1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2019 Free Software Foundation, Inc.
5 Center for Software Science
6 Department of Computer Science
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
35 #include "elf32-hppa.h"
37 #include "elf32-hppa.h"
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
51 /* We use two hash tables to hold information for linking PA ELF objects.
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
61 There are a number of different stubs generated by the linker.
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
113 : ldw -24(%sp),%rp ; restore the original rp
116 : be,n 0(%sr0,%rp) ; inter-space return. */
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
129 bfd_hash_table "btab"
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
135 Always remember to use GNU Coding Style. */
137 #define PLT_ENTRY_SIZE 8
138 #define GOT_ENTRY_SIZE 4
139 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
141 static const bfd_byte plt_stub[] =
143 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
144 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
145 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
146 #define PLT_STUB_ENTRY (3*4)
147 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
148 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
149 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
150 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 /* Section name for stubs is the associated section name plus this
155 #define STUB_SUFFIX ".stub"
157 /* We don't need to copy certain PC- or GP-relative dynamic relocs
158 into a shared object's dynamic section. All the relocs of the
159 limited class we are interested in, are absolute. */
160 #ifndef RELATIVE_DYNRELOCS
161 #define RELATIVE_DYNRELOCS 0
162 #define IS_ABSOLUTE_RELOC(r_type) 1
163 #define pc_dynrelocs(hh) 0
166 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
167 copying dynamic variables from a shared lib into an app's dynbss
168 section, and instead use a dynamic relocation to point into the
170 #define ELIMINATE_COPY_RELOCS 1
172 enum elf32_hppa_stub_type
174 hppa_stub_long_branch,
175 hppa_stub_long_branch_shared,
177 hppa_stub_import_shared,
182 struct elf32_hppa_stub_hash_entry
184 /* Base hash table entry structure. */
185 struct bfd_hash_entry bh_root;
187 /* The stub section. */
190 /* Offset within stub_sec of the beginning of this stub. */
193 /* Given the symbol's value and its section we can determine its final
194 value when building the stubs (so the stub knows where to jump. */
195 bfd_vma target_value;
196 asection *target_section;
198 enum elf32_hppa_stub_type stub_type;
200 /* The symbol table entry, if any, that this was derived from. */
201 struct elf32_hppa_link_hash_entry *hh;
203 /* Where this stub is being called from, or, in the case of combined
204 stub sections, the first input section in the group. */
217 struct elf32_hppa_link_hash_entry
219 struct elf_link_hash_entry eh;
221 /* A pointer to the most recently used stub hash entry against this
223 struct elf32_hppa_stub_hash_entry *hsh_cache;
225 /* Used to count relocations for delayed sizing of relocation
227 struct elf_dyn_relocs *dyn_relocs;
229 ENUM_BITFIELD (_tls_type) tls_type : 8;
231 /* Set if this symbol is used by a plabel reloc. */
232 unsigned int plabel:1;
235 struct elf32_hppa_link_hash_table
237 /* The main hash table. */
238 struct elf_link_hash_table etab;
240 /* The stub hash table. */
241 struct bfd_hash_table bstab;
243 /* Linker stub bfd. */
246 /* Linker call-backs. */
247 asection * (*add_stub_section) (const char *, asection *);
248 void (*layout_sections_again) (void);
250 /* Array to keep track of which stub sections have been created, and
251 information on stub grouping. */
254 /* This is the section to which stubs in the group will be
257 /* The stub section. */
261 /* Assorted information used by elf32_hppa_size_stubs. */
262 unsigned int bfd_count;
263 unsigned int top_index;
264 asection **input_list;
265 Elf_Internal_Sym **all_local_syms;
267 /* Used during a final link to store the base of the text and data
268 segments so that we can perform SEGREL relocations. */
269 bfd_vma text_segment_base;
270 bfd_vma data_segment_base;
272 /* Whether we support multiple sub-spaces for shared libs. */
273 unsigned int multi_subspace:1;
275 /* Flags set when various size branches are detected. Used to
276 select suitable defaults for the stub group size. */
277 unsigned int has_12bit_branch:1;
278 unsigned int has_17bit_branch:1;
279 unsigned int has_22bit_branch:1;
281 /* Set if we need a .plt stub to support lazy dynamic linking. */
282 unsigned int need_plt_stub:1;
284 /* Small local sym cache. */
285 struct sym_cache sym_cache;
287 /* Data for LDM relocations. */
290 bfd_signed_vma refcount;
295 /* Various hash macros and functions. */
296 #define hppa_link_hash_table(p) \
297 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
298 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
300 #define hppa_elf_hash_entry(ent) \
301 ((struct elf32_hppa_link_hash_entry *)(ent))
303 #define hppa_stub_hash_entry(ent) \
304 ((struct elf32_hppa_stub_hash_entry *)(ent))
306 #define hppa_stub_hash_lookup(table, string, create, copy) \
307 ((struct elf32_hppa_stub_hash_entry *) \
308 bfd_hash_lookup ((table), (string), (create), (copy)))
310 #define hppa_elf_local_got_tls_type(abfd) \
311 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
313 #define hh_name(hh) \
314 (hh ? hh->eh.root.root.string : "<undef>")
316 #define eh_name(eh) \
317 (eh ? eh->root.root.string : "<undef>")
319 /* Assorted hash table functions. */
321 /* Initialize an entry in the stub hash table. */
323 static struct bfd_hash_entry *
324 stub_hash_newfunc (struct bfd_hash_entry *entry,
325 struct bfd_hash_table *table,
328 /* Allocate the structure if it has not already been allocated by a
332 entry = bfd_hash_allocate (table,
333 sizeof (struct elf32_hppa_stub_hash_entry));
338 /* Call the allocation method of the superclass. */
339 entry = bfd_hash_newfunc (entry, table, string);
342 struct elf32_hppa_stub_hash_entry *hsh;
344 /* Initialize the local fields. */
345 hsh = hppa_stub_hash_entry (entry);
346 hsh->stub_sec = NULL;
347 hsh->stub_offset = 0;
348 hsh->target_value = 0;
349 hsh->target_section = NULL;
350 hsh->stub_type = hppa_stub_long_branch;
358 /* Initialize an entry in the link hash table. */
360 static struct bfd_hash_entry *
361 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
362 struct bfd_hash_table *table,
365 /* Allocate the structure if it has not already been allocated by a
369 entry = bfd_hash_allocate (table,
370 sizeof (struct elf32_hppa_link_hash_entry));
375 /* Call the allocation method of the superclass. */
376 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
379 struct elf32_hppa_link_hash_entry *hh;
381 /* Initialize the local fields. */
382 hh = hppa_elf_hash_entry (entry);
383 hh->hsh_cache = NULL;
384 hh->dyn_relocs = NULL;
386 hh->tls_type = GOT_UNKNOWN;
392 /* Free the derived linker hash table. */
395 elf32_hppa_link_hash_table_free (bfd *obfd)
397 struct elf32_hppa_link_hash_table *htab
398 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
400 bfd_hash_table_free (&htab->bstab);
401 _bfd_elf_link_hash_table_free (obfd);
404 /* Create the derived linker hash table. The PA ELF port uses the derived
405 hash table to keep information specific to the PA ELF linker (without
406 using static variables). */
408 static struct bfd_link_hash_table *
409 elf32_hppa_link_hash_table_create (bfd *abfd)
411 struct elf32_hppa_link_hash_table *htab;
412 bfd_size_type amt = sizeof (*htab);
414 htab = bfd_zmalloc (amt);
418 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
419 sizeof (struct elf32_hppa_link_hash_entry),
426 /* Init the stub hash table too. */
427 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
428 sizeof (struct elf32_hppa_stub_hash_entry)))
430 _bfd_elf_link_hash_table_free (abfd);
433 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
435 htab->text_segment_base = (bfd_vma) -1;
436 htab->data_segment_base = (bfd_vma) -1;
437 return &htab->etab.root;
440 /* Initialize the linker stubs BFD so that we can use it for linker
441 created dynamic sections. */
444 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
446 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
448 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
449 htab->etab.dynobj = abfd;
452 /* Build a name for an entry in the stub hash table. */
455 hppa_stub_name (const asection *input_section,
456 const asection *sym_sec,
457 const struct elf32_hppa_link_hash_entry *hh,
458 const Elf_Internal_Rela *rela)
465 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
466 stub_name = bfd_malloc (len);
467 if (stub_name != NULL)
468 sprintf (stub_name, "%08x_%s+%x",
469 input_section->id & 0xffffffff,
471 (int) rela->r_addend & 0xffffffff);
475 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
476 stub_name = bfd_malloc (len);
477 if (stub_name != NULL)
478 sprintf (stub_name, "%08x_%x:%x+%x",
479 input_section->id & 0xffffffff,
480 sym_sec->id & 0xffffffff,
481 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
482 (int) rela->r_addend & 0xffffffff);
487 /* Look up an entry in the stub hash. Stub entries are cached because
488 creating the stub name takes a bit of time. */
490 static struct elf32_hppa_stub_hash_entry *
491 hppa_get_stub_entry (const asection *input_section,
492 const asection *sym_sec,
493 struct elf32_hppa_link_hash_entry *hh,
494 const Elf_Internal_Rela *rela,
495 struct elf32_hppa_link_hash_table *htab)
497 struct elf32_hppa_stub_hash_entry *hsh_entry;
498 const asection *id_sec;
500 /* If this input section is part of a group of sections sharing one
501 stub section, then use the id of the first section in the group.
502 Stub names need to include a section id, as there may well be
503 more than one stub used to reach say, printf, and we need to
504 distinguish between them. */
505 id_sec = htab->stub_group[input_section->id].link_sec;
509 if (hh != NULL && hh->hsh_cache != NULL
510 && hh->hsh_cache->hh == hh
511 && hh->hsh_cache->id_sec == id_sec)
513 hsh_entry = hh->hsh_cache;
519 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
520 if (stub_name == NULL)
523 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
524 stub_name, FALSE, FALSE);
526 hh->hsh_cache = hsh_entry;
534 /* Add a new stub entry to the stub hash. Not all fields of the new
535 stub entry are initialised. */
537 static struct elf32_hppa_stub_hash_entry *
538 hppa_add_stub (const char *stub_name,
540 struct elf32_hppa_link_hash_table *htab)
544 struct elf32_hppa_stub_hash_entry *hsh;
546 link_sec = htab->stub_group[section->id].link_sec;
547 stub_sec = htab->stub_group[section->id].stub_sec;
548 if (stub_sec == NULL)
550 stub_sec = htab->stub_group[link_sec->id].stub_sec;
551 if (stub_sec == NULL)
557 namelen = strlen (link_sec->name);
558 len = namelen + sizeof (STUB_SUFFIX);
559 s_name = bfd_alloc (htab->stub_bfd, len);
563 memcpy (s_name, link_sec->name, namelen);
564 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
565 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
566 if (stub_sec == NULL)
568 htab->stub_group[link_sec->id].stub_sec = stub_sec;
570 htab->stub_group[section->id].stub_sec = stub_sec;
573 /* Enter this entry into the linker stub hash table. */
574 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
578 /* xgettext:c-format */
579 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
580 section->owner, stub_name);
584 hsh->stub_sec = stub_sec;
585 hsh->stub_offset = 0;
586 hsh->id_sec = link_sec;
590 /* Determine the type of stub needed, if any, for a call. */
592 static enum elf32_hppa_stub_type
593 hppa_type_of_stub (asection *input_sec,
594 const Elf_Internal_Rela *rela,
595 struct elf32_hppa_link_hash_entry *hh,
597 struct bfd_link_info *info)
600 bfd_vma branch_offset;
601 bfd_vma max_branch_offset;
605 && hh->eh.plt.offset != (bfd_vma) -1
606 && hh->eh.dynindx != -1
608 && (bfd_link_pic (info)
609 || !hh->eh.def_regular
610 || hh->eh.root.type == bfd_link_hash_defweak))
612 /* We need an import stub. Decide between hppa_stub_import
613 and hppa_stub_import_shared later. */
614 return hppa_stub_import;
617 if (destination == (bfd_vma) -1)
618 return hppa_stub_none;
620 /* Determine where the call point is. */
621 location = (input_sec->output_offset
622 + input_sec->output_section->vma
625 branch_offset = destination - location - 8;
626 r_type = ELF32_R_TYPE (rela->r_info);
628 /* Determine if a long branch stub is needed. parisc branch offsets
629 are relative to the second instruction past the branch, ie. +8
630 bytes on from the branch instruction location. The offset is
631 signed and counts in units of 4 bytes. */
632 if (r_type == (unsigned int) R_PARISC_PCREL17F)
633 max_branch_offset = (1 << (17 - 1)) << 2;
635 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
636 max_branch_offset = (1 << (12 - 1)) << 2;
638 else /* R_PARISC_PCREL22F. */
639 max_branch_offset = (1 << (22 - 1)) << 2;
641 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
642 return hppa_stub_long_branch;
644 return hppa_stub_none;
647 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
648 IN_ARG contains the link info pointer. */
650 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
651 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
653 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
654 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
655 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
657 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
658 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
659 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
660 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
662 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
663 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
665 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
666 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
667 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
668 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
670 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
671 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
672 #define NOP 0x08000240 /* nop */
673 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
674 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
675 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
682 #define LDW_R1_DLT LDW_R1_R19
684 #define LDW_R1_DLT LDW_R1_DP
688 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
690 struct elf32_hppa_stub_hash_entry *hsh;
691 struct bfd_link_info *info;
692 struct elf32_hppa_link_hash_table *htab;
702 /* Massage our args to the form they really have. */
703 hsh = hppa_stub_hash_entry (bh);
704 info = (struct bfd_link_info *)in_arg;
706 htab = hppa_link_hash_table (info);
710 stub_sec = hsh->stub_sec;
712 /* Make a note of the offset within the stubs for this entry. */
713 hsh->stub_offset = stub_sec->size;
714 loc = stub_sec->contents + hsh->stub_offset;
716 stub_bfd = stub_sec->owner;
718 switch (hsh->stub_type)
720 case hppa_stub_long_branch:
721 /* Create the long branch. A long branch is formed with "ldil"
722 loading the upper bits of the target address into a register,
723 then branching with "be" which adds in the lower bits.
