1 /* AVR-specific support for 32-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 Free Software Foundation, Inc.
5 Contributed by Denis Chertykov <denisc@overta.ru>
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor,
22 Boston, MA 02110-1301, USA. */
29 #include "elf32-avr.h"
31 /* Enable debugging printout at stdout with this variable. */
32 static bfd_boolean debug_relax = FALSE;
34 /* Enable debugging printout at stdout with this variable. */
35 static bfd_boolean debug_stubs = FALSE;
37 /* Hash table initialization and handling. Code is taken from the hppa port
38 and adapted to the needs of AVR. */
40 /* We use two hash tables to hold information for linking avr objects.
42 The first is the elf32_avr_link_hash_table which is derived from the
43 stanard ELF linker hash table. We use this as a place to attach the other
44 hash table and some static information.
46 The second is the stub hash table which is derived from the base BFD
47 hash table. The stub hash table holds the information on the linker
50 struct elf32_avr_stub_hash_entry
52 /* Base hash table entry structure. */
53 struct bfd_hash_entry bh_root;
55 /* Offset within stub_sec of the beginning of this stub. */
58 /* Given the symbol's value and its section we can determine its final
59 value when building the stubs (so the stub knows where to jump). */
62 /* This way we could mark stubs to be no longer necessary. */
63 bfd_boolean is_actually_needed;
66 struct elf32_avr_link_hash_table
68 /* The main hash table. */
69 struct elf_link_hash_table etab;
71 /* The stub hash table. */
72 struct bfd_hash_table bstab;
76 /* Linker stub bfd. */
79 /* The stub section. */
82 /* Usually 0, unless we are generating code for a bootloader. Will
83 be initialized by elf32_avr_size_stubs to the vma offset of the
84 output section associated with the stub section. */
87 /* Assorted information used by elf32_avr_size_stubs. */
88 unsigned int bfd_count;
90 asection ** input_list;
91 Elf_Internal_Sym ** all_local_syms;
93 /* Tables for mapping vma beyond the 128k boundary to the address of the
94 corresponding stub. (AMT)
95 "amt_max_entry_cnt" reflects the number of entries that memory is allocated
96 for in the "amt_stub_offsets" and "amt_destination_addr" arrays.
97 "amt_entry_cnt" informs how many of these entries actually contain
99 unsigned int amt_entry_cnt;
100 unsigned int amt_max_entry_cnt;
101 bfd_vma * amt_stub_offsets;
102 bfd_vma * amt_destination_addr;
105 /* Various hash macros and functions. */
106 #define avr_link_hash_table(p) \
107 /* PR 3874: Check that we have an AVR style hash table before using it. */\
108 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
109 == AVR_ELF_DATA ? ((struct elf32_avr_link_hash_table *) ((p)->hash)) : NULL)
111 #define avr_stub_hash_entry(ent) \
112 ((struct elf32_avr_stub_hash_entry *)(ent))
114 #define avr_stub_hash_lookup(table, string, create, copy) \
115 ((struct elf32_avr_stub_hash_entry *) \
116 bfd_hash_lookup ((table), (string), (create), (copy)))
118 static reloc_howto_type elf_avr_howto_table[] =
120 HOWTO (R_AVR_NONE, /* type */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
124 FALSE, /* pc_relative */
126 complain_overflow_bitfield, /* complain_on_overflow */
127 bfd_elf_generic_reloc, /* special_function */
128 "R_AVR_NONE", /* name */
129 FALSE, /* partial_inplace */
132 FALSE), /* pcrel_offset */
134 HOWTO (R_AVR_32, /* type */
136 2, /* size (0 = byte, 1 = short, 2 = long) */
138 FALSE, /* pc_relative */
140 complain_overflow_bitfield, /* complain_on_overflow */
141 bfd_elf_generic_reloc, /* special_function */
142 "R_AVR_32", /* name */
143 FALSE, /* partial_inplace */
144 0xffffffff, /* src_mask */
145 0xffffffff, /* dst_mask */
146 FALSE), /* pcrel_offset */
148 /* A 7 bit PC relative relocation. */
149 HOWTO (R_AVR_7_PCREL, /* type */
151 1, /* size (0 = byte, 1 = short, 2 = long) */
153 TRUE, /* pc_relative */
155 complain_overflow_bitfield, /* complain_on_overflow */
156 bfd_elf_generic_reloc, /* special_function */
157 "R_AVR_7_PCREL", /* name */
158 FALSE, /* partial_inplace */
159 0xffff, /* src_mask */
160 0xffff, /* dst_mask */
161 TRUE), /* pcrel_offset */
163 /* A 13 bit PC relative relocation. */
164 HOWTO (R_AVR_13_PCREL, /* type */
166 1, /* size (0 = byte, 1 = short, 2 = long) */
168 TRUE, /* pc_relative */
170 complain_overflow_bitfield, /* complain_on_overflow */
171 bfd_elf_generic_reloc, /* special_function */
172 "R_AVR_13_PCREL", /* name */
173 FALSE, /* partial_inplace */
174 0xfff, /* src_mask */
175 0xfff, /* dst_mask */
176 TRUE), /* pcrel_offset */
178 /* A 16 bit absolute relocation. */
179 HOWTO (R_AVR_16, /* type */
181 1, /* size (0 = byte, 1 = short, 2 = long) */
183 FALSE, /* pc_relative */
185 complain_overflow_dont, /* complain_on_overflow */
186 bfd_elf_generic_reloc, /* special_function */
187 "R_AVR_16", /* name */
188 FALSE, /* partial_inplace */
189 0xffff, /* src_mask */
190 0xffff, /* dst_mask */
191 FALSE), /* pcrel_offset */
193 /* A 16 bit absolute relocation for command address
194 Will be changed when linker stubs are needed. */
195 HOWTO (R_AVR_16_PM, /* type */
197 1, /* size (0 = byte, 1 = short, 2 = long) */
199 FALSE, /* pc_relative */
201 complain_overflow_bitfield, /* complain_on_overflow */
202 bfd_elf_generic_reloc, /* special_function */
203 "R_AVR_16_PM", /* name */
204 FALSE, /* partial_inplace */
205 0xffff, /* src_mask */
206 0xffff, /* dst_mask */
207 FALSE), /* pcrel_offset */
208 /* A low 8 bit absolute relocation of 16 bit address.
210 HOWTO (R_AVR_LO8_LDI, /* type */
212 1, /* size (0 = byte, 1 = short, 2 = long) */
214 FALSE, /* pc_relative */
216 complain_overflow_dont, /* complain_on_overflow */
217 bfd_elf_generic_reloc, /* special_function */
218 "R_AVR_LO8_LDI", /* name */
219 FALSE, /* partial_inplace */
220 0xffff, /* src_mask */
221 0xffff, /* dst_mask */
222 FALSE), /* pcrel_offset */
223 /* A high 8 bit absolute relocation of 16 bit address.
225 HOWTO (R_AVR_HI8_LDI, /* type */
227 1, /* size (0 = byte, 1 = short, 2 = long) */
229 FALSE, /* pc_relative */
231 complain_overflow_dont, /* complain_on_overflow */
232 bfd_elf_generic_reloc, /* special_function */
233 "R_AVR_HI8_LDI", /* name */
234 FALSE, /* partial_inplace */
235 0xffff, /* src_mask */
236 0xffff, /* dst_mask */
237 FALSE), /* pcrel_offset */
238 /* A high 6 bit absolute relocation of 22 bit address.
239 For LDI command. As well second most significant 8 bit value of
240 a 32 bit link-time constant. */
241 HOWTO (R_AVR_HH8_LDI, /* type */
243 1, /* size (0 = byte, 1 = short, 2 = long) */
245 FALSE, /* pc_relative */
247 complain_overflow_dont, /* complain_on_overflow */
248 bfd_elf_generic_reloc, /* special_function */
249 "R_AVR_HH8_LDI", /* name */
250 FALSE, /* partial_inplace */
251 0xffff, /* src_mask */
252 0xffff, /* dst_mask */
253 FALSE), /* pcrel_offset */
254 /* A negative low 8 bit absolute relocation of 16 bit address.
256 HOWTO (R_AVR_LO8_LDI_NEG, /* type */
258 1, /* size (0 = byte, 1 = short, 2 = long) */
260 FALSE, /* pc_relative */
262 complain_overflow_dont, /* complain_on_overflow */
263 bfd_elf_generic_reloc, /* special_function */
264 "R_AVR_LO8_LDI_NEG", /* name */
265 FALSE, /* partial_inplace */
266 0xffff, /* src_mask */
267 0xffff, /* dst_mask */
268 FALSE), /* pcrel_offset */
269 /* A negative high 8 bit absolute relocation of 16 bit address.
271 HOWTO (R_AVR_HI8_LDI_NEG, /* type */
273 1, /* size (0 = byte, 1 = short, 2 = long) */
275 FALSE, /* pc_relative */
277 complain_overflow_dont, /* complain_on_overflow */
278 bfd_elf_generic_reloc, /* special_function */
279 "R_AVR_HI8_LDI_NEG", /* name */
280 FALSE, /* partial_inplace */
281 0xffff, /* src_mask */
282 0xffff, /* dst_mask */
283 FALSE), /* pcrel_offset */
284 /* A negative high 6 bit absolute relocation of 22 bit address.
286 HOWTO (R_AVR_HH8_LDI_NEG, /* type */
288 1, /* size (0 = byte, 1 = short, 2 = long) */
290 FALSE, /* pc_relative */
292 complain_overflow_dont, /* complain_on_overflow */
293 bfd_elf_generic_reloc, /* special_function */
294 "R_AVR_HH8_LDI_NEG", /* name */
295 FALSE, /* partial_inplace */
296 0xffff, /* src_mask */
297 0xffff, /* dst_mask */
298 FALSE), /* pcrel_offset */
299 /* A low 8 bit absolute relocation of 24 bit program memory address.
300 For LDI command. Will not be changed when linker stubs are needed. */
301 HOWTO (R_AVR_LO8_LDI_PM, /* type */
303 1, /* size (0 = byte, 1 = short, 2 = long) */
305 FALSE, /* pc_relative */
307 complain_overflow_dont, /* complain_on_overflow */
308 bfd_elf_generic_reloc, /* special_function */
309 "R_AVR_LO8_LDI_PM", /* name */
310 FALSE, /* partial_inplace */
311 0xffff, /* src_mask */
312 0xffff, /* dst_mask */
313 FALSE), /* pcrel_offset */
314 /* A low 8 bit absolute relocation of 24 bit program memory address.
315 For LDI command. Will not be changed when linker stubs are needed. */
316 HOWTO (R_AVR_HI8_LDI_PM, /* type */
318 1, /* size (0 = byte, 1 = short, 2 = long) */
320 FALSE, /* pc_relative */
322 complain_overflow_dont, /* complain_on_overflow */
323 bfd_elf_generic_reloc, /* special_function */
324 "R_AVR_HI8_LDI_PM", /* name */
325 FALSE, /* partial_inplace */
326 0xffff, /* src_mask */
327 0xffff, /* dst_mask */
328 FALSE), /* pcrel_offset */
329 /* A low 8 bit absolute relocation of 24 bit program memory address.
330 For LDI command. Will not be changed when linker stubs are needed. */
331 HOWTO (R_AVR_HH8_LDI_PM, /* type */
333 1, /* size (0 = byte, 1 = short, 2 = long) */
335 FALSE, /* pc_relative */
337 complain_overflow_dont, /* complain_on_overflow */
338 bfd_elf_generic_reloc, /* special_function */
339 "R_AVR_HH8_LDI_PM", /* name */
340 FALSE, /* partial_inplace */
341 0xffff, /* src_mask */
342 0xffff, /* dst_mask */
343 FALSE), /* pcrel_offset */
344 /* A low 8 bit absolute relocation of 24 bit program memory address.
