1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
26 #include "libiberty.h"
29 #include "elf-vxworks.h"
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
58 #define elf_info_to_howto 0
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
65 struct bfd_link_info *link_info,
69 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
73 static reloc_howto_type elf32_arm_howto_table_1[] =
76 HOWTO (R_ARM_NONE, /* type */
78 0, /* size (0 = byte, 1 = short, 2 = long) */
80 FALSE, /* pc_relative */
82 complain_overflow_dont,/* complain_on_overflow */
83 bfd_elf_generic_reloc, /* special_function */
84 "R_ARM_NONE", /* name */
85 FALSE, /* partial_inplace */
88 FALSE), /* pcrel_offset */
90 HOWTO (R_ARM_PC24, /* type */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
94 TRUE, /* pc_relative */
96 complain_overflow_signed,/* complain_on_overflow */
97 bfd_elf_generic_reloc, /* special_function */
98 "R_ARM_PC24", /* name */
99 FALSE, /* partial_inplace */
100 0x00ffffff, /* src_mask */
101 0x00ffffff, /* dst_mask */
102 TRUE), /* pcrel_offset */
104 /* 32 bit absolute */
105 HOWTO (R_ARM_ABS32, /* type */
107 2, /* size (0 = byte, 1 = short, 2 = long) */
109 FALSE, /* pc_relative */
111 complain_overflow_bitfield,/* complain_on_overflow */
112 bfd_elf_generic_reloc, /* special_function */
113 "R_ARM_ABS32", /* name */
114 FALSE, /* partial_inplace */
115 0xffffffff, /* src_mask */
116 0xffffffff, /* dst_mask */
117 FALSE), /* pcrel_offset */
119 /* standard 32bit pc-relative reloc */
120 HOWTO (R_ARM_REL32, /* type */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
124 TRUE, /* pc_relative */
126 complain_overflow_bitfield,/* complain_on_overflow */
127 bfd_elf_generic_reloc, /* special_function */
128 "R_ARM_REL32", /* name */
129 FALSE, /* partial_inplace */
130 0xffffffff, /* src_mask */
131 0xffffffff, /* dst_mask */
132 TRUE), /* pcrel_offset */
134 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
135 HOWTO (R_ARM_LDR_PC_G0, /* type */
137 0, /* size (0 = byte, 1 = short, 2 = long) */
139 TRUE, /* pc_relative */
141 complain_overflow_dont,/* complain_on_overflow */
142 bfd_elf_generic_reloc, /* special_function */
143 "R_ARM_LDR_PC_G0", /* name */
144 FALSE, /* partial_inplace */
145 0xffffffff, /* src_mask */
146 0xffffffff, /* dst_mask */
147 TRUE), /* pcrel_offset */
149 /* 16 bit absolute */
150 HOWTO (R_ARM_ABS16, /* type */
152 1, /* size (0 = byte, 1 = short, 2 = long) */
154 FALSE, /* pc_relative */
156 complain_overflow_bitfield,/* complain_on_overflow */
157 bfd_elf_generic_reloc, /* special_function */
158 "R_ARM_ABS16", /* name */
159 FALSE, /* partial_inplace */
160 0x0000ffff, /* src_mask */
161 0x0000ffff, /* dst_mask */
162 FALSE), /* pcrel_offset */
164 /* 12 bit absolute */
165 HOWTO (R_ARM_ABS12, /* type */
167 2, /* size (0 = byte, 1 = short, 2 = long) */
169 FALSE, /* pc_relative */
171 complain_overflow_bitfield,/* complain_on_overflow */
172 bfd_elf_generic_reloc, /* special_function */
173 "R_ARM_ABS12", /* name */
174 FALSE, /* partial_inplace */
175 0x00000fff, /* src_mask */
176 0x00000fff, /* dst_mask */
177 FALSE), /* pcrel_offset */
179 HOWTO (R_ARM_THM_ABS5, /* type */
181 1, /* size (0 = byte, 1 = short, 2 = long) */
183 FALSE, /* pc_relative */
185 complain_overflow_bitfield,/* complain_on_overflow */
186 bfd_elf_generic_reloc, /* special_function */
187 "R_ARM_THM_ABS5", /* name */
188 FALSE, /* partial_inplace */
189 0x000007e0, /* src_mask */
190 0x000007e0, /* dst_mask */
191 FALSE), /* pcrel_offset */
194 HOWTO (R_ARM_ABS8, /* type */
196 0, /* size (0 = byte, 1 = short, 2 = long) */
198 FALSE, /* pc_relative */
200 complain_overflow_bitfield,/* complain_on_overflow */
201 bfd_elf_generic_reloc, /* special_function */
202 "R_ARM_ABS8", /* name */
203 FALSE, /* partial_inplace */
204 0x000000ff, /* src_mask */
205 0x000000ff, /* dst_mask */
206 FALSE), /* pcrel_offset */
208 HOWTO (R_ARM_SBREL32, /* type */
210 2, /* size (0 = byte, 1 = short, 2 = long) */
212 FALSE, /* pc_relative */
214 complain_overflow_dont,/* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_ARM_SBREL32", /* name */
217 FALSE, /* partial_inplace */
218 0xffffffff, /* src_mask */
219 0xffffffff, /* dst_mask */
220 FALSE), /* pcrel_offset */
222 HOWTO (R_ARM_THM_CALL, /* type */
224 2, /* size (0 = byte, 1 = short, 2 = long) */
226 TRUE, /* pc_relative */
228 complain_overflow_signed,/* complain_on_overflow */
229 bfd_elf_generic_reloc, /* special_function */
230 "R_ARM_THM_CALL", /* name */
231 FALSE, /* partial_inplace */
232 0x07ff2fff, /* src_mask */
233 0x07ff2fff, /* dst_mask */
234 TRUE), /* pcrel_offset */
236 HOWTO (R_ARM_THM_PC8, /* type */
238 1, /* size (0 = byte, 1 = short, 2 = long) */
240 TRUE, /* pc_relative */
242 complain_overflow_signed,/* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_ARM_THM_PC8", /* name */
245 FALSE, /* partial_inplace */
246 0x000000ff, /* src_mask */
247 0x000000ff, /* dst_mask */
248 TRUE), /* pcrel_offset */
250 HOWTO (R_ARM_BREL_ADJ, /* type */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
254 FALSE, /* pc_relative */
256 complain_overflow_signed,/* complain_on_overflow */
257 bfd_elf_generic_reloc, /* special_function */
258 "R_ARM_BREL_ADJ", /* name */
259 FALSE, /* partial_inplace */
260 0xffffffff, /* src_mask */
261 0xffffffff, /* dst_mask */
262 FALSE), /* pcrel_offset */
264 HOWTO (R_ARM_TLS_DESC, /* type */
266 2, /* size (0 = byte, 1 = short, 2 = long) */
268 FALSE, /* pc_relative */
270 complain_overflow_bitfield,/* complain_on_overflow */
271 bfd_elf_generic_reloc, /* special_function */
272 "R_ARM_TLS_DESC", /* name */
273 FALSE, /* partial_inplace */
274 0xffffffff, /* src_mask */
275 0xffffffff, /* dst_mask */
276 FALSE), /* pcrel_offset */
278 HOWTO (R_ARM_THM_SWI8, /* type */
280 0, /* size (0 = byte, 1 = short, 2 = long) */
282 FALSE, /* pc_relative */
284 complain_overflow_signed,/* complain_on_overflow */
285 bfd_elf_generic_reloc, /* special_function */
286 "R_ARM_SWI8", /* name */
287 FALSE, /* partial_inplace */
288 0x00000000, /* src_mask */
289 0x00000000, /* dst_mask */
290 FALSE), /* pcrel_offset */
292 /* BLX instruction for the ARM. */
293 HOWTO (R_ARM_XPC25, /* type */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
297 TRUE, /* pc_relative */
299 complain_overflow_signed,/* complain_on_overflow */
300 bfd_elf_generic_reloc, /* special_function */
301 "R_ARM_XPC25", /* name */
302 FALSE, /* partial_inplace */
303 0x00ffffff, /* src_mask */
304 0x00ffffff, /* dst_mask */
305 TRUE), /* pcrel_offset */
307 /* BLX instruction for the Thumb. */
308 HOWTO (R_ARM_THM_XPC22, /* type */
310 2, /* size (0 = byte, 1 = short, 2 = long) */
312 TRUE, /* pc_relative */
314 complain_overflow_signed,/* complain_on_overflow */
315 bfd_elf_generic_reloc, /* special_function */
316 "R_ARM_THM_XPC22", /* name */
317 FALSE, /* partial_inplace */
318 0x07ff2fff, /* src_mask */
319 0x07ff2fff, /* dst_mask */
320 TRUE), /* pcrel_offset */
322 /* Dynamic TLS relocations. */
324 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
328 FALSE, /* pc_relative */
330 complain_overflow_bitfield,/* complain_on_overflow */
331 bfd_elf_generic_reloc, /* special_function */
332 "R_ARM_TLS_DTPMOD32", /* name */
333 TRUE, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE), /* pcrel_offset */
338 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
342 FALSE, /* pc_relative */
344 complain_overflow_bitfield,/* complain_on_overflow */
345 bfd_elf_generic_reloc, /* special_function */
346 "R_ARM_TLS_DTPOFF32", /* name */
347 TRUE, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE), /* pcrel_offset */
352 HOWTO (R_ARM_TLS_TPOFF32, /* type */
354 2, /* size (0 = byte, 1 = short, 2 = long) */
356 FALSE, /* pc_relative */
358 complain_overflow_bitfield,/* complain_on_overflow */
359 bfd_elf_generic_reloc, /* special_function */
360 "R_ARM_TLS_TPOFF32", /* name */
361 TRUE, /* partial_inplace */
362 0xffffffff, /* src_mask */
363 0xffffffff, /* dst_mask */
364 FALSE), /* pcrel_offset */
366 /* Relocs used in ARM Linux */
368 HOWTO (R_ARM_COPY, /* type */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
372 FALSE, /* pc_relative */
374 complain_overflow_bitfield,/* complain_on_overflow */
375 bfd_elf_generic_reloc, /* special_function */
376 "R_ARM_COPY", /* name */
377 TRUE, /* partial_inplace */
378 0xffffffff, /* src_mask */
379 0xffffffff, /* dst_mask */
380 FALSE), /* pcrel_offset */
382 HOWTO (R_ARM_GLOB_DAT, /* type */
384 2, /* size (0 = byte, 1 = short, 2 = long) */
386 FALSE, /* pc_relative */
388 complain_overflow_bitfield,/* complain_on_overflow */
389 bfd_elf_generic_reloc, /* special_function */
390 "R_ARM_GLOB_DAT", /* name */
391 TRUE, /* partial_inplace */
392 0xffffffff, /* src_mask */
393 0xffffffff, /* dst_mask */
394 FALSE), /* pcrel_offset */
396 HOWTO (R_ARM_JUMP_SLOT, /* type */
398 2, /* size (0 = byte, 1 = short, 2 = long) */
400 FALSE, /* pc_relative */
402 complain_overflow_bitfield,/* complain_on_overflow */
403 bfd_elf_generic_reloc, /* special_function */
404 "R_ARM_JUMP_SLOT", /* name */
405 TRUE, /* partial_inplace */
406 0xffffffff, /* src_mask */
407 0xffffffff, /* dst_mask */
408 FALSE), /* pcrel_offset */
410 HOWTO (R_ARM_RELATIVE, /* type */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
414 FALSE, /* pc_relative */
416 complain_overflow_bitfield,/* complain_on_overflow */
417 bfd_elf_generic_reloc, /* special_function */
418 "R_ARM_RELATIVE", /* name */
419 TRUE, /* partial_inplace */
420 0xffffffff, /* src_mask */
421 0xffffffff, /* dst_mask */
422 FALSE), /* pcrel_offset */
424 HOWTO (R_ARM_GOTOFF32, /* type */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
428 FALSE, /* pc_relative */
430 complain_overflow_bitfield,/* complain_on_overflow */
431 bfd_elf_generic_reloc, /* special_function */
432 "R_ARM_GOTOFF32", /* name */
433 TRUE, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 FALSE), /* pcrel_offset */
438 HOWTO (R_ARM_GOTPC, /* type */
440 2, /* size (0 = byte, 1 = short, 2 = long) */
442 TRUE, /* pc_relative */
444 complain_overflow_bitfield,/* complain_on_overflow */
445 bfd_elf_generic_reloc, /* special_function */
446 "R_ARM_GOTPC", /* name */
447 TRUE, /* partial_inplace */
448 0xffffffff, /* src_mask */
449 0xffffffff, /* dst_mask */
450 TRUE), /* pcrel_offset */
452 HOWTO (R_ARM_GOT32, /* type */
454 2, /* size (0 = byte, 1 = short, 2 = long) */
456 FALSE, /* pc_relative */
458 complain_overflow_bitfield,/* complain_on_overflow */
459 bfd_elf_generic_reloc, /* special_function */
460 "R_ARM_GOT32", /* name */
461 TRUE, /* partial_inplace */
462 0xffffffff, /* src_mask */
463 0xffffffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
466 HOWTO (R_ARM_PLT32, /* type */
468 2, /* size (0 = byte, 1 = short, 2 = long) */
470 TRUE, /* pc_relative */
472 complain_overflow_bitfield,/* complain_on_overflow */
473 bfd_elf_generic_reloc, /* special_function */
474 "R_ARM_PLT32", /* name */
475 FALSE, /* partial_inplace */
476 0x00ffffff, /* src_mask */
477 0x00ffffff, /* dst_mask */
478 TRUE), /* pcrel_offset */
480 HOWTO (R_ARM_CALL, /* type */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
484 TRUE, /* pc_relative */
486 complain_overflow_signed,/* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
488 "R_ARM_CALL", /* name */
489 FALSE, /* partial_inplace */
490 0x00ffffff, /* src_mask */
491 0x00ffffff, /* dst_mask */
492 TRUE), /* pcrel_offset */
494 HOWTO (R_ARM_JUMP24, /* type */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
498 TRUE, /* pc_relative */
500 complain_overflow_signed,/* complain_on_overflow */
501 bfd_elf_generic_reloc, /* special_function */
502 "R_ARM_JUMP24", /* name */
503 FALSE, /* partial_inplace */
504 0x00ffffff, /* src_mask */
505 0x00ffffff, /* dst_mask */
506 TRUE), /* pcrel_offset */
508 HOWTO (R_ARM_THM_JUMP24, /* type */
510 2, /* size (0 = byte, 1 = short, 2 = long) */
512 TRUE, /* pc_relative */
514 complain_overflow_signed,/* complain_on_overflow */
515 bfd_elf_generic_reloc, /* special_function */
516 "R_ARM_THM_JUMP24", /* name */
517 FALSE, /* partial_inplace */
518 0x07ff2fff, /* src_mask */
519 0x07ff2fff, /* dst_mask */
520 TRUE), /* pcrel_offset */
522 HOWTO (R_ARM_BASE_ABS, /* type */
524 2, /* size (0 = byte, 1 = short, 2 = long) */
526 FALSE, /* pc_relative */
528 complain_overflow_dont,/* complain_on_overflow */
529 bfd_elf_generic_reloc, /* special_function */
530 "R_ARM_BASE_ABS", /* name */
531 FALSE, /* partial_inplace */
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
534 FALSE), /* pcrel_offset */
536 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
538 2, /* size (0 = byte, 1 = short, 2 = long) */
540 TRUE, /* pc_relative */
542 complain_overflow_dont,/* complain_on_overflow */
543 bfd_elf_generic_reloc, /* special_function */
544 "R_ARM_ALU_PCREL_7_0", /* name */
545 FALSE, /* partial_inplace */
546 0x00000fff, /* src_mask */
547 0x00000fff, /* dst_mask */
548 TRUE), /* pcrel_offset */
550 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
554 TRUE, /* pc_relative */
556 complain_overflow_dont,/* complain_on_overflow */
557 bfd_elf_generic_reloc, /* special_function */
558 "R_ARM_ALU_PCREL_15_8",/* name */
559 FALSE, /* partial_inplace */
560 0x00000fff, /* src_mask */
561 0x00000fff, /* dst_mask */
562 TRUE), /* pcrel_offset */
564 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
568 TRUE, /* pc_relative */
570 complain_overflow_dont,/* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 "R_ARM_ALU_PCREL_23_15",/* name */
573 FALSE, /* partial_inplace */
574 0x00000fff, /* src_mask */
575 0x00000fff, /* dst_mask */
576 TRUE), /* pcrel_offset */
578 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
582 FALSE, /* pc_relative */
584 complain_overflow_dont,/* complain_on_overflow */
585 bfd_elf_generic_reloc, /* special_function */
586 "R_ARM_LDR_SBREL_11_0",/* name */
587 FALSE, /* partial_inplace */
588 0x00000fff, /* src_mask */
589 0x00000fff, /* dst_mask */
590 FALSE), /* pcrel_offset */
592 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
596 FALSE, /* pc_relative */
598 complain_overflow_dont,/* complain_on_overflow */
599 bfd_elf_generic_reloc, /* special_function */
600 "R_ARM_ALU_SBREL_19_12",/* name */
601 FALSE, /* partial_inplace */
602 0x000ff000, /* src_mask */
603 0x000ff000, /* dst_mask */
604 FALSE), /* pcrel_offset */
606 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
610 FALSE, /* pc_relative */
612 complain_overflow_dont,/* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
614 "R_ARM_ALU_SBREL_27_20",/* name */
615 FALSE, /* partial_inplace */
616 0x0ff00000, /* src_mask */
617 0x0ff00000, /* dst_mask */
618 FALSE), /* pcrel_offset */
620 HOWTO (R_ARM_TARGET1, /* type */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
624 FALSE, /* pc_relative */
626 complain_overflow_dont,/* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_ARM_TARGET1", /* name */
629 FALSE, /* partial_inplace */
630 0xffffffff, /* src_mask */
631 0xffffffff, /* dst_mask */
632 FALSE), /* pcrel_offset */
634 HOWTO (R_ARM_ROSEGREL32, /* type */
636 2, /* size (0 = byte, 1 = short, 2 = long) */
638 FALSE, /* pc_relative */
640 complain_overflow_dont,/* complain_on_overflow */
641 bfd_elf_generic_reloc, /* special_function */
642 "R_ARM_ROSEGREL32", /* name */
643 FALSE, /* partial_inplace */
644 0xffffffff, /* src_mask */
645 0xffffffff, /* dst_mask */
646 FALSE), /* pcrel_offset */
648 HOWTO (R_ARM_V4BX, /* type */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
652 FALSE, /* pc_relative */
654 complain_overflow_dont,/* complain_on_overflow */
655 bfd_elf_generic_reloc, /* special_function */
656 "R_ARM_V4BX", /* name */
657 FALSE, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 FALSE), /* pcrel_offset */
662 HOWTO (R_ARM_TARGET2, /* type */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
666 FALSE, /* pc_relative */
668 complain_overflow_signed,/* complain_on_overflow */
669 bfd_elf_generic_reloc, /* special_function */
670 "R_ARM_TARGET2", /* name */
671 FALSE, /* partial_inplace */
672 0xffffffff, /* src_mask */
673 0xffffffff, /* dst_mask */
674 TRUE), /* pcrel_offset */
676 HOWTO (R_ARM_PREL31, /* type */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
680 TRUE, /* pc_relative */
682 complain_overflow_signed,/* complain_on_overflow */
683 bfd_elf_generic_reloc, /* special_function */
684 "R_ARM_PREL31", /* name */
685 FALSE, /* partial_inplace */
686 0x7fffffff, /* src_mask */
687 0x7fffffff, /* dst_mask */
688 TRUE), /* pcrel_offset */
690 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
692 2, /* size (0 = byte, 1 = short, 2 = long) */
694 FALSE, /* pc_relative */
696 complain_overflow_dont,/* complain_on_overflow */
697 bfd_elf_generic_reloc, /* special_function */
698 "R_ARM_MOVW_ABS_NC", /* name */
699 FALSE, /* partial_inplace */
700 0x000f0fff, /* src_mask */
701 0x000f0fff, /* dst_mask */
702 FALSE), /* pcrel_offset */
704 HOWTO (R_ARM_MOVT_ABS, /* type */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
708 FALSE, /* pc_relative */
710 complain_overflow_bitfield,/* complain_on_overflow */
711 bfd_elf_generic_reloc, /* special_function */
712 "R_ARM_MOVT_ABS", /* name */
713 FALSE, /* partial_inplace */
714 0x000f0fff, /* src_mask */
715 0x000f0fff, /* dst_mask */
716 FALSE), /* pcrel_offset */
718 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
720 2, /* size (0 = byte, 1 = short, 2 = long) */
722 TRUE, /* pc_relative */
724 complain_overflow_dont,/* complain_on_overflow */
725 bfd_elf_generic_reloc, /* special_function */
726 "R_ARM_MOVW_PREL_NC", /* name */
727 FALSE, /* partial_inplace */
728 0x000f0fff, /* src_mask */
729 0x000f0fff, /* dst_mask */
730 TRUE), /* pcrel_offset */
732 HOWTO (R_ARM_MOVT_PREL, /* type */
734 2, /* size (0 = byte, 1 = short, 2 = long) */
736 TRUE, /* pc_relative */
738 complain_overflow_bitfield,/* complain_on_overflow */
739 bfd_elf_generic_reloc, /* special_function */
740 "R_ARM_MOVT_PREL", /* name */
741 FALSE, /* partial_inplace */
742 0x000f0fff, /* src_mask */
743 0x000f0fff, /* dst_mask */
744 TRUE), /* pcrel_offset */
746 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
750 FALSE, /* pc_relative */
752 complain_overflow_dont,/* complain_on_overflow */
753 bfd_elf_generic_reloc, /* special_function */
754 "R_ARM_THM_MOVW_ABS_NC",/* name */
755 FALSE, /* partial_inplace */
756 0x040f70ff, /* src_mask */
757 0x040f70ff, /* dst_mask */
758 FALSE), /* pcrel_offset */
760 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
762 2, /* size (0 = byte, 1 = short, 2 = long) */
764 FALSE, /* pc_relative */
766 complain_overflow_bitfield,/* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_ARM_THM_MOVT_ABS", /* name */
769 FALSE, /* partial_inplace */
770 0x040f70ff, /* src_mask */
771 0x040f70ff, /* dst_mask */
772 FALSE), /* pcrel_offset */
774 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
778 TRUE, /* pc_relative */
780 complain_overflow_dont,/* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
782 "R_ARM_THM_MOVW_PREL_NC",/* name */
783 FALSE, /* partial_inplace */
784 0x040f70ff, /* src_mask */
785 0x040f70ff, /* dst_mask */
786 TRUE), /* pcrel_offset */
788 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
792 TRUE, /* pc_relative */
794 complain_overflow_bitfield,/* complain_on_overflow */
795 bfd_elf_generic_reloc, /* special_function */
796 "R_ARM_THM_MOVT_PREL", /* name */
797 FALSE, /* partial_inplace */
798 0x040f70ff, /* src_mask */
799 0x040f70ff, /* dst_mask */
800 TRUE), /* pcrel_offset */
802 HOWTO (R_ARM_THM_JUMP19, /* type */
804 2, /* size (0 = byte, 1 = short, 2 = long) */
806 TRUE, /* pc_relative */
808 complain_overflow_signed,/* complain_on_overflow */
809 bfd_elf_generic_reloc, /* special_function */
810 "R_ARM_THM_JUMP19", /* name */
811 FALSE, /* partial_inplace */
812 0x043f2fff, /* src_mask */
813 0x043f2fff, /* dst_mask */
814 TRUE), /* pcrel_offset */
816 HOWTO (R_ARM_THM_JUMP6, /* type */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
820 TRUE, /* pc_relative */
822 complain_overflow_unsigned,/* complain_on_overflow */
823 bfd_elf_generic_reloc, /* special_function */
824 "R_ARM_THM_JUMP6", /* name */
825 FALSE, /* partial_inplace */
826 0x02f8, /* src_mask */
827 0x02f8, /* dst_mask */
828 TRUE), /* pcrel_offset */
830 /* These are declared as 13-bit signed relocations because we can
831 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
833 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
837 TRUE, /* pc_relative */
839 complain_overflow_dont,/* complain_on_overflow */
840 bfd_elf_generic_reloc, /* special_function */
841 "R_ARM_THM_ALU_PREL_11_0",/* name */
842 FALSE, /* partial_inplace */
843 0xffffffff, /* src_mask */
844 0xffffffff, /* dst_mask */
845 TRUE), /* pcrel_offset */
847 HOWTO (R_ARM_THM_PC12, /* type */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
851 TRUE, /* pc_relative */
853 complain_overflow_dont,/* complain_on_overflow */
854 bfd_elf_generic_reloc, /* special_function */
855 "R_ARM_THM_PC12", /* name */
856 FALSE, /* partial_inplace */
857 0xffffffff, /* src_mask */
858 0xffffffff, /* dst_mask */
859 TRUE), /* pcrel_offset */
861 HOWTO (R_ARM_ABS32_NOI, /* type */
863 2, /* size (0 = byte, 1 = short, 2 = long) */
865 FALSE, /* pc_relative */
867 complain_overflow_dont,/* complain_on_overflow */
868 bfd_elf_generic_reloc, /* special_function */
869 "R_ARM_ABS32_NOI", /* name */
870 FALSE, /* partial_inplace */
871 0xffffffff, /* src_mask */
872 0xffffffff, /* dst_mask */
873 FALSE), /* pcrel_offset */
875 HOWTO (R_ARM_REL32_NOI, /* type */
877 2, /* size (0 = byte, 1 = short, 2 = long) */
879 TRUE, /* pc_relative */
881 complain_overflow_dont,/* complain_on_overflow */
882 bfd_elf_generic_reloc, /* special_function */
883 "R_ARM_REL32_NOI", /* name */
884 FALSE, /* partial_inplace */
885 0xffffffff, /* src_mask */
886 0xffffffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
889 /* Group relocations. */
891 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
893 2, /* size (0 = byte, 1 = short, 2 = long) */
895 TRUE, /* pc_relative */
897 complain_overflow_dont,/* complain_on_overflow */
898 bfd_elf_generic_reloc, /* special_function */
899 "R_ARM_ALU_PC_G0_NC", /* name */
900 FALSE, /* partial_inplace */
901 0xffffffff, /* src_mask */
902 0xffffffff, /* dst_mask */
903 TRUE), /* pcrel_offset */
905 HOWTO (R_ARM_ALU_PC_G0, /* type */
907 2, /* size (0 = byte, 1 = short, 2 = long) */
909 TRUE, /* pc_relative */
911 complain_overflow_dont,/* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_ARM_ALU_PC_G0", /* name */
914 FALSE, /* partial_inplace */
915 0xffffffff, /* src_mask */
916 0xffffffff, /* dst_mask */
917 TRUE), /* pcrel_offset */
919 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
921 2, /* size (0 = byte, 1 = short, 2 = long) */
923 TRUE, /* pc_relative */
925 complain_overflow_dont,/* complain_on_overflow */
926 bfd_elf_generic_reloc, /* special_function */
927 "R_ARM_ALU_PC_G1_NC", /* name */
928 FALSE, /* partial_inplace */
929 0xffffffff, /* src_mask */
930 0xffffffff, /* dst_mask */
931 TRUE), /* pcrel_offset */
933 HOWTO (R_ARM_ALU_PC_G1, /* type */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
937 TRUE, /* pc_relative */
939 complain_overflow_dont,/* complain_on_overflow */
940 bfd_elf_generic_reloc, /* special_function */
941 "R_ARM_ALU_PC_G1", /* name */
942 FALSE, /* partial_inplace */
943 0xffffffff, /* src_mask */
944 0xffffffff, /* dst_mask */
945 TRUE), /* pcrel_offset */
947 HOWTO (R_ARM_ALU_PC_G2, /* type */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
951 TRUE, /* pc_relative */
953 complain_overflow_dont,/* complain_on_overflow */
954 bfd_elf_generic_reloc, /* special_function */
955 "R_ARM_ALU_PC_G2", /* name */
956 FALSE, /* partial_inplace */
957 0xffffffff, /* src_mask */
958 0xffffffff, /* dst_mask */
959 TRUE), /* pcrel_offset */
961 HOWTO (R_ARM_LDR_PC_G1, /* type */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
965 TRUE, /* pc_relative */
967 complain_overflow_dont,/* complain_on_overflow */
968 bfd_elf_generic_reloc, /* special_function */
969 "R_ARM_LDR_PC_G1", /* name */
970 FALSE, /* partial_inplace */
971 0xffffffff, /* src_mask */
972 0xffffffff, /* dst_mask */
973 TRUE), /* pcrel_offset */
975 HOWTO (R_ARM_LDR_PC_G2, /* type */
977 2, /* size (0 = byte, 1 = short, 2 = long) */
979 TRUE, /* pc_relative */
981 complain_overflow_dont,/* complain_on_overflow */
982 bfd_elf_generic_reloc, /* special_function */
983 "R_ARM_LDR_PC_G2", /* name */
984 FALSE, /* partial_inplace */
985 0xffffffff, /* src_mask */
986 0xffffffff, /* dst_mask */
987 TRUE), /* pcrel_offset */
989 HOWTO (R_ARM_LDRS_PC_G0, /* type */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
993 TRUE, /* pc_relative */
995 complain_overflow_dont,/* complain_on_overflow */
996 bfd_elf_generic_reloc, /* special_function */
997 "R_ARM_LDRS_PC_G0", /* name */
998 FALSE, /* partial_inplace */
999 0xffffffff, /* src_mask */
1000 0xffffffff, /* dst_mask */
1001 TRUE), /* pcrel_offset */
1003 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1005 2, /* size (0 = byte, 1 = short, 2 = long) */
1007 TRUE, /* pc_relative */
1009 complain_overflow_dont,/* complain_on_overflow */
1010 bfd_elf_generic_reloc, /* special_function */
1011 "R_ARM_LDRS_PC_G1", /* name */
1012 FALSE, /* partial_inplace */
1013 0xffffffff, /* src_mask */
1014 0xffffffff, /* dst_mask */
1015 TRUE), /* pcrel_offset */
1017 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1021 TRUE, /* pc_relative */
1023 complain_overflow_dont,/* complain_on_overflow */
1024 bfd_elf_generic_reloc, /* special_function */
1025 "R_ARM_LDRS_PC_G2", /* name */
1026 FALSE, /* partial_inplace */
1027 0xffffffff, /* src_mask */
1028 0xffffffff, /* dst_mask */
1029 TRUE), /* pcrel_offset */
1031 HOWTO (R_ARM_LDC_PC_G0, /* type */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1035 TRUE, /* pc_relative */
1037 complain_overflow_dont,/* complain_on_overflow */
1038 bfd_elf_generic_reloc, /* special_function */
1039 "R_ARM_LDC_PC_G0", /* name */
1040 FALSE, /* partial_inplace */
1041 0xffffffff, /* src_mask */
1042 0xffffffff, /* dst_mask */
1043 TRUE), /* pcrel_offset */
1045 HOWTO (R_ARM_LDC_PC_G1, /* type */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1049 TRUE, /* pc_relative */
1051 complain_overflow_dont,/* complain_on_overflow */
1052 bfd_elf_generic_reloc, /* special_function */
1053 "R_ARM_LDC_PC_G1", /* name */
1054 FALSE, /* partial_inplace */
1055 0xffffffff, /* src_mask */
1056 0xffffffff, /* dst_mask */
1057 TRUE), /* pcrel_offset */
1059 HOWTO (R_ARM_LDC_PC_G2, /* type */
1061 2, /* size (0 = byte, 1 = short, 2 = long) */
1063 TRUE, /* pc_relative */
1065 complain_overflow_dont,/* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_ARM_LDC_PC_G2", /* name */
1068 FALSE, /* partial_inplace */
1069 0xffffffff, /* src_mask */
1070 0xffffffff, /* dst_mask */
1071 TRUE), /* pcrel_offset */
1073 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1077 TRUE, /* pc_relative */
1079 complain_overflow_dont,/* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 "R_ARM_ALU_SB_G0_NC", /* name */
1082 FALSE, /* partial_inplace */
1083 0xffffffff, /* src_mask */
1084 0xffffffff, /* dst_mask */
1085 TRUE), /* pcrel_offset */
1087 HOWTO (R_ARM_ALU_SB_G0, /* type */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 TRUE, /* pc_relative */
1093 complain_overflow_dont,/* complain_on_overflow */
1094 bfd_elf_generic_reloc, /* special_function */
1095 "R_ARM_ALU_SB_G0", /* name */
1096 FALSE, /* partial_inplace */
1097 0xffffffff, /* src_mask */
1098 0xffffffff, /* dst_mask */
1099 TRUE), /* pcrel_offset */
1101 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1103 2, /* size (0 = byte, 1 = short, 2 = long) */
1105 TRUE, /* pc_relative */
1107 complain_overflow_dont,/* complain_on_overflow */
1108 bfd_elf_generic_reloc, /* special_function */
1109 "R_ARM_ALU_SB_G1_NC", /* name */
1110 FALSE, /* partial_inplace */
1111 0xffffffff, /* src_mask */
1112 0xffffffff, /* dst_mask */
1113 TRUE), /* pcrel_offset */
1115 HOWTO (R_ARM_ALU_SB_G1, /* type */
1117 2, /* size (0 = byte, 1 = short, 2 = long) */
1119 TRUE, /* pc_relative */
1121 complain_overflow_dont,/* complain_on_overflow */
1122 bfd_elf_generic_reloc, /* special_function */
1123 "R_ARM_ALU_SB_G1", /* name */
1124 FALSE, /* partial_inplace */
1125 0xffffffff, /* src_mask */
1126 0xffffffff, /* dst_mask */
1127 TRUE), /* pcrel_offset */
1129 HOWTO (R_ARM_ALU_SB_G2, /* type */
1131 2, /* size (0 = byte, 1 = short, 2 = long) */
1133 TRUE, /* pc_relative */
1135 complain_overflow_dont,/* complain_on_overflow */
1136 bfd_elf_generic_reloc, /* special_function */
1137 "R_ARM_ALU_SB_G2", /* name */
1138 FALSE, /* partial_inplace */
1139 0xffffffff, /* src_mask */
1140 0xffffffff, /* dst_mask */
1141 TRUE), /* pcrel_offset */
1143 HOWTO (R_ARM_LDR_SB_G0, /* type */
1145 2, /* size (0 = byte, 1 = short, 2 = long) */
1147 TRUE, /* pc_relative */
1149 complain_overflow_dont,/* complain_on_overflow */
1150 bfd_elf_generic_reloc, /* special_function */
1151 "R_ARM_LDR_SB_G0", /* name */
1152 FALSE, /* partial_inplace */
1153 0xffffffff, /* src_mask */
1154 0xffffffff, /* dst_mask */
1155 TRUE), /* pcrel_offset */
1157 HOWTO (R_ARM_LDR_SB_G1, /* type */
1159 2, /* size (0 = byte, 1 = short, 2 = long) */
1161 TRUE, /* pc_relative */
1163 complain_overflow_dont,/* complain_on_overflow */
1164 bfd_elf_generic_reloc, /* special_function */
1165 "R_ARM_LDR_SB_G1", /* name */
1166 FALSE, /* partial_inplace */
1167 0xffffffff, /* src_mask */
1168 0xffffffff, /* dst_mask */
1169 TRUE), /* pcrel_offset */
1171 HOWTO (R_ARM_LDR_SB_G2, /* type */
1173 2, /* size (0 = byte, 1 = short, 2 = long) */
1175 TRUE, /* pc_relative */
1177 complain_overflow_dont,/* complain_on_overflow */
1178 bfd_elf_generic_reloc, /* special_function */
1179 "R_ARM_LDR_SB_G2", /* name */
1180 FALSE, /* partial_inplace */
1181 0xffffffff, /* src_mask */
1182 0xffffffff, /* dst_mask */
1183 TRUE), /* pcrel_offset */
1185 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1187 2, /* size (0 = byte, 1 = short, 2 = long) */
1189 TRUE, /* pc_relative */
1191 complain_overflow_dont,/* complain_on_overflow */
1192 bfd_elf_generic_reloc, /* special_function */
1193 "R_ARM_LDRS_SB_G0", /* name */
1194 FALSE, /* partial_inplace */
1195 0xffffffff, /* src_mask */
1196 0xffffffff, /* dst_mask */
1197 TRUE), /* pcrel_offset */
1199 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1203 TRUE, /* pc_relative */
1205 complain_overflow_dont,/* complain_on_overflow */
1206 bfd_elf_generic_reloc, /* special_function */
1207 "R_ARM_LDRS_SB_G1", /* name */
1208 FALSE, /* partial_inplace */
1209 0xffffffff, /* src_mask */
1210 0xffffffff, /* dst_mask */
1211 TRUE), /* pcrel_offset */
1213 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1215 2, /* size (0 = byte, 1 = short, 2 = long) */
1217 TRUE, /* pc_relative */
1219 complain_overflow_dont,/* complain_on_overflow */
1220 bfd_elf_generic_reloc, /* special_function */
1221 "R_ARM_LDRS_SB_G2", /* name */
1222 FALSE, /* partial_inplace */
1223 0xffffffff, /* src_mask */
1224 0xffffffff, /* dst_mask */
1225 TRUE), /* pcrel_offset */
1227 HOWTO (R_ARM_LDC_SB_G0, /* type */
1229 2, /* size (0 = byte, 1 = short, 2 = long) */
1231 TRUE, /* pc_relative */
1233 complain_overflow_dont,/* complain_on_overflow */
1234 bfd_elf_generic_reloc, /* special_function */
1235 "R_ARM_LDC_SB_G0", /* name */
1236 FALSE, /* partial_inplace */
1237 0xffffffff, /* src_mask */
1238 0xffffffff, /* dst_mask */
1239 TRUE), /* pcrel_offset */
1241 HOWTO (R_ARM_LDC_SB_G1, /* type */
1243 2, /* size (0 = byte, 1 = short, 2 = long) */
1245 TRUE, /* pc_relative */
1247 complain_overflow_dont,/* complain_on_overflow */
1248 bfd_elf_generic_reloc, /* special_function */
1249 "R_ARM_LDC_SB_G1", /* name */
1250 FALSE, /* partial_inplace */
1251 0xffffffff, /* src_mask */
1252 0xffffffff, /* dst_mask */
1253 TRUE), /* pcrel_offset */
1255 HOWTO (R_ARM_LDC_SB_G2, /* type */
1257 2, /* size (0 = byte, 1 = short, 2 = long) */
1259 TRUE, /* pc_relative */
1261 complain_overflow_dont,/* complain_on_overflow */
1262 bfd_elf_generic_reloc, /* special_function */
1263 "R_ARM_LDC_SB_G2", /* name */
1264 FALSE, /* partial_inplace */
1265 0xffffffff, /* src_mask */
1266 0xffffffff, /* dst_mask */
1267 TRUE), /* pcrel_offset */
1269 /* End of group relocations. */
1271 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1273 2, /* size (0 = byte, 1 = short, 2 = long) */
1275 FALSE, /* pc_relative */
1277 complain_overflow_dont,/* complain_on_overflow */
1278 bfd_elf_generic_reloc, /* special_function */
1279 "R_ARM_MOVW_BREL_NC", /* name */
1280 FALSE, /* partial_inplace */
1281 0x0000ffff, /* src_mask */
1282 0x0000ffff, /* dst_mask */
1283 FALSE), /* pcrel_offset */
1285 HOWTO (R_ARM_MOVT_BREL, /* type */
1287 2, /* size (0 = byte, 1 = short, 2 = long) */
1289 FALSE, /* pc_relative */
1291 complain_overflow_bitfield,/* complain_on_overflow */
1292 bfd_elf_generic_reloc, /* special_function */
1293 "R_ARM_MOVT_BREL", /* name */
1294 FALSE, /* partial_inplace */
1295 0x0000ffff, /* src_mask */
1296 0x0000ffff, /* dst_mask */
1297 FALSE), /* pcrel_offset */
1299 HOWTO (R_ARM_MOVW_BREL, /* type */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1303 FALSE, /* pc_relative */
1305 complain_overflow_dont,/* complain_on_overflow */
1306 bfd_elf_generic_reloc, /* special_function */
1307 "R_ARM_MOVW_BREL", /* name */
1308 FALSE, /* partial_inplace */
1309 0x0000ffff, /* src_mask */
1310 0x0000ffff, /* dst_mask */
1311 FALSE), /* pcrel_offset */
1313 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1315 2, /* size (0 = byte, 1 = short, 2 = long) */
1317 FALSE, /* pc_relative */
1319 complain_overflow_dont,/* complain_on_overflow */
1320 bfd_elf_generic_reloc, /* special_function */
1321 "R_ARM_THM_MOVW_BREL_NC",/* name */
1322 FALSE, /* partial_inplace */
1323 0x040f70ff, /* src_mask */
1324 0x040f70ff, /* dst_mask */
1325 FALSE), /* pcrel_offset */
1327 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1329 2, /* size (0 = byte, 1 = short, 2 = long) */
1331 FALSE, /* pc_relative */
1333 complain_overflow_bitfield,/* complain_on_overflow */
1334 bfd_elf_generic_reloc, /* special_function */
1335 "R_ARM_THM_MOVT_BREL", /* name */
1336 FALSE, /* partial_inplace */
1337 0x040f70ff, /* src_mask */
1338 0x040f70ff, /* dst_mask */
1339 FALSE), /* pcrel_offset */
1341 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1345 FALSE, /* pc_relative */
1347 complain_overflow_dont,/* complain_on_overflow */
1348 bfd_elf_generic_reloc, /* special_function */
1349 "R_ARM_THM_MOVW_BREL", /* name */
1350 FALSE, /* partial_inplace */
1351 0x040f70ff, /* src_mask */
1352 0x040f70ff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1355 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1359 FALSE, /* pc_relative */
1361 complain_overflow_bitfield,/* complain_on_overflow */
1362 NULL, /* special_function */
1363 "R_ARM_TLS_GOTDESC", /* name */
1364 TRUE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1369 HOWTO (R_ARM_TLS_CALL, /* type */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1373 FALSE, /* pc_relative */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_TLS_CALL", /* name */
1378 FALSE, /* partial_inplace */
1379 0x00ffffff, /* src_mask */
1380 0x00ffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1383 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 FALSE, /* pc_relative */
1389 complain_overflow_bitfield,/* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_TLS_DESCSEQ", /* name */
1392 FALSE, /* partial_inplace */
1393 0x00000000, /* src_mask */
1394 0x00000000, /* dst_mask */
1395 FALSE), /* pcrel_offset */
1397 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1401 FALSE, /* pc_relative */
1403 complain_overflow_dont,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_THM_TLS_CALL", /* name */
1406 FALSE, /* partial_inplace */
1407 0x07ff07ff, /* src_mask */
1408 0x07ff07ff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1411 HOWTO (R_ARM_PLT32_ABS, /* type */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1415 FALSE, /* pc_relative */
1417 complain_overflow_dont,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_PLT32_ABS", /* name */
1420 FALSE, /* partial_inplace */
1421 0xffffffff, /* src_mask */
1422 0xffffffff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1425 HOWTO (R_ARM_GOT_ABS, /* type */
1427 2, /* size (0 = byte, 1 = short, 2 = long) */
1429 FALSE, /* pc_relative */
1431 complain_overflow_dont,/* complain_on_overflow */
1432 bfd_elf_generic_reloc, /* special_function */
1433 "R_ARM_GOT_ABS", /* name */
1434 FALSE, /* partial_inplace */
1435 0xffffffff, /* src_mask */
1436 0xffffffff, /* dst_mask */
1437 FALSE), /* pcrel_offset */
1439 HOWTO (R_ARM_GOT_PREL, /* type */
1441 2, /* size (0 = byte, 1 = short, 2 = long) */
1443 TRUE, /* pc_relative */
1445 complain_overflow_dont, /* complain_on_overflow */
1446 bfd_elf_generic_reloc, /* special_function */
1447 "R_ARM_GOT_PREL", /* name */
1448 FALSE, /* partial_inplace */
1449 0xffffffff, /* src_mask */
1450 0xffffffff, /* dst_mask */
1451 TRUE), /* pcrel_offset */
1453 HOWTO (R_ARM_GOT_BREL12, /* type */
1455 2, /* size (0 = byte, 1 = short, 2 = long) */
1457 FALSE, /* pc_relative */
1459 complain_overflow_bitfield,/* complain_on_overflow */
1460 bfd_elf_generic_reloc, /* special_function */
1461 "R_ARM_GOT_BREL12", /* name */
1462 FALSE, /* partial_inplace */
1463 0x00000fff, /* src_mask */
1464 0x00000fff, /* dst_mask */
1465 FALSE), /* pcrel_offset */
1467 HOWTO (R_ARM_GOTOFF12, /* type */
1469 2, /* size (0 = byte, 1 = short, 2 = long) */
1471 FALSE, /* pc_relative */
1473 complain_overflow_bitfield,/* complain_on_overflow */
1474 bfd_elf_generic_reloc, /* special_function */
1475 "R_ARM_GOTOFF12", /* name */
1476 FALSE, /* partial_inplace */
1477 0x00000fff, /* src_mask */
1478 0x00000fff, /* dst_mask */
1479 FALSE), /* pcrel_offset */
1481 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1483 /* GNU extension to record C++ vtable member usage */
1484 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1486 2, /* size (0 = byte, 1 = short, 2 = long) */
1488 FALSE, /* pc_relative */
1490 complain_overflow_dont, /* complain_on_overflow */
1491 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1492 "R_ARM_GNU_VTENTRY", /* name */
1493 FALSE, /* partial_inplace */
1496 FALSE), /* pcrel_offset */
1498 /* GNU extension to record C++ vtable hierarchy */
1499 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1501 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 FALSE, /* pc_relative */
1505 complain_overflow_dont, /* complain_on_overflow */
1506 NULL, /* special_function */
1507 "R_ARM_GNU_VTINHERIT", /* name */
1508 FALSE, /* partial_inplace */
1511 FALSE), /* pcrel_offset */
1513 HOWTO (R_ARM_THM_JUMP11, /* type */
1515 1, /* size (0 = byte, 1 = short, 2 = long) */
1517 TRUE, /* pc_relative */
1519 complain_overflow_signed, /* complain_on_overflow */
1520 bfd_elf_generic_reloc, /* special_function */
1521 "R_ARM_THM_JUMP11", /* name */
1522 FALSE, /* partial_inplace */
1523 0x000007ff, /* src_mask */
1524 0x000007ff, /* dst_mask */
1525 TRUE), /* pcrel_offset */
1527 HOWTO (R_ARM_THM_JUMP8, /* type */
1529 1, /* size (0 = byte, 1 = short, 2 = long) */
1531 TRUE, /* pc_relative */
1533 complain_overflow_signed, /* complain_on_overflow */
1534 bfd_elf_generic_reloc, /* special_function */
1535 "R_ARM_THM_JUMP8", /* name */
1536 FALSE, /* partial_inplace */
1537 0x000000ff, /* src_mask */
1538 0x000000ff, /* dst_mask */
1539 TRUE), /* pcrel_offset */
1541 /* TLS relocations */
1542 HOWTO (R_ARM_TLS_GD32, /* type */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1546 FALSE, /* pc_relative */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 NULL, /* special_function */
1550 "R_ARM_TLS_GD32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1556 HOWTO (R_ARM_TLS_LDM32, /* type */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1560 FALSE, /* pc_relative */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDM32", /* name */
1565 TRUE, /* partial_inplace */
1566 0xffffffff, /* src_mask */
1567 0xffffffff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1570 HOWTO (R_ARM_TLS_LDO32, /* type */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1574 FALSE, /* pc_relative */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LDO32", /* name */
1579 TRUE, /* partial_inplace */
1580 0xffffffff, /* src_mask */
1581 0xffffffff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1584 HOWTO (R_ARM_TLS_IE32, /* type */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1588 FALSE, /* pc_relative */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 NULL, /* special_function */
1592 "R_ARM_TLS_IE32", /* name */
1593 TRUE, /* partial_inplace */
1594 0xffffffff, /* src_mask */
1595 0xffffffff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1598 HOWTO (R_ARM_TLS_LE32, /* type */
1600 2, /* size (0 = byte, 1 = short, 2 = long) */
1602 FALSE, /* pc_relative */
1604 complain_overflow_bitfield,/* complain_on_overflow */
1605 bfd_elf_generic_reloc, /* special_function */
1606 "R_ARM_TLS_LE32", /* name */
1607 TRUE, /* partial_inplace */
1608 0xffffffff, /* src_mask */
1609 0xffffffff, /* dst_mask */
1610 FALSE), /* pcrel_offset */
1612 HOWTO (R_ARM_TLS_LDO12, /* type */
1614 2, /* size (0 = byte, 1 = short, 2 = long) */
1616 FALSE, /* pc_relative */
1618 complain_overflow_bitfield,/* complain_on_overflow */
1619 bfd_elf_generic_reloc, /* special_function */
1620 "R_ARM_TLS_LDO12", /* name */
1621 FALSE, /* partial_inplace */
1622 0x00000fff, /* src_mask */
1623 0x00000fff, /* dst_mask */
1624 FALSE), /* pcrel_offset */
1626 HOWTO (R_ARM_TLS_LE12, /* type */
1628 2, /* size (0 = byte, 1 = short, 2 = long) */
1630 FALSE, /* pc_relative */
1632 complain_overflow_bitfield,/* complain_on_overflow */
1633 bfd_elf_generic_reloc, /* special_function */
1634 "R_ARM_TLS_LE12", /* name */
1635 FALSE, /* partial_inplace */
1636 0x00000fff, /* src_mask */
1637 0x00000fff, /* dst_mask */
1638 FALSE), /* pcrel_offset */
1640 HOWTO (R_ARM_TLS_IE12GP, /* type */
1642 2, /* size (0 = byte, 1 = short, 2 = long) */
1644 FALSE, /* pc_relative */
1646 complain_overflow_bitfield,/* complain_on_overflow */
1647 bfd_elf_generic_reloc, /* special_function */
1648 "R_ARM_TLS_IE12GP", /* name */
1649 FALSE, /* partial_inplace */
1650 0x00000fff, /* src_mask */
1651 0x00000fff, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1654 /* 112-127 private relocations. */
1672 /* R_ARM_ME_TOO, obsolete. */
1675 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1677 1, /* size (0 = byte, 1 = short, 2 = long) */
1679 FALSE, /* pc_relative */
1681 complain_overflow_bitfield,/* complain_on_overflow */
1682 bfd_elf_generic_reloc, /* special_function */
1683 "R_ARM_THM_TLS_DESCSEQ",/* name */
1684 FALSE, /* partial_inplace */
1685 0x00000000, /* src_mask */
1686 0x00000000, /* dst_mask */
1687 FALSE), /* pcrel_offset */
1691 static reloc_howto_type elf32_arm_howto_table_2[1] =
1693 HOWTO (R_ARM_IRELATIVE, /* type */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1697 FALSE, /* pc_relative */
1699 complain_overflow_bitfield,/* complain_on_overflow */
1700 bfd_elf_generic_reloc, /* special_function */
1701 "R_ARM_IRELATIVE", /* name */
1702 TRUE, /* partial_inplace */
1703 0xffffffff, /* src_mask */
1704 0xffffffff, /* dst_mask */
1705 FALSE) /* pcrel_offset */
1708 /* 249-255 extended, currently unused, relocations: */
1709 static reloc_howto_type elf32_arm_howto_table_3[4] =
1711 HOWTO (R_ARM_RREL32, /* type */
1713 0, /* size (0 = byte, 1 = short, 2 = long) */
1715 FALSE, /* pc_relative */
1717 complain_overflow_dont,/* complain_on_overflow */
1718 bfd_elf_generic_reloc, /* special_function */
1719 "R_ARM_RREL32", /* name */
1720 FALSE, /* partial_inplace */
1723 FALSE), /* pcrel_offset */
1725 HOWTO (R_ARM_RABS32, /* type */
1727 0, /* size (0 = byte, 1 = short, 2 = long) */
1729 FALSE, /* pc_relative */
1731 complain_overflow_dont,/* complain_on_overflow */
1732 bfd_elf_generic_reloc, /* special_function */
1733 "R_ARM_RABS32", /* name */
1734 FALSE, /* partial_inplace */
1737 FALSE), /* pcrel_offset */
1739 HOWTO (R_ARM_RPC24, /* type */
1741 0, /* size (0 = byte, 1 = short, 2 = long) */
1743 FALSE, /* pc_relative */
1745 complain_overflow_dont,/* complain_on_overflow */
1746 bfd_elf_generic_reloc, /* special_function */
1747 "R_ARM_RPC24", /* name */
1748 FALSE, /* partial_inplace */
1751 FALSE), /* pcrel_offset */
1753 HOWTO (R_ARM_RBASE, /* type */
1755 0, /* size (0 = byte, 1 = short, 2 = long) */
1757 FALSE, /* pc_relative */
1759 complain_overflow_dont,/* complain_on_overflow */
1760 bfd_elf_generic_reloc, /* special_function */
1761 "R_ARM_RBASE", /* name */
1762 FALSE, /* partial_inplace */
1765 FALSE) /* pcrel_offset */
1768 static reloc_howto_type *
1769 elf32_arm_howto_from_type (unsigned int r_type)
1771 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1772 return &elf32_arm_howto_table_1[r_type];
1774 if (r_type == R_ARM_IRELATIVE)
1775 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1777 if (r_type >= R_ARM_RREL32
1778 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1779 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1785 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1786 Elf_Internal_Rela * elf_reloc)
1788 unsigned int r_type;
1790 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1791 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1794 struct elf32_arm_reloc_map
1796 bfd_reloc_code_real_type bfd_reloc_val;
1797 unsigned char elf_reloc_val;
1800 /* All entries in this list must also be present in elf32_arm_howto_table. */
1801 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1803 {BFD_RELOC_NONE, R_ARM_NONE},
1804 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1805 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1806 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1807 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1808 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1809 {BFD_RELOC_32, R_ARM_ABS32},
1810 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1811 {BFD_RELOC_8, R_ARM_ABS8},
1812 {BFD_RELOC_16, R_ARM_ABS16},
1813 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1814 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1815 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1816 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1817 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1818 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1819 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1821 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1822 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1823 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1824 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1825 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1826 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1827 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1828 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1829 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1830 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1831 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1832 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1833 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1834 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1835 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1836 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1837 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1838 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1839 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1840 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1841 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1842 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1843 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1844 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1845 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1846 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1847 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1848 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1849 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1850 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1851 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1852 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1853 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1854 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1855 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1856 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1857 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1858 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1859 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1860 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1861 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1862 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1863 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1864 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1865 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1866 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1867 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1868 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1869 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1870 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1871 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1872 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1873 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1874 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1875 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1876 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1877 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1878 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1879 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1880 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1881 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1882 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1883 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1884 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1885 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1886 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1887 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1888 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1891 static reloc_howto_type *
1892 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1893 bfd_reloc_code_real_type code)
1897 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1898 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1899 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1904 static reloc_howto_type *
1905 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1910 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1911 if (elf32_arm_howto_table_1[i].name != NULL
1912 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1913 return &elf32_arm_howto_table_1[i];
1915 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1916 if (elf32_arm_howto_table_2[i].name != NULL
1917 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1918 return &elf32_arm_howto_table_2[i];
1920 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1921 if (elf32_arm_howto_table_3[i].name != NULL
1922 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1923 return &elf32_arm_howto_table_3[i];
1928 /* Support for core dump NOTE sections. */
1931 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1936 switch (note->descsz)
1941 case 148: /* Linux/ARM 32-bit. */
1943 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1946 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
1955 /* Make a ".reg/999" section. */
1956 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1957 size, note->descpos + offset);
1961 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1963 switch (note->descsz)
1968 case 124: /* Linux/ARM elf_prpsinfo. */
1969 elf_tdata (abfd)->core_program
1970 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1971 elf_tdata (abfd)->core_command
1972 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1975 /* Note that for some reason, a spurious space is tacked
1976 onto the end of the args in some (at least one anyway)
1977 implementations, so strip it off if it exists. */
1979 char *command = elf_tdata (abfd)->core_command;
1980 int n = strlen (command);
1982 if (0 < n && command[n - 1] == ' ')
1983 command[n - 1] = '\0';
1989 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1990 #define TARGET_LITTLE_NAME "elf32-littlearm"
1991 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1992 #define TARGET_BIG_NAME "elf32-bigarm"
1994 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1995 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1997 typedef unsigned long int insn32;
1998 typedef unsigned short int insn16;
2000 /* In lieu of proper flags, assume all EABIv4 or later objects are
2002 #define INTERWORK_FLAG(abfd) \
2003 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2004 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2005 || ((abfd)->flags & BFD_LINKER_CREATED))
2007 /* The linker script knows the section names for placement.
