1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2016 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
30 #include "elf-vxworks.h"
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
77 static reloc_howto_type elf32_arm_howto_table_1[] =
80 HOWTO (R_ARM_NONE, /* type */
82 3, /* size (0 = byte, 1 = short, 2 = long) */
84 FALSE, /* pc_relative */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
92 FALSE), /* pcrel_offset */
94 HOWTO (R_ARM_PC24, /* type */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
98 TRUE, /* pc_relative */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
113 FALSE, /* pc_relative */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
128 TRUE, /* pc_relative */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
143 TRUE, /* pc_relative */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
158 FALSE, /* pc_relative */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
173 FALSE, /* pc_relative */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
183 HOWTO (R_ARM_THM_ABS5, /* type */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
187 FALSE, /* pc_relative */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
198 HOWTO (R_ARM_ABS8, /* type */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
202 FALSE, /* pc_relative */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
212 HOWTO (R_ARM_SBREL32, /* type */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
216 FALSE, /* pc_relative */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
226 HOWTO (R_ARM_THM_CALL, /* type */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
230 TRUE, /* pc_relative */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
240 HOWTO (R_ARM_THM_PC8, /* type */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
244 TRUE, /* pc_relative */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
254 HOWTO (R_ARM_BREL_ADJ, /* type */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
258 FALSE, /* pc_relative */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
268 HOWTO (R_ARM_TLS_DESC, /* type */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
272 FALSE, /* pc_relative */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
282 HOWTO (R_ARM_THM_SWI8, /* type */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
286 FALSE, /* pc_relative */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
301 TRUE, /* pc_relative */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
316 TRUE, /* pc_relative */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
326 /* Dynamic TLS relocations. */
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
332 FALSE, /* pc_relative */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
346 FALSE, /* pc_relative */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
360 FALSE, /* pc_relative */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
370 /* Relocs used in ARM Linux */
372 HOWTO (R_ARM_COPY, /* type */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
376 FALSE, /* pc_relative */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
386 HOWTO (R_ARM_GLOB_DAT, /* type */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
390 FALSE, /* pc_relative */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
404 FALSE, /* pc_relative */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
414 HOWTO (R_ARM_RELATIVE, /* type */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
418 FALSE, /* pc_relative */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
428 HOWTO (R_ARM_GOTOFF32, /* type */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
432 FALSE, /* pc_relative */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
442 HOWTO (R_ARM_GOTPC, /* type */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
446 TRUE, /* pc_relative */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
456 HOWTO (R_ARM_GOT32, /* type */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
460 FALSE, /* pc_relative */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
470 HOWTO (R_ARM_PLT32, /* type */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
474 TRUE, /* pc_relative */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
484 HOWTO (R_ARM_CALL, /* type */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
488 TRUE, /* pc_relative */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
498 HOWTO (R_ARM_JUMP24, /* type */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
502 TRUE, /* pc_relative */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
512 HOWTO (R_ARM_THM_JUMP24, /* type */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
516 TRUE, /* pc_relative */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
526 HOWTO (R_ARM_BASE_ABS, /* type */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
530 FALSE, /* pc_relative */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
544 TRUE, /* pc_relative */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
558 TRUE, /* pc_relative */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
572 TRUE, /* pc_relative */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
586 FALSE, /* pc_relative */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
600 FALSE, /* pc_relative */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
614 FALSE, /* pc_relative */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
624 HOWTO (R_ARM_TARGET1, /* type */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
628 FALSE, /* pc_relative */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
638 HOWTO (R_ARM_ROSEGREL32, /* type */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
642 FALSE, /* pc_relative */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
652 HOWTO (R_ARM_V4BX, /* type */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
656 FALSE, /* pc_relative */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
666 HOWTO (R_ARM_TARGET2, /* type */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
670 FALSE, /* pc_relative */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
680 HOWTO (R_ARM_PREL31, /* type */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
684 TRUE, /* pc_relative */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
698 FALSE, /* pc_relative */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
708 HOWTO (R_ARM_MOVT_ABS, /* type */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
712 FALSE, /* pc_relative */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
726 TRUE, /* pc_relative */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
736 HOWTO (R_ARM_MOVT_PREL, /* type */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
740 TRUE, /* pc_relative */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
754 FALSE, /* pc_relative */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
768 FALSE, /* pc_relative */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
782 TRUE, /* pc_relative */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
796 TRUE, /* pc_relative */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
806 HOWTO (R_ARM_THM_JUMP19, /* type */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
810 TRUE, /* pc_relative */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
820 HOWTO (R_ARM_THM_JUMP6, /* type */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
824 TRUE, /* pc_relative */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
841 TRUE, /* pc_relative */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
851 HOWTO (R_ARM_THM_PC12, /* type */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
855 TRUE, /* pc_relative */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
865 HOWTO (R_ARM_ABS32_NOI, /* type */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
869 FALSE, /* pc_relative */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
879 HOWTO (R_ARM_REL32_NOI, /* type */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
883 TRUE, /* pc_relative */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
893 /* Group relocations. */
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
899 TRUE, /* pc_relative */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
913 TRUE, /* pc_relative */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
927 TRUE, /* pc_relative */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
941 TRUE, /* pc_relative */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
955 TRUE, /* pc_relative */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
969 TRUE, /* pc_relative */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
983 TRUE, /* pc_relative */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
997 TRUE, /* pc_relative */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1011 TRUE, /* pc_relative */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1025 TRUE, /* pc_relative */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1039 TRUE, /* pc_relative */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1053 TRUE, /* pc_relative */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 TRUE, /* pc_relative */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1081 TRUE, /* pc_relative */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1095 TRUE, /* pc_relative */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 TRUE, /* pc_relative */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1123 TRUE, /* pc_relative */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1137 TRUE, /* pc_relative */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1151 TRUE, /* pc_relative */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1165 TRUE, /* pc_relative */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1179 TRUE, /* pc_relative */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1193 TRUE, /* pc_relative */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1207 TRUE, /* pc_relative */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1221 TRUE, /* pc_relative */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1235 TRUE, /* pc_relative */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1249 TRUE, /* pc_relative */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1263 TRUE, /* pc_relative */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1273 /* End of group relocations. */
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1279 FALSE, /* pc_relative */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1293 FALSE, /* pc_relative */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1307 FALSE, /* pc_relative */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1321 FALSE, /* pc_relative */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1335 FALSE, /* pc_relative */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 FALSE, /* pc_relative */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 FALSE, /* pc_relative */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 FALSE, /* pc_relative */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1391 FALSE, /* pc_relative */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1405 FALSE, /* pc_relative */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1419 FALSE, /* pc_relative */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1433 FALSE, /* pc_relative */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 TRUE, /* pc_relative */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1461 FALSE, /* pc_relative */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1475 FALSE, /* pc_relative */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 FALSE, /* pc_relative */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1500 FALSE), /* pcrel_offset */
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 FALSE, /* pc_relative */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1515 FALSE), /* pcrel_offset */
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1521 TRUE, /* pc_relative */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1535 TRUE, /* pc_relative */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1550 FALSE, /* pc_relative */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 FALSE, /* pc_relative */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 FALSE, /* pc_relative */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1592 FALSE, /* pc_relative */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1606 FALSE, /* pc_relative */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 NULL, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1620 FALSE, /* pc_relative */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1634 FALSE, /* pc_relative */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1648 FALSE, /* pc_relative */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1658 /* 112-127 private relocations. */
1676 /* R_ARM_ME_TOO, obsolete. */
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1683 FALSE, /* pc_relative */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1694 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1695 0, /* rightshift. */
1696 1, /* size (0 = byte, 1 = short, 2 = long). */
1698 FALSE, /* pc_relative. */
1700 complain_overflow_bitfield,/* complain_on_overflow. */
1701 bfd_elf_generic_reloc, /* special_function. */
1702 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1703 FALSE, /* partial_inplace. */
1704 0x00000000, /* src_mask. */
1705 0x00000000, /* dst_mask. */
1706 FALSE), /* pcrel_offset. */
1707 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1708 0, /* rightshift. */
1709 1, /* size (0 = byte, 1 = short, 2 = long). */
1711 FALSE, /* pc_relative. */
1713 complain_overflow_bitfield,/* complain_on_overflow. */
1714 bfd_elf_generic_reloc, /* special_function. */
1715 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1716 FALSE, /* partial_inplace. */
1717 0x00000000, /* src_mask. */
1718 0x00000000, /* dst_mask. */
1719 FALSE), /* pcrel_offset. */
1720 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1721 0, /* rightshift. */
1722 1, /* size (0 = byte, 1 = short, 2 = long). */
1724 FALSE, /* pc_relative. */
1726 complain_overflow_bitfield,/* complain_on_overflow. */
1727 bfd_elf_generic_reloc, /* special_function. */
1728 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1729 FALSE, /* partial_inplace. */
1730 0x00000000, /* src_mask. */
1731 0x00000000, /* dst_mask. */
1732 FALSE), /* pcrel_offset. */
1733 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1734 0, /* rightshift. */
1735 1, /* size (0 = byte, 1 = short, 2 = long). */
1737 FALSE, /* pc_relative. */
1739 complain_overflow_bitfield,/* complain_on_overflow. */
1740 bfd_elf_generic_reloc, /* special_function. */
1741 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1742 FALSE, /* partial_inplace. */
1743 0x00000000, /* src_mask. */
1744 0x00000000, /* dst_mask. */
1745 FALSE), /* pcrel_offset. */
1749 static reloc_howto_type elf32_arm_howto_table_2[1] =
1751 HOWTO (R_ARM_IRELATIVE, /* type */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1755 FALSE, /* pc_relative */
1757 complain_overflow_bitfield,/* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 "R_ARM_IRELATIVE", /* name */
1760 TRUE, /* partial_inplace */
1761 0xffffffff, /* src_mask */
1762 0xffffffff, /* dst_mask */
1763 FALSE) /* pcrel_offset */
1766 /* 249-255 extended, currently unused, relocations: */
1767 static reloc_howto_type elf32_arm_howto_table_3[4] =
1769 HOWTO (R_ARM_RREL32, /* type */
1771 0, /* size (0 = byte, 1 = short, 2 = long) */
1773 FALSE, /* pc_relative */
1775 complain_overflow_dont,/* complain_on_overflow */
1776 bfd_elf_generic_reloc, /* special_function */
1777 "R_ARM_RREL32", /* name */
1778 FALSE, /* partial_inplace */
1781 FALSE), /* pcrel_offset */
1783 HOWTO (R_ARM_RABS32, /* type */
1785 0, /* size (0 = byte, 1 = short, 2 = long) */
1787 FALSE, /* pc_relative */
1789 complain_overflow_dont,/* complain_on_overflow */
1790 bfd_elf_generic_reloc, /* special_function */
1791 "R_ARM_RABS32", /* name */
1792 FALSE, /* partial_inplace */
1795 FALSE), /* pcrel_offset */
1797 HOWTO (R_ARM_RPC24, /* type */
1799 0, /* size (0 = byte, 1 = short, 2 = long) */
1801 FALSE, /* pc_relative */
1803 complain_overflow_dont,/* complain_on_overflow */
1804 bfd_elf_generic_reloc, /* special_function */
1805 "R_ARM_RPC24", /* name */
1806 FALSE, /* partial_inplace */
1809 FALSE), /* pcrel_offset */
1811 HOWTO (R_ARM_RBASE, /* type */
1813 0, /* size (0 = byte, 1 = short, 2 = long) */
1815 FALSE, /* pc_relative */
1817 complain_overflow_dont,/* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 "R_ARM_RBASE", /* name */
1820 FALSE, /* partial_inplace */
1823 FALSE) /* pcrel_offset */
1826 static reloc_howto_type *
1827 elf32_arm_howto_from_type (unsigned int r_type)
1829 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1830 return &elf32_arm_howto_table_1[r_type];
1832 if (r_type == R_ARM_IRELATIVE)
1833 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1835 if (r_type >= R_ARM_RREL32
1836 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1837 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1843 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1844 Elf_Internal_Rela * elf_reloc)
1846 unsigned int r_type;
1848 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1849 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1852 struct elf32_arm_reloc_map
1854 bfd_reloc_code_real_type bfd_reloc_val;
1855 unsigned char elf_reloc_val;
1858 /* All entries in this list must also be present in elf32_arm_howto_table. */
1859 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1861 {BFD_RELOC_NONE, R_ARM_NONE},
1862 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1863 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1864 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1865 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1866 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1867 {BFD_RELOC_32, R_ARM_ABS32},
1868 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1869 {BFD_RELOC_8, R_ARM_ABS8},
1870 {BFD_RELOC_16, R_ARM_ABS16},
1871 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1872 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1873 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1874 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1875 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1876 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1877 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1878 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1879 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1880 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1881 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1882 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1883 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1884 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1885 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1886 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1887 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1888 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1889 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1890 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1891 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1892 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1893 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1894 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1895 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1896 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1897 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1898 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1899 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1900 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1901 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1902 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1903 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1904 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1905 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1906 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1907 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1908 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1909 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1910 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1911 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1912 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1913 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1914 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1915 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1916 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1917 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1918 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1919 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1920 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1921 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1922 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1923 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1924 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1925 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1926 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1927 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1928 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1929 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1930 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1931 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1932 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1933 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1934 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1935 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1936 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1937 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1938 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1939 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1940 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1941 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1942 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1943 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1944 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1945 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1946 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
1947 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
1948 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
1949 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
1950 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}
1953 static reloc_howto_type *
1954 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1955 bfd_reloc_code_real_type code)
1959 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1960 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1961 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1966 static reloc_howto_type *
1967 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1972 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1973 if (elf32_arm_howto_table_1[i].name != NULL
1974 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1975 return &elf32_arm_howto_table_1[i];
1977 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1978 if (elf32_arm_howto_table_2[i].name != NULL
1979 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1980 return &elf32_arm_howto_table_2[i];
1982 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1983 if (elf32_arm_howto_table_3[i].name != NULL
1984 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1985 return &elf32_arm_howto_table_3[i];
1990 /* Support for core dump NOTE sections. */
1993 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1998 switch (note->descsz)
2003 case 148: /* Linux/ARM 32-bit. */
2005 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2008 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2017 /* Make a ".reg/999" section. */
2018 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2019 size, note->descpos + offset);
2023 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2025 switch (note->descsz)
2030 case 124: /* Linux/ARM elf_prpsinfo. */
2031 elf_tdata (abfd)->core->pid
2032 = bfd_get_32 (abfd, note->descdata + 12);
2033 elf_tdata (abfd)->core->program
2034 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2035 elf_tdata (abfd)->core->command
2036 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2039 /* Note that for some reason, a spurious space is tacked
2040 onto the end of the args in some (at least one anyway)
2041 implementations, so strip it off if it exists. */
2043 char *command = elf_tdata (abfd)->core->command;
2044 int n = strlen (command);
2046 if (0 < n && command[n - 1] == ' ')
2047 command[n - 1] = '\0';
2054 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2067 va_start (ap, note_type);
2068 memset (data, 0, sizeof (data));
2069 strncpy (data + 28, va_arg (ap, const char *), 16);
2070 strncpy (data + 44, va_arg (ap, const char *), 80);
2073 return elfcore_write_note (abfd, buf, bufsiz,
2074 "CORE", note_type, data, sizeof (data));
2085 va_start (ap, note_type);
2086 memset (data, 0, sizeof (data));
2087 pid = va_arg (ap, long);
2088 bfd_put_32 (abfd, pid, data + 24);
2089 cursig = va_arg (ap, int);
2090 bfd_put_16 (abfd, cursig, data + 12);
2091 greg = va_arg (ap, const void *);
2092 memcpy (data + 72, greg, 72);
2095 return elfcore_write_note (abfd, buf, bufsiz,
2096 "CORE", note_type, data, sizeof (data));
2101 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2102 #define TARGET_LITTLE_NAME "elf32-littlearm"
2103 #define TARGET_BIG_SYM arm_elf32_be_vec
2104 #define TARGET_BIG_NAME "elf32-bigarm"
2106 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2107 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2108 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2110 typedef unsigned long int insn32;
2111 typedef unsigned short int insn16;
2113 /* In lieu of proper flags, assume all EABIv4 or later objects are
2115 #define INTERWORK_FLAG(abfd) \
2116 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2117 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2118 || ((abfd)->flags & BFD_LINKER_CREATED))
2120 /* The linker script knows the section names for placement.
2121 The entry_names are used to do simple name mangling on the stubs.
2122 Given a function name, and its type, the stub can be found. The
2123 name can be changed. The only requirement is the %s be present. */
2124 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2125 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2127 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2128 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2130 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2131 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2133 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2134 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2136 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2137 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2139 #define STUB_ENTRY_NAME "__%s_veneer"
2141 #define CMSE_PREFIX "__acle_se_"
2143 /* The name of the dynamic interpreter. This is put in the .interp
2145 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2147 static const unsigned long tls_trampoline [] =
2149 0xe08e0000, /* add r0, lr, r0 */
2150 0xe5901004, /* ldr r1, [r0,#4] */
2151 0xe12fff11, /* bx r1 */
2154 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2156 0xe52d2004, /* push {r2} */
2157 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2158 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2159 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2160 0xe081100f, /* 2: add r1, pc */
2161 0xe12fff12, /* bx r2 */
2162 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2163 + dl_tlsdesc_lazy_resolver(GOT) */
2164 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2167 #ifdef FOUR_WORD_PLT
2169 /* The first entry in a procedure linkage table looks like
2170 this. It is set up so that any shared library function that is
2171 called before the relocation has been set up calls the dynamic
2173 static const bfd_vma elf32_arm_plt0_entry [] =
2175 0xe52de004, /* str lr, [sp, #-4]! */
2176 0xe59fe010, /* ldr lr, [pc, #16] */
2177 0xe08fe00e, /* add lr, pc, lr */
2178 0xe5bef008, /* ldr pc, [lr, #8]! */
2181 /* Subsequent entries in a procedure linkage table look like
2183 static const bfd_vma elf32_arm_plt_entry [] =
2185 0xe28fc600, /* add ip, pc, #NN */
2186 0xe28cca00, /* add ip, ip, #NN */
2187 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2188 0x00000000, /* unused */
2191 #else /* not FOUR_WORD_PLT */
2193 /* The first entry in a procedure linkage table looks like
2194 this. It is set up so that any shared library function that is
2195 called before the relocation has been set up calls the dynamic
2197 static const bfd_vma elf32_arm_plt0_entry [] =
2199 0xe52de004, /* str lr, [sp, #-4]! */
2200 0xe59fe004, /* ldr lr, [pc, #4] */
2201 0xe08fe00e, /* add lr, pc, lr */
2202 0xe5bef008, /* ldr pc, [lr, #8]! */
2203 0x00000000, /* &GOT[0] - . */
2206 /* By default subsequent entries in a procedure linkage table look like
2207 this. Offsets that don't fit into 28 bits will cause link error. */
2208 static const bfd_vma elf32_arm_plt_entry_short [] =
2210 0xe28fc600, /* add ip, pc, #0xNN00000 */
2211 0xe28cca00, /* add ip, ip, #0xNN000 */
2212 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2215 /* When explicitly asked, we'll use this "long" entry format
2216 which can cope with arbitrary displacements. */
2217 static const bfd_vma elf32_arm_plt_entry_long [] =
2219 0xe28fc200, /* add ip, pc, #0xN0000000 */
2220 0xe28cc600, /* add ip, ip, #0xNN00000 */
2221 0xe28cca00, /* add ip, ip, #0xNN000 */
2222 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2225 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2227 #endif /* not FOUR_WORD_PLT */
2229 /* The first entry in a procedure linkage table looks like this.
2230 It is set up so that any shared library function that is called before the
2231 relocation has been set up calls the dynamic linker first. */
2232 static const bfd_vma elf32_thumb2_plt0_entry [] =
2234 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2235 an instruction maybe encoded to one or two array elements. */
2236 0xf8dfb500, /* push {lr} */
2237 0x44fee008, /* ldr.w lr, [pc, #8] */
2239 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2240 0x00000000, /* &GOT[0] - . */
2243 /* Subsequent entries in a procedure linkage table for thumb only target
2245 static const bfd_vma elf32_thumb2_plt_entry [] =
2247 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2248 an instruction maybe encoded to one or two array elements. */
2249 0x0c00f240, /* movw ip, #0xNNNN */
2250 0x0c00f2c0, /* movt ip, #0xNNNN */
2251 0xf8dc44fc, /* add ip, pc */
2252 0xbf00f000 /* ldr.w pc, [ip] */
2256 /* The format of the first entry in the procedure linkage table
2257 for a VxWorks executable. */
2258 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2260 0xe52dc008, /* str ip,[sp,#-8]! */
2261 0xe59fc000, /* ldr ip,[pc] */
2262 0xe59cf008, /* ldr pc,[ip,#8] */
2263 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2266 /* The format of subsequent entries in a VxWorks executable. */
2267 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2269 0xe59fc000, /* ldr ip,[pc] */
2270 0xe59cf000, /* ldr pc,[ip] */
2271 0x00000000, /* .long @got */
2272 0xe59fc000, /* ldr ip,[pc] */
2273 0xea000000, /* b _PLT */
2274 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2277 /* The format of entries in a VxWorks shared library. */
2278 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2280 0xe59fc000, /* ldr ip,[pc] */
2281 0xe79cf009, /* ldr pc,[ip,r9] */
2282 0x00000000, /* .long @got */
2283 0xe59fc000, /* ldr ip,[pc] */
2284 0xe599f008, /* ldr pc,[r9,#8] */
2285 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2288 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2289 #define PLT_THUMB_STUB_SIZE 4
2290 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2296 /* The entries in a PLT when using a DLL-based target with multiple
2298 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2300 0xe51ff004, /* ldr pc, [pc, #-4] */
2301 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2304 /* The first entry in a procedure linkage table looks like
2305 this. It is set up so that any shared library function that is
2306 called before the relocation has been set up calls the dynamic
2308 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2311 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2312 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2313 0xe08cc00f, /* add ip, ip, pc */
2314 0xe52dc008, /* str ip, [sp, #-8]! */
2315 /* Second bundle: */
2316 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2317 0xe59cc000, /* ldr ip, [ip] */
2318 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2319 0xe12fff1c, /* bx ip */
2321 0xe320f000, /* nop */
2322 0xe320f000, /* nop */
2323 0xe320f000, /* nop */
2325 0xe50dc004, /* str ip, [sp, #-4] */
2326 /* Fourth bundle: */
2327 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2328 0xe59cc000, /* ldr ip, [ip] */
2329 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2330 0xe12fff1c, /* bx ip */
2332 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2334 /* Subsequent entries in a procedure linkage table look like this. */
2335 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2337 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2338 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2339 0xe08cc00f, /* add ip, ip, pc */
2340 0xea000000, /* b .Lplt_tail */
2343 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2344 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2345 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2346 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2347 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2348 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2349 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2350 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2360 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2361 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2362 is inserted in arm_build_one_stub(). */
2363 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2364 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2365 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2366 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2367 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2368 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2369 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2370 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2375 enum stub_insn_type type;
2376 unsigned int r_type;
2380 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2381 to reach the stub if necessary. */
2382 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2384 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2385 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2388 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2390 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2392 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2393 ARM_INSN (0xe12fff1c), /* bx ip */
2394 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2397 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2398 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2400 THUMB16_INSN (0xb401), /* push {r0} */
2401 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2402 THUMB16_INSN (0x4684), /* mov ip, r0 */
2403 THUMB16_INSN (0xbc01), /* pop {r0} */
2404 THUMB16_INSN (0x4760), /* bx ip */
2405 THUMB16_INSN (0xbf00), /* nop */
2406 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2409 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2410 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2412 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2413 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2416 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2417 M-profile architectures. */
2418 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2420 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2421 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2422 THUMB16_INSN (0x4760), /* bx ip */
2425 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2427 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2429 THUMB16_INSN (0x4778), /* bx pc */
2430 THUMB16_INSN (0x46c0), /* nop */
2431 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2432 ARM_INSN (0xe12fff1c), /* bx ip */
2433 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2436 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2438 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2440 THUMB16_INSN (0x4778), /* bx pc */
2441 THUMB16_INSN (0x46c0), /* nop */
2442 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2443 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2446 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2447 one, when the destination is close enough. */
2448 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2450 THUMB16_INSN (0x4778), /* bx pc */
2451 THUMB16_INSN (0x46c0), /* nop */
2452 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2455 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2456 blx to reach the stub if necessary. */
2457 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2459 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2460 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2461 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2464 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2465 blx to reach the stub if necessary. We can not add into pc;
2466 it is not guaranteed to mode switch (different in ARMv6 and
2468 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2470 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2471 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2472 ARM_INSN (0xe12fff1c), /* bx ip */
2473 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2476 /* V4T ARM -> ARM long branch stub, PIC. */
2477 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2479 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2480 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2481 ARM_INSN (0xe12fff1c), /* bx ip */
2482 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2485 /* V4T Thumb -> ARM long branch stub, PIC. */
2486 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2488 THUMB16_INSN (0x4778), /* bx pc */
2489 THUMB16_INSN (0x46c0), /* nop */
2490 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2491 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2492 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2495 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2497 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2499 THUMB16_INSN (0xb401), /* push {r0} */
2500 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2501 THUMB16_INSN (0x46fc), /* mov ip, pc */
2502 THUMB16_INSN (0x4484), /* add ip, r0 */
2503 THUMB16_INSN (0xbc01), /* pop {r0} */
2504 THUMB16_INSN (0x4760), /* bx ip */
2505 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2508 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2510 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2512 THUMB16_INSN (0x4778), /* bx pc */
2513 THUMB16_INSN (0x46c0), /* nop */
2514 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2515 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2516 ARM_INSN (0xe12fff1c), /* bx ip */
2517 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2520 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2521 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2522 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2524 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2525 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2526 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2529 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2530 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2531 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2533 THUMB16_INSN (0x4778), /* bx pc */
2534 THUMB16_INSN (0x46c0), /* nop */
2535 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2536 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2537 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2540 /* NaCl ARM -> ARM long branch stub. */
2541 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2543 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2544 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2545 ARM_INSN (0xe12fff1c), /* bx ip */
2546 ARM_INSN (0xe320f000), /* nop */
2547 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2548 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2549 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2550 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2553 /* NaCl ARM -> ARM long branch stub, PIC. */
2554 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2556 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2557 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2558 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2559 ARM_INSN (0xe12fff1c), /* bx ip */
2560 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2561 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2562 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2563 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2566 /* Stub used for transition to secure state (aka SG veneer). */
2567 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2569 THUMB32_INSN (0xe97fe97f), /* sg. */
2570 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2574 /* Cortex-A8 erratum-workaround stubs. */
2576 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2577 can't use a conditional branch to reach this stub). */
2579 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2581 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2582 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2583 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2586 /* Stub used for b.w and bl.w instructions. */
2588 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2590 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2593 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2595 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2598 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2599 instruction (which switches to ARM mode) to point to this stub. Jump to the
2600 real destination using an ARM-mode branch. */
2602 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2604 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2607 /* For each section group there can be a specially created linker section
2608 to hold the stubs for that group. The name of the stub section is based
2609 upon the name of another section within that group with the suffix below
2612 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2613 create what appeared to be a linker stub section when it actually
2614 contained user code/data. For example, consider this fragment:
2616 const char * stubborn_problems[] = { "np" };
2618 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2621 .data.rel.local.stubborn_problems
2623 This then causes problems in arm32_arm_build_stubs() as it triggers:
2625 // Ignore non-stub sections.
2626 if (!strstr (stub_sec->name, STUB_SUFFIX))
2629 And so the section would be ignored instead of being processed. Hence
2630 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2632 #define STUB_SUFFIX ".__stub"
2634 /* One entry per long/short branch stub defined above. */
2636 DEF_STUB(long_branch_any_any) \
2637 DEF_STUB(long_branch_v4t_arm_thumb) \
2638 DEF_STUB(long_branch_thumb_only) \
2639 DEF_STUB(long_branch_v4t_thumb_thumb) \
2640 DEF_STUB(long_branch_v4t_thumb_arm) \
2641 DEF_STUB(short_branch_v4t_thumb_arm) \
2642 DEF_STUB(long_branch_any_arm_pic) \
2643 DEF_STUB(long_branch_any_thumb_pic) \
2644 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2645 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2646 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2647 DEF_STUB(long_branch_thumb_only_pic) \
2648 DEF_STUB(long_branch_any_tls_pic) \
2649 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2650 DEF_STUB(long_branch_arm_nacl) \
2651 DEF_STUB(long_branch_arm_nacl_pic) \
2652 DEF_STUB(cmse_branch_thumb_only) \
2653 DEF_STUB(a8_veneer_b_cond) \
2654 DEF_STUB(a8_veneer_b) \
2655 DEF_STUB(a8_veneer_bl) \
2656 DEF_STUB(a8_veneer_blx) \
2657 DEF_STUB(long_branch_thumb2_only) \
2658 DEF_STUB(long_branch_thumb2_only_pure)
2660 #define DEF_STUB(x) arm_stub_##x,
2661 enum elf32_arm_stub_type
2669 /* Note the first a8_veneer type. */
2670 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2674 const insn_sequence* template_sequence;
2678 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2679 static const stub_def stub_definitions[] =
2685 struct elf32_arm_stub_hash_entry
2687 /* Base hash table entry structure. */
2688 struct bfd_hash_entry root;
2690 /* The stub section. */
2693 /* Offset within stub_sec of the beginning of this stub. */
2694 bfd_vma stub_offset;
2696 /* Given the symbol's value and its section we can determine its final
2697 value when building the stubs (so the stub knows where to jump). */
2698 bfd_vma target_value;
2699 asection *target_section;
2701 /* Same as above but for the source of the branch to the stub. Used for
2702 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2703 such, source section does not need to be recorded since Cortex-A8 erratum
2704 workaround stubs are only generated when both source and target are in the
2706 bfd_vma source_value;
2708 /* The instruction which caused this stub to be generated (only valid for
2709 Cortex-A8 erratum workaround stubs at present). */
2710 unsigned long orig_insn;
2712 /* The stub type. */
2713 enum elf32_arm_stub_type stub_type;
2714 /* Its encoding size in bytes. */
2717 const insn_sequence *stub_template;
2718 /* The size of the template (number of entries). */
2719 int stub_template_size;
2721 /* The symbol table entry, if any, that this was derived from. */
2722 struct elf32_arm_link_hash_entry *h;
2724 /* Type of branch. */
2725 enum arm_st_branch_type branch_type;
2727 /* Where this stub is being called from, or, in the case of combined
2728 stub sections, the first input section in the group. */
2731 /* The name for the local symbol at the start of this stub. The
2732 stub name in the hash table has to be unique; this does not, so
2733 it can be friendlier. */
2737 /* Used to build a map of a section. This is required for mixed-endian
2740 typedef struct elf32_elf_section_map
2745 elf32_arm_section_map;
2747 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2751 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2752 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2753 VFP11_ERRATUM_ARM_VENEER,
2754 VFP11_ERRATUM_THUMB_VENEER
2756 elf32_vfp11_erratum_type;
2758 typedef struct elf32_vfp11_erratum_list
2760 struct elf32_vfp11_erratum_list *next;
2766 struct elf32_vfp11_erratum_list *veneer;
2767 unsigned int vfp_insn;
2771 struct elf32_vfp11_erratum_list *branch;
2775 elf32_vfp11_erratum_type type;
2777 elf32_vfp11_erratum_list;
2779 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2783 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2784 STM32L4XX_ERRATUM_VENEER
2786 elf32_stm32l4xx_erratum_type;
2788 typedef struct elf32_stm32l4xx_erratum_list
2790 struct elf32_stm32l4xx_erratum_list *next;
2796 struct elf32_stm32l4xx_erratum_list *veneer;
2801 struct elf32_stm32l4xx_erratum_list *branch;
2805 elf32_stm32l4xx_erratum_type type;
2807 elf32_stm32l4xx_erratum_list;
2812 INSERT_EXIDX_CANTUNWIND_AT_END
2814 arm_unwind_edit_type;
2816 /* A (sorted) list of edits to apply to an unwind table. */
2817 typedef struct arm_unwind_table_edit
2819 arm_unwind_edit_type type;
2820 /* Note: we sometimes want to insert an unwind entry corresponding to a
2821 section different from the one we're currently writing out, so record the
2822 (text) section this edit relates to here. */
2823 asection *linked_section;
2825 struct arm_unwind_table_edit *next;
2827 arm_unwind_table_edit;
2829 typedef struct _arm_elf_section_data
2831 /* Information about mapping symbols. */
2832 struct bfd_elf_section_data elf;
2833 unsigned int mapcount;
2834 unsigned int mapsize;
2835 elf32_arm_section_map *map;
2836 /* Information about CPU errata. */
2837 unsigned int erratumcount;
2838 elf32_vfp11_erratum_list *erratumlist;
2839 unsigned int stm32l4xx_erratumcount;
2840 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
2841 unsigned int additional_reloc_count;
2842 /* Information about unwind tables. */
2845 /* Unwind info attached to a text section. */
2848 asection *arm_exidx_sec;
2851 /* Unwind info attached to an .ARM.exidx section. */
2854 arm_unwind_table_edit *unwind_edit_list;
2855 arm_unwind_table_edit *unwind_edit_tail;
2859 _arm_elf_section_data;
2861 #define elf32_arm_section_data(sec) \
2862 ((_arm_elf_section_data *) elf_section_data (sec))
2864 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2865 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2866 so may be created multiple times: we use an array of these entries whilst
2867 relaxing which we can refresh easily, then create stubs for each potentially
2868 erratum-triggering instruction once we've settled on a solution. */
2870 struct a8_erratum_fix
2875 bfd_vma target_offset;
2876 unsigned long orig_insn;
2878 enum elf32_arm_stub_type stub_type;
2879 enum arm_st_branch_type branch_type;
2882 /* A table of relocs applied to branches which might trigger Cortex-A8
2885 struct a8_erratum_reloc
2888 bfd_vma destination;
2889 struct elf32_arm_link_hash_entry *hash;
2890 const char *sym_name;
2891 unsigned int r_type;
2892 enum arm_st_branch_type branch_type;
2893 bfd_boolean non_a8_stub;
2896 /* The size of the thread control block. */
2899 /* ARM-specific information about a PLT entry, over and above the usual
2903 /* We reference count Thumb references to a PLT entry separately,
2904 so that we can emit the Thumb trampoline only if needed. */
2905 bfd_signed_vma thumb_refcount;
2907 /* Some references from Thumb code may be eliminated by BL->BLX
2908 conversion, so record them separately. */
2909 bfd_signed_vma maybe_thumb_refcount;
2911 /* How many of the recorded PLT accesses were from non-call relocations.
2912 This information is useful when deciding whether anything takes the
2913 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2914 non-call references to the function should resolve directly to the
2915 real runtime target. */
2916 unsigned int noncall_refcount;
2918 /* Since PLT entries have variable size if the Thumb prologue is
2919 used, we need to record the index into .got.plt instead of
2920 recomputing it from the PLT offset. */
2921 bfd_signed_vma got_offset;
2924 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2925 struct arm_local_iplt_info
2927 /* The information that is usually found in the generic ELF part of
2928 the hash table entry. */
2929 union gotplt_union root;
2931 /* The information that is usually found in the ARM-specific part of
2932 the hash table entry. */
2933 struct arm_plt_info arm;
2935 /* A list of all potential dynamic relocations against this symbol. */
2936 struct elf_dyn_relocs *dyn_relocs;
2939 struct elf_arm_obj_tdata
2941 struct elf_obj_tdata root;
2943 /* tls_type for each local got entry. */
2944 char *local_got_tls_type;
2946 /* GOTPLT entries for TLS descriptors. */
2947 bfd_vma *local_tlsdesc_gotent;
2949 /* Information for local symbols that need entries in .iplt. */
2950 struct arm_local_iplt_info **local_iplt;
2952 /* Zero to warn when linking objects with incompatible enum sizes. */
2953 int no_enum_size_warning;
2955 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2956 int no_wchar_size_warning;
2959 #define elf_arm_tdata(bfd) \
2960 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2962 #define elf32_arm_local_got_tls_type(bfd) \
2963 (elf_arm_tdata (bfd)->local_got_tls_type)
2965 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2966 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2968 #define elf32_arm_local_iplt(bfd) \
2969 (elf_arm_tdata (bfd)->local_iplt)
2971 #define is_arm_elf(bfd) \
2972 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2973 && elf_tdata (bfd) != NULL \
2974 && elf_object_id (bfd) == ARM_ELF_DATA)
2977 elf32_arm_mkobject (bfd *abfd)
2979 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2983 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2985 /* Arm ELF linker hash entry. */
2986 struct elf32_arm_link_hash_entry
2988 struct elf_link_hash_entry root;
2990 /* Track dynamic relocs copied for this symbol. */
2991 struct elf_dyn_relocs *dyn_relocs;
2993 /* ARM-specific PLT information. */
2994 struct arm_plt_info plt;
2996 #define GOT_UNKNOWN 0
2997 #define GOT_NORMAL 1
2998 #define GOT_TLS_GD 2
2999 #define GOT_TLS_IE 4
3000 #define GOT_TLS_GDESC 8
3001 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3002 unsigned int tls_type : 8;
3004 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3005 unsigned int is_iplt : 1;
3007 unsigned int unused : 23;
3009 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3010 starting at the end of the jump table. */
3011 bfd_vma tlsdesc_got;
3013 /* The symbol marking the real symbol location for exported thumb
3014 symbols with Arm stubs. */
3015 struct elf_link_hash_entry *export_glue;
3017 /* A pointer to the most recently used stub hash entry against this
3019 struct elf32_arm_stub_hash_entry *stub_cache;
3022 /* Traverse an arm ELF linker hash table. */
3023 #define elf32_arm_link_hash_traverse(table, func, info) \
3024 (elf_link_hash_traverse \
3026 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3029 /* Get the ARM elf linker hash table from a link_info structure. */
3030 #define elf32_arm_hash_table(info) \
3031 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3032 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3034 #define arm_stub_hash_lookup(table, string, create, copy) \
3035 ((struct elf32_arm_stub_hash_entry *) \
3036 bfd_hash_lookup ((table), (string), (create), (copy)))
3038 /* Array to keep track of which stub sections have been created, and
3039 information on stub grouping. */
3042 /* This is the section to which stubs in the group will be
3045 /* The stub section. */
3049 #define elf32_arm_compute_jump_table_size(htab) \
3050 ((htab)->next_tls_desc_index * 4)
3052 /* ARM ELF linker hash table. */
3053 struct elf32_arm_link_hash_table
3055 /* The main hash table. */
3056 struct elf_link_hash_table root;
3058 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3059 bfd_size_type thumb_glue_size;
3061 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3062 bfd_size_type arm_glue_size;
3064 /* The size in bytes of section containing the ARMv4 BX veneers. */
3065 bfd_size_type bx_glue_size;
3067 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3068 veneer has been populated. */
3069 bfd_vma bx_glue_offset[15];
3071 /* The size in bytes of the section containing glue for VFP11 erratum
3073 bfd_size_type vfp11_erratum_glue_size;
3075 /* The size in bytes of the section containing glue for STM32L4XX erratum
3077 bfd_size_type stm32l4xx_erratum_glue_size;
3079 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3080 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3081 elf32_arm_write_section(). */
3082 struct a8_erratum_fix *a8_erratum_fixes;
3083 unsigned int num_a8_erratum_fixes;
3085 /* An arbitrary input BFD chosen to hold the glue sections. */
3086 bfd * bfd_of_glue_owner;
3088 /* Nonzero to output a BE8 image. */
3091 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3092 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3095 /* The relocation to use for R_ARM_TARGET2 relocations. */
3098 /* 0 = Ignore R_ARM_V4BX.
3099 1 = Convert BX to MOV PC.
3100 2 = Generate v4 interworing stubs. */
3103 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3106 /* Whether we should fix the ARM1176 BLX immediate issue. */
3109 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3112 /* What sort of code sequences we should look for which may trigger the
3113 VFP11 denorm erratum. */
3114 bfd_arm_vfp11_fix vfp11_fix;
3116 /* Global counter for the number of fixes we have emitted. */
3117 int num_vfp11_fixes;
3119 /* What sort of code sequences we should look for which may trigger the
3120 STM32L4XX erratum. */
3121 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3123 /* Global counter for the number of fixes we have emitted. */
3124 int num_stm32l4xx_fixes;
3126 /* Nonzero to force PIC branch veneers. */
3129 /* The number of bytes in the initial entry in the PLT. */
3130 bfd_size_type plt_header_size;
3132 /* The number of bytes in the subsequent PLT etries. */
3133 bfd_size_type plt_entry_size;
3135 /* True if the target system is VxWorks. */
3138 /* True if the target system is Symbian OS. */
3141 /* True if the target system is Native Client. */
3144 /* True if the target uses REL relocations. */
3147 /* Nonzero if import library must be a secure gateway import library
3148 as per ARMv8-M Security Extensions. */
3151 /* The import library whose symbols' address must remain stable in
3152 the import library generated. */
3155 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3156 bfd_vma next_tls_desc_index;
3158 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3159 bfd_vma num_tls_desc;
3161 /* Short-cuts to get to dynamic linker sections. */
3165 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3168 /* The offset into splt of the PLT entry for the TLS descriptor
3169 resolver. Special values are 0, if not necessary (or not found
3170 to be necessary yet), and -1 if needed but not determined
3172 bfd_vma dt_tlsdesc_plt;
3174 /* The offset into sgot of the GOT entry used by the PLT entry
3176 bfd_vma dt_tlsdesc_got;
3178 /* Offset in .plt section of tls_arm_trampoline. */
3179 bfd_vma tls_trampoline;
3181 /* Data for R_ARM_TLS_LDM32 relocations. */
3184 bfd_signed_vma refcount;
3188 /* Small local sym cache. */
3189 struct sym_cache sym_cache;
3191 /* For convenience in allocate_dynrelocs. */
3194 /* The amount of space used by the reserved portion of the sgotplt
3195 section, plus whatever space is used by the jump slots. */
3196 bfd_vma sgotplt_jump_table_size;
3198 /* The stub hash table. */
3199 struct bfd_hash_table stub_hash_table;
3201 /* Linker stub bfd. */
3204 /* Linker call-backs. */
3205 asection * (*add_stub_section) (const char *, asection *, asection *,
3207 void (*layout_sections_again) (void);
3209 /* Array to keep track of which stub sections have been created, and
3210 information on stub grouping. */
3211 struct map_stub *stub_group;
3213 /* Input stub section holding secure gateway veneers. */
3214 asection *cmse_stub_sec;
3216 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3217 start to be allocated. */
3218 bfd_vma new_cmse_stub_offset;
3220 /* Number of elements in stub_group. */
3221 unsigned int top_id;
3223 /* Assorted information used by elf32_arm_size_stubs. */
3224 unsigned int bfd_count;
3225 unsigned int top_index;
3226 asection **input_list;
3230 ctz (unsigned int mask)
3232 #if GCC_VERSION >= 3004
3233 return __builtin_ctz (mask);
3237 for (i = 0; i < 8 * sizeof (mask); i++)
3248 popcount (unsigned int mask)
3250 #if GCC_VERSION >= 3004
3251 return __builtin_popcount (mask);
3253 unsigned int i, sum = 0;
3255 for (i = 0; i < 8 * sizeof (mask); i++)
3265 /* Create an entry in an ARM ELF linker hash table. */
3267 static struct bfd_hash_entry *
3268 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3269 struct bfd_hash_table * table,
3270 const char * string)
3272 struct elf32_arm_link_hash_entry * ret =
3273 (struct elf32_arm_link_hash_entry *) entry;
3275 /* Allocate the structure if it has not already been allocated by a
3278 ret = (struct elf32_arm_link_hash_entry *)
3279 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3281 return (struct bfd_hash_entry *) ret;
3283 /* Call the allocation method of the superclass. */
3284 ret = ((struct elf32_arm_link_hash_entry *)
3285 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3289 ret->dyn_relocs = NULL;
3290 ret->tls_type = GOT_UNKNOWN;
3291 ret->tlsdesc_got = (bfd_vma) -1;
3292 ret->plt.thumb_refcount = 0;
3293 ret->plt.maybe_thumb_refcount = 0;
3294 ret->plt.noncall_refcount = 0;
3295 ret->plt.got_offset = -1;
3296 ret->is_iplt = FALSE;
3297 ret->export_glue = NULL;
3299 ret->stub_cache = NULL;
3302 return (struct bfd_hash_entry *) ret;
3305 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3309 elf32_arm_allocate_local_sym_info (bfd *abfd)
3311 if (elf_local_got_refcounts (abfd) == NULL)
3313 bfd_size_type num_syms;
3317 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3318 size = num_syms * (sizeof (bfd_signed_vma)
3319 + sizeof (struct arm_local_iplt_info *)
3322 data = bfd_zalloc (abfd, size);
3326 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3327 data += num_syms * sizeof (bfd_signed_vma);
3329 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3330 data += num_syms * sizeof (struct arm_local_iplt_info *);
3332 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3333 data += num_syms * sizeof (bfd_vma);
3335 elf32_arm_local_got_tls_type (abfd) = data;
3340 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3341 to input bfd ABFD. Create the information if it doesn't already exist.
3342 Return null if an allocation fails. */
3344 static struct arm_local_iplt_info *
3345 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3347 struct arm_local_iplt_info **ptr;
3349 if (!elf32_arm_allocate_local_sym_info (abfd))
3352 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3353 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3355 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3359 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3360 in ABFD's symbol table. If the symbol is global, H points to its
3361 hash table entry, otherwise H is null.
3363 Return true if the symbol does have PLT information. When returning
3364 true, point *ROOT_PLT at the target-independent reference count/offset
3365 union and *ARM_PLT at the ARM-specific information. */
3368 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3369 struct elf32_arm_link_hash_entry *h,
3370 unsigned long r_symndx, union gotplt_union **root_plt,
3371 struct arm_plt_info **arm_plt)
3373 struct arm_local_iplt_info *local_iplt;
3375 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3380 *root_plt = &h->root.plt;
3385 if (elf32_arm_local_iplt (abfd) == NULL)
3388 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3389 if (local_iplt == NULL)
3392 *root_plt = &local_iplt->root;
3393 *arm_plt = &local_iplt->arm;
3397 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3401 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3402 struct arm_plt_info *arm_plt)
3404 struct elf32_arm_link_hash_table *htab;
3406 htab = elf32_arm_hash_table (info);
3407 return (arm_plt->thumb_refcount != 0
3408 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3411 /* Return a pointer to the head of the dynamic reloc list that should
3412 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3413 ABFD's symbol table. Return null if an error occurs. */
3415 static struct elf_dyn_relocs **
3416 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3417 Elf_Internal_Sym *isym)
3419 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3421 struct arm_local_iplt_info *local_iplt;
3423 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3424 if (local_iplt == NULL)
3426 return &local_iplt->dyn_relocs;
3430 /* Track dynamic relocs needed for local syms too.
3431 We really need local syms available to do this
3436 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3440 vpp = &elf_section_data (s)->local_dynrel;
3441 return (struct elf_dyn_relocs **) vpp;
3445 /* Initialize an entry in the stub hash table. */
3447 static struct bfd_hash_entry *
3448 stub_hash_newfunc (struct bfd_hash_entry *entry,
3449 struct bfd_hash_table *table,
3452 /* Allocate the structure if it has not already been allocated by a
3456 entry = (struct bfd_hash_entry *)
3457 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3462 /* Call the allocation method of the superclass. */
3463 entry = bfd_hash_newfunc (entry, table, string);
3466 struct elf32_arm_stub_hash_entry *eh;
3468 /* Initialize the local fields. */
3469 eh = (struct elf32_arm_stub_hash_entry *) entry;
3470 eh->stub_sec = NULL;
3471 eh->stub_offset = (bfd_vma) -1;
3472 eh->source_value = 0;
3473 eh->target_value = 0;
3474 eh->target_section = NULL;
3476 eh->stub_type = arm_stub_none;
3478 eh->stub_template = NULL;
3479 eh->stub_template_size = -1;
3482 eh->output_name = NULL;
3488 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3489 shortcuts to them in our hash table. */
3492 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3494 struct elf32_arm_link_hash_table *htab;
3496 htab = elf32_arm_hash_table (info);
3500 /* BPABI objects never have a GOT, or associated sections. */
3501 if (htab->symbian_p)
3504 if (! _bfd_elf_create_got_section (dynobj, info))
3510 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3513 create_ifunc_sections (struct bfd_link_info *info)
3515 struct elf32_arm_link_hash_table *htab;
3516 const struct elf_backend_data *bed;
3521 htab = elf32_arm_hash_table (info);
3522 dynobj = htab->root.dynobj;
3523 bed = get_elf_backend_data (dynobj);
3524 flags = bed->dynamic_sec_flags;
3526 if (htab->root.iplt == NULL)
3528 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3529 flags | SEC_READONLY | SEC_CODE);
3531 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3533 htab->root.iplt = s;
3536 if (htab->root.irelplt == NULL)
3538 s = bfd_make_section_anyway_with_flags (dynobj,
3539 RELOC_SECTION (htab, ".iplt"),
3540 flags | SEC_READONLY);
3542 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3544 htab->root.irelplt = s;
3547 if (htab->root.igotplt == NULL)
3549 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3551 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3553 htab->root.igotplt = s;
3558 /* Determine if we're dealing with a Thumb only architecture. */
3561 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3564 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3565 Tag_CPU_arch_profile);
3568 return profile == 'M';
3570 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3572 /* Force return logic to be reviewed for each new architecture. */
3573 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3574 || arch == TAG_CPU_ARCH_V8M_BASE
3575 || arch == TAG_CPU_ARCH_V8M_MAIN);
3577 if (arch == TAG_CPU_ARCH_V6_M
3578 || arch == TAG_CPU_ARCH_V6S_M
3579 || arch == TAG_CPU_ARCH_V7E_M
3580 || arch == TAG_CPU_ARCH_V8M_BASE
3581 || arch == TAG_CPU_ARCH_V8M_MAIN)
3587 /* Determine if we're dealing with a Thumb-2 object. */
3590 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3593 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3597 return thumb_isa == 2;
3599 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3601 /* Force return logic to be reviewed for each new architecture. */
3602 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3603 || arch == TAG_CPU_ARCH_V8M_BASE
3604 || arch == TAG_CPU_ARCH_V8M_MAIN);
3606 return (arch == TAG_CPU_ARCH_V6T2
3607 || arch == TAG_CPU_ARCH_V7
3608 || arch == TAG_CPU_ARCH_V7E_M
3609 || arch == TAG_CPU_ARCH_V8
3610 || arch == TAG_CPU_ARCH_V8M_MAIN);
3613 /* Determine whether Thumb-2 BL instruction is available. */
3616 using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3619 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3621 /* Force return logic to be reviewed for each new architecture. */
3622 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3623 || arch == TAG_CPU_ARCH_V8M_BASE
3624 || arch == TAG_CPU_ARCH_V8M_MAIN);
3626 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3627 return (arch == TAG_CPU_ARCH_V6T2
3628 || arch >= TAG_CPU_ARCH_V7);
3631 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3632 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3636 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3638 struct elf32_arm_link_hash_table *htab;
3640 htab = elf32_arm_hash_table (info);
3644 if (!htab->root.sgot && !create_got_section (dynobj, info))
3647 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3650 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
3651 if (!bfd_link_pic (info))
3652 htab->srelbss = bfd_get_linker_section (dynobj,
3653 RELOC_SECTION (htab, ".bss"));
3655 if (htab->vxworks_p)
3657 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3660 if (bfd_link_pic (info))
3662 htab->plt_header_size = 0;
3663 htab->plt_entry_size
3664 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3668 htab->plt_header_size
3669 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3670 htab->plt_entry_size
3671 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3674 if (elf_elfheader (dynobj))
3675 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3680 Test for thumb only architectures. Note - we cannot just call
3681 using_thumb_only() as the attributes in the output bfd have not been
3682 initialised at this point, so instead we use the input bfd. */
3683 bfd * saved_obfd = htab->obfd;
3685 htab->obfd = dynobj;
3686 if (using_thumb_only (htab))
3688 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3689 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3691 htab->obfd = saved_obfd;
3694 if (!htab->root.splt
3695 || !htab->root.srelplt
3697 || (!bfd_link_pic (info) && !htab->srelbss))
3703 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3706 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3707 struct elf_link_hash_entry *dir,
3708 struct elf_link_hash_entry *ind)
3710 struct elf32_arm_link_hash_entry *edir, *eind;
3712 edir = (struct elf32_arm_link_hash_entry *) dir;
3713 eind = (struct elf32_arm_link_hash_entry *) ind;
3715 if (eind->dyn_relocs != NULL)
3717 if (edir->dyn_relocs != NULL)
3719 struct elf_dyn_relocs **pp;
3720 struct elf_dyn_relocs *p;
3722 /* Add reloc counts against the indirect sym to the direct sym
3723 list. Merge any entries against the same section. */
3724 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3726 struct elf_dyn_relocs *q;
3728 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3729 if (q->sec == p->sec)
3731 q->pc_count += p->pc_count;
3732 q->count += p->count;
3739 *pp = edir->dyn_relocs;
3742 edir->dyn_relocs = eind->dyn_relocs;
3743 eind->dyn_relocs = NULL;
3746 if (ind->root.type == bfd_link_hash_indirect)
3748 /* Copy over PLT info. */
3749 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3750 eind->plt.thumb_refcount = 0;
3751 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3752 eind->plt.maybe_thumb_refcount = 0;
3753 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3754 eind->plt.noncall_refcount = 0;
3756 /* We should only allocate a function to .iplt once the final
3757 symbol information is known. */
3758 BFD_ASSERT (!eind->is_iplt);
3760 if (dir->got.refcount <= 0)
3762 edir->tls_type = eind->tls_type;
3763 eind->tls_type = GOT_UNKNOWN;
3767 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3770 /* Destroy an ARM elf linker hash table. */
3773 elf32_arm_link_hash_table_free (bfd *obfd)
3775 struct elf32_arm_link_hash_table *ret
3776 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
3778 bfd_hash_table_free (&ret->stub_hash_table);
3779 _bfd_elf_link_hash_table_free (obfd);
3782 /* Create an ARM elf linker hash table. */
3784 static struct bfd_link_hash_table *
3785 elf32_arm_link_hash_table_create (bfd *abfd)
3787 struct elf32_arm_link_hash_table *ret;
3788 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3790 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3794 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3795 elf32_arm_link_hash_newfunc,
3796 sizeof (struct elf32_arm_link_hash_entry),
3803 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3804 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
3805 #ifdef FOUR_WORD_PLT
3806 ret->plt_header_size = 16;
3807 ret->plt_entry_size = 16;
3809 ret->plt_header_size = 20;
3810 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
3815 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3816 sizeof (struct elf32_arm_stub_hash_entry)))
3818 _bfd_elf_link_hash_table_free (abfd);
3821 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
3823 return &ret->root.root;
3826 /* Determine what kind of NOPs are available. */
3829 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3831 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3834 /* Force return logic to be reviewed for each new architecture. */
3835 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3836 || arch == TAG_CPU_ARCH_V8M_BASE
3837 || arch == TAG_CPU_ARCH_V8M_MAIN);
3839 return (arch == TAG_CPU_ARCH_V6T2
3840 || arch == TAG_CPU_ARCH_V6K
3841 || arch == TAG_CPU_ARCH_V7
3842 || arch == TAG_CPU_ARCH_V8);
3846 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3850 case arm_stub_long_branch_thumb_only:
3851 case arm_stub_long_branch_thumb2_only:
3852 case arm_stub_long_branch_thumb2_only_pure:
3853 case arm_stub_long_branch_v4t_thumb_arm:
3854 case arm_stub_short_branch_v4t_thumb_arm:
3855 case arm_stub_long_branch_v4t_thumb_arm_pic:
3856 case arm_stub_long_branch_v4t_thumb_tls_pic:
3857 case arm_stub_long_branch_thumb_only_pic:
3858 case arm_stub_cmse_branch_thumb_only:
3869 /* Determine the type of stub needed, if any, for a call. */
3871 static enum elf32_arm_stub_type
3872 arm_type_of_stub (struct bfd_link_info *info,
3873 asection *input_sec,
3874 const Elf_Internal_Rela *rel,
3875 unsigned char st_type,
3876 enum arm_st_branch_type *actual_branch_type,
3877 struct elf32_arm_link_hash_entry *hash,
3878 bfd_vma destination,
3884 bfd_signed_vma branch_offset;
3885 unsigned int r_type;
3886 struct elf32_arm_link_hash_table * globals;
3887 bfd_boolean thumb2, thumb2_bl, thumb_only;
3888 enum elf32_arm_stub_type stub_type = arm_stub_none;
3890 enum arm_st_branch_type branch_type = *actual_branch_type;
3891 union gotplt_union *root_plt;
3892 struct arm_plt_info *arm_plt;
3896 if (branch_type == ST_BRANCH_LONG)
3899 globals = elf32_arm_hash_table (info);
3900 if (globals == NULL)
3903 thumb_only = using_thumb_only (globals);
3904 thumb2 = using_thumb2 (globals);
3905 thumb2_bl = using_thumb2_bl (globals);
3907 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3909 /* True for architectures that implement the thumb2 movw instruction. */
3910 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
3912 /* Determine where the call point is. */
3913 location = (input_sec->output_offset
3914 + input_sec->output_section->vma
3917 r_type = ELF32_R_TYPE (rel->r_info);
3919 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3920 are considering a function call relocation. */
3921 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3922 || r_type == R_ARM_THM_JUMP19)
3923 && branch_type == ST_BRANCH_TO_ARM)
3924 branch_type = ST_BRANCH_TO_THUMB;
3926 /* For TLS call relocs, it is the caller's responsibility to provide
3927 the address of the appropriate trampoline. */
3928 if (r_type != R_ARM_TLS_CALL
3929 && r_type != R_ARM_THM_TLS_CALL
3930 && elf32_arm_get_plt_info (input_bfd, globals, hash,
3931 ELF32_R_SYM (rel->r_info), &root_plt,
3933 && root_plt->offset != (bfd_vma) -1)
3937 if (hash == NULL || hash->is_iplt)
3938 splt = globals->root.iplt;
3940 splt = globals->root.splt;
3945 /* Note when dealing with PLT entries: the main PLT stub is in
3946 ARM mode, so if the branch is in Thumb mode, another
3947 Thumb->ARM stub will be inserted later just before the ARM
3948 PLT stub. We don't take this extra distance into account
3949 here, because if a long branch stub is needed, we'll add a
3950 Thumb->Arm one and branch directly to the ARM PLT entry
3951 because it avoids spreading offset corrections in several
3954 destination = (splt->output_section->vma
3955 + splt->output_offset
3956 + root_plt->offset);
3958 branch_type = ST_BRANCH_TO_ARM;
3961 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3962 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3964 branch_offset = (bfd_signed_vma)(destination - location);
3966 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3967 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
3969 /* Handle cases where:
