1 /* AVR-specific support for 32-bit ELF
2 Copyright (C) 1999-2016 Free Software Foundation, Inc.
3 Contributed by Denis Chertykov <denisc@overta.ru>
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
27 #include "elf32-avr.h"
28 #include "bfd_stdint.h"
30 /* Enable debugging printout at stdout with this variable. */
31 static bfd_boolean debug_relax = FALSE;
33 /* Enable debugging printout at stdout with this variable. */
34 static bfd_boolean debug_stubs = FALSE;
36 static bfd_reloc_status_type
37 bfd_elf_avr_diff_reloc (bfd *, arelent *, asymbol *, void *,
38 asection *, bfd *, char **);
40 /* Hash table initialization and handling. Code is taken from the hppa port
41 and adapted to the needs of AVR. */
43 /* We use two hash tables to hold information for linking avr objects.
45 The first is the elf32_avr_link_hash_table which is derived from the
46 stanard ELF linker hash table. We use this as a place to attach the other
47 hash table and some static information.
49 The second is the stub hash table which is derived from the base BFD
50 hash table. The stub hash table holds the information on the linker
53 struct elf32_avr_stub_hash_entry
55 /* Base hash table entry structure. */
56 struct bfd_hash_entry bh_root;
58 /* Offset within stub_sec of the beginning of this stub. */
61 /* Given the symbol's value and its section we can determine its final
62 value when building the stubs (so the stub knows where to jump). */
65 /* This way we could mark stubs to be no longer necessary. */
66 bfd_boolean is_actually_needed;
69 struct elf32_avr_link_hash_table
71 /* The main hash table. */
72 struct elf_link_hash_table etab;
74 /* The stub hash table. */
75 struct bfd_hash_table bstab;
79 /* Linker stub bfd. */
82 /* The stub section. */
85 /* Usually 0, unless we are generating code for a bootloader. Will
86 be initialized by elf32_avr_size_stubs to the vma offset of the
87 output section associated with the stub section. */
90 /* Assorted information used by elf32_avr_size_stubs. */
91 unsigned int bfd_count;
92 unsigned int top_index;
93 asection ** input_list;
94 Elf_Internal_Sym ** all_local_syms;
96 /* Tables for mapping vma beyond the 128k boundary to the address of the
97 corresponding stub. (AMT)
98 "amt_max_entry_cnt" reflects the number of entries that memory is allocated
99 for in the "amt_stub_offsets" and "amt_destination_addr" arrays.
100 "amt_entry_cnt" informs how many of these entries actually contain
102 unsigned int amt_entry_cnt;
103 unsigned int amt_max_entry_cnt;
104 bfd_vma * amt_stub_offsets;
105 bfd_vma * amt_destination_addr;
108 /* Various hash macros and functions. */
109 #define avr_link_hash_table(p) \
110 /* PR 3874: Check that we have an AVR style hash table before using it. */\
111 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
112 == AVR_ELF_DATA ? ((struct elf32_avr_link_hash_table *) ((p)->hash)) : NULL)
114 #define avr_stub_hash_entry(ent) \
115 ((struct elf32_avr_stub_hash_entry *)(ent))
117 #define avr_stub_hash_lookup(table, string, create, copy) \
118 ((struct elf32_avr_stub_hash_entry *) \
119 bfd_hash_lookup ((table), (string), (create), (copy)))
121 static reloc_howto_type elf_avr_howto_table[] =
123 HOWTO (R_AVR_NONE, /* type */
125 3, /* size (0 = byte, 1 = short, 2 = long) */
127 FALSE, /* pc_relative */
129 complain_overflow_dont, /* complain_on_overflow */
130 bfd_elf_generic_reloc, /* special_function */
131 "R_AVR_NONE", /* name */
132 FALSE, /* partial_inplace */
135 FALSE), /* pcrel_offset */
137 HOWTO (R_AVR_32, /* type */
139 2, /* size (0 = byte, 1 = short, 2 = long) */
141 FALSE, /* pc_relative */
143 complain_overflow_bitfield, /* complain_on_overflow */
144 bfd_elf_generic_reloc, /* special_function */
145 "R_AVR_32", /* name */
146 FALSE, /* partial_inplace */
147 0xffffffff, /* src_mask */
148 0xffffffff, /* dst_mask */
149 FALSE), /* pcrel_offset */
151 /* A 7 bit PC relative relocation. */
152 HOWTO (R_AVR_7_PCREL, /* type */
154 1, /* size (0 = byte, 1 = short, 2 = long) */
156 TRUE, /* pc_relative */
158 complain_overflow_bitfield, /* complain_on_overflow */
159 bfd_elf_generic_reloc, /* special_function */
160 "R_AVR_7_PCREL", /* name */
161 FALSE, /* partial_inplace */
162 0xffff, /* src_mask */
163 0xffff, /* dst_mask */
164 TRUE), /* pcrel_offset */
166 /* A 13 bit PC relative relocation. */
167 HOWTO (R_AVR_13_PCREL, /* type */
169 1, /* size (0 = byte, 1 = short, 2 = long) */
171 TRUE, /* pc_relative */
173 complain_overflow_bitfield, /* complain_on_overflow */
174 bfd_elf_generic_reloc, /* special_function */
175 "R_AVR_13_PCREL", /* name */
176 FALSE, /* partial_inplace */
177 0xfff, /* src_mask */
178 0xfff, /* dst_mask */
179 TRUE), /* pcrel_offset */
181 /* A 16 bit absolute relocation. */
182 HOWTO (R_AVR_16, /* type */
184 1, /* size (0 = byte, 1 = short, 2 = long) */
186 FALSE, /* pc_relative */
188 complain_overflow_dont, /* complain_on_overflow */
189 bfd_elf_generic_reloc, /* special_function */
190 "R_AVR_16", /* name */
191 FALSE, /* partial_inplace */
192 0xffff, /* src_mask */
193 0xffff, /* dst_mask */
194 FALSE), /* pcrel_offset */
196 /* A 16 bit absolute relocation for command address
197 Will be changed when linker stubs are needed. */
198 HOWTO (R_AVR_16_PM, /* type */
200 1, /* size (0 = byte, 1 = short, 2 = long) */
202 FALSE, /* pc_relative */
204 complain_overflow_bitfield, /* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_AVR_16_PM", /* name */
207 FALSE, /* partial_inplace */
208 0xffff, /* src_mask */
209 0xffff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211 /* A low 8 bit absolute relocation of 16 bit address.
213 HOWTO (R_AVR_LO8_LDI, /* type */
215 1, /* size (0 = byte, 1 = short, 2 = long) */
217 FALSE, /* pc_relative */
219 complain_overflow_dont, /* complain_on_overflow */
220 bfd_elf_generic_reloc, /* special_function */
221 "R_AVR_LO8_LDI", /* name */
222 FALSE, /* partial_inplace */
223 0xffff, /* src_mask */
224 0xffff, /* dst_mask */
225 FALSE), /* pcrel_offset */
226 /* A high 8 bit absolute relocation of 16 bit address.
228 HOWTO (R_AVR_HI8_LDI, /* type */
230 1, /* size (0 = byte, 1 = short, 2 = long) */
232 FALSE, /* pc_relative */
234 complain_overflow_dont, /* complain_on_overflow */
235 bfd_elf_generic_reloc, /* special_function */
236 "R_AVR_HI8_LDI", /* name */
237 FALSE, /* partial_inplace */
238 0xffff, /* src_mask */
239 0xffff, /* dst_mask */
240 FALSE), /* pcrel_offset */
241 /* A high 6 bit absolute relocation of 22 bit address.
242 For LDI command. As well second most significant 8 bit value of
243 a 32 bit link-time constant. */
244 HOWTO (R_AVR_HH8_LDI, /* type */
246 1, /* size (0 = byte, 1 = short, 2 = long) */
248 FALSE, /* pc_relative */
250 complain_overflow_dont, /* complain_on_overflow */
251 bfd_elf_generic_reloc, /* special_function */
252 "R_AVR_HH8_LDI", /* name */
253 FALSE, /* partial_inplace */
254 0xffff, /* src_mask */
255 0xffff, /* dst_mask */
256 FALSE), /* pcrel_offset */
257 /* A negative low 8 bit absolute relocation of 16 bit address.
259 HOWTO (R_AVR_LO8_LDI_NEG, /* type */
261 1, /* size (0 = byte, 1 = short, 2 = long) */
263 FALSE, /* pc_relative */
265 complain_overflow_dont, /* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_AVR_LO8_LDI_NEG", /* name */
268 FALSE, /* partial_inplace */
269 0xffff, /* src_mask */
270 0xffff, /* dst_mask */
271 FALSE), /* pcrel_offset */
272 /* A negative high 8 bit absolute relocation of 16 bit address.
274 HOWTO (R_AVR_HI8_LDI_NEG, /* type */
276 1, /* size (0 = byte, 1 = short, 2 = long) */
278 FALSE, /* pc_relative */
280 complain_overflow_dont, /* complain_on_overflow */
281 bfd_elf_generic_reloc, /* special_function */
282 "R_AVR_HI8_LDI_NEG", /* name */
283 FALSE, /* partial_inplace */
284 0xffff, /* src_mask */
285 0xffff, /* dst_mask */
286 FALSE), /* pcrel_offset */
287 /* A negative high 6 bit absolute relocation of 22 bit address.
289 HOWTO (R_AVR_HH8_LDI_NEG, /* type */
291 1, /* size (0 = byte, 1 = short, 2 = long) */
293 FALSE, /* pc_relative */
295 complain_overflow_dont, /* complain_on_overflow */
296 bfd_elf_generic_reloc, /* special_function */
297 "R_AVR_HH8_LDI_NEG", /* name */
298 FALSE, /* partial_inplace */
299 0xffff, /* src_mask */
300 0xffff, /* dst_mask */
301 FALSE), /* pcrel_offset */
302 /* A low 8 bit absolute relocation of 24 bit program memory address.
303 For LDI command. Will not be changed when linker stubs are needed. */
304 HOWTO (R_AVR_LO8_LDI_PM, /* type */
306 1, /* size (0 = byte, 1 = short, 2 = long) */
308 FALSE, /* pc_relative */
310 complain_overflow_dont, /* complain_on_overflow */
311 bfd_elf_generic_reloc, /* special_function */
312 "R_AVR_LO8_LDI_PM", /* name */
313 FALSE, /* partial_inplace */
314 0xffff, /* src_mask */
315 0xffff, /* dst_mask */
316 FALSE), /* pcrel_offset */
317 /* A low 8 bit absolute relocation of 24 bit program memory address.
318 For LDI command. Will not be changed when linker stubs are needed. */
319 HOWTO (R_AVR_HI8_LDI_PM, /* type */
321 1, /* size (0 = byte, 1 = short, 2 = long) */
323 FALSE, /* pc_relative */
325 complain_overflow_dont, /* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_AVR_HI8_LDI_PM", /* name */
328 FALSE, /* partial_inplace */
329 0xffff, /* src_mask */
330 0xffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332 /* A low 8 bit absolute relocation of 24 bit program memory address.
333 For LDI command. Will not be changed when linker stubs are needed. */
334 HOWTO (R_AVR_HH8_LDI_PM, /* type */
336 1, /* size (0 = byte, 1 = short, 2 = long) */
338 FALSE, /* pc_relative */
340 complain_overflow_dont, /* complain_on_overflow */
341 bfd_elf_generic_reloc, /* special_function */
342 "R_AVR_HH8_LDI_PM", /* name */
343 FALSE, /* partial_inplace */
344 0xffff, /* src_mask */
345 0xffff, /* dst_mask */
346 FALSE), /* pcrel_offset */
347 /* A low 8 bit absolute relocation of 24 bit program memory address.
348 For LDI command. Will not be changed when linker stubs are needed. */
349 HOWTO (R_AVR_LO8_LDI_PM_NEG, /* type */
351 1, /* size (0 = byte, 1 = short, 2 = long) */
353 FALSE, /* pc_relative */
355 complain_overflow_dont, /* complain_on_overflow */
356 bfd_elf_generic_reloc, /* special_function */
357 "R_AVR_LO8_LDI_PM_NEG", /* name */
358 FALSE, /* partial_inplace */
359 0xffff, /* src_mask */
360 0xffff, /* dst_mask */
361 FALSE), /* pcrel_offset */
362 /* A low 8 bit absolute relocation of 24 bit program memory address.
363 For LDI command. Will not be changed when linker stubs are needed. */
364 HOWTO (R_AVR_HI8_LDI_PM_NEG, /* type */
366 1, /* size (0 = byte, 1 = short, 2 = long) */
368 FALSE, /* pc_relative */
370 complain_overflow_dont, /* complain_on_overflow */
371 bfd_elf_generic_reloc, /* special_function */
372 "R_AVR_HI8_LDI_PM_NEG", /* name */
373 FALSE, /* partial_inplace */
374 0xffff, /* src_mask */
375 0xffff, /* dst_mask */
376 FALSE), /* pcrel_offset */
377 /* A low 8 bit absolute relocation of 24 bit program memory address.
378 For LDI command. Will not be changed when linker stubs are needed. */
379 HOWTO (R_AVR_HH8_LDI_PM_NEG, /* type */
381 1, /* size (0 = byte, 1 = short, 2 = long) */
383 FALSE, /* pc_relative */
385 complain_overflow_dont, /* complain_on_overflow */
386 bfd_elf_generic_reloc, /* special_function */
387 "R_AVR_HH8_LDI_PM_NEG", /* name */
388 FALSE, /* partial_inplace */
389 0xffff, /* src_mask */
390 0xffff, /* dst_mask */
391 FALSE), /* pcrel_offset */
392 /* Relocation for CALL command in ATmega. */
393 HOWTO (R_AVR_CALL, /* type */
395 2, /* size (0 = byte, 1 = short, 2 = long) */
397 FALSE, /* pc_relative */
399 complain_overflow_dont,/* complain_on_overflow */
400 bfd_elf_generic_reloc, /* special_function */
401 "R_AVR_CALL", /* name */
402 FALSE, /* partial_inplace */
403 0xffffffff, /* src_mask */
404 0xffffffff, /* dst_mask */
405 FALSE), /* pcrel_offset */
406 /* A 16 bit absolute relocation of 16 bit address.
408 HOWTO (R_AVR_LDI, /* type */
410 1, /* size (0 = byte, 1 = short, 2 = long) */
412 FALSE, /* pc_relative */
414 complain_overflow_dont,/* complain_on_overflow */
415 bfd_elf_generic_reloc, /* special_function */
416 "R_AVR_LDI", /* name */
417 FALSE, /* partial_inplace */
418 0xffff, /* src_mask */
419 0xffff, /* dst_mask */
420 FALSE), /* pcrel_offset */
421 /* A 6 bit absolute relocation of 6 bit offset.