345 For LDI command. Will not be changed when linker stubs are needed. */
346 HOWTO (R_AVR_LO8_LDI_PM_NEG, /* type */
348 1, /* size (0 = byte, 1 = short, 2 = long) */
350 FALSE, /* pc_relative */
352 complain_overflow_dont, /* complain_on_overflow */
353 bfd_elf_generic_reloc, /* special_function */
354 "R_AVR_LO8_LDI_PM_NEG", /* name */
355 FALSE, /* partial_inplace */
356 0xffff, /* src_mask */
357 0xffff, /* dst_mask */
358 FALSE), /* pcrel_offset */
359 /* A low 8 bit absolute relocation of 24 bit program memory address.
360 For LDI command. Will not be changed when linker stubs are needed. */
361 HOWTO (R_AVR_HI8_LDI_PM_NEG, /* type */
363 1, /* size (0 = byte, 1 = short, 2 = long) */
365 FALSE, /* pc_relative */
367 complain_overflow_dont, /* complain_on_overflow */
368 bfd_elf_generic_reloc, /* special_function */
369 "R_AVR_HI8_LDI_PM_NEG", /* name */
370 FALSE, /* partial_inplace */
371 0xffff, /* src_mask */
372 0xffff, /* dst_mask */
373 FALSE), /* pcrel_offset */
374 /* A low 8 bit absolute relocation of 24 bit program memory address.
375 For LDI command. Will not be changed when linker stubs are needed. */
376 HOWTO (R_AVR_HH8_LDI_PM_NEG, /* type */
378 1, /* size (0 = byte, 1 = short, 2 = long) */
380 FALSE, /* pc_relative */
382 complain_overflow_dont, /* complain_on_overflow */
383 bfd_elf_generic_reloc, /* special_function */
384 "R_AVR_HH8_LDI_PM_NEG", /* name */
385 FALSE, /* partial_inplace */
386 0xffff, /* src_mask */
387 0xffff, /* dst_mask */
388 FALSE), /* pcrel_offset */
389 /* Relocation for CALL command in ATmega. */
390 HOWTO (R_AVR_CALL, /* type */
392 2, /* size (0 = byte, 1 = short, 2 = long) */
394 FALSE, /* pc_relative */
396 complain_overflow_dont,/* complain_on_overflow */
397 bfd_elf_generic_reloc, /* special_function */
398 "R_AVR_CALL", /* name */
399 FALSE, /* partial_inplace */
400 0xffffffff, /* src_mask */
401 0xffffffff, /* dst_mask */
402 FALSE), /* pcrel_offset */
403 /* A 16 bit absolute relocation of 16 bit address.
405 HOWTO (R_AVR_LDI, /* type */
407 1, /* size (0 = byte, 1 = short, 2 = long) */
409 FALSE, /* pc_relative */
411 complain_overflow_dont,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_AVR_LDI", /* name */
414 FALSE, /* partial_inplace */
415 0xffff, /* src_mask */
416 0xffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
418 /* A 6 bit absolute relocation of 6 bit offset.
419 For ldd/sdd command. */
420 HOWTO (R_AVR_6, /* type */
422 0, /* size (0 = byte, 1 = short, 2 = long) */
424 FALSE, /* pc_relative */
426 complain_overflow_dont,/* complain_on_overflow */
427 bfd_elf_generic_reloc, /* special_function */
428 "R_AVR_6", /* name */
429 FALSE, /* partial_inplace */
430 0xffff, /* src_mask */
431 0xffff, /* dst_mask */
432 FALSE), /* pcrel_offset */
433 /* A 6 bit absolute relocation of 6 bit offset.
434 For sbiw/adiw command. */
435 HOWTO (R_AVR_6_ADIW, /* type */
437 0, /* size (0 = byte, 1 = short, 2 = long) */
439 FALSE, /* pc_relative */
441 complain_overflow_dont,/* complain_on_overflow */
442 bfd_elf_generic_reloc, /* special_function */
443 "R_AVR_6_ADIW", /* name */
444 FALSE, /* partial_inplace */
445 0xffff, /* src_mask */
446 0xffff, /* dst_mask */
447 FALSE), /* pcrel_offset */
448 /* Most significant 8 bit value of a 32 bit link-time constant. */
449 HOWTO (R_AVR_MS8_LDI, /* type */
451 1, /* size (0 = byte, 1 = short, 2 = long) */
453 FALSE, /* pc_relative */
455 complain_overflow_dont, /* complain_on_overflow */
456 bfd_elf_generic_reloc, /* special_function */
457 "R_AVR_MS8_LDI", /* name */
458 FALSE, /* partial_inplace */
459 0xffff, /* src_mask */
460 0xffff, /* dst_mask */
461 FALSE), /* pcrel_offset */
462 /* Negative most significant 8 bit value of a 32 bit link-time constant. */
463 HOWTO (R_AVR_MS8_LDI_NEG, /* type */
465 1, /* size (0 = byte, 1 = short, 2 = long) */
467 FALSE, /* pc_relative */
469 complain_overflow_dont, /* complain_on_overflow */
470 bfd_elf_generic_reloc, /* special_function */
471 "R_AVR_MS8_LDI_NEG", /* name */
472 FALSE, /* partial_inplace */
473 0xffff, /* src_mask */
474 0xffff, /* dst_mask */
475 FALSE), /* pcrel_offset */
476 /* A low 8 bit absolute relocation of 24 bit program memory address.
477 For LDI command. Will be changed when linker stubs are needed. */
478 HOWTO (R_AVR_LO8_LDI_GS, /* type */
480 1, /* size (0 = byte, 1 = short, 2 = long) */
482 FALSE, /* pc_relative */
484 complain_overflow_dont, /* complain_on_overflow */
485 bfd_elf_generic_reloc, /* special_function */
486 "R_AVR_LO8_LDI_GS", /* name */
487 FALSE, /* partial_inplace */
488 0xffff, /* src_mask */
489 0xffff, /* dst_mask */
490 FALSE), /* pcrel_offset */
491 /* A low 8 bit absolute relocation of 24 bit program memory address.
492 For LDI command. Will be changed when linker stubs are needed. */
493 HOWTO (R_AVR_HI8_LDI_GS, /* type */
495 1, /* size (0 = byte, 1 = short, 2 = long) */
497 FALSE, /* pc_relative */
499 complain_overflow_dont, /* complain_on_overflow */
500 bfd_elf_generic_reloc, /* special_function */
501 "R_AVR_HI8_LDI_GS", /* name */
502 FALSE, /* partial_inplace */
503 0xffff, /* src_mask */
504 0xffff, /* dst_mask */
505 FALSE), /* pcrel_offset */
507 HOWTO (R_AVR_8, /* type */
509 0, /* size (0 = byte, 1 = short, 2 = long) */
511 FALSE, /* pc_relative */
513 complain_overflow_bitfield,/* complain_on_overflow */
514 bfd_elf_generic_reloc, /* special_function */
515 "R_AVR_8", /* name */
516 FALSE, /* partial_inplace */
517 0x000000ff, /* src_mask */
518 0x000000ff, /* dst_mask */
519 FALSE), /* pcrel_offset */
520 /* lo8-part to use in .byte lo8(sym). */
521 HOWTO (R_AVR_8_LO8, /* type */
523 0, /* size (0 = byte, 1 = short, 2 = long) */
525 FALSE, /* pc_relative */
527 complain_overflow_dont,/* complain_on_overflow */
528 bfd_elf_generic_reloc, /* special_function */
529 "R_AVR_8_LO8", /* name */
530 FALSE, /* partial_inplace */
531 0xffffff, /* src_mask */
532 0xffffff, /* dst_mask */
533 FALSE), /* pcrel_offset */
534 /* hi8-part to use in .byte hi8(sym). */
535 HOWTO (R_AVR_8_HI8, /* type */
537 0, /* size (0 = byte, 1 = short, 2 = long) */
539 FALSE, /* pc_relative */
541 complain_overflow_dont,/* complain_on_overflow */
542 bfd_elf_generic_reloc, /* special_function */
543 "R_AVR_8_HI8", /* name */
544 FALSE, /* partial_inplace */
545 0xffffff, /* src_mask */
546 0xffffff, /* dst_mask */
547 FALSE), /* pcrel_offset */
548 /* hlo8-part to use in .byte hlo8(sym). */
549 HOWTO (R_AVR_8_HLO8, /* type */
551 0, /* size (0 = byte, 1 = short, 2 = long) */
553 FALSE, /* pc_relative */
555 complain_overflow_dont,/* complain_on_overflow */
556 bfd_elf_generic_reloc, /* special_function */
557 "R_AVR_8_HLO8", /* name */
558 FALSE, /* partial_inplace */
559 0xffffff, /* src_mask */
560 0xffffff, /* dst_mask */
561 FALSE), /* pcrel_offset */
564 /* Map BFD reloc types to AVR ELF reloc types. */
568 bfd_reloc_code_real_type bfd_reloc_val;
569 unsigned int elf_reloc_val;
572 static const struct avr_reloc_map avr_reloc_map[] =
574 { BFD_RELOC_NONE, R_AVR_NONE },
575 { BFD_RELOC_32, R_AVR_32 },
576 { BFD_RELOC_AVR_7_PCREL, R_AVR_7_PCREL },
577 { BFD_RELOC_AVR_13_PCREL, R_AVR_13_PCREL },
578 { BFD_RELOC_16, R_AVR_16 },
579 { BFD_RELOC_AVR_16_PM, R_AVR_16_PM },
580 { BFD_RELOC_AVR_LO8_LDI, R_AVR_LO8_LDI},
581 { BFD_RELOC_AVR_HI8_LDI, R_AVR_HI8_LDI },
582 { BFD_RELOC_AVR_HH8_LDI, R_AVR_HH8_LDI },
583 { BFD_RELOC_AVR_MS8_LDI, R_AVR_MS8_LDI },
584 { BFD_RELOC_AVR_LO8_LDI_NEG, R_AVR_LO8_LDI_NEG },
585 { BFD_RELOC_AVR_HI8_LDI_NEG, R_AVR_HI8_LDI_NEG },
586 { BFD_RELOC_AVR_HH8_LDI_NEG, R_AVR_HH8_LDI_NEG },
587 { BFD_RELOC_AVR_MS8_LDI_NEG, R_AVR_MS8_LDI_NEG },
588 { BFD_RELOC_AVR_LO8_LDI_PM, R_AVR_LO8_LDI_PM },
589 { BFD_RELOC_AVR_LO8_LDI_GS, R_AVR_LO8_LDI_GS },
590 { BFD_RELOC_AVR_HI8_LDI_PM, R_AVR_HI8_LDI_PM },
591 { BFD_RELOC_AVR_HI8_LDI_GS, R_AVR_HI8_LDI_GS },
592 { BFD_RELOC_AVR_HH8_LDI_PM, R_AVR_HH8_LDI_PM },
593 { BFD_RELOC_AVR_LO8_LDI_PM_NEG, R_AVR_LO8_LDI_PM_NEG },
594 { BFD_RELOC_AVR_HI8_LDI_PM_NEG, R_AVR_HI8_LDI_PM_NEG },
595 { BFD_RELOC_AVR_HH8_LDI_PM_NEG, R_AVR_HH8_LDI_PM_NEG },
596 { BFD_RELOC_AVR_CALL, R_AVR_CALL },
597 { BFD_RELOC_AVR_LDI, R_AVR_LDI },
598 { BFD_RELOC_AVR_6, R_AVR_6 },
599 { BFD_RELOC_AVR_6_ADIW, R_AVR_6_ADIW },
600 { BFD_RELOC_8, R_AVR_8 },
601 { BFD_RELOC_AVR_8_LO, R_AVR_8_LO8 },
602 { BFD_RELOC_AVR_8_HI, R_AVR_8_HI8 },
603 { BFD_RELOC_AVR_8_HLO, R_AVR_8_HLO8 }
606 /* Meant to be filled one day with the wrap around address for the
607 specific device. I.e. should get the value 0x4000 for 16k devices,
608 0x8000 for 32k devices and so on.