3970 - this call goes too far (different Thumb/Thumb2 max
3972 - it's a Thumb->Arm call and blx is not available, or it's a
3973 Thumb->Arm branch (not bl). A stub is needed in this case,
3974 but only if this call is not through a PLT entry. Indeed,
3975 PLT stubs handle mode switching already.
3978 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3979 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3981 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3982 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3984 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
3985 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
3986 && (r_type == R_ARM_THM_JUMP19))
3987 || (branch_type == ST_BRANCH_TO_ARM
3988 && (((r_type == R_ARM_THM_CALL
3989 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3990 || (r_type == R_ARM_THM_JUMP24)
3991 || (r_type == R_ARM_THM_JUMP19))
3994 if (branch_type == ST_BRANCH_TO_THUMB)
3996 /* Thumb to thumb. */
3999 if (input_sec->flags & SEC_ELF_PURECODE)
4000 (*_bfd_error_handler) (_("%B(%s): warning: long branch "
4001 " veneers used in section with "
4002 "SHF_ARM_PURECODE section "
4003 "attribute is only supported"
4004 " for M-profile targets that "
4005 "implement the movw "
4008 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4010 ? ((globals->use_blx
4011 && (r_type == R_ARM_THM_CALL))
4012 /* V5T and above. Stub starts with ARM code, so
4013 we must be able to switch mode before
4014 reaching it, which is only possible for 'bl'
4015 (ie R_ARM_THM_CALL relocation). */
4016 ? arm_stub_long_branch_any_thumb_pic
4017 /* On V4T, use Thumb code only. */
4018 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4020 /* non-PIC stubs. */
4021 : ((globals->use_blx
4022 && (r_type == R_ARM_THM_CALL))
4023 /* V5T and above. */
4024 ? arm_stub_long_branch_any_any
4026 : arm_stub_long_branch_v4t_thumb_thumb);
4030 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4031 stub_type = arm_stub_long_branch_thumb2_only_pure;
4034 if (input_sec->flags & SEC_ELF_PURECODE)
4035 (*_bfd_error_handler) (_("%B(%s): warning: long branch "
4036 " veneers used in section with "
4037 "SHF_ARM_PURECODE section "
4038 "attribute is only supported"
4039 " for M-profile targets that "
4040 "implement the movw "
4043 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4045 ? arm_stub_long_branch_thumb_only_pic
4047 : (thumb2 ? arm_stub_long_branch_thumb2_only
4048 : arm_stub_long_branch_thumb_only);
4054 if (input_sec->flags & SEC_ELF_PURECODE)
4055 (*_bfd_error_handler) (_("%B(%s): warning: long branch "
4056 " veneers used in section with "
4057 "SHF_ARM_PURECODE section "
4058 "attribute is only supported"
4059 " for M-profile targets that "
4060 "implement the movw "
4065 && sym_sec->owner != NULL
4066 && !INTERWORK_FLAG (sym_sec->owner))
4068 (*_bfd_error_handler)
4069 (_("%B(%s): warning: interworking not enabled.\n"
4070 " first occurrence: %B: Thumb call to ARM"),
4071 sym_sec->owner, input_bfd, name);
4075 (bfd_link_pic (info) | globals->pic_veneer)
4077 ? (r_type == R_ARM_THM_TLS_CALL
4078 /* TLS PIC stubs. */
4079 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4080 : arm_stub_long_branch_v4t_thumb_tls_pic)
4081 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4082 /* V5T PIC and above. */
4083 ? arm_stub_long_branch_any_arm_pic
4085 : arm_stub_long_branch_v4t_thumb_arm_pic))
4087 /* non-PIC stubs. */
4088 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4089 /* V5T and above. */
4090 ? arm_stub_long_branch_any_any
4092 : arm_stub_long_branch_v4t_thumb_arm);
4094 /* Handle v4t short branches. */
4095 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4096 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4097 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4098 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4102 else if (r_type == R_ARM_CALL
4103 || r_type == R_ARM_JUMP24
4104 || r_type == R_ARM_PLT32
4105 || r_type == R_ARM_TLS_CALL)
4107 if (input_sec->flags & SEC_ELF_PURECODE)
4108 (*_bfd_error_handler) (_("%B(%s): warning: long branch "
4109 " veneers used in section with "
4110 "SHF_ARM_PURECODE section "
4111 "attribute is only supported"
4112 " for M-profile targets that "
4113 "implement the movw "
4115 if (branch_type == ST_BRANCH_TO_THUMB)
4120 && sym_sec->owner != NULL
4121 && !INTERWORK_FLAG (sym_sec->owner))
4123 (*_bfd_error_handler)
4124 (_("%B(%s): warning: interworking not enabled.\n"
4125 " first occurrence: %B: ARM call to Thumb"),
4126 sym_sec->owner, input_bfd, name);
4129 /* We have an extra 2-bytes reach because of
4130 the mode change (bit 24 (H) of BLX encoding). */
4131 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4132 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4133 || (r_type == R_ARM_CALL && !globals->use_blx)
4134 || (r_type == R_ARM_JUMP24)
4135 || (r_type == R_ARM_PLT32))
4137 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4139 ? ((globals->use_blx)
4140 /* V5T and above. */
4141 ? arm_stub_long_branch_any_thumb_pic
4143 : arm_stub_long_branch_v4t_arm_thumb_pic)
4145 /* non-PIC stubs. */
4146 : ((globals->use_blx)
4147 /* V5T and above. */
4148 ? arm_stub_long_branch_any_any
4150 : arm_stub_long_branch_v4t_arm_thumb);
4156 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4157 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4160 (bfd_link_pic (info) | globals->pic_veneer)
4162 ? (r_type == R_ARM_TLS_CALL
4164 ? arm_stub_long_branch_any_tls_pic
4166 ? arm_stub_long_branch_arm_nacl_pic
4167 : arm_stub_long_branch_any_arm_pic))
4168 /* non-PIC stubs. */
4170 ? arm_stub_long_branch_arm_nacl
4171 : arm_stub_long_branch_any_any);
4176 /* If a stub is needed, record the actual destination type. */
4177 if (stub_type != arm_stub_none)
4178 *actual_branch_type = branch_type;
4183 /* Build a name for an entry in the stub hash table. */
4186 elf32_arm_stub_name (const asection *input_section,
4187 const asection *sym_sec,
4188 const struct elf32_arm_link_hash_entry *hash,
4189 const Elf_Internal_Rela *rel,
4190 enum elf32_arm_stub_type stub_type)
4197 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4198 stub_name = (char *) bfd_malloc (len);
4199 if (stub_name != NULL)
4200 sprintf (stub_name, "%08x_%s+%x_%d",
4201 input_section->id & 0xffffffff,
4202 hash->root.root.root.string,
4203 (int) rel->r_addend & 0xffffffff,
4208 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4209 stub_name = (char *) bfd_malloc (len);
4210 if (stub_name != NULL)
4211 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4212 input_section->id & 0xffffffff,
4213 sym_sec->id & 0xffffffff,
4214 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4215 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4216 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4217 (int) rel->r_addend & 0xffffffff,
4224 /* Look up an entry in the stub hash. Stub entries are cached because
4225 creating the stub name takes a bit of time. */
4227 static struct elf32_arm_stub_hash_entry *
4228 elf32_arm_get_stub_entry (const asection *input_section,
4229 const asection *sym_sec,
4230 struct elf_link_hash_entry *hash,
4231 const Elf_Internal_Rela *rel,
4232 struct elf32_arm_link_hash_table *htab,
4233 enum elf32_arm_stub_type stub_type)
4235 struct elf32_arm_stub_hash_entry *stub_entry;
4236 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4237 const asection *id_sec;
4239 if ((input_section->flags & SEC_CODE) == 0)
4242 /* If this input section is part of a group of sections sharing one
4243 stub section, then use the id of the first section in the group.
4244 Stub names need to include a section id, as there may well be
4245 more than one stub used to reach say, printf, and we need to
4246 distinguish between them. */
4247 BFD_ASSERT (input_section->id <= htab->top_id);
4248 id_sec = htab->stub_group[input_section->id].link_sec;
4250 if (h != NULL && h->stub_cache != NULL
4251 && h->stub_cache->h == h
4252 && h->stub_cache->id_sec == id_sec
4253 && h->stub_cache->stub_type == stub_type)
4255 stub_entry = h->stub_cache;
4261 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4262 if (stub_name == NULL)
4265 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4266 stub_name, FALSE, FALSE);
4268 h->stub_cache = stub_entry;
4276 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4280 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4282 if (stub_type >= max_stub_type)
4283 abort (); /* Should be unreachable. */
4287 case arm_stub_cmse_branch_thumb_only:
4294 abort (); /* Should be unreachable. */
4297 /* Required alignment (as a power of 2) for the dedicated section holding
4298 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4299 with input sections. */
4302 arm_dedicated_stub_output_section_required_alignment
4303 (enum elf32_arm_stub_type stub_type)
4305 if (stub_type >= max_stub_type)
4306 abort (); /* Should be unreachable. */
4310 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4312 case arm_stub_cmse_branch_thumb_only:
4316 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4320 abort (); /* Should be unreachable. */
4323 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4324 NULL if veneers of this type are interspersed with input sections. */
4327 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4329 if (stub_type >= max_stub_type)
4330 abort (); /* Should be unreachable. */
4334 case arm_stub_cmse_branch_thumb_only:
4335 return ".gnu.sgstubs";
4338 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4342 abort (); /* Should be unreachable. */
4345 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4346 returns the address of the hash table field in HTAB holding a pointer to the
4347 corresponding input section. Otherwise, returns NULL. */
4350 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4351 enum elf32_arm_stub_type stub_type)
4353 if (stub_type >= max_stub_type)
4354 abort (); /* Should be unreachable. */
4358 case arm_stub_cmse_branch_thumb_only:
4359 return &htab->cmse_stub_sec;
4362 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4366 abort (); /* Should be unreachable. */
4369 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4370 is the section that branch into veneer and can be NULL if stub should go in
4371 a dedicated output section. Returns a pointer to the stub section, and the
4372 section to which the stub section will be attached (in *LINK_SEC_P).
4373 LINK_SEC_P may be NULL. */
4376 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4377 struct elf32_arm_link_hash_table *htab,
4378 enum elf32_arm_stub_type stub_type)
4380 asection *link_sec, *out_sec, **stub_sec_p;
4381 const char *stub_sec_prefix;
4382 bfd_boolean dedicated_output_section =
4383 arm_dedicated_stub_output_section_required (stub_type);
4386 if (dedicated_output_section)
4388 bfd *output_bfd = htab->obfd;
4389 const char *out_sec_name =
4390 arm_dedicated_stub_output_section_name (stub_type);
4392 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4393 stub_sec_prefix = out_sec_name;
4394 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4395 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4396 if (out_sec == NULL)
4398 (*_bfd_error_handler) (_("No address assigned to the veneers output "
4399 "section %s"), out_sec_name);
4405 BFD_ASSERT (section->id <= htab->top_id);
4406 link_sec = htab->stub_group[section->id].link_sec;
4407 BFD_ASSERT (link_sec != NULL);
4408 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4409 if (*stub_sec_p == NULL)
4410 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4411 stub_sec_prefix = link_sec->name;
4412 out_sec = link_sec->output_section;
4413 align = htab->nacl_p ? 4 : 3;
4416 if (*stub_sec_p == NULL)
4422 namelen = strlen (stub_sec_prefix);
4423 len = namelen + sizeof (STUB_SUFFIX);
4424 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4428 memcpy (s_name, stub_sec_prefix, namelen);
4429 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4430 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4432 if (*stub_sec_p == NULL)
4435 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4436 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4440 if (!dedicated_output_section)
4441 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4444 *link_sec_p = link_sec;
4449 /* Add a new stub entry to the stub hash. Not all fields of the new
4450 stub entry are initialised. */
4452 static struct elf32_arm_stub_hash_entry *
4453 elf32_arm_add_stub (const char *stub_name, asection *section,
4454 struct elf32_arm_link_hash_table *htab,
4455 enum elf32_arm_stub_type stub_type)
4459 struct elf32_arm_stub_hash_entry *stub_entry;
4461 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4463 if (stub_sec == NULL)
4466 /* Enter this entry into the linker stub hash table. */
4467 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4469 if (stub_entry == NULL)
4471 if (section == NULL)
4473 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4479 stub_entry->stub_sec = stub_sec;
4480 stub_entry->stub_offset = (bfd_vma) -1;
4481 stub_entry->id_sec = link_sec;
4486 /* Store an Arm insn into an output section not processed by
4487 elf32_arm_write_section. */
4490 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4491 bfd * output_bfd, bfd_vma val, void * ptr)
4493 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4494 bfd_putl32 (val, ptr);
4496 bfd_putb32 (val, ptr);
4499 /* Store a 16-bit Thumb insn into an output section not processed by
4500 elf32_arm_write_section. */
4503 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4504 bfd * output_bfd, bfd_vma val, void * ptr)
4506 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4507 bfd_putl16 (val, ptr);
4509 bfd_putb16 (val, ptr);
4512 /* Store a Thumb2 insn into an output section not processed by
4513 elf32_arm_write_section. */
4516 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4517 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4519 /* T2 instructions are 16-bit streamed. */
4520 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4522 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4523 bfd_putl16 ((val & 0xffff), ptr + 2);
4527 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4528 bfd_putb16 ((val & 0xffff), ptr + 2);
4532 /* If it's possible to change R_TYPE to a more efficient access
4533 model, return the new reloc type. */
4536 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4537 struct elf_link_hash_entry *h)
4539 int is_local = (h == NULL);
4541 if (bfd_link_pic (info)
4542 || (h && h->root.type == bfd_link_hash_undefweak))
4545 /* We do not support relaxations for Old TLS models. */
4548 case R_ARM_TLS_GOTDESC:
4549 case R_ARM_TLS_CALL:
4550 case R_ARM_THM_TLS_CALL:
4551 case R_ARM_TLS_DESCSEQ:
4552 case R_ARM_THM_TLS_DESCSEQ:
4553 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4559 static bfd_reloc_status_type elf32_arm_final_link_relocate
4560 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4561 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4562 const char *, unsigned char, enum arm_st_branch_type,
4563 struct elf_link_hash_entry *, bfd_boolean *, char **);
4566 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4570 case arm_stub_a8_veneer_b_cond:
4571 case arm_stub_a8_veneer_b:
4572 case arm_stub_a8_veneer_bl:
4575 case arm_stub_long_branch_any_any:
4576 case arm_stub_long_branch_v4t_arm_thumb:
4577 case arm_stub_long_branch_thumb_only:
4578 case arm_stub_long_branch_thumb2_only:
4579 case arm_stub_long_branch_thumb2_only_pure:
4580 case arm_stub_long_branch_v4t_thumb_thumb:
4581 case arm_stub_long_branch_v4t_thumb_arm:
4582 case arm_stub_short_branch_v4t_thumb_arm:
4583 case arm_stub_long_branch_any_arm_pic:
4584 case arm_stub_long_branch_any_thumb_pic:
4585 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4586 case arm_stub_long_branch_v4t_arm_thumb_pic:
4587 case arm_stub_long_branch_v4t_thumb_arm_pic:
4588 case arm_stub_long_branch_thumb_only_pic:
4589 case arm_stub_long_branch_any_tls_pic:
4590 case arm_stub_long_branch_v4t_thumb_tls_pic:
4591 case arm_stub_cmse_branch_thumb_only:
4592 case arm_stub_a8_veneer_blx:
4595 case arm_stub_long_branch_arm_nacl:
4596 case arm_stub_long_branch_arm_nacl_pic:
4600 abort (); /* Should be unreachable. */
4604 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4605 veneering (TRUE) or have their own symbol (FALSE). */
4608 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4610 if (stub_type >= max_stub_type)
4611 abort (); /* Should be unreachable. */
4615 case arm_stub_cmse_branch_thumb_only:
4622 abort (); /* Should be unreachable. */
4625 /* Returns the padding needed for the dedicated section used stubs of type
4629 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4631 if (stub_type >= max_stub_type)
4632 abort (); /* Should be unreachable. */
4636 case arm_stub_cmse_branch_thumb_only:
4643 abort (); /* Should be unreachable. */
4646 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4647 returns the address of the hash table field in HTAB holding the offset at
4648 which new veneers should be layed out in the stub section. */
4651 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4652 enum elf32_arm_stub_type stub_type)
4656 case arm_stub_cmse_branch_thumb_only:
4657 return &htab->new_cmse_stub_offset;
4660 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4666 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4670 bfd_boolean removed_sg_veneer;
4671 struct elf32_arm_stub_hash_entry *stub_entry;
4672 struct elf32_arm_link_hash_table *globals;
4673 struct bfd_link_info *info;
4680 const insn_sequence *template_sequence;
4682 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4683 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4685 int just_allocated = 0;
4687 /* Massage our args to the form they really have. */
4688 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4689 info = (struct bfd_link_info *) in_arg;
4691 globals = elf32_arm_hash_table (info);
4692 if (globals == NULL)
4695 stub_sec = stub_entry->stub_sec;
4697 if ((globals->fix_cortex_a8 < 0)
4698 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4699 /* We have to do less-strictly-aligned fixes last. */
4702 /* Assign a slot at the end of section if none assigned yet. */
4703 if (stub_entry->stub_offset == (bfd_vma) -1)
4705 stub_entry->stub_offset = stub_sec->size;
4708 loc = stub_sec->contents + stub_entry->stub_offset;
4710 stub_bfd = stub_sec->owner;
4712 /* This is the address of the stub destination. */
4713 sym_value = (stub_entry->target_value
4714 + stub_entry->target_section->output_offset
4715 + stub_entry->target_section->output_section->vma);
4717 template_sequence = stub_entry->stub_template;
4718 template_size = stub_entry->stub_template_size;
4721 for (i = 0; i < template_size; i++)
4723 switch (template_sequence[i].type)
4727 bfd_vma data = (bfd_vma) template_sequence[i].data;
4728 if (template_sequence[i].reloc_addend != 0)
4730 /* We've borrowed the reloc_addend field to mean we should
4731 insert a condition code into this (Thumb-1 branch)
4732 instruction. See THUMB16_BCOND_INSN. */
4733 BFD_ASSERT ((data & 0xff00) == 0xd000);
4734 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4736 bfd_put_16 (stub_bfd, data, loc + size);
4742 bfd_put_16 (stub_bfd,
4743 (template_sequence[i].data >> 16) & 0xffff,
4745 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4747 if (template_sequence[i].r_type != R_ARM_NONE)
4749 stub_reloc_idx[nrelocs] = i;
4750 stub_reloc_offset[nrelocs++] = size;
4756 bfd_put_32 (stub_bfd, template_sequence[i].data,
4758 /* Handle cases where the target is encoded within the
4760 if (template_sequence[i].r_type == R_ARM_JUMP24)
4762 stub_reloc_idx[nrelocs] = i;
4763 stub_reloc_offset[nrelocs++] = size;
4769 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4770 stub_reloc_idx[nrelocs] = i;
4771 stub_reloc_offset[nrelocs++] = size;
4782 stub_sec->size += size;
4784 /* Stub size has already been computed in arm_size_one_stub. Check
4786 BFD_ASSERT (size == stub_entry->stub_size);
4788 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4789 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4792 /* Assume non empty slots have at least one and at most MAXRELOCS entries
4793 to relocate in each stub. */
4795 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
4796 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
4798 for (i = 0; i < nrelocs; i++)
4800 Elf_Internal_Rela rel;
4801 bfd_boolean unresolved_reloc;
4802 char *error_message;
4804 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
4806 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4807 rel.r_info = ELF32_R_INFO (0,
4808 template_sequence[stub_reloc_idx[i]].r_type);
4811 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4812 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4813 template should refer back to the instruction after the original
4814 branch. We use target_section as Cortex-A8 erratum workaround stubs
4815 are only generated when both source and target are in the same
4817 points_to = stub_entry->target_section->output_section->vma
4818 + stub_entry->target_section->output_offset
4819 + stub_entry->source_value;
4821 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4822 (template_sequence[stub_reloc_idx[i]].r_type),
4823 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4824 points_to, info, stub_entry->target_section, "", STT_FUNC,
4825 stub_entry->branch_type,
4826 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4834 /* Calculate the template, template size and instruction size for a stub.
4835 Return value is the instruction size. */
4838 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4839 const insn_sequence **stub_template,
4840 int *stub_template_size)
4842 const insn_sequence *template_sequence = NULL;
4843 int template_size = 0, i;
4846 template_sequence = stub_definitions[stub_type].template_sequence;
4848 *stub_template = template_sequence;
4850 template_size = stub_definitions[stub_type].template_size;
4851 if (stub_template_size)
4852 *stub_template_size = template_size;
4855 for (i = 0; i < template_size; i++)
4857 switch (template_sequence[i].type)
4878 /* As above, but don't actually build the stub. Just bump offset so
4879 we know stub section sizes. */
4882 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4883 void *in_arg ATTRIBUTE_UNUSED)
4885 struct elf32_arm_stub_hash_entry *stub_entry;
4886 const insn_sequence *template_sequence;
4887 int template_size, size;
4889 /* Massage our args to the form they really have. */
4890 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4892 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4893 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4895 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4898 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
4899 if (stub_entry->stub_template_size)
4901 stub_entry->stub_size = size;
4902 stub_entry->stub_template = template_sequence;
4903 stub_entry->stub_template_size = template_size;
4906 /* Already accounted for. */
4907 if (stub_entry->stub_offset != (bfd_vma) -1)
4910 size = (size + 7) & ~7;
4911 stub_entry->stub_sec->size += size;
4916 /* External entry points for sizing and building linker stubs. */
4918 /* Set up various things so that we can make a list of input sections
4919 for each output section included in the link. Returns -1 on error,
4920 0 when no stubs will be needed, and 1 on success. */
4923 elf32_arm_setup_section_lists (bfd *output_bfd,
4924 struct bfd_link_info *info)
4927 unsigned int bfd_count;
4928 unsigned int top_id, top_index;
4930 asection **input_list, **list;
4932 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4936 if (! is_elf_hash_table (htab))
4939 /* Count the number of input BFDs and find the top input section id. */
4940 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4942 input_bfd = input_bfd->link.next)
4945 for (section = input_bfd->sections;
4947 section = section->next)
4949 if (top_id < section->id)
4950 top_id = section->id;
4953 htab->bfd_count = bfd_count;
4955 amt = sizeof (struct map_stub) * (top_id + 1);
4956 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4957 if (htab->stub_group == NULL)
4959 htab->top_id = top_id;
4961 /* We can't use output_bfd->section_count here to find the top output
4962 section index as some sections may have been removed, and
4963 _bfd_strip_section_from_output doesn't renumber the indices. */
4964 for (section = output_bfd->sections, top_index = 0;
4966 section = section->next)
4968 if (top_index < section->index)
4969 top_index = section->index;
4972 htab->top_index = top_index;
4973 amt = sizeof (asection *) * (top_index + 1);
4974 input_list = (asection **) bfd_malloc (amt);
4975 htab->input_list = input_list;
4976 if (input_list == NULL)
4979 /* For sections we aren't interested in, mark their entries with a
4980 value we can check later. */
4981 list = input_list + top_index;
4983 *list = bfd_abs_section_ptr;
4984 while (list-- != input_list);
4986 for (section = output_bfd->sections;
4988 section = section->next)
4990 if ((section->flags & SEC_CODE) != 0)
4991 input_list[section->index] = NULL;
4997 /* The linker repeatedly calls this function for each input section,
4998 in the order that input sections are linked into output sections.
4999 Build lists of input sections to determine groupings between which
5000 we may insert linker stubs. */
5003 elf32_arm_next_input_section (struct bfd_link_info *info,
5006 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5011 if (isec->output_section->index <= htab->top_index)
5013 asection **list = htab->input_list + isec->output_section->index;
5015 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5017 /* Steal the link_sec pointer for our list. */
5018 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5019 /* This happens to make the list in reverse order,
5020 which we reverse later. */
5021 PREV_SEC (isec) = *list;
5027 /* See whether we can group stub sections together. Grouping stub
5028 sections may result in fewer stubs. More importantly, we need to
5029 put all .init* and .fini* stubs at the end of the .init or
5030 .fini output sections respectively, because glibc splits the
5031 _init and _fini functions into multiple parts. Putting a stub in
5032 the middle of a function is not a good idea. */
5035 group_sections (struct elf32_arm_link_hash_table *htab,
5036 bfd_size_type stub_group_size,
5037 bfd_boolean stubs_always_after_branch)
5039 asection **list = htab->input_list;
5043 asection *tail = *list;
5046 if (tail == bfd_abs_section_ptr)
5049 /* Reverse the list: we must avoid placing stubs at the
5050 beginning of the section because the beginning of the text
5051 section may be required for an interrupt vector in bare metal
5053 #define NEXT_SEC PREV_SEC
5055 while (tail != NULL)
5057 /* Pop from tail. */
5058 asection *item = tail;
5059 tail = PREV_SEC (item);
5062 NEXT_SEC (item) = head;
5066 while (head != NULL)
5070 bfd_vma stub_group_start = head->output_offset;
5071 bfd_vma end_of_next;
5074 while (NEXT_SEC (curr) != NULL)
5076 next = NEXT_SEC (curr);
5077 end_of_next = next->output_offset + next->size;
5078 if (end_of_next - stub_group_start >= stub_group_size)
5079 /* End of NEXT is too far from start, so stop. */
5081 /* Add NEXT to the group. */
5085 /* OK, the size from the start to the start of CURR is less
5086 than stub_group_size and thus can be handled by one stub
5087 section. (Or the head section is itself larger than
5088 stub_group_size, in which case we may be toast.)
5089 We should really be keeping track of the total size of
5090 stubs added here, as stubs contribute to the final output
5094 next = NEXT_SEC (head);
5095 /* Set up this stub group. */
5096 htab->stub_group[head->id].link_sec = curr;
5098 while (head != curr && (head = next) != NULL);
5100 /* But wait, there's more! Input sections up to stub_group_size
5101 bytes after the stub section can be handled by it too. */
5102 if (!stubs_always_after_branch)
5104 stub_group_start = curr->output_offset + curr->size;
5106 while (next != NULL)
5108 end_of_next = next->output_offset + next->size;
5109 if (end_of_next - stub_group_start >= stub_group_size)
5110 /* End of NEXT is too far from stubs, so stop. */
5112 /* Add NEXT to the stub group. */
5114 next = NEXT_SEC (head);
5115 htab->stub_group[head->id].link_sec = curr;
5121 while (list++ != htab->input_list + htab->top_index);
5123 free (htab->input_list);
5128 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5132 a8_reloc_compare (const void *a, const void *b)
5134 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5135 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5137 if (ra->from < rb->from)
5139 else if (ra->from > rb->from)
5145 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5146 const char *, char **);
5148 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5149 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5150 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5154 cortex_a8_erratum_scan (bfd *input_bfd,
5155 struct bfd_link_info *info,
5156 struct a8_erratum_fix **a8_fixes_p,
5157 unsigned int *num_a8_fixes_p,
5158 unsigned int *a8_fix_table_size_p,
5159 struct a8_erratum_reloc *a8_relocs,
5160 unsigned int num_a8_relocs,
5161 unsigned prev_num_a8_fixes,
5162 bfd_boolean *stub_changed_p)
5165 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5166 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5167 unsigned int num_a8_fixes = *num_a8_fixes_p;
5168 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5173 for (section = input_bfd->sections;
5175 section = section->next)
5177 bfd_byte *contents = NULL;
5178 struct _arm_elf_section_data *sec_data;
5182 if (elf_section_type (section) != SHT_PROGBITS
5183 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5184 || (section->flags & SEC_EXCLUDE) != 0
5185 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5186 || (section->output_section == bfd_abs_section_ptr))
5189 base_vma = section->output_section->vma + section->output_offset;
5191 if (elf_section_data (section)->this_hdr.contents != NULL)
5192 contents = elf_section_data (section)->this_hdr.contents;
5193 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5196 sec_data = elf32_arm_section_data (section);
5198 for (span = 0; span < sec_data->mapcount; span++)
5200 unsigned int span_start = sec_data->map[span].vma;
5201 unsigned int span_end = (span == sec_data->mapcount - 1)
5202 ? section->size : sec_data->map[span + 1].vma;
5204 char span_type = sec_data->map[span].type;
5205 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5207 if (span_type != 't')
5210 /* Span is entirely within a single 4KB region: skip scanning. */
5211 if (((base_vma + span_start) & ~0xfff)
5212 == ((base_vma + span_end) & ~0xfff))
5215 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5217 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5218 * The branch target is in the same 4KB region as the
5219 first half of the branch.
5220 * The instruction before the branch is a 32-bit
5221 length non-branch instruction. */
5222 for (i = span_start; i < span_end;)
5224 unsigned int insn = bfd_getl16 (&contents[i]);
5225 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5226 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5228 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5233 /* Load the rest of the insn (in manual-friendly order). */
5234 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5236 /* Encoding T4: B<c>.W. */
5237 is_b = (insn & 0xf800d000) == 0xf0009000;
5238 /* Encoding T1: BL<c>.W. */
5239 is_bl = (insn & 0xf800d000) == 0xf000d000;
5240 /* Encoding T2: BLX<c>.W. */
5241 is_blx = (insn & 0xf800d000) == 0xf000c000;
5242 /* Encoding T3: B<c>.W (not permitted in IT block). */
5243 is_bcc = (insn & 0xf800d000) == 0xf0008000
5244 && (insn & 0x07f00000) != 0x03800000;
5247 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5249 if (((base_vma + i) & 0xfff) == 0xffe
5253 && ! last_was_branch)
5255 bfd_signed_vma offset = 0;
5256 bfd_boolean force_target_arm = FALSE;
5257 bfd_boolean force_target_thumb = FALSE;
5259 enum elf32_arm_stub_type stub_type = arm_stub_none;
5260 struct a8_erratum_reloc key, *found;
5261 bfd_boolean use_plt = FALSE;
5263 key.from = base_vma + i;
5264 found = (struct a8_erratum_reloc *)
5265 bsearch (&key, a8_relocs, num_a8_relocs,
5266 sizeof (struct a8_erratum_reloc),
5271 char *error_message = NULL;
5272 struct elf_link_hash_entry *entry;
5274 /* We don't care about the error returned from this
5275 function, only if there is glue or not. */
5276 entry = find_thumb_glue (info, found->sym_name,
5280 found->non_a8_stub = TRUE;
5282 /* Keep a simpler condition, for the sake of clarity. */
5283 if (htab->root.splt != NULL && found->hash != NULL
5284 && found->hash->root.plt.offset != (bfd_vma) -1)
5287 if (found->r_type == R_ARM_THM_CALL)
5289 if (found->branch_type == ST_BRANCH_TO_ARM
5291 force_target_arm = TRUE;
5293 force_target_thumb = TRUE;
5297 /* Check if we have an offending branch instruction. */
5299 if (found && found->non_a8_stub)
5300 /* We've already made a stub for this instruction, e.g.
5301 it's a long branch or a Thumb->ARM stub. Assume that
5302 stub will suffice to work around the A8 erratum (see
5303 setting of always_after_branch above). */
5307 offset = (insn & 0x7ff) << 1;
5308 offset |= (insn & 0x3f0000) >> 4;
5309 offset |= (insn & 0x2000) ? 0x40000 : 0;
5310 offset |= (insn & 0x800) ? 0x80000 : 0;
5311 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5312 if (offset & 0x100000)
5313 offset |= ~ ((bfd_signed_vma) 0xfffff);
5314 stub_type = arm_stub_a8_veneer_b_cond;
5316 else if (is_b || is_bl || is_blx)
5318 int s = (insn & 0x4000000) != 0;
5319 int j1 = (insn & 0x2000) != 0;
5320 int j2 = (insn & 0x800) != 0;
5324 offset = (insn & 0x7ff) << 1;
5325 offset |= (insn & 0x3ff0000) >> 4;
5329 if (offset & 0x1000000)
5330 offset |= ~ ((bfd_signed_vma) 0xffffff);
5333 offset &= ~ ((bfd_signed_vma) 3);
5335 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5336 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5339 if (stub_type != arm_stub_none)
5341 bfd_vma pc_for_insn = base_vma + i + 4;
5343 /* The original instruction is a BL, but the target is
5344 an ARM instruction. If we were not making a stub,
5345 the BL would have been converted to a BLX. Use the
5346 BLX stub instead in that case. */
5347 if (htab->use_blx && force_target_arm
5348 && stub_type == arm_stub_a8_veneer_bl)
5350 stub_type = arm_stub_a8_veneer_blx;
5354 /* Conversely, if the original instruction was
5355 BLX but the target is Thumb mode, use the BL
5357 else if (force_target_thumb
5358 && stub_type == arm_stub_a8_veneer_blx)
5360 stub_type = arm_stub_a8_veneer_bl;
5366 pc_for_insn &= ~ ((bfd_vma) 3);
5368 /* If we found a relocation, use the proper destination,
5369 not the offset in the (unrelocated) instruction.
5370 Note this is always done if we switched the stub type
5374 (bfd_signed_vma) (found->destination - pc_for_insn);
5376 /* If the stub will use a Thumb-mode branch to a
5377 PLT target, redirect it to the preceding Thumb
5379 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5380 offset -= PLT_THUMB_STUB_SIZE;
5382 target = pc_for_insn + offset;
5384 /* The BLX stub is ARM-mode code. Adjust the offset to
5385 take the different PC value (+8 instead of +4) into
5387 if (stub_type == arm_stub_a8_veneer_blx)
5390 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5392 char *stub_name = NULL;
5394 if (num_a8_fixes == a8_fix_table_size)
5396 a8_fix_table_size *= 2;
5397 a8_fixes = (struct a8_erratum_fix *)
5398 bfd_realloc (a8_fixes,
5399 sizeof (struct a8_erratum_fix)
5400 * a8_fix_table_size);
5403 if (num_a8_fixes < prev_num_a8_fixes)
5405 /* If we're doing a subsequent scan,
5406 check if we've found the same fix as
5407 before, and try and reuse the stub
5409 stub_name = a8_fixes[num_a8_fixes].stub_name;
5410 if ((a8_fixes[num_a8_fixes].section != section)
5411 || (a8_fixes[num_a8_fixes].offset != i))
5415 *stub_changed_p = TRUE;
5421 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5422 if (stub_name != NULL)
5423 sprintf (stub_name, "%x:%x", section->id, i);
5426 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5427 a8_fixes[num_a8_fixes].section = section;
5428 a8_fixes[num_a8_fixes].offset = i;
5429 a8_fixes[num_a8_fixes].target_offset =
5431 a8_fixes[num_a8_fixes].orig_insn = insn;
5432 a8_fixes[num_a8_fixes].stub_name = stub_name;
5433 a8_fixes[num_a8_fixes].stub_type = stub_type;
5434 a8_fixes[num_a8_fixes].branch_type =
5435 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5442 i += insn_32bit ? 4 : 2;
5443 last_was_32bit = insn_32bit;
5444 last_was_branch = is_32bit_branch;
5448 if (elf_section_data (section)->this_hdr.contents == NULL)
5452 *a8_fixes_p = a8_fixes;
5453 *num_a8_fixes_p = num_a8_fixes;
5454 *a8_fix_table_size_p = a8_fix_table_size;
5459 /* Create or update a stub entry depending on whether the stub can already be
5460 found in HTAB. The stub is identified by:
5461 - its type STUB_TYPE
5462 - its source branch (note that several can share the same stub) whose
5463 section and relocation (if any) are given by SECTION and IRELA
5465 - its target symbol whose input section, hash, name, value and branch type
5466 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5469 If found, the value of the stub's target symbol is updated from SYM_VALUE
5470 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5471 TRUE and the stub entry is initialized.
5473 Returns the stub that was created or updated, or NULL if an error
5476 static struct elf32_arm_stub_hash_entry *
5477 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5478 enum elf32_arm_stub_type stub_type, asection *section,
5479 Elf_Internal_Rela *irela, asection *sym_sec,
5480 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5481 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5482 bfd_boolean *new_stub)
5484 const asection *id_sec;
5486 struct elf32_arm_stub_hash_entry *stub_entry;
5487 unsigned int r_type;
5488 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5490 BFD_ASSERT (stub_type != arm_stub_none);
5494 stub_name = sym_name;
5498 BFD_ASSERT (section);
5499 BFD_ASSERT (section->id <= htab->top_id);
5501 /* Support for grouping stub sections. */
5502 id_sec = htab->stub_group[section->id].link_sec;
5504 /* Get the name of this stub. */
5505 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5511 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5513 /* The proper stub has already been created, just update its value. */
5514 if (stub_entry != NULL)
5518 stub_entry->target_value = sym_value;
5522 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5523 if (stub_entry == NULL)
5530 stub_entry->target_value = sym_value;
5531 stub_entry->target_section = sym_sec;
5532 stub_entry->stub_type = stub_type;
5533 stub_entry->h = hash;
5534 stub_entry->branch_type = branch_type;
5537 stub_entry->output_name = sym_name;
5540 if (sym_name == NULL)
5541 sym_name = "unnamed";
5542 stub_entry->output_name = (char *)
5543 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5544 + strlen (sym_name));
5545 if (stub_entry->output_name == NULL)
5551 /* For historical reasons, use the existing names for ARM-to-Thumb and
5552 Thumb-to-ARM stubs. */
5553 r_type = ELF32_R_TYPE (irela->r_info);
5554 if ((r_type == (unsigned int) R_ARM_THM_CALL
5555 || r_type == (unsigned int) R_ARM_THM_JUMP24
5556 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5557 && branch_type == ST_BRANCH_TO_ARM)
5558 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5559 else if ((r_type == (unsigned int) R_ARM_CALL
5560 || r_type == (unsigned int) R_ARM_JUMP24)
5561 && branch_type == ST_BRANCH_TO_THUMB)
5562 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5564 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5571 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5572 gateway veneer to transition from non secure to secure state and create them
5575 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5576 defines the conditions that govern Secure Gateway veneer creation for a
5577 given symbol <SYM> as follows:
5578 - it has function type
5579 - it has non local binding
5580 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5581 same type, binding and value as <SYM> (called normal symbol).
5582 An entry function can handle secure state transition itself in which case
5583 its special symbol would have a different value from the normal symbol.
5585 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5586 entry mapping while HTAB gives the name to hash entry mapping.
5587 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5590 The return value gives whether a stub failed to be allocated. */
5593 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5594 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5595 int *cmse_stub_created)
5597 const struct elf_backend_data *bed;
5598 Elf_Internal_Shdr *symtab_hdr;
5599 unsigned i, j, sym_count, ext_start;
5600 Elf_Internal_Sym *cmse_sym, *local_syms;
5601 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5602 enum arm_st_branch_type branch_type;
5603 char *sym_name, *lsym_name;
5606 struct elf32_arm_stub_hash_entry *stub_entry;
5607 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5609 bed = get_elf_backend_data (input_bfd);
5610 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5611 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5612 ext_start = symtab_hdr->sh_info;
5613 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5614 && out_attr[Tag_CPU_arch_profile].i == 'M');
5616 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5617 if (local_syms == NULL)
5618 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5619 symtab_hdr->sh_info, 0, NULL, NULL,
5621 if (symtab_hdr->sh_info && local_syms == NULL)
5625 for (i = 0; i < sym_count; i++)
5627 cmse_invalid = FALSE;
5631 cmse_sym = &local_syms[i];
5632 /* Not a special symbol. */
5633 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
5635 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5636 symtab_hdr->sh_link,
5638 /* Special symbol with local binding. */
5639 cmse_invalid = TRUE;
5643 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5644 sym_name = (char *) cmse_hash->root.root.root.string;
5646 /* Not a special symbol. */
5647 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
5650 /* Special symbol has incorrect binding or type. */
5651 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5652 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5653 || cmse_hash->root.type != STT_FUNC)
5654 cmse_invalid = TRUE;
5659 (*_bfd_error_handler) (_("%B: Special symbol `%s' only allowed for "
5660 "ARMv8-M architecture or later."),
5661 input_bfd, sym_name);
5662 is_v8m = TRUE; /* Avoid multiple warning. */
5668 (*_bfd_error_handler) (_("%B: invalid special symbol `%s'."),
5669 input_bfd, sym_name);
5670 (*_bfd_error_handler) (_("It must be a global or weak function "
5677 sym_name += strlen (CMSE_PREFIX);
5678 hash = (struct elf32_arm_link_hash_entry *)
5679 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5681 /* No associated normal symbol or it is neither global nor weak. */
5683 || (hash->root.root.type != bfd_link_hash_defined
5684 && hash->root.root.type != bfd_link_hash_defweak)
5685 || hash->root.type != STT_FUNC)
5687 /* Initialize here to avoid warning about use of possibly
5688 uninitialized variable. */
5693 /* Searching for a normal symbol with local binding. */
5694 for (; j < ext_start; j++)
5697 bfd_elf_string_from_elf_section (input_bfd,
5698 symtab_hdr->sh_link,
5699 local_syms[j].st_name);
5700 if (!strcmp (sym_name, lsym_name))
5705 if (hash || j < ext_start)
5707 (*_bfd_error_handler)
5708 (_("%B: invalid standard symbol `%s'."), input_bfd, sym_name);
5709 (*_bfd_error_handler)
5710 (_("It must be a global or weak function symbol."));
5713 (*_bfd_error_handler)
5714 (_("%B: absent standard symbol `%s'."), input_bfd, sym_name);
5720 sym_value = hash->root.root.u.def.value;
5721 section = hash->root.root.u.def.section;
5723 if (cmse_hash->root.root.u.def.section != section)
5725 (*_bfd_error_handler)
5726 (_("%B: `%s' and its special symbol are in different sections."),
5727 input_bfd, sym_name);
5730 if (cmse_hash->root.root.u.def.value != sym_value)
5731 continue; /* Ignore: could be an entry function starting with SG. */
5733 /* If this section is a link-once section that will be discarded, then
5734 don't create any stubs. */
5735 if (section->output_section == NULL)
5737 (*_bfd_error_handler)
5738 (_("%B: entry function `%s' not output."), input_bfd, sym_name);
5742 if (hash->root.size == 0)
5744 (*_bfd_error_handler)
5745 (_("%B: entry function `%s' is empty."), input_bfd, sym_name);
5751 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
5753 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5754 NULL, NULL, section, hash, sym_name,
5755 sym_value, branch_type, &new_stub);
5757 if (stub_entry == NULL)
5761 BFD_ASSERT (new_stub);
5762 (*cmse_stub_created)++;
5766 if (!symtab_hdr->contents)
5771 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
5772 code entry function, ie can be called from non secure code without using a
5776 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
5778 bfd_byte contents[4];
5779 uint32_t first_insn;
5784 /* Defined symbol of function type. */
5785 if (hash->root.root.type != bfd_link_hash_defined
5786 && hash->root.root.type != bfd_link_hash_defweak)
5788 if (hash->root.type != STT_FUNC)
5791 /* Read first instruction. */
5792 section = hash->root.root.u.def.section;
5793 abfd = section->owner;
5794 offset = hash->root.root.u.def.value - section->vma;
5795 if (!bfd_get_section_contents (abfd, section, contents, offset,
5799 first_insn = bfd_get_32 (abfd, contents);
5801 /* Starts by SG instruction. */
5802 return first_insn == 0xe97fe97f;
5805 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
5806 secure gateway veneers (ie. the veneers was not in the input import library)
5807 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
5810 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
5812 struct elf32_arm_stub_hash_entry *stub_entry;
5813 struct bfd_link_info *info;
5815 /* Massage our args to the form they really have. */
5816 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5817 info = (struct bfd_link_info *) gen_info;
5819 if (info->out_implib_bfd)
5822 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
5825 if (stub_entry->stub_offset == (bfd_vma) -1)
5826 (*_bfd_error_handler) (" %s", stub_entry->output_name);
5831 /* Set offset of each secure gateway veneers so that its address remain
5832 identical to the one in the input import library referred by
5833 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
5834 (present in input import library but absent from the executable being
5835 linked) or if new veneers appeared and there is no output import library
5836 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
5837 number of secure gateway veneers found in the input import library.
5839 The function returns whether an error occurred. If no error occurred,
5840 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
5841 and this function and HTAB->new_cmse_stub_offset is set to the biggest
5842 veneer observed set for new veneers to be layed out after. */
5845 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
5846 struct elf32_arm_link_hash_table *htab,
5847 int *cmse_stub_created)
5854 asection *stub_out_sec;
5855 bfd_boolean ret = TRUE;
5856 Elf_Internal_Sym *intsym;
5857 const char *out_sec_name;
5858 bfd_size_type cmse_stub_size;
5859 asymbol **sympp = NULL, *sym;
5860 struct elf32_arm_link_hash_entry *hash;
5861 const insn_sequence *cmse_stub_template;
5862 struct elf32_arm_stub_hash_entry *stub_entry;
5863 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
5864 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
5865 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
5867 /* No input secure gateway import library. */
5868 if (!htab->in_implib_bfd)
5871 in_implib_bfd = htab->in_implib_bfd;
5872 if (!htab->cmse_implib)
5874 (*_bfd_error_handler) (_("%B: --in-implib only supported for Secure "
5875 "Gateway import libraries."), in_implib_bfd);
5879 /* Get symbol table size. */
5880 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
5884 /* Read in the input secure gateway import library's symbol table. */
5885 sympp = (asymbol **) xmalloc (symsize);
5886 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
5893 htab->new_cmse_stub_offset = 0;
5895 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
5896 &cmse_stub_template,
5897 &cmse_stub_template_size);
5899 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
5901 bfd_get_section_by_name (htab->obfd, out_sec_name);
5902 if (stub_out_sec != NULL)
5903 cmse_stub_sec_vma = stub_out_sec->vma;
5905 /* Set addresses of veneers mentionned in input secure gateway import
5906 library's symbol table. */
5907 for (i = 0; i < symcount; i++)
5911 sym_name = (char *) bfd_asymbol_name (sym);
5912 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
5914 if (sym->section != bfd_abs_section_ptr
5915 || !(flags & (BSF_GLOBAL | BSF_WEAK))
5916 || (flags & BSF_FUNCTION) != BSF_FUNCTION
5917 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
5918 != ST_BRANCH_TO_THUMB))
5920 (*_bfd_error_handler) (_("%B: invalid import library entry: `%s'."),
5921 in_implib_bfd, sym_name);
5922 (*_bfd_error_handler) (_("Symbol should be absolute, global and "
5923 "refer to Thumb functions."));
5928 veneer_value = bfd_asymbol_value (sym);
5929 stub_offset = veneer_value - cmse_stub_sec_vma;
5930 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
5932 hash = (struct elf32_arm_link_hash_entry *)
5933 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5935 /* Stub entry should have been created by cmse_scan or the symbol be of
5936 a secure function callable from non secure code. */
5937 if (!stub_entry && !hash)
5939 bfd_boolean new_stub;
5941 (*_bfd_error_handler)
5942 (_("Entry function `%s' disappeared from secure code."), sym_name);
5943 hash = (struct elf32_arm_link_hash_entry *)
5944 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
5946 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5947 NULL, NULL, bfd_abs_section_ptr, hash,
5948 sym_name, veneer_value,
5949 ST_BRANCH_TO_THUMB, &new_stub);
5950 if (stub_entry == NULL)
5954 BFD_ASSERT (new_stub);
5955 new_cmse_stubs_created++;
5956 (*cmse_stub_created)++;
5958 stub_entry->stub_template_size = stub_entry->stub_size = 0;
5959 stub_entry->stub_offset = stub_offset;
5961 /* Symbol found is not callable from non secure code. */
5962 else if (!stub_entry)
5964 if (!cmse_entry_fct_p (hash))
5966 (*_bfd_error_handler) (_("`%s' refers to a non entry function."),
5974 /* Only stubs for SG veneers should have been created. */
5975 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5977 /* Check visibility hasn't changed. */
5978 if (!!(flags & BSF_GLOBAL)
5979 != (hash->root.root.type == bfd_link_hash_defined))
5980 (*_bfd_error_handler)
5981 (_("%B: visibility of symbol `%s' has changed."), in_implib_bfd,
5984 stub_entry->stub_offset = stub_offset;
5987 /* Size should match that of a SG veneer. */
5988 if (intsym->st_size != cmse_stub_size)
5990 (*_bfd_error_handler) (_("%B: incorrect size for symbol `%s'."),
5991 in_implib_bfd, sym_name);
5995 /* Previous veneer address is before current SG veneer section. */
5996 if (veneer_value < cmse_stub_sec_vma)
5998 /* Avoid offset underflow. */
6000 stub_entry->stub_offset = 0;
6005 /* Complain if stub offset not a multiple of stub size. */
6006 if (stub_offset % cmse_stub_size)
6008 (*_bfd_error_handler)
6009 (_("Offset of veneer for entry function `%s' not a multiple of "
6010 "its size."), sym_name);
6017 new_cmse_stubs_created--;
6018 if (veneer_value < cmse_stub_array_start)
6019 cmse_stub_array_start = veneer_value;
6020 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6021 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6022 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6025 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6027 BFD_ASSERT (new_cmse_stubs_created > 0);
6028 (*_bfd_error_handler)
6029 (_("new entry function(s) introduced but no output import library "
6031 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6034 if (cmse_stub_array_start != cmse_stub_sec_vma)
6036 (*_bfd_error_handler)
6037 (_("Start address of `%s' is different from previous link."),
6047 /* Determine and set the size of the stub section for a final link.
6049 The basic idea here is to examine all the relocations looking for
6050 PC-relative calls to a target that is unreachable with a "bl"
6054 elf32_arm_size_stubs (bfd *output_bfd,
6056 struct bfd_link_info *info,
6057 bfd_signed_vma group_size,
6058 asection * (*add_stub_section) (const char *, asection *,
6061 void (*layout_sections_again) (void))
6063 bfd_boolean ret = TRUE;
6064 obj_attribute *out_attr;
6065 int cmse_stub_created = 0;
6066 bfd_size_type stub_group_size;
6067 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6068 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6069 struct a8_erratum_fix *a8_fixes = NULL;
6070 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6071 struct a8_erratum_reloc *a8_relocs = NULL;
6072 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6077 if (htab->fix_cortex_a8)
6079 a8_fixes = (struct a8_erratum_fix *)
6080 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6081 a8_relocs = (struct a8_erratum_reloc *)
6082 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6085 /* Propagate mach to stub bfd, because it may not have been
6086 finalized when we created stub_bfd. */
6087 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6088 bfd_get_mach (output_bfd));
6090 /* Stash our params away. */
6091 htab->stub_bfd = stub_bfd;
6092 htab->add_stub_section = add_stub_section;
6093 htab->layout_sections_again = layout_sections_again;
6094 stubs_always_after_branch = group_size < 0;
6096 out_attr = elf_known_obj_attributes_proc (output_bfd);
6097 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6099 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6100 as the first half of a 32-bit branch straddling two 4K pages. This is a
6101 crude way of enforcing that. */
6102 if (htab->fix_cortex_a8)
6103 stubs_always_after_branch = 1;
6106 stub_group_size = -group_size;
6108 stub_group_size = group_size;
6110 if (stub_group_size == 1)
6112 /* Default values. */
6113 /* Thumb branch range is +-4MB has to be used as the default
6114 maximum size (a given section can contain both ARM and Thumb
6115 code, so the worst case has to be taken into account).
6117 This value is 24K less than that, which allows for 2025
6118 12-byte stubs. If we exceed that, then we will fail to link.
