1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2016 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
30 #include "elf-vxworks.h"
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
77 static reloc_howto_type elf32_arm_howto_table_1[] =
80 HOWTO (R_ARM_NONE, /* type */
82 3, /* size (0 = byte, 1 = short, 2 = long) */
84 FALSE, /* pc_relative */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
92 FALSE), /* pcrel_offset */
94 HOWTO (R_ARM_PC24, /* type */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
98 TRUE, /* pc_relative */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
113 FALSE, /* pc_relative */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
128 TRUE, /* pc_relative */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
143 TRUE, /* pc_relative */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
158 FALSE, /* pc_relative */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
173 FALSE, /* pc_relative */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
183 HOWTO (R_ARM_THM_ABS5, /* type */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
187 FALSE, /* pc_relative */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
198 HOWTO (R_ARM_ABS8, /* type */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
202 FALSE, /* pc_relative */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
212 HOWTO (R_ARM_SBREL32, /* type */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
216 FALSE, /* pc_relative */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
226 HOWTO (R_ARM_THM_CALL, /* type */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
230 TRUE, /* pc_relative */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
240 HOWTO (R_ARM_THM_PC8, /* type */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
244 TRUE, /* pc_relative */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
254 HOWTO (R_ARM_BREL_ADJ, /* type */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
258 FALSE, /* pc_relative */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
268 HOWTO (R_ARM_TLS_DESC, /* type */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
272 FALSE, /* pc_relative */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
282 HOWTO (R_ARM_THM_SWI8, /* type */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
286 FALSE, /* pc_relative */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
301 TRUE, /* pc_relative */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
316 TRUE, /* pc_relative */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
326 /* Dynamic TLS relocations. */
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
332 FALSE, /* pc_relative */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
346 FALSE, /* pc_relative */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
360 FALSE, /* pc_relative */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
370 /* Relocs used in ARM Linux */
372 HOWTO (R_ARM_COPY, /* type */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
376 FALSE, /* pc_relative */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
386 HOWTO (R_ARM_GLOB_DAT, /* type */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
390 FALSE, /* pc_relative */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
404 FALSE, /* pc_relative */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
414 HOWTO (R_ARM_RELATIVE, /* type */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
418 FALSE, /* pc_relative */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
428 HOWTO (R_ARM_GOTOFF32, /* type */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
432 FALSE, /* pc_relative */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
442 HOWTO (R_ARM_GOTPC, /* type */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
446 TRUE, /* pc_relative */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
456 HOWTO (R_ARM_GOT32, /* type */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
460 FALSE, /* pc_relative */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
470 HOWTO (R_ARM_PLT32, /* type */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
474 TRUE, /* pc_relative */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
484 HOWTO (R_ARM_CALL, /* type */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
488 TRUE, /* pc_relative */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
498 HOWTO (R_ARM_JUMP24, /* type */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
502 TRUE, /* pc_relative */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
512 HOWTO (R_ARM_THM_JUMP24, /* type */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
516 TRUE, /* pc_relative */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
526 HOWTO (R_ARM_BASE_ABS, /* type */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
530 FALSE, /* pc_relative */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
544 TRUE, /* pc_relative */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
558 TRUE, /* pc_relative */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
572 TRUE, /* pc_relative */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
586 FALSE, /* pc_relative */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
600 FALSE, /* pc_relative */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
614 FALSE, /* pc_relative */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
624 HOWTO (R_ARM_TARGET1, /* type */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
628 FALSE, /* pc_relative */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
638 HOWTO (R_ARM_ROSEGREL32, /* type */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
642 FALSE, /* pc_relative */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
652 HOWTO (R_ARM_V4BX, /* type */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
656 FALSE, /* pc_relative */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
666 HOWTO (R_ARM_TARGET2, /* type */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
670 FALSE, /* pc_relative */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
680 HOWTO (R_ARM_PREL31, /* type */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
684 TRUE, /* pc_relative */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
698 FALSE, /* pc_relative */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
708 HOWTO (R_ARM_MOVT_ABS, /* type */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
712 FALSE, /* pc_relative */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
726 TRUE, /* pc_relative */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
736 HOWTO (R_ARM_MOVT_PREL, /* type */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
740 TRUE, /* pc_relative */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
754 FALSE, /* pc_relative */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
768 FALSE, /* pc_relative */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
782 TRUE, /* pc_relative */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
796 TRUE, /* pc_relative */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
806 HOWTO (R_ARM_THM_JUMP19, /* type */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
810 TRUE, /* pc_relative */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
820 HOWTO (R_ARM_THM_JUMP6, /* type */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
824 TRUE, /* pc_relative */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
841 TRUE, /* pc_relative */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
851 HOWTO (R_ARM_THM_PC12, /* type */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
855 TRUE, /* pc_relative */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
865 HOWTO (R_ARM_ABS32_NOI, /* type */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
869 FALSE, /* pc_relative */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
879 HOWTO (R_ARM_REL32_NOI, /* type */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
883 TRUE, /* pc_relative */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
893 /* Group relocations. */
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
899 TRUE, /* pc_relative */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
913 TRUE, /* pc_relative */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
927 TRUE, /* pc_relative */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
941 TRUE, /* pc_relative */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
955 TRUE, /* pc_relative */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
969 TRUE, /* pc_relative */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
983 TRUE, /* pc_relative */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
997 TRUE, /* pc_relative */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1011 TRUE, /* pc_relative */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1025 TRUE, /* pc_relative */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1039 TRUE, /* pc_relative */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1053 TRUE, /* pc_relative */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 TRUE, /* pc_relative */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1081 TRUE, /* pc_relative */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1095 TRUE, /* pc_relative */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 TRUE, /* pc_relative */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1123 TRUE, /* pc_relative */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1137 TRUE, /* pc_relative */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1151 TRUE, /* pc_relative */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1165 TRUE, /* pc_relative */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1179 TRUE, /* pc_relative */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1193 TRUE, /* pc_relative */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1207 TRUE, /* pc_relative */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1221 TRUE, /* pc_relative */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1235 TRUE, /* pc_relative */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1249 TRUE, /* pc_relative */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1263 TRUE, /* pc_relative */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1273 /* End of group relocations. */
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1279 FALSE, /* pc_relative */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1293 FALSE, /* pc_relative */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1307 FALSE, /* pc_relative */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1321 FALSE, /* pc_relative */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1335 FALSE, /* pc_relative */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 FALSE, /* pc_relative */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 FALSE, /* pc_relative */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 FALSE, /* pc_relative */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1391 FALSE, /* pc_relative */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1405 FALSE, /* pc_relative */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1419 FALSE, /* pc_relative */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1433 FALSE, /* pc_relative */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 TRUE, /* pc_relative */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1461 FALSE, /* pc_relative */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1475 FALSE, /* pc_relative */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 FALSE, /* pc_relative */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1500 FALSE), /* pcrel_offset */
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 FALSE, /* pc_relative */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1515 FALSE), /* pcrel_offset */
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1521 TRUE, /* pc_relative */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1535 TRUE, /* pc_relative */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1550 FALSE, /* pc_relative */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 FALSE, /* pc_relative */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 FALSE, /* pc_relative */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1592 FALSE, /* pc_relative */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1606 FALSE, /* pc_relative */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 NULL, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1620 FALSE, /* pc_relative */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1634 FALSE, /* pc_relative */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1648 FALSE, /* pc_relative */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1658 /* 112-127 private relocations. */
1676 /* R_ARM_ME_TOO, obsolete. */
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1683 FALSE, /* pc_relative */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1694 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1695 0, /* rightshift. */
1696 1, /* size (0 = byte, 1 = short, 2 = long). */
1698 FALSE, /* pc_relative. */
1700 complain_overflow_bitfield,/* complain_on_overflow. */
1701 bfd_elf_generic_reloc, /* special_function. */
1702 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1703 FALSE, /* partial_inplace. */
1704 0x00000000, /* src_mask. */
1705 0x00000000, /* dst_mask. */
1706 FALSE), /* pcrel_offset. */
1707 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1708 0, /* rightshift. */
1709 1, /* size (0 = byte, 1 = short, 2 = long). */
1711 FALSE, /* pc_relative. */
1713 complain_overflow_bitfield,/* complain_on_overflow. */
1714 bfd_elf_generic_reloc, /* special_function. */
1715 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1716 FALSE, /* partial_inplace. */
1717 0x00000000, /* src_mask. */
1718 0x00000000, /* dst_mask. */
1719 FALSE), /* pcrel_offset. */
1720 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1721 0, /* rightshift. */
1722 1, /* size (0 = byte, 1 = short, 2 = long). */
1724 FALSE, /* pc_relative. */
1726 complain_overflow_bitfield,/* complain_on_overflow. */
1727 bfd_elf_generic_reloc, /* special_function. */
1728 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1729 FALSE, /* partial_inplace. */
1730 0x00000000, /* src_mask. */
1731 0x00000000, /* dst_mask. */
1732 FALSE), /* pcrel_offset. */
1733 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1734 0, /* rightshift. */
1735 1, /* size (0 = byte, 1 = short, 2 = long). */
1737 FALSE, /* pc_relative. */
1739 complain_overflow_bitfield,/* complain_on_overflow. */
1740 bfd_elf_generic_reloc, /* special_function. */
1741 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1742 FALSE, /* partial_inplace. */
1743 0x00000000, /* src_mask. */
1744 0x00000000, /* dst_mask. */
1745 FALSE), /* pcrel_offset. */
1749 static reloc_howto_type elf32_arm_howto_table_2[1] =
1751 HOWTO (R_ARM_IRELATIVE, /* type */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1755 FALSE, /* pc_relative */
1757 complain_overflow_bitfield,/* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 "R_ARM_IRELATIVE", /* name */
1760 TRUE, /* partial_inplace */
1761 0xffffffff, /* src_mask */
1762 0xffffffff, /* dst_mask */
1763 FALSE) /* pcrel_offset */
1766 /* 249-255 extended, currently unused, relocations: */
1767 static reloc_howto_type elf32_arm_howto_table_3[4] =
1769 HOWTO (R_ARM_RREL32, /* type */
1771 0, /* size (0 = byte, 1 = short, 2 = long) */
1773 FALSE, /* pc_relative */
1775 complain_overflow_dont,/* complain_on_overflow */
1776 bfd_elf_generic_reloc, /* special_function */
1777 "R_ARM_RREL32", /* name */
1778 FALSE, /* partial_inplace */
1781 FALSE), /* pcrel_offset */
1783 HOWTO (R_ARM_RABS32, /* type */
1785 0, /* size (0 = byte, 1 = short, 2 = long) */
1787 FALSE, /* pc_relative */
1789 complain_overflow_dont,/* complain_on_overflow */
1790 bfd_elf_generic_reloc, /* special_function */
1791 "R_ARM_RABS32", /* name */
1792 FALSE, /* partial_inplace */
1795 FALSE), /* pcrel_offset */
1797 HOWTO (R_ARM_RPC24, /* type */
1799 0, /* size (0 = byte, 1 = short, 2 = long) */
1801 FALSE, /* pc_relative */
1803 complain_overflow_dont,/* complain_on_overflow */
1804 bfd_elf_generic_reloc, /* special_function */
1805 "R_ARM_RPC24", /* name */
1806 FALSE, /* partial_inplace */
1809 FALSE), /* pcrel_offset */
1811 HOWTO (R_ARM_RBASE, /* type */
1813 0, /* size (0 = byte, 1 = short, 2 = long) */
1815 FALSE, /* pc_relative */
1817 complain_overflow_dont,/* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 "R_ARM_RBASE", /* name */
1820 FALSE, /* partial_inplace */
1823 FALSE) /* pcrel_offset */
1826 static reloc_howto_type *
1827 elf32_arm_howto_from_type (unsigned int r_type)
1829 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1830 return &elf32_arm_howto_table_1[r_type];
1832 if (r_type == R_ARM_IRELATIVE)
1833 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1835 if (r_type >= R_ARM_RREL32
1836 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1837 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1843 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1844 Elf_Internal_Rela * elf_reloc)
1846 unsigned int r_type;
1848 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1849 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1852 struct elf32_arm_reloc_map
1854 bfd_reloc_code_real_type bfd_reloc_val;
1855 unsigned char elf_reloc_val;
1858 /* All entries in this list must also be present in elf32_arm_howto_table. */
1859 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1861 {BFD_RELOC_NONE, R_ARM_NONE},
1862 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1863 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1864 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1865 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1866 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1867 {BFD_RELOC_32, R_ARM_ABS32},
1868 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1869 {BFD_RELOC_8, R_ARM_ABS8},
1870 {BFD_RELOC_16, R_ARM_ABS16},
1871 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1872 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1873 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1874 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1875 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1876 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1877 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1878 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1879 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1880 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1881 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1882 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1883 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1884 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1885 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1886 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1887 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1888 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1889 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1890 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1891 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1892 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1893 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1894 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1895 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1896 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1897 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1898 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1899 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1900 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1901 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1902 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1903 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1904 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1905 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1906 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1907 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1908 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1909 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1910 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1911 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1912 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1913 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1914 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1915 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1916 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1917 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1918 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1919 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1920 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1921 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1922 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1923 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1924 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1925 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1926 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1927 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1928 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1929 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1930 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1931 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1932 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1933 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1934 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1935 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1936 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1937 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1938 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1939 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1940 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1941 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1942 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1943 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1944 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1945 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1946 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
1947 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
1948 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
1949 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
1950 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}
1953 static reloc_howto_type *
1954 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1955 bfd_reloc_code_real_type code)
1959 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1960 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1961 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1966 static reloc_howto_type *
1967 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1972 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1973 if (elf32_arm_howto_table_1[i].name != NULL
1974 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1975 return &elf32_arm_howto_table_1[i];
1977 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1978 if (elf32_arm_howto_table_2[i].name != NULL
1979 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1980 return &elf32_arm_howto_table_2[i];
1982 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1983 if (elf32_arm_howto_table_3[i].name != NULL
1984 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1985 return &elf32_arm_howto_table_3[i];
1990 /* Support for core dump NOTE sections. */
1993 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1998 switch (note->descsz)
2003 case 148: /* Linux/ARM 32-bit. */
2005 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2008 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2017 /* Make a ".reg/999" section. */
2018 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2019 size, note->descpos + offset);
2023 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2025 switch (note->descsz)
2030 case 124: /* Linux/ARM elf_prpsinfo. */
2031 elf_tdata (abfd)->core->pid
2032 = bfd_get_32 (abfd, note->descdata + 12);
2033 elf_tdata (abfd)->core->program
2034 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2035 elf_tdata (abfd)->core->command
2036 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2039 /* Note that for some reason, a spurious space is tacked
2040 onto the end of the args in some (at least one anyway)
2041 implementations, so strip it off if it exists. */
2043 char *command = elf_tdata (abfd)->core->command;
2044 int n = strlen (command);
2046 if (0 < n && command[n - 1] == ' ')
2047 command[n - 1] = '\0';
2054 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2067 va_start (ap, note_type);
2068 memset (data, 0, sizeof (data));
2069 strncpy (data + 28, va_arg (ap, const char *), 16);
2070 strncpy (data + 44, va_arg (ap, const char *), 80);
2073 return elfcore_write_note (abfd, buf, bufsiz,
2074 "CORE", note_type, data, sizeof (data));
2085 va_start (ap, note_type);
2086 memset (data, 0, sizeof (data));
2087 pid = va_arg (ap, long);
2088 bfd_put_32 (abfd, pid, data + 24);
2089 cursig = va_arg (ap, int);
2090 bfd_put_16 (abfd, cursig, data + 12);
2091 greg = va_arg (ap, const void *);
2092 memcpy (data + 72, greg, 72);
2095 return elfcore_write_note (abfd, buf, bufsiz,
2096 "CORE", note_type, data, sizeof (data));
2101 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2102 #define TARGET_LITTLE_NAME "elf32-littlearm"
2103 #define TARGET_BIG_SYM arm_elf32_be_vec
2104 #define TARGET_BIG_NAME "elf32-bigarm"
2106 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2107 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2108 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2110 typedef unsigned long int insn32;
2111 typedef unsigned short int insn16;
2113 /* In lieu of proper flags, assume all EABIv4 or later objects are
2115 #define INTERWORK_FLAG(abfd) \
2116 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2117 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2118 || ((abfd)->flags & BFD_LINKER_CREATED))
2120 /* The linker script knows the section names for placement.
2121 The entry_names are used to do simple name mangling on the stubs.
2122 Given a function name, and its type, the stub can be found. The
2123 name can be changed. The only requirement is the %s be present. */
2124 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2125 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2127 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2128 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2130 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2131 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2133 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2134 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2136 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2137 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2139 #define STUB_ENTRY_NAME "__%s_veneer"
2141 /* The name of the dynamic interpreter. This is put in the .interp
2143 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2145 static const unsigned long tls_trampoline [] =
2147 0xe08e0000, /* add r0, lr, r0 */
2148 0xe5901004, /* ldr r1, [r0,#4] */
2149 0xe12fff11, /* bx r1 */
2152 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2154 0xe52d2004, /* push {r2} */
2155 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2156 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2157 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2158 0xe081100f, /* 2: add r1, pc */
2159 0xe12fff12, /* bx r2 */
2160 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2161 + dl_tlsdesc_lazy_resolver(GOT) */
2162 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2165 #ifdef FOUR_WORD_PLT
2167 /* The first entry in a procedure linkage table looks like
2168 this. It is set up so that any shared library function that is
2169 called before the relocation has been set up calls the dynamic
2171 static const bfd_vma elf32_arm_plt0_entry [] =
2173 0xe52de004, /* str lr, [sp, #-4]! */
2174 0xe59fe010, /* ldr lr, [pc, #16] */
2175 0xe08fe00e, /* add lr, pc, lr */
2176 0xe5bef008, /* ldr pc, [lr, #8]! */
2179 /* Subsequent entries in a procedure linkage table look like
2181 static const bfd_vma elf32_arm_plt_entry [] =
2183 0xe28fc600, /* add ip, pc, #NN */
2184 0xe28cca00, /* add ip, ip, #NN */
2185 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2186 0x00000000, /* unused */
2189 #else /* not FOUR_WORD_PLT */
2191 /* The first entry in a procedure linkage table looks like
2192 this. It is set up so that any shared library function that is
2193 called before the relocation has been set up calls the dynamic
2195 static const bfd_vma elf32_arm_plt0_entry [] =
2197 0xe52de004, /* str lr, [sp, #-4]! */
2198 0xe59fe004, /* ldr lr, [pc, #4] */
2199 0xe08fe00e, /* add lr, pc, lr */
2200 0xe5bef008, /* ldr pc, [lr, #8]! */
2201 0x00000000, /* &GOT[0] - . */
2204 /* By default subsequent entries in a procedure linkage table look like
2205 this. Offsets that don't fit into 28 bits will cause link error. */
2206 static const bfd_vma elf32_arm_plt_entry_short [] =
2208 0xe28fc600, /* add ip, pc, #0xNN00000 */
2209 0xe28cca00, /* add ip, ip, #0xNN000 */
2210 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2213 /* When explicitly asked, we'll use this "long" entry format
2214 which can cope with arbitrary displacements. */
2215 static const bfd_vma elf32_arm_plt_entry_long [] =
2217 0xe28fc200, /* add ip, pc, #0xN0000000 */
2218 0xe28cc600, /* add ip, ip, #0xNN00000 */
2219 0xe28cca00, /* add ip, ip, #0xNN000 */
2220 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2223 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2225 #endif /* not FOUR_WORD_PLT */
2227 /* The first entry in a procedure linkage table looks like this.
2228 It is set up so that any shared library function that is called before the
2229 relocation has been set up calls the dynamic linker first. */
2230 static const bfd_vma elf32_thumb2_plt0_entry [] =
2232 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2233 an instruction maybe encoded to one or two array elements. */
2234 0xf8dfb500, /* push {lr} */
2235 0x44fee008, /* ldr.w lr, [pc, #8] */
2237 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2238 0x00000000, /* &GOT[0] - . */
2241 /* Subsequent entries in a procedure linkage table for thumb only target
2243 static const bfd_vma elf32_thumb2_plt_entry [] =
2245 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2246 an instruction maybe encoded to one or two array elements. */
2247 0x0c00f240, /* movw ip, #0xNNNN */
2248 0x0c00f2c0, /* movt ip, #0xNNNN */
2249 0xf8dc44fc, /* add ip, pc */
2250 0xbf00f000 /* ldr.w pc, [ip] */
2254 /* The format of the first entry in the procedure linkage table
2255 for a VxWorks executable. */
2256 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2258 0xe52dc008, /* str ip,[sp,#-8]! */
2259 0xe59fc000, /* ldr ip,[pc] */
2260 0xe59cf008, /* ldr pc,[ip,#8] */
2261 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2264 /* The format of subsequent entries in a VxWorks executable. */
2265 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2267 0xe59fc000, /* ldr ip,[pc] */
2268 0xe59cf000, /* ldr pc,[ip] */
2269 0x00000000, /* .long @got */
2270 0xe59fc000, /* ldr ip,[pc] */
2271 0xea000000, /* b _PLT */
2272 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2275 /* The format of entries in a VxWorks shared library. */
2276 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2278 0xe59fc000, /* ldr ip,[pc] */
2279 0xe79cf009, /* ldr pc,[ip,r9] */
2280 0x00000000, /* .long @got */
2281 0xe59fc000, /* ldr ip,[pc] */
2282 0xe599f008, /* ldr pc,[r9,#8] */
2283 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2286 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2287 #define PLT_THUMB_STUB_SIZE 4
2288 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2294 /* The entries in a PLT when using a DLL-based target with multiple
2296 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2298 0xe51ff004, /* ldr pc, [pc, #-4] */
2299 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2302 /* The first entry in a procedure linkage table looks like
2303 this. It is set up so that any shared library function that is
2304 called before the relocation has been set up calls the dynamic
2306 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2309 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2310 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2311 0xe08cc00f, /* add ip, ip, pc */
2312 0xe52dc008, /* str ip, [sp, #-8]! */
2313 /* Second bundle: */
2314 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2315 0xe59cc000, /* ldr ip, [ip] */
2316 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2317 0xe12fff1c, /* bx ip */
2319 0xe320f000, /* nop */
2320 0xe320f000, /* nop */
2321 0xe320f000, /* nop */
2323 0xe50dc004, /* str ip, [sp, #-4] */
2324 /* Fourth bundle: */
2325 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2326 0xe59cc000, /* ldr ip, [ip] */
2327 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2328 0xe12fff1c, /* bx ip */
2330 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2332 /* Subsequent entries in a procedure linkage table look like this. */
2333 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2335 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2336 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2337 0xe08cc00f, /* add ip, ip, pc */
2338 0xea000000, /* b .Lplt_tail */
2341 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2342 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2343 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2344 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2345 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2346 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2347 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2348 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2358 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2359 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2360 is inserted in arm_build_one_stub(). */
2361 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2362 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2363 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2364 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2365 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2366 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2371 enum stub_insn_type type;
2372 unsigned int r_type;
2376 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2377 to reach the stub if necessary. */
2378 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2380 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2381 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2384 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2386 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2388 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2389 ARM_INSN (0xe12fff1c), /* bx ip */
2390 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2393 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2394 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2396 THUMB16_INSN (0xb401), /* push {r0} */
2397 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2398 THUMB16_INSN (0x4684), /* mov ip, r0 */
2399 THUMB16_INSN (0xbc01), /* pop {r0} */
2400 THUMB16_INSN (0x4760), /* bx ip */
2401 THUMB16_INSN (0xbf00), /* nop */
2402 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2405 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2407 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2409 THUMB16_INSN (0x4778), /* bx pc */
2410 THUMB16_INSN (0x46c0), /* nop */
2411 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2412 ARM_INSN (0xe12fff1c), /* bx ip */
2413 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2416 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2418 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2420 THUMB16_INSN (0x4778), /* bx pc */
2421 THUMB16_INSN (0x46c0), /* nop */
2422 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2423 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2426 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2427 one, when the destination is close enough. */
2428 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2430 THUMB16_INSN (0x4778), /* bx pc */
2431 THUMB16_INSN (0x46c0), /* nop */
2432 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2435 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2436 blx to reach the stub if necessary. */
2437 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2439 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2440 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2441 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2444 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2445 blx to reach the stub if necessary. We can not add into pc;
2446 it is not guaranteed to mode switch (different in ARMv6 and
2448 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2450 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2451 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2452 ARM_INSN (0xe12fff1c), /* bx ip */
2453 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2456 /* V4T ARM -> ARM long branch stub, PIC. */
2457 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2459 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2460 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2461 ARM_INSN (0xe12fff1c), /* bx ip */
2462 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2465 /* V4T Thumb -> ARM long branch stub, PIC. */
2466 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2468 THUMB16_INSN (0x4778), /* bx pc */
2469 THUMB16_INSN (0x46c0), /* nop */
2470 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2471 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2472 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2475 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2477 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2479 THUMB16_INSN (0xb401), /* push {r0} */
2480 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2481 THUMB16_INSN (0x46fc), /* mov ip, pc */
2482 THUMB16_INSN (0x4484), /* add ip, r0 */
2483 THUMB16_INSN (0xbc01), /* pop {r0} */
2484 THUMB16_INSN (0x4760), /* bx ip */
2485 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2488 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2490 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2492 THUMB16_INSN (0x4778), /* bx pc */
2493 THUMB16_INSN (0x46c0), /* nop */
2494 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2495 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2496 ARM_INSN (0xe12fff1c), /* bx ip */
2497 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2500 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2501 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2502 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2504 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2505 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2506 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2509 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2510 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2511 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2513 THUMB16_INSN (0x4778), /* bx pc */
2514 THUMB16_INSN (0x46c0), /* nop */
2515 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2516 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2517 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2520 /* NaCl ARM -> ARM long branch stub. */
2521 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2523 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2524 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2525 ARM_INSN (0xe12fff1c), /* bx ip */
2526 ARM_INSN (0xe320f000), /* nop */
2527 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2528 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2529 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2530 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2533 /* NaCl ARM -> ARM long branch stub, PIC. */
2534 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2536 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2537 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2538 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2539 ARM_INSN (0xe12fff1c), /* bx ip */
2540 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2541 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2542 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2543 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2547 /* Cortex-A8 erratum-workaround stubs. */
2549 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2550 can't use a conditional branch to reach this stub). */
2552 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2554 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2555 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2556 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2559 /* Stub used for b.w and bl.w instructions. */
2561 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2563 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2566 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2568 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2571 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2572 instruction (which switches to ARM mode) to point to this stub. Jump to the
2573 real destination using an ARM-mode branch. */
2575 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2577 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2580 /* For each section group there can be a specially created linker section
2581 to hold the stubs for that group. The name of the stub section is based
2582 upon the name of another section within that group with the suffix below
2585 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2586 create what appeared to be a linker stub section when it actually
2587 contained user code/data. For example, consider this fragment:
2589 const char * stubborn_problems[] = { "np" };
2591 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2594 .data.rel.local.stubborn_problems
2596 This then causes problems in arm32_arm_build_stubs() as it triggers:
2598 // Ignore non-stub sections.
2599 if (!strstr (stub_sec->name, STUB_SUFFIX))
2602 And so the section would be ignored instead of being processed. Hence
2603 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2605 #define STUB_SUFFIX ".__stub"
2607 /* One entry per long/short branch stub defined above. */
2609 DEF_STUB(long_branch_any_any) \
2610 DEF_STUB(long_branch_v4t_arm_thumb) \
2611 DEF_STUB(long_branch_thumb_only) \
2612 DEF_STUB(long_branch_v4t_thumb_thumb) \
2613 DEF_STUB(long_branch_v4t_thumb_arm) \
2614 DEF_STUB(short_branch_v4t_thumb_arm) \
2615 DEF_STUB(long_branch_any_arm_pic) \
2616 DEF_STUB(long_branch_any_thumb_pic) \
2617 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2618 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2619 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2620 DEF_STUB(long_branch_thumb_only_pic) \
2621 DEF_STUB(long_branch_any_tls_pic) \
2622 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2623 DEF_STUB(long_branch_arm_nacl) \
2624 DEF_STUB(long_branch_arm_nacl_pic) \
2625 DEF_STUB(a8_veneer_b_cond) \
2626 DEF_STUB(a8_veneer_b) \
2627 DEF_STUB(a8_veneer_bl) \
2628 DEF_STUB(a8_veneer_blx)
2630 #define DEF_STUB(x) arm_stub_##x,
2631 enum elf32_arm_stub_type
2635 /* Note the first a8_veneer type. */
2636 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2642 const insn_sequence* template_sequence;
2646 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2647 static const stub_def stub_definitions[] =
2653 struct elf32_arm_stub_hash_entry
2655 /* Base hash table entry structure. */
2656 struct bfd_hash_entry root;
2658 /* The stub section. */
2661 /* Offset within stub_sec of the beginning of this stub. */
2662 bfd_vma stub_offset;
2664 /* Given the symbol's value and its section we can determine its final
2665 value when building the stubs (so the stub knows where to jump). */
2666 bfd_vma target_value;
2667 asection *target_section;
2669 /* Offset to apply to relocation referencing target_value. */
2670 bfd_vma target_addend;
2672 /* The instruction which caused this stub to be generated (only valid for
2673 Cortex-A8 erratum workaround stubs at present). */
2674 unsigned long orig_insn;
2676 /* The stub type. */
2677 enum elf32_arm_stub_type stub_type;
2678 /* Its encoding size in bytes. */
2681 const insn_sequence *stub_template;
2682 /* The size of the template (number of entries). */
2683 int stub_template_size;
2685 /* The symbol table entry, if any, that this was derived from. */
2686 struct elf32_arm_link_hash_entry *h;
2688 /* Type of branch. */
2689 enum arm_st_branch_type branch_type;
2691 /* Where this stub is being called from, or, in the case of combined
2692 stub sections, the first input section in the group. */
2695 /* The name for the local symbol at the start of this stub. The
2696 stub name in the hash table has to be unique; this does not, so
2697 it can be friendlier. */
2701 /* Used to build a map of a section. This is required for mixed-endian
2704 typedef struct elf32_elf_section_map
2709 elf32_arm_section_map;
2711 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2715 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2716 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2717 VFP11_ERRATUM_ARM_VENEER,
2718 VFP11_ERRATUM_THUMB_VENEER
2720 elf32_vfp11_erratum_type;
2722 typedef struct elf32_vfp11_erratum_list
2724 struct elf32_vfp11_erratum_list *next;
2730 struct elf32_vfp11_erratum_list *veneer;
2731 unsigned int vfp_insn;
2735 struct elf32_vfp11_erratum_list *branch;
2739 elf32_vfp11_erratum_type type;
2741 elf32_vfp11_erratum_list;
2743 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2747 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2748 STM32L4XX_ERRATUM_VENEER
2750 elf32_stm32l4xx_erratum_type;
2752 typedef struct elf32_stm32l4xx_erratum_list
2754 struct elf32_stm32l4xx_erratum_list *next;
2760 struct elf32_stm32l4xx_erratum_list *veneer;
2765 struct elf32_stm32l4xx_erratum_list *branch;
2769 elf32_stm32l4xx_erratum_type type;
2771 elf32_stm32l4xx_erratum_list;
2776 INSERT_EXIDX_CANTUNWIND_AT_END
2778 arm_unwind_edit_type;
2780 /* A (sorted) list of edits to apply to an unwind table. */
2781 typedef struct arm_unwind_table_edit
2783 arm_unwind_edit_type type;
2784 /* Note: we sometimes want to insert an unwind entry corresponding to a
2785 section different from the one we're currently writing out, so record the
2786 (text) section this edit relates to here. */
2787 asection *linked_section;
2789 struct arm_unwind_table_edit *next;
2791 arm_unwind_table_edit;
2793 typedef struct _arm_elf_section_data
2795 /* Information about mapping symbols. */
2796 struct bfd_elf_section_data elf;
2797 unsigned int mapcount;
2798 unsigned int mapsize;
2799 elf32_arm_section_map *map;
2800 /* Information about CPU errata. */
2801 unsigned int erratumcount;
2802 elf32_vfp11_erratum_list *erratumlist;
2803 unsigned int stm32l4xx_erratumcount;
2804 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
2805 unsigned int additional_reloc_count;
2806 /* Information about unwind tables. */
2809 /* Unwind info attached to a text section. */
2812 asection *arm_exidx_sec;
2815 /* Unwind info attached to an .ARM.exidx section. */
2818 arm_unwind_table_edit *unwind_edit_list;
2819 arm_unwind_table_edit *unwind_edit_tail;
2823 _arm_elf_section_data;
2825 #define elf32_arm_section_data(sec) \
2826 ((_arm_elf_section_data *) elf_section_data (sec))
2828 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2829 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2830 so may be created multiple times: we use an array of these entries whilst
2831 relaxing which we can refresh easily, then create stubs for each potentially
2832 erratum-triggering instruction once we've settled on a solution. */
2834 struct a8_erratum_fix
2840 unsigned long orig_insn;
2842 enum elf32_arm_stub_type stub_type;
2843 enum arm_st_branch_type branch_type;
2846 /* A table of relocs applied to branches which might trigger Cortex-A8
2849 struct a8_erratum_reloc
2852 bfd_vma destination;
2853 struct elf32_arm_link_hash_entry *hash;
2854 const char *sym_name;
2855 unsigned int r_type;
2856 enum arm_st_branch_type branch_type;
2857 bfd_boolean non_a8_stub;
2860 /* The size of the thread control block. */
2863 /* ARM-specific information about a PLT entry, over and above the usual
2867 /* We reference count Thumb references to a PLT entry separately,
2868 so that we can emit the Thumb trampoline only if needed. */
2869 bfd_signed_vma thumb_refcount;
2871 /* Some references from Thumb code may be eliminated by BL->BLX
2872 conversion, so record them separately. */
2873 bfd_signed_vma maybe_thumb_refcount;
2875 /* How many of the recorded PLT accesses were from non-call relocations.
