1 /* AVR-specific support for 32-bit ELF
2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
3 Contributed by Denis Chertykov <denisc@overta.ru>
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
27 #include "elf32-avr.h"
29 /* Enable debugging printout at stdout with this variable. */
30 static bfd_boolean debug_relax = FALSE;
32 /* Enable debugging printout at stdout with this variable. */
33 static bfd_boolean debug_stubs = FALSE;
35 static bfd_reloc_status_type
36 bfd_elf_avr_diff_reloc (bfd *, arelent *, asymbol *, void *,
37 asection *, bfd *, char **);
39 /* Hash table initialization and handling. Code is taken from the hppa port
40 and adapted to the needs of AVR. */
42 /* We use two hash tables to hold information for linking avr objects.
44 The first is the elf32_avr_link_hash_table which is derived from the
45 stanard ELF linker hash table. We use this as a place to attach the other
46 hash table and some static information.
48 The second is the stub hash table which is derived from the base BFD
49 hash table. The stub hash table holds the information on the linker
52 struct elf32_avr_stub_hash_entry
54 /* Base hash table entry structure. */
55 struct bfd_hash_entry bh_root;
57 /* Offset within stub_sec of the beginning of this stub. */
60 /* Given the symbol's value and its section we can determine its final
61 value when building the stubs (so the stub knows where to jump). */
64 /* This way we could mark stubs to be no longer necessary. */
65 bfd_boolean is_actually_needed;
68 struct elf32_avr_link_hash_table
70 /* The main hash table. */
71 struct elf_link_hash_table etab;
73 /* The stub hash table. */
74 struct bfd_hash_table bstab;
78 /* Linker stub bfd. */
81 /* The stub section. */
84 /* Usually 0, unless we are generating code for a bootloader. Will
85 be initialized by elf32_avr_size_stubs to the vma offset of the
86 output section associated with the stub section. */
89 /* Assorted information used by elf32_avr_size_stubs. */
90 unsigned int bfd_count;
92 asection ** input_list;
93 Elf_Internal_Sym ** all_local_syms;
95 /* Tables for mapping vma beyond the 128k boundary to the address of the
96 corresponding stub. (AMT)
97 "amt_max_entry_cnt" reflects the number of entries that memory is allocated
98 for in the "amt_stub_offsets" and "amt_destination_addr" arrays.
99 "amt_entry_cnt" informs how many of these entries actually contain
101 unsigned int amt_entry_cnt;
102 unsigned int amt_max_entry_cnt;
103 bfd_vma * amt_stub_offsets;
104 bfd_vma * amt_destination_addr;
107 /* Various hash macros and functions. */
108 #define avr_link_hash_table(p) \
109 /* PR 3874: Check that we have an AVR style hash table before using it. */\
110 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
111 == AVR_ELF_DATA ? ((struct elf32_avr_link_hash_table *) ((p)->hash)) : NULL)
113 #define avr_stub_hash_entry(ent) \
114 ((struct elf32_avr_stub_hash_entry *)(ent))
116 #define avr_stub_hash_lookup(table, string, create, copy) \
117 ((struct elf32_avr_stub_hash_entry *) \
118 bfd_hash_lookup ((table), (string), (create), (copy)))
120 static reloc_howto_type elf_avr_howto_table[] =
122 HOWTO (R_AVR_NONE, /* type */
124 2, /* size (0 = byte, 1 = short, 2 = long) */
126 FALSE, /* pc_relative */
128 complain_overflow_bitfield, /* complain_on_overflow */
129 bfd_elf_generic_reloc, /* special_function */
130 "R_AVR_NONE", /* name */
131 FALSE, /* partial_inplace */
134 FALSE), /* pcrel_offset */
136 HOWTO (R_AVR_32, /* type */
138 2, /* size (0 = byte, 1 = short, 2 = long) */
140 FALSE, /* pc_relative */
142 complain_overflow_bitfield, /* complain_on_overflow */
143 bfd_elf_generic_reloc, /* special_function */
144 "R_AVR_32", /* name */
145 FALSE, /* partial_inplace */
146 0xffffffff, /* src_mask */
147 0xffffffff, /* dst_mask */
148 FALSE), /* pcrel_offset */
150 /* A 7 bit PC relative relocation. */
151 HOWTO (R_AVR_7_PCREL, /* type */
153 1, /* size (0 = byte, 1 = short, 2 = long) */
155 TRUE, /* pc_relative */
157 complain_overflow_bitfield, /* complain_on_overflow */
158 bfd_elf_generic_reloc, /* special_function */
159 "R_AVR_7_PCREL", /* name */
160 FALSE, /* partial_inplace */
161 0xffff, /* src_mask */
162 0xffff, /* dst_mask */
163 TRUE), /* pcrel_offset */
165 /* A 13 bit PC relative relocation. */
166 HOWTO (R_AVR_13_PCREL, /* type */
168 1, /* size (0 = byte, 1 = short, 2 = long) */
170 TRUE, /* pc_relative */
172 complain_overflow_bitfield, /* complain_on_overflow */
173 bfd_elf_generic_reloc, /* special_function */
174 "R_AVR_13_PCREL", /* name */
175 FALSE, /* partial_inplace */
176 0xfff, /* src_mask */
177 0xfff, /* dst_mask */
178 TRUE), /* pcrel_offset */
180 /* A 16 bit absolute relocation. */
181 HOWTO (R_AVR_16, /* type */
183 1, /* size (0 = byte, 1 = short, 2 = long) */
185 FALSE, /* pc_relative */
187 complain_overflow_dont, /* complain_on_overflow */
188 bfd_elf_generic_reloc, /* special_function */
189 "R_AVR_16", /* name */
190 FALSE, /* partial_inplace */
191 0xffff, /* src_mask */
192 0xffff, /* dst_mask */
193 FALSE), /* pcrel_offset */
195 /* A 16 bit absolute relocation for command address
196 Will be changed when linker stubs are needed. */
197 HOWTO (R_AVR_16_PM, /* type */
199 1, /* size (0 = byte, 1 = short, 2 = long) */
201 FALSE, /* pc_relative */
203 complain_overflow_bitfield, /* complain_on_overflow */
204 bfd_elf_generic_reloc, /* special_function */
205 "R_AVR_16_PM", /* name */
206 FALSE, /* partial_inplace */
207 0xffff, /* src_mask */
208 0xffff, /* dst_mask */
209 FALSE), /* pcrel_offset */
210 /* A low 8 bit absolute relocation of 16 bit address.
212 HOWTO (R_AVR_LO8_LDI, /* type */
214 1, /* size (0 = byte, 1 = short, 2 = long) */
216 FALSE, /* pc_relative */
218 complain_overflow_dont, /* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_AVR_LO8_LDI", /* name */
221 FALSE, /* partial_inplace */
222 0xffff, /* src_mask */
223 0xffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225 /* A high 8 bit absolute relocation of 16 bit address.
227 HOWTO (R_AVR_HI8_LDI, /* type */
229 1, /* size (0 = byte, 1 = short, 2 = long) */
231 FALSE, /* pc_relative */
233 complain_overflow_dont, /* complain_on_overflow */
234 bfd_elf_generic_reloc, /* special_function */
235 "R_AVR_HI8_LDI", /* name */
236 FALSE, /* partial_inplace */
237 0xffff, /* src_mask */
238 0xffff, /* dst_mask */
239 FALSE), /* pcrel_offset */
240 /* A high 6 bit absolute relocation of 22 bit address.
241 For LDI command. As well second most significant 8 bit value of
242 a 32 bit link-time constant. */
243 HOWTO (R_AVR_HH8_LDI, /* type */
245 1, /* size (0 = byte, 1 = short, 2 = long) */
247 FALSE, /* pc_relative */
249 complain_overflow_dont, /* complain_on_overflow */
250 bfd_elf_generic_reloc, /* special_function */
251 "R_AVR_HH8_LDI", /* name */
252 FALSE, /* partial_inplace */
253 0xffff, /* src_mask */
254 0xffff, /* dst_mask */
255 FALSE), /* pcrel_offset */
256 /* A negative low 8 bit absolute relocation of 16 bit address.
258 HOWTO (R_AVR_LO8_LDI_NEG, /* type */
260 1, /* size (0 = byte, 1 = short, 2 = long) */
262 FALSE, /* pc_relative */
264 complain_overflow_dont, /* complain_on_overflow */
265 bfd_elf_generic_reloc, /* special_function */
266 "R_AVR_LO8_LDI_NEG", /* name */
267 FALSE, /* partial_inplace */
268 0xffff, /* src_mask */
269 0xffff, /* dst_mask */
270 FALSE), /* pcrel_offset */
271 /* A negative high 8 bit absolute relocation of 16 bit address.
273 HOWTO (R_AVR_HI8_LDI_NEG, /* type */
275 1, /* size (0 = byte, 1 = short, 2 = long) */
277 FALSE, /* pc_relative */
279 complain_overflow_dont, /* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_AVR_HI8_LDI_NEG", /* name */
282 FALSE, /* partial_inplace */
283 0xffff, /* src_mask */
284 0xffff, /* dst_mask */
285 FALSE), /* pcrel_offset */
286 /* A negative high 6 bit absolute relocation of 22 bit address.
288 HOWTO (R_AVR_HH8_LDI_NEG, /* type */
290 1, /* size (0 = byte, 1 = short, 2 = long) */
292 FALSE, /* pc_relative */
294 complain_overflow_dont, /* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_AVR_HH8_LDI_NEG", /* name */
297 FALSE, /* partial_inplace */
298 0xffff, /* src_mask */
299 0xffff, /* dst_mask */
300 FALSE), /* pcrel_offset */
301 /* A low 8 bit absolute relocation of 24 bit program memory address.
302 For LDI command. Will not be changed when linker stubs are needed. */
303 HOWTO (R_AVR_LO8_LDI_PM, /* type */
305 1, /* size (0 = byte, 1 = short, 2 = long) */
307 FALSE, /* pc_relative */
309 complain_overflow_dont, /* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_AVR_LO8_LDI_PM", /* name */
312 FALSE, /* partial_inplace */
313 0xffff, /* src_mask */
314 0xffff, /* dst_mask */
315 FALSE), /* pcrel_offset */
316 /* A low 8 bit absolute relocation of 24 bit program memory address.
317 For LDI command. Will not be changed when linker stubs are needed. */
318 HOWTO (R_AVR_HI8_LDI_PM, /* type */
320 1, /* size (0 = byte, 1 = short, 2 = long) */
322 FALSE, /* pc_relative */
324 complain_overflow_dont, /* complain_on_overflow */
325 bfd_elf_generic_reloc, /* special_function */
326 "R_AVR_HI8_LDI_PM", /* name */
327 FALSE, /* partial_inplace */
328 0xffff, /* src_mask */
329 0xffff, /* dst_mask */
330 FALSE), /* pcrel_offset */
331 /* A low 8 bit absolute relocation of 24 bit program memory address.
332 For LDI command. Will not be changed when linker stubs are needed. */
333 HOWTO (R_AVR_HH8_LDI_PM, /* type */
335 1, /* size (0 = byte, 1 = short, 2 = long) */
337 FALSE, /* pc_relative */
339 complain_overflow_dont, /* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_AVR_HH8_LDI_PM", /* name */
342 FALSE, /* partial_inplace */
343 0xffff, /* src_mask */
344 0xffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346 /* A low 8 bit absolute relocation of 24 bit program memory address.
347 For LDI command. Will not be changed when linker stubs are needed. */
348 HOWTO (R_AVR_LO8_LDI_PM_NEG, /* type */
350 1, /* size (0 = byte, 1 = short, 2 = long) */
352 FALSE, /* pc_relative */
354 complain_overflow_dont, /* complain_on_overflow */
355 bfd_elf_generic_reloc, /* special_function */
356 "R_AVR_LO8_LDI_PM_NEG", /* name */
357 FALSE, /* partial_inplace */
358 0xffff, /* src_mask */
359 0xffff, /* dst_mask */
360 FALSE), /* pcrel_offset */
361 /* A low 8 bit absolute relocation of 24 bit program memory address.
362 For LDI command. Will not be changed when linker stubs are needed. */
363 HOWTO (R_AVR_HI8_LDI_PM_NEG, /* type */
365 1, /* size (0 = byte, 1 = short, 2 = long) */
367 FALSE, /* pc_relative */
369 complain_overflow_dont, /* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_AVR_HI8_LDI_PM_NEG", /* name */
372 FALSE, /* partial_inplace */
373 0xffff, /* src_mask */
374 0xffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
376 /* A low 8 bit absolute relocation of 24 bit program memory address.