2008 The entry_names are used to do simple name mangling on the stubs.
2009 Given a function name, and its type, the stub can be found. The
2010 name can be changed. The only requirement is the %s be present. */
2011 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2012 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2014 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2015 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2017 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2018 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2020 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2021 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2023 #define STUB_ENTRY_NAME "__%s_veneer"
2025 /* The name of the dynamic interpreter. This is put in the .interp
2027 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2029 static const unsigned long tls_trampoline [] =
2031 0xe08e0000, /* add r0, lr, r0 */
2032 0xe5901004, /* ldr r1, [r0,#4] */
2033 0xe12fff11, /* bx r1 */
2036 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2038 0xe52d2004, /* push {r2} */
2039 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2040 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2041 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2042 0xe081100f, /* 2: add r1, pc */
2043 0xe12fff12, /* bx r2 */
2044 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2045 + dl_tlsdesc_lazy_resolver(GOT) */
2046 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2049 #ifdef FOUR_WORD_PLT
2051 /* The first entry in a procedure linkage table looks like
2052 this. It is set up so that any shared library function that is
2053 called before the relocation has been set up calls the dynamic
2055 static const bfd_vma elf32_arm_plt0_entry [] =
2057 0xe52de004, /* str lr, [sp, #-4]! */
2058 0xe59fe010, /* ldr lr, [pc, #16] */
2059 0xe08fe00e, /* add lr, pc, lr */
2060 0xe5bef008, /* ldr pc, [lr, #8]! */
2063 /* Subsequent entries in a procedure linkage table look like
2065 static const bfd_vma elf32_arm_plt_entry [] =
2067 0xe28fc600, /* add ip, pc, #NN */
2068 0xe28cca00, /* add ip, ip, #NN */
2069 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2070 0x00000000, /* unused */
2075 /* The first entry in a procedure linkage table looks like
2076 this. It is set up so that any shared library function that is
2077 called before the relocation has been set up calls the dynamic
2079 static const bfd_vma elf32_arm_plt0_entry [] =
2081 0xe52de004, /* str lr, [sp, #-4]! */
2082 0xe59fe004, /* ldr lr, [pc, #4] */
2083 0xe08fe00e, /* add lr, pc, lr */
2084 0xe5bef008, /* ldr pc, [lr, #8]! */
2085 0x00000000, /* &GOT[0] - . */
2088 /* Subsequent entries in a procedure linkage table look like
2090 static const bfd_vma elf32_arm_plt_entry [] =
2092 0xe28fc600, /* add ip, pc, #0xNN00000 */
2093 0xe28cca00, /* add ip, ip, #0xNN000 */
2094 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2099 /* The format of the first entry in the procedure linkage table
2100 for a VxWorks executable. */
2101 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2103 0xe52dc008, /* str ip,[sp,#-8]! */
2104 0xe59fc000, /* ldr ip,[pc] */
2105 0xe59cf008, /* ldr pc,[ip,#8] */
2106 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2109 /* The format of subsequent entries in a VxWorks executable. */
2110 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2112 0xe59fc000, /* ldr ip,[pc] */
2113 0xe59cf000, /* ldr pc,[ip] */
2114 0x00000000, /* .long @got */
2115 0xe59fc000, /* ldr ip,[pc] */
2116 0xea000000, /* b _PLT */
2117 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2120 /* The format of entries in a VxWorks shared library. */
2121 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2123 0xe59fc000, /* ldr ip,[pc] */
2124 0xe79cf009, /* ldr pc,[ip,r9] */
2125 0x00000000, /* .long @got */
2126 0xe59fc000, /* ldr ip,[pc] */
2127 0xe599f008, /* ldr pc,[r9,#8] */
2128 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2131 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2132 #define PLT_THUMB_STUB_SIZE 4
2133 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2139 /* The entries in a PLT when using a DLL-based target with multiple
2141 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2143 0xe51ff004, /* ldr pc, [pc, #-4] */
2144 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2147 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2148 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2149 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2150 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2151 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2152 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2162 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2163 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2164 is inserted in arm_build_one_stub(). */
2165 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2166 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2167 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2168 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2169 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2170 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2175 enum stub_insn_type type;
2176 unsigned int r_type;
2180 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2181 to reach the stub if necessary. */
2182 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2184 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2185 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2188 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2190 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2192 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2193 ARM_INSN(0xe12fff1c), /* bx ip */
2194 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2197 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2198 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2200 THUMB16_INSN(0xb401), /* push {r0} */
2201 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2202 THUMB16_INSN(0x4684), /* mov ip, r0 */
2203 THUMB16_INSN(0xbc01), /* pop {r0} */
2204 THUMB16_INSN(0x4760), /* bx ip */
2205 THUMB16_INSN(0xbf00), /* nop */
2206 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2209 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2211 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2213 THUMB16_INSN(0x4778), /* bx pc */
2214 THUMB16_INSN(0x46c0), /* nop */
2215 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2216 ARM_INSN(0xe12fff1c), /* bx ip */
2217 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2220 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2222 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2224 THUMB16_INSN(0x4778), /* bx pc */
2225 THUMB16_INSN(0x46c0), /* nop */
2226 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2227 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2230 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2231 one, when the destination is close enough. */
2232 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2234 THUMB16_INSN(0x4778), /* bx pc */
2235 THUMB16_INSN(0x46c0), /* nop */
2236 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2239 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2240 blx to reach the stub if necessary. */
2241 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2243 ARM_INSN(0xe59fc000), /* ldr ip, [pc] */
2244 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2245 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2248 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2249 blx to reach the stub if necessary. We can not add into pc;
2250 it is not guaranteed to mode switch (different in ARMv6 and
2252 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2254 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2255 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2256 ARM_INSN(0xe12fff1c), /* bx ip */
2257 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2260 /* V4T ARM -> ARM long branch stub, PIC. */
2261 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2263 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2264 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2265 ARM_INSN(0xe12fff1c), /* bx ip */
2266 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2269 /* V4T Thumb -> ARM long branch stub, PIC. */
2270 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2272 THUMB16_INSN(0x4778), /* bx pc */
2273 THUMB16_INSN(0x46c0), /* nop */
2274 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2275 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2276 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2279 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2281 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2283 THUMB16_INSN(0xb401), /* push {r0} */
2284 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2285 THUMB16_INSN(0x46fc), /* mov ip, pc */
2286 THUMB16_INSN(0x4484), /* add ip, r0 */
2287 THUMB16_INSN(0xbc01), /* pop {r0} */
2288 THUMB16_INSN(0x4760), /* bx ip */
2289 DATA_WORD(0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2292 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2294 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2296 THUMB16_INSN(0x4778), /* bx pc */
2297 THUMB16_INSN(0x46c0), /* nop */
2298 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2299 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2300 ARM_INSN(0xe12fff1c), /* bx ip */
2301 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2304 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2305 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2306 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2308 ARM_INSN(0xe59f1000), /* ldr r1, [pc] */
2309 ARM_INSN(0xe08ff001), /* add pc, pc, r1 */
2310 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2313 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2314 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2315 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2317 THUMB16_INSN(0x4778), /* bx pc */
2318 THUMB16_INSN(0x46c0), /* nop */
2319 ARM_INSN(0xe59f1000), /* ldr r1, [pc, #0] */
2320 ARM_INSN(0xe081f00f), /* add pc, r1, pc */
2321 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2324 /* Cortex-A8 erratum-workaround stubs. */
2326 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2327 can't use a conditional branch to reach this stub). */
2329 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2331 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2332 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2333 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2336 /* Stub used for b.w and bl.w instructions. */
2338 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2340 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2343 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2345 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2348 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2349 instruction (which switches to ARM mode) to point to this stub. Jump to the
2350 real destination using an ARM-mode branch. */
2352 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2354 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2357 /* For each section group there can be a specially created linker section
2358 to hold the stubs for that group. The name of the stub section is based
2359 upon the name of another section within that group with the suffix below
2362 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2363 create what appeared to be a linker stub section when it actually
2364 contained user code/data. For example, consider this fragment:
2366 const char * stubborn_problems[] = { "np" };
2368 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2371 .data.rel.local.stubborn_problems
2373 This then causes problems in arm32_arm_build_stubs() as it triggers:
2375 // Ignore non-stub sections.
2376 if (!strstr (stub_sec->name, STUB_SUFFIX))
2379 And so the section would be ignored instead of being processed. Hence
2380 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2382 #define STUB_SUFFIX ".__stub"
2384 /* One entry per long/short branch stub defined above. */
2386 DEF_STUB(long_branch_any_any) \
2387 DEF_STUB(long_branch_v4t_arm_thumb) \
2388 DEF_STUB(long_branch_thumb_only) \
2389 DEF_STUB(long_branch_v4t_thumb_thumb) \
2390 DEF_STUB(long_branch_v4t_thumb_arm) \
2391 DEF_STUB(short_branch_v4t_thumb_arm) \
2392 DEF_STUB(long_branch_any_arm_pic) \
2393 DEF_STUB(long_branch_any_thumb_pic) \
2394 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2395 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2396 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2397 DEF_STUB(long_branch_thumb_only_pic) \
2398 DEF_STUB(long_branch_any_tls_pic) \
2399 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2400 DEF_STUB(a8_veneer_b_cond) \
2401 DEF_STUB(a8_veneer_b) \
2402 DEF_STUB(a8_veneer_bl) \
2403 DEF_STUB(a8_veneer_blx)
2405 #define DEF_STUB(x) arm_stub_##x,
2406 enum elf32_arm_stub_type {
2409 /* Note the first a8_veneer type */
2410 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2416 const insn_sequence* template_sequence;
2420 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2421 static const stub_def stub_definitions[] = {
2426 struct elf32_arm_stub_hash_entry
2428 /* Base hash table entry structure. */
2429 struct bfd_hash_entry root;
2431 /* The stub section. */
2434 /* Offset within stub_sec of the beginning of this stub. */
2435 bfd_vma stub_offset;
2437 /* Given the symbol's value and its section we can determine its final
2438 value when building the stubs (so the stub knows where to jump). */
2439 bfd_vma target_value;
2440 asection *target_section;
2442 /* Offset to apply to relocation referencing target_value. */
2443 bfd_vma target_addend;
2445 /* The instruction which caused this stub to be generated (only valid for
2446 Cortex-A8 erratum workaround stubs at present). */
2447 unsigned long orig_insn;
2449 /* The stub type. */
2450 enum elf32_arm_stub_type stub_type;
2451 /* Its encoding size in bytes. */
2454 const insn_sequence *stub_template;
2455 /* The size of the template (number of entries). */
2456 int stub_template_size;
2458 /* The symbol table entry, if any, that this was derived from. */
2459 struct elf32_arm_link_hash_entry *h;
2461 /* Type of branch. */
2462 enum arm_st_branch_type branch_type;
2464 /* Where this stub is being called from, or, in the case of combined
2465 stub sections, the first input section in the group. */
2468 /* The name for the local symbol at the start of this stub. The
2469 stub name in the hash table has to be unique; this does not, so
2470 it can be friendlier. */
2474 /* Used to build a map of a section. This is required for mixed-endian
2477 typedef struct elf32_elf_section_map
2482 elf32_arm_section_map;
2484 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2488 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2489 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2490 VFP11_ERRATUM_ARM_VENEER,
2491 VFP11_ERRATUM_THUMB_VENEER
2493 elf32_vfp11_erratum_type;
2495 typedef struct elf32_vfp11_erratum_list
2497 struct elf32_vfp11_erratum_list *next;
2503 struct elf32_vfp11_erratum_list *veneer;
2504 unsigned int vfp_insn;
2508 struct elf32_vfp11_erratum_list *branch;
2512 elf32_vfp11_erratum_type type;
2514 elf32_vfp11_erratum_list;
2519 INSERT_EXIDX_CANTUNWIND_AT_END
2521 arm_unwind_edit_type;
2523 /* A (sorted) list of edits to apply to an unwind table. */
2524 typedef struct arm_unwind_table_edit
2526 arm_unwind_edit_type type;
2527 /* Note: we sometimes want to insert an unwind entry corresponding to a
2528 section different from the one we're currently writing out, so record the
2529 (text) section this edit relates to here. */
2530 asection *linked_section;
2532 struct arm_unwind_table_edit *next;
2534 arm_unwind_table_edit;
2536 typedef struct _arm_elf_section_data
2538 /* Information about mapping symbols. */
2539 struct bfd_elf_section_data elf;
2540 unsigned int mapcount;
2541 unsigned int mapsize;
2542 elf32_arm_section_map *map;
2543 /* Information about CPU errata. */
2544 unsigned int erratumcount;
2545 elf32_vfp11_erratum_list *erratumlist;
2546 /* Information about unwind tables. */
2549 /* Unwind info attached to a text section. */
2552 asection *arm_exidx_sec;
2555 /* Unwind info attached to an .ARM.exidx section. */
2558 arm_unwind_table_edit *unwind_edit_list;
2559 arm_unwind_table_edit *unwind_edit_tail;
2563 _arm_elf_section_data;
2565 #define elf32_arm_section_data(sec) \
2566 ((_arm_elf_section_data *) elf_section_data (sec))
2568 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2569 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2570 so may be created multiple times: we use an array of these entries whilst
2571 relaxing which we can refresh easily, then create stubs for each potentially
2572 erratum-triggering instruction once we've settled on a solution. */
2574 struct a8_erratum_fix {
2579 unsigned long orig_insn;
2581 enum elf32_arm_stub_type stub_type;
2582 enum arm_st_branch_type branch_type;
2585 /* A table of relocs applied to branches which might trigger Cortex-A8
2588 struct a8_erratum_reloc {
2590 bfd_vma destination;
2591 struct elf32_arm_link_hash_entry *hash;
2592 const char *sym_name;
2593 unsigned int r_type;
2594 enum arm_st_branch_type branch_type;
2595 bfd_boolean non_a8_stub;
2598 /* The size of the thread control block. */
2601 /* ARM-specific information about a PLT entry, over and above the usual
2603 struct arm_plt_info {
2604 /* We reference count Thumb references to a PLT entry separately,
2605 so that we can emit the Thumb trampoline only if needed. */
2606 bfd_signed_vma thumb_refcount;
2608 /* Some references from Thumb code may be eliminated by BL->BLX
2609 conversion, so record them separately. */
2610 bfd_signed_vma maybe_thumb_refcount;
2612 /* How many of the recorded PLT accesses were from non-call relocations.
2613 This information is useful when deciding whether anything takes the
2614 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2615 non-call references to the function should resolve directly to the
2616 real runtime target. */
2617 unsigned int noncall_refcount;
2619 /* Since PLT entries have variable size if the Thumb prologue is
2620 used, we need to record the index into .got.plt instead of
2621 recomputing it from the PLT offset. */
2622 bfd_signed_vma got_offset;
2625 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2626 struct arm_local_iplt_info {
2627 /* The information that is usually found in the generic ELF part of
2628 the hash table entry. */
2629 union gotplt_union root;
2631 /* The information that is usually found in the ARM-specific part of
2632 the hash table entry. */
2633 struct arm_plt_info arm;
2635 /* A list of all potential dynamic relocations against this symbol. */
2636 struct elf_dyn_relocs *dyn_relocs;
2639 struct elf_arm_obj_tdata
2641 struct elf_obj_tdata root;
2643 /* tls_type for each local got entry. */
2644 char *local_got_tls_type;
2646 /* GOTPLT entries for TLS descriptors. */
2647 bfd_vma *local_tlsdesc_gotent;
2649 /* Information for local symbols that need entries in .iplt. */
2650 struct arm_local_iplt_info **local_iplt;
2652 /* Zero to warn when linking objects with incompatible enum sizes. */
2653 int no_enum_size_warning;
2655 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2656 int no_wchar_size_warning;
2659 #define elf_arm_tdata(bfd) \
2660 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2662 #define elf32_arm_local_got_tls_type(bfd) \
2663 (elf_arm_tdata (bfd)->local_got_tls_type)
2665 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2666 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2668 #define elf32_arm_local_iplt(bfd) \
2669 (elf_arm_tdata (bfd)->local_iplt)
2671 #define is_arm_elf(bfd) \
2672 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2673 && elf_tdata (bfd) != NULL \
2674 && elf_object_id (bfd) == ARM_ELF_DATA)
2677 elf32_arm_mkobject (bfd *abfd)
2679 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2683 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2685 /* Arm ELF linker hash entry. */
2686 struct elf32_arm_link_hash_entry
2688 struct elf_link_hash_entry root;
2690 /* Track dynamic relocs copied for this symbol. */
2691 struct elf_dyn_relocs *dyn_relocs;
2693 /* ARM-specific PLT information. */
2694 struct arm_plt_info plt;
2696 #define GOT_UNKNOWN 0
2697 #define GOT_NORMAL 1
2698 #define GOT_TLS_GD 2
2699 #define GOT_TLS_IE 4
2700 #define GOT_TLS_GDESC 8
2701 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2702 unsigned int tls_type : 8;
2704 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2705 unsigned int is_iplt : 1;
2707 unsigned int unused : 23;
2709 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2710 starting at the end of the jump table. */
2711 bfd_vma tlsdesc_got;
2713 /* The symbol marking the real symbol location for exported thumb
2714 symbols with Arm stubs. */
2715 struct elf_link_hash_entry *export_glue;
2717 /* A pointer to the most recently used stub hash entry against this
2719 struct elf32_arm_stub_hash_entry *stub_cache;
2722 /* Traverse an arm ELF linker hash table. */
2723 #define elf32_arm_link_hash_traverse(table, func, info) \
2724 (elf_link_hash_traverse \
2726 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2729 /* Get the ARM elf linker hash table from a link_info structure. */
2730 #define elf32_arm_hash_table(info) \
2731 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2732 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2734 #define arm_stub_hash_lookup(table, string, create, copy) \
2735 ((struct elf32_arm_stub_hash_entry *) \
2736 bfd_hash_lookup ((table), (string), (create), (copy)))
2738 /* Array to keep track of which stub sections have been created, and
2739 information on stub grouping. */
2742 /* This is the section to which stubs in the group will be
2745 /* The stub section. */
2749 #define elf32_arm_compute_jump_table_size(htab) \
2750 ((htab)->next_tls_desc_index * 4)
2752 /* ARM ELF linker hash table. */
2753 struct elf32_arm_link_hash_table
2755 /* The main hash table. */
2756 struct elf_link_hash_table root;
2758 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2759 bfd_size_type thumb_glue_size;
2761 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2762 bfd_size_type arm_glue_size;
2764 /* The size in bytes of section containing the ARMv4 BX veneers. */
2765 bfd_size_type bx_glue_size;
2767 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2768 veneer has been populated. */
2769 bfd_vma bx_glue_offset[15];
2771 /* The size in bytes of the section containing glue for VFP11 erratum
2773 bfd_size_type vfp11_erratum_glue_size;
2775 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2776 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2777 elf32_arm_write_section(). */
2778 struct a8_erratum_fix *a8_erratum_fixes;
2779 unsigned int num_a8_erratum_fixes;
2781 /* An arbitrary input BFD chosen to hold the glue sections. */
2782 bfd * bfd_of_glue_owner;
2784 /* Nonzero to output a BE8 image. */
2787 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2788 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2791 /* The relocation to use for R_ARM_TARGET2 relocations. */
2794 /* 0 = Ignore R_ARM_V4BX.
2795 1 = Convert BX to MOV PC.
2796 2 = Generate v4 interworing stubs. */
2799 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2802 /* Whether we should fix the ARM1176 BLX immediate issue. */
2805 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2808 /* What sort of code sequences we should look for which may trigger the
2809 VFP11 denorm erratum. */
2810 bfd_arm_vfp11_fix vfp11_fix;
2812 /* Global counter for the number of fixes we have emitted. */
2813 int num_vfp11_fixes;
2815 /* Nonzero to force PIC branch veneers. */
2818 /* The number of bytes in the initial entry in the PLT. */
2819 bfd_size_type plt_header_size;
2821 /* The number of bytes in the subsequent PLT etries. */
2822 bfd_size_type plt_entry_size;
2824 /* True if the target system is VxWorks. */
2827 /* True if the target system is Symbian OS. */
2830 /* True if the target uses REL relocations. */
2833 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
2834 bfd_vma next_tls_desc_index;
2836 /* How many R_ARM_TLS_DESC relocations were generated so far. */
2837 bfd_vma num_tls_desc;
2839 /* Short-cuts to get to dynamic linker sections. */
2843 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2846 /* The offset into splt of the PLT entry for the TLS descriptor
2847 resolver. Special values are 0, if not necessary (or not found
2848 to be necessary yet), and -1 if needed but not determined
2850 bfd_vma dt_tlsdesc_plt;
2852 /* The offset into sgot of the GOT entry used by the PLT entry
2854 bfd_vma dt_tlsdesc_got;
2856 /* Offset in .plt section of tls_arm_trampoline. */
2857 bfd_vma tls_trampoline;
2859 /* Data for R_ARM_TLS_LDM32 relocations. */
2862 bfd_signed_vma refcount;
2866 /* Small local sym cache. */
2867 struct sym_cache sym_cache;
2869 /* For convenience in allocate_dynrelocs. */
2872 /* The amount of space used by the reserved portion of the sgotplt
2873 section, plus whatever space is used by the jump slots. */
2874 bfd_vma sgotplt_jump_table_size;
2876 /* The stub hash table. */
2877 struct bfd_hash_table stub_hash_table;
2879 /* Linker stub bfd. */
2882 /* Linker call-backs. */
2883 asection * (*add_stub_section) (const char *, asection *);
2884 void (*layout_sections_again) (void);
2886 /* Array to keep track of which stub sections have been created, and
2887 information on stub grouping. */
2888 struct map_stub *stub_group;
2890 /* Number of elements in stub_group. */
2893 /* Assorted information used by elf32_arm_size_stubs. */
2894 unsigned int bfd_count;
2896 asection **input_list;
2899 /* Create an entry in an ARM ELF linker hash table. */
2901 static struct bfd_hash_entry *
2902 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2903 struct bfd_hash_table * table,
2904 const char * string)
2906 struct elf32_arm_link_hash_entry * ret =
2907 (struct elf32_arm_link_hash_entry *) entry;
2909 /* Allocate the structure if it has not already been allocated by a
2912 ret = (struct elf32_arm_link_hash_entry *)
2913 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2915 return (struct bfd_hash_entry *) ret;
2917 /* Call the allocation method of the superclass. */
2918 ret = ((struct elf32_arm_link_hash_entry *)
2919 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2923 ret->dyn_relocs = NULL;
2924 ret->tls_type = GOT_UNKNOWN;
2925 ret->tlsdesc_got = (bfd_vma) -1;
2926 ret->plt.thumb_refcount = 0;
2927 ret->plt.maybe_thumb_refcount = 0;
2928 ret->plt.noncall_refcount = 0;
2929 ret->plt.got_offset = -1;
2930 ret->is_iplt = FALSE;
2931 ret->export_glue = NULL;
2933 ret->stub_cache = NULL;
2936 return (struct bfd_hash_entry *) ret;
2939 /* Ensure that we have allocated bookkeeping structures for ABFD's local
2943 elf32_arm_allocate_local_sym_info (bfd *abfd)
2945 if (elf_local_got_refcounts (abfd) == NULL)
2947 bfd_size_type num_syms;
2951 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
2952 size = num_syms * (sizeof (bfd_signed_vma)
2953 + sizeof (struct arm_local_iplt_info *)
2956 data = bfd_zalloc (abfd, size);
2960 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
2961 data += num_syms * sizeof (bfd_signed_vma);
2963 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
2964 data += num_syms * sizeof (struct arm_local_iplt_info *);
2966 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
2967 data += num_syms * sizeof (bfd_vma);
2969 elf32_arm_local_got_tls_type (abfd) = data;
2974 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
2975 to input bfd ABFD. Create the information if it doesn't already exist.
2976 Return null if an allocation fails. */
2978 static struct arm_local_iplt_info *
2979 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
2981 struct arm_local_iplt_info **ptr;
2983 if (!elf32_arm_allocate_local_sym_info (abfd))
2986 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
2987 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
2989 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
2993 /* Try to obtain PLT information for the symbol with index R_SYMNDX
2994 in ABFD's symbol table. If the symbol is global, H points to its
2995 hash table entry, otherwise H is null.
2997 Return true if the symbol does have PLT information. When returning
2998 true, point *ROOT_PLT at the target-independent reference count/offset
2999 union and *ARM_PLT at the ARM-specific information. */
3002 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
3003 unsigned long r_symndx, union gotplt_union **root_plt,
3004 struct arm_plt_info **arm_plt)
3006 struct arm_local_iplt_info *local_iplt;
3010 *root_plt = &h->root.plt;
3015 if (elf32_arm_local_iplt (abfd) == NULL)
3018 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3019 if (local_iplt == NULL)
3022 *root_plt = &local_iplt->root;
3023 *arm_plt = &local_iplt->arm;
3027 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3031 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3032 struct arm_plt_info *arm_plt)
3034 struct elf32_arm_link_hash_table *htab;
3036 htab = elf32_arm_hash_table (info);
3037 return (arm_plt->thumb_refcount != 0
3038 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3041 /* Return a pointer to the head of the dynamic reloc list that should
3042 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3043 ABFD's symbol table. Return null if an error occurs. */
3045 static struct elf_dyn_relocs **
3046 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3047 Elf_Internal_Sym *isym)
3049 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3051 struct arm_local_iplt_info *local_iplt;
3053 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3054 if (local_iplt == NULL)
3056 return &local_iplt->dyn_relocs;
3060 /* Track dynamic relocs needed for local syms too.
3061 We really need local syms available to do this
3066 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3070 vpp = &elf_section_data (s)->local_dynrel;
3071 return (struct elf_dyn_relocs **) vpp;
3075 /* Initialize an entry in the stub hash table. */
3077 static struct bfd_hash_entry *
3078 stub_hash_newfunc (struct bfd_hash_entry *entry,
3079 struct bfd_hash_table *table,
3082 /* Allocate the structure if it has not already been allocated by a
3086 entry = (struct bfd_hash_entry *)
3087 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3092 /* Call the allocation method of the superclass. */
3093 entry = bfd_hash_newfunc (entry, table, string);
3096 struct elf32_arm_stub_hash_entry *eh;
3098 /* Initialize the local fields. */
3099 eh = (struct elf32_arm_stub_hash_entry *) entry;
3100 eh->stub_sec = NULL;
3101 eh->stub_offset = 0;
3102 eh->target_value = 0;
3103 eh->target_section = NULL;
3104 eh->target_addend = 0;
3106 eh->stub_type = arm_stub_none;
3108 eh->stub_template = NULL;
3109 eh->stub_template_size = 0;
3112 eh->output_name = NULL;
3118 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3119 shortcuts to them in our hash table. */
3122 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3124 struct elf32_arm_link_hash_table *htab;
3126 htab = elf32_arm_hash_table (info);
3130 /* BPABI objects never have a GOT, or associated sections. */
3131 if (htab->symbian_p)
3134 if (! _bfd_elf_create_got_section (dynobj, info))
3140 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3143 create_ifunc_sections (struct bfd_link_info *info)
3145 struct elf32_arm_link_hash_table *htab;
3146 const struct elf_backend_data *bed;
3151 htab = elf32_arm_hash_table (info);
3152 dynobj = htab->root.dynobj;
3153 bed = get_elf_backend_data (dynobj);
3154 flags = bed->dynamic_sec_flags;
3156 if (htab->root.iplt == NULL)
3158 s = bfd_make_section_with_flags (dynobj, ".iplt",
3159 flags | SEC_READONLY | SEC_CODE);
3161 || !bfd_set_section_alignment (abfd, s, bed->plt_alignment))
3163 htab->root.iplt = s;
3166 if (htab->root.irelplt == NULL)
3168 s = bfd_make_section_with_flags (dynobj, RELOC_SECTION (htab, ".iplt"),
3169 flags | SEC_READONLY);
3171 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
3173 htab->root.irelplt = s;
3176 if (htab->root.igotplt == NULL)
3178 s = bfd_make_section_with_flags (dynobj, ".igot.plt", flags);
3180 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3182 htab->root.igotplt = s;
3187 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3188 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3192 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3194 struct elf32_arm_link_hash_table *htab;
3196 htab = elf32_arm_hash_table (info);
3200 if (!htab->root.sgot && !create_got_section (dynobj, info))
3203 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3206 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3208 htab->srelbss = bfd_get_section_by_name (dynobj,
3209 RELOC_SECTION (htab, ".bss"));
3211 if (htab->vxworks_p)
3213 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3218 htab->plt_header_size = 0;
3219 htab->plt_entry_size
3220 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3224 htab->plt_header_size
3225 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3226 htab->plt_entry_size
3227 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3231 if (!htab->root.splt
3232 || !htab->root.srelplt
3234 || (!info->shared && !htab->srelbss))
3240 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3243 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3244 struct elf_link_hash_entry *dir,
3245 struct elf_link_hash_entry *ind)
3247 struct elf32_arm_link_hash_entry *edir, *eind;
3249 edir = (struct elf32_arm_link_hash_entry *) dir;
3250 eind = (struct elf32_arm_link_hash_entry *) ind;
3252 if (eind->dyn_relocs != NULL)
3254 if (edir->dyn_relocs != NULL)
3256 struct elf_dyn_relocs **pp;
3257 struct elf_dyn_relocs *p;
3259 /* Add reloc counts against the indirect sym to the direct sym
3260 list. Merge any entries against the same section. */
3261 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3263 struct elf_dyn_relocs *q;
3265 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3266 if (q->sec == p->sec)
3268 q->pc_count += p->pc_count;
3269 q->count += p->count;
3276 *pp = edir->dyn_relocs;
3279 edir->dyn_relocs = eind->dyn_relocs;
3280 eind->dyn_relocs = NULL;
3283 if (ind->root.type == bfd_link_hash_indirect)
3285 /* Copy over PLT info. */
3286 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3287 eind->plt.thumb_refcount = 0;
3288 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3289 eind->plt.maybe_thumb_refcount = 0;
3290 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3291 eind->plt.noncall_refcount = 0;
3293 /* We should only allocate a function to .iplt once the final
3294 symbol information is known. */
3295 BFD_ASSERT (!eind->is_iplt);
3297 if (dir->got.refcount <= 0)
3299 edir->tls_type = eind->tls_type;
3300 eind->tls_type = GOT_UNKNOWN;
3304 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3307 /* Create an ARM elf linker hash table. */
3309 static struct bfd_link_hash_table *
3310 elf32_arm_link_hash_table_create (bfd *abfd)
3312 struct elf32_arm_link_hash_table *ret;
3313 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3315 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
3319 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3320 elf32_arm_link_hash_newfunc,
3321 sizeof (struct elf32_arm_link_hash_entry),
3328 ret->sdynbss = NULL;
3329 ret->srelbss = NULL;
3330 ret->srelplt2 = NULL;
3331 ret->dt_tlsdesc_plt = 0;
3332 ret->dt_tlsdesc_got = 0;
3333 ret->tls_trampoline = 0;
3334 ret->next_tls_desc_index = 0;
3335 ret->num_tls_desc = 0;
3336 ret->thumb_glue_size = 0;
3337 ret->arm_glue_size = 0;
3338 ret->bx_glue_size = 0;
3339 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
3340 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3341 ret->vfp11_erratum_glue_size = 0;
3342 ret->num_vfp11_fixes = 0;
3343 ret->fix_cortex_a8 = 0;
3344 ret->fix_arm1176 = 0;
3345 ret->bfd_of_glue_owner = NULL;
3346 ret->byteswap_code = 0;
3347 ret->target1_is_rel = 0;
3348 ret->target2_reloc = R_ARM_NONE;
3349 #ifdef FOUR_WORD_PLT
3350 ret->plt_header_size = 16;
3351 ret->plt_entry_size = 16;
3353 ret->plt_header_size = 20;
3354 ret->plt_entry_size = 12;
3361 ret->sym_cache.abfd = NULL;
3363 ret->tls_ldm_got.refcount = 0;
3364 ret->stub_bfd = NULL;
3365 ret->add_stub_section = NULL;
3366 ret->layout_sections_again = NULL;
3367 ret->stub_group = NULL;
3371 ret->input_list = NULL;
3373 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3374 sizeof (struct elf32_arm_stub_hash_entry)))
3380 return &ret->root.root;
3383 /* Free the derived linker hash table. */
3386 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
3388 struct elf32_arm_link_hash_table *ret
3389 = (struct elf32_arm_link_hash_table *) hash;
3391 bfd_hash_table_free (&ret->stub_hash_table);
3392 _bfd_generic_link_hash_table_free (hash);
3395 /* Determine if we're dealing with a Thumb only architecture. */
3398 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3400 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3404 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3407 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
3410 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3411 Tag_CPU_arch_profile);
3413 return profile == 'M';
3416 /* Determine if we're dealing with a Thumb-2 object. */
3419 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3421 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3423 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3426 /* Determine what kind of NOPs are available. */
3429 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3431 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3433 return arch == TAG_CPU_ARCH_V6T2
3434 || arch == TAG_CPU_ARCH_V6K
3435 || arch == TAG_CPU_ARCH_V7
3436 || arch == TAG_CPU_ARCH_V7E_M;
3440 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3442 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3444 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3445 || arch == TAG_CPU_ARCH_V7E_M);
3449 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3453 case arm_stub_long_branch_thumb_only:
3454 case arm_stub_long_branch_v4t_thumb_arm:
3455 case arm_stub_short_branch_v4t_thumb_arm:
3456 case arm_stub_long_branch_v4t_thumb_arm_pic:
3457 case arm_stub_long_branch_v4t_thumb_tls_pic:
3458 case arm_stub_long_branch_thumb_only_pic:
3469 /* Determine the type of stub needed, if any, for a call. */
3471 static enum elf32_arm_stub_type
3472 arm_type_of_stub (struct bfd_link_info *info,
3473 asection *input_sec,
3474 const Elf_Internal_Rela *rel,
3475 unsigned char st_type,
3476 enum arm_st_branch_type *actual_branch_type,
3477 struct elf32_arm_link_hash_entry *hash,
3478 bfd_vma destination,
3484 bfd_signed_vma branch_offset;
3485 unsigned int r_type;
3486 struct elf32_arm_link_hash_table * globals;
3489 enum elf32_arm_stub_type stub_type = arm_stub_none;
3491 enum arm_st_branch_type branch_type = *actual_branch_type;
3492 union gotplt_union *root_plt;
3493 struct arm_plt_info *arm_plt;
3495 if (branch_type == ST_BRANCH_LONG)
3498 globals = elf32_arm_hash_table (info);
3499 if (globals == NULL)
3502 thumb_only = using_thumb_only (globals);
3504 thumb2 = using_thumb2 (globals);
3506 /* Determine where the call point is. */
3507 location = (input_sec->output_offset
3508 + input_sec->output_section->vma
3511 r_type = ELF32_R_TYPE (rel->r_info);
3513 /* For TLS call relocs, it is the caller's responsibility to provide
3514 the address of the appropriate trampoline. */
3515 if (r_type != R_ARM_TLS_CALL
3516 && r_type != R_ARM_THM_TLS_CALL
3517 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3518 &root_plt, &arm_plt)
3519 && root_plt->offset != (bfd_vma) -1)
3523 if (hash == NULL || hash->is_iplt)
3524 splt = globals->root.iplt;
3526 splt = globals->root.splt;
3531 /* Note when dealing with PLT entries: the main PLT stub is in
3532 ARM mode, so if the branch is in Thumb mode, another
3533 Thumb->ARM stub will be inserted later just before the ARM
3534 PLT stub. We don't take this extra distance into account
3535 here, because if a long branch stub is needed, we'll add a
3536 Thumb->Arm one and branch directly to the ARM PLT entry
3537 because it avoids spreading offset corrections in several
3540 destination = (splt->output_section->vma
3541 + splt->output_offset
3542 + root_plt->offset);
3544 branch_type = ST_BRANCH_TO_ARM;
3547 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3548 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3550 branch_offset = (bfd_signed_vma)(destination - location);
3552 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3553 || r_type == R_ARM_THM_TLS_CALL)
3555 /* Handle cases where:
3556 - this call goes too far (different Thumb/Thumb2 max
3558 - it's a Thumb->Arm call and blx is not available, or it's a
3559 Thumb->Arm branch (not bl). A stub is needed in this case,
3560 but only if this call is not through a PLT entry. Indeed,
3561 PLT stubs handle mode switching already.
3564 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3565 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3567 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3568 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3569 || (branch_type == ST_BRANCH_TO_ARM
3570 && (((r_type == R_ARM_THM_CALL
3571 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3572 || (r_type == R_ARM_THM_JUMP24))
3575 if (branch_type == ST_BRANCH_TO_THUMB)
3577 /* Thumb to thumb. */
3580 stub_type = (info->shared | globals->pic_veneer)
3582 ? ((globals->use_blx
3583 && (r_type == R_ARM_THM_CALL))
3584 /* V5T and above. Stub starts with ARM code, so
3585 we must be able to switch mode before
3586 reaching it, which is only possible for 'bl'
3587 (ie R_ARM_THM_CALL relocation). */
3588 ? arm_stub_long_branch_any_thumb_pic
3589 /* On V4T, use Thumb code only. */
3590 : arm_stub_long_branch_v4t_thumb_thumb_pic)
3592 /* non-PIC stubs. */
3593 : ((globals->use_blx
3594 && (r_type == R_ARM_THM_CALL))
3595 /* V5T and above. */
3596 ? arm_stub_long_branch_any_any
3598 : arm_stub_long_branch_v4t_thumb_thumb);
3602 stub_type = (info->shared | globals->pic_veneer)
3604 ? arm_stub_long_branch_thumb_only_pic
3606 : arm_stub_long_branch_thumb_only;
3613 && sym_sec->owner != NULL
3614 && !INTERWORK_FLAG (sym_sec->owner))
3616 (*_bfd_error_handler)
3617 (_("%B(%s): warning: interworking not enabled.\n"
3618 " first occurrence: %B: Thumb call to ARM"),
3619 sym_sec->owner, input_bfd, name);
3623 (info->shared | globals->pic_veneer)
3625 ? (r_type == R_ARM_THM_TLS_CALL
3627 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3628 : arm_stub_long_branch_v4t_thumb_tls_pic)
3629 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3630 /* V5T PIC and above. */
3631 ? arm_stub_long_branch_any_arm_pic
3633 : arm_stub_long_branch_v4t_thumb_arm_pic))
3635 /* non-PIC stubs. */
3636 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3637 /* V5T and above. */
3638 ? arm_stub_long_branch_any_any
3640 : arm_stub_long_branch_v4t_thumb_arm);
3642 /* Handle v4t short branches. */
3643 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3644 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3645 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3646 stub_type = arm_stub_short_branch_v4t_thumb_arm;
3650 else if (r_type == R_ARM_CALL
3651 || r_type == R_ARM_JUMP24
3652 || r_type == R_ARM_PLT32
3653 || r_type == R_ARM_TLS_CALL)
3655 if (branch_type == ST_BRANCH_TO_THUMB)
3660 && sym_sec->owner != NULL
3661 && !INTERWORK_FLAG (sym_sec->owner))
3663 (*_bfd_error_handler)
3664 (_("%B(%s): warning: interworking not enabled.\n"
3665 " first occurrence: %B: ARM call to Thumb"),
3666 sym_sec->owner, input_bfd, name);
3669 /* We have an extra 2-bytes reach because of
3670 the mode change (bit 24 (H) of BLX encoding). */
3671 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3672 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3673 || (r_type == R_ARM_CALL && !globals->use_blx)
3674 || (r_type == R_ARM_JUMP24)
3675 || (r_type == R_ARM_PLT32))
3677 stub_type = (info->shared | globals->pic_veneer)
3679 ? ((globals->use_blx)
3680 /* V5T and above. */
3681 ? arm_stub_long_branch_any_thumb_pic
3683 : arm_stub_long_branch_v4t_arm_thumb_pic)
3685 /* non-PIC stubs. */
3686 : ((globals->use_blx)
3687 /* V5T and above. */
3688 ? arm_stub_long_branch_any_any
3690 : arm_stub_long_branch_v4t_arm_thumb);
3696 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3697 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3700 (info->shared | globals->pic_veneer)
3702 ? (r_type == R_ARM_TLS_CALL
3704 ? arm_stub_long_branch_any_tls_pic
3705 : arm_stub_long_branch_any_arm_pic)
3706 /* non-PIC stubs. */
3707 : arm_stub_long_branch_any_any;
3712 /* If a stub is needed, record the actual destination type. */
3713 if (stub_type != arm_stub_none)
3714 *actual_branch_type = branch_type;
3719 /* Build a name for an entry in the stub hash table. */
3722 elf32_arm_stub_name (const asection *input_section,
3723 const asection *sym_sec,
3724 const struct elf32_arm_link_hash_entry *hash,
3725 const Elf_Internal_Rela *rel,
3726 enum elf32_arm_stub_type stub_type)
3733 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3734 stub_name = (char *) bfd_malloc (len);
3735 if (stub_name != NULL)
3736 sprintf (stub_name, "%08x_%s+%x_%d",
3737 input_section->id & 0xffffffff,
3738 hash->root.root.root.string,
3739 (int) rel->r_addend & 0xffffffff,
3744 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3745 stub_name = (char *) bfd_malloc (len);
3746 if (stub_name != NULL)
3747 sprintf (stub_name, "%08x_%x:%x+%x_%d",
3748 input_section->id & 0xffffffff,
3749 sym_sec->id & 0xffffffff,
3750 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3751 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3752 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3753 (int) rel->r_addend & 0xffffffff,
3760 /* Look up an entry in the stub hash. Stub entries are cached because
3761 creating the stub name takes a bit of time. */
3763 static struct elf32_arm_stub_hash_entry *
3764 elf32_arm_get_stub_entry (const asection *input_section,
3765 const asection *sym_sec,
3766 struct elf_link_hash_entry *hash,
3767 const Elf_Internal_Rela *rel,
3768 struct elf32_arm_link_hash_table *htab,
3769 enum elf32_arm_stub_type stub_type)
3771 struct elf32_arm_stub_hash_entry *stub_entry;
3772 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3773 const asection *id_sec;
3775 if ((input_section->flags & SEC_CODE) == 0)
3778 /* If this input section is part of a group of sections sharing one
3779 stub section, then use the id of the first section in the group.