422 For ldd/sdd command. */
423 HOWTO (R_AVR_6, /* type */
425 0, /* size (0 = byte, 1 = short, 2 = long) */
427 FALSE, /* pc_relative */
429 complain_overflow_dont,/* complain_on_overflow */
430 bfd_elf_generic_reloc, /* special_function */
431 "R_AVR_6", /* name */
432 FALSE, /* partial_inplace */
433 0xffff, /* src_mask */
434 0xffff, /* dst_mask */
435 FALSE), /* pcrel_offset */
436 /* A 6 bit absolute relocation of 6 bit offset.
437 For sbiw/adiw command. */
438 HOWTO (R_AVR_6_ADIW, /* type */
440 0, /* size (0 = byte, 1 = short, 2 = long) */
442 FALSE, /* pc_relative */
444 complain_overflow_dont,/* complain_on_overflow */
445 bfd_elf_generic_reloc, /* special_function */
446 "R_AVR_6_ADIW", /* name */
447 FALSE, /* partial_inplace */
448 0xffff, /* src_mask */
449 0xffff, /* dst_mask */
450 FALSE), /* pcrel_offset */
451 /* Most significant 8 bit value of a 32 bit link-time constant. */
452 HOWTO (R_AVR_MS8_LDI, /* type */
454 1, /* size (0 = byte, 1 = short, 2 = long) */
456 FALSE, /* pc_relative */
458 complain_overflow_dont, /* complain_on_overflow */
459 bfd_elf_generic_reloc, /* special_function */
460 "R_AVR_MS8_LDI", /* name */
461 FALSE, /* partial_inplace */
462 0xffff, /* src_mask */
463 0xffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465 /* Negative most significant 8 bit value of a 32 bit link-time constant. */
466 HOWTO (R_AVR_MS8_LDI_NEG, /* type */
468 1, /* size (0 = byte, 1 = short, 2 = long) */
470 FALSE, /* pc_relative */
472 complain_overflow_dont, /* complain_on_overflow */
473 bfd_elf_generic_reloc, /* special_function */
474 "R_AVR_MS8_LDI_NEG", /* name */
475 FALSE, /* partial_inplace */
476 0xffff, /* src_mask */
477 0xffff, /* dst_mask */
478 FALSE), /* pcrel_offset */
479 /* A low 8 bit absolute relocation of 24 bit program memory address.
480 For LDI command. Will be changed when linker stubs are needed. */
481 HOWTO (R_AVR_LO8_LDI_GS, /* type */
483 1, /* size (0 = byte, 1 = short, 2 = long) */
485 FALSE, /* pc_relative */
487 complain_overflow_dont, /* complain_on_overflow */
488 bfd_elf_generic_reloc, /* special_function */
489 "R_AVR_LO8_LDI_GS", /* name */
490 FALSE, /* partial_inplace */
491 0xffff, /* src_mask */
492 0xffff, /* dst_mask */
493 FALSE), /* pcrel_offset */
494 /* A low 8 bit absolute relocation of 24 bit program memory address.
495 For LDI command. Will be changed when linker stubs are needed. */
496 HOWTO (R_AVR_HI8_LDI_GS, /* type */
498 1, /* size (0 = byte, 1 = short, 2 = long) */
500 FALSE, /* pc_relative */
502 complain_overflow_dont, /* complain_on_overflow */
503 bfd_elf_generic_reloc, /* special_function */
504 "R_AVR_HI8_LDI_GS", /* name */
505 FALSE, /* partial_inplace */
506 0xffff, /* src_mask */
507 0xffff, /* dst_mask */
508 FALSE), /* pcrel_offset */
510 HOWTO (R_AVR_8, /* type */
512 0, /* size (0 = byte, 1 = short, 2 = long) */
514 FALSE, /* pc_relative */
516 complain_overflow_bitfield,/* complain_on_overflow */
517 bfd_elf_generic_reloc, /* special_function */
518 "R_AVR_8", /* name */
519 FALSE, /* partial_inplace */
520 0x000000ff, /* src_mask */
521 0x000000ff, /* dst_mask */
522 FALSE), /* pcrel_offset */
523 /* lo8-part to use in .byte lo8(sym). */
524 HOWTO (R_AVR_8_LO8, /* type */
526 0, /* size (0 = byte, 1 = short, 2 = long) */
528 FALSE, /* pc_relative */
530 complain_overflow_dont,/* complain_on_overflow */
531 bfd_elf_generic_reloc, /* special_function */
532 "R_AVR_8_LO8", /* name */
533 FALSE, /* partial_inplace */
534 0xffffff, /* src_mask */
535 0xffffff, /* dst_mask */
536 FALSE), /* pcrel_offset */
537 /* hi8-part to use in .byte hi8(sym). */
538 HOWTO (R_AVR_8_HI8, /* type */
540 0, /* size (0 = byte, 1 = short, 2 = long) */
542 FALSE, /* pc_relative */
544 complain_overflow_dont,/* complain_on_overflow */
545 bfd_elf_generic_reloc, /* special_function */
546 "R_AVR_8_HI8", /* name */
547 FALSE, /* partial_inplace */
548 0xffffff, /* src_mask */
549 0xffffff, /* dst_mask */
550 FALSE), /* pcrel_offset */
551 /* hlo8-part to use in .byte hlo8(sym). */
552 HOWTO (R_AVR_8_HLO8, /* type */
554 0, /* size (0 = byte, 1 = short, 2 = long) */
556 FALSE, /* pc_relative */
558 complain_overflow_dont,/* complain_on_overflow */
559 bfd_elf_generic_reloc, /* special_function */
560 "R_AVR_8_HLO8", /* name */
561 FALSE, /* partial_inplace */
562 0xffffff, /* src_mask */
563 0xffffff, /* dst_mask */
564 FALSE), /* pcrel_offset */
565 HOWTO (R_AVR_DIFF8, /* type */
567 0, /* size (0 = byte, 1 = short, 2 = long) */
569 FALSE, /* pc_relative */
571 complain_overflow_bitfield, /* complain_on_overflow */
572 bfd_elf_avr_diff_reloc, /* special_function */
573 "R_AVR_DIFF8", /* name */
574 FALSE, /* partial_inplace */
577 FALSE), /* pcrel_offset */
578 HOWTO (R_AVR_DIFF16, /* type */
580 1, /* size (0 = byte, 1 = short, 2 = long) */
582 FALSE, /* pc_relative */
584 complain_overflow_bitfield, /* complain_on_overflow */
585 bfd_elf_avr_diff_reloc,/* special_function */
586 "R_AVR_DIFF16", /* name */
587 FALSE, /* partial_inplace */
589 0xffff, /* dst_mask */
590 FALSE), /* pcrel_offset */
591 HOWTO (R_AVR_DIFF32, /* type */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
595 FALSE, /* pc_relative */
597 complain_overflow_bitfield, /* complain_on_overflow */
598 bfd_elf_avr_diff_reloc,/* special_function */
599 "R_AVR_DIFF32", /* name */
600 FALSE, /* partial_inplace */
602 0xffffffff, /* dst_mask */
603 FALSE), /* pcrel_offset */
604 /* 7 bit immediate for LDS/STS in Tiny core. */
605 HOWTO (R_AVR_LDS_STS_16, /* type */
607 1, /* size (0 = byte, 1 = short, 2 = long) */
609 FALSE, /* pc_relative */
611 complain_overflow_dont,/* complain_on_overflow */
612 bfd_elf_generic_reloc, /* special_function */
613 "R_AVR_LDS_STS_16", /* name */
614 FALSE, /* partial_inplace */
615 0xffff, /* src_mask */
616 0xffff, /* dst_mask */
617 FALSE), /* pcrel_offset */
619 HOWTO (R_AVR_PORT6, /* type */
621 0, /* size (0 = byte, 1 = short, 2 = long) */
623 FALSE, /* pc_relative */
625 complain_overflow_dont,/* complain_on_overflow */
626 bfd_elf_generic_reloc, /* special_function */
627 "R_AVR_PORT6", /* name */
628 FALSE, /* partial_inplace */
629 0xffffff, /* src_mask */
630 0xffffff, /* dst_mask */
631 FALSE), /* pcrel_offset */
632 HOWTO (R_AVR_PORT5, /* type */
634 0, /* size (0 = byte, 1 = short, 2 = long) */
636 FALSE, /* pc_relative */
638 complain_overflow_dont,/* complain_on_overflow */
639 bfd_elf_generic_reloc, /* special_function */
640 "R_AVR_PORT5", /* name */
641 FALSE, /* partial_inplace */
642 0xffffff, /* src_mask */
643 0xffffff, /* dst_mask */
644 FALSE), /* pcrel_offset */
646 /* A 32 bit PC relative relocation. */
647 HOWTO (R_AVR_32_PCREL, /* type */
649 2, /* size (0 = byte, 1 = short, 2 = long) */
651 TRUE, /* pc_relative */
653 complain_overflow_bitfield, /* complain_on_overflow */
654 bfd_elf_generic_reloc, /* special_function */
655 "R_AVR_32_PCREL", /* name */
656 FALSE, /* partial_inplace */
657 0xffffffff, /* src_mask */
658 0xffffffff, /* dst_mask */
659 TRUE), /* pcrel_offset */
662 /* Map BFD reloc types to AVR ELF reloc types. */
666 bfd_reloc_code_real_type bfd_reloc_val;
667 unsigned int elf_reloc_val;
670 static const struct avr_reloc_map avr_reloc_map[] =
672 { BFD_RELOC_NONE, R_AVR_NONE },
673 { BFD_RELOC_32, R_AVR_32 },
674 { BFD_RELOC_AVR_7_PCREL, R_AVR_7_PCREL },
675 { BFD_RELOC_AVR_13_PCREL, R_AVR_13_PCREL },
676 { BFD_RELOC_16, R_AVR_16 },
677 { BFD_RELOC_AVR_16_PM, R_AVR_16_PM },
678 { BFD_RELOC_AVR_LO8_LDI, R_AVR_LO8_LDI},
679 { BFD_RELOC_AVR_HI8_LDI, R_AVR_HI8_LDI },
680 { BFD_RELOC_AVR_HH8_LDI, R_AVR_HH8_LDI },
681 { BFD_RELOC_AVR_MS8_LDI, R_AVR_MS8_LDI },
682 { BFD_RELOC_AVR_LO8_LDI_NEG, R_AVR_LO8_LDI_NEG },
683 { BFD_RELOC_AVR_HI8_LDI_NEG, R_AVR_HI8_LDI_NEG },
684 { BFD_RELOC_AVR_HH8_LDI_NEG, R_AVR_HH8_LDI_NEG },
685 { BFD_RELOC_AVR_MS8_LDI_NEG, R_AVR_MS8_LDI_NEG },
686 { BFD_RELOC_AVR_LO8_LDI_PM, R_AVR_LO8_LDI_PM },
687 { BFD_RELOC_AVR_LO8_LDI_GS, R_AVR_LO8_LDI_GS },
688 { BFD_RELOC_AVR_HI8_LDI_PM, R_AVR_HI8_LDI_PM },
689 { BFD_RELOC_AVR_HI8_LDI_GS, R_AVR_HI8_LDI_GS },
690 { BFD_RELOC_AVR_HH8_LDI_PM, R_AVR_HH8_LDI_PM },
691 { BFD_RELOC_AVR_LO8_LDI_PM_NEG, R_AVR_LO8_LDI_PM_NEG },
692 { BFD_RELOC_AVR_HI8_LDI_PM_NEG, R_AVR_HI8_LDI_PM_NEG },
693 { BFD_RELOC_AVR_HH8_LDI_PM_NEG, R_AVR_HH8_LDI_PM_NEG },
694 { BFD_RELOC_AVR_CALL, R_AVR_CALL },
695 { BFD_RELOC_AVR_LDI, R_AVR_LDI },
696 { BFD_RELOC_AVR_6, R_AVR_6 },
697 { BFD_RELOC_AVR_6_ADIW, R_AVR_6_ADIW },
698 { BFD_RELOC_8, R_AVR_8 },
699 { BFD_RELOC_AVR_8_LO, R_AVR_8_LO8 },
700 { BFD_RELOC_AVR_8_HI, R_AVR_8_HI8 },
701 { BFD_RELOC_AVR_8_HLO, R_AVR_8_HLO8 },
702 { BFD_RELOC_AVR_DIFF8, R_AVR_DIFF8 },
703 { BFD_RELOC_AVR_DIFF16, R_AVR_DIFF16 },
704 { BFD_RELOC_AVR_DIFF32, R_AVR_DIFF32 },
705 { BFD_RELOC_AVR_LDS_STS_16, R_AVR_LDS_STS_16},
706 { BFD_RELOC_AVR_PORT6, R_AVR_PORT6},
707 { BFD_RELOC_AVR_PORT5, R_AVR_PORT5},
708 { BFD_RELOC_32_PCREL, R_AVR_32_PCREL}
711 /* Meant to be filled one day with the wrap around address for the
712 specific device. I.e. should get the value 0x4000 for 16k devices,
713 0x8000 for 32k devices and so on.
715 We initialize it here with a value of 0x1000000 resulting in
716 that we will never suggest a wrap-around jump during relaxation.
