1 /* AVR-specific support for 32-bit ELF
2 Copyright (C) 1999-2018 Free Software Foundation, Inc.
3 Contributed by Denis Chertykov <denisc@overta.ru>
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
27 #include "elf32-avr.h"
28 #include "bfd_stdint.h"
30 /* Enable debugging printout at stdout with this variable. */
31 static bfd_boolean debug_relax = FALSE;
33 /* Enable debugging printout at stdout with this variable. */
34 static bfd_boolean debug_stubs = FALSE;
36 static bfd_reloc_status_type
37 bfd_elf_avr_diff_reloc (bfd *, arelent *, asymbol *, void *,
38 asection *, bfd *, char **);
40 /* Hash table initialization and handling. Code is taken from the hppa port
41 and adapted to the needs of AVR. */
43 /* We use two hash tables to hold information for linking avr objects.
45 The first is the elf32_avr_link_hash_table which is derived from the
46 stanard ELF linker hash table. We use this as a place to attach the other
47 hash table and some static information.
49 The second is the stub hash table which is derived from the base BFD
50 hash table. The stub hash table holds the information on the linker
53 struct elf32_avr_stub_hash_entry
55 /* Base hash table entry structure. */
56 struct bfd_hash_entry bh_root;
58 /* Offset within stub_sec of the beginning of this stub. */
61 /* Given the symbol's value and its section we can determine its final
62 value when building the stubs (so the stub knows where to jump). */
65 /* This way we could mark stubs to be no longer necessary. */
66 bfd_boolean is_actually_needed;
69 struct elf32_avr_link_hash_table
71 /* The main hash table. */
72 struct elf_link_hash_table etab;
74 /* The stub hash table. */
75 struct bfd_hash_table bstab;
79 /* Linker stub bfd. */
82 /* The stub section. */
85 /* Usually 0, unless we are generating code for a bootloader. Will
86 be initialized by elf32_avr_size_stubs to the vma offset of the
87 output section associated with the stub section. */
90 /* Assorted information used by elf32_avr_size_stubs. */
91 unsigned int bfd_count;
92 unsigned int top_index;
93 asection ** input_list;
94 Elf_Internal_Sym ** all_local_syms;
96 /* Tables for mapping vma beyond the 128k boundary to the address of the
97 corresponding stub. (AMT)
98 "amt_max_entry_cnt" reflects the number of entries that memory is allocated
99 for in the "amt_stub_offsets" and "amt_destination_addr" arrays.
100 "amt_entry_cnt" informs how many of these entries actually contain
102 unsigned int amt_entry_cnt;
103 unsigned int amt_max_entry_cnt;
104 bfd_vma * amt_stub_offsets;
105 bfd_vma * amt_destination_addr;
108 /* Various hash macros and functions. */
109 #define avr_link_hash_table(p) \
110 /* PR 3874: Check that we have an AVR style hash table before using it. */\
111 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
112 == AVR_ELF_DATA ? ((struct elf32_avr_link_hash_table *) ((p)->hash)) : NULL)
114 #define avr_stub_hash_entry(ent) \
115 ((struct elf32_avr_stub_hash_entry *)(ent))
117 #define avr_stub_hash_lookup(table, string, create, copy) \
118 ((struct elf32_avr_stub_hash_entry *) \
119 bfd_hash_lookup ((table), (string), (create), (copy)))
121 static reloc_howto_type elf_avr_howto_table[] =
123 HOWTO (R_AVR_NONE, /* type */
125 3, /* size (0 = byte, 1 = short, 2 = long) */
127 FALSE, /* pc_relative */
129 complain_overflow_dont, /* complain_on_overflow */
130 bfd_elf_generic_reloc, /* special_function */
131 "R_AVR_NONE", /* name */
132 FALSE, /* partial_inplace */
135 FALSE), /* pcrel_offset */
137 HOWTO (R_AVR_32, /* type */
139 2, /* size (0 = byte, 1 = short, 2 = long) */
141 FALSE, /* pc_relative */
143 complain_overflow_bitfield, /* complain_on_overflow */
144 bfd_elf_generic_reloc, /* special_function */
145 "R_AVR_32", /* name */
146 FALSE, /* partial_inplace */
147 0xffffffff, /* src_mask */
148 0xffffffff, /* dst_mask */
149 FALSE), /* pcrel_offset */
151 /* A 7 bit PC relative relocation. */
152 HOWTO (R_AVR_7_PCREL, /* type */
154 1, /* size (0 = byte, 1 = short, 2 = long) */
156 TRUE, /* pc_relative */
158 complain_overflow_bitfield, /* complain_on_overflow */
159 bfd_elf_generic_reloc, /* special_function */
160 "R_AVR_7_PCREL", /* name */
161 FALSE, /* partial_inplace */
162 0xffff, /* src_mask */
163 0xffff, /* dst_mask */
164 TRUE), /* pcrel_offset */
166 /* A 13 bit PC relative relocation. */
167 HOWTO (R_AVR_13_PCREL, /* type */
169 1, /* size (0 = byte, 1 = short, 2 = long) */
171 TRUE, /* pc_relative */
173 complain_overflow_bitfield, /* complain_on_overflow */
174 bfd_elf_generic_reloc, /* special_function */
175 "R_AVR_13_PCREL", /* name */
176 FALSE, /* partial_inplace */
177 0xfff, /* src_mask */
178 0xfff, /* dst_mask */
179 TRUE), /* pcrel_offset */
181 /* A 16 bit absolute relocation. */
182 HOWTO (R_AVR_16, /* type */
184 1, /* size (0 = byte, 1 = short, 2 = long) */
186 FALSE, /* pc_relative */
188 complain_overflow_dont, /* complain_on_overflow */
189 bfd_elf_generic_reloc, /* special_function */
190 "R_AVR_16", /* name */
191 FALSE, /* partial_inplace */
192 0xffff, /* src_mask */
193 0xffff, /* dst_mask */
194 FALSE), /* pcrel_offset */
196 /* A 16 bit absolute relocation for command address
197 Will be changed when linker stubs are needed. */
198 HOWTO (R_AVR_16_PM, /* type */
200 1, /* size (0 = byte, 1 = short, 2 = long) */
202 FALSE, /* pc_relative */
204 complain_overflow_bitfield, /* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_AVR_16_PM", /* name */
207 FALSE, /* partial_inplace */
208 0xffff, /* src_mask */
209 0xffff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211 /* A low 8 bit absolute relocation of 16 bit address.
213 HOWTO (R_AVR_LO8_LDI, /* type */
215 1, /* size (0 = byte, 1 = short, 2 = long) */
217 FALSE, /* pc_relative */
219 complain_overflow_dont, /* complain_on_overflow */
220 bfd_elf_generic_reloc, /* special_function */
221 "R_AVR_LO8_LDI", /* name */
222 FALSE, /* partial_inplace */
223 0xffff, /* src_mask */
224 0xffff, /* dst_mask */
225 FALSE), /* pcrel_offset */
226 /* A high 8 bit absolute relocation of 16 bit address.
228 HOWTO (R_AVR_HI8_LDI, /* type */
230 1, /* size (0 = byte, 1 = short, 2 = long) */
232 FALSE, /* pc_relative */
234 complain_overflow_dont, /* complain_on_overflow */
235 bfd_elf_generic_reloc, /* special_function */
236 "R_AVR_HI8_LDI", /* name */
237 FALSE, /* partial_inplace */
238 0xffff, /* src_mask */
239 0xffff, /* dst_mask */
240 FALSE), /* pcrel_offset */
241 /* A high 6 bit absolute relocation of 22 bit address.
242 For LDI command. As well second most significant 8 bit value of
243 a 32 bit link-time constant. */
244 HOWTO (R_AVR_HH8_LDI, /* type */
246 1, /* size (0 = byte, 1 = short, 2 = long) */
248 FALSE, /* pc_relative */
250 complain_overflow_dont, /* complain_on_overflow */
251 bfd_elf_generic_reloc, /* special_function */
252 "R_AVR_HH8_LDI", /* name */
253 FALSE, /* partial_inplace */
254 0xffff, /* src_mask */
255 0xffff, /* dst_mask */
256 FALSE), /* pcrel_offset */
257 /* A negative low 8 bit absolute relocation of 16 bit address.
259 HOWTO (R_AVR_LO8_LDI_NEG, /* type */
261 1, /* size (0 = byte, 1 = short, 2 = long) */
263 FALSE, /* pc_relative */
265 complain_overflow_dont, /* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_AVR_LO8_LDI_NEG", /* name */
268 FALSE, /* partial_inplace */
269 0xffff, /* src_mask */
270 0xffff, /* dst_mask */
271 FALSE), /* pcrel_offset */
272 /* A negative high 8 bit absolute relocation of 16 bit address.
274 HOWTO (R_AVR_HI8_LDI_NEG, /* type */
276 1, /* size (0 = byte, 1 = short, 2 = long) */
278 FALSE, /* pc_relative */
280 complain_overflow_dont, /* complain_on_overflow */
281 bfd_elf_generic_reloc, /* special_function */
282 "R_AVR_HI8_LDI_NEG", /* name */
283 FALSE, /* partial_inplace */
284 0xffff, /* src_mask */
285 0xffff, /* dst_mask */
286 FALSE), /* pcrel_offset */
287 /* A negative high 6 bit absolute relocation of 22 bit address.
289 HOWTO (R_AVR_HH8_LDI_NEG, /* type */
291 1, /* size (0 = byte, 1 = short, 2 = long) */
293 FALSE, /* pc_relative */
295 complain_overflow_dont, /* complain_on_overflow */
296 bfd_elf_generic_reloc, /* special_function */
297 "R_AVR_HH8_LDI_NEG", /* name */
298 FALSE, /* partial_inplace */
299 0xffff, /* src_mask */
300 0xffff, /* dst_mask */
301 FALSE), /* pcrel_offset */
302 /* A low 8 bit absolute relocation of 24 bit program memory address.
303 For LDI command. Will not be changed when linker stubs are needed. */
304 HOWTO (R_AVR_LO8_LDI_PM, /* type */
306 1, /* size (0 = byte, 1 = short, 2 = long) */
308 FALSE, /* pc_relative */
310 complain_overflow_dont, /* complain_on_overflow */
311 bfd_elf_generic_reloc, /* special_function */
312 "R_AVR_LO8_LDI_PM", /* name */
313 FALSE, /* partial_inplace */
314 0xffff, /* src_mask */
315 0xffff, /* dst_mask */
316 FALSE), /* pcrel_offset */
317 /* A low 8 bit absolute relocation of 24 bit program memory address.
318 For LDI command. Will not be changed when linker stubs are needed. */
319 HOWTO (R_AVR_HI8_LDI_PM, /* type */
321 1, /* size (0 = byte, 1 = short, 2 = long) */
323 FALSE, /* pc_relative */
325 complain_overflow_dont, /* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_AVR_HI8_LDI_PM", /* name */
328 FALSE, /* partial_inplace */
329 0xffff, /* src_mask */
330 0xffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332 /* A low 8 bit absolute relocation of 24 bit program memory address.
333 For LDI command. Will not be changed when linker stubs are needed. */
334 HOWTO (R_AVR_HH8_LDI_PM, /* type */
336 1, /* size (0 = byte, 1 = short, 2 = long) */
338 FALSE, /* pc_relative */
340 complain_overflow_dont, /* complain_on_overflow */
341 bfd_elf_generic_reloc, /* special_function */
342 "R_AVR_HH8_LDI_PM", /* name */
343 FALSE, /* partial_inplace */
344 0xffff, /* src_mask */
345 0xffff, /* dst_mask */
346 FALSE), /* pcrel_offset */
347 /* A low 8 bit absolute relocation of 24 bit program memory address.
348 For LDI command. Will not be changed when linker stubs are needed. */
349 HOWTO (R_AVR_LO8_LDI_PM_NEG, /* type */
351 1, /* size (0 = byte, 1 = short, 2 = long) */
353 FALSE, /* pc_relative */
355 complain_overflow_dont, /* complain_on_overflow */
356 bfd_elf_generic_reloc, /* special_function */
357 "R_AVR_LO8_LDI_PM_NEG", /* name */
358 FALSE, /* partial_inplace */
359 0xffff, /* src_mask */
360 0xffff, /* dst_mask */
361 FALSE), /* pcrel_offset */
362 /* A low 8 bit absolute relocation of 24 bit program memory address.
363 For LDI command. Will not be changed when linker stubs are needed. */
364 HOWTO (R_AVR_HI8_LDI_PM_NEG, /* type */
366 1, /* size (0 = byte, 1 = short, 2 = long) */
368 FALSE, /* pc_relative */
370 complain_overflow_dont, /* complain_on_overflow */
371 bfd_elf_generic_reloc, /* special_function */
372 "R_AVR_HI8_LDI_PM_NEG", /* name */
373 FALSE, /* partial_inplace */
374 0xffff, /* src_mask */
375 0xffff, /* dst_mask */
376 FALSE), /* pcrel_offset */
377 /* A low 8 bit absolute relocation of 24 bit program memory address.
378 For LDI command. Will not be changed when linker stubs are needed. */
379 HOWTO (R_AVR_HH8_LDI_PM_NEG, /* type */
381 1, /* size (0 = byte, 1 = short, 2 = long) */
383 FALSE, /* pc_relative */
385 complain_overflow_dont, /* complain_on_overflow */
386 bfd_elf_generic_reloc, /* special_function */
387 "R_AVR_HH8_LDI_PM_NEG", /* name */
388 FALSE, /* partial_inplace */
389 0xffff, /* src_mask */
390 0xffff, /* dst_mask */
391 FALSE), /* pcrel_offset */
392 /* Relocation for CALL command in ATmega. */
393 HOWTO (R_AVR_CALL, /* type */
395 2, /* size (0 = byte, 1 = short, 2 = long) */
397 FALSE, /* pc_relative */
399 complain_overflow_dont,/* complain_on_overflow */
400 bfd_elf_generic_reloc, /* special_function */
401 "R_AVR_CALL", /* name */
402 FALSE, /* partial_inplace */
403 0xffffffff, /* src_mask */
404 0xffffffff, /* dst_mask */
405 FALSE), /* pcrel_offset */
406 /* A 16 bit absolute relocation of 16 bit address.
408 HOWTO (R_AVR_LDI, /* type */
410 1, /* size (0 = byte, 1 = short, 2 = long) */
412 FALSE, /* pc_relative */
414 complain_overflow_dont,/* complain_on_overflow */
415 bfd_elf_generic_reloc, /* special_function */
416 "R_AVR_LDI", /* name */
417 FALSE, /* partial_inplace */
418 0xffff, /* src_mask */
419 0xffff, /* dst_mask */
420 FALSE), /* pcrel_offset */
421 /* A 6 bit absolute relocation of 6 bit offset.
422 For ldd/sdd command. */
423 HOWTO (R_AVR_6, /* type */
425 0, /* size (0 = byte, 1 = short, 2 = long) */
427 FALSE, /* pc_relative */
429 complain_overflow_dont,/* complain_on_overflow */
430 bfd_elf_generic_reloc, /* special_function */
431 "R_AVR_6", /* name */
432 FALSE, /* partial_inplace */
433 0xffff, /* src_mask */
434 0xffff, /* dst_mask */
435 FALSE), /* pcrel_offset */
436 /* A 6 bit absolute relocation of 6 bit offset.