3780 Stub names need to include a section id, as there may well be
3781 more than one stub used to reach say, printf, and we need to
3782 distinguish between them. */
3783 id_sec = htab->stub_group[input_section->id].link_sec;
3785 if (h != NULL && h->stub_cache != NULL
3786 && h->stub_cache->h == h
3787 && h->stub_cache->id_sec == id_sec
3788 && h->stub_cache->stub_type == stub_type)
3790 stub_entry = h->stub_cache;
3796 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3797 if (stub_name == NULL)
3800 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3801 stub_name, FALSE, FALSE);
3803 h->stub_cache = stub_entry;
3811 /* Find or create a stub section. Returns a pointer to the stub section, and
3812 the section to which the stub section will be attached (in *LINK_SEC_P).
3813 LINK_SEC_P may be NULL. */
3816 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3817 struct elf32_arm_link_hash_table *htab)
3822 link_sec = htab->stub_group[section->id].link_sec;
3823 BFD_ASSERT (link_sec != NULL);
3824 stub_sec = htab->stub_group[section->id].stub_sec;
3826 if (stub_sec == NULL)
3828 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3829 if (stub_sec == NULL)
3835 namelen = strlen (link_sec->name);
3836 len = namelen + sizeof (STUB_SUFFIX);
3837 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
3841 memcpy (s_name, link_sec->name, namelen);
3842 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3843 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3844 if (stub_sec == NULL)
3846 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3848 htab->stub_group[section->id].stub_sec = stub_sec;
3852 *link_sec_p = link_sec;
3857 /* Add a new stub entry to the stub hash. Not all fields of the new
3858 stub entry are initialised. */
3860 static struct elf32_arm_stub_hash_entry *
3861 elf32_arm_add_stub (const char *stub_name,
3863 struct elf32_arm_link_hash_table *htab)
3867 struct elf32_arm_stub_hash_entry *stub_entry;
3869 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3870 if (stub_sec == NULL)
3873 /* Enter this entry into the linker stub hash table. */
3874 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3876 if (stub_entry == NULL)
3878 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3884 stub_entry->stub_sec = stub_sec;
3885 stub_entry->stub_offset = 0;
3886 stub_entry->id_sec = link_sec;
3891 /* Store an Arm insn into an output section not processed by
3892 elf32_arm_write_section. */
3895 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3896 bfd * output_bfd, bfd_vma val, void * ptr)
3898 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3899 bfd_putl32 (val, ptr);
3901 bfd_putb32 (val, ptr);
3904 /* Store a 16-bit Thumb insn into an output section not processed by
3905 elf32_arm_write_section. */
3908 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3909 bfd * output_bfd, bfd_vma val, void * ptr)
3911 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3912 bfd_putl16 (val, ptr);
3914 bfd_putb16 (val, ptr);
3917 /* If it's possible to change R_TYPE to a more efficient access
3918 model, return the new reloc type. */
3921 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
3922 struct elf_link_hash_entry *h)
3924 int is_local = (h == NULL);
3926 if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
3929 /* We do not support relaxations for Old TLS models. */
3932 case R_ARM_TLS_GOTDESC:
3933 case R_ARM_TLS_CALL:
3934 case R_ARM_THM_TLS_CALL:
3935 case R_ARM_TLS_DESCSEQ:
3936 case R_ARM_THM_TLS_DESCSEQ:
3937 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
3943 static bfd_reloc_status_type elf32_arm_final_link_relocate
3944 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
3945 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
3946 const char *, unsigned char, enum arm_st_branch_type,
3947 struct elf_link_hash_entry *, bfd_boolean *, char **);
3950 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
3954 case arm_stub_a8_veneer_b_cond:
3955 case arm_stub_a8_veneer_b:
3956 case arm_stub_a8_veneer_bl:
3959 case arm_stub_long_branch_any_any:
3960 case arm_stub_long_branch_v4t_arm_thumb:
3961 case arm_stub_long_branch_thumb_only:
3962 case arm_stub_long_branch_v4t_thumb_thumb:
3963 case arm_stub_long_branch_v4t_thumb_arm:
3964 case arm_stub_short_branch_v4t_thumb_arm:
3965 case arm_stub_long_branch_any_arm_pic:
3966 case arm_stub_long_branch_any_thumb_pic:
3967 case arm_stub_long_branch_v4t_thumb_thumb_pic:
3968 case arm_stub_long_branch_v4t_arm_thumb_pic:
3969 case arm_stub_long_branch_v4t_thumb_arm_pic:
3970 case arm_stub_long_branch_thumb_only_pic:
3971 case arm_stub_long_branch_any_tls_pic:
3972 case arm_stub_long_branch_v4t_thumb_tls_pic:
3973 case arm_stub_a8_veneer_blx:
3977 abort (); /* Should be unreachable. */
3982 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3986 struct elf32_arm_stub_hash_entry *stub_entry;
3987 struct elf32_arm_link_hash_table *globals;
3988 struct bfd_link_info *info;
3995 const insn_sequence *template_sequence;
3997 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
3998 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4001 /* Massage our args to the form they really have. */
4002 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4003 info = (struct bfd_link_info *) in_arg;
4005 globals = elf32_arm_hash_table (info);
4006 if (globals == NULL)
4009 stub_sec = stub_entry->stub_sec;
4011 if ((globals->fix_cortex_a8 < 0)
4012 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4013 /* We have to do less-strictly-aligned fixes last. */
4016 /* Make a note of the offset within the stubs for this entry. */
4017 stub_entry->stub_offset = stub_sec->size;
4018 loc = stub_sec->contents + stub_entry->stub_offset;
4020 stub_bfd = stub_sec->owner;
4022 /* This is the address of the stub destination. */
4023 sym_value = (stub_entry->target_value
4024 + stub_entry->target_section->output_offset
4025 + stub_entry->target_section->output_section->vma);
4027 template_sequence = stub_entry->stub_template;
4028 template_size = stub_entry->stub_template_size;
4031 for (i = 0; i < template_size; i++)
4033 switch (template_sequence[i].type)
4037 bfd_vma data = (bfd_vma) template_sequence[i].data;
4038 if (template_sequence[i].reloc_addend != 0)
4040 /* We've borrowed the reloc_addend field to mean we should
4041 insert a condition code into this (Thumb-1 branch)
4042 instruction. See THUMB16_BCOND_INSN. */
4043 BFD_ASSERT ((data & 0xff00) == 0xd000);
4044 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4046 bfd_put_16 (stub_bfd, data, loc + size);
4052 bfd_put_16 (stub_bfd,
4053 (template_sequence[i].data >> 16) & 0xffff,
4055 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4057 if (template_sequence[i].r_type != R_ARM_NONE)
4059 stub_reloc_idx[nrelocs] = i;
4060 stub_reloc_offset[nrelocs++] = size;
4066 bfd_put_32 (stub_bfd, template_sequence[i].data,
4068 /* Handle cases where the target is encoded within the
4070 if (template_sequence[i].r_type == R_ARM_JUMP24)
4072 stub_reloc_idx[nrelocs] = i;
4073 stub_reloc_offset[nrelocs++] = size;
4079 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4080 stub_reloc_idx[nrelocs] = i;
4081 stub_reloc_offset[nrelocs++] = size;
4091 stub_sec->size += size;
4093 /* Stub size has already been computed in arm_size_one_stub. Check
4095 BFD_ASSERT (size == stub_entry->stub_size);
4097 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4098 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4101 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4103 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4105 for (i = 0; i < nrelocs; i++)
4106 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4107 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4108 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4109 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
4111 Elf_Internal_Rela rel;
4112 bfd_boolean unresolved_reloc;
4113 char *error_message;
4114 enum arm_st_branch_type branch_type
4115 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4116 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
4117 bfd_vma points_to = sym_value + stub_entry->target_addend;
4119 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4120 rel.r_info = ELF32_R_INFO (0,
4121 template_sequence[stub_reloc_idx[i]].r_type);
4122 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
4124 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4125 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4126 template should refer back to the instruction after the original
4128 points_to = sym_value;
4130 /* There may be unintended consequences if this is not true. */
4131 BFD_ASSERT (stub_entry->h == NULL);
4133 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4134 properly. We should probably use this function unconditionally,
4135 rather than only for certain relocations listed in the enclosing
4136 conditional, for the sake of consistency. */
4137 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4138 (template_sequence[stub_reloc_idx[i]].r_type),
4139 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4140 points_to, info, stub_entry->target_section, "", STT_FUNC,
4141 branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4142 &unresolved_reloc, &error_message);
4146 Elf_Internal_Rela rel;
4147 bfd_boolean unresolved_reloc;
4148 char *error_message;
4149 bfd_vma points_to = sym_value + stub_entry->target_addend
4150 + template_sequence[stub_reloc_idx[i]].reloc_addend;
4152 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4153 rel.r_info = ELF32_R_INFO (0,
4154 template_sequence[stub_reloc_idx[i]].r_type);
4157 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4158 (template_sequence[stub_reloc_idx[i]].r_type),
4159 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4160 points_to, info, stub_entry->target_section, "", STT_FUNC,
4161 stub_entry->branch_type,
4162 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4170 /* Calculate the template, template size and instruction size for a stub.
4171 Return value is the instruction size. */
4174 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4175 const insn_sequence **stub_template,
4176 int *stub_template_size)
4178 const insn_sequence *template_sequence = NULL;
4179 int template_size = 0, i;
4182 template_sequence = stub_definitions[stub_type].template_sequence;
4184 *stub_template = template_sequence;
4186 template_size = stub_definitions[stub_type].template_size;
4187 if (stub_template_size)
4188 *stub_template_size = template_size;
4191 for (i = 0; i < template_size; i++)
4193 switch (template_sequence[i].type)
4214 /* As above, but don't actually build the stub. Just bump offset so
4215 we know stub section sizes. */
4218 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4219 void *in_arg ATTRIBUTE_UNUSED)
4221 struct elf32_arm_stub_hash_entry *stub_entry;
4222 const insn_sequence *template_sequence;
4223 int template_size, size;
4225 /* Massage our args to the form they really have. */
4226 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4228 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4229 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4231 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4234 stub_entry->stub_size = size;
4235 stub_entry->stub_template = template_sequence;
4236 stub_entry->stub_template_size = template_size;
4238 size = (size + 7) & ~7;
4239 stub_entry->stub_sec->size += size;
4244 /* External entry points for sizing and building linker stubs. */
4246 /* Set up various things so that we can make a list of input sections
4247 for each output section included in the link. Returns -1 on error,
4248 0 when no stubs will be needed, and 1 on success. */
4251 elf32_arm_setup_section_lists (bfd *output_bfd,
4252 struct bfd_link_info *info)
4255 unsigned int bfd_count;
4256 int top_id, top_index;
4258 asection **input_list, **list;
4260 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4264 if (! is_elf_hash_table (htab))
4267 /* Count the number of input BFDs and find the top input section id. */
4268 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4270 input_bfd = input_bfd->link_next)
4273 for (section = input_bfd->sections;
4275 section = section->next)
4277 if (top_id < section->id)
4278 top_id = section->id;
4281 htab->bfd_count = bfd_count;
4283 amt = sizeof (struct map_stub) * (top_id + 1);
4284 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4285 if (htab->stub_group == NULL)
4287 htab->top_id = top_id;
4289 /* We can't use output_bfd->section_count here to find the top output
4290 section index as some sections may have been removed, and
4291 _bfd_strip_section_from_output doesn't renumber the indices. */
4292 for (section = output_bfd->sections, top_index = 0;
4294 section = section->next)
4296 if (top_index < section->index)
4297 top_index = section->index;
4300 htab->top_index = top_index;
4301 amt = sizeof (asection *) * (top_index + 1);
4302 input_list = (asection **) bfd_malloc (amt);
4303 htab->input_list = input_list;
4304 if (input_list == NULL)
4307 /* For sections we aren't interested in, mark their entries with a
4308 value we can check later. */
4309 list = input_list + top_index;
4311 *list = bfd_abs_section_ptr;
4312 while (list-- != input_list);
4314 for (section = output_bfd->sections;
4316 section = section->next)
4318 if ((section->flags & SEC_CODE) != 0)
4319 input_list[section->index] = NULL;
4325 /* The linker repeatedly calls this function for each input section,
4326 in the order that input sections are linked into output sections.
4327 Build lists of input sections to determine groupings between which
4328 we may insert linker stubs. */
4331 elf32_arm_next_input_section (struct bfd_link_info *info,
4334 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4339 if (isec->output_section->index <= htab->top_index)
4341 asection **list = htab->input_list + isec->output_section->index;
4343 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4345 /* Steal the link_sec pointer for our list. */
4346 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4347 /* This happens to make the list in reverse order,
4348 which we reverse later. */
4349 PREV_SEC (isec) = *list;
4355 /* See whether we can group stub sections together. Grouping stub
4356 sections may result in fewer stubs. More importantly, we need to
4357 put all .init* and .fini* stubs at the end of the .init or
4358 .fini output sections respectively, because glibc splits the
4359 _init and _fini functions into multiple parts. Putting a stub in
4360 the middle of a function is not a good idea. */
4363 group_sections (struct elf32_arm_link_hash_table *htab,
4364 bfd_size_type stub_group_size,
4365 bfd_boolean stubs_always_after_branch)
4367 asection **list = htab->input_list;
4371 asection *tail = *list;
4374 if (tail == bfd_abs_section_ptr)
4377 /* Reverse the list: we must avoid placing stubs at the
4378 beginning of the section because the beginning of the text
4379 section may be required for an interrupt vector in bare metal
4381 #define NEXT_SEC PREV_SEC
4383 while (tail != NULL)
4385 /* Pop from tail. */
4386 asection *item = tail;
4387 tail = PREV_SEC (item);
4390 NEXT_SEC (item) = head;
4394 while (head != NULL)
4398 bfd_vma stub_group_start = head->output_offset;
4399 bfd_vma end_of_next;
4402 while (NEXT_SEC (curr) != NULL)
4404 next = NEXT_SEC (curr);
4405 end_of_next = next->output_offset + next->size;
4406 if (end_of_next - stub_group_start >= stub_group_size)
4407 /* End of NEXT is too far from start, so stop. */
4409 /* Add NEXT to the group. */
4413 /* OK, the size from the start to the start of CURR is less
4414 than stub_group_size and thus can be handled by one stub
4415 section. (Or the head section is itself larger than
4416 stub_group_size, in which case we may be toast.)
4417 We should really be keeping track of the total size of
4418 stubs added here, as stubs contribute to the final output
4422 next = NEXT_SEC (head);
4423 /* Set up this stub group. */
4424 htab->stub_group[head->id].link_sec = curr;
4426 while (head != curr && (head = next) != NULL);
4428 /* But wait, there's more! Input sections up to stub_group_size
4429 bytes after the stub section can be handled by it too. */
4430 if (!stubs_always_after_branch)
4432 stub_group_start = curr->output_offset + curr->size;
4434 while (next != NULL)
4436 end_of_next = next->output_offset + next->size;
4437 if (end_of_next - stub_group_start >= stub_group_size)
4438 /* End of NEXT is too far from stubs, so stop. */
4440 /* Add NEXT to the stub group. */
4442 next = NEXT_SEC (head);
4443 htab->stub_group[head->id].link_sec = curr;
4449 while (list++ != htab->input_list + htab->top_index);
4451 free (htab->input_list);
4456 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4460 a8_reloc_compare (const void *a, const void *b)
4462 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4463 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
4465 if (ra->from < rb->from)
4467 else if (ra->from > rb->from)
4473 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4474 const char *, char **);
4476 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4477 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4478 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4482 cortex_a8_erratum_scan (bfd *input_bfd,
4483 struct bfd_link_info *info,
4484 struct a8_erratum_fix **a8_fixes_p,
4485 unsigned int *num_a8_fixes_p,
4486 unsigned int *a8_fix_table_size_p,
4487 struct a8_erratum_reloc *a8_relocs,
4488 unsigned int num_a8_relocs,
4489 unsigned prev_num_a8_fixes,
4490 bfd_boolean *stub_changed_p)
4493 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4494 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4495 unsigned int num_a8_fixes = *num_a8_fixes_p;
4496 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4501 for (section = input_bfd->sections;
4503 section = section->next)
4505 bfd_byte *contents = NULL;
4506 struct _arm_elf_section_data *sec_data;
4510 if (elf_section_type (section) != SHT_PROGBITS
4511 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4512 || (section->flags & SEC_EXCLUDE) != 0
4513 || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
4514 || (section->output_section == bfd_abs_section_ptr))
4517 base_vma = section->output_section->vma + section->output_offset;
4519 if (elf_section_data (section)->this_hdr.contents != NULL)
4520 contents = elf_section_data (section)->this_hdr.contents;
4521 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4524 sec_data = elf32_arm_section_data (section);
4526 for (span = 0; span < sec_data->mapcount; span++)
4528 unsigned int span_start = sec_data->map[span].vma;
4529 unsigned int span_end = (span == sec_data->mapcount - 1)
4530 ? section->size : sec_data->map[span + 1].vma;
4532 char span_type = sec_data->map[span].type;
4533 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4535 if (span_type != 't')
4538 /* Span is entirely within a single 4KB region: skip scanning. */
4539 if (((base_vma + span_start) & ~0xfff)
4540 == ((base_vma + span_end) & ~0xfff))
4543 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4545 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4546 * The branch target is in the same 4KB region as the
4547 first half of the branch.
4548 * The instruction before the branch is a 32-bit
4549 length non-branch instruction. */
4550 for (i = span_start; i < span_end;)
4552 unsigned int insn = bfd_getl16 (&contents[i]);
4553 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4554 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4556 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4561 /* Load the rest of the insn (in manual-friendly order). */
4562 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4564 /* Encoding T4: B<c>.W. */
4565 is_b = (insn & 0xf800d000) == 0xf0009000;
4566 /* Encoding T1: BL<c>.W. */
4567 is_bl = (insn & 0xf800d000) == 0xf000d000;
4568 /* Encoding T2: BLX<c>.W. */
4569 is_blx = (insn & 0xf800d000) == 0xf000c000;
4570 /* Encoding T3: B<c>.W (not permitted in IT block). */
4571 is_bcc = (insn & 0xf800d000) == 0xf0008000
4572 && (insn & 0x07f00000) != 0x03800000;
4575 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4577 if (((base_vma + i) & 0xfff) == 0xffe
4581 && ! last_was_branch)
4583 bfd_signed_vma offset = 0;
4584 bfd_boolean force_target_arm = FALSE;
4585 bfd_boolean force_target_thumb = FALSE;
4587 enum elf32_arm_stub_type stub_type = arm_stub_none;
4588 struct a8_erratum_reloc key, *found;
4589 bfd_boolean use_plt = FALSE;
4591 key.from = base_vma + i;
4592 found = (struct a8_erratum_reloc *)
4593 bsearch (&key, a8_relocs, num_a8_relocs,
4594 sizeof (struct a8_erratum_reloc),
4599 char *error_message = NULL;
4600 struct elf_link_hash_entry *entry;
4602 /* We don't care about the error returned from this
4603 function, only if there is glue or not. */
4604 entry = find_thumb_glue (info, found->sym_name,
4608 found->non_a8_stub = TRUE;
4610 /* Keep a simpler condition, for the sake of clarity. */
4611 if (htab->root.splt != NULL && found->hash != NULL
4612 && found->hash->root.plt.offset != (bfd_vma) -1)
4615 if (found->r_type == R_ARM_THM_CALL)
4617 if (found->branch_type == ST_BRANCH_TO_ARM
4619 force_target_arm = TRUE;
4621 force_target_thumb = TRUE;
4625 /* Check if we have an offending branch instruction. */
4627 if (found && found->non_a8_stub)
4628 /* We've already made a stub for this instruction, e.g.
4629 it's a long branch or a Thumb->ARM stub. Assume that
4630 stub will suffice to work around the A8 erratum (see
4631 setting of always_after_branch above). */
4635 offset = (insn & 0x7ff) << 1;
4636 offset |= (insn & 0x3f0000) >> 4;
4637 offset |= (insn & 0x2000) ? 0x40000 : 0;
4638 offset |= (insn & 0x800) ? 0x80000 : 0;
4639 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4640 if (offset & 0x100000)
4641 offset |= ~ ((bfd_signed_vma) 0xfffff);
4642 stub_type = arm_stub_a8_veneer_b_cond;
4644 else if (is_b || is_bl || is_blx)
4646 int s = (insn & 0x4000000) != 0;
4647 int j1 = (insn & 0x2000) != 0;
4648 int j2 = (insn & 0x800) != 0;
4652 offset = (insn & 0x7ff) << 1;
4653 offset |= (insn & 0x3ff0000) >> 4;
4657 if (offset & 0x1000000)
4658 offset |= ~ ((bfd_signed_vma) 0xffffff);
4661 offset &= ~ ((bfd_signed_vma) 3);
4663 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4664 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4667 if (stub_type != arm_stub_none)
4669 bfd_vma pc_for_insn = base_vma + i + 4;
4671 /* The original instruction is a BL, but the target is
4672 an ARM instruction. If we were not making a stub,
4673 the BL would have been converted to a BLX. Use the
4674 BLX stub instead in that case. */
4675 if (htab->use_blx && force_target_arm
4676 && stub_type == arm_stub_a8_veneer_bl)
4678 stub_type = arm_stub_a8_veneer_blx;
4682 /* Conversely, if the original instruction was
4683 BLX but the target is Thumb mode, use the BL
4685 else if (force_target_thumb
4686 && stub_type == arm_stub_a8_veneer_blx)
4688 stub_type = arm_stub_a8_veneer_bl;
4694 pc_for_insn &= ~ ((bfd_vma) 3);
4696 /* If we found a relocation, use the proper destination,
4697 not the offset in the (unrelocated) instruction.
4698 Note this is always done if we switched the stub type
4702 (bfd_signed_vma) (found->destination - pc_for_insn);
4704 /* If the stub will use a Thumb-mode branch to a
4705 PLT target, redirect it to the preceding Thumb
4707 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
4708 offset -= PLT_THUMB_STUB_SIZE;
4710 target = pc_for_insn + offset;
4712 /* The BLX stub is ARM-mode code. Adjust the offset to
4713 take the different PC value (+8 instead of +4) into
4715 if (stub_type == arm_stub_a8_veneer_blx)
4718 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4720 char *stub_name = NULL;
4722 if (num_a8_fixes == a8_fix_table_size)
4724 a8_fix_table_size *= 2;
4725 a8_fixes = (struct a8_erratum_fix *)
4726 bfd_realloc (a8_fixes,
4727 sizeof (struct a8_erratum_fix)
4728 * a8_fix_table_size);
4731 if (num_a8_fixes < prev_num_a8_fixes)
4733 /* If we're doing a subsequent scan,
4734 check if we've found the same fix as
4735 before, and try and reuse the stub
4737 stub_name = a8_fixes[num_a8_fixes].stub_name;
4738 if ((a8_fixes[num_a8_fixes].section != section)
4739 || (a8_fixes[num_a8_fixes].offset != i))
4743 *stub_changed_p = TRUE;
4749 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4750 if (stub_name != NULL)
4751 sprintf (stub_name, "%x:%x", section->id, i);
4754 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4755 a8_fixes[num_a8_fixes].section = section;
4756 a8_fixes[num_a8_fixes].offset = i;
4757 a8_fixes[num_a8_fixes].addend = offset;
4758 a8_fixes[num_a8_fixes].orig_insn = insn;
4759 a8_fixes[num_a8_fixes].stub_name = stub_name;
4760 a8_fixes[num_a8_fixes].stub_type = stub_type;
4761 a8_fixes[num_a8_fixes].branch_type =
4762 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
4769 i += insn_32bit ? 4 : 2;
4770 last_was_32bit = insn_32bit;
4771 last_was_branch = is_32bit_branch;
4775 if (elf_section_data (section)->this_hdr.contents == NULL)
4779 *a8_fixes_p = a8_fixes;
4780 *num_a8_fixes_p = num_a8_fixes;
4781 *a8_fix_table_size_p = a8_fix_table_size;
4786 /* Determine and set the size of the stub section for a final link.
4788 The basic idea here is to examine all the relocations looking for
4789 PC-relative calls to a target that is unreachable with a "bl"
4793 elf32_arm_size_stubs (bfd *output_bfd,
4795 struct bfd_link_info *info,
4796 bfd_signed_vma group_size,
4797 asection * (*add_stub_section) (const char *, asection *),
4798 void (*layout_sections_again) (void))
4800 bfd_size_type stub_group_size;
4801 bfd_boolean stubs_always_after_branch;
4802 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4803 struct a8_erratum_fix *a8_fixes = NULL;
4804 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4805 struct a8_erratum_reloc *a8_relocs = NULL;
4806 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4811 if (htab->fix_cortex_a8)
4813 a8_fixes = (struct a8_erratum_fix *)
4814 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4815 a8_relocs = (struct a8_erratum_reloc *)
4816 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4819 /* Propagate mach to stub bfd, because it may not have been
4820 finalized when we created stub_bfd. */
4821 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4822 bfd_get_mach (output_bfd));
4824 /* Stash our params away. */
4825 htab->stub_bfd = stub_bfd;
4826 htab->add_stub_section = add_stub_section;
4827 htab->layout_sections_again = layout_sections_again;
4828 stubs_always_after_branch = group_size < 0;
4830 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4831 as the first half of a 32-bit branch straddling two 4K pages. This is a
4832 crude way of enforcing that. */
4833 if (htab->fix_cortex_a8)
4834 stubs_always_after_branch = 1;
4837 stub_group_size = -group_size;
4839 stub_group_size = group_size;
4841 if (stub_group_size == 1)
4843 /* Default values. */
4844 /* Thumb branch range is +-4MB has to be used as the default
4845 maximum size (a given section can contain both ARM and Thumb
4846 code, so the worst case has to be taken into account).
4848 This value is 24K less than that, which allows for 2025
4849 12-byte stubs. If we exceed that, then we will fail to link.
4850 The user will have to relink with an explicit group size
4852 stub_group_size = 4170000;
4855 group_sections (htab, stub_group_size, stubs_always_after_branch);
4857 /* If we're applying the cortex A8 fix, we need to determine the
4858 program header size now, because we cannot change it later --
4859 that could alter section placements. Notice the A8 erratum fix
4860 ends up requiring the section addresses to remain unchanged
4861 modulo the page size. That's something we cannot represent
4862 inside BFD, and we don't want to force the section alignment to
4863 be the page size. */
4864 if (htab->fix_cortex_a8)
4865 (*htab->layout_sections_again) ();
4870 unsigned int bfd_indx;
4872 bfd_boolean stub_changed = FALSE;
4873 unsigned prev_num_a8_fixes = num_a8_fixes;
4876 for (input_bfd = info->input_bfds, bfd_indx = 0;
4878 input_bfd = input_bfd->link_next, bfd_indx++)
4880 Elf_Internal_Shdr *symtab_hdr;
4882 Elf_Internal_Sym *local_syms = NULL;
4886 /* We'll need the symbol table in a second. */
4887 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4888 if (symtab_hdr->sh_info == 0)
4891 /* Walk over each section attached to the input bfd. */
4892 for (section = input_bfd->sections;
4894 section = section->next)
4896 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4898 /* If there aren't any relocs, then there's nothing more
4900 if ((section->flags & SEC_RELOC) == 0
4901 || section->reloc_count == 0
4902 || (section->flags & SEC_CODE) == 0)
4905 /* If this section is a link-once section that will be
4906 discarded, then don't create any stubs. */
4907 if (section->output_section == NULL
4908 || section->output_section->owner != output_bfd)
4911 /* Get the relocs. */
4913 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4914 NULL, info->keep_memory);
4915 if (internal_relocs == NULL)
4916 goto error_ret_free_local;
4918 /* Now examine each relocation. */
4919 irela = internal_relocs;
4920 irelaend = irela + section->reloc_count;
4921 for (; irela < irelaend; irela++)
4923 unsigned int r_type, r_indx;
4924 enum elf32_arm_stub_type stub_type;
4925 struct elf32_arm_stub_hash_entry *stub_entry;
4928 bfd_vma destination;
4929 struct elf32_arm_link_hash_entry *hash;
4930 const char *sym_name;
4932 const asection *id_sec;
4933 unsigned char st_type;
4934 enum arm_st_branch_type branch_type;
4935 bfd_boolean created_stub = FALSE;
4937 r_type = ELF32_R_TYPE (irela->r_info);
4938 r_indx = ELF32_R_SYM (irela->r_info);
4940 if (r_type >= (unsigned int) R_ARM_max)
4942 bfd_set_error (bfd_error_bad_value);
4943 error_ret_free_internal:
4944 if (elf_section_data (section)->relocs == NULL)
4945 free (internal_relocs);
4946 goto error_ret_free_local;
4950 if (r_indx >= symtab_hdr->sh_info)
4951 hash = elf32_arm_hash_entry
4952 (elf_sym_hashes (input_bfd)
4953 [r_indx - symtab_hdr->sh_info]);
4955 /* Only look for stubs on branch instructions, or
4956 non-relaxed TLSCALL */
4957 if ((r_type != (unsigned int) R_ARM_CALL)
4958 && (r_type != (unsigned int) R_ARM_THM_CALL)
4959 && (r_type != (unsigned int) R_ARM_JUMP24)
4960 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
4961 && (r_type != (unsigned int) R_ARM_THM_XPC22)
4962 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
4963 && (r_type != (unsigned int) R_ARM_PLT32)
4964 && !((r_type == (unsigned int) R_ARM_TLS_CALL
4965 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
4966 && r_type == elf32_arm_tls_transition
4967 (info, r_type, &hash->root)
4968 && ((hash ? hash->tls_type
4969 : (elf32_arm_local_got_tls_type
4970 (input_bfd)[r_indx]))
4971 & GOT_TLS_GDESC) != 0))
4974 /* Now determine the call target, its name, value,
4981 if (r_type == (unsigned int) R_ARM_TLS_CALL
4982 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
4984 /* A non-relaxed TLS call. The target is the
4985 plt-resident trampoline and nothing to do
4987 BFD_ASSERT (htab->tls_trampoline > 0);
4988 sym_sec = htab->root.splt;
4989 sym_value = htab->tls_trampoline;
4992 branch_type = ST_BRANCH_TO_ARM;
4996 /* It's a local symbol. */
4997 Elf_Internal_Sym *sym;
4999 if (local_syms == NULL)
5002 = (Elf_Internal_Sym *) symtab_hdr->contents;
5003 if (local_syms == NULL)
5005 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5006 symtab_hdr->sh_info, 0,
5008 if (local_syms == NULL)
5009 goto error_ret_free_internal;
5012 sym = local_syms + r_indx;
5013 if (sym->st_shndx == SHN_UNDEF)
5014 sym_sec = bfd_und_section_ptr;
5015 else if (sym->st_shndx == SHN_ABS)
5016 sym_sec = bfd_abs_section_ptr;
5017 else if (sym->st_shndx == SHN_COMMON)
5018 sym_sec = bfd_com_section_ptr;
5021 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
5024 /* This is an undefined symbol. It can never
5028 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5029 sym_value = sym->st_value;
5030 destination = (sym_value + irela->r_addend
5031 + sym_sec->output_offset
5032 + sym_sec->output_section->vma);
5033 st_type = ELF_ST_TYPE (sym->st_info);
5034 branch_type = ARM_SYM_BRANCH_TYPE (sym);
5036 = bfd_elf_string_from_elf_section (input_bfd,
5037 symtab_hdr->sh_link,
5042 /* It's an external symbol. */
5043 while (hash->root.root.type == bfd_link_hash_indirect
5044 || hash->root.root.type == bfd_link_hash_warning)
5045 hash = ((struct elf32_arm_link_hash_entry *)
5046 hash->root.root.u.i.link);
5048 if (hash->root.root.type == bfd_link_hash_defined
5049 || hash->root.root.type == bfd_link_hash_defweak)
5051 sym_sec = hash->root.root.u.def.section;
5052 sym_value = hash->root.root.u.def.value;
5054 struct elf32_arm_link_hash_table *globals =
5055 elf32_arm_hash_table (info);
5057 /* For a destination in a shared library,
5058 use the PLT stub as target address to
5059 decide whether a branch stub is
5062 && globals->root.splt != NULL
5064 && hash->root.plt.offset != (bfd_vma) -1)
5066 sym_sec = globals->root.splt;
5067 sym_value = hash->root.plt.offset;
5068 if (sym_sec->output_section != NULL)
5069 destination = (sym_value
5070 + sym_sec->output_offset
5071 + sym_sec->output_section->vma);
5073 else if (sym_sec->output_section != NULL)
5074 destination = (sym_value + irela->r_addend
5075 + sym_sec->output_offset
5076 + sym_sec->output_section->vma);
5078 else if ((hash->root.root.type == bfd_link_hash_undefined)
5079 || (hash->root.root.type == bfd_link_hash_undefweak))
5081 /* For a shared library, use the PLT stub as
5082 target address to decide whether a long
5083 branch stub is needed.
5084 For absolute code, they cannot be handled. */
5085 struct elf32_arm_link_hash_table *globals =
5086 elf32_arm_hash_table (info);
5089 && globals->root.splt != NULL
5091 && hash->root.plt.offset != (bfd_vma) -1)
5093 sym_sec = globals->root.splt;
5094 sym_value = hash->root.plt.offset;
5095 if (sym_sec->output_section != NULL)
5096 destination = (sym_value
5097 + sym_sec->output_offset
5098 + sym_sec->output_section->vma);
5105 bfd_set_error (bfd_error_bad_value);
5106 goto error_ret_free_internal;
5108 st_type = hash->root.type;
5109 branch_type = hash->root.target_internal;
5110 sym_name = hash->root.root.root.string;
5115 /* Determine what (if any) linker stub is needed. */
5116 stub_type = arm_type_of_stub (info, section, irela,
5117 st_type, &branch_type,
5118 hash, destination, sym_sec,
5119 input_bfd, sym_name);
5120 if (stub_type == arm_stub_none)
5123 /* Support for grouping stub sections. */
5124 id_sec = htab->stub_group[section->id].link_sec;
5126 /* Get the name of this stub. */
5127 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
5130 goto error_ret_free_internal;
5132 /* We've either created a stub for this reloc already,
5133 or we are about to. */
5134 created_stub = TRUE;
5136 stub_entry = arm_stub_hash_lookup
5137 (&htab->stub_hash_table, stub_name,
5139 if (stub_entry != NULL)
5141 /* The proper stub has already been created. */
5143 stub_entry->target_value = sym_value;
5147 stub_entry = elf32_arm_add_stub (stub_name, section,
5149 if (stub_entry == NULL)
5152 goto error_ret_free_internal;
5155 stub_entry->target_value = sym_value;
5156 stub_entry->target_section = sym_sec;
5157 stub_entry->stub_type = stub_type;
5158 stub_entry->h = hash;
5159 stub_entry->branch_type = branch_type;
5161 if (sym_name == NULL)
5162 sym_name = "unnamed";
5163 stub_entry->output_name = (char *)
5164 bfd_alloc (htab->stub_bfd,
5165 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5166 + strlen (sym_name));
5167 if (stub_entry->output_name == NULL)
5170 goto error_ret_free_internal;
5173 /* For historical reasons, use the existing names for
5174 ARM-to-Thumb and Thumb-to-ARM stubs. */
5175 if ((r_type == (unsigned int) R_ARM_THM_CALL
5176 || r_type == (unsigned int) R_ARM_THM_JUMP24)
5177 && branch_type == ST_BRANCH_TO_ARM)
5178 sprintf (stub_entry->output_name,
5179 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5180 else if ((r_type == (unsigned int) R_ARM_CALL
5181 || r_type == (unsigned int) R_ARM_JUMP24)
5182 && branch_type == ST_BRANCH_TO_THUMB)
5183 sprintf (stub_entry->output_name,
5184 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5186 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5189 stub_changed = TRUE;
5193 /* Look for relocations which might trigger Cortex-A8
5195 if (htab->fix_cortex_a8
5196 && (r_type == (unsigned int) R_ARM_THM_JUMP24
5197 || r_type == (unsigned int) R_ARM_THM_JUMP19
5198 || r_type == (unsigned int) R_ARM_THM_CALL
5199 || r_type == (unsigned int) R_ARM_THM_XPC22))
5201 bfd_vma from = section->output_section->vma
5202 + section->output_offset
5205 if ((from & 0xfff) == 0xffe)
5207 /* Found a candidate. Note we haven't checked the
5208 destination is within 4K here: if we do so (and
5209 don't create an entry in a8_relocs) we can't tell
5210 that a branch should have been relocated when
5212 if (num_a8_relocs == a8_reloc_table_size)
5214 a8_reloc_table_size *= 2;
5215 a8_relocs = (struct a8_erratum_reloc *)
5216 bfd_realloc (a8_relocs,
5217 sizeof (struct a8_erratum_reloc)
5218 * a8_reloc_table_size);
5221 a8_relocs[num_a8_relocs].from = from;
5222 a8_relocs[num_a8_relocs].destination = destination;
5223 a8_relocs[num_a8_relocs].r_type = r_type;
5224 a8_relocs[num_a8_relocs].branch_type = branch_type;
5225 a8_relocs[num_a8_relocs].sym_name = sym_name;
5226 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5227 a8_relocs[num_a8_relocs].hash = hash;
5234 /* We're done with the internal relocs, free them. */
5235 if (elf_section_data (section)->relocs == NULL)
5236 free (internal_relocs);
5239 if (htab->fix_cortex_a8)
5241 /* Sort relocs which might apply to Cortex-A8 erratum. */
5242 qsort (a8_relocs, num_a8_relocs,
5243 sizeof (struct a8_erratum_reloc),
5246 /* Scan for branches which might trigger Cortex-A8 erratum. */
5247 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5248 &num_a8_fixes, &a8_fix_table_size,
5249 a8_relocs, num_a8_relocs,
5250 prev_num_a8_fixes, &stub_changed)
5252 goto error_ret_free_local;
5256 if (prev_num_a8_fixes != num_a8_fixes)
5257 stub_changed = TRUE;
5262 /* OK, we've added some stubs. Find out the new size of the
5264 for (stub_sec = htab->stub_bfd->sections;
5266 stub_sec = stub_sec->next)
5268 /* Ignore non-stub sections. */
5269 if (!strstr (stub_sec->name, STUB_SUFFIX))
5275 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5277 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5278 if (htab->fix_cortex_a8)
5279 for (i = 0; i < num_a8_fixes; i++)
5281 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5282 a8_fixes[i].section, htab);
5284 if (stub_sec == NULL)
5285 goto error_ret_free_local;
5288 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5293 /* Ask the linker to do its stuff. */
5294 (*htab->layout_sections_again) ();
5297 /* Add stubs for Cortex-A8 erratum fixes now. */
5298 if (htab->fix_cortex_a8)
5300 for (i = 0; i < num_a8_fixes; i++)
5302 struct elf32_arm_stub_hash_entry *stub_entry;
5303 char *stub_name = a8_fixes[i].stub_name;
5304 asection *section = a8_fixes[i].section;
5305 unsigned int section_id = a8_fixes[i].section->id;
5306 asection *link_sec = htab->stub_group[section_id].link_sec;
5307 asection *stub_sec = htab->stub_group[section_id].stub_sec;
5308 const insn_sequence *template_sequence;
5309 int template_size, size = 0;
5311 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5313 if (stub_entry == NULL)
5315 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5321 stub_entry->stub_sec = stub_sec;
5322 stub_entry->stub_offset = 0;
5323 stub_entry->id_sec = link_sec;
5324 stub_entry->stub_type = a8_fixes[i].stub_type;
5325 stub_entry->target_section = a8_fixes[i].section;
5326 stub_entry->target_value = a8_fixes[i].offset;
5327 stub_entry->target_addend = a8_fixes[i].addend;
5328 stub_entry->orig_insn = a8_fixes[i].orig_insn;
5329 stub_entry->branch_type = a8_fixes[i].branch_type;
5331 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5335 stub_entry->stub_size = size;
5336 stub_entry->stub_template = template_sequence;
5337 stub_entry->stub_template_size = template_size;
5340 /* Stash the Cortex-A8 erratum fix array for use later in
5341 elf32_arm_write_section(). */
5342 htab->a8_erratum_fixes = a8_fixes;
5343 htab->num_a8_erratum_fixes = num_a8_fixes;
5347 htab->a8_erratum_fixes = NULL;
5348 htab->num_a8_erratum_fixes = 0;
5352 error_ret_free_local:
5356 /* Build all the stubs associated with the current output file. The
5357 stubs are kept in a hash table attached to the main linker hash
5358 table. We also set up the .plt entries for statically linked PIC
5359 functions here. This function is called via arm_elf_finish in the
5363 elf32_arm_build_stubs (struct bfd_link_info *info)
5366 struct bfd_hash_table *table;
5367 struct elf32_arm_link_hash_table *htab;
5369 htab = elf32_arm_hash_table (info);
5373 for (stub_sec = htab->stub_bfd->sections;
5375 stub_sec = stub_sec->next)
5379 /* Ignore non-stub sections. */
5380 if (!strstr (stub_sec->name, STUB_SUFFIX))
5383 /* Allocate memory to hold the linker stubs. */
5384 size = stub_sec->size;
5385 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
5386 if (stub_sec->contents == NULL && size != 0)
5391 /* Build the stubs as directed by the stub hash table. */
5392 table = &htab->stub_hash_table;
5393 bfd_hash_traverse (table, arm_build_one_stub, info);
5394 if (htab->fix_cortex_a8)
5396 /* Place the cortex a8 stubs last. */
5397 htab->fix_cortex_a8 = -1;
5398 bfd_hash_traverse (table, arm_build_one_stub, info);
5404 /* Locate the Thumb encoded calling stub for NAME. */
5406 static struct elf_link_hash_entry *
5407 find_thumb_glue (struct bfd_link_info *link_info,
5409 char **error_message)
5412 struct elf_link_hash_entry *hash;
5413 struct elf32_arm_link_hash_table *hash_table;
5415 /* We need a pointer to the armelf specific hash table. */
5416 hash_table = elf32_arm_hash_table (link_info);
5417 if (hash_table == NULL)
5420 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5421 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
5423 BFD_ASSERT (tmp_name);
5425 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5427 hash = elf_link_hash_lookup
5428 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5431 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5432 tmp_name, name) == -1)
5433 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5440 /* Locate the ARM encoded calling stub for NAME. */
5442 static struct elf_link_hash_entry *
5443 find_arm_glue (struct bfd_link_info *link_info,
5445 char **error_message)
5448 struct elf_link_hash_entry *myh;
5449 struct elf32_arm_link_hash_table *hash_table;
5451 /* We need a pointer to the elfarm specific hash table. */
5452 hash_table = elf32_arm_hash_table (link_info);
5453 if (hash_table == NULL)
5456 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5457 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5459 BFD_ASSERT (tmp_name);
5461 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5463 myh = elf_link_hash_lookup
5464 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5467 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5468 tmp_name, name) == -1)
5469 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5476 /* ARM->Thumb glue (static images):
5480 ldr r12, __func_addr
5483 .word func @ behave as if you saw a ARM_32 reloc.
5490 .word func @ behave as if you saw a ARM_32 reloc.
5492 (relocatable images)
5495 ldr r12, __func_offset
5501 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5502 static const insn32 a2t1_ldr_insn = 0xe59fc000;
5503 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5504 static const insn32 a2t3_func_addr_insn = 0x00000001;
5506 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5507 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5508 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5510 #define ARM2THUMB_PIC_GLUE_SIZE 16
5511 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5512 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5513 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5515 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5519 __func_from_thumb: __func_from_thumb:
5521 nop ldr r6, __func_addr
5531 #define THUMB2ARM_GLUE_SIZE 8
5532 static const insn16 t2a1_bx_pc_insn = 0x4778;
5533 static const insn16 t2a2_noop_insn = 0x46c0;
5534 static const insn32 t2a3_b_insn = 0xea000000;
5536 #define VFP11_ERRATUM_VENEER_SIZE 8
5538 #define ARM_BX_VENEER_SIZE 12
5539 static const insn32 armbx1_tst_insn = 0xe3100001;
5540 static const insn32 armbx2_moveq_insn = 0x01a0f000;
5541 static const insn32 armbx3_bx_insn = 0xe12fff10;
5543 #ifndef ELFARM_NABI_C_INCLUDED
5545 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5548 bfd_byte * contents;
5552 /* Do not include empty glue sections in the output. */
5555 s = bfd_get_section_by_name (abfd, name);
5557 s->flags |= SEC_EXCLUDE;
5562 BFD_ASSERT (abfd != NULL);
5564 s = bfd_get_section_by_name (abfd, name);
5565 BFD_ASSERT (s != NULL);
5567 contents = (bfd_byte *) bfd_alloc (abfd, size);
5569 BFD_ASSERT (s->size == size);
5570 s->contents = contents;
5574 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5576 struct elf32_arm_link_hash_table * globals;
5578 globals = elf32_arm_hash_table (info);
5579 BFD_ASSERT (globals != NULL);
5581 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5582 globals->arm_glue_size,
5583 ARM2THUMB_GLUE_SECTION_NAME);
5585 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5586 globals->thumb_glue_size,
5587 THUMB2ARM_GLUE_SECTION_NAME);
5589 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5590 globals->vfp11_erratum_glue_size,
5591 VFP11_ERRATUM_VENEER_SECTION_NAME);
5593 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5594 globals->bx_glue_size,
5595 ARM_BX_GLUE_SECTION_NAME);
5600 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5601 returns the symbol identifying the stub. */
5603 static struct elf_link_hash_entry *
5604 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5605 struct elf_link_hash_entry * h)
5607 const char * name = h->root.root.string;
5610 struct elf_link_hash_entry * myh;
5611 struct bfd_link_hash_entry * bh;
5612 struct elf32_arm_link_hash_table * globals;
5616 globals = elf32_arm_hash_table (link_info);
5617 BFD_ASSERT (globals != NULL);
5618 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5620 s = bfd_get_section_by_name
5621 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5623 BFD_ASSERT (s != NULL);
5625 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5626 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5628 BFD_ASSERT (tmp_name);
5630 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5632 myh = elf_link_hash_lookup
5633 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5637 /* We've already seen this guy. */
5642 /* The only trick here is using hash_table->arm_glue_size as the value.