717 The logic of the source code later on assumes that in
718 avr_pc_wrap_around one single bit is set. */
719 static bfd_vma avr_pc_wrap_around = 0x10000000;
721 /* If this variable holds a value different from zero, the linker relaxation
722 machine will try to optimize call/ret sequences by a single jump
723 instruction. This option could be switched off by a linker switch. */
724 static int avr_replace_call_ret_sequences = 1;
727 /* Per-section relaxation related information for avr. */
729 struct avr_relax_info
731 /* Track the avr property records that apply to this section. */
735 /* Number of records in the list. */
738 /* How many records worth of space have we allocated. */
741 /* The records, only COUNT records are initialised. */
742 struct avr_property_record *items;
746 /* Per section data, specialised for avr. */
748 struct elf_avr_section_data
750 /* The standard data must appear first. */
751 struct bfd_elf_section_data elf;
753 /* Relaxation related information. */
754 struct avr_relax_info relax_info;
757 /* Possibly initialise avr specific data for new section SEC from ABFD. */
760 elf_avr_new_section_hook (bfd *abfd, asection *sec)
762 if (!sec->used_by_bfd)
764 struct elf_avr_section_data *sdata;
765 bfd_size_type amt = sizeof (*sdata);
767 sdata = bfd_zalloc (abfd, amt);
770 sec->used_by_bfd = sdata;
773 return _bfd_elf_new_section_hook (abfd, sec);
776 /* Return a pointer to the relaxation information for SEC. */
778 static struct avr_relax_info *
779 get_avr_relax_info (asection *sec)
781 struct elf_avr_section_data *section_data;
783 /* No info available if no section or if it is an output section. */
784 if (!sec || sec == sec->output_section)
787 section_data = (struct elf_avr_section_data *) elf_section_data (sec);
788 return §ion_data->relax_info;
791 /* Initialise the per section relaxation information for SEC. */
794 init_avr_relax_info (asection *sec)
796 struct avr_relax_info *relax_info = get_avr_relax_info (sec);
798 relax_info->records.count = 0;
799 relax_info->records.allocated = 0;
800 relax_info->records.items = NULL;
803 /* Initialize an entry in the stub hash table. */
805 static struct bfd_hash_entry *
806 stub_hash_newfunc (struct bfd_hash_entry *entry,
807 struct bfd_hash_table *table,
810 /* Allocate the structure if it has not already been allocated by a
814 entry = bfd_hash_allocate (table,
815 sizeof (struct elf32_avr_stub_hash_entry));
820 /* Call the allocation method of the superclass. */
821 entry = bfd_hash_newfunc (entry, table, string);
824 struct elf32_avr_stub_hash_entry *hsh;
826 /* Initialize the local fields. */
827 hsh = avr_stub_hash_entry (entry);
828 hsh->stub_offset = 0;
829 hsh->target_value = 0;
835 /* This function is just a straight passthrough to the real
836 function in linker.c. Its prupose is so that its address
837 can be compared inside the avr_link_hash_table macro. */
839 static struct bfd_hash_entry *
840 elf32_avr_link_hash_newfunc (struct bfd_hash_entry * entry,
841 struct bfd_hash_table * table,
844 return _bfd_elf_link_hash_newfunc (entry, table, string);
847 /* Free the derived linker hash table. */
850 elf32_avr_link_hash_table_free (bfd *obfd)
852 struct elf32_avr_link_hash_table *htab
853 = (struct elf32_avr_link_hash_table *) obfd->link.hash;
855 /* Free the address mapping table. */
856 if (htab->amt_stub_offsets != NULL)
857 free (htab->amt_stub_offsets);
858 if (htab->amt_destination_addr != NULL)
859 free (htab->amt_destination_addr);
861 bfd_hash_table_free (&htab->bstab);
862 _bfd_elf_link_hash_table_free (obfd);
865 /* Create the derived linker hash table. The AVR ELF port uses the derived
866 hash table to keep information specific to the AVR ELF linker (without
867 using static variables). */
869 static struct bfd_link_hash_table *
870 elf32_avr_link_hash_table_create (bfd *abfd)
872 struct elf32_avr_link_hash_table *htab;
873 bfd_size_type amt = sizeof (*htab);
875 htab = bfd_zmalloc (amt);
879 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd,
880 elf32_avr_link_hash_newfunc,
881 sizeof (struct elf_link_hash_entry),
888 /* Init the stub hash table too. */
889 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
890 sizeof (struct elf32_avr_stub_hash_entry)))
892 _bfd_elf_link_hash_table_free (abfd);
895 htab->etab.root.hash_table_free = elf32_avr_link_hash_table_free;
897 return &htab->etab.root;
900 /* Calculates the effective distance of a pc relative jump/call. */
903 avr_relative_distance_considering_wrap_around (unsigned int distance)
905 unsigned int wrap_around_mask = avr_pc_wrap_around - 1;
906 int dist_with_wrap_around = distance & wrap_around_mask;
908 if (dist_with_wrap_around > ((int) (avr_pc_wrap_around >> 1)))
909 dist_with_wrap_around -= avr_pc_wrap_around;
911 return dist_with_wrap_around;
915 static reloc_howto_type *
916 bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
917 bfd_reloc_code_real_type code)
922 i < sizeof (avr_reloc_map) / sizeof (struct avr_reloc_map);
924 if (avr_reloc_map[i].bfd_reloc_val == code)
925 return &elf_avr_howto_table[avr_reloc_map[i].elf_reloc_val];
930 static reloc_howto_type *
931 bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
937 i < sizeof (elf_avr_howto_table) / sizeof (elf_avr_howto_table[0]);
939 if (elf_avr_howto_table[i].name != NULL
940 && strcasecmp (elf_avr_howto_table[i].name, r_name) == 0)
941 return &elf_avr_howto_table[i];
946 /* Set the howto pointer for an AVR ELF reloc. */
949 avr_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
951 Elf_Internal_Rela *dst)
955 r_type = ELF32_R_TYPE (dst->r_info);
956 if (r_type >= (unsigned int) R_AVR_max)
958 _bfd_error_handler (_("%B: invalid AVR reloc number: %d"), abfd, r_type);
961 cache_ptr->howto = &elf_avr_howto_table[r_type];
965 avr_stub_is_required_for_16_bit_reloc (bfd_vma relocation)
967 return (relocation >= 0x020000);
970 /* Returns the address of the corresponding stub if there is one.
971 Returns otherwise an address above 0x020000. This function
972 could also be used, if there is no knowledge on the section where
973 the destination is found. */
976 avr_get_stub_addr (bfd_vma srel,
977 struct elf32_avr_link_hash_table *htab)
980 bfd_vma stub_sec_addr =
981 (htab->stub_sec->output_section->vma +
982 htab->stub_sec->output_offset);
984 for (sindex = 0; sindex < htab->amt_max_entry_cnt; sindex ++)
985 if (htab->amt_destination_addr[sindex] == srel)
986 return htab->amt_stub_offsets[sindex] + stub_sec_addr;
988 /* Return an address that could not be reached by 16 bit relocs. */
992 /* Perform a diff relocation. Nothing to do, as the difference value is already
993 written into the section's contents. */
995 static bfd_reloc_status_type
996 bfd_elf_avr_diff_reloc (bfd *abfd ATTRIBUTE_UNUSED,
997 arelent *reloc_entry ATTRIBUTE_UNUSED,
998 asymbol *symbol ATTRIBUTE_UNUSED,
999 void *data ATTRIBUTE_UNUSED,
1000 asection *input_section ATTRIBUTE_UNUSED,
1001 bfd *output_bfd ATTRIBUTE_UNUSED,
1002 char **error_message ATTRIBUTE_UNUSED)
1004 return bfd_reloc_ok;
1008 /* Perform a single relocation. By default we use the standard BFD
1009 routines, but a few relocs, we have to do them ourselves. */
1011 static bfd_reloc_status_type
1012 avr_final_link_relocate (reloc_howto_type * howto,
1014 asection * input_section,
1015 bfd_byte * contents,
1016 Elf_Internal_Rela * rel,
1018 struct elf32_avr_link_hash_table * htab)
1020 bfd_reloc_status_type r = bfd_reloc_ok;
1022 bfd_signed_vma srel;
1023 bfd_signed_vma reloc_addr;
1024 bfd_boolean use_stubs = FALSE;
1025 /* Usually is 0, unless we are generating code for a bootloader. */
1026 bfd_signed_vma base_addr = htab->vector_base;
1028 /* Absolute addr of the reloc in the final excecutable. */
1029 reloc_addr = rel->r_offset + input_section->output_section->vma
1030 + input_section->output_offset;
1032 switch (howto->type)
1035 contents += rel->r_offset;
1036 srel = (bfd_signed_vma) relocation;
1037 srel += rel->r_addend;
1038 srel -= rel->r_offset;
1039 srel -= 2; /* Branch instructions add 2 to the PC... */
1040 srel -= (input_section->output_section->vma +
1041 input_section->output_offset);
1044 return bfd_reloc_outofrange;
1045 if (srel > ((1 << 7) - 1) || (srel < - (1 << 7)))
1046 return bfd_reloc_overflow;
1047 x = bfd_get_16 (input_bfd, contents);
1048 x = (x & 0xfc07) | (((srel >> 1) << 3) & 0x3f8);
1049 bfd_put_16 (input_bfd, x, contents);
1052 case R_AVR_13_PCREL:
1053 contents += rel->r_offset;
1054 srel = (bfd_signed_vma) relocation;
1055 srel += rel->r_addend;
1056 srel -= rel->r_offset;
1057 srel -= 2; /* Branch instructions add 2 to the PC... */
1058 srel -= (input_section->output_section->vma +
1059 input_section->output_offset);
1062 return bfd_reloc_outofrange;
1064 srel = avr_relative_distance_considering_wrap_around (srel);
1066 /* AVR addresses commands as words. */
1069 /* Check for overflow. */
1070 if (srel < -2048 || srel > 2047)
1072 /* Relative distance is too large. */
1074 /* Always apply WRAPAROUND for avr2, avr25, and avr4. */
1075 switch (bfd_get_mach (input_bfd))
1078 case bfd_mach_avr25:
1083 return bfd_reloc_overflow;
1087 x = bfd_get_16 (input_bfd, contents);
1088 x = (x & 0xf000) | (srel & 0xfff);
1089 bfd_put_16 (input_bfd, x, contents);
1093 contents += rel->r_offset;
1094 srel = (bfd_signed_vma) relocation + rel->r_addend;
1095 x = bfd_get_16 (input_bfd, contents);
1096 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1097 bfd_put_16 (input_bfd, x, contents);
1101 contents += rel->r_offset;
1102 srel = (bfd_signed_vma) relocation + rel->r_addend;
1103 if (((srel > 0) && (srel & 0xffff) > 255)
1104 || ((srel < 0) && ((-srel) & 0xffff) > 128))
1105 /* Remove offset for data/eeprom section. */
1106 return bfd_reloc_overflow;
1108 x = bfd_get_16 (input_bfd, contents);
1109 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1110 bfd_put_16 (input_bfd, x, contents);
1114 contents += rel->r_offset;
1115 srel = (bfd_signed_vma) relocation + rel->r_addend;
1116 if (((srel & 0xffff) > 63) || (srel < 0))
1117 /* Remove offset for data/eeprom section. */
1118 return bfd_reloc_overflow;
1119 x = bfd_get_16 (input_bfd, contents);
1120 x = (x & 0xd3f8) | ((srel & 7) | ((srel & (3 << 3)) << 7)
1121 | ((srel & (1 << 5)) << 8));
1122 bfd_put_16 (input_bfd, x, contents);
1126 contents += rel->r_offset;
1127 srel = (bfd_signed_vma) relocation + rel->r_addend;
1128 if (((srel & 0xffff) > 63) || (srel < 0))
1129 /* Remove offset for data/eeprom section. */
1130 return bfd_reloc_overflow;
1131 x = bfd_get_16 (input_bfd, contents);
1132 x = (x & 0xff30) | (srel & 0xf) | ((srel & 0x30) << 2);
1133 bfd_put_16 (input_bfd, x, contents);
1137 contents += rel->r_offset;
1138 srel = (bfd_signed_vma) relocation + rel->r_addend;
1139 srel = (srel >> 8) & 0xff;
1140 x = bfd_get_16 (input_bfd, contents);
1141 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1142 bfd_put_16 (input_bfd, x, contents);
1146 contents += rel->r_offset;
1147 srel = (bfd_signed_vma) relocation + rel->r_addend;
1148 srel = (srel >> 16) & 0xff;
1149 x = bfd_get_16 (input_bfd, contents);
1150 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1151 bfd_put_16 (input_bfd, x, contents);
1155 contents += rel->r_offset;
1156 srel = (bfd_signed_vma) relocation + rel->r_addend;
1157 srel = (srel >> 24) & 0xff;
1158 x = bfd_get_16 (input_bfd, contents);
1159 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1160 bfd_put_16 (input_bfd, x, contents);
1163 case R_AVR_LO8_LDI_NEG:
1164 contents += rel->r_offset;
1165 srel = (bfd_signed_vma) relocation + rel->r_addend;
1167 x = bfd_get_16 (input_bfd, contents);
1168 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1169 bfd_put_16 (input_bfd, x, contents);
1172 case R_AVR_HI8_LDI_NEG:
1173 contents += rel->r_offset;
1174 srel = (bfd_signed_vma) relocation + rel->r_addend;
1176 srel = (srel >> 8) & 0xff;
1177 x = bfd_get_16 (input_bfd, contents);
1178 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1179 bfd_put_16 (input_bfd, x, contents);
1182 case R_AVR_HH8_LDI_NEG:
1183 contents += rel->r_offset;
1184 srel = (bfd_signed_vma) relocation + rel->r_addend;
1186 srel = (srel >> 16) & 0xff;
1187 x = bfd_get_16 (input_bfd, contents);
1188 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1189 bfd_put_16 (input_bfd, x, contents);
1192 case R_AVR_MS8_LDI_NEG:
1193 contents += rel->r_offset;
1194 srel = (bfd_signed_vma) relocation + rel->r_addend;
1196 srel = (srel >> 24) & 0xff;
1197 x = bfd_get_16 (input_bfd, contents);
1198 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1199 bfd_put_16 (input_bfd, x, contents);
1202 case R_AVR_LO8_LDI_GS:
1203 use_stubs = (!htab->no_stubs);
1205 case R_AVR_LO8_LDI_PM:
1206 contents += rel->r_offset;
1207 srel = (bfd_signed_vma) relocation + rel->r_addend;
1210 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1212 bfd_vma old_srel = srel;
1214 /* We need to use the address of the stub instead. */
1215 srel = avr_get_stub_addr (srel, htab);
1217 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1218 "reloc at address 0x%x.\n",
1219 (unsigned int) srel,
1220 (unsigned int) old_srel,
1221 (unsigned int) reloc_addr);
1223 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1224 return bfd_reloc_outofrange;
1228 return bfd_reloc_outofrange;
1230 x = bfd_get_16 (input_bfd, contents);
1231 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1232 bfd_put_16 (input_bfd, x, contents);
1235 case R_AVR_HI8_LDI_GS:
1236 use_stubs = (!htab->no_stubs);
1238 case R_AVR_HI8_LDI_PM:
1239 contents += rel->r_offset;
1240 srel = (bfd_signed_vma) relocation + rel->r_addend;
1243 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1245 bfd_vma old_srel = srel;
1247 /* We need to use the address of the stub instead. */
1248 srel = avr_get_stub_addr (srel, htab);
1250 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1251 "reloc at address 0x%x.\n",
1252 (unsigned int) srel,
1253 (unsigned int) old_srel,
1254 (unsigned int) reloc_addr);
1256 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1257 return bfd_reloc_outofrange;
1261 return bfd_reloc_outofrange;
1263 srel = (srel >> 8) & 0xff;