437 For sbiw/adiw command. */
438 HOWTO (R_AVR_6_ADIW, /* type */
440 0, /* size (0 = byte, 1 = short, 2 = long) */
442 FALSE, /* pc_relative */
444 complain_overflow_dont,/* complain_on_overflow */
445 bfd_elf_generic_reloc, /* special_function */
446 "R_AVR_6_ADIW", /* name */
447 FALSE, /* partial_inplace */
448 0xffff, /* src_mask */
449 0xffff, /* dst_mask */
450 FALSE), /* pcrel_offset */
451 /* Most significant 8 bit value of a 32 bit link-time constant. */
452 HOWTO (R_AVR_MS8_LDI, /* type */
454 1, /* size (0 = byte, 1 = short, 2 = long) */
456 FALSE, /* pc_relative */
458 complain_overflow_dont, /* complain_on_overflow */
459 bfd_elf_generic_reloc, /* special_function */
460 "R_AVR_MS8_LDI", /* name */
461 FALSE, /* partial_inplace */
462 0xffff, /* src_mask */
463 0xffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465 /* Negative most significant 8 bit value of a 32 bit link-time constant. */
466 HOWTO (R_AVR_MS8_LDI_NEG, /* type */
468 1, /* size (0 = byte, 1 = short, 2 = long) */
470 FALSE, /* pc_relative */
472 complain_overflow_dont, /* complain_on_overflow */
473 bfd_elf_generic_reloc, /* special_function */
474 "R_AVR_MS8_LDI_NEG", /* name */
475 FALSE, /* partial_inplace */
476 0xffff, /* src_mask */
477 0xffff, /* dst_mask */
478 FALSE), /* pcrel_offset */
479 /* A low 8 bit absolute relocation of 24 bit program memory address.
480 For LDI command. Will be changed when linker stubs are needed. */
481 HOWTO (R_AVR_LO8_LDI_GS, /* type */
483 1, /* size (0 = byte, 1 = short, 2 = long) */
485 FALSE, /* pc_relative */
487 complain_overflow_dont, /* complain_on_overflow */
488 bfd_elf_generic_reloc, /* special_function */
489 "R_AVR_LO8_LDI_GS", /* name */
490 FALSE, /* partial_inplace */
491 0xffff, /* src_mask */
492 0xffff, /* dst_mask */
493 FALSE), /* pcrel_offset */
494 /* A low 8 bit absolute relocation of 24 bit program memory address.
495 For LDI command. Will be changed when linker stubs are needed. */
496 HOWTO (R_AVR_HI8_LDI_GS, /* type */
498 1, /* size (0 = byte, 1 = short, 2 = long) */
500 FALSE, /* pc_relative */
502 complain_overflow_dont, /* complain_on_overflow */
503 bfd_elf_generic_reloc, /* special_function */
504 "R_AVR_HI8_LDI_GS", /* name */
505 FALSE, /* partial_inplace */
506 0xffff, /* src_mask */
507 0xffff, /* dst_mask */
508 FALSE), /* pcrel_offset */
510 HOWTO (R_AVR_8, /* type */
512 0, /* size (0 = byte, 1 = short, 2 = long) */
514 FALSE, /* pc_relative */
516 complain_overflow_bitfield,/* complain_on_overflow */
517 bfd_elf_generic_reloc, /* special_function */
518 "R_AVR_8", /* name */
519 FALSE, /* partial_inplace */
520 0x000000ff, /* src_mask */
521 0x000000ff, /* dst_mask */
522 FALSE), /* pcrel_offset */
523 /* lo8-part to use in .byte lo8(sym). */
524 HOWTO (R_AVR_8_LO8, /* type */
526 0, /* size (0 = byte, 1 = short, 2 = long) */
528 FALSE, /* pc_relative */
530 complain_overflow_dont,/* complain_on_overflow */
531 bfd_elf_generic_reloc, /* special_function */
532 "R_AVR_8_LO8", /* name */
533 FALSE, /* partial_inplace */
534 0xffffff, /* src_mask */
535 0xffffff, /* dst_mask */
536 FALSE), /* pcrel_offset */
537 /* hi8-part to use in .byte hi8(sym). */
538 HOWTO (R_AVR_8_HI8, /* type */
540 0, /* size (0 = byte, 1 = short, 2 = long) */
542 FALSE, /* pc_relative */
544 complain_overflow_dont,/* complain_on_overflow */
545 bfd_elf_generic_reloc, /* special_function */
546 "R_AVR_8_HI8", /* name */
547 FALSE, /* partial_inplace */
548 0xffffff, /* src_mask */
549 0xffffff, /* dst_mask */
550 FALSE), /* pcrel_offset */
551 /* hlo8-part to use in .byte hlo8(sym). */
552 HOWTO (R_AVR_8_HLO8, /* type */
554 0, /* size (0 = byte, 1 = short, 2 = long) */
556 FALSE, /* pc_relative */
558 complain_overflow_dont,/* complain_on_overflow */
559 bfd_elf_generic_reloc, /* special_function */
560 "R_AVR_8_HLO8", /* name */
561 FALSE, /* partial_inplace */
562 0xffffff, /* src_mask */
563 0xffffff, /* dst_mask */
564 FALSE), /* pcrel_offset */
565 HOWTO (R_AVR_DIFF8, /* type */
567 0, /* size (0 = byte, 1 = short, 2 = long) */
569 FALSE, /* pc_relative */
571 complain_overflow_bitfield, /* complain_on_overflow */
572 bfd_elf_avr_diff_reloc, /* special_function */
573 "R_AVR_DIFF8", /* name */
574 FALSE, /* partial_inplace */
577 FALSE), /* pcrel_offset */
578 HOWTO (R_AVR_DIFF16, /* type */
580 1, /* size (0 = byte, 1 = short, 2 = long) */
582 FALSE, /* pc_relative */
584 complain_overflow_bitfield, /* complain_on_overflow */
585 bfd_elf_avr_diff_reloc,/* special_function */
586 "R_AVR_DIFF16", /* name */
587 FALSE, /* partial_inplace */
589 0xffff, /* dst_mask */
590 FALSE), /* pcrel_offset */
591 HOWTO (R_AVR_DIFF32, /* type */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
595 FALSE, /* pc_relative */
597 complain_overflow_bitfield, /* complain_on_overflow */
598 bfd_elf_avr_diff_reloc,/* special_function */
599 "R_AVR_DIFF32", /* name */
600 FALSE, /* partial_inplace */
602 0xffffffff, /* dst_mask */
603 FALSE), /* pcrel_offset */
604 /* 7 bit immediate for LDS/STS in Tiny core. */
605 HOWTO (R_AVR_LDS_STS_16, /* type */
607 1, /* size (0 = byte, 1 = short, 2 = long) */
609 FALSE, /* pc_relative */
611 complain_overflow_dont,/* complain_on_overflow */
612 bfd_elf_generic_reloc, /* special_function */
613 "R_AVR_LDS_STS_16", /* name */
614 FALSE, /* partial_inplace */
615 0xffff, /* src_mask */
616 0xffff, /* dst_mask */
617 FALSE), /* pcrel_offset */
619 HOWTO (R_AVR_PORT6, /* type */
621 0, /* size (0 = byte, 1 = short, 2 = long) */
623 FALSE, /* pc_relative */
625 complain_overflow_dont,/* complain_on_overflow */
626 bfd_elf_generic_reloc, /* special_function */
627 "R_AVR_PORT6", /* name */
628 FALSE, /* partial_inplace */
629 0xffffff, /* src_mask */
630 0xffffff, /* dst_mask */
631 FALSE), /* pcrel_offset */
632 HOWTO (R_AVR_PORT5, /* type */
634 0, /* size (0 = byte, 1 = short, 2 = long) */
636 FALSE, /* pc_relative */
638 complain_overflow_dont,/* complain_on_overflow */
639 bfd_elf_generic_reloc, /* special_function */
640 "R_AVR_PORT5", /* name */
641 FALSE, /* partial_inplace */
642 0xffffff, /* src_mask */
643 0xffffff, /* dst_mask */
644 FALSE), /* pcrel_offset */
646 /* A 32 bit PC relative relocation. */
647 HOWTO (R_AVR_32_PCREL, /* type */
649 2, /* size (0 = byte, 1 = short, 2 = long) */
651 TRUE, /* pc_relative */
653 complain_overflow_bitfield, /* complain_on_overflow */
654 bfd_elf_generic_reloc, /* special_function */
655 "R_AVR_32_PCREL", /* name */
656 FALSE, /* partial_inplace */
657 0xffffffff, /* src_mask */
658 0xffffffff, /* dst_mask */
659 TRUE), /* pcrel_offset */
662 /* Map BFD reloc types to AVR ELF reloc types. */
666 bfd_reloc_code_real_type bfd_reloc_val;
667 unsigned int elf_reloc_val;
670 static const struct avr_reloc_map avr_reloc_map[] =
672 { BFD_RELOC_NONE, R_AVR_NONE },
673 { BFD_RELOC_32, R_AVR_32 },
674 { BFD_RELOC_AVR_7_PCREL, R_AVR_7_PCREL },
675 { BFD_RELOC_AVR_13_PCREL, R_AVR_13_PCREL },
676 { BFD_RELOC_16, R_AVR_16 },
677 { BFD_RELOC_AVR_16_PM, R_AVR_16_PM },
678 { BFD_RELOC_AVR_LO8_LDI, R_AVR_LO8_LDI},
679 { BFD_RELOC_AVR_HI8_LDI, R_AVR_HI8_LDI },
680 { BFD_RELOC_AVR_HH8_LDI, R_AVR_HH8_LDI },
681 { BFD_RELOC_AVR_MS8_LDI, R_AVR_MS8_LDI },
682 { BFD_RELOC_AVR_LO8_LDI_NEG, R_AVR_LO8_LDI_NEG },
683 { BFD_RELOC_AVR_HI8_LDI_NEG, R_AVR_HI8_LDI_NEG },
684 { BFD_RELOC_AVR_HH8_LDI_NEG, R_AVR_HH8_LDI_NEG },
685 { BFD_RELOC_AVR_MS8_LDI_NEG, R_AVR_MS8_LDI_NEG },
686 { BFD_RELOC_AVR_LO8_LDI_PM, R_AVR_LO8_LDI_PM },
687 { BFD_RELOC_AVR_LO8_LDI_GS, R_AVR_LO8_LDI_GS },
688 { BFD_RELOC_AVR_HI8_LDI_PM, R_AVR_HI8_LDI_PM },
689 { BFD_RELOC_AVR_HI8_LDI_GS, R_AVR_HI8_LDI_GS },
690 { BFD_RELOC_AVR_HH8_LDI_PM, R_AVR_HH8_LDI_PM },
691 { BFD_RELOC_AVR_LO8_LDI_PM_NEG, R_AVR_LO8_LDI_PM_NEG },
692 { BFD_RELOC_AVR_HI8_LDI_PM_NEG, R_AVR_HI8_LDI_PM_NEG },
693 { BFD_RELOC_AVR_HH8_LDI_PM_NEG, R_AVR_HH8_LDI_PM_NEG },
694 { BFD_RELOC_AVR_CALL, R_AVR_CALL },
695 { BFD_RELOC_AVR_LDI, R_AVR_LDI },
696 { BFD_RELOC_AVR_6, R_AVR_6 },
697 { BFD_RELOC_AVR_6_ADIW, R_AVR_6_ADIW },
698 { BFD_RELOC_8, R_AVR_8 },
699 { BFD_RELOC_AVR_8_LO, R_AVR_8_LO8 },
700 { BFD_RELOC_AVR_8_HI, R_AVR_8_HI8 },
701 { BFD_RELOC_AVR_8_HLO, R_AVR_8_HLO8 },
702 { BFD_RELOC_AVR_DIFF8, R_AVR_DIFF8 },
703 { BFD_RELOC_AVR_DIFF16, R_AVR_DIFF16 },
704 { BFD_RELOC_AVR_DIFF32, R_AVR_DIFF32 },
705 { BFD_RELOC_AVR_LDS_STS_16, R_AVR_LDS_STS_16},
706 { BFD_RELOC_AVR_PORT6, R_AVR_PORT6},
707 { BFD_RELOC_AVR_PORT5, R_AVR_PORT5},
708 { BFD_RELOC_32_PCREL, R_AVR_32_PCREL}
711 static const struct bfd_elf_special_section elf_avr_special_sections[] =
713 { STRING_COMMA_LEN (".noinit"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
717 /* Meant to be filled one day with the wrap around address for the
718 specific device. I.e. should get the value 0x4000 for 16k devices,
719 0x8000 for 32k devices and so on.
721 We initialize it here with a value of 0x1000000 resulting in
722 that we will never suggest a wrap-around jump during relaxation.