610 We initialize it here with a value of 0x1000000 resulting in
611 that we will never suggest a wrap-around jump during relaxation.
612 The logic of the source code later on assumes that in
613 avr_pc_wrap_around one single bit is set. */
614 static bfd_vma avr_pc_wrap_around = 0x10000000;
616 /* If this variable holds a value different from zero, the linker relaxation
617 machine will try to optimize call/ret sequences by a single jump
618 instruction. This option could be switched off by a linker switch. */
619 static int avr_replace_call_ret_sequences = 1;
621 /* Initialize an entry in the stub hash table. */
623 static struct bfd_hash_entry *
624 stub_hash_newfunc (struct bfd_hash_entry *entry,
625 struct bfd_hash_table *table,
628 /* Allocate the structure if it has not already been allocated by a
632 entry = bfd_hash_allocate (table,
633 sizeof (struct elf32_avr_stub_hash_entry));
638 /* Call the allocation method of the superclass. */
639 entry = bfd_hash_newfunc (entry, table, string);
642 struct elf32_avr_stub_hash_entry *hsh;
644 /* Initialize the local fields. */
645 hsh = avr_stub_hash_entry (entry);
646 hsh->stub_offset = 0;
647 hsh->target_value = 0;
653 /* This function is just a straight passthrough to the real
654 function in linker.c. Its prupose is so that its address
655 can be compared inside the avr_link_hash_table macro. */
657 static struct bfd_hash_entry *
658 elf32_avr_link_hash_newfunc (struct bfd_hash_entry * entry,
659 struct bfd_hash_table * table,
662 return _bfd_elf_link_hash_newfunc (entry, table, string);
665 /* Create the derived linker hash table. The AVR ELF port uses the derived
666 hash table to keep information specific to the AVR ELF linker (without
667 using static variables). */
669 static struct bfd_link_hash_table *
670 elf32_avr_link_hash_table_create (bfd *abfd)
672 struct elf32_avr_link_hash_table *htab;
673 bfd_size_type amt = sizeof (*htab);
675 htab = bfd_malloc (amt);
679 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd,
680 elf32_avr_link_hash_newfunc,
681 sizeof (struct elf_link_hash_entry),
688 /* Init the stub hash table too. */
689 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
690 sizeof (struct elf32_avr_stub_hash_entry)))
693 htab->stub_bfd = NULL;
694 htab->stub_sec = NULL;
696 /* Initialize the address mapping table. */
697 htab->amt_stub_offsets = NULL;
698 htab->amt_destination_addr = NULL;
699 htab->amt_entry_cnt = 0;
700 htab->amt_max_entry_cnt = 0;
702 return &htab->etab.root;
705 /* Free the derived linker hash table. */
708 elf32_avr_link_hash_table_free (struct bfd_link_hash_table *btab)
710 struct elf32_avr_link_hash_table *htab
711 = (struct elf32_avr_link_hash_table *) btab;
713 /* Free the address mapping table. */
714 if (htab->amt_stub_offsets != NULL)
715 free (htab->amt_stub_offsets);
716 if (htab->amt_destination_addr != NULL)
717 free (htab->amt_destination_addr);
719 bfd_hash_table_free (&htab->bstab);
720 _bfd_generic_link_hash_table_free (btab);
723 /* Calculates the effective distance of a pc relative jump/call. */
726 avr_relative_distance_considering_wrap_around (unsigned int distance)
728 unsigned int wrap_around_mask = avr_pc_wrap_around - 1;
729 int dist_with_wrap_around = distance & wrap_around_mask;
731 if (dist_with_wrap_around > ((int) (avr_pc_wrap_around >> 1)))
732 dist_with_wrap_around -= avr_pc_wrap_around;
734 return dist_with_wrap_around;
738 static reloc_howto_type *
739 bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
740 bfd_reloc_code_real_type code)
745 i < sizeof (avr_reloc_map) / sizeof (struct avr_reloc_map);
747 if (avr_reloc_map[i].bfd_reloc_val == code)
748 return &elf_avr_howto_table[avr_reloc_map[i].elf_reloc_val];
753 static reloc_howto_type *
754 bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
760 i < sizeof (elf_avr_howto_table) / sizeof (elf_avr_howto_table[0]);
762 if (elf_avr_howto_table[i].name != NULL
763 && strcasecmp (elf_avr_howto_table[i].name, r_name) == 0)
764 return &elf_avr_howto_table[i];
769 /* Set the howto pointer for an AVR ELF reloc. */
772 avr_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
774 Elf_Internal_Rela *dst)
778 r_type = ELF32_R_TYPE (dst->r_info);
779 BFD_ASSERT (r_type < (unsigned int) R_AVR_max);
780 cache_ptr->howto = &elf_avr_howto_table[r_type];
784 avr_stub_is_required_for_16_bit_reloc (bfd_vma relocation)
786 return (relocation >= 0x020000);
789 /* Returns the address of the corresponding stub if there is one.
790 Returns otherwise an address above 0x020000. This function
791 could also be used, if there is no knowledge on the section where
792 the destination is found. */
795 avr_get_stub_addr (bfd_vma srel,
796 struct elf32_avr_link_hash_table *htab)
799 bfd_vma stub_sec_addr =
800 (htab->stub_sec->output_section->vma +
801 htab->stub_sec->output_offset);
803 for (sindex = 0; sindex < htab->amt_max_entry_cnt; sindex ++)
804 if (htab->amt_destination_addr[sindex] == srel)
805 return htab->amt_stub_offsets[sindex] + stub_sec_addr;
807 /* Return an address that could not be reached by 16 bit relocs. */
811 /* Perform a single relocation. By default we use the standard BFD
812 routines, but a few relocs, we have to do them ourselves. */
814 static bfd_reloc_status_type
815 avr_final_link_relocate (reloc_howto_type * howto,
817 asection * input_section,
819 Elf_Internal_Rela * rel,
821 struct elf32_avr_link_hash_table * htab)
823 bfd_reloc_status_type r = bfd_reloc_ok;
826 bfd_signed_vma reloc_addr;
827 bfd_boolean use_stubs = FALSE;
828 /* Usually is 0, unless we are generating code for a bootloader. */
829 bfd_signed_vma base_addr = htab->vector_base;
831 /* Absolute addr of the reloc in the final excecutable. */
832 reloc_addr = rel->r_offset + input_section->output_section->vma
833 + input_section->output_offset;
838 contents += rel->r_offset;
839 srel = (bfd_signed_vma) relocation;
840 srel += rel->r_addend;
841 srel -= rel->r_offset;
842 srel -= 2; /* Branch instructions add 2 to the PC... */
843 srel -= (input_section->output_section->vma +
844 input_section->output_offset);
847 return bfd_reloc_outofrange;
848 if (srel > ((1 << 7) - 1) || (srel < - (1 << 7)))
849 return bfd_reloc_overflow;
850 x = bfd_get_16 (input_bfd, contents);
851 x = (x & 0xfc07) | (((srel >> 1) << 3) & 0x3f8);
852 bfd_put_16 (input_bfd, x, contents);
856 contents += rel->r_offset;
857 srel = (bfd_signed_vma) relocation;
858 srel += rel->r_addend;
859 srel -= rel->r_offset;
860 srel -= 2; /* Branch instructions add 2 to the PC... */
861 srel -= (input_section->output_section->vma +
862 input_section->output_offset);
865 return bfd_reloc_outofrange;
867 srel = avr_relative_distance_considering_wrap_around (srel);
869 /* AVR addresses commands as words. */
872 /* Check for overflow. */
873 if (srel < -2048 || srel > 2047)
875 /* Relative distance is too large. */
877 /* Always apply WRAPAROUND for avr2, avr25, and avr4. */
878 switch (bfd_get_mach (input_bfd))
886 return bfd_reloc_overflow;
890 x = bfd_get_16 (input_bfd, contents);
891 x = (x & 0xf000) | (srel & 0xfff);
892 bfd_put_16 (input_bfd, x, contents);
896 contents += rel->r_offset;
897 srel = (bfd_signed_vma) relocation + rel->r_addend;
898 x = bfd_get_16 (input_bfd, contents);
899 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
900 bfd_put_16 (input_bfd, x, contents);
904 contents += rel->r_offset;
905 srel = (bfd_signed_vma) relocation + rel->r_addend;
906 if (((srel > 0) && (srel & 0xffff) > 255)
907 || ((srel < 0) && ((-srel) & 0xffff) > 128))
908 /* Remove offset for data/eeprom section. */
909 return bfd_reloc_overflow;
911 x = bfd_get_16 (input_bfd, contents);
912 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
913 bfd_put_16 (input_bfd, x, contents);
917 contents += rel->r_offset;
918 srel = (bfd_signed_vma) relocation + rel->r_addend;
919 if (((srel & 0xffff) > 63) || (srel < 0))
920 /* Remove offset for data/eeprom section. */
921 return bfd_reloc_overflow;
922 x = bfd_get_16 (input_bfd, contents);
923 x = (x & 0xd3f8) | ((srel & 7) | ((srel & (3 << 3)) << 7)
924 | ((srel & (1 << 5)) << 8));
925 bfd_put_16 (input_bfd, x, contents);
929 contents += rel->r_offset;
930 srel = (bfd_signed_vma) relocation + rel->r_addend;
931 if (((srel & 0xffff) > 63) || (srel < 0))
932 /* Remove offset for data/eeprom section. */
933 return bfd_reloc_overflow;
934 x = bfd_get_16 (input_bfd, contents);
935 x = (x & 0xff30) | (srel & 0xf) | ((srel & 0x30) << 2);
936 bfd_put_16 (input_bfd, x, contents);
940 contents += rel->r_offset;
941 srel = (bfd_signed_vma) relocation + rel->r_addend;
942 srel = (srel >> 8) & 0xff;
943 x = bfd_get_16 (input_bfd, contents);
944 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
945 bfd_put_16 (input_bfd, x, contents);
949 contents += rel->r_offset;
950 srel = (bfd_signed_vma) relocation + rel->r_addend;
951 srel = (srel >> 16) & 0xff;
952 x = bfd_get_16 (input_bfd, contents);
953 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
954 bfd_put_16 (input_bfd, x, contents);
958 contents += rel->r_offset;
959 srel = (bfd_signed_vma) relocation + rel->r_addend;
960 srel = (srel >> 24) & 0xff;
961 x = bfd_get_16 (input_bfd, contents);
962 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
963 bfd_put_16 (input_bfd, x, contents);
966 case R_AVR_LO8_LDI_NEG:
967 contents += rel->r_offset;
968 srel = (bfd_signed_vma) relocation + rel->r_addend;
970 x = bfd_get_16 (input_bfd, contents);
971 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
972 bfd_put_16 (input_bfd, x, contents);
975 case R_AVR_HI8_LDI_NEG:
976 contents += rel->r_offset;
977 srel = (bfd_signed_vma) relocation + rel->r_addend;
979 srel = (srel >> 8) & 0xff;
980 x = bfd_get_16 (input_bfd, contents);
981 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
982 bfd_put_16 (input_bfd, x, contents);
985 case R_AVR_HH8_LDI_NEG:
986 contents += rel->r_offset;
987 srel = (bfd_signed_vma) relocation + rel->r_addend;