1264 x = bfd_get_16 (input_bfd, contents);
1265 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1266 bfd_put_16 (input_bfd, x, contents);
1269 case R_AVR_HH8_LDI_PM:
1270 contents += rel->r_offset;
1271 srel = (bfd_signed_vma) relocation + rel->r_addend;
1273 return bfd_reloc_outofrange;
1275 srel = (srel >> 16) & 0xff;
1276 x = bfd_get_16 (input_bfd, contents);
1277 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1278 bfd_put_16 (input_bfd, x, contents);
1281 case R_AVR_LO8_LDI_PM_NEG:
1282 contents += rel->r_offset;
1283 srel = (bfd_signed_vma) relocation + rel->r_addend;
1286 return bfd_reloc_outofrange;
1288 x = bfd_get_16 (input_bfd, contents);
1289 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1290 bfd_put_16 (input_bfd, x, contents);
1293 case R_AVR_HI8_LDI_PM_NEG:
1294 contents += rel->r_offset;
1295 srel = (bfd_signed_vma) relocation + rel->r_addend;
1298 return bfd_reloc_outofrange;
1300 srel = (srel >> 8) & 0xff;
1301 x = bfd_get_16 (input_bfd, contents);
1302 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1303 bfd_put_16 (input_bfd, x, contents);
1306 case R_AVR_HH8_LDI_PM_NEG:
1307 contents += rel->r_offset;
1308 srel = (bfd_signed_vma) relocation + rel->r_addend;
1311 return bfd_reloc_outofrange;
1313 srel = (srel >> 16) & 0xff;
1314 x = bfd_get_16 (input_bfd, contents);
1315 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1316 bfd_put_16 (input_bfd, x, contents);
1320 contents += rel->r_offset;
1321 srel = (bfd_signed_vma) relocation + rel->r_addend;
1323 return bfd_reloc_outofrange;
1325 x = bfd_get_16 (input_bfd, contents);
1326 x |= ((srel & 0x10000) | ((srel << 3) & 0x1f00000)) >> 16;
1327 bfd_put_16 (input_bfd, x, contents);
1328 bfd_put_16 (input_bfd, (bfd_vma) srel & 0xffff, contents+2);
1332 use_stubs = (!htab->no_stubs);
1333 contents += rel->r_offset;
1334 srel = (bfd_signed_vma) relocation + rel->r_addend;
1337 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1339 bfd_vma old_srel = srel;
1341 /* We need to use the address of the stub instead. */
1342 srel = avr_get_stub_addr (srel,htab);
1344 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1345 "reloc at address 0x%x.\n",
1346 (unsigned int) srel,
1347 (unsigned int) old_srel,
1348 (unsigned int) reloc_addr);
1350 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1351 return bfd_reloc_outofrange;
1355 return bfd_reloc_outofrange;
1357 bfd_put_16 (input_bfd, (bfd_vma) srel &0x00ffff, contents);
1363 /* Nothing to do here, as contents already contains the diff value. */
1367 case R_AVR_LDS_STS_16:
1368 contents += rel->r_offset;
1369 srel = (bfd_signed_vma) relocation + rel->r_addend;
1370 if ((srel & 0xFFFF) < 0x40 || (srel & 0xFFFF) > 0xbf)
1371 return bfd_reloc_outofrange;
1373 x = bfd_get_16 (input_bfd, contents);
1374 x |= (srel & 0x0f) | ((srel & 0x30) << 5) | ((srel & 0x40) << 2);
1375 bfd_put_16 (input_bfd, x, contents);
1379 contents += rel->r_offset;
1380 srel = (bfd_signed_vma) relocation + rel->r_addend;
1381 if ((srel & 0xffff) > 0x3f)
1382 return bfd_reloc_outofrange;
1383 x = bfd_get_16 (input_bfd, contents);
1384 x = (x & 0xf9f0) | ((srel & 0x30) << 5) | (srel & 0x0f);
1385 bfd_put_16 (input_bfd, x, contents);
1389 contents += rel->r_offset;
1390 srel = (bfd_signed_vma) relocation + rel->r_addend;
1391 if ((srel & 0xffff) > 0x1f)
1392 return bfd_reloc_outofrange;
1393 x = bfd_get_16 (input_bfd, contents);
1394 x = (x & 0xff07) | ((srel & 0x1f) << 3);
1395 bfd_put_16 (input_bfd, x, contents);
1399 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1400 contents, rel->r_offset,
1401 relocation, rel->r_addend);
1407 /* Relocate an AVR ELF section. */
1410 elf32_avr_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1411 struct bfd_link_info *info,
1413 asection *input_section,
1415 Elf_Internal_Rela *relocs,
1416 Elf_Internal_Sym *local_syms,
1417 asection **local_sections)
1419 Elf_Internal_Shdr * symtab_hdr;
1420 struct elf_link_hash_entry ** sym_hashes;
1421 Elf_Internal_Rela * rel;
1422 Elf_Internal_Rela * relend;
1423 struct elf32_avr_link_hash_table * htab = avr_link_hash_table (info);
1428 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1429 sym_hashes = elf_sym_hashes (input_bfd);
1430 relend = relocs + input_section->reloc_count;
1432 for (rel = relocs; rel < relend; rel ++)
1434 reloc_howto_type * howto;
1435 unsigned long r_symndx;
1436 Elf_Internal_Sym * sym;
1438 struct elf_link_hash_entry * h;
1440 bfd_reloc_status_type r;
1444 r_type = ELF32_R_TYPE (rel->r_info);
1445 r_symndx = ELF32_R_SYM (rel->r_info);
1446 howto = elf_avr_howto_table + r_type;
1451 if (r_symndx < symtab_hdr->sh_info)
1453 sym = local_syms + r_symndx;
1454 sec = local_sections [r_symndx];
1455 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1457 name = bfd_elf_string_from_elf_section
1458 (input_bfd, symtab_hdr->sh_link, sym->st_name);
1459 name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
1463 bfd_boolean unresolved_reloc, warned, ignored;
1465 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1466 r_symndx, symtab_hdr, sym_hashes,
1468 unresolved_reloc, warned, ignored);
1470 name = h->root.root.string;
1473 if (sec != NULL && discarded_section (sec))
1474 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1475 rel, 1, relend, howto, 0, contents);
1477 if (bfd_link_relocatable (info))
1480 r = avr_final_link_relocate (howto, input_bfd, input_section,
1481 contents, rel, relocation, htab);
1483 if (r != bfd_reloc_ok)
1485 const char * msg = (const char *) NULL;
1489 case bfd_reloc_overflow:
1490 r = info->callbacks->reloc_overflow
1491 (info, (h ? &h->root : NULL),
1492 name, howto->name, (bfd_vma) 0,
1493 input_bfd, input_section, rel->r_offset);
1496 case bfd_reloc_undefined:
1497 r = info->callbacks->undefined_symbol
1498 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
1501 case bfd_reloc_outofrange:
1502 msg = _("internal error: out of range error");
1505 case bfd_reloc_notsupported:
1506 msg = _("internal error: unsupported relocation error");
1509 case bfd_reloc_dangerous:
1510 msg = _("internal error: dangerous relocation");
1514 msg = _("internal error: unknown error");
1519 r = info->callbacks->warning
1520 (info, msg, name, input_bfd, input_section, rel->r_offset);
1530 /* The final processing done just before writing out a AVR ELF object
1531 file. This gets the AVR architecture right based on the machine
1535 bfd_elf_avr_final_write_processing (bfd *abfd,
1536 bfd_boolean linker ATTRIBUTE_UNUSED)
1540 switch (bfd_get_mach (abfd))
1544 val = E_AVR_MACH_AVR2;
1548 val = E_AVR_MACH_AVR1;
1551 case bfd_mach_avr25:
1552 val = E_AVR_MACH_AVR25;
1556 val = E_AVR_MACH_AVR3;
1559 case bfd_mach_avr31:
1560 val = E_AVR_MACH_AVR31;
1563 case bfd_mach_avr35:
1564 val = E_AVR_MACH_AVR35;
1568 val = E_AVR_MACH_AVR4;
1572 val = E_AVR_MACH_AVR5;
1575 case bfd_mach_avr51:
1576 val = E_AVR_MACH_AVR51;
1580 val = E_AVR_MACH_AVR6;
1583 case bfd_mach_avrxmega1:
1584 val = E_AVR_MACH_XMEGA1;
1587 case bfd_mach_avrxmega2:
1588 val = E_AVR_MACH_XMEGA2;
1591 case bfd_mach_avrxmega3:
1592 val = E_AVR_MACH_XMEGA3;
1595 case bfd_mach_avrxmega4:
1596 val = E_AVR_MACH_XMEGA4;
1599 case bfd_mach_avrxmega5:
1600 val = E_AVR_MACH_XMEGA5;
1603 case bfd_mach_avrxmega6:
1604 val = E_AVR_MACH_XMEGA6;
1607 case bfd_mach_avrxmega7:
1608 val = E_AVR_MACH_XMEGA7;
1611 case bfd_mach_avrtiny:
1612 val = E_AVR_MACH_AVRTINY;
1616 elf_elfheader (abfd)->e_machine = EM_AVR;
1617 elf_elfheader (abfd)->e_flags &= ~ EF_AVR_MACH;
1618 elf_elfheader (abfd)->e_flags |= val;
1621 /* Set the right machine number. */
1624 elf32_avr_object_p (bfd *abfd)
1626 unsigned int e_set = bfd_mach_avr2;
1628 if (elf_elfheader (abfd)->e_machine == EM_AVR
1629 || elf_elfheader (abfd)->e_machine == EM_AVR_OLD)
1631 int e_mach = elf_elfheader (abfd)->e_flags & EF_AVR_MACH;
1636 case E_AVR_MACH_AVR2:
1637 e_set = bfd_mach_avr2;
1640 case E_AVR_MACH_AVR1:
1641 e_set = bfd_mach_avr1;
1644 case E_AVR_MACH_AVR25:
1645 e_set = bfd_mach_avr25;
1648 case E_AVR_MACH_AVR3:
1649 e_set = bfd_mach_avr3;
1652 case E_AVR_MACH_AVR31:
1653 e_set = bfd_mach_avr31;
1656 case E_AVR_MACH_AVR35:
1657 e_set = bfd_mach_avr35;
1660 case E_AVR_MACH_AVR4:
1661 e_set = bfd_mach_avr4;
1664 case E_AVR_MACH_AVR5:
1665 e_set = bfd_mach_avr5;
1668 case E_AVR_MACH_AVR51:
1669 e_set = bfd_mach_avr51;
1672 case E_AVR_MACH_AVR6:
1673 e_set = bfd_mach_avr6;
1676 case E_AVR_MACH_XMEGA1:
1677 e_set = bfd_mach_avrxmega1;
1680 case E_AVR_MACH_XMEGA2:
1681 e_set = bfd_mach_avrxmega2;
1684 case E_AVR_MACH_XMEGA3:
1685 e_set = bfd_mach_avrxmega3;
1688 case E_AVR_MACH_XMEGA4:
1689 e_set = bfd_mach_avrxmega4;
1692 case E_AVR_MACH_XMEGA5:
1693 e_set = bfd_mach_avrxmega5;
1696 case E_AVR_MACH_XMEGA6:
1697 e_set = bfd_mach_avrxmega6;
1700 case E_AVR_MACH_XMEGA7:
1701 e_set = bfd_mach_avrxmega7;
1704 case E_AVR_MACH_AVRTINY:
1705 e_set = bfd_mach_avrtiny;
1709 return bfd_default_set_arch_mach (abfd, bfd_arch_avr,
1713 /* Returns whether the relocation type passed is a diff reloc. */
1716 elf32_avr_is_diff_reloc (Elf_Internal_Rela *irel)
1718 return (ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF8
1719 ||ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF16
1720 || ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF32);
1723 /* Reduce the diff value written in the section by count if the shrinked
1724 insn address happens to fall between the two symbols for which this
1725 diff reloc was emitted. */
1728 elf32_avr_adjust_diff_reloc_value (bfd *abfd,
1729 struct bfd_section *isec,
1730 Elf_Internal_Rela *irel,
1732 bfd_vma shrinked_insn_address,
1735 unsigned char *reloc_contents = NULL;
1736 unsigned char *isec_contents = elf_section_data (isec)->this_hdr.contents;
1737 if (isec_contents == NULL)
1739 if (! bfd_malloc_and_get_section (abfd, isec, &isec_contents))
1742 elf_section_data (isec)->this_hdr.contents = isec_contents;
1745 reloc_contents = isec_contents + irel->r_offset;
1747 /* Read value written in object file. */
1749 switch (ELF32_R_TYPE (irel->r_info))
1753 x = *reloc_contents;
1758 x = bfd_get_16 (abfd, reloc_contents);
1763 x = bfd_get_32 (abfd, reloc_contents);
1772 /* For a diff reloc sym1 - sym2 the diff at assembly time (x) is written
1773 into the object file at the reloc offset. sym2's logical value is
1774 symval (<start_of_section>) + reloc addend. Compute the start and end
1775 addresses and check if the shrinked insn falls between sym1 and sym2. */
1777 bfd_vma end_address = symval + irel->r_addend;
1778 bfd_vma start_address = end_address - x;
1780 /* Reduce the diff value by count bytes and write it back into section
1783 if (shrinked_insn_address >= start_address
1784 && shrinked_insn_address <= end_address)
1786 switch (ELF32_R_TYPE (irel->r_info))
1790 *reloc_contents = (x - count);
1795 bfd_put_16 (abfd, (x - count) & 0xFFFF, reloc_contents);
1800 bfd_put_32 (abfd, (x - count) & 0xFFFFFFFF, reloc_contents);
1812 /* Delete some bytes from a section while changing the size of an instruction.
1813 The parameter "addr" denotes the section-relative offset pointing just
1814 behind the shrinked instruction. "addr+count" point at the first
1815 byte just behind the original unshrinked instruction. */
1818 elf32_avr_relax_delete_bytes (bfd *abfd,
1823 Elf_Internal_Shdr *symtab_hdr;
1824 unsigned int sec_shndx;
1826 Elf_Internal_Rela *irel, *irelend;
1827 Elf_Internal_Sym *isym;
1828 Elf_Internal_Sym *isymbuf = NULL;
1830 struct elf_link_hash_entry **sym_hashes;
1831 struct elf_link_hash_entry **end_hashes;
1832 unsigned int symcount;
1833 struct avr_relax_info *relax_info;
1834 struct avr_property_record *prop_record = NULL;
1836 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1837 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
1838 contents = elf_section_data (sec)->this_hdr.contents;
1839 relax_info = get_avr_relax_info (sec);
1843 if (relax_info->records.count > 0)
1845 /* There should be no property record within the range of deleted
1846 bytes, however, there might be a property record for ADDR, this is
1847 how we handle alignment directives.
1848 Find the next (if any) property record after the deleted bytes. */
1851 for (i = 0; i < relax_info->records.count; ++i)
1853 bfd_vma offset = relax_info->records.items [i].offset;
1855 BFD_ASSERT (offset <= addr || offset >= (addr + count));
1856 if (offset >= (addr + count))
1858 prop_record = &relax_info->records.items [i];
1865 irel = elf_section_data (sec)->relocs;
1866 irelend = irel + sec->reloc_count;
1868 /* Actually delete the bytes. */
1869 if (toaddr - addr - count > 0)
1870 memmove (contents + addr, contents + addr + count,
1871 (size_t) (toaddr - addr - count));
1872 if (prop_record == NULL)
1876 /* Use the property record to fill in the bytes we've opened up. */
1878 switch (prop_record->type)
1880 case RECORD_ORG_AND_FILL:
1881 fill = prop_record->data.org.fill;
1885 case RECORD_ALIGN_AND_FILL:
1886 fill = prop_record->data.align.fill;
1889 prop_record->data.align.preceding_deleted += count;
1892 memset (contents + toaddr - count, fill, count);
1894 /* Adjust the TOADDR to avoid moving symbols located at the address
1895 of the property record, which has not moved. */
1899 /* Adjust all the reloc addresses. */
1900 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
1902 bfd_vma old_reloc_address;
1904 old_reloc_address = (sec->output_section->vma
1905 + sec->output_offset + irel->r_offset);
1907 /* Get the new reloc address. */
1908 if ((irel->r_offset > addr
1909 && irel->r_offset < toaddr))
1912 printf ("Relocation at address 0x%x needs to be moved.\n"
1913 "Old section offset: 0x%x, New section offset: 0x%x \n",
1914 (unsigned int) old_reloc_address,
1915 (unsigned int) irel->r_offset,
1916 (unsigned int) ((irel->r_offset) - count));
1918 irel->r_offset -= count;
1923 /* The reloc's own addresses are now ok. However, we need to readjust
1924 the reloc's addend, i.e. the reloc's value if two conditions are met:
1925 1.) the reloc is relative to a symbol in this section that
1926 is located in front of the shrinked instruction
1927 2.) symbol plus addend end up behind the shrinked instruction.