724 The "be" has its delay slot nullified. */
725 sym_value = (hsh->target_value
726 + hsh->target_section->output_offset
727 + hsh->target_section->output_section->vma);
729 val = hppa_field_adjust (sym_value, 0, e_lrsel);
730 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
731 bfd_put_32 (stub_bfd, insn, loc);
733 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
734 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
735 bfd_put_32 (stub_bfd, insn, loc + 4);
740 case hppa_stub_long_branch_shared:
741 /* Branches are relative. This is where we are going to. */
742 sym_value = (hsh->target_value
743 + hsh->target_section->output_offset
744 + hsh->target_section->output_section->vma);
746 /* And this is where we are coming from, more or less. */
747 sym_value -= (hsh->stub_offset
748 + stub_sec->output_offset
749 + stub_sec->output_section->vma);
751 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
752 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
753 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
754 bfd_put_32 (stub_bfd, insn, loc + 4);
756 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
757 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
758 bfd_put_32 (stub_bfd, insn, loc + 8);
762 case hppa_stub_import:
763 case hppa_stub_import_shared:
764 off = hsh->hh->eh.plt.offset;
765 if (off >= (bfd_vma) -2)
768 off &= ~ (bfd_vma) 1;
770 + htab->etab.splt->output_offset
771 + htab->etab.splt->output_section->vma
772 - elf_gp (htab->etab.splt->output_section->owner));
776 if (hsh->stub_type == hppa_stub_import_shared)
779 val = hppa_field_adjust (sym_value, 0, e_lrsel),
780 insn = hppa_rebuild_insn ((int) insn, val, 21);
781 bfd_put_32 (stub_bfd, insn, loc);
783 /* It is critical to use lrsel/rrsel here because we are using
784 two different offsets (+0 and +4) from sym_value. If we use
785 lsel/rsel then with unfortunate sym_values we will round
786 sym_value+4 up to the next 2k block leading to a mis-match
787 between the lsel and rsel value. */
788 val = hppa_field_adjust (sym_value, 0, e_rrsel);
789 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
790 bfd_put_32 (stub_bfd, insn, loc + 4);
792 if (htab->multi_subspace)
794 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
795 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
796 bfd_put_32 (stub_bfd, insn, loc + 8);
798 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
799 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
800 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
801 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
807 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
808 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
809 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
810 bfd_put_32 (stub_bfd, insn, loc + 12);
817 case hppa_stub_export:
818 /* Branches are relative. This is where we are going to. */
819 sym_value = (hsh->target_value
820 + hsh->target_section->output_offset
821 + hsh->target_section->output_section->vma);
823 /* And this is where we are coming from. */
824 sym_value -= (hsh->stub_offset
825 + stub_sec->output_offset
826 + stub_sec->output_section->vma);
828 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
829 && (!htab->has_22bit_branch
830 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
833 /* xgettext:c-format */
834 (_("%pB(%pA+%#" PRIx64 "): "
835 "cannot reach %s, recompile with -ffunction-sections"),
836 hsh->target_section->owner,
838 (uint64_t) hsh->stub_offset,
839 hsh->bh_root.string);
840 bfd_set_error (bfd_error_bad_value);
844 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
845 if (!htab->has_22bit_branch)
846 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
848 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
849 bfd_put_32 (stub_bfd, insn, loc);
851 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
852 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
853 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
854 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
855 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
857 /* Point the function symbol at the stub. */
858 hsh->hh->eh.root.u.def.section = stub_sec;
859 hsh->hh->eh.root.u.def.value = stub_sec->size;
869 stub_sec->size += size;
894 /* As above, but don't actually build the stub. Just bump offset so
895 we know stub section sizes. */
898 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
900 struct elf32_hppa_stub_hash_entry *hsh;
901 struct elf32_hppa_link_hash_table *htab;
904 /* Massage our args to the form they really have. */
905 hsh = hppa_stub_hash_entry (bh);
908 if (hsh->stub_type == hppa_stub_long_branch)
910 else if (hsh->stub_type == hppa_stub_long_branch_shared)
912 else if (hsh->stub_type == hppa_stub_export)
914 else /* hppa_stub_import or hppa_stub_import_shared. */
916 if (htab->multi_subspace)
922 hsh->stub_sec->size += size;
926 /* Return nonzero if ABFD represents an HPPA ELF32 file.
927 Additionally we set the default architecture and machine. */
930 elf32_hppa_object_p (bfd *abfd)
932 Elf_Internal_Ehdr * i_ehdrp;
935 i_ehdrp = elf_elfheader (abfd);
936 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
938 /* GCC on hppa-linux produces binaries with OSABI=GNU,
939 but the kernel produces corefiles with OSABI=SysV. */
940 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
941 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
944 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
946 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
947 but the kernel produces corefiles with OSABI=SysV. */
948 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
949 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
954 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
958 flags = i_ehdrp->e_flags;
959 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
962 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
964 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
966 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
967 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
968 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
973 /* Create the .plt and .got sections, and set up our hash table
974 short-cuts to various dynamic sections. */
977 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
979 struct elf32_hppa_link_hash_table *htab;
980 struct elf_link_hash_entry *eh;
982 /* Don't try to create the .plt and .got twice. */
983 htab = hppa_link_hash_table (info);
986 if (htab->etab.splt != NULL)
989 /* Call the generic code to do most of the work. */
990 if (! _bfd_elf_create_dynamic_sections (abfd, info))
993 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
994 application, because __canonicalize_funcptr_for_compare needs it. */
995 eh = elf_hash_table (info)->hgot;
996 eh->forced_local = 0;
997 eh->other = STV_DEFAULT;
998 return bfd_elf_link_record_dynamic_symbol (info, eh);
1001 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1004 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1005 struct elf_link_hash_entry *eh_dir,
1006 struct elf_link_hash_entry *eh_ind)
1008 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1010 hh_dir = hppa_elf_hash_entry (eh_dir);
1011 hh_ind = hppa_elf_hash_entry (eh_ind);
1013 if (hh_ind->dyn_relocs != NULL
1014 && eh_ind->root.type == bfd_link_hash_indirect)
1016 if (hh_dir->dyn_relocs != NULL)
1018 struct elf_dyn_relocs **hdh_pp;
1019 struct elf_dyn_relocs *hdh_p;
1021 /* Add reloc counts against the indirect sym to the direct sym
1022 list. Merge any entries against the same section. */
1023 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1025 struct elf_dyn_relocs *hdh_q;
1027 for (hdh_q = hh_dir->dyn_relocs;
1029 hdh_q = hdh_q->next)
1030 if (hdh_q->sec == hdh_p->sec)
1032 #if RELATIVE_DYNRELOCS
1033 hdh_q->pc_count += hdh_p->pc_count;
1035 hdh_q->count += hdh_p->count;
1036 *hdh_pp = hdh_p->next;
1040 hdh_pp = &hdh_p->next;
1042 *hdh_pp = hh_dir->dyn_relocs;
1045 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1046 hh_ind->dyn_relocs = NULL;
1049 if (eh_ind->root.type == bfd_link_hash_indirect)
1051 hh_dir->plabel |= hh_ind->plabel;
1052 hh_dir->tls_type |= hh_ind->tls_type;
1053 hh_ind->tls_type = GOT_UNKNOWN;
1056 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1060 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1061 int r_type, int is_local ATTRIBUTE_UNUSED)
1063 /* For now we don't support linker optimizations. */
1067 /* Return a pointer to the local GOT, PLT and TLS reference counts
1068 for ABFD. Returns NULL if the storage allocation fails. */
1070 static bfd_signed_vma *
1071 hppa32_elf_local_refcounts (bfd *abfd)
1073 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1074 bfd_signed_vma *local_refcounts;
1076 local_refcounts = elf_local_got_refcounts (abfd);
1077 if (local_refcounts == NULL)
1081 /* Allocate space for local GOT and PLT reference
1082 counts. Done this way to save polluting elf_obj_tdata
1083 with another target specific pointer. */
1084 size = symtab_hdr->sh_info;
1085 size *= 2 * sizeof (bfd_signed_vma);
1086 /* Add in space to store the local GOT TLS types. */
1087 size += symtab_hdr->sh_info;
1088 local_refcounts = bfd_zalloc (abfd, size);
1089 if (local_refcounts == NULL)
1091 elf_local_got_refcounts (abfd) = local_refcounts;
1092 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1093 symtab_hdr->sh_info);
1095 return local_refcounts;
1099 /* Look through the relocs for a section during the first phase, and
1100 calculate needed space in the global offset table, procedure linkage
1101 table, and dynamic reloc sections. At this point we haven't
1102 necessarily read all the input files. */
1105 elf32_hppa_check_relocs (bfd *abfd,
1106 struct bfd_link_info *info,
1108 const Elf_Internal_Rela *relocs)
1110 Elf_Internal_Shdr *symtab_hdr;
1111 struct elf_link_hash_entry **eh_syms;
1112 const Elf_Internal_Rela *rela;
1113 const Elf_Internal_Rela *rela_end;
1114 struct elf32_hppa_link_hash_table *htab;
1117 if (bfd_link_relocatable (info))
1120 htab = hppa_link_hash_table (info);
1123 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1124 eh_syms = elf_sym_hashes (abfd);
1127 rela_end = relocs + sec->reloc_count;
1128 for (rela = relocs; rela < rela_end; rela++)
1137 unsigned int r_symndx, r_type;
1138 struct elf32_hppa_link_hash_entry *hh;
1141 r_symndx = ELF32_R_SYM (rela->r_info);
1143 if (r_symndx < symtab_hdr->sh_info)
1147 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1148 while (hh->eh.root.type == bfd_link_hash_indirect
1149 || hh->eh.root.type == bfd_link_hash_warning)
1150 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1153 r_type = ELF32_R_TYPE (rela->r_info);
1154 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1158 case R_PARISC_DLTIND14F:
1159 case R_PARISC_DLTIND14R:
1160 case R_PARISC_DLTIND21L:
1161 /* This symbol requires a global offset table entry. */
1162 need_entry = NEED_GOT;
1165 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1166 case R_PARISC_PLABEL21L:
1167 case R_PARISC_PLABEL32:
1168 /* If the addend is non-zero, we break badly. */
1169 if (rela->r_addend != 0)
1172 /* If we are creating a shared library, then we need to
1173 create a PLT entry for all PLABELs, because PLABELs with
1174 local symbols may be passed via a pointer to another
1175 object. Additionally, output a dynamic relocation
1176 pointing to the PLT entry.
1178 For executables, the original 32-bit ABI allowed two
1179 different styles of PLABELs (function pointers): For
1180 global functions, the PLABEL word points into the .plt
1181 two bytes past a (function address, gp) pair, and for
1182 local functions the PLABEL points directly at the
1183 function. The magic +2 for the first type allows us to
1184 differentiate between the two. As you can imagine, this
1185 is a real pain when it comes to generating code to call
1186 functions indirectly or to compare function pointers.
1187 We avoid the mess by always pointing a PLABEL into the
1188 .plt, even for local functions. */
1189 need_entry = PLT_PLABEL | NEED_PLT;
1190 if (bfd_link_pic (info))
1191 need_entry |= NEED_DYNREL;
1194 case R_PARISC_PCREL12F:
1195 htab->has_12bit_branch = 1;
1198 case R_PARISC_PCREL17C:
1199 case R_PARISC_PCREL17F:
1200 htab->has_17bit_branch = 1;
1203 case R_PARISC_PCREL22F:
1204 htab->has_22bit_branch = 1;
1206 /* Function calls might need to go through the .plt, and
1207 might require long branch stubs. */
1210 /* We know local syms won't need a .plt entry, and if
1211 they need a long branch stub we can't guarantee that
1212 we can reach the stub. So just flag an error later
1213 if we're doing a shared link and find we need a long
1219 /* Global symbols will need a .plt entry if they remain
1220 global, and in most cases won't need a long branch
1221 stub. Unfortunately, we have to cater for the case
1222 where a symbol is forced local by versioning, or due
1223 to symbolic linking, and we lose the .plt entry. */
1224 need_entry = NEED_PLT;
1225 if (hh->eh.type == STT_PARISC_MILLI)
1230 case R_PARISC_SEGBASE: /* Used to set segment base. */
1231 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1232 case R_PARISC_PCREL14F: /* PC relative load/store. */
1233 case R_PARISC_PCREL14R:
1234 case R_PARISC_PCREL17R: /* External branches. */
1235 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1236 case R_PARISC_PCREL32:
1237 /* We don't need to propagate the relocation if linking a
1238 shared object since these are section relative. */
1241 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1242 case R_PARISC_DPREL14R:
1243 case R_PARISC_DPREL21L:
1244 if (bfd_link_pic (info))
1247 /* xgettext:c-format */
1248 (_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1250 elf_hppa_howto_table[r_type].name);
1251 bfd_set_error (bfd_error_bad_value);
1256 case R_PARISC_DIR17F: /* Used for external branches. */
1257 case R_PARISC_DIR17R:
1258 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1259 case R_PARISC_DIR14R:
1260 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1261 case R_PARISC_DIR32: /* .word relocs. */
1262 /* We may want to output a dynamic relocation later. */
1263 need_entry = NEED_DYNREL;
1266 /* This relocation describes the C++ object vtable hierarchy.