377 For LDI command. Will not be changed when linker stubs are needed. */
378 HOWTO (R_AVR_HH8_LDI_PM_NEG, /* type */
380 1, /* size (0 = byte, 1 = short, 2 = long) */
382 FALSE, /* pc_relative */
384 complain_overflow_dont, /* complain_on_overflow */
385 bfd_elf_generic_reloc, /* special_function */
386 "R_AVR_HH8_LDI_PM_NEG", /* name */
387 FALSE, /* partial_inplace */
388 0xffff, /* src_mask */
389 0xffff, /* dst_mask */
390 FALSE), /* pcrel_offset */
391 /* Relocation for CALL command in ATmega. */
392 HOWTO (R_AVR_CALL, /* type */
394 2, /* size (0 = byte, 1 = short, 2 = long) */
396 FALSE, /* pc_relative */
398 complain_overflow_dont,/* complain_on_overflow */
399 bfd_elf_generic_reloc, /* special_function */
400 "R_AVR_CALL", /* name */
401 FALSE, /* partial_inplace */
402 0xffffffff, /* src_mask */
403 0xffffffff, /* dst_mask */
404 FALSE), /* pcrel_offset */
405 /* A 16 bit absolute relocation of 16 bit address.
407 HOWTO (R_AVR_LDI, /* type */
409 1, /* size (0 = byte, 1 = short, 2 = long) */
411 FALSE, /* pc_relative */
413 complain_overflow_dont,/* complain_on_overflow */
414 bfd_elf_generic_reloc, /* special_function */
415 "R_AVR_LDI", /* name */
416 FALSE, /* partial_inplace */
417 0xffff, /* src_mask */
418 0xffff, /* dst_mask */
419 FALSE), /* pcrel_offset */
420 /* A 6 bit absolute relocation of 6 bit offset.
421 For ldd/sdd command. */
422 HOWTO (R_AVR_6, /* type */
424 0, /* size (0 = byte, 1 = short, 2 = long) */
426 FALSE, /* pc_relative */
428 complain_overflow_dont,/* complain_on_overflow */
429 bfd_elf_generic_reloc, /* special_function */
430 "R_AVR_6", /* name */
431 FALSE, /* partial_inplace */
432 0xffff, /* src_mask */
433 0xffff, /* dst_mask */
434 FALSE), /* pcrel_offset */
435 /* A 6 bit absolute relocation of 6 bit offset.
436 For sbiw/adiw command. */
437 HOWTO (R_AVR_6_ADIW, /* type */
439 0, /* size (0 = byte, 1 = short, 2 = long) */
441 FALSE, /* pc_relative */
443 complain_overflow_dont,/* complain_on_overflow */
444 bfd_elf_generic_reloc, /* special_function */
445 "R_AVR_6_ADIW", /* name */
446 FALSE, /* partial_inplace */
447 0xffff, /* src_mask */
448 0xffff, /* dst_mask */
449 FALSE), /* pcrel_offset */
450 /* Most significant 8 bit value of a 32 bit link-time constant. */
451 HOWTO (R_AVR_MS8_LDI, /* type */
453 1, /* size (0 = byte, 1 = short, 2 = long) */
455 FALSE, /* pc_relative */
457 complain_overflow_dont, /* complain_on_overflow */
458 bfd_elf_generic_reloc, /* special_function */
459 "R_AVR_MS8_LDI", /* name */
460 FALSE, /* partial_inplace */
461 0xffff, /* src_mask */
462 0xffff, /* dst_mask */
463 FALSE), /* pcrel_offset */
464 /* Negative most significant 8 bit value of a 32 bit link-time constant. */
465 HOWTO (R_AVR_MS8_LDI_NEG, /* type */
467 1, /* size (0 = byte, 1 = short, 2 = long) */
469 FALSE, /* pc_relative */
471 complain_overflow_dont, /* complain_on_overflow */
472 bfd_elf_generic_reloc, /* special_function */
473 "R_AVR_MS8_LDI_NEG", /* name */
474 FALSE, /* partial_inplace */
475 0xffff, /* src_mask */
476 0xffff, /* dst_mask */
477 FALSE), /* pcrel_offset */
478 /* A low 8 bit absolute relocation of 24 bit program memory address.
479 For LDI command. Will be changed when linker stubs are needed. */
480 HOWTO (R_AVR_LO8_LDI_GS, /* type */
482 1, /* size (0 = byte, 1 = short, 2 = long) */
484 FALSE, /* pc_relative */
486 complain_overflow_dont, /* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
488 "R_AVR_LO8_LDI_GS", /* name */
489 FALSE, /* partial_inplace */
490 0xffff, /* src_mask */
491 0xffff, /* dst_mask */
492 FALSE), /* pcrel_offset */
493 /* A low 8 bit absolute relocation of 24 bit program memory address.
494 For LDI command. Will be changed when linker stubs are needed. */
495 HOWTO (R_AVR_HI8_LDI_GS, /* type */
497 1, /* size (0 = byte, 1 = short, 2 = long) */
499 FALSE, /* pc_relative */
501 complain_overflow_dont, /* complain_on_overflow */
502 bfd_elf_generic_reloc, /* special_function */
503 "R_AVR_HI8_LDI_GS", /* name */
504 FALSE, /* partial_inplace */
505 0xffff, /* src_mask */
506 0xffff, /* dst_mask */
507 FALSE), /* pcrel_offset */
509 HOWTO (R_AVR_8, /* type */
511 0, /* size (0 = byte, 1 = short, 2 = long) */
513 FALSE, /* pc_relative */
515 complain_overflow_bitfield,/* complain_on_overflow */
516 bfd_elf_generic_reloc, /* special_function */
517 "R_AVR_8", /* name */
518 FALSE, /* partial_inplace */
519 0x000000ff, /* src_mask */
520 0x000000ff, /* dst_mask */
521 FALSE), /* pcrel_offset */
522 /* lo8-part to use in .byte lo8(sym). */
523 HOWTO (R_AVR_8_LO8, /* type */
525 0, /* size (0 = byte, 1 = short, 2 = long) */
527 FALSE, /* pc_relative */
529 complain_overflow_dont,/* complain_on_overflow */
530 bfd_elf_generic_reloc, /* special_function */
531 "R_AVR_8_LO8", /* name */
532 FALSE, /* partial_inplace */
533 0xffffff, /* src_mask */
534 0xffffff, /* dst_mask */
535 FALSE), /* pcrel_offset */
536 /* hi8-part to use in .byte hi8(sym). */
537 HOWTO (R_AVR_8_HI8, /* type */
539 0, /* size (0 = byte, 1 = short, 2 = long) */
541 FALSE, /* pc_relative */
543 complain_overflow_dont,/* complain_on_overflow */
544 bfd_elf_generic_reloc, /* special_function */
545 "R_AVR_8_HI8", /* name */
546 FALSE, /* partial_inplace */
547 0xffffff, /* src_mask */
548 0xffffff, /* dst_mask */
549 FALSE), /* pcrel_offset */
550 /* hlo8-part to use in .byte hlo8(sym). */
551 HOWTO (R_AVR_8_HLO8, /* type */
553 0, /* size (0 = byte, 1 = short, 2 = long) */
555 FALSE, /* pc_relative */
557 complain_overflow_dont,/* complain_on_overflow */
558 bfd_elf_generic_reloc, /* special_function */
559 "R_AVR_8_HLO8", /* name */
560 FALSE, /* partial_inplace */
561 0xffffff, /* src_mask */
562 0xffffff, /* dst_mask */
563 FALSE), /* pcrel_offset */
564 HOWTO (R_AVR_DIFF8, /* type */
566 0, /* size (0 = byte, 1 = short, 2 = long) */
568 FALSE, /* pc_relative */
570 complain_overflow_bitfield, /* complain_on_overflow */
571 bfd_elf_avr_diff_reloc, /* special_function */
572 "R_AVR_DIFF8", /* name */
573 FALSE, /* partial_inplace */
576 FALSE), /* pcrel_offset */
577 HOWTO (R_AVR_DIFF16, /* type */
579 1, /* size (0 = byte, 1 = short, 2 = long) */
581 FALSE, /* pc_relative */
583 complain_overflow_bitfield, /* complain_on_overflow */
584 bfd_elf_avr_diff_reloc,/* special_function */
585 "R_AVR_DIFF16", /* name */
586 FALSE, /* partial_inplace */
588 0xffff, /* dst_mask */
589 FALSE), /* pcrel_offset */
590 HOWTO (R_AVR_DIFF32, /* type */
592 2, /* size (0 = byte, 1 = short, 2 = long) */
594 FALSE, /* pc_relative */
596 complain_overflow_bitfield, /* complain_on_overflow */
597 bfd_elf_avr_diff_reloc,/* special_function */
598 "R_AVR_DIFF32", /* name */
599 FALSE, /* partial_inplace */
601 0xffffffff, /* dst_mask */
602 FALSE), /* pcrel_offset */
603 /* 7 bit immediate for LDS/STS in Tiny core. */
604 HOWTO (R_AVR_LDS_STS_16, /* type */
606 1, /* size (0 = byte, 1 = short, 2 = long) */
608 FALSE, /* pc_relative */
610 complain_overflow_dont,/* complain_on_overflow */
611 bfd_elf_generic_reloc, /* special_function */
612 "R_AVR_LDS_STS_16", /* name */
613 FALSE, /* partial_inplace */
614 0xffff, /* src_mask */
615 0xffff, /* dst_mask */
616 FALSE), /* pcrel_offset */
618 HOWTO (R_AVR_PORT6, /* type */
620 0, /* size (0 = byte, 1 = short, 2 = long) */
622 FALSE, /* pc_relative */
624 complain_overflow_dont,/* complain_on_overflow */
625 bfd_elf_generic_reloc, /* special_function */
626 "R_AVR_PORT6", /* name */
627 FALSE, /* partial_inplace */
628 0xffffff, /* src_mask */
629 0xffffff, /* dst_mask */
630 FALSE), /* pcrel_offset */
631 HOWTO (R_AVR_PORT5, /* type */
633 0, /* size (0 = byte, 1 = short, 2 = long) */
635 FALSE, /* pc_relative */
637 complain_overflow_dont,/* complain_on_overflow */
638 bfd_elf_generic_reloc, /* special_function */
639 "R_AVR_PORT5", /* name */
640 FALSE, /* partial_inplace */
641 0xffffff, /* src_mask */
642 0xffffff, /* dst_mask */
643 FALSE) /* pcrel_offset */
646 /* Map BFD reloc types to AVR ELF reloc types. */
650 bfd_reloc_code_real_type bfd_reloc_val;
651 unsigned int elf_reloc_val;
654 static const struct avr_reloc_map avr_reloc_map[] =
656 { BFD_RELOC_NONE, R_AVR_NONE },
657 { BFD_RELOC_32, R_AVR_32 },
658 { BFD_RELOC_AVR_7_PCREL, R_AVR_7_PCREL },
659 { BFD_RELOC_AVR_13_PCREL, R_AVR_13_PCREL },
660 { BFD_RELOC_16, R_AVR_16 },
661 { BFD_RELOC_AVR_16_PM, R_AVR_16_PM },
662 { BFD_RELOC_AVR_LO8_LDI, R_AVR_LO8_LDI},
663 { BFD_RELOC_AVR_HI8_LDI, R_AVR_HI8_LDI },
664 { BFD_RELOC_AVR_HH8_LDI, R_AVR_HH8_LDI },
665 { BFD_RELOC_AVR_MS8_LDI, R_AVR_MS8_LDI },
666 { BFD_RELOC_AVR_LO8_LDI_NEG, R_AVR_LO8_LDI_NEG },
667 { BFD_RELOC_AVR_HI8_LDI_NEG, R_AVR_HI8_LDI_NEG },
668 { BFD_RELOC_AVR_HH8_LDI_NEG, R_AVR_HH8_LDI_NEG },
669 { BFD_RELOC_AVR_MS8_LDI_NEG, R_AVR_MS8_LDI_NEG },
670 { BFD_RELOC_AVR_LO8_LDI_PM, R_AVR_LO8_LDI_PM },
671 { BFD_RELOC_AVR_LO8_LDI_GS, R_AVR_LO8_LDI_GS },
672 { BFD_RELOC_AVR_HI8_LDI_PM, R_AVR_HI8_LDI_PM },
673 { BFD_RELOC_AVR_HI8_LDI_GS, R_AVR_HI8_LDI_GS },
674 { BFD_RELOC_AVR_HH8_LDI_PM, R_AVR_HH8_LDI_PM },
675 { BFD_RELOC_AVR_LO8_LDI_PM_NEG, R_AVR_LO8_LDI_PM_NEG },
676 { BFD_RELOC_AVR_HI8_LDI_PM_NEG, R_AVR_HI8_LDI_PM_NEG },
677 { BFD_RELOC_AVR_HH8_LDI_PM_NEG, R_AVR_HH8_LDI_PM_NEG },
678 { BFD_RELOC_AVR_CALL, R_AVR_CALL },
679 { BFD_RELOC_AVR_LDI, R_AVR_LDI },
680 { BFD_RELOC_AVR_6, R_AVR_6 },
681 { BFD_RELOC_AVR_6_ADIW, R_AVR_6_ADIW },
682 { BFD_RELOC_8, R_AVR_8 },
683 { BFD_RELOC_AVR_8_LO, R_AVR_8_LO8 },
684 { BFD_RELOC_AVR_8_HI, R_AVR_8_HI8 },
685 { BFD_RELOC_AVR_8_HLO, R_AVR_8_HLO8 },
686 { BFD_RELOC_AVR_DIFF8, R_AVR_DIFF8 },
687 { BFD_RELOC_AVR_DIFF16, R_AVR_DIFF16 },
688 { BFD_RELOC_AVR_DIFF32, R_AVR_DIFF32 },
689 { BFD_RELOC_AVR_LDS_STS_16, R_AVR_LDS_STS_16},
690 { BFD_RELOC_AVR_PORT6, R_AVR_PORT6},
691 { BFD_RELOC_AVR_PORT5, R_AVR_PORT5}
694 /* Meant to be filled one day with the wrap around address for the
695 specific device. I.e. should get the value 0x4000 for 16k devices,
696 0x8000 for 32k devices and so on.