5643 Even though the section isn't allocated yet, this is where we will be
5644 putting it. The +1 on the value marks that the stub has not been
5645 output yet - not that it is a Thumb function. */
5647 val = globals->arm_glue_size + 1;
5648 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5649 tmp_name, BSF_GLOBAL, s, val,
5650 NULL, TRUE, FALSE, &bh);
5652 myh = (struct elf_link_hash_entry *) bh;
5653 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5654 myh->forced_local = 1;
5658 if (link_info->shared || globals->root.is_relocatable_executable
5659 || globals->pic_veneer)
5660 size = ARM2THUMB_PIC_GLUE_SIZE;
5661 else if (globals->use_blx)
5662 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5664 size = ARM2THUMB_STATIC_GLUE_SIZE;
5667 globals->arm_glue_size += size;
5672 /* Allocate space for ARMv4 BX veneers. */
5675 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5678 struct elf32_arm_link_hash_table *globals;
5680 struct elf_link_hash_entry *myh;
5681 struct bfd_link_hash_entry *bh;
5684 /* BX PC does not need a veneer. */
5688 globals = elf32_arm_hash_table (link_info);
5689 BFD_ASSERT (globals != NULL);
5690 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5692 /* Check if this veneer has already been allocated. */
5693 if (globals->bx_glue_offset[reg])
5696 s = bfd_get_section_by_name
5697 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5699 BFD_ASSERT (s != NULL);
5701 /* Add symbol for veneer. */
5703 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5705 BFD_ASSERT (tmp_name);
5707 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5709 myh = elf_link_hash_lookup
5710 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5712 BFD_ASSERT (myh == NULL);
5715 val = globals->bx_glue_size;
5716 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5717 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5718 NULL, TRUE, FALSE, &bh);
5720 myh = (struct elf_link_hash_entry *) bh;
5721 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5722 myh->forced_local = 1;
5724 s->size += ARM_BX_VENEER_SIZE;
5725 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5726 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5730 /* Add an entry to the code/data map for section SEC. */
5733 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5735 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5736 unsigned int newidx;
5738 if (sec_data->map == NULL)
5740 sec_data->map = (elf32_arm_section_map *)
5741 bfd_malloc (sizeof (elf32_arm_section_map));
5742 sec_data->mapcount = 0;
5743 sec_data->mapsize = 1;
5746 newidx = sec_data->mapcount++;
5748 if (sec_data->mapcount > sec_data->mapsize)
5750 sec_data->mapsize *= 2;
5751 sec_data->map = (elf32_arm_section_map *)
5752 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5753 * sizeof (elf32_arm_section_map));
5758 sec_data->map[newidx].vma = vma;
5759 sec_data->map[newidx].type = type;
5764 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5765 veneers are handled for now. */
5768 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5769 elf32_vfp11_erratum_list *branch,
5771 asection *branch_sec,
5772 unsigned int offset)
5775 struct elf32_arm_link_hash_table *hash_table;
5777 struct elf_link_hash_entry *myh;
5778 struct bfd_link_hash_entry *bh;
5780 struct _arm_elf_section_data *sec_data;
5781 elf32_vfp11_erratum_list *newerr;
5783 hash_table = elf32_arm_hash_table (link_info);
5784 BFD_ASSERT (hash_table != NULL);
5785 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5787 s = bfd_get_section_by_name
5788 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5790 sec_data = elf32_arm_section_data (s);
5792 BFD_ASSERT (s != NULL);
5794 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5795 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5797 BFD_ASSERT (tmp_name);
5799 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5800 hash_table->num_vfp11_fixes);
5802 myh = elf_link_hash_lookup
5803 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5805 BFD_ASSERT (myh == NULL);
5808 val = hash_table->vfp11_erratum_glue_size;
5809 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5810 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5811 NULL, TRUE, FALSE, &bh);
5813 myh = (struct elf_link_hash_entry *) bh;
5814 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5815 myh->forced_local = 1;
5817 /* Link veneer back to calling location. */
5818 sec_data->erratumcount += 1;
5819 newerr = (elf32_vfp11_erratum_list *)
5820 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5822 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5824 newerr->u.v.branch = branch;
5825 newerr->u.v.id = hash_table->num_vfp11_fixes;
5826 branch->u.b.veneer = newerr;
5828 newerr->next = sec_data->erratumlist;
5829 sec_data->erratumlist = newerr;
5831 /* A symbol for the return from the veneer. */
5832 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5833 hash_table->num_vfp11_fixes);
5835 myh = elf_link_hash_lookup
5836 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5843 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5844 branch_sec, val, NULL, TRUE, FALSE, &bh);
5846 myh = (struct elf_link_hash_entry *) bh;
5847 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5848 myh->forced_local = 1;
5852 /* Generate a mapping symbol for the veneer section, and explicitly add an
5853 entry for that symbol to the code/data map for the section. */
5854 if (hash_table->vfp11_erratum_glue_size == 0)
5857 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5858 ever requires this erratum fix. */
5859 _bfd_generic_link_add_one_symbol (link_info,
5860 hash_table->bfd_of_glue_owner, "$a",
5861 BSF_LOCAL, s, 0, NULL,
5864 myh = (struct elf_link_hash_entry *) bh;
5865 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5866 myh->forced_local = 1;
5868 /* The elf32_arm_init_maps function only cares about symbols from input
5869 BFDs. We must make a note of this generated mapping symbol
5870 ourselves so that code byteswapping works properly in
5871 elf32_arm_write_section. */
5872 elf32_arm_section_map_add (s, 'a', 0);
5875 s->size += VFP11_ERRATUM_VENEER_SIZE;
5876 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5877 hash_table->num_vfp11_fixes++;
5879 /* The offset of the veneer. */
5883 #define ARM_GLUE_SECTION_FLAGS \
5884 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5885 | SEC_READONLY | SEC_LINKER_CREATED)
5887 /* Create a fake section for use by the ARM backend of the linker. */
5890 arm_make_glue_section (bfd * abfd, const char * name)
5894 sec = bfd_get_section_by_name (abfd, name);
5899 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5902 || !bfd_set_section_alignment (abfd, sec, 2))
5905 /* Set the gc mark to prevent the section from being removed by garbage
5906 collection, despite the fact that no relocs refer to this section. */
5912 /* Add the glue sections to ABFD. This function is called from the
5913 linker scripts in ld/emultempl/{armelf}.em. */
5916 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5917 struct bfd_link_info *info)
5919 /* If we are only performing a partial
5920 link do not bother adding the glue. */
5921 if (info->relocatable)
5924 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5925 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
5926 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
5927 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
5930 /* Select a BFD to be used to hold the sections used by the glue code.
5931 This function is called from the linker scripts in ld/emultempl/
5935 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
5937 struct elf32_arm_link_hash_table *globals;
5939 /* If we are only performing a partial link
5940 do not bother getting a bfd to hold the glue. */
5941 if (info->relocatable)
5944 /* Make sure we don't attach the glue sections to a dynamic object. */
5945 BFD_ASSERT (!(abfd->flags & DYNAMIC));
5947 globals = elf32_arm_hash_table (info);
5948 BFD_ASSERT (globals != NULL);
5950 if (globals->bfd_of_glue_owner != NULL)
5953 /* Save the bfd for later use. */
5954 globals->bfd_of_glue_owner = abfd;
5960 check_use_blx (struct elf32_arm_link_hash_table *globals)
5964 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
5967 if (globals->fix_arm1176)
5969 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
5970 globals->use_blx = 1;
5974 if (cpu_arch > TAG_CPU_ARCH_V4T)
5975 globals->use_blx = 1;
5980 bfd_elf32_arm_process_before_allocation (bfd *abfd,
5981 struct bfd_link_info *link_info)
5983 Elf_Internal_Shdr *symtab_hdr;
5984 Elf_Internal_Rela *internal_relocs = NULL;
5985 Elf_Internal_Rela *irel, *irelend;
5986 bfd_byte *contents = NULL;
5989 struct elf32_arm_link_hash_table *globals;
5991 /* If we are only performing a partial link do not bother
5992 to construct any glue. */
5993 if (link_info->relocatable)
5996 /* Here we have a bfd that is to be included on the link. We have a
5997 hook to do reloc rummaging, before section sizes are nailed down. */
5998 globals = elf32_arm_hash_table (link_info);
5999 BFD_ASSERT (globals != NULL);
6001 check_use_blx (globals);
6003 if (globals->byteswap_code && !bfd_big_endian (abfd))
6005 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6010 /* PR 5398: If we have not decided to include any loadable sections in
6011 the output then we will not have a glue owner bfd. This is OK, it
6012 just means that there is nothing else for us to do here. */
6013 if (globals->bfd_of_glue_owner == NULL)
6016 /* Rummage around all the relocs and map the glue vectors. */
6017 sec = abfd->sections;
6022 for (; sec != NULL; sec = sec->next)
6024 if (sec->reloc_count == 0)
6027 if ((sec->flags & SEC_EXCLUDE) != 0)
6030 symtab_hdr = & elf_symtab_hdr (abfd);
6032 /* Load the relocs. */
6034 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
6036 if (internal_relocs == NULL)
6039 irelend = internal_relocs + sec->reloc_count;
6040 for (irel = internal_relocs; irel < irelend; irel++)
6043 unsigned long r_index;
6045 struct elf_link_hash_entry *h;
6047 r_type = ELF32_R_TYPE (irel->r_info);
6048 r_index = ELF32_R_SYM (irel->r_info);
6050 /* These are the only relocation types we care about. */
6051 if ( r_type != R_ARM_PC24
6052 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
6055 /* Get the section contents if we haven't done so already. */
6056 if (contents == NULL)
6058 /* Get cached copy if it exists. */
6059 if (elf_section_data (sec)->this_hdr.contents != NULL)
6060 contents = elf_section_data (sec)->this_hdr.contents;
6063 /* Go get them off disk. */
6064 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6069 if (r_type == R_ARM_V4BX)
6073 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6074 record_arm_bx_glue (link_info, reg);
6078 /* If the relocation is not against a symbol it cannot concern us. */
6081 /* We don't care about local symbols. */
6082 if (r_index < symtab_hdr->sh_info)
6085 /* This is an external symbol. */
6086 r_index -= symtab_hdr->sh_info;
6087 h = (struct elf_link_hash_entry *)
6088 elf_sym_hashes (abfd)[r_index];
6090 /* If the relocation is against a static symbol it must be within
6091 the current section and so cannot be a cross ARM/Thumb relocation. */
6095 /* If the call will go through a PLT entry then we do not need
6097 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
6103 /* This one is a call from arm code. We need to look up
6104 the target of the call. If it is a thumb target, we
6106 if (h->target_internal == ST_BRANCH_TO_THUMB)
6107 record_arm_to_thumb_glue (link_info, h);
6115 if (contents != NULL
6116 && elf_section_data (sec)->this_hdr.contents != contents)
6120 if (internal_relocs != NULL
6121 && elf_section_data (sec)->relocs != internal_relocs)
6122 free (internal_relocs);
6123 internal_relocs = NULL;
6129 if (contents != NULL
6130 && elf_section_data (sec)->this_hdr.contents != contents)
6132 if (internal_relocs != NULL
6133 && elf_section_data (sec)->relocs != internal_relocs)
6134 free (internal_relocs);
6141 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6144 bfd_elf32_arm_init_maps (bfd *abfd)
6146 Elf_Internal_Sym *isymbuf;
6147 Elf_Internal_Shdr *hdr;
6148 unsigned int i, localsyms;
6150 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6151 if (! is_arm_elf (abfd))
6154 if ((abfd->flags & DYNAMIC) != 0)
6157 hdr = & elf_symtab_hdr (abfd);
6158 localsyms = hdr->sh_info;
6160 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6161 should contain the number of local symbols, which should come before any
6162 global symbols. Mapping symbols are always local. */
6163 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6166 /* No internal symbols read? Skip this BFD. */
6167 if (isymbuf == NULL)
6170 for (i = 0; i < localsyms; i++)
6172 Elf_Internal_Sym *isym = &isymbuf[i];
6173 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6177 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6179 name = bfd_elf_string_from_elf_section (abfd,
6180 hdr->sh_link, isym->st_name);
6182 if (bfd_is_arm_special_symbol_name (name,
6183 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6184 elf32_arm_section_map_add (sec, name[1], isym->st_value);
6190 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6191 say what they wanted. */
6194 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6196 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6197 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6199 if (globals == NULL)
6202 if (globals->fix_cortex_a8 == -1)
6204 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6205 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6206 && (out_attr[Tag_CPU_arch_profile].i == 'A'
6207 || out_attr[Tag_CPU_arch_profile].i == 0))
6208 globals->fix_cortex_a8 = 1;
6210 globals->fix_cortex_a8 = 0;
6216 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6218 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6219 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6221 if (globals == NULL)
6223 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6224 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6226 switch (globals->vfp11_fix)
6228 case BFD_ARM_VFP11_FIX_DEFAULT:
6229 case BFD_ARM_VFP11_FIX_NONE:
6230 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6234 /* Give a warning, but do as the user requests anyway. */
6235 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6236 "workaround is not necessary for target architecture"), obfd);
6239 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6240 /* For earlier architectures, we might need the workaround, but do not
6241 enable it by default. If users is running with broken hardware, they
6242 must enable the erratum fix explicitly. */
6243 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6247 enum bfd_arm_vfp11_pipe
6255 /* Return a VFP register number. This is encoded as RX:X for single-precision
6256 registers, or X:RX for double-precision registers, where RX is the group of
6257 four bits in the instruction encoding and X is the single extension bit.
6258 RX and X fields are specified using their lowest (starting) bit. The return
6261 0...31: single-precision registers s0...s31
6262 32...63: double-precision registers d0...d31.
6264 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6265 encounter VFP3 instructions, so we allow the full range for DP registers. */
6268 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6272 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6274 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6277 /* Set bits in *WMASK according to a register number REG as encoded by
6278 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6281 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6286 *wmask |= 3 << ((reg - 32) * 2);
6289 /* Return TRUE if WMASK overwrites anything in REGS. */
6292 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6296 for (i = 0; i < numregs; i++)
6298 unsigned int reg = regs[i];
6300 if (reg < 32 && (wmask & (1 << reg)) != 0)
6308 if ((wmask & (3 << (reg * 2))) != 0)
6315 /* In this function, we're interested in two things: finding input registers
6316 for VFP data-processing instructions, and finding the set of registers which
6317 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6318 hold the written set, so FLDM etc. are easy to deal with (we're only
6319 interested in 32 SP registers or 16 dp registers, due to the VFP version
6320 implemented by the chip in question). DP registers are marked by setting
6321 both SP registers in the write mask). */
6323 static enum bfd_arm_vfp11_pipe
6324 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6327 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
6328 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6330 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6333 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6334 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6336 pqrs = ((insn & 0x00800000) >> 20)
6337 | ((insn & 0x00300000) >> 19)
6338 | ((insn & 0x00000040) >> 6);
6342 case 0: /* fmac[sd]. */
6343 case 1: /* fnmac[sd]. */
6344 case 2: /* fmsc[sd]. */
6345 case 3: /* fnmsc[sd]. */
6347 bfd_arm_vfp11_write_mask (destmask, fd);
6349 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6354 case 4: /* fmul[sd]. */
6355 case 5: /* fnmul[sd]. */
6356 case 6: /* fadd[sd]. */
6357 case 7: /* fsub[sd]. */
6361 case 8: /* fdiv[sd]. */
6364 bfd_arm_vfp11_write_mask (destmask, fd);
6365 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6370 case 15: /* extended opcode. */
6372 unsigned int extn = ((insn >> 15) & 0x1e)
6373 | ((insn >> 7) & 1);
6377 case 0: /* fcpy[sd]. */
6378 case 1: /* fabs[sd]. */
6379 case 2: /* fneg[sd]. */
6380 case 8: /* fcmp[sd]. */
6381 case 9: /* fcmpe[sd]. */
6382 case 10: /* fcmpz[sd]. */
6383 case 11: /* fcmpez[sd]. */
6384 case 16: /* fuito[sd]. */
6385 case 17: /* fsito[sd]. */
6386 case 24: /* ftoui[sd]. */
6387 case 25: /* ftouiz[sd]. */
6388 case 26: /* ftosi[sd]. */
6389 case 27: /* ftosiz[sd]. */
6390 /* These instructions will not bounce due to underflow. */
6395 case 3: /* fsqrt[sd]. */
6396 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6397 registers to cause the erratum in previous instructions. */
6398 bfd_arm_vfp11_write_mask (destmask, fd);
6402 case 15: /* fcvt{ds,sd}. */
6406 bfd_arm_vfp11_write_mask (destmask, fd);
6408 /* Only FCVTSD can underflow. */
6409 if ((insn & 0x100) != 0)
6428 /* Two-register transfer. */
6429 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6431 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6433 if ((insn & 0x100000) == 0)
6436 bfd_arm_vfp11_write_mask (destmask, fm);
6439 bfd_arm_vfp11_write_mask (destmask, fm);
6440 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6446 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6448 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6449 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
6453 case 0: /* Two-reg transfer. We should catch these above. */
6456 case 2: /* fldm[sdx]. */
6460 unsigned int i, offset = insn & 0xff;
6465 for (i = fd; i < fd + offset; i++)
6466 bfd_arm_vfp11_write_mask (destmask, i);
6470 case 4: /* fld[sd]. */
6472 bfd_arm_vfp11_write_mask (destmask, fd);
6481 /* Single-register transfer. Note L==0. */
6482 else if ((insn & 0x0f100e10) == 0x0e000a10)
6484 unsigned int opcode = (insn >> 21) & 7;
6485 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6489 case 0: /* fmsr/fmdlr. */
6490 case 1: /* fmdhr. */
6491 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6492 destination register. I don't know if this is exactly right,
6493 but it is the conservative choice. */
6494 bfd_arm_vfp11_write_mask (destmask, fn);
6508 static int elf32_arm_compare_mapping (const void * a, const void * b);
6511 /* Look for potentially-troublesome code sequences which might trigger the
6512 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6513 (available from ARM) for details of the erratum. A short version is
6514 described in ld.texinfo. */
6517 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6520 bfd_byte *contents = NULL;
6522 int regs[3], numregs = 0;
6523 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6524 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
6526 if (globals == NULL)
6529 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6530 The states transition as follows:
6532 0 -> 1 (vector) or 0 -> 2 (scalar)
6533 A VFP FMAC-pipeline instruction has been seen. Fill
6534 regs[0]..regs[numregs-1] with its input operands. Remember this
6535 instruction in 'first_fmac'.
6538 Any instruction, except for a VFP instruction which overwrites
6543 A VFP instruction has been seen which overwrites any of regs[*].
6544 We must make a veneer! Reset state to 0 before examining next
6548 If we fail to match anything in state 2, reset to state 0 and reset
6549 the instruction pointer to the instruction after 'first_fmac'.
6551 If the VFP11 vector mode is in use, there must be at least two unrelated
6552 instructions between anti-dependent VFP11 instructions to properly avoid
6553 triggering the erratum, hence the use of the extra state 1. */
6555 /* If we are only performing a partial link do not bother
6556 to construct any glue. */
6557 if (link_info->relocatable)
6560 /* Skip if this bfd does not correspond to an ELF image. */
6561 if (! is_arm_elf (abfd))
6564 /* We should have chosen a fix type by the time we get here. */
6565 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6567 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6570 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6571 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6574 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6576 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6577 struct _arm_elf_section_data *sec_data;
6579 /* If we don't have executable progbits, we're not interested in this
6580 section. Also skip if section is to be excluded. */
6581 if (elf_section_type (sec) != SHT_PROGBITS
6582 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6583 || (sec->flags & SEC_EXCLUDE) != 0
6584 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6585 || sec->output_section == bfd_abs_section_ptr
6586 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6589 sec_data = elf32_arm_section_data (sec);
6591 if (sec_data->mapcount == 0)
6594 if (elf_section_data (sec)->this_hdr.contents != NULL)
6595 contents = elf_section_data (sec)->this_hdr.contents;
6596 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6599 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6600 elf32_arm_compare_mapping);
6602 for (span = 0; span < sec_data->mapcount; span++)
6604 unsigned int span_start = sec_data->map[span].vma;
6605 unsigned int span_end = (span == sec_data->mapcount - 1)
6606 ? sec->size : sec_data->map[span + 1].vma;
6607 char span_type = sec_data->map[span].type;
6609 /* FIXME: Only ARM mode is supported at present. We may need to
6610 support Thumb-2 mode also at some point. */
6611 if (span_type != 'a')
6614 for (i = span_start; i < span_end;)
6616 unsigned int next_i = i + 4;
6617 unsigned int insn = bfd_big_endian (abfd)
6618 ? (contents[i] << 24)
6619 | (contents[i + 1] << 16)
6620 | (contents[i + 2] << 8)
6622 : (contents[i + 3] << 24)
6623 | (contents[i + 2] << 16)
6624 | (contents[i + 1] << 8)
6626 unsigned int writemask = 0;
6627 enum bfd_arm_vfp11_pipe vpipe;
6632 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6634 /* I'm assuming the VFP11 erratum can trigger with denorm
6635 operands on either the FMAC or the DS pipeline. This might
6636 lead to slightly overenthusiastic veneer insertion. */
6637 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6639 state = use_vector ? 1 : 2;
6641 veneer_of_insn = insn;
6647 int other_regs[3], other_numregs;
6648 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6651 if (vpipe != VFP11_BAD
6652 && bfd_arm_vfp11_antidependency (writemask, regs,
6662 int other_regs[3], other_numregs;
6663 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6666 if (vpipe != VFP11_BAD
6667 && bfd_arm_vfp11_antidependency (writemask, regs,
6673 next_i = first_fmac + 4;
6679 abort (); /* Should be unreachable. */
6684 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6685 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6687 elf32_arm_section_data (sec)->erratumcount += 1;
6689 newerr->u.b.vfp_insn = veneer_of_insn;
6694 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6701 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6706 newerr->next = sec_data->erratumlist;
6707 sec_data->erratumlist = newerr;
6716 if (contents != NULL
6717 && elf_section_data (sec)->this_hdr.contents != contents)
6725 if (contents != NULL
6726 && elf_section_data (sec)->this_hdr.contents != contents)
6732 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6733 after sections have been laid out, using specially-named symbols. */
6736 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6737 struct bfd_link_info *link_info)
6740 struct elf32_arm_link_hash_table *globals;
6743 if (link_info->relocatable)
6746 /* Skip if this bfd does not correspond to an ELF image. */
6747 if (! is_arm_elf (abfd))
6750 globals = elf32_arm_hash_table (link_info);
6751 if (globals == NULL)
6754 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6755 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6757 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6759 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6760 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6762 for (; errnode != NULL; errnode = errnode->next)
6764 struct elf_link_hash_entry *myh;
6767 switch (errnode->type)
6769 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6770 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6771 /* Find veneer symbol. */
6772 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6773 errnode->u.b.veneer->u.v.id);
6775 myh = elf_link_hash_lookup
6776 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6779 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6780 "`%s'"), abfd, tmp_name);
6782 vma = myh->root.u.def.section->output_section->vma
6783 + myh->root.u.def.section->output_offset
6784 + myh->root.u.def.value;
6786 errnode->u.b.veneer->vma = vma;
6789 case VFP11_ERRATUM_ARM_VENEER:
6790 case VFP11_ERRATUM_THUMB_VENEER:
6791 /* Find return location. */
6792 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6795 myh = elf_link_hash_lookup
6796 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6799 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6800 "`%s'"), abfd, tmp_name);
6802 vma = myh->root.u.def.section->output_section->vma
6803 + myh->root.u.def.section->output_offset
6804 + myh->root.u.def.value;
6806 errnode->u.v.branch->vma = vma;
6819 /* Set target relocation values needed during linking. */
6822 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6823 struct bfd_link_info *link_info,
6825 char * target2_type,
6828 bfd_arm_vfp11_fix vfp11_fix,
6829 int no_enum_warn, int no_wchar_warn,
6830 int pic_veneer, int fix_cortex_a8,
6833 struct elf32_arm_link_hash_table *globals;
6835 globals = elf32_arm_hash_table (link_info);
6836 if (globals == NULL)
6839 globals->target1_is_rel = target1_is_rel;
6840 if (strcmp (target2_type, "rel") == 0)
6841 globals->target2_reloc = R_ARM_REL32;
6842 else if (strcmp (target2_type, "abs") == 0)
6843 globals->target2_reloc = R_ARM_ABS32;
6844 else if (strcmp (target2_type, "got-rel") == 0)
6845 globals->target2_reloc = R_ARM_GOT_PREL;
6848 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6851 globals->fix_v4bx = fix_v4bx;
6852 globals->use_blx |= use_blx;
6853 globals->vfp11_fix = vfp11_fix;
6854 globals->pic_veneer = pic_veneer;
6855 globals->fix_cortex_a8 = fix_cortex_a8;
6856 globals->fix_arm1176 = fix_arm1176;
6858 BFD_ASSERT (is_arm_elf (output_bfd));
6859 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6860 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6863 /* Replace the target offset of a Thumb bl or b.w instruction. */
6866 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6872 BFD_ASSERT ((offset & 1) == 0);
6874 upper = bfd_get_16 (abfd, insn);
6875 lower = bfd_get_16 (abfd, insn + 2);
6876 reloc_sign = (offset < 0) ? 1 : 0;
6877 upper = (upper & ~(bfd_vma) 0x7ff)
6878 | ((offset >> 12) & 0x3ff)
6879 | (reloc_sign << 10);
6880 lower = (lower & ~(bfd_vma) 0x2fff)
6881 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6882 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6883 | ((offset >> 1) & 0x7ff);
6884 bfd_put_16 (abfd, upper, insn);
6885 bfd_put_16 (abfd, lower, insn + 2);
6888 /* Thumb code calling an ARM function. */
6891 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6895 asection * input_section,
6896 bfd_byte * hit_data,
6899 bfd_signed_vma addend,
6901 char **error_message)
6905 long int ret_offset;
6906 struct elf_link_hash_entry * myh;
6907 struct elf32_arm_link_hash_table * globals;
6909 myh = find_thumb_glue (info, name, error_message);
6913 globals = elf32_arm_hash_table (info);
6914 BFD_ASSERT (globals != NULL);
6915 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6917 my_offset = myh->root.u.def.value;
6919 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6920 THUMB2ARM_GLUE_SECTION_NAME);
6922 BFD_ASSERT (s != NULL);
6923 BFD_ASSERT (s->contents != NULL);
6924 BFD_ASSERT (s->output_section != NULL);
6926 if ((my_offset & 0x01) == 0x01)
6929 && sym_sec->owner != NULL
6930 && !INTERWORK_FLAG (sym_sec->owner))
6932 (*_bfd_error_handler)
6933 (_("%B(%s): warning: interworking not enabled.\n"
6934 " first occurrence: %B: thumb call to arm"),
6935 sym_sec->owner, input_bfd, name);
6941 myh->root.u.def.value = my_offset;
6943 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
6944 s->contents + my_offset);
6946 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
6947 s->contents + my_offset + 2);
6950 /* Address of destination of the stub. */
6951 ((bfd_signed_vma) val)
6953 /* Offset from the start of the current section
6954 to the start of the stubs. */
6956 /* Offset of the start of this stub from the start of the stubs. */
6958 /* Address of the start of the current section. */
6959 + s->output_section->vma)
6960 /* The branch instruction is 4 bytes into the stub. */
6962 /* ARM branches work from the pc of the instruction + 8. */
6965 put_arm_insn (globals, output_bfd,
6966 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
6967 s->contents + my_offset + 4);
6970 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
6972 /* Now go back and fix up the original BL insn to point to here. */
6974 /* Address of where the stub is located. */
6975 (s->output_section->vma + s->output_offset + my_offset)
6976 /* Address of where the BL is located. */
6977 - (input_section->output_section->vma + input_section->output_offset
6979 /* Addend in the relocation. */
6981 /* Biassing for PC-relative addressing. */
6984 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
6989 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
6991 static struct elf_link_hash_entry *
6992 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
6999 char ** error_message)
7002 long int ret_offset;
7003 struct elf_link_hash_entry * myh;
7004 struct elf32_arm_link_hash_table * globals;
7006 myh = find_arm_glue (info, name, error_message);
7010 globals = elf32_arm_hash_table (info);
7011 BFD_ASSERT (globals != NULL);
7012 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7014 my_offset = myh->root.u.def.value;
7016 if ((my_offset & 0x01) == 0x01)
7019 && sym_sec->owner != NULL
7020 && !INTERWORK_FLAG (sym_sec->owner))
7022 (*_bfd_error_handler)
7023 (_("%B(%s): warning: interworking not enabled.\n"
7024 " first occurrence: %B: arm call to thumb"),
7025 sym_sec->owner, input_bfd, name);
7029 myh->root.u.def.value = my_offset;
7031 if (info->shared || globals->root.is_relocatable_executable
7032 || globals->pic_veneer)
7034 /* For relocatable objects we can't use absolute addresses,
7035 so construct the address from a relative offset. */
7036 /* TODO: If the offset is small it's probably worth
7037 constructing the address with adds. */
7038 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7039 s->contents + my_offset);
7040 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7041 s->contents + my_offset + 4);
7042 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7043 s->contents + my_offset + 8);
7044 /* Adjust the offset by 4 for the position of the add,
7045 and 8 for the pipeline offset. */
7046 ret_offset = (val - (s->output_offset
7047 + s->output_section->vma
7050 bfd_put_32 (output_bfd, ret_offset,
7051 s->contents + my_offset + 12);
7053 else if (globals->use_blx)
7055 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7056 s->contents + my_offset);
7058 /* It's a thumb address. Add the low order bit. */
7059 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7060 s->contents + my_offset + 4);
7064 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7065 s->contents + my_offset);
7067 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7068 s->contents + my_offset + 4);
7070 /* It's a thumb address. Add the low order bit. */
7071 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7072 s->contents + my_offset + 8);
7078 BFD_ASSERT (my_offset <= globals->arm_glue_size);
7083 /* Arm code calling a Thumb function. */
7086 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7090 asection * input_section,
7091 bfd_byte * hit_data,
7094 bfd_signed_vma addend,
7096 char **error_message)
7098 unsigned long int tmp;
7101 long int ret_offset;
7102 struct elf_link_hash_entry * myh;
7103 struct elf32_arm_link_hash_table * globals;
7105 globals = elf32_arm_hash_table (info);
7106 BFD_ASSERT (globals != NULL);
7107 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7109 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7110 ARM2THUMB_GLUE_SECTION_NAME);
7111 BFD_ASSERT (s != NULL);
7112 BFD_ASSERT (s->contents != NULL);
7113 BFD_ASSERT (s->output_section != NULL);
7115 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
7116 sym_sec, val, s, error_message);
7120 my_offset = myh->root.u.def.value;
7121 tmp = bfd_get_32 (input_bfd, hit_data);
7122 tmp = tmp & 0xFF000000;
7124 /* Somehow these are both 4 too far, so subtract 8. */
7125 ret_offset = (s->output_offset
7127 + s->output_section->vma
7128 - (input_section->output_offset
7129 + input_section->output_section->vma
7133 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7135 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
7140 /* Populate Arm stub for an exported Thumb function. */
7143 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7145 struct bfd_link_info * info = (struct bfd_link_info *) inf;
7147 struct elf_link_hash_entry * myh;
7148 struct elf32_arm_link_hash_entry *eh;
7149 struct elf32_arm_link_hash_table * globals;
7152 char *error_message;
7154 eh = elf32_arm_hash_entry (h);
7155 /* Allocate stubs for exported Thumb functions on v4t. */
7156 if (eh->export_glue == NULL)
7159 globals = elf32_arm_hash_table (info);
7160 BFD_ASSERT (globals != NULL);
7161 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7163 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7164 ARM2THUMB_GLUE_SECTION_NAME);
7165 BFD_ASSERT (s != NULL);
7166 BFD_ASSERT (s->contents != NULL);
7167 BFD_ASSERT (s->output_section != NULL);
7169 sec = eh->export_glue->root.u.def.section;
7171 BFD_ASSERT (sec->output_section != NULL);
7173 val = eh->export_glue->root.u.def.value + sec->output_offset
7174 + sec->output_section->vma;
7176 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7177 h->root.u.def.section->owner,
7178 globals->obfd, sec, val, s,
7184 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7187 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7192 struct elf32_arm_link_hash_table *globals;
7194 globals = elf32_arm_hash_table (info);
7195 BFD_ASSERT (globals != NULL);
7196 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7198 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7199 ARM_BX_GLUE_SECTION_NAME);
7200 BFD_ASSERT (s != NULL);
7201 BFD_ASSERT (s->contents != NULL);
7202 BFD_ASSERT (s->output_section != NULL);
7204 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7206 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7208 if ((globals->bx_glue_offset[reg] & 1) == 0)
7210 p = s->contents + glue_addr;
7211 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7212 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7213 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7214 globals->bx_glue_offset[reg] |= 1;
7217 return glue_addr + s->output_section->vma + s->output_offset;
7220 /* Generate Arm stubs for exported Thumb symbols. */
7222 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
7223 struct bfd_link_info *link_info)
7225 struct elf32_arm_link_hash_table * globals;
7227 if (link_info == NULL)
7228 /* Ignore this if we are not called by the ELF backend linker. */
7231 globals = elf32_arm_hash_table (link_info);
7232 if (globals == NULL)
7235 /* If blx is available then exported Thumb symbols are OK and there is
7237 if (globals->use_blx)
7240 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7244 /* Reserve space for COUNT dynamic relocations in relocation selection
7248 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7249 bfd_size_type count)
7251 struct elf32_arm_link_hash_table *htab;
7253 htab = elf32_arm_hash_table (info);
7254 BFD_ASSERT (htab->root.dynamic_sections_created);
7257 sreloc->size += RELOC_SIZE (htab) * count;
7260 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7261 dynamic, the relocations should go in SRELOC, otherwise they should
7262 go in the special .rel.iplt section. */
7265 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7266 bfd_size_type count)
7268 struct elf32_arm_link_hash_table *htab;
7270 htab = elf32_arm_hash_table (info);
7271 if (!htab->root.dynamic_sections_created)
7272 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7275 BFD_ASSERT (sreloc != NULL);
7276 sreloc->size += RELOC_SIZE (htab) * count;
7280 /* Add relocation REL to the end of relocation section SRELOC. */
7283 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7284 asection *sreloc, Elf_Internal_Rela *rel)
7287 struct elf32_arm_link_hash_table *htab;
7289 htab = elf32_arm_hash_table (info);
7290 if (!htab->root.dynamic_sections_created
7291 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7292 sreloc = htab->root.irelplt;
7295 loc = sreloc->contents;
7296 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7297 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7299 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7302 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7303 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7307 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7308 bfd_boolean is_iplt_entry,
7309 union gotplt_union *root_plt,
7310 struct arm_plt_info *arm_plt)
7312 struct elf32_arm_link_hash_table *htab;
7316 htab = elf32_arm_hash_table (info);
7320 splt = htab->root.iplt;
7321 sgotplt = htab->root.igotplt;
7323 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7324 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7328 splt = htab->root.splt;
7329 sgotplt = htab->root.sgotplt;
7331 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7332 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7334 /* If this is the first .plt entry, make room for the special
7336 if (splt->size == 0)
7337 splt->size += htab->plt_header_size;
7340 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7341 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7342 splt->size += PLT_THUMB_STUB_SIZE;
7343 root_plt->offset = splt->size;
7344 splt->size += htab->plt_entry_size;
7346 if (!htab->symbian_p)
7348 /* We also need to make an entry in the .got.plt section, which
7349 will be placed in the .got section by the linker script. */
7350 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7355 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7356 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7357 Otherwise, DYNINDX is the index of the symbol in the dynamic
7358 symbol table and SYM_VALUE is undefined.
7360 ROOT_PLT points to the offset of the PLT entry from the start of its
7361 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
7362 bookkeeping information. */
7365 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7366 union gotplt_union *root_plt,
7367 struct arm_plt_info *arm_plt,
7368 int dynindx, bfd_vma sym_value)
7370 struct elf32_arm_link_hash_table *htab;
7376 Elf_Internal_Rela rel;
7377 bfd_vma plt_header_size;
7378 bfd_vma got_header_size;
7380 htab = elf32_arm_hash_table (info);
7382 /* Pick the appropriate sections and sizes. */
7385 splt = htab->root.iplt;
7386 sgot = htab->root.igotplt;
7387 srel = htab->root.irelplt;
7389 /* There are no reserved entries in .igot.plt, and no special
7390 first entry in .iplt. */
7391 got_header_size = 0;
7392 plt_header_size = 0;
7396 splt = htab->root.splt;
7397 sgot = htab->root.sgotplt;
7398 srel = htab->root.srelplt;
7400 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7401 plt_header_size = htab->plt_header_size;
7403 BFD_ASSERT (splt != NULL && srel != NULL);
7405 /* Fill in the entry in the procedure linkage table. */
7406 if (htab->symbian_p)
7408 BFD_ASSERT (dynindx >= 0);
7409 put_arm_insn (htab, output_bfd,
7410 elf32_arm_symbian_plt_entry[0],
7411 splt->contents + root_plt->offset);
7412 bfd_put_32 (output_bfd,
7413 elf32_arm_symbian_plt_entry[1],
7414 splt->contents + root_plt->offset + 4);
7416 /* Fill in the entry in the .rel.plt section. */
7417 rel.r_offset = (splt->output_section->vma
7418 + splt->output_offset
7419 + root_plt->offset + 4);
7420 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7422 /* Get the index in the procedure linkage table which
7423 corresponds to this symbol. This is the index of this symbol
7424 in all the symbols for which we are making plt entries. The
7425 first entry in the procedure linkage table is reserved. */
7426 plt_index = ((root_plt->offset - plt_header_size)
7427 / htab->plt_entry_size);
7431 bfd_vma got_offset, got_address, plt_address;
7432 bfd_vma got_displacement, initial_got_entry;
7435 BFD_ASSERT (sgot != NULL);
7437 /* Get the offset into the .(i)got.plt table of the entry that
7438 corresponds to this function. */
7439 got_offset = (arm_plt->got_offset & -2);
7441 /* Get the index in the procedure linkage table which
7442 corresponds to this symbol. This is the index of this symbol
7443 in all the symbols for which we are making plt entries.
7444 After the reserved .got.plt entries, all symbols appear in
7445 the same order as in .plt. */
7446 plt_index = (got_offset - got_header_size) / 4;
7448 /* Calculate the address of the GOT entry. */
7449 got_address = (sgot->output_section->vma
7450 + sgot->output_offset
7453 /* ...and the address of the PLT entry. */
7454 plt_address = (splt->output_section->vma
7455 + splt->output_offset
7456 + root_plt->offset);
7458 ptr = splt->contents + root_plt->offset;
7459 if (htab->vxworks_p && info->shared)
7464 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7466 val = elf32_arm_vxworks_shared_plt_entry[i];
7468 val |= got_address - sgot->output_section->vma;
7470 val |= plt_index * RELOC_SIZE (htab);
7471 if (i == 2 || i == 5)
7472 bfd_put_32 (output_bfd, val, ptr);
7474 put_arm_insn (htab, output_bfd, val, ptr);
7477 else if (htab->vxworks_p)
7482 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7484 val = elf32_arm_vxworks_exec_plt_entry[i];
7488 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7490 val |= plt_index * RELOC_SIZE (htab);
7491 if (i == 2 || i == 5)
7492 bfd_put_32 (output_bfd, val, ptr);
7494 put_arm_insn (htab, output_bfd, val, ptr);
7497 loc = (htab->srelplt2->contents
7498 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7500 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7501 referencing the GOT for this PLT entry. */
7502 rel.r_offset = plt_address + 8;
7503 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7504 rel.r_addend = got_offset;
7505 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7506 loc += RELOC_SIZE (htab);
7508 /* Create the R_ARM_ABS32 relocation referencing the
7509 beginning of the PLT for this GOT entry. */
7510 rel.r_offset = got_address;
7511 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7513 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7517 /* Calculate the displacement between the PLT slot and the
7518 entry in the GOT. The eight-byte offset accounts for the
7519 value produced by adding to pc in the first instruction
7521 got_displacement = got_address - (plt_address + 8);
7523 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7525 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7527 put_thumb_insn (htab, output_bfd,
7528 elf32_arm_plt_thumb_stub[0], ptr - 4);
7529 put_thumb_insn (htab, output_bfd,
7530 elf32_arm_plt_thumb_stub[1], ptr - 2);
7533 put_arm_insn (htab, output_bfd,
7534 elf32_arm_plt_entry[0]
7535 | ((got_displacement & 0x0ff00000) >> 20),
7537 put_arm_insn (htab, output_bfd,
7538 elf32_arm_plt_entry[1]
7539 | ((got_displacement & 0x000ff000) >> 12),
7541 put_arm_insn (htab, output_bfd,
7542 elf32_arm_plt_entry[2]
7543 | (got_displacement & 0x00000fff),
7545 #ifdef FOUR_WORD_PLT
7546 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
7550 /* Fill in the entry in the .rel(a).(i)plt section. */
7551 rel.r_offset = got_address;
7555 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7556 The dynamic linker or static executable then calls SYM_VALUE
7557 to determine the correct run-time value of the .igot.plt entry. */
7558 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7559 initial_got_entry = sym_value;
7563 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7564 initial_got_entry = (splt->output_section->vma
7565 + splt->output_offset);
7568 /* Fill in the entry in the global offset table. */
7569 bfd_put_32 (output_bfd, initial_got_entry,
7570 sgot->contents + got_offset);
7573 loc = srel->contents + plt_index * RELOC_SIZE (htab);
7574 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7577 /* Some relocations map to different relocations depending on the
7578 target. Return the real relocation. */
7581 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7587 if (globals->target1_is_rel)
7593 return globals->target2_reloc;
7600 /* Return the base VMA address which should be subtracted from real addresses
7601 when resolving @dtpoff relocation.
7602 This is PT_TLS segment p_vaddr. */
7605 dtpoff_base (struct bfd_link_info *info)
7607 /* If tls_sec is NULL, we should have signalled an error already. */
7608 if (elf_hash_table (info)->tls_sec == NULL)
7610 return elf_hash_table (info)->tls_sec->vma;
7613 /* Return the relocation value for @tpoff relocation
7614 if STT_TLS virtual address is ADDRESS. */
7617 tpoff (struct bfd_link_info *info, bfd_vma address)
7619 struct elf_link_hash_table *htab = elf_hash_table (info);
7622 /* If tls_sec is NULL, we should have signalled an error already. */
7623 if (htab->tls_sec == NULL)
7625 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7626 return address - htab->tls_sec->vma + base;
7629 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7630 VALUE is the relocation value. */
7632 static bfd_reloc_status_type
7633 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7636 return bfd_reloc_overflow;
7638 value |= bfd_get_32 (abfd, data) & 0xfffff000;
7639 bfd_put_32 (abfd, value, data);
7640 return bfd_reloc_ok;
7643 /* Handle TLS relaxations. Relaxing is possible for symbols that use
7644 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7645 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7647 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7648 is to then call final_link_relocate. Return other values in the
7651 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7652 the pre-relaxed code. It would be nice if the relocs were updated
7653 to match the optimization. */
7655 static bfd_reloc_status_type
7656 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
7657 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
7658 Elf_Internal_Rela *rel, unsigned long is_local)
7662 switch (ELF32_R_TYPE (rel->r_info))
7665 return bfd_reloc_notsupported;
7667 case R_ARM_TLS_GOTDESC:
7672 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7674 insn -= 5; /* THUMB */
7676 insn -= 8; /* ARM */
7678 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7679 return bfd_reloc_continue;
7681 case R_ARM_THM_TLS_DESCSEQ:
7683 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
7684 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
7688 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7690 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
7694 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7697 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
7699 else if ((insn & 0xff87) == 0x4780) /* blx rx */
7703 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7706 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
7707 contents + rel->r_offset);
7711 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
7712 /* It's a 32 bit instruction, fetch the rest of it for
7713 error generation. */
7715 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
7716 (*_bfd_error_handler)
7717 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7718 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7719 return bfd_reloc_notsupported;
7723 case R_ARM_TLS_DESCSEQ:
7725 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7726 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7730 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
7731 contents + rel->r_offset);
7733 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7737 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7740 bfd_put_32 (input_bfd, insn & 0xfffff000,
7741 contents + rel->r_offset);
7743 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
7747 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7750 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
7751 contents + rel->r_offset);
7755 (*_bfd_error_handler)
7756 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7757 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7758 return bfd_reloc_notsupported;
7762 case R_ARM_TLS_CALL:
7763 /* GD->IE relaxation, turn the instruction into 'nop' or
7764 'ldr r0, [pc,r0]' */
7765 insn = is_local ? 0xe1a00000 : 0xe79f0000;
7766 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7769 case R_ARM_THM_TLS_CALL:
7770 /* GD->IE relaxation */
7772 /* add r0,pc; ldr r0, [r0] */
7774 else if (arch_has_thumb2_nop (globals))
7781 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
7782 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
7785 return bfd_reloc_ok;
7788 /* For a given value of n, calculate the value of G_n as required to
7789 deal with group relocations. We return it in the form of an
7790 encoded constant-and-rotation, together with the final residual. If n is
7791 specified as less than zero, then final_residual is filled with the
7792 input value and no further action is performed. */
7795 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
7799 bfd_vma encoded_g_n = 0;
7800 bfd_vma residual = value; /* Also known as Y_n. */
7802 for (current_n = 0; current_n <= n; current_n++)
7806 /* Calculate which part of the value to mask. */
7813 /* Determine the most significant bit in the residual and
7814 align the resulting value to a 2-bit boundary. */
7815 for (msb = 30; msb >= 0; msb -= 2)
7816 if (residual & (3 << msb))
7819 /* The desired shift is now (msb - 6), or zero, whichever
7826 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
7827 g_n = residual & (0xff << shift);
7828 encoded_g_n = (g_n >> shift)
7829 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
7831 /* Calculate the residual for the next time around. */
7835 *final_residual = residual;
7840 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
7841 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
7844 identify_add_or_sub (bfd_vma insn)
7846 int opcode = insn & 0x1e00000;
7848 if (opcode == 1 << 23) /* ADD */
7851 if (opcode == 1 << 22) /* SUB */
7857 /* Perform a relocation as part of a final link. */
7859 static bfd_reloc_status_type
7860 elf32_arm_final_link_relocate (reloc_howto_type * howto,
7863 asection * input_section,
7864 bfd_byte * contents,
7865 Elf_Internal_Rela * rel,
7867 struct bfd_link_info * info,
7869 const char * sym_name,
7870 unsigned char st_type,
7871 enum arm_st_branch_type branch_type,
7872 struct elf_link_hash_entry * h,
7873 bfd_boolean * unresolved_reloc_p,
7874 char ** error_message)
7876 unsigned long r_type = howto->type;
7877 unsigned long r_symndx;
7878 bfd_byte * hit_data = contents + rel->r_offset;
7879 bfd_vma * local_got_offsets;
7880 bfd_vma * local_tlsdesc_gotents;
7883 asection * sreloc = NULL;
7886 bfd_signed_vma signed_addend;
7887 unsigned char dynreloc_st_type;
7888 bfd_vma dynreloc_value;
7889 struct elf32_arm_link_hash_table * globals;
7890 struct elf32_arm_link_hash_entry *eh;
7891 union gotplt_union *root_plt;
7892 struct arm_plt_info *arm_plt;
7894 bfd_vma gotplt_offset;
7895 bfd_boolean has_iplt_entry;
7897 globals = elf32_arm_hash_table (info);
7898 if (globals == NULL)
7899 return bfd_reloc_notsupported;
7901 BFD_ASSERT (is_arm_elf (input_bfd));
7903 /* Some relocation types map to different relocations depending on the
7904 target. We pick the right one here. */
7905 r_type = arm_real_reloc_type (globals, r_type);
7907 /* It is possible to have linker relaxations on some TLS access
7908 models. Update our information here. */
7909 r_type = elf32_arm_tls_transition (info, r_type, h);
7911 if (r_type != howto->type)
7912 howto = elf32_arm_howto_from_type (r_type);
7914 /* If the start address has been set, then set the EF_ARM_HASENTRY
7915 flag. Setting this more than once is redundant, but the cost is
7916 not too high, and it keeps the code simple.