6119 The user will have to relink with an explicit group size
6121 stub_group_size = 4170000;
6124 group_sections (htab, stub_group_size, stubs_always_after_branch);
6126 /* If we're applying the cortex A8 fix, we need to determine the
6127 program header size now, because we cannot change it later --
6128 that could alter section placements. Notice the A8 erratum fix
6129 ends up requiring the section addresses to remain unchanged
6130 modulo the page size. That's something we cannot represent
6131 inside BFD, and we don't want to force the section alignment to
6132 be the page size. */
6133 if (htab->fix_cortex_a8)
6134 (*htab->layout_sections_again) ();
6139 unsigned int bfd_indx;
6141 enum elf32_arm_stub_type stub_type;
6142 bfd_boolean stub_changed = FALSE;
6143 unsigned prev_num_a8_fixes = num_a8_fixes;
6146 for (input_bfd = info->input_bfds, bfd_indx = 0;
6148 input_bfd = input_bfd->link.next, bfd_indx++)
6150 Elf_Internal_Shdr *symtab_hdr;
6152 Elf_Internal_Sym *local_syms = NULL;
6154 if (!is_arm_elf (input_bfd))
6159 /* We'll need the symbol table in a second. */
6160 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6161 if (symtab_hdr->sh_info == 0)
6164 /* Limit scan of symbols to object file whose profile is
6165 Microcontroller to not hinder performance in the general case. */
6166 if (m_profile && first_veneer_scan)
6168 struct elf_link_hash_entry **sym_hashes;
6170 sym_hashes = elf_sym_hashes (input_bfd);
6171 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6172 &cmse_stub_created))
6173 goto error_ret_free_local;
6175 if (cmse_stub_created != 0)
6176 stub_changed = TRUE;
6179 /* Walk over each section attached to the input bfd. */
6180 for (section = input_bfd->sections;
6182 section = section->next)
6184 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6186 /* If there aren't any relocs, then there's nothing more
6188 if ((section->flags & SEC_RELOC) == 0
6189 || section->reloc_count == 0
6190 || (section->flags & SEC_CODE) == 0)
6193 /* If this section is a link-once section that will be
6194 discarded, then don't create any stubs. */
6195 if (section->output_section == NULL
6196 || section->output_section->owner != output_bfd)
6199 /* Get the relocs. */
6201 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6202 NULL, info->keep_memory);
6203 if (internal_relocs == NULL)
6204 goto error_ret_free_local;
6206 /* Now examine each relocation. */
6207 irela = internal_relocs;
6208 irelaend = irela + section->reloc_count;
6209 for (; irela < irelaend; irela++)
6211 unsigned int r_type, r_indx;
6214 bfd_vma destination;
6215 struct elf32_arm_link_hash_entry *hash;
6216 const char *sym_name;
6217 unsigned char st_type;
6218 enum arm_st_branch_type branch_type;
6219 bfd_boolean created_stub = FALSE;
6221 r_type = ELF32_R_TYPE (irela->r_info);
6222 r_indx = ELF32_R_SYM (irela->r_info);
6224 if (r_type >= (unsigned int) R_ARM_max)
6226 bfd_set_error (bfd_error_bad_value);
6227 error_ret_free_internal:
6228 if (elf_section_data (section)->relocs == NULL)
6229 free (internal_relocs);
6231 error_ret_free_local:
6232 if (local_syms != NULL
6233 && (symtab_hdr->contents
6234 != (unsigned char *) local_syms))
6240 if (r_indx >= symtab_hdr->sh_info)
6241 hash = elf32_arm_hash_entry
6242 (elf_sym_hashes (input_bfd)
6243 [r_indx - symtab_hdr->sh_info]);
6245 /* Only look for stubs on branch instructions, or
6246 non-relaxed TLSCALL */
6247 if ((r_type != (unsigned int) R_ARM_CALL)
6248 && (r_type != (unsigned int) R_ARM_THM_CALL)
6249 && (r_type != (unsigned int) R_ARM_JUMP24)
6250 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6251 && (r_type != (unsigned int) R_ARM_THM_XPC22)
6252 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6253 && (r_type != (unsigned int) R_ARM_PLT32)
6254 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6255 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6256 && r_type == elf32_arm_tls_transition
6257 (info, r_type, &hash->root)
6258 && ((hash ? hash->tls_type
6259 : (elf32_arm_local_got_tls_type
6260 (input_bfd)[r_indx]))
6261 & GOT_TLS_GDESC) != 0))
6264 /* Now determine the call target, its name, value,
6271 if (r_type == (unsigned int) R_ARM_TLS_CALL
6272 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6274 /* A non-relaxed TLS call. The target is the
6275 plt-resident trampoline and nothing to do
6277 BFD_ASSERT (htab->tls_trampoline > 0);
6278 sym_sec = htab->root.splt;
6279 sym_value = htab->tls_trampoline;
6282 branch_type = ST_BRANCH_TO_ARM;
6286 /* It's a local symbol. */
6287 Elf_Internal_Sym *sym;
6289 if (local_syms == NULL)
6292 = (Elf_Internal_Sym *) symtab_hdr->contents;
6293 if (local_syms == NULL)
6295 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6296 symtab_hdr->sh_info, 0,
6298 if (local_syms == NULL)
6299 goto error_ret_free_internal;
6302 sym = local_syms + r_indx;
6303 if (sym->st_shndx == SHN_UNDEF)
6304 sym_sec = bfd_und_section_ptr;
6305 else if (sym->st_shndx == SHN_ABS)
6306 sym_sec = bfd_abs_section_ptr;
6307 else if (sym->st_shndx == SHN_COMMON)
6308 sym_sec = bfd_com_section_ptr;
6311 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6314 /* This is an undefined symbol. It can never
6318 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6319 sym_value = sym->st_value;
6320 destination = (sym_value + irela->r_addend
6321 + sym_sec->output_offset
6322 + sym_sec->output_section->vma);
6323 st_type = ELF_ST_TYPE (sym->st_info);
6325 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6327 = bfd_elf_string_from_elf_section (input_bfd,
6328 symtab_hdr->sh_link,
6333 /* It's an external symbol. */
6334 while (hash->root.root.type == bfd_link_hash_indirect
6335 || hash->root.root.type == bfd_link_hash_warning)
6336 hash = ((struct elf32_arm_link_hash_entry *)
6337 hash->root.root.u.i.link);
6339 if (hash->root.root.type == bfd_link_hash_defined
6340 || hash->root.root.type == bfd_link_hash_defweak)
6342 sym_sec = hash->root.root.u.def.section;
6343 sym_value = hash->root.root.u.def.value;
6345 struct elf32_arm_link_hash_table *globals =
6346 elf32_arm_hash_table (info);
6348 /* For a destination in a shared library,
6349 use the PLT stub as target address to
6350 decide whether a branch stub is
6353 && globals->root.splt != NULL
6355 && hash->root.plt.offset != (bfd_vma) -1)
6357 sym_sec = globals->root.splt;
6358 sym_value = hash->root.plt.offset;
6359 if (sym_sec->output_section != NULL)
6360 destination = (sym_value
6361 + sym_sec->output_offset
6362 + sym_sec->output_section->vma);
6364 else if (sym_sec->output_section != NULL)
6365 destination = (sym_value + irela->r_addend
6366 + sym_sec->output_offset
6367 + sym_sec->output_section->vma);
6369 else if ((hash->root.root.type == bfd_link_hash_undefined)
6370 || (hash->root.root.type == bfd_link_hash_undefweak))
6372 /* For a shared library, use the PLT stub as
6373 target address to decide whether a long
6374 branch stub is needed.
6375 For absolute code, they cannot be handled. */
6376 struct elf32_arm_link_hash_table *globals =
6377 elf32_arm_hash_table (info);
6380 && globals->root.splt != NULL
6382 && hash->root.plt.offset != (bfd_vma) -1)
6384 sym_sec = globals->root.splt;
6385 sym_value = hash->root.plt.offset;
6386 if (sym_sec->output_section != NULL)
6387 destination = (sym_value
6388 + sym_sec->output_offset
6389 + sym_sec->output_section->vma);
6396 bfd_set_error (bfd_error_bad_value);
6397 goto error_ret_free_internal;
6399 st_type = hash->root.type;
6401 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6402 sym_name = hash->root.root.root.string;
6407 bfd_boolean new_stub;
6408 struct elf32_arm_stub_hash_entry *stub_entry;
6410 /* Determine what (if any) linker stub is needed. */
6411 stub_type = arm_type_of_stub (info, section, irela,
6412 st_type, &branch_type,
6413 hash, destination, sym_sec,
6414 input_bfd, sym_name);
6415 if (stub_type == arm_stub_none)
6418 /* We've either created a stub for this reloc already,
6419 or we are about to. */
6421 elf32_arm_create_stub (htab, stub_type, section, irela,
6423 (char *) sym_name, sym_value,
6424 branch_type, &new_stub);
6426 created_stub = stub_entry != NULL;
6428 goto error_ret_free_internal;
6432 stub_changed = TRUE;
6436 /* Look for relocations which might trigger Cortex-A8
6438 if (htab->fix_cortex_a8
6439 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6440 || r_type == (unsigned int) R_ARM_THM_JUMP19
6441 || r_type == (unsigned int) R_ARM_THM_CALL
6442 || r_type == (unsigned int) R_ARM_THM_XPC22))
6444 bfd_vma from = section->output_section->vma
6445 + section->output_offset
6448 if ((from & 0xfff) == 0xffe)
6450 /* Found a candidate. Note we haven't checked the
6451 destination is within 4K here: if we do so (and
6452 don't create an entry in a8_relocs) we can't tell
6453 that a branch should have been relocated when
6455 if (num_a8_relocs == a8_reloc_table_size)
6457 a8_reloc_table_size *= 2;
6458 a8_relocs = (struct a8_erratum_reloc *)
6459 bfd_realloc (a8_relocs,
6460 sizeof (struct a8_erratum_reloc)
6461 * a8_reloc_table_size);
6464 a8_relocs[num_a8_relocs].from = from;
6465 a8_relocs[num_a8_relocs].destination = destination;
6466 a8_relocs[num_a8_relocs].r_type = r_type;
6467 a8_relocs[num_a8_relocs].branch_type = branch_type;
6468 a8_relocs[num_a8_relocs].sym_name = sym_name;
6469 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6470 a8_relocs[num_a8_relocs].hash = hash;
6477 /* We're done with the internal relocs, free them. */
6478 if (elf_section_data (section)->relocs == NULL)
6479 free (internal_relocs);
6482 if (htab->fix_cortex_a8)
6484 /* Sort relocs which might apply to Cortex-A8 erratum. */
6485 qsort (a8_relocs, num_a8_relocs,
6486 sizeof (struct a8_erratum_reloc),
6489 /* Scan for branches which might trigger Cortex-A8 erratum. */
6490 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6491 &num_a8_fixes, &a8_fix_table_size,
6492 a8_relocs, num_a8_relocs,
6493 prev_num_a8_fixes, &stub_changed)
6495 goto error_ret_free_local;
6498 if (local_syms != NULL
6499 && symtab_hdr->contents != (unsigned char *) local_syms)
6501 if (!info->keep_memory)
6504 symtab_hdr->contents = (unsigned char *) local_syms;
6508 if (first_veneer_scan
6509 && !set_cmse_veneer_addr_from_implib (info, htab,
6510 &cmse_stub_created))
6513 if (prev_num_a8_fixes != num_a8_fixes)
6514 stub_changed = TRUE;
6519 /* OK, we've added some stubs. Find out the new size of the
6521 for (stub_sec = htab->stub_bfd->sections;
6523 stub_sec = stub_sec->next)
6525 /* Ignore non-stub sections. */
6526 if (!strstr (stub_sec->name, STUB_SUFFIX))
6532 /* Add new SG veneers after those already in the input import
6534 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6537 bfd_vma *start_offset_p;
6538 asection **stub_sec_p;
6540 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6541 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6542 if (start_offset_p == NULL)
6545 BFD_ASSERT (stub_sec_p != NULL);
6546 if (*stub_sec_p != NULL)
6547 (*stub_sec_p)->size = *start_offset_p;
6550 /* Compute stub section size, considering padding. */
6551 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6552 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6556 asection **stub_sec_p;
6558 padding = arm_dedicated_stub_section_padding (stub_type);
6559 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6560 /* Skip if no stub input section or no stub section padding
6562 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6564 /* Stub section padding required but no dedicated section. */
6565 BFD_ASSERT (stub_sec_p);
6567 size = (*stub_sec_p)->size;
6568 size = (size + padding - 1) & ~(padding - 1);
6569 (*stub_sec_p)->size = size;
6572 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6573 if (htab->fix_cortex_a8)
6574 for (i = 0; i < num_a8_fixes; i++)
6576 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6577 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6579 if (stub_sec == NULL)
6583 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6588 /* Ask the linker to do its stuff. */
6589 (*htab->layout_sections_again) ();
6590 first_veneer_scan = FALSE;
6593 /* Add stubs for Cortex-A8 erratum fixes now. */
6594 if (htab->fix_cortex_a8)
6596 for (i = 0; i < num_a8_fixes; i++)
6598 struct elf32_arm_stub_hash_entry *stub_entry;
6599 char *stub_name = a8_fixes[i].stub_name;
6600 asection *section = a8_fixes[i].section;
6601 unsigned int section_id = a8_fixes[i].section->id;
6602 asection *link_sec = htab->stub_group[section_id].link_sec;
6603 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6604 const insn_sequence *template_sequence;
6605 int template_size, size = 0;
6607 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6609 if (stub_entry == NULL)
6611 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
6617 stub_entry->stub_sec = stub_sec;
6618 stub_entry->stub_offset = (bfd_vma) -1;
6619 stub_entry->id_sec = link_sec;
6620 stub_entry->stub_type = a8_fixes[i].stub_type;
6621 stub_entry->source_value = a8_fixes[i].offset;
6622 stub_entry->target_section = a8_fixes[i].section;
6623 stub_entry->target_value = a8_fixes[i].target_offset;
6624 stub_entry->orig_insn = a8_fixes[i].orig_insn;
6625 stub_entry->branch_type = a8_fixes[i].branch_type;
6627 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6631 stub_entry->stub_size = size;
6632 stub_entry->stub_template = template_sequence;
6633 stub_entry->stub_template_size = template_size;
6636 /* Stash the Cortex-A8 erratum fix array for use later in
6637 elf32_arm_write_section(). */
6638 htab->a8_erratum_fixes = a8_fixes;
6639 htab->num_a8_erratum_fixes = num_a8_fixes;
6643 htab->a8_erratum_fixes = NULL;
6644 htab->num_a8_erratum_fixes = 0;
6649 /* Build all the stubs associated with the current output file. The
6650 stubs are kept in a hash table attached to the main linker hash
6651 table. We also set up the .plt entries for statically linked PIC
6652 functions here. This function is called via arm_elf_finish in the
6656 elf32_arm_build_stubs (struct bfd_link_info *info)
6659 struct bfd_hash_table *table;
6660 enum elf32_arm_stub_type stub_type;
6661 struct elf32_arm_link_hash_table *htab;
6663 htab = elf32_arm_hash_table (info);
6667 for (stub_sec = htab->stub_bfd->sections;
6669 stub_sec = stub_sec->next)
6673 /* Ignore non-stub sections. */
6674 if (!strstr (stub_sec->name, STUB_SUFFIX))
6677 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
6678 must at least be done for stub section requiring padding and for SG
6679 veneers to ensure that a non secure code branching to a removed SG
6680 veneer causes an error. */
6681 size = stub_sec->size;
6682 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
6683 if (stub_sec->contents == NULL && size != 0)
6689 /* Add new SG veneers after those already in the input import library. */
6690 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
6692 bfd_vma *start_offset_p;
6693 asection **stub_sec_p;
6695 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6696 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6697 if (start_offset_p == NULL)
6700 BFD_ASSERT (stub_sec_p != NULL);
6701 if (*stub_sec_p != NULL)
6702 (*stub_sec_p)->size = *start_offset_p;
6705 /* Build the stubs as directed by the stub hash table. */
6706 table = &htab->stub_hash_table;
6707 bfd_hash_traverse (table, arm_build_one_stub, info);
6708 if (htab->fix_cortex_a8)
6710 /* Place the cortex a8 stubs last. */
6711 htab->fix_cortex_a8 = -1;
6712 bfd_hash_traverse (table, arm_build_one_stub, info);
6718 /* Locate the Thumb encoded calling stub for NAME. */
6720 static struct elf_link_hash_entry *
6721 find_thumb_glue (struct bfd_link_info *link_info,
6723 char **error_message)
6726 struct elf_link_hash_entry *hash;
6727 struct elf32_arm_link_hash_table *hash_table;
6729 /* We need a pointer to the armelf specific hash table. */
6730 hash_table = elf32_arm_hash_table (link_info);
6731 if (hash_table == NULL)
6734 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6735 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
6737 BFD_ASSERT (tmp_name);
6739 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
6741 hash = elf_link_hash_lookup
6742 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6745 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
6746 tmp_name, name) == -1)
6747 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6754 /* Locate the ARM encoded calling stub for NAME. */
6756 static struct elf_link_hash_entry *
6757 find_arm_glue (struct bfd_link_info *link_info,
6759 char **error_message)
6762 struct elf_link_hash_entry *myh;
6763 struct elf32_arm_link_hash_table *hash_table;
6765 /* We need a pointer to the elfarm specific hash table. */
6766 hash_table = elf32_arm_hash_table (link_info);
6767 if (hash_table == NULL)
6770 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6771 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6773 BFD_ASSERT (tmp_name);
6775 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6777 myh = elf_link_hash_lookup
6778 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6781 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
6782 tmp_name, name) == -1)
6783 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6790 /* ARM->Thumb glue (static images):
6794 ldr r12, __func_addr
6797 .word func @ behave as if you saw a ARM_32 reloc.
6804 .word func @ behave as if you saw a ARM_32 reloc.
6806 (relocatable images)
6809 ldr r12, __func_offset
6815 #define ARM2THUMB_STATIC_GLUE_SIZE 12
6816 static const insn32 a2t1_ldr_insn = 0xe59fc000;
6817 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
6818 static const insn32 a2t3_func_addr_insn = 0x00000001;
6820 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
6821 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
6822 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
6824 #define ARM2THUMB_PIC_GLUE_SIZE 16
6825 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
6826 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
6827 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
6829 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
6833 __func_from_thumb: __func_from_thumb:
6835 nop ldr r6, __func_addr
6845 #define THUMB2ARM_GLUE_SIZE 8
6846 static const insn16 t2a1_bx_pc_insn = 0x4778;
6847 static const insn16 t2a2_noop_insn = 0x46c0;
6848 static const insn32 t2a3_b_insn = 0xea000000;
6850 #define VFP11_ERRATUM_VENEER_SIZE 8
6851 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
6852 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
6854 #define ARM_BX_VENEER_SIZE 12
6855 static const insn32 armbx1_tst_insn = 0xe3100001;
6856 static const insn32 armbx2_moveq_insn = 0x01a0f000;
6857 static const insn32 armbx3_bx_insn = 0xe12fff10;
6859 #ifndef ELFARM_NABI_C_INCLUDED
6861 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
6864 bfd_byte * contents;
6868 /* Do not include empty glue sections in the output. */
6871 s = bfd_get_linker_section (abfd, name);
6873 s->flags |= SEC_EXCLUDE;
6878 BFD_ASSERT (abfd != NULL);
6880 s = bfd_get_linker_section (abfd, name);
6881 BFD_ASSERT (s != NULL);
6883 contents = (bfd_byte *) bfd_alloc (abfd, size);
6885 BFD_ASSERT (s->size == size);
6886 s->contents = contents;
6890 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
6892 struct elf32_arm_link_hash_table * globals;
6894 globals = elf32_arm_hash_table (info);
6895 BFD_ASSERT (globals != NULL);
6897 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6898 globals->arm_glue_size,
6899 ARM2THUMB_GLUE_SECTION_NAME);
6901 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6902 globals->thumb_glue_size,
6903 THUMB2ARM_GLUE_SECTION_NAME);
6905 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6906 globals->vfp11_erratum_glue_size,
6907 VFP11_ERRATUM_VENEER_SECTION_NAME);
6909 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6910 globals->stm32l4xx_erratum_glue_size,
6911 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6913 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6914 globals->bx_glue_size,
6915 ARM_BX_GLUE_SECTION_NAME);
6920 /* Allocate space and symbols for calling a Thumb function from Arm mode.
6921 returns the symbol identifying the stub. */
6923 static struct elf_link_hash_entry *
6924 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
6925 struct elf_link_hash_entry * h)
6927 const char * name = h->root.root.string;
6930 struct elf_link_hash_entry * myh;
6931 struct bfd_link_hash_entry * bh;
6932 struct elf32_arm_link_hash_table * globals;
6936 globals = elf32_arm_hash_table (link_info);
6937 BFD_ASSERT (globals != NULL);
6938 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6940 s = bfd_get_linker_section
6941 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
6943 BFD_ASSERT (s != NULL);
6945 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6946 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6948 BFD_ASSERT (tmp_name);
6950 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6952 myh = elf_link_hash_lookup
6953 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6957 /* We've already seen this guy. */
6962 /* The only trick here is using hash_table->arm_glue_size as the value.
6963 Even though the section isn't allocated yet, this is where we will be
6964 putting it. The +1 on the value marks that the stub has not been
6965 output yet - not that it is a Thumb function. */
6967 val = globals->arm_glue_size + 1;
6968 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
6969 tmp_name, BSF_GLOBAL, s, val,
6970 NULL, TRUE, FALSE, &bh);
6972 myh = (struct elf_link_hash_entry *) bh;
6973 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6974 myh->forced_local = 1;
6978 if (bfd_link_pic (link_info)
6979 || globals->root.is_relocatable_executable
6980 || globals->pic_veneer)
6981 size = ARM2THUMB_PIC_GLUE_SIZE;
6982 else if (globals->use_blx)
6983 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
6985 size = ARM2THUMB_STATIC_GLUE_SIZE;
6988 globals->arm_glue_size += size;
6993 /* Allocate space for ARMv4 BX veneers. */
6996 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
6999 struct elf32_arm_link_hash_table *globals;
7001 struct elf_link_hash_entry *myh;
7002 struct bfd_link_hash_entry *bh;
7005 /* BX PC does not need a veneer. */
7009 globals = elf32_arm_hash_table (link_info);
7010 BFD_ASSERT (globals != NULL);
7011 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7013 /* Check if this veneer has already been allocated. */
7014 if (globals->bx_glue_offset[reg])
7017 s = bfd_get_linker_section
7018 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7020 BFD_ASSERT (s != NULL);
7022 /* Add symbol for veneer. */
7024 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7026 BFD_ASSERT (tmp_name);
7028 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7030 myh = elf_link_hash_lookup
7031 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7033 BFD_ASSERT (myh == NULL);
7036 val = globals->bx_glue_size;
7037 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7038 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7039 NULL, TRUE, FALSE, &bh);
7041 myh = (struct elf_link_hash_entry *) bh;
7042 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7043 myh->forced_local = 1;
7045 s->size += ARM_BX_VENEER_SIZE;
7046 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7047 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7051 /* Add an entry to the code/data map for section SEC. */
7054 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7056 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7057 unsigned int newidx;
7059 if (sec_data->map == NULL)
7061 sec_data->map = (elf32_arm_section_map *)
7062 bfd_malloc (sizeof (elf32_arm_section_map));
7063 sec_data->mapcount = 0;
7064 sec_data->mapsize = 1;
7067 newidx = sec_data->mapcount++;
7069 if (sec_data->mapcount > sec_data->mapsize)
7071 sec_data->mapsize *= 2;
7072 sec_data->map = (elf32_arm_section_map *)
7073 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7074 * sizeof (elf32_arm_section_map));
7079 sec_data->map[newidx].vma = vma;
7080 sec_data->map[newidx].type = type;
7085 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7086 veneers are handled for now. */
7089 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7090 elf32_vfp11_erratum_list *branch,
7092 asection *branch_sec,
7093 unsigned int offset)
7096 struct elf32_arm_link_hash_table *hash_table;
7098 struct elf_link_hash_entry *myh;
7099 struct bfd_link_hash_entry *bh;
7101 struct _arm_elf_section_data *sec_data;
7102 elf32_vfp11_erratum_list *newerr;
7104 hash_table = elf32_arm_hash_table (link_info);
7105 BFD_ASSERT (hash_table != NULL);
7106 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7108 s = bfd_get_linker_section
7109 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7111 sec_data = elf32_arm_section_data (s);
7113 BFD_ASSERT (s != NULL);
7115 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7116 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7118 BFD_ASSERT (tmp_name);
7120 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7121 hash_table->num_vfp11_fixes);
7123 myh = elf_link_hash_lookup
7124 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7126 BFD_ASSERT (myh == NULL);
7129 val = hash_table->vfp11_erratum_glue_size;
7130 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7131 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7132 NULL, TRUE, FALSE, &bh);
7134 myh = (struct elf_link_hash_entry *) bh;
7135 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7136 myh->forced_local = 1;
7138 /* Link veneer back to calling location. */
7139 sec_data->erratumcount += 1;
7140 newerr = (elf32_vfp11_erratum_list *)
7141 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7143 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7145 newerr->u.v.branch = branch;
7146 newerr->u.v.id = hash_table->num_vfp11_fixes;
7147 branch->u.b.veneer = newerr;
7149 newerr->next = sec_data->erratumlist;
7150 sec_data->erratumlist = newerr;
7152 /* A symbol for the return from the veneer. */
7153 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7154 hash_table->num_vfp11_fixes);
7156 myh = elf_link_hash_lookup
7157 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7164 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7165 branch_sec, val, NULL, TRUE, FALSE, &bh);
7167 myh = (struct elf_link_hash_entry *) bh;
7168 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7169 myh->forced_local = 1;
7173 /* Generate a mapping symbol for the veneer section, and explicitly add an
7174 entry for that symbol to the code/data map for the section. */
7175 if (hash_table->vfp11_erratum_glue_size == 0)
7178 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7179 ever requires this erratum fix. */
7180 _bfd_generic_link_add_one_symbol (link_info,
7181 hash_table->bfd_of_glue_owner, "$a",
7182 BSF_LOCAL, s, 0, NULL,
7185 myh = (struct elf_link_hash_entry *) bh;
7186 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7187 myh->forced_local = 1;
7189 /* The elf32_arm_init_maps function only cares about symbols from input
7190 BFDs. We must make a note of this generated mapping symbol
7191 ourselves so that code byteswapping works properly in
7192 elf32_arm_write_section. */
7193 elf32_arm_section_map_add (s, 'a', 0);
7196 s->size += VFP11_ERRATUM_VENEER_SIZE;
7197 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7198 hash_table->num_vfp11_fixes++;
7200 /* The offset of the veneer. */
7204 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7205 veneers need to be handled because used only in Cortex-M. */
7208 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7209 elf32_stm32l4xx_erratum_list *branch,
7211 asection *branch_sec,
7212 unsigned int offset,
7213 bfd_size_type veneer_size)
7216 struct elf32_arm_link_hash_table *hash_table;
7218 struct elf_link_hash_entry *myh;
7219 struct bfd_link_hash_entry *bh;
7221 struct _arm_elf_section_data *sec_data;
7222 elf32_stm32l4xx_erratum_list *newerr;
7224 hash_table = elf32_arm_hash_table (link_info);
7225 BFD_ASSERT (hash_table != NULL);
7226 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7228 s = bfd_get_linker_section
7229 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7231 BFD_ASSERT (s != NULL);
7233 sec_data = elf32_arm_section_data (s);
7235 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7236 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7238 BFD_ASSERT (tmp_name);
7240 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7241 hash_table->num_stm32l4xx_fixes);
7243 myh = elf_link_hash_lookup
7244 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7246 BFD_ASSERT (myh == NULL);
7249 val = hash_table->stm32l4xx_erratum_glue_size;
7250 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7251 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7252 NULL, TRUE, FALSE, &bh);
7254 myh = (struct elf_link_hash_entry *) bh;
7255 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7256 myh->forced_local = 1;
7258 /* Link veneer back to calling location. */
7259 sec_data->stm32l4xx_erratumcount += 1;
7260 newerr = (elf32_stm32l4xx_erratum_list *)
7261 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7263 newerr->type = STM32L4XX_ERRATUM_VENEER;
7265 newerr->u.v.branch = branch;
7266 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7267 branch->u.b.veneer = newerr;
7269 newerr->next = sec_data->stm32l4xx_erratumlist;
7270 sec_data->stm32l4xx_erratumlist = newerr;
7272 /* A symbol for the return from the veneer. */
7273 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7274 hash_table->num_stm32l4xx_fixes);
7276 myh = elf_link_hash_lookup
7277 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7284 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7285 branch_sec, val, NULL, TRUE, FALSE, &bh);
7287 myh = (struct elf_link_hash_entry *) bh;
7288 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7289 myh->forced_local = 1;
7293 /* Generate a mapping symbol for the veneer section, and explicitly add an
7294 entry for that symbol to the code/data map for the section. */
7295 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7298 /* Creates a THUMB symbol since there is no other choice. */
7299 _bfd_generic_link_add_one_symbol (link_info,
7300 hash_table->bfd_of_glue_owner, "$t",
7301 BSF_LOCAL, s, 0, NULL,
7304 myh = (struct elf_link_hash_entry *) bh;
7305 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7306 myh->forced_local = 1;
7308 /* The elf32_arm_init_maps function only cares about symbols from input
7309 BFDs. We must make a note of this generated mapping symbol
7310 ourselves so that code byteswapping works properly in
7311 elf32_arm_write_section. */
7312 elf32_arm_section_map_add (s, 't', 0);
7315 s->size += veneer_size;
7316 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7317 hash_table->num_stm32l4xx_fixes++;
7319 /* The offset of the veneer. */
7323 #define ARM_GLUE_SECTION_FLAGS \
7324 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7325 | SEC_READONLY | SEC_LINKER_CREATED)
7327 /* Create a fake section for use by the ARM backend of the linker. */
7330 arm_make_glue_section (bfd * abfd, const char * name)
7334 sec = bfd_get_linker_section (abfd, name);
7339 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7342 || !bfd_set_section_alignment (abfd, sec, 2))
7345 /* Set the gc mark to prevent the section from being removed by garbage
7346 collection, despite the fact that no relocs refer to this section. */
7352 /* Set size of .plt entries. This function is called from the
7353 linker scripts in ld/emultempl/{armelf}.em. */
7356 bfd_elf32_arm_use_long_plt (void)
7358 elf32_arm_use_long_plt_entry = TRUE;
7361 /* Add the glue sections to ABFD. This function is called from the
7362 linker scripts in ld/emultempl/{armelf}.em. */
7365 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7366 struct bfd_link_info *info)
7368 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7369 bfd_boolean dostm32l4xx = globals
7370 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7371 bfd_boolean addglue;
7373 /* If we are only performing a partial
7374 link do not bother adding the glue. */
7375 if (bfd_link_relocatable (info))
7378 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7379 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7380 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7381 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7387 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7390 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7391 ensures they are not marked for deletion by
7392 strip_excluded_output_sections () when veneers are going to be created
7393 later. Not doing so would trigger assert on empty section size in
7394 lang_size_sections_1 (). */
7397 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7399 enum elf32_arm_stub_type stub_type;
7401 /* If we are only performing a partial
7402 link do not bother adding the glue. */
7403 if (bfd_link_relocatable (info))
7406 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7409 const char *out_sec_name;
7411 if (!arm_dedicated_stub_output_section_required (stub_type))
7414 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7415 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7416 if (out_sec != NULL)
7417 out_sec->flags |= SEC_KEEP;
7421 /* Select a BFD to be used to hold the sections used by the glue code.
7422 This function is called from the linker scripts in ld/emultempl/
7426 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7428 struct elf32_arm_link_hash_table *globals;
7430 /* If we are only performing a partial link
7431 do not bother getting a bfd to hold the glue. */
7432 if (bfd_link_relocatable (info))
7435 /* Make sure we don't attach the glue sections to a dynamic object. */
7436 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7438 globals = elf32_arm_hash_table (info);
7439 BFD_ASSERT (globals != NULL);
7441 if (globals->bfd_of_glue_owner != NULL)
7444 /* Save the bfd for later use. */
7445 globals->bfd_of_glue_owner = abfd;
7451 check_use_blx (struct elf32_arm_link_hash_table *globals)
7455 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7458 if (globals->fix_arm1176)
7460 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7461 globals->use_blx = 1;
7465 if (cpu_arch > TAG_CPU_ARCH_V4T)
7466 globals->use_blx = 1;
7471 bfd_elf32_arm_process_before_allocation (bfd *abfd,
7472 struct bfd_link_info *link_info)
7474 Elf_Internal_Shdr *symtab_hdr;
7475 Elf_Internal_Rela *internal_relocs = NULL;
7476 Elf_Internal_Rela *irel, *irelend;
7477 bfd_byte *contents = NULL;
7480 struct elf32_arm_link_hash_table *globals;
7482 /* If we are only performing a partial link do not bother
7483 to construct any glue. */
7484 if (bfd_link_relocatable (link_info))
7487 /* Here we have a bfd that is to be included on the link. We have a
7488 hook to do reloc rummaging, before section sizes are nailed down. */
7489 globals = elf32_arm_hash_table (link_info);
7490 BFD_ASSERT (globals != NULL);
7492 check_use_blx (globals);
7494 if (globals->byteswap_code && !bfd_big_endian (abfd))
7496 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
7501 /* PR 5398: If we have not decided to include any loadable sections in
7502 the output then we will not have a glue owner bfd. This is OK, it
7503 just means that there is nothing else for us to do here. */
7504 if (globals->bfd_of_glue_owner == NULL)
7507 /* Rummage around all the relocs and map the glue vectors. */
7508 sec = abfd->sections;
7513 for (; sec != NULL; sec = sec->next)
7515 if (sec->reloc_count == 0)
7518 if ((sec->flags & SEC_EXCLUDE) != 0)
7521 symtab_hdr = & elf_symtab_hdr (abfd);
7523 /* Load the relocs. */
7525 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7527 if (internal_relocs == NULL)
7530 irelend = internal_relocs + sec->reloc_count;
7531 for (irel = internal_relocs; irel < irelend; irel++)
7534 unsigned long r_index;
7536 struct elf_link_hash_entry *h;
7538 r_type = ELF32_R_TYPE (irel->r_info);
7539 r_index = ELF32_R_SYM (irel->r_info);
7541 /* These are the only relocation types we care about. */
7542 if ( r_type != R_ARM_PC24
7543 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7546 /* Get the section contents if we haven't done so already. */
7547 if (contents == NULL)
7549 /* Get cached copy if it exists. */
7550 if (elf_section_data (sec)->this_hdr.contents != NULL)
7551 contents = elf_section_data (sec)->this_hdr.contents;
7554 /* Go get them off disk. */
7555 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7560 if (r_type == R_ARM_V4BX)
7564 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7565 record_arm_bx_glue (link_info, reg);
7569 /* If the relocation is not against a symbol it cannot concern us. */
7572 /* We don't care about local symbols. */
7573 if (r_index < symtab_hdr->sh_info)
7576 /* This is an external symbol. */
7577 r_index -= symtab_hdr->sh_info;
7578 h = (struct elf_link_hash_entry *)
7579 elf_sym_hashes (abfd)[r_index];
7581 /* If the relocation is against a static symbol it must be within
7582 the current section and so cannot be a cross ARM/Thumb relocation. */
7586 /* If the call will go through a PLT entry then we do not need
7588 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7594 /* This one is a call from arm code. We need to look up
7595 the target of the call. If it is a thumb target, we
7597 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7598 == ST_BRANCH_TO_THUMB)
7599 record_arm_to_thumb_glue (link_info, h);
7607 if (contents != NULL
7608 && elf_section_data (sec)->this_hdr.contents != contents)
7612 if (internal_relocs != NULL
7613 && elf_section_data (sec)->relocs != internal_relocs)
7614 free (internal_relocs);
7615 internal_relocs = NULL;
7621 if (contents != NULL
7622 && elf_section_data (sec)->this_hdr.contents != contents)
7624 if (internal_relocs != NULL
7625 && elf_section_data (sec)->relocs != internal_relocs)
7626 free (internal_relocs);
7633 /* Initialise maps of ARM/Thumb/data for input BFDs. */
7636 bfd_elf32_arm_init_maps (bfd *abfd)
7638 Elf_Internal_Sym *isymbuf;
7639 Elf_Internal_Shdr *hdr;
7640 unsigned int i, localsyms;
7642 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7643 if (! is_arm_elf (abfd))
7646 if ((abfd->flags & DYNAMIC) != 0)
7649 hdr = & elf_symtab_hdr (abfd);
7650 localsyms = hdr->sh_info;
7652 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7653 should contain the number of local symbols, which should come before any
7654 global symbols. Mapping symbols are always local. */
7655 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7658 /* No internal symbols read? Skip this BFD. */
7659 if (isymbuf == NULL)
7662 for (i = 0; i < localsyms; i++)
7664 Elf_Internal_Sym *isym = &isymbuf[i];
7665 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
7669 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
7671 name = bfd_elf_string_from_elf_section (abfd,
7672 hdr->sh_link, isym->st_name);
7674 if (bfd_is_arm_special_symbol_name (name,
7675 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
7676 elf32_arm_section_map_add (sec, name[1], isym->st_value);
7682 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
7683 say what they wanted. */
7686 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
7688 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7689 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7691 if (globals == NULL)
7694 if (globals->fix_cortex_a8 == -1)
7696 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
7697 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
7698 && (out_attr[Tag_CPU_arch_profile].i == 'A'
7699 || out_attr[Tag_CPU_arch_profile].i == 0))
7700 globals->fix_cortex_a8 = 1;
7702 globals->fix_cortex_a8 = 0;
7708 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
7710 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7711 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7713 if (globals == NULL)
7715 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
7716 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
7718 switch (globals->vfp11_fix)
7720 case BFD_ARM_VFP11_FIX_DEFAULT:
7721 case BFD_ARM_VFP11_FIX_NONE:
7722 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7726 /* Give a warning, but do as the user requests anyway. */
7727 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
7728 "workaround is not necessary for target architecture"), obfd);
7731 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
7732 /* For earlier architectures, we might need the workaround, but do not
7733 enable it by default. If users is running with broken hardware, they
7734 must enable the erratum fix explicitly. */
7735 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7739 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
7741 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7742 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7744 if (globals == NULL)
7747 /* We assume only Cortex-M4 may require the fix. */
7748 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
7749 || out_attr[Tag_CPU_arch_profile].i != 'M')
7751 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
7752 /* Give a warning, but do as the user requests anyway. */
7753 (*_bfd_error_handler)
7754 (_("%B: warning: selected STM32L4XX erratum "
7755 "workaround is not necessary for target architecture"), obfd);
7759 enum bfd_arm_vfp11_pipe
7767 /* Return a VFP register number. This is encoded as RX:X for single-precision
7768 registers, or X:RX for double-precision registers, where RX is the group of
7769 four bits in the instruction encoding and X is the single extension bit.
7770 RX and X fields are specified using their lowest (starting) bit. The return
7773 0...31: single-precision registers s0...s31
7774 32...63: double-precision registers d0...d31.
7776 Although X should be zero for VFP11 (encoding d0...d15 only), we might
7777 encounter VFP3 instructions, so we allow the full range for DP registers. */
7780 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
7784 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
7786 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
7789 /* Set bits in *WMASK according to a register number REG as encoded by
7790 bfd_arm_vfp11_regno(). Ignore d16-d31. */
7793 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
7798 *wmask |= 3 << ((reg - 32) * 2);
7801 /* Return TRUE if WMASK overwrites anything in REGS. */
7804 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
7808 for (i = 0; i < numregs; i++)
7810 unsigned int reg = regs[i];
7812 if (reg < 32 && (wmask & (1 << reg)) != 0)
7820 if ((wmask & (3 << (reg * 2))) != 0)
7827 /* In this function, we're interested in two things: finding input registers
7828 for VFP data-processing instructions, and finding the set of registers which
7829 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
7830 hold the written set, so FLDM etc. are easy to deal with (we're only
7831 interested in 32 SP registers or 16 dp registers, due to the VFP version
7832 implemented by the chip in question). DP registers are marked by setting
7833 both SP registers in the write mask). */
7835 static enum bfd_arm_vfp11_pipe
7836 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
7839 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
7840 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
7842 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
7845 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7846 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7848 pqrs = ((insn & 0x00800000) >> 20)
7849 | ((insn & 0x00300000) >> 19)
7850 | ((insn & 0x00000040) >> 6);
7854 case 0: /* fmac[sd]. */
7855 case 1: /* fnmac[sd]. */
7856 case 2: /* fmsc[sd]. */
7857 case 3: /* fnmsc[sd]. */
7859 bfd_arm_vfp11_write_mask (destmask, fd);
7861 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7866 case 4: /* fmul[sd]. */
7867 case 5: /* fnmul[sd]. */
7868 case 6: /* fadd[sd]. */
7869 case 7: /* fsub[sd]. */
7873 case 8: /* fdiv[sd]. */
7876 bfd_arm_vfp11_write_mask (destmask, fd);
7877 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7882 case 15: /* extended opcode. */
7884 unsigned int extn = ((insn >> 15) & 0x1e)
7885 | ((insn >> 7) & 1);
7889 case 0: /* fcpy[sd]. */
7890 case 1: /* fabs[sd]. */
7891 case 2: /* fneg[sd]. */
7892 case 8: /* fcmp[sd]. */
7893 case 9: /* fcmpe[sd]. */
7894 case 10: /* fcmpz[sd]. */
7895 case 11: /* fcmpez[sd]. */
7896 case 16: /* fuito[sd]. */
7897 case 17: /* fsito[sd]. */
7898 case 24: /* ftoui[sd]. */
7899 case 25: /* ftouiz[sd]. */
7900 case 26: /* ftosi[sd]. */
7901 case 27: /* ftosiz[sd]. */
7902 /* These instructions will not bounce due to underflow. */
7907 case 3: /* fsqrt[sd]. */
7908 /* fsqrt cannot underflow, but it can (perhaps) overwrite
7909 registers to cause the erratum in previous instructions. */
7910 bfd_arm_vfp11_write_mask (destmask, fd);
7914 case 15: /* fcvt{ds,sd}. */
7918 bfd_arm_vfp11_write_mask (destmask, fd);
7920 /* Only FCVTSD can underflow. */
7921 if ((insn & 0x100) != 0)
7940 /* Two-register transfer. */
7941 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
7943 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7945 if ((insn & 0x100000) == 0)
7948 bfd_arm_vfp11_write_mask (destmask, fm);
7951 bfd_arm_vfp11_write_mask (destmask, fm);
7952 bfd_arm_vfp11_write_mask (destmask, fm + 1);
7958 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
7960 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7961 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
7965 case 0: /* Two-reg transfer. We should catch these above. */
7968 case 2: /* fldm[sdx]. */
7972 unsigned int i, offset = insn & 0xff;
7977 for (i = fd; i < fd + offset; i++)
7978 bfd_arm_vfp11_write_mask (destmask, i);
7982 case 4: /* fld[sd]. */
7984 bfd_arm_vfp11_write_mask (destmask, fd);
7993 /* Single-register transfer. Note L==0. */
7994 else if ((insn & 0x0f100e10) == 0x0e000a10)
7996 unsigned int opcode = (insn >> 21) & 7;
7997 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8001 case 0: /* fmsr/fmdlr. */
8002 case 1: /* fmdhr. */
8003 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8004 destination register. I don't know if this is exactly right,
8005 but it is the conservative choice. */
8006 bfd_arm_vfp11_write_mask (destmask, fn);
8020 static int elf32_arm_compare_mapping (const void * a, const void * b);
8023 /* Look for potentially-troublesome code sequences which might trigger the
8024 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8025 (available from ARM) for details of the erratum. A short version is
8026 described in ld.texinfo. */
8029 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8032 bfd_byte *contents = NULL;
8034 int regs[3], numregs = 0;
8035 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8036 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8038 if (globals == NULL)
8041 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8042 The states transition as follows:
8044 0 -> 1 (vector) or 0 -> 2 (scalar)
8045 A VFP FMAC-pipeline instruction has been seen. Fill
8046 regs[0]..regs[numregs-1] with its input operands. Remember this
8047 instruction in 'first_fmac'.
8050 Any instruction, except for a VFP instruction which overwrites
8055 A VFP instruction has been seen which overwrites any of regs[*].
8056 We must make a veneer! Reset state to 0 before examining next
8060 If we fail to match anything in state 2, reset to state 0 and reset
8061 the instruction pointer to the instruction after 'first_fmac'.
8063 If the VFP11 vector mode is in use, there must be at least two unrelated
8064 instructions between anti-dependent VFP11 instructions to properly avoid
8065 triggering the erratum, hence the use of the extra state 1. */
8067 /* If we are only performing a partial link do not bother
8068 to construct any glue. */
8069 if (bfd_link_relocatable (link_info))
8072 /* Skip if this bfd does not correspond to an ELF image. */
8073 if (! is_arm_elf (abfd))
8076 /* We should have chosen a fix type by the time we get here. */
8077 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8079 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8082 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8083 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8086 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8088 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8089 struct _arm_elf_section_data *sec_data;
8091 /* If we don't have executable progbits, we're not interested in this
8092 section. Also skip if section is to be excluded. */
8093 if (elf_section_type (sec) != SHT_PROGBITS
8094 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8095 || (sec->flags & SEC_EXCLUDE) != 0
8096 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8097 || sec->output_section == bfd_abs_section_ptr
8098 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8101 sec_data = elf32_arm_section_data (sec);
8103 if (sec_data->mapcount == 0)
8106 if (elf_section_data (sec)->this_hdr.contents != NULL)
8107 contents = elf_section_data (sec)->this_hdr.contents;
8108 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8111 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8112 elf32_arm_compare_mapping);
8114 for (span = 0; span < sec_data->mapcount; span++)
8116 unsigned int span_start = sec_data->map[span].vma;
8117 unsigned int span_end = (span == sec_data->mapcount - 1)
8118 ? sec->size : sec_data->map[span + 1].vma;
8119 char span_type = sec_data->map[span].type;
8121 /* FIXME: Only ARM mode is supported at present. We may need to
8122 support Thumb-2 mode also at some point. */
8123 if (span_type != 'a')
8126 for (i = span_start; i < span_end;)
8128 unsigned int next_i = i + 4;
8129 unsigned int insn = bfd_big_endian (abfd)
8130 ? (contents[i] << 24)
8131 | (contents[i + 1] << 16)
8132 | (contents[i + 2] << 8)
8134 : (contents[i + 3] << 24)
8135 | (contents[i + 2] << 16)
8136 | (contents[i + 1] << 8)
8138 unsigned int writemask = 0;
8139 enum bfd_arm_vfp11_pipe vpipe;
8144 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8146 /* I'm assuming the VFP11 erratum can trigger with denorm
8147 operands on either the FMAC or the DS pipeline. This might
8148 lead to slightly overenthusiastic veneer insertion. */
8149 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8151 state = use_vector ? 1 : 2;
8153 veneer_of_insn = insn;
8159 int other_regs[3], other_numregs;
8160 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8163 if (vpipe != VFP11_BAD
8164 && bfd_arm_vfp11_antidependency (writemask, regs,
8174 int other_regs[3], other_numregs;
8175 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8178 if (vpipe != VFP11_BAD
8179 && bfd_arm_vfp11_antidependency (writemask, regs,
8185 next_i = first_fmac + 4;
8191 abort (); /* Should be unreachable. */
8196 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8197 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8199 elf32_arm_section_data (sec)->erratumcount += 1;
8201 newerr->u.b.vfp_insn = veneer_of_insn;
8206 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8213 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8218 newerr->next = sec_data->erratumlist;
8219 sec_data->erratumlist = newerr;
8228 if (contents != NULL
8229 && elf_section_data (sec)->this_hdr.contents != contents)
8237 if (contents != NULL
8238 && elf_section_data (sec)->this_hdr.contents != contents)
8244 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8245 after sections have been laid out, using specially-named symbols. */
8248 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8249 struct bfd_link_info *link_info)
8252 struct elf32_arm_link_hash_table *globals;
8255 if (bfd_link_relocatable (link_info))
8258 /* Skip if this bfd does not correspond to an ELF image. */
8259 if (! is_arm_elf (abfd))
8262 globals = elf32_arm_hash_table (link_info);
8263 if (globals == NULL)
8266 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8267 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8269 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8271 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8272 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8274 for (; errnode != NULL; errnode = errnode->next)
8276 struct elf_link_hash_entry *myh;
8279 switch (errnode->type)
8281 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8282 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8283 /* Find veneer symbol. */
8284 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8285 errnode->u.b.veneer->u.v.id);
8287 myh = elf_link_hash_lookup
8288 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8291 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
8292 "`%s'"), abfd, tmp_name);
8294 vma = myh->root.u.def.section->output_section->vma
8295 + myh->root.u.def.section->output_offset
8296 + myh->root.u.def.value;
8298 errnode->u.b.veneer->vma = vma;
8301 case VFP11_ERRATUM_ARM_VENEER:
8302 case VFP11_ERRATUM_THUMB_VENEER:
8303 /* Find return location. */
8304 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8307 myh = elf_link_hash_lookup
8308 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8311 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
8312 "`%s'"), abfd, tmp_name);
8314 vma = myh->root.u.def.section->output_section->vma
8315 + myh->root.u.def.section->output_offset
8316 + myh->root.u.def.value;
8318 errnode->u.v.branch->vma = vma;
8330 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8331 return locations after sections have been laid out, using
8332 specially-named symbols. */
8335 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8336 struct bfd_link_info *link_info)
8339 struct elf32_arm_link_hash_table *globals;
8342 if (bfd_link_relocatable (link_info))
8345 /* Skip if this bfd does not correspond to an ELF image. */
8346 if (! is_arm_elf (abfd))
8349 globals = elf32_arm_hash_table (link_info);
8350 if (globals == NULL)
8353 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8354 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8356 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8358 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8359 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8361 for (; errnode != NULL; errnode = errnode->next)
8363 struct elf_link_hash_entry *myh;
8366 switch (errnode->type)
8368 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8369 /* Find veneer symbol. */
8370 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8371 errnode->u.b.veneer->u.v.id);
8373 myh = elf_link_hash_lookup
8374 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8377 (*_bfd_error_handler) (_("%B: unable to find STM32L4XX veneer "
8378 "`%s'"), abfd, tmp_name);
8380 vma = myh->root.u.def.section->output_section->vma
8381 + myh->root.u.def.section->output_offset
8382 + myh->root.u.def.value;
8384 errnode->u.b.veneer->vma = vma;
8387 case STM32L4XX_ERRATUM_VENEER:
8388 /* Find return location. */
8389 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8392 myh = elf_link_hash_lookup
8393 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8396 (*_bfd_error_handler) (_("%B: unable to find STM32L4XX veneer "
8397 "`%s'"), abfd, tmp_name);
8399 vma = myh->root.u.def.section->output_section->vma
8400 + myh->root.u.def.section->output_offset
8401 + myh->root.u.def.value;
8403 errnode->u.v.branch->vma = vma;
8415 static inline bfd_boolean
8416 is_thumb2_ldmia (const insn32 insn)
8418 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8419 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8420 return (insn & 0xffd02000) == 0xe8900000;
8423 static inline bfd_boolean
8424 is_thumb2_ldmdb (const insn32 insn)
8426 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8427 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8428 return (insn & 0xffd02000) == 0xe9100000;
8431 static inline bfd_boolean
8432 is_thumb2_vldm (const insn32 insn)
8434 /* A6.5 Extension register load or store instruction
8436 We look for SP 32-bit and DP 64-bit registers.
8437 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8438 <list> is consecutive 64-bit registers
8439 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8440 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8441 <list> is consecutive 32-bit registers
8442 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8443 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8444 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8446 (((insn & 0xfe100f00) == 0xec100b00) ||
8447 ((insn & 0xfe100f00) == 0xec100a00))
8448 && /* (IA without !). */
8449 (((((insn << 7) >> 28) & 0xd) == 0x4)
8450 /* (IA with !), includes VPOP (when reg number is SP). */
8451 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8453 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8456 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8458 - computes the number and the mode of memory accesses
8459 - decides if the replacement should be done:
8460 . replaces only if > 8-word accesses
8461 . or (testing purposes only) replaces all accesses. */
8464 stm32l4xx_need_create_replacing_stub (const insn32 insn,
8465 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8469 /* The field encoding the register list is the same for both LDMIA
8470 and LDMDB encodings. */
8471 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8472 nb_words = popcount (insn & 0x0000ffff);
8473 else if (is_thumb2_vldm (insn))
8474 nb_words = (insn & 0xff);
8476 /* DEFAULT mode accounts for the real bug condition situation,
8477 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8479 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8480 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8483 /* Look for potentially-troublesome code sequences which might trigger
8484 the STM STM32L4XX erratum. */
8487 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8488 struct bfd_link_info *link_info)
8491 bfd_byte *contents = NULL;
8492 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8494 if (globals == NULL)
8497 /* If we are only performing a partial link do not bother
8498 to construct any glue. */
8499 if (bfd_link_relocatable (link_info))
8502 /* Skip if this bfd does not correspond to an ELF image. */
8503 if (! is_arm_elf (abfd))
8506 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8509 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8510 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8513 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8515 unsigned int i, span;
8516 struct _arm_elf_section_data *sec_data;
8518 /* If we don't have executable progbits, we're not interested in this
8519 section. Also skip if section is to be excluded. */
8520 if (elf_section_type (sec) != SHT_PROGBITS
8521 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8522 || (sec->flags & SEC_EXCLUDE) != 0
8523 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8524 || sec->output_section == bfd_abs_section_ptr
8525 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8528 sec_data = elf32_arm_section_data (sec);
8530 if (sec_data->mapcount == 0)
8533 if (elf_section_data (sec)->this_hdr.contents != NULL)
8534 contents = elf_section_data (sec)->this_hdr.contents;
8535 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8538 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8539 elf32_arm_compare_mapping);
8541 for (span = 0; span < sec_data->mapcount; span++)
8543 unsigned int span_start = sec_data->map[span].vma;
8544 unsigned int span_end = (span == sec_data->mapcount - 1)
8545 ? sec->size : sec_data->map[span + 1].vma;
8546 char span_type = sec_data->map[span].type;
8547 int itblock_current_pos = 0;
8549 /* Only Thumb2 mode need be supported with this CM4 specific
8550 code, we should not encounter any arm mode eg span_type
8552 if (span_type != 't')
8555 for (i = span_start; i < span_end;)
8557 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8558 bfd_boolean insn_32bit = FALSE;
8559 bfd_boolean is_ldm = FALSE;
8560 bfd_boolean is_vldm = FALSE;
8561 bfd_boolean is_not_last_in_it_block = FALSE;
8563 /* The first 16-bits of all 32-bit thumb2 instructions start
8564 with opcode[15..13]=0b111 and the encoded op1 can be anything
8565 except opcode[12..11]!=0b00.