698 We initialize it here with a value of 0x1000000 resulting in
699 that we will never suggest a wrap-around jump during relaxation.
700 The logic of the source code later on assumes that in
701 avr_pc_wrap_around one single bit is set. */
702 static bfd_vma avr_pc_wrap_around = 0x10000000;
704 /* If this variable holds a value different from zero, the linker relaxation
705 machine will try to optimize call/ret sequences by a single jump
706 instruction. This option could be switched off by a linker switch. */
707 static int avr_replace_call_ret_sequences = 1;
709 /* Initialize an entry in the stub hash table. */
711 static struct bfd_hash_entry *
712 stub_hash_newfunc (struct bfd_hash_entry *entry,
713 struct bfd_hash_table *table,
716 /* Allocate the structure if it has not already been allocated by a
720 entry = bfd_hash_allocate (table,
721 sizeof (struct elf32_avr_stub_hash_entry));
726 /* Call the allocation method of the superclass. */
727 entry = bfd_hash_newfunc (entry, table, string);
730 struct elf32_avr_stub_hash_entry *hsh;
732 /* Initialize the local fields. */
733 hsh = avr_stub_hash_entry (entry);
734 hsh->stub_offset = 0;
735 hsh->target_value = 0;
741 /* This function is just a straight passthrough to the real
742 function in linker.c. Its prupose is so that its address
743 can be compared inside the avr_link_hash_table macro. */
745 static struct bfd_hash_entry *
746 elf32_avr_link_hash_newfunc (struct bfd_hash_entry * entry,
747 struct bfd_hash_table * table,
750 return _bfd_elf_link_hash_newfunc (entry, table, string);
753 /* Free the derived linker hash table. */
756 elf32_avr_link_hash_table_free (bfd *obfd)
758 struct elf32_avr_link_hash_table *htab
759 = (struct elf32_avr_link_hash_table *) obfd->link.hash;
761 /* Free the address mapping table. */
762 if (htab->amt_stub_offsets != NULL)
763 free (htab->amt_stub_offsets);
764 if (htab->amt_destination_addr != NULL)
765 free (htab->amt_destination_addr);
767 bfd_hash_table_free (&htab->bstab);
768 _bfd_elf_link_hash_table_free (obfd);
771 /* Create the derived linker hash table. The AVR ELF port uses the derived
772 hash table to keep information specific to the AVR ELF linker (without
773 using static variables). */
775 static struct bfd_link_hash_table *
776 elf32_avr_link_hash_table_create (bfd *abfd)
778 struct elf32_avr_link_hash_table *htab;
779 bfd_size_type amt = sizeof (*htab);
781 htab = bfd_zmalloc (amt);
785 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd,
786 elf32_avr_link_hash_newfunc,
787 sizeof (struct elf_link_hash_entry),
794 /* Init the stub hash table too. */
795 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
796 sizeof (struct elf32_avr_stub_hash_entry)))
798 _bfd_elf_link_hash_table_free (abfd);
801 htab->etab.root.hash_table_free = elf32_avr_link_hash_table_free;
803 return &htab->etab.root;
806 /* Calculates the effective distance of a pc relative jump/call. */
809 avr_relative_distance_considering_wrap_around (unsigned int distance)
811 unsigned int wrap_around_mask = avr_pc_wrap_around - 1;
812 int dist_with_wrap_around = distance & wrap_around_mask;
814 if (dist_with_wrap_around > ((int) (avr_pc_wrap_around >> 1)))
815 dist_with_wrap_around -= avr_pc_wrap_around;
817 return dist_with_wrap_around;
821 static reloc_howto_type *
822 bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
823 bfd_reloc_code_real_type code)
828 i < sizeof (avr_reloc_map) / sizeof (struct avr_reloc_map);
830 if (avr_reloc_map[i].bfd_reloc_val == code)
831 return &elf_avr_howto_table[avr_reloc_map[i].elf_reloc_val];
836 static reloc_howto_type *
837 bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
843 i < sizeof (elf_avr_howto_table) / sizeof (elf_avr_howto_table[0]);
845 if (elf_avr_howto_table[i].name != NULL
846 && strcasecmp (elf_avr_howto_table[i].name, r_name) == 0)
847 return &elf_avr_howto_table[i];
852 /* Set the howto pointer for an AVR ELF reloc. */
855 avr_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
857 Elf_Internal_Rela *dst)
861 r_type = ELF32_R_TYPE (dst->r_info);
862 if (r_type >= (unsigned int) R_AVR_max)
864 _bfd_error_handler (_("%A: invalid AVR reloc number: %d"), abfd, r_type);
867 cache_ptr->howto = &elf_avr_howto_table[r_type];
871 avr_stub_is_required_for_16_bit_reloc (bfd_vma relocation)
873 return (relocation >= 0x020000);
876 /* Returns the address of the corresponding stub if there is one.
877 Returns otherwise an address above 0x020000. This function
878 could also be used, if there is no knowledge on the section where
879 the destination is found. */
882 avr_get_stub_addr (bfd_vma srel,
883 struct elf32_avr_link_hash_table *htab)
886 bfd_vma stub_sec_addr =
887 (htab->stub_sec->output_section->vma +
888 htab->stub_sec->output_offset);
890 for (sindex = 0; sindex < htab->amt_max_entry_cnt; sindex ++)
891 if (htab->amt_destination_addr[sindex] == srel)
892 return htab->amt_stub_offsets[sindex] + stub_sec_addr;
894 /* Return an address that could not be reached by 16 bit relocs. */
898 /* Perform a diff relocation. Nothing to do, as the difference value is already
899 written into the section's contents. */
901 static bfd_reloc_status_type
902 bfd_elf_avr_diff_reloc (bfd *abfd ATTRIBUTE_UNUSED,
903 arelent *reloc_entry ATTRIBUTE_UNUSED,
904 asymbol *symbol ATTRIBUTE_UNUSED,
905 void *data ATTRIBUTE_UNUSED,
906 asection *input_section ATTRIBUTE_UNUSED,
907 bfd *output_bfd ATTRIBUTE_UNUSED,
908 char **error_message ATTRIBUTE_UNUSED)
914 /* Perform a single relocation. By default we use the standard BFD
915 routines, but a few relocs, we have to do them ourselves. */
917 static bfd_reloc_status_type
918 avr_final_link_relocate (reloc_howto_type * howto,
920 asection * input_section,
922 Elf_Internal_Rela * rel,
924 struct elf32_avr_link_hash_table * htab)
926 bfd_reloc_status_type r = bfd_reloc_ok;
929 bfd_signed_vma reloc_addr;
930 bfd_boolean use_stubs = FALSE;
931 /* Usually is 0, unless we are generating code for a bootloader. */
932 bfd_signed_vma base_addr = htab->vector_base;
934 /* Absolute addr of the reloc in the final excecutable. */
935 reloc_addr = rel->r_offset + input_section->output_section->vma
936 + input_section->output_offset;
941 contents += rel->r_offset;
942 srel = (bfd_signed_vma) relocation;
943 srel += rel->r_addend;
944 srel -= rel->r_offset;
945 srel -= 2; /* Branch instructions add 2 to the PC... */
946 srel -= (input_section->output_section->vma +
947 input_section->output_offset);
950 return bfd_reloc_outofrange;
951 if (srel > ((1 << 7) - 1) || (srel < - (1 << 7)))
952 return bfd_reloc_overflow;
953 x = bfd_get_16 (input_bfd, contents);
954 x = (x & 0xfc07) | (((srel >> 1) << 3) & 0x3f8);
955 bfd_put_16 (input_bfd, x, contents);
959 contents += rel->r_offset;
960 srel = (bfd_signed_vma) relocation;
961 srel += rel->r_addend;
962 srel -= rel->r_offset;
963 srel -= 2; /* Branch instructions add 2 to the PC... */
964 srel -= (input_section->output_section->vma +
965 input_section->output_offset);
968 return bfd_reloc_outofrange;
970 srel = avr_relative_distance_considering_wrap_around (srel);
972 /* AVR addresses commands as words. */
975 /* Check for overflow. */
976 if (srel < -2048 || srel > 2047)
978 /* Relative distance is too large. */
980 /* Always apply WRAPAROUND for avr2, avr25, and avr4. */
981 switch (bfd_get_mach (input_bfd))
989 return bfd_reloc_overflow;
993 x = bfd_get_16 (input_bfd, contents);
994 x = (x & 0xf000) | (srel & 0xfff);
995 bfd_put_16 (input_bfd, x, contents);
999 contents += rel->r_offset;
1000 srel = (bfd_signed_vma) relocation + rel->r_addend;
1001 x = bfd_get_16 (input_bfd, contents);
1002 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1003 bfd_put_16 (input_bfd, x, contents);
1007 contents += rel->r_offset;
1008 srel = (bfd_signed_vma) relocation + rel->r_addend;
1009 if (((srel > 0) && (srel & 0xffff) > 255)
1010 || ((srel < 0) && ((-srel) & 0xffff) > 128))
1011 /* Remove offset for data/eeprom section. */
1012 return bfd_reloc_overflow;
1014 x = bfd_get_16 (input_bfd, contents);
1015 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1016 bfd_put_16 (input_bfd, x, contents);
1020 contents += rel->r_offset;
1021 srel = (bfd_signed_vma) relocation + rel->r_addend;
1022 if (((srel & 0xffff) > 63) || (srel < 0))
1023 /* Remove offset for data/eeprom section. */
1024 return bfd_reloc_overflow;
1025 x = bfd_get_16 (input_bfd, contents);
1026 x = (x & 0xd3f8) | ((srel & 7) | ((srel & (3 << 3)) << 7)
1027 | ((srel & (1 << 5)) << 8));
1028 bfd_put_16 (input_bfd, x, contents);
1032 contents += rel->r_offset;
1033 srel = (bfd_signed_vma) relocation + rel->r_addend;
1034 if (((srel & 0xffff) > 63) || (srel < 0))
1035 /* Remove offset for data/eeprom section. */
1036 return bfd_reloc_overflow;
1037 x = bfd_get_16 (input_bfd, contents);
1038 x = (x & 0xff30) | (srel & 0xf) | ((srel & 0x30) << 2);
1039 bfd_put_16 (input_bfd, x, contents);
1043 contents += rel->r_offset;
1044 srel = (bfd_signed_vma) relocation + rel->r_addend;
1045 srel = (srel >> 8) & 0xff;
1046 x = bfd_get_16 (input_bfd, contents);
1047 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1048 bfd_put_16 (input_bfd, x, contents);
1052 contents += rel->r_offset;
1053 srel = (bfd_signed_vma) relocation + rel->r_addend;
1054 srel = (srel >> 16) & 0xff;
1055 x = bfd_get_16 (input_bfd, contents);
1056 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1057 bfd_put_16 (input_bfd, x, contents);
1061 contents += rel->r_offset;
1062 srel = (bfd_signed_vma) relocation + rel->r_addend;
1063 srel = (srel >> 24) & 0xff;
1064 x = bfd_get_16 (input_bfd, contents);
1065 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1066 bfd_put_16 (input_bfd, x, contents);
1069 case R_AVR_LO8_LDI_NEG:
1070 contents += rel->r_offset;
1071 srel = (bfd_signed_vma) relocation + rel->r_addend;
1073 x = bfd_get_16 (input_bfd, contents);
1074 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1075 bfd_put_16 (input_bfd, x, contents);
1078 case R_AVR_HI8_LDI_NEG:
1079 contents += rel->r_offset;
1080 srel = (bfd_signed_vma) relocation + rel->r_addend;
1082 srel = (srel >> 8) & 0xff;
1083 x = bfd_get_16 (input_bfd, contents);
1084 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1085 bfd_put_16 (input_bfd, x, contents);
1088 case R_AVR_HH8_LDI_NEG:
1089 contents += rel->r_offset;
1090 srel = (bfd_signed_vma) relocation + rel->r_addend;
1092 srel = (srel >> 16) & 0xff;
1093 x = bfd_get_16 (input_bfd, contents);