7918 The test is done here, rather than somewhere else, because the
7919 start address is only set just before the final link commences.
7921 Note - if the user deliberately sets a start address of 0, the
7922 flag will not be set. */
7923 if (bfd_get_start_address (output_bfd) != 0)
7924 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
7926 eh = (struct elf32_arm_link_hash_entry *) h;
7927 sgot = globals->root.sgot;
7928 local_got_offsets = elf_local_got_offsets (input_bfd);
7929 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
7931 if (globals->root.dynamic_sections_created)
7932 srelgot = globals->root.srelgot;
7936 r_symndx = ELF32_R_SYM (rel->r_info);
7938 if (globals->use_rel)
7940 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
7942 if (addend & ((howto->src_mask + 1) >> 1))
7945 signed_addend &= ~ howto->src_mask;
7946 signed_addend |= addend;
7949 signed_addend = addend;
7952 addend = signed_addend = rel->r_addend;
7954 /* Record the symbol information that should be used in dynamic
7956 dynreloc_st_type = st_type;
7957 dynreloc_value = value;
7958 if (branch_type == ST_BRANCH_TO_THUMB)
7959 dynreloc_value |= 1;
7961 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
7962 VALUE appropriately for relocations that we resolve at link time. */
7963 has_iplt_entry = FALSE;
7964 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
7965 && root_plt->offset != (bfd_vma) -1)
7967 plt_offset = root_plt->offset;
7968 gotplt_offset = arm_plt->got_offset;
7970 if (h == NULL || eh->is_iplt)
7972 has_iplt_entry = TRUE;
7973 splt = globals->root.iplt;
7975 /* Populate .iplt entries here, because not all of them will
7976 be seen by finish_dynamic_symbol. The lower bit is set if
7977 we have already populated the entry. */
7982 elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
7983 -1, dynreloc_value);
7984 root_plt->offset |= 1;
7987 /* Static relocations always resolve to the .iplt entry. */
7989 value = (splt->output_section->vma
7990 + splt->output_offset
7992 branch_type = ST_BRANCH_TO_ARM;
7994 /* If there are non-call relocations that resolve to the .iplt
7995 entry, then all dynamic ones must too. */
7996 if (arm_plt->noncall_refcount != 0)
7998 dynreloc_st_type = st_type;
7999 dynreloc_value = value;
8003 /* We populate the .plt entry in finish_dynamic_symbol. */
8004 splt = globals->root.splt;
8009 plt_offset = (bfd_vma) -1;
8010 gotplt_offset = (bfd_vma) -1;
8016 /* We don't need to find a value for this symbol. It's just a
8018 *unresolved_reloc_p = FALSE;
8019 return bfd_reloc_ok;
8022 if (!globals->vxworks_p)
8023 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8027 case R_ARM_ABS32_NOI:
8029 case R_ARM_REL32_NOI:
8035 /* Handle relocations which should use the PLT entry. ABS32/REL32
8036 will use the symbol's value, which may point to a PLT entry, but we
8037 don't need to handle that here. If we created a PLT entry, all
8038 branches in this object should go to it, except if the PLT is too
8039 far away, in which case a long branch stub should be inserted. */
8040 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
8041 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
8042 && r_type != R_ARM_CALL
8043 && r_type != R_ARM_JUMP24
8044 && r_type != R_ARM_PLT32)
8045 && plt_offset != (bfd_vma) -1)
8047 /* If we've created a .plt section, and assigned a PLT entry
8048 to this function, it must either be a STT_GNU_IFUNC reference
8049 or not be known to bind locally. In other cases, we should
8050 have cleared the PLT entry by now. */
8051 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
8053 value = (splt->output_section->vma
8054 + splt->output_offset
8056 *unresolved_reloc_p = FALSE;
8057 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8058 contents, rel->r_offset, value,
8062 /* When generating a shared object or relocatable executable, these
8063 relocations are copied into the output file to be resolved at
8065 if ((info->shared || globals->root.is_relocatable_executable)
8066 && (input_section->flags & SEC_ALLOC)
8067 && !(globals->vxworks_p
8068 && strcmp (input_section->output_section->name,
8070 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
8071 || !SYMBOL_CALLS_LOCAL (info, h))
8072 && (!strstr (input_section->name, STUB_SUFFIX))
8074 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8075 || h->root.type != bfd_link_hash_undefweak)
8076 && r_type != R_ARM_PC24
8077 && r_type != R_ARM_CALL
8078 && r_type != R_ARM_JUMP24
8079 && r_type != R_ARM_PREL31
8080 && r_type != R_ARM_PLT32)
8082 Elf_Internal_Rela outrel;
8083 bfd_boolean skip, relocate;
8085 *unresolved_reloc_p = FALSE;
8087 if (sreloc == NULL && globals->root.dynamic_sections_created)
8089 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8090 ! globals->use_rel);
8093 return bfd_reloc_notsupported;
8099 outrel.r_addend = addend;
8101 _bfd_elf_section_offset (output_bfd, info, input_section,
8103 if (outrel.r_offset == (bfd_vma) -1)
8105 else if (outrel.r_offset == (bfd_vma) -2)
8106 skip = TRUE, relocate = TRUE;
8107 outrel.r_offset += (input_section->output_section->vma
8108 + input_section->output_offset);
8111 memset (&outrel, 0, sizeof outrel);
8116 || !h->def_regular))
8117 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
8122 /* This symbol is local, or marked to become local. */
8123 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
8124 if (globals->symbian_p)
8128 /* On Symbian OS, the data segment and text segement
8129 can be relocated independently. Therefore, we
8130 must indicate the segment to which this
8131 relocation is relative. The BPABI allows us to
8132 use any symbol in the right segment; we just use
8133 the section symbol as it is convenient. (We
8134 cannot use the symbol given by "h" directly as it
8135 will not appear in the dynamic symbol table.)
8137 Note that the dynamic linker ignores the section
8138 symbol value, so we don't subtract osec->vma
8139 from the emitted reloc addend. */
8141 osec = sym_sec->output_section;
8143 osec = input_section->output_section;
8144 symbol = elf_section_data (osec)->dynindx;
8147 struct elf_link_hash_table *htab = elf_hash_table (info);
8149 if ((osec->flags & SEC_READONLY) == 0
8150 && htab->data_index_section != NULL)
8151 osec = htab->data_index_section;
8153 osec = htab->text_index_section;
8154 symbol = elf_section_data (osec)->dynindx;
8156 BFD_ASSERT (symbol != 0);
8159 /* On SVR4-ish systems, the dynamic loader cannot
8160 relocate the text and data segments independently,
8161 so the symbol does not matter. */
8163 if (dynreloc_st_type == STT_GNU_IFUNC)
8164 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8165 to the .iplt entry. Instead, every non-call reference
8166 must use an R_ARM_IRELATIVE relocation to obtain the
8167 correct run-time address. */
8168 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8170 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
8171 if (globals->use_rel)
8174 outrel.r_addend += dynreloc_value;
8177 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
8179 /* If this reloc is against an external symbol, we do not want to
8180 fiddle with the addend. Otherwise, we need to include the symbol
8181 value so that it becomes an addend for the dynamic reloc. */
8183 return bfd_reloc_ok;
8185 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8186 contents, rel->r_offset,
8187 dynreloc_value, (bfd_vma) 0);
8189 else switch (r_type)
8192 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8194 case R_ARM_XPC25: /* Arm BLX instruction. */
8197 case R_ARM_PC24: /* Arm B/BL instruction. */
8200 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8202 if (r_type == R_ARM_XPC25)
8204 /* Check for Arm calling Arm function. */
8205 /* FIXME: Should we translate the instruction into a BL
8206 instruction instead ? */
8207 if (branch_type != ST_BRANCH_TO_THUMB)
8208 (*_bfd_error_handler)
8209 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8211 h ? h->root.root.string : "(local)");
8213 else if (r_type == R_ARM_PC24)
8215 /* Check for Arm calling Thumb function. */
8216 if (branch_type == ST_BRANCH_TO_THUMB)
8218 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8219 output_bfd, input_section,
8220 hit_data, sym_sec, rel->r_offset,
8221 signed_addend, value,
8223 return bfd_reloc_ok;
8225 return bfd_reloc_dangerous;
8229 /* Check if a stub has to be inserted because the
8230 destination is too far or we are changing mode. */
8231 if ( r_type == R_ARM_CALL
8232 || r_type == R_ARM_JUMP24
8233 || r_type == R_ARM_PLT32)
8235 enum elf32_arm_stub_type stub_type = arm_stub_none;
8236 struct elf32_arm_link_hash_entry *hash;
8238 hash = (struct elf32_arm_link_hash_entry *) h;
8239 stub_type = arm_type_of_stub (info, input_section, rel,
8240 st_type, &branch_type,
8241 hash, value, sym_sec,
8242 input_bfd, sym_name);
8244 if (stub_type != arm_stub_none)
8246 /* The target is out of reach, so redirect the
8247 branch to the local stub for this function. */
8248 stub_entry = elf32_arm_get_stub_entry (input_section,
8253 if (stub_entry != NULL)
8254 value = (stub_entry->stub_offset
8255 + stub_entry->stub_sec->output_offset
8256 + stub_entry->stub_sec->output_section->vma);
8258 if (plt_offset != (bfd_vma) -1)
8259 *unresolved_reloc_p = FALSE;
8264 /* If the call goes through a PLT entry, make sure to
8265 check distance to the right destination address. */
8266 if (plt_offset != (bfd_vma) -1)
8268 value = (splt->output_section->vma
8269 + splt->output_offset
8271 *unresolved_reloc_p = FALSE;
8272 /* The PLT entry is in ARM mode, regardless of the
8274 branch_type = ST_BRANCH_TO_ARM;
8279 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8281 S is the address of the symbol in the relocation.
8282 P is address of the instruction being relocated.
8283 A is the addend (extracted from the instruction) in bytes.
8285 S is held in 'value'.
8286 P is the base address of the section containing the
8287 instruction plus the offset of the reloc into that
8289 (input_section->output_section->vma +
8290 input_section->output_offset +
8292 A is the addend, converted into bytes, ie:
8295 Note: None of these operations have knowledge of the pipeline
8296 size of the processor, thus it is up to the assembler to
8297 encode this information into the addend. */
8298 value -= (input_section->output_section->vma
8299 + input_section->output_offset);
8300 value -= rel->r_offset;
8301 if (globals->use_rel)
8302 value += (signed_addend << howto->size);
8304 /* RELA addends do not have to be adjusted by howto->size. */
8305 value += signed_addend;
8307 signed_addend = value;
8308 signed_addend >>= howto->rightshift;
8310 /* A branch to an undefined weak symbol is turned into a jump to
8311 the next instruction unless a PLT entry will be created.
8312 Do the same for local undefined symbols (but not for STN_UNDEF).
8313 The jump to the next instruction is optimized as a NOP depending
8314 on the architecture. */
8315 if (h ? (h->root.type == bfd_link_hash_undefweak
8316 && plt_offset == (bfd_vma) -1)
8317 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
8319 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8321 if (arch_has_arm_nop (globals))
8322 value |= 0x0320f000;
8324 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
8328 /* Perform a signed range check. */
8329 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
8330 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8331 return bfd_reloc_overflow;
8333 addend = (value & 2);
8335 value = (signed_addend & howto->dst_mask)
8336 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
8338 if (r_type == R_ARM_CALL)
8340 /* Set the H bit in the BLX instruction. */
8341 if (branch_type == ST_BRANCH_TO_THUMB)
8346 value &= ~(bfd_vma)(1 << 24);
8349 /* Select the correct instruction (BL or BLX). */
8350 /* Only if we are not handling a BL to a stub. In this
8351 case, mode switching is performed by the stub. */
8352 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
8354 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
8356 value &= ~(bfd_vma)(1 << 28);
8366 if (branch_type == ST_BRANCH_TO_THUMB)
8370 case R_ARM_ABS32_NOI:
8376 if (branch_type == ST_BRANCH_TO_THUMB)
8378 value -= (input_section->output_section->vma
8379 + input_section->output_offset + rel->r_offset);
8382 case R_ARM_REL32_NOI:
8384 value -= (input_section->output_section->vma
8385 + input_section->output_offset + rel->r_offset);
8389 value -= (input_section->output_section->vma
8390 + input_section->output_offset + rel->r_offset);
8391 value += signed_addend;
8392 if (! h || h->root.type != bfd_link_hash_undefweak)
8394 /* Check for overflow. */
8395 if ((value ^ (value >> 1)) & (1 << 30))
8396 return bfd_reloc_overflow;
8398 value &= 0x7fffffff;
8399 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
8400 if (branch_type == ST_BRANCH_TO_THUMB)
8405 bfd_put_32 (input_bfd, value, hit_data);
8406 return bfd_reloc_ok;
8411 /* There is no way to tell whether the user intended to use a signed or
8412 unsigned addend. When checking for overflow we accept either,
8413 as specified by the AAELF. */
8414 if ((long) value > 0xff || (long) value < -0x80)
8415 return bfd_reloc_overflow;
8417 bfd_put_8 (input_bfd, value, hit_data);
8418 return bfd_reloc_ok;
8423 /* See comment for R_ARM_ABS8. */
8424 if ((long) value > 0xffff || (long) value < -0x8000)
8425 return bfd_reloc_overflow;
8427 bfd_put_16 (input_bfd, value, hit_data);
8428 return bfd_reloc_ok;
8430 case R_ARM_THM_ABS5:
8431 /* Support ldr and str instructions for the thumb. */
8432 if (globals->use_rel)
8434 /* Need to refetch addend. */
8435 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8436 /* ??? Need to determine shift amount from operand size. */
8437 addend >>= howto->rightshift;
8441 /* ??? Isn't value unsigned? */
8442 if ((long) value > 0x1f || (long) value < -0x10)
8443 return bfd_reloc_overflow;
8445 /* ??? Value needs to be properly shifted into place first. */
8446 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8447 bfd_put_16 (input_bfd, value, hit_data);
8448 return bfd_reloc_ok;
8450 case R_ARM_THM_ALU_PREL_11_0:
8451 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8454 bfd_signed_vma relocation;
8456 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8457 | bfd_get_16 (input_bfd, hit_data + 2);
8459 if (globals->use_rel)
8461 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8462 | ((insn & (1 << 26)) >> 15);
8463 if (insn & 0xf00000)
8464 signed_addend = -signed_addend;
8467 relocation = value + signed_addend;
8468 relocation -= (input_section->output_section->vma
8469 + input_section->output_offset
8472 value = abs (relocation);
8474 if (value >= 0x1000)
8475 return bfd_reloc_overflow;
8477 insn = (insn & 0xfb0f8f00) | (value & 0xff)
8478 | ((value & 0x700) << 4)
8479 | ((value & 0x800) << 15);
8483 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8484 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8486 return bfd_reloc_ok;
8490 /* PR 10073: This reloc is not generated by the GNU toolchain,
8491 but it is supported for compatibility with third party libraries
8492 generated by other compilers, specifically the ARM/IAR. */
8495 bfd_signed_vma relocation;
8497 insn = bfd_get_16 (input_bfd, hit_data);
8499 if (globals->use_rel)
8500 addend = (insn & 0x00ff) << 2;
8502 relocation = value + addend;
8503 relocation -= (input_section->output_section->vma
8504 + input_section->output_offset
8507 value = abs (relocation);
8509 /* We do not check for overflow of this reloc. Although strictly
8510 speaking this is incorrect, it appears to be necessary in order
8511 to work with IAR generated relocs. Since GCC and GAS do not
8512 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8513 a problem for them. */
8516 insn = (insn & 0xff00) | (value >> 2);
8518 bfd_put_16 (input_bfd, insn, hit_data);
8520 return bfd_reloc_ok;
8523 case R_ARM_THM_PC12:
8524 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8527 bfd_signed_vma relocation;
8529 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8530 | bfd_get_16 (input_bfd, hit_data + 2);
8532 if (globals->use_rel)
8534 signed_addend = insn & 0xfff;
8535 if (!(insn & (1 << 23)))
8536 signed_addend = -signed_addend;
8539 relocation = value + signed_addend;
8540 relocation -= (input_section->output_section->vma
8541 + input_section->output_offset
8544 value = abs (relocation);
8546 if (value >= 0x1000)
8547 return bfd_reloc_overflow;
8549 insn = (insn & 0xff7ff000) | value;
8550 if (relocation >= 0)
8553 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8554 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8556 return bfd_reloc_ok;
8559 case R_ARM_THM_XPC22:
8560 case R_ARM_THM_CALL:
8561 case R_ARM_THM_JUMP24:
8562 /* Thumb BL (branch long instruction). */
8566 bfd_boolean overflow = FALSE;
8567 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8568 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8569 bfd_signed_vma reloc_signed_max;
8570 bfd_signed_vma reloc_signed_min;
8572 bfd_signed_vma signed_check;
8574 const int thumb2 = using_thumb2 (globals);
8576 /* A branch to an undefined weak symbol is turned into a jump to
8577 the next instruction unless a PLT entry will be created.
8578 The jump to the next instruction is optimized as a NOP.W for
8579 Thumb-2 enabled architectures. */
8580 if (h && h->root.type == bfd_link_hash_undefweak
8581 && plt_offset == (bfd_vma) -1)
8583 if (arch_has_thumb2_nop (globals))
8585 bfd_put_16 (input_bfd, 0xf3af, hit_data);
8586 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8590 bfd_put_16 (input_bfd, 0xe000, hit_data);
8591 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8593 return bfd_reloc_ok;
8596 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
8597 with Thumb-1) involving the J1 and J2 bits. */
8598 if (globals->use_rel)
8600 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8601 bfd_vma upper = upper_insn & 0x3ff;
8602 bfd_vma lower = lower_insn & 0x7ff;
8603 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8604 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
8605 bfd_vma i1 = j1 ^ s ? 0 : 1;
8606 bfd_vma i2 = j2 ^ s ? 0 : 1;
8608 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8610 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
8612 signed_addend = addend;
8615 if (r_type == R_ARM_THM_XPC22)
8617 /* Check for Thumb to Thumb call. */
8618 /* FIXME: Should we translate the instruction into a BL
8619 instruction instead ? */
8620 if (branch_type == ST_BRANCH_TO_THUMB)
8621 (*_bfd_error_handler)
8622 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8624 h ? h->root.root.string : "(local)");
8628 /* If it is not a call to Thumb, assume call to Arm.
8629 If it is a call relative to a section name, then it is not a
8630 function call at all, but rather a long jump. Calls through
8631 the PLT do not require stubs. */
8632 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
8634 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8636 /* Convert BL to BLX. */
8637 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8639 else if (( r_type != R_ARM_THM_CALL)
8640 && (r_type != R_ARM_THM_JUMP24))
8642 if (elf32_thumb_to_arm_stub
8643 (info, sym_name, input_bfd, output_bfd, input_section,
8644 hit_data, sym_sec, rel->r_offset, signed_addend, value,
8646 return bfd_reloc_ok;
8648 return bfd_reloc_dangerous;
8651 else if (branch_type == ST_BRANCH_TO_THUMB
8653 && r_type == R_ARM_THM_CALL)
8655 /* Make sure this is a BL. */
8656 lower_insn |= 0x1800;
8660 enum elf32_arm_stub_type stub_type = arm_stub_none;
8661 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
8663 /* Check if a stub has to be inserted because the destination
8665 struct elf32_arm_stub_hash_entry *stub_entry;
8666 struct elf32_arm_link_hash_entry *hash;
8668 hash = (struct elf32_arm_link_hash_entry *) h;
8670 stub_type = arm_type_of_stub (info, input_section, rel,
8671 st_type, &branch_type,
8672 hash, value, sym_sec,
8673 input_bfd, sym_name);
8675 if (stub_type != arm_stub_none)
8677 /* The target is out of reach or we are changing modes, so
8678 redirect the branch to the local stub for this
8680 stub_entry = elf32_arm_get_stub_entry (input_section,
8684 if (stub_entry != NULL)
8686 value = (stub_entry->stub_offset
8687 + stub_entry->stub_sec->output_offset
8688 + stub_entry->stub_sec->output_section->vma);
8690 if (plt_offset != (bfd_vma) -1)
8691 *unresolved_reloc_p = FALSE;
8694 /* If this call becomes a call to Arm, force BLX. */
8695 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
8698 && !arm_stub_is_thumb (stub_entry->stub_type))
8699 || branch_type != ST_BRANCH_TO_THUMB)
8700 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8705 /* Handle calls via the PLT. */
8706 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
8708 value = (splt->output_section->vma
8709 + splt->output_offset
8712 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8714 /* If the Thumb BLX instruction is available, convert
8715 the BL to a BLX instruction to call the ARM-mode
8717 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8718 branch_type = ST_BRANCH_TO_ARM;
8722 /* Target the Thumb stub before the ARM PLT entry. */
8723 value -= PLT_THUMB_STUB_SIZE;
8724 branch_type = ST_BRANCH_TO_THUMB;
8726 *unresolved_reloc_p = FALSE;
8729 relocation = value + signed_addend;
8731 relocation -= (input_section->output_section->vma
8732 + input_section->output_offset
8735 check = relocation >> howto->rightshift;
8737 /* If this is a signed value, the rightshift just dropped
8738 leading 1 bits (assuming twos complement). */
8739 if ((bfd_signed_vma) relocation >= 0)
8740 signed_check = check;
8742 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
8744 /* Calculate the permissable maximum and minimum values for
8745 this relocation according to whether we're relocating for
8747 bitsize = howto->bitsize;
8750 reloc_signed_max = (1 << (bitsize - 1)) - 1;
8751 reloc_signed_min = ~reloc_signed_max;
8753 /* Assumes two's complement. */
8754 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8757 if ((lower_insn & 0x5000) == 0x4000)
8758 /* For a BLX instruction, make sure that the relocation is rounded up
8759 to a word boundary. This follows the semantics of the instruction
8760 which specifies that bit 1 of the target address will come from bit
8761 1 of the base address. */
8762 relocation = (relocation + 2) & ~ 3;
8764 /* Put RELOCATION back into the insn. Assumes two's complement.
8765 We use the Thumb-2 encoding, which is safe even if dealing with
8766 a Thumb-1 instruction by virtue of our overflow check above. */
8767 reloc_sign = (signed_check < 0) ? 1 : 0;
8768 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
8769 | ((relocation >> 12) & 0x3ff)
8770 | (reloc_sign << 10);
8771 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
8772 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
8773 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
8774 | ((relocation >> 1) & 0x7ff);
8776 /* Put the relocated value back in the object file: */
8777 bfd_put_16 (input_bfd, upper_insn, hit_data);
8778 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8780 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8784 case R_ARM_THM_JUMP19:
8785 /* Thumb32 conditional branch instruction. */
8788 bfd_boolean overflow = FALSE;
8789 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8790 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8791 bfd_signed_vma reloc_signed_max = 0xffffe;
8792 bfd_signed_vma reloc_signed_min = -0x100000;
8793 bfd_signed_vma signed_check;
8795 /* Need to refetch the addend, reconstruct the top three bits,
8796 and squish the two 11 bit pieces together. */
8797 if (globals->use_rel)
8799 bfd_vma S = (upper_insn & 0x0400) >> 10;
8800 bfd_vma upper = (upper_insn & 0x003f);
8801 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
8802 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
8803 bfd_vma lower = (lower_insn & 0x07ff);
8808 upper -= 0x0100; /* Sign extend. */
8810 addend = (upper << 12) | (lower << 1);
8811 signed_addend = addend;
8814 /* Handle calls via the PLT. */
8815 if (plt_offset != (bfd_vma) -1)
8817 value = (splt->output_section->vma
8818 + splt->output_offset
8820 /* Target the Thumb stub before the ARM PLT entry. */
8821 value -= PLT_THUMB_STUB_SIZE;
8822 *unresolved_reloc_p = FALSE;
8825 /* ??? Should handle interworking? GCC might someday try to
8826 use this for tail calls. */
8828 relocation = value + signed_addend;
8829 relocation -= (input_section->output_section->vma
8830 + input_section->output_offset
8832 signed_check = (bfd_signed_vma) relocation;
8834 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8837 /* Put RELOCATION back into the insn. */
8839 bfd_vma S = (relocation & 0x00100000) >> 20;
8840 bfd_vma J2 = (relocation & 0x00080000) >> 19;
8841 bfd_vma J1 = (relocation & 0x00040000) >> 18;
8842 bfd_vma hi = (relocation & 0x0003f000) >> 12;
8843 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
8845 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
8846 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
8849 /* Put the relocated value back in the object file: */
8850 bfd_put_16 (input_bfd, upper_insn, hit_data);
8851 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8853 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8856 case R_ARM_THM_JUMP11:
8857 case R_ARM_THM_JUMP8:
8858 case R_ARM_THM_JUMP6:
8859 /* Thumb B (branch) instruction). */
8861 bfd_signed_vma relocation;
8862 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
8863 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
8864 bfd_signed_vma signed_check;
8866 /* CZB cannot jump backward. */
8867 if (r_type == R_ARM_THM_JUMP6)
8868 reloc_signed_min = 0;
8870 if (globals->use_rel)
8872 /* Need to refetch addend. */
8873 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8874 if (addend & ((howto->src_mask + 1) >> 1))
8877 signed_addend &= ~ howto->src_mask;
8878 signed_addend |= addend;
8881 signed_addend = addend;
8882 /* The value in the insn has been right shifted. We need to
8883 undo this, so that we can perform the address calculation
8884 in terms of bytes. */
8885 signed_addend <<= howto->rightshift;
8887 relocation = value + signed_addend;
8889 relocation -= (input_section->output_section->vma
8890 + input_section->output_offset
8893 relocation >>= howto->rightshift;
8894 signed_check = relocation;
8896 if (r_type == R_ARM_THM_JUMP6)
8897 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
8899 relocation &= howto->dst_mask;
8900 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
8902 bfd_put_16 (input_bfd, relocation, hit_data);
8904 /* Assumes two's complement. */
8905 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8906 return bfd_reloc_overflow;
8908 return bfd_reloc_ok;
8911 case R_ARM_ALU_PCREL7_0:
8912 case R_ARM_ALU_PCREL15_8:
8913 case R_ARM_ALU_PCREL23_15:
8918 insn = bfd_get_32 (input_bfd, hit_data);
8919 if (globals->use_rel)
8921 /* Extract the addend. */
8922 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
8923 signed_addend = addend;
8925 relocation = value + signed_addend;
8927 relocation -= (input_section->output_section->vma
8928 + input_section->output_offset
8930 insn = (insn & ~0xfff)
8931 | ((howto->bitpos << 7) & 0xf00)
8932 | ((relocation >> howto->bitpos) & 0xff);
8933 bfd_put_32 (input_bfd, value, hit_data);
8935 return bfd_reloc_ok;
8937 case R_ARM_GNU_VTINHERIT:
8938 case R_ARM_GNU_VTENTRY:
8939 return bfd_reloc_ok;
8941 case R_ARM_GOTOFF32:
8942 /* Relocation is relative to the start of the
8943 global offset table. */
8945 BFD_ASSERT (sgot != NULL);
8947 return bfd_reloc_notsupported;
8949 /* If we are addressing a Thumb function, we need to adjust the
8950 address by one, so that attempts to call the function pointer will
8951 correctly interpret it as Thumb code. */
8952 if (branch_type == ST_BRANCH_TO_THUMB)
8955 /* Note that sgot->output_offset is not involved in this
8956 calculation. We always want the start of .got. If we
8957 define _GLOBAL_OFFSET_TABLE in a different way, as is
8958 permitted by the ABI, we might have to change this
8960 value -= sgot->output_section->vma;
8961 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8962 contents, rel->r_offset, value,
8966 /* Use global offset table as symbol value. */
8967 BFD_ASSERT (sgot != NULL);
8970 return bfd_reloc_notsupported;
8972 *unresolved_reloc_p = FALSE;
8973 value = sgot->output_section->vma;
8974 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8975 contents, rel->r_offset, value,
8979 case R_ARM_GOT_PREL:
8980 /* Relocation is to the entry for this symbol in the
8981 global offset table. */
8983 return bfd_reloc_notsupported;
8985 if (dynreloc_st_type == STT_GNU_IFUNC
8986 && plt_offset != (bfd_vma) -1
8987 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
8989 /* We have a relocation against a locally-binding STT_GNU_IFUNC
8990 symbol, and the relocation resolves directly to the runtime
8991 target rather than to the .iplt entry. This means that any
8992 .got entry would be the same value as the .igot.plt entry,
8993 so there's no point creating both. */
8994 sgot = globals->root.igotplt;
8995 value = sgot->output_offset + gotplt_offset;
9001 off = h->got.offset;
9002 BFD_ASSERT (off != (bfd_vma) -1);
9005 /* We have already processsed one GOT relocation against
9008 if (globals->root.dynamic_sections_created
9009 && !SYMBOL_REFERENCES_LOCAL (info, h))
9010 *unresolved_reloc_p = FALSE;
9014 Elf_Internal_Rela outrel;
9016 if (!SYMBOL_REFERENCES_LOCAL (info, h))
9018 /* If the symbol doesn't resolve locally in a static
9019 object, we have an undefined reference. If the
9020 symbol doesn't resolve locally in a dynamic object,
9021 it should be resolved by the dynamic linker. */
9022 if (globals->root.dynamic_sections_created)
9024 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9025 *unresolved_reloc_p = FALSE;
9029 outrel.r_addend = 0;
9033 if (dynreloc_st_type == STT_GNU_IFUNC)
9034 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9035 else if (info->shared)
9036 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9039 outrel.r_addend = dynreloc_value;
9042 /* The GOT entry is initialized to zero by default.
9043 See if we should install a different value. */
9044 if (outrel.r_addend != 0
9045 && (outrel.r_info == 0 || globals->use_rel))
9047 bfd_put_32 (output_bfd, outrel.r_addend,
9048 sgot->contents + off);
9049 outrel.r_addend = 0;
9052 if (outrel.r_info != 0)
9054 outrel.r_offset = (sgot->output_section->vma
9055 + sgot->output_offset
9057 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9061 value = sgot->output_offset + off;
9067 BFD_ASSERT (local_got_offsets != NULL &&
9068 local_got_offsets[r_symndx] != (bfd_vma) -1);
9070 off = local_got_offsets[r_symndx];
9072 /* The offset must always be a multiple of 4. We use the
9073 least significant bit to record whether we have already
9074 generated the necessary reloc. */
9079 if (globals->use_rel)
9080 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
9082 if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
9084 Elf_Internal_Rela outrel;
9086 outrel.r_addend = addend + dynreloc_value;
9087 outrel.r_offset = (sgot->output_section->vma
9088 + sgot->output_offset
9090 if (dynreloc_st_type == STT_GNU_IFUNC)
9091 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9093 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9094 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9097 local_got_offsets[r_symndx] |= 1;
9100 value = sgot->output_offset + off;
9102 if (r_type != R_ARM_GOT32)
9103 value += sgot->output_section->vma;
9105 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9106 contents, rel->r_offset, value,
9109 case R_ARM_TLS_LDO32:
9110 value = value - dtpoff_base (info);
9112 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9113 contents, rel->r_offset, value,
9116 case R_ARM_TLS_LDM32:
9123 off = globals->tls_ldm_got.offset;
9129 /* If we don't know the module number, create a relocation
9133 Elf_Internal_Rela outrel;
9135 if (srelgot == NULL)
9138 outrel.r_addend = 0;
9139 outrel.r_offset = (sgot->output_section->vma
9140 + sgot->output_offset + off);
9141 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9143 if (globals->use_rel)
9144 bfd_put_32 (output_bfd, outrel.r_addend,
9145 sgot->contents + off);
9147 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9150 bfd_put_32 (output_bfd, 1, sgot->contents + off);
9152 globals->tls_ldm_got.offset |= 1;
9155 value = sgot->output_section->vma + sgot->output_offset + off
9156 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9158 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9159 contents, rel->r_offset, value,
9163 case R_ARM_TLS_CALL:
9164 case R_ARM_THM_TLS_CALL:
9165 case R_ARM_TLS_GD32:
9166 case R_ARM_TLS_IE32:
9167 case R_ARM_TLS_GOTDESC:
9168 case R_ARM_TLS_DESCSEQ:
9169 case R_ARM_THM_TLS_DESCSEQ:
9171 bfd_vma off, offplt;
9175 BFD_ASSERT (sgot != NULL);
9180 dyn = globals->root.dynamic_sections_created;
9181 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9183 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9185 *unresolved_reloc_p = FALSE;
9188 off = h->got.offset;
9189 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
9190 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9194 BFD_ASSERT (local_got_offsets != NULL);
9195 off = local_got_offsets[r_symndx];
9196 offplt = local_tlsdesc_gotents[r_symndx];
9197 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9200 /* Linker relaxations happens from one of the
9201 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
9202 if (ELF32_R_TYPE(rel->r_info) != r_type)
9203 tls_type = GOT_TLS_IE;
9205 BFD_ASSERT (tls_type != GOT_UNKNOWN);
9211 bfd_boolean need_relocs = FALSE;
9212 Elf_Internal_Rela outrel;
9215 /* The GOT entries have not been initialized yet. Do it
9216 now, and emit any relocations. If both an IE GOT and a
9217 GD GOT are necessary, we emit the GD first. */
9219 if ((info->shared || indx != 0)
9221 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9222 || h->root.type != bfd_link_hash_undefweak))
9225 BFD_ASSERT (srelgot != NULL);
9228 if (tls_type & GOT_TLS_GDESC)
9232 /* We should have relaxed, unless this is an undefined
9234 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9236 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
9237 <= globals->root.sgotplt->size);
9239 outrel.r_addend = 0;
9240 outrel.r_offset = (globals->root.sgotplt->output_section->vma
9241 + globals->root.sgotplt->output_offset
9243 + globals->sgotplt_jump_table_size);
9245 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9246 sreloc = globals->root.srelplt;
9247 loc = sreloc->contents;
9248 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9249 BFD_ASSERT (loc + RELOC_SIZE (globals)
9250 <= sreloc->contents + sreloc->size);
9252 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9254 /* For globals, the first word in the relocation gets
9255 the relocation index and the top bit set, or zero,
9256 if we're binding now. For locals, it gets the
9257 symbol's offset in the tls section. */
9258 bfd_put_32 (output_bfd,
9259 !h ? value - elf_hash_table (info)->tls_sec->vma
9260 : info->flags & DF_BIND_NOW ? 0
9261 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
9262 globals->root.sgotplt->contents + offplt +
9263 globals->sgotplt_jump_table_size);
9265 /* Second word in the relocation is always zero. */
9266 bfd_put_32 (output_bfd, 0,
9267 globals->root.sgotplt->contents + offplt +
9268 globals->sgotplt_jump_table_size + 4);
9270 if (tls_type & GOT_TLS_GD)
9274 outrel.r_addend = 0;
9275 outrel.r_offset = (sgot->output_section->vma
9276 + sgot->output_offset
9278 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
9280 if (globals->use_rel)
9281 bfd_put_32 (output_bfd, outrel.r_addend,
9282 sgot->contents + cur_off);
9284 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9287 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9288 sgot->contents + cur_off + 4);
9291 outrel.r_addend = 0;
9292 outrel.r_info = ELF32_R_INFO (indx,
9293 R_ARM_TLS_DTPOFF32);
9294 outrel.r_offset += 4;
9296 if (globals->use_rel)
9297 bfd_put_32 (output_bfd, outrel.r_addend,
9298 sgot->contents + cur_off + 4);
9300 elf32_arm_add_dynreloc (output_bfd, info,
9306 /* If we are not emitting relocations for a
9307 general dynamic reference, then we must be in a
9308 static link or an executable link with the
9309 symbol binding locally. Mark it as belonging
9310 to module 1, the executable. */
9311 bfd_put_32 (output_bfd, 1,
9312 sgot->contents + cur_off);
9313 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9314 sgot->contents + cur_off + 4);
9320 if (tls_type & GOT_TLS_IE)
9325 outrel.r_addend = value - dtpoff_base (info);
9327 outrel.r_addend = 0;
9328 outrel.r_offset = (sgot->output_section->vma
9329 + sgot->output_offset
9331 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9333 if (globals->use_rel)
9334 bfd_put_32 (output_bfd, outrel.r_addend,
9335 sgot->contents + cur_off);
9337 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9340 bfd_put_32 (output_bfd, tpoff (info, value),
9341 sgot->contents + cur_off);
9348 local_got_offsets[r_symndx] |= 1;
9351 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9353 else if (tls_type & GOT_TLS_GDESC)
9356 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9357 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9359 bfd_signed_vma offset;
9360 /* TLS stubs are arm mode. The original symbol is a
9361 data object, so branch_type is bogus. */
9362 branch_type = ST_BRANCH_TO_ARM;
9363 enum elf32_arm_stub_type stub_type
9364 = arm_type_of_stub (info, input_section, rel,
9365 st_type, &branch_type,
9366 (struct elf32_arm_link_hash_entry *)h,
9367 globals->tls_trampoline, globals->root.splt,
9368 input_bfd, sym_name);
9370 if (stub_type != arm_stub_none)
9372 struct elf32_arm_stub_hash_entry *stub_entry
9373 = elf32_arm_get_stub_entry
9374 (input_section, globals->root.splt, 0, rel,
9375 globals, stub_type);
9376 offset = (stub_entry->stub_offset
9377 + stub_entry->stub_sec->output_offset
9378 + stub_entry->stub_sec->output_section->vma);
9381 offset = (globals->root.splt->output_section->vma
9382 + globals->root.splt->output_offset
9383 + globals->tls_trampoline);
9385 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9389 offset -= (input_section->output_section->vma +
9390 input_section->output_offset + rel->r_offset + 8);
9394 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9398 /* Thumb blx encodes the offset in a complicated
9400 unsigned upper_insn, lower_insn;
9403 offset -= (input_section->output_section->vma +
9404 input_section->output_offset
9405 + rel->r_offset + 4);
9407 if (stub_type != arm_stub_none
9408 && arm_stub_is_thumb (stub_type))
9410 lower_insn = 0xd000;
9414 lower_insn = 0xc000;
9415 /* Round up the offset to a word boundary */
9416 offset = (offset + 2) & ~2;
9420 upper_insn = (0xf000
9421 | ((offset >> 12) & 0x3ff)
9423 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
9424 | (((!((offset >> 22) & 1)) ^ neg) << 11)
9425 | ((offset >> 1) & 0x7ff);
9426 bfd_put_16 (input_bfd, upper_insn, hit_data);
9427 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9428 return bfd_reloc_ok;
9431 /* These relocations needs special care, as besides the fact
9432 they point somewhere in .gotplt, the addend must be
9433 adjusted accordingly depending on the type of instruction
9435 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9437 unsigned long data, insn;
9440 data = bfd_get_32 (input_bfd, hit_data);
9446 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9447 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9449 | bfd_get_16 (input_bfd,
9450 contents + rel->r_offset - data + 2);
9451 if ((insn & 0xf800c000) == 0xf000c000)
9454 else if ((insn & 0xffffff00) == 0x4400)
9459 (*_bfd_error_handler)
9460 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9461 input_bfd, input_section,
9462 (unsigned long)rel->r_offset, insn);
9463 return bfd_reloc_notsupported;
9468 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9473 case 0xfa: /* blx */
9477 case 0xe0: /* add */
9482 (*_bfd_error_handler)
9483 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9484 input_bfd, input_section,
9485 (unsigned long)rel->r_offset, insn);
9486 return bfd_reloc_notsupported;
9490 value += ((globals->root.sgotplt->output_section->vma
9491 + globals->root.sgotplt->output_offset + off)
9492 - (input_section->output_section->vma
9493 + input_section->output_offset
9495 + globals->sgotplt_jump_table_size);
9498 value = ((globals->root.sgot->output_section->vma
9499 + globals->root.sgot->output_offset + off)
9500 - (input_section->output_section->vma
9501 + input_section->output_offset + rel->r_offset));
9503 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9504 contents, rel->r_offset, value,
9508 case R_ARM_TLS_LE32:
9509 if (info->shared && !info->pie)
9511 (*_bfd_error_handler)
9512 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9513 input_bfd, input_section,
9514 (long) rel->r_offset, howto->name);
9515 return (bfd_reloc_status_type) FALSE;
9518 value = tpoff (info, value);
9520 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9521 contents, rel->r_offset, value,
9525 if (globals->fix_v4bx)
9527 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9529 /* Ensure that we have a BX instruction. */
9530 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
9532 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9534 /* Branch to veneer. */
9536 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9537 glue_addr -= input_section->output_section->vma
9538 + input_section->output_offset
9539 + rel->r_offset + 8;
9540 insn = (insn & 0xf0000000) | 0x0a000000
9541 | ((glue_addr >> 2) & 0x00ffffff);
9545 /* Preserve Rm (lowest four bits) and the condition code
9546 (highest four bits). Other bits encode MOV PC,Rm. */
9547 insn = (insn & 0xf000000f) | 0x01a0f000;
9550 bfd_put_32 (input_bfd, insn, hit_data);
9552 return bfd_reloc_ok;
9554 case R_ARM_MOVW_ABS_NC:
9555 case R_ARM_MOVT_ABS:
9556 case R_ARM_MOVW_PREL_NC:
9557 case R_ARM_MOVT_PREL:
9558 /* Until we properly support segment-base-relative addressing then
9559 we assume the segment base to be zero, as for the group relocations.
9560 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9561 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9562 case R_ARM_MOVW_BREL_NC:
9563 case R_ARM_MOVW_BREL:
9564 case R_ARM_MOVT_BREL:
9566 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9568 if (globals->use_rel)
9570 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
9571 signed_addend = (addend ^ 0x8000) - 0x8000;
9574 value += signed_addend;
9576 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9577 value -= (input_section->output_section->vma
9578 + input_section->output_offset + rel->r_offset);
9580 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
9581 return bfd_reloc_overflow;
9583 if (branch_type == ST_BRANCH_TO_THUMB)
9586 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
9587 || r_type == R_ARM_MOVT_BREL)
9591 insn |= value & 0xfff;
9592 insn |= (value & 0xf000) << 4;
9593 bfd_put_32 (input_bfd, insn, hit_data);
9595 return bfd_reloc_ok;
9597 case R_ARM_THM_MOVW_ABS_NC:
9598 case R_ARM_THM_MOVT_ABS:
9599 case R_ARM_THM_MOVW_PREL_NC:
9600 case R_ARM_THM_MOVT_PREL:
9601 /* Until we properly support segment-base-relative addressing then
9602 we assume the segment base to be zero, as for the above relocations.
9603 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9604 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9605 as R_ARM_THM_MOVT_ABS. */
9606 case R_ARM_THM_MOVW_BREL_NC:
9607 case R_ARM_THM_MOVW_BREL:
9608 case R_ARM_THM_MOVT_BREL:
9612 insn = bfd_get_16 (input_bfd, hit_data) << 16;
9613 insn |= bfd_get_16 (input_bfd, hit_data + 2);
9615 if (globals->use_rel)
9617 addend = ((insn >> 4) & 0xf000)
9618 | ((insn >> 15) & 0x0800)
9619 | ((insn >> 4) & 0x0700)
9621 signed_addend = (addend ^ 0x8000) - 0x8000;
9624 value += signed_addend;
9626 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
9627 value -= (input_section->output_section->vma
9628 + input_section->output_offset + rel->r_offset);
9630 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
9631 return bfd_reloc_overflow;
9633 if (branch_type == ST_BRANCH_TO_THUMB)
9636 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
9637 || r_type == R_ARM_THM_MOVT_BREL)
9641 insn |= (value & 0xf000) << 4;
9642 insn |= (value & 0x0800) << 15;
9643 insn |= (value & 0x0700) << 4;
9644 insn |= (value & 0x00ff);
9646 bfd_put_16 (input_bfd, insn >> 16, hit_data);
9647 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9649 return bfd_reloc_ok;
9651 case R_ARM_ALU_PC_G0_NC:
9652 case R_ARM_ALU_PC_G1_NC:
9653 case R_ARM_ALU_PC_G0:
9654 case R_ARM_ALU_PC_G1:
9655 case R_ARM_ALU_PC_G2:
9656 case R_ARM_ALU_SB_G0_NC:
9657 case R_ARM_ALU_SB_G1_NC:
9658 case R_ARM_ALU_SB_G0:
9659 case R_ARM_ALU_SB_G1:
9660 case R_ARM_ALU_SB_G2:
9662 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9663 bfd_vma pc = input_section->output_section->vma
9664 + input_section->output_offset + rel->r_offset;
9665 /* sb should be the origin of the *segment* containing the symbol.
9666 It is not clear how to obtain this OS-dependent value, so we
9667 make an arbitrary choice of zero. */
9671 bfd_signed_vma signed_value;
9674 /* Determine which group of bits to select. */
9677 case R_ARM_ALU_PC_G0_NC:
9678 case R_ARM_ALU_PC_G0:
9679 case R_ARM_ALU_SB_G0_NC:
9680 case R_ARM_ALU_SB_G0:
9684 case R_ARM_ALU_PC_G1_NC:
9685 case R_ARM_ALU_PC_G1:
9686 case R_ARM_ALU_SB_G1_NC:
9687 case R_ARM_ALU_SB_G1:
9691 case R_ARM_ALU_PC_G2:
9692 case R_ARM_ALU_SB_G2:
9700 /* If REL, extract the addend from the insn. If RELA, it will
9701 have already been fetched for us. */
9702 if (globals->use_rel)
9705 bfd_vma constant = insn & 0xff;
9706 bfd_vma rotation = (insn & 0xf00) >> 8;
9709 signed_addend = constant;
9712 /* Compensate for the fact that in the instruction, the
9713 rotation is stored in multiples of 2 bits. */
9716 /* Rotate "constant" right by "rotation" bits. */
9717 signed_addend = (constant >> rotation) |
9718 (constant << (8 * sizeof (bfd_vma) - rotation));
9721 /* Determine if the instruction is an ADD or a SUB.