8566 See 32-bit Thumb instruction encoding. */
8567 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8570 /* Compute the predicate that tells if the instruction
8571 is concerned by the IT block
8572 - Creates an error if there is a ldm that is not
8573 last in the IT block thus cannot be replaced
8574 - Otherwise we can create a branch at the end of the
8575 IT block, it will be controlled naturally by IT
8576 with the proper pseudo-predicate
8577 - So the only interesting predicate is the one that
8578 tells that we are not on the last item of an IT
8580 if (itblock_current_pos != 0)
8581 is_not_last_in_it_block = !!--itblock_current_pos;
8585 /* Load the rest of the insn (in manual-friendly order). */
8586 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8587 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8588 is_vldm = is_thumb2_vldm (insn);
8590 /* Veneers are created for (v)ldm depending on
8591 option flags and memory accesses conditions; but
8592 if the instruction is not the last instruction of
8593 an IT block, we cannot create a jump there, so we
8595 if ((is_ldm || is_vldm)
8596 && stm32l4xx_need_create_replacing_stub
8597 (insn, globals->stm32l4xx_fix))
8599 if (is_not_last_in_it_block)
8601 (*_bfd_error_handler)
8602 /* Note - overlong line used here to allow for translation. */
8604 %B(%A+0x%lx): error: multiple load detected in non-last IT block instruction : STM32L4XX veneer cannot be generated.\n"
8605 "Use gcc option -mrestrict-it to generate only one instruction per IT block.\n"),
8606 abfd, sec, (long)i);
8610 elf32_stm32l4xx_erratum_list *newerr =
8611 (elf32_stm32l4xx_erratum_list *)
8613 (sizeof (elf32_stm32l4xx_erratum_list));
8615 elf32_arm_section_data (sec)
8616 ->stm32l4xx_erratumcount += 1;
8617 newerr->u.b.insn = insn;
8618 /* We create only thumb branches. */
8620 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8621 record_stm32l4xx_erratum_veneer
8622 (link_info, newerr, abfd, sec,
8625 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8626 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8628 newerr->next = sec_data->stm32l4xx_erratumlist;
8629 sec_data->stm32l4xx_erratumlist = newerr;
8636 IT blocks are only encoded in T1
8637 Encoding T1: IT{x{y{z}}} <firstcond>
8638 1 0 1 1 - 1 1 1 1 - firstcond - mask
8639 if mask = '0000' then see 'related encodings'
8640 We don't deal with UNPREDICTABLE, just ignore these.
8641 There can be no nested IT blocks so an IT block
8642 is naturally a new one for which it is worth
8643 computing its size. */
8644 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
8645 && ((insn & 0x000f) != 0x0000);
8646 /* If we have a new IT block we compute its size. */
8649 /* Compute the number of instructions controlled
8650 by the IT block, it will be used to decide
8651 whether we are inside an IT block or not. */
8652 unsigned int mask = insn & 0x000f;
8653 itblock_current_pos = 4 - ctz (mask);
8657 i += insn_32bit ? 4 : 2;
8661 if (contents != NULL
8662 && elf_section_data (sec)->this_hdr.contents != contents)
8670 if (contents != NULL
8671 && elf_section_data (sec)->this_hdr.contents != contents)
8677 /* Set target relocation values needed during linking. */
8680 bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
8681 struct bfd_link_info *link_info,
8682 struct elf32_arm_params *params)
8684 struct elf32_arm_link_hash_table *globals;
8686 globals = elf32_arm_hash_table (link_info);
8687 if (globals == NULL)
8690 globals->target1_is_rel = params->target1_is_rel;
8691 if (strcmp (params->target2_type, "rel") == 0)
8692 globals->target2_reloc = R_ARM_REL32;
8693 else if (strcmp (params->target2_type, "abs") == 0)
8694 globals->target2_reloc = R_ARM_ABS32;
8695 else if (strcmp (params->target2_type, "got-rel") == 0)
8696 globals->target2_reloc = R_ARM_GOT_PREL;
8699 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
8700 params->target2_type);
8702 globals->fix_v4bx = params->fix_v4bx;
8703 globals->use_blx |= params->use_blx;
8704 globals->vfp11_fix = params->vfp11_denorm_fix;
8705 globals->stm32l4xx_fix = params->stm32l4xx_fix;
8706 globals->pic_veneer = params->pic_veneer;
8707 globals->fix_cortex_a8 = params->fix_cortex_a8;
8708 globals->fix_arm1176 = params->fix_arm1176;
8709 globals->cmse_implib = params->cmse_implib;
8710 globals->in_implib_bfd = params->in_implib_bfd;
8712 BFD_ASSERT (is_arm_elf (output_bfd));
8713 elf_arm_tdata (output_bfd)->no_enum_size_warning
8714 = params->no_enum_size_warning;
8715 elf_arm_tdata (output_bfd)->no_wchar_size_warning
8716 = params->no_wchar_size_warning;
8719 /* Replace the target offset of a Thumb bl or b.w instruction. */
8722 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
8728 BFD_ASSERT ((offset & 1) == 0);
8730 upper = bfd_get_16 (abfd, insn);
8731 lower = bfd_get_16 (abfd, insn + 2);
8732 reloc_sign = (offset < 0) ? 1 : 0;
8733 upper = (upper & ~(bfd_vma) 0x7ff)
8734 | ((offset >> 12) & 0x3ff)
8735 | (reloc_sign << 10);
8736 lower = (lower & ~(bfd_vma) 0x2fff)
8737 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
8738 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
8739 | ((offset >> 1) & 0x7ff);
8740 bfd_put_16 (abfd, upper, insn);
8741 bfd_put_16 (abfd, lower, insn + 2);
8744 /* Thumb code calling an ARM function. */
8747 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
8751 asection * input_section,
8752 bfd_byte * hit_data,
8755 bfd_signed_vma addend,
8757 char **error_message)
8761 long int ret_offset;
8762 struct elf_link_hash_entry * myh;
8763 struct elf32_arm_link_hash_table * globals;
8765 myh = find_thumb_glue (info, name, error_message);
8769 globals = elf32_arm_hash_table (info);
8770 BFD_ASSERT (globals != NULL);
8771 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8773 my_offset = myh->root.u.def.value;
8775 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8776 THUMB2ARM_GLUE_SECTION_NAME);
8778 BFD_ASSERT (s != NULL);
8779 BFD_ASSERT (s->contents != NULL);
8780 BFD_ASSERT (s->output_section != NULL);
8782 if ((my_offset & 0x01) == 0x01)
8785 && sym_sec->owner != NULL
8786 && !INTERWORK_FLAG (sym_sec->owner))
8788 (*_bfd_error_handler)
8789 (_("%B(%s): warning: interworking not enabled.\n"
8790 " first occurrence: %B: Thumb call to ARM"),
8791 sym_sec->owner, input_bfd, name);
8797 myh->root.u.def.value = my_offset;
8799 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
8800 s->contents + my_offset);
8802 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
8803 s->contents + my_offset + 2);
8806 /* Address of destination of the stub. */
8807 ((bfd_signed_vma) val)
8809 /* Offset from the start of the current section
8810 to the start of the stubs. */
8812 /* Offset of the start of this stub from the start of the stubs. */
8814 /* Address of the start of the current section. */
8815 + s->output_section->vma)
8816 /* The branch instruction is 4 bytes into the stub. */
8818 /* ARM branches work from the pc of the instruction + 8. */
8821 put_arm_insn (globals, output_bfd,
8822 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
8823 s->contents + my_offset + 4);
8826 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
8828 /* Now go back and fix up the original BL insn to point to here. */
8830 /* Address of where the stub is located. */
8831 (s->output_section->vma + s->output_offset + my_offset)
8832 /* Address of where the BL is located. */
8833 - (input_section->output_section->vma + input_section->output_offset
8835 /* Addend in the relocation. */
8837 /* Biassing for PC-relative addressing. */
8840 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
8845 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
8847 static struct elf_link_hash_entry *
8848 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
8855 char ** error_message)
8858 long int ret_offset;
8859 struct elf_link_hash_entry * myh;
8860 struct elf32_arm_link_hash_table * globals;
8862 myh = find_arm_glue (info, name, error_message);
8866 globals = elf32_arm_hash_table (info);
8867 BFD_ASSERT (globals != NULL);
8868 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8870 my_offset = myh->root.u.def.value;
8872 if ((my_offset & 0x01) == 0x01)
8875 && sym_sec->owner != NULL
8876 && !INTERWORK_FLAG (sym_sec->owner))
8878 (*_bfd_error_handler)
8879 (_("%B(%s): warning: interworking not enabled.\n"
8880 " first occurrence: %B: arm call to thumb"),
8881 sym_sec->owner, input_bfd, name);
8885 myh->root.u.def.value = my_offset;
8887 if (bfd_link_pic (info)
8888 || globals->root.is_relocatable_executable
8889 || globals->pic_veneer)
8891 /* For relocatable objects we can't use absolute addresses,
8892 so construct the address from a relative offset. */
8893 /* TODO: If the offset is small it's probably worth
8894 constructing the address with adds. */
8895 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
8896 s->contents + my_offset);
8897 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
8898 s->contents + my_offset + 4);
8899 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
8900 s->contents + my_offset + 8);
8901 /* Adjust the offset by 4 for the position of the add,
8902 and 8 for the pipeline offset. */
8903 ret_offset = (val - (s->output_offset
8904 + s->output_section->vma
8907 bfd_put_32 (output_bfd, ret_offset,
8908 s->contents + my_offset + 12);
8910 else if (globals->use_blx)
8912 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
8913 s->contents + my_offset);
8915 /* It's a thumb address. Add the low order bit. */
8916 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
8917 s->contents + my_offset + 4);
8921 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
8922 s->contents + my_offset);
8924 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
8925 s->contents + my_offset + 4);
8927 /* It's a thumb address. Add the low order bit. */
8928 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
8929 s->contents + my_offset + 8);
8935 BFD_ASSERT (my_offset <= globals->arm_glue_size);
8940 /* Arm code calling a Thumb function. */
8943 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
8947 asection * input_section,
8948 bfd_byte * hit_data,
8951 bfd_signed_vma addend,
8953 char **error_message)
8955 unsigned long int tmp;
8958 long int ret_offset;
8959 struct elf_link_hash_entry * myh;
8960 struct elf32_arm_link_hash_table * globals;
8962 globals = elf32_arm_hash_table (info);
8963 BFD_ASSERT (globals != NULL);
8964 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8966 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8967 ARM2THUMB_GLUE_SECTION_NAME);
8968 BFD_ASSERT (s != NULL);
8969 BFD_ASSERT (s->contents != NULL);
8970 BFD_ASSERT (s->output_section != NULL);
8972 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
8973 sym_sec, val, s, error_message);
8977 my_offset = myh->root.u.def.value;
8978 tmp = bfd_get_32 (input_bfd, hit_data);
8979 tmp = tmp & 0xFF000000;
8981 /* Somehow these are both 4 too far, so subtract 8. */
8982 ret_offset = (s->output_offset
8984 + s->output_section->vma
8985 - (input_section->output_offset
8986 + input_section->output_section->vma
8990 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
8992 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
8997 /* Populate Arm stub for an exported Thumb function. */
9000 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9002 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9004 struct elf_link_hash_entry * myh;
9005 struct elf32_arm_link_hash_entry *eh;
9006 struct elf32_arm_link_hash_table * globals;
9009 char *error_message;
9011 eh = elf32_arm_hash_entry (h);
9012 /* Allocate stubs for exported Thumb functions on v4t. */
9013 if (eh->export_glue == NULL)
9016 globals = elf32_arm_hash_table (info);
9017 BFD_ASSERT (globals != NULL);
9018 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9020 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9021 ARM2THUMB_GLUE_SECTION_NAME);
9022 BFD_ASSERT (s != NULL);
9023 BFD_ASSERT (s->contents != NULL);
9024 BFD_ASSERT (s->output_section != NULL);
9026 sec = eh->export_glue->root.u.def.section;
9028 BFD_ASSERT (sec->output_section != NULL);
9030 val = eh->export_glue->root.u.def.value + sec->output_offset
9031 + sec->output_section->vma;
9033 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9034 h->root.u.def.section->owner,
9035 globals->obfd, sec, val, s,
9041 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9044 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9049 struct elf32_arm_link_hash_table *globals;
9051 globals = elf32_arm_hash_table (info);
9052 BFD_ASSERT (globals != NULL);
9053 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9055 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9056 ARM_BX_GLUE_SECTION_NAME);
9057 BFD_ASSERT (s != NULL);
9058 BFD_ASSERT (s->contents != NULL);
9059 BFD_ASSERT (s->output_section != NULL);
9061 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9063 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9065 if ((globals->bx_glue_offset[reg] & 1) == 0)
9067 p = s->contents + glue_addr;
9068 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9069 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9070 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9071 globals->bx_glue_offset[reg] |= 1;
9074 return glue_addr + s->output_section->vma + s->output_offset;
9077 /* Generate Arm stubs for exported Thumb symbols. */
9079 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9080 struct bfd_link_info *link_info)
9082 struct elf32_arm_link_hash_table * globals;
9084 if (link_info == NULL)
9085 /* Ignore this if we are not called by the ELF backend linker. */
9088 globals = elf32_arm_hash_table (link_info);
9089 if (globals == NULL)
9092 /* If blx is available then exported Thumb symbols are OK and there is
9094 if (globals->use_blx)
9097 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9101 /* Reserve space for COUNT dynamic relocations in relocation selection
9105 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9106 bfd_size_type count)
9108 struct elf32_arm_link_hash_table *htab;
9110 htab = elf32_arm_hash_table (info);
9111 BFD_ASSERT (htab->root.dynamic_sections_created);
9114 sreloc->size += RELOC_SIZE (htab) * count;
9117 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9118 dynamic, the relocations should go in SRELOC, otherwise they should
9119 go in the special .rel.iplt section. */
9122 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9123 bfd_size_type count)
9125 struct elf32_arm_link_hash_table *htab;
9127 htab = elf32_arm_hash_table (info);
9128 if (!htab->root.dynamic_sections_created)
9129 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9132 BFD_ASSERT (sreloc != NULL);
9133 sreloc->size += RELOC_SIZE (htab) * count;
9137 /* Add relocation REL to the end of relocation section SRELOC. */
9140 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9141 asection *sreloc, Elf_Internal_Rela *rel)
9144 struct elf32_arm_link_hash_table *htab;
9146 htab = elf32_arm_hash_table (info);
9147 if (!htab->root.dynamic_sections_created
9148 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9149 sreloc = htab->root.irelplt;
9152 loc = sreloc->contents;
9153 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9154 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9156 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9159 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9160 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9164 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9165 bfd_boolean is_iplt_entry,
9166 union gotplt_union *root_plt,
9167 struct arm_plt_info *arm_plt)
9169 struct elf32_arm_link_hash_table *htab;
9173 htab = elf32_arm_hash_table (info);
9177 splt = htab->root.iplt;
9178 sgotplt = htab->root.igotplt;
9180 /* NaCl uses a special first entry in .iplt too. */
9181 if (htab->nacl_p && splt->size == 0)
9182 splt->size += htab->plt_header_size;
9184 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9185 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9189 splt = htab->root.splt;
9190 sgotplt = htab->root.sgotplt;
9192 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9193 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9195 /* If this is the first .plt entry, make room for the special
9197 if (splt->size == 0)
9198 splt->size += htab->plt_header_size;
9200 htab->next_tls_desc_index++;
9203 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9204 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9205 splt->size += PLT_THUMB_STUB_SIZE;
9206 root_plt->offset = splt->size;
9207 splt->size += htab->plt_entry_size;
9209 if (!htab->symbian_p)
9211 /* We also need to make an entry in the .got.plt section, which
9212 will be placed in the .got section by the linker script. */
9214 arm_plt->got_offset = sgotplt->size;
9216 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9222 arm_movw_immediate (bfd_vma value)
9224 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9228 arm_movt_immediate (bfd_vma value)
9230 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9233 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9234 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9235 Otherwise, DYNINDX is the index of the symbol in the dynamic
9236 symbol table and SYM_VALUE is undefined.
9238 ROOT_PLT points to the offset of the PLT entry from the start of its
9239 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9240 bookkeeping information.
9242 Returns FALSE if there was a problem. */
9245 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9246 union gotplt_union *root_plt,
9247 struct arm_plt_info *arm_plt,
9248 int dynindx, bfd_vma sym_value)
9250 struct elf32_arm_link_hash_table *htab;
9256 Elf_Internal_Rela rel;
9257 bfd_vma plt_header_size;
9258 bfd_vma got_header_size;
9260 htab = elf32_arm_hash_table (info);
9262 /* Pick the appropriate sections and sizes. */
9265 splt = htab->root.iplt;
9266 sgot = htab->root.igotplt;
9267 srel = htab->root.irelplt;
9269 /* There are no reserved entries in .igot.plt, and no special
9270 first entry in .iplt. */
9271 got_header_size = 0;
9272 plt_header_size = 0;
9276 splt = htab->root.splt;
9277 sgot = htab->root.sgotplt;
9278 srel = htab->root.srelplt;
9280 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9281 plt_header_size = htab->plt_header_size;
9283 BFD_ASSERT (splt != NULL && srel != NULL);
9285 /* Fill in the entry in the procedure linkage table. */
9286 if (htab->symbian_p)
9288 BFD_ASSERT (dynindx >= 0);
9289 put_arm_insn (htab, output_bfd,
9290 elf32_arm_symbian_plt_entry[0],
9291 splt->contents + root_plt->offset);
9292 bfd_put_32 (output_bfd,
9293 elf32_arm_symbian_plt_entry[1],
9294 splt->contents + root_plt->offset + 4);
9296 /* Fill in the entry in the .rel.plt section. */
9297 rel.r_offset = (splt->output_section->vma
9298 + splt->output_offset
9299 + root_plt->offset + 4);
9300 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9302 /* Get the index in the procedure linkage table which
9303 corresponds to this symbol. This is the index of this symbol
9304 in all the symbols for which we are making plt entries. The
9305 first entry in the procedure linkage table is reserved. */
9306 plt_index = ((root_plt->offset - plt_header_size)
9307 / htab->plt_entry_size);
9311 bfd_vma got_offset, got_address, plt_address;
9312 bfd_vma got_displacement, initial_got_entry;
9315 BFD_ASSERT (sgot != NULL);
9317 /* Get the offset into the .(i)got.plt table of the entry that
9318 corresponds to this function. */
9319 got_offset = (arm_plt->got_offset & -2);
9321 /* Get the index in the procedure linkage table which
9322 corresponds to this symbol. This is the index of this symbol
9323 in all the symbols for which we are making plt entries.
9324 After the reserved .got.plt entries, all symbols appear in
9325 the same order as in .plt. */
9326 plt_index = (got_offset - got_header_size) / 4;
9328 /* Calculate the address of the GOT entry. */
9329 got_address = (sgot->output_section->vma
9330 + sgot->output_offset
9333 /* ...and the address of the PLT entry. */
9334 plt_address = (splt->output_section->vma
9335 + splt->output_offset
9336 + root_plt->offset);
9338 ptr = splt->contents + root_plt->offset;
9339 if (htab->vxworks_p && bfd_link_pic (info))
9344 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9346 val = elf32_arm_vxworks_shared_plt_entry[i];
9348 val |= got_address - sgot->output_section->vma;
9350 val |= plt_index * RELOC_SIZE (htab);
9351 if (i == 2 || i == 5)
9352 bfd_put_32 (output_bfd, val, ptr);
9354 put_arm_insn (htab, output_bfd, val, ptr);
9357 else if (htab->vxworks_p)
9362 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9364 val = elf32_arm_vxworks_exec_plt_entry[i];
9368 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9370 val |= plt_index * RELOC_SIZE (htab);
9371 if (i == 2 || i == 5)
9372 bfd_put_32 (output_bfd, val, ptr);
9374 put_arm_insn (htab, output_bfd, val, ptr);
9377 loc = (htab->srelplt2->contents
9378 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9380 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9381 referencing the GOT for this PLT entry. */
9382 rel.r_offset = plt_address + 8;
9383 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9384 rel.r_addend = got_offset;
9385 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9386 loc += RELOC_SIZE (htab);
9388 /* Create the R_ARM_ABS32 relocation referencing the
9389 beginning of the PLT for this GOT entry. */
9390 rel.r_offset = got_address;
9391 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9393 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9395 else if (htab->nacl_p)
9397 /* Calculate the displacement between the PLT slot and the
9398 common tail that's part of the special initial PLT slot. */
9399 int32_t tail_displacement
9400 = ((splt->output_section->vma + splt->output_offset
9401 + ARM_NACL_PLT_TAIL_OFFSET)
9402 - (plt_address + htab->plt_entry_size + 4));
9403 BFD_ASSERT ((tail_displacement & 3) == 0);
9404 tail_displacement >>= 2;
9406 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9407 || (-tail_displacement & 0xff000000) == 0);
9409 /* Calculate the displacement between the PLT slot and the entry
9410 in the GOT. The offset accounts for the value produced by
9411 adding to pc in the penultimate instruction of the PLT stub. */
9412 got_displacement = (got_address
9413 - (plt_address + htab->plt_entry_size));
9415 /* NaCl does not support interworking at all. */
9416 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9418 put_arm_insn (htab, output_bfd,
9419 elf32_arm_nacl_plt_entry[0]
9420 | arm_movw_immediate (got_displacement),
9422 put_arm_insn (htab, output_bfd,
9423 elf32_arm_nacl_plt_entry[1]
9424 | arm_movt_immediate (got_displacement),
9426 put_arm_insn (htab, output_bfd,
9427 elf32_arm_nacl_plt_entry[2],
9429 put_arm_insn (htab, output_bfd,
9430 elf32_arm_nacl_plt_entry[3]
9431 | (tail_displacement & 0x00ffffff),
9434 else if (using_thumb_only (htab))
9436 /* PR ld/16017: Generate thumb only PLT entries. */
9437 if (!using_thumb2 (htab))
9439 /* FIXME: We ought to be able to generate thumb-1 PLT
9441 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
9446 /* Calculate the displacement between the PLT slot and the entry in
9447 the GOT. The 12-byte offset accounts for the value produced by
9448 adding to pc in the 3rd instruction of the PLT stub. */
9449 got_displacement = got_address - (plt_address + 12);
9451 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9452 instead of 'put_thumb_insn'. */
9453 put_arm_insn (htab, output_bfd,
9454 elf32_thumb2_plt_entry[0]
9455 | ((got_displacement & 0x000000ff) << 16)
9456 | ((got_displacement & 0x00000700) << 20)
9457 | ((got_displacement & 0x00000800) >> 1)
9458 | ((got_displacement & 0x0000f000) >> 12),
9460 put_arm_insn (htab, output_bfd,
9461 elf32_thumb2_plt_entry[1]
9462 | ((got_displacement & 0x00ff0000) )
9463 | ((got_displacement & 0x07000000) << 4)
9464 | ((got_displacement & 0x08000000) >> 17)
9465 | ((got_displacement & 0xf0000000) >> 28),
9467 put_arm_insn (htab, output_bfd,
9468 elf32_thumb2_plt_entry[2],
9470 put_arm_insn (htab, output_bfd,
9471 elf32_thumb2_plt_entry[3],
9476 /* Calculate the displacement between the PLT slot and the
9477 entry in the GOT. The eight-byte offset accounts for the
9478 value produced by adding to pc in the first instruction
9480 got_displacement = got_address - (plt_address + 8);
9482 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9484 put_thumb_insn (htab, output_bfd,
9485 elf32_arm_plt_thumb_stub[0], ptr - 4);
9486 put_thumb_insn (htab, output_bfd,
9487 elf32_arm_plt_thumb_stub[1], ptr - 2);
9490 if (!elf32_arm_use_long_plt_entry)
9492 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9494 put_arm_insn (htab, output_bfd,
9495 elf32_arm_plt_entry_short[0]
9496 | ((got_displacement & 0x0ff00000) >> 20),
9498 put_arm_insn (htab, output_bfd,
9499 elf32_arm_plt_entry_short[1]
9500 | ((got_displacement & 0x000ff000) >> 12),
9502 put_arm_insn (htab, output_bfd,
9503 elf32_arm_plt_entry_short[2]
9504 | (got_displacement & 0x00000fff),
9506 #ifdef FOUR_WORD_PLT
9507 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9512 put_arm_insn (htab, output_bfd,
9513 elf32_arm_plt_entry_long[0]
9514 | ((got_displacement & 0xf0000000) >> 28),
9516 put_arm_insn (htab, output_bfd,
9517 elf32_arm_plt_entry_long[1]
9518 | ((got_displacement & 0x0ff00000) >> 20),
9520 put_arm_insn (htab, output_bfd,
9521 elf32_arm_plt_entry_long[2]
9522 | ((got_displacement & 0x000ff000) >> 12),
9524 put_arm_insn (htab, output_bfd,
9525 elf32_arm_plt_entry_long[3]
9526 | (got_displacement & 0x00000fff),
9531 /* Fill in the entry in the .rel(a).(i)plt section. */
9532 rel.r_offset = got_address;
9536 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9537 The dynamic linker or static executable then calls SYM_VALUE
9538 to determine the correct run-time value of the .igot.plt entry. */
9539 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9540 initial_got_entry = sym_value;
9544 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9545 initial_got_entry = (splt->output_section->vma
9546 + splt->output_offset);
9549 /* Fill in the entry in the global offset table. */
9550 bfd_put_32 (output_bfd, initial_got_entry,
9551 sgot->contents + got_offset);
9555 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9558 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9559 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9565 /* Some relocations map to different relocations depending on the
9566 target. Return the real relocation. */
9569 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
9575 if (globals->target1_is_rel)
9581 return globals->target2_reloc;
9588 /* Return the base VMA address which should be subtracted from real addresses
9589 when resolving @dtpoff relocation.
9590 This is PT_TLS segment p_vaddr. */
9593 dtpoff_base (struct bfd_link_info *info)
9595 /* If tls_sec is NULL, we should have signalled an error already. */
9596 if (elf_hash_table (info)->tls_sec == NULL)
9598 return elf_hash_table (info)->tls_sec->vma;
9601 /* Return the relocation value for @tpoff relocation
9602 if STT_TLS virtual address is ADDRESS. */
9605 tpoff (struct bfd_link_info *info, bfd_vma address)
9607 struct elf_link_hash_table *htab = elf_hash_table (info);
9610 /* If tls_sec is NULL, we should have signalled an error already. */
9611 if (htab->tls_sec == NULL)
9613 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
9614 return address - htab->tls_sec->vma + base;
9617 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
9618 VALUE is the relocation value. */
9620 static bfd_reloc_status_type
9621 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
9624 return bfd_reloc_overflow;
9626 value |= bfd_get_32 (abfd, data) & 0xfffff000;
9627 bfd_put_32 (abfd, value, data);
9628 return bfd_reloc_ok;
9631 /* Handle TLS relaxations. Relaxing is possible for symbols that use
9632 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
9633 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
9635 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
9636 is to then call final_link_relocate. Return other values in the
9639 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
9640 the pre-relaxed code. It would be nice if the relocs were updated
9641 to match the optimization. */
9643 static bfd_reloc_status_type
9644 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
9645 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
9646 Elf_Internal_Rela *rel, unsigned long is_local)
9650 switch (ELF32_R_TYPE (rel->r_info))
9653 return bfd_reloc_notsupported;
9655 case R_ARM_TLS_GOTDESC:
9660 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9662 insn -= 5; /* THUMB */
9664 insn -= 8; /* ARM */
9666 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9667 return bfd_reloc_continue;
9669 case R_ARM_THM_TLS_DESCSEQ:
9671 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
9672 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
9676 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9678 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
9682 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9685 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
9687 else if ((insn & 0xff87) == 0x4780) /* blx rx */
9691 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9694 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
9695 contents + rel->r_offset);
9699 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9700 /* It's a 32 bit instruction, fetch the rest of it for
9701 error generation. */
9703 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
9704 (*_bfd_error_handler)
9705 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
9706 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9707 return bfd_reloc_notsupported;
9711 case R_ARM_TLS_DESCSEQ:
9713 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9714 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
9718 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
9719 contents + rel->r_offset);
9721 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
9725 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9728 bfd_put_32 (input_bfd, insn & 0xfffff000,
9729 contents + rel->r_offset);
9731 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
9735 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9738 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
9739 contents + rel->r_offset);
9743 (*_bfd_error_handler)
9744 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
9745 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9746 return bfd_reloc_notsupported;
9750 case R_ARM_TLS_CALL:
9751 /* GD->IE relaxation, turn the instruction into 'nop' or
9752 'ldr r0, [pc,r0]' */
9753 insn = is_local ? 0xe1a00000 : 0xe79f0000;
9754 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9757 case R_ARM_THM_TLS_CALL:
9758 /* GD->IE relaxation. */
9760 /* add r0,pc; ldr r0, [r0] */
9762 else if (using_thumb2 (globals))
9769 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
9770 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
9773 return bfd_reloc_ok;
9776 /* For a given value of n, calculate the value of G_n as required to
9777 deal with group relocations. We return it in the form of an
9778 encoded constant-and-rotation, together with the final residual. If n is
9779 specified as less than zero, then final_residual is filled with the
9780 input value and no further action is performed. */
9783 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
9787 bfd_vma encoded_g_n = 0;
9788 bfd_vma residual = value; /* Also known as Y_n. */
9790 for (current_n = 0; current_n <= n; current_n++)
9794 /* Calculate which part of the value to mask. */
9801 /* Determine the most significant bit in the residual and
9802 align the resulting value to a 2-bit boundary. */
9803 for (msb = 30; msb >= 0; msb -= 2)
9804 if (residual & (3 << msb))
9807 /* The desired shift is now (msb - 6), or zero, whichever
9814 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
9815 g_n = residual & (0xff << shift);
9816 encoded_g_n = (g_n >> shift)
9817 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
9819 /* Calculate the residual for the next time around. */
9823 *final_residual = residual;
9828 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
9829 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
9832 identify_add_or_sub (bfd_vma insn)
9834 int opcode = insn & 0x1e00000;
9836 if (opcode == 1 << 23) /* ADD */
9839 if (opcode == 1 << 22) /* SUB */
9845 /* Perform a relocation as part of a final link. */
9847 static bfd_reloc_status_type
9848 elf32_arm_final_link_relocate (reloc_howto_type * howto,
9851 asection * input_section,
9852 bfd_byte * contents,
9853 Elf_Internal_Rela * rel,
9855 struct bfd_link_info * info,
9857 const char * sym_name,
9858 unsigned char st_type,
9859 enum arm_st_branch_type branch_type,
9860 struct elf_link_hash_entry * h,
9861 bfd_boolean * unresolved_reloc_p,
9862 char ** error_message)
9864 unsigned long r_type = howto->type;
9865 unsigned long r_symndx;
9866 bfd_byte * hit_data = contents + rel->r_offset;
9867 bfd_vma * local_got_offsets;
9868 bfd_vma * local_tlsdesc_gotents;
9871 asection * sreloc = NULL;
9874 bfd_signed_vma signed_addend;
9875 unsigned char dynreloc_st_type;
9876 bfd_vma dynreloc_value;
9877 struct elf32_arm_link_hash_table * globals;
9878 struct elf32_arm_link_hash_entry *eh;
9879 union gotplt_union *root_plt;
9880 struct arm_plt_info *arm_plt;
9882 bfd_vma gotplt_offset;
9883 bfd_boolean has_iplt_entry;
9885 globals = elf32_arm_hash_table (info);
9886 if (globals == NULL)
9887 return bfd_reloc_notsupported;
9889 BFD_ASSERT (is_arm_elf (input_bfd));
9891 /* Some relocation types map to different relocations depending on the
9892 target. We pick the right one here. */
9893 r_type = arm_real_reloc_type (globals, r_type);
9895 /* It is possible to have linker relaxations on some TLS access
9896 models. Update our information here. */
9897 r_type = elf32_arm_tls_transition (info, r_type, h);
9899 if (r_type != howto->type)
9900 howto = elf32_arm_howto_from_type (r_type);
9902 eh = (struct elf32_arm_link_hash_entry *) h;
9903 sgot = globals->root.sgot;
9904 local_got_offsets = elf_local_got_offsets (input_bfd);
9905 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
9907 if (globals->root.dynamic_sections_created)
9908 srelgot = globals->root.srelgot;
9912 r_symndx = ELF32_R_SYM (rel->r_info);
9914 if (globals->use_rel)
9916 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
9918 if (addend & ((howto->src_mask + 1) >> 1))
9921 signed_addend &= ~ howto->src_mask;
9922 signed_addend |= addend;
9925 signed_addend = addend;
9928 addend = signed_addend = rel->r_addend;
9930 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
9931 are resolving a function call relocation. */
9932 if (using_thumb_only (globals)
9933 && (r_type == R_ARM_THM_CALL
9934 || r_type == R_ARM_THM_JUMP24)
9935 && branch_type == ST_BRANCH_TO_ARM)
9936 branch_type = ST_BRANCH_TO_THUMB;
9938 /* Record the symbol information that should be used in dynamic
9940 dynreloc_st_type = st_type;
9941 dynreloc_value = value;
9942 if (branch_type == ST_BRANCH_TO_THUMB)
9943 dynreloc_value |= 1;
9945 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
9946 VALUE appropriately for relocations that we resolve at link time. */
9947 has_iplt_entry = FALSE;
9948 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
9950 && root_plt->offset != (bfd_vma) -1)
9952 plt_offset = root_plt->offset;
9953 gotplt_offset = arm_plt->got_offset;
9955 if (h == NULL || eh->is_iplt)
9957 has_iplt_entry = TRUE;
9958 splt = globals->root.iplt;
9960 /* Populate .iplt entries here, because not all of them will
9961 be seen by finish_dynamic_symbol. The lower bit is set if
9962 we have already populated the entry. */
9967 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
9968 -1, dynreloc_value))
9969 root_plt->offset |= 1;
9971 return bfd_reloc_notsupported;
9974 /* Static relocations always resolve to the .iplt entry. */
9976 value = (splt->output_section->vma
9977 + splt->output_offset
9979 branch_type = ST_BRANCH_TO_ARM;
9981 /* If there are non-call relocations that resolve to the .iplt
9982 entry, then all dynamic ones must too. */
9983 if (arm_plt->noncall_refcount != 0)
9985 dynreloc_st_type = st_type;
9986 dynreloc_value = value;
9990 /* We populate the .plt entry in finish_dynamic_symbol. */
9991 splt = globals->root.splt;
9996 plt_offset = (bfd_vma) -1;
9997 gotplt_offset = (bfd_vma) -1;
10003 /* We don't need to find a value for this symbol. It's just a
10005 *unresolved_reloc_p = FALSE;
10006 return bfd_reloc_ok;
10009 if (!globals->vxworks_p)
10010 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10014 case R_ARM_ABS32_NOI:
10016 case R_ARM_REL32_NOI:
10022 /* Handle relocations which should use the PLT entry. ABS32/REL32
10023 will use the symbol's value, which may point to a PLT entry, but we
10024 don't need to handle that here. If we created a PLT entry, all
10025 branches in this object should go to it, except if the PLT is too
10026 far away, in which case a long branch stub should be inserted. */
10027 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10028 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10029 && r_type != R_ARM_CALL
10030 && r_type != R_ARM_JUMP24
10031 && r_type != R_ARM_PLT32)
10032 && plt_offset != (bfd_vma) -1)
10034 /* If we've created a .plt section, and assigned a PLT entry
10035 to this function, it must either be a STT_GNU_IFUNC reference
10036 or not be known to bind locally. In other cases, we should
10037 have cleared the PLT entry by now. */
10038 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10040 value = (splt->output_section->vma
10041 + splt->output_offset
10043 *unresolved_reloc_p = FALSE;
10044 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10045 contents, rel->r_offset, value,
10049 /* When generating a shared object or relocatable executable, these
10050 relocations are copied into the output file to be resolved at
10052 if ((bfd_link_pic (info)
10053 || globals->root.is_relocatable_executable)
10054 && (input_section->flags & SEC_ALLOC)
10055 && !(globals->vxworks_p
10056 && strcmp (input_section->output_section->name,
10058 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10059 || !SYMBOL_CALLS_LOCAL (info, h))
10060 && !(input_bfd == globals->stub_bfd
10061 && strstr (input_section->name, STUB_SUFFIX))
10063 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10064 || h->root.type != bfd_link_hash_undefweak)
10065 && r_type != R_ARM_PC24
10066 && r_type != R_ARM_CALL
10067 && r_type != R_ARM_JUMP24
10068 && r_type != R_ARM_PREL31
10069 && r_type != R_ARM_PLT32)
10071 Elf_Internal_Rela outrel;
10072 bfd_boolean skip, relocate;
10074 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10075 && !h->def_regular)
10077 char *v = _("shared object");
10079 if (bfd_link_executable (info))
10080 v = _("PIE executable");
10082 (*_bfd_error_handler)
10083 (_("%B: relocation %s against external or undefined symbol `%s'"
10084 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10085 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10086 return bfd_reloc_notsupported;
10089 *unresolved_reloc_p = FALSE;
10091 if (sreloc == NULL && globals->root.dynamic_sections_created)
10093 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10094 ! globals->use_rel);
10096 if (sreloc == NULL)
10097 return bfd_reloc_notsupported;
10103 outrel.r_addend = addend;
10105 _bfd_elf_section_offset (output_bfd, info, input_section,
10107 if (outrel.r_offset == (bfd_vma) -1)
10109 else if (outrel.r_offset == (bfd_vma) -2)
10110 skip = TRUE, relocate = TRUE;
10111 outrel.r_offset += (input_section->output_section->vma
10112 + input_section->output_offset);
10115 memset (&outrel, 0, sizeof outrel);
10117 && h->dynindx != -1
10118 && (!bfd_link_pic (info)
10119 || !SYMBOLIC_BIND (info, h)
10120 || !h->def_regular))
10121 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10126 /* This symbol is local, or marked to become local. */
10127 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
10128 if (globals->symbian_p)
10132 /* On Symbian OS, the data segment and text segement
10133 can be relocated independently. Therefore, we
10134 must indicate the segment to which this
10135 relocation is relative. The BPABI allows us to
10136 use any symbol in the right segment; we just use
10137 the section symbol as it is convenient. (We
10138 cannot use the symbol given by "h" directly as it
10139 will not appear in the dynamic symbol table.)
10141 Note that the dynamic linker ignores the section
10142 symbol value, so we don't subtract osec->vma
10143 from the emitted reloc addend. */
10145 osec = sym_sec->output_section;
10147 osec = input_section->output_section;
10148 symbol = elf_section_data (osec)->dynindx;
10151 struct elf_link_hash_table *htab = elf_hash_table (info);
10153 if ((osec->flags & SEC_READONLY) == 0
10154 && htab->data_index_section != NULL)
10155 osec = htab->data_index_section;
10157 osec = htab->text_index_section;
10158 symbol = elf_section_data (osec)->dynindx;
10160 BFD_ASSERT (symbol != 0);
10163 /* On SVR4-ish systems, the dynamic loader cannot
10164 relocate the text and data segments independently,
10165 so the symbol does not matter. */
10167 if (dynreloc_st_type == STT_GNU_IFUNC)
10168 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10169 to the .iplt entry. Instead, every non-call reference
10170 must use an R_ARM_IRELATIVE relocation to obtain the
10171 correct run-time address. */
10172 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10174 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10175 if (globals->use_rel)
10178 outrel.r_addend += dynreloc_value;
10181 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10183 /* If this reloc is against an external symbol, we do not want to
10184 fiddle with the addend. Otherwise, we need to include the symbol
10185 value so that it becomes an addend for the dynamic reloc. */
10187 return bfd_reloc_ok;
10189 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10190 contents, rel->r_offset,
10191 dynreloc_value, (bfd_vma) 0);
10193 else switch (r_type)
10196 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10198 case R_ARM_XPC25: /* Arm BLX instruction. */
10201 case R_ARM_PC24: /* Arm B/BL instruction. */
10204 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10206 if (r_type == R_ARM_XPC25)
10208 /* Check for Arm calling Arm function. */
10209 /* FIXME: Should we translate the instruction into a BL
10210 instruction instead ? */
10211 if (branch_type != ST_BRANCH_TO_THUMB)
10212 (*_bfd_error_handler)
10213 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
10215 h ? h->root.root.string : "(local)");
10217 else if (r_type == R_ARM_PC24)
10219 /* Check for Arm calling Thumb function. */
10220 if (branch_type == ST_BRANCH_TO_THUMB)
10222 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10223 output_bfd, input_section,
10224 hit_data, sym_sec, rel->r_offset,
10225 signed_addend, value,
10227 return bfd_reloc_ok;
10229 return bfd_reloc_dangerous;
10233 /* Check if a stub has to be inserted because the
10234 destination is too far or we are changing mode. */
10235 if ( r_type == R_ARM_CALL
10236 || r_type == R_ARM_JUMP24
10237 || r_type == R_ARM_PLT32)
10239 enum elf32_arm_stub_type stub_type = arm_stub_none;
10240 struct elf32_arm_link_hash_entry *hash;
10242 hash = (struct elf32_arm_link_hash_entry *) h;
10243 stub_type = arm_type_of_stub (info, input_section, rel,
10244 st_type, &branch_type,
10245 hash, value, sym_sec,
10246 input_bfd, sym_name);
10248 if (stub_type != arm_stub_none)
10250 /* The target is out of reach, so redirect the
10251 branch to the local stub for this function. */
10252 stub_entry = elf32_arm_get_stub_entry (input_section,
10257 if (stub_entry != NULL)
10258 value = (stub_entry->stub_offset
10259 + stub_entry->stub_sec->output_offset
10260 + stub_entry->stub_sec->output_section->vma);
10262 if (plt_offset != (bfd_vma) -1)
10263 *unresolved_reloc_p = FALSE;
10268 /* If the call goes through a PLT entry, make sure to
10269 check distance to the right destination address. */
10270 if (plt_offset != (bfd_vma) -1)
10272 value = (splt->output_section->vma
10273 + splt->output_offset
10275 *unresolved_reloc_p = FALSE;
10276 /* The PLT entry is in ARM mode, regardless of the
10277 target function. */
10278 branch_type = ST_BRANCH_TO_ARM;
10283 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10285 S is the address of the symbol in the relocation.
10286 P is address of the instruction being relocated.
10287 A is the addend (extracted from the instruction) in bytes.
10289 S is held in 'value'.
10290 P is the base address of the section containing the
10291 instruction plus the offset of the reloc into that
10293 (input_section->output_section->vma +
10294 input_section->output_offset +
10296 A is the addend, converted into bytes, ie:
10297 (signed_addend * 4)
10299 Note: None of these operations have knowledge of the pipeline
10300 size of the processor, thus it is up to the assembler to
10301 encode this information into the addend. */
10302 value -= (input_section->output_section->vma
10303 + input_section->output_offset);
10304 value -= rel->r_offset;
10305 if (globals->use_rel)
10306 value += (signed_addend << howto->size);
10308 /* RELA addends do not have to be adjusted by howto->size. */
10309 value += signed_addend;
10311 signed_addend = value;
10312 signed_addend >>= howto->rightshift;
10314 /* A branch to an undefined weak symbol is turned into a jump to
10315 the next instruction unless a PLT entry will be created.
10316 Do the same for local undefined symbols (but not for STN_UNDEF).
10317 The jump to the next instruction is optimized as a NOP depending
10318 on the architecture. */
10319 if (h ? (h->root.type == bfd_link_hash_undefweak
10320 && plt_offset == (bfd_vma) -1)
10321 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10323 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10325 if (arch_has_arm_nop (globals))
10326 value |= 0x0320f000;
10328 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10332 /* Perform a signed range check. */
10333 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
10334 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10335 return bfd_reloc_overflow;
10337 addend = (value & 2);
10339 value = (signed_addend & howto->dst_mask)
10340 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10342 if (r_type == R_ARM_CALL)
10344 /* Set the H bit in the BLX instruction. */
10345 if (branch_type == ST_BRANCH_TO_THUMB)
10348 value |= (1 << 24);
10350 value &= ~(bfd_vma)(1 << 24);
10353 /* Select the correct instruction (BL or BLX). */
10354 /* Only if we are not handling a BL to a stub. In this
10355 case, mode switching is performed by the stub. */
10356 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10357 value |= (1 << 28);
10358 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10360 value &= ~(bfd_vma)(1 << 28);
10361 value |= (1 << 24);
10370 if (branch_type == ST_BRANCH_TO_THUMB)
10374 case R_ARM_ABS32_NOI:
10380 if (branch_type == ST_BRANCH_TO_THUMB)
10382 value -= (input_section->output_section->vma
10383 + input_section->output_offset + rel->r_offset);
10386 case R_ARM_REL32_NOI:
10388 value -= (input_section->output_section->vma
10389 + input_section->output_offset + rel->r_offset);
10393 value -= (input_section->output_section->vma
10394 + input_section->output_offset + rel->r_offset);
10395 value += signed_addend;
10396 if (! h || h->root.type != bfd_link_hash_undefweak)
10398 /* Check for overflow. */
10399 if ((value ^ (value >> 1)) & (1 << 30))
10400 return bfd_reloc_overflow;
10402 value &= 0x7fffffff;
10403 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10404 if (branch_type == ST_BRANCH_TO_THUMB)
10409 bfd_put_32 (input_bfd, value, hit_data);
10410 return bfd_reloc_ok;
10413 /* PR 16202: Refectch the addend using the correct size. */
10414 if (globals->use_rel)
10415 addend = bfd_get_8 (input_bfd, hit_data);
10418 /* There is no way to tell whether the user intended to use a signed or
10419 unsigned addend. When checking for overflow we accept either,
10420 as specified by the AAELF. */
10421 if ((long) value > 0xff || (long) value < -0x80)
10422 return bfd_reloc_overflow;
10424 bfd_put_8 (input_bfd, value, hit_data);
10425 return bfd_reloc_ok;
10428 /* PR 16202: Refectch the addend using the correct size. */
10429 if (globals->use_rel)
10430 addend = bfd_get_16 (input_bfd, hit_data);
10433 /* See comment for R_ARM_ABS8. */
10434 if ((long) value > 0xffff || (long) value < -0x8000)
10435 return bfd_reloc_overflow;
10437 bfd_put_16 (input_bfd, value, hit_data);
10438 return bfd_reloc_ok;
10440 case R_ARM_THM_ABS5:
10441 /* Support ldr and str instructions for the thumb. */
10442 if (globals->use_rel)
10444 /* Need to refetch addend. */
10445 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10446 /* ??? Need to determine shift amount from operand size. */
10447 addend >>= howto->rightshift;
10451 /* ??? Isn't value unsigned? */
10452 if ((long) value > 0x1f || (long) value < -0x10)
10453 return bfd_reloc_overflow;
10455 /* ??? Value needs to be properly shifted into place first. */
10456 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10457 bfd_put_16 (input_bfd, value, hit_data);
10458 return bfd_reloc_ok;
10460 case R_ARM_THM_ALU_PREL_11_0:
10461 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10464 bfd_signed_vma relocation;
10466 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10467 | bfd_get_16 (input_bfd, hit_data + 2);
10469 if (globals->use_rel)
10471 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10472 | ((insn & (1 << 26)) >> 15);
10473 if (insn & 0xf00000)
10474 signed_addend = -signed_addend;
10477 relocation = value + signed_addend;
10478 relocation -= Pa (input_section->output_section->vma
10479 + input_section->output_offset
10482 value = relocation;
10484 if (value >= 0x1000)
10485 return bfd_reloc_overflow;
10487 insn = (insn & 0xfb0f8f00) | (value & 0xff)
10488 | ((value & 0x700) << 4)
10489 | ((value & 0x800) << 15);
10490 if (relocation < 0)
10493 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10494 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10496 return bfd_reloc_ok;
10499 case R_ARM_THM_PC8:
10500 /* PR 10073: This reloc is not generated by the GNU toolchain,
10501 but it is supported for compatibility with third party libraries
10502 generated by other compilers, specifically the ARM/IAR. */
10505 bfd_signed_vma relocation;
10507 insn = bfd_get_16 (input_bfd, hit_data);
10509 if (globals->use_rel)
10510 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
10512 relocation = value + addend;
10513 relocation -= Pa (input_section->output_section->vma
10514 + input_section->output_offset
10517 value = relocation;
10519 /* We do not check for overflow of this reloc. Although strictly
10520 speaking this is incorrect, it appears to be necessary in order
10521 to work with IAR generated relocs. Since GCC and GAS do not
10522 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10523 a problem for them. */
10526 insn = (insn & 0xff00) | (value >> 2);
10528 bfd_put_16 (input_bfd, insn, hit_data);
10530 return bfd_reloc_ok;
10533 case R_ARM_THM_PC12:
10534 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10537 bfd_signed_vma relocation;
10539 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10540 | bfd_get_16 (input_bfd, hit_data + 2);
10542 if (globals->use_rel)
10544 signed_addend = insn & 0xfff;
10545 if (!(insn & (1 << 23)))
10546 signed_addend = -signed_addend;
10549 relocation = value + signed_addend;
10550 relocation -= Pa (input_section->output_section->vma
10551 + input_section->output_offset
10554 value = relocation;
10556 if (value >= 0x1000)
10557 return bfd_reloc_overflow;
10559 insn = (insn & 0xff7ff000) | value;
10560 if (relocation >= 0)
10563 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10564 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10566 return bfd_reloc_ok;
10569 case R_ARM_THM_XPC22:
10570 case R_ARM_THM_CALL:
10571 case R_ARM_THM_JUMP24:
10572 /* Thumb BL (branch long instruction). */
10574 bfd_vma relocation;
10575 bfd_vma reloc_sign;
10576 bfd_boolean overflow = FALSE;
10577 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10578 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10579 bfd_signed_vma reloc_signed_max;
10580 bfd_signed_vma reloc_signed_min;
10582 bfd_signed_vma signed_check;
10584 const int thumb2 = using_thumb2 (globals);
10585 const int thumb2_bl = using_thumb2_bl (globals);
10587 /* A branch to an undefined weak symbol is turned into a jump to
10588 the next instruction unless a PLT entry will be created.
10589 The jump to the next instruction is optimized as a NOP.W for
10590 Thumb-2 enabled architectures. */
10591 if (h && h->root.type == bfd_link_hash_undefweak
10592 && plt_offset == (bfd_vma) -1)
10596 bfd_put_16 (input_bfd, 0xf3af, hit_data);
10597 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
10601 bfd_put_16 (input_bfd, 0xe000, hit_data);
10602 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
10604 return bfd_reloc_ok;
10607 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
10608 with Thumb-1) involving the J1 and J2 bits. */
10609 if (globals->use_rel)
10611 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
10612 bfd_vma upper = upper_insn & 0x3ff;
10613 bfd_vma lower = lower_insn & 0x7ff;
10614 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
10615 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
10616 bfd_vma i1 = j1 ^ s ? 0 : 1;
10617 bfd_vma i2 = j2 ^ s ? 0 : 1;
10619 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
10621 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
10623 signed_addend = addend;
10626 if (r_type == R_ARM_THM_XPC22)
10628 /* Check for Thumb to Thumb call. */
10629 /* FIXME: Should we translate the instruction into a BL
10630 instruction instead ? */
10631 if (branch_type == ST_BRANCH_TO_THUMB)
10632 (*_bfd_error_handler)
10633 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
10635 h ? h->root.root.string : "(local)");
10639 /* If it is not a call to Thumb, assume call to Arm.
10640 If it is a call relative to a section name, then it is not a
10641 function call at all, but rather a long jump. Calls through
10642 the PLT do not require stubs. */
10643 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
10645 if (globals->use_blx && r_type == R_ARM_THM_CALL)
10647 /* Convert BL to BLX. */
10648 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10650 else if (( r_type != R_ARM_THM_CALL)
10651 && (r_type != R_ARM_THM_JUMP24))
10653 if (elf32_thumb_to_arm_stub
10654 (info, sym_name, input_bfd, output_bfd, input_section,
10655 hit_data, sym_sec, rel->r_offset, signed_addend, value,
10657 return bfd_reloc_ok;
10659 return bfd_reloc_dangerous;
10662 else if (branch_type == ST_BRANCH_TO_THUMB
10663 && globals->use_blx
10664 && r_type == R_ARM_THM_CALL)
10666 /* Make sure this is a BL. */
10667 lower_insn |= 0x1800;
10671 enum elf32_arm_stub_type stub_type = arm_stub_none;
10672 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
10674 /* Check if a stub has to be inserted because the destination
10676 struct elf32_arm_stub_hash_entry *stub_entry;
10677 struct elf32_arm_link_hash_entry *hash;
10679 hash = (struct elf32_arm_link_hash_entry *) h;
10681 stub_type = arm_type_of_stub (info, input_section, rel,
10682 st_type, &branch_type,
10683 hash, value, sym_sec,
10684 input_bfd, sym_name);
10686 if (stub_type != arm_stub_none)
10688 /* The target is out of reach or we are changing modes, so
10689 redirect the branch to the local stub for this
10691 stub_entry = elf32_arm_get_stub_entry (input_section,
10695 if (stub_entry != NULL)
10697 value = (stub_entry->stub_offset
10698 + stub_entry->stub_sec->output_offset
10699 + stub_entry->stub_sec->output_section->vma);
10701 if (plt_offset != (bfd_vma) -1)
10702 *unresolved_reloc_p = FALSE;
10705 /* If this call becomes a call to Arm, force BLX. */
10706 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
10709 && !arm_stub_is_thumb (stub_entry->stub_type))
10710 || branch_type != ST_BRANCH_TO_THUMB)
10711 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10716 /* Handle calls via the PLT. */
10717 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
10719 value = (splt->output_section->vma
10720 + splt->output_offset
10723 if (globals->use_blx
10724 && r_type == R_ARM_THM_CALL
10725 && ! using_thumb_only (globals))
10727 /* If the Thumb BLX instruction is available, convert
10728 the BL to a BLX instruction to call the ARM-mode
10730 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10731 branch_type = ST_BRANCH_TO_ARM;
10735 if (! using_thumb_only (globals))
10736 /* Target the Thumb stub before the ARM PLT entry. */
10737 value -= PLT_THUMB_STUB_SIZE;
10738 branch_type = ST_BRANCH_TO_THUMB;
10740 *unresolved_reloc_p = FALSE;
10743 relocation = value + signed_addend;
10745 relocation -= (input_section->output_section->vma
10746 + input_section->output_offset
10749 check = relocation >> howto->rightshift;
10751 /* If this is a signed value, the rightshift just dropped
10752 leading 1 bits (assuming twos complement). */
10753 if ((bfd_signed_vma) relocation >= 0)
10754 signed_check = check;
10756 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
10758 /* Calculate the permissable maximum and minimum values for
10759 this relocation according to whether we're relocating for
10761 bitsize = howto->bitsize;
10764 reloc_signed_max = (1 << (bitsize - 1)) - 1;
10765 reloc_signed_min = ~reloc_signed_max;
10767 /* Assumes two's complement. */
10768 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10771 if ((lower_insn & 0x5000) == 0x4000)
10772 /* For a BLX instruction, make sure that the relocation is rounded up
10773 to a word boundary. This follows the semantics of the instruction
10774 which specifies that bit 1 of the target address will come from bit
10775 1 of the base address. */
10776 relocation = (relocation + 2) & ~ 3;
10778 /* Put RELOCATION back into the insn. Assumes two's complement.