1094 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1095 bfd_put_16 (input_bfd, x, contents);
1098 case R_AVR_MS8_LDI_NEG:
1099 contents += rel->r_offset;
1100 srel = (bfd_signed_vma) relocation + rel->r_addend;
1102 srel = (srel >> 24) & 0xff;
1103 x = bfd_get_16 (input_bfd, contents);
1104 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1105 bfd_put_16 (input_bfd, x, contents);
1108 case R_AVR_LO8_LDI_GS:
1109 use_stubs = (!htab->no_stubs);
1111 case R_AVR_LO8_LDI_PM:
1112 contents += rel->r_offset;
1113 srel = (bfd_signed_vma) relocation + rel->r_addend;
1116 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1118 bfd_vma old_srel = srel;
1120 /* We need to use the address of the stub instead. */
1121 srel = avr_get_stub_addr (srel, htab);
1123 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1124 "reloc at address 0x%x.\n",
1125 (unsigned int) srel,
1126 (unsigned int) old_srel,
1127 (unsigned int) reloc_addr);
1129 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1130 return bfd_reloc_outofrange;
1134 return bfd_reloc_outofrange;
1136 x = bfd_get_16 (input_bfd, contents);
1137 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1138 bfd_put_16 (input_bfd, x, contents);
1141 case R_AVR_HI8_LDI_GS:
1142 use_stubs = (!htab->no_stubs);
1144 case R_AVR_HI8_LDI_PM:
1145 contents += rel->r_offset;
1146 srel = (bfd_signed_vma) relocation + rel->r_addend;
1149 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1151 bfd_vma old_srel = srel;
1153 /* We need to use the address of the stub instead. */
1154 srel = avr_get_stub_addr (srel, htab);
1156 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1157 "reloc at address 0x%x.\n",
1158 (unsigned int) srel,
1159 (unsigned int) old_srel,
1160 (unsigned int) reloc_addr);
1162 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1163 return bfd_reloc_outofrange;
1167 return bfd_reloc_outofrange;
1169 srel = (srel >> 8) & 0xff;
1170 x = bfd_get_16 (input_bfd, contents);
1171 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1172 bfd_put_16 (input_bfd, x, contents);
1175 case R_AVR_HH8_LDI_PM:
1176 contents += rel->r_offset;
1177 srel = (bfd_signed_vma) relocation + rel->r_addend;
1179 return bfd_reloc_outofrange;
1181 srel = (srel >> 16) & 0xff;
1182 x = bfd_get_16 (input_bfd, contents);
1183 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1184 bfd_put_16 (input_bfd, x, contents);
1187 case R_AVR_LO8_LDI_PM_NEG:
1188 contents += rel->r_offset;
1189 srel = (bfd_signed_vma) relocation + rel->r_addend;
1192 return bfd_reloc_outofrange;
1194 x = bfd_get_16 (input_bfd, contents);
1195 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1196 bfd_put_16 (input_bfd, x, contents);
1199 case R_AVR_HI8_LDI_PM_NEG:
1200 contents += rel->r_offset;
1201 srel = (bfd_signed_vma) relocation + rel->r_addend;
1204 return bfd_reloc_outofrange;
1206 srel = (srel >> 8) & 0xff;
1207 x = bfd_get_16 (input_bfd, contents);
1208 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1209 bfd_put_16 (input_bfd, x, contents);
1212 case R_AVR_HH8_LDI_PM_NEG:
1213 contents += rel->r_offset;
1214 srel = (bfd_signed_vma) relocation + rel->r_addend;
1217 return bfd_reloc_outofrange;
1219 srel = (srel >> 16) & 0xff;
1220 x = bfd_get_16 (input_bfd, contents);
1221 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1222 bfd_put_16 (input_bfd, x, contents);
1226 contents += rel->r_offset;
1227 srel = (bfd_signed_vma) relocation + rel->r_addend;
1229 return bfd_reloc_outofrange;
1231 x = bfd_get_16 (input_bfd, contents);
1232 x |= ((srel & 0x10000) | ((srel << 3) & 0x1f00000)) >> 16;
1233 bfd_put_16 (input_bfd, x, contents);
1234 bfd_put_16 (input_bfd, (bfd_vma) srel & 0xffff, contents+2);
1238 use_stubs = (!htab->no_stubs);
1239 contents += rel->r_offset;
1240 srel = (bfd_signed_vma) relocation + rel->r_addend;
1243 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1245 bfd_vma old_srel = srel;
1247 /* We need to use the address of the stub instead. */
1248 srel = avr_get_stub_addr (srel,htab);
1250 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1251 "reloc at address 0x%x.\n",
1252 (unsigned int) srel,
1253 (unsigned int) old_srel,
1254 (unsigned int) reloc_addr);
1256 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1257 return bfd_reloc_outofrange;
1261 return bfd_reloc_outofrange;
1263 bfd_put_16 (input_bfd, (bfd_vma) srel &0x00ffff, contents);
1269 /* Nothing to do here, as contents already contains the diff value. */
1273 case R_AVR_LDS_STS_16:
1274 contents += rel->r_offset;
1275 srel = (bfd_signed_vma) relocation + rel->r_addend;
1276 if ((srel & 0xFFFF) < 0x40 || (srel & 0xFFFF) > 0xbf)
1277 return bfd_reloc_outofrange;
1279 x = bfd_get_16 (input_bfd, contents);
1280 x |= (srel & 0x0f) | ((srel & 0x30) << 5) | ((srel & 0x40) << 2);
1281 bfd_put_16 (input_bfd, x, contents);
1285 contents += rel->r_offset;
1286 srel = (bfd_signed_vma) relocation + rel->r_addend;
1287 if ((srel & 0xffff) > 0x3f)
1288 return bfd_reloc_outofrange;
1289 x = bfd_get_16 (input_bfd, contents);
1290 x = (x & 0xf9f0) | ((srel & 0x30) << 5) | (srel & 0x0f);
1291 bfd_put_16 (input_bfd, x, contents);
1295 contents += rel->r_offset;
1296 srel = (bfd_signed_vma) relocation + rel->r_addend;
1297 if ((srel & 0xffff) > 0x1f)
1298 return bfd_reloc_outofrange;
1299 x = bfd_get_16 (input_bfd, contents);
1300 x = (x & 0xff07) | ((srel & 0x1f) << 3);
1301 bfd_put_16 (input_bfd, x, contents);
1305 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1306 contents, rel->r_offset,
1307 relocation, rel->r_addend);
1313 /* Relocate an AVR ELF section. */
1316 elf32_avr_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1317 struct bfd_link_info *info,
1319 asection *input_section,
1321 Elf_Internal_Rela *relocs,
1322 Elf_Internal_Sym *local_syms,
1323 asection **local_sections)
1325 Elf_Internal_Shdr * symtab_hdr;
1326 struct elf_link_hash_entry ** sym_hashes;
1327 Elf_Internal_Rela * rel;
1328 Elf_Internal_Rela * relend;
1329 struct elf32_avr_link_hash_table * htab = avr_link_hash_table (info);
1334 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1335 sym_hashes = elf_sym_hashes (input_bfd);
1336 relend = relocs + input_section->reloc_count;
1338 for (rel = relocs; rel < relend; rel ++)
1340 reloc_howto_type * howto;
1341 unsigned long r_symndx;
1342 Elf_Internal_Sym * sym;
1344 struct elf_link_hash_entry * h;
1346 bfd_reloc_status_type r;
1350 r_type = ELF32_R_TYPE (rel->r_info);
1351 r_symndx = ELF32_R_SYM (rel->r_info);
1352 howto = elf_avr_howto_table + r_type;
1357 if (r_symndx < symtab_hdr->sh_info)
1359 sym = local_syms + r_symndx;
1360 sec = local_sections [r_symndx];
1361 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1363 name = bfd_elf_string_from_elf_section
1364 (input_bfd, symtab_hdr->sh_link, sym->st_name);
1365 name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
1369 bfd_boolean unresolved_reloc, warned, ignored;
1371 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1372 r_symndx, symtab_hdr, sym_hashes,
1374 unresolved_reloc, warned, ignored);
1376 name = h->root.root.string;
1379 if (sec != NULL && discarded_section (sec))
1380 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1381 rel, 1, relend, howto, 0, contents);
1383 if (info->relocatable)
1386 r = avr_final_link_relocate (howto, input_bfd, input_section,
1387 contents, rel, relocation, htab);
1389 if (r != bfd_reloc_ok)
1391 const char * msg = (const char *) NULL;
1395 case bfd_reloc_overflow:
1396 r = info->callbacks->reloc_overflow
1397 (info, (h ? &h->root : NULL),
1398 name, howto->name, (bfd_vma) 0,
1399 input_bfd, input_section, rel->r_offset);
1402 case bfd_reloc_undefined:
1403 r = info->callbacks->undefined_symbol
1404 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
1407 case bfd_reloc_outofrange:
1408 msg = _("internal error: out of range error");
1411 case bfd_reloc_notsupported:
1412 msg = _("internal error: unsupported relocation error");
1415 case bfd_reloc_dangerous:
1416 msg = _("internal error: dangerous relocation");
1420 msg = _("internal error: unknown error");
1425 r = info->callbacks->warning
1426 (info, msg, name, input_bfd, input_section, rel->r_offset);
1436 /* The final processing done just before writing out a AVR ELF object
1437 file. This gets the AVR architecture right based on the machine
1441 bfd_elf_avr_final_write_processing (bfd *abfd,
1442 bfd_boolean linker ATTRIBUTE_UNUSED)
1446 switch (bfd_get_mach (abfd))
1450 val = E_AVR_MACH_AVR2;
1454 val = E_AVR_MACH_AVR1;
1457 case bfd_mach_avr25:
1458 val = E_AVR_MACH_AVR25;
1462 val = E_AVR_MACH_AVR3;
1465 case bfd_mach_avr31:
1466 val = E_AVR_MACH_AVR31;
1469 case bfd_mach_avr35:
1470 val = E_AVR_MACH_AVR35;
1474 val = E_AVR_MACH_AVR4;
1478 val = E_AVR_MACH_AVR5;
1481 case bfd_mach_avr51:
1482 val = E_AVR_MACH_AVR51;
1486 val = E_AVR_MACH_AVR6;
1489 case bfd_mach_avrxmega1:
1490 val = E_AVR_MACH_XMEGA1;
1493 case bfd_mach_avrxmega2:
1494 val = E_AVR_MACH_XMEGA2;
1497 case bfd_mach_avrxmega3:
1498 val = E_AVR_MACH_XMEGA3;
1501 case bfd_mach_avrxmega4:
1502 val = E_AVR_MACH_XMEGA4;
1505 case bfd_mach_avrxmega5:
1506 val = E_AVR_MACH_XMEGA5;
1509 case bfd_mach_avrxmega6:
1510 val = E_AVR_MACH_XMEGA6;
1513 case bfd_mach_avrxmega7:
1514 val = E_AVR_MACH_XMEGA7;
1517 case bfd_mach_avrtiny:
1518 val = E_AVR_MACH_AVRTINY;
1522 elf_elfheader (abfd)->e_machine = EM_AVR;
1523 elf_elfheader (abfd)->e_flags &= ~ EF_AVR_MACH;
1524 elf_elfheader (abfd)->e_flags |= val;
1527 /* Set the right machine number. */
1530 elf32_avr_object_p (bfd *abfd)
1532 unsigned int e_set = bfd_mach_avr2;
1534 if (elf_elfheader (abfd)->e_machine == EM_AVR
1535 || elf_elfheader (abfd)->e_machine == EM_AVR_OLD)
1537 int e_mach = elf_elfheader (abfd)->e_flags & EF_AVR_MACH;
1542 case E_AVR_MACH_AVR2:
1543 e_set = bfd_mach_avr2;
1546 case E_AVR_MACH_AVR1:
1547 e_set = bfd_mach_avr1;
1550 case E_AVR_MACH_AVR25:
1551 e_set = bfd_mach_avr25;
1554 case E_AVR_MACH_AVR3:
1555 e_set = bfd_mach_avr3;
1558 case E_AVR_MACH_AVR31:
1559 e_set = bfd_mach_avr31;
1562 case E_AVR_MACH_AVR35:
1563 e_set = bfd_mach_avr35;
1566 case E_AVR_MACH_AVR4:
1567 e_set = bfd_mach_avr4;
1570 case E_AVR_MACH_AVR5:
1571 e_set = bfd_mach_avr5;
1574 case E_AVR_MACH_AVR51:
1575 e_set = bfd_mach_avr51;
1578 case E_AVR_MACH_AVR6:
1579 e_set = bfd_mach_avr6;
1582 case E_AVR_MACH_XMEGA1:
1583 e_set = bfd_mach_avrxmega1;
1586 case E_AVR_MACH_XMEGA2:
1587 e_set = bfd_mach_avrxmega2;
1590 case E_AVR_MACH_XMEGA3:
1591 e_set = bfd_mach_avrxmega3;
1594 case E_AVR_MACH_XMEGA4:
1595 e_set = bfd_mach_avrxmega4;