9722 (For REL, this determines the sign of the addend.) */
9723 negative = identify_add_or_sub (insn);
9726 (*_bfd_error_handler)
9727 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
9728 input_bfd, input_section,
9729 (long) rel->r_offset, howto->name);
9730 return bfd_reloc_overflow;
9733 signed_addend *= negative;
9736 /* Compute the value (X) to go in the place. */
9737 if (r_type == R_ARM_ALU_PC_G0_NC
9738 || r_type == R_ARM_ALU_PC_G1_NC
9739 || r_type == R_ARM_ALU_PC_G0
9740 || r_type == R_ARM_ALU_PC_G1
9741 || r_type == R_ARM_ALU_PC_G2)
9743 signed_value = value - pc + signed_addend;
9745 /* Section base relative. */
9746 signed_value = value - sb + signed_addend;
9748 /* If the target symbol is a Thumb function, then set the
9749 Thumb bit in the address. */
9750 if (branch_type == ST_BRANCH_TO_THUMB)
9753 /* Calculate the value of the relevant G_n, in encoded
9754 constant-with-rotation format. */
9755 g_n = calculate_group_reloc_mask (abs (signed_value), group,
9758 /* Check for overflow if required. */
9759 if ((r_type == R_ARM_ALU_PC_G0
9760 || r_type == R_ARM_ALU_PC_G1
9761 || r_type == R_ARM_ALU_PC_G2
9762 || r_type == R_ARM_ALU_SB_G0
9763 || r_type == R_ARM_ALU_SB_G1
9764 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
9766 (*_bfd_error_handler)
9767 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9768 input_bfd, input_section,
9769 (long) rel->r_offset, abs (signed_value), howto->name);
9770 return bfd_reloc_overflow;
9773 /* Mask out the value and the ADD/SUB part of the opcode; take care
9774 not to destroy the S bit. */
9777 /* Set the opcode according to whether the value to go in the
9778 place is negative. */
9779 if (signed_value < 0)
9784 /* Encode the offset. */
9787 bfd_put_32 (input_bfd, insn, hit_data);
9789 return bfd_reloc_ok;
9791 case R_ARM_LDR_PC_G0:
9792 case R_ARM_LDR_PC_G1:
9793 case R_ARM_LDR_PC_G2:
9794 case R_ARM_LDR_SB_G0:
9795 case R_ARM_LDR_SB_G1:
9796 case R_ARM_LDR_SB_G2:
9798 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9799 bfd_vma pc = input_section->output_section->vma
9800 + input_section->output_offset + rel->r_offset;
9801 bfd_vma sb = 0; /* See note above. */
9803 bfd_signed_vma signed_value;
9806 /* Determine which groups of bits to calculate. */
9809 case R_ARM_LDR_PC_G0:
9810 case R_ARM_LDR_SB_G0:
9814 case R_ARM_LDR_PC_G1:
9815 case R_ARM_LDR_SB_G1:
9819 case R_ARM_LDR_PC_G2:
9820 case R_ARM_LDR_SB_G2:
9828 /* If REL, extract the addend from the insn. If RELA, it will
9829 have already been fetched for us. */
9830 if (globals->use_rel)
9832 int negative = (insn & (1 << 23)) ? 1 : -1;
9833 signed_addend = negative * (insn & 0xfff);
9836 /* Compute the value (X) to go in the place. */
9837 if (r_type == R_ARM_LDR_PC_G0
9838 || r_type == R_ARM_LDR_PC_G1
9839 || r_type == R_ARM_LDR_PC_G2)
9841 signed_value = value - pc + signed_addend;
9843 /* Section base relative. */
9844 signed_value = value - sb + signed_addend;
9846 /* Calculate the value of the relevant G_{n-1} to obtain
9847 the residual at that stage. */
9848 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9850 /* Check for overflow. */
9851 if (residual >= 0x1000)
9853 (*_bfd_error_handler)
9854 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9855 input_bfd, input_section,
9856 (long) rel->r_offset, abs (signed_value), howto->name);
9857 return bfd_reloc_overflow;
9860 /* Mask out the value and U bit. */
9863 /* Set the U bit if the value to go in the place is non-negative. */
9864 if (signed_value >= 0)
9867 /* Encode the offset. */
9870 bfd_put_32 (input_bfd, insn, hit_data);
9872 return bfd_reloc_ok;
9874 case R_ARM_LDRS_PC_G0:
9875 case R_ARM_LDRS_PC_G1:
9876 case R_ARM_LDRS_PC_G2:
9877 case R_ARM_LDRS_SB_G0:
9878 case R_ARM_LDRS_SB_G1:
9879 case R_ARM_LDRS_SB_G2:
9881 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9882 bfd_vma pc = input_section->output_section->vma
9883 + input_section->output_offset + rel->r_offset;
9884 bfd_vma sb = 0; /* See note above. */
9886 bfd_signed_vma signed_value;
9889 /* Determine which groups of bits to calculate. */
9892 case R_ARM_LDRS_PC_G0:
9893 case R_ARM_LDRS_SB_G0:
9897 case R_ARM_LDRS_PC_G1:
9898 case R_ARM_LDRS_SB_G1:
9902 case R_ARM_LDRS_PC_G2:
9903 case R_ARM_LDRS_SB_G2:
9911 /* If REL, extract the addend from the insn. If RELA, it will
9912 have already been fetched for us. */
9913 if (globals->use_rel)
9915 int negative = (insn & (1 << 23)) ? 1 : -1;
9916 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
9919 /* Compute the value (X) to go in the place. */
9920 if (r_type == R_ARM_LDRS_PC_G0
9921 || r_type == R_ARM_LDRS_PC_G1
9922 || r_type == R_ARM_LDRS_PC_G2)
9924 signed_value = value - pc + signed_addend;
9926 /* Section base relative. */
9927 signed_value = value - sb + signed_addend;
9929 /* Calculate the value of the relevant G_{n-1} to obtain
9930 the residual at that stage. */
9931 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9933 /* Check for overflow. */
9934 if (residual >= 0x100)
9936 (*_bfd_error_handler)
9937 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9938 input_bfd, input_section,
9939 (long) rel->r_offset, abs (signed_value), howto->name);
9940 return bfd_reloc_overflow;
9943 /* Mask out the value and U bit. */
9946 /* Set the U bit if the value to go in the place is non-negative. */
9947 if (signed_value >= 0)
9950 /* Encode the offset. */
9951 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
9953 bfd_put_32 (input_bfd, insn, hit_data);
9955 return bfd_reloc_ok;
9957 case R_ARM_LDC_PC_G0:
9958 case R_ARM_LDC_PC_G1:
9959 case R_ARM_LDC_PC_G2:
9960 case R_ARM_LDC_SB_G0:
9961 case R_ARM_LDC_SB_G1:
9962 case R_ARM_LDC_SB_G2:
9964 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9965 bfd_vma pc = input_section->output_section->vma
9966 + input_section->output_offset + rel->r_offset;
9967 bfd_vma sb = 0; /* See note above. */
9969 bfd_signed_vma signed_value;
9972 /* Determine which groups of bits to calculate. */
9975 case R_ARM_LDC_PC_G0:
9976 case R_ARM_LDC_SB_G0:
9980 case R_ARM_LDC_PC_G1:
9981 case R_ARM_LDC_SB_G1:
9985 case R_ARM_LDC_PC_G2:
9986 case R_ARM_LDC_SB_G2:
9994 /* If REL, extract the addend from the insn. If RELA, it will
9995 have already been fetched for us. */
9996 if (globals->use_rel)
9998 int negative = (insn & (1 << 23)) ? 1 : -1;
9999 signed_addend = negative * ((insn & 0xff) << 2);
10002 /* Compute the value (X) to go in the place. */
10003 if (r_type == R_ARM_LDC_PC_G0
10004 || r_type == R_ARM_LDC_PC_G1
10005 || r_type == R_ARM_LDC_PC_G2)
10007 signed_value = value - pc + signed_addend;
10009 /* Section base relative. */
10010 signed_value = value - sb + signed_addend;
10012 /* Calculate the value of the relevant G_{n-1} to obtain
10013 the residual at that stage. */
10014 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10016 /* Check for overflow. (The absolute value to go in the place must be
10017 divisible by four and, after having been divided by four, must
10018 fit in eight bits.) */
10019 if ((residual & 0x3) != 0 || residual >= 0x400)
10021 (*_bfd_error_handler)
10022 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10023 input_bfd, input_section,
10024 (long) rel->r_offset, abs (signed_value), howto->name);
10025 return bfd_reloc_overflow;
10028 /* Mask out the value and U bit. */
10029 insn &= 0xff7fff00;
10031 /* Set the U bit if the value to go in the place is non-negative. */
10032 if (signed_value >= 0)
10035 /* Encode the offset. */
10036 insn |= residual >> 2;
10038 bfd_put_32 (input_bfd, insn, hit_data);
10040 return bfd_reloc_ok;
10043 return bfd_reloc_notsupported;
10047 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
10049 arm_add_to_rel (bfd * abfd,
10050 bfd_byte * address,
10051 reloc_howto_type * howto,
10052 bfd_signed_vma increment)
10054 bfd_signed_vma addend;
10056 if (howto->type == R_ARM_THM_CALL
10057 || howto->type == R_ARM_THM_JUMP24)
10059 int upper_insn, lower_insn;
10062 upper_insn = bfd_get_16 (abfd, address);
10063 lower_insn = bfd_get_16 (abfd, address + 2);
10064 upper = upper_insn & 0x7ff;
10065 lower = lower_insn & 0x7ff;
10067 addend = (upper << 12) | (lower << 1);
10068 addend += increment;
10071 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10072 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10074 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10075 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
10081 contents = bfd_get_32 (abfd, address);
10083 /* Get the (signed) value from the instruction. */
10084 addend = contents & howto->src_mask;
10085 if (addend & ((howto->src_mask + 1) >> 1))
10087 bfd_signed_vma mask;
10090 mask &= ~ howto->src_mask;
10094 /* Add in the increment, (which is a byte value). */
10095 switch (howto->type)
10098 addend += increment;
10105 addend <<= howto->size;
10106 addend += increment;
10108 /* Should we check for overflow here ? */
10110 /* Drop any undesired bits. */
10111 addend >>= howto->rightshift;
10115 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10117 bfd_put_32 (abfd, contents, address);
10121 #define IS_ARM_TLS_RELOC(R_TYPE) \
10122 ((R_TYPE) == R_ARM_TLS_GD32 \
10123 || (R_TYPE) == R_ARM_TLS_LDO32 \
10124 || (R_TYPE) == R_ARM_TLS_LDM32 \
10125 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10126 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10127 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10128 || (R_TYPE) == R_ARM_TLS_LE32 \
10129 || (R_TYPE) == R_ARM_TLS_IE32 \
10130 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10132 /* Specific set of relocations for the gnu tls dialect. */
10133 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10134 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10135 || (R_TYPE) == R_ARM_TLS_CALL \
10136 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10137 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10138 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10140 /* Relocate an ARM ELF section. */
10143 elf32_arm_relocate_section (bfd * output_bfd,
10144 struct bfd_link_info * info,
10146 asection * input_section,
10147 bfd_byte * contents,
10148 Elf_Internal_Rela * relocs,
10149 Elf_Internal_Sym * local_syms,
10150 asection ** local_sections)
10152 Elf_Internal_Shdr *symtab_hdr;
10153 struct elf_link_hash_entry **sym_hashes;
10154 Elf_Internal_Rela *rel;
10155 Elf_Internal_Rela *relend;
10157 struct elf32_arm_link_hash_table * globals;
10159 globals = elf32_arm_hash_table (info);
10160 if (globals == NULL)
10163 symtab_hdr = & elf_symtab_hdr (input_bfd);
10164 sym_hashes = elf_sym_hashes (input_bfd);
10167 relend = relocs + input_section->reloc_count;
10168 for (; rel < relend; rel++)
10171 reloc_howto_type * howto;
10172 unsigned long r_symndx;
10173 Elf_Internal_Sym * sym;
10175 struct elf_link_hash_entry * h;
10176 bfd_vma relocation;
10177 bfd_reloc_status_type r;
10180 bfd_boolean unresolved_reloc = FALSE;
10181 char *error_message = NULL;
10183 r_symndx = ELF32_R_SYM (rel->r_info);
10184 r_type = ELF32_R_TYPE (rel->r_info);
10185 r_type = arm_real_reloc_type (globals, r_type);
10187 if ( r_type == R_ARM_GNU_VTENTRY
10188 || r_type == R_ARM_GNU_VTINHERIT)
10191 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
10192 howto = bfd_reloc.howto;
10198 if (r_symndx < symtab_hdr->sh_info)
10200 sym = local_syms + r_symndx;
10201 sym_type = ELF32_ST_TYPE (sym->st_info);
10202 sec = local_sections[r_symndx];
10204 /* An object file might have a reference to a local
10205 undefined symbol. This is a daft object file, but we
10206 should at least do something about it. V4BX & NONE
10207 relocations do not use the symbol and are explicitly
10208 allowed to use the undefined symbol, so allow those.
10209 Likewise for relocations against STN_UNDEF. */
10210 if (r_type != R_ARM_V4BX
10211 && r_type != R_ARM_NONE
10212 && r_symndx != STN_UNDEF
10213 && bfd_is_und_section (sec)
10214 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10216 if (!info->callbacks->undefined_symbol
10217 (info, bfd_elf_string_from_elf_section
10218 (input_bfd, symtab_hdr->sh_link, sym->st_name),
10219 input_bfd, input_section,
10220 rel->r_offset, TRUE))
10224 if (globals->use_rel)
10226 relocation = (sec->output_section->vma
10227 + sec->output_offset
10229 if (!info->relocatable
10230 && (sec->flags & SEC_MERGE)
10231 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10234 bfd_vma addend, value;
10238 case R_ARM_MOVW_ABS_NC:
10239 case R_ARM_MOVT_ABS:
10240 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10241 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10242 addend = (addend ^ 0x8000) - 0x8000;
10245 case R_ARM_THM_MOVW_ABS_NC:
10246 case R_ARM_THM_MOVT_ABS:
10247 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10249 value |= bfd_get_16 (input_bfd,
10250 contents + rel->r_offset + 2);
10251 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10252 | ((value & 0x04000000) >> 15);
10253 addend = (addend ^ 0x8000) - 0x8000;
10257 if (howto->rightshift
10258 || (howto->src_mask & (howto->src_mask + 1)))
10260 (*_bfd_error_handler)
10261 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10262 input_bfd, input_section,
10263 (long) rel->r_offset, howto->name);
10267 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10269 /* Get the (signed) value from the instruction. */
10270 addend = value & howto->src_mask;
10271 if (addend & ((howto->src_mask + 1) >> 1))
10273 bfd_signed_vma mask;
10276 mask &= ~ howto->src_mask;
10284 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10286 addend += msec->output_section->vma + msec->output_offset;
10288 /* Cases here must match those in the preceding
10289 switch statement. */
10292 case R_ARM_MOVW_ABS_NC:
10293 case R_ARM_MOVT_ABS:
10294 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10295 | (addend & 0xfff);
10296 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10299 case R_ARM_THM_MOVW_ABS_NC:
10300 case R_ARM_THM_MOVT_ABS:
10301 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10302 | (addend & 0xff) | ((addend & 0x0800) << 15);
10303 bfd_put_16 (input_bfd, value >> 16,
10304 contents + rel->r_offset);
10305 bfd_put_16 (input_bfd, value,
10306 contents + rel->r_offset + 2);
10310 value = (value & ~ howto->dst_mask)
10311 | (addend & howto->dst_mask);
10312 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10318 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10322 bfd_boolean warned;
10324 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10325 r_symndx, symtab_hdr, sym_hashes,
10326 h, sec, relocation,
10327 unresolved_reloc, warned);
10329 sym_type = h->type;
10332 if (sec != NULL && elf_discarded_section (sec))
10333 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10334 rel, relend, howto, contents);
10336 if (info->relocatable)
10338 /* This is a relocatable link. We don't have to change
10339 anything, unless the reloc is against a section symbol,
10340 in which case we have to adjust according to where the
10341 section symbol winds up in the output section. */
10342 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10344 if (globals->use_rel)
10345 arm_add_to_rel (input_bfd, contents + rel->r_offset,
10346 howto, (bfd_signed_vma) sec->output_offset);
10348 rel->r_addend += sec->output_offset;
10354 name = h->root.root.string;
10357 name = (bfd_elf_string_from_elf_section
10358 (input_bfd, symtab_hdr->sh_link, sym->st_name));
10359 if (name == NULL || *name == '\0')
10360 name = bfd_section_name (input_bfd, sec);
10363 if (r_symndx != STN_UNDEF
10364 && r_type != R_ARM_NONE
10366 || h->root.type == bfd_link_hash_defined
10367 || h->root.type == bfd_link_hash_defweak)
10368 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10370 (*_bfd_error_handler)
10371 ((sym_type == STT_TLS
10372 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10373 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10376 (long) rel->r_offset,
10381 /* We call elf32_arm_final_link_relocate unless we're completely
10382 done, i.e., the relaxation produced the final output we want,
10383 and we won't let anybody mess with it. Also, we have to do
10384 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10385 both in relaxed and non-relaxed cases */
10386 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10387 || (IS_ARM_TLS_GNU_RELOC (r_type)
10388 && !((h ? elf32_arm_hash_entry (h)->tls_type :
10389 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10392 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10393 contents, rel, h == NULL);
10394 /* This may have been marked unresolved because it came from
10395 a shared library. But we've just dealt with that. */
10396 unresolved_reloc = 0;
10399 r = bfd_reloc_continue;
10401 if (r == bfd_reloc_continue)
10402 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10403 input_section, contents, rel,
10404 relocation, info, sec, name, sym_type,
10405 (h ? h->target_internal
10406 : ARM_SYM_BRANCH_TYPE (sym)), h,
10407 &unresolved_reloc, &error_message);
10409 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10410 because such sections are not SEC_ALLOC and thus ld.so will
10411 not process them. */
10412 if (unresolved_reloc
10413 && !((input_section->flags & SEC_DEBUGGING) != 0
10415 && _bfd_elf_section_offset (output_bfd, info, input_section,
10416 rel->r_offset) != (bfd_vma) -1)
10418 (*_bfd_error_handler)
10419 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10422 (long) rel->r_offset,
10424 h->root.root.string);
10428 if (r != bfd_reloc_ok)
10432 case bfd_reloc_overflow:
10433 /* If the overflowing reloc was to an undefined symbol,
10434 we have already printed one error message and there
10435 is no point complaining again. */
10437 h->root.type != bfd_link_hash_undefined)
10438 && (!((*info->callbacks->reloc_overflow)
10439 (info, (h ? &h->root : NULL), name, howto->name,
10440 (bfd_vma) 0, input_bfd, input_section,
10445 case bfd_reloc_undefined:
10446 if (!((*info->callbacks->undefined_symbol)
10447 (info, name, input_bfd, input_section,
10448 rel->r_offset, TRUE)))
10452 case bfd_reloc_outofrange:
10453 error_message = _("out of range");
10456 case bfd_reloc_notsupported:
10457 error_message = _("unsupported relocation");
10460 case bfd_reloc_dangerous:
10461 /* error_message should already be set. */
10465 error_message = _("unknown error");
10466 /* Fall through. */
10469 BFD_ASSERT (error_message != NULL);
10470 if (!((*info->callbacks->reloc_dangerous)
10471 (info, error_message, input_bfd, input_section,
10482 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
10483 adds the edit to the start of the list. (The list must be built in order of
10484 ascending TINDEX: the function's callers are primarily responsible for
10485 maintaining that condition). */
10488 add_unwind_table_edit (arm_unwind_table_edit **head,
10489 arm_unwind_table_edit **tail,
10490 arm_unwind_edit_type type,
10491 asection *linked_section,
10492 unsigned int tindex)
10494 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10495 xmalloc (sizeof (arm_unwind_table_edit));
10497 new_edit->type = type;
10498 new_edit->linked_section = linked_section;
10499 new_edit->index = tindex;
10503 new_edit->next = NULL;
10506 (*tail)->next = new_edit;
10508 (*tail) = new_edit;
10511 (*head) = new_edit;
10515 new_edit->next = *head;
10524 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10526 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10528 adjust_exidx_size(asection *exidx_sec, int adjust)
10532 if (!exidx_sec->rawsize)
10533 exidx_sec->rawsize = exidx_sec->size;
10535 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10536 out_sec = exidx_sec->output_section;
10537 /* Adjust size of output section. */
10538 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10541 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10543 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10545 struct _arm_elf_section_data *exidx_arm_data;
10547 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10548 add_unwind_table_edit (
10549 &exidx_arm_data->u.exidx.unwind_edit_list,
10550 &exidx_arm_data->u.exidx.unwind_edit_tail,
10551 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10553 adjust_exidx_size(exidx_sec, 8);
10556 /* Scan .ARM.exidx tables, and create a list describing edits which should be
10557 made to those tables, such that:
10559 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10560 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10561 codes which have been inlined into the index).
10563 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10565 The edits are applied when the tables are written
10566 (in elf32_arm_write_section).
10570 elf32_arm_fix_exidx_coverage (asection **text_section_order,
10571 unsigned int num_text_sections,
10572 struct bfd_link_info *info,
10573 bfd_boolean merge_exidx_entries)
10576 unsigned int last_second_word = 0, i;
10577 asection *last_exidx_sec = NULL;
10578 asection *last_text_sec = NULL;
10579 int last_unwind_type = -1;
10581 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10583 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
10587 for (sec = inp->sections; sec != NULL; sec = sec->next)
10589 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10590 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
10592 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
10595 if (elf_sec->linked_to)
10597 Elf_Internal_Shdr *linked_hdr
10598 = &elf_section_data (elf_sec->linked_to)->this_hdr;
10599 struct _arm_elf_section_data *linked_sec_arm_data
10600 = get_arm_elf_section_data (linked_hdr->bfd_section);
10602 if (linked_sec_arm_data == NULL)
10605 /* Link this .ARM.exidx section back from the text section it
10607 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10612 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10613 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10614 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
10616 for (i = 0; i < num_text_sections; i++)
10618 asection *sec = text_section_order[i];
10619 asection *exidx_sec;
10620 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
10621 struct _arm_elf_section_data *exidx_arm_data;
10622 bfd_byte *contents = NULL;
10623 int deleted_exidx_bytes = 0;
10625 arm_unwind_table_edit *unwind_edit_head = NULL;
10626 arm_unwind_table_edit *unwind_edit_tail = NULL;
10627 Elf_Internal_Shdr *hdr;
10630 if (arm_data == NULL)
10633 exidx_sec = arm_data->u.text.arm_exidx_sec;
10634 if (exidx_sec == NULL)
10636 /* Section has no unwind data. */
10637 if (last_unwind_type == 0 || !last_exidx_sec)
10640 /* Ignore zero sized sections. */
10641 if (sec->size == 0)
10644 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10645 last_unwind_type = 0;
10649 /* Skip /DISCARD/ sections. */
10650 if (bfd_is_abs_section (exidx_sec->output_section))
10653 hdr = &elf_section_data (exidx_sec)->this_hdr;
10654 if (hdr->sh_type != SHT_ARM_EXIDX)
10657 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10658 if (exidx_arm_data == NULL)
10661 ibfd = exidx_sec->owner;
10663 if (hdr->contents != NULL)
10664 contents = hdr->contents;
10665 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
10669 for (j = 0; j < hdr->sh_size; j += 8)
10671 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
10675 /* An EXIDX_CANTUNWIND entry. */
10676 if (second_word == 1)
10678 if (last_unwind_type == 0)
10682 /* Inlined unwinding data. Merge if equal to previous. */
10683 else if ((second_word & 0x80000000) != 0)
10685 if (merge_exidx_entries
10686 && last_second_word == second_word && last_unwind_type == 1)
10689 last_second_word = second_word;
10691 /* Normal table entry. In theory we could merge these too,
10692 but duplicate entries are likely to be much less common. */
10698 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
10699 DELETE_EXIDX_ENTRY, NULL, j / 8);
10701 deleted_exidx_bytes += 8;
10704 last_unwind_type = unwind_type;
10707 /* Free contents if we allocated it ourselves. */
10708 if (contents != hdr->contents)
10711 /* Record edits to be applied later (in elf32_arm_write_section). */
10712 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
10713 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
10715 if (deleted_exidx_bytes > 0)
10716 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
10718 last_exidx_sec = exidx_sec;
10719 last_text_sec = sec;
10722 /* Add terminating CANTUNWIND entry. */
10723 if (last_exidx_sec && last_unwind_type != 0)
10724 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10730 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
10731 bfd *ibfd, const char *name)
10733 asection *sec, *osec;
10735 sec = bfd_get_section_by_name (ibfd, name);
10736 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
10739 osec = sec->output_section;
10740 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
10743 if (! bfd_set_section_contents (obfd, osec, sec->contents,
10744 sec->output_offset, sec->size))
10751 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
10753 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
10754 asection *sec, *osec;
10756 if (globals == NULL)
10759 /* Invoke the regular ELF backend linker to do all the work. */
10760 if (!bfd_elf_final_link (abfd, info))
10763 /* Process stub sections (eg BE8 encoding, ...). */
10764 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
10766 for (i=0; i<htab->top_id; i++)
10768 sec = htab->stub_group[i].stub_sec;
10769 /* Only process it once, in its link_sec slot. */
10770 if (sec && i == htab->stub_group[i].link_sec->id)
10772 osec = sec->output_section;
10773 elf32_arm_write_section (abfd, info, sec, sec->contents);
10774 if (! bfd_set_section_contents (abfd, osec, sec->contents,
10775 sec->output_offset, sec->size))
10780 /* Write out any glue sections now that we have created all the
10782 if (globals->bfd_of_glue_owner != NULL)
10784 if (! elf32_arm_output_glue_section (info, abfd,
10785 globals->bfd_of_glue_owner,
10786 ARM2THUMB_GLUE_SECTION_NAME))
10789 if (! elf32_arm_output_glue_section (info, abfd,
10790 globals->bfd_of_glue_owner,
10791 THUMB2ARM_GLUE_SECTION_NAME))
10794 if (! elf32_arm_output_glue_section (info, abfd,
10795 globals->bfd_of_glue_owner,
10796 VFP11_ERRATUM_VENEER_SECTION_NAME))
10799 if (! elf32_arm_output_glue_section (info, abfd,
10800 globals->bfd_of_glue_owner,
10801 ARM_BX_GLUE_SECTION_NAME))
10808 /* Set the right machine number. */
10811 elf32_arm_object_p (bfd *abfd)
10815 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
10817 if (mach != bfd_mach_arm_unknown)
10818 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
10820 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
10821 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
10824 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
10829 /* Function to keep ARM specific flags in the ELF header. */
10832 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
10834 if (elf_flags_init (abfd)
10835 && elf_elfheader (abfd)->e_flags != flags)
10837 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
10839 if (flags & EF_ARM_INTERWORK)
10840 (*_bfd_error_handler)
10841 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
10845 (_("Warning: Clearing the interworking flag of %B due to outside request"),
10851 elf_elfheader (abfd)->e_flags = flags;
10852 elf_flags_init (abfd) = TRUE;
10858 /* Copy backend specific data from one object module to another. */
10861 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
10864 flagword out_flags;
10866 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
10869 in_flags = elf_elfheader (ibfd)->e_flags;
10870 out_flags = elf_elfheader (obfd)->e_flags;
10872 if (elf_flags_init (obfd)
10873 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
10874 && in_flags != out_flags)
10876 /* Cannot mix APCS26 and APCS32 code. */
10877 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
10880 /* Cannot mix float APCS and non-float APCS code. */
10881 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
10884 /* If the src and dest have different interworking flags
10885 then turn off the interworking bit. */
10886 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
10888 if (out_flags & EF_ARM_INTERWORK)
10890 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
10893 in_flags &= ~EF_ARM_INTERWORK;
10896 /* Likewise for PIC, though don't warn for this case. */
10897 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
10898 in_flags &= ~EF_ARM_PIC;
10901 elf_elfheader (obfd)->e_flags = in_flags;
10902 elf_flags_init (obfd) = TRUE;
10904 /* Also copy the EI_OSABI field. */
10905 elf_elfheader (obfd)->e_ident[EI_OSABI] =
10906 elf_elfheader (ibfd)->e_ident[EI_OSABI];
10908 /* Copy object attributes. */
10909 _bfd_elf_copy_obj_attributes (ibfd, obfd);
10914 /* Values for Tag_ABI_PCS_R9_use. */
10923 /* Values for Tag_ABI_PCS_RW_data. */
10926 AEABI_PCS_RW_data_absolute,
10927 AEABI_PCS_RW_data_PCrel,
10928 AEABI_PCS_RW_data_SBrel,
10929 AEABI_PCS_RW_data_unused
10932 /* Values for Tag_ABI_enum_size. */
10938 AEABI_enum_forced_wide
10941 /* Determine whether an object attribute tag takes an integer, a
10945 elf32_arm_obj_attrs_arg_type (int tag)
10947 if (tag == Tag_compatibility)
10948 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
10949 else if (tag == Tag_nodefaults)
10950 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
10951 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
10952 return ATTR_TYPE_FLAG_STR_VAL;
10954 return ATTR_TYPE_FLAG_INT_VAL;
10956 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
10959 /* The ABI defines that Tag_conformance should be emitted first, and that
10960 Tag_nodefaults should be second (if either is defined). This sets those
10961 two positions, and bumps up the position of all the remaining tags to
10964 elf32_arm_obj_attrs_order (int num)
10966 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
10967 return Tag_conformance;
10968 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
10969 return Tag_nodefaults;
10970 if ((num - 2) < Tag_nodefaults)
10972 if ((num - 1) < Tag_conformance)
10977 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10979 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
10981 if ((tag & 127) < 64)
10984 (_("%B: Unknown mandatory EABI object attribute %d"),
10986 bfd_set_error (bfd_error_bad_value);
10992 (_("Warning: %B: Unknown EABI object attribute %d"),
10998 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
10999 Returns -1 if no architecture could be read. */
11002 get_secondary_compatible_arch (bfd *abfd)
11004 obj_attribute *attr =
11005 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11007 /* Note: the tag and its argument below are uleb128 values, though
11008 currently-defined values fit in one byte for each. */
11010 && attr->s[0] == Tag_CPU_arch
11011 && (attr->s[1] & 128) != 128
11012 && attr->s[2] == 0)
11015 /* This tag is "safely ignorable", so don't complain if it looks funny. */
11019 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
11020 The tag is removed if ARCH is -1. */
11023 set_secondary_compatible_arch (bfd *abfd, int arch)
11025 obj_attribute *attr =
11026 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11034 /* Note: the tag and its argument below are uleb128 values, though
11035 currently-defined values fit in one byte for each. */
11037 attr->s = (char *) bfd_alloc (abfd, 3);
11038 attr->s[0] = Tag_CPU_arch;
11043 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11047 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
11048 int newtag, int secondary_compat)
11050 #define T(X) TAG_CPU_ARCH_##X
11051 int tagl, tagh, result;
11054 T(V6T2), /* PRE_V4. */
11056 T(V6T2), /* V4T. */
11057 T(V6T2), /* V5T. */
11058 T(V6T2), /* V5TE. */
11059 T(V6T2), /* V5TEJ. */
11062 T(V6T2) /* V6T2. */
11066 T(V6K), /* PRE_V4. */
11070 T(V6K), /* V5TE. */
11071 T(V6K), /* V5TEJ. */
11073 T(V6KZ), /* V6KZ. */
11079 T(V7), /* PRE_V4. */
11084 T(V7), /* V5TEJ. */
11097 T(V6K), /* V5TE. */
11098 T(V6K), /* V5TEJ. */
11100 T(V6KZ), /* V6KZ. */
11104 T(V6_M) /* V6_M. */
11106 const int v6s_m[] =
11112 T(V6K), /* V5TE. */
11113 T(V6K), /* V5TEJ. */
11115 T(V6KZ), /* V6KZ. */
11119 T(V6S_M), /* V6_M. */
11120 T(V6S_M) /* V6S_M. */
11122 const int v7e_m[] =
11126 T(V7E_M), /* V4T. */
11127 T(V7E_M), /* V5T. */
11128 T(V7E_M), /* V5TE. */
11129 T(V7E_M), /* V5TEJ. */
11130 T(V7E_M), /* V6. */
11131 T(V7E_M), /* V6KZ. */
11132 T(V7E_M), /* V6T2. */
11133 T(V7E_M), /* V6K. */
11134 T(V7E_M), /* V7. */
11135 T(V7E_M), /* V6_M. */
11136 T(V7E_M), /* V6S_M. */
11137 T(V7E_M) /* V7E_M. */
11139 const int v4t_plus_v6_m[] =
11145 T(V5TE), /* V5TE. */
11146 T(V5TEJ), /* V5TEJ. */
11148 T(V6KZ), /* V6KZ. */
11149 T(V6T2), /* V6T2. */
11152 T(V6_M), /* V6_M. */
11153 T(V6S_M), /* V6S_M. */
11154 T(V7E_M), /* V7E_M. */
11155 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
11157 const int *comb[] =
11165 /* Pseudo-architecture. */
11169 /* Check we've not got a higher architecture than we know about. */
11171 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
11173 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
11177 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11179 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11180 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11181 oldtag = T(V4T_PLUS_V6_M);
11183 /* And override the new tag if we have a Tag_also_compatible_with on the
11186 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11187 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11188 newtag = T(V4T_PLUS_V6_M);
11190 tagl = (oldtag < newtag) ? oldtag : newtag;
11191 result = tagh = (oldtag > newtag) ? oldtag : newtag;
11193 /* Architectures before V6KZ add features monotonically. */
11194 if (tagh <= TAG_CPU_ARCH_V6KZ)
11197 result = comb[tagh - T(V6T2)][tagl];
11199 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11200 as the canonical version. */
11201 if (result == T(V4T_PLUS_V6_M))
11204 *secondary_compat_out = T(V6_M);
11207 *secondary_compat_out = -1;
11211 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11212 ibfd, oldtag, newtag);
11220 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11221 are conflicting attributes. */
11224 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11226 obj_attribute *in_attr;
11227 obj_attribute *out_attr;
11228 /* Some tags have 0 = don't care, 1 = strong requirement,
11229 2 = weak requirement. */
11230 static const int order_021[3] = {0, 2, 1};
11232 bfd_boolean result = TRUE;
11234 /* Skip the linker stubs file. This preserves previous behavior
11235 of accepting unknown attributes in the first input file - but
11237 if (ibfd->flags & BFD_LINKER_CREATED)
11240 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11242 /* This is the first object. Copy the attributes. */
11243 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11245 out_attr = elf_known_obj_attributes_proc (obfd);
11247 /* Use the Tag_null value to indicate the attributes have been
11251 /* We do not output objects with Tag_MPextension_use_legacy - we move
11252 the attribute's value to Tag_MPextension_use. */
11253 if (out_attr[Tag_MPextension_use_legacy].i != 0)
11255 if (out_attr[Tag_MPextension_use].i != 0
11256 && out_attr[Tag_MPextension_use_legacy].i
11257 != out_attr[Tag_MPextension_use].i)
11260 (_("Error: %B has both the current and legacy "
11261 "Tag_MPextension_use attributes"), ibfd);
11265 out_attr[Tag_MPextension_use] =
11266 out_attr[Tag_MPextension_use_legacy];
11267 out_attr[Tag_MPextension_use_legacy].type = 0;
11268 out_attr[Tag_MPextension_use_legacy].i = 0;
11274 in_attr = elf_known_obj_attributes_proc (ibfd);
11275 out_attr = elf_known_obj_attributes_proc (obfd);
11276 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11277 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11279 /* Ignore mismatches if the object doesn't use floating point. */
11280 if (out_attr[Tag_ABI_FP_number_model].i == 0)
11281 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
11282 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
11285 (_("error: %B uses VFP register arguments, %B does not"),
11286 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11287 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
11292 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
11294 /* Merge this attribute with existing attributes. */
11297 case Tag_CPU_raw_name:
11299 /* These are merged after Tag_CPU_arch. */
11302 case Tag_ABI_optimization_goals:
11303 case Tag_ABI_FP_optimization_goals:
11304 /* Use the first value seen. */
11309 int secondary_compat = -1, secondary_compat_out = -1;
11310 unsigned int saved_out_attr = out_attr[i].i;
11311 static const char *name_table[] = {
11312 /* These aren't real CPU names, but we can't guess
11313 that from the architecture version alone. */
11329 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11330 secondary_compat = get_secondary_compatible_arch (ibfd);
11331 secondary_compat_out = get_secondary_compatible_arch (obfd);
11332 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11333 &secondary_compat_out,
11336 set_secondary_compatible_arch (obfd, secondary_compat_out);
11338 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11339 if (out_attr[i].i == saved_out_attr)
11340 ; /* Leave the names alone. */
11341 else if (out_attr[i].i == in_attr[i].i)
11343 /* The output architecture has been changed to match the
11344 input architecture. Use the input names. */
11345 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11346 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11348 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11349 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11354 out_attr[Tag_CPU_name].s = NULL;
11355 out_attr[Tag_CPU_raw_name].s = NULL;
11358 /* If we still don't have a value for Tag_CPU_name,
11359 make one up now. Tag_CPU_raw_name remains blank. */
11360 if (out_attr[Tag_CPU_name].s == NULL
11361 && out_attr[i].i < ARRAY_SIZE (name_table))
11362 out_attr[Tag_CPU_name].s =
11363 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11367 case Tag_ARM_ISA_use:
11368 case Tag_THUMB_ISA_use:
11369 case Tag_WMMX_arch:
11370 case Tag_Advanced_SIMD_arch:
11371 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
11372 case Tag_ABI_FP_rounding:
11373 case Tag_ABI_FP_exceptions:
11374 case Tag_ABI_FP_user_exceptions:
11375 case Tag_ABI_FP_number_model:
11376 case Tag_FP_HP_extension:
11377 case Tag_CPU_unaligned_access:
11379 case Tag_MPextension_use:
11380 /* Use the largest value specified. */
11381 if (in_attr[i].i > out_attr[i].i)
11382 out_attr[i].i = in_attr[i].i;
11385 case Tag_ABI_align_preserved:
11386 case Tag_ABI_PCS_RO_data:
11387 /* Use the smallest value specified. */
11388 if (in_attr[i].i < out_attr[i].i)
11389 out_attr[i].i = in_attr[i].i;
11392 case Tag_ABI_align_needed:
11393 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
11394 && (in_attr[Tag_ABI_align_preserved].i == 0
11395 || out_attr[Tag_ABI_align_preserved].i == 0))
11397 /* This error message should be enabled once all non-conformant
11398 binaries in the toolchain have had the attributes set
11401 (_("error: %B: 8-byte data alignment conflicts with %B"),
11405 /* Fall through. */
11406 case Tag_ABI_FP_denormal:
11407 case Tag_ABI_PCS_GOT_use:
11408 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11409 value if greater than 2 (for future-proofing). */
11410 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11411 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11412 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
11413 out_attr[i].i = in_attr[i].i;
11416 case Tag_Virtualization_use:
11417 /* The virtualization tag effectively stores two bits of
11418 information: the intended use of TrustZone (in bit 0), and the
11419 intended use of Virtualization (in bit 1). */
11420 if (out_attr[i].i == 0)
11421 out_attr[i].i = in_attr[i].i;
11422 else if (in_attr[i].i != 0
11423 && in_attr[i].i != out_attr[i].i)
11425 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11430 (_("error: %B: unable to merge virtualization attributes "
11438 case Tag_CPU_arch_profile:
11439 if (out_attr[i].i != in_attr[i].i)
11441 /* 0 will merge with anything.
11442 'A' and 'S' merge to 'A'.
11443 'R' and 'S' merge to 'R'.
11444 'M' and 'A|R|S' is an error. */
11445 if (out_attr[i].i == 0
11446 || (out_attr[i].i == 'S'
11447 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11448 out_attr[i].i = in_attr[i].i;
11449 else if (in_attr[i].i == 0
11450 || (in_attr[i].i == 'S'
11451 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
11452 ; /* Do nothing. */
11456 (_("error: %B: Conflicting architecture profiles %c/%c"),
11458 in_attr[i].i ? in_attr[i].i : '0',
11459 out_attr[i].i ? out_attr[i].i : '0');
11466 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11467 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11468 when it's 0. It might mean absence of FP hardware if
11469 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
11471 static const struct
11475 } vfp_versions[7] =
11489 /* If the output has no requirement about FP hardware,
11490 follow the requirement of the input. */
11491 if (out_attr[i].i == 0)
11493 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
11494 out_attr[i].i = in_attr[i].i;
11495 out_attr[Tag_ABI_HardFP_use].i
11496 = in_attr[Tag_ABI_HardFP_use].i;
11499 /* If the input has no requirement about FP hardware, do
11501 else if (in_attr[i].i == 0)
11503 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
11507 /* Both the input and the output have nonzero Tag_FP_arch.
11508 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
11510 /* If both the input and the output have zero Tag_ABI_HardFP_use,
11512 if (in_attr[Tag_ABI_HardFP_use].i == 0
11513 && out_attr[Tag_ABI_HardFP_use].i == 0)
11515 /* If the input and the output have different Tag_ABI_HardFP_use,
11516 the combination of them is 3 (SP & DP). */
11517 else if (in_attr[Tag_ABI_HardFP_use].i
11518 != out_attr[Tag_ABI_HardFP_use].i)
11519 out_attr[Tag_ABI_HardFP_use].i = 3;
11521 /* Now we can handle Tag_FP_arch. */
11523 /* Values greater than 6 aren't defined, so just pick the
11525 if (in_attr[i].i > 6 && in_attr[i].i > out_attr[i].i)
11527 out_attr[i] = in_attr[i];
11530 /* The output uses the superset of input features
11531 (ISA version) and registers. */
11532 ver = vfp_versions[in_attr[i].i].ver;
11533 if (ver < vfp_versions[out_attr[i].i].ver)
11534 ver = vfp_versions[out_attr[i].i].ver;
11535 regs = vfp_versions[in_attr[i].i].regs;
11536 if (regs < vfp_versions[out_attr[i].i].regs)
11537 regs = vfp_versions[out_attr[i].i].regs;
11538 /* This assumes all possible supersets are also a valid
11540 for (newval = 6; newval > 0; newval--)
11542 if (regs == vfp_versions[newval].regs
11543 && ver == vfp_versions[newval].ver)
11546 out_attr[i].i = newval;
11549 case Tag_PCS_config:
11550 if (out_attr[i].i == 0)
11551 out_attr[i].i = in_attr[i].i;
11552 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
11554 /* It's sometimes ok to mix different configs, so this is only
11557 (_("Warning: %B: Conflicting platform configuration"), ibfd);
11560 case Tag_ABI_PCS_R9_use:
11561 if (in_attr[i].i != out_attr[i].i
11562 && out_attr[i].i != AEABI_R9_unused
11563 && in_attr[i].i != AEABI_R9_unused)
11566 (_("error: %B: Conflicting use of R9"), ibfd);
11569 if (out_attr[i].i == AEABI_R9_unused)
11570 out_attr[i].i = in_attr[i].i;
11572 case Tag_ABI_PCS_RW_data:
11573 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
11574 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
11575 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
11578 (_("error: %B: SB relative addressing conflicts with use of R9"),
11582 /* Use the smallest value specified. */
11583 if (in_attr[i].i < out_attr[i].i)
11584 out_attr[i].i = in_attr[i].i;
11586 case Tag_ABI_PCS_wchar_t:
11587 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
11588 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
11591 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
11592 ibfd, in_attr[i].i, out_attr[i].i);
11594 else if (in_attr[i].i && !out_attr[i].i)
11595 out_attr[i].i = in_attr[i].i;
11597 case Tag_ABI_enum_size:
11598 if (in_attr[i].i != AEABI_enum_unused)
11600 if (out_attr[i].i == AEABI_enum_unused
11601 || out_attr[i].i == AEABI_enum_forced_wide)
11603 /* The existing object is compatible with anything.
11604 Use whatever requirements the new object has. */
11605 out_attr[i].i = in_attr[i].i;
11607 else if (in_attr[i].i != AEABI_enum_forced_wide
11608 && out_attr[i].i != in_attr[i].i
11609 && !elf_arm_tdata (obfd)->no_enum_size_warning)
11611 static const char *aeabi_enum_names[] =
11612 { "", "variable-size", "32-bit", "" };
11613 const char *in_name =
11614 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11615 ? aeabi_enum_names[in_attr[i].i]
11617 const char *out_name =
11618 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11619 ? aeabi_enum_names[out_attr[i].i]
11622 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
11623 ibfd, in_name, out_name);
11627 case Tag_ABI_VFP_args:
11630 case Tag_ABI_WMMX_args:
11631 if (in_attr[i].i != out_attr[i].i)
11634 (_("error: %B uses iWMMXt register arguments, %B does not"),
11639 case Tag_compatibility:
11640 /* Merged in target-independent code. */
11642 case Tag_ABI_HardFP_use:
11643 /* This is handled along with Tag_FP_arch. */
11645 case Tag_ABI_FP_16bit_format:
11646 if (in_attr[i].i != 0 && out_attr[i].i != 0)
11648 if (in_attr[i].i != out_attr[i].i)
11651 (_("error: fp16 format mismatch between %B and %B"),
11656 if (in_attr[i].i != 0)
11657 out_attr[i].i = in_attr[i].i;
11661 /* This tag is set to zero if we can use UDIV and SDIV in Thumb
11662 mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
11663 SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
11664 CPU. We will merge as follows: If the input attribute's value
11665 is one then the output attribute's value remains unchanged. If
11666 the input attribute's value is zero or two then if the output
11667 attribute's value is one the output value is set to the input
11668 value, otherwise the output value must be the same as the
11670 if (in_attr[i].i != 1 && out_attr[i].i != 1)
11672 if (in_attr[i].i != out_attr[i].i)
11675 (_("DIV usage mismatch between %B and %B"),
11681 if (in_attr[i].i != 1)
11682 out_attr[i].i = in_attr[i].i;
11686 case Tag_MPextension_use_legacy:
11687 /* We don't output objects with Tag_MPextension_use_legacy - we
11688 move the value to Tag_MPextension_use. */
11689 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
11691 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
11694 (_("%B has has both the current and legacy "
11695 "Tag_MPextension_use attributes"),
11701 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
11702 out_attr[Tag_MPextension_use] = in_attr[i];
11706 case Tag_nodefaults:
11707 /* This tag is set if it exists, but the value is unused (and is
11708 typically zero). We don't actually need to do anything here -
11709 the merge happens automatically when the type flags are merged
11712 case Tag_also_compatible_with:
11713 /* Already done in Tag_CPU_arch. */
11715 case Tag_conformance:
11716 /* Keep the attribute if it matches. Throw it away otherwise.