989 srel = (srel >> 16) & 0xff;
990 x = bfd_get_16 (input_bfd, contents);
991 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
992 bfd_put_16 (input_bfd, x, contents);
995 case R_AVR_MS8_LDI_NEG:
996 contents += rel->r_offset;
997 srel = (bfd_signed_vma) relocation + rel->r_addend;
999 srel = (srel >> 24) & 0xff;
1000 x = bfd_get_16 (input_bfd, contents);
1001 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1002 bfd_put_16 (input_bfd, x, contents);
1005 case R_AVR_LO8_LDI_GS:
1006 use_stubs = (!htab->no_stubs);
1008 case R_AVR_LO8_LDI_PM:
1009 contents += rel->r_offset;
1010 srel = (bfd_signed_vma) relocation + rel->r_addend;
1013 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1015 bfd_vma old_srel = srel;
1017 /* We need to use the address of the stub instead. */
1018 srel = avr_get_stub_addr (srel, htab);
1020 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1021 "reloc at address 0x%x.\n",
1022 (unsigned int) srel,
1023 (unsigned int) old_srel,
1024 (unsigned int) reloc_addr);
1026 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1027 return bfd_reloc_outofrange;
1031 return bfd_reloc_outofrange;
1033 x = bfd_get_16 (input_bfd, contents);
1034 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1035 bfd_put_16 (input_bfd, x, contents);
1038 case R_AVR_HI8_LDI_GS:
1039 use_stubs = (!htab->no_stubs);
1041 case R_AVR_HI8_LDI_PM:
1042 contents += rel->r_offset;
1043 srel = (bfd_signed_vma) relocation + rel->r_addend;
1046 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1048 bfd_vma old_srel = srel;
1050 /* We need to use the address of the stub instead. */
1051 srel = avr_get_stub_addr (srel, htab);
1053 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1054 "reloc at address 0x%x.\n",
1055 (unsigned int) srel,
1056 (unsigned int) old_srel,
1057 (unsigned int) reloc_addr);
1059 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1060 return bfd_reloc_outofrange;
1064 return bfd_reloc_outofrange;
1066 srel = (srel >> 8) & 0xff;
1067 x = bfd_get_16 (input_bfd, contents);
1068 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1069 bfd_put_16 (input_bfd, x, contents);
1072 case R_AVR_HH8_LDI_PM:
1073 contents += rel->r_offset;
1074 srel = (bfd_signed_vma) relocation + rel->r_addend;
1076 return bfd_reloc_outofrange;
1078 srel = (srel >> 16) & 0xff;
1079 x = bfd_get_16 (input_bfd, contents);
1080 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1081 bfd_put_16 (input_bfd, x, contents);
1084 case R_AVR_LO8_LDI_PM_NEG:
1085 contents += rel->r_offset;
1086 srel = (bfd_signed_vma) relocation + rel->r_addend;
1089 return bfd_reloc_outofrange;
1091 x = bfd_get_16 (input_bfd, contents);
1092 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1093 bfd_put_16 (input_bfd, x, contents);
1096 case R_AVR_HI8_LDI_PM_NEG:
1097 contents += rel->r_offset;
1098 srel = (bfd_signed_vma) relocation + rel->r_addend;
1101 return bfd_reloc_outofrange;
1103 srel = (srel >> 8) & 0xff;
1104 x = bfd_get_16 (input_bfd, contents);
1105 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1106 bfd_put_16 (input_bfd, x, contents);
1109 case R_AVR_HH8_LDI_PM_NEG:
1110 contents += rel->r_offset;
1111 srel = (bfd_signed_vma) relocation + rel->r_addend;
1114 return bfd_reloc_outofrange;
1116 srel = (srel >> 16) & 0xff;
1117 x = bfd_get_16 (input_bfd, contents);
1118 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1119 bfd_put_16 (input_bfd, x, contents);
1123 contents += rel->r_offset;
1124 srel = (bfd_signed_vma) relocation + rel->r_addend;
1126 return bfd_reloc_outofrange;
1128 x = bfd_get_16 (input_bfd, contents);
1129 x |= ((srel & 0x10000) | ((srel << 3) & 0x1f00000)) >> 16;
1130 bfd_put_16 (input_bfd, x, contents);
1131 bfd_put_16 (input_bfd, (bfd_vma) srel & 0xffff, contents+2);
1135 use_stubs = (!htab->no_stubs);
1136 contents += rel->r_offset;
1137 srel = (bfd_signed_vma) relocation + rel->r_addend;
1140 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1142 bfd_vma old_srel = srel;
1144 /* We need to use the address of the stub instead. */
1145 srel = avr_get_stub_addr (srel,htab);
1147 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1148 "reloc at address 0x%x.\n",
1149 (unsigned int) srel,
1150 (unsigned int) old_srel,
1151 (unsigned int) reloc_addr);
1153 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1154 return bfd_reloc_outofrange;
1158 return bfd_reloc_outofrange;
1160 bfd_put_16 (input_bfd, (bfd_vma) srel &0x00ffff, contents);
1164 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1165 contents, rel->r_offset,
1166 relocation, rel->r_addend);
1172 /* Relocate an AVR ELF section. */
1175 elf32_avr_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1176 struct bfd_link_info *info,
1178 asection *input_section,
1180 Elf_Internal_Rela *relocs,
1181 Elf_Internal_Sym *local_syms,
1182 asection **local_sections)
1184 Elf_Internal_Shdr * symtab_hdr;
1185 struct elf_link_hash_entry ** sym_hashes;
1186 Elf_Internal_Rela * rel;
1187 Elf_Internal_Rela * relend;
1188 struct elf32_avr_link_hash_table * htab = avr_link_hash_table (info);
1193 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1194 sym_hashes = elf_sym_hashes (input_bfd);
1195 relend = relocs + input_section->reloc_count;
1197 for (rel = relocs; rel < relend; rel ++)
1199 reloc_howto_type * howto;
1200 unsigned long r_symndx;
1201 Elf_Internal_Sym * sym;
1203 struct elf_link_hash_entry * h;
1205 bfd_reloc_status_type r;
1209 r_type = ELF32_R_TYPE (rel->r_info);
1210 r_symndx = ELF32_R_SYM (rel->r_info);
1211 howto = elf_avr_howto_table + r_type;
1216 if (r_symndx < symtab_hdr->sh_info)
1218 sym = local_syms + r_symndx;
1219 sec = local_sections [r_symndx];
1220 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1222 name = bfd_elf_string_from_elf_section
1223 (input_bfd, symtab_hdr->sh_link, sym->st_name);
1224 name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
1228 bfd_boolean unresolved_reloc, warned;
1230 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1231 r_symndx, symtab_hdr, sym_hashes,
1233 unresolved_reloc, warned);
1235 name = h->root.root.string;
1238 if (sec != NULL && discarded_section (sec))
1239 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1240 rel, 1, relend, howto, 0, contents);
1242 if (info->relocatable)
1245 r = avr_final_link_relocate (howto, input_bfd, input_section,
1246 contents, rel, relocation, htab);
1248 if (r != bfd_reloc_ok)
1250 const char * msg = (const char *) NULL;
1254 case bfd_reloc_overflow:
1255 r = info->callbacks->reloc_overflow
1256 (info, (h ? &h->root : NULL),
1257 name, howto->name, (bfd_vma) 0,
1258 input_bfd, input_section, rel->r_offset);
1261 case bfd_reloc_undefined:
1262 r = info->callbacks->undefined_symbol
1263 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
1266 case bfd_reloc_outofrange:
1267 msg = _("internal error: out of range error");
1270 case bfd_reloc_notsupported:
1271 msg = _("internal error: unsupported relocation error");
1274 case bfd_reloc_dangerous:
1275 msg = _("internal error: dangerous relocation");
1279 msg = _("internal error: unknown error");
1284 r = info->callbacks->warning
1285 (info, msg, name, input_bfd, input_section, rel->r_offset);
1295 /* The final processing done just before writing out a AVR ELF object
1296 file. This gets the AVR architecture right based on the machine
1300 bfd_elf_avr_final_write_processing (bfd *abfd,
1301 bfd_boolean linker ATTRIBUTE_UNUSED)
1305 switch (bfd_get_mach (abfd))
1309 val = E_AVR_MACH_AVR2;
1313 val = E_AVR_MACH_AVR1;
1316 case bfd_mach_avr25:
1317 val = E_AVR_MACH_AVR25;
1321 val = E_AVR_MACH_AVR3;
1324 case bfd_mach_avr31:
1325 val = E_AVR_MACH_AVR31;
1328 case bfd_mach_avr35:
1329 val = E_AVR_MACH_AVR35;
1333 val = E_AVR_MACH_AVR4;
1337 val = E_AVR_MACH_AVR5;
1340 case bfd_mach_avr51:
1341 val = E_AVR_MACH_AVR51;
1345 val = E_AVR_MACH_AVR6;
1348 case bfd_mach_avrxmega1:
1349 val = E_AVR_MACH_XMEGA1;
1352 case bfd_mach_avrxmega2:
1353 val = E_AVR_MACH_XMEGA2;
1356 case bfd_mach_avrxmega3:
1357 val = E_AVR_MACH_XMEGA3;
1360 case bfd_mach_avrxmega4:
1361 val = E_AVR_MACH_XMEGA4;
1364 case bfd_mach_avrxmega5:
1365 val = E_AVR_MACH_XMEGA5;
1368 case bfd_mach_avrxmega6:
1369 val = E_AVR_MACH_XMEGA6;
1372 case bfd_mach_avrxmega7:
1373 val = E_AVR_MACH_XMEGA7;
1377 elf_elfheader (abfd)->e_machine = EM_AVR;
1378 elf_elfheader (abfd)->e_flags &= ~ EF_AVR_MACH;
1379 elf_elfheader (abfd)->e_flags |= val;
1380 elf_elfheader (abfd)->e_flags |= EF_AVR_LINKRELAX_PREPARED;
1383 /* Set the right machine number. */
1386 elf32_avr_object_p (bfd *abfd)
1388 unsigned int e_set = bfd_mach_avr2;
1390 if (elf_elfheader (abfd)->e_machine == EM_AVR
1391 || elf_elfheader (abfd)->e_machine == EM_AVR_OLD)
1393 int e_mach = elf_elfheader (abfd)->e_flags & EF_AVR_MACH;
1398 case E_AVR_MACH_AVR2:
1399 e_set = bfd_mach_avr2;
1402 case E_AVR_MACH_AVR1:
1403 e_set = bfd_mach_avr1;
1406 case E_AVR_MACH_AVR25:
1407 e_set = bfd_mach_avr25;
1410 case E_AVR_MACH_AVR3:
1411 e_set = bfd_mach_avr3;
1414 case E_AVR_MACH_AVR31:
1415 e_set = bfd_mach_avr31;
1418 case E_AVR_MACH_AVR35:
1419 e_set = bfd_mach_avr35;
1422 case E_AVR_MACH_AVR4:
1423 e_set = bfd_mach_avr4;
1426 case E_AVR_MACH_AVR5:
1427 e_set = bfd_mach_avr5;
1430 case E_AVR_MACH_AVR51:
1431 e_set = bfd_mach_avr51;
1434 case E_AVR_MACH_AVR6:
1435 e_set = bfd_mach_avr6;
1438 case E_AVR_MACH_XMEGA1:
1439 e_set = bfd_mach_avrxmega1;
1442 case E_AVR_MACH_XMEGA2:
1443 e_set = bfd_mach_avrxmega2;
1446 case E_AVR_MACH_XMEGA3:
1447 e_set = bfd_mach_avrxmega3;
1450 case E_AVR_MACH_XMEGA4:
1451 e_set = bfd_mach_avrxmega4;
1454 case E_AVR_MACH_XMEGA5:
1455 e_set = bfd_mach_avrxmega5;
1458 case E_AVR_MACH_XMEGA6:
1459 e_set = bfd_mach_avrxmega6;
1462 case E_AVR_MACH_XMEGA7:
1463 e_set = bfd_mach_avrxmega7;
1467 return bfd_default_set_arch_mach (abfd, bfd_arch_avr,
1472 /* Delete some bytes from a section while changing the size of an instruction.