10779 We use the Thumb-2 encoding, which is safe even if dealing with
10780 a Thumb-1 instruction by virtue of our overflow check above. */
10781 reloc_sign = (signed_check < 0) ? 1 : 0;
10782 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
10783 | ((relocation >> 12) & 0x3ff)
10784 | (reloc_sign << 10);
10785 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
10786 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
10787 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
10788 | ((relocation >> 1) & 0x7ff);
10790 /* Put the relocated value back in the object file: */
10791 bfd_put_16 (input_bfd, upper_insn, hit_data);
10792 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10794 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10798 case R_ARM_THM_JUMP19:
10799 /* Thumb32 conditional branch instruction. */
10801 bfd_vma relocation;
10802 bfd_boolean overflow = FALSE;
10803 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10804 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10805 bfd_signed_vma reloc_signed_max = 0xffffe;
10806 bfd_signed_vma reloc_signed_min = -0x100000;
10807 bfd_signed_vma signed_check;
10808 enum elf32_arm_stub_type stub_type = arm_stub_none;
10809 struct elf32_arm_stub_hash_entry *stub_entry;
10810 struct elf32_arm_link_hash_entry *hash;
10812 /* Need to refetch the addend, reconstruct the top three bits,
10813 and squish the two 11 bit pieces together. */
10814 if (globals->use_rel)
10816 bfd_vma S = (upper_insn & 0x0400) >> 10;
10817 bfd_vma upper = (upper_insn & 0x003f);
10818 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
10819 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
10820 bfd_vma lower = (lower_insn & 0x07ff);
10824 upper |= (!S) << 8;
10825 upper -= 0x0100; /* Sign extend. */
10827 addend = (upper << 12) | (lower << 1);
10828 signed_addend = addend;
10831 /* Handle calls via the PLT. */
10832 if (plt_offset != (bfd_vma) -1)
10834 value = (splt->output_section->vma
10835 + splt->output_offset
10837 /* Target the Thumb stub before the ARM PLT entry. */
10838 value -= PLT_THUMB_STUB_SIZE;
10839 *unresolved_reloc_p = FALSE;
10842 hash = (struct elf32_arm_link_hash_entry *)h;
10844 stub_type = arm_type_of_stub (info, input_section, rel,
10845 st_type, &branch_type,
10846 hash, value, sym_sec,
10847 input_bfd, sym_name);
10848 if (stub_type != arm_stub_none)
10850 stub_entry = elf32_arm_get_stub_entry (input_section,
10854 if (stub_entry != NULL)
10856 value = (stub_entry->stub_offset
10857 + stub_entry->stub_sec->output_offset
10858 + stub_entry->stub_sec->output_section->vma);
10862 relocation = value + signed_addend;
10863 relocation -= (input_section->output_section->vma
10864 + input_section->output_offset
10866 signed_check = (bfd_signed_vma) relocation;
10868 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10871 /* Put RELOCATION back into the insn. */
10873 bfd_vma S = (relocation & 0x00100000) >> 20;
10874 bfd_vma J2 = (relocation & 0x00080000) >> 19;
10875 bfd_vma J1 = (relocation & 0x00040000) >> 18;
10876 bfd_vma hi = (relocation & 0x0003f000) >> 12;
10877 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
10879 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
10880 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
10883 /* Put the relocated value back in the object file: */
10884 bfd_put_16 (input_bfd, upper_insn, hit_data);
10885 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10887 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10890 case R_ARM_THM_JUMP11:
10891 case R_ARM_THM_JUMP8:
10892 case R_ARM_THM_JUMP6:
10893 /* Thumb B (branch) instruction). */
10895 bfd_signed_vma relocation;
10896 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
10897 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
10898 bfd_signed_vma signed_check;
10900 /* CZB cannot jump backward. */
10901 if (r_type == R_ARM_THM_JUMP6)
10902 reloc_signed_min = 0;
10904 if (globals->use_rel)
10906 /* Need to refetch addend. */
10907 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10908 if (addend & ((howto->src_mask + 1) >> 1))
10910 signed_addend = -1;
10911 signed_addend &= ~ howto->src_mask;
10912 signed_addend |= addend;
10915 signed_addend = addend;
10916 /* The value in the insn has been right shifted. We need to
10917 undo this, so that we can perform the address calculation
10918 in terms of bytes. */
10919 signed_addend <<= howto->rightshift;
10921 relocation = value + signed_addend;
10923 relocation -= (input_section->output_section->vma
10924 + input_section->output_offset
10927 relocation >>= howto->rightshift;
10928 signed_check = relocation;
10930 if (r_type == R_ARM_THM_JUMP6)
10931 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
10933 relocation &= howto->dst_mask;
10934 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
10936 bfd_put_16 (input_bfd, relocation, hit_data);
10938 /* Assumes two's complement. */
10939 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10940 return bfd_reloc_overflow;
10942 return bfd_reloc_ok;
10945 case R_ARM_ALU_PCREL7_0:
10946 case R_ARM_ALU_PCREL15_8:
10947 case R_ARM_ALU_PCREL23_15:
10950 bfd_vma relocation;
10952 insn = bfd_get_32 (input_bfd, hit_data);
10953 if (globals->use_rel)
10955 /* Extract the addend. */
10956 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
10957 signed_addend = addend;
10959 relocation = value + signed_addend;
10961 relocation -= (input_section->output_section->vma
10962 + input_section->output_offset
10964 insn = (insn & ~0xfff)
10965 | ((howto->bitpos << 7) & 0xf00)
10966 | ((relocation >> howto->bitpos) & 0xff);
10967 bfd_put_32 (input_bfd, value, hit_data);
10969 return bfd_reloc_ok;
10971 case R_ARM_GNU_VTINHERIT:
10972 case R_ARM_GNU_VTENTRY:
10973 return bfd_reloc_ok;
10975 case R_ARM_GOTOFF32:
10976 /* Relocation is relative to the start of the
10977 global offset table. */
10979 BFD_ASSERT (sgot != NULL);
10981 return bfd_reloc_notsupported;
10983 /* If we are addressing a Thumb function, we need to adjust the
10984 address by one, so that attempts to call the function pointer will
10985 correctly interpret it as Thumb code. */
10986 if (branch_type == ST_BRANCH_TO_THUMB)
10989 /* Note that sgot->output_offset is not involved in this
10990 calculation. We always want the start of .got. If we
10991 define _GLOBAL_OFFSET_TABLE in a different way, as is
10992 permitted by the ABI, we might have to change this
10994 value -= sgot->output_section->vma;
10995 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10996 contents, rel->r_offset, value,
11000 /* Use global offset table as symbol value. */
11001 BFD_ASSERT (sgot != NULL);
11004 return bfd_reloc_notsupported;
11006 *unresolved_reloc_p = FALSE;
11007 value = sgot->output_section->vma;
11008 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11009 contents, rel->r_offset, value,
11013 case R_ARM_GOT_PREL:
11014 /* Relocation is to the entry for this symbol in the
11015 global offset table. */
11017 return bfd_reloc_notsupported;
11019 if (dynreloc_st_type == STT_GNU_IFUNC
11020 && plt_offset != (bfd_vma) -1
11021 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11023 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11024 symbol, and the relocation resolves directly to the runtime
11025 target rather than to the .iplt entry. This means that any
11026 .got entry would be the same value as the .igot.plt entry,
11027 so there's no point creating both. */
11028 sgot = globals->root.igotplt;
11029 value = sgot->output_offset + gotplt_offset;
11031 else if (h != NULL)
11035 off = h->got.offset;
11036 BFD_ASSERT (off != (bfd_vma) -1);
11037 if ((off & 1) != 0)
11039 /* We have already processsed one GOT relocation against
11042 if (globals->root.dynamic_sections_created
11043 && !SYMBOL_REFERENCES_LOCAL (info, h))
11044 *unresolved_reloc_p = FALSE;
11048 Elf_Internal_Rela outrel;
11050 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
11052 /* If the symbol doesn't resolve locally in a static
11053 object, we have an undefined reference. If the
11054 symbol doesn't resolve locally in a dynamic object,
11055 it should be resolved by the dynamic linker. */
11056 if (globals->root.dynamic_sections_created)
11058 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11059 *unresolved_reloc_p = FALSE;
11063 outrel.r_addend = 0;
11067 if (dynreloc_st_type == STT_GNU_IFUNC)
11068 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11069 else if (bfd_link_pic (info)
11070 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11071 || h->root.type != bfd_link_hash_undefweak))
11072 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11075 outrel.r_addend = dynreloc_value;
11078 /* The GOT entry is initialized to zero by default.
11079 See if we should install a different value. */
11080 if (outrel.r_addend != 0
11081 && (outrel.r_info == 0 || globals->use_rel))
11083 bfd_put_32 (output_bfd, outrel.r_addend,
11084 sgot->contents + off);
11085 outrel.r_addend = 0;
11088 if (outrel.r_info != 0)
11090 outrel.r_offset = (sgot->output_section->vma
11091 + sgot->output_offset
11093 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11095 h->got.offset |= 1;
11097 value = sgot->output_offset + off;
11103 BFD_ASSERT (local_got_offsets != NULL
11104 && local_got_offsets[r_symndx] != (bfd_vma) -1);
11106 off = local_got_offsets[r_symndx];
11108 /* The offset must always be a multiple of 4. We use the
11109 least significant bit to record whether we have already
11110 generated the necessary reloc. */
11111 if ((off & 1) != 0)
11115 if (globals->use_rel)
11116 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11118 if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC)
11120 Elf_Internal_Rela outrel;
11122 outrel.r_addend = addend + dynreloc_value;
11123 outrel.r_offset = (sgot->output_section->vma
11124 + sgot->output_offset
11126 if (dynreloc_st_type == STT_GNU_IFUNC)
11127 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11129 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11130 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11133 local_got_offsets[r_symndx] |= 1;
11136 value = sgot->output_offset + off;
11138 if (r_type != R_ARM_GOT32)
11139 value += sgot->output_section->vma;
11141 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11142 contents, rel->r_offset, value,
11145 case R_ARM_TLS_LDO32:
11146 value = value - dtpoff_base (info);
11148 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11149 contents, rel->r_offset, value,
11152 case R_ARM_TLS_LDM32:
11159 off = globals->tls_ldm_got.offset;
11161 if ((off & 1) != 0)
11165 /* If we don't know the module number, create a relocation
11167 if (bfd_link_pic (info))
11169 Elf_Internal_Rela outrel;
11171 if (srelgot == NULL)
11174 outrel.r_addend = 0;
11175 outrel.r_offset = (sgot->output_section->vma
11176 + sgot->output_offset + off);
11177 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11179 if (globals->use_rel)
11180 bfd_put_32 (output_bfd, outrel.r_addend,
11181 sgot->contents + off);
11183 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11186 bfd_put_32 (output_bfd, 1, sgot->contents + off);
11188 globals->tls_ldm_got.offset |= 1;
11191 value = sgot->output_section->vma + sgot->output_offset + off
11192 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
11194 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11195 contents, rel->r_offset, value,
11199 case R_ARM_TLS_CALL:
11200 case R_ARM_THM_TLS_CALL:
11201 case R_ARM_TLS_GD32:
11202 case R_ARM_TLS_IE32:
11203 case R_ARM_TLS_GOTDESC:
11204 case R_ARM_TLS_DESCSEQ:
11205 case R_ARM_THM_TLS_DESCSEQ:
11207 bfd_vma off, offplt;
11211 BFD_ASSERT (sgot != NULL);
11216 dyn = globals->root.dynamic_sections_created;
11217 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11218 bfd_link_pic (info),
11220 && (!bfd_link_pic (info)
11221 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11223 *unresolved_reloc_p = FALSE;
11226 off = h->got.offset;
11227 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11228 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11232 BFD_ASSERT (local_got_offsets != NULL);
11233 off = local_got_offsets[r_symndx];
11234 offplt = local_tlsdesc_gotents[r_symndx];
11235 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11238 /* Linker relaxations happens from one of the
11239 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11240 if (ELF32_R_TYPE(rel->r_info) != r_type)
11241 tls_type = GOT_TLS_IE;
11243 BFD_ASSERT (tls_type != GOT_UNKNOWN);
11245 if ((off & 1) != 0)
11249 bfd_boolean need_relocs = FALSE;
11250 Elf_Internal_Rela outrel;
11253 /* The GOT entries have not been initialized yet. Do it
11254 now, and emit any relocations. If both an IE GOT and a
11255 GD GOT are necessary, we emit the GD first. */
11257 if ((bfd_link_pic (info) || indx != 0)
11259 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11260 || h->root.type != bfd_link_hash_undefweak))
11262 need_relocs = TRUE;
11263 BFD_ASSERT (srelgot != NULL);
11266 if (tls_type & GOT_TLS_GDESC)
11270 /* We should have relaxed, unless this is an undefined
11272 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11273 || bfd_link_pic (info));
11274 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11275 <= globals->root.sgotplt->size);
11277 outrel.r_addend = 0;
11278 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11279 + globals->root.sgotplt->output_offset
11281 + globals->sgotplt_jump_table_size);
11283 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11284 sreloc = globals->root.srelplt;
11285 loc = sreloc->contents;
11286 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11287 BFD_ASSERT (loc + RELOC_SIZE (globals)
11288 <= sreloc->contents + sreloc->size);
11290 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11292 /* For globals, the first word in the relocation gets
11293 the relocation index and the top bit set, or zero,
11294 if we're binding now. For locals, it gets the
11295 symbol's offset in the tls section. */
11296 bfd_put_32 (output_bfd,
11297 !h ? value - elf_hash_table (info)->tls_sec->vma
11298 : info->flags & DF_BIND_NOW ? 0
11299 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11300 globals->root.sgotplt->contents + offplt
11301 + globals->sgotplt_jump_table_size);
11303 /* Second word in the relocation is always zero. */
11304 bfd_put_32 (output_bfd, 0,
11305 globals->root.sgotplt->contents + offplt
11306 + globals->sgotplt_jump_table_size + 4);
11308 if (tls_type & GOT_TLS_GD)
11312 outrel.r_addend = 0;
11313 outrel.r_offset = (sgot->output_section->vma
11314 + sgot->output_offset
11316 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11318 if (globals->use_rel)
11319 bfd_put_32 (output_bfd, outrel.r_addend,
11320 sgot->contents + cur_off);
11322 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11325 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11326 sgot->contents + cur_off + 4);
11329 outrel.r_addend = 0;
11330 outrel.r_info = ELF32_R_INFO (indx,
11331 R_ARM_TLS_DTPOFF32);
11332 outrel.r_offset += 4;
11334 if (globals->use_rel)
11335 bfd_put_32 (output_bfd, outrel.r_addend,
11336 sgot->contents + cur_off + 4);
11338 elf32_arm_add_dynreloc (output_bfd, info,
11344 /* If we are not emitting relocations for a
11345 general dynamic reference, then we must be in a
11346 static link or an executable link with the
11347 symbol binding locally. Mark it as belonging
11348 to module 1, the executable. */
11349 bfd_put_32 (output_bfd, 1,
11350 sgot->contents + cur_off);
11351 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11352 sgot->contents + cur_off + 4);
11358 if (tls_type & GOT_TLS_IE)
11363 outrel.r_addend = value - dtpoff_base (info);
11365 outrel.r_addend = 0;
11366 outrel.r_offset = (sgot->output_section->vma
11367 + sgot->output_offset
11369 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11371 if (globals->use_rel)
11372 bfd_put_32 (output_bfd, outrel.r_addend,
11373 sgot->contents + cur_off);
11375 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11378 bfd_put_32 (output_bfd, tpoff (info, value),
11379 sgot->contents + cur_off);
11384 h->got.offset |= 1;
11386 local_got_offsets[r_symndx] |= 1;
11389 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
11391 else if (tls_type & GOT_TLS_GDESC)
11394 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11395 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11397 bfd_signed_vma offset;
11398 /* TLS stubs are arm mode. The original symbol is a
11399 data object, so branch_type is bogus. */
11400 branch_type = ST_BRANCH_TO_ARM;
11401 enum elf32_arm_stub_type stub_type
11402 = arm_type_of_stub (info, input_section, rel,
11403 st_type, &branch_type,
11404 (struct elf32_arm_link_hash_entry *)h,
11405 globals->tls_trampoline, globals->root.splt,
11406 input_bfd, sym_name);
11408 if (stub_type != arm_stub_none)
11410 struct elf32_arm_stub_hash_entry *stub_entry
11411 = elf32_arm_get_stub_entry
11412 (input_section, globals->root.splt, 0, rel,
11413 globals, stub_type);
11414 offset = (stub_entry->stub_offset
11415 + stub_entry->stub_sec->output_offset
11416 + stub_entry->stub_sec->output_section->vma);
11419 offset = (globals->root.splt->output_section->vma
11420 + globals->root.splt->output_offset
11421 + globals->tls_trampoline);
11423 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11425 unsigned long inst;
11427 offset -= (input_section->output_section->vma
11428 + input_section->output_offset
11429 + rel->r_offset + 8);
11431 inst = offset >> 2;
11432 inst &= 0x00ffffff;
11433 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11437 /* Thumb blx encodes the offset in a complicated
11439 unsigned upper_insn, lower_insn;
11442 offset -= (input_section->output_section->vma
11443 + input_section->output_offset
11444 + rel->r_offset + 4);
11446 if (stub_type != arm_stub_none
11447 && arm_stub_is_thumb (stub_type))
11449 lower_insn = 0xd000;
11453 lower_insn = 0xc000;
11454 /* Round up the offset to a word boundary. */
11455 offset = (offset + 2) & ~2;
11459 upper_insn = (0xf000
11460 | ((offset >> 12) & 0x3ff)
11462 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
11463 | (((!((offset >> 22) & 1)) ^ neg) << 11)
11464 | ((offset >> 1) & 0x7ff);
11465 bfd_put_16 (input_bfd, upper_insn, hit_data);
11466 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11467 return bfd_reloc_ok;
11470 /* These relocations needs special care, as besides the fact
11471 they point somewhere in .gotplt, the addend must be
11472 adjusted accordingly depending on the type of instruction
11474 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11476 unsigned long data, insn;
11479 data = bfd_get_32 (input_bfd, hit_data);
11485 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11486 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11487 insn = (insn << 16)
11488 | bfd_get_16 (input_bfd,
11489 contents + rel->r_offset - data + 2);
11490 if ((insn & 0xf800c000) == 0xf000c000)
11493 else if ((insn & 0xffffff00) == 0x4400)
11498 (*_bfd_error_handler)
11499 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
11500 input_bfd, input_section,
11501 (unsigned long)rel->r_offset, insn);
11502 return bfd_reloc_notsupported;
11507 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11509 switch (insn >> 24)
11511 case 0xeb: /* bl */
11512 case 0xfa: /* blx */
11516 case 0xe0: /* add */
11521 (*_bfd_error_handler)
11522 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
11523 input_bfd, input_section,
11524 (unsigned long)rel->r_offset, insn);
11525 return bfd_reloc_notsupported;
11529 value += ((globals->root.sgotplt->output_section->vma
11530 + globals->root.sgotplt->output_offset + off)
11531 - (input_section->output_section->vma
11532 + input_section->output_offset
11534 + globals->sgotplt_jump_table_size);
11537 value = ((globals->root.sgot->output_section->vma
11538 + globals->root.sgot->output_offset + off)
11539 - (input_section->output_section->vma
11540 + input_section->output_offset + rel->r_offset));
11542 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11543 contents, rel->r_offset, value,
11547 case R_ARM_TLS_LE32:
11548 if (bfd_link_dll (info))
11550 (*_bfd_error_handler)
11551 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
11552 input_bfd, input_section,
11553 (long) rel->r_offset, howto->name);
11554 return bfd_reloc_notsupported;
11557 value = tpoff (info, value);
11559 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11560 contents, rel->r_offset, value,
11564 if (globals->fix_v4bx)
11566 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11568 /* Ensure that we have a BX instruction. */
11569 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
11571 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
11573 /* Branch to veneer. */
11575 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
11576 glue_addr -= input_section->output_section->vma
11577 + input_section->output_offset
11578 + rel->r_offset + 8;
11579 insn = (insn & 0xf0000000) | 0x0a000000
11580 | ((glue_addr >> 2) & 0x00ffffff);
11584 /* Preserve Rm (lowest four bits) and the condition code
11585 (highest four bits). Other bits encode MOV PC,Rm. */
11586 insn = (insn & 0xf000000f) | 0x01a0f000;
11589 bfd_put_32 (input_bfd, insn, hit_data);
11591 return bfd_reloc_ok;
11593 case R_ARM_MOVW_ABS_NC:
11594 case R_ARM_MOVT_ABS:
11595 case R_ARM_MOVW_PREL_NC:
11596 case R_ARM_MOVT_PREL:
11597 /* Until we properly support segment-base-relative addressing then
11598 we assume the segment base to be zero, as for the group relocations.
11599 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
11600 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
11601 case R_ARM_MOVW_BREL_NC:
11602 case R_ARM_MOVW_BREL:
11603 case R_ARM_MOVT_BREL:
11605 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11607 if (globals->use_rel)
11609 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
11610 signed_addend = (addend ^ 0x8000) - 0x8000;
11613 value += signed_addend;
11615 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
11616 value -= (input_section->output_section->vma
11617 + input_section->output_offset + rel->r_offset);
11619 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
11620 return bfd_reloc_overflow;
11622 if (branch_type == ST_BRANCH_TO_THUMB)
11625 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
11626 || r_type == R_ARM_MOVT_BREL)
11629 insn &= 0xfff0f000;
11630 insn |= value & 0xfff;
11631 insn |= (value & 0xf000) << 4;
11632 bfd_put_32 (input_bfd, insn, hit_data);
11634 return bfd_reloc_ok;
11636 case R_ARM_THM_MOVW_ABS_NC:
11637 case R_ARM_THM_MOVT_ABS:
11638 case R_ARM_THM_MOVW_PREL_NC:
11639 case R_ARM_THM_MOVT_PREL:
11640 /* Until we properly support segment-base-relative addressing then
11641 we assume the segment base to be zero, as for the above relocations.
11642 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
11643 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
11644 as R_ARM_THM_MOVT_ABS. */
11645 case R_ARM_THM_MOVW_BREL_NC:
11646 case R_ARM_THM_MOVW_BREL:
11647 case R_ARM_THM_MOVT_BREL:
11651 insn = bfd_get_16 (input_bfd, hit_data) << 16;
11652 insn |= bfd_get_16 (input_bfd, hit_data + 2);
11654 if (globals->use_rel)
11656 addend = ((insn >> 4) & 0xf000)
11657 | ((insn >> 15) & 0x0800)
11658 | ((insn >> 4) & 0x0700)
11660 signed_addend = (addend ^ 0x8000) - 0x8000;
11663 value += signed_addend;
11665 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
11666 value -= (input_section->output_section->vma
11667 + input_section->output_offset + rel->r_offset);
11669 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
11670 return bfd_reloc_overflow;
11672 if (branch_type == ST_BRANCH_TO_THUMB)
11675 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
11676 || r_type == R_ARM_THM_MOVT_BREL)
11679 insn &= 0xfbf08f00;
11680 insn |= (value & 0xf000) << 4;
11681 insn |= (value & 0x0800) << 15;
11682 insn |= (value & 0x0700) << 4;
11683 insn |= (value & 0x00ff);
11685 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11686 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11688 return bfd_reloc_ok;
11690 case R_ARM_ALU_PC_G0_NC:
11691 case R_ARM_ALU_PC_G1_NC:
11692 case R_ARM_ALU_PC_G0:
11693 case R_ARM_ALU_PC_G1:
11694 case R_ARM_ALU_PC_G2:
11695 case R_ARM_ALU_SB_G0_NC:
11696 case R_ARM_ALU_SB_G1_NC:
11697 case R_ARM_ALU_SB_G0:
11698 case R_ARM_ALU_SB_G1:
11699 case R_ARM_ALU_SB_G2:
11701 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11702 bfd_vma pc = input_section->output_section->vma
11703 + input_section->output_offset + rel->r_offset;
11704 /* sb is the origin of the *segment* containing the symbol. */
11705 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11708 bfd_signed_vma signed_value;
11711 /* Determine which group of bits to select. */
11714 case R_ARM_ALU_PC_G0_NC:
11715 case R_ARM_ALU_PC_G0:
11716 case R_ARM_ALU_SB_G0_NC:
11717 case R_ARM_ALU_SB_G0:
11721 case R_ARM_ALU_PC_G1_NC:
11722 case R_ARM_ALU_PC_G1:
11723 case R_ARM_ALU_SB_G1_NC:
11724 case R_ARM_ALU_SB_G1:
11728 case R_ARM_ALU_PC_G2:
11729 case R_ARM_ALU_SB_G2:
11737 /* If REL, extract the addend from the insn. If RELA, it will
11738 have already been fetched for us. */
11739 if (globals->use_rel)
11742 bfd_vma constant = insn & 0xff;
11743 bfd_vma rotation = (insn & 0xf00) >> 8;
11746 signed_addend = constant;
11749 /* Compensate for the fact that in the instruction, the
11750 rotation is stored in multiples of 2 bits. */
11753 /* Rotate "constant" right by "rotation" bits. */
11754 signed_addend = (constant >> rotation) |
11755 (constant << (8 * sizeof (bfd_vma) - rotation));
11758 /* Determine if the instruction is an ADD or a SUB.
11759 (For REL, this determines the sign of the addend.) */
11760 negative = identify_add_or_sub (insn);
11763 (*_bfd_error_handler)
11764 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
11765 input_bfd, input_section,
11766 (long) rel->r_offset, howto->name);
11767 return bfd_reloc_overflow;
11770 signed_addend *= negative;
11773 /* Compute the value (X) to go in the place. */
11774 if (r_type == R_ARM_ALU_PC_G0_NC
11775 || r_type == R_ARM_ALU_PC_G1_NC
11776 || r_type == R_ARM_ALU_PC_G0
11777 || r_type == R_ARM_ALU_PC_G1
11778 || r_type == R_ARM_ALU_PC_G2)
11780 signed_value = value - pc + signed_addend;
11782 /* Section base relative. */
11783 signed_value = value - sb + signed_addend;
11785 /* If the target symbol is a Thumb function, then set the
11786 Thumb bit in the address. */
11787 if (branch_type == ST_BRANCH_TO_THUMB)
11790 /* Calculate the value of the relevant G_n, in encoded
11791 constant-with-rotation format. */
11792 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11795 /* Check for overflow if required. */
11796 if ((r_type == R_ARM_ALU_PC_G0
11797 || r_type == R_ARM_ALU_PC_G1
11798 || r_type == R_ARM_ALU_PC_G2
11799 || r_type == R_ARM_ALU_SB_G0
11800 || r_type == R_ARM_ALU_SB_G1
11801 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
11803 (*_bfd_error_handler)
11804 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11805 input_bfd, input_section,
11806 (long) rel->r_offset, signed_value < 0 ? - signed_value : signed_value,
11808 return bfd_reloc_overflow;
11811 /* Mask out the value and the ADD/SUB part of the opcode; take care
11812 not to destroy the S bit. */
11813 insn &= 0xff1ff000;
11815 /* Set the opcode according to whether the value to go in the
11816 place is negative. */
11817 if (signed_value < 0)
11822 /* Encode the offset. */
11825 bfd_put_32 (input_bfd, insn, hit_data);
11827 return bfd_reloc_ok;
11829 case R_ARM_LDR_PC_G0:
11830 case R_ARM_LDR_PC_G1:
11831 case R_ARM_LDR_PC_G2:
11832 case R_ARM_LDR_SB_G0:
11833 case R_ARM_LDR_SB_G1:
11834 case R_ARM_LDR_SB_G2:
11836 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11837 bfd_vma pc = input_section->output_section->vma
11838 + input_section->output_offset + rel->r_offset;
11839 /* sb is the origin of the *segment* containing the symbol. */
11840 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11842 bfd_signed_vma signed_value;
11845 /* Determine which groups of bits to calculate. */
11848 case R_ARM_LDR_PC_G0:
11849 case R_ARM_LDR_SB_G0:
11853 case R_ARM_LDR_PC_G1:
11854 case R_ARM_LDR_SB_G1:
11858 case R_ARM_LDR_PC_G2:
11859 case R_ARM_LDR_SB_G2:
11867 /* If REL, extract the addend from the insn. If RELA, it will
11868 have already been fetched for us. */
11869 if (globals->use_rel)
11871 int negative = (insn & (1 << 23)) ? 1 : -1;
11872 signed_addend = negative * (insn & 0xfff);
11875 /* Compute the value (X) to go in the place. */
11876 if (r_type == R_ARM_LDR_PC_G0
11877 || r_type == R_ARM_LDR_PC_G1
11878 || r_type == R_ARM_LDR_PC_G2)
11880 signed_value = value - pc + signed_addend;
11882 /* Section base relative. */
11883 signed_value = value - sb + signed_addend;
11885 /* Calculate the value of the relevant G_{n-1} to obtain
11886 the residual at that stage. */
11887 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11888 group - 1, &residual);
11890 /* Check for overflow. */
11891 if (residual >= 0x1000)
11893 (*_bfd_error_handler)
11894 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11895 input_bfd, input_section,
11896 (long) rel->r_offset, labs (signed_value), howto->name);
11897 return bfd_reloc_overflow;
11900 /* Mask out the value and U bit. */
11901 insn &= 0xff7ff000;
11903 /* Set the U bit if the value to go in the place is non-negative. */
11904 if (signed_value >= 0)
11907 /* Encode the offset. */
11910 bfd_put_32 (input_bfd, insn, hit_data);
11912 return bfd_reloc_ok;
11914 case R_ARM_LDRS_PC_G0:
11915 case R_ARM_LDRS_PC_G1:
11916 case R_ARM_LDRS_PC_G2:
11917 case R_ARM_LDRS_SB_G0:
11918 case R_ARM_LDRS_SB_G1:
11919 case R_ARM_LDRS_SB_G2:
11921 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11922 bfd_vma pc = input_section->output_section->vma
11923 + input_section->output_offset + rel->r_offset;
11924 /* sb is the origin of the *segment* containing the symbol. */
11925 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11927 bfd_signed_vma signed_value;
11930 /* Determine which groups of bits to calculate. */
11933 case R_ARM_LDRS_PC_G0:
11934 case R_ARM_LDRS_SB_G0:
11938 case R_ARM_LDRS_PC_G1:
11939 case R_ARM_LDRS_SB_G1:
11943 case R_ARM_LDRS_PC_G2:
11944 case R_ARM_LDRS_SB_G2:
11952 /* If REL, extract the addend from the insn. If RELA, it will
11953 have already been fetched for us. */
11954 if (globals->use_rel)
11956 int negative = (insn & (1 << 23)) ? 1 : -1;
11957 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
11960 /* Compute the value (X) to go in the place. */
11961 if (r_type == R_ARM_LDRS_PC_G0
11962 || r_type == R_ARM_LDRS_PC_G1
11963 || r_type == R_ARM_LDRS_PC_G2)
11965 signed_value = value - pc + signed_addend;
11967 /* Section base relative. */
11968 signed_value = value - sb + signed_addend;
11970 /* Calculate the value of the relevant G_{n-1} to obtain
11971 the residual at that stage. */
11972 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11973 group - 1, &residual);
11975 /* Check for overflow. */
11976 if (residual >= 0x100)
11978 (*_bfd_error_handler)
11979 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11980 input_bfd, input_section,
11981 (long) rel->r_offset, labs (signed_value), howto->name);
11982 return bfd_reloc_overflow;
11985 /* Mask out the value and U bit. */
11986 insn &= 0xff7ff0f0;
11988 /* Set the U bit if the value to go in the place is non-negative. */
11989 if (signed_value >= 0)
11992 /* Encode the offset. */
11993 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
11995 bfd_put_32 (input_bfd, insn, hit_data);
11997 return bfd_reloc_ok;
11999 case R_ARM_LDC_PC_G0:
12000 case R_ARM_LDC_PC_G1:
12001 case R_ARM_LDC_PC_G2:
12002 case R_ARM_LDC_SB_G0:
12003 case R_ARM_LDC_SB_G1:
12004 case R_ARM_LDC_SB_G2:
12006 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12007 bfd_vma pc = input_section->output_section->vma
12008 + input_section->output_offset + rel->r_offset;
12009 /* sb is the origin of the *segment* containing the symbol. */
12010 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12012 bfd_signed_vma signed_value;
12015 /* Determine which groups of bits to calculate. */
12018 case R_ARM_LDC_PC_G0:
12019 case R_ARM_LDC_SB_G0:
12023 case R_ARM_LDC_PC_G1:
12024 case R_ARM_LDC_SB_G1:
12028 case R_ARM_LDC_PC_G2:
12029 case R_ARM_LDC_SB_G2:
12037 /* If REL, extract the addend from the insn. If RELA, it will
12038 have already been fetched for us. */
12039 if (globals->use_rel)
12041 int negative = (insn & (1 << 23)) ? 1 : -1;
12042 signed_addend = negative * ((insn & 0xff) << 2);
12045 /* Compute the value (X) to go in the place. */
12046 if (r_type == R_ARM_LDC_PC_G0
12047 || r_type == R_ARM_LDC_PC_G1
12048 || r_type == R_ARM_LDC_PC_G2)
12050 signed_value = value - pc + signed_addend;
12052 /* Section base relative. */
12053 signed_value = value - sb + signed_addend;
12055 /* Calculate the value of the relevant G_{n-1} to obtain
12056 the residual at that stage. */
12057 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12058 group - 1, &residual);
12060 /* Check for overflow. (The absolute value to go in the place must be
12061 divisible by four and, after having been divided by four, must
12062 fit in eight bits.) */
12063 if ((residual & 0x3) != 0 || residual >= 0x400)
12065 (*_bfd_error_handler)
12066 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
12067 input_bfd, input_section,
12068 (long) rel->r_offset, labs (signed_value), howto->name);
12069 return bfd_reloc_overflow;
12072 /* Mask out the value and U bit. */
12073 insn &= 0xff7fff00;
12075 /* Set the U bit if the value to go in the place is non-negative. */
12076 if (signed_value >= 0)
12079 /* Encode the offset. */
12080 insn |= residual >> 2;
12082 bfd_put_32 (input_bfd, insn, hit_data);
12084 return bfd_reloc_ok;
12086 case R_ARM_THM_ALU_ABS_G0_NC:
12087 case R_ARM_THM_ALU_ABS_G1_NC:
12088 case R_ARM_THM_ALU_ABS_G2_NC:
12089 case R_ARM_THM_ALU_ABS_G3_NC:
12091 const int shift_array[4] = {0, 8, 16, 24};
12092 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12093 bfd_vma addr = value;
12094 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12096 /* Compute address. */
12097 if (globals->use_rel)
12098 signed_addend = insn & 0xff;
12099 addr += signed_addend;
12100 if (branch_type == ST_BRANCH_TO_THUMB)
12102 /* Clean imm8 insn. */
12104 /* And update with correct part of address. */
12105 insn |= (addr >> shift) & 0xff;
12107 bfd_put_16 (input_bfd, insn, hit_data);
12110 *unresolved_reloc_p = FALSE;
12111 return bfd_reloc_ok;
12114 return bfd_reloc_notsupported;
12118 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
12120 arm_add_to_rel (bfd * abfd,
12121 bfd_byte * address,
12122 reloc_howto_type * howto,
12123 bfd_signed_vma increment)
12125 bfd_signed_vma addend;
12127 if (howto->type == R_ARM_THM_CALL
12128 || howto->type == R_ARM_THM_JUMP24)
12130 int upper_insn, lower_insn;
12133 upper_insn = bfd_get_16 (abfd, address);
12134 lower_insn = bfd_get_16 (abfd, address + 2);
12135 upper = upper_insn & 0x7ff;
12136 lower = lower_insn & 0x7ff;
12138 addend = (upper << 12) | (lower << 1);
12139 addend += increment;
12142 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
12143 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
12145 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
12146 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
12152 contents = bfd_get_32 (abfd, address);
12154 /* Get the (signed) value from the instruction. */
12155 addend = contents & howto->src_mask;
12156 if (addend & ((howto->src_mask + 1) >> 1))
12158 bfd_signed_vma mask;
12161 mask &= ~ howto->src_mask;
12165 /* Add in the increment, (which is a byte value). */
12166 switch (howto->type)
12169 addend += increment;
12176 addend <<= howto->size;
12177 addend += increment;
12179 /* Should we check for overflow here ? */
12181 /* Drop any undesired bits. */
12182 addend >>= howto->rightshift;
12186 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
12188 bfd_put_32 (abfd, contents, address);
12192 #define IS_ARM_TLS_RELOC(R_TYPE) \
12193 ((R_TYPE) == R_ARM_TLS_GD32 \
12194 || (R_TYPE) == R_ARM_TLS_LDO32 \
12195 || (R_TYPE) == R_ARM_TLS_LDM32 \
12196 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
12197 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
12198 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
12199 || (R_TYPE) == R_ARM_TLS_LE32 \
12200 || (R_TYPE) == R_ARM_TLS_IE32 \
12201 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
12203 /* Specific set of relocations for the gnu tls dialect. */
12204 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
12205 ((R_TYPE) == R_ARM_TLS_GOTDESC \
12206 || (R_TYPE) == R_ARM_TLS_CALL \
12207 || (R_TYPE) == R_ARM_THM_TLS_CALL \
12208 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
12209 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
12211 /* Relocate an ARM ELF section. */
12214 elf32_arm_relocate_section (bfd * output_bfd,
12215 struct bfd_link_info * info,
12217 asection * input_section,
12218 bfd_byte * contents,
12219 Elf_Internal_Rela * relocs,
12220 Elf_Internal_Sym * local_syms,
12221 asection ** local_sections)
12223 Elf_Internal_Shdr *symtab_hdr;
12224 struct elf_link_hash_entry **sym_hashes;
12225 Elf_Internal_Rela *rel;
12226 Elf_Internal_Rela *relend;
12228 struct elf32_arm_link_hash_table * globals;
12230 globals = elf32_arm_hash_table (info);
12231 if (globals == NULL)
12234 symtab_hdr = & elf_symtab_hdr (input_bfd);
12235 sym_hashes = elf_sym_hashes (input_bfd);
12238 relend = relocs + input_section->reloc_count;
12239 for (; rel < relend; rel++)
12242 reloc_howto_type * howto;
12243 unsigned long r_symndx;
12244 Elf_Internal_Sym * sym;
12246 struct elf_link_hash_entry * h;
12247 bfd_vma relocation;
12248 bfd_reloc_status_type r;
12251 bfd_boolean unresolved_reloc = FALSE;
12252 char *error_message = NULL;
12254 r_symndx = ELF32_R_SYM (rel->r_info);
12255 r_type = ELF32_R_TYPE (rel->r_info);
12256 r_type = arm_real_reloc_type (globals, r_type);
12258 if ( r_type == R_ARM_GNU_VTENTRY
12259 || r_type == R_ARM_GNU_VTINHERIT)
12262 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
12263 howto = bfd_reloc.howto;
12269 if (r_symndx < symtab_hdr->sh_info)
12271 sym = local_syms + r_symndx;
12272 sym_type = ELF32_ST_TYPE (sym->st_info);
12273 sec = local_sections[r_symndx];
12275 /* An object file might have a reference to a local
12276 undefined symbol. This is a daft object file, but we
12277 should at least do something about it. V4BX & NONE
12278 relocations do not use the symbol and are explicitly
12279 allowed to use the undefined symbol, so allow those.
12280 Likewise for relocations against STN_UNDEF. */
12281 if (r_type != R_ARM_V4BX
12282 && r_type != R_ARM_NONE
12283 && r_symndx != STN_UNDEF
12284 && bfd_is_und_section (sec)
12285 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
12286 (*info->callbacks->undefined_symbol)
12287 (info, bfd_elf_string_from_elf_section
12288 (input_bfd, symtab_hdr->sh_link, sym->st_name),
12289 input_bfd, input_section,
12290 rel->r_offset, TRUE);
12292 if (globals->use_rel)
12294 relocation = (sec->output_section->vma
12295 + sec->output_offset
12297 if (!bfd_link_relocatable (info)
12298 && (sec->flags & SEC_MERGE)
12299 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12302 bfd_vma addend, value;
12306 case R_ARM_MOVW_ABS_NC:
12307 case R_ARM_MOVT_ABS:
12308 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12309 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
12310 addend = (addend ^ 0x8000) - 0x8000;
12313 case R_ARM_THM_MOVW_ABS_NC:
12314 case R_ARM_THM_MOVT_ABS:
12315 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
12317 value |= bfd_get_16 (input_bfd,
12318 contents + rel->r_offset + 2);
12319 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
12320 | ((value & 0x04000000) >> 15);
12321 addend = (addend ^ 0x8000) - 0x8000;
12325 if (howto->rightshift
12326 || (howto->src_mask & (howto->src_mask + 1)))
12328 (*_bfd_error_handler)
12329 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
12330 input_bfd, input_section,
12331 (long) rel->r_offset, howto->name);
12335 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12337 /* Get the (signed) value from the instruction. */
12338 addend = value & howto->src_mask;
12339 if (addend & ((howto->src_mask + 1) >> 1))
12341 bfd_signed_vma mask;
12344 mask &= ~ howto->src_mask;
12352 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
12354 addend += msec->output_section->vma + msec->output_offset;
12356 /* Cases here must match those in the preceding
12357 switch statement. */
12360 case R_ARM_MOVW_ABS_NC:
12361 case R_ARM_MOVT_ABS:
12362 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
12363 | (addend & 0xfff);
12364 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12367 case R_ARM_THM_MOVW_ABS_NC:
12368 case R_ARM_THM_MOVT_ABS:
12369 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
12370 | (addend & 0xff) | ((addend & 0x0800) << 15);
12371 bfd_put_16 (input_bfd, value >> 16,
12372 contents + rel->r_offset);
12373 bfd_put_16 (input_bfd, value,
12374 contents + rel->r_offset + 2);
12378 value = (value & ~ howto->dst_mask)
12379 | (addend & howto->dst_mask);
12380 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12386 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12390 bfd_boolean warned, ignored;
12392 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12393 r_symndx, symtab_hdr, sym_hashes,
12394 h, sec, relocation,
12395 unresolved_reloc, warned, ignored);
12397 sym_type = h->type;
12400 if (sec != NULL && discarded_section (sec))
12401 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
12402 rel, 1, relend, howto, 0, contents);
12404 if (bfd_link_relocatable (info))
12406 /* This is a relocatable link. We don't have to change
12407 anything, unless the reloc is against a section symbol,
12408 in which case we have to adjust according to where the
12409 section symbol winds up in the output section. */
12410 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12412 if (globals->use_rel)
12413 arm_add_to_rel (input_bfd, contents + rel->r_offset,
12414 howto, (bfd_signed_vma) sec->output_offset);
12416 rel->r_addend += sec->output_offset;
12422 name = h->root.root.string;
12425 name = (bfd_elf_string_from_elf_section
12426 (input_bfd, symtab_hdr->sh_link, sym->st_name));
12427 if (name == NULL || *name == '\0')
12428 name = bfd_section_name (input_bfd, sec);
12431 if (r_symndx != STN_UNDEF
12432 && r_type != R_ARM_NONE
12434 || h->root.type == bfd_link_hash_defined
12435 || h->root.type == bfd_link_hash_defweak)
12436 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
12438 (*_bfd_error_handler)
12439 ((sym_type == STT_TLS
12440 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
12441 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
12444 (long) rel->r_offset,
12449 /* We call elf32_arm_final_link_relocate unless we're completely
12450 done, i.e., the relaxation produced the final output we want,
12451 and we won't let anybody mess with it. Also, we have to do
12452 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
12453 both in relaxed and non-relaxed cases. */
12454 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
12455 || (IS_ARM_TLS_GNU_RELOC (r_type)
12456 && !((h ? elf32_arm_hash_entry (h)->tls_type :
12457 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
12460 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
12461 contents, rel, h == NULL);
12462 /* This may have been marked unresolved because it came from
12463 a shared library. But we've just dealt with that. */
12464 unresolved_reloc = 0;
12467 r = bfd_reloc_continue;
12469 if (r == bfd_reloc_continue)
12471 unsigned char branch_type =
12472 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
12473 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
12475 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
12476 input_section, contents, rel,
12477 relocation, info, sec, name,
12478 sym_type, branch_type, h,
12483 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
12484 because such sections are not SEC_ALLOC and thus ld.so will
12485 not process them. */
12486 if (unresolved_reloc
12487 && !((input_section->flags & SEC_DEBUGGING) != 0
12489 && _bfd_elf_section_offset (output_bfd, info, input_section,
12490 rel->r_offset) != (bfd_vma) -1)
12492 (*_bfd_error_handler)
12493 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
12496 (long) rel->r_offset,
12498 h->root.root.string);
12502 if (r != bfd_reloc_ok)
12506 case bfd_reloc_overflow:
12507 /* If the overflowing reloc was to an undefined symbol,
12508 we have already printed one error message and there
12509 is no point complaining again. */
12510 if (!h || h->root.type != bfd_link_hash_undefined)
12511 (*info->callbacks->reloc_overflow)
12512 (info, (h ? &h->root : NULL), name, howto->name,
12513 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
12516 case bfd_reloc_undefined:
12517 (*info->callbacks->undefined_symbol)
12518 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
12521 case bfd_reloc_outofrange:
12522 error_message = _("out of range");
12525 case bfd_reloc_notsupported:
12526 error_message = _("unsupported relocation");
12529 case bfd_reloc_dangerous:
12530 /* error_message should already be set. */
12534 error_message = _("unknown error");
12535 /* Fall through. */
12538 BFD_ASSERT (error_message != NULL);
12539 (*info->callbacks->reloc_dangerous)
12540 (info, error_message, input_bfd, input_section, rel->r_offset);
12549 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
12550 adds the edit to the start of the list. (The list must be built in order of
12551 ascending TINDEX: the function's callers are primarily responsible for
12552 maintaining that condition). */
12555 add_unwind_table_edit (arm_unwind_table_edit **head,
12556 arm_unwind_table_edit **tail,
12557 arm_unwind_edit_type type,
12558 asection *linked_section,
12559 unsigned int tindex)
12561 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
12562 xmalloc (sizeof (arm_unwind_table_edit));
12564 new_edit->type = type;
12565 new_edit->linked_section = linked_section;
12566 new_edit->index = tindex;
12570 new_edit->next = NULL;
12573 (*tail)->next = new_edit;
12575 (*tail) = new_edit;
12578 (*head) = new_edit;
12582 new_edit->next = *head;
12591 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
12593 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
12595 adjust_exidx_size(asection *exidx_sec, int adjust)
12599 if (!exidx_sec->rawsize)
12600 exidx_sec->rawsize = exidx_sec->size;
12602 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
12603 out_sec = exidx_sec->output_section;
12604 /* Adjust size of output section. */
12605 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
12608 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
12610 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
12612 struct _arm_elf_section_data *exidx_arm_data;
12614 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12615 add_unwind_table_edit (
12616 &exidx_arm_data->u.exidx.unwind_edit_list,
12617 &exidx_arm_data->u.exidx.unwind_edit_tail,
12618 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
12620 exidx_arm_data->additional_reloc_count++;
12622 adjust_exidx_size(exidx_sec, 8);
12625 /* Scan .ARM.exidx tables, and create a list describing edits which should be
12626 made to those tables, such that:
12628 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
12629 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
12630 codes which have been inlined into the index).
12632 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
12634 The edits are applied when the tables are written
12635 (in elf32_arm_write_section). */
12638 elf32_arm_fix_exidx_coverage (asection **text_section_order,
12639 unsigned int num_text_sections,
12640 struct bfd_link_info *info,
12641 bfd_boolean merge_exidx_entries)
12644 unsigned int last_second_word = 0, i;
12645 asection *last_exidx_sec = NULL;
12646 asection *last_text_sec = NULL;
12647 int last_unwind_type = -1;
12649 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
12651 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
12655 for (sec = inp->sections; sec != NULL; sec = sec->next)
12657 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
12658 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
12660 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
12663 if (elf_sec->linked_to)
12665 Elf_Internal_Shdr *linked_hdr
12666 = &elf_section_data (elf_sec->linked_to)->this_hdr;
12667 struct _arm_elf_section_data *linked_sec_arm_data
12668 = get_arm_elf_section_data (linked_hdr->bfd_section);
12670 if (linked_sec_arm_data == NULL)
12673 /* Link this .ARM.exidx section back from the text section it
12675 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
12680 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
12681 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
12682 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
12684 for (i = 0; i < num_text_sections; i++)
12686 asection *sec = text_section_order[i];
12687 asection *exidx_sec;
12688 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
12689 struct _arm_elf_section_data *exidx_arm_data;
12690 bfd_byte *contents = NULL;
12691 int deleted_exidx_bytes = 0;
12693 arm_unwind_table_edit *unwind_edit_head = NULL;
12694 arm_unwind_table_edit *unwind_edit_tail = NULL;
12695 Elf_Internal_Shdr *hdr;
12698 if (arm_data == NULL)
12701 exidx_sec = arm_data->u.text.arm_exidx_sec;
12702 if (exidx_sec == NULL)
12704 /* Section has no unwind data. */
12705 if (last_unwind_type == 0 || !last_exidx_sec)
12708 /* Ignore zero sized sections. */
12709 if (sec->size == 0)
12712 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12713 last_unwind_type = 0;
12717 /* Skip /DISCARD/ sections. */
12718 if (bfd_is_abs_section (exidx_sec->output_section))
12721 hdr = &elf_section_data (exidx_sec)->this_hdr;
12722 if (hdr->sh_type != SHT_ARM_EXIDX)
12725 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12726 if (exidx_arm_data == NULL)
12729 ibfd = exidx_sec->owner;
12731 if (hdr->contents != NULL)
12732 contents = hdr->contents;
12733 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
12737 if (last_unwind_type > 0)
12739 unsigned int first_word = bfd_get_32 (ibfd, contents);
12740 /* Add cantunwind if first unwind item does not match section
12742 if (first_word != sec->vma)
12744 insert_cantunwind_after (last_text_sec, last_exidx_sec);
12745 last_unwind_type = 0;
12749 for (j = 0; j < hdr->sh_size; j += 8)
12751 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
12755 /* An EXIDX_CANTUNWIND entry. */
12756 if (second_word == 1)
12758 if (last_unwind_type == 0)
12762 /* Inlined unwinding data. Merge if equal to previous. */
12763 else if ((second_word & 0x80000000) != 0)
12765 if (merge_exidx_entries
12766 && last_second_word == second_word && last_unwind_type == 1)
12769 last_second_word = second_word;
12771 /* Normal table entry. In theory we could merge these too,
12772 but duplicate entries are likely to be much less common. */
12776 if (elide && !bfd_link_relocatable (info))
12778 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
12779 DELETE_EXIDX_ENTRY, NULL, j / 8);
12781 deleted_exidx_bytes += 8;
12784 last_unwind_type = unwind_type;
12787 /* Free contents if we allocated it ourselves. */
12788 if (contents != hdr->contents)
12791 /* Record edits to be applied later (in elf32_arm_write_section). */
12792 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
12793 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
12795 if (deleted_exidx_bytes > 0)
12796 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
12798 last_exidx_sec = exidx_sec;
12799 last_text_sec = sec;
12802 /* Add terminating CANTUNWIND entry. */
12803 if (!bfd_link_relocatable (info) && last_exidx_sec
12804 && last_unwind_type != 0)
12805 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12811 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
12812 bfd *ibfd, const char *name)
12814 asection *sec, *osec;
12816 sec = bfd_get_linker_section (ibfd, name);
12817 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
12820 osec = sec->output_section;
12821 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
12824 if (! bfd_set_section_contents (obfd, osec, sec->contents,
12825 sec->output_offset, sec->size))
12832 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
12834 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
12835 asection *sec, *osec;
12837 if (globals == NULL)
12840 /* Invoke the regular ELF backend linker to do all the work. */
12841 if (!bfd_elf_final_link (abfd, info))
12844 /* Process stub sections (eg BE8 encoding, ...). */
12845 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
12847 for (i=0; i<htab->top_id; i++)
12849 sec = htab->stub_group[i].stub_sec;
12850 /* Only process it once, in its link_sec slot. */
12851 if (sec && i == htab->stub_group[i].link_sec->id)
12853 osec = sec->output_section;
12854 elf32_arm_write_section (abfd, info, sec, sec->contents);
12855 if (! bfd_set_section_contents (abfd, osec, sec->contents,
12856 sec->output_offset, sec->size))
12861 /* Write out any glue sections now that we have created all the
12863 if (globals->bfd_of_glue_owner != NULL)
12865 if (! elf32_arm_output_glue_section (info, abfd,
12866 globals->bfd_of_glue_owner,
12867 ARM2THUMB_GLUE_SECTION_NAME))
12870 if (! elf32_arm_output_glue_section (info, abfd,
12871 globals->bfd_of_glue_owner,
12872 THUMB2ARM_GLUE_SECTION_NAME))
12875 if (! elf32_arm_output_glue_section (info, abfd,
12876 globals->bfd_of_glue_owner,
12877 VFP11_ERRATUM_VENEER_SECTION_NAME))
12880 if (! elf32_arm_output_glue_section (info, abfd,
12881 globals->bfd_of_glue_owner,
12882 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
12885 if (! elf32_arm_output_glue_section (info, abfd,
12886 globals->bfd_of_glue_owner,
12887 ARM_BX_GLUE_SECTION_NAME))
12894 /* Return a best guess for the machine number based on the attributes. */
12896 static unsigned int
12897 bfd_arm_get_mach_from_attributes (bfd * abfd)
12899 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
12903 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
12904 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
12905 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
12907 case TAG_CPU_ARCH_V5TE:
12911 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
12912 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
12916 if (strcmp (name, "IWMMXT2") == 0)
12917 return bfd_mach_arm_iWMMXt2;
12919 if (strcmp (name, "IWMMXT") == 0)
12920 return bfd_mach_arm_iWMMXt;
12922 if (strcmp (name, "XSCALE") == 0)
12926 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
12927 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
12930 case 1: return bfd_mach_arm_iWMMXt;
12931 case 2: return bfd_mach_arm_iWMMXt2;
12932 default: return bfd_mach_arm_XScale;
12937 return bfd_mach_arm_5TE;
12941 return bfd_mach_arm_unknown;
12945 /* Set the right machine number. */
12948 elf32_arm_object_p (bfd *abfd)
12952 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
12954 if (mach == bfd_mach_arm_unknown)
12956 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
12957 mach = bfd_mach_arm_ep9312;
12959 mach = bfd_arm_get_mach_from_attributes (abfd);
12962 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
12966 /* Function to keep ARM specific flags in the ELF header. */
12969 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
12971 if (elf_flags_init (abfd)
12972 && elf_elfheader (abfd)->e_flags != flags)
12974 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
12976 if (flags & EF_ARM_INTERWORK)
12977 (*_bfd_error_handler)
12978 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
12982 (_("Warning: Clearing the interworking flag of %B due to outside request"),
12988 elf_elfheader (abfd)->e_flags = flags;
12989 elf_flags_init (abfd) = TRUE;
12995 /* Copy backend specific data from one object module to another. */
12998 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
13001 flagword out_flags;
13003 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13006 in_flags = elf_elfheader (ibfd)->e_flags;
13007 out_flags = elf_elfheader (obfd)->e_flags;
13009 if (elf_flags_init (obfd)
13010 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13011 && in_flags != out_flags)
13013 /* Cannot mix APCS26 and APCS32 code. */
13014 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
13017 /* Cannot mix float APCS and non-float APCS code. */
13018 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
13021 /* If the src and dest have different interworking flags
13022 then turn off the interworking bit. */
13023 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
13025 if (out_flags & EF_ARM_INTERWORK)
13027 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
13030 in_flags &= ~EF_ARM_INTERWORK;
13033 /* Likewise for PIC, though don't warn for this case. */
13034 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13035 in_flags &= ~EF_ARM_PIC;
13038 elf_elfheader (obfd)->e_flags = in_flags;
13039 elf_flags_init (obfd) = TRUE;
13041 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
13044 /* Values for Tag_ABI_PCS_R9_use. */
13053 /* Values for Tag_ABI_PCS_RW_data. */
13056 AEABI_PCS_RW_data_absolute,
13057 AEABI_PCS_RW_data_PCrel,
13058 AEABI_PCS_RW_data_SBrel,
13059 AEABI_PCS_RW_data_unused
13062 /* Values for Tag_ABI_enum_size. */
13068 AEABI_enum_forced_wide
13071 /* Determine whether an object attribute tag takes an integer, a
13075 elf32_arm_obj_attrs_arg_type (int tag)
13077 if (tag == Tag_compatibility)
13078 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
13079 else if (tag == Tag_nodefaults)
13080 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
13081 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
13082 return ATTR_TYPE_FLAG_STR_VAL;
13084 return ATTR_TYPE_FLAG_INT_VAL;
13086 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
13089 /* The ABI defines that Tag_conformance should be emitted first, and that
13090 Tag_nodefaults should be second (if either is defined). This sets those
13091 two positions, and bumps up the position of all the remaining tags to
13094 elf32_arm_obj_attrs_order (int num)
13096 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
13097 return Tag_conformance;
13098 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
13099 return Tag_nodefaults;
13100 if ((num - 2) < Tag_nodefaults)
13102 if ((num - 1) < Tag_conformance)
13107 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
13109 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
13111 if ((tag & 127) < 64)
13114 (_("%B: Unknown mandatory EABI object attribute %d"),
13116 bfd_set_error (bfd_error_bad_value);
13122 (_("Warning: %B: Unknown EABI object attribute %d"),
13128 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
13129 Returns -1 if no architecture could be read. */
13132 get_secondary_compatible_arch (bfd *abfd)
13134 obj_attribute *attr =
13135 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13137 /* Note: the tag and its argument below are uleb128 values, though
13138 currently-defined values fit in one byte for each. */
13140 && attr->s[0] == Tag_CPU_arch
13141 && (attr->s[1] & 128) != 128
13142 && attr->s[2] == 0)
13145 /* This tag is "safely ignorable", so don't complain if it looks funny. */
13149 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
13150 The tag is removed if ARCH is -1. */
13153 set_secondary_compatible_arch (bfd *abfd, int arch)
13155 obj_attribute *attr =
13156 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13164 /* Note: the tag and its argument below are uleb128 values, though
13165 currently-defined values fit in one byte for each. */
13167 attr->s = (char *) bfd_alloc (abfd, 3);
13168 attr->s[0] = Tag_CPU_arch;
13173 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
13177 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
13178 int newtag, int secondary_compat)
13180 #define T(X) TAG_CPU_ARCH_##X
13181 int tagl, tagh, result;
13184 T(V6T2), /* PRE_V4. */
13186 T(V6T2), /* V4T. */
13187 T(V6T2), /* V5T. */
13188 T(V6T2), /* V5TE. */
13189 T(V6T2), /* V5TEJ. */
13192 T(V6T2) /* V6T2. */
13196 T(V6K), /* PRE_V4. */
13200 T(V6K), /* V5TE. */
13201 T(V6K), /* V5TEJ. */
13203 T(V6KZ), /* V6KZ. */
13209 T(V7), /* PRE_V4. */
13214 T(V7), /* V5TEJ. */
13227 T(V6K), /* V5TE. */
13228 T(V6K), /* V5TEJ. */
13230 T(V6KZ), /* V6KZ. */
13234 T(V6_M) /* V6_M. */
13236 const int v6s_m[] =
13242 T(V6K), /* V5TE. */
13243 T(V6K), /* V5TEJ. */
13245 T(V6KZ), /* V6KZ. */
13249 T(V6S_M), /* V6_M. */
13250 T(V6S_M) /* V6S_M. */
13252 const int v7e_m[] =
13256 T(V7E_M), /* V4T. */
13257 T(V7E_M), /* V5T. */
13258 T(V7E_M), /* V5TE. */
13259 T(V7E_M), /* V5TEJ. */
13260 T(V7E_M), /* V6. */
13261 T(V7E_M), /* V6KZ. */
13262 T(V7E_M), /* V6T2. */
13263 T(V7E_M), /* V6K. */
13264 T(V7E_M), /* V7. */
13265 T(V7E_M), /* V6_M. */
13266 T(V7E_M), /* V6S_M. */
13267 T(V7E_M) /* V7E_M. */
13271 T(V8), /* PRE_V4. */
13276 T(V8), /* V5TEJ. */
13283 T(V8), /* V6S_M. */
13284 T(V8), /* V7E_M. */
13287 const int v8m_baseline[] =
13300 T(V8M_BASE), /* V6_M. */
13301 T(V8M_BASE), /* V6S_M. */
13305 T(V8M_BASE) /* V8-M BASELINE. */
13307 const int v8m_mainline[] =
13319 T(V8M_MAIN), /* V7. */
13320 T(V8M_MAIN), /* V6_M. */
13321 T(V8M_MAIN), /* V6S_M. */
13322 T(V8M_MAIN), /* V7E_M. */
13325 T(V8M_MAIN), /* V8-M BASELINE. */
13326 T(V8M_MAIN) /* V8-M MAINLINE. */
13328 const int v4t_plus_v6_m[] =
13334 T(V5TE), /* V5TE. */
13335 T(V5TEJ), /* V5TEJ. */
13337 T(V6KZ), /* V6KZ. */
13338 T(V6T2), /* V6T2. */
13341 T(V6_M), /* V6_M. */
13342 T(V6S_M), /* V6S_M. */
13343 T(V7E_M), /* V7E_M. */
13346 T(V8M_BASE), /* V8-M BASELINE. */
13347 T(V8M_MAIN), /* V8-M MAINLINE. */
13348 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
13350 const int *comb[] =
13362 /* Pseudo-architecture. */
13366 /* Check we've not got a higher architecture than we know about. */
13368 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
13370 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
13374 /* Override old tag if we have a Tag_also_compatible_with on the output. */
13376 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
13377 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
13378 oldtag = T(V4T_PLUS_V6_M);
13380 /* And override the new tag if we have a Tag_also_compatible_with on the
13383 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
13384 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
13385 newtag = T(V4T_PLUS_V6_M);
13387 tagl = (oldtag < newtag) ? oldtag : newtag;
13388 result = tagh = (oldtag > newtag) ? oldtag : newtag;
13390 /* Architectures before V6KZ add features monotonically. */
13391 if (tagh <= TAG_CPU_ARCH_V6KZ)
13394 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
13396 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
13397 as the canonical version. */
13398 if (result == T(V4T_PLUS_V6_M))
13401 *secondary_compat_out = T(V6_M);
13404 *secondary_compat_out = -1;
13408 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
13409 ibfd, oldtag, newtag);
13417 /* Query attributes object to see if integer divide instructions may be
13418 present in an object. */
13420 elf32_arm_attributes_accept_div (const obj_attribute *attr)
13422 int arch = attr[Tag_CPU_arch].i;
13423 int profile = attr[Tag_CPU_arch_profile].i;
13425 switch (attr[Tag_DIV_use].i)
13428 /* Integer divide allowed if instruction contained in archetecture. */
13429 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
13431 else if (arch >= TAG_CPU_ARCH_V7E_M)
13437 /* Integer divide explicitly prohibited. */
13441 /* Unrecognised case - treat as allowing divide everywhere. */
13443 /* Integer divide allowed in ARM state. */
13448 /* Query attributes object to see if integer divide instructions are
13449 forbidden to be in the object. This is not the inverse of
13450 elf32_arm_attributes_accept_div. */
13452 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
13454 return attr[Tag_DIV_use].i == 1;
13457 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
13458 are conflicting attributes. */
13461 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
13463 obj_attribute *in_attr;
13464 obj_attribute *out_attr;
13465 /* Some tags have 0 = don't care, 1 = strong requirement,
13466 2 = weak requirement. */
13467 static const int order_021[3] = {0, 2, 1};
13469 bfd_boolean result = TRUE;
13470 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
13472 /* Skip the linker stubs file. This preserves previous behavior
13473 of accepting unknown attributes in the first input file - but
13475 if (ibfd->flags & BFD_LINKER_CREATED)
13478 /* Skip any input that hasn't attribute section.