11717 No attribute means no claim to conform. */
11718 if (!in_attr[i].s || !out_attr[i].s
11719 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
11720 out_attr[i].s = NULL;
11725 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
11728 /* If out_attr was copied from in_attr then it won't have a type yet. */
11729 if (in_attr[i].type && !out_attr[i].type)
11730 out_attr[i].type = in_attr[i].type;
11733 /* Merge Tag_compatibility attributes and any common GNU ones. */
11734 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
11737 /* Check for any attributes not known on ARM. */
11738 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
11744 /* Return TRUE if the two EABI versions are incompatible. */
11747 elf32_arm_versions_compatible (unsigned iver, unsigned over)
11749 /* v4 and v5 are the same spec before and after it was released,
11750 so allow mixing them. */
11751 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
11752 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
11755 return (iver == over);
11758 /* Merge backend specific data from an object file to the output
11759 object file when linking. */
11762 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
11764 /* Display the flags field. */
11767 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
11769 FILE * file = (FILE *) ptr;
11770 unsigned long flags;
11772 BFD_ASSERT (abfd != NULL && ptr != NULL);
11774 /* Print normal ELF private data. */
11775 _bfd_elf_print_private_bfd_data (abfd, ptr);
11777 flags = elf_elfheader (abfd)->e_flags;
11778 /* Ignore init flag - it may not be set, despite the flags field
11779 containing valid data. */
11781 /* xgettext:c-format */
11782 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11784 switch (EF_ARM_EABI_VERSION (flags))
11786 case EF_ARM_EABI_UNKNOWN:
11787 /* The following flag bits are GNU extensions and not part of the
11788 official ARM ELF extended ABI. Hence they are only decoded if
11789 the EABI version is not set. */
11790 if (flags & EF_ARM_INTERWORK)
11791 fprintf (file, _(" [interworking enabled]"));
11793 if (flags & EF_ARM_APCS_26)
11794 fprintf (file, " [APCS-26]");
11796 fprintf (file, " [APCS-32]");
11798 if (flags & EF_ARM_VFP_FLOAT)
11799 fprintf (file, _(" [VFP float format]"));
11800 else if (flags & EF_ARM_MAVERICK_FLOAT)
11801 fprintf (file, _(" [Maverick float format]"));
11803 fprintf (file, _(" [FPA float format]"));
11805 if (flags & EF_ARM_APCS_FLOAT)
11806 fprintf (file, _(" [floats passed in float registers]"));
11808 if (flags & EF_ARM_PIC)
11809 fprintf (file, _(" [position independent]"));
11811 if (flags & EF_ARM_NEW_ABI)
11812 fprintf (file, _(" [new ABI]"));
11814 if (flags & EF_ARM_OLD_ABI)
11815 fprintf (file, _(" [old ABI]"));
11817 if (flags & EF_ARM_SOFT_FLOAT)
11818 fprintf (file, _(" [software FP]"));
11820 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
11821 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
11822 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
11823 | EF_ARM_MAVERICK_FLOAT);
11826 case EF_ARM_EABI_VER1:
11827 fprintf (file, _(" [Version1 EABI]"));
11829 if (flags & EF_ARM_SYMSARESORTED)
11830 fprintf (file, _(" [sorted symbol table]"));
11832 fprintf (file, _(" [unsorted symbol table]"));
11834 flags &= ~ EF_ARM_SYMSARESORTED;
11837 case EF_ARM_EABI_VER2:
11838 fprintf (file, _(" [Version2 EABI]"));
11840 if (flags & EF_ARM_SYMSARESORTED)
11841 fprintf (file, _(" [sorted symbol table]"));
11843 fprintf (file, _(" [unsorted symbol table]"));
11845 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
11846 fprintf (file, _(" [dynamic symbols use segment index]"));
11848 if (flags & EF_ARM_MAPSYMSFIRST)
11849 fprintf (file, _(" [mapping symbols precede others]"));
11851 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
11852 | EF_ARM_MAPSYMSFIRST);
11855 case EF_ARM_EABI_VER3:
11856 fprintf (file, _(" [Version3 EABI]"));
11859 case EF_ARM_EABI_VER4:
11860 fprintf (file, _(" [Version4 EABI]"));
11863 case EF_ARM_EABI_VER5:
11864 fprintf (file, _(" [Version5 EABI]"));
11866 if (flags & EF_ARM_BE8)
11867 fprintf (file, _(" [BE8]"));
11869 if (flags & EF_ARM_LE8)
11870 fprintf (file, _(" [LE8]"));
11872 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
11876 fprintf (file, _(" <EABI version unrecognised>"));
11880 flags &= ~ EF_ARM_EABIMASK;
11882 if (flags & EF_ARM_RELEXEC)
11883 fprintf (file, _(" [relocatable executable]"));
11885 if (flags & EF_ARM_HASENTRY)
11886 fprintf (file, _(" [has entry point]"));
11888 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
11891 fprintf (file, _("<Unrecognised flag bits set>"));
11893 fputc ('\n', file);
11899 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
11901 switch (ELF_ST_TYPE (elf_sym->st_info))
11903 case STT_ARM_TFUNC:
11904 return ELF_ST_TYPE (elf_sym->st_info);
11906 case STT_ARM_16BIT:
11907 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
11908 This allows us to distinguish between data used by Thumb instructions
11909 and non-data (which is probably code) inside Thumb regions of an
11911 if (type != STT_OBJECT && type != STT_TLS)
11912 return ELF_ST_TYPE (elf_sym->st_info);
11923 elf32_arm_gc_mark_hook (asection *sec,
11924 struct bfd_link_info *info,
11925 Elf_Internal_Rela *rel,
11926 struct elf_link_hash_entry *h,
11927 Elf_Internal_Sym *sym)
11930 switch (ELF32_R_TYPE (rel->r_info))
11932 case R_ARM_GNU_VTINHERIT:
11933 case R_ARM_GNU_VTENTRY:
11937 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11940 /* Update the got entry reference counts for the section being removed. */
11943 elf32_arm_gc_sweep_hook (bfd * abfd,
11944 struct bfd_link_info * info,
11946 const Elf_Internal_Rela * relocs)
11948 Elf_Internal_Shdr *symtab_hdr;
11949 struct elf_link_hash_entry **sym_hashes;
11950 bfd_signed_vma *local_got_refcounts;
11951 const Elf_Internal_Rela *rel, *relend;
11952 struct elf32_arm_link_hash_table * globals;
11954 if (info->relocatable)
11957 globals = elf32_arm_hash_table (info);
11958 if (globals == NULL)
11961 elf_section_data (sec)->local_dynrel = NULL;
11963 symtab_hdr = & elf_symtab_hdr (abfd);
11964 sym_hashes = elf_sym_hashes (abfd);
11965 local_got_refcounts = elf_local_got_refcounts (abfd);
11967 check_use_blx (globals);
11969 relend = relocs + sec->reloc_count;
11970 for (rel = relocs; rel < relend; rel++)
11972 unsigned long r_symndx;
11973 struct elf_link_hash_entry *h = NULL;
11974 struct elf32_arm_link_hash_entry *eh;
11976 bfd_boolean call_reloc_p;
11977 bfd_boolean may_become_dynamic_p;
11978 bfd_boolean may_need_local_target_p;
11979 union gotplt_union *root_plt;
11980 struct arm_plt_info *arm_plt;
11982 r_symndx = ELF32_R_SYM (rel->r_info);
11983 if (r_symndx >= symtab_hdr->sh_info)
11985 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
11986 while (h->root.type == bfd_link_hash_indirect
11987 || h->root.type == bfd_link_hash_warning)
11988 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11990 eh = (struct elf32_arm_link_hash_entry *) h;
11992 call_reloc_p = FALSE;
11993 may_become_dynamic_p = FALSE;
11994 may_need_local_target_p = FALSE;
11996 r_type = ELF32_R_TYPE (rel->r_info);
11997 r_type = arm_real_reloc_type (globals, r_type);
12001 case R_ARM_GOT_PREL:
12002 case R_ARM_TLS_GD32:
12003 case R_ARM_TLS_IE32:
12006 if (h->got.refcount > 0)
12007 h->got.refcount -= 1;
12009 else if (local_got_refcounts != NULL)
12011 if (local_got_refcounts[r_symndx] > 0)
12012 local_got_refcounts[r_symndx] -= 1;
12016 case R_ARM_TLS_LDM32:
12017 globals->tls_ldm_got.refcount -= 1;
12025 case R_ARM_THM_CALL:
12026 case R_ARM_THM_JUMP24:
12027 case R_ARM_THM_JUMP19:
12028 call_reloc_p = TRUE;
12029 may_need_local_target_p = TRUE;
12033 if (!globals->vxworks_p)
12035 may_need_local_target_p = TRUE;
12038 /* Fall through. */
12040 case R_ARM_ABS32_NOI:
12042 case R_ARM_REL32_NOI:
12043 case R_ARM_MOVW_ABS_NC:
12044 case R_ARM_MOVT_ABS:
12045 case R_ARM_MOVW_PREL_NC:
12046 case R_ARM_MOVT_PREL:
12047 case R_ARM_THM_MOVW_ABS_NC:
12048 case R_ARM_THM_MOVT_ABS:
12049 case R_ARM_THM_MOVW_PREL_NC:
12050 case R_ARM_THM_MOVT_PREL:
12051 /* Should the interworking branches be here also? */
12052 if ((info->shared || globals->root.is_relocatable_executable)
12053 && (sec->flags & SEC_ALLOC) != 0)
12056 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12058 call_reloc_p = TRUE;
12059 may_need_local_target_p = TRUE;
12062 may_become_dynamic_p = TRUE;
12065 may_need_local_target_p = TRUE;
12072 if (may_need_local_target_p
12073 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
12075 BFD_ASSERT (root_plt->refcount > 0);
12076 root_plt->refcount -= 1;
12079 arm_plt->noncall_refcount--;
12081 if (r_type == R_ARM_THM_CALL)
12082 arm_plt->maybe_thumb_refcount--;
12084 if (r_type == R_ARM_THM_JUMP24
12085 || r_type == R_ARM_THM_JUMP19)
12086 arm_plt->thumb_refcount--;
12089 if (may_become_dynamic_p)
12091 struct elf_dyn_relocs **pp;
12092 struct elf_dyn_relocs *p;
12095 pp = &(eh->dyn_relocs);
12098 Elf_Internal_Sym *isym;
12100 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12104 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12108 for (; (p = *pp) != NULL; pp = &p->next)
12111 /* Everything must go for SEC. */
12121 /* Look through the relocs for a section during the first phase. */
12124 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12125 asection *sec, const Elf_Internal_Rela *relocs)
12127 Elf_Internal_Shdr *symtab_hdr;
12128 struct elf_link_hash_entry **sym_hashes;
12129 const Elf_Internal_Rela *rel;
12130 const Elf_Internal_Rela *rel_end;
12133 struct elf32_arm_link_hash_table *htab;
12134 bfd_boolean call_reloc_p;
12135 bfd_boolean may_become_dynamic_p;
12136 bfd_boolean may_need_local_target_p;
12137 unsigned long nsyms;
12139 if (info->relocatable)
12142 BFD_ASSERT (is_arm_elf (abfd));
12144 htab = elf32_arm_hash_table (info);
12150 /* Create dynamic sections for relocatable executables so that we can
12151 copy relocations. */
12152 if (htab->root.is_relocatable_executable
12153 && ! htab->root.dynamic_sections_created)
12155 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12159 if (htab->root.dynobj == NULL)
12160 htab->root.dynobj = abfd;
12161 if (!create_ifunc_sections (info))
12164 dynobj = htab->root.dynobj;
12166 symtab_hdr = & elf_symtab_hdr (abfd);
12167 sym_hashes = elf_sym_hashes (abfd);
12168 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
12170 rel_end = relocs + sec->reloc_count;
12171 for (rel = relocs; rel < rel_end; rel++)
12173 Elf_Internal_Sym *isym;
12174 struct elf_link_hash_entry *h;
12175 struct elf32_arm_link_hash_entry *eh;
12176 unsigned long r_symndx;
12179 r_symndx = ELF32_R_SYM (rel->r_info);
12180 r_type = ELF32_R_TYPE (rel->r_info);
12181 r_type = arm_real_reloc_type (htab, r_type);
12183 if (r_symndx >= nsyms
12184 /* PR 9934: It is possible to have relocations that do not
12185 refer to symbols, thus it is also possible to have an
12186 object file containing relocations but no symbol table. */
12187 && (r_symndx > STN_UNDEF || nsyms > 0))
12189 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
12198 if (r_symndx < symtab_hdr->sh_info)
12200 /* A local symbol. */
12201 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12208 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12209 while (h->root.type == bfd_link_hash_indirect
12210 || h->root.type == bfd_link_hash_warning)
12211 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12215 eh = (struct elf32_arm_link_hash_entry *) h;
12217 call_reloc_p = FALSE;
12218 may_become_dynamic_p = FALSE;
12219 may_need_local_target_p = FALSE;
12221 /* Could be done earlier, if h were already available. */
12222 r_type = elf32_arm_tls_transition (info, r_type, h);
12226 case R_ARM_GOT_PREL:
12227 case R_ARM_TLS_GD32:
12228 case R_ARM_TLS_IE32:
12229 case R_ARM_TLS_GOTDESC:
12230 case R_ARM_TLS_DESCSEQ:
12231 case R_ARM_THM_TLS_DESCSEQ:
12232 case R_ARM_TLS_CALL:
12233 case R_ARM_THM_TLS_CALL:
12234 /* This symbol requires a global offset table entry. */
12236 int tls_type, old_tls_type;
12240 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
12242 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
12244 case R_ARM_TLS_GOTDESC:
12245 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12246 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12247 tls_type = GOT_TLS_GDESC; break;
12249 default: tls_type = GOT_NORMAL; break;
12255 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12259 /* This is a global offset table entry for a local symbol. */
12260 if (!elf32_arm_allocate_local_sym_info (abfd))
12262 elf_local_got_refcounts (abfd)[r_symndx] += 1;
12263 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12266 /* If a variable is accessed with both tls methods, two
12267 slots may be created. */
12268 if (GOT_TLS_GD_ANY_P (old_tls_type)
12269 && GOT_TLS_GD_ANY_P (tls_type))
12270 tls_type |= old_tls_type;
12272 /* We will already have issued an error message if there
12273 is a TLS/non-TLS mismatch, based on the symbol
12274 type. So just combine any TLS types needed. */
12275 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12276 && tls_type != GOT_NORMAL)
12277 tls_type |= old_tls_type;
12279 /* If the symbol is accessed in both IE and GDESC
12280 method, we're able to relax. Turn off the GDESC flag,
12281 without messing up with any other kind of tls types
12282 that may be involved */
12283 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12284 tls_type &= ~GOT_TLS_GDESC;
12286 if (old_tls_type != tls_type)
12289 elf32_arm_hash_entry (h)->tls_type = tls_type;
12291 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12294 /* Fall through. */
12296 case R_ARM_TLS_LDM32:
12297 if (r_type == R_ARM_TLS_LDM32)
12298 htab->tls_ldm_got.refcount++;
12299 /* Fall through. */
12301 case R_ARM_GOTOFF32:
12303 if (htab->root.sgot == NULL
12304 && !create_got_section (htab->root.dynobj, info))
12313 case R_ARM_THM_CALL:
12314 case R_ARM_THM_JUMP24:
12315 case R_ARM_THM_JUMP19:
12316 call_reloc_p = TRUE;
12317 may_need_local_target_p = TRUE;
12321 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12322 ldr __GOTT_INDEX__ offsets. */
12323 if (!htab->vxworks_p)
12325 may_need_local_target_p = TRUE;
12328 /* Fall through. */
12330 case R_ARM_MOVW_ABS_NC:
12331 case R_ARM_MOVT_ABS:
12332 case R_ARM_THM_MOVW_ABS_NC:
12333 case R_ARM_THM_MOVT_ABS:
12336 (*_bfd_error_handler)
12337 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12338 abfd, elf32_arm_howto_table_1[r_type].name,
12339 (h) ? h->root.root.string : "a local symbol");
12340 bfd_set_error (bfd_error_bad_value);
12344 /* Fall through. */
12346 case R_ARM_ABS32_NOI:
12348 case R_ARM_REL32_NOI:
12349 case R_ARM_MOVW_PREL_NC:
12350 case R_ARM_MOVT_PREL:
12351 case R_ARM_THM_MOVW_PREL_NC:
12352 case R_ARM_THM_MOVT_PREL:
12354 /* Should the interworking branches be listed here? */
12355 if ((info->shared || htab->root.is_relocatable_executable)
12356 && (sec->flags & SEC_ALLOC) != 0)
12359 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12361 /* In shared libraries and relocatable executables,
12362 we treat local relative references as calls;
12363 see the related SYMBOL_CALLS_LOCAL code in
12364 allocate_dynrelocs. */
12365 call_reloc_p = TRUE;
12366 may_need_local_target_p = TRUE;
12369 /* We are creating a shared library or relocatable
12370 executable, and this is a reloc against a global symbol,
12371 or a non-PC-relative reloc against a local symbol.
12372 We may need to copy the reloc into the output. */
12373 may_become_dynamic_p = TRUE;
12376 may_need_local_target_p = TRUE;
12379 /* This relocation describes the C++ object vtable hierarchy.
12380 Reconstruct it for later use during GC. */
12381 case R_ARM_GNU_VTINHERIT:
12382 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
12386 /* This relocation describes which C++ vtable entries are actually
12387 used. Record for later use during GC. */
12388 case R_ARM_GNU_VTENTRY:
12389 BFD_ASSERT (h != NULL);
12391 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
12399 /* We may need a .plt entry if the function this reloc
12400 refers to is in a different object, regardless of the
12401 symbol's type. We can't tell for sure yet, because
12402 something later might force the symbol local. */
12404 else if (may_need_local_target_p)
12405 /* If this reloc is in a read-only section, we might
12406 need a copy reloc. We can't check reliably at this
12407 stage whether the section is read-only, as input
12408 sections have not yet been mapped to output sections.
12409 Tentatively set the flag for now, and correct in
12410 adjust_dynamic_symbol. */
12411 h->non_got_ref = 1;
12414 if (may_need_local_target_p
12415 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
12417 union gotplt_union *root_plt;
12418 struct arm_plt_info *arm_plt;
12419 struct arm_local_iplt_info *local_iplt;
12423 root_plt = &h->plt;
12424 arm_plt = &eh->plt;
12428 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12429 if (local_iplt == NULL)
12431 root_plt = &local_iplt->root;
12432 arm_plt = &local_iplt->arm;
12435 /* If the symbol is a function that doesn't bind locally,
12436 this relocation will need a PLT entry. */
12437 root_plt->refcount += 1;
12440 arm_plt->noncall_refcount++;
12442 /* It's too early to use htab->use_blx here, so we have to
12443 record possible blx references separately from
12444 relocs that definitely need a thumb stub. */
12446 if (r_type == R_ARM_THM_CALL)
12447 arm_plt->maybe_thumb_refcount += 1;
12449 if (r_type == R_ARM_THM_JUMP24
12450 || r_type == R_ARM_THM_JUMP19)
12451 arm_plt->thumb_refcount += 1;
12454 if (may_become_dynamic_p)
12456 struct elf_dyn_relocs *p, **head;
12458 /* Create a reloc section in dynobj. */
12459 if (sreloc == NULL)
12461 sreloc = _bfd_elf_make_dynamic_reloc_section
12462 (sec, dynobj, 2, abfd, ! htab->use_rel);
12464 if (sreloc == NULL)
12467 /* BPABI objects never have dynamic relocations mapped. */
12468 if (htab->symbian_p)
12472 flags = bfd_get_section_flags (dynobj, sreloc);
12473 flags &= ~(SEC_LOAD | SEC_ALLOC);
12474 bfd_set_section_flags (dynobj, sreloc, flags);
12478 /* If this is a global symbol, count the number of
12479 relocations we need for this symbol. */
12481 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12484 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12490 if (p == NULL || p->sec != sec)
12492 bfd_size_type amt = sizeof *p;
12494 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
12504 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
12513 /* Unwinding tables are not referenced directly. This pass marks them as
12514 required if the corresponding code section is marked. */
12517 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
12518 elf_gc_mark_hook_fn gc_mark_hook)
12521 Elf_Internal_Shdr **elf_shdrp;
12524 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12526 /* Marking EH data may cause additional code sections to be marked,
12527 requiring multiple passes. */
12532 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12536 if (! is_arm_elf (sub))
12539 elf_shdrp = elf_elfsections (sub);
12540 for (o = sub->sections; o != NULL; o = o->next)
12542 Elf_Internal_Shdr *hdr;
12544 hdr = &elf_section_data (o)->this_hdr;
12545 if (hdr->sh_type == SHT_ARM_EXIDX
12547 && hdr->sh_link < elf_numsections (sub)
12549 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
12552 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12562 /* Treat mapping symbols as special target symbols. */
12565 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
12567 return bfd_is_arm_special_symbol_name (sym->name,
12568 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
12571 /* This is a copy of elf_find_function() from elf.c except that
12572 ARM mapping symbols are ignored when looking for function names
12573 and STT_ARM_TFUNC is considered to a function type. */
12576 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
12577 asection * section,
12578 asymbol ** symbols,
12580 const char ** filename_ptr,
12581 const char ** functionname_ptr)
12583 const char * filename = NULL;
12584 asymbol * func = NULL;
12585 bfd_vma low_func = 0;
12588 for (p = symbols; *p != NULL; p++)
12590 elf_symbol_type *q;
12592 q = (elf_symbol_type *) *p;
12594 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
12599 filename = bfd_asymbol_name (&q->symbol);
12602 case STT_ARM_TFUNC:
12604 /* Skip mapping symbols. */
12605 if ((q->symbol.flags & BSF_LOCAL)
12606 && bfd_is_arm_special_symbol_name (q->symbol.name,
12607 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
12609 /* Fall through. */
12610 if (bfd_get_section (&q->symbol) == section
12611 && q->symbol.value >= low_func
12612 && q->symbol.value <= offset)
12614 func = (asymbol *) q;
12615 low_func = q->symbol.value;
12625 *filename_ptr = filename;
12626 if (functionname_ptr)
12627 *functionname_ptr = bfd_asymbol_name (func);
12633 /* Find the nearest line to a particular section and offset, for error
12634 reporting. This code is a duplicate of the code in elf.c, except
12635 that it uses arm_elf_find_function. */
12638 elf32_arm_find_nearest_line (bfd * abfd,
12639 asection * section,
12640 asymbol ** symbols,
12642 const char ** filename_ptr,
12643 const char ** functionname_ptr,
12644 unsigned int * line_ptr)
12646 bfd_boolean found = FALSE;
12648 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
12650 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
12651 section, symbols, offset,
12652 filename_ptr, functionname_ptr,
12654 & elf_tdata (abfd)->dwarf2_find_line_info))
12656 if (!*functionname_ptr)
12657 arm_elf_find_function (abfd, section, symbols, offset,
12658 *filename_ptr ? NULL : filename_ptr,
12664 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
12665 & found, filename_ptr,
12666 functionname_ptr, line_ptr,
12667 & elf_tdata (abfd)->line_info))
12670 if (found && (*functionname_ptr || *line_ptr))
12673 if (symbols == NULL)
12676 if (! arm_elf_find_function (abfd, section, symbols, offset,
12677 filename_ptr, functionname_ptr))
12685 elf32_arm_find_inliner_info (bfd * abfd,
12686 const char ** filename_ptr,
12687 const char ** functionname_ptr,
12688 unsigned int * line_ptr)
12691 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12692 functionname_ptr, line_ptr,
12693 & elf_tdata (abfd)->dwarf2_find_line_info);
12697 /* Adjust a symbol defined by a dynamic object and referenced by a
12698 regular object. The current definition is in some section of the
12699 dynamic object, but we're not including those sections. We have to
12700 change the definition to something the rest of the link can
12704 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
12705 struct elf_link_hash_entry * h)
12709 struct elf32_arm_link_hash_entry * eh;
12710 struct elf32_arm_link_hash_table *globals;
12712 globals = elf32_arm_hash_table (info);
12713 if (globals == NULL)
12716 dynobj = elf_hash_table (info)->dynobj;
12718 /* Make sure we know what is going on here. */
12719 BFD_ASSERT (dynobj != NULL
12721 || h->type == STT_GNU_IFUNC
12722 || h->u.weakdef != NULL
12725 && !h->def_regular)));
12727 eh = (struct elf32_arm_link_hash_entry *) h;
12729 /* If this is a function, put it in the procedure linkage table. We
12730 will fill in the contents of the procedure linkage table later,
12731 when we know the address of the .got section. */
12732 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
12734 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
12735 symbol binds locally. */
12736 if (h->plt.refcount <= 0
12737 || (h->type != STT_GNU_IFUNC
12738 && (SYMBOL_CALLS_LOCAL (info, h)
12739 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
12740 && h->root.type == bfd_link_hash_undefweak))))
12742 /* This case can occur if we saw a PLT32 reloc in an input
12743 file, but the symbol was never referred to by a dynamic
12744 object, or if all references were garbage collected. In
12745 such a case, we don't actually need to build a procedure
12746 linkage table, and we can just do a PC24 reloc instead. */
12747 h->plt.offset = (bfd_vma) -1;
12748 eh->plt.thumb_refcount = 0;
12749 eh->plt.maybe_thumb_refcount = 0;
12750 eh->plt.noncall_refcount = 0;
12758 /* It's possible that we incorrectly decided a .plt reloc was
12759 needed for an R_ARM_PC24 or similar reloc to a non-function sym
12760 in check_relocs. We can't decide accurately between function
12761 and non-function syms in check-relocs; Objects loaded later in
12762 the link may change h->type. So fix it now. */
12763 h->plt.offset = (bfd_vma) -1;
12764 eh->plt.thumb_refcount = 0;
12765 eh->plt.maybe_thumb_refcount = 0;
12766 eh->plt.noncall_refcount = 0;
12769 /* If this is a weak symbol, and there is a real definition, the
12770 processor independent code will have arranged for us to see the
12771 real definition first, and we can just use the same value. */
12772 if (h->u.weakdef != NULL)
12774 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
12775 || h->u.weakdef->root.type == bfd_link_hash_defweak);
12776 h->root.u.def.section = h->u.weakdef->root.u.def.section;
12777 h->root.u.def.value = h->u.weakdef->root.u.def.value;
12781 /* If there are no non-GOT references, we do not need a copy
12783 if (!h->non_got_ref)
12786 /* This is a reference to a symbol defined by a dynamic object which
12787 is not a function. */
12789 /* If we are creating a shared library, we must presume that the
12790 only references to the symbol are via the global offset table.
12791 For such cases we need not do anything here; the relocations will
12792 be handled correctly by relocate_section. Relocatable executables
12793 can reference data in shared objects directly, so we don't need to
12794 do anything here. */
12795 if (info->shared || globals->root.is_relocatable_executable)
12800 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
12801 h->root.root.string);
12805 /* We must allocate the symbol in our .dynbss section, which will
12806 become part of the .bss section of the executable. There will be
12807 an entry for this symbol in the .dynsym section. The dynamic
12808 object will contain position independent code, so all references
12809 from the dynamic object to this symbol will go through the global
12810 offset table. The dynamic linker will use the .dynsym entry to
12811 determine the address it must put in the global offset table, so
12812 both the dynamic object and the regular object will refer to the
12813 same memory location for the variable. */
12814 s = bfd_get_section_by_name (dynobj, ".dynbss");
12815 BFD_ASSERT (s != NULL);
12817 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
12818 copy the initial value out of the dynamic object and into the
12819 runtime process image. We need to remember the offset into the
12820 .rel(a).bss section we are going to use. */
12821 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
12825 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
12826 elf32_arm_allocate_dynrelocs (info, srel, 1);
12830 return _bfd_elf_adjust_dynamic_copy (h, s);
12833 /* Allocate space in .plt, .got and associated reloc sections for
12837 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
12839 struct bfd_link_info *info;
12840 struct elf32_arm_link_hash_table *htab;
12841 struct elf32_arm_link_hash_entry *eh;
12842 struct elf_dyn_relocs *p;
12844 if (h->root.type == bfd_link_hash_indirect)
12847 eh = (struct elf32_arm_link_hash_entry *) h;
12849 info = (struct bfd_link_info *) inf;
12850 htab = elf32_arm_hash_table (info);
12854 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
12855 && h->plt.refcount > 0)
12857 /* Make sure this symbol is output as a dynamic symbol.
12858 Undefined weak syms won't yet be marked as dynamic. */
12859 if (h->dynindx == -1
12860 && !h->forced_local)
12862 if (! bfd_elf_link_record_dynamic_symbol (info, h))
12866 /* If the call in the PLT entry binds locally, the associated
12867 GOT entry should use an R_ARM_IRELATIVE relocation instead of
12868 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
12869 than the .plt section. */
12870 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
12873 if (eh->plt.noncall_refcount == 0
12874 && SYMBOL_REFERENCES_LOCAL (info, h))
12875 /* All non-call references can be resolved directly.
12876 This means that they can (and in some cases, must)
12877 resolve directly to the run-time target, rather than
12878 to the PLT. That in turns means that any .got entry
12879 would be equal to the .igot.plt entry, so there's
12880 no point having both. */
12881 h->got.refcount = 0;
12886 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
12888 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
12890 /* If this symbol is not defined in a regular file, and we are
12891 not generating a shared library, then set the symbol to this
12892 location in the .plt. This is required to make function
12893 pointers compare as equal between the normal executable and
12894 the shared library. */
12896 && !h->def_regular)
12898 h->root.u.def.section = htab->root.splt;
12899 h->root.u.def.value = h->plt.offset;
12901 /* Make sure the function is not marked as Thumb, in case
12902 it is the target of an ABS32 relocation, which will
12903 point to the PLT entry. */
12904 h->target_internal = ST_BRANCH_TO_ARM;
12907 htab->next_tls_desc_index++;
12909 /* VxWorks executables have a second set of relocations for
12910 each PLT entry. They go in a separate relocation section,
12911 which is processed by the kernel loader. */
12912 if (htab->vxworks_p && !info->shared)
12914 /* There is a relocation for the initial PLT entry:
12915 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
12916 if (h->plt.offset == htab->plt_header_size)
12917 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
12919 /* There are two extra relocations for each subsequent
12920 PLT entry: an R_ARM_32 relocation for the GOT entry,
12921 and an R_ARM_32 relocation for the PLT entry. */
12922 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
12927 h->plt.offset = (bfd_vma) -1;
12933 h->plt.offset = (bfd_vma) -1;
12937 eh = (struct elf32_arm_link_hash_entry *) h;
12938 eh->tlsdesc_got = (bfd_vma) -1;
12940 if (h->got.refcount > 0)
12944 int tls_type = elf32_arm_hash_entry (h)->tls_type;
12947 /* Make sure this symbol is output as a dynamic symbol.
12948 Undefined weak syms won't yet be marked as dynamic. */
12949 if (h->dynindx == -1
12950 && !h->forced_local)
12952 if (! bfd_elf_link_record_dynamic_symbol (info, h))
12956 if (!htab->symbian_p)
12958 s = htab->root.sgot;
12959 h->got.offset = s->size;
12961 if (tls_type == GOT_UNKNOWN)
12964 if (tls_type == GOT_NORMAL)
12965 /* Non-TLS symbols need one GOT slot. */
12969 if (tls_type & GOT_TLS_GDESC)
12971 /* R_ARM_TLS_DESC needs 2 GOT slots. */
12973 = (htab->root.sgotplt->size
12974 - elf32_arm_compute_jump_table_size (htab));
12975 htab->root.sgotplt->size += 8;
12976 h->got.offset = (bfd_vma) -2;
12977 /* plt.got_offset needs to know there's a TLS_DESC
12978 reloc in the middle of .got.plt. */
12979 htab->num_tls_desc++;
12982 if (tls_type & GOT_TLS_GD)
12984 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
12985 the symbol is both GD and GDESC, got.offset may
12986 have been overwritten. */
12987 h->got.offset = s->size;
12991 if (tls_type & GOT_TLS_IE)
12992 /* R_ARM_TLS_IE32 needs one GOT slot. */
12996 dyn = htab->root.dynamic_sections_created;
12999 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
13001 || !SYMBOL_REFERENCES_LOCAL (info, h)))
13004 if (tls_type != GOT_NORMAL
13005 && (info->shared || indx != 0)
13006 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13007 || h->root.type != bfd_link_hash_undefweak))
13009 if (tls_type & GOT_TLS_IE)
13010 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13012 if (tls_type & GOT_TLS_GD)
13013 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13015 if (tls_type & GOT_TLS_GDESC)
13017 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
13018 /* GDESC needs a trampoline to jump to. */
13019 htab->tls_trampoline = -1;
13022 /* Only GD needs it. GDESC just emits one relocation per
13024 if ((tls_type & GOT_TLS_GD) && indx != 0)
13025 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13027 else if (!SYMBOL_REFERENCES_LOCAL (info, h))
13029 if (htab->root.dynamic_sections_created)
13030 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
13031 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13033 else if (h->type == STT_GNU_IFUNC
13034 && eh->plt.noncall_refcount == 0)
13035 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
13036 they all resolve dynamically instead. Reserve room for the
13037 GOT entry's R_ARM_IRELATIVE relocation. */
13038 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
13039 else if (info->shared)
13040 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
13041 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13045 h->got.offset = (bfd_vma) -1;
13047 /* Allocate stubs for exported Thumb functions on v4t. */
13048 if (!htab->use_blx && h->dynindx != -1
13050 && h->target_internal == ST_BRANCH_TO_THUMB
13051 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
13053 struct elf_link_hash_entry * th;
13054 struct bfd_link_hash_entry * bh;
13055 struct elf_link_hash_entry * myh;
13059 /* Create a new symbol to regist the real location of the function. */
13060 s = h->root.u.def.section;
13061 sprintf (name, "__real_%s", h->root.root.string);
13062 _bfd_generic_link_add_one_symbol (info, s->owner,
13063 name, BSF_GLOBAL, s,
13064 h->root.u.def.value,
13065 NULL, TRUE, FALSE, &bh);
13067 myh = (struct elf_link_hash_entry *) bh;
13068 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
13069 myh->forced_local = 1;
13070 myh->target_internal = ST_BRANCH_TO_THUMB;
13071 eh->export_glue = myh;
13072 th = record_arm_to_thumb_glue (info, h);
13073 /* Point the symbol at the stub. */
13074 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
13075 h->target_internal = ST_BRANCH_TO_ARM;
13076 h->root.u.def.section = th->root.u.def.section;
13077 h->root.u.def.value = th->root.u.def.value & ~1;
13080 if (eh->dyn_relocs == NULL)
13083 /* In the shared -Bsymbolic case, discard space allocated for
13084 dynamic pc-relative relocs against symbols which turn out to be
13085 defined in regular objects. For the normal shared case, discard
13086 space for pc-relative relocs that have become local due to symbol
13087 visibility changes. */
13089 if (info->shared || htab->root.is_relocatable_executable)
13091 /* The only relocs that use pc_count are R_ARM_REL32 and
13092 R_ARM_REL32_NOI, which will appear on something like
13093 ".long foo - .". We want calls to protected symbols to resolve
13094 directly to the function rather than going via the plt. If people
13095 want function pointer comparisons to work as expected then they
13096 should avoid writing assembly like ".long foo - .". */
13097 if (SYMBOL_CALLS_LOCAL (info, h))
13099 struct elf_dyn_relocs **pp;
13101 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13103 p->count -= p->pc_count;
13112 if (htab->vxworks_p)
13114 struct elf_dyn_relocs **pp;
13116 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13118 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
13125 /* Also discard relocs on undefined weak syms with non-default
13127 if (eh->dyn_relocs != NULL
13128 && h->root.type == bfd_link_hash_undefweak)
13130 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
13131 eh->dyn_relocs = NULL;
13133 /* Make sure undefined weak symbols are output as a dynamic
13135 else if (h->dynindx == -1
13136 && !h->forced_local)
13138 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13143 else if (htab->root.is_relocatable_executable && h->dynindx == -1
13144 && h->root.type == bfd_link_hash_new)
13146 /* Output absolute symbols so that we can create relocations
13147 against them. For normal symbols we output a relocation
13148 against the section that contains them. */
13149 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13156 /* For the non-shared case, discard space for relocs against
13157 symbols which turn out to need copy relocs or are not
13160 if (!h->non_got_ref
13161 && ((h->def_dynamic
13162 && !h->def_regular)
13163 || (htab->root.dynamic_sections_created
13164 && (h->root.type == bfd_link_hash_undefweak
13165 || h->root.type == bfd_link_hash_undefined))))
13167 /* Make sure this symbol is output as a dynamic symbol.
13168 Undefined weak syms won't yet be marked as dynamic. */
13169 if (h->dynindx == -1
13170 && !h->forced_local)
13172 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13176 /* If that succeeded, we know we'll be keeping all the
13178 if (h->dynindx != -1)
13182 eh->dyn_relocs = NULL;
13187 /* Finally, allocate space. */
13188 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13190 asection *sreloc = elf_section_data (p->sec)->sreloc;
13191 if (h->type == STT_GNU_IFUNC
13192 && eh->plt.noncall_refcount == 0
13193 && SYMBOL_REFERENCES_LOCAL (info, h))
13194 elf32_arm_allocate_irelocs (info, sreloc, p->count);
13196 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
13202 /* Find any dynamic relocs that apply to read-only sections. */
13205 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
13207 struct elf32_arm_link_hash_entry * eh;
13208 struct elf_dyn_relocs * p;
13210 eh = (struct elf32_arm_link_hash_entry *) h;
13211 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13213 asection *s = p->sec;
13215 if (s != NULL && (s->flags & SEC_READONLY) != 0)
13217 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13219 info->flags |= DF_TEXTREL;
13221 /* Not an error, just cut short the traversal. */
13229 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13232 struct elf32_arm_link_hash_table *globals;
13234 globals = elf32_arm_hash_table (info);
13235 if (globals == NULL)
13238 globals->byteswap_code = byteswap_code;
13241 /* Set the sizes of the dynamic sections. */
13244 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13245 struct bfd_link_info * info)
13250 bfd_boolean relocs;
13252 struct elf32_arm_link_hash_table *htab;
13254 htab = elf32_arm_hash_table (info);
13258 dynobj = elf_hash_table (info)->dynobj;
13259 BFD_ASSERT (dynobj != NULL);
13260 check_use_blx (htab);
13262 if (elf_hash_table (info)->dynamic_sections_created)
13264 /* Set the contents of the .interp section to the interpreter. */
13265 if (info->executable)
13267 s = bfd_get_section_by_name (dynobj, ".interp");
13268 BFD_ASSERT (s != NULL);
13269 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
13270 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13274 /* Set up .got offsets for local syms, and space for local dynamic
13276 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13278 bfd_signed_vma *local_got;
13279 bfd_signed_vma *end_local_got;
13280 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
13281 char *local_tls_type;
13282 bfd_vma *local_tlsdesc_gotent;
13283 bfd_size_type locsymcount;
13284 Elf_Internal_Shdr *symtab_hdr;
13286 bfd_boolean is_vxworks = htab->vxworks_p;
13287 unsigned int symndx;
13289 if (! is_arm_elf (ibfd))
13292 for (s = ibfd->sections; s != NULL; s = s->next)
13294 struct elf_dyn_relocs *p;
13296 for (p = (struct elf_dyn_relocs *)
13297 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
13299 if (!bfd_is_abs_section (p->sec)
13300 && bfd_is_abs_section (p->sec->output_section))
13302 /* Input section has been discarded, either because
13303 it is a copy of a linkonce section or due to
13304 linker script /DISCARD/, so we'll be discarding
13307 else if (is_vxworks
13308 && strcmp (p->sec->output_section->name,
13311 /* Relocations in vxworks .tls_vars sections are
13312 handled specially by the loader. */
13314 else if (p->count != 0)
13316 srel = elf_section_data (p->sec)->sreloc;
13317 elf32_arm_allocate_dynrelocs (info, srel, p->count);
13318 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
13319 info->flags |= DF_TEXTREL;
13324 local_got = elf_local_got_refcounts (ibfd);
13328 symtab_hdr = & elf_symtab_hdr (ibfd);
13329 locsymcount = symtab_hdr->sh_info;
13330 end_local_got = local_got + locsymcount;
13331 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
13332 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
13333 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
13335 s = htab->root.sgot;
13336 srel = htab->root.srelgot;
13337 for (; local_got < end_local_got;
13338 ++local_got, ++local_iplt_ptr, ++local_tls_type,
13339 ++local_tlsdesc_gotent, ++symndx)
13341 *local_tlsdesc_gotent = (bfd_vma) -1;
13342 local_iplt = *local_iplt_ptr;
13343 if (local_iplt != NULL)
13345 struct elf_dyn_relocs *p;
13347 if (local_iplt->root.refcount > 0)
13349 elf32_arm_allocate_plt_entry (info, TRUE,
13352 if (local_iplt->arm.noncall_refcount == 0)
13353 /* All references to the PLT are calls, so all
13354 non-call references can resolve directly to the
13355 run-time target. This means that the .got entry
13356 would be the same as the .igot.plt entry, so there's
13357 no point creating both. */
13362 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13363 local_iplt->root.offset = (bfd_vma) -1;
13366 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13370 psrel = elf_section_data (p->sec)->sreloc;
13371 if (local_iplt->arm.noncall_refcount == 0)
13372 elf32_arm_allocate_irelocs (info, psrel, p->count);
13374 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13377 if (*local_got > 0)
13379 Elf_Internal_Sym *isym;
13381 *local_got = s->size;
13382 if (*local_tls_type & GOT_TLS_GD)
13383 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13385 if (*local_tls_type & GOT_TLS_GDESC)
13387 *local_tlsdesc_gotent = htab->root.sgotplt->size
13388 - elf32_arm_compute_jump_table_size (htab);
13389 htab->root.sgotplt->size += 8;
13390 *local_got = (bfd_vma) -2;
13391 /* plt.got_offset needs to know there's a TLS_DESC
13392 reloc in the middle of .got.plt. */
13393 htab->num_tls_desc++;
13395 if (*local_tls_type & GOT_TLS_IE)
13398 if (*local_tls_type & GOT_NORMAL)
13400 /* If the symbol is both GD and GDESC, *local_got
13401 may have been overwritten. */
13402 *local_got = s->size;
13406 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13410 /* If all references to an STT_GNU_IFUNC PLT are calls,
13411 then all non-call references, including this GOT entry,
13412 resolve directly to the run-time target. */
13413 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13414 && (local_iplt == NULL
13415 || local_iplt->arm.noncall_refcount == 0))
13416 elf32_arm_allocate_irelocs (info, srel, 1);
13417 else if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
13418 || *local_tls_type & GOT_TLS_GD)
13419 elf32_arm_allocate_dynrelocs (info, srel, 1);
13421 if (info->shared && *local_tls_type & GOT_TLS_GDESC)
13423 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
13424 htab->tls_trampoline = -1;
13428 *local_got = (bfd_vma) -1;
13432 if (htab->tls_ldm_got.refcount > 0)
13434 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13435 for R_ARM_TLS_LDM32 relocations. */
13436 htab->tls_ldm_got.offset = htab->root.sgot->size;
13437 htab->root.sgot->size += 8;
13439 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13442 htab->tls_ldm_got.offset = -1;
13444 /* Allocate global sym .plt and .got entries, and space for global
13445 sym dynamic relocs. */
13446 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
13448 /* Here we rummage through the found bfds to collect glue information. */
13449 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13451 if (! is_arm_elf (ibfd))
13454 /* Initialise mapping tables for code/data. */
13455 bfd_elf32_arm_init_maps (ibfd);
13457 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13458 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
13459 /* xgettext:c-format */
13460 _bfd_error_handler (_("Errors encountered processing file %s"),
13464 /* Allocate space for the glue sections now that we've sized them. */
13465 bfd_elf32_arm_allocate_interworking_sections (info);
13467 /* For every jump slot reserved in the sgotplt, reloc_count is
13468 incremented. However, when we reserve space for TLS descriptors,
13469 it's not incremented, so in order to compute the space reserved
13470 for them, it suffices to multiply the reloc count by the jump
13472 if (htab->root.srelplt)
13473 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
13475 if (htab->tls_trampoline)
13477 if (htab->root.splt->size == 0)
13478 htab->root.splt->size += htab->plt_header_size;
13480 htab->tls_trampoline = htab->root.splt->size;
13481 htab->root.splt->size += htab->plt_entry_size;
13483 /* If we're not using lazy TLS relocations, don't generate the
13484 PLT and GOT entries they require. */
13485 if (!(info->flags & DF_BIND_NOW))
13487 htab->dt_tlsdesc_got = htab->root.sgot->size;
13488 htab->root.sgot->size += 4;
13490 htab->dt_tlsdesc_plt = htab->root.splt->size;
13491 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
13495 /* The check_relocs and adjust_dynamic_symbol entry points have
13496 determined the sizes of the various dynamic sections. Allocate
13497 memory for them. */
13500 for (s = dynobj->sections; s != NULL; s = s->next)
13504 if ((s->flags & SEC_LINKER_CREATED) == 0)
13507 /* It's OK to base decisions on the section name, because none
13508 of the dynobj section names depend upon the input files. */
13509 name = bfd_get_section_name (dynobj, s);
13511 if (s == htab->root.splt)
13513 /* Remember whether there is a PLT. */
13514 plt = s->size != 0;
13516 else if (CONST_STRNEQ (name, ".rel"))
13520 /* Remember whether there are any reloc sections other
13521 than .rel(a).plt and .rela.plt.unloaded. */
13522 if (s != htab->root.srelplt && s != htab->srelplt2)
13525 /* We use the reloc_count field as a counter if we need
13526 to copy relocs into the output file. */
13527 s->reloc_count = 0;
13530 else if (s != htab->root.sgot
13531 && s != htab->root.sgotplt
13532 && s != htab->root.iplt
13533 && s != htab->root.igotplt
13534 && s != htab->sdynbss)
13536 /* It's not one of our sections, so don't allocate space. */
13542 /* If we don't need this section, strip it from the
13543 output file. This is mostly to handle .rel(a).bss and
13544 .rel(a).plt. We must create both sections in
13545 create_dynamic_sections, because they must be created
13546 before the linker maps input sections to output
13547 sections. The linker does that before
13548 adjust_dynamic_symbol is called, and it is that
13549 function which decides whether anything needs to go
13550 into these sections. */
13551 s->flags |= SEC_EXCLUDE;
13555 if ((s->flags & SEC_HAS_CONTENTS) == 0)
13558 /* Allocate memory for the section contents. */
13559 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
13560 if (s->contents == NULL)
13564 if (elf_hash_table (info)->dynamic_sections_created)
13566 /* Add some entries to the .dynamic section. We fill in the
13567 values later, in elf32_arm_finish_dynamic_sections, but we
13568 must add the entries now so that we get the correct size for
13569 the .dynamic section. The DT_DEBUG entry is filled in by the
13570 dynamic linker and used by the debugger. */
13571 #define add_dynamic_entry(TAG, VAL) \
13572 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
13574 if (info->executable)
13576 if (!add_dynamic_entry (DT_DEBUG, 0))
13582 if ( !add_dynamic_entry (DT_PLTGOT, 0)
13583 || !add_dynamic_entry (DT_PLTRELSZ, 0)
13584 || !add_dynamic_entry (DT_PLTREL,
13585 htab->use_rel ? DT_REL : DT_RELA)
13586 || !add_dynamic_entry (DT_JMPREL, 0))
13589 if (htab->dt_tlsdesc_plt &&
13590 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
13591 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
13599 if (!add_dynamic_entry (DT_REL, 0)
13600 || !add_dynamic_entry (DT_RELSZ, 0)
13601 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
13606 if (!add_dynamic_entry (DT_RELA, 0)
13607 || !add_dynamic_entry (DT_RELASZ, 0)
13608 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
13613 /* If any dynamic relocs apply to a read-only section,
13614 then we need a DT_TEXTREL entry. */
13615 if ((info->flags & DF_TEXTREL) == 0)
13616 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
13619 if ((info->flags & DF_TEXTREL) != 0)
13621 if (!add_dynamic_entry (DT_TEXTREL, 0))
13624 if (htab->vxworks_p
13625 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
13628 #undef add_dynamic_entry
13633 /* Size sections even though they're not dynamic. We use it to setup
13634 _TLS_MODULE_BASE_, if needed. */
13637 elf32_arm_always_size_sections (bfd *output_bfd,
13638 struct bfd_link_info *info)
13642 if (info->relocatable)
13645 tls_sec = elf_hash_table (info)->tls_sec;
13649 struct elf_link_hash_entry *tlsbase;
13651 tlsbase = elf_link_hash_lookup
13652 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
13656 struct bfd_link_hash_entry *bh = NULL;
13657 const struct elf_backend_data *bed
13658 = get_elf_backend_data (output_bfd);
13660 if (!(_bfd_generic_link_add_one_symbol
13661 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
13662 tls_sec, 0, NULL, FALSE,
13663 bed->collect, &bh)))
13666 tlsbase->type = STT_TLS;
13667 tlsbase = (struct elf_link_hash_entry *)bh;
13668 tlsbase->def_regular = 1;
13669 tlsbase->other = STV_HIDDEN;
13670 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
13676 /* Finish up dynamic symbol handling. We set the contents of various
13677 dynamic sections here. */
13680 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
13681 struct bfd_link_info * info,
13682 struct elf_link_hash_entry * h,
13683 Elf_Internal_Sym * sym)
13685 struct elf32_arm_link_hash_table *htab;
13686 struct elf32_arm_link_hash_entry *eh;
13688 htab = elf32_arm_hash_table (info);
13692 eh = (struct elf32_arm_link_hash_entry *) h;
13694 if (h->plt.offset != (bfd_vma) -1)
13698 BFD_ASSERT (h->dynindx != -1);
13699 elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
13703 if (!h->def_regular)
13705 /* Mark the symbol as undefined, rather than as defined in
13706 the .plt section. Leave the value alone. */
13707 sym->st_shndx = SHN_UNDEF;
13708 /* If the symbol is weak, we do need to clear the value.
13709 Otherwise, the PLT entry would provide a definition for
13710 the symbol even if the symbol wasn't defined anywhere,
13711 and so the symbol would never be NULL. */
13712 if (!h->ref_regular_nonweak)
13715 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
13717 /* At least one non-call relocation references this .iplt entry,
13718 so the .iplt entry is the function's canonical address. */
13719 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
13720 sym->st_target_internal = ST_BRANCH_TO_ARM;
13721 sym->st_shndx = (_bfd_elf_section_from_bfd_section
13722 (output_bfd, htab->root.iplt->output_section));
13723 sym->st_value = (h->plt.offset
13724 + htab->root.iplt->output_section->vma
13725 + htab->root.iplt->output_offset);
13732 Elf_Internal_Rela rel;
13734 /* This symbol needs a copy reloc. Set it up. */
13735 BFD_ASSERT (h->dynindx != -1
13736 && (h->root.type == bfd_link_hash_defined
13737 || h->root.type == bfd_link_hash_defweak));
13740 BFD_ASSERT (s != NULL);
13743 rel.r_offset = (h->root.u.def.value
13744 + h->root.u.def.section->output_section->vma
13745 + h->root.u.def.section->output_offset);
13746 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
13747 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
13750 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
13751 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
13752 to the ".got" section. */
13753 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
13754 || (!htab->vxworks_p && h == htab->root.hgot))
13755 sym->st_shndx = SHN_ABS;
13761 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
13763 const unsigned long *template, unsigned count)
13767 for (ix = 0; ix != count; ix++)
13769 unsigned long insn = template[ix];
13771 /* Emit mov pc,rx if bx is not permitted. */
13772 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
13773 insn = (insn & 0xf000000f) | 0x01a0f000;
13774 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
13778 /* Finish up the dynamic sections. */
13781 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
13786 struct elf32_arm_link_hash_table *htab;
13788 htab = elf32_arm_hash_table (info);
13792 dynobj = elf_hash_table (info)->dynobj;
13794 sgot = htab->root.sgotplt;
13795 /* A broken linker script might have discarded the dynamic sections.