2876 This information is useful when deciding whether anything takes the
2877 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2878 non-call references to the function should resolve directly to the
2879 real runtime target. */
2880 unsigned int noncall_refcount;
2882 /* Since PLT entries have variable size if the Thumb prologue is
2883 used, we need to record the index into .got.plt instead of
2884 recomputing it from the PLT offset. */
2885 bfd_signed_vma got_offset;
2888 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2889 struct arm_local_iplt_info
2891 /* The information that is usually found in the generic ELF part of
2892 the hash table entry. */
2893 union gotplt_union root;
2895 /* The information that is usually found in the ARM-specific part of
2896 the hash table entry. */
2897 struct arm_plt_info arm;
2899 /* A list of all potential dynamic relocations against this symbol. */
2900 struct elf_dyn_relocs *dyn_relocs;
2903 struct elf_arm_obj_tdata
2905 struct elf_obj_tdata root;
2907 /* tls_type for each local got entry. */
2908 char *local_got_tls_type;
2910 /* GOTPLT entries for TLS descriptors. */
2911 bfd_vma *local_tlsdesc_gotent;
2913 /* Information for local symbols that need entries in .iplt. */
2914 struct arm_local_iplt_info **local_iplt;
2916 /* Zero to warn when linking objects with incompatible enum sizes. */
2917 int no_enum_size_warning;
2919 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2920 int no_wchar_size_warning;
2923 #define elf_arm_tdata(bfd) \
2924 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2926 #define elf32_arm_local_got_tls_type(bfd) \
2927 (elf_arm_tdata (bfd)->local_got_tls_type)
2929 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2930 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2932 #define elf32_arm_local_iplt(bfd) \
2933 (elf_arm_tdata (bfd)->local_iplt)
2935 #define is_arm_elf(bfd) \
2936 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2937 && elf_tdata (bfd) != NULL \
2938 && elf_object_id (bfd) == ARM_ELF_DATA)
2941 elf32_arm_mkobject (bfd *abfd)
2943 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2947 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2949 /* Arm ELF linker hash entry. */
2950 struct elf32_arm_link_hash_entry
2952 struct elf_link_hash_entry root;
2954 /* Track dynamic relocs copied for this symbol. */
2955 struct elf_dyn_relocs *dyn_relocs;
2957 /* ARM-specific PLT information. */
2958 struct arm_plt_info plt;
2960 #define GOT_UNKNOWN 0
2961 #define GOT_NORMAL 1
2962 #define GOT_TLS_GD 2
2963 #define GOT_TLS_IE 4
2964 #define GOT_TLS_GDESC 8
2965 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2966 unsigned int tls_type : 8;
2968 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2969 unsigned int is_iplt : 1;
2971 unsigned int unused : 23;
2973 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2974 starting at the end of the jump table. */
2975 bfd_vma tlsdesc_got;
2977 /* The symbol marking the real symbol location for exported thumb
2978 symbols with Arm stubs. */
2979 struct elf_link_hash_entry *export_glue;
2981 /* A pointer to the most recently used stub hash entry against this
2983 struct elf32_arm_stub_hash_entry *stub_cache;
2986 /* Traverse an arm ELF linker hash table. */
2987 #define elf32_arm_link_hash_traverse(table, func, info) \
2988 (elf_link_hash_traverse \
2990 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2993 /* Get the ARM elf linker hash table from a link_info structure. */
2994 #define elf32_arm_hash_table(info) \
2995 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2996 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2998 #define arm_stub_hash_lookup(table, string, create, copy) \
2999 ((struct elf32_arm_stub_hash_entry *) \
3000 bfd_hash_lookup ((table), (string), (create), (copy)))
3002 /* Array to keep track of which stub sections have been created, and
3003 information on stub grouping. */
3006 /* This is the section to which stubs in the group will be
3009 /* The stub section. */
3013 #define elf32_arm_compute_jump_table_size(htab) \
3014 ((htab)->next_tls_desc_index * 4)
3016 /* ARM ELF linker hash table. */
3017 struct elf32_arm_link_hash_table
3019 /* The main hash table. */
3020 struct elf_link_hash_table root;
3022 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3023 bfd_size_type thumb_glue_size;
3025 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3026 bfd_size_type arm_glue_size;
3028 /* The size in bytes of section containing the ARMv4 BX veneers. */
3029 bfd_size_type bx_glue_size;
3031 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3032 veneer has been populated. */
3033 bfd_vma bx_glue_offset[15];
3035 /* The size in bytes of the section containing glue for VFP11 erratum
3037 bfd_size_type vfp11_erratum_glue_size;
3039 /* The size in bytes of the section containing glue for STM32L4XX erratum
3041 bfd_size_type stm32l4xx_erratum_glue_size;
3043 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3044 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3045 elf32_arm_write_section(). */
3046 struct a8_erratum_fix *a8_erratum_fixes;
3047 unsigned int num_a8_erratum_fixes;
3049 /* An arbitrary input BFD chosen to hold the glue sections. */
3050 bfd * bfd_of_glue_owner;
3052 /* Nonzero to output a BE8 image. */
3055 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3056 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3059 /* The relocation to use for R_ARM_TARGET2 relocations. */
3062 /* 0 = Ignore R_ARM_V4BX.
3063 1 = Convert BX to MOV PC.
3064 2 = Generate v4 interworing stubs. */
3067 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3070 /* Whether we should fix the ARM1176 BLX immediate issue. */
3073 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3076 /* What sort of code sequences we should look for which may trigger the
3077 VFP11 denorm erratum. */
3078 bfd_arm_vfp11_fix vfp11_fix;
3080 /* Global counter for the number of fixes we have emitted. */
3081 int num_vfp11_fixes;
3083 /* What sort of code sequences we should look for which may trigger the
3084 STM32L4XX erratum. */
3085 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3087 /* Global counter for the number of fixes we have emitted. */
3088 int num_stm32l4xx_fixes;
3090 /* Nonzero to force PIC branch veneers. */
3093 /* The number of bytes in the initial entry in the PLT. */
3094 bfd_size_type plt_header_size;
3096 /* The number of bytes in the subsequent PLT etries. */
3097 bfd_size_type plt_entry_size;
3099 /* True if the target system is VxWorks. */
3102 /* True if the target system is Symbian OS. */
3105 /* True if the target system is Native Client. */
3108 /* True if the target uses REL relocations. */
3111 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3112 bfd_vma next_tls_desc_index;
3114 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3115 bfd_vma num_tls_desc;
3117 /* Short-cuts to get to dynamic linker sections. */
3121 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3124 /* The offset into splt of the PLT entry for the TLS descriptor
3125 resolver. Special values are 0, if not necessary (or not found
3126 to be necessary yet), and -1 if needed but not determined
3128 bfd_vma dt_tlsdesc_plt;
3130 /* The offset into sgot of the GOT entry used by the PLT entry
3132 bfd_vma dt_tlsdesc_got;
3134 /* Offset in .plt section of tls_arm_trampoline. */
3135 bfd_vma tls_trampoline;
3137 /* Data for R_ARM_TLS_LDM32 relocations. */
3140 bfd_signed_vma refcount;
3144 /* Small local sym cache. */
3145 struct sym_cache sym_cache;
3147 /* For convenience in allocate_dynrelocs. */
3150 /* The amount of space used by the reserved portion of the sgotplt
3151 section, plus whatever space is used by the jump slots. */
3152 bfd_vma sgotplt_jump_table_size;
3154 /* The stub hash table. */
3155 struct bfd_hash_table stub_hash_table;
3157 /* Linker stub bfd. */
3160 /* Linker call-backs. */
3161 asection * (*add_stub_section) (const char *, asection *, unsigned int);
3162 void (*layout_sections_again) (void);
3164 /* Array to keep track of which stub sections have been created, and
3165 information on stub grouping. */
3166 struct map_stub *stub_group;
3168 /* Number of elements in stub_group. */
3169 unsigned int top_id;
3171 /* Assorted information used by elf32_arm_size_stubs. */
3172 unsigned int bfd_count;
3173 unsigned int top_index;
3174 asection **input_list;
3178 ctz (unsigned int mask)
3180 #if GCC_VERSION >= 3004
3181 return __builtin_ctz (mask);
3185 for (i = 0; i < 8 * sizeof (mask); i++)
3196 popcount (unsigned int mask)
3198 #if GCC_VERSION >= 3004
3199 return __builtin_popcount (mask);
3201 unsigned int i, sum = 0;
3203 for (i = 0; i < 8 * sizeof (mask); i++)
3213 /* Create an entry in an ARM ELF linker hash table. */
3215 static struct bfd_hash_entry *
3216 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3217 struct bfd_hash_table * table,
3218 const char * string)
3220 struct elf32_arm_link_hash_entry * ret =
3221 (struct elf32_arm_link_hash_entry *) entry;
3223 /* Allocate the structure if it has not already been allocated by a
3226 ret = (struct elf32_arm_link_hash_entry *)
3227 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3229 return (struct bfd_hash_entry *) ret;
3231 /* Call the allocation method of the superclass. */
3232 ret = ((struct elf32_arm_link_hash_entry *)
3233 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3237 ret->dyn_relocs = NULL;
3238 ret->tls_type = GOT_UNKNOWN;
3239 ret->tlsdesc_got = (bfd_vma) -1;
3240 ret->plt.thumb_refcount = 0;
3241 ret->plt.maybe_thumb_refcount = 0;
3242 ret->plt.noncall_refcount = 0;
3243 ret->plt.got_offset = -1;
3244 ret->is_iplt = FALSE;
3245 ret->export_glue = NULL;
3247 ret->stub_cache = NULL;
3250 return (struct bfd_hash_entry *) ret;
3253 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3257 elf32_arm_allocate_local_sym_info (bfd *abfd)
3259 if (elf_local_got_refcounts (abfd) == NULL)
3261 bfd_size_type num_syms;
3265 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3266 size = num_syms * (sizeof (bfd_signed_vma)
3267 + sizeof (struct arm_local_iplt_info *)
3270 data = bfd_zalloc (abfd, size);
3274 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3275 data += num_syms * sizeof (bfd_signed_vma);
3277 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3278 data += num_syms * sizeof (struct arm_local_iplt_info *);
3280 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3281 data += num_syms * sizeof (bfd_vma);
3283 elf32_arm_local_got_tls_type (abfd) = data;
3288 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3289 to input bfd ABFD. Create the information if it doesn't already exist.
3290 Return null if an allocation fails. */
3292 static struct arm_local_iplt_info *
3293 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3295 struct arm_local_iplt_info **ptr;
3297 if (!elf32_arm_allocate_local_sym_info (abfd))
3300 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3301 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3303 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3307 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3308 in ABFD's symbol table. If the symbol is global, H points to its
3309 hash table entry, otherwise H is null.
3311 Return true if the symbol does have PLT information. When returning
3312 true, point *ROOT_PLT at the target-independent reference count/offset
3313 union and *ARM_PLT at the ARM-specific information. */
3316 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
3317 unsigned long r_symndx, union gotplt_union **root_plt,
3318 struct arm_plt_info **arm_plt)
3320 struct arm_local_iplt_info *local_iplt;
3324 *root_plt = &h->root.plt;
3329 if (elf32_arm_local_iplt (abfd) == NULL)
3332 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3333 if (local_iplt == NULL)
3336 *root_plt = &local_iplt->root;
3337 *arm_plt = &local_iplt->arm;
3341 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3345 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3346 struct arm_plt_info *arm_plt)
3348 struct elf32_arm_link_hash_table *htab;
3350 htab = elf32_arm_hash_table (info);
3351 return (arm_plt->thumb_refcount != 0
3352 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3355 /* Return a pointer to the head of the dynamic reloc list that should
3356 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3357 ABFD's symbol table. Return null if an error occurs. */
3359 static struct elf_dyn_relocs **
3360 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3361 Elf_Internal_Sym *isym)
3363 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3365 struct arm_local_iplt_info *local_iplt;
3367 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3368 if (local_iplt == NULL)
3370 return &local_iplt->dyn_relocs;
3374 /* Track dynamic relocs needed for local syms too.
3375 We really need local syms available to do this
3380 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3384 vpp = &elf_section_data (s)->local_dynrel;
3385 return (struct elf_dyn_relocs **) vpp;
3389 /* Initialize an entry in the stub hash table. */
3391 static struct bfd_hash_entry *
3392 stub_hash_newfunc (struct bfd_hash_entry *entry,
3393 struct bfd_hash_table *table,
3396 /* Allocate the structure if it has not already been allocated by a
3400 entry = (struct bfd_hash_entry *)
3401 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3406 /* Call the allocation method of the superclass. */
3407 entry = bfd_hash_newfunc (entry, table, string);
3410 struct elf32_arm_stub_hash_entry *eh;
3412 /* Initialize the local fields. */
3413 eh = (struct elf32_arm_stub_hash_entry *) entry;
3414 eh->stub_sec = NULL;
3415 eh->stub_offset = 0;
3416 eh->target_value = 0;
3417 eh->target_section = NULL;
3418 eh->target_addend = 0;
3420 eh->stub_type = arm_stub_none;
3422 eh->stub_template = NULL;
3423 eh->stub_template_size = 0;
3426 eh->output_name = NULL;
3432 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3433 shortcuts to them in our hash table. */
3436 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3438 struct elf32_arm_link_hash_table *htab;
3440 htab = elf32_arm_hash_table (info);
3444 /* BPABI objects never have a GOT, or associated sections. */
3445 if (htab->symbian_p)
3448 if (! _bfd_elf_create_got_section (dynobj, info))
3454 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3457 create_ifunc_sections (struct bfd_link_info *info)
3459 struct elf32_arm_link_hash_table *htab;
3460 const struct elf_backend_data *bed;
3465 htab = elf32_arm_hash_table (info);
3466 dynobj = htab->root.dynobj;
3467 bed = get_elf_backend_data (dynobj);
3468 flags = bed->dynamic_sec_flags;
3470 if (htab->root.iplt == NULL)
3472 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3473 flags | SEC_READONLY | SEC_CODE);
3475 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3477 htab->root.iplt = s;
3480 if (htab->root.irelplt == NULL)
3482 s = bfd_make_section_anyway_with_flags (dynobj,
3483 RELOC_SECTION (htab, ".iplt"),
3484 flags | SEC_READONLY);
3486 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3488 htab->root.irelplt = s;
3491 if (htab->root.igotplt == NULL)
3493 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3495 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3497 htab->root.igotplt = s;
3502 /* Determine if we're dealing with a Thumb only architecture. */
3505 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3508 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3509 Tag_CPU_arch_profile);
3512 return profile == 'M';
3514 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3516 if (arch == TAG_CPU_ARCH_V6_M
3517 || arch == TAG_CPU_ARCH_V6S_M
3518 || arch == TAG_CPU_ARCH_V7E_M
3519 || arch == TAG_CPU_ARCH_V8M_BASE
3520 || arch == TAG_CPU_ARCH_V8M_MAIN)
3526 /* Determine if we're dealing with a Thumb-2 object. */
3529 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3531 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3533 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3536 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3537 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3541 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3543 struct elf32_arm_link_hash_table *htab;
3545 htab = elf32_arm_hash_table (info);
3549 if (!htab->root.sgot && !create_got_section (dynobj, info))
3552 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3555 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
3556 if (!bfd_link_pic (info))
3557 htab->srelbss = bfd_get_linker_section (dynobj,
3558 RELOC_SECTION (htab, ".bss"));
3560 if (htab->vxworks_p)
3562 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3565 if (bfd_link_pic (info))
3567 htab->plt_header_size = 0;
3568 htab->plt_entry_size
3569 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3573 htab->plt_header_size
3574 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3575 htab->plt_entry_size
3576 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3579 if (elf_elfheader (dynobj))
3580 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3585 Test for thumb only architectures. Note - we cannot just call
3586 using_thumb_only() as the attributes in the output bfd have not been
3587 initialised at this point, so instead we use the input bfd. */
3588 bfd * saved_obfd = htab->obfd;
3590 htab->obfd = dynobj;
3591 if (using_thumb_only (htab))
3593 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3594 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3596 htab->obfd = saved_obfd;
3599 if (!htab->root.splt
3600 || !htab->root.srelplt
3602 || (!bfd_link_pic (info) && !htab->srelbss))
3608 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3611 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3612 struct elf_link_hash_entry *dir,
3613 struct elf_link_hash_entry *ind)
3615 struct elf32_arm_link_hash_entry *edir, *eind;
3617 edir = (struct elf32_arm_link_hash_entry *) dir;
3618 eind = (struct elf32_arm_link_hash_entry *) ind;
3620 if (eind->dyn_relocs != NULL)
3622 if (edir->dyn_relocs != NULL)
3624 struct elf_dyn_relocs **pp;
3625 struct elf_dyn_relocs *p;
3627 /* Add reloc counts against the indirect sym to the direct sym
3628 list. Merge any entries against the same section. */
3629 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3631 struct elf_dyn_relocs *q;
3633 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3634 if (q->sec == p->sec)
3636 q->pc_count += p->pc_count;
3637 q->count += p->count;
3644 *pp = edir->dyn_relocs;
3647 edir->dyn_relocs = eind->dyn_relocs;
3648 eind->dyn_relocs = NULL;
3651 if (ind->root.type == bfd_link_hash_indirect)
3653 /* Copy over PLT info. */
3654 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3655 eind->plt.thumb_refcount = 0;
3656 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3657 eind->plt.maybe_thumb_refcount = 0;
3658 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3659 eind->plt.noncall_refcount = 0;
3661 /* We should only allocate a function to .iplt once the final
3662 symbol information is known. */
3663 BFD_ASSERT (!eind->is_iplt);
3665 if (dir->got.refcount <= 0)
3667 edir->tls_type = eind->tls_type;
3668 eind->tls_type = GOT_UNKNOWN;
3672 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3675 /* Destroy an ARM elf linker hash table. */
3678 elf32_arm_link_hash_table_free (bfd *obfd)
3680 struct elf32_arm_link_hash_table *ret
3681 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
3683 bfd_hash_table_free (&ret->stub_hash_table);
3684 _bfd_elf_link_hash_table_free (obfd);
3687 /* Create an ARM elf linker hash table. */
3689 static struct bfd_link_hash_table *
3690 elf32_arm_link_hash_table_create (bfd *abfd)
3692 struct elf32_arm_link_hash_table *ret;
3693 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3695 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3699 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3700 elf32_arm_link_hash_newfunc,
3701 sizeof (struct elf32_arm_link_hash_entry),
3708 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3709 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
3710 #ifdef FOUR_WORD_PLT
3711 ret->plt_header_size = 16;
3712 ret->plt_entry_size = 16;
3714 ret->plt_header_size = 20;
3715 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
3720 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3721 sizeof (struct elf32_arm_stub_hash_entry)))
3723 _bfd_elf_link_hash_table_free (abfd);
3726 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
3728 return &ret->root.root;
3731 /* Determine what kind of NOPs are available. */
3734 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3736 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3738 return arch == TAG_CPU_ARCH_V6T2
3739 || arch == TAG_CPU_ARCH_V6K
3740 || arch == TAG_CPU_ARCH_V7
3741 || arch == TAG_CPU_ARCH_V7E_M;
3745 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3747 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3749 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3750 || arch == TAG_CPU_ARCH_V7E_M);
3754 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3758 case arm_stub_long_branch_thumb_only:
3759 case arm_stub_long_branch_v4t_thumb_arm:
3760 case arm_stub_short_branch_v4t_thumb_arm:
3761 case arm_stub_long_branch_v4t_thumb_arm_pic:
3762 case arm_stub_long_branch_v4t_thumb_tls_pic:
3763 case arm_stub_long_branch_thumb_only_pic:
3774 /* Determine the type of stub needed, if any, for a call. */
3776 static enum elf32_arm_stub_type
3777 arm_type_of_stub (struct bfd_link_info *info,
3778 asection *input_sec,
3779 const Elf_Internal_Rela *rel,
3780 unsigned char st_type,
3781 enum arm_st_branch_type *actual_branch_type,
3782 struct elf32_arm_link_hash_entry *hash,
3783 bfd_vma destination,
3789 bfd_signed_vma branch_offset;
3790 unsigned int r_type;
3791 struct elf32_arm_link_hash_table * globals;
3794 enum elf32_arm_stub_type stub_type = arm_stub_none;
3796 enum arm_st_branch_type branch_type = *actual_branch_type;
3797 union gotplt_union *root_plt;
3798 struct arm_plt_info *arm_plt;
3800 if (branch_type == ST_BRANCH_LONG)
3803 globals = elf32_arm_hash_table (info);
3804 if (globals == NULL)
3807 thumb_only = using_thumb_only (globals);
3809 thumb2 = using_thumb2 (globals);
3811 /* Determine where the call point is. */
3812 location = (input_sec->output_offset
3813 + input_sec->output_section->vma
3816 r_type = ELF32_R_TYPE (rel->r_info);
3818 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3819 are considering a function call relocation. */
3820 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3821 || r_type == R_ARM_THM_JUMP19)
3822 && branch_type == ST_BRANCH_TO_ARM)
3823 branch_type = ST_BRANCH_TO_THUMB;
3825 /* For TLS call relocs, it is the caller's responsibility to provide
3826 the address of the appropriate trampoline. */
3827 if (r_type != R_ARM_TLS_CALL
3828 && r_type != R_ARM_THM_TLS_CALL
3829 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3830 &root_plt, &arm_plt)
3831 && root_plt->offset != (bfd_vma) -1)
3835 if (hash == NULL || hash->is_iplt)
3836 splt = globals->root.iplt;
3838 splt = globals->root.splt;
3843 /* Note when dealing with PLT entries: the main PLT stub is in
3844 ARM mode, so if the branch is in Thumb mode, another
3845 Thumb->ARM stub will be inserted later just before the ARM
3846 PLT stub. We don't take this extra distance into account
3847 here, because if a long branch stub is needed, we'll add a
3848 Thumb->Arm one and branch directly to the ARM PLT entry
3849 because it avoids spreading offset corrections in several
3852 destination = (splt->output_section->vma
3853 + splt->output_offset
3854 + root_plt->offset);
3856 branch_type = ST_BRANCH_TO_ARM;
3859 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3860 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3862 branch_offset = (bfd_signed_vma)(destination - location);
3864 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3865 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
3867 /* Handle cases where:
3868 - this call goes too far (different Thumb/Thumb2 max
3870 - it's a Thumb->Arm call and blx is not available, or it's a
3871 Thumb->Arm branch (not bl). A stub is needed in this case,
3872 but only if this call is not through a PLT entry. Indeed,
3873 PLT stubs handle mode switching already.
3876 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3877 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3879 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3880 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3882 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
3883 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
3884 && (r_type == R_ARM_THM_JUMP19))
3885 || (branch_type == ST_BRANCH_TO_ARM
3886 && (((r_type == R_ARM_THM_CALL
3887 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3888 || (r_type == R_ARM_THM_JUMP24)
3889 || (r_type == R_ARM_THM_JUMP19))
3892 if (branch_type == ST_BRANCH_TO_THUMB)
3894 /* Thumb to thumb. */
3897 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
3899 ? ((globals->use_blx
3900 && (r_type == R_ARM_THM_CALL))
3901 /* V5T and above. Stub starts with ARM code, so
3902 we must be able to switch mode before
3903 reaching it, which is only possible for 'bl'
3904 (ie R_ARM_THM_CALL relocation). */
3905 ? arm_stub_long_branch_any_thumb_pic
3906 /* On V4T, use Thumb code only. */
3907 : arm_stub_long_branch_v4t_thumb_thumb_pic)
3909 /* non-PIC stubs. */
3910 : ((globals->use_blx
3911 && (r_type == R_ARM_THM_CALL))
3912 /* V5T and above. */
3913 ? arm_stub_long_branch_any_any
3915 : arm_stub_long_branch_v4t_thumb_thumb);
3919 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
3921 ? arm_stub_long_branch_thumb_only_pic
3923 : arm_stub_long_branch_thumb_only;
3930 && sym_sec->owner != NULL
3931 && !INTERWORK_FLAG (sym_sec->owner))
3933 (*_bfd_error_handler)
3934 (_("%B(%s): warning: interworking not enabled.\n"
3935 " first occurrence: %B: Thumb call to ARM"),
3936 sym_sec->owner, input_bfd, name);
3940 (bfd_link_pic (info) | globals->pic_veneer)
3942 ? (r_type == R_ARM_THM_TLS_CALL
3943 /* TLS PIC stubs. */
3944 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3945 : arm_stub_long_branch_v4t_thumb_tls_pic)
3946 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3947 /* V5T PIC and above. */
3948 ? arm_stub_long_branch_any_arm_pic
3950 : arm_stub_long_branch_v4t_thumb_arm_pic))
3952 /* non-PIC stubs. */
3953 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3954 /* V5T and above. */
3955 ? arm_stub_long_branch_any_any
3957 : arm_stub_long_branch_v4t_thumb_arm);
3959 /* Handle v4t short branches. */
3960 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3961 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3962 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3963 stub_type = arm_stub_short_branch_v4t_thumb_arm;
3967 else if (r_type == R_ARM_CALL
3968 || r_type == R_ARM_JUMP24
3969 || r_type == R_ARM_PLT32
3970 || r_type == R_ARM_TLS_CALL)
3972 if (branch_type == ST_BRANCH_TO_THUMB)
3977 && sym_sec->owner != NULL
3978 && !INTERWORK_FLAG (sym_sec->owner))
3980 (*_bfd_error_handler)
3981 (_("%B(%s): warning: interworking not enabled.\n"
3982 " first occurrence: %B: ARM call to Thumb"),
3983 sym_sec->owner, input_bfd, name);
3986 /* We have an extra 2-bytes reach because of
3987 the mode change (bit 24 (H) of BLX encoding). */
3988 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3989 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3990 || (r_type == R_ARM_CALL && !globals->use_blx)
3991 || (r_type == R_ARM_JUMP24)
3992 || (r_type == R_ARM_PLT32))
3994 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
3996 ? ((globals->use_blx)
3997 /* V5T and above. */
3998 ? arm_stub_long_branch_any_thumb_pic
4000 : arm_stub_long_branch_v4t_arm_thumb_pic)
4002 /* non-PIC stubs. */
4003 : ((globals->use_blx)
4004 /* V5T and above. */
4005 ? arm_stub_long_branch_any_any
4007 : arm_stub_long_branch_v4t_arm_thumb);
4013 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4014 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4017 (bfd_link_pic (info) | globals->pic_veneer)
4019 ? (r_type == R_ARM_TLS_CALL
4021 ? arm_stub_long_branch_any_tls_pic
4023 ? arm_stub_long_branch_arm_nacl_pic
4024 : arm_stub_long_branch_any_arm_pic))
4025 /* non-PIC stubs. */
4027 ? arm_stub_long_branch_arm_nacl
4028 : arm_stub_long_branch_any_any);
4033 /* If a stub is needed, record the actual destination type. */
4034 if (stub_type != arm_stub_none)
4035 *actual_branch_type = branch_type;
4040 /* Build a name for an entry in the stub hash table. */
4043 elf32_arm_stub_name (const asection *input_section,
4044 const asection *sym_sec,
4045 const struct elf32_arm_link_hash_entry *hash,
4046 const Elf_Internal_Rela *rel,
4047 enum elf32_arm_stub_type stub_type)
4054 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4055 stub_name = (char *) bfd_malloc (len);
4056 if (stub_name != NULL)
4057 sprintf (stub_name, "%08x_%s+%x_%d",
4058 input_section->id & 0xffffffff,
4059 hash->root.root.root.string,
4060 (int) rel->r_addend & 0xffffffff,
4065 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4066 stub_name = (char *) bfd_malloc (len);
4067 if (stub_name != NULL)
4068 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4069 input_section->id & 0xffffffff,
4070 sym_sec->id & 0xffffffff,
4071 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4072 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4073 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4074 (int) rel->r_addend & 0xffffffff,
4081 /* Look up an entry in the stub hash. Stub entries are cached because
4082 creating the stub name takes a bit of time. */
4084 static struct elf32_arm_stub_hash_entry *
4085 elf32_arm_get_stub_entry (const asection *input_section,
4086 const asection *sym_sec,
4087 struct elf_link_hash_entry *hash,
4088 const Elf_Internal_Rela *rel,
4089 struct elf32_arm_link_hash_table *htab,
4090 enum elf32_arm_stub_type stub_type)
4092 struct elf32_arm_stub_hash_entry *stub_entry;
4093 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4094 const asection *id_sec;
4096 if ((input_section->flags & SEC_CODE) == 0)
4099 /* If this input section is part of a group of sections sharing one
4100 stub section, then use the id of the first section in the group.