13479 This enables to link object files without attribute section with
13481 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
13484 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13486 /* This is the first object. Copy the attributes. */
13487 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13489 out_attr = elf_known_obj_attributes_proc (obfd);
13491 /* Use the Tag_null value to indicate the attributes have been
13495 /* We do not output objects with Tag_MPextension_use_legacy - we move
13496 the attribute's value to Tag_MPextension_use. */
13497 if (out_attr[Tag_MPextension_use_legacy].i != 0)
13499 if (out_attr[Tag_MPextension_use].i != 0
13500 && out_attr[Tag_MPextension_use_legacy].i
13501 != out_attr[Tag_MPextension_use].i)
13504 (_("Error: %B has both the current and legacy "
13505 "Tag_MPextension_use attributes"), ibfd);
13509 out_attr[Tag_MPextension_use] =
13510 out_attr[Tag_MPextension_use_legacy];
13511 out_attr[Tag_MPextension_use_legacy].type = 0;
13512 out_attr[Tag_MPextension_use_legacy].i = 0;
13518 in_attr = elf_known_obj_attributes_proc (ibfd);
13519 out_attr = elf_known_obj_attributes_proc (obfd);
13520 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
13521 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
13523 /* Ignore mismatches if the object doesn't use floating point or is
13524 floating point ABI independent. */
13525 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
13526 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13527 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
13528 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
13529 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13530 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
13533 (_("error: %B uses VFP register arguments, %B does not"),
13534 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
13535 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
13540 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
13542 /* Merge this attribute with existing attributes. */
13545 case Tag_CPU_raw_name:
13547 /* These are merged after Tag_CPU_arch. */
13550 case Tag_ABI_optimization_goals:
13551 case Tag_ABI_FP_optimization_goals:
13552 /* Use the first value seen. */
13557 int secondary_compat = -1, secondary_compat_out = -1;
13558 unsigned int saved_out_attr = out_attr[i].i;
13560 static const char *name_table[] =
13562 /* These aren't real CPU names, but we can't guess
13563 that from the architecture version alone. */
13579 "ARM v8-M.baseline",
13580 "ARM v8-M.mainline",
13583 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
13584 secondary_compat = get_secondary_compatible_arch (ibfd);
13585 secondary_compat_out = get_secondary_compatible_arch (obfd);
13586 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
13587 &secondary_compat_out,
13591 /* Return with error if failed to merge. */
13592 if (arch_attr == -1)
13595 out_attr[i].i = arch_attr;
13597 set_secondary_compatible_arch (obfd, secondary_compat_out);
13599 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
13600 if (out_attr[i].i == saved_out_attr)
13601 ; /* Leave the names alone. */
13602 else if (out_attr[i].i == in_attr[i].i)
13604 /* The output architecture has been changed to match the
13605 input architecture. Use the input names. */
13606 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
13607 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
13609 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
13610 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
13615 out_attr[Tag_CPU_name].s = NULL;
13616 out_attr[Tag_CPU_raw_name].s = NULL;
13619 /* If we still don't have a value for Tag_CPU_name,
13620 make one up now. Tag_CPU_raw_name remains blank. */
13621 if (out_attr[Tag_CPU_name].s == NULL
13622 && out_attr[i].i < ARRAY_SIZE (name_table))
13623 out_attr[Tag_CPU_name].s =
13624 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
13628 case Tag_ARM_ISA_use:
13629 case Tag_THUMB_ISA_use:
13630 case Tag_WMMX_arch:
13631 case Tag_Advanced_SIMD_arch:
13632 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
13633 case Tag_ABI_FP_rounding:
13634 case Tag_ABI_FP_exceptions:
13635 case Tag_ABI_FP_user_exceptions:
13636 case Tag_ABI_FP_number_model:
13637 case Tag_FP_HP_extension:
13638 case Tag_CPU_unaligned_access:
13640 case Tag_MPextension_use:
13641 /* Use the largest value specified. */
13642 if (in_attr[i].i > out_attr[i].i)
13643 out_attr[i].i = in_attr[i].i;
13646 case Tag_ABI_align_preserved:
13647 case Tag_ABI_PCS_RO_data:
13648 /* Use the smallest value specified. */
13649 if (in_attr[i].i < out_attr[i].i)
13650 out_attr[i].i = in_attr[i].i;
13653 case Tag_ABI_align_needed:
13654 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
13655 && (in_attr[Tag_ABI_align_preserved].i == 0
13656 || out_attr[Tag_ABI_align_preserved].i == 0))
13658 /* This error message should be enabled once all non-conformant
13659 binaries in the toolchain have had the attributes set
13662 (_("error: %B: 8-byte data alignment conflicts with %B"),
13666 /* Fall through. */
13667 case Tag_ABI_FP_denormal:
13668 case Tag_ABI_PCS_GOT_use:
13669 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
13670 value if greater than 2 (for future-proofing). */
13671 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
13672 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
13673 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
13674 out_attr[i].i = in_attr[i].i;
13677 case Tag_Virtualization_use:
13678 /* The virtualization tag effectively stores two bits of
13679 information: the intended use of TrustZone (in bit 0), and the
13680 intended use of Virtualization (in bit 1). */
13681 if (out_attr[i].i == 0)
13682 out_attr[i].i = in_attr[i].i;
13683 else if (in_attr[i].i != 0
13684 && in_attr[i].i != out_attr[i].i)
13686 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
13691 (_("error: %B: unable to merge virtualization attributes "
13699 case Tag_CPU_arch_profile:
13700 if (out_attr[i].i != in_attr[i].i)
13702 /* 0 will merge with anything.
13703 'A' and 'S' merge to 'A'.
13704 'R' and 'S' merge to 'R'.
13705 'M' and 'A|R|S' is an error. */
13706 if (out_attr[i].i == 0
13707 || (out_attr[i].i == 'S'
13708 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
13709 out_attr[i].i = in_attr[i].i;
13710 else if (in_attr[i].i == 0
13711 || (in_attr[i].i == 'S'
13712 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
13713 ; /* Do nothing. */
13717 (_("error: %B: Conflicting architecture profiles %c/%c"),
13719 in_attr[i].i ? in_attr[i].i : '0',
13720 out_attr[i].i ? out_attr[i].i : '0');
13726 case Tag_DSP_extension:
13727 /* No need to change output value if any of:
13728 - pre (<=) ARMv5T input architecture (do not have DSP)
13729 - M input profile not ARMv7E-M and do not have DSP. */
13730 if (in_attr[Tag_CPU_arch].i <= 3
13731 || (in_attr[Tag_CPU_arch_profile].i == 'M'
13732 && in_attr[Tag_CPU_arch].i != 13
13733 && in_attr[i].i == 0))
13734 ; /* Do nothing. */
13735 /* Output value should be 0 if DSP part of architecture, ie.
13736 - post (>=) ARMv5te architecture output
13737 - A, R or S profile output or ARMv7E-M output architecture. */
13738 else if (out_attr[Tag_CPU_arch].i >= 4
13739 && (out_attr[Tag_CPU_arch_profile].i == 'A'
13740 || out_attr[Tag_CPU_arch_profile].i == 'R'
13741 || out_attr[Tag_CPU_arch_profile].i == 'S'
13742 || out_attr[Tag_CPU_arch].i == 13))
13744 /* Otherwise, DSP instructions are added and not part of output
13752 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
13753 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
13754 when it's 0. It might mean absence of FP hardware if
13755 Tag_FP_arch is zero. */
13757 #define VFP_VERSION_COUNT 9
13758 static const struct
13762 } vfp_versions[VFP_VERSION_COUNT] =
13778 /* If the output has no requirement about FP hardware,
13779 follow the requirement of the input. */
13780 if (out_attr[i].i == 0)
13782 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
13783 out_attr[i].i = in_attr[i].i;
13784 out_attr[Tag_ABI_HardFP_use].i
13785 = in_attr[Tag_ABI_HardFP_use].i;
13788 /* If the input has no requirement about FP hardware, do
13790 else if (in_attr[i].i == 0)
13792 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
13796 /* Both the input and the output have nonzero Tag_FP_arch.
13797 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
13799 /* If both the input and the output have zero Tag_ABI_HardFP_use,
13801 if (in_attr[Tag_ABI_HardFP_use].i == 0
13802 && out_attr[Tag_ABI_HardFP_use].i == 0)
13804 /* If the input and the output have different Tag_ABI_HardFP_use,
13805 the combination of them is 0 (implied by Tag_FP_arch). */
13806 else if (in_attr[Tag_ABI_HardFP_use].i
13807 != out_attr[Tag_ABI_HardFP_use].i)
13808 out_attr[Tag_ABI_HardFP_use].i = 0;
13810 /* Now we can handle Tag_FP_arch. */
13812 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
13813 pick the biggest. */
13814 if (in_attr[i].i >= VFP_VERSION_COUNT
13815 && in_attr[i].i > out_attr[i].i)
13817 out_attr[i] = in_attr[i];
13820 /* The output uses the superset of input features
13821 (ISA version) and registers. */
13822 ver = vfp_versions[in_attr[i].i].ver;
13823 if (ver < vfp_versions[out_attr[i].i].ver)
13824 ver = vfp_versions[out_attr[i].i].ver;
13825 regs = vfp_versions[in_attr[i].i].regs;
13826 if (regs < vfp_versions[out_attr[i].i].regs)
13827 regs = vfp_versions[out_attr[i].i].regs;
13828 /* This assumes all possible supersets are also a valid
13830 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
13832 if (regs == vfp_versions[newval].regs
13833 && ver == vfp_versions[newval].ver)
13836 out_attr[i].i = newval;
13839 case Tag_PCS_config:
13840 if (out_attr[i].i == 0)
13841 out_attr[i].i = in_attr[i].i;
13842 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
13844 /* It's sometimes ok to mix different configs, so this is only
13847 (_("Warning: %B: Conflicting platform configuration"), ibfd);
13850 case Tag_ABI_PCS_R9_use:
13851 if (in_attr[i].i != out_attr[i].i
13852 && out_attr[i].i != AEABI_R9_unused
13853 && in_attr[i].i != AEABI_R9_unused)
13856 (_("error: %B: Conflicting use of R9"), ibfd);
13859 if (out_attr[i].i == AEABI_R9_unused)
13860 out_attr[i].i = in_attr[i].i;
13862 case Tag_ABI_PCS_RW_data:
13863 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
13864 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
13865 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
13868 (_("error: %B: SB relative addressing conflicts with use of R9"),
13872 /* Use the smallest value specified. */
13873 if (in_attr[i].i < out_attr[i].i)
13874 out_attr[i].i = in_attr[i].i;
13876 case Tag_ABI_PCS_wchar_t:
13877 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
13878 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
13881 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
13882 ibfd, in_attr[i].i, out_attr[i].i);
13884 else if (in_attr[i].i && !out_attr[i].i)
13885 out_attr[i].i = in_attr[i].i;
13887 case Tag_ABI_enum_size:
13888 if (in_attr[i].i != AEABI_enum_unused)
13890 if (out_attr[i].i == AEABI_enum_unused
13891 || out_attr[i].i == AEABI_enum_forced_wide)
13893 /* The existing object is compatible with anything.
13894 Use whatever requirements the new object has. */
13895 out_attr[i].i = in_attr[i].i;
13897 else if (in_attr[i].i != AEABI_enum_forced_wide
13898 && out_attr[i].i != in_attr[i].i
13899 && !elf_arm_tdata (obfd)->no_enum_size_warning)
13901 static const char *aeabi_enum_names[] =
13902 { "", "variable-size", "32-bit", "" };
13903 const char *in_name =
13904 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13905 ? aeabi_enum_names[in_attr[i].i]
13907 const char *out_name =
13908 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13909 ? aeabi_enum_names[out_attr[i].i]
13912 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
13913 ibfd, in_name, out_name);
13917 case Tag_ABI_VFP_args:
13920 case Tag_ABI_WMMX_args:
13921 if (in_attr[i].i != out_attr[i].i)
13924 (_("error: %B uses iWMMXt register arguments, %B does not"),
13929 case Tag_compatibility:
13930 /* Merged in target-independent code. */
13932 case Tag_ABI_HardFP_use:
13933 /* This is handled along with Tag_FP_arch. */
13935 case Tag_ABI_FP_16bit_format:
13936 if (in_attr[i].i != 0 && out_attr[i].i != 0)
13938 if (in_attr[i].i != out_attr[i].i)
13941 (_("error: fp16 format mismatch between %B and %B"),
13946 if (in_attr[i].i != 0)
13947 out_attr[i].i = in_attr[i].i;
13951 /* A value of zero on input means that the divide instruction may
13952 be used if available in the base architecture as specified via
13953 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
13954 the user did not want divide instructions. A value of 2
13955 explicitly means that divide instructions were allowed in ARM
13956 and Thumb state. */
13957 if (in_attr[i].i == out_attr[i].i)
13958 /* Do nothing. */ ;
13959 else if (elf32_arm_attributes_forbid_div (in_attr)
13960 && !elf32_arm_attributes_accept_div (out_attr))
13962 else if (elf32_arm_attributes_forbid_div (out_attr)
13963 && elf32_arm_attributes_accept_div (in_attr))
13964 out_attr[i].i = in_attr[i].i;
13965 else if (in_attr[i].i == 2)
13966 out_attr[i].i = in_attr[i].i;
13969 case Tag_MPextension_use_legacy:
13970 /* We don't output objects with Tag_MPextension_use_legacy - we
13971 move the value to Tag_MPextension_use. */
13972 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
13974 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
13977 (_("%B has has both the current and legacy "
13978 "Tag_MPextension_use attributes"),
13984 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
13985 out_attr[Tag_MPextension_use] = in_attr[i];
13989 case Tag_nodefaults:
13990 /* This tag is set if it exists, but the value is unused (and is
13991 typically zero). We don't actually need to do anything here -
13992 the merge happens automatically when the type flags are merged
13995 case Tag_also_compatible_with:
13996 /* Already done in Tag_CPU_arch. */
13998 case Tag_conformance:
13999 /* Keep the attribute if it matches. Throw it away otherwise.
14000 No attribute means no claim to conform. */
14001 if (!in_attr[i].s || !out_attr[i].s
14002 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
14003 out_attr[i].s = NULL;
14008 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
14011 /* If out_attr was copied from in_attr then it won't have a type yet. */
14012 if (in_attr[i].type && !out_attr[i].type)
14013 out_attr[i].type = in_attr[i].type;
14016 /* Merge Tag_compatibility attributes and any common GNU ones. */
14017 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
14020 /* Check for any attributes not known on ARM. */
14021 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
14027 /* Return TRUE if the two EABI versions are incompatible. */
14030 elf32_arm_versions_compatible (unsigned iver, unsigned over)
14032 /* v4 and v5 are the same spec before and after it was released,
14033 so allow mixing them. */
14034 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
14035 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
14038 return (iver == over);
14041 /* Merge backend specific data from an object file to the output
14042 object file when linking. */
14045 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
14047 /* Display the flags field. */
14050 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
14052 FILE * file = (FILE *) ptr;
14053 unsigned long flags;
14055 BFD_ASSERT (abfd != NULL && ptr != NULL);
14057 /* Print normal ELF private data. */
14058 _bfd_elf_print_private_bfd_data (abfd, ptr);
14060 flags = elf_elfheader (abfd)->e_flags;
14061 /* Ignore init flag - it may not be set, despite the flags field
14062 containing valid data. */
14064 /* xgettext:c-format */
14065 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14067 switch (EF_ARM_EABI_VERSION (flags))
14069 case EF_ARM_EABI_UNKNOWN:
14070 /* The following flag bits are GNU extensions and not part of the
14071 official ARM ELF extended ABI. Hence they are only decoded if
14072 the EABI version is not set. */
14073 if (flags & EF_ARM_INTERWORK)
14074 fprintf (file, _(" [interworking enabled]"));
14076 if (flags & EF_ARM_APCS_26)
14077 fprintf (file, " [APCS-26]");
14079 fprintf (file, " [APCS-32]");
14081 if (flags & EF_ARM_VFP_FLOAT)
14082 fprintf (file, _(" [VFP float format]"));
14083 else if (flags & EF_ARM_MAVERICK_FLOAT)
14084 fprintf (file, _(" [Maverick float format]"));
14086 fprintf (file, _(" [FPA float format]"));
14088 if (flags & EF_ARM_APCS_FLOAT)
14089 fprintf (file, _(" [floats passed in float registers]"));
14091 if (flags & EF_ARM_PIC)
14092 fprintf (file, _(" [position independent]"));
14094 if (flags & EF_ARM_NEW_ABI)
14095 fprintf (file, _(" [new ABI]"));
14097 if (flags & EF_ARM_OLD_ABI)
14098 fprintf (file, _(" [old ABI]"));
14100 if (flags & EF_ARM_SOFT_FLOAT)
14101 fprintf (file, _(" [software FP]"));
14103 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
14104 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
14105 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
14106 | EF_ARM_MAVERICK_FLOAT);
14109 case EF_ARM_EABI_VER1:
14110 fprintf (file, _(" [Version1 EABI]"));
14112 if (flags & EF_ARM_SYMSARESORTED)
14113 fprintf (file, _(" [sorted symbol table]"));
14115 fprintf (file, _(" [unsorted symbol table]"));
14117 flags &= ~ EF_ARM_SYMSARESORTED;
14120 case EF_ARM_EABI_VER2:
14121 fprintf (file, _(" [Version2 EABI]"));
14123 if (flags & EF_ARM_SYMSARESORTED)
14124 fprintf (file, _(" [sorted symbol table]"));
14126 fprintf (file, _(" [unsorted symbol table]"));
14128 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
14129 fprintf (file, _(" [dynamic symbols use segment index]"));
14131 if (flags & EF_ARM_MAPSYMSFIRST)
14132 fprintf (file, _(" [mapping symbols precede others]"));
14134 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
14135 | EF_ARM_MAPSYMSFIRST);
14138 case EF_ARM_EABI_VER3:
14139 fprintf (file, _(" [Version3 EABI]"));
14142 case EF_ARM_EABI_VER4:
14143 fprintf (file, _(" [Version4 EABI]"));
14146 case EF_ARM_EABI_VER5:
14147 fprintf (file, _(" [Version5 EABI]"));
14149 if (flags & EF_ARM_ABI_FLOAT_SOFT)
14150 fprintf (file, _(" [soft-float ABI]"));
14152 if (flags & EF_ARM_ABI_FLOAT_HARD)
14153 fprintf (file, _(" [hard-float ABI]"));
14155 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
14158 if (flags & EF_ARM_BE8)
14159 fprintf (file, _(" [BE8]"));
14161 if (flags & EF_ARM_LE8)
14162 fprintf (file, _(" [LE8]"));
14164 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
14168 fprintf (file, _(" <EABI version unrecognised>"));
14172 flags &= ~ EF_ARM_EABIMASK;
14174 if (flags & EF_ARM_RELEXEC)
14175 fprintf (file, _(" [relocatable executable]"));
14177 flags &= ~EF_ARM_RELEXEC;
14180 fprintf (file, _("<Unrecognised flag bits set>"));
14182 fputc ('\n', file);
14188 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
14190 switch (ELF_ST_TYPE (elf_sym->st_info))
14192 case STT_ARM_TFUNC:
14193 return ELF_ST_TYPE (elf_sym->st_info);
14195 case STT_ARM_16BIT:
14196 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
14197 This allows us to distinguish between data used by Thumb instructions
14198 and non-data (which is probably code) inside Thumb regions of an
14200 if (type != STT_OBJECT && type != STT_TLS)
14201 return ELF_ST_TYPE (elf_sym->st_info);
14212 elf32_arm_gc_mark_hook (asection *sec,
14213 struct bfd_link_info *info,
14214 Elf_Internal_Rela *rel,
14215 struct elf_link_hash_entry *h,
14216 Elf_Internal_Sym *sym)
14219 switch (ELF32_R_TYPE (rel->r_info))
14221 case R_ARM_GNU_VTINHERIT:
14222 case R_ARM_GNU_VTENTRY:
14226 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
14229 /* Update the got entry reference counts for the section being removed. */
14232 elf32_arm_gc_sweep_hook (bfd * abfd,
14233 struct bfd_link_info * info,
14235 const Elf_Internal_Rela * relocs)
14237 Elf_Internal_Shdr *symtab_hdr;
14238 struct elf_link_hash_entry **sym_hashes;
14239 bfd_signed_vma *local_got_refcounts;
14240 const Elf_Internal_Rela *rel, *relend;
14241 struct elf32_arm_link_hash_table * globals;
14243 if (bfd_link_relocatable (info))
14246 globals = elf32_arm_hash_table (info);
14247 if (globals == NULL)
14250 elf_section_data (sec)->local_dynrel = NULL;
14252 symtab_hdr = & elf_symtab_hdr (abfd);
14253 sym_hashes = elf_sym_hashes (abfd);
14254 local_got_refcounts = elf_local_got_refcounts (abfd);
14256 check_use_blx (globals);
14258 relend = relocs + sec->reloc_count;
14259 for (rel = relocs; rel < relend; rel++)
14261 unsigned long r_symndx;
14262 struct elf_link_hash_entry *h = NULL;
14263 struct elf32_arm_link_hash_entry *eh;
14265 bfd_boolean call_reloc_p;
14266 bfd_boolean may_become_dynamic_p;
14267 bfd_boolean may_need_local_target_p;
14268 union gotplt_union *root_plt;
14269 struct arm_plt_info *arm_plt;
14271 r_symndx = ELF32_R_SYM (rel->r_info);
14272 if (r_symndx >= symtab_hdr->sh_info)
14274 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14275 while (h->root.type == bfd_link_hash_indirect
14276 || h->root.type == bfd_link_hash_warning)
14277 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14279 eh = (struct elf32_arm_link_hash_entry *) h;
14281 call_reloc_p = FALSE;
14282 may_become_dynamic_p = FALSE;
14283 may_need_local_target_p = FALSE;
14285 r_type = ELF32_R_TYPE (rel->r_info);
14286 r_type = arm_real_reloc_type (globals, r_type);
14290 case R_ARM_GOT_PREL:
14291 case R_ARM_TLS_GD32:
14292 case R_ARM_TLS_IE32:
14295 if (h->got.refcount > 0)
14296 h->got.refcount -= 1;
14298 else if (local_got_refcounts != NULL)
14300 if (local_got_refcounts[r_symndx] > 0)
14301 local_got_refcounts[r_symndx] -= 1;
14305 case R_ARM_TLS_LDM32:
14306 globals->tls_ldm_got.refcount -= 1;
14314 case R_ARM_THM_CALL:
14315 case R_ARM_THM_JUMP24:
14316 case R_ARM_THM_JUMP19:
14317 call_reloc_p = TRUE;
14318 may_need_local_target_p = TRUE;
14322 if (!globals->vxworks_p)
14324 may_need_local_target_p = TRUE;
14327 /* Fall through. */
14329 case R_ARM_ABS32_NOI:
14331 case R_ARM_REL32_NOI:
14332 case R_ARM_MOVW_ABS_NC:
14333 case R_ARM_MOVT_ABS:
14334 case R_ARM_MOVW_PREL_NC:
14335 case R_ARM_MOVT_PREL:
14336 case R_ARM_THM_MOVW_ABS_NC:
14337 case R_ARM_THM_MOVT_ABS:
14338 case R_ARM_THM_MOVW_PREL_NC:
14339 case R_ARM_THM_MOVT_PREL:
14340 /* Should the interworking branches be here also? */
14341 if ((bfd_link_pic (info) || globals->root.is_relocatable_executable)
14342 && (sec->flags & SEC_ALLOC) != 0)
14345 && elf32_arm_howto_from_type (r_type)->pc_relative)
14347 call_reloc_p = TRUE;
14348 may_need_local_target_p = TRUE;
14351 may_become_dynamic_p = TRUE;
14354 may_need_local_target_p = TRUE;
14361 if (may_need_local_target_p
14362 && elf32_arm_get_plt_info (abfd, globals, eh, r_symndx, &root_plt,
14365 /* If PLT refcount book-keeping is wrong and too low, we'll
14366 see a zero value (going to -1) for the root PLT reference
14368 if (root_plt->refcount >= 0)
14370 BFD_ASSERT (root_plt->refcount != 0);
14371 root_plt->refcount -= 1;
14374 /* A value of -1 means the symbol has become local, forced
14375 or seeing a hidden definition. Any other negative value
14377 BFD_ASSERT (root_plt->refcount == -1);
14380 arm_plt->noncall_refcount--;
14382 if (r_type == R_ARM_THM_CALL)
14383 arm_plt->maybe_thumb_refcount--;
14385 if (r_type == R_ARM_THM_JUMP24
14386 || r_type == R_ARM_THM_JUMP19)
14387 arm_plt->thumb_refcount--;
14390 if (may_become_dynamic_p)
14392 struct elf_dyn_relocs **pp;
14393 struct elf_dyn_relocs *p;
14396 pp = &(eh->dyn_relocs);
14399 Elf_Internal_Sym *isym;
14401 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
14405 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14409 for (; (p = *pp) != NULL; pp = &p->next)
14412 /* Everything must go for SEC. */
14422 /* Look through the relocs for a section during the first phase. */
14425 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
14426 asection *sec, const Elf_Internal_Rela *relocs)
14428 Elf_Internal_Shdr *symtab_hdr;
14429 struct elf_link_hash_entry **sym_hashes;
14430 const Elf_Internal_Rela *rel;
14431 const Elf_Internal_Rela *rel_end;
14434 struct elf32_arm_link_hash_table *htab;
14435 bfd_boolean call_reloc_p;
14436 bfd_boolean may_become_dynamic_p;
14437 bfd_boolean may_need_local_target_p;
14438 unsigned long nsyms;
14440 if (bfd_link_relocatable (info))
14443 BFD_ASSERT (is_arm_elf (abfd));
14445 htab = elf32_arm_hash_table (info);
14451 /* Create dynamic sections for relocatable executables so that we can
14452 copy relocations. */
14453 if (htab->root.is_relocatable_executable
14454 && ! htab->root.dynamic_sections_created)
14456 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
14460 if (htab->root.dynobj == NULL)
14461 htab->root.dynobj = abfd;
14462 if (!create_ifunc_sections (info))
14465 dynobj = htab->root.dynobj;
14467 symtab_hdr = & elf_symtab_hdr (abfd);
14468 sym_hashes = elf_sym_hashes (abfd);
14469 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
14471 rel_end = relocs + sec->reloc_count;
14472 for (rel = relocs; rel < rel_end; rel++)
14474 Elf_Internal_Sym *isym;
14475 struct elf_link_hash_entry *h;
14476 struct elf32_arm_link_hash_entry *eh;
14477 unsigned long r_symndx;
14480 r_symndx = ELF32_R_SYM (rel->r_info);
14481 r_type = ELF32_R_TYPE (rel->r_info);
14482 r_type = arm_real_reloc_type (htab, r_type);
14484 if (r_symndx >= nsyms
14485 /* PR 9934: It is possible to have relocations that do not
14486 refer to symbols, thus it is also possible to have an
14487 object file containing relocations but no symbol table. */
14488 && (r_symndx > STN_UNDEF || nsyms > 0))
14490 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
14499 if (r_symndx < symtab_hdr->sh_info)
14501 /* A local symbol. */
14502 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
14509 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14510 while (h->root.type == bfd_link_hash_indirect
14511 || h->root.type == bfd_link_hash_warning)
14512 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14514 /* PR15323, ref flags aren't set for references in the
14516 h->root.non_ir_ref = 1;
14520 eh = (struct elf32_arm_link_hash_entry *) h;
14522 call_reloc_p = FALSE;
14523 may_become_dynamic_p = FALSE;
14524 may_need_local_target_p = FALSE;
14526 /* Could be done earlier, if h were already available. */
14527 r_type = elf32_arm_tls_transition (info, r_type, h);
14531 case R_ARM_GOT_PREL:
14532 case R_ARM_TLS_GD32:
14533 case R_ARM_TLS_IE32:
14534 case R_ARM_TLS_GOTDESC:
14535 case R_ARM_TLS_DESCSEQ:
14536 case R_ARM_THM_TLS_DESCSEQ:
14537 case R_ARM_TLS_CALL:
14538 case R_ARM_THM_TLS_CALL:
14539 /* This symbol requires a global offset table entry. */
14541 int tls_type, old_tls_type;
14545 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
14547 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
14549 case R_ARM_TLS_GOTDESC:
14550 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
14551 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
14552 tls_type = GOT_TLS_GDESC; break;
14554 default: tls_type = GOT_NORMAL; break;
14557 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
14558 info->flags |= DF_STATIC_TLS;
14563 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
14567 /* This is a global offset table entry for a local symbol. */
14568 if (!elf32_arm_allocate_local_sym_info (abfd))
14570 elf_local_got_refcounts (abfd)[r_symndx] += 1;
14571 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
14574 /* If a variable is accessed with both tls methods, two
14575 slots may be created. */
14576 if (GOT_TLS_GD_ANY_P (old_tls_type)
14577 && GOT_TLS_GD_ANY_P (tls_type))
14578 tls_type |= old_tls_type;
14580 /* We will already have issued an error message if there
14581 is a TLS/non-TLS mismatch, based on the symbol
14582 type. So just combine any TLS types needed. */
14583 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
14584 && tls_type != GOT_NORMAL)
14585 tls_type |= old_tls_type;
14587 /* If the symbol is accessed in both IE and GDESC
14588 method, we're able to relax. Turn off the GDESC flag,
14589 without messing up with any other kind of tls types
14590 that may be involved. */
14591 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
14592 tls_type &= ~GOT_TLS_GDESC;
14594 if (old_tls_type != tls_type)
14597 elf32_arm_hash_entry (h)->tls_type = tls_type;
14599 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
14602 /* Fall through. */
14604 case R_ARM_TLS_LDM32:
14605 if (r_type == R_ARM_TLS_LDM32)
14606 htab->tls_ldm_got.refcount++;
14607 /* Fall through. */
14609 case R_ARM_GOTOFF32:
14611 if (htab->root.sgot == NULL
14612 && !create_got_section (htab->root.dynobj, info))
14621 case R_ARM_THM_CALL:
14622 case R_ARM_THM_JUMP24:
14623 case R_ARM_THM_JUMP19:
14624 call_reloc_p = TRUE;
14625 may_need_local_target_p = TRUE;
14629 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
14630 ldr __GOTT_INDEX__ offsets. */
14631 if (!htab->vxworks_p)
14633 may_need_local_target_p = TRUE;
14636 else goto jump_over;
14638 /* Fall through. */
14640 case R_ARM_MOVW_ABS_NC:
14641 case R_ARM_MOVT_ABS:
14642 case R_ARM_THM_MOVW_ABS_NC:
14643 case R_ARM_THM_MOVT_ABS:
14644 if (bfd_link_pic (info))
14646 (*_bfd_error_handler)
14647 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
14648 abfd, elf32_arm_howto_table_1[r_type].name,
14649 (h) ? h->root.root.string : "a local symbol");
14650 bfd_set_error (bfd_error_bad_value);
14654 /* Fall through. */
14656 case R_ARM_ABS32_NOI:
14658 if (h != NULL && bfd_link_executable (info))
14660 h->pointer_equality_needed = 1;
14662 /* Fall through. */
14664 case R_ARM_REL32_NOI:
14665 case R_ARM_MOVW_PREL_NC:
14666 case R_ARM_MOVT_PREL:
14667 case R_ARM_THM_MOVW_PREL_NC:
14668 case R_ARM_THM_MOVT_PREL:
14670 /* Should the interworking branches be listed here? */
14671 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable)
14672 && (sec->flags & SEC_ALLOC) != 0)
14675 && elf32_arm_howto_from_type (r_type)->pc_relative)
14677 /* In shared libraries and relocatable executables,
14678 we treat local relative references as calls;
14679 see the related SYMBOL_CALLS_LOCAL code in
14680 allocate_dynrelocs. */
14681 call_reloc_p = TRUE;
14682 may_need_local_target_p = TRUE;
14685 /* We are creating a shared library or relocatable
14686 executable, and this is a reloc against a global symbol,
14687 or a non-PC-relative reloc against a local symbol.
14688 We may need to copy the reloc into the output. */
14689 may_become_dynamic_p = TRUE;
14692 may_need_local_target_p = TRUE;
14695 /* This relocation describes the C++ object vtable hierarchy.
14696 Reconstruct it for later use during GC. */
14697 case R_ARM_GNU_VTINHERIT:
14698 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
14702 /* This relocation describes which C++ vtable entries are actually
14703 used. Record for later use during GC. */
14704 case R_ARM_GNU_VTENTRY:
14705 BFD_ASSERT (h != NULL);
14707 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
14715 /* We may need a .plt entry if the function this reloc
14716 refers to is in a different object, regardless of the
14717 symbol's type. We can't tell for sure yet, because
14718 something later might force the symbol local. */
14720 else if (may_need_local_target_p)
14721 /* If this reloc is in a read-only section, we might
14722 need a copy reloc. We can't check reliably at this
14723 stage whether the section is read-only, as input
14724 sections have not yet been mapped to output sections.
14725 Tentatively set the flag for now, and correct in
14726 adjust_dynamic_symbol. */
14727 h->non_got_ref = 1;
14730 if (may_need_local_target_p
14731 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
14733 union gotplt_union *root_plt;
14734 struct arm_plt_info *arm_plt;
14735 struct arm_local_iplt_info *local_iplt;
14739 root_plt = &h->plt;
14740 arm_plt = &eh->plt;
14744 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
14745 if (local_iplt == NULL)
14747 root_plt = &local_iplt->root;
14748 arm_plt = &local_iplt->arm;
14751 /* If the symbol is a function that doesn't bind locally,
14752 this relocation will need a PLT entry. */
14753 if (root_plt->refcount != -1)
14754 root_plt->refcount += 1;
14757 arm_plt->noncall_refcount++;
14759 /* It's too early to use htab->use_blx here, so we have to
14760 record possible blx references separately from
14761 relocs that definitely need a thumb stub. */
14763 if (r_type == R_ARM_THM_CALL)
14764 arm_plt->maybe_thumb_refcount += 1;
14766 if (r_type == R_ARM_THM_JUMP24
14767 || r_type == R_ARM_THM_JUMP19)
14768 arm_plt->thumb_refcount += 1;
14771 if (may_become_dynamic_p)
14773 struct elf_dyn_relocs *p, **head;
14775 /* Create a reloc section in dynobj. */
14776 if (sreloc == NULL)
14778 sreloc = _bfd_elf_make_dynamic_reloc_section
14779 (sec, dynobj, 2, abfd, ! htab->use_rel);
14781 if (sreloc == NULL)
14784 /* BPABI objects never have dynamic relocations mapped. */
14785 if (htab->symbian_p)
14789 flags = bfd_get_section_flags (dynobj, sreloc);
14790 flags &= ~(SEC_LOAD | SEC_ALLOC);
14791 bfd_set_section_flags (dynobj, sreloc, flags);
14795 /* If this is a global symbol, count the number of
14796 relocations we need for this symbol. */
14798 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
14801 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14807 if (p == NULL || p->sec != sec)
14809 bfd_size_type amt = sizeof *p;
14811 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
14821 if (elf32_arm_howto_from_type (r_type)->pc_relative)
14830 /* Unwinding tables are not referenced directly. This pass marks them as
14831 required if the corresponding code section is marked. Similarly, ARMv8-M
14832 secure entry functions can only be referenced by SG veneers which are
14833 created after the GC process. They need to be marked in case they reside in
14834 their own section (as would be the case if code was compiled with
14835 -ffunction-sections). */
14838 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
14839 elf_gc_mark_hook_fn gc_mark_hook)
14842 Elf_Internal_Shdr **elf_shdrp;
14843 asection *cmse_sec;
14844 obj_attribute *out_attr;
14845 Elf_Internal_Shdr *symtab_hdr;
14846 unsigned i, sym_count, ext_start;
14847 const struct elf_backend_data *bed;
14848 struct elf_link_hash_entry **sym_hashes;
14849 struct elf32_arm_link_hash_entry *cmse_hash;
14850 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
14852 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
14854 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
14855 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
14856 && out_attr[Tag_CPU_arch_profile].i == 'M';
14858 /* Marking EH data may cause additional code sections to be marked,
14859 requiring multiple passes. */
14864 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
14868 if (! is_arm_elf (sub))
14871 elf_shdrp = elf_elfsections (sub);
14872 for (o = sub->sections; o != NULL; o = o->next)
14874 Elf_Internal_Shdr *hdr;
14876 hdr = &elf_section_data (o)->this_hdr;
14877 if (hdr->sh_type == SHT_ARM_EXIDX
14879 && hdr->sh_link < elf_numsections (sub)
14881 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
14884 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
14889 /* Mark section holding ARMv8-M secure entry functions. We mark all
14890 of them so no need for a second browsing. */
14891 if (is_v8m && first_bfd_browse)
14893 sym_hashes = elf_sym_hashes (sub);
14894 bed = get_elf_backend_data (sub);
14895 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
14896 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
14897 ext_start = symtab_hdr->sh_info;
14899 /* Scan symbols. */
14900 for (i = ext_start; i < sym_count; i++)
14902 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
14904 /* Assume it is a special symbol. If not, cmse_scan will
14905 warn about it and user can do something about it. */
14906 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
14908 cmse_sec = cmse_hash->root.root.u.def.section;
14909 if (!cmse_sec->gc_mark
14910 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
14916 first_bfd_browse = FALSE;
14922 /* Treat mapping symbols as special target symbols. */
14925 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
14927 return bfd_is_arm_special_symbol_name (sym->name,
14928 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
14931 /* This is a copy of elf_find_function() from elf.c except that
14932 ARM mapping symbols are ignored when looking for function names
14933 and STT_ARM_TFUNC is considered to a function type. */
14936 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
14937 asymbol ** symbols,
14938 asection * section,
14940 const char ** filename_ptr,
14941 const char ** functionname_ptr)
14943 const char * filename = NULL;
14944 asymbol * func = NULL;
14945 bfd_vma low_func = 0;
14948 for (p = symbols; *p != NULL; p++)
14950 elf_symbol_type *q;
14952 q = (elf_symbol_type *) *p;
14954 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
14959 filename = bfd_asymbol_name (&q->symbol);
14962 case STT_ARM_TFUNC:
14964 /* Skip mapping symbols. */
14965 if ((q->symbol.flags & BSF_LOCAL)
14966 && bfd_is_arm_special_symbol_name (q->symbol.name,
14967 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
14969 /* Fall through. */
14970 if (bfd_get_section (&q->symbol) == section
14971 && q->symbol.value >= low_func
14972 && q->symbol.value <= offset)
14974 func = (asymbol *) q;
14975 low_func = q->symbol.value;
14985 *filename_ptr = filename;
14986 if (functionname_ptr)
14987 *functionname_ptr = bfd_asymbol_name (func);
14993 /* Find the nearest line to a particular section and offset, for error
14994 reporting. This code is a duplicate of the code in elf.c, except
14995 that it uses arm_elf_find_function. */
14998 elf32_arm_find_nearest_line (bfd * abfd,
14999 asymbol ** symbols,
15000 asection * section,
15002 const char ** filename_ptr,
15003 const char ** functionname_ptr,
15004 unsigned int * line_ptr,
15005 unsigned int * discriminator_ptr)
15007 bfd_boolean found = FALSE;
15009 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
15010 filename_ptr, functionname_ptr,
15011 line_ptr, discriminator_ptr,
15012 dwarf_debug_sections, 0,
15013 & elf_tdata (abfd)->dwarf2_find_line_info))
15015 if (!*functionname_ptr)
15016 arm_elf_find_function (abfd, symbols, section, offset,
15017 *filename_ptr ? NULL : filename_ptr,
15023 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
15026 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
15027 & found, filename_ptr,
15028 functionname_ptr, line_ptr,
15029 & elf_tdata (abfd)->line_info))
15032 if (found && (*functionname_ptr || *line_ptr))
15035 if (symbols == NULL)
15038 if (! arm_elf_find_function (abfd, symbols, section, offset,
15039 filename_ptr, functionname_ptr))
15047 elf32_arm_find_inliner_info (bfd * abfd,
15048 const char ** filename_ptr,
15049 const char ** functionname_ptr,
15050 unsigned int * line_ptr)
15053 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
15054 functionname_ptr, line_ptr,
15055 & elf_tdata (abfd)->dwarf2_find_line_info);
15059 /* Adjust a symbol defined by a dynamic object and referenced by a
15060 regular object. The current definition is in some section of the
15061 dynamic object, but we're not including those sections. We have to
15062 change the definition to something the rest of the link can
15066 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
15067 struct elf_link_hash_entry * h)
15071 struct elf32_arm_link_hash_entry * eh;
15072 struct elf32_arm_link_hash_table *globals;
15074 globals = elf32_arm_hash_table (info);
15075 if (globals == NULL)
15078 dynobj = elf_hash_table (info)->dynobj;
15080 /* Make sure we know what is going on here. */
15081 BFD_ASSERT (dynobj != NULL
15083 || h->type == STT_GNU_IFUNC
15084 || h->u.weakdef != NULL
15087 && !h->def_regular)));
15089 eh = (struct elf32_arm_link_hash_entry *) h;
15091 /* If this is a function, put it in the procedure linkage table. We
15092 will fill in the contents of the procedure linkage table later,
15093 when we know the address of the .got section. */
15094 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
15096 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
15097 symbol binds locally. */
15098 if (h->plt.refcount <= 0
15099 || (h->type != STT_GNU_IFUNC
15100 && (SYMBOL_CALLS_LOCAL (info, h)
15101 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
15102 && h->root.type == bfd_link_hash_undefweak))))
15104 /* This case can occur if we saw a PLT32 reloc in an input
15105 file, but the symbol was never referred to by a dynamic
15106 object, or if all references were garbage collected. In
15107 such a case, we don't actually need to build a procedure
15108 linkage table, and we can just do a PC24 reloc instead. */
15109 h->plt.offset = (bfd_vma) -1;
15110 eh->plt.thumb_refcount = 0;
15111 eh->plt.maybe_thumb_refcount = 0;
15112 eh->plt.noncall_refcount = 0;
15120 /* It's possible that we incorrectly decided a .plt reloc was
15121 needed for an R_ARM_PC24 or similar reloc to a non-function sym
15122 in check_relocs. We can't decide accurately between function
15123 and non-function syms in check-relocs; Objects loaded later in
15124 the link may change h->type. So fix it now. */
15125 h->plt.offset = (bfd_vma) -1;
15126 eh->plt.thumb_refcount = 0;
15127 eh->plt.maybe_thumb_refcount = 0;
15128 eh->plt.noncall_refcount = 0;
15131 /* If this is a weak symbol, and there is a real definition, the
15132 processor independent code will have arranged for us to see the
15133 real definition first, and we can just use the same value. */
15134 if (h->u.weakdef != NULL)
15136 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
15137 || h->u.weakdef->root.type == bfd_link_hash_defweak);
15138 h->root.u.def.section = h->u.weakdef->root.u.def.section;
15139 h->root.u.def.value = h->u.weakdef->root.u.def.value;
15143 /* If there are no non-GOT references, we do not need a copy
15145 if (!h->non_got_ref)
15148 /* This is a reference to a symbol defined by a dynamic object which
15149 is not a function. */
15151 /* If we are creating a shared library, we must presume that the
15152 only references to the symbol are via the global offset table.
15153 For such cases we need not do anything here; the relocations will
15154 be handled correctly by relocate_section. Relocatable executables
15155 can reference data in shared objects directly, so we don't need to
15156 do anything here. */
15157 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
15160 /* We must allocate the symbol in our .dynbss section, which will
15161 become part of the .bss section of the executable. There will be
15162 an entry for this symbol in the .dynsym section. The dynamic
15163 object will contain position independent code, so all references
15164 from the dynamic object to this symbol will go through the global
15165 offset table. The dynamic linker will use the .dynsym entry to
15166 determine the address it must put in the global offset table, so
15167 both the dynamic object and the regular object will refer to the
15168 same memory location for the variable. */
15169 s = bfd_get_linker_section (dynobj, ".dynbss");
15170 BFD_ASSERT (s != NULL);
15172 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
15173 linker to copy the initial value out of the dynamic object and into
15174 the runtime process image. We need to remember the offset into the
15175 .rel(a).bss section we are going to use. */
15176 if (info->nocopyreloc == 0
15177 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
15182 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
15183 elf32_arm_allocate_dynrelocs (info, srel, 1);
15187 return _bfd_elf_adjust_dynamic_copy (info, h, s);
15190 /* Allocate space in .plt, .got and associated reloc sections for
15194 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
15196 struct bfd_link_info *info;
15197 struct elf32_arm_link_hash_table *htab;
15198 struct elf32_arm_link_hash_entry *eh;
15199 struct elf_dyn_relocs *p;
15201 if (h->root.type == bfd_link_hash_indirect)
15204 eh = (struct elf32_arm_link_hash_entry *) h;
15206 info = (struct bfd_link_info *) inf;
15207 htab = elf32_arm_hash_table (info);
15211 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
15212 && h->plt.refcount > 0)
15214 /* Make sure this symbol is output as a dynamic symbol.
15215 Undefined weak syms won't yet be marked as dynamic. */
15216 if (h->dynindx == -1
15217 && !h->forced_local)
15219 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15223 /* If the call in the PLT entry binds locally, the associated
15224 GOT entry should use an R_ARM_IRELATIVE relocation instead of
15225 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
15226 than the .plt section. */
15227 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
15230 if (eh->plt.noncall_refcount == 0
15231 && SYMBOL_REFERENCES_LOCAL (info, h))
15232 /* All non-call references can be resolved directly.
15233 This means that they can (and in some cases, must)
15234 resolve directly to the run-time target, rather than
15235 to the PLT. That in turns means that any .got entry
15236 would be equal to the .igot.plt entry, so there's
15237 no point having both. */
15238 h->got.refcount = 0;
15241 if (bfd_link_pic (info)
15243 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
15245 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
15247 /* If this symbol is not defined in a regular file, and we are
15248 not generating a shared library, then set the symbol to this
15249 location in the .plt. This is required to make function
15250 pointers compare as equal between the normal executable and
15251 the shared library. */
15252 if (! bfd_link_pic (info)
15253 && !h->def_regular)
15255 h->root.u.def.section = htab->root.splt;
15256 h->root.u.def.value = h->plt.offset;
15258 /* Make sure the function is not marked as Thumb, in case
15259 it is the target of an ABS32 relocation, which will
15260 point to the PLT entry. */
15261 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15264 /* VxWorks executables have a second set of relocations for
15265 each PLT entry. They go in a separate relocation section,
15266 which is processed by the kernel loader. */
15267 if (htab->vxworks_p && !bfd_link_pic (info))
15269 /* There is a relocation for the initial PLT entry:
15270 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
15271 if (h->plt.offset == htab->plt_header_size)
15272 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
15274 /* There are two extra relocations for each subsequent
15275 PLT entry: an R_ARM_32 relocation for the GOT entry,
15276 and an R_ARM_32 relocation for the PLT entry. */
15277 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
15282 h->plt.offset = (bfd_vma) -1;
15288 h->plt.offset = (bfd_vma) -1;
15292 eh = (struct elf32_arm_link_hash_entry *) h;
15293 eh->tlsdesc_got = (bfd_vma) -1;
15295 if (h->got.refcount > 0)
15299 int tls_type = elf32_arm_hash_entry (h)->tls_type;
15302 /* Make sure this symbol is output as a dynamic symbol.