1598 case E_AVR_MACH_XMEGA5:
1599 e_set = bfd_mach_avrxmega5;
1602 case E_AVR_MACH_XMEGA6:
1603 e_set = bfd_mach_avrxmega6;
1606 case E_AVR_MACH_XMEGA7:
1607 e_set = bfd_mach_avrxmega7;
1610 case E_AVR_MACH_AVRTINY:
1611 e_set = bfd_mach_avrtiny;
1615 return bfd_default_set_arch_mach (abfd, bfd_arch_avr,
1619 /* Returns whether the relocation type passed is a diff reloc. */
1622 elf32_avr_is_diff_reloc (Elf_Internal_Rela *irel)
1624 return (ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF8
1625 ||ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF16
1626 || ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF32);
1629 /* Reduce the diff value written in the section by count if the shrinked
1630 insn address happens to fall between the two symbols for which this
1631 diff reloc was emitted. */
1634 elf32_avr_adjust_diff_reloc_value (bfd *abfd,
1635 struct bfd_section *isec,
1636 Elf_Internal_Rela *irel,
1638 bfd_vma shrinked_insn_address,
1641 unsigned char *reloc_contents = NULL;
1642 unsigned char *isec_contents = elf_section_data (isec)->this_hdr.contents;
1643 if (isec_contents == NULL)
1645 if (! bfd_malloc_and_get_section (abfd, isec, &isec_contents))
1648 elf_section_data (isec)->this_hdr.contents = isec_contents;
1651 reloc_contents = isec_contents + irel->r_offset;
1653 /* Read value written in object file. */
1655 switch (ELF32_R_TYPE (irel->r_info))
1659 x = *reloc_contents;
1664 x = bfd_get_16 (abfd, reloc_contents);
1669 x = bfd_get_32 (abfd, reloc_contents);
1678 /* For a diff reloc sym1 - sym2 the diff at assembly time (x) is written
1679 into the object file at the reloc offset. sym2's logical value is
1680 symval (<start_of_section>) + reloc addend. Compute the start and end
1681 addresses and check if the shrinked insn falls between sym1 and sym2. */
1683 bfd_vma end_address = symval + irel->r_addend;
1684 bfd_vma start_address = end_address - x;
1686 /* Reduce the diff value by count bytes and write it back into section
1689 if (shrinked_insn_address >= start_address
1690 && shrinked_insn_address <= end_address)
1692 switch (ELF32_R_TYPE (irel->r_info))
1696 *reloc_contents = (x - count);
1701 bfd_put_16 (abfd, (x - count) & 0xFFFF, reloc_contents);
1706 bfd_put_32 (abfd, (x - count) & 0xFFFFFFFF, reloc_contents);
1718 /* Delete some bytes from a section while changing the size of an instruction.
1719 The parameter "addr" denotes the section-relative offset pointing just
1720 behind the shrinked instruction. "addr+count" point at the first
1721 byte just behind the original unshrinked instruction. */
1724 elf32_avr_relax_delete_bytes (bfd *abfd,
1729 Elf_Internal_Shdr *symtab_hdr;
1730 unsigned int sec_shndx;
1732 Elf_Internal_Rela *irel, *irelend;
1733 Elf_Internal_Sym *isym;
1734 Elf_Internal_Sym *isymbuf = NULL;
1736 struct elf_link_hash_entry **sym_hashes;
1737 struct elf_link_hash_entry **end_hashes;
1738 unsigned int symcount;
1740 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1741 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
1742 contents = elf_section_data (sec)->this_hdr.contents;
1746 irel = elf_section_data (sec)->relocs;
1747 irelend = irel + sec->reloc_count;
1749 /* Actually delete the bytes. */
1750 if (toaddr - addr - count > 0)
1751 memmove (contents + addr, contents + addr + count,
1752 (size_t) (toaddr - addr - count));
1755 /* Adjust all the reloc addresses. */
1756 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
1758 bfd_vma old_reloc_address;
1760 old_reloc_address = (sec->output_section->vma
1761 + sec->output_offset + irel->r_offset);
1763 /* Get the new reloc address. */
1764 if ((irel->r_offset > addr
1765 && irel->r_offset < toaddr))
1768 printf ("Relocation at address 0x%x needs to be moved.\n"
1769 "Old section offset: 0x%x, New section offset: 0x%x \n",
1770 (unsigned int) old_reloc_address,
1771 (unsigned int) irel->r_offset,
1772 (unsigned int) ((irel->r_offset) - count));
1774 irel->r_offset -= count;
1779 /* The reloc's own addresses are now ok. However, we need to readjust
1780 the reloc's addend, i.e. the reloc's value if two conditions are met:
1781 1.) the reloc is relative to a symbol in this section that
1782 is located in front of the shrinked instruction
1783 2.) symbol plus addend end up behind the shrinked instruction.
1785 The most common case where this happens are relocs relative to
1786 the section-start symbol.
1788 This step needs to be done for all of the sections of the bfd. */
1791 struct bfd_section *isec;
1793 for (isec = abfd->sections; isec; isec = isec->next)
1796 bfd_vma shrinked_insn_address;
1798 if (isec->reloc_count == 0)
1801 shrinked_insn_address = (sec->output_section->vma
1802 + sec->output_offset + addr - count);
1804 irel = elf_section_data (isec)->relocs;
1805 /* PR 12161: Read in the relocs for this section if necessary. */
1807 irel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, TRUE);
1809 for (irelend = irel + isec->reloc_count;
1813 /* Read this BFD's local symbols if we haven't done
1815 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
1817 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1818 if (isymbuf == NULL)
1819 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1820 symtab_hdr->sh_info, 0,
1822 if (isymbuf == NULL)
1826 /* Get the value of the symbol referred to by the reloc. */
1827 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
1829 /* A local symbol. */
1832 isym = isymbuf + ELF32_R_SYM (irel->r_info);
1833 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1834 symval = isym->st_value;
1835 /* If the reloc is absolute, it will not have
1836 a symbol or section associated with it. */
1839 symval += sym_sec->output_section->vma
1840 + sym_sec->output_offset;
1843 printf ("Checking if the relocation's "
1844 "addend needs corrections.\n"
1845 "Address of anchor symbol: 0x%x \n"
1846 "Address of relocation target: 0x%x \n"
1847 "Address of relaxed insn: 0x%x \n",
1848 (unsigned int) symval,
1849 (unsigned int) (symval + irel->r_addend),
1850 (unsigned int) shrinked_insn_address);
1852 if (symval <= shrinked_insn_address
1853 && (symval + irel->r_addend) > shrinked_insn_address)
1855 if (elf32_avr_is_diff_reloc (irel))
1857 elf32_avr_adjust_diff_reloc_value (abfd, isec, irel,
1859 shrinked_insn_address,
1863 irel->r_addend -= count;
1866 printf ("Relocation's addend needed to be fixed \n");
1869 /* else...Reference symbol is absolute. No adjustment needed. */
1871 /* else...Reference symbol is extern. No need for adjusting
1877 /* Adjust the local symbols defined in this section. */
1878 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
1879 /* Fix PR 9841, there may be no local symbols. */
1882 Elf_Internal_Sym *isymend;
1884 isymend = isym + symtab_hdr->sh_info;
1885 for (; isym < isymend; isym++)
1887 if (isym->st_shndx == sec_shndx)
1889 if (isym->st_value > addr
1890 && isym->st_value <= toaddr)
1891 isym->st_value -= count;
1893 if (isym->st_value <= addr
1894 && isym->st_value + isym->st_size > addr)
1896 /* If this assert fires then we have a symbol that ends
1897 part way through an instruction. Does that make
1899 BFD_ASSERT (isym->st_value + isym->st_size >= addr + count);
1900 isym->st_size -= count;
1906 /* Now adjust the global symbols defined in this section. */
1907 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
1908 - symtab_hdr->sh_info);
1909 sym_hashes = elf_sym_hashes (abfd);
1910 end_hashes = sym_hashes + symcount;
1911 for (; sym_hashes < end_hashes; sym_hashes++)
1913 struct elf_link_hash_entry *sym_hash = *sym_hashes;
1914 if ((sym_hash->root.type == bfd_link_hash_defined
1915 || sym_hash->root.type == bfd_link_hash_defweak)
1916 && sym_hash->root.u.def.section == sec)
1918 if (sym_hash->root.u.def.value > addr
1919 && sym_hash->root.u.def.value <= toaddr)
1920 sym_hash->root.u.def.value -= count;
1922 if (sym_hash->root.u.def.value <= addr
1923 && (sym_hash->root.u.def.value + sym_hash->size > addr))
1925 /* If this assert fires then we have a symbol that ends
1926 part way through an instruction. Does that make
1928 BFD_ASSERT (sym_hash->root.u.def.value + sym_hash->size
1930 sym_hash->size -= count;
1938 /* This function handles relaxing for the avr.
1939 Many important relaxing opportunities within functions are already
1940 realized by the compiler itself.
1941 Here we try to replace call (4 bytes) -> rcall (2 bytes)
1942 and jump -> rjmp (safes also 2 bytes).
1943 As well we now optimize seqences of
1944 - call/rcall function
1949 . In case that within a sequence
1952 the ret could no longer be reached it is optimized away. In order
1953 to check if the ret is no longer needed, it is checked that the ret's address
1954 is not the target of a branch or jump within the same section, it is checked
1955 that there is no skip instruction before the jmp/rjmp and that there
1956 is no local or global label place at the address of the ret.
1958 We refrain from relaxing within sections ".vectors" and
1959 ".jumptables" in order to maintain the position of the instructions.
1960 There, however, we substitute jmp/call by a sequence rjmp,nop/rcall,nop
1961 if possible. (In future one could possibly use the space of the nop
1962 for the first instruction of the irq service function.
1964 The .jumptables sections is meant to be used for a future tablejump variant
1965 for the devices with 3-byte program counter where the table itself
1966 contains 4-byte jump instructions whose relative offset must not
1970 elf32_avr_relax_section (bfd *abfd,
1972 struct bfd_link_info *link_info,
1975 Elf_Internal_Shdr *symtab_hdr;
1976 Elf_Internal_Rela *internal_relocs;
1977 Elf_Internal_Rela *irel, *irelend;
1978 bfd_byte *contents = NULL;
1979 Elf_Internal_Sym *isymbuf = NULL;
1980 struct elf32_avr_link_hash_table *htab;
1982 /* If 'shrinkable' is FALSE, do not shrink by deleting bytes while
1983 relaxing. Such shrinking can cause issues for the sections such
1984 as .vectors and .jumptables. Instead the unused bytes should be
1985 filled with nop instructions. */
1986 bfd_boolean shrinkable = TRUE;
1988 if (!strcmp (sec->name,".vectors")
1989 || !strcmp (sec->name,".jumptables"))
1992 if (link_info->relocatable)
1993 (*link_info->callbacks->einfo)
1994 (_("%P%F: --relax and -r may not be used together\n"));
1996 htab = avr_link_hash_table (link_info);
2000 /* Assume nothing changes. */
2003 if ((!htab->no_stubs) && (sec == htab->stub_sec))
2005 /* We are just relaxing the stub section.