13796 Catch this here so that we do not seg-fault later on. */
13797 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
13799 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
13801 if (elf_hash_table (info)->dynamic_sections_created)
13804 Elf32_External_Dyn *dyncon, *dynconend;
13806 splt = htab->root.splt;
13807 BFD_ASSERT (splt != NULL && sdyn != NULL);
13808 BFD_ASSERT (htab->symbian_p || sgot != NULL);
13810 dyncon = (Elf32_External_Dyn *) sdyn->contents;
13811 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
13813 for (; dyncon < dynconend; dyncon++)
13815 Elf_Internal_Dyn dyn;
13819 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
13826 if (htab->vxworks_p
13827 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
13828 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13833 goto get_vma_if_bpabi;
13836 goto get_vma_if_bpabi;
13839 goto get_vma_if_bpabi;
13841 name = ".gnu.version";
13842 goto get_vma_if_bpabi;
13844 name = ".gnu.version_d";
13845 goto get_vma_if_bpabi;
13847 name = ".gnu.version_r";
13848 goto get_vma_if_bpabi;
13854 name = RELOC_SECTION (htab, ".plt");
13856 s = bfd_get_section_by_name (output_bfd, name);
13857 BFD_ASSERT (s != NULL);
13858 if (!htab->symbian_p)
13859 dyn.d_un.d_ptr = s->vma;
13861 /* In the BPABI, tags in the PT_DYNAMIC section point
13862 at the file offset, not the memory address, for the
13863 convenience of the post linker. */
13864 dyn.d_un.d_ptr = s->filepos;
13865 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13869 if (htab->symbian_p)
13874 s = htab->root.srelplt;
13875 BFD_ASSERT (s != NULL);
13876 dyn.d_un.d_val = s->size;
13877 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13882 if (!htab->symbian_p)
13884 /* My reading of the SVR4 ABI indicates that the
13885 procedure linkage table relocs (DT_JMPREL) should be
13886 included in the overall relocs (DT_REL). This is
13887 what Solaris does. However, UnixWare can not handle
13888 that case. Therefore, we override the DT_RELSZ entry
13889 here to make it not include the JMPREL relocs. Since
13890 the linker script arranges for .rel(a).plt to follow all
13891 other relocation sections, we don't have to worry
13892 about changing the DT_REL entry. */
13893 s = htab->root.srelplt;
13895 dyn.d_un.d_val -= s->size;
13896 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13899 /* Fall through. */
13903 /* In the BPABI, the DT_REL tag must point at the file
13904 offset, not the VMA, of the first relocation
13905 section. So, we use code similar to that in
13906 elflink.c, but do not check for SHF_ALLOC on the
13907 relcoation section, since relocations sections are
13908 never allocated under the BPABI. The comments above
13909 about Unixware notwithstanding, we include all of the
13910 relocations here. */
13911 if (htab->symbian_p)
13914 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
13915 ? SHT_REL : SHT_RELA);
13916 dyn.d_un.d_val = 0;
13917 for (i = 1; i < elf_numsections (output_bfd); i++)
13919 Elf_Internal_Shdr *hdr
13920 = elf_elfsections (output_bfd)[i];
13921 if (hdr->sh_type == type)
13923 if (dyn.d_tag == DT_RELSZ
13924 || dyn.d_tag == DT_RELASZ)
13925 dyn.d_un.d_val += hdr->sh_size;
13926 else if ((ufile_ptr) hdr->sh_offset
13927 <= dyn.d_un.d_val - 1)
13928 dyn.d_un.d_val = hdr->sh_offset;
13931 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13935 case DT_TLSDESC_PLT:
13936 s = htab->root.splt;
13937 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
13938 + htab->dt_tlsdesc_plt);
13939 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13942 case DT_TLSDESC_GOT:
13943 s = htab->root.sgot;
13944 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
13945 + htab->dt_tlsdesc_got);
13946 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13949 /* Set the bottom bit of DT_INIT/FINI if the
13950 corresponding function is Thumb. */
13952 name = info->init_function;
13955 name = info->fini_function;
13957 /* If it wasn't set by elf_bfd_final_link
13958 then there is nothing to adjust. */
13959 if (dyn.d_un.d_val != 0)
13961 struct elf_link_hash_entry * eh;
13963 eh = elf_link_hash_lookup (elf_hash_table (info), name,
13964 FALSE, FALSE, TRUE);
13965 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
13967 dyn.d_un.d_val |= 1;
13968 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13975 /* Fill in the first entry in the procedure linkage table. */
13976 if (splt->size > 0 && htab->plt_header_size)
13978 const bfd_vma *plt0_entry;
13979 bfd_vma got_address, plt_address, got_displacement;
13981 /* Calculate the addresses of the GOT and PLT. */
13982 got_address = sgot->output_section->vma + sgot->output_offset;
13983 plt_address = splt->output_section->vma + splt->output_offset;
13985 if (htab->vxworks_p)
13987 /* The VxWorks GOT is relocated by the dynamic linker.
13988 Therefore, we must emit relocations rather than simply
13989 computing the values now. */
13990 Elf_Internal_Rela rel;
13992 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
13993 put_arm_insn (htab, output_bfd, plt0_entry[0],
13994 splt->contents + 0);
13995 put_arm_insn (htab, output_bfd, plt0_entry[1],
13996 splt->contents + 4);
13997 put_arm_insn (htab, output_bfd, plt0_entry[2],
13998 splt->contents + 8);
13999 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
14001 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
14002 rel.r_offset = plt_address + 12;
14003 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14005 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
14006 htab->srelplt2->contents);
14010 got_displacement = got_address - (plt_address + 16);
14012 plt0_entry = elf32_arm_plt0_entry;
14013 put_arm_insn (htab, output_bfd, plt0_entry[0],
14014 splt->contents + 0);
14015 put_arm_insn (htab, output_bfd, plt0_entry[1],
14016 splt->contents + 4);
14017 put_arm_insn (htab, output_bfd, plt0_entry[2],
14018 splt->contents + 8);
14019 put_arm_insn (htab, output_bfd, plt0_entry[3],
14020 splt->contents + 12);
14022 #ifdef FOUR_WORD_PLT
14023 /* The displacement value goes in the otherwise-unused
14024 last word of the second entry. */
14025 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
14027 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
14032 /* UnixWare sets the entsize of .plt to 4, although that doesn't
14033 really seem like the right value. */
14034 if (splt->output_section->owner == output_bfd)
14035 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
14037 if (htab->dt_tlsdesc_plt)
14039 bfd_vma got_address
14040 = sgot->output_section->vma + sgot->output_offset;
14041 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
14042 + htab->root.sgot->output_offset);
14043 bfd_vma plt_address
14044 = splt->output_section->vma + splt->output_offset;
14046 arm_put_trampoline (htab, output_bfd,
14047 splt->contents + htab->dt_tlsdesc_plt,
14048 dl_tlsdesc_lazy_trampoline, 6);
14050 bfd_put_32 (output_bfd,
14051 gotplt_address + htab->dt_tlsdesc_got
14052 - (plt_address + htab->dt_tlsdesc_plt)
14053 - dl_tlsdesc_lazy_trampoline[6],
14054 splt->contents + htab->dt_tlsdesc_plt + 24);
14055 bfd_put_32 (output_bfd,
14056 got_address - (plt_address + htab->dt_tlsdesc_plt)
14057 - dl_tlsdesc_lazy_trampoline[7],
14058 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
14061 if (htab->tls_trampoline)
14063 arm_put_trampoline (htab, output_bfd,
14064 splt->contents + htab->tls_trampoline,
14065 tls_trampoline, 3);
14066 #ifdef FOUR_WORD_PLT
14067 bfd_put_32 (output_bfd, 0x00000000,
14068 splt->contents + htab->tls_trampoline + 12);
14072 if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
14074 /* Correct the .rel(a).plt.unloaded relocations. They will have
14075 incorrect symbol indexes. */
14079 num_plts = ((htab->root.splt->size - htab->plt_header_size)
14080 / htab->plt_entry_size);
14081 p = htab->srelplt2->contents + RELOC_SIZE (htab);
14083 for (; num_plts; num_plts--)
14085 Elf_Internal_Rela rel;
14087 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14088 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14089 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14090 p += RELOC_SIZE (htab);
14092 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14093 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14094 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14095 p += RELOC_SIZE (htab);
14100 /* Fill in the first three entries in the global offset table. */
14103 if (sgot->size > 0)
14106 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14108 bfd_put_32 (output_bfd,
14109 sdyn->output_section->vma + sdyn->output_offset,
14111 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14112 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14115 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14122 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
14124 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
14125 struct elf32_arm_link_hash_table *globals;
14127 i_ehdrp = elf_elfheader (abfd);
14129 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14130 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14132 i_ehdrp->e_ident[EI_OSABI] = 0;
14133 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
14137 globals = elf32_arm_hash_table (link_info);
14138 if (globals != NULL && globals->byteswap_code)
14139 i_ehdrp->e_flags |= EF_ARM_BE8;
14143 static enum elf_reloc_type_class
14144 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
14146 switch ((int) ELF32_R_TYPE (rela->r_info))
14148 case R_ARM_RELATIVE:
14149 return reloc_class_relative;
14150 case R_ARM_JUMP_SLOT:
14151 return reloc_class_plt;
14153 return reloc_class_copy;
14155 return reloc_class_normal;
14160 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
14162 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
14165 /* Return TRUE if this is an unwinding table entry. */
14168 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14170 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14171 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
14175 /* Set the type and flags for an ARM section. We do this by
14176 the section name, which is a hack, but ought to work. */
14179 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14183 name = bfd_get_section_name (abfd, sec);
14185 if (is_arm_elf_unwind_section_name (abfd, name))
14187 hdr->sh_type = SHT_ARM_EXIDX;
14188 hdr->sh_flags |= SHF_LINK_ORDER;
14193 /* Handle an ARM specific section when reading an object file. This is
14194 called when bfd_section_from_shdr finds a section with an unknown
14198 elf32_arm_section_from_shdr (bfd *abfd,
14199 Elf_Internal_Shdr * hdr,
14203 /* There ought to be a place to keep ELF backend specific flags, but
14204 at the moment there isn't one. We just keep track of the
14205 sections by their name, instead. Fortunately, the ABI gives
14206 names for all the ARM specific sections, so we will probably get
14208 switch (hdr->sh_type)
14210 case SHT_ARM_EXIDX:
14211 case SHT_ARM_PREEMPTMAP:
14212 case SHT_ARM_ATTRIBUTES:
14219 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
14225 static _arm_elf_section_data *
14226 get_arm_elf_section_data (asection * sec)
14228 if (sec && sec->owner && is_arm_elf (sec->owner))
14229 return elf32_arm_section_data (sec);
14237 struct bfd_link_info *info;
14240 int (*func) (void *, const char *, Elf_Internal_Sym *,
14241 asection *, struct elf_link_hash_entry *);
14242 } output_arch_syminfo;
14244 enum map_symbol_type
14252 /* Output a single mapping symbol. */
14255 elf32_arm_output_map_sym (output_arch_syminfo *osi,
14256 enum map_symbol_type type,
14259 static const char *names[3] = {"$a", "$t", "$d"};
14260 Elf_Internal_Sym sym;
14262 sym.st_value = osi->sec->output_section->vma
14263 + osi->sec->output_offset
14267 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
14268 sym.st_shndx = osi->sec_shndx;
14269 sym.st_target_internal = 0;
14270 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
14271 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
14274 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14275 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
14278 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14279 bfd_boolean is_iplt_entry_p,
14280 union gotplt_union *root_plt,
14281 struct arm_plt_info *arm_plt)
14283 struct elf32_arm_link_hash_table *htab;
14284 bfd_vma addr, plt_header_size;
14286 if (root_plt->offset == (bfd_vma) -1)
14289 htab = elf32_arm_hash_table (osi->info);
14293 if (is_iplt_entry_p)
14295 osi->sec = htab->root.iplt;
14296 plt_header_size = 0;
14300 osi->sec = htab->root.splt;
14301 plt_header_size = htab->plt_header_size;
14303 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14304 (osi->info->output_bfd, osi->sec->output_section));
14306 addr = root_plt->offset & -2;
14307 if (htab->symbian_p)
14309 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14311 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
14314 else if (htab->vxworks_p)
14316 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14318 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
14320 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
14322 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
14327 bfd_boolean thumb_stub_p;
14329 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14332 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
14335 #ifdef FOUR_WORD_PLT
14336 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14338 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
14341 /* A three-word PLT with no Thumb thunk contains only Arm code,
14342 so only need to output a mapping symbol for the first PLT entry and
14343 entries with thumb thunks. */
14344 if (thumb_stub_p || addr == plt_header_size)
14346 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14355 /* Output mapping symbols for PLT entries associated with H. */
14358 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14360 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14361 struct elf32_arm_link_hash_entry *eh;
14363 if (h->root.type == bfd_link_hash_indirect)
14366 if (h->root.type == bfd_link_hash_warning)
14367 /* When warning symbols are created, they **replace** the "real"
14368 entry in the hash table, thus we never get to see the real
14369 symbol in a hash traversal. So look at it now. */
14370 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14372 eh = (struct elf32_arm_link_hash_entry *) h;
14373 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14374 &h->plt, &eh->plt);
14377 /* Output a single local symbol for a generated stub. */
14380 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
14381 bfd_vma offset, bfd_vma size)
14383 Elf_Internal_Sym sym;
14385 sym.st_value = osi->sec->output_section->vma
14386 + osi->sec->output_offset
14388 sym.st_size = size;
14390 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14391 sym.st_shndx = osi->sec_shndx;
14392 sym.st_target_internal = 0;
14393 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
14397 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
14400 struct elf32_arm_stub_hash_entry *stub_entry;
14401 asection *stub_sec;
14404 output_arch_syminfo *osi;
14405 const insn_sequence *template_sequence;
14406 enum stub_insn_type prev_type;
14409 enum map_symbol_type sym_type;
14411 /* Massage our args to the form they really have. */
14412 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14413 osi = (output_arch_syminfo *) in_arg;
14415 stub_sec = stub_entry->stub_sec;
14417 /* Ensure this stub is attached to the current section being
14419 if (stub_sec != osi->sec)
14422 addr = (bfd_vma) stub_entry->stub_offset;
14423 stub_name = stub_entry->output_name;
14425 template_sequence = stub_entry->stub_template;
14426 switch (template_sequence[0].type)
14429 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
14434 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
14435 stub_entry->stub_size))
14443 prev_type = DATA_TYPE;
14445 for (i = 0; i < stub_entry->stub_template_size; i++)
14447 switch (template_sequence[i].type)
14450 sym_type = ARM_MAP_ARM;
14455 sym_type = ARM_MAP_THUMB;
14459 sym_type = ARM_MAP_DATA;
14467 if (template_sequence[i].type != prev_type)
14469 prev_type = template_sequence[i].type;
14470 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
14474 switch (template_sequence[i].type)
14498 /* Output mapping symbols for linker generated sections,
14499 and for those data-only sections that do not have a
14503 elf32_arm_output_arch_local_syms (bfd *output_bfd,
14504 struct bfd_link_info *info,
14506 int (*func) (void *, const char *,
14507 Elf_Internal_Sym *,
14509 struct elf_link_hash_entry *))
14511 output_arch_syminfo osi;
14512 struct elf32_arm_link_hash_table *htab;
14514 bfd_size_type size;
14517 htab = elf32_arm_hash_table (info);
14521 check_use_blx (htab);
14527 /* Add a $d mapping symbol to data-only sections that
14528 don't have any mapping symbol. This may result in (harmless) redundant
14529 mapping symbols. */
14530 for (input_bfd = info->input_bfds;
14532 input_bfd = input_bfd->link_next)
14534 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
14535 for (osi.sec = input_bfd->sections;
14537 osi.sec = osi.sec->next)
14539 if (osi.sec->output_section != NULL
14540 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
14542 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
14543 == SEC_HAS_CONTENTS
14544 && get_arm_elf_section_data (osi.sec) != NULL
14545 && get_arm_elf_section_data (osi.sec)->mapcount == 0
14546 && osi.sec->size > 0
14547 && (osi.sec->flags & SEC_EXCLUDE) == 0)
14549 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14550 (output_bfd, osi.sec->output_section);
14551 if (osi.sec_shndx != (int)SHN_BAD)
14552 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
14557 /* ARM->Thumb glue. */
14558 if (htab->arm_glue_size > 0)
14560 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14561 ARM2THUMB_GLUE_SECTION_NAME);
14563 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14564 (output_bfd, osi.sec->output_section);
14565 if (info->shared || htab->root.is_relocatable_executable
14566 || htab->pic_veneer)
14567 size = ARM2THUMB_PIC_GLUE_SIZE;
14568 else if (htab->use_blx)
14569 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
14571 size = ARM2THUMB_STATIC_GLUE_SIZE;
14573 for (offset = 0; offset < htab->arm_glue_size; offset += size)
14575 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
14576 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
14580 /* Thumb->ARM glue. */
14581 if (htab->thumb_glue_size > 0)
14583 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14584 THUMB2ARM_GLUE_SECTION_NAME);
14586 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14587 (output_bfd, osi.sec->output_section);
14588 size = THUMB2ARM_GLUE_SIZE;
14590 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
14592 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
14593 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
14597 /* ARMv4 BX veneers. */
14598 if (htab->bx_glue_size > 0)
14600 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14601 ARM_BX_GLUE_SECTION_NAME);
14603 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14604 (output_bfd, osi.sec->output_section);
14606 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
14609 /* Long calls stubs. */
14610 if (htab->stub_bfd && htab->stub_bfd->sections)
14612 asection* stub_sec;
14614 for (stub_sec = htab->stub_bfd->sections;
14616 stub_sec = stub_sec->next)
14618 /* Ignore non-stub sections. */
14619 if (!strstr (stub_sec->name, STUB_SUFFIX))
14622 osi.sec = stub_sec;
14624 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14625 (output_bfd, osi.sec->output_section);
14627 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
14631 /* Finally, output mapping symbols for the PLT. */
14632 if (htab->root.splt && htab->root.splt->size > 0)
14634 osi.sec = htab->root.splt;
14635 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
14636 (output_bfd, osi.sec->output_section));
14638 /* Output mapping symbols for the plt header. SymbianOS does not have a
14640 if (htab->vxworks_p)
14642 /* VxWorks shared libraries have no PLT header. */
14645 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14647 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
14651 else if (!htab->symbian_p)
14653 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14655 #ifndef FOUR_WORD_PLT
14656 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
14661 if ((htab->root.splt && htab->root.splt->size > 0)
14662 || (htab->root.iplt && htab->root.iplt->size > 0))
14664 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
14665 for (input_bfd = info->input_bfds;
14667 input_bfd = input_bfd->link_next)
14669 struct arm_local_iplt_info **local_iplt;
14670 unsigned int i, num_syms;
14672 local_iplt = elf32_arm_local_iplt (input_bfd);
14673 if (local_iplt != NULL)
14675 num_syms = elf_symtab_hdr (input_bfd).sh_info;
14676 for (i = 0; i < num_syms; i++)
14677 if (local_iplt[i] != NULL
14678 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
14679 &local_iplt[i]->root,
14680 &local_iplt[i]->arm))
14685 if (htab->dt_tlsdesc_plt != 0)
14687 /* Mapping symbols for the lazy tls trampoline. */
14688 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
14691 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
14692 htab->dt_tlsdesc_plt + 24))
14695 if (htab->tls_trampoline != 0)
14697 /* Mapping symbols for the tls trampoline. */
14698 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
14700 #ifdef FOUR_WORD_PLT
14701 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
14702 htab->tls_trampoline + 12))
14710 /* Allocate target specific section data. */
14713 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
14715 if (!sec->used_by_bfd)
14717 _arm_elf_section_data *sdata;
14718 bfd_size_type amt = sizeof (*sdata);
14720 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
14723 sec->used_by_bfd = sdata;
14726 return _bfd_elf_new_section_hook (abfd, sec);
14730 /* Used to order a list of mapping symbols by address. */
14733 elf32_arm_compare_mapping (const void * a, const void * b)
14735 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
14736 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
14738 if (amap->vma > bmap->vma)
14740 else if (amap->vma < bmap->vma)
14742 else if (amap->type > bmap->type)
14743 /* Ensure results do not depend on the host qsort for objects with
14744 multiple mapping symbols at the same address by sorting on type
14747 else if (amap->type < bmap->type)
14753 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
14755 static unsigned long
14756 offset_prel31 (unsigned long addr, bfd_vma offset)
14758 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
14761 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
14765 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
14767 unsigned long first_word = bfd_get_32 (output_bfd, from);
14768 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
14770 /* High bit of first word is supposed to be zero. */
14771 if ((first_word & 0x80000000ul) == 0)
14772 first_word = offset_prel31 (first_word, offset);
14774 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
14775 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
14776 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
14777 second_word = offset_prel31 (second_word, offset);
14779 bfd_put_32 (output_bfd, first_word, to);
14780 bfd_put_32 (output_bfd, second_word, to + 4);
14783 /* Data for make_branch_to_a8_stub(). */
14785 struct a8_branch_to_stub_data {
14786 asection *writing_section;
14787 bfd_byte *contents;
14791 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
14792 places for a particular section. */
14795 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
14798 struct elf32_arm_stub_hash_entry *stub_entry;
14799 struct a8_branch_to_stub_data *data;
14800 bfd_byte *contents;
14801 unsigned long branch_insn;
14802 bfd_vma veneered_insn_loc, veneer_entry_loc;
14803 bfd_signed_vma branch_offset;
14805 unsigned int target;
14807 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14808 data = (struct a8_branch_to_stub_data *) in_arg;
14810 if (stub_entry->target_section != data->writing_section
14811 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
14814 contents = data->contents;
14816 veneered_insn_loc = stub_entry->target_section->output_section->vma
14817 + stub_entry->target_section->output_offset
14818 + stub_entry->target_value;
14820 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
14821 + stub_entry->stub_sec->output_offset
14822 + stub_entry->stub_offset;
14824 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
14825 veneered_insn_loc &= ~3u;
14827 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
14829 abfd = stub_entry->target_section->owner;
14830 target = stub_entry->target_value;
14832 /* We attempt to avoid this condition by setting stubs_always_after_branch
14833 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
14834 This check is just to be on the safe side... */
14835 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
14837 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
14838 "allocated in unsafe location"), abfd);
14842 switch (stub_entry->stub_type)
14844 case arm_stub_a8_veneer_b:
14845 case arm_stub_a8_veneer_b_cond:
14846 branch_insn = 0xf0009000;
14849 case arm_stub_a8_veneer_blx:
14850 branch_insn = 0xf000e800;
14853 case arm_stub_a8_veneer_bl:
14855 unsigned int i1, j1, i2, j2, s;
14857 branch_insn = 0xf000d000;
14860 if (branch_offset < -16777216 || branch_offset > 16777214)
14862 /* There's not much we can do apart from complain if this
14864 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
14865 "of range (input file too large)"), abfd);
14869 /* i1 = not(j1 eor s), so:
14871 j1 = (not i1) eor s. */
14873 branch_insn |= (branch_offset >> 1) & 0x7ff;
14874 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
14875 i2 = (branch_offset >> 22) & 1;
14876 i1 = (branch_offset >> 23) & 1;
14877 s = (branch_offset >> 24) & 1;
14880 branch_insn |= j2 << 11;
14881 branch_insn |= j1 << 13;
14882 branch_insn |= s << 26;
14891 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
14892 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
14897 /* Do code byteswapping. Return FALSE afterwards so that the section is
14898 written out as normal. */
14901 elf32_arm_write_section (bfd *output_bfd,
14902 struct bfd_link_info *link_info,
14904 bfd_byte *contents)
14906 unsigned int mapcount, errcount;
14907 _arm_elf_section_data *arm_data;
14908 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
14909 elf32_arm_section_map *map;
14910 elf32_vfp11_erratum_list *errnode;
14913 bfd_vma offset = sec->output_section->vma + sec->output_offset;
14917 if (globals == NULL)
14920 /* If this section has not been allocated an _arm_elf_section_data
14921 structure then we cannot record anything. */
14922 arm_data = get_arm_elf_section_data (sec);
14923 if (arm_data == NULL)
14926 mapcount = arm_data->mapcount;
14927 map = arm_data->map;
14928 errcount = arm_data->erratumcount;
14932 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
14934 for (errnode = arm_data->erratumlist; errnode != 0;
14935 errnode = errnode->next)
14937 bfd_vma target = errnode->vma - offset;
14939 switch (errnode->type)
14941 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
14943 bfd_vma branch_to_veneer;
14944 /* Original condition code of instruction, plus bit mask for
14945 ARM B instruction. */
14946 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
14949 /* The instruction is before the label. */
14952 /* Above offset included in -4 below. */
14953 branch_to_veneer = errnode->u.b.veneer->vma
14954 - errnode->vma - 4;
14956 if ((signed) branch_to_veneer < -(1 << 25)
14957 || (signed) branch_to_veneer >= (1 << 25))
14958 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
14959 "range"), output_bfd);
14961 insn |= (branch_to_veneer >> 2) & 0xffffff;
14962 contents[endianflip ^ target] = insn & 0xff;
14963 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
14964 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
14965 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
14969 case VFP11_ERRATUM_ARM_VENEER:
14971 bfd_vma branch_from_veneer;
14974 /* Take size of veneer into account. */
14975 branch_from_veneer = errnode->u.v.branch->vma
14976 - errnode->vma - 12;
14978 if ((signed) branch_from_veneer < -(1 << 25)
14979 || (signed) branch_from_veneer >= (1 << 25))
14980 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
14981 "range"), output_bfd);
14983 /* Original instruction. */
14984 insn = errnode->u.v.branch->u.b.vfp_insn;
14985 contents[endianflip ^ target] = insn & 0xff;
14986 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
14987 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
14988 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
14990 /* Branch back to insn after original insn. */
14991 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
14992 contents[endianflip ^ (target + 4)] = insn & 0xff;
14993 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
14994 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
14995 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
15005 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
15007 arm_unwind_table_edit *edit_node
15008 = arm_data->u.exidx.unwind_edit_list;
15009 /* Now, sec->size is the size of the section we will write. The original
15010 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
15011 markers) was sec->rawsize. (This isn't the case if we perform no
15012 edits, then rawsize will be zero and we should use size). */
15013 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
15014 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
15015 unsigned int in_index, out_index;
15016 bfd_vma add_to_offsets = 0;
15018 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
15022 unsigned int edit_index = edit_node->index;
15024 if (in_index < edit_index && in_index * 8 < input_size)
15026 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15027 contents + in_index * 8, add_to_offsets);
15031 else if (in_index == edit_index
15032 || (in_index * 8 >= input_size
15033 && edit_index == UINT_MAX))
15035 switch (edit_node->type)
15037 case DELETE_EXIDX_ENTRY:
15039 add_to_offsets += 8;
15042 case INSERT_EXIDX_CANTUNWIND_AT_END:
15044 asection *text_sec = edit_node->linked_section;
15045 bfd_vma text_offset = text_sec->output_section->vma
15046 + text_sec->output_offset
15048 bfd_vma exidx_offset = offset + out_index * 8;
15049 unsigned long prel31_offset;
15051 /* Note: this is meant to be equivalent to an
15052 R_ARM_PREL31 relocation. These synthetic
15053 EXIDX_CANTUNWIND markers are not relocated by the
15054 usual BFD method. */
15055 prel31_offset = (text_offset - exidx_offset)
15058 /* First address we can't unwind. */
15059 bfd_put_32 (output_bfd, prel31_offset,
15060 &edited_contents[out_index * 8]);
15062 /* Code for EXIDX_CANTUNWIND. */
15063 bfd_put_32 (output_bfd, 0x1,
15064 &edited_contents[out_index * 8 + 4]);
15067 add_to_offsets -= 8;
15072 edit_node = edit_node->next;
15077 /* No more edits, copy remaining entries verbatim. */
15078 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15079 contents + in_index * 8, add_to_offsets);
15085 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15086 bfd_set_section_contents (output_bfd, sec->output_section,
15088 (file_ptr) sec->output_offset, sec->size);
15093 /* Fix code to point to Cortex-A8 erratum stubs. */
15094 if (globals->fix_cortex_a8)
15096 struct a8_branch_to_stub_data data;
15098 data.writing_section = sec;
15099 data.contents = contents;
15101 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15108 if (globals->byteswap_code)
15110 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
15113 for (i = 0; i < mapcount; i++)
15115 if (i == mapcount - 1)
15118 end = map[i + 1].vma;
15120 switch (map[i].type)
15123 /* Byte swap code words. */
15124 while (ptr + 3 < end)
15126 tmp = contents[ptr];
15127 contents[ptr] = contents[ptr + 3];
15128 contents[ptr + 3] = tmp;
15129 tmp = contents[ptr + 1];
15130 contents[ptr + 1] = contents[ptr + 2];
15131 contents[ptr + 2] = tmp;
15137 /* Byte swap code halfwords. */
15138 while (ptr + 1 < end)
15140 tmp = contents[ptr];
15141 contents[ptr] = contents[ptr + 1];
15142 contents[ptr + 1] = tmp;
15148 /* Leave data alone. */
15156 arm_data->mapcount = -1;
15157 arm_data->mapsize = 0;
15158 arm_data->map = NULL;
15163 /* Mangle thumb function symbols as we read them in. */
15166 elf32_arm_swap_symbol_in (bfd * abfd,
15169 Elf_Internal_Sym *dst)
15171 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15174 /* New EABI objects mark thumb function symbols by setting the low bit of
15176 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
15177 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
15179 if (dst->st_value & 1)
15181 dst->st_value &= ~(bfd_vma) 1;
15182 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15185 dst->st_target_internal = ST_BRANCH_TO_ARM;
15187 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15189 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15190 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15192 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15193 dst->st_target_internal = ST_BRANCH_LONG;
15195 dst->st_target_internal = ST_BRANCH_UNKNOWN;
15201 /* Mangle thumb function symbols as we write them out. */
15204 elf32_arm_swap_symbol_out (bfd *abfd,
15205 const Elf_Internal_Sym *src,
15209 Elf_Internal_Sym newsym;
15211 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15212 of the address set, as per the new EABI. We do this unconditionally
15213 because objcopy does not set the elf header flags until after
15214 it writes out the symbol table. */
15215 if (src->st_target_internal == ST_BRANCH_TO_THUMB)
15218 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15219 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
15220 if (newsym.st_shndx != SHN_UNDEF)
15222 /* Do this only for defined symbols. At link type, the static
15223 linker will simulate the work of dynamic linker of resolving
15224 symbols and will carry over the thumbness of found symbols to
15225 the output symbol table. It's not clear how it happens, but
15226 the thumbness of undefined symbols can well be different at
15227 runtime, and writing '1' for them will be confusing for users
15228 and possibly for dynamic linker itself.
15230 newsym.st_value |= 1;
15235 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15238 /* Add the PT_ARM_EXIDX program header. */
15241 elf32_arm_modify_segment_map (bfd *abfd,
15242 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15244 struct elf_segment_map *m;
15247 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15248 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15250 /* If there is already a PT_ARM_EXIDX header, then we do not
15251 want to add another one. This situation arises when running
15252 "strip"; the input binary already has the header. */
15253 m = elf_tdata (abfd)->segment_map;
15254 while (m && m->p_type != PT_ARM_EXIDX)
15258 m = (struct elf_segment_map *)
15259 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
15262 m->p_type = PT_ARM_EXIDX;
15264 m->sections[0] = sec;
15266 m->next = elf_tdata (abfd)->segment_map;
15267 elf_tdata (abfd)->segment_map = m;
15274 /* We may add a PT_ARM_EXIDX program header. */
15277 elf32_arm_additional_program_headers (bfd *abfd,
15278 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15282 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15283 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15289 /* Hook called by the linker routine which adds symbols from an object
15293 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15294 Elf_Internal_Sym *sym, const char **namep,
15295 flagword *flagsp, asection **secp, bfd_vma *valp)
15297 if ((abfd->flags & DYNAMIC) == 0
15298 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
15299 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
15300 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
15302 if (elf32_arm_hash_table (info)->vxworks_p
15303 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15304 flagsp, secp, valp))
15310 /* We use this to override swap_symbol_in and swap_symbol_out. */
15311 const struct elf_size_info elf32_arm_size_info =
15313 sizeof (Elf32_External_Ehdr),
15314 sizeof (Elf32_External_Phdr),
15315 sizeof (Elf32_External_Shdr),
15316 sizeof (Elf32_External_Rel),
15317 sizeof (Elf32_External_Rela),
15318 sizeof (Elf32_External_Sym),
15319 sizeof (Elf32_External_Dyn),
15320 sizeof (Elf_External_Note),
15324 ELFCLASS32, EV_CURRENT,
15325 bfd_elf32_write_out_phdrs,
15326 bfd_elf32_write_shdrs_and_ehdr,
15327 bfd_elf32_checksum_contents,
15328 bfd_elf32_write_relocs,
15329 elf32_arm_swap_symbol_in,
15330 elf32_arm_swap_symbol_out,
15331 bfd_elf32_slurp_reloc_table,
15332 bfd_elf32_slurp_symbol_table,
15333 bfd_elf32_swap_dyn_in,
15334 bfd_elf32_swap_dyn_out,
15335 bfd_elf32_swap_reloc_in,
15336 bfd_elf32_swap_reloc_out,
15337 bfd_elf32_swap_reloca_in,
15338 bfd_elf32_swap_reloca_out
15341 #define ELF_ARCH bfd_arch_arm
15342 #define ELF_TARGET_ID ARM_ELF_DATA
15343 #define ELF_MACHINE_CODE EM_ARM
15344 #ifdef __QNXTARGET__
15345 #define ELF_MAXPAGESIZE 0x1000
15347 #define ELF_MAXPAGESIZE 0x8000
15349 #define ELF_MINPAGESIZE 0x1000
15350 #define ELF_COMMONPAGESIZE 0x1000
15352 #define bfd_elf32_mkobject elf32_arm_mkobject
15354 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
15355 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
15356 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
15357 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
15358 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
15359 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
15360 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
15361 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
15362 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
15363 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
15364 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
15365 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
15366 #define bfd_elf32_bfd_final_link elf32_arm_final_link
15368 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
15369 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
15370 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
15371 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
15372 #define elf_backend_check_relocs elf32_arm_check_relocs
15373 #define elf_backend_relocate_section elf32_arm_relocate_section
15374 #define elf_backend_write_section elf32_arm_write_section
15375 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
15376 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
15377 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
15378 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
15379 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
15380 #define elf_backend_always_size_sections elf32_arm_always_size_sections
15381 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
15382 #define elf_backend_post_process_headers elf32_arm_post_process_headers
15383 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
15384 #define elf_backend_object_p elf32_arm_object_p
15385 #define elf_backend_fake_sections elf32_arm_fake_sections
15386 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
15387 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15388 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
15389 #define elf_backend_size_info elf32_arm_size_info
15390 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15391 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
15392 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
15393 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
15394 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
15396 #define elf_backend_can_refcount 1
15397 #define elf_backend_can_gc_sections 1
15398 #define elf_backend_plt_readonly 1
15399 #define elf_backend_want_got_plt 1
15400 #define elf_backend_want_plt_sym 0
15401 #define elf_backend_may_use_rel_p 1
15402 #define elf_backend_may_use_rela_p 0
15403 #define elf_backend_default_use_rela_p 0
15405 #define elf_backend_got_header_size 12
15407 #undef elf_backend_obj_attrs_vendor
15408 #define elf_backend_obj_attrs_vendor "aeabi"
15409 #undef elf_backend_obj_attrs_section
15410 #define elf_backend_obj_attrs_section ".ARM.attributes"
15411 #undef elf_backend_obj_attrs_arg_type
15412 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
15413 #undef elf_backend_obj_attrs_section_type
15414 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
15415 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
15416 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
15418 #include "elf32-target.h"
15420 /* VxWorks Targets. */
15422 #undef TARGET_LITTLE_SYM
15423 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
15424 #undef TARGET_LITTLE_NAME
15425 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
15426 #undef TARGET_BIG_SYM
15427 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
15428 #undef TARGET_BIG_NAME
15429 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
15431 /* Like elf32_arm_link_hash_table_create -- but overrides
15432 appropriately for VxWorks. */
15434 static struct bfd_link_hash_table *
15435 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
15437 struct bfd_link_hash_table *ret;
15439 ret = elf32_arm_link_hash_table_create (abfd);
15442 struct elf32_arm_link_hash_table *htab
15443 = (struct elf32_arm_link_hash_table *) ret;
15445 htab->vxworks_p = 1;
15451 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
15453 elf32_arm_final_write_processing (abfd, linker);
15454 elf_vxworks_final_write_processing (abfd, linker);
15458 #define elf32_bed elf32_arm_vxworks_bed
15460 #undef bfd_elf32_bfd_link_hash_table_create
15461 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
15462 #undef elf_backend_final_write_processing
15463 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
15464 #undef elf_backend_emit_relocs
15465 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
15467 #undef elf_backend_may_use_rel_p
15468 #define elf_backend_may_use_rel_p 0
15469 #undef elf_backend_may_use_rela_p
15470 #define elf_backend_may_use_rela_p 1
15471 #undef elf_backend_default_use_rela_p
15472 #define elf_backend_default_use_rela_p 1
15473 #undef elf_backend_want_plt_sym
15474 #define elf_backend_want_plt_sym 1
15475 #undef ELF_MAXPAGESIZE
15476 #define ELF_MAXPAGESIZE 0x1000
15478 #include "elf32-target.h"
15481 /* Merge backend specific data from an object file to the output
15482 object file when linking. */
15485 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
15487 flagword out_flags;
15489 bfd_boolean flags_compatible = TRUE;
15492 /* Check if we have the same endianness. */
15493 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15496 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
15499 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
15502 /* The input BFD must have had its flags initialised. */
15503 /* The following seems bogus to me -- The flags are initialized in
15504 the assembler but I don't think an elf_flags_init field is
15505 written into the object. */
15506 /* BFD_ASSERT (elf_flags_init (ibfd)); */
15508 in_flags = elf_elfheader (ibfd)->e_flags;
15509 out_flags = elf_elfheader (obfd)->e_flags;
15511 /* In theory there is no reason why we couldn't handle this. However
15512 in practice it isn't even close to working and there is no real
15513 reason to want it. */
15514 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
15515 && !(ibfd->flags & DYNAMIC)
15516 && (in_flags & EF_ARM_BE8))
15518 _bfd_error_handler (_("error: %B is already in final BE8 format"),
15523 if (!elf_flags_init (obfd))
15525 /* If the input is the default architecture and had the default
15526 flags then do not bother setting the flags for the output
15527 architecture, instead allow future merges to do this. If no
15528 future merges ever set these flags then they will retain their
15529 uninitialised values, which surprise surprise, correspond
15530 to the default values. */
15531 if (bfd_get_arch_info (ibfd)->the_default
15532 && elf_elfheader (ibfd)->e_flags == 0)
15535 elf_flags_init (obfd) = TRUE;
15536 elf_elfheader (obfd)->e_flags = in_flags;
15538 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15539 && bfd_get_arch_info (obfd)->the_default)
15540 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
15545 /* Determine what should happen if the input ARM architecture
15546 does not match the output ARM architecture. */
15547 if (! bfd_arm_merge_machines (ibfd, obfd))
15550 /* Identical flags must be compatible. */
15551 if (in_flags == out_flags)
15554 /* Check to see if the input BFD actually contains any sections. If
15555 not, its flags may not have been initialised either, but it
15556 cannot actually cause any incompatiblity. Do not short-circuit
15557 dynamic objects; their section list may be emptied by
15558 elf_link_add_object_symbols.
15560 Also check to see if there are no code sections in the input.
15561 In this case there is no need to check for code specific flags.
15562 XXX - do we need to worry about floating-point format compatability
15563 in data sections ? */
15564 if (!(ibfd->flags & DYNAMIC))
15566 bfd_boolean null_input_bfd = TRUE;
15567 bfd_boolean only_data_sections = TRUE;
15569 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15571 /* Ignore synthetic glue sections. */
15572 if (strcmp (sec->name, ".glue_7")
15573 && strcmp (sec->name, ".glue_7t"))
15575 if ((bfd_get_section_flags (ibfd, sec)
15576 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15577 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15578 only_data_sections = FALSE;
15580 null_input_bfd = FALSE;
15585 if (null_input_bfd || only_data_sections)
15589 /* Complain about various flag mismatches. */
15590 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
15591 EF_ARM_EABI_VERSION (out_flags)))
15594 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
15596 (in_flags & EF_ARM_EABIMASK) >> 24,
15597 (out_flags & EF_ARM_EABIMASK) >> 24);
15601 /* Not sure what needs to be checked for EABI versions >= 1. */
15602 /* VxWorks libraries do not use these flags. */
15603 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
15604 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
15605 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
15607 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
15610 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
15612 in_flags & EF_ARM_APCS_26 ? 26 : 32,
15613 out_flags & EF_ARM_APCS_26 ? 26 : 32);
15614 flags_compatible = FALSE;
15617 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
15619 if (in_flags & EF_ARM_APCS_FLOAT)
15621 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
15625 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
15628 flags_compatible = FALSE;
15631 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
15633 if (in_flags & EF_ARM_VFP_FLOAT)
15635 (_("error: %B uses VFP instructions, whereas %B does not"),
15639 (_("error: %B uses FPA instructions, whereas %B does not"),
15642 flags_compatible = FALSE;
15645 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
15647 if (in_flags & EF_ARM_MAVERICK_FLOAT)
15649 (_("error: %B uses Maverick instructions, whereas %B does not"),
15653 (_("error: %B does not use Maverick instructions, whereas %B does"),
15656 flags_compatible = FALSE;
15659 #ifdef EF_ARM_SOFT_FLOAT
15660 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
15662 /* We can allow interworking between code that is VFP format
15663 layout, and uses either soft float or integer regs for
15664 passing floating point arguments and results. We already
15665 know that the APCS_FLOAT flags match; similarly for VFP
15667 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
15668 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
15670 if (in_flags & EF_ARM_SOFT_FLOAT)
15672 (_("error: %B uses software FP, whereas %B uses hardware FP"),
15676 (_("error: %B uses hardware FP, whereas %B uses software FP"),
15679 flags_compatible = FALSE;
15684 /* Interworking mismatch is only a warning. */
15685 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
15687 if (in_flags & EF_ARM_INTERWORK)
15690 (_("Warning: %B supports interworking, whereas %B does not"),
15696 (_("Warning: %B does not support interworking, whereas %B does"),
15702 return flags_compatible;
15706 /* Symbian OS Targets. */
15708 #undef TARGET_LITTLE_SYM
15709 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
15710 #undef TARGET_LITTLE_NAME
15711 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
15712 #undef TARGET_BIG_SYM
15713 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
15714 #undef TARGET_BIG_NAME
15715 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
15717 /* Like elf32_arm_link_hash_table_create -- but overrides
15718 appropriately for Symbian OS. */
15720 static struct bfd_link_hash_table *
15721 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
15723 struct bfd_link_hash_table *ret;
15725 ret = elf32_arm_link_hash_table_create (abfd);
15728 struct elf32_arm_link_hash_table *htab
15729 = (struct elf32_arm_link_hash_table *)ret;
15730 /* There is no PLT header for Symbian OS. */
15731 htab->plt_header_size = 0;
15732 /* The PLT entries are each one instruction and one word. */
15733 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
15734 htab->symbian_p = 1;
15735 /* Symbian uses armv5t or above, so use_blx is always true. */
15737 htab->root.is_relocatable_executable = 1;
15742 static const struct bfd_elf_special_section
15743 elf32_arm_symbian_special_sections[] =
15745 /* In a BPABI executable, the dynamic linking sections do not go in
15746 the loadable read-only segment. The post-linker may wish to
15747 refer to these sections, but they are not part of the final
15749 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
15750 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
15751 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
15752 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
15753 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
15754 /* These sections do not need to be writable as the SymbianOS
15755 postlinker will arrange things so that no dynamic relocation is
15757 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
15758 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
15759 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
15760 { NULL, 0, 0, 0, 0 }
15764 elf32_arm_symbian_begin_write_processing (bfd *abfd,
15765 struct bfd_link_info *link_info)
15767 /* BPABI objects are never loaded directly by an OS kernel; they are
15768 processed by a postlinker first, into an OS-specific format. If
15769 the D_PAGED bit is set on the file, BFD will align segments on
15770 page boundaries, so that an OS can directly map the file. With
15771 BPABI objects, that just results in wasted space. In addition,
15772 because we clear the D_PAGED bit, map_sections_to_segments will
15773 recognize that the program headers should not be mapped into any
15774 loadable segment. */
15775 abfd->flags &= ~D_PAGED;
15776 elf32_arm_begin_write_processing (abfd, link_info);
15780 elf32_arm_symbian_modify_segment_map (bfd *abfd,
15781 struct bfd_link_info *info)
15783 struct elf_segment_map *m;
15786 /* BPABI shared libraries and executables should have a PT_DYNAMIC
15787 segment. However, because the .dynamic section is not marked
15788 with SEC_LOAD, the generic ELF code will not create such a
15790 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
15793 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
15794 if (m->p_type == PT_DYNAMIC)
15799 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
15800 m->next = elf_tdata (abfd)->segment_map;
15801 elf_tdata (abfd)->segment_map = m;
15805 /* Also call the generic arm routine. */
15806 return elf32_arm_modify_segment_map (abfd, info);
15809 /* Return address for Ith PLT stub in section PLT, for relocation REL
15810 or (bfd_vma) -1 if it should not be included. */
15813 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
15814 const arelent *rel ATTRIBUTE_UNUSED)
15816 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
15821 #define elf32_bed elf32_arm_symbian_bed
15823 /* The dynamic sections are not allocated on SymbianOS; the postlinker
15824 will process them and then discard them. */
15825 #undef ELF_DYNAMIC_SEC_FLAGS
15826 #define ELF_DYNAMIC_SEC_FLAGS \
15827 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
15829 #undef elf_backend_emit_relocs
15831 #undef bfd_elf32_bfd_link_hash_table_create
15832 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
15833 #undef elf_backend_special_sections
15834 #define elf_backend_special_sections elf32_arm_symbian_special_sections
15835 #undef elf_backend_begin_write_processing
15836 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
15837 #undef elf_backend_final_write_processing
15838 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15840 #undef elf_backend_modify_segment_map
15841 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
15843 /* There is no .got section for BPABI objects, and hence no header. */
15844 #undef elf_backend_got_header_size
15845 #define elf_backend_got_header_size 0
15847 /* Similarly, there is no .got.plt section. */
15848 #undef elf_backend_want_got_plt
15849 #define elf_backend_want_got_plt 0
15851 #undef elf_backend_plt_sym_val
15852 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
15854 #undef elf_backend_may_use_rel_p
15855 #define elf_backend_may_use_rel_p 1
15856 #undef elf_backend_may_use_rela_p
15857 #define elf_backend_may_use_rela_p 0
15858 #undef elf_backend_default_use_rela_p
15859 #define elf_backend_default_use_rela_p 0
15860 #undef elf_backend_want_plt_sym
15861 #define elf_backend_want_plt_sym 0
15862 #undef ELF_MAXPAGESIZE
15863 #define ELF_MAXPAGESIZE 0x8000
15865 #include "elf32-target.h"