15303 Undefined weak syms won't yet be marked as dynamic. */
15304 if (h->dynindx == -1
15305 && !h->forced_local)
15307 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15311 if (!htab->symbian_p)
15313 s = htab->root.sgot;
15314 h->got.offset = s->size;
15316 if (tls_type == GOT_UNKNOWN)
15319 if (tls_type == GOT_NORMAL)
15320 /* Non-TLS symbols need one GOT slot. */
15324 if (tls_type & GOT_TLS_GDESC)
15326 /* R_ARM_TLS_DESC needs 2 GOT slots. */
15328 = (htab->root.sgotplt->size
15329 - elf32_arm_compute_jump_table_size (htab));
15330 htab->root.sgotplt->size += 8;
15331 h->got.offset = (bfd_vma) -2;
15332 /* plt.got_offset needs to know there's a TLS_DESC
15333 reloc in the middle of .got.plt. */
15334 htab->num_tls_desc++;
15337 if (tls_type & GOT_TLS_GD)
15339 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
15340 the symbol is both GD and GDESC, got.offset may
15341 have been overwritten. */
15342 h->got.offset = s->size;
15346 if (tls_type & GOT_TLS_IE)
15347 /* R_ARM_TLS_IE32 needs one GOT slot. */
15351 dyn = htab->root.dynamic_sections_created;
15354 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
15355 bfd_link_pic (info),
15357 && (!bfd_link_pic (info)
15358 || !SYMBOL_REFERENCES_LOCAL (info, h)))
15361 if (tls_type != GOT_NORMAL
15362 && (bfd_link_pic (info) || indx != 0)
15363 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15364 || h->root.type != bfd_link_hash_undefweak))
15366 if (tls_type & GOT_TLS_IE)
15367 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15369 if (tls_type & GOT_TLS_GD)
15370 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15372 if (tls_type & GOT_TLS_GDESC)
15374 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
15375 /* GDESC needs a trampoline to jump to. */
15376 htab->tls_trampoline = -1;
15379 /* Only GD needs it. GDESC just emits one relocation per
15381 if ((tls_type & GOT_TLS_GD) && indx != 0)
15382 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15384 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
15386 if (htab->root.dynamic_sections_created)
15387 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
15388 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15390 else if (h->type == STT_GNU_IFUNC
15391 && eh->plt.noncall_refcount == 0)
15392 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
15393 they all resolve dynamically instead. Reserve room for the
15394 GOT entry's R_ARM_IRELATIVE relocation. */
15395 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
15396 else if (bfd_link_pic (info)
15397 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15398 || h->root.type != bfd_link_hash_undefweak))
15399 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
15400 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15404 h->got.offset = (bfd_vma) -1;
15406 /* Allocate stubs for exported Thumb functions on v4t. */
15407 if (!htab->use_blx && h->dynindx != -1
15409 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
15410 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15412 struct elf_link_hash_entry * th;
15413 struct bfd_link_hash_entry * bh;
15414 struct elf_link_hash_entry * myh;
15418 /* Create a new symbol to regist the real location of the function. */
15419 s = h->root.u.def.section;
15420 sprintf (name, "__real_%s", h->root.root.string);
15421 _bfd_generic_link_add_one_symbol (info, s->owner,
15422 name, BSF_GLOBAL, s,
15423 h->root.u.def.value,
15424 NULL, TRUE, FALSE, &bh);
15426 myh = (struct elf_link_hash_entry *) bh;
15427 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
15428 myh->forced_local = 1;
15429 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
15430 eh->export_glue = myh;
15431 th = record_arm_to_thumb_glue (info, h);
15432 /* Point the symbol at the stub. */
15433 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
15434 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15435 h->root.u.def.section = th->root.u.def.section;
15436 h->root.u.def.value = th->root.u.def.value & ~1;
15439 if (eh->dyn_relocs == NULL)
15442 /* In the shared -Bsymbolic case, discard space allocated for
15443 dynamic pc-relative relocs against symbols which turn out to be
15444 defined in regular objects. For the normal shared case, discard
15445 space for pc-relative relocs that have become local due to symbol
15446 visibility changes. */
15448 if (bfd_link_pic (info) || htab->root.is_relocatable_executable)
15450 /* Relocs that use pc_count are PC-relative forms, which will appear
15451 on something like ".long foo - ." or "movw REG, foo - .". We want
15452 calls to protected symbols to resolve directly to the function
15453 rather than going via the plt. If people want function pointer
15454 comparisons to work as expected then they should avoid writing
15455 assembly like ".long foo - .". */
15456 if (SYMBOL_CALLS_LOCAL (info, h))
15458 struct elf_dyn_relocs **pp;
15460 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15462 p->count -= p->pc_count;
15471 if (htab->vxworks_p)
15473 struct elf_dyn_relocs **pp;
15475 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15477 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
15484 /* Also discard relocs on undefined weak syms with non-default
15486 if (eh->dyn_relocs != NULL
15487 && h->root.type == bfd_link_hash_undefweak)
15489 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
15490 eh->dyn_relocs = NULL;
15492 /* Make sure undefined weak symbols are output as a dynamic
15494 else if (h->dynindx == -1
15495 && !h->forced_local)
15497 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15502 else if (htab->root.is_relocatable_executable && h->dynindx == -1
15503 && h->root.type == bfd_link_hash_new)
15505 /* Output absolute symbols so that we can create relocations
15506 against them. For normal symbols we output a relocation
15507 against the section that contains them. */
15508 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15515 /* For the non-shared case, discard space for relocs against
15516 symbols which turn out to need copy relocs or are not
15519 if (!h->non_got_ref
15520 && ((h->def_dynamic
15521 && !h->def_regular)
15522 || (htab->root.dynamic_sections_created
15523 && (h->root.type == bfd_link_hash_undefweak
15524 || h->root.type == bfd_link_hash_undefined))))
15526 /* Make sure this symbol is output as a dynamic symbol.
15527 Undefined weak syms won't yet be marked as dynamic. */
15528 if (h->dynindx == -1
15529 && !h->forced_local)
15531 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15535 /* If that succeeded, we know we'll be keeping all the
15537 if (h->dynindx != -1)
15541 eh->dyn_relocs = NULL;
15546 /* Finally, allocate space. */
15547 for (p = eh->dyn_relocs; p != NULL; p = p->next)
15549 asection *sreloc = elf_section_data (p->sec)->sreloc;
15550 if (h->type == STT_GNU_IFUNC
15551 && eh->plt.noncall_refcount == 0
15552 && SYMBOL_REFERENCES_LOCAL (info, h))
15553 elf32_arm_allocate_irelocs (info, sreloc, p->count);
15555 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
15561 /* Find any dynamic relocs that apply to read-only sections. */
15564 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
15566 struct elf32_arm_link_hash_entry * eh;
15567 struct elf_dyn_relocs * p;
15569 eh = (struct elf32_arm_link_hash_entry *) h;
15570 for (p = eh->dyn_relocs; p != NULL; p = p->next)
15572 asection *s = p->sec;
15574 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15576 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15578 info->flags |= DF_TEXTREL;
15580 /* Not an error, just cut short the traversal. */
15588 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
15591 struct elf32_arm_link_hash_table *globals;
15593 globals = elf32_arm_hash_table (info);
15594 if (globals == NULL)
15597 globals->byteswap_code = byteswap_code;
15600 /* Set the sizes of the dynamic sections. */
15603 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
15604 struct bfd_link_info * info)
15609 bfd_boolean relocs;
15611 struct elf32_arm_link_hash_table *htab;
15613 htab = elf32_arm_hash_table (info);
15617 dynobj = elf_hash_table (info)->dynobj;
15618 BFD_ASSERT (dynobj != NULL);
15619 check_use_blx (htab);
15621 if (elf_hash_table (info)->dynamic_sections_created)
15623 /* Set the contents of the .interp section to the interpreter. */
15624 if (bfd_link_executable (info) && !info->nointerp)
15626 s = bfd_get_linker_section (dynobj, ".interp");
15627 BFD_ASSERT (s != NULL);
15628 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
15629 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
15633 /* Set up .got offsets for local syms, and space for local dynamic
15635 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
15637 bfd_signed_vma *local_got;
15638 bfd_signed_vma *end_local_got;
15639 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
15640 char *local_tls_type;
15641 bfd_vma *local_tlsdesc_gotent;
15642 bfd_size_type locsymcount;
15643 Elf_Internal_Shdr *symtab_hdr;
15645 bfd_boolean is_vxworks = htab->vxworks_p;
15646 unsigned int symndx;
15648 if (! is_arm_elf (ibfd))
15651 for (s = ibfd->sections; s != NULL; s = s->next)
15653 struct elf_dyn_relocs *p;
15655 for (p = (struct elf_dyn_relocs *)
15656 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
15658 if (!bfd_is_abs_section (p->sec)
15659 && bfd_is_abs_section (p->sec->output_section))
15661 /* Input section has been discarded, either because
15662 it is a copy of a linkonce section or due to
15663 linker script /DISCARD/, so we'll be discarding
15666 else if (is_vxworks
15667 && strcmp (p->sec->output_section->name,
15670 /* Relocations in vxworks .tls_vars sections are
15671 handled specially by the loader. */
15673 else if (p->count != 0)
15675 srel = elf_section_data (p->sec)->sreloc;
15676 elf32_arm_allocate_dynrelocs (info, srel, p->count);
15677 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
15678 info->flags |= DF_TEXTREL;
15683 local_got = elf_local_got_refcounts (ibfd);
15687 symtab_hdr = & elf_symtab_hdr (ibfd);
15688 locsymcount = symtab_hdr->sh_info;
15689 end_local_got = local_got + locsymcount;
15690 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
15691 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
15692 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
15694 s = htab->root.sgot;
15695 srel = htab->root.srelgot;
15696 for (; local_got < end_local_got;
15697 ++local_got, ++local_iplt_ptr, ++local_tls_type,
15698 ++local_tlsdesc_gotent, ++symndx)
15700 *local_tlsdesc_gotent = (bfd_vma) -1;
15701 local_iplt = *local_iplt_ptr;
15702 if (local_iplt != NULL)
15704 struct elf_dyn_relocs *p;
15706 if (local_iplt->root.refcount > 0)
15708 elf32_arm_allocate_plt_entry (info, TRUE,
15711 if (local_iplt->arm.noncall_refcount == 0)
15712 /* All references to the PLT are calls, so all
15713 non-call references can resolve directly to the
15714 run-time target. This means that the .got entry
15715 would be the same as the .igot.plt entry, so there's
15716 no point creating both. */
15721 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
15722 local_iplt->root.offset = (bfd_vma) -1;
15725 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
15729 psrel = elf_section_data (p->sec)->sreloc;
15730 if (local_iplt->arm.noncall_refcount == 0)
15731 elf32_arm_allocate_irelocs (info, psrel, p->count);
15733 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
15736 if (*local_got > 0)
15738 Elf_Internal_Sym *isym;
15740 *local_got = s->size;
15741 if (*local_tls_type & GOT_TLS_GD)
15742 /* TLS_GD relocs need an 8-byte structure in the GOT. */
15744 if (*local_tls_type & GOT_TLS_GDESC)
15746 *local_tlsdesc_gotent = htab->root.sgotplt->size
15747 - elf32_arm_compute_jump_table_size (htab);
15748 htab->root.sgotplt->size += 8;
15749 *local_got = (bfd_vma) -2;
15750 /* plt.got_offset needs to know there's a TLS_DESC
15751 reloc in the middle of .got.plt. */
15752 htab->num_tls_desc++;
15754 if (*local_tls_type & GOT_TLS_IE)
15757 if (*local_tls_type & GOT_NORMAL)
15759 /* If the symbol is both GD and GDESC, *local_got
15760 may have been overwritten. */
15761 *local_got = s->size;
15765 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
15769 /* If all references to an STT_GNU_IFUNC PLT are calls,
15770 then all non-call references, including this GOT entry,
15771 resolve directly to the run-time target. */
15772 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
15773 && (local_iplt == NULL
15774 || local_iplt->arm.noncall_refcount == 0))
15775 elf32_arm_allocate_irelocs (info, srel, 1);
15776 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC)
15778 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC))
15779 || *local_tls_type & GOT_TLS_GD)
15780 elf32_arm_allocate_dynrelocs (info, srel, 1);
15782 if (bfd_link_pic (info) && *local_tls_type & GOT_TLS_GDESC)
15784 elf32_arm_allocate_dynrelocs (info,
15785 htab->root.srelplt, 1);
15786 htab->tls_trampoline = -1;
15791 *local_got = (bfd_vma) -1;
15795 if (htab->tls_ldm_got.refcount > 0)
15797 /* Allocate two GOT entries and one dynamic relocation (if necessary)
15798 for R_ARM_TLS_LDM32 relocations. */
15799 htab->tls_ldm_got.offset = htab->root.sgot->size;
15800 htab->root.sgot->size += 8;
15801 if (bfd_link_pic (info))
15802 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15805 htab->tls_ldm_got.offset = -1;
15807 /* Allocate global sym .plt and .got entries, and space for global
15808 sym dynamic relocs. */
15809 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
15811 /* Here we rummage through the found bfds to collect glue information. */
15812 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
15814 if (! is_arm_elf (ibfd))
15817 /* Initialise mapping tables for code/data. */
15818 bfd_elf32_arm_init_maps (ibfd);
15820 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
15821 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
15822 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
15823 /* xgettext:c-format */
15824 _bfd_error_handler (_("Errors encountered processing file %s"),
15828 /* Allocate space for the glue sections now that we've sized them. */
15829 bfd_elf32_arm_allocate_interworking_sections (info);
15831 /* For every jump slot reserved in the sgotplt, reloc_count is
15832 incremented. However, when we reserve space for TLS descriptors,
15833 it's not incremented, so in order to compute the space reserved
15834 for them, it suffices to multiply the reloc count by the jump
15836 if (htab->root.srelplt)
15837 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
15839 if (htab->tls_trampoline)
15841 if (htab->root.splt->size == 0)
15842 htab->root.splt->size += htab->plt_header_size;
15844 htab->tls_trampoline = htab->root.splt->size;
15845 htab->root.splt->size += htab->plt_entry_size;
15847 /* If we're not using lazy TLS relocations, don't generate the
15848 PLT and GOT entries they require. */
15849 if (!(info->flags & DF_BIND_NOW))
15851 htab->dt_tlsdesc_got = htab->root.sgot->size;
15852 htab->root.sgot->size += 4;
15854 htab->dt_tlsdesc_plt = htab->root.splt->size;
15855 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
15859 /* The check_relocs and adjust_dynamic_symbol entry points have
15860 determined the sizes of the various dynamic sections. Allocate
15861 memory for them. */
15864 for (s = dynobj->sections; s != NULL; s = s->next)
15868 if ((s->flags & SEC_LINKER_CREATED) == 0)
15871 /* It's OK to base decisions on the section name, because none
15872 of the dynobj section names depend upon the input files. */
15873 name = bfd_get_section_name (dynobj, s);
15875 if (s == htab->root.splt)
15877 /* Remember whether there is a PLT. */
15878 plt = s->size != 0;
15880 else if (CONST_STRNEQ (name, ".rel"))
15884 /* Remember whether there are any reloc sections other
15885 than .rel(a).plt and .rela.plt.unloaded. */
15886 if (s != htab->root.srelplt && s != htab->srelplt2)
15889 /* We use the reloc_count field as a counter if we need
15890 to copy relocs into the output file. */
15891 s->reloc_count = 0;
15894 else if (s != htab->root.sgot
15895 && s != htab->root.sgotplt
15896 && s != htab->root.iplt
15897 && s != htab->root.igotplt
15898 && s != htab->sdynbss)
15900 /* It's not one of our sections, so don't allocate space. */
15906 /* If we don't need this section, strip it from the
15907 output file. This is mostly to handle .rel(a).bss and
15908 .rel(a).plt. We must create both sections in
15909 create_dynamic_sections, because they must be created
15910 before the linker maps input sections to output
15911 sections. The linker does that before
15912 adjust_dynamic_symbol is called, and it is that
15913 function which decides whether anything needs to go
15914 into these sections. */
15915 s->flags |= SEC_EXCLUDE;
15919 if ((s->flags & SEC_HAS_CONTENTS) == 0)
15922 /* Allocate memory for the section contents. */
15923 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
15924 if (s->contents == NULL)
15928 if (elf_hash_table (info)->dynamic_sections_created)
15930 /* Add some entries to the .dynamic section. We fill in the
15931 values later, in elf32_arm_finish_dynamic_sections, but we
15932 must add the entries now so that we get the correct size for
15933 the .dynamic section. The DT_DEBUG entry is filled in by the
15934 dynamic linker and used by the debugger. */
15935 #define add_dynamic_entry(TAG, VAL) \
15936 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
15938 if (bfd_link_executable (info))
15940 if (!add_dynamic_entry (DT_DEBUG, 0))
15946 if ( !add_dynamic_entry (DT_PLTGOT, 0)
15947 || !add_dynamic_entry (DT_PLTRELSZ, 0)
15948 || !add_dynamic_entry (DT_PLTREL,
15949 htab->use_rel ? DT_REL : DT_RELA)
15950 || !add_dynamic_entry (DT_JMPREL, 0))
15953 if (htab->dt_tlsdesc_plt
15954 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
15955 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
15963 if (!add_dynamic_entry (DT_REL, 0)
15964 || !add_dynamic_entry (DT_RELSZ, 0)
15965 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
15970 if (!add_dynamic_entry (DT_RELA, 0)
15971 || !add_dynamic_entry (DT_RELASZ, 0)
15972 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
15977 /* If any dynamic relocs apply to a read-only section,
15978 then we need a DT_TEXTREL entry. */
15979 if ((info->flags & DF_TEXTREL) == 0)
15980 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
15983 if ((info->flags & DF_TEXTREL) != 0)
15985 if (!add_dynamic_entry (DT_TEXTREL, 0))
15988 if (htab->vxworks_p
15989 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
15992 #undef add_dynamic_entry
15997 /* Size sections even though they're not dynamic. We use it to setup
15998 _TLS_MODULE_BASE_, if needed. */
16001 elf32_arm_always_size_sections (bfd *output_bfd,
16002 struct bfd_link_info *info)
16006 if (bfd_link_relocatable (info))
16009 tls_sec = elf_hash_table (info)->tls_sec;
16013 struct elf_link_hash_entry *tlsbase;
16015 tlsbase = elf_link_hash_lookup
16016 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
16020 struct bfd_link_hash_entry *bh = NULL;
16021 const struct elf_backend_data *bed
16022 = get_elf_backend_data (output_bfd);
16024 if (!(_bfd_generic_link_add_one_symbol
16025 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
16026 tls_sec, 0, NULL, FALSE,
16027 bed->collect, &bh)))
16030 tlsbase->type = STT_TLS;
16031 tlsbase = (struct elf_link_hash_entry *)bh;
16032 tlsbase->def_regular = 1;
16033 tlsbase->other = STV_HIDDEN;
16034 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
16040 /* Finish up dynamic symbol handling. We set the contents of various
16041 dynamic sections here. */
16044 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
16045 struct bfd_link_info * info,
16046 struct elf_link_hash_entry * h,
16047 Elf_Internal_Sym * sym)
16049 struct elf32_arm_link_hash_table *htab;
16050 struct elf32_arm_link_hash_entry *eh;
16052 htab = elf32_arm_hash_table (info);
16056 eh = (struct elf32_arm_link_hash_entry *) h;
16058 if (h->plt.offset != (bfd_vma) -1)
16062 BFD_ASSERT (h->dynindx != -1);
16063 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
16068 if (!h->def_regular)
16070 /* Mark the symbol as undefined, rather than as defined in
16071 the .plt section. */
16072 sym->st_shndx = SHN_UNDEF;
16073 /* If the symbol is weak we need to clear the value.
16074 Otherwise, the PLT entry would provide a definition for
16075 the symbol even if the symbol wasn't defined anywhere,
16076 and so the symbol would never be NULL. Leave the value if
16077 there were any relocations where pointer equality matters
16078 (this is a clue for the dynamic linker, to make function
16079 pointer comparisons work between an application and shared
16081 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
16084 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
16086 /* At least one non-call relocation references this .iplt entry,
16087 so the .iplt entry is the function's canonical address. */
16088 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
16089 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
16090 sym->st_shndx = (_bfd_elf_section_from_bfd_section
16091 (output_bfd, htab->root.iplt->output_section));
16092 sym->st_value = (h->plt.offset
16093 + htab->root.iplt->output_section->vma
16094 + htab->root.iplt->output_offset);
16101 Elf_Internal_Rela rel;
16103 /* This symbol needs a copy reloc. Set it up. */
16104 BFD_ASSERT (h->dynindx != -1
16105 && (h->root.type == bfd_link_hash_defined
16106 || h->root.type == bfd_link_hash_defweak));
16109 BFD_ASSERT (s != NULL);
16112 rel.r_offset = (h->root.u.def.value
16113 + h->root.u.def.section->output_section->vma
16114 + h->root.u.def.section->output_offset);
16115 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
16116 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
16119 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
16120 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
16121 to the ".got" section. */
16122 if (h == htab->root.hdynamic
16123 || (!htab->vxworks_p && h == htab->root.hgot))
16124 sym->st_shndx = SHN_ABS;
16130 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16132 const unsigned long *template, unsigned count)
16136 for (ix = 0; ix != count; ix++)
16138 unsigned long insn = template[ix];
16140 /* Emit mov pc,rx if bx is not permitted. */
16141 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
16142 insn = (insn & 0xf000000f) | 0x01a0f000;
16143 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
16147 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
16148 other variants, NaCl needs this entry in a static executable's
16149 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
16150 zero. For .iplt really only the last bundle is useful, and .iplt
16151 could have a shorter first entry, with each individual PLT entry's
16152 relative branch calculated differently so it targets the last
16153 bundle instead of the instruction before it (labelled .Lplt_tail
16154 above). But it's simpler to keep the size and layout of PLT0
16155 consistent with the dynamic case, at the cost of some dead code at
16156 the start of .iplt and the one dead store to the stack at the start
16159 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16160 asection *plt, bfd_vma got_displacement)
16164 put_arm_insn (htab, output_bfd,
16165 elf32_arm_nacl_plt0_entry[0]
16166 | arm_movw_immediate (got_displacement),
16167 plt->contents + 0);
16168 put_arm_insn (htab, output_bfd,
16169 elf32_arm_nacl_plt0_entry[1]
16170 | arm_movt_immediate (got_displacement),
16171 plt->contents + 4);
16173 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
16174 put_arm_insn (htab, output_bfd,
16175 elf32_arm_nacl_plt0_entry[i],
16176 plt->contents + (i * 4));
16179 /* Finish up the dynamic sections. */
16182 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
16187 struct elf32_arm_link_hash_table *htab;
16189 htab = elf32_arm_hash_table (info);
16193 dynobj = elf_hash_table (info)->dynobj;
16195 sgot = htab->root.sgotplt;
16196 /* A broken linker script might have discarded the dynamic sections.
16197 Catch this here so that we do not seg-fault later on. */
16198 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
16200 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
16202 if (elf_hash_table (info)->dynamic_sections_created)
16205 Elf32_External_Dyn *dyncon, *dynconend;
16207 splt = htab->root.splt;
16208 BFD_ASSERT (splt != NULL && sdyn != NULL);
16209 BFD_ASSERT (htab->symbian_p || sgot != NULL);
16211 dyncon = (Elf32_External_Dyn *) sdyn->contents;
16212 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
16214 for (; dyncon < dynconend; dyncon++)
16216 Elf_Internal_Dyn dyn;
16220 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
16227 if (htab->vxworks_p
16228 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
16229 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16234 goto get_vma_if_bpabi;
16237 goto get_vma_if_bpabi;
16240 goto get_vma_if_bpabi;
16242 name = ".gnu.version";
16243 goto get_vma_if_bpabi;
16245 name = ".gnu.version_d";
16246 goto get_vma_if_bpabi;
16248 name = ".gnu.version_r";
16249 goto get_vma_if_bpabi;
16252 name = htab->symbian_p ? ".got" : ".got.plt";
16255 name = RELOC_SECTION (htab, ".plt");
16257 s = bfd_get_linker_section (dynobj, name);
16260 (*_bfd_error_handler)
16261 (_("could not find section %s"), name);
16262 bfd_set_error (bfd_error_invalid_operation);
16265 if (!htab->symbian_p)
16266 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16268 /* In the BPABI, tags in the PT_DYNAMIC section point
16269 at the file offset, not the memory address, for the
16270 convenience of the post linker. */
16271 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
16272 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16276 if (htab->symbian_p)
16281 s = htab->root.srelplt;
16282 BFD_ASSERT (s != NULL);
16283 dyn.d_un.d_val = s->size;
16284 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16289 if (!htab->symbian_p)
16291 /* My reading of the SVR4 ABI indicates that the
16292 procedure linkage table relocs (DT_JMPREL) should be
16293 included in the overall relocs (DT_REL). This is
16294 what Solaris does. However, UnixWare can not handle
16295 that case. Therefore, we override the DT_RELSZ entry
16296 here to make it not include the JMPREL relocs. Since
16297 the linker script arranges for .rel(a).plt to follow all
16298 other relocation sections, we don't have to worry
16299 about changing the DT_REL entry. */
16300 s = htab->root.srelplt;
16302 dyn.d_un.d_val -= s->size;
16303 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16306 /* Fall through. */
16310 /* In the BPABI, the DT_REL tag must point at the file
16311 offset, not the VMA, of the first relocation
16312 section. So, we use code similar to that in
16313 elflink.c, but do not check for SHF_ALLOC on the
16314 relcoation section, since relocations sections are
16315 never allocated under the BPABI. The comments above
16316 about Unixware notwithstanding, we include all of the
16317 relocations here. */
16318 if (htab->symbian_p)
16321 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
16322 ? SHT_REL : SHT_RELA);
16323 dyn.d_un.d_val = 0;
16324 for (i = 1; i < elf_numsections (output_bfd); i++)
16326 Elf_Internal_Shdr *hdr
16327 = elf_elfsections (output_bfd)[i];
16328 if (hdr->sh_type == type)
16330 if (dyn.d_tag == DT_RELSZ
16331 || dyn.d_tag == DT_RELASZ)
16332 dyn.d_un.d_val += hdr->sh_size;
16333 else if ((ufile_ptr) hdr->sh_offset
16334 <= dyn.d_un.d_val - 1)
16335 dyn.d_un.d_val = hdr->sh_offset;
16338 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16342 case DT_TLSDESC_PLT:
16343 s = htab->root.splt;
16344 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16345 + htab->dt_tlsdesc_plt);
16346 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16349 case DT_TLSDESC_GOT:
16350 s = htab->root.sgot;
16351 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16352 + htab->dt_tlsdesc_got);
16353 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16356 /* Set the bottom bit of DT_INIT/FINI if the
16357 corresponding function is Thumb. */
16359 name = info->init_function;
16362 name = info->fini_function;
16364 /* If it wasn't set by elf_bfd_final_link
16365 then there is nothing to adjust. */
16366 if (dyn.d_un.d_val != 0)
16368 struct elf_link_hash_entry * eh;
16370 eh = elf_link_hash_lookup (elf_hash_table (info), name,
16371 FALSE, FALSE, TRUE);
16373 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
16374 == ST_BRANCH_TO_THUMB)
16376 dyn.d_un.d_val |= 1;
16377 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16384 /* Fill in the first entry in the procedure linkage table. */
16385 if (splt->size > 0 && htab->plt_header_size)
16387 const bfd_vma *plt0_entry;
16388 bfd_vma got_address, plt_address, got_displacement;
16390 /* Calculate the addresses of the GOT and PLT. */
16391 got_address = sgot->output_section->vma + sgot->output_offset;
16392 plt_address = splt->output_section->vma + splt->output_offset;
16394 if (htab->vxworks_p)
16396 /* The VxWorks GOT is relocated by the dynamic linker.
16397 Therefore, we must emit relocations rather than simply
16398 computing the values now. */
16399 Elf_Internal_Rela rel;
16401 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
16402 put_arm_insn (htab, output_bfd, plt0_entry[0],
16403 splt->contents + 0);
16404 put_arm_insn (htab, output_bfd, plt0_entry[1],
16405 splt->contents + 4);
16406 put_arm_insn (htab, output_bfd, plt0_entry[2],
16407 splt->contents + 8);
16408 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
16410 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
16411 rel.r_offset = plt_address + 12;
16412 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16414 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
16415 htab->srelplt2->contents);
16417 else if (htab->nacl_p)
16418 arm_nacl_put_plt0 (htab, output_bfd, splt,
16419 got_address + 8 - (plt_address + 16));
16420 else if (using_thumb_only (htab))
16422 got_displacement = got_address - (plt_address + 12);
16424 plt0_entry = elf32_thumb2_plt0_entry;
16425 put_arm_insn (htab, output_bfd, plt0_entry[0],
16426 splt->contents + 0);
16427 put_arm_insn (htab, output_bfd, plt0_entry[1],
16428 splt->contents + 4);
16429 put_arm_insn (htab, output_bfd, plt0_entry[2],
16430 splt->contents + 8);
16432 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
16436 got_displacement = got_address - (plt_address + 16);
16438 plt0_entry = elf32_arm_plt0_entry;
16439 put_arm_insn (htab, output_bfd, plt0_entry[0],
16440 splt->contents + 0);
16441 put_arm_insn (htab, output_bfd, plt0_entry[1],
16442 splt->contents + 4);
16443 put_arm_insn (htab, output_bfd, plt0_entry[2],
16444 splt->contents + 8);
16445 put_arm_insn (htab, output_bfd, plt0_entry[3],
16446 splt->contents + 12);
16448 #ifdef FOUR_WORD_PLT
16449 /* The displacement value goes in the otherwise-unused
16450 last word of the second entry. */
16451 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
16453 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
16458 /* UnixWare sets the entsize of .plt to 4, although that doesn't
16459 really seem like the right value. */
16460 if (splt->output_section->owner == output_bfd)
16461 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
16463 if (htab->dt_tlsdesc_plt)
16465 bfd_vma got_address
16466 = sgot->output_section->vma + sgot->output_offset;
16467 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
16468 + htab->root.sgot->output_offset);
16469 bfd_vma plt_address
16470 = splt->output_section->vma + splt->output_offset;
16472 arm_put_trampoline (htab, output_bfd,
16473 splt->contents + htab->dt_tlsdesc_plt,
16474 dl_tlsdesc_lazy_trampoline, 6);
16476 bfd_put_32 (output_bfd,
16477 gotplt_address + htab->dt_tlsdesc_got
16478 - (plt_address + htab->dt_tlsdesc_plt)
16479 - dl_tlsdesc_lazy_trampoline[6],
16480 splt->contents + htab->dt_tlsdesc_plt + 24);
16481 bfd_put_32 (output_bfd,
16482 got_address - (plt_address + htab->dt_tlsdesc_plt)
16483 - dl_tlsdesc_lazy_trampoline[7],
16484 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
16487 if (htab->tls_trampoline)
16489 arm_put_trampoline (htab, output_bfd,
16490 splt->contents + htab->tls_trampoline,
16491 tls_trampoline, 3);
16492 #ifdef FOUR_WORD_PLT
16493 bfd_put_32 (output_bfd, 0x00000000,
16494 splt->contents + htab->tls_trampoline + 12);
16498 if (htab->vxworks_p
16499 && !bfd_link_pic (info)
16500 && htab->root.splt->size > 0)
16502 /* Correct the .rel(a).plt.unloaded relocations. They will have
16503 incorrect symbol indexes. */
16507 num_plts = ((htab->root.splt->size - htab->plt_header_size)
16508 / htab->plt_entry_size);
16509 p = htab->srelplt2->contents + RELOC_SIZE (htab);
16511 for (; num_plts; num_plts--)
16513 Elf_Internal_Rela rel;
16515 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16516 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16517 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16518 p += RELOC_SIZE (htab);
16520 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16521 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
16522 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16523 p += RELOC_SIZE (htab);
16528 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
16529 /* NaCl uses a special first entry in .iplt too. */
16530 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
16532 /* Fill in the first three entries in the global offset table. */
16535 if (sgot->size > 0)
16538 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
16540 bfd_put_32 (output_bfd,
16541 sdyn->output_section->vma + sdyn->output_offset,
16543 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
16544 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
16547 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
16554 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
16556 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
16557 struct elf32_arm_link_hash_table *globals;
16558 struct elf_segment_map *m;
16560 i_ehdrp = elf_elfheader (abfd);
16562 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
16563 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
16565 _bfd_elf_post_process_headers (abfd, link_info);
16566 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
16570 globals = elf32_arm_hash_table (link_info);
16571 if (globals != NULL && globals->byteswap_code)
16572 i_ehdrp->e_flags |= EF_ARM_BE8;
16575 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
16576 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
16578 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
16579 if (abi == AEABI_VFP_args_vfp)
16580 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
16582 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
16585 /* Scan segment to set p_flags attribute if it contains only sections with
16586 SHF_ARM_PURECODE flag. */
16587 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16593 for (j = 0; j < m->count; j++)
16595 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
16601 m->p_flags_valid = 1;
16606 static enum elf_reloc_type_class
16607 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
16608 const asection *rel_sec ATTRIBUTE_UNUSED,
16609 const Elf_Internal_Rela *rela)
16611 switch ((int) ELF32_R_TYPE (rela->r_info))
16613 case R_ARM_RELATIVE:
16614 return reloc_class_relative;
16615 case R_ARM_JUMP_SLOT:
16616 return reloc_class_plt;
16618 return reloc_class_copy;
16619 case R_ARM_IRELATIVE:
16620 return reloc_class_ifunc;
16622 return reloc_class_normal;
16627 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
16629 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
16632 /* Return TRUE if this is an unwinding table entry. */
16635 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
16637 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
16638 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
16642 /* Set the type and flags for an ARM section. We do this by
16643 the section name, which is a hack, but ought to work. */
16646 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
16650 name = bfd_get_section_name (abfd, sec);
16652 if (is_arm_elf_unwind_section_name (abfd, name))
16654 hdr->sh_type = SHT_ARM_EXIDX;
16655 hdr->sh_flags |= SHF_LINK_ORDER;
16658 if (sec->flags & SEC_ELF_PURECODE)
16659 hdr->sh_flags |= SHF_ARM_PURECODE;
16664 /* Handle an ARM specific section when reading an object file. This is
16665 called when bfd_section_from_shdr finds a section with an unknown
16669 elf32_arm_section_from_shdr (bfd *abfd,
16670 Elf_Internal_Shdr * hdr,
16674 /* There ought to be a place to keep ELF backend specific flags, but
16675 at the moment there isn't one. We just keep track of the
16676 sections by their name, instead. Fortunately, the ABI gives
16677 names for all the ARM specific sections, so we will probably get
16679 switch (hdr->sh_type)
16681 case SHT_ARM_EXIDX:
16682 case SHT_ARM_PREEMPTMAP:
16683 case SHT_ARM_ATTRIBUTES:
16690 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
16696 static _arm_elf_section_data *
16697 get_arm_elf_section_data (asection * sec)
16699 if (sec && sec->owner && is_arm_elf (sec->owner))
16700 return elf32_arm_section_data (sec);
16708 struct bfd_link_info *info;
16711 int (*func) (void *, const char *, Elf_Internal_Sym *,
16712 asection *, struct elf_link_hash_entry *);
16713 } output_arch_syminfo;
16715 enum map_symbol_type
16723 /* Output a single mapping symbol. */
16726 elf32_arm_output_map_sym (output_arch_syminfo *osi,
16727 enum map_symbol_type type,
16730 static const char *names[3] = {"$a", "$t", "$d"};
16731 Elf_Internal_Sym sym;
16733 sym.st_value = osi->sec->output_section->vma
16734 + osi->sec->output_offset
16738 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
16739 sym.st_shndx = osi->sec_shndx;
16740 sym.st_target_internal = 0;
16741 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
16742 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
16745 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
16746 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
16749 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
16750 bfd_boolean is_iplt_entry_p,
16751 union gotplt_union *root_plt,
16752 struct arm_plt_info *arm_plt)
16754 struct elf32_arm_link_hash_table *htab;
16755 bfd_vma addr, plt_header_size;
16757 if (root_plt->offset == (bfd_vma) -1)
16760 htab = elf32_arm_hash_table (osi->info);
16764 if (is_iplt_entry_p)
16766 osi->sec = htab->root.iplt;
16767 plt_header_size = 0;
16771 osi->sec = htab->root.splt;
16772 plt_header_size = htab->plt_header_size;
16774 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
16775 (osi->info->output_bfd, osi->sec->output_section));
16777 addr = root_plt->offset & -2;
16778 if (htab->symbian_p)
16780 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16782 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
16785 else if (htab->vxworks_p)
16787 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16789 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
16791 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
16793 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
16796 else if (htab->nacl_p)
16798 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16801 else if (using_thumb_only (htab))
16803 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
16808 bfd_boolean thumb_stub_p;
16810 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
16813 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
16816 #ifdef FOUR_WORD_PLT
16817 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16819 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
16822 /* A three-word PLT with no Thumb thunk contains only Arm code,
16823 so only need to output a mapping symbol for the first PLT entry and
16824 entries with thumb thunks. */
16825 if (thumb_stub_p || addr == plt_header_size)
16827 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16836 /* Output mapping symbols for PLT entries associated with H. */
16839 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
16841 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
16842 struct elf32_arm_link_hash_entry *eh;
16844 if (h->root.type == bfd_link_hash_indirect)
16847 if (h->root.type == bfd_link_hash_warning)
16848 /* When warning symbols are created, they **replace** the "real"
16849 entry in the hash table, thus we never get to see the real
16850 symbol in a hash traversal. So look at it now. */
16851 h = (struct elf_link_hash_entry *) h->root.u.i.link;
16853 eh = (struct elf32_arm_link_hash_entry *) h;
16854 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
16855 &h->plt, &eh->plt);
16858 /* Bind a veneered symbol to its veneer identified by its hash entry
16859 STUB_ENTRY. The veneered location thus loose its symbol. */
16862 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
16864 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
16867 hash->root.root.u.def.section = stub_entry->stub_sec;
16868 hash->root.root.u.def.value = stub_entry->stub_offset;
16869 hash->root.size = stub_entry->stub_size;
16872 /* Output a single local symbol for a generated stub. */
16875 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
16876 bfd_vma offset, bfd_vma size)
16878 Elf_Internal_Sym sym;
16880 sym.st_value = osi->sec->output_section->vma
16881 + osi->sec->output_offset
16883 sym.st_size = size;
16885 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
16886 sym.st_shndx = osi->sec_shndx;
16887 sym.st_target_internal = 0;
16888 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
16892 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
16895 struct elf32_arm_stub_hash_entry *stub_entry;
16896 asection *stub_sec;
16899 output_arch_syminfo *osi;
16900 const insn_sequence *template_sequence;
16901 enum stub_insn_type prev_type;
16904 enum map_symbol_type sym_type;
16906 /* Massage our args to the form they really have. */
16907 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
16908 osi = (output_arch_syminfo *) in_arg;
16910 stub_sec = stub_entry->stub_sec;
16912 /* Ensure this stub is attached to the current section being
16914 if (stub_sec != osi->sec)
16917 addr = (bfd_vma) stub_entry->stub_offset;
16918 template_sequence = stub_entry->stub_template;
16920 if (arm_stub_sym_claimed (stub_entry->stub_type))
16921 arm_stub_claim_sym (stub_entry);
16924 stub_name = stub_entry->output_name;
16925 switch (template_sequence[0].type)
16928 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
16929 stub_entry->stub_size))
16934 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
16935 stub_entry->stub_size))
16944 prev_type = DATA_TYPE;
16946 for (i = 0; i < stub_entry->stub_template_size; i++)
16948 switch (template_sequence[i].type)
16951 sym_type = ARM_MAP_ARM;
16956 sym_type = ARM_MAP_THUMB;
16960 sym_type = ARM_MAP_DATA;
16968 if (template_sequence[i].type != prev_type)
16970 prev_type = template_sequence[i].type;
16971 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
16975 switch (template_sequence[i].type)
16999 /* Output mapping symbols for linker generated sections,
17000 and for those data-only sections that do not have a
17004 elf32_arm_output_arch_local_syms (bfd *output_bfd,
17005 struct bfd_link_info *info,
17007 int (*func) (void *, const char *,
17008 Elf_Internal_Sym *,
17010 struct elf_link_hash_entry *))
17012 output_arch_syminfo osi;
17013 struct elf32_arm_link_hash_table *htab;
17015 bfd_size_type size;
17018 htab = elf32_arm_hash_table (info);
17022 check_use_blx (htab);
17024 osi.flaginfo = flaginfo;
17028 /* Add a $d mapping symbol to data-only sections that
17029 don't have any mapping symbol. This may result in (harmless) redundant
17030 mapping symbols. */
17031 for (input_bfd = info->input_bfds;
17033 input_bfd = input_bfd->link.next)
17035 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
17036 for (osi.sec = input_bfd->sections;
17038 osi.sec = osi.sec->next)
17040 if (osi.sec->output_section != NULL
17041 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
17043 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
17044 == SEC_HAS_CONTENTS
17045 && get_arm_elf_section_data (osi.sec) != NULL
17046 && get_arm_elf_section_data (osi.sec)->mapcount == 0
17047 && osi.sec->size > 0
17048 && (osi.sec->flags & SEC_EXCLUDE) == 0)
17050 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17051 (output_bfd, osi.sec->output_section);
17052 if (osi.sec_shndx != (int)SHN_BAD)
17053 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
17058 /* ARM->Thumb glue. */
17059 if (htab->arm_glue_size > 0)
17061 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17062 ARM2THUMB_GLUE_SECTION_NAME);
17064 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17065 (output_bfd, osi.sec->output_section);
17066 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
17067 || htab->pic_veneer)
17068 size = ARM2THUMB_PIC_GLUE_SIZE;
17069 else if (htab->use_blx)
17070 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
17072 size = ARM2THUMB_STATIC_GLUE_SIZE;
17074 for (offset = 0; offset < htab->arm_glue_size; offset += size)
17076 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
17077 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
17081 /* Thumb->ARM glue. */
17082 if (htab->thumb_glue_size > 0)
17084 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17085 THUMB2ARM_GLUE_SECTION_NAME);
17087 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17088 (output_bfd, osi.sec->output_section);
17089 size = THUMB2ARM_GLUE_SIZE;
17091 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
17093 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
17094 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
17098 /* ARMv4 BX veneers. */
17099 if (htab->bx_glue_size > 0)
17101 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17102 ARM_BX_GLUE_SECTION_NAME);
17104 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17105 (output_bfd, osi.sec->output_section);
17107 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
17110 /* Long calls stubs. */
17111 if (htab->stub_bfd && htab->stub_bfd->sections)
17113 asection* stub_sec;
17115 for (stub_sec = htab->stub_bfd->sections;
17117 stub_sec = stub_sec->next)
17119 /* Ignore non-stub sections. */
17120 if (!strstr (stub_sec->name, STUB_SUFFIX))
17123 osi.sec = stub_sec;
17125 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17126 (output_bfd, osi.sec->output_section);
17128 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
17132 /* Finally, output mapping symbols for the PLT. */
17133 if (htab->root.splt && htab->root.splt->size > 0)
17135 osi.sec = htab->root.splt;
17136 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17137 (output_bfd, osi.sec->output_section));
17139 /* Output mapping symbols for the plt header. SymbianOS does not have a
17141 if (htab->vxworks_p)
17143 /* VxWorks shared libraries have no PLT header. */
17144 if (!bfd_link_pic (info))
17146 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17148 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17152 else if (htab->nacl_p)
17154 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17157 else if (using_thumb_only (htab))
17159 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
17161 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17163 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
17166 else if (!htab->symbian_p)
17168 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17170 #ifndef FOUR_WORD_PLT
17171 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
17176 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
17178 /* NaCl uses a special first entry in .iplt too. */
17179 osi.sec = htab->root.iplt;
17180 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17181 (output_bfd, osi.sec->output_section));
17182 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17185 if ((htab->root.splt && htab->root.splt->size > 0)
17186 || (htab->root.iplt && htab->root.iplt->size > 0))
17188 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
17189 for (input_bfd = info->input_bfds;
17191 input_bfd = input_bfd->link.next)
17193 struct arm_local_iplt_info **local_iplt;
17194 unsigned int i, num_syms;
17196 local_iplt = elf32_arm_local_iplt (input_bfd);
17197 if (local_iplt != NULL)
17199 num_syms = elf_symtab_hdr (input_bfd).sh_info;
17200 for (i = 0; i < num_syms; i++)
17201 if (local_iplt[i] != NULL
17202 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
17203 &local_iplt[i]->root,
17204 &local_iplt[i]->arm))
17209 if (htab->dt_tlsdesc_plt != 0)
17211 /* Mapping symbols for the lazy tls trampoline. */
17212 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
17215 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17216 htab->dt_tlsdesc_plt + 24))
17219 if (htab->tls_trampoline != 0)
17221 /* Mapping symbols for the tls trampoline. */
17222 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
17224 #ifdef FOUR_WORD_PLT
17225 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17226 htab->tls_trampoline + 12))
17234 /* Filter normal symbols of CMSE entry functions of ABFD to include in
17235 the import library. All SYMCOUNT symbols of ABFD can be examined
17236 from their pointers in SYMS. Pointers of symbols to keep should be
17237 stored continuously at the beginning of that array.
17239 Returns the number of symbols to keep. */
17241 static unsigned int
17242 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17243 struct bfd_link_info *info,
17244 asymbol **syms, long symcount)
17248 long src_count, dst_count = 0;
17249 struct elf32_arm_link_hash_table *htab;
17251 htab = elf32_arm_hash_table (info);
17252 if (!htab->stub_bfd || !htab->stub_bfd->sections)
17256 cmse_name = (char *) bfd_malloc (maxnamelen);
17257 for (src_count = 0; src_count < symcount; src_count++)
17259 struct elf32_arm_link_hash_entry *cmse_hash;
17265 sym = syms[src_count];
17266 flags = sym->flags;
17267 name = (char *) bfd_asymbol_name (sym);
17269 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
17271 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
17274 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
17275 if (namelen > maxnamelen)
17277 cmse_name = (char *)
17278 bfd_realloc (cmse_name, namelen);
17279 maxnamelen = namelen;
17281 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
17282 cmse_hash = (struct elf32_arm_link_hash_entry *)
17283 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
17286 || (cmse_hash->root.root.type != bfd_link_hash_defined
17287 && cmse_hash->root.root.type != bfd_link_hash_defweak)
17288 || cmse_hash->root.type != STT_FUNC)
17291 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
17294 syms[dst_count++] = sym;
17298 syms[dst_count] = NULL;
17303 /* Filter symbols of ABFD to include in the import library. All
17304 SYMCOUNT symbols of ABFD can be examined from their pointers in
17305 SYMS. Pointers of symbols to keep should be stored continuously at
17306 the beginning of that array.
17308 Returns the number of symbols to keep. */
17310 static unsigned int
17311 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17312 struct bfd_link_info *info,
17313 asymbol **syms, long symcount)
17315 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
17317 if (globals->cmse_implib)
17318 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
17320 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
17323 /* Allocate target specific section data. */
17326 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
17328 if (!sec->used_by_bfd)
17330 _arm_elf_section_data *sdata;
17331 bfd_size_type amt = sizeof (*sdata);
17333 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
17336 sec->used_by_bfd = sdata;
17339 return _bfd_elf_new_section_hook (abfd, sec);
17343 /* Used to order a list of mapping symbols by address. */
17346 elf32_arm_compare_mapping (const void * a, const void * b)
17348 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
17349 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
17351 if (amap->vma > bmap->vma)
17353 else if (amap->vma < bmap->vma)
17355 else if (amap->type > bmap->type)
17356 /* Ensure results do not depend on the host qsort for objects with
17357 multiple mapping symbols at the same address by sorting on type
17360 else if (amap->type < bmap->type)
17366 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
17368 static unsigned long
17369 offset_prel31 (unsigned long addr, bfd_vma offset)
17371 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
17374 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
17378 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
17380 unsigned long first_word = bfd_get_32 (output_bfd, from);
17381 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
17383 /* High bit of first word is supposed to be zero. */
17384 if ((first_word & 0x80000000ul) == 0)
17385 first_word = offset_prel31 (first_word, offset);
17387 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
17388 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
17389 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
17390 second_word = offset_prel31 (second_word, offset);
17392 bfd_put_32 (output_bfd, first_word, to);
17393 bfd_put_32 (output_bfd, second_word, to + 4);
17396 /* Data for make_branch_to_a8_stub(). */
17398 struct a8_branch_to_stub_data
17400 asection *writing_section;
17401 bfd_byte *contents;
17405 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
17406 places for a particular section. */
17409 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
17412 struct elf32_arm_stub_hash_entry *stub_entry;
17413 struct a8_branch_to_stub_data *data;
17414 bfd_byte *contents;
17415 unsigned long branch_insn;
17416 bfd_vma veneered_insn_loc, veneer_entry_loc;
17417 bfd_signed_vma branch_offset;
17421 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17422 data = (struct a8_branch_to_stub_data *) in_arg;
17424 if (stub_entry->target_section != data->writing_section
17425 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
17428 contents = data->contents;
17430 /* We use target_section as Cortex-A8 erratum workaround stubs are only
17431 generated when both source and target are in the same section. */
17432 veneered_insn_loc = stub_entry->target_section->output_section->vma
17433 + stub_entry->target_section->output_offset
17434 + stub_entry->source_value;
17436 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
17437 + stub_entry->stub_sec->output_offset
17438 + stub_entry->stub_offset;
17440 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
17441 veneered_insn_loc &= ~3u;
17443 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
17445 abfd = stub_entry->target_section->owner;
17446 loc = stub_entry->source_value;
17448 /* We attempt to avoid this condition by setting stubs_always_after_branch
17449 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
17450 This check is just to be on the safe side... */
17451 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
17453 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
17454 "allocated in unsafe location"), abfd);
17458 switch (stub_entry->stub_type)
17460 case arm_stub_a8_veneer_b:
17461 case arm_stub_a8_veneer_b_cond:
17462 branch_insn = 0xf0009000;
17465 case arm_stub_a8_veneer_blx:
17466 branch_insn = 0xf000e800;
17469 case arm_stub_a8_veneer_bl:
17471 unsigned int i1, j1, i2, j2, s;
17473 branch_insn = 0xf000d000;
17476 if (branch_offset < -16777216 || branch_offset > 16777214)
17478 /* There's not much we can do apart from complain if this
17480 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
17481 "of range (input file too large)"), abfd);
17485 /* i1 = not(j1 eor s), so:
17487 j1 = (not i1) eor s. */
17489 branch_insn |= (branch_offset >> 1) & 0x7ff;
17490 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
17491 i2 = (branch_offset >> 22) & 1;
17492 i1 = (branch_offset >> 23) & 1;
17493 s = (branch_offset >> 24) & 1;
17496 branch_insn |= j2 << 11;
17497 branch_insn |= j1 << 13;
17498 branch_insn |= s << 26;
17507 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
17508 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
17513 /* Beginning of stm32l4xx work-around. */
17515 /* Functions encoding instructions necessary for the emission of the
17516 fix-stm32l4xx-629360.
17517 Encoding is extracted from the
17518 ARM (C) Architecture Reference Manual
17519 ARMv7-A and ARMv7-R edition
17520 ARM DDI 0406C.b (ID072512). */
17522 static inline bfd_vma
17523 create_instruction_branch_absolute (int branch_offset)
17525 /* A8.8.18 B (A8-334)
17526 B target_address (Encoding T4). */
17527 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
17528 /* jump offset is: S:I1:I2:imm10:imm11:0. */
17529 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
17531 int s = ((branch_offset & 0x1000000) >> 24);
17532 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
17533 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
17535 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
17536 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
17538 bfd_vma patched_inst = 0xf0009000
17540 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
17541 | j1 << 13 /* J1. */
17542 | j2 << 11 /* J2. */
17543 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
17545 return patched_inst;
17548 static inline bfd_vma
17549 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
17551 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
17552 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
17553 bfd_vma patched_inst = 0xe8900000
17554 | (/*W=*/wback << 21)
17556 | (reg_mask & 0x0000ffff);
17558 return patched_inst;
17561 static inline bfd_vma
17562 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
17564 /* A8.8.60 LDMDB/LDMEA (A8-402)
17565 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
17566 bfd_vma patched_inst = 0xe9100000
17567 | (/*W=*/wback << 21)
17569 | (reg_mask & 0x0000ffff);
17571 return patched_inst;
17574 static inline bfd_vma
17575 create_instruction_mov (int target_reg, int source_reg)
17577 /* A8.8.103 MOV (register) (A8-486)
17578 MOV Rd, Rm (Encoding T1). */
17579 bfd_vma patched_inst = 0x4600
17580 | (target_reg & 0x7)
17581 | ((target_reg & 0x8) >> 3) << 7
17582 | (source_reg << 3);
17584 return patched_inst;
17587 static inline bfd_vma
17588 create_instruction_sub (int target_reg, int source_reg, int value)
17590 /* A8.8.221 SUB (immediate) (A8-708)
17591 SUB Rd, Rn, #value (Encoding T3). */
17592 bfd_vma patched_inst = 0xf1a00000
17593 | (target_reg << 8)
17594 | (source_reg << 16)
17596 | ((value & 0x800) >> 11) << 26
17597 | ((value & 0x700) >> 8) << 12
17600 return patched_inst;
17603 static inline bfd_vma
17604 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
17607 /* A8.8.332 VLDM (A8-922)
17608 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
17609 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
17610 | (/*W=*/wback << 21)
17612 | (num_words & 0x000000ff)
17613 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
17614 | (first_reg & 0x00000001) << 22;
17616 return patched_inst;
17619 static inline bfd_vma
17620 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
17623 /* A8.8.332 VLDM (A8-922)
17624 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
17625 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
17627 | (num_words & 0x000000ff)
17628 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
17629 | (first_reg & 0x00000001) << 22;
17631 return patched_inst;
17634 static inline bfd_vma
17635 create_instruction_udf_w (int value)
17637 /* A8.8.247 UDF (A8-758)
17638 Undefined (Encoding T2). */
17639 bfd_vma patched_inst = 0xf7f0a000
17640 | (value & 0x00000fff)
17641 | (value & 0x000f0000) << 16;
17643 return patched_inst;
17646 static inline bfd_vma
17647 create_instruction_udf (int value)
17649 /* A8.8.247 UDF (A8-758)
17650 Undefined (Encoding T1). */
17651 bfd_vma patched_inst = 0xde00
17654 return patched_inst;
17657 /* Functions writing an instruction in memory, returning the next
17658 memory position to write to. */
17660 static inline bfd_byte *
17661 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
17662 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17664 put_thumb2_insn (htab, output_bfd, insn, pt);
17668 static inline bfd_byte *
17669 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
17670 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17672 put_thumb_insn (htab, output_bfd, insn, pt);
17676 /* Function filling up a region in memory with T1 and T2 UDFs taking
17677 care of alignment. */
17680 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
17682 const bfd_byte * const base_stub_contents,
17683 bfd_byte * const from_stub_contents,
17684 const bfd_byte * const end_stub_contents)
17686 bfd_byte *current_stub_contents = from_stub_contents;
17688 /* Fill the remaining of the stub with deterministic contents : UDF
17690 Check if realignment is needed on modulo 4 frontier using T1, to
17692 if ((current_stub_contents < end_stub_contents)
17693 && !((current_stub_contents - base_stub_contents) % 2)
17694 && ((current_stub_contents - base_stub_contents) % 4))
17695 current_stub_contents =
17696 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17697 create_instruction_udf (0));
17699 for (; current_stub_contents < end_stub_contents;)
17700 current_stub_contents =
17701 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17702 create_instruction_udf_w (0));
17704 return current_stub_contents;
17707 /* Functions writing the stream of instructions equivalent to the
17708 derived sequence for ldmia, ldmdb, vldm respectively. */
17711 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
17713 const insn32 initial_insn,
17714 const bfd_byte *const initial_insn_addr,
17715 bfd_byte *const base_stub_contents)
17717 int wback = (initial_insn & 0x00200000) >> 21;
17718 int ri, rn = (initial_insn & 0x000F0000) >> 16;
17719 int insn_all_registers = initial_insn & 0x0000ffff;
17720 int insn_low_registers, insn_high_registers;
17721 int usable_register_mask;
17722 int nb_registers = popcount (insn_all_registers);
17723 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
17724 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
17725 bfd_byte *current_stub_contents = base_stub_contents;
17727 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
17729 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
17730 smaller than 8 registers load sequences that do not cause the
17732 if (nb_registers <= 8)
17734 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
17735 current_stub_contents =
17736 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17739 /* B initial_insn_addr+4. */
17741 current_stub_contents =
17742 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17743 create_instruction_branch_absolute
17744 (initial_insn_addr - current_stub_contents));
17747 /* Fill the remaining of the stub with deterministic contents. */
17748 current_stub_contents =
17749 stm32l4xx_fill_stub_udf (htab, output_bfd,
17750 base_stub_contents, current_stub_contents,
17751 base_stub_contents +
17752 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17757 /* - reg_list[13] == 0. */
17758 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
17760 /* - reg_list[14] & reg_list[15] != 1. */
17761 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
17763 /* - if (wback==1) reg_list[rn] == 0. */
17764 BFD_ASSERT (!wback || !restore_rn);
17766 /* - nb_registers > 8. */
17767 BFD_ASSERT (popcount (insn_all_registers) > 8);
17769 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
17771 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
17772 - One with the 7 lowest registers (register mask 0x007F)
17773 This LDM will finally contain between 2 and 7 registers
17774 - One with the 7 highest registers (register mask 0xDF80)
17775 This ldm will finally contain between 2 and 7 registers. */
17776 insn_low_registers = insn_all_registers & 0x007F;
17777 insn_high_registers = insn_all_registers & 0xDF80;
17779 /* A spare register may be needed during this veneer to temporarily
17780 handle the base register. This register will be restored with the
17781 last LDM operation.