1929 The most common case where this happens are relocs relative to
1930 the section-start symbol.
1932 This step needs to be done for all of the sections of the bfd. */
1935 struct bfd_section *isec;
1937 for (isec = abfd->sections; isec; isec = isec->next)
1940 bfd_vma shrinked_insn_address;
1942 if (isec->reloc_count == 0)
1945 shrinked_insn_address = (sec->output_section->vma
1946 + sec->output_offset + addr - count);
1948 irel = elf_section_data (isec)->relocs;
1949 /* PR 12161: Read in the relocs for this section if necessary. */
1951 irel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, TRUE);
1953 for (irelend = irel + isec->reloc_count;
1957 /* Read this BFD's local symbols if we haven't done
1959 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
1961 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1962 if (isymbuf == NULL)
1963 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1964 symtab_hdr->sh_info, 0,
1966 if (isymbuf == NULL)
1970 /* Get the value of the symbol referred to by the reloc. */
1971 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
1973 /* A local symbol. */
1976 isym = isymbuf + ELF32_R_SYM (irel->r_info);
1977 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1978 symval = isym->st_value;
1979 /* If the reloc is absolute, it will not have
1980 a symbol or section associated with it. */
1983 symval += sym_sec->output_section->vma
1984 + sym_sec->output_offset;
1987 printf ("Checking if the relocation's "
1988 "addend needs corrections.\n"
1989 "Address of anchor symbol: 0x%x \n"
1990 "Address of relocation target: 0x%x \n"
1991 "Address of relaxed insn: 0x%x \n",
1992 (unsigned int) symval,
1993 (unsigned int) (symval + irel->r_addend),
1994 (unsigned int) shrinked_insn_address);
1996 if (symval <= shrinked_insn_address
1997 && (symval + irel->r_addend) > shrinked_insn_address)
1999 if (elf32_avr_is_diff_reloc (irel))
2001 elf32_avr_adjust_diff_reloc_value (abfd, isec, irel,
2003 shrinked_insn_address,
2007 irel->r_addend -= count;
2010 printf ("Relocation's addend needed to be fixed \n");
2013 /* else...Reference symbol is absolute. No adjustment needed. */
2015 /* else...Reference symbol is extern. No need for adjusting
2021 /* Adjust the local symbols defined in this section. */
2022 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2023 /* Fix PR 9841, there may be no local symbols. */
2026 Elf_Internal_Sym *isymend;
2028 isymend = isym + symtab_hdr->sh_info;
2029 for (; isym < isymend; isym++)
2031 if (isym->st_shndx == sec_shndx)
2033 if (isym->st_value > addr
2034 && isym->st_value <= toaddr)
2035 isym->st_value -= count;
2037 if (isym->st_value <= addr
2038 && isym->st_value + isym->st_size > addr)
2040 /* If this assert fires then we have a symbol that ends
2041 part way through an instruction. Does that make
2043 BFD_ASSERT (isym->st_value + isym->st_size >= addr + count);
2044 isym->st_size -= count;
2050 /* Now adjust the global symbols defined in this section. */
2051 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2052 - symtab_hdr->sh_info);
2053 sym_hashes = elf_sym_hashes (abfd);
2054 end_hashes = sym_hashes + symcount;
2055 for (; sym_hashes < end_hashes; sym_hashes++)
2057 struct elf_link_hash_entry *sym_hash = *sym_hashes;
2058 if ((sym_hash->root.type == bfd_link_hash_defined
2059 || sym_hash->root.type == bfd_link_hash_defweak)
2060 && sym_hash->root.u.def.section == sec)
2062 if (sym_hash->root.u.def.value > addr
2063 && sym_hash->root.u.def.value <= toaddr)
2064 sym_hash->root.u.def.value -= count;
2066 if (sym_hash->root.u.def.value <= addr
2067 && (sym_hash->root.u.def.value + sym_hash->size > addr))
2069 /* If this assert fires then we have a symbol that ends
2070 part way through an instruction. Does that make
2072 BFD_ASSERT (sym_hash->root.u.def.value + sym_hash->size
2074 sym_hash->size -= count;
2082 static Elf_Internal_Sym *
2083 retrieve_local_syms (bfd *input_bfd)
2085 Elf_Internal_Shdr *symtab_hdr;
2086 Elf_Internal_Sym *isymbuf;
2089 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2090 locsymcount = symtab_hdr->sh_info;
2092 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2093 if (isymbuf == NULL && locsymcount != 0)
2094 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
2097 /* Save the symbols for this input file so they won't be read again. */
2098 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
2099 symtab_hdr->contents = (unsigned char *) isymbuf;
2104 /* Get the input section for a given symbol index.
2106 . a section symbol, return the section;
2107 . a common symbol, return the common section;
2108 . an undefined symbol, return the undefined section;
2109 . an indirect symbol, follow the links;
2110 . an absolute value, return the absolute section. */
2113 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
2115 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2116 asection *target_sec = NULL;
2117 if (r_symndx < symtab_hdr->sh_info)
2119 Elf_Internal_Sym *isymbuf;
2120 unsigned int section_index;
2122 isymbuf = retrieve_local_syms (abfd);
2123 section_index = isymbuf[r_symndx].st_shndx;
2125 if (section_index == SHN_UNDEF)
2126 target_sec = bfd_und_section_ptr;
2127 else if (section_index == SHN_ABS)
2128 target_sec = bfd_abs_section_ptr;
2129 else if (section_index == SHN_COMMON)
2130 target_sec = bfd_com_section_ptr;
2132 target_sec = bfd_section_from_elf_index (abfd, section_index);
2136 unsigned long indx = r_symndx - symtab_hdr->sh_info;
2137 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
2139 while (h->root.type == bfd_link_hash_indirect
2140 || h->root.type == bfd_link_hash_warning)
2141 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2143 switch (h->root.type)
2145 case bfd_link_hash_defined:
2146 case bfd_link_hash_defweak:
2147 target_sec = h->root.u.def.section;
2149 case bfd_link_hash_common:
2150 target_sec = bfd_com_section_ptr;
2152 case bfd_link_hash_undefined:
2153 case bfd_link_hash_undefweak:
2154 target_sec = bfd_und_section_ptr;
2156 default: /* New indirect warning. */
2157 target_sec = bfd_und_section_ptr;
2164 /* Get the section-relative offset for a symbol number. */
2167 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
2169 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2172 if (r_symndx < symtab_hdr->sh_info)
2174 Elf_Internal_Sym *isymbuf;
2175 isymbuf = retrieve_local_syms (abfd);
2176 offset = isymbuf[r_symndx].st_value;
2180 unsigned long indx = r_symndx - symtab_hdr->sh_info;
2181 struct elf_link_hash_entry *h =
2182 elf_sym_hashes (abfd)[indx];
2184 while (h->root.type == bfd_link_hash_indirect
2185 || h->root.type == bfd_link_hash_warning)
2186 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2187 if (h->root.type == bfd_link_hash_defined
2188 || h->root.type == bfd_link_hash_defweak)
2189 offset = h->root.u.def.value;
2194 /* Iterate over the property records in R_LIST, and copy each record into
2195 the list of records within the relaxation information for the section to
2196 which the record applies. */
2199 avr_elf32_assign_records_to_sections (struct avr_property_record_list *r_list)
2203 for (i = 0; i < r_list->record_count; ++i)
2205 struct avr_relax_info *relax_info;
2207 relax_info = get_avr_relax_info (r_list->records [i].section);
2208 BFD_ASSERT (relax_info != NULL);
2210 if (relax_info->records.count
2211 == relax_info->records.allocated)
2213 /* Allocate more space. */
2216 relax_info->records.allocated += 10;
2217 size = (sizeof (struct avr_property_record)
2218 * relax_info->records.allocated);
2219 relax_info->records.items
2220 = bfd_realloc (relax_info->records.items, size);
2223 memcpy (&relax_info->records.items [relax_info->records.count],
2224 &r_list->records [i],
2225 sizeof (struct avr_property_record));
2226 relax_info->records.count++;
2230 /* Compare two STRUCT AVR_PROPERTY_RECORD in AP and BP, used as the
2231 ordering callback from QSORT. */
2234 avr_property_record_compare (const void *ap, const void *bp)
2236 const struct avr_property_record *a
2237 = (struct avr_property_record *) ap;
2238 const struct avr_property_record *b
2239 = (struct avr_property_record *) bp;
2241 if (a->offset != b->offset)
2242 return (a->offset - b->offset);
2244 if (a->section != b->section)
2245 return (bfd_get_section_vma (a->section->owner, a->section)
2246 - bfd_get_section_vma (b->section->owner, b->section));
2248 return (a->type - b->type);
2251 /* Load all of the avr property sections from all of the bfd objects
2252 referenced from LINK_INFO. All of the records within each property
2253 section are assigned to the STRUCT AVR_RELAX_INFO within the section
2254 specific data of the appropriate section. */
2257 avr_load_all_property_sections (struct bfd_link_info *link_info)
2262 /* Initialize the per-section relaxation info. */
2263 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
2264 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2266 init_avr_relax_info (sec);
2269 /* Load the descriptor tables from .avr.prop sections. */
2270 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
2272 struct avr_property_record_list *r_list;
2274 r_list = avr_elf32_load_property_records (abfd);
2276 avr_elf32_assign_records_to_sections (r_list);
2281 /* Now, for every section, ensure that the descriptor list in the
2282 relaxation data is sorted by ascending offset within the section. */
2283 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
2284 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2286 struct avr_relax_info *relax_info = get_avr_relax_info (sec);
2287 if (relax_info && relax_info->records.count > 0)
2291 qsort (relax_info->records.items,
2292 relax_info->records.count,
2293 sizeof (struct avr_property_record),
2294 avr_property_record_compare);
2296 /* For debug purposes, list all the descriptors. */
2297 for (i = 0; i < relax_info->records.count; ++i)
2299 switch (relax_info->records.items [i].type)
2303 case RECORD_ORG_AND_FILL:
2307 case RECORD_ALIGN_AND_FILL:
2315 /* This function handles relaxing for the avr.
2316 Many important relaxing opportunities within functions are already
2317 realized by the compiler itself.
2318 Here we try to replace call (4 bytes) -> rcall (2 bytes)
2319 and jump -> rjmp (safes also 2 bytes).
2320 As well we now optimize seqences of
2321 - call/rcall function
2326 . In case that within a sequence
2329 the ret could no longer be reached it is optimized away. In order
2330 to check if the ret is no longer needed, it is checked that the ret's address
2331 is not the target of a branch or jump within the same section, it is checked
2332 that there is no skip instruction before the jmp/rjmp and that there
2333 is no local or global label place at the address of the ret.
2335 We refrain from relaxing within sections ".vectors" and
2336 ".jumptables" in order to maintain the position of the instructions.
2337 There, however, we substitute jmp/call by a sequence rjmp,nop/rcall,nop
2338 if possible. (In future one could possibly use the space of the nop
2339 for the first instruction of the irq service function.
2341 The .jumptables sections is meant to be used for a future tablejump variant
2342 for the devices with 3-byte program counter where the table itself
2343 contains 4-byte jump instructions whose relative offset must not
2347 elf32_avr_relax_section (bfd *abfd,
2349 struct bfd_link_info *link_info,
2352 Elf_Internal_Shdr *symtab_hdr;
2353 Elf_Internal_Rela *internal_relocs;
2354 Elf_Internal_Rela *irel, *irelend;
2355 bfd_byte *contents = NULL;
2356 Elf_Internal_Sym *isymbuf = NULL;
2357 struct elf32_avr_link_hash_table *htab;
2358 static bfd_boolean relaxation_initialised = FALSE;
2360 if (!relaxation_initialised)
2362 relaxation_initialised = TRUE;
2364 /* Load entries from the .avr.prop sections. */
2365 avr_load_all_property_sections (link_info);
2368 /* If 'shrinkable' is FALSE, do not shrink by deleting bytes while
2369 relaxing. Such shrinking can cause issues for the sections such
2370 as .vectors and .jumptables. Instead the unused bytes should be
2371 filled with nop instructions. */
2372 bfd_boolean shrinkable = TRUE;
2374 if (!strcmp (sec->name,".vectors")
2375 || !strcmp (sec->name,".jumptables"))
2378 if (bfd_link_relocatable (link_info))
2379 (*link_info->callbacks->einfo)
2380 (_("%P%F: --relax and -r may not be used together\n"));
2382 htab = avr_link_hash_table (link_info);
2386 /* Assume nothing changes. */
2389 if ((!htab->no_stubs) && (sec == htab->stub_sec))
2391 /* We are just relaxing the stub section.
