf32_hppa_check_relocs
4652 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4653 #define elf_backend_fake_sections elf_hppa_fake_sections
4654 #define elf_backend_relocate_section elf32_hppa_relocate_section
4655 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4656 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4657 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4658 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4659 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4660 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4661 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4662 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4663 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4664 #define elf_backend_object_p elf32_hppa_object_p
4665 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4666 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4667 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4668 #define elf_backend_action_discarded elf_hppa_action_discarded
4670 #define elf_backend_can_gc_sections 1
4671 #define elf_backend_can_refcount 1
4672 #define elf_backend_plt_alignment 2
4673 #define elf_backend_want_got_plt 0
4674 #define elf_backend_plt_readonly 0
4675 #define elf_backend_want_plt_sym 0
4676 #define elf_backend_got_header_size 8
4677 #define elf_backend_rela_normal 1
4679 #define TARGET_BIG_SYM hppa_elf32_vec
4680 #define TARGET_BIG_NAME "elf32-hppa"
4681 #define ELF_ARCH bfd_arch_hppa
4682 #define ELF_TARGET_ID HPPA32_ELF_DATA
4683 #define ELF_MACHINE_CODE EM_PARISC
4684 #define ELF_MAXPAGESIZE 0x1000
4685 #define ELF_OSABI ELFOSABI_HPUX
4686 #define elf32_bed elf32_hppa_hpux_bed
4688 #include "elf32-target.h"
4690 #undef TARGET_BIG_SYM
4691 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4692 #undef TARGET_BIG_NAME
4693 #define TARGET_BIG_NAME "elf32-hppa-linux"
4695 #define ELF_OSABI ELFOSABI_GNU
4697 #define elf32_bed elf32_hppa_linux_bed
4699 #include "elf32-target.h"
4701 #undef TARGET_BIG_SYM
4702 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4703 #undef TARGET_BIG_NAME
4704 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4706 #define ELF_OSABI ELFOSABI_NETBSD
4708 #define elf32_bed elf32_hppa_netbsd_bed
4710 #include "elf32-target.h"