1267 Reconstruct it for later use during GC. */
1268 case R_PARISC_GNU_VTINHERIT:
1269 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1273 /* This relocation describes which C++ vtable entries are actually
1274 used. Record for later use during GC. */
1275 case R_PARISC_GNU_VTENTRY:
1276 BFD_ASSERT (hh != NULL);
1278 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1282 case R_PARISC_TLS_GD21L:
1283 case R_PARISC_TLS_GD14R:
1284 case R_PARISC_TLS_LDM21L:
1285 case R_PARISC_TLS_LDM14R:
1286 need_entry = NEED_GOT;
1289 case R_PARISC_TLS_IE21L:
1290 case R_PARISC_TLS_IE14R:
1291 if (bfd_link_dll (info))
1292 info->flags |= DF_STATIC_TLS;
1293 need_entry = NEED_GOT;
1300 /* Now carry out our orders. */
1301 if (need_entry & NEED_GOT)
1303 int tls_type = GOT_NORMAL;
1309 case R_PARISC_TLS_GD21L:
1310 case R_PARISC_TLS_GD14R:
1311 tls_type = GOT_TLS_GD;
1313 case R_PARISC_TLS_LDM21L:
1314 case R_PARISC_TLS_LDM14R:
1315 tls_type = GOT_TLS_LDM;
1317 case R_PARISC_TLS_IE21L:
1318 case R_PARISC_TLS_IE14R:
1319 tls_type = GOT_TLS_IE;
1323 /* Allocate space for a GOT entry, as well as a dynamic
1324 relocation for this entry. */
1325 if (htab->etab.sgot == NULL)
1327 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1333 if (tls_type == GOT_TLS_LDM)
1334 htab->tls_ldm_got.refcount += 1;
1336 hh->eh.got.refcount += 1;
1337 hh->tls_type |= tls_type;
1341 bfd_signed_vma *local_got_refcounts;
1343 /* This is a global offset table entry for a local symbol. */
1344 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1345 if (local_got_refcounts == NULL)
1347 if (tls_type == GOT_TLS_LDM)
1348 htab->tls_ldm_got.refcount += 1;
1350 local_got_refcounts[r_symndx] += 1;
1352 hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
1356 if (need_entry & NEED_PLT)
1358 /* If we are creating a shared library, and this is a reloc
1359 against a weak symbol or a global symbol in a dynamic
1360 object, then we will be creating an import stub and a
1361 .plt entry for the symbol. Similarly, on a normal link
1362 to symbols defined in a dynamic object we'll need the
1363 import stub and a .plt entry. We don't know yet whether
1364 the symbol is defined or not, so make an entry anyway and
1365 clean up later in adjust_dynamic_symbol. */
1366 if ((sec->flags & SEC_ALLOC) != 0)
1370 hh->eh.needs_plt = 1;
1371 hh->eh.plt.refcount += 1;
1373 /* If this .plt entry is for a plabel, mark it so
1374 that adjust_dynamic_symbol will keep the entry
1375 even if it appears to be local. */
1376 if (need_entry & PLT_PLABEL)
1379 else if (need_entry & PLT_PLABEL)
1381 bfd_signed_vma *local_got_refcounts;
1382 bfd_signed_vma *local_plt_refcounts;
1384 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1385 if (local_got_refcounts == NULL)
1387 local_plt_refcounts = (local_got_refcounts
1388 + symtab_hdr->sh_info);
1389 local_plt_refcounts[r_symndx] += 1;
1394 if ((need_entry & NEED_DYNREL) != 0
1395 && (sec->flags & SEC_ALLOC) != 0)
1397 /* Flag this symbol as having a non-got, non-plt reference
1398 so that we generate copy relocs if it turns out to be
1401 hh->eh.non_got_ref = 1;
1403 /* If we are creating a shared library then we need to copy
1404 the reloc into the shared library. However, if we are
1405 linking with -Bsymbolic, we need only copy absolute
1406 relocs or relocs against symbols that are not defined in
1407 an object we are including in the link. PC- or DP- or
1408 DLT-relative relocs against any local sym or global sym
1409 with DEF_REGULAR set, can be discarded. At this point we
1410 have not seen all the input files, so it is possible that
1411 DEF_REGULAR is not set now but will be set later (it is
1412 never cleared). We account for that possibility below by
1413 storing information in the dyn_relocs field of the
1416 A similar situation to the -Bsymbolic case occurs when
1417 creating shared libraries and symbol visibility changes
1418 render the symbol local.
1420 As it turns out, all the relocs we will be creating here
1421 are absolute, so we cannot remove them on -Bsymbolic
1422 links or visibility changes anyway. A STUB_REL reloc
1423 is absolute too, as in that case it is the reloc in the
1424 stub we will be creating, rather than copying the PCREL
1425 reloc in the branch.
1427 If on the other hand, we are creating an executable, we
1428 may need to keep relocations for symbols satisfied by a
1429 dynamic library if we manage to avoid copy relocs for the
1431 if ((bfd_link_pic (info)
1432 && (IS_ABSOLUTE_RELOC (r_type)
1434 && (!SYMBOLIC_BIND (info, &hh->eh)
1435 || hh->eh.root.type == bfd_link_hash_defweak
1436 || !hh->eh.def_regular))))
1437 || (ELIMINATE_COPY_RELOCS
1438 && !bfd_link_pic (info)
1440 && (hh->eh.root.type == bfd_link_hash_defweak
1441 || !hh->eh.def_regular)))
1443 struct elf_dyn_relocs *hdh_p;
1444 struct elf_dyn_relocs **hdh_head;
1446 /* Create a reloc section in dynobj and make room for
1450 sreloc = _bfd_elf_make_dynamic_reloc_section
1451 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1455 bfd_set_error (bfd_error_bad_value);
1460 /* If this is a global symbol, we count the number of
1461 relocations we need for this symbol. */
1464 hdh_head = &hh->dyn_relocs;
1468 /* Track dynamic relocs needed for local syms too.
1469 We really need local syms available to do this
1473 Elf_Internal_Sym *isym;
1475 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1480 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1484 vpp = &elf_section_data (sr)->local_dynrel;
1485 hdh_head = (struct elf_dyn_relocs **) vpp;
1489 if (hdh_p == NULL || hdh_p->sec != sec)
1491 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1494 hdh_p->next = *hdh_head;
1498 #if RELATIVE_DYNRELOCS
1499 hdh_p->pc_count = 0;
1504 #if RELATIVE_DYNRELOCS
1505 if (!IS_ABSOLUTE_RELOC (rtype))
1506 hdh_p->pc_count += 1;
1515 /* Return the section that should be marked against garbage collection
1516 for a given relocation. */
1519 elf32_hppa_gc_mark_hook (asection *sec,
1520 struct bfd_link_info *info,
1521 Elf_Internal_Rela *rela,
1522 struct elf_link_hash_entry *hh,
1523 Elf_Internal_Sym *sym)
1526 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1528 case R_PARISC_GNU_VTINHERIT:
1529 case R_PARISC_GNU_VTENTRY:
1533 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1536 /* Support for core dump NOTE sections. */
1539 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1544 switch (note->descsz)
1549 case 396: /* Linux/hppa */
1551 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1554 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1563 /* Make a ".reg/999" section. */
1564 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1565 size, note->descpos + offset);
1569 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1571 switch (note->descsz)
1576 case 124: /* Linux/hppa elf_prpsinfo. */
1577 elf_tdata (abfd)->core->program
1578 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1579 elf_tdata (abfd)->core->command
1580 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1583 /* Note that for some reason, a spurious space is tacked
1584 onto the end of the args in some (at least one anyway)
1585 implementations, so strip it off if it exists. */
1587 char *command = elf_tdata (abfd)->core->command;
1588 int n = strlen (command);
1590 if (0 < n && command[n - 1] == ' ')
1591 command[n - 1] = '\0';
1597 /* Our own version of hide_symbol, so that we can keep plt entries for
1601 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1602 struct elf_link_hash_entry *eh,
1603 bfd_boolean force_local)
1607 eh->forced_local = 1;
1608 if (eh->dynindx != -1)
1611 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1615 /* PR 16082: Remove version information from hidden symbol. */
1616 eh->verinfo.verdef = NULL;
1617 eh->verinfo.vertree = NULL;
1620 /* STT_GNU_IFUNC symbol must go through PLT. */
1621 if (! hppa_elf_hash_entry (eh)->plabel
1622 && eh->type != STT_GNU_IFUNC)
1625 eh->plt = elf_hash_table (info)->init_plt_offset;
1629 /* Find any dynamic relocs that apply to read-only sections. */
1632 readonly_dynrelocs (struct elf_link_hash_entry *eh)
1634 struct elf32_hppa_link_hash_entry *hh;
1635 struct elf_dyn_relocs *hdh_p;
1637 hh = hppa_elf_hash_entry (eh);
1638 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
1640 asection *sec = hdh_p->sec->output_section;
1642 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1648 /* Return true if we have dynamic relocs against H or any of its weak
1649 aliases, that apply to read-only sections. Cannot be used after
1650 size_dynamic_sections. */
1653 alias_readonly_dynrelocs (struct elf_link_hash_entry *eh)
1655 struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1658 if (readonly_dynrelocs (&hh->eh))
1660 hh = hppa_elf_hash_entry (hh->eh.u.alias);
1661 } while (hh != NULL && &hh->eh != eh);
1666 /* Adjust a symbol defined by a dynamic object and referenced by a
1667 regular object. The current definition is in some section of the
1668 dynamic object, but we're not including those sections. We have to
1669 change the definition to something the rest of the link can
1673 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1674 struct elf_link_hash_entry *eh)
1676 struct elf32_hppa_link_hash_table *htab;
1677 asection *sec, *srel;
1679 /* If this is a function, put it in the procedure linkage table. We
1680 will fill in the contents of the procedure linkage table later. */
1681 if (eh->type == STT_FUNC
1684 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1685 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1686 /* Discard dyn_relocs when non-pic if we've decided that a
1687 function symbol is local. */
1688 if (!bfd_link_pic (info) && local)
1689 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1691 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1692 The refcounts are not reliable when it has been hidden since
1693 hide_symbol can be called before the plabel flag is set. */
1694 if (hppa_elf_hash_entry (eh)->plabel)
1695 eh->plt.refcount = 1;
1697 /* Note that unlike some other backends, the refcount is not
1698 incremented for a non-call (and non-plabel) function reference. */
1699 else if (eh->plt.refcount <= 0
1702 /* The .plt entry is not needed when:
1703 a) Garbage collection has removed all references to the
1705 b) We know for certain the symbol is defined in this
1706 object, and it's not a weak definition, nor is the symbol
1707 used by a plabel relocation. Either this object is the
1708 application or we are doing a shared symbolic link. */
1709 eh->plt.offset = (bfd_vma) -1;
1713 /* Unlike other targets, elf32-hppa.c does not define a function
1714 symbol in a non-pic executable on PLT stub code, so we don't
1715 have a local definition in that case. ie. dyn_relocs can't
1718 /* Function symbols can't have copy relocs. */
1722 eh->plt.offset = (bfd_vma) -1;
1724 htab = hppa_link_hash_table (info);
1728 /* If this is a weak symbol, and there is a real definition, the
1729 processor independent code will have arranged for us to see the
1730 real definition first, and we can just use the same value. */
1731 if (eh->is_weakalias)
1733 struct elf_link_hash_entry *def = weakdef (eh);
1734 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1735 eh->root.u.def.section = def->root.u.def.section;
1736 eh->root.u.def.value = def->root.u.def.value;
1737 if (def->root.u.def.section == htab->etab.sdynbss
1738 || def->root.u.def.section == htab->etab.sdynrelro)
1739 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1743 /* This is a reference to a symbol defined by a dynamic object which
1744 is not a function. */
1746 /* If we are creating a shared library, we must presume that the
1747 only references to the symbol are via the global offset table.
1748 For such cases we need not do anything here; the relocations will
1749 be handled correctly by relocate_section. */
1750 if (bfd_link_pic (info))
1753 /* If there are no references to this symbol that do not use the
1754 GOT, we don't need to generate a copy reloc. */
1755 if (!eh->non_got_ref)
1758 /* If -z nocopyreloc was given, we won't generate them either. */
1759 if (info->nocopyreloc)
1762 /* If we don't find any dynamic relocs in read-only sections, then
1763 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1764 if (ELIMINATE_COPY_RELOCS
1765 && !alias_readonly_dynrelocs (eh))
1768 /* We must allocate the symbol in our .dynbss section, which will
1769 become part of the .bss section of the executable. There will be
1770 an entry for this symbol in the .dynsym section. The dynamic
1771 object will contain position independent code, so all references
1772 from the dynamic object to this symbol will go through the global
1773 offset table. The dynamic linker will use the .dynsym entry to
1774 determine the address it must put in the global offset table, so
1775 both the dynamic object and the regular object will refer to the
1776 same memory location for the variable. */
1777 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1779 sec = htab->etab.sdynrelro;
1780 srel = htab->etab.sreldynrelro;
1784 sec = htab->etab.sdynbss;
1785 srel = htab->etab.srelbss;
1787 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1789 /* We must generate a COPY reloc to tell the dynamic linker to
1790 copy the initial value out of the dynamic object and into the
1791 runtime process image. */
1792 srel->size += sizeof (Elf32_External_Rela);
1796 /* We no longer want dyn_relocs. */
1797 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1798 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1801 /* If EH is undefined, make it dynamic if that makes sense. */
1804 ensure_undef_dynamic (struct bfd_link_info *info,
1805 struct elf_link_hash_entry *eh)
1807 struct elf_link_hash_table *htab = elf_hash_table (info);
1809 if (htab->dynamic_sections_created
1810 && (eh->root.type == bfd_link_hash_undefweak
1811 || eh->root.type == bfd_link_hash_undefined)
1812 && eh->dynindx == -1
1813 && !eh->forced_local
1814 && eh->type != STT_PARISC_MILLI
1815 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1816 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1817 return bfd_elf_link_record_dynamic_symbol (info, eh);
1821 /* Allocate space in the .plt for entries that won't have relocations.