1473 The parameter "addr" denotes the section-relative offset pointing just
1474 behind the shrinked instruction. "addr+count" point at the first
1475 byte just behind the original unshrinked instruction. */
1478 elf32_avr_relax_delete_bytes (bfd *abfd,
1483 Elf_Internal_Shdr *symtab_hdr;
1484 unsigned int sec_shndx;
1486 Elf_Internal_Rela *irel, *irelend;
1487 Elf_Internal_Sym *isym;
1488 Elf_Internal_Sym *isymbuf = NULL;
1490 struct elf_link_hash_entry **sym_hashes;
1491 struct elf_link_hash_entry **end_hashes;
1492 unsigned int symcount;
1494 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1495 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
1496 contents = elf_section_data (sec)->this_hdr.contents;
1500 irel = elf_section_data (sec)->relocs;
1501 irelend = irel + sec->reloc_count;
1503 /* Actually delete the bytes. */
1504 if (toaddr - addr - count > 0)
1505 memmove (contents + addr, contents + addr + count,
1506 (size_t) (toaddr - addr - count));
1509 /* Adjust all the reloc addresses. */
1510 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
1512 bfd_vma old_reloc_address;
1514 old_reloc_address = (sec->output_section->vma
1515 + sec->output_offset + irel->r_offset);
1517 /* Get the new reloc address. */
1518 if ((irel->r_offset > addr
1519 && irel->r_offset < toaddr))
1522 printf ("Relocation at address 0x%x needs to be moved.\n"
1523 "Old section offset: 0x%x, New section offset: 0x%x \n",
1524 (unsigned int) old_reloc_address,
1525 (unsigned int) irel->r_offset,
1526 (unsigned int) ((irel->r_offset) - count));
1528 irel->r_offset -= count;
1533 /* The reloc's own addresses are now ok. However, we need to readjust
1534 the reloc's addend, i.e. the reloc's value if two conditions are met:
1535 1.) the reloc is relative to a symbol in this section that
1536 is located in front of the shrinked instruction
1537 2.) symbol plus addend end up behind the shrinked instruction.
1539 The most common case where this happens are relocs relative to
1540 the section-start symbol.
1542 This step needs to be done for all of the sections of the bfd. */
1545 struct bfd_section *isec;
1547 for (isec = abfd->sections; isec; isec = isec->next)
1550 bfd_vma shrinked_insn_address;
1552 if (isec->reloc_count == 0)
1555 shrinked_insn_address = (sec->output_section->vma
1556 + sec->output_offset + addr - count);
1558 irel = elf_section_data (isec)->relocs;
1559 /* PR 12161: Read in the relocs for this section if necessary. */
1561 irel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, TRUE);
1563 for (irelend = irel + isec->reloc_count;
1567 /* Read this BFD's local symbols if we haven't done
1569 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
1571 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1572 if (isymbuf == NULL)
1573 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1574 symtab_hdr->sh_info, 0,
1576 if (isymbuf == NULL)
1580 /* Get the value of the symbol referred to by the reloc. */
1581 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
1583 /* A local symbol. */
1586 isym = isymbuf + ELF32_R_SYM (irel->r_info);
1587 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1588 symval = isym->st_value;
1589 /* If the reloc is absolute, it will not have
1590 a symbol or section associated with it. */
1593 symval += sym_sec->output_section->vma
1594 + sym_sec->output_offset;
1597 printf ("Checking if the relocation's "
1598 "addend needs corrections.\n"
1599 "Address of anchor symbol: 0x%x \n"
1600 "Address of relocation target: 0x%x \n"
1601 "Address of relaxed insn: 0x%x \n",
1602 (unsigned int) symval,
1603 (unsigned int) (symval + irel->r_addend),
1604 (unsigned int) shrinked_insn_address);
1606 if (symval <= shrinked_insn_address
1607 && (symval + irel->r_addend) > shrinked_insn_address)
1609 irel->r_addend -= count;
1612 printf ("Relocation's addend needed to be fixed \n");
1615 /* else...Reference symbol is absolute. No adjustment needed. */
1617 /* else...Reference symbol is extern. No need for adjusting
1623 /* Adjust the local symbols defined in this section. */
1624 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
1625 /* Fix PR 9841, there may be no local symbols. */
1628 Elf_Internal_Sym *isymend;
1630 isymend = isym + symtab_hdr->sh_info;
1631 for (; isym < isymend; isym++)
1633 if (isym->st_shndx == sec_shndx
1634 && isym->st_value > addr
1635 && isym->st_value < toaddr)
1636 isym->st_value -= count;
1640 /* Now adjust the global symbols defined in this section. */
1641 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
1642 - symtab_hdr->sh_info);
1643 sym_hashes = elf_sym_hashes (abfd);
1644 end_hashes = sym_hashes + symcount;
1645 for (; sym_hashes < end_hashes; sym_hashes++)
1647 struct elf_link_hash_entry *sym_hash = *sym_hashes;
1648 if ((sym_hash->root.type == bfd_link_hash_defined
1649 || sym_hash->root.type == bfd_link_hash_defweak)
1650 && sym_hash->root.u.def.section == sec
1651 && sym_hash->root.u.def.value > addr
1652 && sym_hash->root.u.def.value < toaddr)
1654 sym_hash->root.u.def.value -= count;
1661 /* This function handles relaxing for the avr.
1662 Many important relaxing opportunities within functions are already
1663 realized by the compiler itself.
1664 Here we try to replace call (4 bytes) -> rcall (2 bytes)
1665 and jump -> rjmp (safes also 2 bytes).
1666 As well we now optimize seqences of
1667 - call/rcall function
1672 . In case that within a sequence
1675 the ret could no longer be reached it is optimized away. In order
1676 to check if the ret is no longer needed, it is checked that the ret's address
1677 is not the target of a branch or jump within the same section, it is checked
1678 that there is no skip instruction before the jmp/rjmp and that there
1679 is no local or global label place at the address of the ret.
1681 We refrain from relaxing within sections ".vectors" and
1682 ".jumptables" in order to maintain the position of the instructions.
1683 There, however, we substitute jmp/call by a sequence rjmp,nop/rcall,nop
1684 if possible. (In future one could possibly use the space of the nop
1685 for the first instruction of the irq service function.
1687 The .jumptables sections is meant to be used for a future tablejump variant
1688 for the devices with 3-byte program counter where the table itself
1689 contains 4-byte jump instructions whose relative offset must not
1693 elf32_avr_relax_section (bfd *abfd,
1695 struct bfd_link_info *link_info,
1698 Elf_Internal_Shdr *symtab_hdr;
1699 Elf_Internal_Rela *internal_relocs;
1700 Elf_Internal_Rela *irel, *irelend;
1701 bfd_byte *contents = NULL;
1702 Elf_Internal_Sym *isymbuf = NULL;
1703 struct elf32_avr_link_hash_table *htab;
1705 /* If 'shrinkable' is FALSE, do not shrink by deleting bytes while
1706 relaxing. Such shrinking can cause issues for the sections such
1707 as .vectors and .jumptables. Instead the unused bytes should be
1708 filled with nop instructions. */
1709 bfd_boolean shrinkable = TRUE;
1711 if (!strcmp (sec->name,".vectors")
1712 || !strcmp (sec->name,".jumptables"))
1715 if (link_info->relocatable)
1716 (*link_info->callbacks->einfo)
1717 (_("%P%F: --relax and -r may not be used together\n"));
1719 htab = avr_link_hash_table (link_info);
1723 /* Assume nothing changes. */
1726 if ((!htab->no_stubs) && (sec == htab->stub_sec))
1728 /* We are just relaxing the stub section.
1729 Let's calculate the size needed again. */
1730 bfd_size_type last_estimated_stub_section_size = htab->stub_sec->size;
1733 printf ("Relaxing the stub section. Size prior to this pass: %i\n",
1734 (int) last_estimated_stub_section_size);
1736 elf32_avr_size_stubs (htab->stub_sec->output_section->owner,
1739 /* Check if the number of trampolines changed. */
1740 if (last_estimated_stub_section_size != htab->stub_sec->size)
1744 printf ("Size of stub section after this pass: %i\n",
1745 (int) htab->stub_sec->size);
1750 /* We don't have to do anything for a relocatable link, if
1751 this section does not have relocs, or if this is not a
1753 if (link_info->relocatable
1754 || (sec->flags & SEC_RELOC) == 0
1755 || sec->reloc_count == 0
1756 || (sec->flags & SEC_CODE) == 0)
1759 /* Check if the object file to relax uses internal symbols so that we
1760 could fix up the relocations. */
1761 if (!(elf_elfheader (abfd)->e_flags & EF_AVR_LINKRELAX_PREPARED))
1764 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1766 /* Get a copy of the native relocations. */
1767 internal_relocs = (_bfd_elf_link_read_relocs
1768 (abfd, sec, NULL, NULL, link_info->keep_memory));
1769 if (internal_relocs == NULL)
1772 /* Walk through the relocs looking for relaxing opportunities. */
1773 irelend = internal_relocs + sec->reloc_count;
1774 for (irel = internal_relocs; irel < irelend; irel++)
1778 if ( ELF32_R_TYPE (irel->r_info) != R_AVR_13_PCREL
1779 && ELF32_R_TYPE (irel->r_info) != R_AVR_7_PCREL
1780 && ELF32_R_TYPE (irel->r_info) != R_AVR_CALL)
1783 /* Get the section contents if we haven't done so already. */
1784 if (contents == NULL)
1786 /* Get cached copy if it exists. */
1787 if (elf_section_data (sec)->this_hdr.contents != NULL)
1788 contents = elf_section_data (sec)->this_hdr.contents;
1791 /* Go get them off disk. */
1792 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
1797 /* Read this BFD's local symbols if we haven't done so already. */
1798 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
1800 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1801 if (isymbuf == NULL)
1802 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1803 symtab_hdr->sh_info, 0,
1805 if (isymbuf == NULL)
1810 /* Get the value of the symbol referred to by the reloc. */
1811 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
1813 /* A local symbol. */
1814 Elf_Internal_Sym *isym;
1817 isym = isymbuf + ELF32_R_SYM (irel->r_info);
1818 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1819 symval = isym->st_value;
1820 /* If the reloc is absolute, it will not have
1821 a symbol or section associated with it. */
1823 symval += sym_sec->output_section->vma
1824 + sym_sec->output_offset;
1829 struct elf_link_hash_entry *h;
1831 /* An external symbol. */
1832 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
1833 h = elf_sym_hashes (abfd)[indx];
1834 BFD_ASSERT (h != NULL);
1835 if (h->root.type != bfd_link_hash_defined
1836 && h->root.type != bfd_link_hash_defweak)
1837 /* This appears to be a reference to an undefined
1838 symbol. Just ignore it--it will be caught by the
1839 regular reloc processing. */
1842 symval = (h->root.u.def.value
1843 + h->root.u.def.section->output_section->vma
1844 + h->root.u.def.section->output_offset);
1847 /* For simplicity of coding, we are going to modify the section
1848 contents, the section relocs, and the BFD symbol table. We
1849 must tell the rest of the code not to free up this
1850 information. It would be possible to instead create a table
1851 of changes which have to be made, as is done in coff-mips.c;
1852 that would be more work, but would require less memory when
1853 the linker is run. */
1854 switch (ELF32_R_TYPE (irel->r_info))
1856 /* Try to turn a 22-bit absolute call/jump into an 13-bit
1857 pc-relative rcall/rjmp. */
1860 bfd_vma value = symval + irel->r_addend;
1862 int distance_short_enough = 0;
1864 /* Get the address of this instruction. */
1865 dot = (sec->output_section->vma
1866 + sec->output_offset + irel->r_offset);
1868 /* Compute the distance from this insn to the branch target. */
1871 /* Check if the gap falls in the range that can be accommodated
1872 in 13bits signed (It is 12bits when encoded, as we deal with
1873 word addressing). */
1874 if (!shrinkable && ((int) gap >= -4096 && (int) gap <= 4095))
1875 distance_short_enough = 1;
1876 /* If shrinkable, then we can check for a range of distance which
1877 is two bytes farther on both the directions because the call
1878 or jump target will be closer by two bytes after the
1880 else if (shrinkable && ((int) gap >= -4094 && (int) gap <= 4097))
1881 distance_short_enough = 1;
1883 /* Here we handle the wrap-around case. E.g. for a 16k device
1884 we could use a rjmp to jump from address 0x100 to 0x3d00!