723 The logic of the source code later on assumes that in
724 avr_pc_wrap_around one single bit is set. */
725 static bfd_vma avr_pc_wrap_around = 0x10000000;
727 /* If this variable holds a value different from zero, the linker relaxation
728 machine will try to optimize call/ret sequences by a single jump
729 instruction. This option could be switched off by a linker switch. */
730 static int avr_replace_call_ret_sequences = 1;
733 /* Per-section relaxation related information for avr. */
735 struct avr_relax_info
737 /* Track the avr property records that apply to this section. */
741 /* Number of records in the list. */
744 /* How many records worth of space have we allocated. */
747 /* The records, only COUNT records are initialised. */
748 struct avr_property_record *items;
752 /* Per section data, specialised for avr. */
754 struct elf_avr_section_data
756 /* The standard data must appear first. */
757 struct bfd_elf_section_data elf;
759 /* Relaxation related information. */
760 struct avr_relax_info relax_info;
763 /* Possibly initialise avr specific data for new section SEC from ABFD. */
766 elf_avr_new_section_hook (bfd *abfd, asection *sec)
768 if (!sec->used_by_bfd)
770 struct elf_avr_section_data *sdata;
771 bfd_size_type amt = sizeof (*sdata);
773 sdata = bfd_zalloc (abfd, amt);
776 sec->used_by_bfd = sdata;
779 return _bfd_elf_new_section_hook (abfd, sec);
782 /* Return a pointer to the relaxation information for SEC. */
784 static struct avr_relax_info *
785 get_avr_relax_info (asection *sec)
787 struct elf_avr_section_data *section_data;
789 /* No info available if no section or if it is an output section. */
790 if (!sec || sec == sec->output_section)
793 section_data = (struct elf_avr_section_data *) elf_section_data (sec);
794 return §ion_data->relax_info;
797 /* Initialise the per section relaxation information for SEC. */
800 init_avr_relax_info (asection *sec)
802 struct avr_relax_info *relax_info = get_avr_relax_info (sec);
804 relax_info->records.count = 0;
805 relax_info->records.allocated = 0;
806 relax_info->records.items = NULL;
809 /* Initialize an entry in the stub hash table. */
811 static struct bfd_hash_entry *
812 stub_hash_newfunc (struct bfd_hash_entry *entry,
813 struct bfd_hash_table *table,
816 /* Allocate the structure if it has not already been allocated by a
820 entry = bfd_hash_allocate (table,
821 sizeof (struct elf32_avr_stub_hash_entry));
826 /* Call the allocation method of the superclass. */
827 entry = bfd_hash_newfunc (entry, table, string);
830 struct elf32_avr_stub_hash_entry *hsh;
832 /* Initialize the local fields. */
833 hsh = avr_stub_hash_entry (entry);
834 hsh->stub_offset = 0;
835 hsh->target_value = 0;
841 /* This function is just a straight passthrough to the real
842 function in linker.c. Its prupose is so that its address
843 can be compared inside the avr_link_hash_table macro. */
845 static struct bfd_hash_entry *
846 elf32_avr_link_hash_newfunc (struct bfd_hash_entry * entry,
847 struct bfd_hash_table * table,
850 return _bfd_elf_link_hash_newfunc (entry, table, string);
853 /* Free the derived linker hash table. */
856 elf32_avr_link_hash_table_free (bfd *obfd)
858 struct elf32_avr_link_hash_table *htab
859 = (struct elf32_avr_link_hash_table *) obfd->link.hash;
861 /* Free the address mapping table. */
862 if (htab->amt_stub_offsets != NULL)
863 free (htab->amt_stub_offsets);
864 if (htab->amt_destination_addr != NULL)
865 free (htab->amt_destination_addr);
867 bfd_hash_table_free (&htab->bstab);
868 _bfd_elf_link_hash_table_free (obfd);
871 /* Create the derived linker hash table. The AVR ELF port uses the derived
872 hash table to keep information specific to the AVR ELF linker (without
873 using static variables). */
875 static struct bfd_link_hash_table *
876 elf32_avr_link_hash_table_create (bfd *abfd)
878 struct elf32_avr_link_hash_table *htab;
879 bfd_size_type amt = sizeof (*htab);
881 htab = bfd_zmalloc (amt);
885 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd,
886 elf32_avr_link_hash_newfunc,
887 sizeof (struct elf_link_hash_entry),
894 /* Init the stub hash table too. */
895 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
896 sizeof (struct elf32_avr_stub_hash_entry)))
898 _bfd_elf_link_hash_table_free (abfd);
901 htab->etab.root.hash_table_free = elf32_avr_link_hash_table_free;
903 return &htab->etab.root;
906 /* Calculates the effective distance of a pc relative jump/call. */
909 avr_relative_distance_considering_wrap_around (unsigned int distance)
911 unsigned int wrap_around_mask = avr_pc_wrap_around - 1;
912 int dist_with_wrap_around = distance & wrap_around_mask;
914 if (dist_with_wrap_around > ((int) (avr_pc_wrap_around >> 1)))
915 dist_with_wrap_around -= avr_pc_wrap_around;
917 return dist_with_wrap_around;
921 static reloc_howto_type *
922 bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
923 bfd_reloc_code_real_type code)
928 i < sizeof (avr_reloc_map) / sizeof (struct avr_reloc_map);
930 if (avr_reloc_map[i].bfd_reloc_val == code)
931 return &elf_avr_howto_table[avr_reloc_map[i].elf_reloc_val];
936 static reloc_howto_type *
937 bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
943 i < sizeof (elf_avr_howto_table) / sizeof (elf_avr_howto_table[0]);
945 if (elf_avr_howto_table[i].name != NULL
946 && strcasecmp (elf_avr_howto_table[i].name, r_name) == 0)
947 return &elf_avr_howto_table[i];
952 /* Set the howto pointer for an AVR ELF reloc. */
955 avr_info_to_howto_rela (bfd *abfd,
957 Elf_Internal_Rela *dst)
961 r_type = ELF32_R_TYPE (dst->r_info);
962 if (r_type >= (unsigned int) R_AVR_max)
964 /* xgettext:c-format */
965 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
967 bfd_set_error (bfd_error_bad_value);
970 cache_ptr->howto = &elf_avr_howto_table[r_type];
975 avr_stub_is_required_for_16_bit_reloc (bfd_vma relocation)
977 return (relocation >= 0x020000);
980 /* Returns the address of the corresponding stub if there is one.
981 Returns otherwise an address above 0x020000. This function
982 could also be used, if there is no knowledge on the section where
983 the destination is found. */
986 avr_get_stub_addr (bfd_vma srel,
987 struct elf32_avr_link_hash_table *htab)
990 bfd_vma stub_sec_addr =
991 (htab->stub_sec->output_section->vma +
992 htab->stub_sec->output_offset);
994 for (sindex = 0; sindex < htab->amt_max_entry_cnt; sindex ++)
995 if (htab->amt_destination_addr[sindex] == srel)
996 return htab->amt_stub_offsets[sindex] + stub_sec_addr;
998 /* Return an address that could not be reached by 16 bit relocs. */
1002 /* Perform a diff relocation. Nothing to do, as the difference value is already
1003 written into the section's contents. */
1005 static bfd_reloc_status_type
1006 bfd_elf_avr_diff_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1007 arelent *reloc_entry ATTRIBUTE_UNUSED,
1008 asymbol *symbol ATTRIBUTE_UNUSED,
1009 void *data ATTRIBUTE_UNUSED,
1010 asection *input_section ATTRIBUTE_UNUSED,
1011 bfd *output_bfd ATTRIBUTE_UNUSED,
1012 char **error_message ATTRIBUTE_UNUSED)
1014 return bfd_reloc_ok;
1018 /* Perform a single relocation. By default we use the standard BFD
1019 routines, but a few relocs, we have to do them ourselves. */
1021 static bfd_reloc_status_type
1022 avr_final_link_relocate (reloc_howto_type * howto,
1024 asection * input_section,
1025 bfd_byte * contents,
1026 Elf_Internal_Rela * rel,
1028 struct elf32_avr_link_hash_table * htab)
1030 bfd_reloc_status_type r = bfd_reloc_ok;
1032 bfd_signed_vma srel;
1033 bfd_signed_vma reloc_addr;
1034 bfd_boolean use_stubs = FALSE;
1035 /* Usually is 0, unless we are generating code for a bootloader. */
1036 bfd_signed_vma base_addr = htab->vector_base;
1038 /* Absolute addr of the reloc in the final excecutable. */
1039 reloc_addr = rel->r_offset + input_section->output_section->vma
1040 + input_section->output_offset;
1042 switch (howto->type)
1045 contents += rel->r_offset;
1046 srel = (bfd_signed_vma) relocation;
1047 srel += rel->r_addend;
1048 srel -= rel->r_offset;
1049 srel -= 2; /* Branch instructions add 2 to the PC... */
1050 srel -= (input_section->output_section->vma +
1051 input_section->output_offset);
1054 return bfd_reloc_outofrange;
1055 if (srel > ((1 << 7) - 1) || (srel < - (1 << 7)))
1056 return bfd_reloc_overflow;
1057 x = bfd_get_16 (input_bfd, contents);
1058 x = (x & 0xfc07) | (((srel >> 1) << 3) & 0x3f8);
1059 bfd_put_16 (input_bfd, x, contents);
1062 case R_AVR_13_PCREL:
1063 contents += rel->r_offset;
1064 srel = (bfd_signed_vma) relocation;
1065 srel += rel->r_addend;
1066 srel -= rel->r_offset;
1067 srel -= 2; /* Branch instructions add 2 to the PC... */
1068 srel -= (input_section->output_section->vma +
1069 input_section->output_offset);
1072 return bfd_reloc_outofrange;
1074 srel = avr_relative_distance_considering_wrap_around (srel);
1076 /* AVR addresses commands as words. */
1079 /* Check for overflow. */
1080 if (srel < -2048 || srel > 2047)
1082 /* Relative distance is too large. */
1084 /* Always apply WRAPAROUND for avr2, avr25, and avr4. */
1085 switch (bfd_get_mach (input_bfd))
1088 case bfd_mach_avr25:
1093 return bfd_reloc_overflow;
1097 x = bfd_get_16 (input_bfd, contents);
1098 x = (x & 0xf000) | (srel & 0xfff);
1099 bfd_put_16 (input_bfd, x, contents);
1103 contents += rel->r_offset;
1104 srel = (bfd_signed_vma) relocation + rel->r_addend;
1105 x = bfd_get_16 (input_bfd, contents);
1106 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1107 bfd_put_16 (input_bfd, x, contents);
1111 contents += rel->r_offset;
1112 srel = (bfd_signed_vma) relocation + rel->r_addend;
1113 if (((srel > 0) && (srel & 0xffff) > 255)
1114 || ((srel < 0) && ((-srel) & 0xffff) > 128))
1115 /* Remove offset for data/eeprom section. */
1116 return bfd_reloc_overflow;
1118 x = bfd_get_16 (input_bfd, contents);
1119 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1120 bfd_put_16 (input_bfd, x, contents);
1124 contents += rel->r_offset;
1125 srel = (bfd_signed_vma) relocation + rel->r_addend;
1126 if (((srel & 0xffff) > 63) || (srel < 0))
1127 /* Remove offset for data/eeprom section. */
1128 return bfd_reloc_overflow;
1129 x = bfd_get_16 (input_bfd, contents);
1130 x = (x & 0xd3f8) | ((srel & 7) | ((srel & (3 << 3)) << 7)
1131 | ((srel & (1 << 5)) << 8));
1132 bfd_put_16 (input_bfd, x, contents);
1136 contents += rel->r_offset;
1137 srel = (bfd_signed_vma) relocation + rel->r_addend;
1138 if (((srel & 0xffff) > 63) || (srel < 0))
1139 /* Remove offset for data/eeprom section. */
1140 return bfd_reloc_overflow;
1141 x = bfd_get_16 (input_bfd, contents);
1142 x = (x & 0xff30) | (srel & 0xf) | ((srel & 0x30) << 2);
1143 bfd_put_16 (input_bfd, x, contents);
1147 contents += rel->r_offset;
1148 srel = (bfd_signed_vma) relocation + rel->r_addend;
1149 srel = (srel >> 8) & 0xff;
1150 x = bfd_get_16 (input_bfd, contents);
1151 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1152 bfd_put_16 (input_bfd, x, contents);
1156 contents += rel->r_offset;
1157 srel = (bfd_signed_vma) relocation + rel->r_addend;
1158 srel = (srel >> 16) & 0xff;
1159 x = bfd_get_16 (input_bfd, contents);
1160 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1161 bfd_put_16 (input_bfd, x, contents);
1165 contents += rel->r_offset;
1166 srel = (bfd_signed_vma) relocation + rel->r_addend;
1167 srel = (srel >> 24) & 0xff;
1168 x = bfd_get_16 (input_bfd, contents);
1169 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1170 bfd_put_16 (input_bfd, x, contents);
1173 case R_AVR_LO8_LDI_NEG:
1174 contents += rel->r_offset;
1175 srel = (bfd_signed_vma) relocation + rel->r_addend;
1177 x = bfd_get_16 (input_bfd, contents);
1178 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1179 bfd_put_16 (input_bfd, x, contents);
1182 case R_AVR_HI8_LDI_NEG:
1183 contents += rel->r_offset;
1184 srel = (bfd_signed_vma) relocation + rel->r_addend;
1186 srel = (srel >> 8) & 0xff;
1187 x = bfd_get_16 (input_bfd, contents);
1188 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1189 bfd_put_16 (input_bfd, x, contents);
1192 case R_AVR_HH8_LDI_NEG:
1193 contents += rel->r_offset;
1194 srel = (bfd_signed_vma) relocation + rel->r_addend;
1196 srel = (srel >> 16) & 0xff;
1197 x = bfd_get_16 (input_bfd, contents);
1198 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1199 bfd_put_16 (input_bfd, x, contents);
1202 case R_AVR_MS8_LDI_NEG:
1203 contents += rel->r_offset;
1204 srel = (bfd_signed_vma) relocation + rel->r_addend;
1206 srel = (srel >> 24) & 0xff;
1207 x = bfd_get_16 (input_bfd, contents);
1208 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1209 bfd_put_16 (input_bfd, x, contents);
1212 case R_AVR_LO8_LDI_GS:
1213 use_stubs = (!htab->no_stubs);
1215 case R_AVR_LO8_LDI_PM:
1216 contents += rel->r_offset;
1217 srel = (bfd_signed_vma) relocation + rel->r_addend;
1220 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1222 bfd_vma old_srel = srel;
1224 /* We need to use the address of the stub instead. */
1225 srel = avr_get_stub_addr (srel, htab);
1227 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1228 "reloc at address 0x%x.\n",
1229 (unsigned int) srel,
1230 (unsigned int) old_srel,
1231 (unsigned int) reloc_addr);
1233 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1234 return bfd_reloc_outofrange;
1238 return bfd_reloc_outofrange;
1240 x = bfd_get_16 (input_bfd, contents);
1241 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1242 bfd_put_16 (input_bfd, x, contents);
1245 case R_AVR_HI8_LDI_GS:
1246 use_stubs = (!htab->no_stubs);
1248 case R_AVR_HI8_LDI_PM:
1249 contents += rel->r_offset;
1250 srel = (bfd_signed_vma) relocation + rel->r_addend;
1253 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1255 bfd_vma old_srel = srel;
1257 /* We need to use the address of the stub instead. */
1258 srel = avr_get_stub_addr (srel, htab);
1260 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1261 "reloc at address 0x%x.\n",
1262 (unsigned int) srel,
1263 (unsigned int) old_srel,
1264 (unsigned int) reloc_addr);
1266 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1267 return bfd_reloc_outofrange;
1271 return bfd_reloc_outofrange;
1273 srel = (srel >> 8) & 0xff;
1274 x = bfd_get_16 (input_bfd, contents);
1275 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1276 bfd_put_16 (input_bfd, x, contents);