2392 Let's calculate the size needed again. */
2393 bfd_size_type last_estimated_stub_section_size = htab->stub_sec->size;
2396 printf ("Relaxing the stub section. Size prior to this pass: %i\n",
2397 (int) last_estimated_stub_section_size);
2399 elf32_avr_size_stubs (htab->stub_sec->output_section->owner,
2402 /* Check if the number of trampolines changed. */
2403 if (last_estimated_stub_section_size != htab->stub_sec->size)
2407 printf ("Size of stub section after this pass: %i\n",
2408 (int) htab->stub_sec->size);
2413 /* We don't have to do anything for a relocatable link, if
2414 this section does not have relocs, or if this is not a
2416 if (bfd_link_relocatable (link_info)
2417 || (sec->flags & SEC_RELOC) == 0
2418 || sec->reloc_count == 0
2419 || (sec->flags & SEC_CODE) == 0)
2422 /* Check if the object file to relax uses internal symbols so that we
2423 could fix up the relocations. */
2424 if (!(elf_elfheader (abfd)->e_flags & EF_AVR_LINKRELAX_PREPARED))
2427 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2429 /* Get a copy of the native relocations. */
2430 internal_relocs = (_bfd_elf_link_read_relocs
2431 (abfd, sec, NULL, NULL, link_info->keep_memory));
2432 if (internal_relocs == NULL)
2435 /* Walk through the relocs looking for relaxing opportunities. */
2436 irelend = internal_relocs + sec->reloc_count;
2437 for (irel = internal_relocs; irel < irelend; irel++)
2441 if ( ELF32_R_TYPE (irel->r_info) != R_AVR_13_PCREL
2442 && ELF32_R_TYPE (irel->r_info) != R_AVR_7_PCREL
2443 && ELF32_R_TYPE (irel->r_info) != R_AVR_CALL)
2446 /* Get the section contents if we haven't done so already. */
2447 if (contents == NULL)
2449 /* Get cached copy if it exists. */
2450 if (elf_section_data (sec)->this_hdr.contents != NULL)
2451 contents = elf_section_data (sec)->this_hdr.contents;
2454 /* Go get them off disk. */
2455 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
2460 /* Read this BFD's local symbols if we haven't done so already. */
2461 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
2463 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2464 if (isymbuf == NULL)
2465 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2466 symtab_hdr->sh_info, 0,
2468 if (isymbuf == NULL)
2473 /* Get the value of the symbol referred to by the reloc. */
2474 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2476 /* A local symbol. */
2477 Elf_Internal_Sym *isym;
2480 isym = isymbuf + ELF32_R_SYM (irel->r_info);
2481 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2482 symval = isym->st_value;
2483 /* If the reloc is absolute, it will not have
2484 a symbol or section associated with it. */
2486 symval += sym_sec->output_section->vma
2487 + sym_sec->output_offset;
2492 struct elf_link_hash_entry *h;
2494 /* An external symbol. */
2495 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2496 h = elf_sym_hashes (abfd)[indx];
2497 BFD_ASSERT (h != NULL);
2498 if (h->root.type != bfd_link_hash_defined
2499 && h->root.type != bfd_link_hash_defweak)
2500 /* This appears to be a reference to an undefined
2501 symbol. Just ignore it--it will be caught by the
2502 regular reloc processing. */
2505 symval = (h->root.u.def.value
2506 + h->root.u.def.section->output_section->vma
2507 + h->root.u.def.section->output_offset);
2510 /* For simplicity of coding, we are going to modify the section
2511 contents, the section relocs, and the BFD symbol table. We
2512 must tell the rest of the code not to free up this
2513 information. It would be possible to instead create a table
2514 of changes which have to be made, as is done in coff-mips.c;
2515 that would be more work, but would require less memory when
2516 the linker is run. */
2517 switch (ELF32_R_TYPE (irel->r_info))
2519 /* Try to turn a 22-bit absolute call/jump into an 13-bit
2520 pc-relative rcall/rjmp. */
2523 bfd_vma value = symval + irel->r_addend;
2525 int distance_short_enough = 0;
2527 /* Get the address of this instruction. */
2528 dot = (sec->output_section->vma
2529 + sec->output_offset + irel->r_offset);
2531 /* Compute the distance from this insn to the branch target. */
2534 /* Check if the gap falls in the range that can be accommodated
2535 in 13bits signed (It is 12bits when encoded, as we deal with
2536 word addressing). */
2537 if (!shrinkable && ((int) gap >= -4096 && (int) gap <= 4095))
2538 distance_short_enough = 1;
2539 /* If shrinkable, then we can check for a range of distance which
2540 is two bytes farther on both the directions because the call
2541 or jump target will be closer by two bytes after the
2543 else if (shrinkable && ((int) gap >= -4094 && (int) gap <= 4097))
2544 distance_short_enough = 1;
2546 /* Here we handle the wrap-around case. E.g. for a 16k device
2547 we could use a rjmp to jump from address 0x100 to 0x3d00!
2548 In order to make this work properly, we need to fill the
2549 vaiable avr_pc_wrap_around with the appropriate value.
2550 I.e. 0x4000 for a 16k device. */
2552 /* Shrinking the code size makes the gaps larger in the
2553 case of wrap-arounds. So we use a heuristical safety
2554 margin to avoid that during relax the distance gets
2555 again too large for the short jumps. Let's assume
2556 a typical code-size reduction due to relax for a
2557 16k device of 600 bytes. So let's use twice the
2558 typical value as safety margin. */
2562 int assumed_shrink = 600;
2563 if (avr_pc_wrap_around > 0x4000)
2564 assumed_shrink = 900;
2566 safety_margin = 2 * assumed_shrink;
2568 rgap = avr_relative_distance_considering_wrap_around (gap);
2570 if (rgap >= (-4092 + safety_margin)
2571 && rgap <= (4094 - safety_margin))
2572 distance_short_enough = 1;
2575 if (distance_short_enough)
2577 unsigned char code_msb;
2578 unsigned char code_lsb;
2581 printf ("shrinking jump/call instruction at address 0x%x"
2582 " in section %s\n\n",
2583 (int) dot, sec->name);
2585 /* Note that we've changed the relocs, section contents,
2587 elf_section_data (sec)->relocs = internal_relocs;
2588 elf_section_data (sec)->this_hdr.contents = contents;
2589 symtab_hdr->contents = (unsigned char *) isymbuf;
2591 /* Get the instruction code for relaxing. */
2592 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset);
2593 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
2595 /* Mask out the relocation bits. */
2598 if (code_msb == 0x94 && code_lsb == 0x0E)
2600 /* we are changing call -> rcall . */
2601 bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
2602 bfd_put_8 (abfd, 0xD0, contents + irel->r_offset + 1);
2604 else if (code_msb == 0x94 && code_lsb == 0x0C)
2606 /* we are changeing jump -> rjmp. */
2607 bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
2608 bfd_put_8 (abfd, 0xC0, contents + irel->r_offset + 1);
2613 /* Fix the relocation's type. */
2614 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
2617 /* We should not modify the ordering if 'shrinkable' is
2621 /* Let's insert a nop. */
2622 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 2);
2623 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 3);
2627 /* Delete two bytes of data. */
2628 if (!elf32_avr_relax_delete_bytes (abfd, sec,
2629 irel->r_offset + 2, 2))
2632 /* That will change things, so, we should relax again.
2633 Note that this is not required, and it may be slow. */
2641 unsigned char code_msb;
2642 unsigned char code_lsb;
2645 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
2646 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset + 0);
2648 /* Get the address of this instruction. */
2649 dot = (sec->output_section->vma
2650 + sec->output_offset + irel->r_offset);
2652 /* Here we look for rcall/ret or call/ret sequences that could be
2653 safely replaced by rjmp/ret or jmp/ret. */
2654 if (((code_msb & 0xf0) == 0xd0)
2655 && avr_replace_call_ret_sequences)
2657 /* This insn is a rcall. */
2658 unsigned char next_insn_msb = 0;
2659 unsigned char next_insn_lsb = 0;
2661 if (irel->r_offset + 3 < sec->size)
2664 bfd_get_8 (abfd, contents + irel->r_offset + 3);
2666 bfd_get_8 (abfd, contents + irel->r_offset + 2);
2669 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2671 /* The next insn is a ret. We now convert the rcall insn
2672 into a rjmp instruction. */
2674 bfd_put_8 (abfd, code_msb, contents + irel->r_offset + 1);
2676 printf ("converted rcall/ret sequence at address 0x%x"
2677 " into rjmp/ret sequence. Section is %s\n\n",
2678 (int) dot, sec->name);
2683 else if ((0x94 == (code_msb & 0xfe))
2684 && (0x0e == (code_lsb & 0x0e))
2685 && avr_replace_call_ret_sequences)
2687 /* This insn is a call. */
2688 unsigned char next_insn_msb = 0;
2689 unsigned char next_insn_lsb = 0;
2691 if (irel->r_offset + 5 < sec->size)
2694 bfd_get_8 (abfd, contents + irel->r_offset + 5);
2696 bfd_get_8 (abfd, contents + irel->r_offset + 4);
2699 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2701 /* The next insn is a ret. We now convert the call insn
2702 into a jmp instruction. */
2705 bfd_put_8 (abfd, code_lsb, contents + irel->r_offset);
2707 printf ("converted call/ret sequence at address 0x%x"
2708 " into jmp/ret sequence. Section is %s\n\n",
2709 (int) dot, sec->name);
2714 else if ((0xc0 == (code_msb & 0xf0))
2715 || ((0x94 == (code_msb & 0xfe))
2716 && (0x0c == (code_lsb & 0x0e))))
2718 /* This insn is a rjmp or a jmp. */
2719 unsigned char next_insn_msb = 0;
2720 unsigned char next_insn_lsb = 0;
2723 if (0xc0 == (code_msb & 0xf0))
2724 insn_size = 2; /* rjmp insn */
2726 insn_size = 4; /* jmp insn */
2728 if (irel->r_offset + insn_size + 1 < sec->size)
2731 bfd_get_8 (abfd, contents + irel->r_offset
2734 bfd_get_8 (abfd, contents + irel->r_offset
2738 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2740 /* The next insn is a ret. We possibly could delete
2741 this ret. First we need to check for preceding
2742 sbis/sbic/sbrs or cpse "skip" instructions. */
2744 int there_is_preceding_non_skip_insn = 1;
2745 bfd_vma address_of_ret;
2747 address_of_ret = dot + insn_size;
2749 if (debug_relax && (insn_size == 2))
2750 printf ("found rjmp / ret sequence at address 0x%x\n",
2752 if (debug_relax && (insn_size == 4))
2753 printf ("found jmp / ret sequence at address 0x%x\n",
2756 /* We have to make sure that there is a preceding insn. */
2757 if (irel->r_offset >= 2)
2759 unsigned char preceding_msb;
2760 unsigned char preceding_lsb;
2763 bfd_get_8 (abfd, contents + irel->r_offset - 1);
2765 bfd_get_8 (abfd, contents + irel->r_offset - 2);
2768 if (0x99 == preceding_msb)
2769 there_is_preceding_non_skip_insn = 0;
2772 if (0x9b == preceding_msb)
2773 there_is_preceding_non_skip_insn = 0;
2776 if ((0xfc == (preceding_msb & 0xfe)
2777 && (0x00 == (preceding_lsb & 0x08))))
2778 there_is_preceding_non_skip_insn = 0;
2781 if ((0xfe == (preceding_msb & 0xfe)
2782 && (0x00 == (preceding_lsb & 0x08))))
2783 there_is_preceding_non_skip_insn = 0;
2786 if (0x10 == (preceding_msb & 0xfc))
2787 there_is_preceding_non_skip_insn = 0;
2789 if (there_is_preceding_non_skip_insn == 0)
2791 printf ("preceding skip insn prevents deletion of"
2792 " ret insn at Addy 0x%x in section %s\n",
2793 (int) dot + 2, sec->name);
2797 /* There is no previous instruction. */
2798 there_is_preceding_non_skip_insn = 0;
2801 if (there_is_preceding_non_skip_insn)
2803 /* We now only have to make sure that there is no
2804 local label defined at the address of the ret
2805 instruction and that there is no local relocation
2806 in this section pointing to the ret. */
2808 int deleting_ret_is_safe = 1;
2809 unsigned int section_offset_of_ret_insn =
2810 irel->r_offset + insn_size;
2811 Elf_Internal_Sym *isym, *isymend;
2812 unsigned int sec_shndx;
2813 struct bfd_section *isec;
2816 _bfd_elf_section_from_bfd_section (abfd, sec);
2818 /* Check for local symbols. */
2819 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2820 isymend = isym + symtab_hdr->sh_info;
2821 /* PR 6019: There may not be any local symbols. */
2822 for (; isym != NULL && isym < isymend; isym++)
2824 if (isym->st_value == section_offset_of_ret_insn
2825 && isym->st_shndx == sec_shndx)
2827 deleting_ret_is_safe = 0;
2829 printf ("local label prevents deletion of ret "
2830 "insn at address 0x%x\n",
2831 (int) dot + insn_size);
2835 /* Now check for global symbols. */
2838 struct elf_link_hash_entry **sym_hashes;
2839 struct elf_link_hash_entry **end_hashes;
2841 symcount = (symtab_hdr->sh_size
2842 / sizeof (Elf32_External_Sym)
2843 - symtab_hdr->sh_info);
2844 sym_hashes = elf_sym_hashes (abfd);
2845 end_hashes = sym_hashes + symcount;
2846 for (; sym_hashes < end_hashes; sym_hashes++)
2848 struct elf_link_hash_entry *sym_hash =
2850 if ((sym_hash->root.type == bfd_link_hash_defined
2851 || sym_hash->root.type ==
2852 bfd_link_hash_defweak)
2853 && sym_hash->root.u.def.section == sec
2854 && sym_hash->root.u.def.value == section_offset_of_ret_insn)
2856 deleting_ret_is_safe = 0;
2858 printf ("global label prevents deletion of "
2859 "ret insn at address 0x%x\n",
2860 (int) dot + insn_size);
2865 /* Now we check for relocations pointing to ret. */
2866 for (isec = abfd->sections; isec && deleting_ret_is_safe; isec = isec->next)
2868 Elf_Internal_Rela *rel;
2869 Elf_Internal_Rela *relend;
2871 rel = elf_section_data (isec)->relocs;
2873 rel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, TRUE);
2875 relend = rel + isec->reloc_count;
2877 for (; rel && rel < relend; rel++)
2879 bfd_vma reloc_target = 0;
2881 /* Read this BFD's local symbols if we haven't
2883 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
2885 isymbuf = (Elf_Internal_Sym *)
2886 symtab_hdr->contents;
2887 if (isymbuf == NULL)
2888 isymbuf = bfd_elf_get_elf_syms
2891 symtab_hdr->sh_info, 0,
2893 if (isymbuf == NULL)
2897 /* Get the value of the symbol referred to
2899 if (ELF32_R_SYM (rel->r_info)
2900 < symtab_hdr->sh_info)
2902 /* A local symbol. */
2906 + ELF32_R_SYM (rel->r_info);
2907 sym_sec = bfd_section_from_elf_index
2908 (abfd, isym->st_shndx);
2909 symval = isym->st_value;
2911 /* If the reloc is absolute, it will not
2912 have a symbol or section associated
2918 sym_sec->output_section->vma
2919 + sym_sec->output_offset;
2920 reloc_target = symval + rel->r_addend;
2924 reloc_target = symval + rel->r_addend;
2925 /* Reference symbol is absolute. */
2928 /* else ... reference symbol is extern. */
2930 if (address_of_ret == reloc_target)
2932 deleting_ret_is_safe = 0;
2935 "rjmp/jmp ret sequence at address"
2936 " 0x%x could not be deleted. ret"
2937 " is target of a relocation.\n",
2938 (int) address_of_ret);
2944 if (deleting_ret_is_safe)
2947 printf ("unreachable ret instruction "
2948 "at address 0x%x deleted.\n",
2949 (int) dot + insn_size);
2951 /* Delete two bytes of data. */
2952 if (!elf32_avr_relax_delete_bytes (abfd, sec,
2953 irel->r_offset + insn_size, 2))
2956 /* That will change things, so, we should relax
2957 again. Note that this is not required, and it
2972 /* Look through all the property records in this section to see if
2973 there's any alignment records that can be moved. */
2974 struct avr_relax_info *relax_info;
2976 relax_info = get_avr_relax_info (sec);
2977 if (relax_info->records.count > 0)
2981 for (i = 0; i < relax_info->records.count; ++i)
2983 switch (relax_info->records.items [i].type)
2986 case RECORD_ORG_AND_FILL:
2989 case RECORD_ALIGN_AND_FILL:
2991 struct avr_property_record *record;
2992 unsigned long bytes_to_align;
2995 /* Look for alignment directives that have had enough
2996 bytes deleted before them, such that the directive
2997 can be moved backwards and still maintain the
2998 required alignment. */
2999 record = &relax_info->records.items [i];
3001 = (unsigned long) (1 << record->data.align.bytes);
3002 while (record->data.align.preceding_deleted >=
3005 record->data.align.preceding_deleted
3007 count += bytes_to_align;
3012 bfd_vma addr = record->offset;
3014 /* We can delete COUNT bytes and this alignment
3015 directive will still be correctly aligned.