1885 In order to make this work properly, we need to fill the
1886 vaiable avr_pc_wrap_around with the appropriate value.
1887 I.e. 0x4000 for a 16k device. */
1889 /* Shrinking the code size makes the gaps larger in the
1890 case of wrap-arounds. So we use a heuristical safety
1891 margin to avoid that during relax the distance gets
1892 again too large for the short jumps. Let's assume
1893 a typical code-size reduction due to relax for a
1894 16k device of 600 bytes. So let's use twice the
1895 typical value as safety margin. */
1899 int assumed_shrink = 600;
1900 if (avr_pc_wrap_around > 0x4000)
1901 assumed_shrink = 900;
1903 safety_margin = 2 * assumed_shrink;
1905 rgap = avr_relative_distance_considering_wrap_around (gap);
1907 if (rgap >= (-4092 + safety_margin)
1908 && rgap <= (4094 - safety_margin))
1909 distance_short_enough = 1;
1912 if (distance_short_enough)
1914 unsigned char code_msb;
1915 unsigned char code_lsb;
1918 printf ("shrinking jump/call instruction at address 0x%x"
1919 " in section %s\n\n",
1920 (int) dot, sec->name);
1922 /* Note that we've changed the relocs, section contents,
1924 elf_section_data (sec)->relocs = internal_relocs;
1925 elf_section_data (sec)->this_hdr.contents = contents;
1926 symtab_hdr->contents = (unsigned char *) isymbuf;
1928 /* Get the instruction code for relaxing. */
1929 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset);
1930 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
1932 /* Mask out the relocation bits. */
1935 if (code_msb == 0x94 && code_lsb == 0x0E)
1937 /* we are changing call -> rcall . */
1938 bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
1939 bfd_put_8 (abfd, 0xD0, contents + irel->r_offset + 1);
1941 else if (code_msb == 0x94 && code_lsb == 0x0C)
1943 /* we are changeing jump -> rjmp. */
1944 bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
1945 bfd_put_8 (abfd, 0xC0, contents + irel->r_offset + 1);
1950 /* Fix the relocation's type. */
1951 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
1954 /* We should not modify the ordering if 'shrinkable' is
1958 /* Let's insert a nop. */
1959 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 2);
1960 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 3);
1964 /* Delete two bytes of data. */
1965 if (!elf32_avr_relax_delete_bytes (abfd, sec,
1966 irel->r_offset + 2, 2))
1969 /* That will change things, so, we should relax again.
1970 Note that this is not required, and it may be slow. */
1978 unsigned char code_msb;
1979 unsigned char code_lsb;
1982 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
1983 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset + 0);
1985 /* Get the address of this instruction. */
1986 dot = (sec->output_section->vma
1987 + sec->output_offset + irel->r_offset);
1989 /* Here we look for rcall/ret or call/ret sequences that could be
1990 safely replaced by rjmp/ret or jmp/ret. */
1991 if (((code_msb & 0xf0) == 0xd0)
1992 && avr_replace_call_ret_sequences)
1994 /* This insn is a rcall. */
1995 unsigned char next_insn_msb = 0;
1996 unsigned char next_insn_lsb = 0;
1998 if (irel->r_offset + 3 < sec->size)
2001 bfd_get_8 (abfd, contents + irel->r_offset + 3);
2003 bfd_get_8 (abfd, contents + irel->r_offset + 2);
2006 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2008 /* The next insn is a ret. We now convert the rcall insn
2009 into a rjmp instruction. */
2011 bfd_put_8 (abfd, code_msb, contents + irel->r_offset + 1);
2013 printf ("converted rcall/ret sequence at address 0x%x"
2014 " into rjmp/ret sequence. Section is %s\n\n",
2015 (int) dot, sec->name);
2020 else if ((0x94 == (code_msb & 0xfe))
2021 && (0x0e == (code_lsb & 0x0e))
2022 && avr_replace_call_ret_sequences)
2024 /* This insn is a call. */
2025 unsigned char next_insn_msb = 0;
2026 unsigned char next_insn_lsb = 0;
2028 if (irel->r_offset + 5 < sec->size)
2031 bfd_get_8 (abfd, contents + irel->r_offset + 5);
2033 bfd_get_8 (abfd, contents + irel->r_offset + 4);
2036 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2038 /* The next insn is a ret. We now convert the call insn
2039 into a jmp instruction. */
2042 bfd_put_8 (abfd, code_lsb, contents + irel->r_offset);
2044 printf ("converted call/ret sequence at address 0x%x"
2045 " into jmp/ret sequence. Section is %s\n\n",
2046 (int) dot, sec->name);
2051 else if ((0xc0 == (code_msb & 0xf0))
2052 || ((0x94 == (code_msb & 0xfe))
2053 && (0x0c == (code_lsb & 0x0e))))
2055 /* This insn is a rjmp or a jmp. */
2056 unsigned char next_insn_msb = 0;
2057 unsigned char next_insn_lsb = 0;
2060 if (0xc0 == (code_msb & 0xf0))
2061 insn_size = 2; /* rjmp insn */
2063 insn_size = 4; /* jmp insn */
2065 if (irel->r_offset + insn_size + 1 < sec->size)
2068 bfd_get_8 (abfd, contents + irel->r_offset
2071 bfd_get_8 (abfd, contents + irel->r_offset
2075 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2077 /* The next insn is a ret. We possibly could delete
2078 this ret. First we need to check for preceding
2079 sbis/sbic/sbrs or cpse "skip" instructions. */
2081 int there_is_preceding_non_skip_insn = 1;
2082 bfd_vma address_of_ret;
2084 address_of_ret = dot + insn_size;
2086 if (debug_relax && (insn_size == 2))
2087 printf ("found rjmp / ret sequence at address 0x%x\n",
2089 if (debug_relax && (insn_size == 4))
2090 printf ("found jmp / ret sequence at address 0x%x\n",
2093 /* We have to make sure that there is a preceding insn. */
2094 if (irel->r_offset >= 2)
2096 unsigned char preceding_msb;
2097 unsigned char preceding_lsb;
2100 bfd_get_8 (abfd, contents + irel->r_offset - 1);
2102 bfd_get_8 (abfd, contents + irel->r_offset - 2);
2105 if (0x99 == preceding_msb)
2106 there_is_preceding_non_skip_insn = 0;
2109 if (0x9b == preceding_msb)
2110 there_is_preceding_non_skip_insn = 0;
2113 if ((0xfc == (preceding_msb & 0xfe)
2114 && (0x00 == (preceding_lsb & 0x08))))
2115 there_is_preceding_non_skip_insn = 0;
2118 if ((0xfe == (preceding_msb & 0xfe)
2119 && (0x00 == (preceding_lsb & 0x08))))
2120 there_is_preceding_non_skip_insn = 0;
2123 if (0x10 == (preceding_msb & 0xfc))
2124 there_is_preceding_non_skip_insn = 0;
2126 if (there_is_preceding_non_skip_insn == 0)
2128 printf ("preceding skip insn prevents deletion of"
2129 " ret insn at Addy 0x%x in section %s\n",
2130 (int) dot + 2, sec->name);
2134 /* There is no previous instruction. */
2135 there_is_preceding_non_skip_insn = 0;
2138 if (there_is_preceding_non_skip_insn)
2140 /* We now only have to make sure that there is no
2141 local label defined at the address of the ret
2142 instruction and that there is no local relocation
2143 in this section pointing to the ret. */
2145 int deleting_ret_is_safe = 1;
2146 unsigned int section_offset_of_ret_insn =
2147 irel->r_offset + insn_size;
2148 Elf_Internal_Sym *isym, *isymend;
2149 unsigned int sec_shndx;
2152 _bfd_elf_section_from_bfd_section (abfd, sec);
2154 /* Check for local symbols. */
2155 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2156 isymend = isym + symtab_hdr->sh_info;
2157 /* PR 6019: There may not be any local symbols. */
2158 for (; isym != NULL && isym < isymend; isym++)
2160 if (isym->st_value == section_offset_of_ret_insn
2161 && isym->st_shndx == sec_shndx)
2163 deleting_ret_is_safe = 0;
2165 printf ("local label prevents deletion of ret "
2166 "insn at address 0x%x\n",
2167 (int) dot + insn_size);
2171 /* Now check for global symbols. */
2174 struct elf_link_hash_entry **sym_hashes;
2175 struct elf_link_hash_entry **end_hashes;
2177 symcount = (symtab_hdr->sh_size
2178 / sizeof (Elf32_External_Sym)
2179 - symtab_hdr->sh_info);
2180 sym_hashes = elf_sym_hashes (abfd);
2181 end_hashes = sym_hashes + symcount;
2182 for (; sym_hashes < end_hashes; sym_hashes++)
2184 struct elf_link_hash_entry *sym_hash =
2186 if ((sym_hash->root.type == bfd_link_hash_defined
2187 || sym_hash->root.type ==
2188 bfd_link_hash_defweak)
2189 && sym_hash->root.u.def.section == sec
2190 && sym_hash->root.u.def.value == section_offset_of_ret_insn)
2192 deleting_ret_is_safe = 0;
2194 printf ("global label prevents deletion of "
2195 "ret insn at address 0x%x\n",
2196 (int) dot + insn_size);
2200 /* Now we check for relocations pointing to ret. */
2202 Elf_Internal_Rela *rel;
2203 Elf_Internal_Rela *relend;
2205 relend = elf_section_data (sec)->relocs
2208 for (rel = elf_section_data (sec)->relocs;
2209 rel < relend; rel++)
2211 bfd_vma reloc_target = 0;
2213 /* Read this BFD's local symbols if we haven't
2215 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
2217 isymbuf = (Elf_Internal_Sym *)
2218 symtab_hdr->contents;
2219 if (isymbuf == NULL)
2220 isymbuf = bfd_elf_get_elf_syms
2223 symtab_hdr->sh_info, 0,
2225 if (isymbuf == NULL)
2229 /* Get the value of the symbol referred to
2231 if (ELF32_R_SYM (rel->r_info)
2232 < symtab_hdr->sh_info)
2234 /* A local symbol. */
2238 + ELF32_R_SYM (rel->r_info);
2239 sym_sec = bfd_section_from_elf_index
2240 (abfd, isym->st_shndx);
2241 symval = isym->st_value;
2243 /* If the reloc is absolute, it will not
2244 have a symbol or section associated
2250 sym_sec->output_section->vma
2251 + sym_sec->output_offset;
2252 reloc_target = symval + rel->r_addend;
2256 reloc_target = symval + rel->r_addend;
2257 /* Reference symbol is absolute. */
2260 /* else ... reference symbol is extern. */
2262 if (address_of_ret == reloc_target)
2264 deleting_ret_is_safe = 0;
2267 "rjmp/jmp ret sequence at address"
2268 " 0x%x could not be deleted. ret"
2269 " is target of a relocation.\n",
2270 (int) address_of_ret);
2275 if (deleting_ret_is_safe)
2278 printf ("unreachable ret instruction "
2279 "at address 0x%x deleted.\n",
2280 (int) dot + insn_size);
2282 /* Delete two bytes of data. */
2283 if (!elf32_avr_relax_delete_bytes (abfd, sec,
2284 irel->r_offset + insn_size, 2))
2287 /* That will change things, so, we should relax
2288 again. Note that this is not required, and it
2302 if (contents != NULL
2303 && elf_section_data (sec)->this_hdr.contents != contents)
2305 if (! link_info->keep_memory)
2309 /* Cache the section contents for elf_link_input_bfd. */
2310 elf_section_data (sec)->this_hdr.contents = contents;
2314 if (internal_relocs != NULL
2315 && elf_section_data (sec)->relocs != internal_relocs)
2316 free (internal_relocs);
2322 && symtab_hdr->contents != (unsigned char *) isymbuf)
2324 if (contents != NULL
2325 && elf_section_data (sec)->this_hdr.contents != contents)
2327 if (internal_relocs != NULL
2328 && elf_section_data (sec)->relocs != internal_relocs)
2329 free (internal_relocs);
2334 /* This is a version of bfd_generic_get_relocated_section_contents
2335 which uses elf32_avr_relocate_section.