1822 ie. plabel entries. */
1825 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1827 struct bfd_link_info *info;
1828 struct elf32_hppa_link_hash_table *htab;
1829 struct elf32_hppa_link_hash_entry *hh;
1832 if (eh->root.type == bfd_link_hash_indirect)
1835 info = (struct bfd_link_info *) inf;
1836 hh = hppa_elf_hash_entry (eh);
1837 htab = hppa_link_hash_table (info);
1841 if (htab->etab.dynamic_sections_created
1842 && eh->plt.refcount > 0)
1844 if (!ensure_undef_dynamic (info, eh))
1847 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1849 /* Allocate these later. From this point on, h->plabel
1850 means that the plt entry is only used by a plabel.
1851 We'll be using a normal plt entry for this symbol, so
1852 clear the plabel indicator. */
1856 else if (hh->plabel)
1858 /* Make an entry in the .plt section for plabel references
1859 that won't have a .plt entry for other reasons. */
1860 sec = htab->etab.splt;
1861 eh->plt.offset = sec->size;
1862 sec->size += PLT_ENTRY_SIZE;
1863 if (bfd_link_pic (info))
1864 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1868 /* No .plt entry needed. */
1869 eh->plt.offset = (bfd_vma) -1;
1875 eh->plt.offset = (bfd_vma) -1;
1882 /* Calculate size of GOT entries for symbol given its TLS_TYPE. */
1884 static inline unsigned int
1885 got_entries_needed (int tls_type)
1887 unsigned int need = 0;
1889 if ((tls_type & GOT_NORMAL) != 0)
1890 need += GOT_ENTRY_SIZE;
1891 if ((tls_type & GOT_TLS_GD) != 0)
1892 need += GOT_ENTRY_SIZE * 2;
1893 if ((tls_type & GOT_TLS_IE) != 0)
1894 need += GOT_ENTRY_SIZE;
1898 /* Calculate size of relocs needed for symbol given its TLS_TYPE and
1899 NEEDed GOT entries. TPREL_KNOWN says a TPREL offset can be
1900 calculated at link time. DTPREL_KNOWN says the same for a DTPREL
1903 static inline unsigned int
1904 got_relocs_needed (int tls_type, unsigned int need,
1905 bfd_boolean dtprel_known, bfd_boolean tprel_known)
1907 /* All the entries we allocated need relocs.
1908 Except for GD and IE with local symbols. */
1909 if ((tls_type & GOT_TLS_GD) != 0 && dtprel_known)
1910 need -= GOT_ENTRY_SIZE;
1911 if ((tls_type & GOT_TLS_IE) != 0 && tprel_known)
1912 need -= GOT_ENTRY_SIZE;
1913 return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
1916 /* Allocate space in .plt, .got and associated reloc sections for
1920 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1922 struct bfd_link_info *info;
1923 struct elf32_hppa_link_hash_table *htab;
1925 struct elf32_hppa_link_hash_entry *hh;
1926 struct elf_dyn_relocs *hdh_p;
1928 if (eh->root.type == bfd_link_hash_indirect)
1932 htab = hppa_link_hash_table (info);
1936 hh = hppa_elf_hash_entry (eh);
1938 if (htab->etab.dynamic_sections_created
1939 && eh->plt.offset != (bfd_vma) -1
1941 && eh->plt.refcount > 0)
1943 /* Make an entry in the .plt section. */
1944 sec = htab->etab.splt;
1945 eh->plt.offset = sec->size;
1946 sec->size += PLT_ENTRY_SIZE;
1948 /* We also need to make an entry in the .rela.plt section. */
1949 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1950 htab->need_plt_stub = 1;
1953 if (eh->got.refcount > 0)
1957 if (!ensure_undef_dynamic (info, eh))
1960 sec = htab->etab.sgot;
1961 eh->got.offset = sec->size;
1962 need = got_entries_needed (hh->tls_type);
1964 if (htab->etab.dynamic_sections_created
1965 && (bfd_link_dll (info)
1966 || (bfd_link_pic (info) && (hh->tls_type & GOT_NORMAL) != 0)
1967 || (eh->dynindx != -1
1968 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
1969 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1971 bfd_boolean local = SYMBOL_REFERENCES_LOCAL (info, eh);
1972 htab->etab.srelgot->size
1973 += got_relocs_needed (hh->tls_type, need, local,
1974 local && bfd_link_executable (info));
1978 eh->got.offset = (bfd_vma) -1;
1980 /* If no dynamic sections we can't have dynamic relocs. */
1981 if (!htab->etab.dynamic_sections_created)
1982 hh->dyn_relocs = NULL;
1984 /* Discard relocs on undefined syms with non-default visibility. */
1985 else if ((eh->root.type == bfd_link_hash_undefined
1986 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
1987 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1988 hh->dyn_relocs = NULL;
1990 if (hh->dyn_relocs == NULL)
1993 /* If this is a -Bsymbolic shared link, then we need to discard all
1994 space allocated for dynamic pc-relative relocs against symbols
1995 defined in a regular object. For the normal shared case, discard
1996 space for relocs that have become local due to symbol visibility
1998 if (bfd_link_pic (info))
2000 #if RELATIVE_DYNRELOCS
2001 if (SYMBOL_CALLS_LOCAL (info, eh))
2003 struct elf_dyn_relocs **hdh_pp;
2005 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2007 hdh_p->count -= hdh_p->pc_count;
2008 hdh_p->pc_count = 0;
2009 if (hdh_p->count == 0)
2010 *hdh_pp = hdh_p->next;
2012 hdh_pp = &hdh_p->next;
2017 if (hh->dyn_relocs != NULL)
2019 if (!ensure_undef_dynamic (info, eh))
2023 else if (ELIMINATE_COPY_RELOCS)
2025 /* For the non-shared case, discard space for relocs against
2026 symbols which turn out to need copy relocs or are not
2029 if (eh->dynamic_adjusted
2031 && !ELF_COMMON_DEF_P (eh))
2033 if (!ensure_undef_dynamic (info, eh))
2036 if (eh->dynindx == -1)
2037 hh->dyn_relocs = NULL;
2040 hh->dyn_relocs = NULL;
2043 /* Finally, allocate space. */
2044 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
2046 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2047 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2053 /* This function is called via elf_link_hash_traverse to force
2054 millicode symbols local so they do not end up as globals in the
2055 dynamic symbol table. We ought to be able to do this in
2056 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2057 for all dynamic symbols. Arguably, this is a bug in
2058 elf_adjust_dynamic_symbol. */
2061 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2062 struct bfd_link_info *info)
2064 if (eh->type == STT_PARISC_MILLI
2065 && !eh->forced_local)
2067 elf32_hppa_hide_symbol (info, eh, TRUE);
2072 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
2073 read-only sections. */
2076 maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf)
2080 if (eh->root.type == bfd_link_hash_indirect)
2083 sec = readonly_dynrelocs (eh);
2086 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2088 info->flags |= DF_TEXTREL;
2089 info->callbacks->minfo
2090 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
2091 sec->owner, eh->root.root.string, sec);
2093 /* Not an error, just cut short the traversal. */
2099 /* Set the sizes of the dynamic sections. */
2102 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2103 struct bfd_link_info *info)
2105 struct elf32_hppa_link_hash_table *htab;
2111 htab = hppa_link_hash_table (info);
2115 dynobj = htab->etab.dynobj;
2119 if (htab->etab.dynamic_sections_created)
2121 /* Set the contents of the .interp section to the interpreter. */
2122 if (bfd_link_executable (info) && !info->nointerp)
2124 sec = bfd_get_linker_section (dynobj, ".interp");
2127 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2128 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2131 /* Force millicode symbols local. */
2132 elf_link_hash_traverse (&htab->etab,
2133 clobber_millicode_symbols,
2137 /* Set up .got and .plt offsets for local syms, and space for local
2139 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2141 bfd_signed_vma *local_got;
2142 bfd_signed_vma *end_local_got;
2143 bfd_signed_vma *local_plt;
2144 bfd_signed_vma *end_local_plt;
2145 bfd_size_type locsymcount;
2146 Elf_Internal_Shdr *symtab_hdr;
2148 char *local_tls_type;
2150 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2153 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2155 struct elf_dyn_relocs *hdh_p;
2157 for (hdh_p = ((struct elf_dyn_relocs *)
2158 elf_section_data (sec)->local_dynrel);
2160 hdh_p = hdh_p->next)
2162 if (!bfd_is_abs_section (hdh_p->sec)
2163 && bfd_is_abs_section (hdh_p->sec->output_section))
2165 /* Input section has been discarded, either because
2166 it is a copy of a linkonce section or due to
2167 linker script /DISCARD/, so we'll be discarding
2170 else if (hdh_p->count != 0)
2172 srel = elf_section_data (hdh_p->sec)->sreloc;
2173 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2174 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2175 info->flags |= DF_TEXTREL;
2180 local_got = elf_local_got_refcounts (ibfd);
2184 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2185 locsymcount = symtab_hdr->sh_info;
2186 end_local_got = local_got + locsymcount;
2187 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2188 sec = htab->etab.sgot;
2189 srel = htab->etab.srelgot;
2190 for (; local_got < end_local_got; ++local_got)
2196 *local_got = sec->size;
2197 need = got_entries_needed (*local_tls_type);
2199 if (bfd_link_dll (info)
2200 || (bfd_link_pic (info)
2201 && (*local_tls_type & GOT_NORMAL) != 0))
2202 htab->etab.srelgot->size
2203 += got_relocs_needed (*local_tls_type, need, TRUE,
2204 bfd_link_executable (info));
2207 *local_got = (bfd_vma) -1;
2212 local_plt = end_local_got;
2213 end_local_plt = local_plt + locsymcount;
2214 if (! htab->etab.dynamic_sections_created)
2216 /* Won't be used, but be safe. */
2217 for (; local_plt < end_local_plt; ++local_plt)
2218 *local_plt = (bfd_vma) -1;
2222 sec = htab->etab.splt;
2223 srel = htab->etab.srelplt;
2224 for (; local_plt < end_local_plt; ++local_plt)
2228 *local_plt = sec->size;
2229 sec->size += PLT_ENTRY_SIZE;
2230 if (bfd_link_pic (info))
2231 srel->size += sizeof (Elf32_External_Rela);
2234 *local_plt = (bfd_vma) -1;
2239 if (htab->tls_ldm_got.refcount > 0)
2241 /* Allocate 2 got entries and 1 dynamic reloc for
2242 R_PARISC_TLS_DTPMOD32 relocs. */
2243 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2244 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2245 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2248 htab->tls_ldm_got.offset = -1;
2250 /* Do all the .plt entries without relocs first. The dynamic linker
2251 uses the last .plt reloc to find the end of the .plt (and hence
2252 the start of the .got) for lazy linking. */
2253 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2255 /* Allocate global sym .plt and .got entries, and space for global
2256 sym dynamic relocs. */
2257 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2259 /* The check_relocs and adjust_dynamic_symbol entry points have
2260 determined the sizes of the various dynamic sections. Allocate
2263 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2265 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2268 if (sec == htab->etab.splt)
2270 if (htab->need_plt_stub)
2272 /* Make space for the plt stub at the end of the .plt
2273 section. We want this stub right at the end, up
2274 against the .got section. */
2275 int gotalign = bfd_section_alignment (dynobj, htab->etab.sgot);
2276 int pltalign = bfd_section_alignment (dynobj, sec);
2279 if (gotalign > pltalign)
2280 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2281 mask = ((bfd_size_type) 1 << gotalign) - 1;
2282 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2285 else if (sec == htab->etab.sgot
2286 || sec == htab->etab.sdynbss
2287 || sec == htab->etab.sdynrelro)
2289 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2293 /* Remember whether there are any reloc sections other
2295 if (sec != htab->etab.srelplt)
2298 /* We use the reloc_count field as a counter if we need
2299 to copy relocs into the output file. */
2300 sec->reloc_count = 0;
2305 /* It's not one of our sections, so don't allocate space. */
2311 /* If we don't need this section, strip it from the
2312 output file. This is mostly to handle .rela.bss and
2313 .rela.plt. We must create both sections in
2314 create_dynamic_sections, because they must be created
2315 before the linker maps input sections to output
2316 sections. The linker does that before
2317 adjust_dynamic_symbol is called, and it is that
2318 function which decides whether anything needs to go
2319 into these sections. */
2320 sec->flags |= SEC_EXCLUDE;
2324 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2327 /* Allocate memory for the section contents. Zero it, because
2328 we may not fill in all the reloc sections. */
2329 sec->contents = bfd_zalloc (dynobj, sec->size);
2330 if (sec->contents == NULL)
2334 if (htab->etab.dynamic_sections_created)
2336 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2337 actually has nothing to do with the PLT, it is how we
2338 communicate the LTP value of a load module to the dynamic
2340 #define add_dynamic_entry(TAG, VAL) \
2341 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2343 if (!add_dynamic_entry (DT_PLTGOT, 0))
2346 /* Add some entries to the .dynamic section. We fill in the
2347 values later, in elf32_hppa_finish_dynamic_sections, but we
2348 must add the entries now so that we get the correct size for
2349 the .dynamic section. The DT_DEBUG entry is filled in by the
2350 dynamic linker and used by the debugger. */
2351 if (bfd_link_executable (info))
2353 if (!add_dynamic_entry (DT_DEBUG, 0))
2357 if (htab->etab.srelplt->size != 0)
2359 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2360 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2361 || !add_dynamic_entry (DT_JMPREL, 0))
2367 if (!add_dynamic_entry (DT_RELA, 0)
2368 || !add_dynamic_entry (DT_RELASZ, 0)
2369 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2372 /* If any dynamic relocs apply to a read-only section,
2373 then we need a DT_TEXTREL entry. */
2374 if ((info->flags & DF_TEXTREL) == 0)
2375 elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
2377 if ((info->flags & DF_TEXTREL) != 0)
2379 if (!add_dynamic_entry (DT_TEXTREL, 0))
2384 #undef add_dynamic_entry
2389 /* External entry points for sizing and building linker stubs. */
2391 /* Set up various things so that we can make a list of input sections
2392 for each output section included in the link. Returns -1 on error,
2393 0 when no stubs will be needed, and 1 on success. */
2396 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2399 unsigned int bfd_count;
2400 unsigned int top_id, top_index;
2402 asection **input_list, **list;
2404 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2409 /* Count the number of input BFDs and find the top input section id. */
2410 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2412 input_bfd = input_bfd->link.next)
2415 for (section = input_bfd->sections;
2417 section = section->next)
2419 if (top_id < section->id)
2420 top_id = section->id;
2423 htab->bfd_count = bfd_count;
2425 amt = sizeof (struct map_stub) * (top_id + 1);
2426 htab->stub_group = bfd_zmalloc (amt);
2427 if (htab->stub_group == NULL)
2430 /* We can't use output_bfd->section_count here to find the top output
2431 section index as some sections may have been removed, and
2432 strip_excluded_output_sections doesn't renumber the indices. */
2433 for (section = output_bfd->sections, top_index = 0;
2435 section = section->next)
2437 if (top_index < section->index)
2438 top_index = section->index;
2441 htab->top_index = top_index;
2442 amt = sizeof (asection *) * (top_index + 1);
2443 input_list = bfd_malloc (amt);
2444 htab->input_list = input_list;
2445 if (input_list == NULL)
2448 /* For sections we aren't interested in, mark their entries with a
2449 value we can check later. */
2450 list = input_list + top_index;
2452 *list = bfd_abs_section_ptr;
2453 while (list-- != input_list);
2455 for (section = output_bfd->sections;
2457 section = section->next)
2459 if ((section->flags & SEC_CODE) != 0)
2460 input_list[section->index] = NULL;
2466 /* The linker repeatedly calls this function for each input section,
2467 in the order that input sections are linked into output sections.