3016 First move the alignment directive, then delete
3018 record->offset -= count;
3019 elf32_avr_relax_delete_bytes (abfd, sec,
3031 if (contents != NULL
3032 && elf_section_data (sec)->this_hdr.contents != contents)
3034 if (! link_info->keep_memory)
3038 /* Cache the section contents for elf_link_input_bfd. */
3039 elf_section_data (sec)->this_hdr.contents = contents;
3043 if (internal_relocs != NULL
3044 && elf_section_data (sec)->relocs != internal_relocs)
3045 free (internal_relocs);
3051 && symtab_hdr->contents != (unsigned char *) isymbuf)
3053 if (contents != NULL
3054 && elf_section_data (sec)->this_hdr.contents != contents)
3056 if (internal_relocs != NULL
3057 && elf_section_data (sec)->relocs != internal_relocs)
3058 free (internal_relocs);
3063 /* This is a version of bfd_generic_get_relocated_section_contents
3064 which uses elf32_avr_relocate_section.
3066 For avr it's essentially a cut and paste taken from the H8300 port.
3067 The author of the relaxation support patch for avr had absolutely no
3068 clue what is happening here but found out that this part of the code
3069 seems to be important. */
3072 elf32_avr_get_relocated_section_contents (bfd *output_bfd,
3073 struct bfd_link_info *link_info,
3074 struct bfd_link_order *link_order,
3076 bfd_boolean relocatable,
3079 Elf_Internal_Shdr *symtab_hdr;
3080 asection *input_section = link_order->u.indirect.section;
3081 bfd *input_bfd = input_section->owner;
3082 asection **sections = NULL;
3083 Elf_Internal_Rela *internal_relocs = NULL;
3084 Elf_Internal_Sym *isymbuf = NULL;
3086 /* We only need to handle the case of relaxing, or of having a
3087 particular set of section contents, specially. */
3089 || elf_section_data (input_section)->this_hdr.contents == NULL)
3090 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
3094 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3096 memcpy (data, elf_section_data (input_section)->this_hdr.contents,
3097 (size_t) input_section->size);
3099 if ((input_section->flags & SEC_RELOC) != 0
3100 && input_section->reloc_count > 0)
3103 Elf_Internal_Sym *isym, *isymend;
3106 internal_relocs = (_bfd_elf_link_read_relocs
3107 (input_bfd, input_section, NULL, NULL, FALSE));
3108 if (internal_relocs == NULL)
3111 if (symtab_hdr->sh_info != 0)
3113 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3114 if (isymbuf == NULL)
3115 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3116 symtab_hdr->sh_info, 0,
3118 if (isymbuf == NULL)
3122 amt = symtab_hdr->sh_info;
3123 amt *= sizeof (asection *);
3124 sections = bfd_malloc (amt);
3125 if (sections == NULL && amt != 0)
3128 isymend = isymbuf + symtab_hdr->sh_info;
3129 for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
3133 if (isym->st_shndx == SHN_UNDEF)
3134 isec = bfd_und_section_ptr;
3135 else if (isym->st_shndx == SHN_ABS)
3136 isec = bfd_abs_section_ptr;
3137 else if (isym->st_shndx == SHN_COMMON)
3138 isec = bfd_com_section_ptr;
3140 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
3145 if (! elf32_avr_relocate_section (output_bfd, link_info, input_bfd,
3146 input_section, data, internal_relocs,
3150 if (sections != NULL)
3153 && symtab_hdr->contents != (unsigned char *) isymbuf)
3155 if (elf_section_data (input_section)->relocs != internal_relocs)
3156 free (internal_relocs);
3162 if (sections != NULL)
3165 && symtab_hdr->contents != (unsigned char *) isymbuf)
3167 if (internal_relocs != NULL
3168 && elf_section_data (input_section)->relocs != internal_relocs)
3169 free (internal_relocs);
3174 /* Determines the hash entry name for a particular reloc. It consists of
3175 the identifier of the symbol section and the added reloc addend and
3176 symbol offset relative to the section the symbol is attached to. */
3179 avr_stub_name (const asection *symbol_section,
3180 const bfd_vma symbol_offset,
3181 const Elf_Internal_Rela *rela)
3186 len = 8 + 1 + 8 + 1 + 1;
3187 stub_name = bfd_malloc (len);
3189 sprintf (stub_name, "%08x+%08x",
3190 symbol_section->id & 0xffffffff,
3191 (unsigned int) ((rela->r_addend & 0xffffffff) + symbol_offset));
3197 /* Add a new stub entry to the stub hash. Not all fields of the new
3198 stub entry are initialised. */
3200 static struct elf32_avr_stub_hash_entry *
3201 avr_add_stub (const char *stub_name,
3202 struct elf32_avr_link_hash_table *htab)
3204 struct elf32_avr_stub_hash_entry *hsh;
3206 /* Enter this entry into the linker stub hash table. */
3207 hsh = avr_stub_hash_lookup (&htab->bstab, stub_name, TRUE, FALSE);
3211 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3216 hsh->stub_offset = 0;
3220 /* We assume that there is already space allocated for the stub section
3221 contents and that before building the stubs the section size is
3222 initialized to 0. We assume that within the stub hash table entry,
3223 the absolute position of the jmp target has been written in the
3224 target_value field. We write here the offset of the generated jmp insn
3225 relative to the trampoline section start to the stub_offset entry in
3226 the stub hash table entry. */
3229 avr_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
3231 struct elf32_avr_stub_hash_entry *hsh;
3232 struct bfd_link_info *info;
3233 struct elf32_avr_link_hash_table *htab;
3240 bfd_vma jmp_insn = 0x0000940c;
3242 /* Massage our args to the form they really have. */
3243 hsh = avr_stub_hash_entry (bh);
3245 if (!hsh->is_actually_needed)
3248 info = (struct bfd_link_info *) in_arg;
3250 htab = avr_link_hash_table (info);
3254 target = hsh->target_value;
3256 /* Make a note of the offset within the stubs for this entry. */
3257 hsh->stub_offset = htab->stub_sec->size;
3258 loc = htab->stub_sec->contents + hsh->stub_offset;
3260 stub_bfd = htab->stub_sec->owner;
3263 printf ("Building one Stub. Address: 0x%x, Offset: 0x%x\n",
3264 (unsigned int) target,
3265 (unsigned int) hsh->stub_offset);
3267 /* We now have to add the information on the jump target to the bare
3268 opcode bits already set in jmp_insn. */
3270 /* Check for the alignment of the address. */
3274 starget = target >> 1;
3275 jmp_insn |= ((starget & 0x10000) | ((starget << 3) & 0x1f00000)) >> 16;
3276 bfd_put_16 (stub_bfd, jmp_insn, loc);
3277 bfd_put_16 (stub_bfd, (bfd_vma) starget & 0xffff, loc + 2);
3279 htab->stub_sec->size += 4;
3281 /* Now add the entries in the address mapping table if there is still
3286 nr = htab->amt_entry_cnt + 1;
3287 if (nr <= htab->amt_max_entry_cnt)
3289 htab->amt_entry_cnt = nr;
3291 htab->amt_stub_offsets[nr - 1] = hsh->stub_offset;
3292 htab->amt_destination_addr[nr - 1] = target;
3300 avr_mark_stub_not_to_be_necessary (struct bfd_hash_entry *bh,
3301 void *in_arg ATTRIBUTE_UNUSED)
3303 struct elf32_avr_stub_hash_entry *hsh;
3305 hsh = avr_stub_hash_entry (bh);
3306 hsh->is_actually_needed = FALSE;
3312 avr_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
3314 struct elf32_avr_stub_hash_entry *hsh;
3315 struct elf32_avr_link_hash_table *htab;
3318 /* Massage our args to the form they really have. */
3319 hsh = avr_stub_hash_entry (bh);
3322 if (hsh->is_actually_needed)
3327 htab->stub_sec->size += size;
3332 elf32_avr_setup_params (struct bfd_link_info *info,
3334 asection *avr_stub_section,
3335 bfd_boolean no_stubs,
3336 bfd_boolean deb_stubs,
3337 bfd_boolean deb_relax,
3338 bfd_vma pc_wrap_around,
3339 bfd_boolean call_ret_replacement)
3341 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
3345 htab->stub_sec = avr_stub_section;
3346 htab->stub_bfd = avr_stub_bfd;
3347 htab->no_stubs = no_stubs;
3349 debug_relax = deb_relax;
3350 debug_stubs = deb_stubs;
3351 avr_pc_wrap_around = pc_wrap_around;
3352 avr_replace_call_ret_sequences = call_ret_replacement;
3356 /* Set up various things so that we can make a list of input sections
3357 for each output section included in the link. Returns -1 on error,
3358 0 when no stubs will be needed, and 1 on success. It also sets
3359 information on the stubs bfd and the stub section in the info
3363 elf32_avr_setup_section_lists (bfd *output_bfd,
3364 struct bfd_link_info *info)
3367 unsigned int bfd_count;
3368 unsigned int top_id, top_index;
3370 asection **input_list, **list;
3372 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
3374 if (htab == NULL || htab->no_stubs)
3377 /* Count the number of input BFDs and find the top input section id. */
3378 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3380 input_bfd = input_bfd->link.next)
3383 for (section = input_bfd->sections;
3385 section = section->next)
3386 if (top_id < section->id)
3387 top_id = section->id;
3390 htab->bfd_count = bfd_count;
3392 /* We can't use output_bfd->section_count here to find the top output
3393 section index as some sections may have been removed, and
3394 strip_excluded_output_sections doesn't renumber the indices. */
3395 for (section = output_bfd->sections, top_index = 0;
3397 section = section->next)
3398 if (top_index < section->index)
3399 top_index = section->index;
3401 htab->top_index = top_index;
3402 amt = sizeof (asection *) * (top_index + 1);
3403 input_list = bfd_malloc (amt);
3404 htab->input_list = input_list;
3405 if (input_list == NULL)
3408 /* For sections we aren't interested in, mark their entries with a
3409 value we can check later. */
3410 list = input_list + top_index;
3412 *list = bfd_abs_section_ptr;
3413 while (list-- != input_list);
3415 for (section = output_bfd->sections;
3417 section = section->next)
3418 if ((section->flags & SEC_CODE) != 0)
3419 input_list[section->index] = NULL;
3425 /* Read in all local syms for all input bfds, and create hash entries
3426 for export stubs if we are building a multi-subspace shared lib.
3427 Returns -1 on error, 0 otherwise. */
3430 get_local_syms (bfd *input_bfd, struct bfd_link_info *info)
3432 unsigned int bfd_indx;
3433 Elf_Internal_Sym *local_syms, **all_local_syms;
3434 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
3440 /* We want to read in symbol extension records only once. To do this
3441 we need to read in the local symbols in parallel and save them for
3442 later use; so hold pointers to the local symbols in an array. */
3443 amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
3444 all_local_syms = bfd_zmalloc (amt);
3445 htab->all_local_syms = all_local_syms;
3446 if (all_local_syms == NULL)
3449 /* Walk over all the input BFDs, swapping in local symbols.
3450 If we are creating a shared library, create hash entries for the
3454 input_bfd = input_bfd->link.next, bfd_indx++)
3456 Elf_Internal_Shdr *symtab_hdr;
3458 /* We'll need the symbol table in a second. */
3459 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3460 if (symtab_hdr->sh_info == 0)
3463 /* We need an array of the local symbols attached to the input bfd. */
3464 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
3465 if (local_syms == NULL)
3467 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3468 symtab_hdr->sh_info, 0,
3470 /* Cache them for elf_link_input_bfd. */
3471 symtab_hdr->contents = (unsigned char *) local_syms;
3473 if (local_syms == NULL)
3476 all_local_syms[bfd_indx] = local_syms;
3482 #define ADD_DUMMY_STUBS_FOR_DEBUGGING 0
3485 elf32_avr_size_stubs (bfd *output_bfd,
3486 struct bfd_link_info *info,
3487 bfd_boolean is_prealloc_run)
3489 struct elf32_avr_link_hash_table *htab;
3490 int stub_changed = 0;
3492 htab = avr_link_hash_table (info);
3496 /* At this point we initialize htab->vector_base
3497 To the start of the text output section. */
3498 htab->vector_base = htab->stub_sec->output_section->vma;
3500 if (get_local_syms (info->input_bfds, info))
3502 if (htab->all_local_syms)
3503 goto error_ret_free_local;
3507 if (ADD_DUMMY_STUBS_FOR_DEBUGGING)
3509 struct elf32_avr_stub_hash_entry *test;
3511 test = avr_add_stub ("Hugo",htab);
3512 test->target_value = 0x123456;
3513 test->stub_offset = 13;
3515 test = avr_add_stub ("Hugo2",htab);
3516 test->target_value = 0x84210;
3517 test->stub_offset = 14;
3523 unsigned int bfd_indx;
3525 /* We will have to re-generate the stub hash table each time anything
3526 in memory has changed. */
3528 bfd_hash_traverse (&htab->bstab, avr_mark_stub_not_to_be_necessary, htab);
3529 for (input_bfd = info->input_bfds, bfd_indx = 0;
3531 input_bfd = input_bfd->link.next, bfd_indx++)
3533 Elf_Internal_Shdr *symtab_hdr;
3535 Elf_Internal_Sym *local_syms;
3537 /* We'll need the symbol table in a second. */
3538 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3539 if (symtab_hdr->sh_info == 0)
3542 local_syms = htab->all_local_syms[bfd_indx];
3544 /* Walk over each section attached to the input bfd. */
3545 for (section = input_bfd->sections;
3547 section = section->next)
3549 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3551 /* If there aren't any relocs, then there's nothing more
3553 if ((section->flags & SEC_RELOC) == 0
3554 || section->reloc_count == 0)
3557 /* If this section is a link-once section that will be
3558 discarded, then don't create any stubs. */
3559 if (section->output_section == NULL
3560 || section->output_section->owner != output_bfd)
3563 /* Get the relocs. */
3565 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
3567 if (internal_relocs == NULL)
3568 goto error_ret_free_local;
3570 /* Now examine each relocation. */
3571 irela = internal_relocs;
3572 irelaend = irela + section->reloc_count;
3573 for (; irela < irelaend; irela++)
3575 unsigned int r_type, r_indx;
3576 struct elf32_avr_stub_hash_entry *hsh;
3579 bfd_vma destination;
3580 struct elf_link_hash_entry *hh;
3583 r_type = ELF32_R_TYPE (irela->r_info);
3584 r_indx = ELF32_R_SYM (irela->r_info);
3586 /* Only look for 16 bit GS relocs. No other reloc will need a
3588 if (!((r_type == R_AVR_16_PM)
3589 || (r_type == R_AVR_LO8_LDI_GS)
3590 || (r_type == R_AVR_HI8_LDI_GS)))
3593 /* Now determine the call target, its name, value,
3599 if (r_indx < symtab_hdr->sh_info)
3601 /* It's a local symbol. */
3602 Elf_Internal_Sym *sym;
3603 Elf_Internal_Shdr *hdr;
3606 sym = local_syms + r_indx;
3607 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3608 sym_value = sym->st_value;
3609 shndx = sym->st_shndx;
3610 if (shndx < elf_numsections (input_bfd))
3612 hdr = elf_elfsections (input_bfd)[shndx];
3613 sym_sec = hdr->bfd_section;
3614 destination = (sym_value + irela->r_addend
3615 + sym_sec->output_offset
3616 + sym_sec->output_section->vma);
3621 /* It's an external symbol. */
3624 e_indx = r_indx - symtab_hdr->sh_info;
3625 hh = elf_sym_hashes (input_bfd)[e_indx];
3627 while (hh->root.type == bfd_link_hash_indirect
3628 || hh->root.type == bfd_link_hash_warning)
3629 hh = (struct elf_link_hash_entry *)
3630 (hh->root.u.i.link);
3632 if (hh->root.type == bfd_link_hash_defined
3633 || hh->root.type == bfd_link_hash_defweak)
3635 sym_sec = hh->root.u.def.section;
3636 sym_value = hh->root.u.def.value;
3637 if (sym_sec->output_section != NULL)
3638 destination = (sym_value + irela->r_addend
3639 + sym_sec->output_offset
3640 + sym_sec->output_section->vma);
3642 else if (hh->root.type == bfd_link_hash_undefweak)
3644 if (! bfd_link_pic (info))
3647 else if (hh->root.type == bfd_link_hash_undefined)
3649 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3650 && (ELF_ST_VISIBILITY (hh->other)
3656 bfd_set_error (bfd_error_bad_value);
3658 error_ret_free_internal:
3659 if (elf_section_data (section)->relocs == NULL)
3660 free (internal_relocs);
3661 goto error_ret_free_local;
3665 if (! avr_stub_is_required_for_16_bit_reloc
3666 (destination - htab->vector_base))
3668 if (!is_prealloc_run)
3669 /* We are having a reloc that does't need a stub. */
3672 /* We don't right now know if a stub will be needed.