2337 For avr it's essentially a cut and paste taken from the H8300 port.
2338 The author of the relaxation support patch for avr had absolutely no
2339 clue what is happening here but found out that this part of the code
2340 seems to be important. */
2343 elf32_avr_get_relocated_section_contents (bfd *output_bfd,
2344 struct bfd_link_info *link_info,
2345 struct bfd_link_order *link_order,
2347 bfd_boolean relocatable,
2350 Elf_Internal_Shdr *symtab_hdr;
2351 asection *input_section = link_order->u.indirect.section;
2352 bfd *input_bfd = input_section->owner;
2353 asection **sections = NULL;
2354 Elf_Internal_Rela *internal_relocs = NULL;
2355 Elf_Internal_Sym *isymbuf = NULL;
2357 /* We only need to handle the case of relaxing, or of having a
2358 particular set of section contents, specially. */
2360 || elf_section_data (input_section)->this_hdr.contents == NULL)
2361 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2365 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2367 memcpy (data, elf_section_data (input_section)->this_hdr.contents,
2368 (size_t) input_section->size);
2370 if ((input_section->flags & SEC_RELOC) != 0
2371 && input_section->reloc_count > 0)
2374 Elf_Internal_Sym *isym, *isymend;
2377 internal_relocs = (_bfd_elf_link_read_relocs
2378 (input_bfd, input_section, NULL, NULL, FALSE));
2379 if (internal_relocs == NULL)
2382 if (symtab_hdr->sh_info != 0)
2384 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2385 if (isymbuf == NULL)
2386 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2387 symtab_hdr->sh_info, 0,
2389 if (isymbuf == NULL)
2393 amt = symtab_hdr->sh_info;
2394 amt *= sizeof (asection *);
2395 sections = bfd_malloc (amt);
2396 if (sections == NULL && amt != 0)
2399 isymend = isymbuf + symtab_hdr->sh_info;
2400 for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
2404 if (isym->st_shndx == SHN_UNDEF)
2405 isec = bfd_und_section_ptr;
2406 else if (isym->st_shndx == SHN_ABS)
2407 isec = bfd_abs_section_ptr;
2408 else if (isym->st_shndx == SHN_COMMON)
2409 isec = bfd_com_section_ptr;
2411 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
2416 if (! elf32_avr_relocate_section (output_bfd, link_info, input_bfd,
2417 input_section, data, internal_relocs,
2421 if (sections != NULL)
2424 && symtab_hdr->contents != (unsigned char *) isymbuf)
2426 if (elf_section_data (input_section)->relocs != internal_relocs)
2427 free (internal_relocs);
2433 if (sections != NULL)
2436 && symtab_hdr->contents != (unsigned char *) isymbuf)
2438 if (internal_relocs != NULL
2439 && elf_section_data (input_section)->relocs != internal_relocs)
2440 free (internal_relocs);
2445 /* Determines the hash entry name for a particular reloc. It consists of
2446 the identifier of the symbol section and the added reloc addend and
2447 symbol offset relative to the section the symbol is attached to. */
2450 avr_stub_name (const asection *symbol_section,
2451 const bfd_vma symbol_offset,
2452 const Elf_Internal_Rela *rela)
2457 len = 8 + 1 + 8 + 1 + 1;
2458 stub_name = bfd_malloc (len);
2460 sprintf (stub_name, "%08x+%08x",
2461 symbol_section->id & 0xffffffff,
2462 (unsigned int) ((rela->r_addend & 0xffffffff) + symbol_offset));
2468 /* Add a new stub entry to the stub hash. Not all fields of the new
2469 stub entry are initialised. */
2471 static struct elf32_avr_stub_hash_entry *
2472 avr_add_stub (const char *stub_name,
2473 struct elf32_avr_link_hash_table *htab)
2475 struct elf32_avr_stub_hash_entry *hsh;
2477 /* Enter this entry into the linker stub hash table. */
2478 hsh = avr_stub_hash_lookup (&htab->bstab, stub_name, TRUE, FALSE);
2482 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
2487 hsh->stub_offset = 0;
2491 /* We assume that there is already space allocated for the stub section
2492 contents and that before building the stubs the section size is
2493 initialized to 0. We assume that within the stub hash table entry,
2494 the absolute position of the jmp target has been written in the
2495 target_value field. We write here the offset of the generated jmp insn
2496 relative to the trampoline section start to the stub_offset entry in
2497 the stub hash table entry. */
2500 avr_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
2502 struct elf32_avr_stub_hash_entry *hsh;
2503 struct bfd_link_info *info;
2504 struct elf32_avr_link_hash_table *htab;
2511 bfd_vma jmp_insn = 0x0000940c;
2513 /* Massage our args to the form they really have. */
2514 hsh = avr_stub_hash_entry (bh);
2516 if (!hsh->is_actually_needed)
2519 info = (struct bfd_link_info *) in_arg;
2521 htab = avr_link_hash_table (info);
2525 target = hsh->target_value;
2527 /* Make a note of the offset within the stubs for this entry. */
2528 hsh->stub_offset = htab->stub_sec->size;
2529 loc = htab->stub_sec->contents + hsh->stub_offset;
2531 stub_bfd = htab->stub_sec->owner;
2534 printf ("Building one Stub. Address: 0x%x, Offset: 0x%x\n",
2535 (unsigned int) target,
2536 (unsigned int) hsh->stub_offset);
2538 /* We now have to add the information on the jump target to the bare
2539 opcode bits already set in jmp_insn. */
2541 /* Check for the alignment of the address. */
2545 starget = target >> 1;
2546 jmp_insn |= ((starget & 0x10000) | ((starget << 3) & 0x1f00000)) >> 16;
2547 bfd_put_16 (stub_bfd, jmp_insn, loc);
2548 bfd_put_16 (stub_bfd, (bfd_vma) starget & 0xffff, loc + 2);
2550 htab->stub_sec->size += 4;
2552 /* Now add the entries in the address mapping table if there is still
2557 nr = htab->amt_entry_cnt + 1;
2558 if (nr <= htab->amt_max_entry_cnt)
2560 htab->amt_entry_cnt = nr;
2562 htab->amt_stub_offsets[nr - 1] = hsh->stub_offset;
2563 htab->amt_destination_addr[nr - 1] = target;
2571 avr_mark_stub_not_to_be_necessary (struct bfd_hash_entry *bh,
2572 void *in_arg ATTRIBUTE_UNUSED)
2574 struct elf32_avr_stub_hash_entry *hsh;
2576 hsh = avr_stub_hash_entry (bh);
2577 hsh->is_actually_needed = FALSE;
2583 avr_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
2585 struct elf32_avr_stub_hash_entry *hsh;
2586 struct elf32_avr_link_hash_table *htab;
2589 /* Massage our args to the form they really have. */
2590 hsh = avr_stub_hash_entry (bh);
2593 if (hsh->is_actually_needed)
2598 htab->stub_sec->size += size;
2603 elf32_avr_setup_params (struct bfd_link_info *info,
2605 asection *avr_stub_section,
2606 bfd_boolean no_stubs,
2607 bfd_boolean deb_stubs,
2608 bfd_boolean deb_relax,
2609 bfd_vma pc_wrap_around,
2610 bfd_boolean call_ret_replacement)
2612 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
2616 htab->stub_sec = avr_stub_section;
2617 htab->stub_bfd = avr_stub_bfd;
2618 htab->no_stubs = no_stubs;
2620 debug_relax = deb_relax;
2621 debug_stubs = deb_stubs;
2622 avr_pc_wrap_around = pc_wrap_around;
2623 avr_replace_call_ret_sequences = call_ret_replacement;
2627 /* Set up various things so that we can make a list of input sections
2628 for each output section included in the link. Returns -1 on error,
2629 0 when no stubs will be needed, and 1 on success. It also sets
2630 information on the stubs bfd and the stub section in the info
2634 elf32_avr_setup_section_lists (bfd *output_bfd,
2635 struct bfd_link_info *info)
2638 unsigned int bfd_count;
2639 int top_id, top_index;
2641 asection **input_list, **list;
2643 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
2645 if (htab == NULL || htab->no_stubs)
2648 /* Count the number of input BFDs and find the top input section id. */
2649 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2651 input_bfd = input_bfd->link_next)
2654 for (section = input_bfd->sections;
2656 section = section->next)
2657 if (top_id < section->id)
2658 top_id = section->id;
2661 htab->bfd_count = bfd_count;
2663 /* We can't use output_bfd->section_count here to find the top output
2664 section index as some sections may have been removed, and
2665 strip_excluded_output_sections doesn't renumber the indices. */
2666 for (section = output_bfd->sections, top_index = 0;
2668 section = section->next)
2669 if (top_index < section->index)
2670 top_index = section->index;
2672 htab->top_index = top_index;
2673 amt = sizeof (asection *) * (top_index + 1);
2674 input_list = bfd_malloc (amt);
2675 htab->input_list = input_list;
2676 if (input_list == NULL)
2679 /* For sections we aren't interested in, mark their entries with a
2680 value we can check later. */
2681 list = input_list + top_index;
2683 *list = bfd_abs_section_ptr;
2684 while (list-- != input_list);
2686 for (section = output_bfd->sections;
2688 section = section->next)
2689 if ((section->flags & SEC_CODE) != 0)
2690 input_list[section->index] = NULL;
2696 /* Read in all local syms for all input bfds, and create hash entries
2697 for export stubs if we are building a multi-subspace shared lib.