1279 case R_AVR_HH8_LDI_PM:
1280 contents += rel->r_offset;
1281 srel = (bfd_signed_vma) relocation + rel->r_addend;
1283 return bfd_reloc_outofrange;
1285 srel = (srel >> 16) & 0xff;
1286 x = bfd_get_16 (input_bfd, contents);
1287 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1288 bfd_put_16 (input_bfd, x, contents);
1291 case R_AVR_LO8_LDI_PM_NEG:
1292 contents += rel->r_offset;
1293 srel = (bfd_signed_vma) relocation + rel->r_addend;
1296 return bfd_reloc_outofrange;
1298 x = bfd_get_16 (input_bfd, contents);
1299 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1300 bfd_put_16 (input_bfd, x, contents);
1303 case R_AVR_HI8_LDI_PM_NEG:
1304 contents += rel->r_offset;
1305 srel = (bfd_signed_vma) relocation + rel->r_addend;
1308 return bfd_reloc_outofrange;
1310 srel = (srel >> 8) & 0xff;
1311 x = bfd_get_16 (input_bfd, contents);
1312 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1313 bfd_put_16 (input_bfd, x, contents);
1316 case R_AVR_HH8_LDI_PM_NEG:
1317 contents += rel->r_offset;
1318 srel = (bfd_signed_vma) relocation + rel->r_addend;
1321 return bfd_reloc_outofrange;
1323 srel = (srel >> 16) & 0xff;
1324 x = bfd_get_16 (input_bfd, contents);
1325 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1326 bfd_put_16 (input_bfd, x, contents);
1330 contents += rel->r_offset;
1331 srel = (bfd_signed_vma) relocation + rel->r_addend;
1333 return bfd_reloc_outofrange;
1335 x = bfd_get_16 (input_bfd, contents);
1336 x |= ((srel & 0x10000) | ((srel << 3) & 0x1f00000)) >> 16;
1337 bfd_put_16 (input_bfd, x, contents);
1338 bfd_put_16 (input_bfd, (bfd_vma) srel & 0xffff, contents+2);
1342 use_stubs = (!htab->no_stubs);
1343 contents += rel->r_offset;
1344 srel = (bfd_signed_vma) relocation + rel->r_addend;
1347 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1349 bfd_vma old_srel = srel;
1351 /* We need to use the address of the stub instead. */
1352 srel = avr_get_stub_addr (srel,htab);
1354 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1355 "reloc at address 0x%x.\n",
1356 (unsigned int) srel,
1357 (unsigned int) old_srel,
1358 (unsigned int) reloc_addr);
1360 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1361 return bfd_reloc_outofrange;
1365 return bfd_reloc_outofrange;
1367 bfd_put_16 (input_bfd, (bfd_vma) srel &0x00ffff, contents);
1373 /* Nothing to do here, as contents already contains the diff value. */
1377 case R_AVR_LDS_STS_16:
1378 contents += rel->r_offset;
1379 srel = (bfd_signed_vma) relocation + rel->r_addend;
1380 if ((srel & 0xFFFF) < 0x40 || (srel & 0xFFFF) > 0xbf)
1381 return bfd_reloc_outofrange;
1383 x = bfd_get_16 (input_bfd, contents);
1384 x |= (srel & 0x0f) | ((srel & 0x30) << 5) | ((srel & 0x40) << 2);
1385 bfd_put_16 (input_bfd, x, contents);
1389 contents += rel->r_offset;
1390 srel = (bfd_signed_vma) relocation + rel->r_addend;
1391 if ((srel & 0xffff) > 0x3f)
1392 return bfd_reloc_outofrange;
1393 x = bfd_get_16 (input_bfd, contents);
1394 x = (x & 0xf9f0) | ((srel & 0x30) << 5) | (srel & 0x0f);
1395 bfd_put_16 (input_bfd, x, contents);
1399 contents += rel->r_offset;
1400 srel = (bfd_signed_vma) relocation + rel->r_addend;
1401 if ((srel & 0xffff) > 0x1f)
1402 return bfd_reloc_outofrange;
1403 x = bfd_get_16 (input_bfd, contents);
1404 x = (x & 0xff07) | ((srel & 0x1f) << 3);
1405 bfd_put_16 (input_bfd, x, contents);
1409 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1410 contents, rel->r_offset,
1411 relocation, rel->r_addend);
1417 /* Relocate an AVR ELF section. */
1420 elf32_avr_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1421 struct bfd_link_info *info,
1423 asection *input_section,
1425 Elf_Internal_Rela *relocs,
1426 Elf_Internal_Sym *local_syms,
1427 asection **local_sections)
1429 Elf_Internal_Shdr * symtab_hdr;
1430 struct elf_link_hash_entry ** sym_hashes;
1431 Elf_Internal_Rela * rel;
1432 Elf_Internal_Rela * relend;
1433 struct elf32_avr_link_hash_table * htab = avr_link_hash_table (info);
1438 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1439 sym_hashes = elf_sym_hashes (input_bfd);
1440 relend = relocs + input_section->reloc_count;
1442 for (rel = relocs; rel < relend; rel ++)
1444 reloc_howto_type * howto;
1445 unsigned long r_symndx;
1446 Elf_Internal_Sym * sym;
1448 struct elf_link_hash_entry * h;
1450 bfd_reloc_status_type r;
1454 r_type = ELF32_R_TYPE (rel->r_info);
1455 r_symndx = ELF32_R_SYM (rel->r_info);
1456 howto = elf_avr_howto_table + r_type;
1461 if (r_symndx < symtab_hdr->sh_info)
1463 sym = local_syms + r_symndx;
1464 sec = local_sections [r_symndx];
1465 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1467 name = bfd_elf_string_from_elf_section
1468 (input_bfd, symtab_hdr->sh_link, sym->st_name);
1469 name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
1473 bfd_boolean unresolved_reloc, warned, ignored;
1475 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1476 r_symndx, symtab_hdr, sym_hashes,
1478 unresolved_reloc, warned, ignored);
1480 name = h->root.root.string;
1483 if (sec != NULL && discarded_section (sec))
1484 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1485 rel, 1, relend, howto, 0, contents);
1487 if (bfd_link_relocatable (info))
1490 r = avr_final_link_relocate (howto, input_bfd, input_section,
1491 contents, rel, relocation, htab);
1493 if (r != bfd_reloc_ok)
1495 const char * msg = (const char *) NULL;
1499 case bfd_reloc_overflow:
1500 (*info->callbacks->reloc_overflow)
1501 (info, (h ? &h->root : NULL), name, howto->name,
1502 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1505 case bfd_reloc_undefined:
1506 (*info->callbacks->undefined_symbol)
1507 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
1510 case bfd_reloc_outofrange:
1511 msg = _("internal error: out of range error");
1514 case bfd_reloc_notsupported:
1515 msg = _("internal error: unsupported relocation error");
1518 case bfd_reloc_dangerous:
1519 msg = _("internal error: dangerous relocation");
1523 msg = _("internal error: unknown error");
1528 (*info->callbacks->warning) (info, msg, name, input_bfd,
1529 input_section, rel->r_offset);
1536 /* The final processing done just before writing out a AVR ELF object
1537 file. This gets the AVR architecture right based on the machine
1541 bfd_elf_avr_final_write_processing (bfd *abfd,
1542 bfd_boolean linker ATTRIBUTE_UNUSED)
1546 switch (bfd_get_mach (abfd))
1550 val = E_AVR_MACH_AVR2;
1554 val = E_AVR_MACH_AVR1;
1557 case bfd_mach_avr25:
1558 val = E_AVR_MACH_AVR25;
1562 val = E_AVR_MACH_AVR3;
1565 case bfd_mach_avr31:
1566 val = E_AVR_MACH_AVR31;
1569 case bfd_mach_avr35:
1570 val = E_AVR_MACH_AVR35;
1574 val = E_AVR_MACH_AVR4;
1578 val = E_AVR_MACH_AVR5;
1581 case bfd_mach_avr51:
1582 val = E_AVR_MACH_AVR51;
1586 val = E_AVR_MACH_AVR6;
1589 case bfd_mach_avrxmega1:
1590 val = E_AVR_MACH_XMEGA1;
1593 case bfd_mach_avrxmega2:
1594 val = E_AVR_MACH_XMEGA2;
1597 case bfd_mach_avrxmega3:
1598 val = E_AVR_MACH_XMEGA3;
1601 case bfd_mach_avrxmega4:
1602 val = E_AVR_MACH_XMEGA4;
1605 case bfd_mach_avrxmega5:
1606 val = E_AVR_MACH_XMEGA5;
1609 case bfd_mach_avrxmega6:
1610 val = E_AVR_MACH_XMEGA6;
1613 case bfd_mach_avrxmega7:
1614 val = E_AVR_MACH_XMEGA7;
1617 case bfd_mach_avrtiny:
1618 val = E_AVR_MACH_AVRTINY;
1622 elf_elfheader (abfd)->e_machine = EM_AVR;
1623 elf_elfheader (abfd)->e_flags &= ~ EF_AVR_MACH;
1624 elf_elfheader (abfd)->e_flags |= val;
1627 /* Set the right machine number. */
1630 elf32_avr_object_p (bfd *abfd)
1632 unsigned int e_set = bfd_mach_avr2;
1634 if (elf_elfheader (abfd)->e_machine == EM_AVR
1635 || elf_elfheader (abfd)->e_machine == EM_AVR_OLD)
1637 int e_mach = elf_elfheader (abfd)->e_flags & EF_AVR_MACH;
1642 case E_AVR_MACH_AVR2:
1643 e_set = bfd_mach_avr2;
1646 case E_AVR_MACH_AVR1:
1647 e_set = bfd_mach_avr1;
1650 case E_AVR_MACH_AVR25:
1651 e_set = bfd_mach_avr25;
1654 case E_AVR_MACH_AVR3:
1655 e_set = bfd_mach_avr3;
1658 case E_AVR_MACH_AVR31:
1659 e_set = bfd_mach_avr31;
1662 case E_AVR_MACH_AVR35:
1663 e_set = bfd_mach_avr35;
1666 case E_AVR_MACH_AVR4:
1667 e_set = bfd_mach_avr4;
1670 case E_AVR_MACH_AVR5:
1671 e_set = bfd_mach_avr5;
1674 case E_AVR_MACH_AVR51:
1675 e_set = bfd_mach_avr51;
1678 case E_AVR_MACH_AVR6:
1679 e_set = bfd_mach_avr6;
1682 case E_AVR_MACH_XMEGA1:
1683 e_set = bfd_mach_avrxmega1;
1686 case E_AVR_MACH_XMEGA2:
1687 e_set = bfd_mach_avrxmega2;
1690 case E_AVR_MACH_XMEGA3:
1691 e_set = bfd_mach_avrxmega3;
1694 case E_AVR_MACH_XMEGA4:
1695 e_set = bfd_mach_avrxmega4;
1698 case E_AVR_MACH_XMEGA5:
1699 e_set = bfd_mach_avrxmega5;
1702 case E_AVR_MACH_XMEGA6:
1703 e_set = bfd_mach_avrxmega6;
1706 case E_AVR_MACH_XMEGA7:
1707 e_set = bfd_mach_avrxmega7;
1710 case E_AVR_MACH_AVRTINY:
1711 e_set = bfd_mach_avrtiny;
1715 return bfd_default_set_arch_mach (abfd, bfd_arch_avr,
1719 /* Returns whether the relocation type passed is a diff reloc. */
1722 elf32_avr_is_diff_reloc (Elf_Internal_Rela *irel)
1724 return (ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF8
1725 ||ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF16
1726 || ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF32);
1729 /* Reduce the diff value written in the section by count if the shrinked
1730 insn address happens to fall between the two symbols for which this
1731 diff reloc was emitted. */
1734 elf32_avr_adjust_diff_reloc_value (bfd *abfd,
1735 struct bfd_section *isec,
1736 Elf_Internal_Rela *irel,
1738 bfd_vma shrinked_insn_address,
1741 unsigned char *reloc_contents = NULL;
1742 unsigned char *isec_contents = elf_section_data (isec)->this_hdr.contents;
1743 if (isec_contents == NULL)
1745 if (! bfd_malloc_and_get_section (abfd, isec, &isec_contents))
1748 elf_section_data (isec)->this_hdr.contents = isec_contents;
1751 reloc_contents = isec_contents + irel->r_offset;
1753 /* Read value written in object file. */
1754 bfd_signed_vma x = 0;
1755 switch (ELF32_R_TYPE (irel->r_info))
1759 x = bfd_get_signed_8 (abfd, reloc_contents);
1764 x = bfd_get_signed_16 (abfd, reloc_contents);
1769 x = bfd_get_signed_32 (abfd, reloc_contents);
1778 /* For a diff reloc sym1 - sym2 the diff at assembly time (x) is written
1779 into the object file at the reloc offset. sym2's logical value is
1780 symval (<start_of_section>) + reloc addend. Compute the start and end
1781 addresses and check if the shrinked insn falls between sym1 and sym2. */
1783 bfd_vma sym2_address = symval + irel->r_addend;
1784 bfd_vma sym1_address = sym2_address - x;
1786 /* Don't assume sym2 is bigger than sym1 - the difference
1787 could be negative. Compute start and end addresses, and
1788 use those to see if they span shrinked_insn_address. */
1790 bfd_vma start_address = sym1_address < sym2_address
1791 ? sym1_address : sym2_address;
1792 bfd_vma end_address = sym1_address > sym2_address
1793 ? sym1_address : sym2_address;
1796 if (shrinked_insn_address >= start_address
1797 && shrinked_insn_address < end_address)
1799 /* Reduce the diff value by count bytes and write it back into section
1801 bfd_signed_vma new_diff = x < 0 ? x + count : x - count;
1803 if (sym2_address > shrinked_insn_address)
1804 irel->r_addend -= count;
1806 switch (ELF32_R_TYPE (irel->r_info))
1810 bfd_put_signed_8 (abfd, new_diff, reloc_contents);
1815 bfd_put_signed_16 (abfd, new_diff & 0xFFFF, reloc_contents);
1820 bfd_put_signed_32 (abfd, new_diff & 0xFFFFFFFF, reloc_contents);
1833 elf32_avr_adjust_reloc_if_spans_insn (bfd *abfd,
1835 Elf_Internal_Rela *irel, bfd_vma symval,
1836 bfd_vma shrinked_insn_address,
1837 bfd_vma shrink_boundary,
1841 if (elf32_avr_is_diff_reloc (irel))
1843 elf32_avr_adjust_diff_reloc_value (abfd, isec, irel,
1845 shrinked_insn_address,
1850 bfd_vma reloc_value = symval + irel->r_addend;
1851 bfd_boolean addend_within_shrink_boundary =
1852 (reloc_value <= shrink_boundary);
1854 bfd_boolean reloc_spans_insn =
1855 (symval <= shrinked_insn_address
1856 && reloc_value > shrinked_insn_address
1857 && addend_within_shrink_boundary);
1859 if (! reloc_spans_insn)
1862 irel->r_addend -= count;
1865 printf ("Relocation's addend needed to be fixed \n");
1870 avr_should_move_sym (symvalue symval,
1873 bfd_boolean did_pad)
1875 bfd_boolean sym_within_boundary =
1876 did_pad ? symval < end : symval <= end;
1877 return (symval > start && sym_within_boundary);
1881 avr_should_reduce_sym_size (symvalue symval,
1885 bfd_boolean did_pad)
1887 bfd_boolean sym_end_within_boundary =
1888 did_pad ? symend < end : symend <= end;
1889 return (symval <= start && symend > start && sym_end_within_boundary);
1893 avr_should_increase_sym_size (symvalue symval,
1897 bfd_boolean did_pad)
1899 return avr_should_move_sym (symval, start, end, did_pad)
1900 && symend >= end && did_pad;
1903 /* Delete some bytes from a section while changing the size of an instruction.
1904 The parameter "addr" denotes the section-relative offset pointing just
1905 behind the shrinked instruction. "addr+count" point at the first
1906 byte just behind the original unshrinked instruction. If delete_shrinks_insn
1907 is FALSE, we are deleting redundant padding bytes from relax_info prop
1908 record handling. In that case, addr is section-relative offset of start
1909 of padding, and count is the number of padding bytes to delete. */
1912 elf32_avr_relax_delete_bytes (bfd *abfd,
1916 bfd_boolean delete_shrinks_insn)
1918 Elf_Internal_Shdr *symtab_hdr;
1919 unsigned int sec_shndx;
1921 Elf_Internal_Rela *irel, *irelend;
1922 Elf_Internal_Sym *isym;
1923 Elf_Internal_Sym *isymbuf = NULL;
1925 struct elf_link_hash_entry **sym_hashes;
1926 struct elf_link_hash_entry **end_hashes;
1927 unsigned int symcount;
1928 struct avr_relax_info *relax_info;
1929 struct avr_property_record *prop_record = NULL;
1930 bfd_boolean did_shrink = FALSE;
1931 bfd_boolean did_pad = FALSE;
1933 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1934 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
1935 contents = elf_section_data (sec)->this_hdr.contents;
1936 relax_info = get_avr_relax_info (sec);
1940 if (relax_info->records.count > 0)
1942 /* There should be no property record within the range of deleted
1943 bytes, however, there might be a property record for ADDR, this is
1944 how we handle alignment directives.