17782 The usable register may be any general purpose register (that
17783 excludes PC, SP, LR : register mask is 0x1FFF). */
17784 usable_register_mask = 0x1FFF;
17786 /* Generate the stub function. */
17789 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
17790 current_stub_contents =
17791 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17792 create_instruction_ldmia
17793 (rn, /*wback=*/1, insn_low_registers));
17795 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
17796 current_stub_contents =
17797 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17798 create_instruction_ldmia
17799 (rn, /*wback=*/1, insn_high_registers));
17802 /* B initial_insn_addr+4. */
17803 current_stub_contents =
17804 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17805 create_instruction_branch_absolute
17806 (initial_insn_addr - current_stub_contents));
17809 else /* if (!wback). */
17813 /* If Rn is not part of the high-register-list, move it there. */
17814 if (!(insn_high_registers & (1 << rn)))
17816 /* Choose a Ri in the high-register-list that will be restored. */
17817 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
17820 current_stub_contents =
17821 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17822 create_instruction_mov (ri, rn));
17825 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
17826 current_stub_contents =
17827 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17828 create_instruction_ldmia
17829 (ri, /*wback=*/1, insn_low_registers));
17831 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
17832 current_stub_contents =
17833 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17834 create_instruction_ldmia
17835 (ri, /*wback=*/0, insn_high_registers));
17839 /* B initial_insn_addr+4. */
17840 current_stub_contents =
17841 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17842 create_instruction_branch_absolute
17843 (initial_insn_addr - current_stub_contents));
17847 /* Fill the remaining of the stub with deterministic contents. */
17848 current_stub_contents =
17849 stm32l4xx_fill_stub_udf (htab, output_bfd,
17850 base_stub_contents, current_stub_contents,
17851 base_stub_contents +
17852 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17856 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
17858 const insn32 initial_insn,
17859 const bfd_byte *const initial_insn_addr,
17860 bfd_byte *const base_stub_contents)
17862 int wback = (initial_insn & 0x00200000) >> 21;
17863 int ri, rn = (initial_insn & 0x000f0000) >> 16;
17864 int insn_all_registers = initial_insn & 0x0000ffff;
17865 int insn_low_registers, insn_high_registers;
17866 int usable_register_mask;
17867 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
17868 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
17869 int nb_registers = popcount (insn_all_registers);
17870 bfd_byte *current_stub_contents = base_stub_contents;
17872 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
17874 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
17875 smaller than 8 registers load sequences that do not cause the
17877 if (nb_registers <= 8)
17879 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
17880 current_stub_contents =
17881 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17884 /* B initial_insn_addr+4. */
17885 current_stub_contents =
17886 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17887 create_instruction_branch_absolute
17888 (initial_insn_addr - current_stub_contents));
17890 /* Fill the remaining of the stub with deterministic contents. */
17891 current_stub_contents =
17892 stm32l4xx_fill_stub_udf (htab, output_bfd,
17893 base_stub_contents, current_stub_contents,
17894 base_stub_contents +
17895 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17900 /* - reg_list[13] == 0. */
17901 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
17903 /* - reg_list[14] & reg_list[15] != 1. */
17904 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
17906 /* - if (wback==1) reg_list[rn] == 0. */
17907 BFD_ASSERT (!wback || !restore_rn);
17909 /* - nb_registers > 8. */
17910 BFD_ASSERT (popcount (insn_all_registers) > 8);
17912 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
17914 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
17915 - One with the 7 lowest registers (register mask 0x007F)
17916 This LDM will finally contain between 2 and 7 registers
17917 - One with the 7 highest registers (register mask 0xDF80)
17918 This ldm will finally contain between 2 and 7 registers. */
17919 insn_low_registers = insn_all_registers & 0x007F;
17920 insn_high_registers = insn_all_registers & 0xDF80;
17922 /* A spare register may be needed during this veneer to temporarily
17923 handle the base register. This register will be restored with
17924 the last LDM operation.
17925 The usable register may be any general purpose register (that excludes
17926 PC, SP, LR : register mask is 0x1FFF). */
17927 usable_register_mask = 0x1FFF;
17929 /* Generate the stub function. */
17930 if (!wback && !restore_pc && !restore_rn)
17932 /* Choose a Ri in the low-register-list that will be restored. */
17933 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
17936 current_stub_contents =
17937 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17938 create_instruction_mov (ri, rn));
17940 /* LDMDB Ri!, {R-high-register-list}. */
17941 current_stub_contents =
17942 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17943 create_instruction_ldmdb
17944 (ri, /*wback=*/1, insn_high_registers));
17946 /* LDMDB Ri, {R-low-register-list}. */
17947 current_stub_contents =
17948 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17949 create_instruction_ldmdb
17950 (ri, /*wback=*/0, insn_low_registers));
17952 /* B initial_insn_addr+4. */
17953 current_stub_contents =
17954 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17955 create_instruction_branch_absolute
17956 (initial_insn_addr - current_stub_contents));
17958 else if (wback && !restore_pc && !restore_rn)
17960 /* LDMDB Rn!, {R-high-register-list}. */
17961 current_stub_contents =
17962 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17963 create_instruction_ldmdb
17964 (rn, /*wback=*/1, insn_high_registers));
17966 /* LDMDB Rn!, {R-low-register-list}. */
17967 current_stub_contents =
17968 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17969 create_instruction_ldmdb
17970 (rn, /*wback=*/1, insn_low_registers));
17972 /* B initial_insn_addr+4. */
17973 current_stub_contents =
17974 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17975 create_instruction_branch_absolute
17976 (initial_insn_addr - current_stub_contents));
17978 else if (!wback && restore_pc && !restore_rn)
17980 /* Choose a Ri in the high-register-list that will be restored. */
17981 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
17983 /* SUB Ri, Rn, #(4*nb_registers). */
17984 current_stub_contents =
17985 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17986 create_instruction_sub (ri, rn, (4 * nb_registers)));
17988 /* LDMIA Ri!, {R-low-register-list}. */
17989 current_stub_contents =
17990 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17991 create_instruction_ldmia
17992 (ri, /*wback=*/1, insn_low_registers));
17994 /* LDMIA Ri, {R-high-register-list}. */
17995 current_stub_contents =
17996 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17997 create_instruction_ldmia
17998 (ri, /*wback=*/0, insn_high_registers));
18000 else if (wback && restore_pc && !restore_rn)
18002 /* Choose a Ri in the high-register-list that will be restored. */
18003 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18005 /* SUB Rn, Rn, #(4*nb_registers) */
18006 current_stub_contents =
18007 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18008 create_instruction_sub (rn, rn, (4 * nb_registers)));
18011 current_stub_contents =
18012 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18013 create_instruction_mov (ri, rn));
18015 /* LDMIA Ri!, {R-low-register-list}. */
18016 current_stub_contents =
18017 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18018 create_instruction_ldmia
18019 (ri, /*wback=*/1, insn_low_registers));
18021 /* LDMIA Ri, {R-high-register-list}. */
18022 current_stub_contents =
18023 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18024 create_instruction_ldmia
18025 (ri, /*wback=*/0, insn_high_registers));
18027 else if (!wback && !restore_pc && restore_rn)
18030 if (!(insn_low_registers & (1 << rn)))
18032 /* Choose a Ri in the low-register-list that will be restored. */
18033 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18036 current_stub_contents =
18037 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18038 create_instruction_mov (ri, rn));
18041 /* LDMDB Ri!, {R-high-register-list}. */
18042 current_stub_contents =
18043 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18044 create_instruction_ldmdb
18045 (ri, /*wback=*/1, insn_high_registers));
18047 /* LDMDB Ri, {R-low-register-list}. */
18048 current_stub_contents =
18049 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18050 create_instruction_ldmdb
18051 (ri, /*wback=*/0, insn_low_registers));
18053 /* B initial_insn_addr+4. */
18054 current_stub_contents =
18055 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18056 create_instruction_branch_absolute
18057 (initial_insn_addr - current_stub_contents));
18059 else if (!wback && restore_pc && restore_rn)
18062 if (!(insn_high_registers & (1 << rn)))
18064 /* Choose a Ri in the high-register-list that will be restored. */
18065 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18068 /* SUB Ri, Rn, #(4*nb_registers). */
18069 current_stub_contents =
18070 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18071 create_instruction_sub (ri, rn, (4 * nb_registers)));
18073 /* LDMIA Ri!, {R-low-register-list}. */
18074 current_stub_contents =
18075 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18076 create_instruction_ldmia
18077 (ri, /*wback=*/1, insn_low_registers));
18079 /* LDMIA Ri, {R-high-register-list}. */
18080 current_stub_contents =
18081 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18082 create_instruction_ldmia
18083 (ri, /*wback=*/0, insn_high_registers));
18085 else if (wback && restore_rn)
18087 /* The assembler should not have accepted to encode this. */
18088 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
18089 "undefined behavior.\n");
18092 /* Fill the remaining of the stub with deterministic contents. */
18093 current_stub_contents =
18094 stm32l4xx_fill_stub_udf (htab, output_bfd,
18095 base_stub_contents, current_stub_contents,
18096 base_stub_contents +
18097 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18102 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
18104 const insn32 initial_insn,
18105 const bfd_byte *const initial_insn_addr,
18106 bfd_byte *const base_stub_contents)
18108 int num_words = ((unsigned int) initial_insn << 24) >> 24;
18109 bfd_byte *current_stub_contents = base_stub_contents;
18111 BFD_ASSERT (is_thumb2_vldm (initial_insn));
18113 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18114 smaller than 8 words load sequences that do not cause the
18116 if (num_words <= 8)
18118 /* Untouched instruction. */
18119 current_stub_contents =
18120 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18123 /* B initial_insn_addr+4. */
18124 current_stub_contents =
18125 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18126 create_instruction_branch_absolute
18127 (initial_insn_addr - current_stub_contents));
18131 bfd_boolean is_dp = /* DP encoding. */
18132 (initial_insn & 0xfe100f00) == 0xec100b00;
18133 bfd_boolean is_ia_nobang = /* (IA without !). */
18134 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
18135 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
18136 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
18137 bfd_boolean is_db_bang = /* (DB with !). */
18138 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
18139 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
18140 /* d = UInt (Vd:D);. */
18141 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
18142 | (((unsigned int)initial_insn << 9) >> 31);
18144 /* Compute the number of 8-words chunks needed to split. */
18145 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
18148 /* The test coverage has been done assuming the following
18149 hypothesis that exactly one of the previous is_ predicates is
18151 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
18152 && !(is_ia_nobang & is_ia_bang & is_db_bang));
18154 /* We treat the cutting of the words in one pass for all
18155 cases, then we emit the adjustments:
18158 -> vldm rx!, {8_words_or_less} for each needed 8_word
18159 -> sub rx, rx, #size (list)
18162 -> vldm rx!, {8_words_or_less} for each needed 8_word
18163 This also handles vpop instruction (when rx is sp)
18166 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
18167 for (chunk = 0; chunk < chunks; ++chunk)
18169 bfd_vma new_insn = 0;
18171 if (is_ia_nobang || is_ia_bang)
18173 new_insn = create_instruction_vldmia
18177 chunks - (chunk + 1) ?
18178 8 : num_words - chunk * 8,
18179 first_reg + chunk * 8);
18181 else if (is_db_bang)
18183 new_insn = create_instruction_vldmdb
18186 chunks - (chunk + 1) ?
18187 8 : num_words - chunk * 8,
18188 first_reg + chunk * 8);
18192 current_stub_contents =
18193 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18197 /* Only this case requires the base register compensation
18201 current_stub_contents =
18202 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18203 create_instruction_sub
18204 (base_reg, base_reg, 4*num_words));
18207 /* B initial_insn_addr+4. */
18208 current_stub_contents =
18209 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18210 create_instruction_branch_absolute
18211 (initial_insn_addr - current_stub_contents));
18214 /* Fill the remaining of the stub with deterministic contents. */
18215 current_stub_contents =
18216 stm32l4xx_fill_stub_udf (htab, output_bfd,
18217 base_stub_contents, current_stub_contents,
18218 base_stub_contents +
18219 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
18223 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
18225 const insn32 wrong_insn,
18226 const bfd_byte *const wrong_insn_addr,
18227 bfd_byte *const stub_contents)
18229 if (is_thumb2_ldmia (wrong_insn))
18230 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
18231 wrong_insn, wrong_insn_addr,
18233 else if (is_thumb2_ldmdb (wrong_insn))
18234 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
18235 wrong_insn, wrong_insn_addr,
18237 else if (is_thumb2_vldm (wrong_insn))
18238 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
18239 wrong_insn, wrong_insn_addr,
18243 /* End of stm32l4xx work-around. */
18246 /* Do code byteswapping. Return FALSE afterwards so that the section is
18247 written out as normal. */
18250 elf32_arm_write_section (bfd *output_bfd,
18251 struct bfd_link_info *link_info,
18253 bfd_byte *contents)
18255 unsigned int mapcount, errcount;
18256 _arm_elf_section_data *arm_data;
18257 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
18258 elf32_arm_section_map *map;
18259 elf32_vfp11_erratum_list *errnode;
18260 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
18263 bfd_vma offset = sec->output_section->vma + sec->output_offset;
18267 if (globals == NULL)
18270 /* If this section has not been allocated an _arm_elf_section_data
18271 structure then we cannot record anything. */
18272 arm_data = get_arm_elf_section_data (sec);
18273 if (arm_data == NULL)
18276 mapcount = arm_data->mapcount;
18277 map = arm_data->map;
18278 errcount = arm_data->erratumcount;
18282 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
18284 for (errnode = arm_data->erratumlist; errnode != 0;
18285 errnode = errnode->next)
18287 bfd_vma target = errnode->vma - offset;
18289 switch (errnode->type)
18291 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
18293 bfd_vma branch_to_veneer;
18294 /* Original condition code of instruction, plus bit mask for
18295 ARM B instruction. */
18296 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
18299 /* The instruction is before the label. */
18302 /* Above offset included in -4 below. */
18303 branch_to_veneer = errnode->u.b.veneer->vma
18304 - errnode->vma - 4;
18306 if ((signed) branch_to_veneer < -(1 << 25)
18307 || (signed) branch_to_veneer >= (1 << 25))
18308 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
18309 "range"), output_bfd);
18311 insn |= (branch_to_veneer >> 2) & 0xffffff;
18312 contents[endianflip ^ target] = insn & 0xff;
18313 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18314 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18315 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18319 case VFP11_ERRATUM_ARM_VENEER:
18321 bfd_vma branch_from_veneer;
18324 /* Take size of veneer into account. */
18325 branch_from_veneer = errnode->u.v.branch->vma
18326 - errnode->vma - 12;
18328 if ((signed) branch_from_veneer < -(1 << 25)
18329 || (signed) branch_from_veneer >= (1 << 25))
18330 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
18331 "range"), output_bfd);
18333 /* Original instruction. */
18334 insn = errnode->u.v.branch->u.b.vfp_insn;
18335 contents[endianflip ^ target] = insn & 0xff;
18336 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18337 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18338 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18340 /* Branch back to insn after original insn. */
18341 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
18342 contents[endianflip ^ (target + 4)] = insn & 0xff;
18343 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
18344 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
18345 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
18355 if (arm_data->stm32l4xx_erratumcount != 0)
18357 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
18358 stm32l4xx_errnode != 0;
18359 stm32l4xx_errnode = stm32l4xx_errnode->next)
18361 bfd_vma target = stm32l4xx_errnode->vma - offset;
18363 switch (stm32l4xx_errnode->type)
18365 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
18368 bfd_vma branch_to_veneer =
18369 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
18371 if ((signed) branch_to_veneer < -(1 << 24)
18372 || (signed) branch_to_veneer >= (1 << 24))
18374 bfd_vma out_of_range =
18375 ((signed) branch_to_veneer < -(1 << 24)) ?
18376 - branch_to_veneer - (1 << 24) :
18377 ((signed) branch_to_veneer >= (1 << 24)) ?
18378 branch_to_veneer - (1 << 24) : 0;
18380 (*_bfd_error_handler)
18381 (_("%B(%#x): error: Cannot create STM32L4XX veneer. "
18382 "Jump out of range by %ld bytes. "
18383 "Cannot encode branch instruction. "),
18385 (long) (stm32l4xx_errnode->vma - 4),
18390 insn = create_instruction_branch_absolute
18391 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
18393 /* The instruction is before the label. */
18396 put_thumb2_insn (globals, output_bfd,
18397 (bfd_vma) insn, contents + target);
18401 case STM32L4XX_ERRATUM_VENEER:
18404 bfd_byte * veneer_r;
18407 veneer = contents + target;
18409 + stm32l4xx_errnode->u.b.veneer->vma
18410 - stm32l4xx_errnode->vma - 4;
18412 if ((signed) (veneer_r - veneer -
18413 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
18414 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
18415 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
18416 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
18417 || (signed) (veneer_r - veneer) >= (1 << 24))
18419 (*_bfd_error_handler) (_("%B: error: Cannot create STM32L4XX "
18420 "veneer."), output_bfd);
18424 /* Original instruction. */
18425 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
18427 stm32l4xx_create_replacing_stub
18428 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
18438 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
18440 arm_unwind_table_edit *edit_node
18441 = arm_data->u.exidx.unwind_edit_list;
18442 /* Now, sec->size is the size of the section we will write. The original
18443 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
18444 markers) was sec->rawsize. (This isn't the case if we perform no
18445 edits, then rawsize will be zero and we should use size). */
18446 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
18447 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
18448 unsigned int in_index, out_index;
18449 bfd_vma add_to_offsets = 0;
18451 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
18455 unsigned int edit_index = edit_node->index;
18457 if (in_index < edit_index && in_index * 8 < input_size)
18459 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18460 contents + in_index * 8, add_to_offsets);
18464 else if (in_index == edit_index
18465 || (in_index * 8 >= input_size
18466 && edit_index == UINT_MAX))
18468 switch (edit_node->type)
18470 case DELETE_EXIDX_ENTRY:
18472 add_to_offsets += 8;
18475 case INSERT_EXIDX_CANTUNWIND_AT_END:
18477 asection *text_sec = edit_node->linked_section;
18478 bfd_vma text_offset = text_sec->output_section->vma
18479 + text_sec->output_offset
18481 bfd_vma exidx_offset = offset + out_index * 8;
18482 unsigned long prel31_offset;
18484 /* Note: this is meant to be equivalent to an
18485 R_ARM_PREL31 relocation. These synthetic
18486 EXIDX_CANTUNWIND markers are not relocated by the
18487 usual BFD method. */
18488 prel31_offset = (text_offset - exidx_offset)
18490 if (bfd_link_relocatable (link_info))
18492 /* Here relocation for new EXIDX_CANTUNWIND is
18493 created, so there is no need to
18494 adjust offset by hand. */
18495 prel31_offset = text_sec->output_offset
18499 /* First address we can't unwind. */
18500 bfd_put_32 (output_bfd, prel31_offset,
18501 &edited_contents[out_index * 8]);
18503 /* Code for EXIDX_CANTUNWIND. */
18504 bfd_put_32 (output_bfd, 0x1,
18505 &edited_contents[out_index * 8 + 4]);
18508 add_to_offsets -= 8;
18513 edit_node = edit_node->next;
18518 /* No more edits, copy remaining entries verbatim. */
18519 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18520 contents + in_index * 8, add_to_offsets);
18526 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
18527 bfd_set_section_contents (output_bfd, sec->output_section,
18529 (file_ptr) sec->output_offset, sec->size);
18534 /* Fix code to point to Cortex-A8 erratum stubs. */
18535 if (globals->fix_cortex_a8)
18537 struct a8_branch_to_stub_data data;
18539 data.writing_section = sec;
18540 data.contents = contents;
18542 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
18549 if (globals->byteswap_code)
18551 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
18554 for (i = 0; i < mapcount; i++)
18556 if (i == mapcount - 1)
18559 end = map[i + 1].vma;
18561 switch (map[i].type)
18564 /* Byte swap code words. */
18565 while (ptr + 3 < end)
18567 tmp = contents[ptr];
18568 contents[ptr] = contents[ptr + 3];
18569 contents[ptr + 3] = tmp;
18570 tmp = contents[ptr + 1];
18571 contents[ptr + 1] = contents[ptr + 2];
18572 contents[ptr + 2] = tmp;
18578 /* Byte swap code halfwords. */
18579 while (ptr + 1 < end)
18581 tmp = contents[ptr];
18582 contents[ptr] = contents[ptr + 1];
18583 contents[ptr + 1] = tmp;
18589 /* Leave data alone. */
18597 arm_data->mapcount = -1;
18598 arm_data->mapsize = 0;
18599 arm_data->map = NULL;
18604 /* Mangle thumb function symbols as we read them in. */
18607 elf32_arm_swap_symbol_in (bfd * abfd,
18610 Elf_Internal_Sym *dst)
18612 Elf_Internal_Shdr *symtab_hdr;
18613 const char *name = NULL;
18615 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
18617 dst->st_target_internal = 0;
18619 /* New EABI objects mark thumb function symbols by setting the low bit of
18621 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
18622 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
18624 if (dst->st_value & 1)
18626 dst->st_value &= ~(bfd_vma) 1;
18627 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
18628 ST_BRANCH_TO_THUMB);
18631 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
18633 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
18635 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
18636 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
18638 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
18639 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
18641 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
18643 /* Mark CMSE special symbols. */
18644 symtab_hdr = & elf_symtab_hdr (abfd);
18645 if (symtab_hdr->sh_size)
18646 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
18647 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
18648 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
18654 /* Mangle thumb function symbols as we write them out. */
18657 elf32_arm_swap_symbol_out (bfd *abfd,
18658 const Elf_Internal_Sym *src,
18662 Elf_Internal_Sym newsym;
18664 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
18665 of the address set, as per the new EABI. We do this unconditionally
18666 because objcopy does not set the elf header flags until after
18667 it writes out the symbol table. */
18668 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
18671 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
18672 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
18673 if (newsym.st_shndx != SHN_UNDEF)
18675 /* Do this only for defined symbols. At link type, the static
18676 linker will simulate the work of dynamic linker of resolving
18677 symbols and will carry over the thumbness of found symbols to
18678 the output symbol table. It's not clear how it happens, but
18679 the thumbness of undefined symbols can well be different at
18680 runtime, and writing '1' for them will be confusing for users
18681 and possibly for dynamic linker itself.
18683 newsym.st_value |= 1;
18688 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
18691 /* Add the PT_ARM_EXIDX program header. */
18694 elf32_arm_modify_segment_map (bfd *abfd,
18695 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18697 struct elf_segment_map *m;
18700 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18701 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18703 /* If there is already a PT_ARM_EXIDX header, then we do not
18704 want to add another one. This situation arises when running
18705 "strip"; the input binary already has the header. */
18706 m = elf_seg_map (abfd);
18707 while (m && m->p_type != PT_ARM_EXIDX)
18711 m = (struct elf_segment_map *)
18712 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
18715 m->p_type = PT_ARM_EXIDX;
18717 m->sections[0] = sec;
18719 m->next = elf_seg_map (abfd);
18720 elf_seg_map (abfd) = m;
18727 /* We may add a PT_ARM_EXIDX program header. */
18730 elf32_arm_additional_program_headers (bfd *abfd,
18731 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18735 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18736 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18742 /* Hook called by the linker routine which adds symbols from an object
18746 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
18747 Elf_Internal_Sym *sym, const char **namep,
18748 flagword *flagsp, asection **secp, bfd_vma *valp)
18750 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
18751 && (abfd->flags & DYNAMIC) == 0
18752 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
18753 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
18755 if (elf32_arm_hash_table (info) == NULL)
18758 if (elf32_arm_hash_table (info)->vxworks_p
18759 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
18760 flagsp, secp, valp))
18766 /* We use this to override swap_symbol_in and swap_symbol_out. */
18767 const struct elf_size_info elf32_arm_size_info =
18769 sizeof (Elf32_External_Ehdr),
18770 sizeof (Elf32_External_Phdr),
18771 sizeof (Elf32_External_Shdr),
18772 sizeof (Elf32_External_Rel),
18773 sizeof (Elf32_External_Rela),
18774 sizeof (Elf32_External_Sym),
18775 sizeof (Elf32_External_Dyn),
18776 sizeof (Elf_External_Note),
18780 ELFCLASS32, EV_CURRENT,
18781 bfd_elf32_write_out_phdrs,
18782 bfd_elf32_write_shdrs_and_ehdr,
18783 bfd_elf32_checksum_contents,
18784 bfd_elf32_write_relocs,
18785 elf32_arm_swap_symbol_in,
18786 elf32_arm_swap_symbol_out,
18787 bfd_elf32_slurp_reloc_table,
18788 bfd_elf32_slurp_symbol_table,
18789 bfd_elf32_swap_dyn_in,
18790 bfd_elf32_swap_dyn_out,
18791 bfd_elf32_swap_reloc_in,
18792 bfd_elf32_swap_reloc_out,
18793 bfd_elf32_swap_reloca_in,
18794 bfd_elf32_swap_reloca_out
18798 read_code32 (const bfd *abfd, const bfd_byte *addr)
18800 /* V7 BE8 code is always little endian. */
18801 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
18802 return bfd_getl32 (addr);
18804 return bfd_get_32 (abfd, addr);
18808 read_code16 (const bfd *abfd, const bfd_byte *addr)
18810 /* V7 BE8 code is always little endian. */
18811 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
18812 return bfd_getl16 (addr);
18814 return bfd_get_16 (abfd, addr);
18817 /* Return size of plt0 entry starting at ADDR
18818 or (bfd_vma) -1 if size can not be determined. */
18821 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
18823 bfd_vma first_word;
18826 first_word = read_code32 (abfd, addr);
18828 if (first_word == elf32_arm_plt0_entry[0])
18829 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
18830 else if (first_word == elf32_thumb2_plt0_entry[0])
18831 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
18833 /* We don't yet handle this PLT format. */
18834 return (bfd_vma) -1;
18839 /* Return size of plt entry starting at offset OFFSET
18840 of plt section located at address START
18841 or (bfd_vma) -1 if size can not be determined. */
18844 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
18846 bfd_vma first_insn;
18847 bfd_vma plt_size = 0;
18848 const bfd_byte *addr = start + offset;
18850 /* PLT entry size if fixed on Thumb-only platforms. */
18851 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
18852 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
18854 /* Respect Thumb stub if necessary. */
18855 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
18857 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
18860 /* Strip immediate from first add. */
18861 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
18863 #ifdef FOUR_WORD_PLT
18864 if (first_insn == elf32_arm_plt_entry[0])
18865 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
18867 if (first_insn == elf32_arm_plt_entry_long[0])
18868 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
18869 else if (first_insn == elf32_arm_plt_entry_short[0])
18870 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
18873 /* We don't yet handle this PLT format. */
18874 return (bfd_vma) -1;
18879 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
18882 elf32_arm_get_synthetic_symtab (bfd *abfd,
18883 long symcount ATTRIBUTE_UNUSED,
18884 asymbol **syms ATTRIBUTE_UNUSED,
18894 Elf_Internal_Shdr *hdr;
18902 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
18905 if (dynsymcount <= 0)
18908 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
18909 if (relplt == NULL)
18912 hdr = &elf_section_data (relplt)->this_hdr;
18913 if (hdr->sh_link != elf_dynsymtab (abfd)
18914 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
18917 plt = bfd_get_section_by_name (abfd, ".plt");
18921 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
18924 data = plt->contents;
18927 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
18929 bfd_cache_section_contents((asection *) plt, data);
18932 count = relplt->size / hdr->sh_entsize;
18933 size = count * sizeof (asymbol);
18934 p = relplt->relocation;
18935 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
18937 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
18938 if (p->addend != 0)
18939 size += sizeof ("+0x") - 1 + 8;
18942 s = *ret = (asymbol *) bfd_malloc (size);
18946 offset = elf32_arm_plt0_size (abfd, data);
18947 if (offset == (bfd_vma) -1)
18950 names = (char *) (s + count);
18951 p = relplt->relocation;
18953 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
18957 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
18958 if (plt_size == (bfd_vma) -1)
18961 *s = **p->sym_ptr_ptr;
18962 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
18963 we are defining a symbol, ensure one of them is set. */
18964 if ((s->flags & BSF_LOCAL) == 0)
18965 s->flags |= BSF_GLOBAL;
18966 s->flags |= BSF_SYNTHETIC;
18971 len = strlen ((*p->sym_ptr_ptr)->name);
18972 memcpy (names, (*p->sym_ptr_ptr)->name, len);
18974 if (p->addend != 0)
18978 memcpy (names, "+0x", sizeof ("+0x") - 1);
18979 names += sizeof ("+0x") - 1;
18980 bfd_sprintf_vma (abfd, buf, p->addend);
18981 for (a = buf; *a == '0'; ++a)
18984 memcpy (names, a, len);
18987 memcpy (names, "@plt", sizeof ("@plt"));
18988 names += sizeof ("@plt");
18990 offset += plt_size;
18997 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
18999 if (hdr->sh_flags & SHF_ARM_PURECODE)
19000 *flags |= SEC_ELF_PURECODE;
19005 elf32_arm_lookup_section_flags (char *flag_name)
19007 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
19008 return SHF_ARM_PURECODE;
19010 return SEC_NO_FLAGS;
19013 static unsigned int
19014 elf32_arm_count_additional_relocs (asection *sec)
19016 struct _arm_elf_section_data *arm_data;
19017 arm_data = get_arm_elf_section_data (sec);
19019 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
19022 static unsigned int
19023 elf32_arm_count_output_relocs (struct bfd_link_info * info,
19027 struct bfd_elf_section_data *esdo;
19028 struct bfd_link_order *p;
19029 bfd_size_type count;
19031 esdo = elf_section_data (o->output_section);
19032 if (esdo->this_hdr.sh_type != SHT_ARM_EXIDX)
19033 return _bfd_elf_default_count_output_relocs (info, o, rela);
19035 /* PR 20595: Skip relocations for deleted exidx entries. */
19037 for (p = o->map_head.link_order; p != NULL; p = p->next)
19039 struct _arm_elf_section_data *arm_data;
19040 struct bfd_elf_section_data *esd;
19041 arm_unwind_table_edit *edit_list;
19042 Elf_Internal_Rela *relocs;
19044 bfd_size_type num_rel;
19045 bfd_size_type num_rela;
19048 if (p->type == bfd_section_reloc_link_order
19049 || p->type == bfd_symbol_reloc_link_order)
19055 sec = p->u.indirect.section;
19056 arm_data = get_arm_elf_section_data (sec);
19057 esd = &arm_data->elf;
19059 if (arm_data->additional_reloc_count)
19060 count += arm_data->additional_reloc_count;
19062 edit_list = arm_data->u.exidx.unwind_edit_list;
19065 count += sec->reloc_count;
19069 relocs = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL,
19070 info->keep_memory);
19071 num_rel = esd->rel.hdr ? NUM_SHDR_ENTRIES (esd->rel.hdr) : 0;
19072 num_rela = esd->rela.hdr ? NUM_SHDR_ENTRIES (esd->rela.hdr) : 0;
19076 for (i = 0; i < (rela ? num_rela : num_rel); i++)
19078 arm_unwind_table_edit *edit_node;
19079 unsigned int index;
19081 index = (relocs[i].r_offset - sec->vma) / 8;
19083 for (edit_node = edit_list;
19084 edit_node->next && edit_node->next->index > index;
19087 if (edit_node->type != DELETE_EXIDX_ENTRY
19088 || edit_node->index != index)
19096 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
19097 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
19098 FALSE otherwise. ISECTION is the best guess matching section from the
19099 input bfd IBFD, but it might be NULL. */
19102 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
19103 bfd *obfd ATTRIBUTE_UNUSED,
19104 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
19105 Elf_Internal_Shdr *osection)
19107 switch (osection->sh_type)
19109 case SHT_ARM_EXIDX:
19111 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
19112 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
19115 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
19116 osection->sh_info = 0;
19118 /* The sh_link field must be set to the text section associated with
19119 this index section. Unfortunately the ARM EHABI does not specify
19120 exactly how to determine this association. Our caller does try
19121 to match up OSECTION with its corresponding input section however
19122 so that is a good first guess. */
19123 if (isection != NULL
19124 && osection->bfd_section != NULL
19125 && isection->bfd_section != NULL
19126 && isection->bfd_section->output_section != NULL
19127 && isection->bfd_section->output_section == osection->bfd_section
19128 && iheaders != NULL
19129 && isection->sh_link > 0
19130 && isection->sh_link < elf_numsections (ibfd)
19131 && iheaders[isection->sh_link]->bfd_section != NULL
19132 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
19135 for (i = elf_numsections (obfd); i-- > 0;)
19136 if (oheaders[i]->bfd_section
19137 == iheaders[isection->sh_link]->bfd_section->output_section)
19143 /* Failing that we have to find a matching section ourselves. If
19144 we had the output section name available we could compare that
19145 with input section names. Unfortunately we don't. So instead
19146 we use a simple heuristic and look for the nearest executable
19147 section before this one. */
19148 for (i = elf_numsections (obfd); i-- > 0;)
19149 if (oheaders[i] == osection)
19155 if (oheaders[i]->sh_type == SHT_PROGBITS
19156 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
19157 == (SHF_ALLOC | SHF_EXECINSTR))
19163 osection->sh_link = i;
19164 /* If the text section was part of a group
19165 then the index section should be too. */
19166 if (oheaders[i]->sh_flags & SHF_GROUP)
19167 osection->sh_flags |= SHF_GROUP;
19173 case SHT_ARM_PREEMPTMAP:
19174 osection->sh_flags = SHF_ALLOC;
19177 case SHT_ARM_ATTRIBUTES:
19178 case SHT_ARM_DEBUGOVERLAY:
19179 case SHT_ARM_OVERLAYSECTION:
19187 /* Returns TRUE if NAME is an ARM mapping symbol.
19188 Traditionally the symbols $a, $d and $t have been used.
19189 The ARM ELF standard also defines $x (for A64 code). It also allows a
19190 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
19191 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
19192 not support them here. $t.x indicates the start of ThumbEE instructions. */
19195 is_arm_mapping_symbol (const char * name)
19197 return name != NULL /* Paranoia. */
19198 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
19199 the mapping symbols could have acquired a prefix.
19200 We do not support this here, since such symbols no
19201 longer conform to the ARM ELF ABI. */
19202 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
19203 && (name[2] == 0 || name[2] == '.');
19204 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
19205 any characters that follow the period are legal characters for the body
19206 of a symbol's name. For now we just assume that this is the case. */
19209 /* Make sure that mapping symbols in object files are not removed via the
19210 "strip --strip-unneeded" tool. These symbols are needed in order to
19211 correctly generate interworking veneers, and for byte swapping code
19212 regions. Once an object file has been linked, it is safe to remove the
19213 symbols as they will no longer be needed. */
19216 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
19218 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
19219 && sym->section != bfd_abs_section_ptr
19220 && is_arm_mapping_symbol (sym->name))
19221 sym->flags |= BSF_KEEP;
19225 emit_relocs (bfd * output_bfd,
19226 asection * input_section,
19227 Elf_Internal_Shdr * input_rel_hdr,
19228 Elf_Internal_Rela * internal_relocs,
19229 struct elf_link_hash_entry ** rel_hash,
19230 bfd_boolean (* fallback) (bfd *, asection *,
19231 Elf_Internal_Shdr *,
19232 Elf_Internal_Rela *,
19233 struct elf_link_hash_entry **))
19235 _arm_elf_section_data *arm_data;
19236 struct bfd_elf_section_reloc_data *output_reldata;
19237 Elf_Internal_Shdr *output_rel_hdr;
19238 Elf_Internal_Rela *irela;
19239 Elf_Internal_Rela *irelaend;
19240 asection *output_section;
19241 const struct elf_backend_data *bed;
19242 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
19243 struct bfd_elf_section_data *esdo;
19244 arm_unwind_table_edit *edit_list, *edit_tail;
19248 arm_data = get_arm_elf_section_data (input_section);
19250 if (!arm_data || arm_data->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
19251 goto fallback_label;
19253 edit_list = arm_data->u.exidx.unwind_edit_list;
19254 edit_tail = arm_data->u.exidx.unwind_edit_tail;
19257 goto fallback_label;
19259 output_section = input_section->output_section;
19260 offset = output_section->vma + input_section->output_offset;
19262 bed = get_elf_backend_data (output_bfd);
19263 esdo = elf_section_data (output_section);
19264 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
19266 output_reldata = &esdo->rel;
19267 swap_out = bed->s->swap_reloc_out;
19269 else if (esdo->rela.hdr
19270 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
19272 output_reldata = &esdo->rela;
19273 swap_out = bed->s->swap_reloca_out;
19277 (*_bfd_error_handler)
19278 (_("%B: relocation size mismatch in %B section %A"),
19279 output_bfd, input_section->owner, input_section);
19280 bfd_set_error (bfd_error_wrong_format);
19284 output_rel_hdr = output_reldata->hdr;
19285 erel = output_rel_hdr->contents;
19286 erel += output_reldata->count * input_rel_hdr->sh_entsize;
19288 irela = internal_relocs;
19289 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
19290 * bed->s->int_rels_per_ext_rel);
19291 while (irela < irelaend)
19293 arm_unwind_table_edit *edit_node, *edit_next;
19294 Elf_Internal_Rela rel;
19298 index = (irela->r_offset - offset) / 8;
19301 edit_node = edit_list;
19302 for (edit_next = edit_list;
19303 edit_next && edit_next->index <= index;
19304 edit_next = edit_node->next)
19307 edit_node = edit_next;
19310 if (edit_node->type != DELETE_EXIDX_ENTRY || edit_node->index != index)
19312 rel.r_offset = irela->r_offset - bias * 8;
19313 rel.r_info = irela->r_info;
19314 rel.r_addend = irela->r_addend;
19316 (*swap_out) (output_bfd, &rel, erel);
19317 erel += output_rel_hdr->sh_entsize;
19318 output_reldata->count++;
19321 irela += bed->s->int_rels_per_ext_rel;
19324 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
19326 /* New relocation entity. */
19327 asection *text_sec = edit_tail->linked_section;
19328 asection *text_out = text_sec->output_section;
19329 bfd_vma exidx_offset = offset + input_section->size - 8;
19330 Elf_Internal_Rela rel;
19333 rel.r_offset = exidx_offset;
19334 rel.r_info = ELF32_R_INFO (text_out->target_index, R_ARM_PREL31);
19335 (*swap_out) (output_bfd, &rel, erel);
19336 output_reldata->count++;
19342 return fallback (output_bfd, input_section, input_rel_hdr,
19343 internal_relocs, rel_hash);
19347 elf32_arm_emit_relocs (bfd * output_bfd,
19348 asection * input_section,
19349 Elf_Internal_Shdr * input_rel_hdr,
19350 Elf_Internal_Rela * internal_relocs,
19351 struct elf_link_hash_entry ** rel_hash)
19353 return emit_relocs (output_bfd, input_section, input_rel_hdr, internal_relocs,
19354 rel_hash, _bfd_elf_link_output_relocs);
19357 #undef elf_backend_copy_special_section_fields
19358 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
19360 #define ELF_ARCH bfd_arch_arm
19361 #define ELF_TARGET_ID ARM_ELF_DATA
19362 #define ELF_MACHINE_CODE EM_ARM
19363 #ifdef __QNXTARGET__
19364 #define ELF_MAXPAGESIZE 0x1000
19366 #define ELF_MAXPAGESIZE 0x10000
19368 #define ELF_MINPAGESIZE 0x1000
19369 #define ELF_COMMONPAGESIZE 0x1000
19371 #define bfd_elf32_mkobject elf32_arm_mkobject
19373 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
19374 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
19375 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
19376 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
19377 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
19378 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
19379 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
19380 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
19381 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
19382 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
19383 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
19384 #define bfd_elf32_bfd_final_link elf32_arm_final_link
19385 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
19387 #define elf_backend_emit_relocs elf32_arm_emit_relocs
19388 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
19389 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
19390 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
19391 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
19392 #define elf_backend_check_relocs elf32_arm_check_relocs
19393 #define elf_backend_relocate_section elf32_arm_relocate_section
19394 #define elf_backend_write_section elf32_arm_write_section
19395 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
19396 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
19397 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
19398 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
19399 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
19400 #define elf_backend_always_size_sections elf32_arm_always_size_sections
19401 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
19402 #define elf_backend_post_process_headers elf32_arm_post_process_headers
19403 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
19404 #define elf_backend_object_p elf32_arm_object_p
19405 #define elf_backend_fake_sections elf32_arm_fake_sections
19406 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
19407 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19408 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
19409 #define elf_backend_size_info elf32_arm_size_info
19410 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19411 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
19412 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
19413 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
19414 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
19415 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
19416 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
19417 #define elf_backend_count_output_relocs elf32_arm_count_output_relocs
19418 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
19420 #define elf_backend_can_refcount 1
19421 #define elf_backend_can_gc_sections 1
19422 #define elf_backend_plt_readonly 1
19423 #define elf_backend_want_got_plt 1
19424 #define elf_backend_want_plt_sym 0
19425 #define elf_backend_may_use_rel_p 1
19426 #define elf_backend_may_use_rela_p 0
19427 #define elf_backend_default_use_rela_p 0
19429 #define elf_backend_got_header_size 12
19430 #define elf_backend_extern_protected_data 1
19432 #undef elf_backend_obj_attrs_vendor
19433 #define elf_backend_obj_attrs_vendor "aeabi"
19434 #undef elf_backend_obj_attrs_section
19435 #define elf_backend_obj_attrs_section ".ARM.attributes"
19436 #undef elf_backend_obj_attrs_arg_type
19437 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
19438 #undef elf_backend_obj_attrs_section_type
19439 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
19440 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
19441 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
19443 #undef elf_backend_section_flags
19444 #define elf_backend_section_flags elf32_arm_section_flags
19445 #undef elf_backend_lookup_section_flags_hook
19446 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
19448 #include "elf32-target.h"
19450 /* Native Client targets. */
19452 #undef TARGET_LITTLE_SYM
19453 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
19454 #undef TARGET_LITTLE_NAME
19455 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
19456 #undef TARGET_BIG_SYM
19457 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
19458 #undef TARGET_BIG_NAME
19459 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
19461 /* Like elf32_arm_link_hash_table_create -- but overrides
19462 appropriately for NaCl. */
19464 static struct bfd_link_hash_table *
19465 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
19467 struct bfd_link_hash_table *ret;
19469 ret = elf32_arm_link_hash_table_create (abfd);
19472 struct elf32_arm_link_hash_table *htab
19473 = (struct elf32_arm_link_hash_table *) ret;
19477 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
19478 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
19483 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
19484 really need to use elf32_arm_modify_segment_map. But we do it
19485 anyway just to reduce gratuitous differences with the stock ARM backend. */
19488 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
19490 return (elf32_arm_modify_segment_map (abfd, info)
19491 && nacl_modify_segment_map (abfd, info));
19495 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
19497 elf32_arm_final_write_processing (abfd, linker);
19498 nacl_final_write_processing (abfd, linker);
19502 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
19503 const arelent *rel ATTRIBUTE_UNUSED)
19506 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
19507 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
19511 #define elf32_bed elf32_arm_nacl_bed
19512 #undef bfd_elf32_bfd_link_hash_table_create
19513 #define bfd_elf32_bfd_link_hash_table_create \
19514 elf32_arm_nacl_link_hash_table_create
19515 #undef elf_backend_plt_alignment
19516 #define elf_backend_plt_alignment 4
19517 #undef elf_backend_modify_segment_map
19518 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
19519 #undef elf_backend_modify_program_headers
19520 #define elf_backend_modify_program_headers nacl_modify_program_headers
19521 #undef elf_backend_final_write_processing
19522 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
19523 #undef bfd_elf32_get_synthetic_symtab
19524 #undef elf_backend_plt_sym_val
19525 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
19526 #undef elf_backend_copy_special_section_fields
19528 #undef ELF_MINPAGESIZE
19529 #undef ELF_COMMONPAGESIZE
19532 #include "elf32-target.h"
19534 /* Reset to defaults. */
19535 #undef elf_backend_plt_alignment
19536 #undef elf_backend_modify_segment_map
19537 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19538 #undef elf_backend_modify_program_headers
19539 #undef elf_backend_final_write_processing
19540 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19541 #undef ELF_MINPAGESIZE
19542 #define ELF_MINPAGESIZE 0x1000
19543 #undef ELF_COMMONPAGESIZE
19544 #define ELF_COMMONPAGESIZE 0x1000
19547 /* VxWorks Targets. */
19549 #undef TARGET_LITTLE_SYM
19550 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
19551 #undef TARGET_LITTLE_NAME
19552 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
19553 #undef TARGET_BIG_SYM
19554 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
19555 #undef TARGET_BIG_NAME
19556 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
19558 /* Like elf32_arm_link_hash_table_create -- but overrides
19559 appropriately for VxWorks. */
19561 static struct bfd_link_hash_table *
19562 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
19564 struct bfd_link_hash_table *ret;
19566 ret = elf32_arm_link_hash_table_create (abfd);
19569 struct elf32_arm_link_hash_table *htab
19570 = (struct elf32_arm_link_hash_table *) ret;
19572 htab->vxworks_p = 1;
19578 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
19580 elf32_arm_final_write_processing (abfd, linker);
19581 elf_vxworks_final_write_processing (abfd, linker);
19585 elf32_arm_vxworks_emit_relocs (bfd * output_bfd,
19586 asection * input_section,
19587 Elf_Internal_Shdr * input_rel_hdr,
19588 Elf_Internal_Rela * internal_relocs,
19589 struct elf_link_hash_entry ** rel_hash)
19591 return emit_relocs (output_bfd, input_section, input_rel_hdr, internal_relocs,
19592 rel_hash, elf_vxworks_emit_relocs);
19596 #define elf32_bed elf32_arm_vxworks_bed
19598 #undef bfd_elf32_bfd_link_hash_table_create
19599 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
19600 #undef elf_backend_final_write_processing
19601 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
19602 #undef elf_backend_emit_relocs
19603 #define elf_backend_emit_relocs elf32_arm_vxworks_emit_relocs
19605 #undef elf_backend_may_use_rel_p
19606 #define elf_backend_may_use_rel_p 0
19607 #undef elf_backend_may_use_rela_p
19608 #define elf_backend_may_use_rela_p 1
19609 #undef elf_backend_default_use_rela_p
19610 #define elf_backend_default_use_rela_p 1
19611 #undef elf_backend_want_plt_sym
19612 #define elf_backend_want_plt_sym 1
19613 #undef ELF_MAXPAGESIZE
19614 #define ELF_MAXPAGESIZE 0x1000
19616 #include "elf32-target.h"
19619 /* Merge backend specific data from an object file to the output
19620 object file when linking. */
19623 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
19625 flagword out_flags;
19627 bfd_boolean flags_compatible = TRUE;
19630 /* Check if we have the same endianness. */
19631 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
19634 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
19637 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
19640 /* The input BFD must have had its flags initialised. */
19641 /* The following seems bogus to me -- The flags are initialized in
19642 the assembler but I don't think an elf_flags_init field is
19643 written into the object. */
19644 /* BFD_ASSERT (elf_flags_init (ibfd)); */
19646 in_flags = elf_elfheader (ibfd)->e_flags;
19647 out_flags = elf_elfheader (obfd)->e_flags;
19649 /* In theory there is no reason why we couldn't handle this. However
19650 in practice it isn't even close to working and there is no real
19651 reason to want it. */
19652 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
19653 && !(ibfd->flags & DYNAMIC)
19654 && (in_flags & EF_ARM_BE8))
19656 _bfd_error_handler (_("error: %B is already in final BE8 format"),
19661 if (!elf_flags_init (obfd))
19663 /* If the input is the default architecture and had the default
19664 flags then do not bother setting the flags for the output
19665 architecture, instead allow future merges to do this. If no
19666 future merges ever set these flags then they will retain their
19667 uninitialised values, which surprise surprise, correspond
19668 to the default values. */
19669 if (bfd_get_arch_info (ibfd)->the_default
19670 && elf_elfheader (ibfd)->e_flags == 0)
19673 elf_flags_init (obfd) = TRUE;
19674 elf_elfheader (obfd)->e_flags = in_flags;
19676 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
19677 && bfd_get_arch_info (obfd)->the_default)
19678 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
19683 /* Determine what should happen if the input ARM architecture
19684 does not match the output ARM architecture. */
19685 if (! bfd_arm_merge_machines (ibfd, obfd))
19688 /* Identical flags must be compatible. */
19689 if (in_flags == out_flags)
19692 /* Check to see if the input BFD actually contains any sections. If
19693 not, its flags may not have been initialised either, but it
19694 cannot actually cause any incompatiblity. Do not short-circuit
19695 dynamic objects; their section list may be emptied by
19696 elf_link_add_object_symbols.
19698 Also check to see if there are no code sections in the input.
19699 In this case there is no need to check for code specific flags.
19700 XXX - do we need to worry about floating-point format compatability
19701 in data sections ? */
19702 if (!(ibfd->flags & DYNAMIC))
19704 bfd_boolean null_input_bfd = TRUE;
19705 bfd_boolean only_data_sections = TRUE;
19707 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
19709 /* Ignore synthetic glue sections. */
19710 if (strcmp (sec->name, ".glue_7")
19711 && strcmp (sec->name, ".glue_7t"))
19713 if ((bfd_get_section_flags (ibfd, sec)
19714 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19715 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19716 only_data_sections = FALSE;
19718 null_input_bfd = FALSE;
19723 if (null_input_bfd || only_data_sections)
19727 /* Complain about various flag mismatches. */
19728 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
19729 EF_ARM_EABI_VERSION (out_flags)))
19732 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
19734 (in_flags & EF_ARM_EABIMASK) >> 24,
19735 (out_flags & EF_ARM_EABIMASK) >> 24);
19739 /* Not sure what needs to be checked for EABI versions >= 1. */
19740 /* VxWorks libraries do not use these flags. */
19741 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
19742 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
19743 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
19745 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
19748 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
19750 in_flags & EF_ARM_APCS_26 ? 26 : 32,
19751 out_flags & EF_ARM_APCS_26 ? 26 : 32);
19752 flags_compatible = FALSE;
19755 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
19757 if (in_flags & EF_ARM_APCS_FLOAT)
19759 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
19763 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
19766 flags_compatible = FALSE;
19769 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
19771 if (in_flags & EF_ARM_VFP_FLOAT)
19773 (_("error: %B uses VFP instructions, whereas %B does not"),
19777 (_("error: %B uses FPA instructions, whereas %B does not"),
19780 flags_compatible = FALSE;
19783 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
19785 if (in_flags & EF_ARM_MAVERICK_FLOAT)
19787 (_("error: %B uses Maverick instructions, whereas %B does not"),
19791 (_("error: %B does not use Maverick instructions, whereas %B does"),
19794 flags_compatible = FALSE;
19797 #ifdef EF_ARM_SOFT_FLOAT
19798 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
19800 /* We can allow interworking between code that is VFP format
19801 layout, and uses either soft float or integer regs for
19802 passing floating point arguments and results. We already
19803 know that the APCS_FLOAT flags match; similarly for VFP
19805 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
19806 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
19808 if (in_flags & EF_ARM_SOFT_FLOAT)
19810 (_("error: %B uses software FP, whereas %B uses hardware FP"),
19814 (_("error: %B uses hardware FP, whereas %B uses software FP"),
19817 flags_compatible = FALSE;
19822 /* Interworking mismatch is only a warning. */
19823 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
19825 if (in_flags & EF_ARM_INTERWORK)
19828 (_("Warning: %B supports interworking, whereas %B does not"),
19834 (_("Warning: %B does not support interworking, whereas %B does"),
19840 return flags_compatible;
19844 /* Symbian OS Targets. */
19846 #undef TARGET_LITTLE_SYM
19847 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
19848 #undef TARGET_LITTLE_NAME
19849 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
19850 #undef TARGET_BIG_SYM
19851 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
19852 #undef TARGET_BIG_NAME
19853 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
19855 /* Like elf32_arm_link_hash_table_create -- but overrides
19856 appropriately for Symbian OS. */
19858 static struct bfd_link_hash_table *
19859 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
19861 struct bfd_link_hash_table *ret;
19863 ret = elf32_arm_link_hash_table_create (abfd);
19866 struct elf32_arm_link_hash_table *htab
19867 = (struct elf32_arm_link_hash_table *)ret;
19868 /* There is no PLT header for Symbian OS. */
19869 htab->plt_header_size = 0;
19870 /* The PLT entries are each one instruction and one word. */
19871 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
19872 htab->symbian_p = 1;
19873 /* Symbian uses armv5t or above, so use_blx is always true. */
19875 htab->root.is_relocatable_executable = 1;
19880 static const struct bfd_elf_special_section
19881 elf32_arm_symbian_special_sections[] =
19883 /* In a BPABI executable, the dynamic linking sections do not go in
19884 the loadable read-only segment. The post-linker may wish to
19885 refer to these sections, but they are not part of the final
19887 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
19888 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
19889 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
19890 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
19891 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
19892 /* These sections do not need to be writable as the SymbianOS
19893 postlinker will arrange things so that no dynamic relocation is
19895 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
19896 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
19897 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
19898 { NULL, 0, 0, 0, 0 }
19902 elf32_arm_symbian_begin_write_processing (bfd *abfd,
19903 struct bfd_link_info *link_info)
19905 /* BPABI objects are never loaded directly by an OS kernel; they are
19906 processed by a postlinker first, into an OS-specific format. If
19907 the D_PAGED bit is set on the file, BFD will align segments on
19908 page boundaries, so that an OS can directly map the file. With
19909 BPABI objects, that just results in wasted space. In addition,
19910 because we clear the D_PAGED bit, map_sections_to_segments will
19911 recognize that the program headers should not be mapped into any
19912 loadable segment. */
19913 abfd->flags &= ~D_PAGED;
19914 elf32_arm_begin_write_processing (abfd, link_info);
19918 elf32_arm_symbian_modify_segment_map (bfd *abfd,
19919 struct bfd_link_info *info)
19921 struct elf_segment_map *m;
19924 /* BPABI shared libraries and executables should have a PT_DYNAMIC
19925 segment. However, because the .dynamic section is not marked
19926 with SEC_LOAD, the generic ELF code will not create such a
19928 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
19931 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
19932 if (m->p_type == PT_DYNAMIC)
19937 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
19938 m->next = elf_seg_map (abfd);
19939 elf_seg_map (abfd) = m;
19943 /* Also call the generic arm routine. */
19944 return elf32_arm_modify_segment_map (abfd, info);
19947 /* Return address for Ith PLT stub in section PLT, for relocation REL
19948 or (bfd_vma) -1 if it should not be included. */
19951 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
19952 const arelent *rel ATTRIBUTE_UNUSED)
19954 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
19958 #define elf32_bed elf32_arm_symbian_bed
19960 /* The dynamic sections are not allocated on SymbianOS; the postlinker
19961 will process them and then discard them. */
19962 #undef ELF_DYNAMIC_SEC_FLAGS
19963 #define ELF_DYNAMIC_SEC_FLAGS \
19964 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
19966 #undef elf_backend_emit_relocs
19967 #define elf_backend_emit_relocs elf32_arm_emit_relocs
19969 #undef bfd_elf32_bfd_link_hash_table_create
19970 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
19971 #undef elf_backend_special_sections
19972 #define elf_backend_special_sections elf32_arm_symbian_special_sections
19973 #undef elf_backend_begin_write_processing
19974 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
19975 #undef elf_backend_final_write_processing
19976 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19978 #undef elf_backend_modify_segment_map
19979 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
19981 /* There is no .got section for BPABI objects, and hence no header. */
19982 #undef elf_backend_got_header_size
19983 #define elf_backend_got_header_size 0
19985 /* Similarly, there is no .got.plt section. */
19986 #undef elf_backend_want_got_plt
19987 #define elf_backend_want_got_plt 0
19989 #undef elf_backend_plt_sym_val
19990 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
19992 #undef elf_backend_may_use_rel_p
19993 #define elf_backend_may_use_rel_p 1
19994 #undef elf_backend_may_use_rela_p
19995 #define elf_backend_may_use_rela_p 0
19996 #undef elf_backend_default_use_rela_p
19997 #define elf_backend_default_use_rela_p 0
19998 #undef elf_backend_want_plt_sym
19999 #define elf_backend_want_plt_sym 0
20000 #undef ELF_MAXPAGESIZE
20001 #define ELF_MAXPAGESIZE 0x8000
20003 #include "elf32-target.h"