2468 Build lists of input sections to determine groupings between which
2469 we may insert linker stubs. */
2472 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2474 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2479 if (isec->output_section->index <= htab->top_index)
2481 asection **list = htab->input_list + isec->output_section->index;
2482 if (*list != bfd_abs_section_ptr)
2484 /* Steal the link_sec pointer for our list. */
2485 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2486 /* This happens to make the list in reverse order,
2487 which is what we want. */
2488 PREV_SEC (isec) = *list;
2494 /* See whether we can group stub sections together. Grouping stub
2495 sections may result in fewer stubs. More importantly, we need to
2496 put all .init* and .fini* stubs at the beginning of the .init or
2497 .fini output sections respectively, because glibc splits the
2498 _init and _fini functions into multiple parts. Putting a stub in
2499 the middle of a function is not a good idea. */
2502 group_sections (struct elf32_hppa_link_hash_table *htab,
2503 bfd_size_type stub_group_size,
2504 bfd_boolean stubs_always_before_branch)
2506 asection **list = htab->input_list + htab->top_index;
2509 asection *tail = *list;
2510 if (tail == bfd_abs_section_ptr)
2512 while (tail != NULL)
2516 bfd_size_type total;
2517 bfd_boolean big_sec;
2521 big_sec = total >= stub_group_size;
2523 while ((prev = PREV_SEC (curr)) != NULL
2524 && ((total += curr->output_offset - prev->output_offset)
2528 /* OK, the size from the start of CURR to the end is less
2529 than 240000 bytes and thus can be handled by one stub
2530 section. (or the tail section is itself larger than
2531 240000 bytes, in which case we may be toast.)
2532 We should really be keeping track of the total size of
2533 stubs added here, as stubs contribute to the final output
2534 section size. That's a little tricky, and this way will
2535 only break if stubs added total more than 22144 bytes, or
2536 2768 long branch stubs. It seems unlikely for more than
2537 2768 different functions to be called, especially from
2538 code only 240000 bytes long. This limit used to be
2539 250000, but c++ code tends to generate lots of little
2540 functions, and sometimes violated the assumption. */
2543 prev = PREV_SEC (tail);
2544 /* Set up this stub group. */
2545 htab->stub_group[tail->id].link_sec = curr;
2547 while (tail != curr && (tail = prev) != NULL);
2549 /* But wait, there's more! Input sections up to 240000
2550 bytes before the stub section can be handled by it too.
2551 Don't do this if we have a really large section after the
2552 stubs, as adding more stubs increases the chance that
2553 branches may not reach into the stub section. */
2554 if (!stubs_always_before_branch && !big_sec)
2558 && ((total += tail->output_offset - prev->output_offset)
2562 prev = PREV_SEC (tail);
2563 htab->stub_group[tail->id].link_sec = curr;
2569 while (list-- != htab->input_list);
2570 free (htab->input_list);
2574 /* Read in all local syms for all input bfds, and create hash entries
2575 for export stubs if we are building a multi-subspace shared lib.
2576 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2579 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2581 unsigned int bfd_indx;
2582 Elf_Internal_Sym *local_syms, **all_local_syms;
2583 int stub_changed = 0;
2584 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2589 /* We want to read in symbol extension records only once. To do this
2590 we need to read in the local symbols in parallel and save them for
2591 later use; so hold pointers to the local symbols in an array. */
2592 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2593 all_local_syms = bfd_zmalloc (amt);
2594 htab->all_local_syms = all_local_syms;
2595 if (all_local_syms == NULL)
2598 /* Walk over all the input BFDs, swapping in local symbols.
2599 If we are creating a shared library, create hash entries for the
2603 input_bfd = input_bfd->link.next, bfd_indx++)
2605 Elf_Internal_Shdr *symtab_hdr;
2607 /* We'll need the symbol table in a second. */
2608 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2609 if (symtab_hdr->sh_info == 0)
2612 /* We need an array of the local symbols attached to the input bfd. */
2613 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2614 if (local_syms == NULL)
2616 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2617 symtab_hdr->sh_info, 0,
2619 /* Cache them for elf_link_input_bfd. */
2620 symtab_hdr->contents = (unsigned char *) local_syms;
2622 if (local_syms == NULL)
2625 all_local_syms[bfd_indx] = local_syms;
2627 if (bfd_link_pic (info) && htab->multi_subspace)
2629 struct elf_link_hash_entry **eh_syms;
2630 struct elf_link_hash_entry **eh_symend;
2631 unsigned int symcount;
2633 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2634 - symtab_hdr->sh_info);
2635 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2636 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2638 /* Look through the global syms for functions; We need to
2639 build export stubs for all globally visible functions. */
2640 for (; eh_syms < eh_symend; eh_syms++)
2642 struct elf32_hppa_link_hash_entry *hh;
2644 hh = hppa_elf_hash_entry (*eh_syms);
2646 while (hh->eh.root.type == bfd_link_hash_indirect
2647 || hh->eh.root.type == bfd_link_hash_warning)
2648 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2650 /* At this point in the link, undefined syms have been
2651 resolved, so we need to check that the symbol was
2652 defined in this BFD. */
2653 if ((hh->eh.root.type == bfd_link_hash_defined
2654 || hh->eh.root.type == bfd_link_hash_defweak)
2655 && hh->eh.type == STT_FUNC
2656 && hh->eh.root.u.def.section->output_section != NULL
2657 && (hh->eh.root.u.def.section->output_section->owner
2659 && hh->eh.root.u.def.section->owner == input_bfd
2660 && hh->eh.def_regular
2661 && !hh->eh.forced_local
2662 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2665 const char *stub_name;
2666 struct elf32_hppa_stub_hash_entry *hsh;
2668 sec = hh->eh.root.u.def.section;
2669 stub_name = hh_name (hh);
2670 hsh = hppa_stub_hash_lookup (&htab->bstab,
2675 hsh = hppa_add_stub (stub_name, sec, htab);
2679 hsh->target_value = hh->eh.root.u.def.value;
2680 hsh->target_section = hh->eh.root.u.def.section;
2681 hsh->stub_type = hppa_stub_export;
2687 /* xgettext:c-format */
2688 _bfd_error_handler (_("%pB: duplicate export stub %s"),
2689 input_bfd, stub_name);
2696 return stub_changed;
2699 /* Determine and set the size of the stub section for a final link.
2701 The basic idea here is to examine all the relocations looking for
2702 PC-relative calls to a target that is unreachable with a "bl"
2706 elf32_hppa_size_stubs
2707 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2708 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2709 asection * (*add_stub_section) (const char *, asection *),
2710 void (*layout_sections_again) (void))
2712 bfd_size_type stub_group_size;
2713 bfd_boolean stubs_always_before_branch;
2714 bfd_boolean stub_changed;
2715 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2720 /* Stash our params away. */
2721 htab->stub_bfd = stub_bfd;
2722 htab->multi_subspace = multi_subspace;
2723 htab->add_stub_section = add_stub_section;
2724 htab->layout_sections_again = layout_sections_again;
2725 stubs_always_before_branch = group_size < 0;
2727 stub_group_size = -group_size;
2729 stub_group_size = group_size;
2730 if (stub_group_size == 1)
2732 /* Default values. */
2733 if (stubs_always_before_branch)
2735 stub_group_size = 7680000;
2736 if (htab->has_17bit_branch || htab->multi_subspace)
2737 stub_group_size = 240000;
2738 if (htab->has_12bit_branch)
2739 stub_group_size = 7500;
2743 stub_group_size = 6971392;
2744 if (htab->has_17bit_branch || htab->multi_subspace)
2745 stub_group_size = 217856;
2746 if (htab->has_12bit_branch)
2747 stub_group_size = 6808;
2751 group_sections (htab, stub_group_size, stubs_always_before_branch);
2753 switch (get_local_syms (output_bfd, info->input_bfds, info))
2756 if (htab->all_local_syms)
2757 goto error_ret_free_local;
2761 stub_changed = FALSE;
2765 stub_changed = TRUE;
2772 unsigned int bfd_indx;
2775 for (input_bfd = info->input_bfds, bfd_indx = 0;
2777 input_bfd = input_bfd->link.next, bfd_indx++)
2779 Elf_Internal_Shdr *symtab_hdr;
2781 Elf_Internal_Sym *local_syms;
2783 /* We'll need the symbol table in a second. */
2784 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2785 if (symtab_hdr->sh_info == 0)
2788 local_syms = htab->all_local_syms[bfd_indx];
2790 /* Walk over each section attached to the input bfd. */
2791 for (section = input_bfd->sections;
2793 section = section->next)
2795 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2797 /* If there aren't any relocs, then there's nothing more
2799 if ((section->flags & SEC_RELOC) == 0
2800 || (section->flags & SEC_ALLOC) == 0
2801 || (section->flags & SEC_LOAD) == 0
2802 || (section->flags & SEC_CODE) == 0
2803 || section->reloc_count == 0)
2806 /* If this section is a link-once section that will be
2807 discarded, then don't create any stubs. */
2808 if (section->output_section == NULL
2809 || section->output_section->owner != output_bfd)
2812 /* Get the relocs. */
2814 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2816 if (internal_relocs == NULL)
2817 goto error_ret_free_local;
2819 /* Now examine each relocation. */
2820 irela = internal_relocs;
2821 irelaend = irela + section->reloc_count;
2822 for (; irela < irelaend; irela++)
2824 unsigned int r_type, r_indx;
2825 enum elf32_hppa_stub_type stub_type;
2826 struct elf32_hppa_stub_hash_entry *hsh;
2829 bfd_vma destination;
2830 struct elf32_hppa_link_hash_entry *hh;
2832 const asection *id_sec;
2834 r_type = ELF32_R_TYPE (irela->r_info);
2835 r_indx = ELF32_R_SYM (irela->r_info);
2837 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2839 bfd_set_error (bfd_error_bad_value);
2840 error_ret_free_internal:
2841 if (elf_section_data (section)->relocs == NULL)
2842 free (internal_relocs);
2843 goto error_ret_free_local;
2846 /* Only look for stubs on call instructions. */
2847 if (r_type != (unsigned int) R_PARISC_PCREL12F
2848 && r_type != (unsigned int) R_PARISC_PCREL17F
2849 && r_type != (unsigned int) R_PARISC_PCREL22F)
2852 /* Now determine the call target, its name, value,
2858 if (r_indx < symtab_hdr->sh_info)
2860 /* It's a local symbol. */
2861 Elf_Internal_Sym *sym;
2862 Elf_Internal_Shdr *hdr;
2865 sym = local_syms + r_indx;
2866 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2867 sym_value = sym->st_value;
2868 shndx = sym->st_shndx;
2869 if (shndx < elf_numsections (input_bfd))
2871 hdr = elf_elfsections (input_bfd)[shndx];
2872 sym_sec = hdr->bfd_section;
2873 destination = (sym_value + irela->r_addend
2874 + sym_sec->output_offset
2875 + sym_sec->output_section->vma);
2880 /* It's an external symbol. */
2883 e_indx = r_indx - symtab_hdr->sh_info;
2884 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2886 while (hh->eh.root.type == bfd_link_hash_indirect
2887 || hh->eh.root.type == bfd_link_hash_warning)
2888 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2890 if (hh->eh.root.type == bfd_link_hash_defined
2891 || hh->eh.root.type == bfd_link_hash_defweak)
2893 sym_sec = hh->eh.root.u.def.section;
2894 sym_value = hh->eh.root.u.def.value;
2895 if (sym_sec->output_section != NULL)
2896 destination = (sym_value + irela->r_addend
2897 + sym_sec->output_offset
2898 + sym_sec->output_section->vma);
2900 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2902 if (! bfd_link_pic (info))
2905 else if (hh->eh.root.type == bfd_link_hash_undefined)
2907 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2908 && (ELF_ST_VISIBILITY (hh->eh.other)
2910 && hh->eh.type != STT_PARISC_MILLI))
2915 bfd_set_error (bfd_error_bad_value);
2916 goto error_ret_free_internal;
2920 /* Determine what (if any) linker stub is needed. */
2921 stub_type = hppa_type_of_stub (section, irela, hh,
2923 if (stub_type == hppa_stub_none)
2926 /* Support for grouping stub sections. */
2927 id_sec = htab->stub_group[section->id].link_sec;
2929 /* Get the name of this stub. */
2930 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2932 goto error_ret_free_internal;
2934 hsh = hppa_stub_hash_lookup (&htab->bstab,
2939 /* The proper stub has already been created. */
2944 hsh = hppa_add_stub (stub_name, section, htab);
2948 goto error_ret_free_internal;
2951 hsh->target_value = sym_value;
2952 hsh->target_section = sym_sec;
2953 hsh->stub_type = stub_type;
2954 if (bfd_link_pic (info))
2956 if (stub_type == hppa_stub_import)
2957 hsh->stub_type = hppa_stub_import_shared;
2958 else if (stub_type == hppa_stub_long_branch)
2959 hsh->stub_type = hppa_stub_long_branch_shared;
2962 stub_changed = TRUE;
2965 /* We're done with the internal relocs, free them. */
2966 if (elf_section_data (section)->relocs == NULL)
2967 free (internal_relocs);
2974 /* OK, we've added some stubs. Find out the new size of the