1945 Find the next (if any) property record after the deleted bytes. */
1948 for (i = 0; i < relax_info->records.count; ++i)
1950 bfd_vma offset = relax_info->records.items [i].offset;
1952 BFD_ASSERT (offset <= addr || offset >= (addr + count));
1953 if (offset >= (addr + count))
1955 prop_record = &relax_info->records.items [i];
1962 irel = elf_section_data (sec)->relocs;
1963 irelend = irel + sec->reloc_count;
1965 /* Actually delete the bytes. */
1966 if (toaddr - addr - count > 0)
1968 memmove (contents + addr, contents + addr + count,
1969 (size_t) (toaddr - addr - count));
1972 if (prop_record == NULL)
1979 /* Use the property record to fill in the bytes we've opened up. */
1981 switch (prop_record->type)
1983 case RECORD_ORG_AND_FILL:
1984 fill = prop_record->data.org.fill;
1988 case RECORD_ALIGN_AND_FILL:
1989 fill = prop_record->data.align.fill;
1992 prop_record->data.align.preceding_deleted += count;
1995 /* If toaddr == (addr + count), then we didn't delete anything, yet
1996 we fill count bytes backwards from toaddr. This is still ok - we
1997 end up overwriting the bytes we would have deleted. We just need
1998 to remember we didn't delete anything i.e. don't set did_shrink,
1999 so that we don't corrupt reloc offsets or symbol values.*/
2000 memset (contents + toaddr - count, fill, count);
2007 /* Adjust all the reloc addresses. */
2008 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
2010 bfd_vma old_reloc_address;
2012 old_reloc_address = (sec->output_section->vma
2013 + sec->output_offset + irel->r_offset);
2015 /* Get the new reloc address. */
2016 if ((irel->r_offset > addr
2017 && irel->r_offset < toaddr))
2020 printf ("Relocation at address 0x%x needs to be moved.\n"
2021 "Old section offset: 0x%x, New section offset: 0x%x \n",
2022 (unsigned int) old_reloc_address,
2023 (unsigned int) irel->r_offset,
2024 (unsigned int) ((irel->r_offset) - count));
2026 irel->r_offset -= count;
2031 /* The reloc's own addresses are now ok. However, we need to readjust
2032 the reloc's addend, i.e. the reloc's value if two conditions are met:
2033 1.) the reloc is relative to a symbol in this section that
2034 is located in front of the shrinked instruction
2035 2.) symbol plus addend end up behind the shrinked instruction.
2037 The most common case where this happens are relocs relative to
2038 the section-start symbol.
2040 This step needs to be done for all of the sections of the bfd. */
2043 struct bfd_section *isec;
2045 for (isec = abfd->sections; isec; isec = isec->next)
2048 bfd_vma shrinked_insn_address;
2050 if (isec->reloc_count == 0)
2053 shrinked_insn_address = (sec->output_section->vma
2054 + sec->output_offset + addr);
2055 if (delete_shrinks_insn)
2056 shrinked_insn_address -= count;
2058 irel = elf_section_data (isec)->relocs;
2059 /* PR 12161: Read in the relocs for this section if necessary. */
2061 irel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, TRUE);
2063 for (irelend = irel + isec->reloc_count;
2067 /* Read this BFD's local symbols if we haven't done
2069 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
2071 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2072 if (isymbuf == NULL)
2073 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2074 symtab_hdr->sh_info, 0,
2076 if (isymbuf == NULL)
2080 /* Get the value of the symbol referred to by the reloc. */
2081 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2083 /* A local symbol. */
2086 isym = isymbuf + ELF32_R_SYM (irel->r_info);
2087 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2088 symval = isym->st_value;
2089 /* If the reloc is absolute, it will not have
2090 a symbol or section associated with it. */
2093 /* If there is an alignment boundary, we only need to
2094 adjust addends that end up below the boundary. */
2095 bfd_vma shrink_boundary = (toaddr
2096 + sec->output_section->vma
2097 + sec->output_offset);
2099 symval += sym_sec->output_section->vma
2100 + sym_sec->output_offset;
2103 printf ("Checking if the relocation's "
2104 "addend needs corrections.\n"
2105 "Address of anchor symbol: 0x%x \n"
2106 "Address of relocation target: 0x%x \n"
2107 "Address of relaxed insn: 0x%x \n",
2108 (unsigned int) symval,
2109 (unsigned int) (symval + irel->r_addend),
2110 (unsigned int) shrinked_insn_address);
2112 elf32_avr_adjust_reloc_if_spans_insn (abfd, isec, irel,
2114 shrinked_insn_address,
2118 /* else...Reference symbol is absolute. No adjustment needed. */
2120 /* else...Reference symbol is extern. No need for adjusting
2126 /* Adjust the local symbols defined in this section. */
2127 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2128 /* Fix PR 9841, there may be no local symbols. */
2131 Elf_Internal_Sym *isymend;
2133 isymend = isym + symtab_hdr->sh_info;
2134 for (; isym < isymend; isym++)
2136 if (isym->st_shndx == sec_shndx)
2138 symvalue symval = isym->st_value;
2139 symvalue symend = symval + isym->st_size;
2140 if (avr_should_reduce_sym_size (symval, symend,
2141 addr, toaddr, did_pad))
2143 /* If this assert fires then we have a symbol that ends
2144 part way through an instruction. Does that make
2146 BFD_ASSERT (isym->st_value + isym->st_size >= addr + count);
2147 isym->st_size -= count;
2149 else if (avr_should_increase_sym_size (symval, symend,
2150 addr, toaddr, did_pad))
2151 isym->st_size += count;
2153 if (avr_should_move_sym (symval, addr, toaddr, did_pad))
2154 isym->st_value -= count;
2159 /* Now adjust the global symbols defined in this section. */
2160 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2161 - symtab_hdr->sh_info);
2162 sym_hashes = elf_sym_hashes (abfd);
2163 end_hashes = sym_hashes + symcount;
2164 for (; sym_hashes < end_hashes; sym_hashes++)
2166 struct elf_link_hash_entry *sym_hash = *sym_hashes;
2167 if ((sym_hash->root.type == bfd_link_hash_defined
2168 || sym_hash->root.type == bfd_link_hash_defweak)
2169 && sym_hash->root.u.def.section == sec)
2171 symvalue symval = sym_hash->root.u.def.value;
2172 symvalue symend = symval + sym_hash->size;
2174 if (avr_should_reduce_sym_size (symval, symend,
2175 addr, toaddr, did_pad))
2177 /* If this assert fires then we have a symbol that ends
2178 part way through an instruction. Does that make
2180 BFD_ASSERT (symend >= addr + count);
2181 sym_hash->size -= count;
2183 else if (avr_should_increase_sym_size (symval, symend,
2184 addr, toaddr, did_pad))
2185 sym_hash->size += count;
2187 if (avr_should_move_sym (symval, addr, toaddr, did_pad))
2188 sym_hash->root.u.def.value -= count;
2195 static Elf_Internal_Sym *
2196 retrieve_local_syms (bfd *input_bfd)
2198 Elf_Internal_Shdr *symtab_hdr;
2199 Elf_Internal_Sym *isymbuf;
2202 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2203 locsymcount = symtab_hdr->sh_info;
2205 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2206 if (isymbuf == NULL && locsymcount != 0)
2207 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
2210 /* Save the symbols for this input file so they won't be read again. */
2211 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
2212 symtab_hdr->contents = (unsigned char *) isymbuf;
2217 /* Get the input section for a given symbol index.
2219 . a section symbol, return the section;
2220 . a common symbol, return the common section;
2221 . an undefined symbol, return the undefined section;
2222 . an indirect symbol, follow the links;
2223 . an absolute value, return the absolute section. */
2226 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
2228 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2229 asection *target_sec = NULL;
2230 if (r_symndx < symtab_hdr->sh_info)
2232 Elf_Internal_Sym *isymbuf;
2233 unsigned int section_index;
2235 isymbuf = retrieve_local_syms (abfd);
2236 section_index = isymbuf[r_symndx].st_shndx;
2238 if (section_index == SHN_UNDEF)
2239 target_sec = bfd_und_section_ptr;
2240 else if (section_index == SHN_ABS)
2241 target_sec = bfd_abs_section_ptr;
2242 else if (section_index == SHN_COMMON)
2243 target_sec = bfd_com_section_ptr;
2245 target_sec = bfd_section_from_elf_index (abfd, section_index);
2249 unsigned long indx = r_symndx - symtab_hdr->sh_info;
2250 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
2252 while (h->root.type == bfd_link_hash_indirect
2253 || h->root.type == bfd_link_hash_warning)
2254 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2256 switch (h->root.type)
2258 case bfd_link_hash_defined:
2259 case bfd_link_hash_defweak:
2260 target_sec = h->root.u.def.section;
2262 case bfd_link_hash_common:
2263 target_sec = bfd_com_section_ptr;
2265 case bfd_link_hash_undefined:
2266 case bfd_link_hash_undefweak:
2267 target_sec = bfd_und_section_ptr;
2269 default: /* New indirect warning. */
2270 target_sec = bfd_und_section_ptr;
2277 /* Get the section-relative offset for a symbol number. */
2280 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
2282 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2285 if (r_symndx < symtab_hdr->sh_info)
2287 Elf_Internal_Sym *isymbuf;
2288 isymbuf = retrieve_local_syms (abfd);
2289 offset = isymbuf[r_symndx].st_value;
2293 unsigned long indx = r_symndx - symtab_hdr->sh_info;
2294 struct elf_link_hash_entry *h =
2295 elf_sym_hashes (abfd)[indx];
2297 while (h->root.type == bfd_link_hash_indirect
2298 || h->root.type == bfd_link_hash_warning)
2299 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2300 if (h->root.type == bfd_link_hash_defined
2301 || h->root.type == bfd_link_hash_defweak)
2302 offset = h->root.u.def.value;
2307 /* Iterate over the property records in R_LIST, and copy each record into
2308 the list of records within the relaxation information for the section to
2309 which the record applies. */
2312 avr_elf32_assign_records_to_sections (struct avr_property_record_list *r_list)
2316 for (i = 0; i < r_list->record_count; ++i)
2318 struct avr_relax_info *relax_info;
2320 relax_info = get_avr_relax_info (r_list->records [i].section);
2321 BFD_ASSERT (relax_info != NULL);
2323 if (relax_info->records.count
2324 == relax_info->records.allocated)
2326 /* Allocate more space. */
2329 relax_info->records.allocated += 10;
2330 size = (sizeof (struct avr_property_record)
2331 * relax_info->records.allocated);
2332 relax_info->records.items
2333 = bfd_realloc (relax_info->records.items, size);
2336 memcpy (&relax_info->records.items [relax_info->records.count],
2337 &r_list->records [i],
2338 sizeof (struct avr_property_record));
2339 relax_info->records.count++;
2343 /* Compare two STRUCT AVR_PROPERTY_RECORD in AP and BP, used as the
2344 ordering callback from QSORT. */
2347 avr_property_record_compare (const void *ap, const void *bp)
2349 const struct avr_property_record *a
2350 = (struct avr_property_record *) ap;
2351 const struct avr_property_record *b
2352 = (struct avr_property_record *) bp;
2354 if (a->offset != b->offset)
2355 return (a->offset - b->offset);
2357 if (a->section != b->section)
2358 return (bfd_get_section_vma (a->section->owner, a->section)
2359 - bfd_get_section_vma (b->section->owner, b->section));
2361 return (a->type - b->type);
2364 /* Load all of the avr property sections from all of the bfd objects
2365 referenced from LINK_INFO. All of the records within each property
2366 section are assigned to the STRUCT AVR_RELAX_INFO within the section
2367 specific data of the appropriate section. */
2370 avr_load_all_property_sections (struct bfd_link_info *link_info)
2375 /* Initialize the per-section relaxation info. */
2376 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
2377 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2379 init_avr_relax_info (sec);
2382 /* Load the descriptor tables from .avr.prop sections. */
2383 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
2385 struct avr_property_record_list *r_list;
2387 r_list = avr_elf32_load_property_records (abfd);
2389 avr_elf32_assign_records_to_sections (r_list);
2394 /* Now, for every section, ensure that the descriptor list in the
2395 relaxation data is sorted by ascending offset within the section. */
2396 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
2397 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2399 struct avr_relax_info *relax_info = get_avr_relax_info (sec);
2400 if (relax_info && relax_info->records.count > 0)
2404 qsort (relax_info->records.items,
2405 relax_info->records.count,
2406 sizeof (struct avr_property_record),
2407 avr_property_record_compare);
2409 /* For debug purposes, list all the descriptors. */
2410 for (i = 0; i < relax_info->records.count; ++i)
2412 switch (relax_info->records.items [i].type)
2416 case RECORD_ORG_AND_FILL:
2420 case RECORD_ALIGN_AND_FILL:
2428 /* This function handles relaxing for the avr.
2429 Many important relaxing opportunities within functions are already
2430 realized by the compiler itself.
2431 Here we try to replace call (4 bytes) -> rcall (2 bytes)
2432 and jump -> rjmp (safes also 2 bytes).
2433 As well we now optimize seqences of
2434 - call/rcall function
2439 . In case that within a sequence
2442 the ret could no longer be reached it is optimized away. In order
2443 to check if the ret is no longer needed, it is checked that the ret's address
2444 is not the target of a branch or jump within the same section, it is checked
2445 that there is no skip instruction before the jmp/rjmp and that there
2446 is no local or global label place at the address of the ret.
2448 We refrain from relaxing within sections ".vectors" and
2449 ".jumptables" in order to maintain the position of the instructions.
2450 There, however, we substitute jmp/call by a sequence rjmp,nop/rcall,nop
2451 if possible. (In future one could possibly use the space of the nop
2452 for the first instruction of the irq service function.
2454 The .jumptables sections is meant to be used for a future tablejump variant
2455 for the devices with 3-byte program counter where the table itself
2456 contains 4-byte jump instructions whose relative offset must not
2460 elf32_avr_relax_section (bfd *abfd,
2462 struct bfd_link_info *link_info,
2465 Elf_Internal_Shdr *symtab_hdr;
2466 Elf_Internal_Rela *internal_relocs;
2467 Elf_Internal_Rela *irel, *irelend;
2468 bfd_byte *contents = NULL;
2469 Elf_Internal_Sym *isymbuf = NULL;
2470 struct elf32_avr_link_hash_table *htab;
2471 static bfd_boolean relaxation_initialised = FALSE;
2473 if (!relaxation_initialised)
2475 relaxation_initialised = TRUE;
2477 /* Load entries from the .avr.prop sections. */
2478 avr_load_all_property_sections (link_info);
2481 /* If 'shrinkable' is FALSE, do not shrink by deleting bytes while
2482 relaxing. Such shrinking can cause issues for the sections such
2483 as .vectors and .jumptables. Instead the unused bytes should be
2484 filled with nop instructions. */
2485 bfd_boolean shrinkable = TRUE;
2487 if (!strcmp (sec->name,".vectors")
2488 || !strcmp (sec->name,".jumptables"))
2491 if (bfd_link_relocatable (link_info))
2492 (*link_info->callbacks->einfo)
2493 (_("%P%F: --relax and -r may not be used together\n"));
2495 htab = avr_link_hash_table (link_info);
2499 /* Assume nothing changes. */
2502 if ((!htab->no_stubs) && (sec == htab->stub_sec))
2504 /* We are just relaxing the stub section.