4101 Stub names need to include a section id, as there may well be
4102 more than one stub used to reach say, printf, and we need to
4103 distinguish between them. */
4104 id_sec = htab->stub_group[input_section->id].link_sec;
4106 if (h != NULL && h->stub_cache != NULL
4107 && h->stub_cache->h == h
4108 && h->stub_cache->id_sec == id_sec
4109 && h->stub_cache->stub_type == stub_type)
4111 stub_entry = h->stub_cache;
4117 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4118 if (stub_name == NULL)
4121 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4122 stub_name, FALSE, FALSE);
4124 h->stub_cache = stub_entry;
4132 /* Find or create a stub section. Returns a pointer to the stub section, and
4133 the section to which the stub section will be attached (in *LINK_SEC_P).
4134 LINK_SEC_P may be NULL. */
4137 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4138 struct elf32_arm_link_hash_table *htab)
4143 link_sec = htab->stub_group[section->id].link_sec;
4144 BFD_ASSERT (link_sec != NULL);
4145 stub_sec = htab->stub_group[section->id].stub_sec;
4147 if (stub_sec == NULL)
4149 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4150 if (stub_sec == NULL)
4156 namelen = strlen (link_sec->name);
4157 len = namelen + sizeof (STUB_SUFFIX);
4158 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4162 memcpy (s_name, link_sec->name, namelen);
4163 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4164 stub_sec = (*htab->add_stub_section) (s_name, link_sec,
4165 htab->nacl_p ? 4 : 3);
4166 if (stub_sec == NULL)
4168 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4170 htab->stub_group[section->id].stub_sec = stub_sec;
4174 *link_sec_p = link_sec;
4179 /* Add a new stub entry to the stub hash. Not all fields of the new
4180 stub entry are initialised. */
4182 static struct elf32_arm_stub_hash_entry *
4183 elf32_arm_add_stub (const char *stub_name,
4185 struct elf32_arm_link_hash_table *htab)
4189 struct elf32_arm_stub_hash_entry *stub_entry;
4191 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
4192 if (stub_sec == NULL)
4195 /* Enter this entry into the linker stub hash table. */
4196 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4198 if (stub_entry == NULL)
4200 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4206 stub_entry->stub_sec = stub_sec;
4207 stub_entry->stub_offset = 0;
4208 stub_entry->id_sec = link_sec;
4213 /* Store an Arm insn into an output section not processed by
4214 elf32_arm_write_section. */
4217 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4218 bfd * output_bfd, bfd_vma val, void * ptr)
4220 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4221 bfd_putl32 (val, ptr);
4223 bfd_putb32 (val, ptr);
4226 /* Store a 16-bit Thumb insn into an output section not processed by
4227 elf32_arm_write_section. */
4230 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4231 bfd * output_bfd, bfd_vma val, void * ptr)
4233 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4234 bfd_putl16 (val, ptr);
4236 bfd_putb16 (val, ptr);
4239 /* Store a Thumb2 insn into an output section not processed by
4240 elf32_arm_write_section. */
4243 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4244 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4246 /* T2 instructions are 16-bit streamed. */
4247 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4249 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4250 bfd_putl16 ((val & 0xffff), ptr + 2);
4254 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4255 bfd_putb16 ((val & 0xffff), ptr + 2);
4259 /* If it's possible to change R_TYPE to a more efficient access
4260 model, return the new reloc type. */
4263 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4264 struct elf_link_hash_entry *h)
4266 int is_local = (h == NULL);
4268 if (bfd_link_pic (info)
4269 || (h && h->root.type == bfd_link_hash_undefweak))
4272 /* We do not support relaxations for Old TLS models. */
4275 case R_ARM_TLS_GOTDESC:
4276 case R_ARM_TLS_CALL:
4277 case R_ARM_THM_TLS_CALL:
4278 case R_ARM_TLS_DESCSEQ:
4279 case R_ARM_THM_TLS_DESCSEQ:
4280 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4286 static bfd_reloc_status_type elf32_arm_final_link_relocate
4287 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4288 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4289 const char *, unsigned char, enum arm_st_branch_type,
4290 struct elf_link_hash_entry *, bfd_boolean *, char **);
4293 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4297 case arm_stub_a8_veneer_b_cond:
4298 case arm_stub_a8_veneer_b:
4299 case arm_stub_a8_veneer_bl:
4302 case arm_stub_long_branch_any_any:
4303 case arm_stub_long_branch_v4t_arm_thumb:
4304 case arm_stub_long_branch_thumb_only:
4305 case arm_stub_long_branch_v4t_thumb_thumb:
4306 case arm_stub_long_branch_v4t_thumb_arm:
4307 case arm_stub_short_branch_v4t_thumb_arm:
4308 case arm_stub_long_branch_any_arm_pic:
4309 case arm_stub_long_branch_any_thumb_pic:
4310 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4311 case arm_stub_long_branch_v4t_arm_thumb_pic:
4312 case arm_stub_long_branch_v4t_thumb_arm_pic:
4313 case arm_stub_long_branch_thumb_only_pic:
4314 case arm_stub_long_branch_any_tls_pic:
4315 case arm_stub_long_branch_v4t_thumb_tls_pic:
4316 case arm_stub_a8_veneer_blx:
4319 case arm_stub_long_branch_arm_nacl:
4320 case arm_stub_long_branch_arm_nacl_pic:
4324 abort (); /* Should be unreachable. */
4329 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4333 struct elf32_arm_stub_hash_entry *stub_entry;
4334 struct elf32_arm_link_hash_table *globals;
4335 struct bfd_link_info *info;
4342 const insn_sequence *template_sequence;
4344 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4345 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4348 /* Massage our args to the form they really have. */
4349 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4350 info = (struct bfd_link_info *) in_arg;
4352 globals = elf32_arm_hash_table (info);
4353 if (globals == NULL)
4356 stub_sec = stub_entry->stub_sec;
4358 if ((globals->fix_cortex_a8 < 0)
4359 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4360 /* We have to do less-strictly-aligned fixes last. */
4363 /* Make a note of the offset within the stubs for this entry. */
4364 stub_entry->stub_offset = stub_sec->size;
4365 loc = stub_sec->contents + stub_entry->stub_offset;
4367 stub_bfd = stub_sec->owner;
4369 /* This is the address of the stub destination. */
4370 sym_value = (stub_entry->target_value
4371 + stub_entry->target_section->output_offset
4372 + stub_entry->target_section->output_section->vma);
4374 template_sequence = stub_entry->stub_template;
4375 template_size = stub_entry->stub_template_size;
4378 for (i = 0; i < template_size; i++)
4380 switch (template_sequence[i].type)
4384 bfd_vma data = (bfd_vma) template_sequence[i].data;
4385 if (template_sequence[i].reloc_addend != 0)
4387 /* We've borrowed the reloc_addend field to mean we should
4388 insert a condition code into this (Thumb-1 branch)
4389 instruction. See THUMB16_BCOND_INSN. */
4390 BFD_ASSERT ((data & 0xff00) == 0xd000);
4391 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4393 bfd_put_16 (stub_bfd, data, loc + size);
4399 bfd_put_16 (stub_bfd,
4400 (template_sequence[i].data >> 16) & 0xffff,
4402 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4404 if (template_sequence[i].r_type != R_ARM_NONE)
4406 stub_reloc_idx[nrelocs] = i;
4407 stub_reloc_offset[nrelocs++] = size;
4413 bfd_put_32 (stub_bfd, template_sequence[i].data,
4415 /* Handle cases where the target is encoded within the
4417 if (template_sequence[i].r_type == R_ARM_JUMP24)
4419 stub_reloc_idx[nrelocs] = i;
4420 stub_reloc_offset[nrelocs++] = size;
4426 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4427 stub_reloc_idx[nrelocs] = i;
4428 stub_reloc_offset[nrelocs++] = size;
4438 stub_sec->size += size;
4440 /* Stub size has already been computed in arm_size_one_stub. Check
4442 BFD_ASSERT (size == stub_entry->stub_size);
4444 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4445 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4448 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4450 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4452 for (i = 0; i < nrelocs; i++)
4453 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4454 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4455 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4456 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
4458 Elf_Internal_Rela rel;
4459 bfd_boolean unresolved_reloc;
4460 char *error_message;
4461 enum arm_st_branch_type branch_type
4462 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4463 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
4464 bfd_vma points_to = sym_value + stub_entry->target_addend;
4466 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4467 rel.r_info = ELF32_R_INFO (0,
4468 template_sequence[stub_reloc_idx[i]].r_type);
4469 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
4471 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4472 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4473 template should refer back to the instruction after the original
4475 points_to = sym_value;
4477 /* There may be unintended consequences if this is not true. */
4478 BFD_ASSERT (stub_entry->h == NULL);
4480 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4481 properly. We should probably use this function unconditionally,
4482 rather than only for certain relocations listed in the enclosing
4483 conditional, for the sake of consistency. */
4484 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4485 (template_sequence[stub_reloc_idx[i]].r_type),
4486 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4487 points_to, info, stub_entry->target_section, "", STT_FUNC,
4488 branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4489 &unresolved_reloc, &error_message);
4493 Elf_Internal_Rela rel;
4494 bfd_boolean unresolved_reloc;
4495 char *error_message;
4496 bfd_vma points_to = sym_value + stub_entry->target_addend
4497 + template_sequence[stub_reloc_idx[i]].reloc_addend;
4499 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4500 rel.r_info = ELF32_R_INFO (0,
4501 template_sequence[stub_reloc_idx[i]].r_type);
4504 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4505 (template_sequence[stub_reloc_idx[i]].r_type),
4506 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4507 points_to, info, stub_entry->target_section, "", STT_FUNC,
4508 stub_entry->branch_type,
4509 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4517 /* Calculate the template, template size and instruction size for a stub.
4518 Return value is the instruction size. */
4521 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4522 const insn_sequence **stub_template,
4523 int *stub_template_size)
4525 const insn_sequence *template_sequence = NULL;
4526 int template_size = 0, i;
4529 template_sequence = stub_definitions[stub_type].template_sequence;
4531 *stub_template = template_sequence;
4533 template_size = stub_definitions[stub_type].template_size;
4534 if (stub_template_size)
4535 *stub_template_size = template_size;
4538 for (i = 0; i < template_size; i++)
4540 switch (template_sequence[i].type)
4561 /* As above, but don't actually build the stub. Just bump offset so
4562 we know stub section sizes. */
4565 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4566 void *in_arg ATTRIBUTE_UNUSED)
4568 struct elf32_arm_stub_hash_entry *stub_entry;
4569 const insn_sequence *template_sequence;
4570 int template_size, size;
4572 /* Massage our args to the form they really have. */
4573 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4575 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4576 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4578 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4581 stub_entry->stub_size = size;
4582 stub_entry->stub_template = template_sequence;
4583 stub_entry->stub_template_size = template_size;
4585 size = (size + 7) & ~7;
4586 stub_entry->stub_sec->size += size;
4591 /* External entry points for sizing and building linker stubs. */
4593 /* Set up various things so that we can make a list of input sections
4594 for each output section included in the link. Returns -1 on error,
4595 0 when no stubs will be needed, and 1 on success. */
4598 elf32_arm_setup_section_lists (bfd *output_bfd,
4599 struct bfd_link_info *info)
4602 unsigned int bfd_count;
4603 unsigned int top_id, top_index;
4605 asection **input_list, **list;
4607 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4611 if (! is_elf_hash_table (htab))
4614 /* Count the number of input BFDs and find the top input section id. */
4615 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4617 input_bfd = input_bfd->link.next)
4620 for (section = input_bfd->sections;
4622 section = section->next)
4624 if (top_id < section->id)
4625 top_id = section->id;
4628 htab->bfd_count = bfd_count;
4630 amt = sizeof (struct map_stub) * (top_id + 1);
4631 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4632 if (htab->stub_group == NULL)
4634 htab->top_id = top_id;
4636 /* We can't use output_bfd->section_count here to find the top output
4637 section index as some sections may have been removed, and
4638 _bfd_strip_section_from_output doesn't renumber the indices. */
4639 for (section = output_bfd->sections, top_index = 0;
4641 section = section->next)
4643 if (top_index < section->index)
4644 top_index = section->index;
4647 htab->top_index = top_index;
4648 amt = sizeof (asection *) * (top_index + 1);
4649 input_list = (asection **) bfd_malloc (amt);
4650 htab->input_list = input_list;
4651 if (input_list == NULL)
4654 /* For sections we aren't interested in, mark their entries with a
4655 value we can check later. */
4656 list = input_list + top_index;
4658 *list = bfd_abs_section_ptr;
4659 while (list-- != input_list);
4661 for (section = output_bfd->sections;
4663 section = section->next)
4665 if ((section->flags & SEC_CODE) != 0)
4666 input_list[section->index] = NULL;
4672 /* The linker repeatedly calls this function for each input section,
4673 in the order that input sections are linked into output sections.
4674 Build lists of input sections to determine groupings between which
4675 we may insert linker stubs. */
4678 elf32_arm_next_input_section (struct bfd_link_info *info,
4681 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4686 if (isec->output_section->index <= htab->top_index)
4688 asection **list = htab->input_list + isec->output_section->index;
4690 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4692 /* Steal the link_sec pointer for our list. */
4693 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4694 /* This happens to make the list in reverse order,
4695 which we reverse later. */
4696 PREV_SEC (isec) = *list;
4702 /* See whether we can group stub sections together. Grouping stub
4703 sections may result in fewer stubs. More importantly, we need to
4704 put all .init* and .fini* stubs at the end of the .init or
4705 .fini output sections respectively, because glibc splits the
4706 _init and _fini functions into multiple parts. Putting a stub in
4707 the middle of a function is not a good idea. */
4710 group_sections (struct elf32_arm_link_hash_table *htab,
4711 bfd_size_type stub_group_size,
4712 bfd_boolean stubs_always_after_branch)
4714 asection **list = htab->input_list;
4718 asection *tail = *list;
4721 if (tail == bfd_abs_section_ptr)
4724 /* Reverse the list: we must avoid placing stubs at the
4725 beginning of the section because the beginning of the text
4726 section may be required for an interrupt vector in bare metal
4728 #define NEXT_SEC PREV_SEC
4730 while (tail != NULL)
4732 /* Pop from tail. */
4733 asection *item = tail;
4734 tail = PREV_SEC (item);
4737 NEXT_SEC (item) = head;
4741 while (head != NULL)
4745 bfd_vma stub_group_start = head->output_offset;
4746 bfd_vma end_of_next;
4749 while (NEXT_SEC (curr) != NULL)
4751 next = NEXT_SEC (curr);
4752 end_of_next = next->output_offset + next->size;
4753 if (end_of_next - stub_group_start >= stub_group_size)
4754 /* End of NEXT is too far from start, so stop. */
4756 /* Add NEXT to the group. */
4760 /* OK, the size from the start to the start of CURR is less
4761 than stub_group_size and thus can be handled by one stub
4762 section. (Or the head section is itself larger than
4763 stub_group_size, in which case we may be toast.)
4764 We should really be keeping track of the total size of
4765 stubs added here, as stubs contribute to the final output
4769 next = NEXT_SEC (head);
4770 /* Set up this stub group. */
4771 htab->stub_group[head->id].link_sec = curr;
4773 while (head != curr && (head = next) != NULL);
4775 /* But wait, there's more! Input sections up to stub_group_size
4776 bytes after the stub section can be handled by it too. */
4777 if (!stubs_always_after_branch)
4779 stub_group_start = curr->output_offset + curr->size;
4781 while (next != NULL)
4783 end_of_next = next->output_offset + next->size;
4784 if (end_of_next - stub_group_start >= stub_group_size)
4785 /* End of NEXT is too far from stubs, so stop. */
4787 /* Add NEXT to the stub group. */
4789 next = NEXT_SEC (head);
4790 htab->stub_group[head->id].link_sec = curr;
4796 while (list++ != htab->input_list + htab->top_index);
4798 free (htab->input_list);
4803 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4807 a8_reloc_compare (const void *a, const void *b)
4809 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4810 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
4812 if (ra->from < rb->from)
4814 else if (ra->from > rb->from)
4820 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4821 const char *, char **);
4823 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4824 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4825 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4829 cortex_a8_erratum_scan (bfd *input_bfd,
4830 struct bfd_link_info *info,
4831 struct a8_erratum_fix **a8_fixes_p,
4832 unsigned int *num_a8_fixes_p,
4833 unsigned int *a8_fix_table_size_p,
4834 struct a8_erratum_reloc *a8_relocs,
4835 unsigned int num_a8_relocs,
4836 unsigned prev_num_a8_fixes,
4837 bfd_boolean *stub_changed_p)
4840 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4841 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4842 unsigned int num_a8_fixes = *num_a8_fixes_p;
4843 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4848 for (section = input_bfd->sections;
4850 section = section->next)
4852 bfd_byte *contents = NULL;
4853 struct _arm_elf_section_data *sec_data;
4857 if (elf_section_type (section) != SHT_PROGBITS
4858 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4859 || (section->flags & SEC_EXCLUDE) != 0
4860 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4861 || (section->output_section == bfd_abs_section_ptr))
4864 base_vma = section->output_section->vma + section->output_offset;
4866 if (elf_section_data (section)->this_hdr.contents != NULL)
4867 contents = elf_section_data (section)->this_hdr.contents;
4868 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4871 sec_data = elf32_arm_section_data (section);
4873 for (span = 0; span < sec_data->mapcount; span++)
4875 unsigned int span_start = sec_data->map[span].vma;
4876 unsigned int span_end = (span == sec_data->mapcount - 1)
4877 ? section->size : sec_data->map[span + 1].vma;
4879 char span_type = sec_data->map[span].type;
4880 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4882 if (span_type != 't')
4885 /* Span is entirely within a single 4KB region: skip scanning. */
4886 if (((base_vma + span_start) & ~0xfff)
4887 == ((base_vma + span_end) & ~0xfff))
4890 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4892 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4893 * The branch target is in the same 4KB region as the
4894 first half of the branch.
4895 * The instruction before the branch is a 32-bit
4896 length non-branch instruction. */
4897 for (i = span_start; i < span_end;)
4899 unsigned int insn = bfd_getl16 (&contents[i]);
4900 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4901 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4903 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4908 /* Load the rest of the insn (in manual-friendly order). */
4909 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4911 /* Encoding T4: B<c>.W. */
4912 is_b = (insn & 0xf800d000) == 0xf0009000;
4913 /* Encoding T1: BL<c>.W. */
4914 is_bl = (insn & 0xf800d000) == 0xf000d000;
4915 /* Encoding T2: BLX<c>.W. */
4916 is_blx = (insn & 0xf800d000) == 0xf000c000;
4917 /* Encoding T3: B<c>.W (not permitted in IT block). */
4918 is_bcc = (insn & 0xf800d000) == 0xf0008000
4919 && (insn & 0x07f00000) != 0x03800000;
4922 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4924 if (((base_vma + i) & 0xfff) == 0xffe
4928 && ! last_was_branch)
4930 bfd_signed_vma offset = 0;
4931 bfd_boolean force_target_arm = FALSE;
4932 bfd_boolean force_target_thumb = FALSE;
4934 enum elf32_arm_stub_type stub_type = arm_stub_none;
4935 struct a8_erratum_reloc key, *found;
4936 bfd_boolean use_plt = FALSE;
4938 key.from = base_vma + i;
4939 found = (struct a8_erratum_reloc *)
4940 bsearch (&key, a8_relocs, num_a8_relocs,
4941 sizeof (struct a8_erratum_reloc),
4946 char *error_message = NULL;
4947 struct elf_link_hash_entry *entry;
4949 /* We don't care about the error returned from this
4950 function, only if there is glue or not. */
4951 entry = find_thumb_glue (info, found->sym_name,
4955 found->non_a8_stub = TRUE;
4957 /* Keep a simpler condition, for the sake of clarity. */
4958 if (htab->root.splt != NULL && found->hash != NULL
4959 && found->hash->root.plt.offset != (bfd_vma) -1)
4962 if (found->r_type == R_ARM_THM_CALL)
4964 if (found->branch_type == ST_BRANCH_TO_ARM
4966 force_target_arm = TRUE;
4968 force_target_thumb = TRUE;
4972 /* Check if we have an offending branch instruction. */
4974 if (found && found->non_a8_stub)
4975 /* We've already made a stub for this instruction, e.g.
4976 it's a long branch or a Thumb->ARM stub. Assume that
4977 stub will suffice to work around the A8 erratum (see
4978 setting of always_after_branch above). */
4982 offset = (insn & 0x7ff) << 1;
4983 offset |= (insn & 0x3f0000) >> 4;
4984 offset |= (insn & 0x2000) ? 0x40000 : 0;
4985 offset |= (insn & 0x800) ? 0x80000 : 0;
4986 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4987 if (offset & 0x100000)
4988 offset |= ~ ((bfd_signed_vma) 0xfffff);
4989 stub_type = arm_stub_a8_veneer_b_cond;
4991 else if (is_b || is_bl || is_blx)
4993 int s = (insn & 0x4000000) != 0;
4994 int j1 = (insn & 0x2000) != 0;
4995 int j2 = (insn & 0x800) != 0;
4999 offset = (insn & 0x7ff) << 1;
5000 offset |= (insn & 0x3ff0000) >> 4;
5004 if (offset & 0x1000000)
5005 offset |= ~ ((bfd_signed_vma) 0xffffff);
5008 offset &= ~ ((bfd_signed_vma) 3);
5010 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5011 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5014 if (stub_type != arm_stub_none)
5016 bfd_vma pc_for_insn = base_vma + i + 4;
5018 /* The original instruction is a BL, but the target is
5019 an ARM instruction. If we were not making a stub,
5020 the BL would have been converted to a BLX. Use the
5021 BLX stub instead in that case. */
5022 if (htab->use_blx && force_target_arm
5023 && stub_type == arm_stub_a8_veneer_bl)
5025 stub_type = arm_stub_a8_veneer_blx;
5029 /* Conversely, if the original instruction was
5030 BLX but the target is Thumb mode, use the BL
5032 else if (force_target_thumb
5033 && stub_type == arm_stub_a8_veneer_blx)
5035 stub_type = arm_stub_a8_veneer_bl;
5041 pc_for_insn &= ~ ((bfd_vma) 3);
5043 /* If we found a relocation, use the proper destination,
5044 not the offset in the (unrelocated) instruction.
5045 Note this is always done if we switched the stub type
5049 (bfd_signed_vma) (found->destination - pc_for_insn);
5051 /* If the stub will use a Thumb-mode branch to a
5052 PLT target, redirect it to the preceding Thumb
5054 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5055 offset -= PLT_THUMB_STUB_SIZE;
5057 target = pc_for_insn + offset;
5059 /* The BLX stub is ARM-mode code. Adjust the offset to
5060 take the different PC value (+8 instead of +4) into
5062 if (stub_type == arm_stub_a8_veneer_blx)
5065 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5067 char *stub_name = NULL;
5069 if (num_a8_fixes == a8_fix_table_size)
5071 a8_fix_table_size *= 2;
5072 a8_fixes = (struct a8_erratum_fix *)
5073 bfd_realloc (a8_fixes,
5074 sizeof (struct a8_erratum_fix)
5075 * a8_fix_table_size);
5078 if (num_a8_fixes < prev_num_a8_fixes)
5080 /* If we're doing a subsequent scan,
5081 check if we've found the same fix as
5082 before, and try and reuse the stub
5084 stub_name = a8_fixes[num_a8_fixes].stub_name;
5085 if ((a8_fixes[num_a8_fixes].section != section)
5086 || (a8_fixes[num_a8_fixes].offset != i))
5090 *stub_changed_p = TRUE;
5096 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5097 if (stub_name != NULL)
5098 sprintf (stub_name, "%x:%x", section->id, i);
5101 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5102 a8_fixes[num_a8_fixes].section = section;
5103 a8_fixes[num_a8_fixes].offset = i;
5104 a8_fixes[num_a8_fixes].addend = offset;
5105 a8_fixes[num_a8_fixes].orig_insn = insn;
5106 a8_fixes[num_a8_fixes].stub_name = stub_name;
5107 a8_fixes[num_a8_fixes].stub_type = stub_type;
5108 a8_fixes[num_a8_fixes].branch_type =
5109 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5116 i += insn_32bit ? 4 : 2;
5117 last_was_32bit = insn_32bit;
5118 last_was_branch = is_32bit_branch;
5122 if (elf_section_data (section)->this_hdr.contents == NULL)
5126 *a8_fixes_p = a8_fixes;
5127 *num_a8_fixes_p = num_a8_fixes;
5128 *a8_fix_table_size_p = a8_fix_table_size;
5133 /* Determine and set the size of the stub section for a final link.
5135 The basic idea here is to examine all the relocations looking for
5136 PC-relative calls to a target that is unreachable with a "bl"
5140 elf32_arm_size_stubs (bfd *output_bfd,
5142 struct bfd_link_info *info,
5143 bfd_signed_vma group_size,
5144 asection * (*add_stub_section) (const char *, asection *,
5146 void (*layout_sections_again) (void))
5148 bfd_size_type stub_group_size;
5149 bfd_boolean stubs_always_after_branch;
5150 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5151 struct a8_erratum_fix *a8_fixes = NULL;
5152 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
5153 struct a8_erratum_reloc *a8_relocs = NULL;
5154 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
5159 if (htab->fix_cortex_a8)
5161 a8_fixes = (struct a8_erratum_fix *)
5162 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
5163 a8_relocs = (struct a8_erratum_reloc *)
5164 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
5167 /* Propagate mach to stub bfd, because it may not have been
5168 finalized when we created stub_bfd. */
5169 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
5170 bfd_get_mach (output_bfd));
5172 /* Stash our params away. */
5173 htab->stub_bfd = stub_bfd;
5174 htab->add_stub_section = add_stub_section;
5175 htab->layout_sections_again = layout_sections_again;
5176 stubs_always_after_branch = group_size < 0;
5178 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
5179 as the first half of a 32-bit branch straddling two 4K pages. This is a
5180 crude way of enforcing that. */
5181 if (htab->fix_cortex_a8)
5182 stubs_always_after_branch = 1;
5185 stub_group_size = -group_size;
5187 stub_group_size = group_size;
5189 if (stub_group_size == 1)
5191 /* Default values. */
5192 /* Thumb branch range is +-4MB has to be used as the default
5193 maximum size (a given section can contain both ARM and Thumb
5194 code, so the worst case has to be taken into account).
5196 This value is 24K less than that, which allows for 2025
5197 12-byte stubs. If we exceed that, then we will fail to link.
5198 The user will have to relink with an explicit group size
5200 stub_group_size = 4170000;
5203 group_sections (htab, stub_group_size, stubs_always_after_branch);
5205 /* If we're applying the cortex A8 fix, we need to determine the
5206 program header size now, because we cannot change it later --
5207 that could alter section placements. Notice the A8 erratum fix
5208 ends up requiring the section addresses to remain unchanged
5209 modulo the page size. That's something we cannot represent
5210 inside BFD, and we don't want to force the section alignment to
5211 be the page size. */
5212 if (htab->fix_cortex_a8)
5213 (*htab->layout_sections_again) ();
5218 unsigned int bfd_indx;
5220 bfd_boolean stub_changed = FALSE;
5221 unsigned prev_num_a8_fixes = num_a8_fixes;
5224 for (input_bfd = info->input_bfds, bfd_indx = 0;
5226 input_bfd = input_bfd->link.next, bfd_indx++)
5228 Elf_Internal_Shdr *symtab_hdr;
5230 Elf_Internal_Sym *local_syms = NULL;
5232 if (!is_arm_elf (input_bfd))
5237 /* We'll need the symbol table in a second. */
5238 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5239 if (symtab_hdr->sh_info == 0)
5242 /* Walk over each section attached to the input bfd. */
5243 for (section = input_bfd->sections;
5245 section = section->next)
5247 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
5249 /* If there aren't any relocs, then there's nothing more
5251 if ((section->flags & SEC_RELOC) == 0
5252 || section->reloc_count == 0
5253 || (section->flags & SEC_CODE) == 0)
5256 /* If this section is a link-once section that will be
5257 discarded, then don't create any stubs. */
5258 if (section->output_section == NULL
5259 || section->output_section->owner != output_bfd)
5262 /* Get the relocs. */
5264 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
5265 NULL, info->keep_memory);
5266 if (internal_relocs == NULL)
5267 goto error_ret_free_local;
5269 /* Now examine each relocation. */
5270 irela = internal_relocs;
5271 irelaend = irela + section->reloc_count;
5272 for (; irela < irelaend; irela++)
5274 unsigned int r_type, r_indx;
5275 enum elf32_arm_stub_type stub_type;
5276 struct elf32_arm_stub_hash_entry *stub_entry;
5279 bfd_vma destination;
5280 struct elf32_arm_link_hash_entry *hash;
5281 const char *sym_name;
5283 const asection *id_sec;
5284 unsigned char st_type;
5285 enum arm_st_branch_type branch_type;
5286 bfd_boolean created_stub = FALSE;
5288 r_type = ELF32_R_TYPE (irela->r_info);
5289 r_indx = ELF32_R_SYM (irela->r_info);
5291 if (r_type >= (unsigned int) R_ARM_max)
5293 bfd_set_error (bfd_error_bad_value);
5294 error_ret_free_internal:
5295 if (elf_section_data (section)->relocs == NULL)
5296 free (internal_relocs);
5298 error_ret_free_local:
5299 if (local_syms != NULL
5300 && (symtab_hdr->contents
5301 != (unsigned char *) local_syms))
5307 if (r_indx >= symtab_hdr->sh_info)
5308 hash = elf32_arm_hash_entry
5309 (elf_sym_hashes (input_bfd)
5310 [r_indx - symtab_hdr->sh_info]);
5312 /* Only look for stubs on branch instructions, or
5313 non-relaxed TLSCALL */
5314 if ((r_type != (unsigned int) R_ARM_CALL)
5315 && (r_type != (unsigned int) R_ARM_THM_CALL)
5316 && (r_type != (unsigned int) R_ARM_JUMP24)
5317 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
5318 && (r_type != (unsigned int) R_ARM_THM_XPC22)
5319 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
5320 && (r_type != (unsigned int) R_ARM_PLT32)
5321 && !((r_type == (unsigned int) R_ARM_TLS_CALL
5322 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5323 && r_type == elf32_arm_tls_transition
5324 (info, r_type, &hash->root)
5325 && ((hash ? hash->tls_type
5326 : (elf32_arm_local_got_tls_type
5327 (input_bfd)[r_indx]))
5328 & GOT_TLS_GDESC) != 0))
5331 /* Now determine the call target, its name, value,
5338 if (r_type == (unsigned int) R_ARM_TLS_CALL
5339 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5341 /* A non-relaxed TLS call. The target is the
5342 plt-resident trampoline and nothing to do
5344 BFD_ASSERT (htab->tls_trampoline > 0);
5345 sym_sec = htab->root.splt;
5346 sym_value = htab->tls_trampoline;
5349 branch_type = ST_BRANCH_TO_ARM;
5353 /* It's a local symbol. */
5354 Elf_Internal_Sym *sym;
5356 if (local_syms == NULL)
5359 = (Elf_Internal_Sym *) symtab_hdr->contents;
5360 if (local_syms == NULL)
5362 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5363 symtab_hdr->sh_info, 0,
5365 if (local_syms == NULL)
5366 goto error_ret_free_internal;
5369 sym = local_syms + r_indx;
5370 if (sym->st_shndx == SHN_UNDEF)
5371 sym_sec = bfd_und_section_ptr;
5372 else if (sym->st_shndx == SHN_ABS)
5373 sym_sec = bfd_abs_section_ptr;
5374 else if (sym->st_shndx == SHN_COMMON)
5375 sym_sec = bfd_com_section_ptr;
5378 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
5381 /* This is an undefined symbol. It can never
5385 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5386 sym_value = sym->st_value;
5387 destination = (sym_value + irela->r_addend
5388 + sym_sec->output_offset
5389 + sym_sec->output_section->vma);
5390 st_type = ELF_ST_TYPE (sym->st_info);
5391 branch_type = ARM_SYM_BRANCH_TYPE (sym);
5393 = bfd_elf_string_from_elf_section (input_bfd,
5394 symtab_hdr->sh_link,
5399 /* It's an external symbol. */
5400 while (hash->root.root.type == bfd_link_hash_indirect
5401 || hash->root.root.type == bfd_link_hash_warning)
5402 hash = ((struct elf32_arm_link_hash_entry *)
5403 hash->root.root.u.i.link);
5405 if (hash->root.root.type == bfd_link_hash_defined
5406 || hash->root.root.type == bfd_link_hash_defweak)
5408 sym_sec = hash->root.root.u.def.section;
5409 sym_value = hash->root.root.u.def.value;
5411 struct elf32_arm_link_hash_table *globals =
5412 elf32_arm_hash_table (info);
5414 /* For a destination in a shared library,
5415 use the PLT stub as target address to
5416 decide whether a branch stub is
5419 && globals->root.splt != NULL
5421 && hash->root.plt.offset != (bfd_vma) -1)
5423 sym_sec = globals->root.splt;
5424 sym_value = hash->root.plt.offset;
5425 if (sym_sec->output_section != NULL)
5426 destination = (sym_value
5427 + sym_sec->output_offset
5428 + sym_sec->output_section->vma);
5430 else if (sym_sec->output_section != NULL)
5431 destination = (sym_value + irela->r_addend
5432 + sym_sec->output_offset
5433 + sym_sec->output_section->vma);
5435 else if ((hash->root.root.type == bfd_link_hash_undefined)
5436 || (hash->root.root.type == bfd_link_hash_undefweak))
5438 /* For a shared library, use the PLT stub as
5439 target address to decide whether a long
5440 branch stub is needed.