2976 for (stub_sec = htab->stub_bfd->sections;
2978 stub_sec = stub_sec->next)
2979 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
2982 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2984 /* Ask the linker to do its stuff. */
2985 (*htab->layout_sections_again) ();
2986 stub_changed = FALSE;
2989 free (htab->all_local_syms);
2992 error_ret_free_local:
2993 free (htab->all_local_syms);
2997 /* For a final link, this function is called after we have sized the
2998 stubs to provide a value for __gp. */
3001 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3003 struct bfd_link_hash_entry *h;
3004 asection *sec = NULL;
3007 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
3010 && (h->type == bfd_link_hash_defined
3011 || h->type == bfd_link_hash_defweak))
3013 gp_val = h->u.def.value;
3014 sec = h->u.def.section;
3018 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3019 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3021 /* Choose to point our LTP at, in this order, one of .plt, .got,
3022 or .data, if these sections exist. In the case of choosing
3023 .plt try to make the LTP ideal for addressing anywhere in the
3024 .plt or .got with a 14 bit signed offset. Typically, the end
3025 of the .plt is the start of the .got, so choose .plt + 0x2000
3026 if either the .plt or .got is larger than 0x2000. If both
3027 the .plt and .got are smaller than 0x2000, choose the end of
3028 the .plt section. */
3029 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3034 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3044 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3046 /* We know we don't have a .plt. If .got is large,
3048 if (sec->size > 0x2000)
3054 /* No .plt or .got. Who cares what the LTP is? */
3055 sec = bfd_get_section_by_name (abfd, ".data");
3061 h->type = bfd_link_hash_defined;
3062 h->u.def.value = gp_val;
3064 h->u.def.section = sec;
3066 h->u.def.section = bfd_abs_section_ptr;
3070 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3072 if (sec != NULL && sec->output_section != NULL)
3073 gp_val += sec->output_section->vma + sec->output_offset;
3075 elf_gp (abfd) = gp_val;
3080 /* Build all the stubs associated with the current output file. The
3081 stubs are kept in a hash table attached to the main linker hash
3082 table. We also set up the .plt entries for statically linked PIC
3083 functions here. This function is called via hppaelf_finish in the
3087 elf32_hppa_build_stubs (struct bfd_link_info *info)
3090 struct bfd_hash_table *table;
3091 struct elf32_hppa_link_hash_table *htab;
3093 htab = hppa_link_hash_table (info);
3097 for (stub_sec = htab->stub_bfd->sections;
3099 stub_sec = stub_sec->next)
3100 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3101 && stub_sec->size != 0)
3103 /* Allocate memory to hold the linker stubs. */
3104 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3105 if (stub_sec->contents == NULL)
3110 /* Build the stubs as directed by the stub hash table. */
3111 table = &htab->bstab;
3112 bfd_hash_traverse (table, hppa_build_one_stub, info);
3117 /* Return the base vma address which should be subtracted from the real
3118 address when resolving a dtpoff relocation.
3119 This is PT_TLS segment p_vaddr. */
3122 dtpoff_base (struct bfd_link_info *info)
3124 /* If tls_sec is NULL, we should have signalled an error already. */
3125 if (elf_hash_table (info)->tls_sec == NULL)
3127 return elf_hash_table (info)->tls_sec->vma;
3130 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3133 tpoff (struct bfd_link_info *info, bfd_vma address)
3135 struct elf_link_hash_table *htab = elf_hash_table (info);
3137 /* If tls_sec is NULL, we should have signalled an error already. */
3138 if (htab->tls_sec == NULL)
3140 /* hppa TLS ABI is variant I and static TLS block start just after
3141 tcbhead structure which has 2 pointer fields. */
3142 return (address - htab->tls_sec->vma
3143 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3146 /* Perform a final link. */
3149 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3153 /* Invoke the regular ELF linker to do all the work. */
3154 if (!bfd_elf_final_link (abfd, info))
3157 /* If we're producing a final executable, sort the contents of the
3159 if (bfd_link_relocatable (info))
3162 /* Do not attempt to sort non-regular files. This is here
3163 especially for configure scripts and kernel builds which run
3164 tests with "ld [...] -o /dev/null". */
3165 if (stat (abfd->filename, &buf) != 0
3166 || !S_ISREG(buf.st_mode))
3169 return elf_hppa_sort_unwind (abfd);
3172 /* Record the lowest address for the data and text segments. */
3175 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3177 struct elf32_hppa_link_hash_table *htab;
3179 htab = (struct elf32_hppa_link_hash_table*) data;
3183 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3186 Elf_Internal_Phdr *p;
3188 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3189 BFD_ASSERT (p != NULL);
3192 if ((section->flags & SEC_READONLY) != 0)
3194 if (value < htab->text_segment_base)
3195 htab->text_segment_base = value;
3199 if (value < htab->data_segment_base)
3200 htab->data_segment_base = value;
3205 /* Perform a relocation as part of a final link. */
3207 static bfd_reloc_status_type
3208 final_link_relocate (asection *input_section,
3210 const Elf_Internal_Rela *rela,
3212 struct elf32_hppa_link_hash_table *htab,
3214 struct elf32_hppa_link_hash_entry *hh,
3215 struct bfd_link_info *info)
3218 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3219 unsigned int orig_r_type = r_type;
3220 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3221 int r_format = howto->bitsize;
3222 enum hppa_reloc_field_selector_type_alt r_field;
3223 bfd *input_bfd = input_section->owner;
3224 bfd_vma offset = rela->r_offset;
3225 bfd_vma max_branch_offset = 0;
3226 bfd_byte *hit_data = contents + offset;
3227 bfd_signed_vma addend = rela->r_addend;
3229 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3232 if (r_type == R_PARISC_NONE)
3233 return bfd_reloc_ok;
3235 insn = bfd_get_32 (input_bfd, hit_data);
3237 /* Find out where we are and where we're going. */
3238 location = (offset +
3239 input_section->output_offset +
3240 input_section->output_section->vma);
3242 /* If we are not building a shared library, convert DLTIND relocs to
3244 if (!bfd_link_pic (info))
3248 case R_PARISC_DLTIND21L:
3249 case R_PARISC_TLS_GD21L:
3250 case R_PARISC_TLS_LDM21L:
3251 case R_PARISC_TLS_IE21L:
3252 r_type = R_PARISC_DPREL21L;
3255 case R_PARISC_DLTIND14R:
3256 case R_PARISC_TLS_GD14R:
3257 case R_PARISC_TLS_LDM14R:
3258 case R_PARISC_TLS_IE14R:
3259 r_type = R_PARISC_DPREL14R;
3262 case R_PARISC_DLTIND14F:
3263 r_type = R_PARISC_DPREL14F;
3270 case R_PARISC_PCREL12F:
3271 case R_PARISC_PCREL17F:
3272 case R_PARISC_PCREL22F:
3273 /* If this call should go via the plt, find the import stub in
3276 || sym_sec->output_section == NULL
3278 && hh->eh.plt.offset != (bfd_vma) -1
3279 && hh->eh.dynindx != -1
3281 && (bfd_link_pic (info)
3282 || !hh->eh.def_regular
3283 || hh->eh.root.type == bfd_link_hash_defweak)))
3285 hsh = hppa_get_stub_entry (input_section, sym_sec,
3289 value = (hsh->stub_offset
3290 + hsh->stub_sec->output_offset
3291 + hsh->stub_sec->output_section->vma);
3294 else if (sym_sec == NULL && hh != NULL
3295 && hh->eh.root.type == bfd_link_hash_undefweak)
3297 /* It's OK if undefined weak. Calls to undefined weak
3298 symbols behave as if the "called" function
3299 immediately returns. We can thus call to a weak
3300 function without first checking whether the function
3306 return bfd_reloc_undefined;
3310 case R_PARISC_PCREL21L:
3311 case R_PARISC_PCREL17C:
3312 case R_PARISC_PCREL17R:
3313 case R_PARISC_PCREL14R:
3314 case R_PARISC_PCREL14F:
3315 case R_PARISC_PCREL32:
3316 /* Make it a pc relative offset. */
3321 case R_PARISC_DPREL21L:
3322 case R_PARISC_DPREL14R:
3323 case R_PARISC_DPREL14F:
3324 /* Convert instructions that use the linkage table pointer (r19) to
3325 instructions that use the global data pointer (dp). This is the
3326 most efficient way of using PIC code in an incomplete executable,
3327 but the user must follow the standard runtime conventions for
3328 accessing data for this to work. */
3329 if (orig_r_type != r_type)
3331 if (r_type == R_PARISC_DPREL21L)
3333 /* GCC sometimes uses a register other than r19 for the
3334 operation, so we must convert any addil instruction
3335 that uses this relocation. */
3336 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3339 /* We must have a ldil instruction. It's too hard to find
3340 and convert the associated add instruction, so issue an
3343 /* xgettext:c-format */
3344 (_("%pB(%pA+%#" PRIx64 "): %s fixup for insn %#x "
3345 "is not supported in a non-shared link"),
3352 else if (r_type == R_PARISC_DPREL14F)
3354 /* This must be a format 1 load/store. Change the base
3356 insn = (insn & 0xfc1ffff) | (27 << 21);
3360 /* For all the DP relative relocations, we need to examine the symbol's
3361 section. If it has no section or if it's a code section, then
3362 "data pointer relative" makes no sense. In that case we don't
3363 adjust the "value", and for 21 bit addil instructions, we change the
3364 source addend register from %dp to %r0. This situation commonly
3365 arises for undefined weak symbols and when a variable's "constness"
3366 is declared differently from the way the variable is defined. For
3367 instance: "extern int foo" with foo defined as "const int foo". */
3368 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3370 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3371 == (((int) OP_ADDIL << 26) | (27 << 21)))
3373 insn &= ~ (0x1f << 21);
3375 /* Now try to make things easy for the dynamic linker. */
3381 case R_PARISC_DLTIND21L:
3382 case R_PARISC_DLTIND14R:
3383 case R_PARISC_DLTIND14F:
3384 case R_PARISC_TLS_GD21L:
3385 case R_PARISC_TLS_LDM21L:
3386 case R_PARISC_TLS_IE21L:
3387 case R_PARISC_TLS_GD14R:
3388 case R_PARISC_TLS_LDM14R:
3389 case R_PARISC_TLS_IE14R:
3390 value -= elf_gp (input_section->output_section->owner);
3393 case R_PARISC_SEGREL32:
3394 if ((sym_sec->flags & SEC_CODE) != 0)
3395 value -= htab->text_segment_base;
3397 value -= htab->data_segment_base;
3406 case R_PARISC_DIR32:
3407 case R_PARISC_DIR14F:
3408 case R_PARISC_DIR17F:
3409 case R_PARISC_PCREL17C:
3410 case R_PARISC_PCREL14F:
3411 case R_PARISC_PCREL32:
3412 case R_PARISC_DPREL14F:
3413 case R_PARISC_PLABEL32:
3414 case R_PARISC_DLTIND14F:
3415 case R_PARISC_SEGBASE:
3416 case R_PARISC_SEGREL32:
3417 case R_PARISC_TLS_DTPMOD32:
3418 case R_PARISC_TLS_DTPOFF32:
3419 case R_PARISC_TLS_TPREL32:
3423 case R_PARISC_DLTIND21L:
3424 case R_PARISC_PCREL21L:
3425 case R_PARISC_PLABEL21L:
3429 case R_PARISC_DIR21L:
3430 case R_PARISC_DPREL21L:
3431 case R_PARISC_TLS_GD21L:
3432 case R_PARISC_TLS_LDM21L:
3433 case R_PARISC_TLS_LDO21L:
3434 case R_PARISC_TLS_IE21L:
3435 case R_PARISC_TLS_LE21L:
3439 case R_PARISC_PCREL17R:
3440 case R_PARISC_PCREL14R:
3441 case R_PARISC_PLABEL14R:
3442 case R_PARISC_DLTIND14R:
3446 case R_PARISC_DIR17R:
3447 case R_PARISC_DIR14R:
3448 case R_PARISC_DPREL14R:
3449 case R_PARISC_TLS_GD14R:
3450 case R_PARISC_TLS_LDM14R:
3451 case R_PARISC_TLS_LDO14R:
3452 case R_PARISC_TLS_IE14R:
3453 case R_PARISC_TLS_LE14R:
3457 case R_PARISC_PCREL12F:
3458 case R_PARISC_PCREL17F:
3459 case R_PARISC_PCREL22F:
3462 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3464 max_branch_offset = (1 << (17-1)) << 2;
3466 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3468 max_branch_offset = (1 << (12-1)) << 2;
3472 max_branch_offset = (1 << (22-1)) << 2;
3475 /* sym_sec is NULL on undefined weak syms or when shared on
3476 undefined syms. We've already checked for a stub for the
3477 shared undefined case. */
3478 if (sym_sec == NULL)
3481 /* If the branch is out of reach, then redirect the
3482 call to the local stub for this function. */
3483 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3485 hsh = hppa_get_stub_entry (input_section, sym_sec,
3488 return bfd_reloc_undefined;
3490 /* Munge up the value and addend so that we call the stub
3491 rather than the procedure directly. */
3492 value = (hsh->stub_offset
3493 + hsh->stub_sec->output_offset
3494 + hsh->stub_sec->output_section->vma
3500 /* Something we don't know how to handle. */
3502 return bfd_reloc_notsupported;
3505 /* Make sure we can reach the stub. */
3506 if (max_branch_offset != 0
3507 && value + addend + max_branch_offset >= 2*max_branch_offset)
3510 /* xgettext:c-format */
3511 (_("%pB(%pA+%#" PRIx64 "): cannot reach %s, "
3512 "recompile with -ffunction-sections"),
3516 hsh->bh_root.string);
3517 bfd_set_error (bfd_error_bad_value);
3518 return bfd_reloc_notsupported;
3521 val = hppa_field_adjust (value, addend, r_field);
3525 case R_PARISC_PCREL12F:
3526 case R_PARISC_PCREL17C:
3527 case R_PARISC_PCREL17F:
3528 case R_PARISC_PCREL17R:
3529 case R_PARISC_PCREL22F:
3530 case R_PARISC_DIR17F:
3531 case R_PARISC_DIR17R:
3532 /* This is a branch. Divide the offset by four.