2505 Let's calculate the size needed again. */
2506 bfd_size_type last_estimated_stub_section_size = htab->stub_sec->size;
2509 printf ("Relaxing the stub section. Size prior to this pass: %i\n",
2510 (int) last_estimated_stub_section_size);
2512 elf32_avr_size_stubs (htab->stub_sec->output_section->owner,
2515 /* Check if the number of trampolines changed. */
2516 if (last_estimated_stub_section_size != htab->stub_sec->size)
2520 printf ("Size of stub section after this pass: %i\n",
2521 (int) htab->stub_sec->size);
2526 /* We don't have to do anything for a relocatable link, if
2527 this section does not have relocs, or if this is not a
2529 if (bfd_link_relocatable (link_info)
2530 || (sec->flags & SEC_RELOC) == 0
2531 || sec->reloc_count == 0
2532 || (sec->flags & SEC_CODE) == 0)
2535 /* Check if the object file to relax uses internal symbols so that we
2536 could fix up the relocations. */
2537 if (!(elf_elfheader (abfd)->e_flags & EF_AVR_LINKRELAX_PREPARED))
2540 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2542 /* Get a copy of the native relocations. */
2543 internal_relocs = (_bfd_elf_link_read_relocs
2544 (abfd, sec, NULL, NULL, link_info->keep_memory));
2545 if (internal_relocs == NULL)
2548 /* Walk through the relocs looking for relaxing opportunities. */
2549 irelend = internal_relocs + sec->reloc_count;
2550 for (irel = internal_relocs; irel < irelend; irel++)
2554 if ( ELF32_R_TYPE (irel->r_info) != R_AVR_13_PCREL
2555 && ELF32_R_TYPE (irel->r_info) != R_AVR_7_PCREL
2556 && ELF32_R_TYPE (irel->r_info) != R_AVR_CALL)
2559 /* Get the section contents if we haven't done so already. */
2560 if (contents == NULL)
2562 /* Get cached copy if it exists. */
2563 if (elf_section_data (sec)->this_hdr.contents != NULL)
2564 contents = elf_section_data (sec)->this_hdr.contents;
2567 /* Go get them off disk. */
2568 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
2573 /* Read this BFD's local symbols if we haven't done so already. */
2574 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
2576 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2577 if (isymbuf == NULL)
2578 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2579 symtab_hdr->sh_info, 0,
2581 if (isymbuf == NULL)
2586 /* Get the value of the symbol referred to by the reloc. */
2587 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2589 /* A local symbol. */
2590 Elf_Internal_Sym *isym;
2593 isym = isymbuf + ELF32_R_SYM (irel->r_info);
2594 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2595 symval = isym->st_value;
2596 /* If the reloc is absolute, it will not have
2597 a symbol or section associated with it. */
2599 symval += sym_sec->output_section->vma
2600 + sym_sec->output_offset;
2605 struct elf_link_hash_entry *h;
2607 /* An external symbol. */
2608 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2609 h = elf_sym_hashes (abfd)[indx];
2610 BFD_ASSERT (h != NULL);
2611 if (h->root.type != bfd_link_hash_defined
2612 && h->root.type != bfd_link_hash_defweak)
2613 /* This appears to be a reference to an undefined
2614 symbol. Just ignore it--it will be caught by the
2615 regular reloc processing. */
2618 symval = (h->root.u.def.value
2619 + h->root.u.def.section->output_section->vma
2620 + h->root.u.def.section->output_offset);
2623 /* For simplicity of coding, we are going to modify the section
2624 contents, the section relocs, and the BFD symbol table. We
2625 must tell the rest of the code not to free up this
2626 information. It would be possible to instead create a table
2627 of changes which have to be made, as is done in coff-mips.c;
2628 that would be more work, but would require less memory when
2629 the linker is run. */
2630 switch (ELF32_R_TYPE (irel->r_info))
2632 /* Try to turn a 22-bit absolute call/jump into an 13-bit
2633 pc-relative rcall/rjmp. */
2636 bfd_vma value = symval + irel->r_addend;
2638 int distance_short_enough = 0;
2640 /* Get the address of this instruction. */
2641 dot = (sec->output_section->vma
2642 + sec->output_offset + irel->r_offset);
2644 /* Compute the distance from this insn to the branch target. */
2647 /* Check if the gap falls in the range that can be accommodated
2648 in 13bits signed (It is 12bits when encoded, as we deal with
2649 word addressing). */
2650 if (!shrinkable && ((int) gap >= -4096 && (int) gap <= 4095))
2651 distance_short_enough = 1;
2652 /* If shrinkable, then we can check for a range of distance which
2653 is two bytes farther on both the directions because the call
2654 or jump target will be closer by two bytes after the
2656 else if (shrinkable && ((int) gap >= -4094 && (int) gap <= 4097))
2657 distance_short_enough = 1;
2659 /* Here we handle the wrap-around case. E.g. for a 16k device
2660 we could use a rjmp to jump from address 0x100 to 0x3d00!
2661 In order to make this work properly, we need to fill the
2662 vaiable avr_pc_wrap_around with the appropriate value.
2663 I.e. 0x4000 for a 16k device. */
2665 /* Shrinking the code size makes the gaps larger in the
2666 case of wrap-arounds. So we use a heuristical safety
2667 margin to avoid that during relax the distance gets
2668 again too large for the short jumps. Let's assume
2669 a typical code-size reduction due to relax for a
2670 16k device of 600 bytes. So let's use twice the
2671 typical value as safety margin. */
2675 int assumed_shrink = 600;
2676 if (avr_pc_wrap_around > 0x4000)
2677 assumed_shrink = 900;
2679 safety_margin = 2 * assumed_shrink;
2681 rgap = avr_relative_distance_considering_wrap_around (gap);
2683 if (rgap >= (-4092 + safety_margin)
2684 && rgap <= (4094 - safety_margin))
2685 distance_short_enough = 1;
2688 if (distance_short_enough)
2690 unsigned char code_msb;
2691 unsigned char code_lsb;
2694 printf ("shrinking jump/call instruction at address 0x%x"
2695 " in section %s\n\n",
2696 (int) dot, sec->name);
2698 /* Note that we've changed the relocs, section contents,
2700 elf_section_data (sec)->relocs = internal_relocs;
2701 elf_section_data (sec)->this_hdr.contents = contents;
2702 symtab_hdr->contents = (unsigned char *) isymbuf;
2704 /* Get the instruction code for relaxing. */
2705 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset);
2706 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
2708 /* Mask out the relocation bits. */
2711 if (code_msb == 0x94 && code_lsb == 0x0E)
2713 /* we are changing call -> rcall . */
2714 bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
2715 bfd_put_8 (abfd, 0xD0, contents + irel->r_offset + 1);
2717 else if (code_msb == 0x94 && code_lsb == 0x0C)
2719 /* we are changeing jump -> rjmp. */
2720 bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
2721 bfd_put_8 (abfd, 0xC0, contents + irel->r_offset + 1);
2726 /* Fix the relocation's type. */
2727 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
2730 /* We should not modify the ordering if 'shrinkable' is
2734 /* Let's insert a nop. */
2735 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 2);
2736 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 3);
2740 /* Delete two bytes of data. */
2741 if (!elf32_avr_relax_delete_bytes (abfd, sec,
2742 irel->r_offset + 2, 2,
2746 /* That will change things, so, we should relax again.
2747 Note that this is not required, and it may be slow. */
2756 unsigned char code_msb;
2757 unsigned char code_lsb;
2760 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
2761 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset + 0);
2763 /* Get the address of this instruction. */
2764 dot = (sec->output_section->vma
2765 + sec->output_offset + irel->r_offset);
2767 /* Here we look for rcall/ret or call/ret sequences that could be
2768 safely replaced by rjmp/ret or jmp/ret. */
2769 if (((code_msb & 0xf0) == 0xd0)
2770 && avr_replace_call_ret_sequences)
2772 /* This insn is a rcall. */
2773 unsigned char next_insn_msb = 0;
2774 unsigned char next_insn_lsb = 0;
2776 if (irel->r_offset + 3 < sec->size)
2779 bfd_get_8 (abfd, contents + irel->r_offset + 3);
2781 bfd_get_8 (abfd, contents + irel->r_offset + 2);
2784 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2786 /* The next insn is a ret. We now convert the rcall insn
2787 into a rjmp instruction. */
2789 bfd_put_8 (abfd, code_msb, contents + irel->r_offset + 1);
2791 printf ("converted rcall/ret sequence at address 0x%x"
2792 " into rjmp/ret sequence. Section is %s\n\n",
2793 (int) dot, sec->name);
2798 else if ((0x94 == (code_msb & 0xfe))
2799 && (0x0e == (code_lsb & 0x0e))
2800 && avr_replace_call_ret_sequences)
2802 /* This insn is a call. */
2803 unsigned char next_insn_msb = 0;
2804 unsigned char next_insn_lsb = 0;
2806 if (irel->r_offset + 5 < sec->size)
2809 bfd_get_8 (abfd, contents + irel->r_offset + 5);
2811 bfd_get_8 (abfd, contents + irel->r_offset + 4);
2814 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2816 /* The next insn is a ret. We now convert the call insn
2817 into a jmp instruction. */
2820 bfd_put_8 (abfd, code_lsb, contents + irel->r_offset);
2822 printf ("converted call/ret sequence at address 0x%x"
2823 " into jmp/ret sequence. Section is %s\n\n",
2824 (int) dot, sec->name);
2829 else if ((0xc0 == (code_msb & 0xf0))
2830 || ((0x94 == (code_msb & 0xfe))
2831 && (0x0c == (code_lsb & 0x0e))))
2833 /* This insn is a rjmp or a jmp. */
2834 unsigned char next_insn_msb = 0;
2835 unsigned char next_insn_lsb = 0;
2838 if (0xc0 == (code_msb & 0xf0))
2839 insn_size = 2; /* rjmp insn */
2841 insn_size = 4; /* jmp insn */
2843 if (irel->r_offset + insn_size + 1 < sec->size)
2846 bfd_get_8 (abfd, contents + irel->r_offset
2849 bfd_get_8 (abfd, contents + irel->r_offset
2853 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2855 /* The next insn is a ret. We possibly could delete
2856 this ret. First we need to check for preceding
2857 sbis/sbic/sbrs or cpse "skip" instructions. */
2859 int there_is_preceding_non_skip_insn = 1;
2860 bfd_vma address_of_ret;
2862 address_of_ret = dot + insn_size;
2864 if (debug_relax && (insn_size == 2))
2865 printf ("found rjmp / ret sequence at address 0x%x\n",
2867 if (debug_relax && (insn_size == 4))
2868 printf ("found jmp / ret sequence at address 0x%x\n",
2871 /* We have to make sure that there is a preceding insn. */
2872 if (irel->r_offset >= 2)
2874 unsigned char preceding_msb;
2875 unsigned char preceding_lsb;
2878 bfd_get_8 (abfd, contents + irel->r_offset - 1);
2880 bfd_get_8 (abfd, contents + irel->r_offset - 2);
2883 if (0x99 == preceding_msb)
2884 there_is_preceding_non_skip_insn = 0;
2887 if (0x9b == preceding_msb)
2888 there_is_preceding_non_skip_insn = 0;
2891 if ((0xfc == (preceding_msb & 0xfe)
2892 && (0x00 == (preceding_lsb & 0x08))))
2893 there_is_preceding_non_skip_insn = 0;
2896 if ((0xfe == (preceding_msb & 0xfe)
2897 && (0x00 == (preceding_lsb & 0x08))))
2898 there_is_preceding_non_skip_insn = 0;
2901 if (0x10 == (preceding_msb & 0xfc))
2902 there_is_preceding_non_skip_insn = 0;
2904 if (there_is_preceding_non_skip_insn == 0)
2906 printf ("preceding skip insn prevents deletion of"
2907 " ret insn at Addy 0x%x in section %s\n",
2908 (int) dot + 2, sec->name);
2912 /* There is no previous instruction. */
2913 there_is_preceding_non_skip_insn = 0;
2916 if (there_is_preceding_non_skip_insn)
2918 /* We now only have to make sure that there is no
2919 local label defined at the address of the ret
2920 instruction and that there is no local relocation
2921 in this section pointing to the ret. */
2923 int deleting_ret_is_safe = 1;
2924 unsigned int section_offset_of_ret_insn =
2925 irel->r_offset + insn_size;
2926 Elf_Internal_Sym *isym, *isymend;
2927 unsigned int sec_shndx;
2928 struct bfd_section *isec;
2931 _bfd_elf_section_from_bfd_section (abfd, sec);
2933 /* Check for local symbols. */
2934 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2935 isymend = isym + symtab_hdr->sh_info;
2936 /* PR 6019: There may not be any local symbols. */
2937 for (; isym != NULL && isym < isymend; isym++)
2939 if (isym->st_value == section_offset_of_ret_insn
2940 && isym->st_shndx == sec_shndx)
2942 deleting_ret_is_safe = 0;
2944 printf ("local label prevents deletion of ret "
2945 "insn at address 0x%x\n",
2946 (int) dot + insn_size);
2950 /* Now check for global symbols. */
2953 struct elf_link_hash_entry **sym_hashes;
2954 struct elf_link_hash_entry **end_hashes;
2956 symcount = (symtab_hdr->sh_size
2957 / sizeof (Elf32_External_Sym)
2958 - symtab_hdr->sh_info);
2959 sym_hashes = elf_sym_hashes (abfd);
2960 end_hashes = sym_hashes + symcount;
2961 for (; sym_hashes < end_hashes; sym_hashes++)
2963 struct elf_link_hash_entry *sym_hash =
2965 if ((sym_hash->root.type == bfd_link_hash_defined
2966 || sym_hash->root.type ==
2967 bfd_link_hash_defweak)
2968 && sym_hash->root.u.def.section == sec
2969 && sym_hash->root.u.def.value == section_offset_of_ret_insn)
2971 deleting_ret_is_safe = 0;
2973 printf ("global label prevents deletion of "
2974 "ret insn at address 0x%x\n",
2975 (int) dot + insn_size);
2980 /* Now we check for relocations pointing to ret. */
2981 for (isec = abfd->sections; isec && deleting_ret_is_safe; isec = isec->next)
2983 Elf_Internal_Rela *rel;
2984 Elf_Internal_Rela *relend;
2986 rel = elf_section_data (isec)->relocs;
2988 rel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, TRUE);
2990 relend = rel + isec->reloc_count;
2992 for (; rel && rel < relend; rel++)
2994 bfd_vma reloc_target = 0;
2996 /* Read this BFD's local symbols if we haven't
2998 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
3000 isymbuf = (Elf_Internal_Sym *)
3001 symtab_hdr->contents;
3002 if (isymbuf == NULL)
3003 isymbuf = bfd_elf_get_elf_syms
3006 symtab_hdr->sh_info, 0,
3008 if (isymbuf == NULL)
3012 /* Get the value of the symbol referred to
3014 if (ELF32_R_SYM (rel->r_info)
3015 < symtab_hdr->sh_info)
3017 /* A local symbol. */
3021 + ELF32_R_SYM (rel->r_info);
3022 sym_sec = bfd_section_from_elf_index
3023 (abfd, isym->st_shndx);
3024 symval = isym->st_value;
3026 /* If the reloc is absolute, it will not
3027 have a symbol or section associated
3033 sym_sec->output_section->vma
3034 + sym_sec->output_offset;
3035 reloc_target = symval + rel->r_addend;
3039 reloc_target = symval + rel->r_addend;
3040 /* Reference symbol is absolute. */
3043 /* else ... reference symbol is extern. */
3045 if (address_of_ret == reloc_target)
3047 deleting_ret_is_safe = 0;
3050 "rjmp/jmp ret sequence at address"
3051 " 0x%x could not be deleted. ret"
3052 " is target of a relocation.\n",
3053 (int) address_of_ret);
3059 if (deleting_ret_is_safe)
3062 printf ("unreachable ret instruction "
3063 "at address 0x%x deleted.\n",
3064 (int) dot + insn_size);
3066 /* Delete two bytes of data. */
3067 if (!elf32_avr_relax_delete_bytes (abfd, sec,
3068 irel->r_offset + insn_size, 2,
3072 /* That will change things, so, we should relax
3073 again. Note that this is not required, and it
3088 /* Look through all the property records in this section to see if
3089 there's any alignment records that can be moved. */
3090 struct avr_relax_info *relax_info;
3092 relax_info = get_avr_relax_info (sec);
3093 if (relax_info->records.count > 0)
3097 for (i = 0; i < relax_info->records.count; ++i)
3099 switch (relax_info->records.items [i].type)
3102 case RECORD_ORG_AND_FILL:
3105 case RECORD_ALIGN_AND_FILL:
3107 struct avr_property_record *record;
3108 unsigned long bytes_to_align;
3111 /* Look for alignment directives that have had enough
3112 bytes deleted before them, such that the directive
3113 can be moved backwards and still maintain the
3114 required alignment. */
3115 record = &relax_info->records.items [i];
3117 = (unsigned long) (1 << record->data.align.bytes);
3118 while (record->data.align.preceding_deleted >=
3121 record->data.align.preceding_deleted
3123 count += bytes_to_align;
3128 bfd_vma addr = record->offset;
3130 /* We can delete COUNT bytes and this alignment
3131 directive will still be correctly aligned.