5441 For absolute code, they cannot be handled. */
5442 struct elf32_arm_link_hash_table *globals =
5443 elf32_arm_hash_table (info);
5446 && globals->root.splt != NULL
5448 && hash->root.plt.offset != (bfd_vma) -1)
5450 sym_sec = globals->root.splt;
5451 sym_value = hash->root.plt.offset;
5452 if (sym_sec->output_section != NULL)
5453 destination = (sym_value
5454 + sym_sec->output_offset
5455 + sym_sec->output_section->vma);
5462 bfd_set_error (bfd_error_bad_value);
5463 goto error_ret_free_internal;
5465 st_type = hash->root.type;
5466 branch_type = hash->root.target_internal;
5467 sym_name = hash->root.root.root.string;
5472 /* Determine what (if any) linker stub is needed. */
5473 stub_type = arm_type_of_stub (info, section, irela,
5474 st_type, &branch_type,
5475 hash, destination, sym_sec,
5476 input_bfd, sym_name);
5477 if (stub_type == arm_stub_none)
5480 /* Support for grouping stub sections. */
5481 id_sec = htab->stub_group[section->id].link_sec;
5483 /* Get the name of this stub. */
5484 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
5487 goto error_ret_free_internal;
5489 /* We've either created a stub for this reloc already,
5490 or we are about to. */
5491 created_stub = TRUE;
5493 stub_entry = arm_stub_hash_lookup
5494 (&htab->stub_hash_table, stub_name,
5496 if (stub_entry != NULL)
5498 /* The proper stub has already been created. */
5500 stub_entry->target_value = sym_value;
5504 stub_entry = elf32_arm_add_stub (stub_name, section,
5506 if (stub_entry == NULL)
5509 goto error_ret_free_internal;
5512 stub_entry->target_value = sym_value;
5513 stub_entry->target_section = sym_sec;
5514 stub_entry->stub_type = stub_type;
5515 stub_entry->h = hash;
5516 stub_entry->branch_type = branch_type;
5518 if (sym_name == NULL)
5519 sym_name = "unnamed";
5520 stub_entry->output_name = (char *)
5521 bfd_alloc (htab->stub_bfd,
5522 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5523 + strlen (sym_name));
5524 if (stub_entry->output_name == NULL)
5527 goto error_ret_free_internal;
5530 /* For historical reasons, use the existing names for
5531 ARM-to-Thumb and Thumb-to-ARM stubs. */
5532 if ((r_type == (unsigned int) R_ARM_THM_CALL
5533 || r_type == (unsigned int) R_ARM_THM_JUMP24
5534 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5535 && branch_type == ST_BRANCH_TO_ARM)
5536 sprintf (stub_entry->output_name,
5537 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5538 else if ((r_type == (unsigned int) R_ARM_CALL
5539 || r_type == (unsigned int) R_ARM_JUMP24)
5540 && branch_type == ST_BRANCH_TO_THUMB)
5541 sprintf (stub_entry->output_name,
5542 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5544 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5547 stub_changed = TRUE;
5551 /* Look for relocations which might trigger Cortex-A8
5553 if (htab->fix_cortex_a8
5554 && (r_type == (unsigned int) R_ARM_THM_JUMP24
5555 || r_type == (unsigned int) R_ARM_THM_JUMP19
5556 || r_type == (unsigned int) R_ARM_THM_CALL
5557 || r_type == (unsigned int) R_ARM_THM_XPC22))
5559 bfd_vma from = section->output_section->vma
5560 + section->output_offset
5563 if ((from & 0xfff) == 0xffe)
5565 /* Found a candidate. Note we haven't checked the
5566 destination is within 4K here: if we do so (and
5567 don't create an entry in a8_relocs) we can't tell
5568 that a branch should have been relocated when
5570 if (num_a8_relocs == a8_reloc_table_size)
5572 a8_reloc_table_size *= 2;
5573 a8_relocs = (struct a8_erratum_reloc *)
5574 bfd_realloc (a8_relocs,
5575 sizeof (struct a8_erratum_reloc)
5576 * a8_reloc_table_size);
5579 a8_relocs[num_a8_relocs].from = from;
5580 a8_relocs[num_a8_relocs].destination = destination;
5581 a8_relocs[num_a8_relocs].r_type = r_type;
5582 a8_relocs[num_a8_relocs].branch_type = branch_type;
5583 a8_relocs[num_a8_relocs].sym_name = sym_name;
5584 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5585 a8_relocs[num_a8_relocs].hash = hash;
5592 /* We're done with the internal relocs, free them. */
5593 if (elf_section_data (section)->relocs == NULL)
5594 free (internal_relocs);
5597 if (htab->fix_cortex_a8)
5599 /* Sort relocs which might apply to Cortex-A8 erratum. */
5600 qsort (a8_relocs, num_a8_relocs,
5601 sizeof (struct a8_erratum_reloc),
5604 /* Scan for branches which might trigger Cortex-A8 erratum. */
5605 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5606 &num_a8_fixes, &a8_fix_table_size,
5607 a8_relocs, num_a8_relocs,
5608 prev_num_a8_fixes, &stub_changed)
5610 goto error_ret_free_local;
5614 if (prev_num_a8_fixes != num_a8_fixes)
5615 stub_changed = TRUE;
5620 /* OK, we've added some stubs. Find out the new size of the
5622 for (stub_sec = htab->stub_bfd->sections;
5624 stub_sec = stub_sec->next)
5626 /* Ignore non-stub sections. */
5627 if (!strstr (stub_sec->name, STUB_SUFFIX))
5633 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5635 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5636 if (htab->fix_cortex_a8)
5637 for (i = 0; i < num_a8_fixes; i++)
5639 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5640 a8_fixes[i].section, htab);
5642 if (stub_sec == NULL)
5643 goto error_ret_free_local;
5646 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5651 /* Ask the linker to do its stuff. */
5652 (*htab->layout_sections_again) ();
5655 /* Add stubs for Cortex-A8 erratum fixes now. */
5656 if (htab->fix_cortex_a8)
5658 for (i = 0; i < num_a8_fixes; i++)
5660 struct elf32_arm_stub_hash_entry *stub_entry;
5661 char *stub_name = a8_fixes[i].stub_name;
5662 asection *section = a8_fixes[i].section;
5663 unsigned int section_id = a8_fixes[i].section->id;
5664 asection *link_sec = htab->stub_group[section_id].link_sec;
5665 asection *stub_sec = htab->stub_group[section_id].stub_sec;
5666 const insn_sequence *template_sequence;
5667 int template_size, size = 0;
5669 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5671 if (stub_entry == NULL)
5673 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5679 stub_entry->stub_sec = stub_sec;
5680 stub_entry->stub_offset = 0;
5681 stub_entry->id_sec = link_sec;
5682 stub_entry->stub_type = a8_fixes[i].stub_type;
5683 stub_entry->target_section = a8_fixes[i].section;
5684 stub_entry->target_value = a8_fixes[i].offset;
5685 stub_entry->target_addend = a8_fixes[i].addend;
5686 stub_entry->orig_insn = a8_fixes[i].orig_insn;
5687 stub_entry->branch_type = a8_fixes[i].branch_type;
5689 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5693 stub_entry->stub_size = size;
5694 stub_entry->stub_template = template_sequence;
5695 stub_entry->stub_template_size = template_size;
5698 /* Stash the Cortex-A8 erratum fix array for use later in
5699 elf32_arm_write_section(). */
5700 htab->a8_erratum_fixes = a8_fixes;
5701 htab->num_a8_erratum_fixes = num_a8_fixes;
5705 htab->a8_erratum_fixes = NULL;
5706 htab->num_a8_erratum_fixes = 0;
5711 /* Build all the stubs associated with the current output file. The
5712 stubs are kept in a hash table attached to the main linker hash
5713 table. We also set up the .plt entries for statically linked PIC
5714 functions here. This function is called via arm_elf_finish in the
5718 elf32_arm_build_stubs (struct bfd_link_info *info)
5721 struct bfd_hash_table *table;
5722 struct elf32_arm_link_hash_table *htab;
5724 htab = elf32_arm_hash_table (info);
5728 for (stub_sec = htab->stub_bfd->sections;
5730 stub_sec = stub_sec->next)
5734 /* Ignore non-stub sections. */
5735 if (!strstr (stub_sec->name, STUB_SUFFIX))
5738 /* Allocate memory to hold the linker stubs. */
5739 size = stub_sec->size;
5740 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
5741 if (stub_sec->contents == NULL && size != 0)
5746 /* Build the stubs as directed by the stub hash table. */
5747 table = &htab->stub_hash_table;
5748 bfd_hash_traverse (table, arm_build_one_stub, info);
5749 if (htab->fix_cortex_a8)
5751 /* Place the cortex a8 stubs last. */
5752 htab->fix_cortex_a8 = -1;
5753 bfd_hash_traverse (table, arm_build_one_stub, info);
5759 /* Locate the Thumb encoded calling stub for NAME. */
5761 static struct elf_link_hash_entry *
5762 find_thumb_glue (struct bfd_link_info *link_info,
5764 char **error_message)
5767 struct elf_link_hash_entry *hash;
5768 struct elf32_arm_link_hash_table *hash_table;
5770 /* We need a pointer to the armelf specific hash table. */
5771 hash_table = elf32_arm_hash_table (link_info);
5772 if (hash_table == NULL)
5775 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5776 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
5778 BFD_ASSERT (tmp_name);
5780 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5782 hash = elf_link_hash_lookup
5783 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5786 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5787 tmp_name, name) == -1)
5788 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5795 /* Locate the ARM encoded calling stub for NAME. */
5797 static struct elf_link_hash_entry *
5798 find_arm_glue (struct bfd_link_info *link_info,
5800 char **error_message)
5803 struct elf_link_hash_entry *myh;
5804 struct elf32_arm_link_hash_table *hash_table;
5806 /* We need a pointer to the elfarm specific hash table. */
5807 hash_table = elf32_arm_hash_table (link_info);
5808 if (hash_table == NULL)
5811 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5812 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5814 BFD_ASSERT (tmp_name);
5816 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5818 myh = elf_link_hash_lookup
5819 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5822 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5823 tmp_name, name) == -1)
5824 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5831 /* ARM->Thumb glue (static images):
5835 ldr r12, __func_addr
5838 .word func @ behave as if you saw a ARM_32 reloc.
5845 .word func @ behave as if you saw a ARM_32 reloc.
5847 (relocatable images)
5850 ldr r12, __func_offset
5856 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5857 static const insn32 a2t1_ldr_insn = 0xe59fc000;
5858 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5859 static const insn32 a2t3_func_addr_insn = 0x00000001;
5861 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5862 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5863 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5865 #define ARM2THUMB_PIC_GLUE_SIZE 16
5866 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5867 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5868 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5870 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5874 __func_from_thumb: __func_from_thumb:
5876 nop ldr r6, __func_addr
5886 #define THUMB2ARM_GLUE_SIZE 8
5887 static const insn16 t2a1_bx_pc_insn = 0x4778;
5888 static const insn16 t2a2_noop_insn = 0x46c0;
5889 static const insn32 t2a3_b_insn = 0xea000000;
5891 #define VFP11_ERRATUM_VENEER_SIZE 8
5892 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
5893 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
5895 #define ARM_BX_VENEER_SIZE 12
5896 static const insn32 armbx1_tst_insn = 0xe3100001;
5897 static const insn32 armbx2_moveq_insn = 0x01a0f000;
5898 static const insn32 armbx3_bx_insn = 0xe12fff10;
5900 #ifndef ELFARM_NABI_C_INCLUDED
5902 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5905 bfd_byte * contents;
5909 /* Do not include empty glue sections in the output. */
5912 s = bfd_get_linker_section (abfd, name);
5914 s->flags |= SEC_EXCLUDE;
5919 BFD_ASSERT (abfd != NULL);
5921 s = bfd_get_linker_section (abfd, name);
5922 BFD_ASSERT (s != NULL);
5924 contents = (bfd_byte *) bfd_alloc (abfd, size);
5926 BFD_ASSERT (s->size == size);
5927 s->contents = contents;
5931 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5933 struct elf32_arm_link_hash_table * globals;
5935 globals = elf32_arm_hash_table (info);
5936 BFD_ASSERT (globals != NULL);
5938 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5939 globals->arm_glue_size,
5940 ARM2THUMB_GLUE_SECTION_NAME);
5942 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5943 globals->thumb_glue_size,
5944 THUMB2ARM_GLUE_SECTION_NAME);
5946 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5947 globals->vfp11_erratum_glue_size,
5948 VFP11_ERRATUM_VENEER_SECTION_NAME);
5950 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5951 globals->stm32l4xx_erratum_glue_size,
5952 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
5954 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5955 globals->bx_glue_size,
5956 ARM_BX_GLUE_SECTION_NAME);
5961 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5962 returns the symbol identifying the stub. */
5964 static struct elf_link_hash_entry *
5965 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5966 struct elf_link_hash_entry * h)
5968 const char * name = h->root.root.string;
5971 struct elf_link_hash_entry * myh;
5972 struct bfd_link_hash_entry * bh;
5973 struct elf32_arm_link_hash_table * globals;
5977 globals = elf32_arm_hash_table (link_info);
5978 BFD_ASSERT (globals != NULL);
5979 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5981 s = bfd_get_linker_section
5982 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5984 BFD_ASSERT (s != NULL);
5986 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5987 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5989 BFD_ASSERT (tmp_name);
5991 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5993 myh = elf_link_hash_lookup
5994 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5998 /* We've already seen this guy. */
6003 /* The only trick here is using hash_table->arm_glue_size as the value.
6004 Even though the section isn't allocated yet, this is where we will be
6005 putting it. The +1 on the value marks that the stub has not been
6006 output yet - not that it is a Thumb function. */
6008 val = globals->arm_glue_size + 1;
6009 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
6010 tmp_name, BSF_GLOBAL, s, val,
6011 NULL, TRUE, FALSE, &bh);
6013 myh = (struct elf_link_hash_entry *) bh;
6014 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6015 myh->forced_local = 1;
6019 if (bfd_link_pic (link_info)
6020 || globals->root.is_relocatable_executable
6021 || globals->pic_veneer)
6022 size = ARM2THUMB_PIC_GLUE_SIZE;
6023 else if (globals->use_blx)
6024 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
6026 size = ARM2THUMB_STATIC_GLUE_SIZE;
6029 globals->arm_glue_size += size;
6034 /* Allocate space for ARMv4 BX veneers. */
6037 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
6040 struct elf32_arm_link_hash_table *globals;
6042 struct elf_link_hash_entry *myh;
6043 struct bfd_link_hash_entry *bh;
6046 /* BX PC does not need a veneer. */
6050 globals = elf32_arm_hash_table (link_info);
6051 BFD_ASSERT (globals != NULL);
6052 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6054 /* Check if this veneer has already been allocated. */
6055 if (globals->bx_glue_offset[reg])
6058 s = bfd_get_linker_section
6059 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
6061 BFD_ASSERT (s != NULL);
6063 /* Add symbol for veneer. */
6065 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
6067 BFD_ASSERT (tmp_name);
6069 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
6071 myh = elf_link_hash_lookup
6072 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
6074 BFD_ASSERT (myh == NULL);
6077 val = globals->bx_glue_size;
6078 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
6079 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
6080 NULL, TRUE, FALSE, &bh);
6082 myh = (struct elf_link_hash_entry *) bh;
6083 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6084 myh->forced_local = 1;
6086 s->size += ARM_BX_VENEER_SIZE;
6087 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
6088 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
6092 /* Add an entry to the code/data map for section SEC. */
6095 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
6097 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6098 unsigned int newidx;
6100 if (sec_data->map == NULL)
6102 sec_data->map = (elf32_arm_section_map *)
6103 bfd_malloc (sizeof (elf32_arm_section_map));
6104 sec_data->mapcount = 0;
6105 sec_data->mapsize = 1;
6108 newidx = sec_data->mapcount++;
6110 if (sec_data->mapcount > sec_data->mapsize)
6112 sec_data->mapsize *= 2;
6113 sec_data->map = (elf32_arm_section_map *)
6114 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
6115 * sizeof (elf32_arm_section_map));
6120 sec_data->map[newidx].vma = vma;
6121 sec_data->map[newidx].type = type;
6126 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
6127 veneers are handled for now. */
6130 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
6131 elf32_vfp11_erratum_list *branch,
6133 asection *branch_sec,
6134 unsigned int offset)
6137 struct elf32_arm_link_hash_table *hash_table;
6139 struct elf_link_hash_entry *myh;
6140 struct bfd_link_hash_entry *bh;
6142 struct _arm_elf_section_data *sec_data;
6143 elf32_vfp11_erratum_list *newerr;
6145 hash_table = elf32_arm_hash_table (link_info);
6146 BFD_ASSERT (hash_table != NULL);
6147 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
6149 s = bfd_get_linker_section
6150 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
6152 sec_data = elf32_arm_section_data (s);
6154 BFD_ASSERT (s != NULL);
6156 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6157 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6159 BFD_ASSERT (tmp_name);
6161 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6162 hash_table->num_vfp11_fixes);
6164 myh = elf_link_hash_lookup
6165 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6167 BFD_ASSERT (myh == NULL);
6170 val = hash_table->vfp11_erratum_glue_size;
6171 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
6172 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
6173 NULL, TRUE, FALSE, &bh);
6175 myh = (struct elf_link_hash_entry *) bh;
6176 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6177 myh->forced_local = 1;
6179 /* Link veneer back to calling location. */
6180 sec_data->erratumcount += 1;
6181 newerr = (elf32_vfp11_erratum_list *)
6182 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6184 newerr->type = VFP11_ERRATUM_ARM_VENEER;
6186 newerr->u.v.branch = branch;
6187 newerr->u.v.id = hash_table->num_vfp11_fixes;
6188 branch->u.b.veneer = newerr;
6190 newerr->next = sec_data->erratumlist;
6191 sec_data->erratumlist = newerr;
6193 /* A symbol for the return from the veneer. */
6194 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6195 hash_table->num_vfp11_fixes);
6197 myh = elf_link_hash_lookup
6198 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6205 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
6206 branch_sec, val, NULL, TRUE, FALSE, &bh);
6208 myh = (struct elf_link_hash_entry *) bh;
6209 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6210 myh->forced_local = 1;
6214 /* Generate a mapping symbol for the veneer section, and explicitly add an
6215 entry for that symbol to the code/data map for the section. */
6216 if (hash_table->vfp11_erratum_glue_size == 0)
6219 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
6220 ever requires this erratum fix. */
6221 _bfd_generic_link_add_one_symbol (link_info,
6222 hash_table->bfd_of_glue_owner, "$a",
6223 BSF_LOCAL, s, 0, NULL,
6226 myh = (struct elf_link_hash_entry *) bh;
6227 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
6228 myh->forced_local = 1;
6230 /* The elf32_arm_init_maps function only cares about symbols from input
6231 BFDs. We must make a note of this generated mapping symbol
6232 ourselves so that code byteswapping works properly in
6233 elf32_arm_write_section. */
6234 elf32_arm_section_map_add (s, 'a', 0);
6237 s->size += VFP11_ERRATUM_VENEER_SIZE;
6238 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
6239 hash_table->num_vfp11_fixes++;
6241 /* The offset of the veneer. */
6245 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
6246 veneers need to be handled because used only in Cortex-M. */
6249 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
6250 elf32_stm32l4xx_erratum_list *branch,
6252 asection *branch_sec,
6253 unsigned int offset,
6254 bfd_size_type veneer_size)
6257 struct elf32_arm_link_hash_table *hash_table;
6259 struct elf_link_hash_entry *myh;
6260 struct bfd_link_hash_entry *bh;
6262 struct _arm_elf_section_data *sec_data;
6263 elf32_stm32l4xx_erratum_list *newerr;
6265 hash_table = elf32_arm_hash_table (link_info);
6266 BFD_ASSERT (hash_table != NULL);
6267 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
6269 s = bfd_get_linker_section
6270 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6272 BFD_ASSERT (s != NULL);
6274 sec_data = elf32_arm_section_data (s);
6276 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6277 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
6279 BFD_ASSERT (tmp_name);
6281 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
6282 hash_table->num_stm32l4xx_fixes);
6284 myh = elf_link_hash_lookup
6285 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6287 BFD_ASSERT (myh == NULL);
6290 val = hash_table->stm32l4xx_erratum_glue_size;
6291 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
6292 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
6293 NULL, TRUE, FALSE, &bh);
6295 myh = (struct elf_link_hash_entry *) bh;
6296 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6297 myh->forced_local = 1;
6299 /* Link veneer back to calling location. */
6300 sec_data->stm32l4xx_erratumcount += 1;
6301 newerr = (elf32_stm32l4xx_erratum_list *)
6302 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
6304 newerr->type = STM32L4XX_ERRATUM_VENEER;
6306 newerr->u.v.branch = branch;
6307 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
6308 branch->u.b.veneer = newerr;
6310 newerr->next = sec_data->stm32l4xx_erratumlist;
6311 sec_data->stm32l4xx_erratumlist = newerr;
6313 /* A symbol for the return from the veneer. */
6314 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
6315 hash_table->num_stm32l4xx_fixes);
6317 myh = elf_link_hash_lookup
6318 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6325 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
6326 branch_sec, val, NULL, TRUE, FALSE, &bh);
6328 myh = (struct elf_link_hash_entry *) bh;
6329 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6330 myh->forced_local = 1;
6334 /* Generate a mapping symbol for the veneer section, and explicitly add an
6335 entry for that symbol to the code/data map for the section. */
6336 if (hash_table->stm32l4xx_erratum_glue_size == 0)
6339 /* Creates a THUMB symbol since there is no other choice. */
6340 _bfd_generic_link_add_one_symbol (link_info,
6341 hash_table->bfd_of_glue_owner, "$t",
6342 BSF_LOCAL, s, 0, NULL,
6345 myh = (struct elf_link_hash_entry *) bh;
6346 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
6347 myh->forced_local = 1;
6349 /* The elf32_arm_init_maps function only cares about symbols from input
6350 BFDs. We must make a note of this generated mapping symbol
6351 ourselves so that code byteswapping works properly in
6352 elf32_arm_write_section. */
6353 elf32_arm_section_map_add (s, 't', 0);
6356 s->size += veneer_size;
6357 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
6358 hash_table->num_stm32l4xx_fixes++;
6360 /* The offset of the veneer. */
6364 #define ARM_GLUE_SECTION_FLAGS \
6365 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
6366 | SEC_READONLY | SEC_LINKER_CREATED)
6368 /* Create a fake section for use by the ARM backend of the linker. */
6371 arm_make_glue_section (bfd * abfd, const char * name)
6375 sec = bfd_get_linker_section (abfd, name);
6380 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
6383 || !bfd_set_section_alignment (abfd, sec, 2))
6386 /* Set the gc mark to prevent the section from being removed by garbage
6387 collection, despite the fact that no relocs refer to this section. */
6393 /* Set size of .plt entries. This function is called from the
6394 linker scripts in ld/emultempl/{armelf}.em. */
6397 bfd_elf32_arm_use_long_plt (void)
6399 elf32_arm_use_long_plt_entry = TRUE;
6402 /* Add the glue sections to ABFD. This function is called from the
6403 linker scripts in ld/emultempl/{armelf}.em. */
6406 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
6407 struct bfd_link_info *info)
6409 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
6410 bfd_boolean dostm32l4xx = globals
6411 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
6412 bfd_boolean addglue;
6414 /* If we are only performing a partial
6415 link do not bother adding the glue. */
6416 if (bfd_link_relocatable (info))
6419 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
6420 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
6421 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
6422 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
6428 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6431 /* Select a BFD to be used to hold the sections used by the glue code.
6432 This function is called from the linker scripts in ld/emultempl/
6436 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
6438 struct elf32_arm_link_hash_table *globals;
6440 /* If we are only performing a partial link
6441 do not bother getting a bfd to hold the glue. */
6442 if (bfd_link_relocatable (info))
6445 /* Make sure we don't attach the glue sections to a dynamic object. */
6446 BFD_ASSERT (!(abfd->flags & DYNAMIC));
6448 globals = elf32_arm_hash_table (info);
6449 BFD_ASSERT (globals != NULL);
6451 if (globals->bfd_of_glue_owner != NULL)
6454 /* Save the bfd for later use. */
6455 globals->bfd_of_glue_owner = abfd;
6461 check_use_blx (struct elf32_arm_link_hash_table *globals)
6465 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
6468 if (globals->fix_arm1176)
6470 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
6471 globals->use_blx = 1;
6475 if (cpu_arch > TAG_CPU_ARCH_V4T)
6476 globals->use_blx = 1;
6481 bfd_elf32_arm_process_before_allocation (bfd *abfd,
6482 struct bfd_link_info *link_info)
6484 Elf_Internal_Shdr *symtab_hdr;
6485 Elf_Internal_Rela *internal_relocs = NULL;
6486 Elf_Internal_Rela *irel, *irelend;
6487 bfd_byte *contents = NULL;
6490 struct elf32_arm_link_hash_table *globals;
6492 /* If we are only performing a partial link do not bother
6493 to construct any glue. */
6494 if (bfd_link_relocatable (link_info))
6497 /* Here we have a bfd that is to be included on the link. We have a
6498 hook to do reloc rummaging, before section sizes are nailed down. */
6499 globals = elf32_arm_hash_table (link_info);
6500 BFD_ASSERT (globals != NULL);
6502 check_use_blx (globals);
6504 if (globals->byteswap_code && !bfd_big_endian (abfd))
6506 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6511 /* PR 5398: If we have not decided to include any loadable sections in
6512 the output then we will not have a glue owner bfd. This is OK, it
6513 just means that there is nothing else for us to do here. */
6514 if (globals->bfd_of_glue_owner == NULL)
6517 /* Rummage around all the relocs and map the glue vectors. */
6518 sec = abfd->sections;
6523 for (; sec != NULL; sec = sec->next)
6525 if (sec->reloc_count == 0)
6528 if ((sec->flags & SEC_EXCLUDE) != 0)
6531 symtab_hdr = & elf_symtab_hdr (abfd);
6533 /* Load the relocs. */
6535 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
6537 if (internal_relocs == NULL)
6540 irelend = internal_relocs + sec->reloc_count;
6541 for (irel = internal_relocs; irel < irelend; irel++)
6544 unsigned long r_index;
6546 struct elf_link_hash_entry *h;
6548 r_type = ELF32_R_TYPE (irel->r_info);
6549 r_index = ELF32_R_SYM (irel->r_info);
6551 /* These are the only relocation types we care about. */
6552 if ( r_type != R_ARM_PC24
6553 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
6556 /* Get the section contents if we haven't done so already. */
6557 if (contents == NULL)
6559 /* Get cached copy if it exists. */
6560 if (elf_section_data (sec)->this_hdr.contents != NULL)
6561 contents = elf_section_data (sec)->this_hdr.contents;
6564 /* Go get them off disk. */
6565 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6570 if (r_type == R_ARM_V4BX)
6574 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6575 record_arm_bx_glue (link_info, reg);
6579 /* If the relocation is not against a symbol it cannot concern us. */
6582 /* We don't care about local symbols. */
6583 if (r_index < symtab_hdr->sh_info)
6586 /* This is an external symbol. */
6587 r_index -= symtab_hdr->sh_info;
6588 h = (struct elf_link_hash_entry *)
6589 elf_sym_hashes (abfd)[r_index];
6591 /* If the relocation is against a static symbol it must be within
6592 the current section and so cannot be a cross ARM/Thumb relocation. */
6596 /* If the call will go through a PLT entry then we do not need
6598 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
6604 /* This one is a call from arm code. We need to look up
6605 the target of the call. If it is a thumb target, we
6607 if (h->target_internal == ST_BRANCH_TO_THUMB)
6608 record_arm_to_thumb_glue (link_info, h);
6616 if (contents != NULL
6617 && elf_section_data (sec)->this_hdr.contents != contents)
6621 if (internal_relocs != NULL
6622 && elf_section_data (sec)->relocs != internal_relocs)
6623 free (internal_relocs);
6624 internal_relocs = NULL;
6630 if (contents != NULL
6631 && elf_section_data (sec)->this_hdr.contents != contents)
6633 if (internal_relocs != NULL
6634 && elf_section_data (sec)->relocs != internal_relocs)
6635 free (internal_relocs);
6642 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6645 bfd_elf32_arm_init_maps (bfd *abfd)
6647 Elf_Internal_Sym *isymbuf;
6648 Elf_Internal_Shdr *hdr;
6649 unsigned int i, localsyms;
6651 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6652 if (! is_arm_elf (abfd))
6655 if ((abfd->flags & DYNAMIC) != 0)
6658 hdr = & elf_symtab_hdr (abfd);
6659 localsyms = hdr->sh_info;
6661 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6662 should contain the number of local symbols, which should come before any
6663 global symbols. Mapping symbols are always local. */
6664 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6667 /* No internal symbols read? Skip this BFD. */
6668 if (isymbuf == NULL)
6671 for (i = 0; i < localsyms; i++)
6673 Elf_Internal_Sym *isym = &isymbuf[i];
6674 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6678 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6680 name = bfd_elf_string_from_elf_section (abfd,
6681 hdr->sh_link, isym->st_name);
6683 if (bfd_is_arm_special_symbol_name (name,
6684 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6685 elf32_arm_section_map_add (sec, name[1], isym->st_value);
6691 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6692 say what they wanted. */
6695 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6697 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6698 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6700 if (globals == NULL)
6703 if (globals->fix_cortex_a8 == -1)
6705 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6706 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6707 && (out_attr[Tag_CPU_arch_profile].i == 'A'
6708 || out_attr[Tag_CPU_arch_profile].i == 0))
6709 globals->fix_cortex_a8 = 1;
6711 globals->fix_cortex_a8 = 0;
6717 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6719 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6720 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6722 if (globals == NULL)
6724 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6725 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6727 switch (globals->vfp11_fix)
6729 case BFD_ARM_VFP11_FIX_DEFAULT:
6730 case BFD_ARM_VFP11_FIX_NONE:
6731 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6735 /* Give a warning, but do as the user requests anyway. */
6736 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6737 "workaround is not necessary for target architecture"), obfd);
6740 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6741 /* For earlier architectures, we might need the workaround, but do not
6742 enable it by default. If users is running with broken hardware, they
6743 must enable the erratum fix explicitly. */
6744 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6748 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
6750 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6751 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6753 if (globals == NULL)
6756 /* We assume only Cortex-M4 may require the fix. */
6757 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
6758 || out_attr[Tag_CPU_arch_profile].i != 'M')
6760 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
6761 /* Give a warning, but do as the user requests anyway. */
6762 (*_bfd_error_handler)
6763 (_("%B: warning: selected STM32L4XX erratum "
6764 "workaround is not necessary for target architecture"), obfd);
6768 enum bfd_arm_vfp11_pipe
6776 /* Return a VFP register number. This is encoded as RX:X for single-precision
6777 registers, or X:RX for double-precision registers, where RX is the group of
6778 four bits in the instruction encoding and X is the single extension bit.