2006 Let's calculate the size needed again. */
2007 bfd_size_type last_estimated_stub_section_size = htab->stub_sec->size;
2010 printf ("Relaxing the stub section. Size prior to this pass: %i\n",
2011 (int) last_estimated_stub_section_size);
2013 elf32_avr_size_stubs (htab->stub_sec->output_section->owner,
2016 /* Check if the number of trampolines changed. */
2017 if (last_estimated_stub_section_size != htab->stub_sec->size)
2021 printf ("Size of stub section after this pass: %i\n",
2022 (int) htab->stub_sec->size);
2027 /* We don't have to do anything for a relocatable link, if
2028 this section does not have relocs, or if this is not a
2030 if (link_info->relocatable
2031 || (sec->flags & SEC_RELOC) == 0
2032 || sec->reloc_count == 0
2033 || (sec->flags & SEC_CODE) == 0)
2036 /* Check if the object file to relax uses internal symbols so that we
2037 could fix up the relocations. */
2038 if (!(elf_elfheader (abfd)->e_flags & EF_AVR_LINKRELAX_PREPARED))
2041 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2043 /* Get a copy of the native relocations. */
2044 internal_relocs = (_bfd_elf_link_read_relocs
2045 (abfd, sec, NULL, NULL, link_info->keep_memory));
2046 if (internal_relocs == NULL)
2049 /* Walk through the relocs looking for relaxing opportunities. */
2050 irelend = internal_relocs + sec->reloc_count;
2051 for (irel = internal_relocs; irel < irelend; irel++)
2055 if ( ELF32_R_TYPE (irel->r_info) != R_AVR_13_PCREL
2056 && ELF32_R_TYPE (irel->r_info) != R_AVR_7_PCREL
2057 && ELF32_R_TYPE (irel->r_info) != R_AVR_CALL)
2060 /* Get the section contents if we haven't done so already. */
2061 if (contents == NULL)
2063 /* Get cached copy if it exists. */
2064 if (elf_section_data (sec)->this_hdr.contents != NULL)
2065 contents = elf_section_data (sec)->this_hdr.contents;
2068 /* Go get them off disk. */
2069 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
2074 /* Read this BFD's local symbols if we haven't done so already. */
2075 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
2077 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2078 if (isymbuf == NULL)
2079 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2080 symtab_hdr->sh_info, 0,
2082 if (isymbuf == NULL)
2087 /* Get the value of the symbol referred to by the reloc. */
2088 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2090 /* A local symbol. */
2091 Elf_Internal_Sym *isym;
2094 isym = isymbuf + ELF32_R_SYM (irel->r_info);
2095 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2096 symval = isym->st_value;
2097 /* If the reloc is absolute, it will not have
2098 a symbol or section associated with it. */
2100 symval += sym_sec->output_section->vma
2101 + sym_sec->output_offset;
2106 struct elf_link_hash_entry *h;
2108 /* An external symbol. */
2109 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2110 h = elf_sym_hashes (abfd)[indx];
2111 BFD_ASSERT (h != NULL);
2112 if (h->root.type != bfd_link_hash_defined
2113 && h->root.type != bfd_link_hash_defweak)
2114 /* This appears to be a reference to an undefined
2115 symbol. Just ignore it--it will be caught by the
2116 regular reloc processing. */
2119 symval = (h->root.u.def.value
2120 + h->root.u.def.section->output_section->vma
2121 + h->root.u.def.section->output_offset);
2124 /* For simplicity of coding, we are going to modify the section
2125 contents, the section relocs, and the BFD symbol table. We
2126 must tell the rest of the code not to free up this
2127 information. It would be possible to instead create a table
2128 of changes which have to be made, as is done in coff-mips.c;
2129 that would be more work, but would require less memory when
2130 the linker is run. */
2131 switch (ELF32_R_TYPE (irel->r_info))
2133 /* Try to turn a 22-bit absolute call/jump into an 13-bit
2134 pc-relative rcall/rjmp. */
2137 bfd_vma value = symval + irel->r_addend;
2139 int distance_short_enough = 0;
2141 /* Get the address of this instruction. */
2142 dot = (sec->output_section->vma
2143 + sec->output_offset + irel->r_offset);
2145 /* Compute the distance from this insn to the branch target. */
2148 /* Check if the gap falls in the range that can be accommodated
2149 in 13bits signed (It is 12bits when encoded, as we deal with
2150 word addressing). */
2151 if (!shrinkable && ((int) gap >= -4096 && (int) gap <= 4095))
2152 distance_short_enough = 1;
2153 /* If shrinkable, then we can check for a range of distance which
2154 is two bytes farther on both the directions because the call
2155 or jump target will be closer by two bytes after the
2157 else if (shrinkable && ((int) gap >= -4094 && (int) gap <= 4097))
2158 distance_short_enough = 1;
2160 /* Here we handle the wrap-around case. E.g. for a 16k device
2161 we could use a rjmp to jump from address 0x100 to 0x3d00!
2162 In order to make this work properly, we need to fill the
2163 vaiable avr_pc_wrap_around with the appropriate value.
2164 I.e. 0x4000 for a 16k device. */
2166 /* Shrinking the code size makes the gaps larger in the
2167 case of wrap-arounds. So we use a heuristical safety
2168 margin to avoid that during relax the distance gets
2169 again too large for the short jumps. Let's assume
2170 a typical code-size reduction due to relax for a
2171 16k device of 600 bytes. So let's use twice the
2172 typical value as safety margin. */
2176 int assumed_shrink = 600;
2177 if (avr_pc_wrap_around > 0x4000)
2178 assumed_shrink = 900;
2180 safety_margin = 2 * assumed_shrink;
2182 rgap = avr_relative_distance_considering_wrap_around (gap);
2184 if (rgap >= (-4092 + safety_margin)
2185 && rgap <= (4094 - safety_margin))
2186 distance_short_enough = 1;
2189 if (distance_short_enough)
2191 unsigned char code_msb;
2192 unsigned char code_lsb;
2195 printf ("shrinking jump/call instruction at address 0x%x"
2196 " in section %s\n\n",
2197 (int) dot, sec->name);
2199 /* Note that we've changed the relocs, section contents,
2201 elf_section_data (sec)->relocs = internal_relocs;
2202 elf_section_data (sec)->this_hdr.contents = contents;
2203 symtab_hdr->contents = (unsigned char *) isymbuf;
2205 /* Get the instruction code for relaxing. */
2206 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset);
2207 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
2209 /* Mask out the relocation bits. */
2212 if (code_msb == 0x94 && code_lsb == 0x0E)
2214 /* we are changing call -> rcall . */
2215 bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
2216 bfd_put_8 (abfd, 0xD0, contents + irel->r_offset + 1);
2218 else if (code_msb == 0x94 && code_lsb == 0x0C)
2220 /* we are changeing jump -> rjmp. */
2221 bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
2222 bfd_put_8 (abfd, 0xC0, contents + irel->r_offset + 1);
2227 /* Fix the relocation's type. */
2228 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
2231 /* We should not modify the ordering if 'shrinkable' is
2235 /* Let's insert a nop. */
2236 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 2);
2237 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 3);
2241 /* Delete two bytes of data. */
2242 if (!elf32_avr_relax_delete_bytes (abfd, sec,
2243 irel->r_offset + 2, 2))
2246 /* That will change things, so, we should relax again.
2247 Note that this is not required, and it may be slow. */
2255 unsigned char code_msb;
2256 unsigned char code_lsb;
2259 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
2260 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset + 0);
2262 /* Get the address of this instruction. */
2263 dot = (sec->output_section->vma
2264 + sec->output_offset + irel->r_offset);
2266 /* Here we look for rcall/ret or call/ret sequences that could be
2267 safely replaced by rjmp/ret or jmp/ret. */
2268 if (((code_msb & 0xf0) == 0xd0)
2269 && avr_replace_call_ret_sequences)
2271 /* This insn is a rcall. */
2272 unsigned char next_insn_msb = 0;
2273 unsigned char next_insn_lsb = 0;
2275 if (irel->r_offset + 3 < sec->size)
2278 bfd_get_8 (abfd, contents + irel->r_offset + 3);
2280 bfd_get_8 (abfd, contents + irel->r_offset + 2);
2283 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2285 /* The next insn is a ret. We now convert the rcall insn
2286 into a rjmp instruction. */
2288 bfd_put_8 (abfd, code_msb, contents + irel->r_offset + 1);
2290 printf ("converted rcall/ret sequence at address 0x%x"
2291 " into rjmp/ret sequence. Section is %s\n\n",
2292 (int) dot, sec->name);
2297 else if ((0x94 == (code_msb & 0xfe))
2298 && (0x0e == (code_lsb & 0x0e))
2299 && avr_replace_call_ret_sequences)
2301 /* This insn is a call. */
2302 unsigned char next_insn_msb = 0;
2303 unsigned char next_insn_lsb = 0;
2305 if (irel->r_offset + 5 < sec->size)
2308 bfd_get_8 (abfd, contents + irel->r_offset + 5);
2310 bfd_get_8 (abfd, contents + irel->r_offset + 4);
2313 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2315 /* The next insn is a ret. We now convert the call insn
2316 into a jmp instruction. */
2319 bfd_put_8 (abfd, code_lsb, contents + irel->r_offset);
2321 printf ("converted call/ret sequence at address 0x%x"
2322 " into jmp/ret sequence. Section is %s\n\n",
2323 (int) dot, sec->name);
2328 else if ((0xc0 == (code_msb & 0xf0))
2329 || ((0x94 == (code_msb & 0xfe))
2330 && (0x0c == (code_lsb & 0x0e))))
2332 /* This insn is a rjmp or a jmp. */
2333 unsigned char next_insn_msb = 0;
2334 unsigned char next_insn_lsb = 0;
2337 if (0xc0 == (code_msb & 0xf0))
2338 insn_size = 2; /* rjmp insn */
2340 insn_size = 4; /* jmp insn */
2342 if (irel->r_offset + insn_size + 1 < sec->size)
2345 bfd_get_8 (abfd, contents + irel->r_offset
2348 bfd_get_8 (abfd, contents + irel->r_offset
2352 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2354 /* The next insn is a ret. We possibly could delete
2355 this ret. First we need to check for preceding
2356 sbis/sbic/sbrs or cpse "skip" instructions. */
2358 int there_is_preceding_non_skip_insn = 1;
2359 bfd_vma address_of_ret;
2361 address_of_ret = dot + insn_size;
2363 if (debug_relax && (insn_size == 2))
2364 printf ("found rjmp / ret sequence at address 0x%x\n",
2366 if (debug_relax && (insn_size == 4))
2367 printf ("found jmp / ret sequence at address 0x%x\n",
2370 /* We have to make sure that there is a preceding insn. */
2371 if (irel->r_offset >= 2)
2373 unsigned char preceding_msb;
2374 unsigned char preceding_lsb;
2377 bfd_get_8 (abfd, contents + irel->r_offset - 1);
2379 bfd_get_8 (abfd, contents + irel->r_offset - 2);
2382 if (0x99 == preceding_msb)
2383 there_is_preceding_non_skip_insn = 0;
2386 if (0x9b == preceding_msb)
2387 there_is_preceding_non_skip_insn = 0;
2390 if ((0xfc == (preceding_msb & 0xfe)
2391 && (0x00 == (preceding_lsb & 0x08))))
2392 there_is_preceding_non_skip_insn = 0;
2395 if ((0xfe == (preceding_msb & 0xfe)
2396 && (0x00 == (preceding_lsb & 0x08))))
2397 there_is_preceding_non_skip_insn = 0;
2400 if (0x10 == (preceding_msb & 0xfc))
2401 there_is_preceding_non_skip_insn = 0;
2403 if (there_is_preceding_non_skip_insn == 0)
2405 printf ("preceding skip insn prevents deletion of"
2406 " ret insn at Addy 0x%x in section %s\n",
2407 (int) dot + 2, sec->name);
2411 /* There is no previous instruction. */
2412 there_is_preceding_non_skip_insn = 0;
2415 if (there_is_preceding_non_skip_insn)
2417 /* We now only have to make sure that there is no
2418 local label defined at the address of the ret
2419 instruction and that there is no local relocation
2420 in this section pointing to the ret. */
2422 int deleting_ret_is_safe = 1;
2423 unsigned int section_offset_of_ret_insn =
2424 irel->r_offset + insn_size;
2425 Elf_Internal_Sym *isym, *isymend;
2426 unsigned int sec_shndx;
2427 struct bfd_section *isec;
2430 _bfd_elf_section_from_bfd_section (abfd, sec);
2432 /* Check for local symbols. */
2433 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2434 isymend = isym + symtab_hdr->sh_info;
2435 /* PR 6019: There may not be any local symbols. */
2436 for (; isym != NULL && isym < isymend; isym++)
2438 if (isym->st_value == section_offset_of_ret_insn
2439 && isym->st_shndx == sec_shndx)
2441 deleting_ret_is_safe = 0;
2443 printf ("local label prevents deletion of ret "
2444 "insn at address 0x%x\n",
2445 (int) dot + insn_size);