3132 First move the alignment directive, then delete
3134 record->offset -= count;
3135 elf32_avr_relax_delete_bytes (abfd, sec,
3147 if (contents != NULL
3148 && elf_section_data (sec)->this_hdr.contents != contents)
3150 if (! link_info->keep_memory)
3154 /* Cache the section contents for elf_link_input_bfd. */
3155 elf_section_data (sec)->this_hdr.contents = contents;
3159 if (internal_relocs != NULL
3160 && elf_section_data (sec)->relocs != internal_relocs)
3161 free (internal_relocs);
3167 && symtab_hdr->contents != (unsigned char *) isymbuf)
3169 if (contents != NULL
3170 && elf_section_data (sec)->this_hdr.contents != contents)
3172 if (internal_relocs != NULL
3173 && elf_section_data (sec)->relocs != internal_relocs)
3174 free (internal_relocs);
3179 /* This is a version of bfd_generic_get_relocated_section_contents
3180 which uses elf32_avr_relocate_section.
3182 For avr it's essentially a cut and paste taken from the H8300 port.
3183 The author of the relaxation support patch for avr had absolutely no
3184 clue what is happening here but found out that this part of the code
3185 seems to be important. */
3188 elf32_avr_get_relocated_section_contents (bfd *output_bfd,
3189 struct bfd_link_info *link_info,
3190 struct bfd_link_order *link_order,
3192 bfd_boolean relocatable,
3195 Elf_Internal_Shdr *symtab_hdr;
3196 asection *input_section = link_order->u.indirect.section;
3197 bfd *input_bfd = input_section->owner;
3198 asection **sections = NULL;
3199 Elf_Internal_Rela *internal_relocs = NULL;
3200 Elf_Internal_Sym *isymbuf = NULL;
3202 /* We only need to handle the case of relaxing, or of having a
3203 particular set of section contents, specially. */
3205 || elf_section_data (input_section)->this_hdr.contents == NULL)
3206 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
3210 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3212 memcpy (data, elf_section_data (input_section)->this_hdr.contents,
3213 (size_t) input_section->size);
3215 if ((input_section->flags & SEC_RELOC) != 0
3216 && input_section->reloc_count > 0)
3219 Elf_Internal_Sym *isym, *isymend;
3222 internal_relocs = (_bfd_elf_link_read_relocs
3223 (input_bfd, input_section, NULL, NULL, FALSE));
3224 if (internal_relocs == NULL)
3227 if (symtab_hdr->sh_info != 0)
3229 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3230 if (isymbuf == NULL)
3231 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3232 symtab_hdr->sh_info, 0,
3234 if (isymbuf == NULL)
3238 amt = symtab_hdr->sh_info;
3239 amt *= sizeof (asection *);
3240 sections = bfd_malloc (amt);
3241 if (sections == NULL && amt != 0)
3244 isymend = isymbuf + symtab_hdr->sh_info;
3245 for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
3249 if (isym->st_shndx == SHN_UNDEF)
3250 isec = bfd_und_section_ptr;
3251 else if (isym->st_shndx == SHN_ABS)
3252 isec = bfd_abs_section_ptr;
3253 else if (isym->st_shndx == SHN_COMMON)
3254 isec = bfd_com_section_ptr;
3256 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
3261 if (! elf32_avr_relocate_section (output_bfd, link_info, input_bfd,
3262 input_section, data, internal_relocs,
3266 if (sections != NULL)
3269 && symtab_hdr->contents != (unsigned char *) isymbuf)
3271 if (elf_section_data (input_section)->relocs != internal_relocs)
3272 free (internal_relocs);
3278 if (sections != NULL)
3281 && symtab_hdr->contents != (unsigned char *) isymbuf)
3283 if (internal_relocs != NULL
3284 && elf_section_data (input_section)->relocs != internal_relocs)
3285 free (internal_relocs);
3290 /* Determines the hash entry name for a particular reloc. It consists of
3291 the identifier of the symbol section and the added reloc addend and
3292 symbol offset relative to the section the symbol is attached to. */
3295 avr_stub_name (const asection *symbol_section,
3296 const bfd_vma symbol_offset,
3297 const Elf_Internal_Rela *rela)
3302 len = 8 + 1 + 8 + 1 + 1;
3303 stub_name = bfd_malloc (len);
3304 if (stub_name != NULL)
3305 sprintf (stub_name, "%08x+%08x",
3306 symbol_section->id & 0xffffffff,
3307 (unsigned int) ((rela->r_addend & 0xffffffff) + symbol_offset));
3313 /* Add a new stub entry to the stub hash. Not all fields of the new
3314 stub entry are initialised. */
3316 static struct elf32_avr_stub_hash_entry *
3317 avr_add_stub (const char *stub_name,
3318 struct elf32_avr_link_hash_table *htab)
3320 struct elf32_avr_stub_hash_entry *hsh;
3322 /* Enter this entry into the linker stub hash table. */
3323 hsh = avr_stub_hash_lookup (&htab->bstab, stub_name, TRUE, FALSE);
3327 /* xgettext:c-format */
3328 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3332 hsh->stub_offset = 0;
3336 /* We assume that there is already space allocated for the stub section
3337 contents and that before building the stubs the section size is
3338 initialized to 0. We assume that within the stub hash table entry,
3339 the absolute position of the jmp target has been written in the
3340 target_value field. We write here the offset of the generated jmp insn
3341 relative to the trampoline section start to the stub_offset entry in
3342 the stub hash table entry. */
3345 avr_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
3347 struct elf32_avr_stub_hash_entry *hsh;
3348 struct bfd_link_info *info;
3349 struct elf32_avr_link_hash_table *htab;
3356 bfd_vma jmp_insn = 0x0000940c;
3358 /* Massage our args to the form they really have. */
3359 hsh = avr_stub_hash_entry (bh);
3361 if (!hsh->is_actually_needed)
3364 info = (struct bfd_link_info *) in_arg;
3366 htab = avr_link_hash_table (info);
3370 target = hsh->target_value;
3372 /* Make a note of the offset within the stubs for this entry. */
3373 hsh->stub_offset = htab->stub_sec->size;
3374 loc = htab->stub_sec->contents + hsh->stub_offset;
3376 stub_bfd = htab->stub_sec->owner;
3379 printf ("Building one Stub. Address: 0x%x, Offset: 0x%x\n",
3380 (unsigned int) target,
3381 (unsigned int) hsh->stub_offset);
3383 /* We now have to add the information on the jump target to the bare
3384 opcode bits already set in jmp_insn. */
3386 /* Check for the alignment of the address. */
3390 starget = target >> 1;
3391 jmp_insn |= ((starget & 0x10000) | ((starget << 3) & 0x1f00000)) >> 16;
3392 bfd_put_16 (stub_bfd, jmp_insn, loc);
3393 bfd_put_16 (stub_bfd, (bfd_vma) starget & 0xffff, loc + 2);
3395 htab->stub_sec->size += 4;
3397 /* Now add the entries in the address mapping table if there is still
3402 nr = htab->amt_entry_cnt + 1;
3403 if (nr <= htab->amt_max_entry_cnt)
3405 htab->amt_entry_cnt = nr;
3407 htab->amt_stub_offsets[nr - 1] = hsh->stub_offset;
3408 htab->amt_destination_addr[nr - 1] = target;
3416 avr_mark_stub_not_to_be_necessary (struct bfd_hash_entry *bh,
3417 void *in_arg ATTRIBUTE_UNUSED)
3419 struct elf32_avr_stub_hash_entry *hsh;
3421 hsh = avr_stub_hash_entry (bh);
3422 hsh->is_actually_needed = FALSE;
3428 avr_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
3430 struct elf32_avr_stub_hash_entry *hsh;
3431 struct elf32_avr_link_hash_table *htab;
3434 /* Massage our args to the form they really have. */
3435 hsh = avr_stub_hash_entry (bh);
3438 if (hsh->is_actually_needed)
3443 htab->stub_sec->size += size;
3448 elf32_avr_setup_params (struct bfd_link_info *info,
3450 asection *avr_stub_section,
3451 bfd_boolean no_stubs,
3452 bfd_boolean deb_stubs,
3453 bfd_boolean deb_relax,
3454 bfd_vma pc_wrap_around,
3455 bfd_boolean call_ret_replacement)
3457 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
3461 htab->stub_sec = avr_stub_section;
3462 htab->stub_bfd = avr_stub_bfd;
3463 htab->no_stubs = no_stubs;
3465 debug_relax = deb_relax;
3466 debug_stubs = deb_stubs;
3467 avr_pc_wrap_around = pc_wrap_around;
3468 avr_replace_call_ret_sequences = call_ret_replacement;
3472 /* Set up various things so that we can make a list of input sections
3473 for each output section included in the link. Returns -1 on error,
3474 0 when no stubs will be needed, and 1 on success. It also sets
3475 information on the stubs bfd and the stub section in the info
3479 elf32_avr_setup_section_lists (bfd *output_bfd,
3480 struct bfd_link_info *info)
3483 unsigned int bfd_count;
3484 unsigned int top_id, top_index;
3486 asection **input_list, **list;
3488 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
3490 if (htab == NULL || htab->no_stubs)
3493 /* Count the number of input BFDs and find the top input section id. */
3494 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3496 input_bfd = input_bfd->link.next)
3499 for (section = input_bfd->sections;
3501 section = section->next)
3502 if (top_id < section->id)
3503 top_id = section->id;
3506 htab->bfd_count = bfd_count;
3508 /* We can't use output_bfd->section_count here to find the top output
3509 section index as some sections may have been removed, and
3510 strip_excluded_output_sections doesn't renumber the indices. */
3511 for (section = output_bfd->sections, top_index = 0;
3513 section = section->next)
3514 if (top_index < section->index)
3515 top_index = section->index;
3517 htab->top_index = top_index;
3518 amt = sizeof (asection *) * (top_index + 1);
3519 input_list = bfd_malloc (amt);
3520 htab->input_list = input_list;
3521 if (input_list == NULL)
3524 /* For sections we aren't interested in, mark their entries with a
3525 value we can check later. */
3526 list = input_list + top_index;
3528 *list = bfd_abs_section_ptr;
3529 while (list-- != input_list);
3531 for (section = output_bfd->sections;
3533 section = section->next)
3534 if ((section->flags & SEC_CODE) != 0)
3535 input_list[section->index] = NULL;
3541 /* Read in all local syms for all input bfds, and create hash entries
3542 for export stubs if we are building a multi-subspace shared lib.
3543 Returns -1 on error, 0 otherwise. */
3546 get_local_syms (bfd *input_bfd, struct bfd_link_info *info)
3548 unsigned int bfd_indx;
3549 Elf_Internal_Sym *local_syms, **all_local_syms;
3550 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
3556 /* We want to read in symbol extension records only once. To do this
3557 we need to read in the local symbols in parallel and save them for
3558 later use; so hold pointers to the local symbols in an array. */
3559 amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
3560 all_local_syms = bfd_zmalloc (amt);
3561 htab->all_local_syms = all_local_syms;
3562 if (all_local_syms == NULL)
3565 /* Walk over all the input BFDs, swapping in local symbols.
3566 If we are creating a shared library, create hash entries for the
3570 input_bfd = input_bfd->link.next, bfd_indx++)
3572 Elf_Internal_Shdr *symtab_hdr;
3574 /* We'll need the symbol table in a second. */
3575 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3576 if (symtab_hdr->sh_info == 0)
3579 /* We need an array of the local symbols attached to the input bfd. */
3580 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
3581 if (local_syms == NULL)
3583 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3584 symtab_hdr->sh_info, 0,
3586 /* Cache them for elf_link_input_bfd. */
3587 symtab_hdr->contents = (unsigned char *) local_syms;
3589 if (local_syms == NULL)
3592 all_local_syms[bfd_indx] = local_syms;
3598 #define ADD_DUMMY_STUBS_FOR_DEBUGGING 0
3601 elf32_avr_size_stubs (bfd *output_bfd,
3602 struct bfd_link_info *info,
3603 bfd_boolean is_prealloc_run)
3605 struct elf32_avr_link_hash_table *htab;
3606 int stub_changed = 0;
3608 htab = avr_link_hash_table (info);
3612 /* At this point we initialize htab->vector_base
3613 To the start of the text output section. */
3614 htab->vector_base = htab->stub_sec->output_section->vma;
3616 if (get_local_syms (info->input_bfds, info))
3618 if (htab->all_local_syms)
3619 goto error_ret_free_local;
3623 if (ADD_DUMMY_STUBS_FOR_DEBUGGING)
3625 struct elf32_avr_stub_hash_entry *test;
3627 test = avr_add_stub ("Hugo",htab);
3628 test->target_value = 0x123456;
3629 test->stub_offset = 13;
3631 test = avr_add_stub ("Hugo2",htab);
3632 test->target_value = 0x84210;
3633 test->stub_offset = 14;
3639 unsigned int bfd_indx;
3641 /* We will have to re-generate the stub hash table each time anything
3642 in memory has changed. */
3644 bfd_hash_traverse (&htab->bstab, avr_mark_stub_not_to_be_necessary, htab);
3645 for (input_bfd = info->input_bfds, bfd_indx = 0;
3647 input_bfd = input_bfd->link.next, bfd_indx++)
3649 Elf_Internal_Shdr *symtab_hdr;
3651 Elf_Internal_Sym *local_syms;
3653 /* We'll need the symbol table in a second. */
3654 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3655 if (symtab_hdr->sh_info == 0)
3658 local_syms = htab->all_local_syms[bfd_indx];
3660 /* Walk over each section attached to the input bfd. */
3661 for (section = input_bfd->sections;
3663 section = section->next)
3665 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3667 /* If there aren't any relocs, then there's nothing more
3669 if ((section->flags & SEC_RELOC) == 0
3670 || section->reloc_count == 0)
3673 /* If this section is a link-once section that will be
3674 discarded, then don't create any stubs. */
3675 if (section->output_section == NULL
3676 || section->output_section->owner != output_bfd)
3679 /* Get the relocs. */
3681 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
3683 if (internal_relocs == NULL)
3684 goto error_ret_free_local;
3686 /* Now examine each relocation. */
3687 irela = internal_relocs;
3688 irelaend = irela + section->reloc_count;
3689 for (; irela < irelaend; irela++)
3691 unsigned int r_type, r_indx;
3692 struct elf32_avr_stub_hash_entry *hsh;
3695 bfd_vma destination;
3696 struct elf_link_hash_entry *hh;
3699 r_type = ELF32_R_TYPE (irela->r_info);
3700 r_indx = ELF32_R_SYM (irela->r_info);
3702 /* Only look for 16 bit GS relocs. No other reloc will need a
3704 if (!((r_type == R_AVR_16_PM)
3705 || (r_type == R_AVR_LO8_LDI_GS)
3706 || (r_type == R_AVR_HI8_LDI_GS)))
3709 /* Now determine the call target, its name, value,
3715 if (r_indx < symtab_hdr->sh_info)
3717 /* It's a local symbol. */
3718 Elf_Internal_Sym *sym;
3719 Elf_Internal_Shdr *hdr;
3722 sym = local_syms + r_indx;
3723 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3724 sym_value = sym->st_value;
3725 shndx = sym->st_shndx;
3726 if (shndx < elf_numsections (input_bfd))
3728 hdr = elf_elfsections (input_bfd)[shndx];
3729 sym_sec = hdr->bfd_section;
3730 destination = (sym_value + irela->r_addend
3731 + sym_sec->output_offset
3732 + sym_sec->output_section->vma);
3737 /* It's an external symbol. */
3740 e_indx = r_indx - symtab_hdr->sh_info;
3741 hh = elf_sym_hashes (input_bfd)[e_indx];
3743 while (hh->root.type == bfd_link_hash_indirect
3744 || hh->root.type == bfd_link_hash_warning)
3745 hh = (struct elf_link_hash_entry *)
3746 (hh->root.u.i.link);
3748 if (hh->root.type == bfd_link_hash_defined
3749 || hh->root.type == bfd_link_hash_defweak)
3751 sym_sec = hh->root.u.def.section;
3752 sym_value = hh->root.u.def.value;
3753 if (sym_sec->output_section != NULL)
3754 destination = (sym_value + irela->r_addend
3755 + sym_sec->output_offset
3756 + sym_sec->output_section->vma);
3758 else if (hh->root.type == bfd_link_hash_undefweak)
3760 if (! bfd_link_pic (info))
3763 else if (hh->root.type == bfd_link_hash_undefined)
3765 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3766 && (ELF_ST_VISIBILITY (hh->other)
3772 bfd_set_error (bfd_error_bad_value);
3774 error_ret_free_internal:
3775 if (elf_section_data (section)->relocs == NULL)
3776 free (internal_relocs);
3777 goto error_ret_free_local;
3781 if (! avr_stub_is_required_for_16_bit_reloc
3782 (destination - htab->vector_base))
3784 if (!is_prealloc_run)
3785 /* We are having a reloc that does't need a stub. */
3788 /* We don't right now know if a stub will be needed.