6779 RX and X fields are specified using their lowest (starting) bit. The return
6782 0...31: single-precision registers s0...s31
6783 32...63: double-precision registers d0...d31.
6785 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6786 encounter VFP3 instructions, so we allow the full range for DP registers. */
6789 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6793 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6795 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6798 /* Set bits in *WMASK according to a register number REG as encoded by
6799 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6802 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6807 *wmask |= 3 << ((reg - 32) * 2);
6810 /* Return TRUE if WMASK overwrites anything in REGS. */
6813 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6817 for (i = 0; i < numregs; i++)
6819 unsigned int reg = regs[i];
6821 if (reg < 32 && (wmask & (1 << reg)) != 0)
6829 if ((wmask & (3 << (reg * 2))) != 0)
6836 /* In this function, we're interested in two things: finding input registers
6837 for VFP data-processing instructions, and finding the set of registers which
6838 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6839 hold the written set, so FLDM etc. are easy to deal with (we're only
6840 interested in 32 SP registers or 16 dp registers, due to the VFP version
6841 implemented by the chip in question). DP registers are marked by setting
6842 both SP registers in the write mask). */
6844 static enum bfd_arm_vfp11_pipe
6845 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6848 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
6849 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6851 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6854 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6855 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6857 pqrs = ((insn & 0x00800000) >> 20)
6858 | ((insn & 0x00300000) >> 19)
6859 | ((insn & 0x00000040) >> 6);
6863 case 0: /* fmac[sd]. */
6864 case 1: /* fnmac[sd]. */
6865 case 2: /* fmsc[sd]. */
6866 case 3: /* fnmsc[sd]. */
6868 bfd_arm_vfp11_write_mask (destmask, fd);
6870 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6875 case 4: /* fmul[sd]. */
6876 case 5: /* fnmul[sd]. */
6877 case 6: /* fadd[sd]. */
6878 case 7: /* fsub[sd]. */
6882 case 8: /* fdiv[sd]. */
6885 bfd_arm_vfp11_write_mask (destmask, fd);
6886 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6891 case 15: /* extended opcode. */
6893 unsigned int extn = ((insn >> 15) & 0x1e)
6894 | ((insn >> 7) & 1);
6898 case 0: /* fcpy[sd]. */
6899 case 1: /* fabs[sd]. */
6900 case 2: /* fneg[sd]. */
6901 case 8: /* fcmp[sd]. */
6902 case 9: /* fcmpe[sd]. */
6903 case 10: /* fcmpz[sd]. */
6904 case 11: /* fcmpez[sd]. */
6905 case 16: /* fuito[sd]. */
6906 case 17: /* fsito[sd]. */
6907 case 24: /* ftoui[sd]. */
6908 case 25: /* ftouiz[sd]. */
6909 case 26: /* ftosi[sd]. */
6910 case 27: /* ftosiz[sd]. */
6911 /* These instructions will not bounce due to underflow. */
6916 case 3: /* fsqrt[sd]. */
6917 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6918 registers to cause the erratum in previous instructions. */
6919 bfd_arm_vfp11_write_mask (destmask, fd);
6923 case 15: /* fcvt{ds,sd}. */
6927 bfd_arm_vfp11_write_mask (destmask, fd);
6929 /* Only FCVTSD can underflow. */
6930 if ((insn & 0x100) != 0)
6949 /* Two-register transfer. */
6950 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6952 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6954 if ((insn & 0x100000) == 0)
6957 bfd_arm_vfp11_write_mask (destmask, fm);
6960 bfd_arm_vfp11_write_mask (destmask, fm);
6961 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6967 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6969 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6970 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
6974 case 0: /* Two-reg transfer. We should catch these above. */
6977 case 2: /* fldm[sdx]. */
6981 unsigned int i, offset = insn & 0xff;
6986 for (i = fd; i < fd + offset; i++)
6987 bfd_arm_vfp11_write_mask (destmask, i);
6991 case 4: /* fld[sd]. */
6993 bfd_arm_vfp11_write_mask (destmask, fd);
7002 /* Single-register transfer. Note L==0. */
7003 else if ((insn & 0x0f100e10) == 0x0e000a10)
7005 unsigned int opcode = (insn >> 21) & 7;
7006 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
7010 case 0: /* fmsr/fmdlr. */
7011 case 1: /* fmdhr. */
7012 /* Mark fmdhr and fmdlr as writing to the whole of the DP
7013 destination register. I don't know if this is exactly right,
7014 but it is the conservative choice. */
7015 bfd_arm_vfp11_write_mask (destmask, fn);
7029 static int elf32_arm_compare_mapping (const void * a, const void * b);
7032 /* Look for potentially-troublesome code sequences which might trigger the
7033 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
7034 (available from ARM) for details of the erratum. A short version is
7035 described in ld.texinfo. */
7038 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
7041 bfd_byte *contents = NULL;
7043 int regs[3], numregs = 0;
7044 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7045 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
7047 if (globals == NULL)
7050 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
7051 The states transition as follows:
7053 0 -> 1 (vector) or 0 -> 2 (scalar)
7054 A VFP FMAC-pipeline instruction has been seen. Fill
7055 regs[0]..regs[numregs-1] with its input operands. Remember this
7056 instruction in 'first_fmac'.
7059 Any instruction, except for a VFP instruction which overwrites
7064 A VFP instruction has been seen which overwrites any of regs[*].
7065 We must make a veneer! Reset state to 0 before examining next
7069 If we fail to match anything in state 2, reset to state 0 and reset
7070 the instruction pointer to the instruction after 'first_fmac'.
7072 If the VFP11 vector mode is in use, there must be at least two unrelated
7073 instructions between anti-dependent VFP11 instructions to properly avoid
7074 triggering the erratum, hence the use of the extra state 1. */
7076 /* If we are only performing a partial link do not bother
7077 to construct any glue. */
7078 if (bfd_link_relocatable (link_info))
7081 /* Skip if this bfd does not correspond to an ELF image. */
7082 if (! is_arm_elf (abfd))
7085 /* We should have chosen a fix type by the time we get here. */
7086 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
7088 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
7091 /* Skip this BFD if it corresponds to an executable or dynamic object. */
7092 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
7095 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7097 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
7098 struct _arm_elf_section_data *sec_data;
7100 /* If we don't have executable progbits, we're not interested in this
7101 section. Also skip if section is to be excluded. */
7102 if (elf_section_type (sec) != SHT_PROGBITS
7103 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
7104 || (sec->flags & SEC_EXCLUDE) != 0
7105 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
7106 || sec->output_section == bfd_abs_section_ptr
7107 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
7110 sec_data = elf32_arm_section_data (sec);
7112 if (sec_data->mapcount == 0)
7115 if (elf_section_data (sec)->this_hdr.contents != NULL)
7116 contents = elf_section_data (sec)->this_hdr.contents;
7117 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7120 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
7121 elf32_arm_compare_mapping);
7123 for (span = 0; span < sec_data->mapcount; span++)
7125 unsigned int span_start = sec_data->map[span].vma;
7126 unsigned int span_end = (span == sec_data->mapcount - 1)
7127 ? sec->size : sec_data->map[span + 1].vma;
7128 char span_type = sec_data->map[span].type;
7130 /* FIXME: Only ARM mode is supported at present. We may need to
7131 support Thumb-2 mode also at some point. */
7132 if (span_type != 'a')
7135 for (i = span_start; i < span_end;)
7137 unsigned int next_i = i + 4;
7138 unsigned int insn = bfd_big_endian (abfd)
7139 ? (contents[i] << 24)
7140 | (contents[i + 1] << 16)
7141 | (contents[i + 2] << 8)
7143 : (contents[i + 3] << 24)
7144 | (contents[i + 2] << 16)
7145 | (contents[i + 1] << 8)
7147 unsigned int writemask = 0;
7148 enum bfd_arm_vfp11_pipe vpipe;
7153 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
7155 /* I'm assuming the VFP11 erratum can trigger with denorm
7156 operands on either the FMAC or the DS pipeline. This might
7157 lead to slightly overenthusiastic veneer insertion. */
7158 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
7160 state = use_vector ? 1 : 2;
7162 veneer_of_insn = insn;
7168 int other_regs[3], other_numregs;
7169 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
7172 if (vpipe != VFP11_BAD
7173 && bfd_arm_vfp11_antidependency (writemask, regs,
7183 int other_regs[3], other_numregs;
7184 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
7187 if (vpipe != VFP11_BAD
7188 && bfd_arm_vfp11_antidependency (writemask, regs,
7194 next_i = first_fmac + 4;
7200 abort (); /* Should be unreachable. */
7205 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
7206 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7208 elf32_arm_section_data (sec)->erratumcount += 1;
7210 newerr->u.b.vfp_insn = veneer_of_insn;
7215 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
7222 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
7227 newerr->next = sec_data->erratumlist;
7228 sec_data->erratumlist = newerr;
7237 if (contents != NULL
7238 && elf_section_data (sec)->this_hdr.contents != contents)
7246 if (contents != NULL
7247 && elf_section_data (sec)->this_hdr.contents != contents)
7253 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
7254 after sections have been laid out, using specially-named symbols. */
7257 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
7258 struct bfd_link_info *link_info)
7261 struct elf32_arm_link_hash_table *globals;
7264 if (bfd_link_relocatable (link_info))
7267 /* Skip if this bfd does not correspond to an ELF image. */
7268 if (! is_arm_elf (abfd))
7271 globals = elf32_arm_hash_table (link_info);
7272 if (globals == NULL)
7275 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7276 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7278 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7280 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7281 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
7283 for (; errnode != NULL; errnode = errnode->next)
7285 struct elf_link_hash_entry *myh;
7288 switch (errnode->type)
7290 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
7291 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
7292 /* Find veneer symbol. */
7293 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7294 errnode->u.b.veneer->u.v.id);
7296 myh = elf_link_hash_lookup
7297 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7300 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
7301 "`%s'"), abfd, tmp_name);
7303 vma = myh->root.u.def.section->output_section->vma
7304 + myh->root.u.def.section->output_offset
7305 + myh->root.u.def.value;
7307 errnode->u.b.veneer->vma = vma;
7310 case VFP11_ERRATUM_ARM_VENEER:
7311 case VFP11_ERRATUM_THUMB_VENEER:
7312 /* Find return location. */
7313 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7316 myh = elf_link_hash_lookup
7317 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7320 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
7321 "`%s'"), abfd, tmp_name);
7323 vma = myh->root.u.def.section->output_section->vma
7324 + myh->root.u.def.section->output_offset
7325 + myh->root.u.def.value;
7327 errnode->u.v.branch->vma = vma;
7339 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
7340 return locations after sections have been laid out, using
7341 specially-named symbols. */
7344 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
7345 struct bfd_link_info *link_info)
7348 struct elf32_arm_link_hash_table *globals;
7351 if (bfd_link_relocatable (link_info))
7354 /* Skip if this bfd does not correspond to an ELF image. */
7355 if (! is_arm_elf (abfd))
7358 globals = elf32_arm_hash_table (link_info);
7359 if (globals == NULL)
7362 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7363 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7365 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7367 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7368 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
7370 for (; errnode != NULL; errnode = errnode->next)
7372 struct elf_link_hash_entry *myh;
7375 switch (errnode->type)
7377 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
7378 /* Find veneer symbol. */
7379 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7380 errnode->u.b.veneer->u.v.id);
7382 myh = elf_link_hash_lookup
7383 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7386 (*_bfd_error_handler) (_("%B: unable to find STM32L4XX veneer "
7387 "`%s'"), abfd, tmp_name);
7389 vma = myh->root.u.def.section->output_section->vma
7390 + myh->root.u.def.section->output_offset
7391 + myh->root.u.def.value;
7393 errnode->u.b.veneer->vma = vma;
7396 case STM32L4XX_ERRATUM_VENEER:
7397 /* Find return location. */
7398 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7401 myh = elf_link_hash_lookup
7402 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7405 (*_bfd_error_handler) (_("%B: unable to find STM32L4XX veneer "
7406 "`%s'"), abfd, tmp_name);
7408 vma = myh->root.u.def.section->output_section->vma
7409 + myh->root.u.def.section->output_offset
7410 + myh->root.u.def.value;
7412 errnode->u.v.branch->vma = vma;
7424 static inline bfd_boolean
7425 is_thumb2_ldmia (const insn32 insn)
7427 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
7428 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
7429 return (insn & 0xffd02000) == 0xe8900000;
7432 static inline bfd_boolean
7433 is_thumb2_ldmdb (const insn32 insn)
7435 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
7436 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
7437 return (insn & 0xffd02000) == 0xe9100000;
7440 static inline bfd_boolean
7441 is_thumb2_vldm (const insn32 insn)
7443 /* A6.5 Extension register load or store instruction
7445 We look only for the 32-bit registers case since the DP (64-bit
7446 registers) are not supported for STM32L4XX
7447 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
7448 <list> is consecutive 32-bit registers
7449 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
7450 if P==0 && U==1 && W==1 && Rn=1101 VPOP
7451 if PUW=010 || PUW=011 || PUW=101 VLDM. */
7453 ((insn & 0xfe100f00) == 0xec100a00)
7454 && /* (IA without !). */
7455 (((((insn << 7) >> 28) & 0xd) == 0x4)
7456 /* (IA with !), includes VPOP (when reg number is SP). */
7457 || ((((insn << 7) >> 28) & 0xd) == 0x5)
7459 || ((((insn << 7) >> 28) & 0xd) == 0x9));
7462 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
7464 - computes the number and the mode of memory accesses
7465 - decides if the replacement should be done:
7466 . replaces only if > 8-word accesses
7467 . or (testing purposes only) replaces all accesses. */
7470 stm32l4xx_need_create_replacing_stub (const insn32 insn,
7471 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
7475 /* The field encoding the register list is the same for both LDMIA
7476 and LDMDB encodings. */
7477 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
7478 nb_regs = popcount (insn & 0x0000ffff);
7479 else if (is_thumb2_vldm (insn))
7480 nb_regs = (insn & 0xff);
7482 /* DEFAULT mode accounts for the real bug condition situation,
7483 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
7485 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_regs > 8 :
7486 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
7489 /* Look for potentially-troublesome code sequences which might trigger
7490 the STM STM32L4XX erratum. */
7493 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
7494 struct bfd_link_info *link_info)
7497 bfd_byte *contents = NULL;
7498 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7500 if (globals == NULL)
7503 /* If we are only performing a partial link do not bother
7504 to construct any glue. */
7505 if (bfd_link_relocatable (link_info))
7508 /* Skip if this bfd does not correspond to an ELF image. */
7509 if (! is_arm_elf (abfd))
7512 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
7515 /* Skip this BFD if it corresponds to an executable or dynamic object. */
7516 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
7519 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7521 unsigned int i, span;
7522 struct _arm_elf_section_data *sec_data;
7524 /* If we don't have executable progbits, we're not interested in this
7525 section. Also skip if section is to be excluded. */
7526 if (elf_section_type (sec) != SHT_PROGBITS
7527 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
7528 || (sec->flags & SEC_EXCLUDE) != 0
7529 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
7530 || sec->output_section == bfd_abs_section_ptr
7531 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
7534 sec_data = elf32_arm_section_data (sec);
7536 if (sec_data->mapcount == 0)
7539 if (elf_section_data (sec)->this_hdr.contents != NULL)
7540 contents = elf_section_data (sec)->this_hdr.contents;
7541 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7544 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
7545 elf32_arm_compare_mapping);
7547 for (span = 0; span < sec_data->mapcount; span++)
7549 unsigned int span_start = sec_data->map[span].vma;
7550 unsigned int span_end = (span == sec_data->mapcount - 1)
7551 ? sec->size : sec_data->map[span + 1].vma;
7552 char span_type = sec_data->map[span].type;
7553 int itblock_current_pos = 0;
7555 /* Only Thumb2 mode need be supported with this CM4 specific
7556 code, we should not encounter any arm mode eg span_type
7558 if (span_type != 't')
7561 for (i = span_start; i < span_end;)
7563 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
7564 bfd_boolean insn_32bit = FALSE;
7565 bfd_boolean is_ldm = FALSE;
7566 bfd_boolean is_vldm = FALSE;
7567 bfd_boolean is_not_last_in_it_block = FALSE;
7569 /* The first 16-bits of all 32-bit thumb2 instructions start
7570 with opcode[15..13]=0b111 and the encoded op1 can be anything
7571 except opcode[12..11]!=0b00.
7572 See 32-bit Thumb instruction encoding. */
7573 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
7576 /* Compute the predicate that tells if the instruction
7577 is concerned by the IT block
7578 - Creates an error if there is a ldm that is not
7579 last in the IT block thus cannot be replaced
7580 - Otherwise we can create a branch at the end of the
7581 IT block, it will be controlled naturally by IT
7582 with the proper pseudo-predicate
7583 - So the only interesting predicate is the one that
7584 tells that we are not on the last item of an IT
7586 if (itblock_current_pos != 0)
7587 is_not_last_in_it_block = !!--itblock_current_pos;
7591 /* Load the rest of the insn (in manual-friendly order). */
7592 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
7593 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
7594 is_vldm = is_thumb2_vldm (insn);
7596 /* Veneers are created for (v)ldm depending on
7597 option flags and memory accesses conditions; but
7598 if the instruction is not the last instruction of
7599 an IT block, we cannot create a jump there, so we
7601 if ((is_ldm || is_vldm) &&
7602 stm32l4xx_need_create_replacing_stub
7603 (insn, globals->stm32l4xx_fix))
7605 if (is_not_last_in_it_block)
7607 (*_bfd_error_handler)
7608 /* Note - overlong line used here to allow for translation. */
7610 %B(%A+0x%lx): error: multiple load detected in non-last IT block instruction : STM32L4XX veneer cannot be generated.\n"
7611 "Use gcc option -mrestrict-it to generate only one instruction per IT block.\n"),
7612 abfd, sec, (long)i);
7616 elf32_stm32l4xx_erratum_list *newerr =
7617 (elf32_stm32l4xx_erratum_list *)
7619 (sizeof (elf32_stm32l4xx_erratum_list));
7621 elf32_arm_section_data (sec)
7622 ->stm32l4xx_erratumcount += 1;
7623 newerr->u.b.insn = insn;
7624 /* We create only thumb branches. */
7626 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
7627 record_stm32l4xx_erratum_veneer
7628 (link_info, newerr, abfd, sec,
7631 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
7632 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
7634 newerr->next = sec_data->stm32l4xx_erratumlist;
7635 sec_data->stm32l4xx_erratumlist = newerr;
7642 IT blocks are only encoded in T1
7643 Encoding T1: IT{x{y{z}}} <firstcond>
7644 1 0 1 1 - 1 1 1 1 - firstcond - mask
7645 if mask = '0000' then see 'related encodings'
7646 We don't deal with UNPREDICTABLE, just ignore these.
7647 There can be no nested IT blocks so an IT block
7648 is naturally a new one for which it is worth
7649 computing its size. */
7650 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00) &&
7651 ((insn & 0x000f) != 0x0000);
7652 /* If we have a new IT block we compute its size. */
7655 /* Compute the number of instructions controlled
7656 by the IT block, it will be used to decide
7657 whether we are inside an IT block or not. */
7658 unsigned int mask = insn & 0x000f;
7659 itblock_current_pos = 4 - ctz (mask);
7663 i += insn_32bit ? 4 : 2;
7667 if (contents != NULL
7668 && elf_section_data (sec)->this_hdr.contents != contents)
7676 if (contents != NULL
7677 && elf_section_data (sec)->this_hdr.contents != contents)
7683 /* Set target relocation values needed during linking. */
7686 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
7687 struct bfd_link_info *link_info,
7689 char * target2_type,
7692 bfd_arm_vfp11_fix vfp11_fix,
7693 bfd_arm_stm32l4xx_fix stm32l4xx_fix,
7694 int no_enum_warn, int no_wchar_warn,
7695 int pic_veneer, int fix_cortex_a8,
7698 struct elf32_arm_link_hash_table *globals;
7700 globals = elf32_arm_hash_table (link_info);
7701 if (globals == NULL)
7704 globals->target1_is_rel = target1_is_rel;
7705 if (strcmp (target2_type, "rel") == 0)
7706 globals->target2_reloc = R_ARM_REL32;
7707 else if (strcmp (target2_type, "abs") == 0)
7708 globals->target2_reloc = R_ARM_ABS32;
7709 else if (strcmp (target2_type, "got-rel") == 0)
7710 globals->target2_reloc = R_ARM_GOT_PREL;
7713 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
7716 globals->fix_v4bx = fix_v4bx;
7717 globals->use_blx |= use_blx;
7718 globals->vfp11_fix = vfp11_fix;
7719 globals->stm32l4xx_fix = stm32l4xx_fix;
7720 globals->pic_veneer = pic_veneer;
7721 globals->fix_cortex_a8 = fix_cortex_a8;
7722 globals->fix_arm1176 = fix_arm1176;
7724 BFD_ASSERT (is_arm_elf (output_bfd));
7725 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
7726 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
7729 /* Replace the target offset of a Thumb bl or b.w instruction. */
7732 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
7738 BFD_ASSERT ((offset & 1) == 0);
7740 upper = bfd_get_16 (abfd, insn);
7741 lower = bfd_get_16 (abfd, insn + 2);
7742 reloc_sign = (offset < 0) ? 1 : 0;
7743 upper = (upper & ~(bfd_vma) 0x7ff)
7744 | ((offset >> 12) & 0x3ff)
7745 | (reloc_sign << 10);
7746 lower = (lower & ~(bfd_vma) 0x2fff)
7747 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
7748 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
7749 | ((offset >> 1) & 0x7ff);
7750 bfd_put_16 (abfd, upper, insn);
7751 bfd_put_16 (abfd, lower, insn + 2);
7754 /* Thumb code calling an ARM function. */
7757 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
7761 asection * input_section,
7762 bfd_byte * hit_data,
7765 bfd_signed_vma addend,
7767 char **error_message)
7771 long int ret_offset;
7772 struct elf_link_hash_entry * myh;
7773 struct elf32_arm_link_hash_table * globals;
7775 myh = find_thumb_glue (info, name, error_message);
7779 globals = elf32_arm_hash_table (info);
7780 BFD_ASSERT (globals != NULL);
7781 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7783 my_offset = myh->root.u.def.value;
7785 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7786 THUMB2ARM_GLUE_SECTION_NAME);
7788 BFD_ASSERT (s != NULL);
7789 BFD_ASSERT (s->contents != NULL);
7790 BFD_ASSERT (s->output_section != NULL);
7792 if ((my_offset & 0x01) == 0x01)
7795 && sym_sec->owner != NULL
7796 && !INTERWORK_FLAG (sym_sec->owner))
7798 (*_bfd_error_handler)
7799 (_("%B(%s): warning: interworking not enabled.\n"
7800 " first occurrence: %B: Thumb call to ARM"),
7801 sym_sec->owner, input_bfd, name);
7807 myh->root.u.def.value = my_offset;
7809 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
7810 s->contents + my_offset);
7812 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
7813 s->contents + my_offset + 2);
7816 /* Address of destination of the stub. */
7817 ((bfd_signed_vma) val)
7819 /* Offset from the start of the current section
7820 to the start of the stubs. */
7822 /* Offset of the start of this stub from the start of the stubs. */
7824 /* Address of the start of the current section. */
7825 + s->output_section->vma)
7826 /* The branch instruction is 4 bytes into the stub. */
7828 /* ARM branches work from the pc of the instruction + 8. */
7831 put_arm_insn (globals, output_bfd,
7832 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
7833 s->contents + my_offset + 4);
7836 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
7838 /* Now go back and fix up the original BL insn to point to here. */
7840 /* Address of where the stub is located. */
7841 (s->output_section->vma + s->output_offset + my_offset)
7842 /* Address of where the BL is located. */
7843 - (input_section->output_section->vma + input_section->output_offset
7845 /* Addend in the relocation. */
7847 /* Biassing for PC-relative addressing. */
7850 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
7855 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
7857 static struct elf_link_hash_entry *
7858 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
7865 char ** error_message)
7868 long int ret_offset;
7869 struct elf_link_hash_entry * myh;
7870 struct elf32_arm_link_hash_table * globals;
7872 myh = find_arm_glue (info, name, error_message);
7876 globals = elf32_arm_hash_table (info);
7877 BFD_ASSERT (globals != NULL);
7878 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7880 my_offset = myh->root.u.def.value;
7882 if ((my_offset & 0x01) == 0x01)
7885 && sym_sec->owner != NULL
7886 && !INTERWORK_FLAG (sym_sec->owner))
7888 (*_bfd_error_handler)
7889 (_("%B(%s): warning: interworking not enabled.\n"
7890 " first occurrence: %B: arm call to thumb"),
7891 sym_sec->owner, input_bfd, name);
7895 myh->root.u.def.value = my_offset;
7897 if (bfd_link_pic (info)
7898 || globals->root.is_relocatable_executable
7899 || globals->pic_veneer)
7901 /* For relocatable objects we can't use absolute addresses,
7902 so construct the address from a relative offset. */
7903 /* TODO: If the offset is small it's probably worth
7904 constructing the address with adds. */
7905 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7906 s->contents + my_offset);
7907 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7908 s->contents + my_offset + 4);
7909 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7910 s->contents + my_offset + 8);
7911 /* Adjust the offset by 4 for the position of the add,
7912 and 8 for the pipeline offset. */
7913 ret_offset = (val - (s->output_offset
7914 + s->output_section->vma
7917 bfd_put_32 (output_bfd, ret_offset,
7918 s->contents + my_offset + 12);
7920 else if (globals->use_blx)
7922 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7923 s->contents + my_offset);
7925 /* It's a thumb address. Add the low order bit. */
7926 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7927 s->contents + my_offset + 4);
7931 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7932 s->contents + my_offset);
7934 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7935 s->contents + my_offset + 4);
7937 /* It's a thumb address. Add the low order bit. */
7938 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7939 s->contents + my_offset + 8);
7945 BFD_ASSERT (my_offset <= globals->arm_glue_size);
7950 /* Arm code calling a Thumb function. */
7953 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7957 asection * input_section,
7958 bfd_byte * hit_data,
7961 bfd_signed_vma addend,
7963 char **error_message)
7965 unsigned long int tmp;
7968 long int ret_offset;
7969 struct elf_link_hash_entry * myh;
7970 struct elf32_arm_link_hash_table * globals;
7972 globals = elf32_arm_hash_table (info);
7973 BFD_ASSERT (globals != NULL);
7974 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7976 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7977 ARM2THUMB_GLUE_SECTION_NAME);
7978 BFD_ASSERT (s != NULL);
7979 BFD_ASSERT (s->contents != NULL);
7980 BFD_ASSERT (s->output_section != NULL);
7982 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
7983 sym_sec, val, s, error_message);
7987 my_offset = myh->root.u.def.value;
7988 tmp = bfd_get_32 (input_bfd, hit_data);
7989 tmp = tmp & 0xFF000000;
7991 /* Somehow these are both 4 too far, so subtract 8. */
7992 ret_offset = (s->output_offset
7994 + s->output_section->vma
7995 - (input_section->output_offset
7996 + input_section->output_section->vma
8000 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
8002 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
8007 /* Populate Arm stub for an exported Thumb function. */
8010 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
8012 struct bfd_link_info * info = (struct bfd_link_info *) inf;
8014 struct elf_link_hash_entry * myh;
8015 struct elf32_arm_link_hash_entry *eh;
8016 struct elf32_arm_link_hash_table * globals;
8019 char *error_message;
8021 eh = elf32_arm_hash_entry (h);
8022 /* Allocate stubs for exported Thumb functions on v4t. */
8023 if (eh->export_glue == NULL)
8026 globals = elf32_arm_hash_table (info);
8027 BFD_ASSERT (globals != NULL);
8028 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8030 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8031 ARM2THUMB_GLUE_SECTION_NAME);
8032 BFD_ASSERT (s != NULL);
8033 BFD_ASSERT (s->contents != NULL);
8034 BFD_ASSERT (s->output_section != NULL);
8036 sec = eh->export_glue->root.u.def.section;
8038 BFD_ASSERT (sec->output_section != NULL);
8040 val = eh->export_glue->root.u.def.value + sec->output_offset
8041 + sec->output_section->vma;
8043 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
8044 h->root.u.def.section->owner,
8045 globals->obfd, sec, val, s,
8051 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
8054 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
8059 struct elf32_arm_link_hash_table *globals;
8061 globals = elf32_arm_hash_table (info);
8062 BFD_ASSERT (globals != NULL);
8063 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8065 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8066 ARM_BX_GLUE_SECTION_NAME);
8067 BFD_ASSERT (s != NULL);
8068 BFD_ASSERT (s->contents != NULL);
8069 BFD_ASSERT (s->output_section != NULL);
8071 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
8073 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
8075 if ((globals->bx_glue_offset[reg] & 1) == 0)
8077 p = s->contents + glue_addr;
8078 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
8079 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
8080 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
8081 globals->bx_glue_offset[reg] |= 1;
8084 return glue_addr + s->output_section->vma + s->output_offset;
8087 /* Generate Arm stubs for exported Thumb symbols. */
8089 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
8090 struct bfd_link_info *link_info)
8092 struct elf32_arm_link_hash_table * globals;
8094 if (link_info == NULL)
8095 /* Ignore this if we are not called by the ELF backend linker. */
8098 globals = elf32_arm_hash_table (link_info);
8099 if (globals == NULL)
8102 /* If blx is available then exported Thumb symbols are OK and there is
8104 if (globals->use_blx)
8107 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
8111 /* Reserve space for COUNT dynamic relocations in relocation selection
8115 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
8116 bfd_size_type count)
8118 struct elf32_arm_link_hash_table *htab;
8120 htab = elf32_arm_hash_table (info);
8121 BFD_ASSERT (htab->root.dynamic_sections_created);
8124 sreloc->size += RELOC_SIZE (htab) * count;
8127 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
8128 dynamic, the relocations should go in SRELOC, otherwise they should
8129 go in the special .rel.iplt section. */
8132 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
8133 bfd_size_type count)
8135 struct elf32_arm_link_hash_table *htab;
8137 htab = elf32_arm_hash_table (info);
8138 if (!htab->root.dynamic_sections_created)
8139 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
8142 BFD_ASSERT (sreloc != NULL);
8143 sreloc->size += RELOC_SIZE (htab) * count;
8147 /* Add relocation REL to the end of relocation section SRELOC. */
8150 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
8151 asection *sreloc, Elf_Internal_Rela *rel)
8154 struct elf32_arm_link_hash_table *htab;
8156 htab = elf32_arm_hash_table (info);
8157 if (!htab->root.dynamic_sections_created
8158 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
8159 sreloc = htab->root.irelplt;
8162 loc = sreloc->contents;
8163 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
8164 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
8166 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
8169 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
8170 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
8174 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
8175 bfd_boolean is_iplt_entry,
8176 union gotplt_union *root_plt,
8177 struct arm_plt_info *arm_plt)
8179 struct elf32_arm_link_hash_table *htab;
8183 htab = elf32_arm_hash_table (info);
8187 splt = htab->root.iplt;
8188 sgotplt = htab->root.igotplt;
8190 /* NaCl uses a special first entry in .iplt too. */
8191 if (htab->nacl_p && splt->size == 0)
8192 splt->size += htab->plt_header_size;
8194 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
8195 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
8199 splt = htab->root.splt;
8200 sgotplt = htab->root.sgotplt;
8202 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
8203 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
8205 /* If this is the first .plt entry, make room for the special
8207 if (splt->size == 0)
8208 splt->size += htab->plt_header_size;
8210 htab->next_tls_desc_index++;
8213 /* Allocate the PLT entry itself, including any leading Thumb stub. */
8214 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
8215 splt->size += PLT_THUMB_STUB_SIZE;
8216 root_plt->offset = splt->size;
8217 splt->size += htab->plt_entry_size;
8219 if (!htab->symbian_p)
8221 /* We also need to make an entry in the .got.plt section, which
8222 will be placed in the .got section by the linker script. */
8224 arm_plt->got_offset = sgotplt->size;
8226 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
8232 arm_movw_immediate (bfd_vma value)
8234 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
8238 arm_movt_immediate (bfd_vma value)
8240 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
8243 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
8244 the entry lives in .iplt and resolves to (*SYM_VALUE)().