2449 /* Now check for global symbols. */
2452 struct elf_link_hash_entry **sym_hashes;
2453 struct elf_link_hash_entry **end_hashes;
2455 symcount = (symtab_hdr->sh_size
2456 / sizeof (Elf32_External_Sym)
2457 - symtab_hdr->sh_info);
2458 sym_hashes = elf_sym_hashes (abfd);
2459 end_hashes = sym_hashes + symcount;
2460 for (; sym_hashes < end_hashes; sym_hashes++)
2462 struct elf_link_hash_entry *sym_hash =
2464 if ((sym_hash->root.type == bfd_link_hash_defined
2465 || sym_hash->root.type ==
2466 bfd_link_hash_defweak)
2467 && sym_hash->root.u.def.section == sec
2468 && sym_hash->root.u.def.value == section_offset_of_ret_insn)
2470 deleting_ret_is_safe = 0;
2472 printf ("global label prevents deletion of "
2473 "ret insn at address 0x%x\n",
2474 (int) dot + insn_size);
2479 /* Now we check for relocations pointing to ret. */
2480 for (isec = abfd->sections; isec && deleting_ret_is_safe; isec = isec->next)
2482 Elf_Internal_Rela *rel;
2483 Elf_Internal_Rela *relend;
2485 rel = elf_section_data (isec)->relocs;
2487 rel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, TRUE);
2489 relend = rel + isec->reloc_count;
2491 for (; rel && rel < relend; rel++)
2493 bfd_vma reloc_target = 0;
2495 /* Read this BFD's local symbols if we haven't
2497 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
2499 isymbuf = (Elf_Internal_Sym *)
2500 symtab_hdr->contents;
2501 if (isymbuf == NULL)
2502 isymbuf = bfd_elf_get_elf_syms
2505 symtab_hdr->sh_info, 0,
2507 if (isymbuf == NULL)
2511 /* Get the value of the symbol referred to
2513 if (ELF32_R_SYM (rel->r_info)
2514 < symtab_hdr->sh_info)
2516 /* A local symbol. */
2520 + ELF32_R_SYM (rel->r_info);
2521 sym_sec = bfd_section_from_elf_index
2522 (abfd, isym->st_shndx);
2523 symval = isym->st_value;
2525 /* If the reloc is absolute, it will not
2526 have a symbol or section associated
2532 sym_sec->output_section->vma
2533 + sym_sec->output_offset;
2534 reloc_target = symval + rel->r_addend;
2538 reloc_target = symval + rel->r_addend;
2539 /* Reference symbol is absolute. */
2542 /* else ... reference symbol is extern. */
2544 if (address_of_ret == reloc_target)
2546 deleting_ret_is_safe = 0;
2549 "rjmp/jmp ret sequence at address"
2550 " 0x%x could not be deleted. ret"
2551 " is target of a relocation.\n",
2552 (int) address_of_ret);
2558 if (deleting_ret_is_safe)
2561 printf ("unreachable ret instruction "
2562 "at address 0x%x deleted.\n",
2563 (int) dot + insn_size);
2565 /* Delete two bytes of data. */
2566 if (!elf32_avr_relax_delete_bytes (abfd, sec,
2567 irel->r_offset + insn_size, 2))
2570 /* That will change things, so, we should relax
2571 again. Note that this is not required, and it
2584 if (contents != NULL
2585 && elf_section_data (sec)->this_hdr.contents != contents)
2587 if (! link_info->keep_memory)
2591 /* Cache the section contents for elf_link_input_bfd. */
2592 elf_section_data (sec)->this_hdr.contents = contents;
2596 if (internal_relocs != NULL
2597 && elf_section_data (sec)->relocs != internal_relocs)
2598 free (internal_relocs);
2604 && symtab_hdr->contents != (unsigned char *) isymbuf)
2606 if (contents != NULL
2607 && elf_section_data (sec)->this_hdr.contents != contents)
2609 if (internal_relocs != NULL
2610 && elf_section_data (sec)->relocs != internal_relocs)
2611 free (internal_relocs);
2616 /* This is a version of bfd_generic_get_relocated_section_contents
2617 which uses elf32_avr_relocate_section.
2619 For avr it's essentially a cut and paste taken from the H8300 port.
2620 The author of the relaxation support patch for avr had absolutely no
2621 clue what is happening here but found out that this part of the code
2622 seems to be important. */
2625 elf32_avr_get_relocated_section_contents (bfd *output_bfd,
2626 struct bfd_link_info *link_info,
2627 struct bfd_link_order *link_order,
2629 bfd_boolean relocatable,
2632 Elf_Internal_Shdr *symtab_hdr;
2633 asection *input_section = link_order->u.indirect.section;
2634 bfd *input_bfd = input_section->owner;
2635 asection **sections = NULL;
2636 Elf_Internal_Rela *internal_relocs = NULL;
2637 Elf_Internal_Sym *isymbuf = NULL;
2639 /* We only need to handle the case of relaxing, or of having a
2640 particular set of section contents, specially. */
2642 || elf_section_data (input_section)->this_hdr.contents == NULL)
2643 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2647 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2649 memcpy (data, elf_section_data (input_section)->this_hdr.contents,
2650 (size_t) input_section->size);
2652 if ((input_section->flags & SEC_RELOC) != 0
2653 && input_section->reloc_count > 0)
2656 Elf_Internal_Sym *isym, *isymend;
2659 internal_relocs = (_bfd_elf_link_read_relocs
2660 (input_bfd, input_section, NULL, NULL, FALSE));
2661 if (internal_relocs == NULL)
2664 if (symtab_hdr->sh_info != 0)
2666 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2667 if (isymbuf == NULL)
2668 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2669 symtab_hdr->sh_info, 0,
2671 if (isymbuf == NULL)
2675 amt = symtab_hdr->sh_info;
2676 amt *= sizeof (asection *);
2677 sections = bfd_malloc (amt);
2678 if (sections == NULL && amt != 0)
2681 isymend = isymbuf + symtab_hdr->sh_info;
2682 for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
2686 if (isym->st_shndx == SHN_UNDEF)
2687 isec = bfd_und_section_ptr;
2688 else if (isym->st_shndx == SHN_ABS)
2689 isec = bfd_abs_section_ptr;
2690 else if (isym->st_shndx == SHN_COMMON)
2691 isec = bfd_com_section_ptr;
2693 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
2698 if (! elf32_avr_relocate_section (output_bfd, link_info, input_bfd,
2699 input_section, data, internal_relocs,
2703 if (sections != NULL)
2706 && symtab_hdr->contents != (unsigned char *) isymbuf)
2708 if (elf_section_data (input_section)->relocs != internal_relocs)
2709 free (internal_relocs);
2715 if (sections != NULL)
2718 && symtab_hdr->contents != (unsigned char *) isymbuf)
2720 if (internal_relocs != NULL
2721 && elf_section_data (input_section)->relocs != internal_relocs)
2722 free (internal_relocs);
2727 /* Determines the hash entry name for a particular reloc. It consists of
2728 the identifier of the symbol section and the added reloc addend and
2729 symbol offset relative to the section the symbol is attached to. */
2732 avr_stub_name (const asection *symbol_section,
2733 const bfd_vma symbol_offset,
2734 const Elf_Internal_Rela *rela)
2739 len = 8 + 1 + 8 + 1 + 1;
2740 stub_name = bfd_malloc (len);
2742 sprintf (stub_name, "%08x+%08x",
2743 symbol_section->id & 0xffffffff,
2744 (unsigned int) ((rela->r_addend & 0xffffffff) + symbol_offset));
2750 /* Add a new stub entry to the stub hash. Not all fields of the new
2751 stub entry are initialised. */
2753 static struct elf32_avr_stub_hash_entry *
2754 avr_add_stub (const char *stub_name,
2755 struct elf32_avr_link_hash_table *htab)
2757 struct elf32_avr_stub_hash_entry *hsh;
2759 /* Enter this entry into the linker stub hash table. */
2760 hsh = avr_stub_hash_lookup (&htab->bstab, stub_name, TRUE, FALSE);
2764 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
2769 hsh->stub_offset = 0;
2773 /* We assume that there is already space allocated for the stub section
2774 contents and that before building the stubs the section size is
2775 initialized to 0. We assume that within the stub hash table entry,
2776 the absolute position of the jmp target has been written in the
2777 target_value field. We write here the offset of the generated jmp insn
2778 relative to the trampoline section start to the stub_offset entry in
2779 the stub hash table entry. */
2782 avr_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
2784 struct elf32_avr_stub_hash_entry *hsh;
2785 struct bfd_link_info *info;
2786 struct elf32_avr_link_hash_table *htab;
2793 bfd_vma jmp_insn = 0x0000940c;
2795 /* Massage our args to the form they really have. */
2796 hsh = avr_stub_hash_entry (bh);
2798 if (!hsh->is_actually_needed)
2801 info = (struct bfd_link_info *) in_arg;
2803 htab = avr_link_hash_table (info);
2807 target = hsh->target_value;
2809 /* Make a note of the offset within the stubs for this entry. */
2810 hsh->stub_offset = htab->stub_sec->size;
2811 loc = htab->stub_sec->contents + hsh->stub_offset;
2813 stub_bfd = htab->stub_sec->owner;
2816 printf ("Building one Stub. Address: 0x%x, Offset: 0x%x\n",
2817 (unsigned int) target,
2818 (unsigned int) hsh->stub_offset);
2820 /* We now have to add the information on the jump target to the bare
2821 opcode bits already set in jmp_insn. */
2823 /* Check for the alignment of the address. */
2827 starget = target >> 1;
2828 jmp_insn |= ((starget & 0x10000) | ((starget << 3) & 0x1f00000)) >> 16;
2829 bfd_put_16 (stub_bfd, jmp_insn, loc);
2830 bfd_put_16 (stub_bfd, (bfd_vma) starget & 0xffff, loc + 2);
2832 htab->stub_sec->size += 4;
2834 /* Now add the entries in the address mapping table if there is still
2839 nr = htab->amt_entry_cnt + 1;
2840 if (nr <= htab->amt_max_entry_cnt)
2842 htab->amt_entry_cnt = nr;
2844 htab->amt_stub_offsets[nr - 1] = hsh->stub_offset;
2845 htab->amt_destination_addr[nr - 1] = target;
2853 avr_mark_stub_not_to_be_necessary (struct bfd_hash_entry *bh,
2854 void *in_arg ATTRIBUTE_UNUSED)
2856 struct elf32_avr_stub_hash_entry *hsh;
2858 hsh = avr_stub_hash_entry (bh);
2859 hsh->is_actually_needed = FALSE;
2865 avr_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
2867 struct elf32_avr_stub_hash_entry *hsh;
2868 struct elf32_avr_link_hash_table *htab;
2871 /* Massage our args to the form they really have. */
2872 hsh = avr_stub_hash_entry (bh);
2875 if (hsh->is_actually_needed)
2880 htab->stub_sec->size += size;
2885 elf32_avr_setup_params (struct bfd_link_info *info,
2887 asection *avr_stub_section,
2888 bfd_boolean no_stubs,
2889 bfd_boolean deb_stubs,
2890 bfd_boolean deb_relax,
2891 bfd_vma pc_wrap_around,
2892 bfd_boolean call_ret_replacement)
2894 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
2898 htab->stub_sec = avr_stub_section;
2899 htab->stub_bfd = avr_stub_bfd;
2900 htab->no_stubs = no_stubs;
2902 debug_relax = deb_relax;
2903 debug_stubs = deb_stubs;
2904 avr_pc_wrap_around = pc_wrap_around;
2905 avr_replace_call_ret_sequences = call_ret_replacement;
2909 /* Set up various things so that we can make a list of input sections
2910 for each output section included in the link. Returns -1 on error,
2911 0 when no stubs will be needed, and 1 on success. It also sets
2912 information on the stubs bfd and the stub section in the info
2916 elf32_avr_setup_section_lists (bfd *output_bfd,
2917 struct bfd_link_info *info)
2920 unsigned int bfd_count;
2921 int top_id, top_index;
2923 asection **input_list, **list;
2925 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
2927 if (htab == NULL || htab->no_stubs)
2930 /* Count the number of input BFDs and find the top input section id. */
2931 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2933 input_bfd = input_bfd->link.next)
2936 for (section = input_bfd->sections;
2938 section = section->next)
2939 if (top_id < section->id)
2940 top_id = section->id;
2943 htab->bfd_count = bfd_count;
2945 /* We can't use output_bfd->section_count here to find the top output
2946 section index as some sections may have been removed, and
2947 strip_excluded_output_sections doesn't renumber the indices. */
2948 for (section = output_bfd->sections, top_index = 0;
2950 section = section->next)
2951 if (top_index < section->index)
2952 top_index = section->index;
2954 htab->top_index = top_index;
2955 amt = sizeof (asection *) * (top_index + 1);
2956 input_list = bfd_malloc (amt);
2957 htab->input_list = input_list;
2958 if (input_list == NULL)
2961 /* For sections we aren't interested in, mark their entries with a
2962 value we can check later. */
2963 list = input_list + top_index;
2965 *list = bfd_abs_section_ptr;
2966 while (list-- != input_list);
2968 for (section = output_bfd->sections;
2970 section = section->next)
2971 if ((section->flags & SEC_CODE) != 0)
2972 input_list[section->index] = NULL;
2978 /* Read in all local syms for all input bfds, and create hash entries
2979 for export stubs if we are building a multi-subspace shared lib.