3673 Let's rather be on the safe side. */
3676 /* Get the name of this stub. */
3677 stub_name = avr_stub_name (sym_sec, sym_value, irela);
3680 goto error_ret_free_internal;
3683 hsh = avr_stub_hash_lookup (&htab->bstab,
3688 /* The proper stub has already been created. Mark it
3689 to be used and write the possibly changed destination
3691 hsh->is_actually_needed = TRUE;
3692 hsh->target_value = destination;
3697 hsh = avr_add_stub (stub_name, htab);
3701 goto error_ret_free_internal;
3704 hsh->is_actually_needed = TRUE;
3705 hsh->target_value = destination;
3708 printf ("Adding stub with destination 0x%x to the"
3709 " hash table.\n", (unsigned int) destination);
3711 printf ("(Pre-Alloc run: %i)\n", is_prealloc_run);
3713 stub_changed = TRUE;
3716 /* We're done with the internal relocs, free them. */
3717 if (elf_section_data (section)->relocs == NULL)
3718 free (internal_relocs);
3722 /* Re-Calculate the number of needed stubs. */
3723 htab->stub_sec->size = 0;
3724 bfd_hash_traverse (&htab->bstab, avr_size_one_stub, htab);
3729 stub_changed = FALSE;
3732 free (htab->all_local_syms);
3735 error_ret_free_local:
3736 free (htab->all_local_syms);
3741 /* Build all the stubs associated with the current output file. The
3742 stubs are kept in a hash table attached to the main linker hash
3743 table. We also set up the .plt entries for statically linked PIC
3744 functions here. This function is called via hppaelf_finish in the
3748 elf32_avr_build_stubs (struct bfd_link_info *info)
3751 struct bfd_hash_table *table;
3752 struct elf32_avr_link_hash_table *htab;
3753 bfd_size_type total_size = 0;
3755 htab = avr_link_hash_table (info);
3759 /* In case that there were several stub sections: */
3760 for (stub_sec = htab->stub_bfd->sections;
3762 stub_sec = stub_sec->next)
3766 /* Allocate memory to hold the linker stubs. */
3767 size = stub_sec->size;
3770 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3771 if (stub_sec->contents == NULL && size != 0)
3776 /* Allocate memory for the adress mapping table. */
3777 htab->amt_entry_cnt = 0;
3778 htab->amt_max_entry_cnt = total_size / 4;
3779 htab->amt_stub_offsets = bfd_malloc (sizeof (bfd_vma)
3780 * htab->amt_max_entry_cnt);
3781 htab->amt_destination_addr = bfd_malloc (sizeof (bfd_vma)
3782 * htab->amt_max_entry_cnt );
3785 printf ("Allocating %i entries in the AMT\n", htab->amt_max_entry_cnt);
3787 /* Build the stubs as directed by the stub hash table. */
3788 table = &htab->bstab;
3789 bfd_hash_traverse (table, avr_build_one_stub, info);
3792 printf ("Final Stub section Size: %i\n", (int) htab->stub_sec->size);
3797 /* Callback used by QSORT to order relocations AP and BP. */
3800 internal_reloc_compare (const void *ap, const void *bp)
3802 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
3803 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
3805 if (a->r_offset != b->r_offset)
3806 return (a->r_offset - b->r_offset);
3808 /* We don't need to sort on these criteria for correctness,
3809 but enforcing a more strict ordering prevents unstable qsort
3810 from behaving differently with different implementations.
3811 Without the code below we get correct but different results
3812 on Solaris 2.7 and 2.8. We would like to always produce the
3813 same results no matter the host. */
3815 if (a->r_info != b->r_info)
3816 return (a->r_info - b->r_info);
3818 return (a->r_addend - b->r_addend);
3821 /* Return true if ADDRESS is within the vma range of SECTION from ABFD. */
3824 avr_is_section_for_address (bfd *abfd, asection *section, bfd_vma address)
3829 vma = bfd_get_section_vma (abfd, section);
3833 size = section->size;
3834 if (address >= vma + size)
3840 /* Data structure used by AVR_FIND_SECTION_FOR_ADDRESS. */
3842 struct avr_find_section_data
3844 /* The address we're looking for. */
3847 /* The section we've found. */
3851 /* Helper function to locate the section holding a certain virtual memory
3852 address. This is called via bfd_map_over_sections. The DATA is an
3853 instance of STRUCT AVR_FIND_SECTION_DATA, the address field of which
3854 has been set to the address to search for, and the section field has
3855 been set to NULL. If SECTION from ABFD contains ADDRESS then the
3856 section field in DATA will be set to SECTION. As an optimisation, if
3857 the section field is already non-null then this function does not
3858 perform any checks, and just returns. */
3861 avr_find_section_for_address (bfd *abfd,
3862 asection *section, void *data)
3864 struct avr_find_section_data *fs_data
3865 = (struct avr_find_section_data *) data;
3867 /* Return if already found. */
3868 if (fs_data->section != NULL)
3871 /* If this section isn't part of the addressable code content, skip it. */
3872 if ((bfd_get_section_flags (abfd, section) & SEC_ALLOC) == 0
3873 && (bfd_get_section_flags (abfd, section) & SEC_CODE) == 0)
3876 if (avr_is_section_for_address (abfd, section, fs_data->address))
3877 fs_data->section = section;
3880 /* Load all of the property records from SEC, a section from ABFD. Return
3881 a STRUCT AVR_PROPERTY_RECORD_LIST containing all the records. The
3882 memory for the returned structure, and all of the records pointed too by
3883 the structure are allocated with a single call to malloc, so, only the
3884 pointer returned needs to be free'd. */
3886 static struct avr_property_record_list *
3887 avr_elf32_load_records_from_section (bfd *abfd, asection *sec)
3889 char *contents = NULL, *ptr;
3890 bfd_size_type size, mem_size;
3891 bfd_byte version, flags;
3892 uint16_t record_count, i;
3893 struct avr_property_record_list *r_list = NULL;
3894 Elf_Internal_Rela *internal_relocs = NULL, *rel, *rel_end;
3895 struct avr_find_section_data fs_data;
3897 fs_data.section = NULL;
3899 size = bfd_get_section_size (sec);
3900 contents = bfd_malloc (size);
3901 bfd_get_section_contents (abfd, sec, contents, 0, size);
3904 /* Load the relocations for the '.avr.prop' section if there are any, and
3906 internal_relocs = (_bfd_elf_link_read_relocs
3907 (abfd, sec, NULL, NULL, FALSE));
3908 if (internal_relocs)
3909 qsort (internal_relocs, sec->reloc_count,
3910 sizeof (Elf_Internal_Rela), internal_reloc_compare);
3912 /* There is a header at the start of the property record section SEC, the
3913 format of this header is:
3914 uint8_t : version number
3916 uint16_t : record counter
3919 /* Check we have at least got a headers worth of bytes. */
3920 if (size < AVR_PROPERTY_SECTION_HEADER_SIZE)
3923 version = *((bfd_byte *) ptr);
3925 flags = *((bfd_byte *) ptr);
3927 record_count = *((uint16_t *) ptr);
3929 BFD_ASSERT (ptr - contents == AVR_PROPERTY_SECTION_HEADER_SIZE);
3931 /* Now allocate space for the list structure, and all of the list
3932 elements in a single block. */
3933 mem_size = sizeof (struct avr_property_record_list)
3934 + sizeof (struct avr_property_record) * record_count;
3935 r_list = bfd_malloc (mem_size);
3939 r_list->version = version;
3940 r_list->flags = flags;
3941 r_list->section = sec;
3942 r_list->record_count = record_count;
3943 r_list->records = (struct avr_property_record *) (&r_list [1]);
3944 size -= AVR_PROPERTY_SECTION_HEADER_SIZE;
3946 /* Check that we understand the version number. There is only one
3947 version number right now, anything else is an error. */
3948 if (r_list->version != AVR_PROPERTY_RECORDS_VERSION)
3951 rel = internal_relocs;
3952 rel_end = rel + sec->reloc_count;
3953 for (i = 0; i < record_count; ++i)
3957 /* Each entry is a 32-bit address, followed by a single byte type.
3958 After that is the type specific data. We must take care to
3959 ensure that we don't read beyond the end of the section data. */
3963 r_list->records [i].section = NULL;
3964 r_list->records [i].offset = 0;
3968 /* The offset of the address within the .avr.prop section. */
3969 size_t offset = ptr - contents;
3971 while (rel < rel_end && rel->r_offset < offset)
3976 else if (rel->r_offset == offset)
3978 /* Find section and section offset. */
3979 unsigned long r_symndx;
3984 r_symndx = ELF32_R_SYM (rel->r_info);
3985 rel_sec = get_elf_r_symndx_section (abfd, r_symndx);
3986 sec_offset = get_elf_r_symndx_offset (abfd, r_symndx)
3989 r_list->records [i].section = rel_sec;
3990 r_list->records [i].offset = sec_offset;
3994 address = *((uint32_t *) ptr);
3998 if (r_list->records [i].section == NULL)
4000 /* Try to find section and offset from address. */
4001 if (fs_data.section != NULL
4002 && !avr_is_section_for_address (abfd, fs_data.section,
4004 fs_data.section = NULL;
4006 if (fs_data.section == NULL)
4008 fs_data.address = address;
4009 bfd_map_over_sections (abfd, avr_find_section_for_address,
4013 if (fs_data.section == NULL)
4015 fprintf (stderr, "Failed to find matching section.\n");
4019 r_list->records [i].section = fs_data.section;
4020 r_list->records [i].offset
4021 = address - bfd_get_section_vma (abfd, fs_data.section);
4024 r_list->records [i].type = *((bfd_byte *) ptr);
4028 switch (r_list->records [i].type)
4031 /* Nothing else to load. */
4033 case RECORD_ORG_AND_FILL:
4034 /* Just a 4-byte fill to load. */
4037 r_list->records [i].data.org.fill = *((uint32_t *) ptr);
4042 /* Just a 4-byte alignment to load. */
4045 r_list->records [i].data.align.bytes = *((uint32_t *) ptr);
4048 /* Just initialise PRECEDING_DELETED field, this field is
4049 used during linker relaxation. */
4050 r_list->records [i].data.align.preceding_deleted = 0;
4052 case RECORD_ALIGN_AND_FILL:
4053 /* A 4-byte alignment, and a 4-byte fill to load. */
4056 r_list->records [i].data.align.bytes = *((uint32_t *) ptr);
4058 r_list->records [i].data.align.fill = *((uint32_t *) ptr);
4061 /* Just initialise PRECEDING_DELETED field, this field is
4062 used during linker relaxation. */
4063 r_list->records [i].data.align.preceding_deleted = 0;
4071 free (internal_relocs);
4075 free (internal_relocs);
4081 /* Load all of the property records from ABFD. See
4082 AVR_ELF32_LOAD_RECORDS_FROM_SECTION for details of the return value. */
4084 struct avr_property_record_list *
4085 avr_elf32_load_property_records (bfd *abfd)
4089 /* Find the '.avr.prop' section and load the contents into memory. */
4090 sec = bfd_get_section_by_name (abfd, AVR_PROPERTY_RECORD_SECTION_NAME);
4093 return avr_elf32_load_records_from_section (abfd, sec);
4097 avr_elf32_property_record_name (struct avr_property_record *rec)
4106 case RECORD_ORG_AND_FILL:
4112 case RECORD_ALIGN_AND_FILL:
4123 #define ELF_ARCH bfd_arch_avr
4124 #define ELF_TARGET_ID AVR_ELF_DATA
4125 #define ELF_MACHINE_CODE EM_AVR
4126 #define ELF_MACHINE_ALT1 EM_AVR_OLD
4127 #define ELF_MAXPAGESIZE 1
4129 #define TARGET_LITTLE_SYM avr_elf32_vec
4130 #define TARGET_LITTLE_NAME "elf32-avr"
4132 #define bfd_elf32_bfd_link_hash_table_create elf32_avr_link_hash_table_create
4134 #define elf_info_to_howto avr_info_to_howto_rela
4135 #define elf_info_to_howto_rel NULL
4136 #define elf_backend_relocate_section elf32_avr_relocate_section
4137 #define elf_backend_can_gc_sections 1
4138 #define elf_backend_rela_normal 1
4139 #define elf_backend_final_write_processing \
4140 bfd_elf_avr_final_write_processing
4141 #define elf_backend_object_p elf32_avr_object_p
4143 #define bfd_elf32_bfd_relax_section elf32_avr_relax_section
4144 #define bfd_elf32_bfd_get_relocated_section_contents \
4145 elf32_avr_get_relocated_section_contents
4146 #define bfd_elf32_new_section_hook elf_avr_new_section_hook
4148 #include "elf32-target.h"