8245 Otherwise, DYNINDX is the index of the symbol in the dynamic
8246 symbol table and SYM_VALUE is undefined.
8248 ROOT_PLT points to the offset of the PLT entry from the start of its
8249 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
8250 bookkeeping information.
8252 Returns FALSE if there was a problem. */
8255 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
8256 union gotplt_union *root_plt,
8257 struct arm_plt_info *arm_plt,
8258 int dynindx, bfd_vma sym_value)
8260 struct elf32_arm_link_hash_table *htab;
8266 Elf_Internal_Rela rel;
8267 bfd_vma plt_header_size;
8268 bfd_vma got_header_size;
8270 htab = elf32_arm_hash_table (info);
8272 /* Pick the appropriate sections and sizes. */
8275 splt = htab->root.iplt;
8276 sgot = htab->root.igotplt;
8277 srel = htab->root.irelplt;
8279 /* There are no reserved entries in .igot.plt, and no special
8280 first entry in .iplt. */
8281 got_header_size = 0;
8282 plt_header_size = 0;
8286 splt = htab->root.splt;
8287 sgot = htab->root.sgotplt;
8288 srel = htab->root.srelplt;
8290 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
8291 plt_header_size = htab->plt_header_size;
8293 BFD_ASSERT (splt != NULL && srel != NULL);
8295 /* Fill in the entry in the procedure linkage table. */
8296 if (htab->symbian_p)
8298 BFD_ASSERT (dynindx >= 0);
8299 put_arm_insn (htab, output_bfd,
8300 elf32_arm_symbian_plt_entry[0],
8301 splt->contents + root_plt->offset);
8302 bfd_put_32 (output_bfd,
8303 elf32_arm_symbian_plt_entry[1],
8304 splt->contents + root_plt->offset + 4);
8306 /* Fill in the entry in the .rel.plt section. */
8307 rel.r_offset = (splt->output_section->vma
8308 + splt->output_offset
8309 + root_plt->offset + 4);
8310 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
8312 /* Get the index in the procedure linkage table which
8313 corresponds to this symbol. This is the index of this symbol
8314 in all the symbols for which we are making plt entries. The
8315 first entry in the procedure linkage table is reserved. */
8316 plt_index = ((root_plt->offset - plt_header_size)
8317 / htab->plt_entry_size);
8321 bfd_vma got_offset, got_address, plt_address;
8322 bfd_vma got_displacement, initial_got_entry;
8325 BFD_ASSERT (sgot != NULL);
8327 /* Get the offset into the .(i)got.plt table of the entry that
8328 corresponds to this function. */
8329 got_offset = (arm_plt->got_offset & -2);
8331 /* Get the index in the procedure linkage table which
8332 corresponds to this symbol. This is the index of this symbol
8333 in all the symbols for which we are making plt entries.
8334 After the reserved .got.plt entries, all symbols appear in
8335 the same order as in .plt. */
8336 plt_index = (got_offset - got_header_size) / 4;
8338 /* Calculate the address of the GOT entry. */
8339 got_address = (sgot->output_section->vma
8340 + sgot->output_offset
8343 /* ...and the address of the PLT entry. */
8344 plt_address = (splt->output_section->vma
8345 + splt->output_offset
8346 + root_plt->offset);
8348 ptr = splt->contents + root_plt->offset;
8349 if (htab->vxworks_p && bfd_link_pic (info))
8354 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
8356 val = elf32_arm_vxworks_shared_plt_entry[i];
8358 val |= got_address - sgot->output_section->vma;
8360 val |= plt_index * RELOC_SIZE (htab);
8361 if (i == 2 || i == 5)
8362 bfd_put_32 (output_bfd, val, ptr);
8364 put_arm_insn (htab, output_bfd, val, ptr);
8367 else if (htab->vxworks_p)
8372 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
8374 val = elf32_arm_vxworks_exec_plt_entry[i];
8378 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
8380 val |= plt_index * RELOC_SIZE (htab);
8381 if (i == 2 || i == 5)
8382 bfd_put_32 (output_bfd, val, ptr);
8384 put_arm_insn (htab, output_bfd, val, ptr);
8387 loc = (htab->srelplt2->contents
8388 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
8390 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
8391 referencing the GOT for this PLT entry. */
8392 rel.r_offset = plt_address + 8;
8393 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
8394 rel.r_addend = got_offset;
8395 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
8396 loc += RELOC_SIZE (htab);
8398 /* Create the R_ARM_ABS32 relocation referencing the
8399 beginning of the PLT for this GOT entry. */
8400 rel.r_offset = got_address;
8401 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
8403 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
8405 else if (htab->nacl_p)
8407 /* Calculate the displacement between the PLT slot and the
8408 common tail that's part of the special initial PLT slot. */
8409 int32_t tail_displacement
8410 = ((splt->output_section->vma + splt->output_offset
8411 + ARM_NACL_PLT_TAIL_OFFSET)
8412 - (plt_address + htab->plt_entry_size + 4));
8413 BFD_ASSERT ((tail_displacement & 3) == 0);
8414 tail_displacement >>= 2;
8416 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
8417 || (-tail_displacement & 0xff000000) == 0);
8419 /* Calculate the displacement between the PLT slot and the entry
8420 in the GOT. The offset accounts for the value produced by
8421 adding to pc in the penultimate instruction of the PLT stub. */
8422 got_displacement = (got_address
8423 - (plt_address + htab->plt_entry_size));
8425 /* NaCl does not support interworking at all. */
8426 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
8428 put_arm_insn (htab, output_bfd,
8429 elf32_arm_nacl_plt_entry[0]
8430 | arm_movw_immediate (got_displacement),
8432 put_arm_insn (htab, output_bfd,
8433 elf32_arm_nacl_plt_entry[1]
8434 | arm_movt_immediate (got_displacement),
8436 put_arm_insn (htab, output_bfd,
8437 elf32_arm_nacl_plt_entry[2],
8439 put_arm_insn (htab, output_bfd,
8440 elf32_arm_nacl_plt_entry[3]
8441 | (tail_displacement & 0x00ffffff),
8444 else if (using_thumb_only (htab))
8446 /* PR ld/16017: Generate thumb only PLT entries. */
8447 if (!using_thumb2 (htab))
8449 /* FIXME: We ought to be able to generate thumb-1 PLT
8451 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
8456 /* Calculate the displacement between the PLT slot and the entry in
8457 the GOT. The 12-byte offset accounts for the value produced by
8458 adding to pc in the 3rd instruction of the PLT stub. */
8459 got_displacement = got_address - (plt_address + 12);
8461 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
8462 instead of 'put_thumb_insn'. */
8463 put_arm_insn (htab, output_bfd,
8464 elf32_thumb2_plt_entry[0]
8465 | ((got_displacement & 0x000000ff) << 16)
8466 | ((got_displacement & 0x00000700) << 20)
8467 | ((got_displacement & 0x00000800) >> 1)
8468 | ((got_displacement & 0x0000f000) >> 12),
8470 put_arm_insn (htab, output_bfd,
8471 elf32_thumb2_plt_entry[1]
8472 | ((got_displacement & 0x00ff0000) )
8473 | ((got_displacement & 0x07000000) << 4)
8474 | ((got_displacement & 0x08000000) >> 17)
8475 | ((got_displacement & 0xf0000000) >> 28),
8477 put_arm_insn (htab, output_bfd,
8478 elf32_thumb2_plt_entry[2],
8480 put_arm_insn (htab, output_bfd,
8481 elf32_thumb2_plt_entry[3],
8486 /* Calculate the displacement between the PLT slot and the
8487 entry in the GOT. The eight-byte offset accounts for the
8488 value produced by adding to pc in the first instruction
8490 got_displacement = got_address - (plt_address + 8);
8492 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
8494 put_thumb_insn (htab, output_bfd,
8495 elf32_arm_plt_thumb_stub[0], ptr - 4);
8496 put_thumb_insn (htab, output_bfd,
8497 elf32_arm_plt_thumb_stub[1], ptr - 2);
8500 if (!elf32_arm_use_long_plt_entry)
8502 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
8504 put_arm_insn (htab, output_bfd,
8505 elf32_arm_plt_entry_short[0]
8506 | ((got_displacement & 0x0ff00000) >> 20),
8508 put_arm_insn (htab, output_bfd,
8509 elf32_arm_plt_entry_short[1]
8510 | ((got_displacement & 0x000ff000) >> 12),
8512 put_arm_insn (htab, output_bfd,
8513 elf32_arm_plt_entry_short[2]
8514 | (got_displacement & 0x00000fff),
8516 #ifdef FOUR_WORD_PLT
8517 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
8522 put_arm_insn (htab, output_bfd,
8523 elf32_arm_plt_entry_long[0]
8524 | ((got_displacement & 0xf0000000) >> 28),
8526 put_arm_insn (htab, output_bfd,
8527 elf32_arm_plt_entry_long[1]
8528 | ((got_displacement & 0x0ff00000) >> 20),
8530 put_arm_insn (htab, output_bfd,
8531 elf32_arm_plt_entry_long[2]
8532 | ((got_displacement & 0x000ff000) >> 12),
8534 put_arm_insn (htab, output_bfd,
8535 elf32_arm_plt_entry_long[3]
8536 | (got_displacement & 0x00000fff),
8541 /* Fill in the entry in the .rel(a).(i)plt section. */
8542 rel.r_offset = got_address;
8546 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
8547 The dynamic linker or static executable then calls SYM_VALUE
8548 to determine the correct run-time value of the .igot.plt entry. */
8549 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
8550 initial_got_entry = sym_value;
8554 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
8555 initial_got_entry = (splt->output_section->vma
8556 + splt->output_offset);
8559 /* Fill in the entry in the global offset table. */
8560 bfd_put_32 (output_bfd, initial_got_entry,
8561 sgot->contents + got_offset);
8565 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
8568 loc = srel->contents + plt_index * RELOC_SIZE (htab);
8569 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
8575 /* Some relocations map to different relocations depending on the
8576 target. Return the real relocation. */
8579 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
8585 if (globals->target1_is_rel)
8591 return globals->target2_reloc;
8598 /* Return the base VMA address which should be subtracted from real addresses
8599 when resolving @dtpoff relocation.
8600 This is PT_TLS segment p_vaddr. */
8603 dtpoff_base (struct bfd_link_info *info)
8605 /* If tls_sec is NULL, we should have signalled an error already. */
8606 if (elf_hash_table (info)->tls_sec == NULL)
8608 return elf_hash_table (info)->tls_sec->vma;
8611 /* Return the relocation value for @tpoff relocation
8612 if STT_TLS virtual address is ADDRESS. */
8615 tpoff (struct bfd_link_info *info, bfd_vma address)
8617 struct elf_link_hash_table *htab = elf_hash_table (info);
8620 /* If tls_sec is NULL, we should have signalled an error already. */
8621 if (htab->tls_sec == NULL)
8623 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
8624 return address - htab->tls_sec->vma + base;
8627 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
8628 VALUE is the relocation value. */
8630 static bfd_reloc_status_type
8631 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
8634 return bfd_reloc_overflow;
8636 value |= bfd_get_32 (abfd, data) & 0xfffff000;
8637 bfd_put_32 (abfd, value, data);
8638 return bfd_reloc_ok;
8641 /* Handle TLS relaxations. Relaxing is possible for symbols that use
8642 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
8643 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
8645 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
8646 is to then call final_link_relocate. Return other values in the
8649 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
8650 the pre-relaxed code. It would be nice if the relocs were updated
8651 to match the optimization. */
8653 static bfd_reloc_status_type
8654 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
8655 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
8656 Elf_Internal_Rela *rel, unsigned long is_local)
8660 switch (ELF32_R_TYPE (rel->r_info))
8663 return bfd_reloc_notsupported;
8665 case R_ARM_TLS_GOTDESC:
8670 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
8672 insn -= 5; /* THUMB */
8674 insn -= 8; /* ARM */
8676 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
8677 return bfd_reloc_continue;
8679 case R_ARM_THM_TLS_DESCSEQ:
8681 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
8682 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
8686 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8688 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
8692 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8695 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
8697 else if ((insn & 0xff87) == 0x4780) /* blx rx */
8701 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8704 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
8705 contents + rel->r_offset);
8709 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
8710 /* It's a 32 bit instruction, fetch the rest of it for
8711 error generation. */
8713 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
8714 (*_bfd_error_handler)
8715 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
8716 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
8717 return bfd_reloc_notsupported;
8721 case R_ARM_TLS_DESCSEQ:
8723 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
8724 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
8728 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
8729 contents + rel->r_offset);
8731 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
8735 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
8738 bfd_put_32 (input_bfd, insn & 0xfffff000,
8739 contents + rel->r_offset);
8741 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
8745 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
8748 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
8749 contents + rel->r_offset);
8753 (*_bfd_error_handler)
8754 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
8755 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
8756 return bfd_reloc_notsupported;
8760 case R_ARM_TLS_CALL:
8761 /* GD->IE relaxation, turn the instruction into 'nop' or
8762 'ldr r0, [pc,r0]' */
8763 insn = is_local ? 0xe1a00000 : 0xe79f0000;
8764 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
8767 case R_ARM_THM_TLS_CALL:
8768 /* GD->IE relaxation. */
8770 /* add r0,pc; ldr r0, [r0] */
8772 else if (arch_has_thumb2_nop (globals))
8779 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
8780 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
8783 return bfd_reloc_ok;
8786 /* For a given value of n, calculate the value of G_n as required to
8787 deal with group relocations. We return it in the form of an
8788 encoded constant-and-rotation, together with the final residual. If n is
8789 specified as less than zero, then final_residual is filled with the
8790 input value and no further action is performed. */
8793 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
8797 bfd_vma encoded_g_n = 0;
8798 bfd_vma residual = value; /* Also known as Y_n. */
8800 for (current_n = 0; current_n <= n; current_n++)
8804 /* Calculate which part of the value to mask. */
8811 /* Determine the most significant bit in the residual and
8812 align the resulting value to a 2-bit boundary. */
8813 for (msb = 30; msb >= 0; msb -= 2)
8814 if (residual & (3 << msb))
8817 /* The desired shift is now (msb - 6), or zero, whichever
8824 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
8825 g_n = residual & (0xff << shift);
8826 encoded_g_n = (g_n >> shift)
8827 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
8829 /* Calculate the residual for the next time around. */
8833 *final_residual = residual;
8838 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
8839 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
8842 identify_add_or_sub (bfd_vma insn)
8844 int opcode = insn & 0x1e00000;
8846 if (opcode == 1 << 23) /* ADD */
8849 if (opcode == 1 << 22) /* SUB */
8855 /* Perform a relocation as part of a final link. */
8857 static bfd_reloc_status_type
8858 elf32_arm_final_link_relocate (reloc_howto_type * howto,
8861 asection * input_section,
8862 bfd_byte * contents,
8863 Elf_Internal_Rela * rel,
8865 struct bfd_link_info * info,
8867 const char * sym_name,
8868 unsigned char st_type,
8869 enum arm_st_branch_type branch_type,
8870 struct elf_link_hash_entry * h,
8871 bfd_boolean * unresolved_reloc_p,
8872 char ** error_message)
8874 unsigned long r_type = howto->type;
8875 unsigned long r_symndx;
8876 bfd_byte * hit_data = contents + rel->r_offset;
8877 bfd_vma * local_got_offsets;
8878 bfd_vma * local_tlsdesc_gotents;
8881 asection * sreloc = NULL;
8884 bfd_signed_vma signed_addend;
8885 unsigned char dynreloc_st_type;
8886 bfd_vma dynreloc_value;
8887 struct elf32_arm_link_hash_table * globals;
8888 struct elf32_arm_link_hash_entry *eh;
8889 union gotplt_union *root_plt;
8890 struct arm_plt_info *arm_plt;
8892 bfd_vma gotplt_offset;
8893 bfd_boolean has_iplt_entry;
8895 globals = elf32_arm_hash_table (info);
8896 if (globals == NULL)
8897 return bfd_reloc_notsupported;
8899 BFD_ASSERT (is_arm_elf (input_bfd));
8901 /* Some relocation types map to different relocations depending on the
8902 target. We pick the right one here. */
8903 r_type = arm_real_reloc_type (globals, r_type);
8905 /* It is possible to have linker relaxations on some TLS access
8906 models. Update our information here. */
8907 r_type = elf32_arm_tls_transition (info, r_type, h);
8909 if (r_type != howto->type)
8910 howto = elf32_arm_howto_from_type (r_type);
8912 eh = (struct elf32_arm_link_hash_entry *) h;
8913 sgot = globals->root.sgot;
8914 local_got_offsets = elf_local_got_offsets (input_bfd);
8915 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
8917 if (globals->root.dynamic_sections_created)
8918 srelgot = globals->root.srelgot;
8922 r_symndx = ELF32_R_SYM (rel->r_info);
8924 if (globals->use_rel)
8926 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
8928 if (addend & ((howto->src_mask + 1) >> 1))
8931 signed_addend &= ~ howto->src_mask;
8932 signed_addend |= addend;
8935 signed_addend = addend;
8938 addend = signed_addend = rel->r_addend;
8940 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
8941 are resolving a function call relocation. */
8942 if (using_thumb_only (globals)
8943 && (r_type == R_ARM_THM_CALL
8944 || r_type == R_ARM_THM_JUMP24)
8945 && branch_type == ST_BRANCH_TO_ARM)
8946 branch_type = ST_BRANCH_TO_THUMB;
8948 /* Record the symbol information that should be used in dynamic
8950 dynreloc_st_type = st_type;
8951 dynreloc_value = value;
8952 if (branch_type == ST_BRANCH_TO_THUMB)
8953 dynreloc_value |= 1;
8955 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
8956 VALUE appropriately for relocations that we resolve at link time. */
8957 has_iplt_entry = FALSE;
8958 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
8959 && root_plt->offset != (bfd_vma) -1)
8961 plt_offset = root_plt->offset;
8962 gotplt_offset = arm_plt->got_offset;
8964 if (h == NULL || eh->is_iplt)
8966 has_iplt_entry = TRUE;
8967 splt = globals->root.iplt;
8969 /* Populate .iplt entries here, because not all of them will
8970 be seen by finish_dynamic_symbol. The lower bit is set if
8971 we have already populated the entry. */
8976 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
8977 -1, dynreloc_value))
8978 root_plt->offset |= 1;
8980 return bfd_reloc_notsupported;
8983 /* Static relocations always resolve to the .iplt entry. */
8985 value = (splt->output_section->vma
8986 + splt->output_offset
8988 branch_type = ST_BRANCH_TO_ARM;
8990 /* If there are non-call relocations that resolve to the .iplt
8991 entry, then all dynamic ones must too. */
8992 if (arm_plt->noncall_refcount != 0)
8994 dynreloc_st_type = st_type;
8995 dynreloc_value = value;
8999 /* We populate the .plt entry in finish_dynamic_symbol. */
9000 splt = globals->root.splt;
9005 plt_offset = (bfd_vma) -1;
9006 gotplt_offset = (bfd_vma) -1;
9012 /* We don't need to find a value for this symbol. It's just a
9014 *unresolved_reloc_p = FALSE;
9015 return bfd_reloc_ok;
9018 if (!globals->vxworks_p)
9019 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
9023 case R_ARM_ABS32_NOI:
9025 case R_ARM_REL32_NOI:
9031 /* Handle relocations which should use the PLT entry. ABS32/REL32
9032 will use the symbol's value, which may point to a PLT entry, but we
9033 don't need to handle that here. If we created a PLT entry, all
9034 branches in this object should go to it, except if the PLT is too
9035 far away, in which case a long branch stub should be inserted. */
9036 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
9037 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
9038 && r_type != R_ARM_CALL
9039 && r_type != R_ARM_JUMP24
9040 && r_type != R_ARM_PLT32)
9041 && plt_offset != (bfd_vma) -1)
9043 /* If we've created a .plt section, and assigned a PLT entry
9044 to this function, it must either be a STT_GNU_IFUNC reference
9045 or not be known to bind locally. In other cases, we should
9046 have cleared the PLT entry by now. */
9047 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
9049 value = (splt->output_section->vma
9050 + splt->output_offset
9052 *unresolved_reloc_p = FALSE;
9053 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9054 contents, rel->r_offset, value,
9058 /* When generating a shared object or relocatable executable, these
9059 relocations are copied into the output file to be resolved at
9061 if ((bfd_link_pic (info)
9062 || globals->root.is_relocatable_executable)
9063 && (input_section->flags & SEC_ALLOC)
9064 && !(globals->vxworks_p
9065 && strcmp (input_section->output_section->name,
9067 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
9068 || !SYMBOL_CALLS_LOCAL (info, h))
9069 && !(input_bfd == globals->stub_bfd
9070 && strstr (input_section->name, STUB_SUFFIX))
9072 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9073 || h->root.type != bfd_link_hash_undefweak)
9074 && r_type != R_ARM_PC24
9075 && r_type != R_ARM_CALL
9076 && r_type != R_ARM_JUMP24
9077 && r_type != R_ARM_PREL31
9078 && r_type != R_ARM_PLT32)
9080 Elf_Internal_Rela outrel;
9081 bfd_boolean skip, relocate;
9083 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9086 char *v = _("shared object");
9088 if (bfd_link_executable (info))
9089 v = _("PIE executable");
9091 (*_bfd_error_handler)
9092 (_("%B: relocation %s against external or undefined symbol `%s'"
9093 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
9094 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
9095 return bfd_reloc_notsupported;
9098 *unresolved_reloc_p = FALSE;
9100 if (sreloc == NULL && globals->root.dynamic_sections_created)
9102 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
9103 ! globals->use_rel);
9106 return bfd_reloc_notsupported;
9112 outrel.r_addend = addend;
9114 _bfd_elf_section_offset (output_bfd, info, input_section,
9116 if (outrel.r_offset == (bfd_vma) -1)
9118 else if (outrel.r_offset == (bfd_vma) -2)
9119 skip = TRUE, relocate = TRUE;
9120 outrel.r_offset += (input_section->output_section->vma
9121 + input_section->output_offset);
9124 memset (&outrel, 0, sizeof outrel);
9127 && (!bfd_link_pic (info)
9128 || !SYMBOLIC_BIND (info, h)
9129 || !h->def_regular))
9130 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
9135 /* This symbol is local, or marked to become local. */
9136 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
9137 if (globals->symbian_p)
9141 /* On Symbian OS, the data segment and text segement
9142 can be relocated independently. Therefore, we
9143 must indicate the segment to which this
9144 relocation is relative. The BPABI allows us to
9145 use any symbol in the right segment; we just use
9146 the section symbol as it is convenient. (We
9147 cannot use the symbol given by "h" directly as it
9148 will not appear in the dynamic symbol table.)
9150 Note that the dynamic linker ignores the section
9151 symbol value, so we don't subtract osec->vma
9152 from the emitted reloc addend. */
9154 osec = sym_sec->output_section;
9156 osec = input_section->output_section;
9157 symbol = elf_section_data (osec)->dynindx;
9160 struct elf_link_hash_table *htab = elf_hash_table (info);
9162 if ((osec->flags & SEC_READONLY) == 0
9163 && htab->data_index_section != NULL)
9164 osec = htab->data_index_section;
9166 osec = htab->text_index_section;
9167 symbol = elf_section_data (osec)->dynindx;
9169 BFD_ASSERT (symbol != 0);
9172 /* On SVR4-ish systems, the dynamic loader cannot
9173 relocate the text and data segments independently,
9174 so the symbol does not matter. */
9176 if (dynreloc_st_type == STT_GNU_IFUNC)
9177 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
9178 to the .iplt entry. Instead, every non-call reference
9179 must use an R_ARM_IRELATIVE relocation to obtain the
9180 correct run-time address. */
9181 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
9183 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
9184 if (globals->use_rel)
9187 outrel.r_addend += dynreloc_value;
9190 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
9192 /* If this reloc is against an external symbol, we do not want to
9193 fiddle with the addend. Otherwise, we need to include the symbol
9194 value so that it becomes an addend for the dynamic reloc. */
9196 return bfd_reloc_ok;
9198 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9199 contents, rel->r_offset,
9200 dynreloc_value, (bfd_vma) 0);
9202 else switch (r_type)
9205 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
9207 case R_ARM_XPC25: /* Arm BLX instruction. */
9210 case R_ARM_PC24: /* Arm B/BL instruction. */
9213 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
9215 if (r_type == R_ARM_XPC25)
9217 /* Check for Arm calling Arm function. */
9218 /* FIXME: Should we translate the instruction into a BL
9219 instruction instead ? */
9220 if (branch_type != ST_BRANCH_TO_THUMB)
9221 (*_bfd_error_handler)
9222 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
9224 h ? h->root.root.string : "(local)");
9226 else if (r_type == R_ARM_PC24)
9228 /* Check for Arm calling Thumb function. */
9229 if (branch_type == ST_BRANCH_TO_THUMB)
9231 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
9232 output_bfd, input_section,
9233 hit_data, sym_sec, rel->r_offset,
9234 signed_addend, value,
9236 return bfd_reloc_ok;
9238 return bfd_reloc_dangerous;
9242 /* Check if a stub has to be inserted because the
9243 destination is too far or we are changing mode. */
9244 if ( r_type == R_ARM_CALL
9245 || r_type == R_ARM_JUMP24
9246 || r_type == R_ARM_PLT32)
9248 enum elf32_arm_stub_type stub_type = arm_stub_none;
9249 struct elf32_arm_link_hash_entry *hash;
9251 hash = (struct elf32_arm_link_hash_entry *) h;
9252 stub_type = arm_type_of_stub (info, input_section, rel,
9253 st_type, &branch_type,
9254 hash, value, sym_sec,
9255 input_bfd, sym_name);
9257 if (stub_type != arm_stub_none)
9259 /* The target is out of reach, so redirect the
9260 branch to the local stub for this function. */
9261 stub_entry = elf32_arm_get_stub_entry (input_section,
9266 if (stub_entry != NULL)
9267 value = (stub_entry->stub_offset
9268 + stub_entry->stub_sec->output_offset
9269 + stub_entry->stub_sec->output_section->vma);
9271 if (plt_offset != (bfd_vma) -1)
9272 *unresolved_reloc_p = FALSE;
9277 /* If the call goes through a PLT entry, make sure to
9278 check distance to the right destination address. */
9279 if (plt_offset != (bfd_vma) -1)
9281 value = (splt->output_section->vma
9282 + splt->output_offset
9284 *unresolved_reloc_p = FALSE;
9285 /* The PLT entry is in ARM mode, regardless of the
9287 branch_type = ST_BRANCH_TO_ARM;
9292 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
9294 S is the address of the symbol in the relocation.
9295 P is address of the instruction being relocated.
9296 A is the addend (extracted from the instruction) in bytes.
9298 S is held in 'value'.
9299 P is the base address of the section containing the
9300 instruction plus the offset of the reloc into that
9302 (input_section->output_section->vma +
9303 input_section->output_offset +
9305 A is the addend, converted into bytes, ie:
9308 Note: None of these operations have knowledge of the pipeline
9309 size of the processor, thus it is up to the assembler to
9310 encode this information into the addend. */
9311 value -= (input_section->output_section->vma
9312 + input_section->output_offset);
9313 value -= rel->r_offset;
9314 if (globals->use_rel)
9315 value += (signed_addend << howto->size);
9317 /* RELA addends do not have to be adjusted by howto->size. */
9318 value += signed_addend;
9320 signed_addend = value;
9321 signed_addend >>= howto->rightshift;
9323 /* A branch to an undefined weak symbol is turned into a jump to
9324 the next instruction unless a PLT entry will be created.