2980 Returns -1 on error, 0 otherwise. */
2983 get_local_syms (bfd *input_bfd, struct bfd_link_info *info)
2985 unsigned int bfd_indx;
2986 Elf_Internal_Sym *local_syms, **all_local_syms;
2987 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
2993 /* We want to read in symbol extension records only once. To do this
2994 we need to read in the local symbols in parallel and save them for
2995 later use; so hold pointers to the local symbols in an array. */
2996 amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2997 all_local_syms = bfd_zmalloc (amt);
2998 htab->all_local_syms = all_local_syms;
2999 if (all_local_syms == NULL)
3002 /* Walk over all the input BFDs, swapping in local symbols.
3003 If we are creating a shared library, create hash entries for the
3007 input_bfd = input_bfd->link.next, bfd_indx++)
3009 Elf_Internal_Shdr *symtab_hdr;
3011 /* We'll need the symbol table in a second. */
3012 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3013 if (symtab_hdr->sh_info == 0)
3016 /* We need an array of the local symbols attached to the input bfd. */
3017 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
3018 if (local_syms == NULL)
3020 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3021 symtab_hdr->sh_info, 0,
3023 /* Cache them for elf_link_input_bfd. */
3024 symtab_hdr->contents = (unsigned char *) local_syms;
3026 if (local_syms == NULL)
3029 all_local_syms[bfd_indx] = local_syms;
3035 #define ADD_DUMMY_STUBS_FOR_DEBUGGING 0
3038 elf32_avr_size_stubs (bfd *output_bfd,
3039 struct bfd_link_info *info,
3040 bfd_boolean is_prealloc_run)
3042 struct elf32_avr_link_hash_table *htab;
3043 int stub_changed = 0;
3045 htab = avr_link_hash_table (info);
3049 /* At this point we initialize htab->vector_base
3050 To the start of the text output section. */
3051 htab->vector_base = htab->stub_sec->output_section->vma;
3053 if (get_local_syms (info->input_bfds, info))
3055 if (htab->all_local_syms)
3056 goto error_ret_free_local;
3060 if (ADD_DUMMY_STUBS_FOR_DEBUGGING)
3062 struct elf32_avr_stub_hash_entry *test;
3064 test = avr_add_stub ("Hugo",htab);
3065 test->target_value = 0x123456;
3066 test->stub_offset = 13;
3068 test = avr_add_stub ("Hugo2",htab);
3069 test->target_value = 0x84210;
3070 test->stub_offset = 14;
3076 unsigned int bfd_indx;
3078 /* We will have to re-generate the stub hash table each time anything
3079 in memory has changed. */
3081 bfd_hash_traverse (&htab->bstab, avr_mark_stub_not_to_be_necessary, htab);
3082 for (input_bfd = info->input_bfds, bfd_indx = 0;
3084 input_bfd = input_bfd->link.next, bfd_indx++)
3086 Elf_Internal_Shdr *symtab_hdr;
3088 Elf_Internal_Sym *local_syms;
3090 /* We'll need the symbol table in a second. */
3091 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3092 if (symtab_hdr->sh_info == 0)
3095 local_syms = htab->all_local_syms[bfd_indx];
3097 /* Walk over each section attached to the input bfd. */
3098 for (section = input_bfd->sections;
3100 section = section->next)
3102 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3104 /* If there aren't any relocs, then there's nothing more
3106 if ((section->flags & SEC_RELOC) == 0
3107 || section->reloc_count == 0)
3110 /* If this section is a link-once section that will be
3111 discarded, then don't create any stubs. */
3112 if (section->output_section == NULL
3113 || section->output_section->owner != output_bfd)
3116 /* Get the relocs. */
3118 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
3120 if (internal_relocs == NULL)
3121 goto error_ret_free_local;
3123 /* Now examine each relocation. */
3124 irela = internal_relocs;
3125 irelaend = irela + section->reloc_count;
3126 for (; irela < irelaend; irela++)
3128 unsigned int r_type, r_indx;
3129 struct elf32_avr_stub_hash_entry *hsh;
3132 bfd_vma destination;
3133 struct elf_link_hash_entry *hh;
3136 r_type = ELF32_R_TYPE (irela->r_info);
3137 r_indx = ELF32_R_SYM (irela->r_info);
3139 /* Only look for 16 bit GS relocs. No other reloc will need a
3141 if (!((r_type == R_AVR_16_PM)
3142 || (r_type == R_AVR_LO8_LDI_GS)
3143 || (r_type == R_AVR_HI8_LDI_GS)))
3146 /* Now determine the call target, its name, value,
3152 if (r_indx < symtab_hdr->sh_info)
3154 /* It's a local symbol. */
3155 Elf_Internal_Sym *sym;
3156 Elf_Internal_Shdr *hdr;
3159 sym = local_syms + r_indx;
3160 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3161 sym_value = sym->st_value;
3162 shndx = sym->st_shndx;
3163 if (shndx < elf_numsections (input_bfd))
3165 hdr = elf_elfsections (input_bfd)[shndx];
3166 sym_sec = hdr->bfd_section;
3167 destination = (sym_value + irela->r_addend
3168 + sym_sec->output_offset
3169 + sym_sec->output_section->vma);
3174 /* It's an external symbol. */
3177 e_indx = r_indx - symtab_hdr->sh_info;
3178 hh = elf_sym_hashes (input_bfd)[e_indx];
3180 while (hh->root.type == bfd_link_hash_indirect
3181 || hh->root.type == bfd_link_hash_warning)
3182 hh = (struct elf_link_hash_entry *)
3183 (hh->root.u.i.link);
3185 if (hh->root.type == bfd_link_hash_defined
3186 || hh->root.type == bfd_link_hash_defweak)
3188 sym_sec = hh->root.u.def.section;
3189 sym_value = hh->root.u.def.value;
3190 if (sym_sec->output_section != NULL)
3191 destination = (sym_value + irela->r_addend
3192 + sym_sec->output_offset
3193 + sym_sec->output_section->vma);
3195 else if (hh->root.type == bfd_link_hash_undefweak)
3200 else if (hh->root.type == bfd_link_hash_undefined)
3202 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3203 && (ELF_ST_VISIBILITY (hh->other)
3209 bfd_set_error (bfd_error_bad_value);
3211 error_ret_free_internal:
3212 if (elf_section_data (section)->relocs == NULL)
3213 free (internal_relocs);
3214 goto error_ret_free_local;
3218 if (! avr_stub_is_required_for_16_bit_reloc
3219 (destination - htab->vector_base))
3221 if (!is_prealloc_run)
3222 /* We are having a reloc that does't need a stub. */
3225 /* We don't right now know if a stub will be needed.
3226 Let's rather be on the safe side. */
3229 /* Get the name of this stub. */
3230 stub_name = avr_stub_name (sym_sec, sym_value, irela);
3233 goto error_ret_free_internal;
3236 hsh = avr_stub_hash_lookup (&htab->bstab,
3241 /* The proper stub has already been created. Mark it
3242 to be used and write the possibly changed destination
3244 hsh->is_actually_needed = TRUE;
3245 hsh->target_value = destination;
3250 hsh = avr_add_stub (stub_name, htab);
3254 goto error_ret_free_internal;
3257 hsh->is_actually_needed = TRUE;
3258 hsh->target_value = destination;
3261 printf ("Adding stub with destination 0x%x to the"
3262 " hash table.\n", (unsigned int) destination);
3264 printf ("(Pre-Alloc run: %i)\n", is_prealloc_run);
3266 stub_changed = TRUE;
3269 /* We're done with the internal relocs, free them. */
3270 if (elf_section_data (section)->relocs == NULL)
3271 free (internal_relocs);
3275 /* Re-Calculate the number of needed stubs. */
3276 htab->stub_sec->size = 0;
3277 bfd_hash_traverse (&htab->bstab, avr_size_one_stub, htab);
3282 stub_changed = FALSE;
3285 free (htab->all_local_syms);
3288 error_ret_free_local:
3289 free (htab->all_local_syms);
3294 /* Build all the stubs associated with the current output file. The
3295 stubs are kept in a hash table attached to the main linker hash
3296 table. We also set up the .plt entries for statically linked PIC
3297 functions here. This function is called via hppaelf_finish in the
3301 elf32_avr_build_stubs (struct bfd_link_info *info)
3304 struct bfd_hash_table *table;
3305 struct elf32_avr_link_hash_table *htab;
3306 bfd_size_type total_size = 0;
3308 htab = avr_link_hash_table (info);
3312 /* In case that there were several stub sections: */
3313 for (stub_sec = htab->stub_bfd->sections;
3315 stub_sec = stub_sec->next)
3319 /* Allocate memory to hold the linker stubs. */
3320 size = stub_sec->size;
3323 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3324 if (stub_sec->contents == NULL && size != 0)
3329 /* Allocate memory for the adress mapping table. */
3330 htab->amt_entry_cnt = 0;
3331 htab->amt_max_entry_cnt = total_size / 4;
3332 htab->amt_stub_offsets = bfd_malloc (sizeof (bfd_vma)
3333 * htab->amt_max_entry_cnt);
3334 htab->amt_destination_addr = bfd_malloc (sizeof (bfd_vma)
3335 * htab->amt_max_entry_cnt );
3338 printf ("Allocating %i entries in the AMT\n", htab->amt_max_entry_cnt);
3340 /* Build the stubs as directed by the stub hash table. */
3341 table = &htab->bstab;
3342 bfd_hash_traverse (table, avr_build_one_stub, info);
3345 printf ("Final Stub section Size: %i\n", (int) htab->stub_sec->size);
3350 #define ELF_ARCH bfd_arch_avr
3351 #define ELF_TARGET_ID AVR_ELF_DATA
3352 #define ELF_MACHINE_CODE EM_AVR
3353 #define ELF_MACHINE_ALT1 EM_AVR_OLD
3354 #define ELF_MAXPAGESIZE 1
3356 #define TARGET_LITTLE_SYM avr_elf32_vec
3357 #define TARGET_LITTLE_NAME "elf32-avr"
3359 #define bfd_elf32_bfd_link_hash_table_create elf32_avr_link_hash_table_create
3361 #define elf_info_to_howto avr_info_to_howto_rela
3362 #define elf_info_to_howto_rel NULL
3363 #define elf_backend_relocate_section elf32_avr_relocate_section
3364 #define elf_backend_can_gc_sections 1
3365 #define elf_backend_rela_normal 1
3366 #define elf_backend_final_write_processing \
3367 bfd_elf_avr_final_write_processing
3368 #define elf_backend_object_p elf32_avr_object_p
3370 #define bfd_elf32_bfd_relax_section elf32_avr_relax_section
3371 #define bfd_elf32_bfd_get_relocated_section_contents \
3372 elf32_avr_get_relocated_section_contents
3374 #include "elf32-target.h"