3533 Note that we need to decide whether it's a branch or
3534 otherwise by inspecting the reloc. Inspecting insn won't
3535 work as insn might be from a .word directive. */
3543 insn = hppa_rebuild_insn (insn, val, r_format);
3545 /* Update the instruction word. */
3546 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3547 return bfd_reloc_ok;
3550 /* Relocate an HPPA ELF section. */
3553 elf32_hppa_relocate_section (bfd *output_bfd,
3554 struct bfd_link_info *info,
3556 asection *input_section,
3558 Elf_Internal_Rela *relocs,
3559 Elf_Internal_Sym *local_syms,
3560 asection **local_sections)
3562 bfd_vma *local_got_offsets;
3563 struct elf32_hppa_link_hash_table *htab;
3564 Elf_Internal_Shdr *symtab_hdr;
3565 Elf_Internal_Rela *rela;
3566 Elf_Internal_Rela *relend;
3568 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3570 htab = hppa_link_hash_table (info);
3574 local_got_offsets = elf_local_got_offsets (input_bfd);
3577 relend = relocs + input_section->reloc_count;
3578 for (; rela < relend; rela++)
3580 unsigned int r_type;
3581 reloc_howto_type *howto;
3582 unsigned int r_symndx;
3583 struct elf32_hppa_link_hash_entry *hh;
3584 Elf_Internal_Sym *sym;
3587 bfd_reloc_status_type rstatus;
3588 const char *sym_name;
3590 bfd_boolean warned_undef;
3592 r_type = ELF32_R_TYPE (rela->r_info);
3593 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3595 bfd_set_error (bfd_error_bad_value);
3598 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3599 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3602 r_symndx = ELF32_R_SYM (rela->r_info);
3606 warned_undef = FALSE;
3607 if (r_symndx < symtab_hdr->sh_info)
3609 /* This is a local symbol, h defaults to NULL. */
3610 sym = local_syms + r_symndx;
3611 sym_sec = local_sections[r_symndx];
3612 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3616 struct elf_link_hash_entry *eh;
3617 bfd_boolean unresolved_reloc, ignored;
3618 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3620 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3621 r_symndx, symtab_hdr, sym_hashes,
3622 eh, sym_sec, relocation,
3623 unresolved_reloc, warned_undef,
3626 if (!bfd_link_relocatable (info)
3628 && eh->root.type != bfd_link_hash_defined
3629 && eh->root.type != bfd_link_hash_defweak
3630 && eh->root.type != bfd_link_hash_undefweak)
3632 if (info->unresolved_syms_in_objects == RM_IGNORE
3633 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3634 && eh->type == STT_PARISC_MILLI)
3636 (*info->callbacks->undefined_symbol)
3637 (info, eh_name (eh), input_bfd,
3638 input_section, rela->r_offset, FALSE);
3639 warned_undef = TRUE;
3642 hh = hppa_elf_hash_entry (eh);
3645 if (sym_sec != NULL && discarded_section (sym_sec))
3646 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3648 elf_hppa_howto_table + r_type, 0,
3651 if (bfd_link_relocatable (info))
3654 /* Do any required modifications to the relocation value, and
3655 determine what types of dynamic info we need to output, if
3660 case R_PARISC_DLTIND14F:
3661 case R_PARISC_DLTIND14R:
3662 case R_PARISC_DLTIND21L:
3665 bfd_boolean do_got = FALSE;
3666 bfd_boolean reloc = bfd_link_pic (info);
3668 /* Relocation is to the entry for this symbol in the
3669 global offset table. */
3674 off = hh->eh.got.offset;
3675 dyn = htab->etab.dynamic_sections_created;
3676 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3678 || (hh->eh.dynindx != -1
3679 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3681 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3682 bfd_link_pic (info),
3685 /* If we aren't going to call finish_dynamic_symbol,
3686 then we need to handle initialisation of the .got
3687 entry and create needed relocs here. Since the
3688 offset must always be a multiple of 4, we use the
3689 least significant bit to record whether we have
3690 initialised it already. */
3695 hh->eh.got.offset |= 1;
3702 /* Local symbol case. */
3703 if (local_got_offsets == NULL)
3706 off = local_got_offsets[r_symndx];
3708 /* The offset must always be a multiple of 4. We use
3709 the least significant bit to record whether we have
3710 already generated the necessary reloc. */
3715 local_got_offsets[r_symndx] |= 1;
3724 /* Output a dynamic relocation for this GOT entry.
3725 In this case it is relative to the base of the
3726 object because the symbol index is zero. */
3727 Elf_Internal_Rela outrel;
3729 asection *sec = htab->etab.srelgot;
3731 outrel.r_offset = (off
3732 + htab->etab.sgot->output_offset
3733 + htab->etab.sgot->output_section->vma);
3734 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3735 outrel.r_addend = relocation;
3736 loc = sec->contents;
3737 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3738 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3741 bfd_put_32 (output_bfd, relocation,
3742 htab->etab.sgot->contents + off);
3745 if (off >= (bfd_vma) -2)
3748 /* Add the base of the GOT to the relocation value. */
3750 + htab->etab.sgot->output_offset
3751 + htab->etab.sgot->output_section->vma);
3755 case R_PARISC_SEGREL32:
3756 /* If this is the first SEGREL relocation, then initialize
3757 the segment base values. */
3758 if (htab->text_segment_base == (bfd_vma) -1)
3759 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3762 case R_PARISC_PLABEL14R:
3763 case R_PARISC_PLABEL21L:
3764 case R_PARISC_PLABEL32:
3765 if (htab->etab.dynamic_sections_created)
3768 bfd_boolean do_plt = 0;
3769 /* If we have a global symbol with a PLT slot, then
3770 redirect this relocation to it. */
3773 off = hh->eh.plt.offset;
3774 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3775 bfd_link_pic (info),
3778 /* In a non-shared link, adjust_dynamic_symbol
3779 isn't called for symbols forced local. We
3780 need to write out the plt entry here. */
3785 hh->eh.plt.offset |= 1;
3792 bfd_vma *local_plt_offsets;
3794 if (local_got_offsets == NULL)
3797 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3798 off = local_plt_offsets[r_symndx];
3800 /* As for the local .got entry case, we use the last
3801 bit to record whether we've already initialised
3802 this local .plt entry. */
3807 local_plt_offsets[r_symndx] |= 1;
3814 if (bfd_link_pic (info))
3816 /* Output a dynamic IPLT relocation for this
3818 Elf_Internal_Rela outrel;
3820 asection *s = htab->etab.srelplt;
3822 outrel.r_offset = (off
3823 + htab->etab.splt->output_offset
3824 + htab->etab.splt->output_section->vma);
3825 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3826 outrel.r_addend = relocation;
3828 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3829 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3833 bfd_put_32 (output_bfd,
3835 htab->etab.splt->contents + off);
3836 bfd_put_32 (output_bfd,
3837 elf_gp (htab->etab.splt->output_section->owner),
3838 htab->etab.splt->contents + off + 4);
3842 if (off >= (bfd_vma) -2)
3845 /* PLABELs contain function pointers. Relocation is to
3846 the entry for the function in the .plt. The magic +2
3847 offset signals to $$dyncall that the function pointer
3848 is in the .plt and thus has a gp pointer too.
3849 Exception: Undefined PLABELs should have a value of
3852 || (hh->eh.root.type != bfd_link_hash_undefweak
3853 && hh->eh.root.type != bfd_link_hash_undefined))
3856 + htab->etab.splt->output_offset
3857 + htab->etab.splt->output_section->vma
3864 case R_PARISC_DIR17F:
3865 case R_PARISC_DIR17R:
3866 case R_PARISC_DIR14F:
3867 case R_PARISC_DIR14R:
3868 case R_PARISC_DIR21L:
3869 case R_PARISC_DPREL14F:
3870 case R_PARISC_DPREL14R:
3871 case R_PARISC_DPREL21L:
3872 case R_PARISC_DIR32:
3873 if ((input_section->flags & SEC_ALLOC) == 0)
3876 if (bfd_link_pic (info)
3878 || hh->dyn_relocs != NULL)
3879 && ((hh != NULL && pc_dynrelocs (hh))
3880 || IS_ABSOLUTE_RELOC (r_type)))
3882 && hh->dyn_relocs != NULL))
3884 Elf_Internal_Rela outrel;
3889 /* When generating a shared object, these relocations
3890 are copied into the output file to be resolved at run
3893 outrel.r_addend = rela->r_addend;
3895 _bfd_elf_section_offset (output_bfd, info, input_section,
3897 skip = (outrel.r_offset == (bfd_vma) -1
3898 || outrel.r_offset == (bfd_vma) -2);
3899 outrel.r_offset += (input_section->output_offset
3900 + input_section->output_section->vma);
3904 memset (&outrel, 0, sizeof (outrel));
3907 && hh->eh.dynindx != -1
3909 || !IS_ABSOLUTE_RELOC (r_type)
3910 || !bfd_link_pic (info)
3911 || !SYMBOLIC_BIND (info, &hh->eh)
3912 || !hh->eh.def_regular))
3914 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3916 else /* It's a local symbol, or one marked to become local. */
3920 /* Add the absolute offset of the symbol. */
3921 outrel.r_addend += relocation;
3923 /* Global plabels need to be processed by the
3924 dynamic linker so that functions have at most one
3925 fptr. For this reason, we need to differentiate
3926 between global and local plabels, which we do by
3927 providing the function symbol for a global plabel
3928 reloc, and no symbol for local plabels. */
3931 && sym_sec->output_section != NULL
3932 && ! bfd_is_abs_section (sym_sec))
3936 osec = sym_sec->output_section;
3937 indx = elf_section_data (osec)->dynindx;
3940 osec = htab->etab.text_index_section;
3941 indx = elf_section_data (osec)->dynindx;
3943 BFD_ASSERT (indx != 0);
3945 /* We are turning this relocation into one
3946 against a section symbol, so subtract out the
3947 output section's address but not the offset
3948 of the input section in the output section. */
3949 outrel.r_addend -= osec->vma;
3952 outrel.r_info = ELF32_R_INFO (indx, r_type);
3954 sreloc = elf_section_data (input_section)->sreloc;
3958 loc = sreloc->contents;
3959 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3960 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3964 case R_PARISC_TLS_LDM21L:
3965 case R_PARISC_TLS_LDM14R:
3969 off = htab->tls_ldm_got.offset;
3974 Elf_Internal_Rela outrel;
3977 outrel.r_offset = (off
3978 + htab->etab.sgot->output_section->vma
3979 + htab->etab.sgot->output_offset);
3980 outrel.r_addend = 0;
3981 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
3982 loc = htab->etab.srelgot->contents;
3983 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3985 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3986 htab->tls_ldm_got.offset |= 1;
3989 /* Add the base of the GOT to the relocation value. */
3991 + htab->etab.sgot->output_offset
3992 + htab->etab.sgot->output_section->vma);
3997 case R_PARISC_TLS_LDO21L:
3998 case R_PARISC_TLS_LDO14R:
3999 relocation -= dtpoff_base (info);
4002 case R_PARISC_TLS_GD21L:
4003 case R_PARISC_TLS_GD14R:
4004 case R_PARISC_TLS_IE21L:
4005 case R_PARISC_TLS_IE14R:
4014 if (!htab->etab.dynamic_sections_created
4015 || hh->eh.dynindx == -1
4016 || SYMBOL_REFERENCES_LOCAL (info, &hh->eh)
4017 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))
4018 /* This is actually a static link, or it is a
4019 -Bsymbolic link and the symbol is defined
4020 locally, or the symbol was forced to be local
4021 because of a version file. */
4024 indx = hh->eh.dynindx;
4025 off = hh->eh.got.offset;
4026 tls_type = hh->tls_type;
4030 off = local_got_offsets[r_symndx];
4031 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4034 if (tls_type == GOT_UNKNOWN)
4041 bfd_boolean need_relocs = FALSE;
4042 Elf_Internal_Rela outrel;
4043 bfd_byte *loc = NULL;
4046 /* The GOT entries have not been initialized yet. Do it
4047 now, and emit any relocations. If both an IE GOT and a
4048 GD GOT are necessary, we emit the GD first. */
4051 || (bfd_link_dll (info)
4053 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))))
4056 loc = htab->etab.srelgot->contents;
4057 loc += (htab->etab.srelgot->reloc_count
4058 * sizeof (Elf32_External_Rela));
4061 if (tls_type & GOT_TLS_GD)
4067 + htab->etab.sgot->output_section->vma
4068 + htab->etab.sgot->output_offset);
4070 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32);
4071 outrel.r_addend = 0;
4072 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4073 htab->etab.srelgot->reloc_count++;
4074 loc += sizeof (Elf32_External_Rela);
4075 bfd_put_32 (output_bfd, 0,
4076 htab->etab.sgot->contents + cur_off);
4079 /* If we are not emitting relocations for a
4080 general dynamic reference, then we must be in a
4081 static link or an executable link with the
4082 symbol binding locally. Mark it as belonging
4083 to module 1, the executable. */
4084 bfd_put_32 (output_bfd, 1,
4085 htab->etab.sgot->contents + cur_off);
4090 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4091 outrel.r_offset += 4;
4092 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4093 htab->etab.srelgot->reloc_count++;
4094 loc += sizeof (Elf32_External_Rela);
4095 bfd_put_32 (output_bfd, 0,
4096 htab->etab.sgot->contents + cur_off + 4);