9325 Do the same for local undefined symbols (but not for STN_UNDEF).
9326 The jump to the next instruction is optimized as a NOP depending
9327 on the architecture. */
9328 if (h ? (h->root.type == bfd_link_hash_undefweak
9329 && plt_offset == (bfd_vma) -1)
9330 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
9332 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
9334 if (arch_has_arm_nop (globals))
9335 value |= 0x0320f000;
9337 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
9341 /* Perform a signed range check. */
9342 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
9343 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
9344 return bfd_reloc_overflow;
9346 addend = (value & 2);
9348 value = (signed_addend & howto->dst_mask)
9349 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
9351 if (r_type == R_ARM_CALL)
9353 /* Set the H bit in the BLX instruction. */
9354 if (branch_type == ST_BRANCH_TO_THUMB)
9359 value &= ~(bfd_vma)(1 << 24);
9362 /* Select the correct instruction (BL or BLX). */
9363 /* Only if we are not handling a BL to a stub. In this
9364 case, mode switching is performed by the stub. */
9365 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
9367 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
9369 value &= ~(bfd_vma)(1 << 28);
9379 if (branch_type == ST_BRANCH_TO_THUMB)
9383 case R_ARM_ABS32_NOI:
9389 if (branch_type == ST_BRANCH_TO_THUMB)
9391 value -= (input_section->output_section->vma
9392 + input_section->output_offset + rel->r_offset);
9395 case R_ARM_REL32_NOI:
9397 value -= (input_section->output_section->vma
9398 + input_section->output_offset + rel->r_offset);
9402 value -= (input_section->output_section->vma
9403 + input_section->output_offset + rel->r_offset);
9404 value += signed_addend;
9405 if (! h || h->root.type != bfd_link_hash_undefweak)
9407 /* Check for overflow. */
9408 if ((value ^ (value >> 1)) & (1 << 30))
9409 return bfd_reloc_overflow;
9411 value &= 0x7fffffff;
9412 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
9413 if (branch_type == ST_BRANCH_TO_THUMB)
9418 bfd_put_32 (input_bfd, value, hit_data);
9419 return bfd_reloc_ok;
9422 /* PR 16202: Refectch the addend using the correct size. */
9423 if (globals->use_rel)
9424 addend = bfd_get_8 (input_bfd, hit_data);
9427 /* There is no way to tell whether the user intended to use a signed or
9428 unsigned addend. When checking for overflow we accept either,
9429 as specified by the AAELF. */
9430 if ((long) value > 0xff || (long) value < -0x80)
9431 return bfd_reloc_overflow;
9433 bfd_put_8 (input_bfd, value, hit_data);
9434 return bfd_reloc_ok;
9437 /* PR 16202: Refectch the addend using the correct size. */
9438 if (globals->use_rel)
9439 addend = bfd_get_16 (input_bfd, hit_data);
9442 /* See comment for R_ARM_ABS8. */
9443 if ((long) value > 0xffff || (long) value < -0x8000)
9444 return bfd_reloc_overflow;
9446 bfd_put_16 (input_bfd, value, hit_data);
9447 return bfd_reloc_ok;
9449 case R_ARM_THM_ABS5:
9450 /* Support ldr and str instructions for the thumb. */
9451 if (globals->use_rel)
9453 /* Need to refetch addend. */
9454 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
9455 /* ??? Need to determine shift amount from operand size. */
9456 addend >>= howto->rightshift;
9460 /* ??? Isn't value unsigned? */
9461 if ((long) value > 0x1f || (long) value < -0x10)
9462 return bfd_reloc_overflow;
9464 /* ??? Value needs to be properly shifted into place first. */
9465 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
9466 bfd_put_16 (input_bfd, value, hit_data);
9467 return bfd_reloc_ok;
9469 case R_ARM_THM_ALU_PREL_11_0:
9470 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
9473 bfd_signed_vma relocation;
9475 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
9476 | bfd_get_16 (input_bfd, hit_data + 2);
9478 if (globals->use_rel)
9480 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
9481 | ((insn & (1 << 26)) >> 15);
9482 if (insn & 0xf00000)
9483 signed_addend = -signed_addend;
9486 relocation = value + signed_addend;
9487 relocation -= Pa (input_section->output_section->vma
9488 + input_section->output_offset
9493 if (value >= 0x1000)
9494 return bfd_reloc_overflow;
9496 insn = (insn & 0xfb0f8f00) | (value & 0xff)
9497 | ((value & 0x700) << 4)
9498 | ((value & 0x800) << 15);
9502 bfd_put_16 (input_bfd, insn >> 16, hit_data);
9503 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9505 return bfd_reloc_ok;
9509 /* PR 10073: This reloc is not generated by the GNU toolchain,
9510 but it is supported for compatibility with third party libraries
9511 generated by other compilers, specifically the ARM/IAR. */
9514 bfd_signed_vma relocation;
9516 insn = bfd_get_16 (input_bfd, hit_data);
9518 if (globals->use_rel)
9519 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
9521 relocation = value + addend;
9522 relocation -= Pa (input_section->output_section->vma
9523 + input_section->output_offset
9528 /* We do not check for overflow of this reloc. Although strictly
9529 speaking this is incorrect, it appears to be necessary in order
9530 to work with IAR generated relocs. Since GCC and GAS do not
9531 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
9532 a problem for them. */
9535 insn = (insn & 0xff00) | (value >> 2);
9537 bfd_put_16 (input_bfd, insn, hit_data);
9539 return bfd_reloc_ok;
9542 case R_ARM_THM_PC12:
9543 /* Corresponds to: ldr.w reg, [pc, #offset]. */
9546 bfd_signed_vma relocation;
9548 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
9549 | bfd_get_16 (input_bfd, hit_data + 2);
9551 if (globals->use_rel)
9553 signed_addend = insn & 0xfff;
9554 if (!(insn & (1 << 23)))
9555 signed_addend = -signed_addend;
9558 relocation = value + signed_addend;
9559 relocation -= Pa (input_section->output_section->vma
9560 + input_section->output_offset
9565 if (value >= 0x1000)
9566 return bfd_reloc_overflow;
9568 insn = (insn & 0xff7ff000) | value;
9569 if (relocation >= 0)
9572 bfd_put_16 (input_bfd, insn >> 16, hit_data);
9573 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9575 return bfd_reloc_ok;
9578 case R_ARM_THM_XPC22:
9579 case R_ARM_THM_CALL:
9580 case R_ARM_THM_JUMP24:
9581 /* Thumb BL (branch long instruction). */
9585 bfd_boolean overflow = FALSE;
9586 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
9587 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
9588 bfd_signed_vma reloc_signed_max;
9589 bfd_signed_vma reloc_signed_min;
9591 bfd_signed_vma signed_check;
9593 const int thumb2 = using_thumb2 (globals);
9595 /* A branch to an undefined weak symbol is turned into a jump to
9596 the next instruction unless a PLT entry will be created.
9597 The jump to the next instruction is optimized as a NOP.W for
9598 Thumb-2 enabled architectures. */
9599 if (h && h->root.type == bfd_link_hash_undefweak
9600 && plt_offset == (bfd_vma) -1)
9602 if (arch_has_thumb2_nop (globals))
9604 bfd_put_16 (input_bfd, 0xf3af, hit_data);
9605 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
9609 bfd_put_16 (input_bfd, 0xe000, hit_data);
9610 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
9612 return bfd_reloc_ok;
9615 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
9616 with Thumb-1) involving the J1 and J2 bits. */
9617 if (globals->use_rel)
9619 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
9620 bfd_vma upper = upper_insn & 0x3ff;
9621 bfd_vma lower = lower_insn & 0x7ff;
9622 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
9623 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
9624 bfd_vma i1 = j1 ^ s ? 0 : 1;
9625 bfd_vma i2 = j2 ^ s ? 0 : 1;
9627 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
9629 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
9631 signed_addend = addend;
9634 if (r_type == R_ARM_THM_XPC22)
9636 /* Check for Thumb to Thumb call. */
9637 /* FIXME: Should we translate the instruction into a BL
9638 instruction instead ? */
9639 if (branch_type == ST_BRANCH_TO_THUMB)
9640 (*_bfd_error_handler)
9641 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
9643 h ? h->root.root.string : "(local)");
9647 /* If it is not a call to Thumb, assume call to Arm.
9648 If it is a call relative to a section name, then it is not a
9649 function call at all, but rather a long jump. Calls through
9650 the PLT do not require stubs. */
9651 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
9653 if (globals->use_blx && r_type == R_ARM_THM_CALL)
9655 /* Convert BL to BLX. */
9656 lower_insn = (lower_insn & ~0x1000) | 0x0800;
9658 else if (( r_type != R_ARM_THM_CALL)
9659 && (r_type != R_ARM_THM_JUMP24))
9661 if (elf32_thumb_to_arm_stub
9662 (info, sym_name, input_bfd, output_bfd, input_section,
9663 hit_data, sym_sec, rel->r_offset, signed_addend, value,
9665 return bfd_reloc_ok;
9667 return bfd_reloc_dangerous;
9670 else if (branch_type == ST_BRANCH_TO_THUMB
9672 && r_type == R_ARM_THM_CALL)
9674 /* Make sure this is a BL. */
9675 lower_insn |= 0x1800;
9679 enum elf32_arm_stub_type stub_type = arm_stub_none;
9680 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
9682 /* Check if a stub has to be inserted because the destination
9684 struct elf32_arm_stub_hash_entry *stub_entry;
9685 struct elf32_arm_link_hash_entry *hash;
9687 hash = (struct elf32_arm_link_hash_entry *) h;
9689 stub_type = arm_type_of_stub (info, input_section, rel,
9690 st_type, &branch_type,
9691 hash, value, sym_sec,
9692 input_bfd, sym_name);
9694 if (stub_type != arm_stub_none)
9696 /* The target is out of reach or we are changing modes, so
9697 redirect the branch to the local stub for this
9699 stub_entry = elf32_arm_get_stub_entry (input_section,
9703 if (stub_entry != NULL)
9705 value = (stub_entry->stub_offset
9706 + stub_entry->stub_sec->output_offset
9707 + stub_entry->stub_sec->output_section->vma);
9709 if (plt_offset != (bfd_vma) -1)
9710 *unresolved_reloc_p = FALSE;
9713 /* If this call becomes a call to Arm, force BLX. */
9714 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
9717 && !arm_stub_is_thumb (stub_entry->stub_type))
9718 || branch_type != ST_BRANCH_TO_THUMB)
9719 lower_insn = (lower_insn & ~0x1000) | 0x0800;
9724 /* Handle calls via the PLT. */
9725 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
9727 value = (splt->output_section->vma
9728 + splt->output_offset
9731 if (globals->use_blx
9732 && r_type == R_ARM_THM_CALL
9733 && ! using_thumb_only (globals))
9735 /* If the Thumb BLX instruction is available, convert
9736 the BL to a BLX instruction to call the ARM-mode
9738 lower_insn = (lower_insn & ~0x1000) | 0x0800;
9739 branch_type = ST_BRANCH_TO_ARM;
9743 if (! using_thumb_only (globals))
9744 /* Target the Thumb stub before the ARM PLT entry. */
9745 value -= PLT_THUMB_STUB_SIZE;
9746 branch_type = ST_BRANCH_TO_THUMB;
9748 *unresolved_reloc_p = FALSE;
9751 relocation = value + signed_addend;
9753 relocation -= (input_section->output_section->vma
9754 + input_section->output_offset
9757 check = relocation >> howto->rightshift;
9759 /* If this is a signed value, the rightshift just dropped
9760 leading 1 bits (assuming twos complement). */
9761 if ((bfd_signed_vma) relocation >= 0)
9762 signed_check = check;
9764 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
9766 /* Calculate the permissable maximum and minimum values for
9767 this relocation according to whether we're relocating for
9769 bitsize = howto->bitsize;
9772 reloc_signed_max = (1 << (bitsize - 1)) - 1;
9773 reloc_signed_min = ~reloc_signed_max;
9775 /* Assumes two's complement. */
9776 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9779 if ((lower_insn & 0x5000) == 0x4000)
9780 /* For a BLX instruction, make sure that the relocation is rounded up
9781 to a word boundary. This follows the semantics of the instruction
9782 which specifies that bit 1 of the target address will come from bit
9783 1 of the base address. */
9784 relocation = (relocation + 2) & ~ 3;
9786 /* Put RELOCATION back into the insn. Assumes two's complement.
9787 We use the Thumb-2 encoding, which is safe even if dealing with
9788 a Thumb-1 instruction by virtue of our overflow check above. */
9789 reloc_sign = (signed_check < 0) ? 1 : 0;
9790 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
9791 | ((relocation >> 12) & 0x3ff)
9792 | (reloc_sign << 10);
9793 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
9794 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
9795 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
9796 | ((relocation >> 1) & 0x7ff);
9798 /* Put the relocated value back in the object file: */
9799 bfd_put_16 (input_bfd, upper_insn, hit_data);
9800 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9802 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9806 case R_ARM_THM_JUMP19:
9807 /* Thumb32 conditional branch instruction. */
9810 bfd_boolean overflow = FALSE;
9811 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
9812 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
9813 bfd_signed_vma reloc_signed_max = 0xffffe;
9814 bfd_signed_vma reloc_signed_min = -0x100000;
9815 bfd_signed_vma signed_check;
9816 enum elf32_arm_stub_type stub_type = arm_stub_none;
9817 struct elf32_arm_stub_hash_entry *stub_entry;
9818 struct elf32_arm_link_hash_entry *hash;
9820 /* Need to refetch the addend, reconstruct the top three bits,
9821 and squish the two 11 bit pieces together. */
9822 if (globals->use_rel)
9824 bfd_vma S = (upper_insn & 0x0400) >> 10;
9825 bfd_vma upper = (upper_insn & 0x003f);
9826 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
9827 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
9828 bfd_vma lower = (lower_insn & 0x07ff);
9833 upper -= 0x0100; /* Sign extend. */
9835 addend = (upper << 12) | (lower << 1);
9836 signed_addend = addend;
9839 /* Handle calls via the PLT. */
9840 if (plt_offset != (bfd_vma) -1)
9842 value = (splt->output_section->vma
9843 + splt->output_offset
9845 /* Target the Thumb stub before the ARM PLT entry. */
9846 value -= PLT_THUMB_STUB_SIZE;
9847 *unresolved_reloc_p = FALSE;
9850 hash = (struct elf32_arm_link_hash_entry *)h;
9852 stub_type = arm_type_of_stub (info, input_section, rel,
9853 st_type, &branch_type,
9854 hash, value, sym_sec,
9855 input_bfd, sym_name);
9856 if (stub_type != arm_stub_none)
9858 stub_entry = elf32_arm_get_stub_entry (input_section,
9862 if (stub_entry != NULL)
9864 value = (stub_entry->stub_offset
9865 + stub_entry->stub_sec->output_offset
9866 + stub_entry->stub_sec->output_section->vma);
9870 relocation = value + signed_addend;
9871 relocation -= (input_section->output_section->vma
9872 + input_section->output_offset
9874 signed_check = (bfd_signed_vma) relocation;
9876 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9879 /* Put RELOCATION back into the insn. */
9881 bfd_vma S = (relocation & 0x00100000) >> 20;
9882 bfd_vma J2 = (relocation & 0x00080000) >> 19;
9883 bfd_vma J1 = (relocation & 0x00040000) >> 18;
9884 bfd_vma hi = (relocation & 0x0003f000) >> 12;
9885 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
9887 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
9888 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
9891 /* Put the relocated value back in the object file: */
9892 bfd_put_16 (input_bfd, upper_insn, hit_data);
9893 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9895 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9898 case R_ARM_THM_JUMP11:
9899 case R_ARM_THM_JUMP8:
9900 case R_ARM_THM_JUMP6:
9901 /* Thumb B (branch) instruction). */
9903 bfd_signed_vma relocation;
9904 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
9905 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
9906 bfd_signed_vma signed_check;
9908 /* CZB cannot jump backward. */
9909 if (r_type == R_ARM_THM_JUMP6)
9910 reloc_signed_min = 0;
9912 if (globals->use_rel)
9914 /* Need to refetch addend. */
9915 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
9916 if (addend & ((howto->src_mask + 1) >> 1))
9919 signed_addend &= ~ howto->src_mask;
9920 signed_addend |= addend;
9923 signed_addend = addend;
9924 /* The value in the insn has been right shifted. We need to
9925 undo this, so that we can perform the address calculation
9926 in terms of bytes. */
9927 signed_addend <<= howto->rightshift;
9929 relocation = value + signed_addend;
9931 relocation -= (input_section->output_section->vma
9932 + input_section->output_offset
9935 relocation >>= howto->rightshift;
9936 signed_check = relocation;
9938 if (r_type == R_ARM_THM_JUMP6)
9939 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
9941 relocation &= howto->dst_mask;
9942 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
9944 bfd_put_16 (input_bfd, relocation, hit_data);
9946 /* Assumes two's complement. */
9947 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9948 return bfd_reloc_overflow;
9950 return bfd_reloc_ok;
9953 case R_ARM_ALU_PCREL7_0:
9954 case R_ARM_ALU_PCREL15_8:
9955 case R_ARM_ALU_PCREL23_15:
9960 insn = bfd_get_32 (input_bfd, hit_data);
9961 if (globals->use_rel)
9963 /* Extract the addend. */
9964 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
9965 signed_addend = addend;
9967 relocation = value + signed_addend;
9969 relocation -= (input_section->output_section->vma
9970 + input_section->output_offset
9972 insn = (insn & ~0xfff)
9973 | ((howto->bitpos << 7) & 0xf00)
9974 | ((relocation >> howto->bitpos) & 0xff);
9975 bfd_put_32 (input_bfd, value, hit_data);
9977 return bfd_reloc_ok;
9979 case R_ARM_GNU_VTINHERIT:
9980 case R_ARM_GNU_VTENTRY:
9981 return bfd_reloc_ok;
9983 case R_ARM_GOTOFF32:
9984 /* Relocation is relative to the start of the
9985 global offset table. */
9987 BFD_ASSERT (sgot != NULL);
9989 return bfd_reloc_notsupported;
9991 /* If we are addressing a Thumb function, we need to adjust the
9992 address by one, so that attempts to call the function pointer will
9993 correctly interpret it as Thumb code. */
9994 if (branch_type == ST_BRANCH_TO_THUMB)
9997 /* Note that sgot->output_offset is not involved in this
9998 calculation. We always want the start of .got. If we
9999 define _GLOBAL_OFFSET_TABLE in a different way, as is
10000 permitted by the ABI, we might have to change this
10002 value -= sgot->output_section->vma;
10003 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10004 contents, rel->r_offset, value,
10008 /* Use global offset table as symbol value. */
10009 BFD_ASSERT (sgot != NULL);
10012 return bfd_reloc_notsupported;
10014 *unresolved_reloc_p = FALSE;
10015 value = sgot->output_section->vma;
10016 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10017 contents, rel->r_offset, value,
10021 case R_ARM_GOT_PREL:
10022 /* Relocation is to the entry for this symbol in the
10023 global offset table. */
10025 return bfd_reloc_notsupported;
10027 if (dynreloc_st_type == STT_GNU_IFUNC
10028 && plt_offset != (bfd_vma) -1
10029 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
10031 /* We have a relocation against a locally-binding STT_GNU_IFUNC
10032 symbol, and the relocation resolves directly to the runtime
10033 target rather than to the .iplt entry. This means that any
10034 .got entry would be the same value as the .igot.plt entry,
10035 so there's no point creating both. */
10036 sgot = globals->root.igotplt;
10037 value = sgot->output_offset + gotplt_offset;
10039 else if (h != NULL)
10043 off = h->got.offset;
10044 BFD_ASSERT (off != (bfd_vma) -1);
10045 if ((off & 1) != 0)
10047 /* We have already processsed one GOT relocation against
10050 if (globals->root.dynamic_sections_created
10051 && !SYMBOL_REFERENCES_LOCAL (info, h))
10052 *unresolved_reloc_p = FALSE;
10056 Elf_Internal_Rela outrel;
10058 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
10060 /* If the symbol doesn't resolve locally in a static
10061 object, we have an undefined reference. If the
10062 symbol doesn't resolve locally in a dynamic object,
10063 it should be resolved by the dynamic linker. */
10064 if (globals->root.dynamic_sections_created)
10066 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10067 *unresolved_reloc_p = FALSE;
10071 outrel.r_addend = 0;
10075 if (dynreloc_st_type == STT_GNU_IFUNC)
10076 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
10077 else if (bfd_link_pic (info) &&
10078 (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10079 || h->root.type != bfd_link_hash_undefweak))
10080 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10083 outrel.r_addend = dynreloc_value;
10086 /* The GOT entry is initialized to zero by default.
10087 See if we should install a different value. */
10088 if (outrel.r_addend != 0
10089 && (outrel.r_info == 0 || globals->use_rel))
10091 bfd_put_32 (output_bfd, outrel.r_addend,
10092 sgot->contents + off);
10093 outrel.r_addend = 0;
10096 if (outrel.r_info != 0)
10098 outrel.r_offset = (sgot->output_section->vma
10099 + sgot->output_offset
10101 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10103 h->got.offset |= 1;
10105 value = sgot->output_offset + off;
10111 BFD_ASSERT (local_got_offsets != NULL &&
10112 local_got_offsets[r_symndx] != (bfd_vma) -1);
10114 off = local_got_offsets[r_symndx];
10116 /* The offset must always be a multiple of 4. We use the
10117 least significant bit to record whether we have already
10118 generated the necessary reloc. */
10119 if ((off & 1) != 0)
10123 if (globals->use_rel)
10124 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
10126 if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC)
10128 Elf_Internal_Rela outrel;
10130 outrel.r_addend = addend + dynreloc_value;
10131 outrel.r_offset = (sgot->output_section->vma
10132 + sgot->output_offset
10134 if (dynreloc_st_type == STT_GNU_IFUNC)
10135 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
10137 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10138 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10141 local_got_offsets[r_symndx] |= 1;
10144 value = sgot->output_offset + off;
10146 if (r_type != R_ARM_GOT32)
10147 value += sgot->output_section->vma;
10149 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10150 contents, rel->r_offset, value,
10153 case R_ARM_TLS_LDO32:
10154 value = value - dtpoff_base (info);
10156 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10157 contents, rel->r_offset, value,
10160 case R_ARM_TLS_LDM32:
10167 off = globals->tls_ldm_got.offset;
10169 if ((off & 1) != 0)
10173 /* If we don't know the module number, create a relocation
10175 if (bfd_link_pic (info))
10177 Elf_Internal_Rela outrel;
10179 if (srelgot == NULL)
10182 outrel.r_addend = 0;
10183 outrel.r_offset = (sgot->output_section->vma
10184 + sgot->output_offset + off);
10185 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
10187 if (globals->use_rel)
10188 bfd_put_32 (output_bfd, outrel.r_addend,
10189 sgot->contents + off);
10191 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10194 bfd_put_32 (output_bfd, 1, sgot->contents + off);
10196 globals->tls_ldm_got.offset |= 1;
10199 value = sgot->output_section->vma + sgot->output_offset + off
10200 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
10202 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10203 contents, rel->r_offset, value,
10207 case R_ARM_TLS_CALL:
10208 case R_ARM_THM_TLS_CALL:
10209 case R_ARM_TLS_GD32:
10210 case R_ARM_TLS_IE32:
10211 case R_ARM_TLS_GOTDESC:
10212 case R_ARM_TLS_DESCSEQ:
10213 case R_ARM_THM_TLS_DESCSEQ:
10215 bfd_vma off, offplt;
10219 BFD_ASSERT (sgot != NULL);
10224 dyn = globals->root.dynamic_sections_created;
10225 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
10226 bfd_link_pic (info),
10228 && (!bfd_link_pic (info)
10229 || !SYMBOL_REFERENCES_LOCAL (info, h)))
10231 *unresolved_reloc_p = FALSE;
10234 off = h->got.offset;
10235 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
10236 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
10240 BFD_ASSERT (local_got_offsets != NULL);
10241 off = local_got_offsets[r_symndx];
10242 offplt = local_tlsdesc_gotents[r_symndx];
10243 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
10246 /* Linker relaxations happens from one of the
10247 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
10248 if (ELF32_R_TYPE(rel->r_info) != r_type)
10249 tls_type = GOT_TLS_IE;
10251 BFD_ASSERT (tls_type != GOT_UNKNOWN);
10253 if ((off & 1) != 0)
10257 bfd_boolean need_relocs = FALSE;
10258 Elf_Internal_Rela outrel;
10261 /* The GOT entries have not been initialized yet. Do it
10262 now, and emit any relocations. If both an IE GOT and a
10263 GD GOT are necessary, we emit the GD first. */
10265 if ((bfd_link_pic (info) || indx != 0)
10267 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10268 || h->root.type != bfd_link_hash_undefweak))
10270 need_relocs = TRUE;
10271 BFD_ASSERT (srelgot != NULL);
10274 if (tls_type & GOT_TLS_GDESC)
10278 /* We should have relaxed, unless this is an undefined
10280 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
10281 || bfd_link_pic (info));
10282 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
10283 <= globals->root.sgotplt->size);
10285 outrel.r_addend = 0;
10286 outrel.r_offset = (globals->root.sgotplt->output_section->vma
10287 + globals->root.sgotplt->output_offset
10289 + globals->sgotplt_jump_table_size);
10291 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
10292 sreloc = globals->root.srelplt;
10293 loc = sreloc->contents;
10294 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
10295 BFD_ASSERT (loc + RELOC_SIZE (globals)
10296 <= sreloc->contents + sreloc->size);
10298 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
10300 /* For globals, the first word in the relocation gets
10301 the relocation index and the top bit set, or zero,
10302 if we're binding now. For locals, it gets the
10303 symbol's offset in the tls section. */
10304 bfd_put_32 (output_bfd,
10305 !h ? value - elf_hash_table (info)->tls_sec->vma
10306 : info->flags & DF_BIND_NOW ? 0
10307 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
10308 globals->root.sgotplt->contents + offplt
10309 + globals->sgotplt_jump_table_size);
10311 /* Second word in the relocation is always zero. */
10312 bfd_put_32 (output_bfd, 0,
10313 globals->root.sgotplt->contents + offplt
10314 + globals->sgotplt_jump_table_size + 4);
10316 if (tls_type & GOT_TLS_GD)
10320 outrel.r_addend = 0;
10321 outrel.r_offset = (sgot->output_section->vma
10322 + sgot->output_offset
10324 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
10326 if (globals->use_rel)
10327 bfd_put_32 (output_bfd, outrel.r_addend,
10328 sgot->contents + cur_off);
10330 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10333 bfd_put_32 (output_bfd, value - dtpoff_base (info),
10334 sgot->contents + cur_off + 4);
10337 outrel.r_addend = 0;
10338 outrel.r_info = ELF32_R_INFO (indx,
10339 R_ARM_TLS_DTPOFF32);
10340 outrel.r_offset += 4;
10342 if (globals->use_rel)
10343 bfd_put_32 (output_bfd, outrel.r_addend,
10344 sgot->contents + cur_off + 4);
10346 elf32_arm_add_dynreloc (output_bfd, info,
10352 /* If we are not emitting relocations for a
10353 general dynamic reference, then we must be in a
10354 static link or an executable link with the
10355 symbol binding locally. Mark it as belonging
10356 to module 1, the executable. */
10357 bfd_put_32 (output_bfd, 1,
10358 sgot->contents + cur_off);
10359 bfd_put_32 (output_bfd, value - dtpoff_base (info),
10360 sgot->contents + cur_off + 4);
10366 if (tls_type & GOT_TLS_IE)
10371 outrel.r_addend = value - dtpoff_base (info);
10373 outrel.r_addend = 0;
10374 outrel.r_offset = (sgot->output_section->vma
10375 + sgot->output_offset
10377 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
10379 if (globals->use_rel)
10380 bfd_put_32 (output_bfd, outrel.r_addend,
10381 sgot->contents + cur_off);
10383 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10386 bfd_put_32 (output_bfd, tpoff (info, value),
10387 sgot->contents + cur_off);
10392 h->got.offset |= 1;
10394 local_got_offsets[r_symndx] |= 1;
10397 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
10399 else if (tls_type & GOT_TLS_GDESC)
10402 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
10403 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
10405 bfd_signed_vma offset;
10406 /* TLS stubs are arm mode. The original symbol is a
10407 data object, so branch_type is bogus. */
10408 branch_type = ST_BRANCH_TO_ARM;
10409 enum elf32_arm_stub_type stub_type
10410 = arm_type_of_stub (info, input_section, rel,
10411 st_type, &branch_type,
10412 (struct elf32_arm_link_hash_entry *)h,
10413 globals->tls_trampoline, globals->root.splt,
10414 input_bfd, sym_name);
10416 if (stub_type != arm_stub_none)
10418 struct elf32_arm_stub_hash_entry *stub_entry
10419 = elf32_arm_get_stub_entry
10420 (input_section, globals->root.splt, 0, rel,
10421 globals, stub_type);
10422 offset = (stub_entry->stub_offset
10423 + stub_entry->stub_sec->output_offset
10424 + stub_entry->stub_sec->output_section->vma);
10427 offset = (globals->root.splt->output_section->vma
10428 + globals->root.splt->output_offset
10429 + globals->tls_trampoline);
10431 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
10433 unsigned long inst;
10435 offset -= (input_section->output_section->vma
10436 + input_section->output_offset
10437 + rel->r_offset + 8);
10439 inst = offset >> 2;
10440 inst &= 0x00ffffff;
10441 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
10445 /* Thumb blx encodes the offset in a complicated
10447 unsigned upper_insn, lower_insn;
10450 offset -= (input_section->output_section->vma
10451 + input_section->output_offset
10452 + rel->r_offset + 4);
10454 if (stub_type != arm_stub_none
10455 && arm_stub_is_thumb (stub_type))
10457 lower_insn = 0xd000;
10461 lower_insn = 0xc000;
10462 /* Round up the offset to a word boundary. */
10463 offset = (offset + 2) & ~2;
10467 upper_insn = (0xf000
10468 | ((offset >> 12) & 0x3ff)
10470 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
10471 | (((!((offset >> 22) & 1)) ^ neg) << 11)
10472 | ((offset >> 1) & 0x7ff);
10473 bfd_put_16 (input_bfd, upper_insn, hit_data);
10474 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10475 return bfd_reloc_ok;
10478 /* These relocations needs special care, as besides the fact
10479 they point somewhere in .gotplt, the addend must be
10480 adjusted accordingly depending on the type of instruction
10482 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
10484 unsigned long data, insn;
10487 data = bfd_get_32 (input_bfd, hit_data);
10493 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
10494 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10495 insn = (insn << 16)
10496 | bfd_get_16 (input_bfd,
10497 contents + rel->r_offset - data + 2);
10498 if ((insn & 0xf800c000) == 0xf000c000)
10501 else if ((insn & 0xffffff00) == 0x4400)
10506 (*_bfd_error_handler)
10507 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
10508 input_bfd, input_section,
10509 (unsigned long)rel->r_offset, insn);
10510 return bfd_reloc_notsupported;
10515 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
10517 switch (insn >> 24)
10519 case 0xeb: /* bl */
10520 case 0xfa: /* blx */
10524 case 0xe0: /* add */
10529 (*_bfd_error_handler)
10530 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
10531 input_bfd, input_section,
10532 (unsigned long)rel->r_offset, insn);
10533 return bfd_reloc_notsupported;
10537 value += ((globals->root.sgotplt->output_section->vma
10538 + globals->root.sgotplt->output_offset + off)
10539 - (input_section->output_section->vma
10540 + input_section->output_offset
10542 + globals->sgotplt_jump_table_size);
10545 value = ((globals->root.sgot->output_section->vma
10546 + globals->root.sgot->output_offset + off)
10547 - (input_section->output_section->vma
10548 + input_section->output_offset + rel->r_offset));
10550 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10551 contents, rel->r_offset, value,
10555 case R_ARM_TLS_LE32:
10556 if (bfd_link_dll (info))
10558 (*_bfd_error_handler)
10559 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
10560 input_bfd, input_section,
10561 (long) rel->r_offset, howto->name);
10562 return bfd_reloc_notsupported;
10565 value = tpoff (info, value);
10567 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10568 contents, rel->r_offset, value,
10572 if (globals->fix_v4bx)
10574 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10576 /* Ensure that we have a BX instruction. */
10577 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
10579 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
10581 /* Branch to veneer. */
10583 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
10584 glue_addr -= input_section->output_section->vma
10585 + input_section->output_offset
10586 + rel->r_offset + 8;
10587 insn = (insn & 0xf0000000) | 0x0a000000
10588 | ((glue_addr >> 2) & 0x00ffffff);
10592 /* Preserve Rm (lowest four bits) and the condition code
10593 (highest four bits). Other bits encode MOV PC,Rm. */
10594 insn = (insn & 0xf000000f) | 0x01a0f000;
10597 bfd_put_32 (input_bfd, insn, hit_data);
10599 return bfd_reloc_ok;
10601 case R_ARM_MOVW_ABS_NC:
10602 case R_ARM_MOVT_ABS:
10603 case R_ARM_MOVW_PREL_NC:
10604 case R_ARM_MOVT_PREL:
10605 /* Until we properly support segment-base-relative addressing then
10606 we assume the segment base to be zero, as for the group relocations.