2698 Returns -1 on error, 0 otherwise. */
2701 get_local_syms (bfd *input_bfd, struct bfd_link_info *info)
2703 unsigned int bfd_indx;
2704 Elf_Internal_Sym *local_syms, **all_local_syms;
2705 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
2711 /* We want to read in symbol extension records only once. To do this
2712 we need to read in the local symbols in parallel and save them for
2713 later use; so hold pointers to the local symbols in an array. */
2714 amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2715 all_local_syms = bfd_zmalloc (amt);
2716 htab->all_local_syms = all_local_syms;
2717 if (all_local_syms == NULL)
2720 /* Walk over all the input BFDs, swapping in local symbols.
2721 If we are creating a shared library, create hash entries for the
2725 input_bfd = input_bfd->link_next, bfd_indx++)
2727 Elf_Internal_Shdr *symtab_hdr;
2729 /* We'll need the symbol table in a second. */
2730 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2731 if (symtab_hdr->sh_info == 0)
2734 /* We need an array of the local symbols attached to the input bfd. */
2735 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2736 if (local_syms == NULL)
2738 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2739 symtab_hdr->sh_info, 0,
2741 /* Cache them for elf_link_input_bfd. */
2742 symtab_hdr->contents = (unsigned char *) local_syms;
2744 if (local_syms == NULL)
2747 all_local_syms[bfd_indx] = local_syms;
2753 #define ADD_DUMMY_STUBS_FOR_DEBUGGING 0
2756 elf32_avr_size_stubs (bfd *output_bfd,
2757 struct bfd_link_info *info,
2758 bfd_boolean is_prealloc_run)
2760 struct elf32_avr_link_hash_table *htab;
2761 int stub_changed = 0;
2763 htab = avr_link_hash_table (info);
2767 /* At this point we initialize htab->vector_base
2768 To the start of the text output section. */
2769 htab->vector_base = htab->stub_sec->output_section->vma;
2771 if (get_local_syms (info->input_bfds, info))
2773 if (htab->all_local_syms)
2774 goto error_ret_free_local;
2778 if (ADD_DUMMY_STUBS_FOR_DEBUGGING)
2780 struct elf32_avr_stub_hash_entry *test;
2782 test = avr_add_stub ("Hugo",htab);
2783 test->target_value = 0x123456;
2784 test->stub_offset = 13;
2786 test = avr_add_stub ("Hugo2",htab);
2787 test->target_value = 0x84210;
2788 test->stub_offset = 14;
2794 unsigned int bfd_indx;
2796 /* We will have to re-generate the stub hash table each time anything
2797 in memory has changed. */
2799 bfd_hash_traverse (&htab->bstab, avr_mark_stub_not_to_be_necessary, htab);
2800 for (input_bfd = info->input_bfds, bfd_indx = 0;
2802 input_bfd = input_bfd->link_next, bfd_indx++)
2804 Elf_Internal_Shdr *symtab_hdr;
2806 Elf_Internal_Sym *local_syms;
2808 /* We'll need the symbol table in a second. */
2809 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2810 if (symtab_hdr->sh_info == 0)
2813 local_syms = htab->all_local_syms[bfd_indx];
2815 /* Walk over each section attached to the input bfd. */
2816 for (section = input_bfd->sections;
2818 section = section->next)
2820 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2822 /* If there aren't any relocs, then there's nothing more
2824 if ((section->flags & SEC_RELOC) == 0
2825 || section->reloc_count == 0)
2828 /* If this section is a link-once section that will be
2829 discarded, then don't create any stubs. */
2830 if (section->output_section == NULL
2831 || section->output_section->owner != output_bfd)
2834 /* Get the relocs. */
2836 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2838 if (internal_relocs == NULL)
2839 goto error_ret_free_local;
2841 /* Now examine each relocation. */
2842 irela = internal_relocs;
2843 irelaend = irela + section->reloc_count;
2844 for (; irela < irelaend; irela++)
2846 unsigned int r_type, r_indx;
2847 struct elf32_avr_stub_hash_entry *hsh;
2850 bfd_vma destination;
2851 struct elf_link_hash_entry *hh;
2854 r_type = ELF32_R_TYPE (irela->r_info);
2855 r_indx = ELF32_R_SYM (irela->r_info);
2857 /* Only look for 16 bit GS relocs. No other reloc will need a
2859 if (!((r_type == R_AVR_16_PM)
2860 || (r_type == R_AVR_LO8_LDI_GS)
2861 || (r_type == R_AVR_HI8_LDI_GS)))
2864 /* Now determine the call target, its name, value,
2870 if (r_indx < symtab_hdr->sh_info)
2872 /* It's a local symbol. */
2873 Elf_Internal_Sym *sym;
2874 Elf_Internal_Shdr *hdr;
2877 sym = local_syms + r_indx;
2878 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2879 sym_value = sym->st_value;
2880 shndx = sym->st_shndx;
2881 if (shndx < elf_numsections (input_bfd))
2883 hdr = elf_elfsections (input_bfd)[shndx];
2884 sym_sec = hdr->bfd_section;
2885 destination = (sym_value + irela->r_addend
2886 + sym_sec->output_offset
2887 + sym_sec->output_section->vma);
2892 /* It's an external symbol. */
2895 e_indx = r_indx - symtab_hdr->sh_info;
2896 hh = elf_sym_hashes (input_bfd)[e_indx];
2898 while (hh->root.type == bfd_link_hash_indirect
2899 || hh->root.type == bfd_link_hash_warning)
2900 hh = (struct elf_link_hash_entry *)
2901 (hh->root.u.i.link);
2903 if (hh->root.type == bfd_link_hash_defined
2904 || hh->root.type == bfd_link_hash_defweak)
2906 sym_sec = hh->root.u.def.section;
2907 sym_value = hh->root.u.def.value;
2908 if (sym_sec->output_section != NULL)
2909 destination = (sym_value + irela->r_addend
2910 + sym_sec->output_offset
2911 + sym_sec->output_section->vma);
2913 else if (hh->root.type == bfd_link_hash_undefweak)
2918 else if (hh->root.type == bfd_link_hash_undefined)
2920 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2921 && (ELF_ST_VISIBILITY (hh->other)
2927 bfd_set_error (bfd_error_bad_value);
2929 error_ret_free_internal:
2930 if (elf_section_data (section)->relocs == NULL)
2931 free (internal_relocs);
2932 goto error_ret_free_local;
2936 if (! avr_stub_is_required_for_16_bit_reloc
2937 (destination - htab->vector_base))
2939 if (!is_prealloc_run)
2940 /* We are having a reloc that does't need a stub. */
2943 /* We don't right now know if a stub will be needed.
2944 Let's rather be on the safe side. */
2947 /* Get the name of this stub. */
2948 stub_name = avr_stub_name (sym_sec, sym_value, irela);
2951 goto error_ret_free_internal;
2954 hsh = avr_stub_hash_lookup (&htab->bstab,
2959 /* The proper stub has already been created. Mark it
2960 to be used and write the possibly changed destination
2962 hsh->is_actually_needed = TRUE;
2963 hsh->target_value = destination;
2968 hsh = avr_add_stub (stub_name, htab);
2972 goto error_ret_free_internal;
2975 hsh->is_actually_needed = TRUE;
2976 hsh->target_value = destination;
2979 printf ("Adding stub with destination 0x%x to the"
2980 " hash table.\n", (unsigned int) destination);
2982 printf ("(Pre-Alloc run: %i)\n", is_prealloc_run);
2984 stub_changed = TRUE;
2987 /* We're done with the internal relocs, free them. */
2988 if (elf_section_data (section)->relocs == NULL)
2989 free (internal_relocs);
2993 /* Re-Calculate the number of needed stubs. */
2994 htab->stub_sec->size = 0;
2995 bfd_hash_traverse (&htab->bstab, avr_size_one_stub, htab);
3000 stub_changed = FALSE;
3003 free (htab->all_local_syms);
3006 error_ret_free_local:
3007 free (htab->all_local_syms);
3012 /* Build all the stubs associated with the current output file. The
3013 stubs are kept in a hash table attached to the main linker hash
3014 table. We also set up the .plt entries for statically linked PIC
3015 functions here. This function is called via hppaelf_finish in the
3019 elf32_avr_build_stubs (struct bfd_link_info *info)
3022 struct bfd_hash_table *table;
3023 struct elf32_avr_link_hash_table *htab;
3024 bfd_size_type total_size = 0;
3026 htab = avr_link_hash_table (info);
3030 /* In case that there were several stub sections: */
3031 for (stub_sec = htab->stub_bfd->sections;
3033 stub_sec = stub_sec->next)
3037 /* Allocate memory to hold the linker stubs. */
3038 size = stub_sec->size;
3041 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3042 if (stub_sec->contents == NULL && size != 0)
3047 /* Allocate memory for the adress mapping table. */
3048 htab->amt_entry_cnt = 0;
3049 htab->amt_max_entry_cnt = total_size / 4;
3050 htab->amt_stub_offsets = bfd_malloc (sizeof (bfd_vma)
3051 * htab->amt_max_entry_cnt);
3052 htab->amt_destination_addr = bfd_malloc (sizeof (bfd_vma)
3053 * htab->amt_max_entry_cnt );
3056 printf ("Allocating %i entries in the AMT\n", htab->amt_max_entry_cnt);
3058 /* Build the stubs as directed by the stub hash table. */
3059 table = &htab->bstab;
3060 bfd_hash_traverse (table, avr_build_one_stub, info);
3063 printf ("Final Stub section Size: %i\n", (int) htab->stub_sec->size);
3068 #define ELF_ARCH bfd_arch_avr
3069 #define ELF_TARGET_ID AVR_ELF_DATA
3070 #define ELF_MACHINE_CODE EM_AVR
3071 #define ELF_MACHINE_ALT1 EM_AVR_OLD
3072 #define ELF_MAXPAGESIZE 1
3074 #define TARGET_LITTLE_SYM bfd_elf32_avr_vec
3075 #define TARGET_LITTLE_NAME "elf32-avr"
3077 #define bfd_elf32_bfd_link_hash_table_create elf32_avr_link_hash_table_create
3078 #define bfd_elf32_bfd_link_hash_table_free elf32_avr_link_hash_table_free
3080 #define elf_info_to_howto avr_info_to_howto_rela
3081 #define elf_info_to_howto_rel NULL
3082 #define elf_backend_relocate_section elf32_avr_relocate_section
3083 #define elf_backend_can_gc_sections 1
3084 #define elf_backend_rela_normal 1
3085 #define elf_backend_final_write_processing \
3086 bfd_elf_avr_final_write_processing
3087 #define elf_backend_object_p elf32_avr_object_p
3089 #define bfd_elf32_bfd_relax_section elf32_avr_relax_section
3090 #define bfd_elf32_bfd_get_relocated_section_contents \
3091 elf32_avr_get_relocated_section_contents
3093 #include "elf32-target.h"