4099 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4100 htab->etab.sgot->contents + cur_off + 4);
4104 if (tls_type & GOT_TLS_IE)
4107 && !(bfd_link_executable (info)
4108 && SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4112 + htab->etab.sgot->output_section->vma
4113 + htab->etab.sgot->output_offset);
4114 outrel.r_info = ELF32_R_INFO (indx,
4115 R_PARISC_TLS_TPREL32);
4117 outrel.r_addend = relocation - dtpoff_base (info);
4119 outrel.r_addend = 0;
4120 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4121 htab->etab.srelgot->reloc_count++;
4122 loc += sizeof (Elf32_External_Rela);
4125 bfd_put_32 (output_bfd, tpoff (info, relocation),
4126 htab->etab.sgot->contents + cur_off);
4131 hh->eh.got.offset |= 1;
4133 local_got_offsets[r_symndx] |= 1;
4136 if ((tls_type & GOT_NORMAL) != 0
4137 && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0)
4140 _bfd_error_handler (_("%s has both normal and TLS relocs"),
4144 Elf_Internal_Sym *isym
4145 = bfd_sym_from_r_symndx (&htab->sym_cache,
4146 input_bfd, r_symndx);
4150 = bfd_elf_string_from_elf_section (input_bfd,
4151 symtab_hdr->sh_link,
4153 if (sym_name == NULL)
4155 if (*sym_name == '\0')
4156 sym_name = bfd_section_name (input_bfd, sym_sec);
4158 (_("%pB:%s has both normal and TLS relocs"),
4159 input_bfd, sym_name);
4161 bfd_set_error (bfd_error_bad_value);
4165 if ((tls_type & GOT_TLS_GD)
4166 && r_type != R_PARISC_TLS_GD21L
4167 && r_type != R_PARISC_TLS_GD14R)
4168 off += 2 * GOT_ENTRY_SIZE;
4170 /* Add the base of the GOT to the relocation value. */
4172 + htab->etab.sgot->output_offset
4173 + htab->etab.sgot->output_section->vma);
4178 case R_PARISC_TLS_LE21L:
4179 case R_PARISC_TLS_LE14R:
4181 relocation = tpoff (info, relocation);
4190 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4191 htab, sym_sec, hh, info);
4193 if (rstatus == bfd_reloc_ok)
4197 sym_name = hh_name (hh);
4200 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4201 symtab_hdr->sh_link,
4203 if (sym_name == NULL)
4205 if (*sym_name == '\0')
4206 sym_name = bfd_section_name (input_bfd, sym_sec);
4209 howto = elf_hppa_howto_table + r_type;
4211 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4213 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4216 /* xgettext:c-format */
4217 (_("%pB(%pA+%#" PRIx64 "): cannot handle %s for %s"),
4220 (uint64_t) rela->r_offset,
4223 bfd_set_error (bfd_error_bad_value);
4228 (*info->callbacks->reloc_overflow)
4229 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4230 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4236 /* Finish up dynamic symbol handling. We set the contents of various
4237 dynamic sections here. */
4240 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4241 struct bfd_link_info *info,
4242 struct elf_link_hash_entry *eh,
4243 Elf_Internal_Sym *sym)
4245 struct elf32_hppa_link_hash_table *htab;
4246 Elf_Internal_Rela rela;
4249 htab = hppa_link_hash_table (info);
4253 if (eh->plt.offset != (bfd_vma) -1)
4257 if (eh->plt.offset & 1)
4260 /* This symbol has an entry in the procedure linkage table. Set
4263 The format of a plt entry is
4268 if (eh->root.type == bfd_link_hash_defined
4269 || eh->root.type == bfd_link_hash_defweak)
4271 value = eh->root.u.def.value;
4272 if (eh->root.u.def.section->output_section != NULL)
4273 value += (eh->root.u.def.section->output_offset
4274 + eh->root.u.def.section->output_section->vma);
4277 /* Create a dynamic IPLT relocation for this entry. */
4278 rela.r_offset = (eh->plt.offset
4279 + htab->etab.splt->output_offset
4280 + htab->etab.splt->output_section->vma);
4281 if (eh->dynindx != -1)
4283 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4288 /* This symbol has been marked to become local, and is
4289 used by a plabel so must be kept in the .plt. */
4290 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4291 rela.r_addend = value;
4294 loc = htab->etab.srelplt->contents;
4295 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4296 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4298 if (!eh->def_regular)
4300 /* Mark the symbol as undefined, rather than as defined in
4301 the .plt section. Leave the value alone. */
4302 sym->st_shndx = SHN_UNDEF;
4306 if (eh->got.offset != (bfd_vma) -1
4307 && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0
4308 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4310 bfd_boolean is_dyn = (eh->dynindx != -1
4311 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4313 if (is_dyn || bfd_link_pic (info))
4315 /* This symbol has an entry in the global offset table. Set
4318 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4319 + htab->etab.sgot->output_offset
4320 + htab->etab.sgot->output_section->vma);
4322 /* If this is a -Bsymbolic link and the symbol is defined
4323 locally or was forced to be local because of a version
4324 file, we just want to emit a RELATIVE reloc. The entry
4325 in the global offset table will already have been
4326 initialized in the relocate_section function. */
4329 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4330 rela.r_addend = (eh->root.u.def.value
4331 + eh->root.u.def.section->output_offset
4332 + eh->root.u.def.section->output_section->vma);
4336 if ((eh->got.offset & 1) != 0)
4339 bfd_put_32 (output_bfd, 0,
4340 htab->etab.sgot->contents + (eh->got.offset & ~1));
4341 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4345 loc = htab->etab.srelgot->contents;
4346 loc += (htab->etab.srelgot->reloc_count++
4347 * sizeof (Elf32_External_Rela));
4348 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4356 /* This symbol needs a copy reloc. Set it up. */
4358 if (! (eh->dynindx != -1
4359 && (eh->root.type == bfd_link_hash_defined
4360 || eh->root.type == bfd_link_hash_defweak)))
4363 rela.r_offset = (eh->root.u.def.value
4364 + eh->root.u.def.section->output_offset
4365 + eh->root.u.def.section->output_section->vma);
4367 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4368 if (eh->root.u.def.section == htab->etab.sdynrelro)
4369 sec = htab->etab.sreldynrelro;
4371 sec = htab->etab.srelbss;
4372 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4373 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4376 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4377 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4379 sym->st_shndx = SHN_ABS;
4385 /* Used to decide how to sort relocs in an optimal manner for the
4386 dynamic linker, before writing them out. */
4388 static enum elf_reloc_type_class
4389 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4390 const asection *rel_sec ATTRIBUTE_UNUSED,
4391 const Elf_Internal_Rela *rela)
4393 /* Handle TLS relocs first; we don't want them to be marked
4394 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4396 switch ((int) ELF32_R_TYPE (rela->r_info))
4398 case R_PARISC_TLS_DTPMOD32:
4399 case R_PARISC_TLS_DTPOFF32:
4400 case R_PARISC_TLS_TPREL32:
4401 return reloc_class_normal;
4404 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4405 return reloc_class_relative;
4407 switch ((int) ELF32_R_TYPE (rela->r_info))
4410 return reloc_class_plt;
4412 return reloc_class_copy;
4414 return reloc_class_normal;
4418 /* Finish up the dynamic sections. */
4421 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4422 struct bfd_link_info *info)
4425 struct elf32_hppa_link_hash_table *htab;
4429 htab = hppa_link_hash_table (info);
4433 dynobj = htab->etab.dynobj;
4435 sgot = htab->etab.sgot;
4436 /* A broken linker script might have discarded the dynamic sections.
4437 Catch this here so that we do not seg-fault later on. */
4438 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4441 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4443 if (htab->etab.dynamic_sections_created)
4445 Elf32_External_Dyn *dyncon, *dynconend;
4450 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4451 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4452 for (; dyncon < dynconend; dyncon++)
4454 Elf_Internal_Dyn dyn;
4457 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4465 /* Use PLTGOT to set the GOT register. */
4466 dyn.d_un.d_ptr = elf_gp (output_bfd);
4470 s = htab->etab.srelplt;
4471 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4475 s = htab->etab.srelplt;
4476 dyn.d_un.d_val = s->size;
4480 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4484 if (sgot != NULL && sgot->size != 0)
4486 /* Fill in the first entry in the global offset table.
4487 We use it to point to our dynamic section, if we have one. */
4488 bfd_put_32 (output_bfd,
4489 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4492 /* The second entry is reserved for use by the dynamic linker. */
4493 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4495 /* Set .got entry size. */
4496 elf_section_data (sgot->output_section)
4497 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4500 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4502 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4503 plt stubs and as such the section does not hold a table of fixed-size
4505 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4507 if (htab->need_plt_stub)
4509 /* Set up the .plt stub. */
4510 memcpy (htab->etab.splt->contents
4511 + htab->etab.splt->size - sizeof (plt_stub),
4512 plt_stub, sizeof (plt_stub));
4514 if ((htab->etab.splt->output_offset
4515 + htab->etab.splt->output_section->vma
4516 + htab->etab.splt->size)
4517 != (sgot->output_offset
4518 + sgot->output_section->vma))
4521 (_(".got section not immediately after .plt section"));
4530 /* Called when writing out an object file to decide the type of a
4533 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4535 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4536 return STT_PARISC_MILLI;
4541 /* Misc BFD support code. */
4542 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4543 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4544 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4545 #define elf_info_to_howto elf_hppa_info_to_howto
4546 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4548 /* Stuff for the BFD linker. */
4549 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4550 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4551 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4552 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4553 #define elf_backend_check_relocs elf32_hppa_check_relocs
4554 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4555 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4556 #define elf_backend_fake_sections elf_hppa_fake_sections
4557 #define elf_backend_relocate_section elf32_hppa_relocate_section
4558 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4559 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4560 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4561 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4562 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4563 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4564 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4565 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4566 #define elf_backend_object_p elf32_hppa_object_p
4567 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4568 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4569 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4570 #define elf_backend_action_discarded elf_hppa_action_discarded
4572 #define elf_backend_can_gc_sections 1
4573 #define elf_backend_can_refcount 1
4574 #define elf_backend_plt_alignment 2
4575 #define elf_backend_want_got_plt 0
4576 #define elf_backend_plt_readonly 0
4577 #define elf_backend_want_plt_sym 0
4578 #define elf_backend_got_header_size 8
4579 #define elf_backend_want_dynrelro 1
4580 #define elf_backend_rela_normal 1
4581 #define elf_backend_dtrel_excludes_plt 1
4582 #define elf_backend_no_page_alias 1
4584 #define TARGET_BIG_SYM hppa_elf32_vec
4585 #define TARGET_BIG_NAME "elf32-hppa"
4586 #define ELF_ARCH bfd_arch_hppa
4587 #define ELF_TARGET_ID HPPA32_ELF_DATA
4588 #define ELF_MACHINE_CODE EM_PARISC
4589 #define ELF_MAXPAGESIZE 0x1000
4590 #define ELF_OSABI ELFOSABI_HPUX
4591 #define elf32_bed elf32_hppa_hpux_bed
4593 #include "elf32-target.h"
4595 #undef TARGET_BIG_SYM
4596 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4597 #undef TARGET_BIG_NAME
4598 #define TARGET_BIG_NAME "elf32-hppa-linux"
4600 #define ELF_OSABI ELFOSABI_GNU
4602 #define elf32_bed elf32_hppa_linux_bed
4604 #include "elf32-target.h"
4606 #undef TARGET_BIG_SYM
4607 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4608 #undef TARGET_BIG_NAME
4609 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4611 #define ELF_OSABI ELFOSABI_NETBSD
4613 #define elf32_bed elf32_hppa_netbsd_bed
4615 #include "elf32-target.h"