3789 Let's rather be on the safe side. */
3792 /* Get the name of this stub. */
3793 stub_name = avr_stub_name (sym_sec, sym_value, irela);
3796 goto error_ret_free_internal;
3799 hsh = avr_stub_hash_lookup (&htab->bstab,
3804 /* The proper stub has already been created. Mark it
3805 to be used and write the possibly changed destination
3807 hsh->is_actually_needed = TRUE;
3808 hsh->target_value = destination;
3813 hsh = avr_add_stub (stub_name, htab);
3817 goto error_ret_free_internal;
3820 hsh->is_actually_needed = TRUE;
3821 hsh->target_value = destination;
3824 printf ("Adding stub with destination 0x%x to the"
3825 " hash table.\n", (unsigned int) destination);
3827 printf ("(Pre-Alloc run: %i)\n", is_prealloc_run);
3829 stub_changed = TRUE;
3832 /* We're done with the internal relocs, free them. */
3833 if (elf_section_data (section)->relocs == NULL)
3834 free (internal_relocs);
3838 /* Re-Calculate the number of needed stubs. */
3839 htab->stub_sec->size = 0;
3840 bfd_hash_traverse (&htab->bstab, avr_size_one_stub, htab);
3845 stub_changed = FALSE;
3848 free (htab->all_local_syms);
3851 error_ret_free_local:
3852 free (htab->all_local_syms);
3857 /* Build all the stubs associated with the current output file. The
3858 stubs are kept in a hash table attached to the main linker hash
3859 table. We also set up the .plt entries for statically linked PIC
3860 functions here. This function is called via hppaelf_finish in the
3864 elf32_avr_build_stubs (struct bfd_link_info *info)
3867 struct bfd_hash_table *table;
3868 struct elf32_avr_link_hash_table *htab;
3869 bfd_size_type total_size = 0;
3871 htab = avr_link_hash_table (info);
3875 /* In case that there were several stub sections: */
3876 for (stub_sec = htab->stub_bfd->sections;
3878 stub_sec = stub_sec->next)
3882 /* Allocate memory to hold the linker stubs. */
3883 size = stub_sec->size;
3886 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3887 if (stub_sec->contents == NULL && size != 0)
3892 /* Allocate memory for the adress mapping table. */
3893 htab->amt_entry_cnt = 0;
3894 htab->amt_max_entry_cnt = total_size / 4;
3895 htab->amt_stub_offsets = bfd_malloc (sizeof (bfd_vma)
3896 * htab->amt_max_entry_cnt);
3897 htab->amt_destination_addr = bfd_malloc (sizeof (bfd_vma)
3898 * htab->amt_max_entry_cnt );
3901 printf ("Allocating %i entries in the AMT\n", htab->amt_max_entry_cnt);
3903 /* Build the stubs as directed by the stub hash table. */
3904 table = &htab->bstab;
3905 bfd_hash_traverse (table, avr_build_one_stub, info);
3908 printf ("Final Stub section Size: %i\n", (int) htab->stub_sec->size);
3913 /* Callback used by QSORT to order relocations AP and BP. */
3916 internal_reloc_compare (const void *ap, const void *bp)
3918 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
3919 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
3921 if (a->r_offset != b->r_offset)
3922 return (a->r_offset - b->r_offset);
3924 /* We don't need to sort on these criteria for correctness,
3925 but enforcing a more strict ordering prevents unstable qsort
3926 from behaving differently with different implementations.
3927 Without the code below we get correct but different results
3928 on Solaris 2.7 and 2.8. We would like to always produce the
3929 same results no matter the host. */
3931 if (a->r_info != b->r_info)
3932 return (a->r_info - b->r_info);
3934 return (a->r_addend - b->r_addend);
3937 /* Return true if ADDRESS is within the vma range of SECTION from ABFD. */
3940 avr_is_section_for_address (bfd *abfd, asection *section, bfd_vma address)
3945 vma = bfd_get_section_vma (abfd, section);
3949 size = section->size;
3950 if (address >= vma + size)
3956 /* Data structure used by AVR_FIND_SECTION_FOR_ADDRESS. */
3958 struct avr_find_section_data
3960 /* The address we're looking for. */
3963 /* The section we've found. */
3967 /* Helper function to locate the section holding a certain virtual memory
3968 address. This is called via bfd_map_over_sections. The DATA is an
3969 instance of STRUCT AVR_FIND_SECTION_DATA, the address field of which
3970 has been set to the address to search for, and the section field has
3971 been set to NULL. If SECTION from ABFD contains ADDRESS then the
3972 section field in DATA will be set to SECTION. As an optimisation, if
3973 the section field is already non-null then this function does not
3974 perform any checks, and just returns. */
3977 avr_find_section_for_address (bfd *abfd,
3978 asection *section, void *data)
3980 struct avr_find_section_data *fs_data
3981 = (struct avr_find_section_data *) data;
3983 /* Return if already found. */
3984 if (fs_data->section != NULL)
3987 /* If this section isn't part of the addressable code content, skip it. */
3988 if ((bfd_get_section_flags (abfd, section) & SEC_ALLOC) == 0
3989 && (bfd_get_section_flags (abfd, section) & SEC_CODE) == 0)
3992 if (avr_is_section_for_address (abfd, section, fs_data->address))
3993 fs_data->section = section;
3996 /* Load all of the property records from SEC, a section from ABFD. Return
3997 a STRUCT AVR_PROPERTY_RECORD_LIST containing all the records. The
3998 memory for the returned structure, and all of the records pointed too by
3999 the structure are allocated with a single call to malloc, so, only the
4000 pointer returned needs to be free'd. */
4002 static struct avr_property_record_list *
4003 avr_elf32_load_records_from_section (bfd *abfd, asection *sec)
4005 char *contents = NULL, *ptr;
4006 bfd_size_type size, mem_size;
4007 bfd_byte version, flags;
4008 uint16_t record_count, i;
4009 struct avr_property_record_list *r_list = NULL;
4010 Elf_Internal_Rela *internal_relocs = NULL, *rel, *rel_end;
4011 struct avr_find_section_data fs_data;
4013 fs_data.section = NULL;
4015 size = bfd_get_section_size (sec);
4016 contents = bfd_malloc (size);
4017 bfd_get_section_contents (abfd, sec, contents, 0, size);
4020 /* Load the relocations for the '.avr.prop' section if there are any, and
4022 internal_relocs = (_bfd_elf_link_read_relocs
4023 (abfd, sec, NULL, NULL, FALSE));
4024 if (internal_relocs)
4025 qsort (internal_relocs, sec->reloc_count,
4026 sizeof (Elf_Internal_Rela), internal_reloc_compare);
4028 /* There is a header at the start of the property record section SEC, the
4029 format of this header is:
4030 uint8_t : version number
4032 uint16_t : record counter
4035 /* Check we have at least got a headers worth of bytes. */
4036 if (size < AVR_PROPERTY_SECTION_HEADER_SIZE)
4039 version = *((bfd_byte *) ptr);
4041 flags = *((bfd_byte *) ptr);
4043 record_count = *((uint16_t *) ptr);
4045 BFD_ASSERT (ptr - contents == AVR_PROPERTY_SECTION_HEADER_SIZE);
4047 /* Now allocate space for the list structure, and all of the list
4048 elements in a single block. */
4049 mem_size = sizeof (struct avr_property_record_list)
4050 + sizeof (struct avr_property_record) * record_count;
4051 r_list = bfd_malloc (mem_size);
4055 r_list->version = version;
4056 r_list->flags = flags;
4057 r_list->section = sec;
4058 r_list->record_count = record_count;
4059 r_list->records = (struct avr_property_record *) (&r_list [1]);
4060 size -= AVR_PROPERTY_SECTION_HEADER_SIZE;
4062 /* Check that we understand the version number. There is only one
4063 version number right now, anything else is an error. */
4064 if (r_list->version != AVR_PROPERTY_RECORDS_VERSION)
4067 rel = internal_relocs;
4068 rel_end = rel + sec->reloc_count;
4069 for (i = 0; i < record_count; ++i)
4073 /* Each entry is a 32-bit address, followed by a single byte type.
4074 After that is the type specific data. We must take care to
4075 ensure that we don't read beyond the end of the section data. */
4079 r_list->records [i].section = NULL;
4080 r_list->records [i].offset = 0;
4084 /* The offset of the address within the .avr.prop section. */
4085 size_t offset = ptr - contents;
4087 while (rel < rel_end && rel->r_offset < offset)
4092 else if (rel->r_offset == offset)
4094 /* Find section and section offset. */
4095 unsigned long r_symndx;
4100 r_symndx = ELF32_R_SYM (rel->r_info);
4101 rel_sec = get_elf_r_symndx_section (abfd, r_symndx);
4102 sec_offset = get_elf_r_symndx_offset (abfd, r_symndx)
4105 r_list->records [i].section = rel_sec;
4106 r_list->records [i].offset = sec_offset;
4110 address = *((uint32_t *) ptr);
4114 if (r_list->records [i].section == NULL)
4116 /* Try to find section and offset from address. */
4117 if (fs_data.section != NULL
4118 && !avr_is_section_for_address (abfd, fs_data.section,
4120 fs_data.section = NULL;
4122 if (fs_data.section == NULL)
4124 fs_data.address = address;
4125 bfd_map_over_sections (abfd, avr_find_section_for_address,
4129 if (fs_data.section == NULL)
4131 fprintf (stderr, "Failed to find matching section.\n");
4135 r_list->records [i].section = fs_data.section;
4136 r_list->records [i].offset
4137 = address - bfd_get_section_vma (abfd, fs_data.section);
4140 r_list->records [i].type = *((bfd_byte *) ptr);
4144 switch (r_list->records [i].type)
4147 /* Nothing else to load. */
4149 case RECORD_ORG_AND_FILL:
4150 /* Just a 4-byte fill to load. */
4153 r_list->records [i].data.org.fill = *((uint32_t *) ptr);
4158 /* Just a 4-byte alignment to load. */
4161 r_list->records [i].data.align.bytes = *((uint32_t *) ptr);
4164 /* Just initialise PRECEDING_DELETED field, this field is
4165 used during linker relaxation. */
4166 r_list->records [i].data.align.preceding_deleted = 0;
4168 case RECORD_ALIGN_AND_FILL:
4169 /* A 4-byte alignment, and a 4-byte fill to load. */
4172 r_list->records [i].data.align.bytes = *((uint32_t *) ptr);
4174 r_list->records [i].data.align.fill = *((uint32_t *) ptr);
4177 /* Just initialise PRECEDING_DELETED field, this field is
4178 used during linker relaxation. */
4179 r_list->records [i].data.align.preceding_deleted = 0;
4187 if (elf_section_data (sec)->relocs != internal_relocs)
4188 free (internal_relocs);
4192 if (elf_section_data (sec)->relocs != internal_relocs)
4193 free (internal_relocs);
4199 /* Load all of the property records from ABFD. See
4200 AVR_ELF32_LOAD_RECORDS_FROM_SECTION for details of the return value. */
4202 struct avr_property_record_list *
4203 avr_elf32_load_property_records (bfd *abfd)
4207 /* Find the '.avr.prop' section and load the contents into memory. */
4208 sec = bfd_get_section_by_name (abfd, AVR_PROPERTY_RECORD_SECTION_NAME);
4211 return avr_elf32_load_records_from_section (abfd, sec);
4215 avr_elf32_property_record_name (struct avr_property_record *rec)
4224 case RECORD_ORG_AND_FILL:
4230 case RECORD_ALIGN_AND_FILL:
4241 #define ELF_ARCH bfd_arch_avr
4242 #define ELF_TARGET_ID AVR_ELF_DATA
4243 #define ELF_MACHINE_CODE EM_AVR
4244 #define ELF_MACHINE_ALT1 EM_AVR_OLD
4245 #define ELF_MAXPAGESIZE 1
4247 #define TARGET_LITTLE_SYM avr_elf32_vec
4248 #define TARGET_LITTLE_NAME "elf32-avr"
4250 #define bfd_elf32_bfd_link_hash_table_create elf32_avr_link_hash_table_create
4252 #define elf_info_to_howto avr_info_to_howto_rela
4253 #define elf_info_to_howto_rel NULL
4254 #define elf_backend_relocate_section elf32_avr_relocate_section
4255 #define elf_backend_can_gc_sections 1
4256 #define elf_backend_rela_normal 1
4257 #define elf_backend_final_write_processing \
4258 bfd_elf_avr_final_write_processing
4259 #define elf_backend_object_p elf32_avr_object_p
4261 #define bfd_elf32_bfd_relax_section elf32_avr_relax_section
4262 #define bfd_elf32_bfd_get_relocated_section_contents \
4263 elf32_avr_get_relocated_section_contents
4264 #define bfd_elf32_new_section_hook elf_avr_new_section_hook
4265 #define elf_backend_special_sections elf_avr_special_sections
4267 #include "elf32-target.h"