10607 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
10608 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
10609 case R_ARM_MOVW_BREL_NC:
10610 case R_ARM_MOVW_BREL:
10611 case R_ARM_MOVT_BREL:
10613 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10615 if (globals->use_rel)
10617 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
10618 signed_addend = (addend ^ 0x8000) - 0x8000;
10621 value += signed_addend;
10623 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
10624 value -= (input_section->output_section->vma
10625 + input_section->output_offset + rel->r_offset);
10627 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
10628 return bfd_reloc_overflow;
10630 if (branch_type == ST_BRANCH_TO_THUMB)
10633 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
10634 || r_type == R_ARM_MOVT_BREL)
10637 insn &= 0xfff0f000;
10638 insn |= value & 0xfff;
10639 insn |= (value & 0xf000) << 4;
10640 bfd_put_32 (input_bfd, insn, hit_data);
10642 return bfd_reloc_ok;
10644 case R_ARM_THM_MOVW_ABS_NC:
10645 case R_ARM_THM_MOVT_ABS:
10646 case R_ARM_THM_MOVW_PREL_NC:
10647 case R_ARM_THM_MOVT_PREL:
10648 /* Until we properly support segment-base-relative addressing then
10649 we assume the segment base to be zero, as for the above relocations.
10650 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
10651 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
10652 as R_ARM_THM_MOVT_ABS. */
10653 case R_ARM_THM_MOVW_BREL_NC:
10654 case R_ARM_THM_MOVW_BREL:
10655 case R_ARM_THM_MOVT_BREL:
10659 insn = bfd_get_16 (input_bfd, hit_data) << 16;
10660 insn |= bfd_get_16 (input_bfd, hit_data + 2);
10662 if (globals->use_rel)
10664 addend = ((insn >> 4) & 0xf000)
10665 | ((insn >> 15) & 0x0800)
10666 | ((insn >> 4) & 0x0700)
10668 signed_addend = (addend ^ 0x8000) - 0x8000;
10671 value += signed_addend;
10673 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
10674 value -= (input_section->output_section->vma
10675 + input_section->output_offset + rel->r_offset);
10677 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
10678 return bfd_reloc_overflow;
10680 if (branch_type == ST_BRANCH_TO_THUMB)
10683 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
10684 || r_type == R_ARM_THM_MOVT_BREL)
10687 insn &= 0xfbf08f00;
10688 insn |= (value & 0xf000) << 4;
10689 insn |= (value & 0x0800) << 15;
10690 insn |= (value & 0x0700) << 4;
10691 insn |= (value & 0x00ff);
10693 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10694 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10696 return bfd_reloc_ok;
10698 case R_ARM_ALU_PC_G0_NC:
10699 case R_ARM_ALU_PC_G1_NC:
10700 case R_ARM_ALU_PC_G0:
10701 case R_ARM_ALU_PC_G1:
10702 case R_ARM_ALU_PC_G2:
10703 case R_ARM_ALU_SB_G0_NC:
10704 case R_ARM_ALU_SB_G1_NC:
10705 case R_ARM_ALU_SB_G0:
10706 case R_ARM_ALU_SB_G1:
10707 case R_ARM_ALU_SB_G2:
10709 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10710 bfd_vma pc = input_section->output_section->vma
10711 + input_section->output_offset + rel->r_offset;
10712 /* sb is the origin of the *segment* containing the symbol. */
10713 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10716 bfd_signed_vma signed_value;
10719 /* Determine which group of bits to select. */
10722 case R_ARM_ALU_PC_G0_NC:
10723 case R_ARM_ALU_PC_G0:
10724 case R_ARM_ALU_SB_G0_NC:
10725 case R_ARM_ALU_SB_G0:
10729 case R_ARM_ALU_PC_G1_NC:
10730 case R_ARM_ALU_PC_G1:
10731 case R_ARM_ALU_SB_G1_NC:
10732 case R_ARM_ALU_SB_G1:
10736 case R_ARM_ALU_PC_G2:
10737 case R_ARM_ALU_SB_G2:
10745 /* If REL, extract the addend from the insn. If RELA, it will
10746 have already been fetched for us. */
10747 if (globals->use_rel)
10750 bfd_vma constant = insn & 0xff;
10751 bfd_vma rotation = (insn & 0xf00) >> 8;
10754 signed_addend = constant;
10757 /* Compensate for the fact that in the instruction, the
10758 rotation is stored in multiples of 2 bits. */
10761 /* Rotate "constant" right by "rotation" bits. */
10762 signed_addend = (constant >> rotation) |
10763 (constant << (8 * sizeof (bfd_vma) - rotation));
10766 /* Determine if the instruction is an ADD or a SUB.
10767 (For REL, this determines the sign of the addend.) */
10768 negative = identify_add_or_sub (insn);
10771 (*_bfd_error_handler)
10772 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
10773 input_bfd, input_section,
10774 (long) rel->r_offset, howto->name);
10775 return bfd_reloc_overflow;
10778 signed_addend *= negative;
10781 /* Compute the value (X) to go in the place. */
10782 if (r_type == R_ARM_ALU_PC_G0_NC
10783 || r_type == R_ARM_ALU_PC_G1_NC
10784 || r_type == R_ARM_ALU_PC_G0
10785 || r_type == R_ARM_ALU_PC_G1
10786 || r_type == R_ARM_ALU_PC_G2)
10788 signed_value = value - pc + signed_addend;
10790 /* Section base relative. */
10791 signed_value = value - sb + signed_addend;
10793 /* If the target symbol is a Thumb function, then set the
10794 Thumb bit in the address. */
10795 if (branch_type == ST_BRANCH_TO_THUMB)
10798 /* Calculate the value of the relevant G_n, in encoded
10799 constant-with-rotation format. */
10800 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
10803 /* Check for overflow if required. */
10804 if ((r_type == R_ARM_ALU_PC_G0
10805 || r_type == R_ARM_ALU_PC_G1
10806 || r_type == R_ARM_ALU_PC_G2
10807 || r_type == R_ARM_ALU_SB_G0
10808 || r_type == R_ARM_ALU_SB_G1
10809 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
10811 (*_bfd_error_handler)
10812 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10813 input_bfd, input_section,
10814 (long) rel->r_offset, signed_value < 0 ? - signed_value : signed_value,
10816 return bfd_reloc_overflow;
10819 /* Mask out the value and the ADD/SUB part of the opcode; take care
10820 not to destroy the S bit. */
10821 insn &= 0xff1ff000;
10823 /* Set the opcode according to whether the value to go in the
10824 place is negative. */
10825 if (signed_value < 0)
10830 /* Encode the offset. */
10833 bfd_put_32 (input_bfd, insn, hit_data);
10835 return bfd_reloc_ok;
10837 case R_ARM_LDR_PC_G0:
10838 case R_ARM_LDR_PC_G1:
10839 case R_ARM_LDR_PC_G2:
10840 case R_ARM_LDR_SB_G0:
10841 case R_ARM_LDR_SB_G1:
10842 case R_ARM_LDR_SB_G2:
10844 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10845 bfd_vma pc = input_section->output_section->vma
10846 + input_section->output_offset + rel->r_offset;
10847 /* sb is the origin of the *segment* containing the symbol. */
10848 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10850 bfd_signed_vma signed_value;
10853 /* Determine which groups of bits to calculate. */
10856 case R_ARM_LDR_PC_G0:
10857 case R_ARM_LDR_SB_G0:
10861 case R_ARM_LDR_PC_G1:
10862 case R_ARM_LDR_SB_G1:
10866 case R_ARM_LDR_PC_G2:
10867 case R_ARM_LDR_SB_G2:
10875 /* If REL, extract the addend from the insn. If RELA, it will
10876 have already been fetched for us. */
10877 if (globals->use_rel)
10879 int negative = (insn & (1 << 23)) ? 1 : -1;
10880 signed_addend = negative * (insn & 0xfff);
10883 /* Compute the value (X) to go in the place. */
10884 if (r_type == R_ARM_LDR_PC_G0
10885 || r_type == R_ARM_LDR_PC_G1
10886 || r_type == R_ARM_LDR_PC_G2)
10888 signed_value = value - pc + signed_addend;
10890 /* Section base relative. */
10891 signed_value = value - sb + signed_addend;
10893 /* Calculate the value of the relevant G_{n-1} to obtain
10894 the residual at that stage. */
10895 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
10896 group - 1, &residual);
10898 /* Check for overflow. */
10899 if (residual >= 0x1000)
10901 (*_bfd_error_handler)
10902 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10903 input_bfd, input_section,
10904 (long) rel->r_offset, labs (signed_value), howto->name);
10905 return bfd_reloc_overflow;
10908 /* Mask out the value and U bit. */
10909 insn &= 0xff7ff000;
10911 /* Set the U bit if the value to go in the place is non-negative. */
10912 if (signed_value >= 0)
10915 /* Encode the offset. */
10918 bfd_put_32 (input_bfd, insn, hit_data);
10920 return bfd_reloc_ok;
10922 case R_ARM_LDRS_PC_G0:
10923 case R_ARM_LDRS_PC_G1:
10924 case R_ARM_LDRS_PC_G2:
10925 case R_ARM_LDRS_SB_G0:
10926 case R_ARM_LDRS_SB_G1:
10927 case R_ARM_LDRS_SB_G2:
10929 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10930 bfd_vma pc = input_section->output_section->vma
10931 + input_section->output_offset + rel->r_offset;
10932 /* sb is the origin of the *segment* containing the symbol. */
10933 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10935 bfd_signed_vma signed_value;
10938 /* Determine which groups of bits to calculate. */
10941 case R_ARM_LDRS_PC_G0:
10942 case R_ARM_LDRS_SB_G0:
10946 case R_ARM_LDRS_PC_G1:
10947 case R_ARM_LDRS_SB_G1:
10951 case R_ARM_LDRS_PC_G2:
10952 case R_ARM_LDRS_SB_G2:
10960 /* If REL, extract the addend from the insn. If RELA, it will
10961 have already been fetched for us. */
10962 if (globals->use_rel)
10964 int negative = (insn & (1 << 23)) ? 1 : -1;
10965 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
10968 /* Compute the value (X) to go in the place. */
10969 if (r_type == R_ARM_LDRS_PC_G0
10970 || r_type == R_ARM_LDRS_PC_G1
10971 || r_type == R_ARM_LDRS_PC_G2)
10973 signed_value = value - pc + signed_addend;
10975 /* Section base relative. */
10976 signed_value = value - sb + signed_addend;
10978 /* Calculate the value of the relevant G_{n-1} to obtain
10979 the residual at that stage. */
10980 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
10981 group - 1, &residual);
10983 /* Check for overflow. */
10984 if (residual >= 0x100)
10986 (*_bfd_error_handler)
10987 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10988 input_bfd, input_section,
10989 (long) rel->r_offset, labs (signed_value), howto->name);
10990 return bfd_reloc_overflow;
10993 /* Mask out the value and U bit. */
10994 insn &= 0xff7ff0f0;
10996 /* Set the U bit if the value to go in the place is non-negative. */
10997 if (signed_value >= 0)
11000 /* Encode the offset. */
11001 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
11003 bfd_put_32 (input_bfd, insn, hit_data);
11005 return bfd_reloc_ok;
11007 case R_ARM_LDC_PC_G0:
11008 case R_ARM_LDC_PC_G1:
11009 case R_ARM_LDC_PC_G2:
11010 case R_ARM_LDC_SB_G0:
11011 case R_ARM_LDC_SB_G1:
11012 case R_ARM_LDC_SB_G2:
11014 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11015 bfd_vma pc = input_section->output_section->vma
11016 + input_section->output_offset + rel->r_offset;
11017 /* sb is the origin of the *segment* containing the symbol. */
11018 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11020 bfd_signed_vma signed_value;
11023 /* Determine which groups of bits to calculate. */
11026 case R_ARM_LDC_PC_G0:
11027 case R_ARM_LDC_SB_G0:
11031 case R_ARM_LDC_PC_G1:
11032 case R_ARM_LDC_SB_G1:
11036 case R_ARM_LDC_PC_G2:
11037 case R_ARM_LDC_SB_G2:
11045 /* If REL, extract the addend from the insn. If RELA, it will
11046 have already been fetched for us. */
11047 if (globals->use_rel)
11049 int negative = (insn & (1 << 23)) ? 1 : -1;
11050 signed_addend = negative * ((insn & 0xff) << 2);
11053 /* Compute the value (X) to go in the place. */
11054 if (r_type == R_ARM_LDC_PC_G0
11055 || r_type == R_ARM_LDC_PC_G1
11056 || r_type == R_ARM_LDC_PC_G2)
11058 signed_value = value - pc + signed_addend;
11060 /* Section base relative. */
11061 signed_value = value - sb + signed_addend;
11063 /* Calculate the value of the relevant G_{n-1} to obtain
11064 the residual at that stage. */
11065 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11066 group - 1, &residual);
11068 /* Check for overflow. (The absolute value to go in the place must be
11069 divisible by four and, after having been divided by four, must
11070 fit in eight bits.) */
11071 if ((residual & 0x3) != 0 || residual >= 0x400)
11073 (*_bfd_error_handler)
11074 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11075 input_bfd, input_section,
11076 (long) rel->r_offset, labs (signed_value), howto->name);
11077 return bfd_reloc_overflow;
11080 /* Mask out the value and U bit. */
11081 insn &= 0xff7fff00;
11083 /* Set the U bit if the value to go in the place is non-negative. */
11084 if (signed_value >= 0)
11087 /* Encode the offset. */
11088 insn |= residual >> 2;
11090 bfd_put_32 (input_bfd, insn, hit_data);
11092 return bfd_reloc_ok;
11094 case R_ARM_THM_ALU_ABS_G0_NC:
11095 case R_ARM_THM_ALU_ABS_G1_NC:
11096 case R_ARM_THM_ALU_ABS_G2_NC:
11097 case R_ARM_THM_ALU_ABS_G3_NC:
11099 const int shift_array[4] = {0, 8, 16, 24};
11100 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
11101 bfd_vma addr = value;
11102 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
11104 /* Compute address. */
11105 if (globals->use_rel)
11106 signed_addend = insn & 0xff;
11107 addr += signed_addend;
11108 if (branch_type == ST_BRANCH_TO_THUMB)
11110 /* Clean imm8 insn. */
11112 /* And update with correct part of address. */
11113 insn |= (addr >> shift) & 0xff;
11115 bfd_put_16 (input_bfd, insn, hit_data);
11118 *unresolved_reloc_p = FALSE;
11119 return bfd_reloc_ok;
11122 return bfd_reloc_notsupported;
11126 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
11128 arm_add_to_rel (bfd * abfd,
11129 bfd_byte * address,
11130 reloc_howto_type * howto,
11131 bfd_signed_vma increment)
11133 bfd_signed_vma addend;
11135 if (howto->type == R_ARM_THM_CALL
11136 || howto->type == R_ARM_THM_JUMP24)
11138 int upper_insn, lower_insn;
11141 upper_insn = bfd_get_16 (abfd, address);
11142 lower_insn = bfd_get_16 (abfd, address + 2);
11143 upper = upper_insn & 0x7ff;
11144 lower = lower_insn & 0x7ff;
11146 addend = (upper << 12) | (lower << 1);
11147 addend += increment;
11150 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
11151 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
11153 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
11154 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
11160 contents = bfd_get_32 (abfd, address);
11162 /* Get the (signed) value from the instruction. */
11163 addend = contents & howto->src_mask;
11164 if (addend & ((howto->src_mask + 1) >> 1))
11166 bfd_signed_vma mask;
11169 mask &= ~ howto->src_mask;
11173 /* Add in the increment, (which is a byte value). */
11174 switch (howto->type)
11177 addend += increment;
11184 addend <<= howto->size;
11185 addend += increment;
11187 /* Should we check for overflow here ? */
11189 /* Drop any undesired bits. */
11190 addend >>= howto->rightshift;
11194 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
11196 bfd_put_32 (abfd, contents, address);
11200 #define IS_ARM_TLS_RELOC(R_TYPE) \
11201 ((R_TYPE) == R_ARM_TLS_GD32 \
11202 || (R_TYPE) == R_ARM_TLS_LDO32 \
11203 || (R_TYPE) == R_ARM_TLS_LDM32 \
11204 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
11205 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
11206 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
11207 || (R_TYPE) == R_ARM_TLS_LE32 \
11208 || (R_TYPE) == R_ARM_TLS_IE32 \
11209 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
11211 /* Specific set of relocations for the gnu tls dialect. */
11212 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
11213 ((R_TYPE) == R_ARM_TLS_GOTDESC \
11214 || (R_TYPE) == R_ARM_TLS_CALL \
11215 || (R_TYPE) == R_ARM_THM_TLS_CALL \
11216 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
11217 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
11219 /* Relocate an ARM ELF section. */
11222 elf32_arm_relocate_section (bfd * output_bfd,
11223 struct bfd_link_info * info,
11225 asection * input_section,
11226 bfd_byte * contents,
11227 Elf_Internal_Rela * relocs,
11228 Elf_Internal_Sym * local_syms,
11229 asection ** local_sections)
11231 Elf_Internal_Shdr *symtab_hdr;
11232 struct elf_link_hash_entry **sym_hashes;
11233 Elf_Internal_Rela *rel;
11234 Elf_Internal_Rela *relend;
11236 struct elf32_arm_link_hash_table * globals;
11238 globals = elf32_arm_hash_table (info);
11239 if (globals == NULL)
11242 symtab_hdr = & elf_symtab_hdr (input_bfd);
11243 sym_hashes = elf_sym_hashes (input_bfd);
11246 relend = relocs + input_section->reloc_count;
11247 for (; rel < relend; rel++)
11250 reloc_howto_type * howto;
11251 unsigned long r_symndx;
11252 Elf_Internal_Sym * sym;
11254 struct elf_link_hash_entry * h;
11255 bfd_vma relocation;
11256 bfd_reloc_status_type r;
11259 bfd_boolean unresolved_reloc = FALSE;
11260 char *error_message = NULL;
11262 r_symndx = ELF32_R_SYM (rel->r_info);
11263 r_type = ELF32_R_TYPE (rel->r_info);
11264 r_type = arm_real_reloc_type (globals, r_type);
11266 if ( r_type == R_ARM_GNU_VTENTRY
11267 || r_type == R_ARM_GNU_VTINHERIT)
11270 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
11271 howto = bfd_reloc.howto;
11277 if (r_symndx < symtab_hdr->sh_info)
11279 sym = local_syms + r_symndx;
11280 sym_type = ELF32_ST_TYPE (sym->st_info);
11281 sec = local_sections[r_symndx];
11283 /* An object file might have a reference to a local
11284 undefined symbol. This is a daft object file, but we
11285 should at least do something about it. V4BX & NONE
11286 relocations do not use the symbol and are explicitly
11287 allowed to use the undefined symbol, so allow those.
11288 Likewise for relocations against STN_UNDEF. */
11289 if (r_type != R_ARM_V4BX
11290 && r_type != R_ARM_NONE
11291 && r_symndx != STN_UNDEF
11292 && bfd_is_und_section (sec)
11293 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
11295 if (!info->callbacks->undefined_symbol
11296 (info, bfd_elf_string_from_elf_section
11297 (input_bfd, symtab_hdr->sh_link, sym->st_name),
11298 input_bfd, input_section,
11299 rel->r_offset, TRUE))
11303 if (globals->use_rel)
11305 relocation = (sec->output_section->vma
11306 + sec->output_offset
11308 if (!bfd_link_relocatable (info)
11309 && (sec->flags & SEC_MERGE)
11310 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
11313 bfd_vma addend, value;
11317 case R_ARM_MOVW_ABS_NC:
11318 case R_ARM_MOVT_ABS:
11319 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
11320 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
11321 addend = (addend ^ 0x8000) - 0x8000;
11324 case R_ARM_THM_MOVW_ABS_NC:
11325 case R_ARM_THM_MOVT_ABS:
11326 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
11328 value |= bfd_get_16 (input_bfd,
11329 contents + rel->r_offset + 2);
11330 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
11331 | ((value & 0x04000000) >> 15);
11332 addend = (addend ^ 0x8000) - 0x8000;
11336 if (howto->rightshift
11337 || (howto->src_mask & (howto->src_mask + 1)))
11339 (*_bfd_error_handler)
11340 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
11341 input_bfd, input_section,
11342 (long) rel->r_offset, howto->name);
11346 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
11348 /* Get the (signed) value from the instruction. */
11349 addend = value & howto->src_mask;
11350 if (addend & ((howto->src_mask + 1) >> 1))
11352 bfd_signed_vma mask;
11355 mask &= ~ howto->src_mask;
11363 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
11365 addend += msec->output_section->vma + msec->output_offset;
11367 /* Cases here must match those in the preceding
11368 switch statement. */
11371 case R_ARM_MOVW_ABS_NC:
11372 case R_ARM_MOVT_ABS:
11373 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
11374 | (addend & 0xfff);
11375 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
11378 case R_ARM_THM_MOVW_ABS_NC:
11379 case R_ARM_THM_MOVT_ABS:
11380 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
11381 | (addend & 0xff) | ((addend & 0x0800) << 15);
11382 bfd_put_16 (input_bfd, value >> 16,
11383 contents + rel->r_offset);
11384 bfd_put_16 (input_bfd, value,
11385 contents + rel->r_offset + 2);
11389 value = (value & ~ howto->dst_mask)
11390 | (addend & howto->dst_mask);
11391 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
11397 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
11401 bfd_boolean warned, ignored;
11403 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
11404 r_symndx, symtab_hdr, sym_hashes,
11405 h, sec, relocation,
11406 unresolved_reloc, warned, ignored);
11408 sym_type = h->type;
11411 if (sec != NULL && discarded_section (sec))
11412 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
11413 rel, 1, relend, howto, 0, contents);
11415 if (bfd_link_relocatable (info))
11417 /* This is a relocatable link. We don't have to change
11418 anything, unless the reloc is against a section symbol,
11419 in which case we have to adjust according to where the
11420 section symbol winds up in the output section. */
11421 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
11423 if (globals->use_rel)
11424 arm_add_to_rel (input_bfd, contents + rel->r_offset,
11425 howto, (bfd_signed_vma) sec->output_offset);
11427 rel->r_addend += sec->output_offset;
11433 name = h->root.root.string;
11436 name = (bfd_elf_string_from_elf_section
11437 (input_bfd, symtab_hdr->sh_link, sym->st_name));
11438 if (name == NULL || *name == '\0')
11439 name = bfd_section_name (input_bfd, sec);
11442 if (r_symndx != STN_UNDEF
11443 && r_type != R_ARM_NONE
11445 || h->root.type == bfd_link_hash_defined
11446 || h->root.type == bfd_link_hash_defweak)
11447 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
11449 (*_bfd_error_handler)
11450 ((sym_type == STT_TLS
11451 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
11452 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
11455 (long) rel->r_offset,
11460 /* We call elf32_arm_final_link_relocate unless we're completely
11461 done, i.e., the relaxation produced the final output we want,
11462 and we won't let anybody mess with it. Also, we have to do
11463 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
11464 both in relaxed and non-relaxed cases. */
11465 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
11466 || (IS_ARM_TLS_GNU_RELOC (r_type)
11467 && !((h ? elf32_arm_hash_entry (h)->tls_type :
11468 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
11471 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
11472 contents, rel, h == NULL);
11473 /* This may have been marked unresolved because it came from
11474 a shared library. But we've just dealt with that. */
11475 unresolved_reloc = 0;
11478 r = bfd_reloc_continue;
11480 if (r == bfd_reloc_continue)
11481 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
11482 input_section, contents, rel,
11483 relocation, info, sec, name, sym_type,
11484 (h ? h->target_internal
11485 : ARM_SYM_BRANCH_TYPE (sym)), h,
11486 &unresolved_reloc, &error_message);
11488 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
11489 because such sections are not SEC_ALLOC and thus ld.so will
11490 not process them. */
11491 if (unresolved_reloc
11492 && !((input_section->flags & SEC_DEBUGGING) != 0
11494 && _bfd_elf_section_offset (output_bfd, info, input_section,
11495 rel->r_offset) != (bfd_vma) -1)
11497 (*_bfd_error_handler)
11498 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
11501 (long) rel->r_offset,
11503 h->root.root.string);
11507 if (r != bfd_reloc_ok)
11511 case bfd_reloc_overflow:
11512 /* If the overflowing reloc was to an undefined symbol,
11513 we have already printed one error message and there
11514 is no point complaining again. */
11516 h->root.type != bfd_link_hash_undefined)
11517 && (!((*info->callbacks->reloc_overflow)
11518 (info, (h ? &h->root : NULL), name, howto->name,
11519 (bfd_vma) 0, input_bfd, input_section,
11524 case bfd_reloc_undefined:
11525 if (!((*info->callbacks->undefined_symbol)
11526 (info, name, input_bfd, input_section,
11527 rel->r_offset, TRUE)))
11531 case bfd_reloc_outofrange:
11532 error_message = _("out of range");
11535 case bfd_reloc_notsupported:
11536 error_message = _("unsupported relocation");
11539 case bfd_reloc_dangerous:
11540 /* error_message should already be set. */
11544 error_message = _("unknown error");
11545 /* Fall through. */
11548 BFD_ASSERT (error_message != NULL);
11549 if (!((*info->callbacks->reloc_dangerous)
11550 (info, error_message, input_bfd, input_section,
11561 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
11562 adds the edit to the start of the list. (The list must be built in order of
11563 ascending TINDEX: the function's callers are primarily responsible for
11564 maintaining that condition). */
11567 add_unwind_table_edit (arm_unwind_table_edit **head,
11568 arm_unwind_table_edit **tail,
11569 arm_unwind_edit_type type,
11570 asection *linked_section,
11571 unsigned int tindex)
11573 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
11574 xmalloc (sizeof (arm_unwind_table_edit));
11576 new_edit->type = type;
11577 new_edit->linked_section = linked_section;
11578 new_edit->index = tindex;
11582 new_edit->next = NULL;
11585 (*tail)->next = new_edit;
11587 (*tail) = new_edit;
11590 (*head) = new_edit;
11594 new_edit->next = *head;
11603 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
11605 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
11607 adjust_exidx_size(asection *exidx_sec, int adjust)
11611 if (!exidx_sec->rawsize)
11612 exidx_sec->rawsize = exidx_sec->size;
11614 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
11615 out_sec = exidx_sec->output_section;
11616 /* Adjust size of output section. */
11617 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
11620 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
11622 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
11624 struct _arm_elf_section_data *exidx_arm_data;
11626 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
11627 add_unwind_table_edit (
11628 &exidx_arm_data->u.exidx.unwind_edit_list,
11629 &exidx_arm_data->u.exidx.unwind_edit_tail,
11630 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
11632 exidx_arm_data->additional_reloc_count++;
11634 adjust_exidx_size(exidx_sec, 8);
11637 /* Scan .ARM.exidx tables, and create a list describing edits which should be
11638 made to those tables, such that:
11640 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
11641 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
11642 codes which have been inlined into the index).
11644 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
11646 The edits are applied when the tables are written
11647 (in elf32_arm_write_section). */
11650 elf32_arm_fix_exidx_coverage (asection **text_section_order,
11651 unsigned int num_text_sections,
11652 struct bfd_link_info *info,
11653 bfd_boolean merge_exidx_entries)
11656 unsigned int last_second_word = 0, i;
11657 asection *last_exidx_sec = NULL;
11658 asection *last_text_sec = NULL;
11659 int last_unwind_type = -1;
11661 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
11663 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
11667 for (sec = inp->sections; sec != NULL; sec = sec->next)
11669 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
11670 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
11672 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
11675 if (elf_sec->linked_to)
11677 Elf_Internal_Shdr *linked_hdr
11678 = &elf_section_data (elf_sec->linked_to)->this_hdr;
11679 struct _arm_elf_section_data *linked_sec_arm_data
11680 = get_arm_elf_section_data (linked_hdr->bfd_section);
11682 if (linked_sec_arm_data == NULL)
11685 /* Link this .ARM.exidx section back from the text section it
11687 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
11692 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
11693 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
11694 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
11696 for (i = 0; i < num_text_sections; i++)
11698 asection *sec = text_section_order[i];
11699 asection *exidx_sec;
11700 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
11701 struct _arm_elf_section_data *exidx_arm_data;
11702 bfd_byte *contents = NULL;
11703 int deleted_exidx_bytes = 0;
11705 arm_unwind_table_edit *unwind_edit_head = NULL;
11706 arm_unwind_table_edit *unwind_edit_tail = NULL;
11707 Elf_Internal_Shdr *hdr;
11710 if (arm_data == NULL)
11713 exidx_sec = arm_data->u.text.arm_exidx_sec;
11714 if (exidx_sec == NULL)
11716 /* Section has no unwind data. */
11717 if (last_unwind_type == 0 || !last_exidx_sec)
11720 /* Ignore zero sized sections. */
11721 if (sec->size == 0)
11724 insert_cantunwind_after(last_text_sec, last_exidx_sec);
11725 last_unwind_type = 0;
11729 /* Skip /DISCARD/ sections. */
11730 if (bfd_is_abs_section (exidx_sec->output_section))
11733 hdr = &elf_section_data (exidx_sec)->this_hdr;
11734 if (hdr->sh_type != SHT_ARM_EXIDX)
11737 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
11738 if (exidx_arm_data == NULL)
11741 ibfd = exidx_sec->owner;
11743 if (hdr->contents != NULL)
11744 contents = hdr->contents;
11745 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
11749 if (last_unwind_type > 0)
11751 unsigned int first_word = bfd_get_32 (ibfd, contents);
11752 /* Add cantunwind if first unwind item does not match section
11754 if (first_word != sec->vma)
11756 insert_cantunwind_after (last_text_sec, last_exidx_sec);
11757 last_unwind_type = 0;
11761 for (j = 0; j < hdr->sh_size; j += 8)
11763 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
11767 /* An EXIDX_CANTUNWIND entry. */
11768 if (second_word == 1)
11770 if (last_unwind_type == 0)
11774 /* Inlined unwinding data. Merge if equal to previous. */
11775 else if ((second_word & 0x80000000) != 0)
11777 if (merge_exidx_entries
11778 && last_second_word == second_word && last_unwind_type == 1)
11781 last_second_word = second_word;
11783 /* Normal table entry. In theory we could merge these too,
11784 but duplicate entries are likely to be much less common. */
11788 if (elide && !bfd_link_relocatable (info))
11790 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
11791 DELETE_EXIDX_ENTRY, NULL, j / 8);
11793 deleted_exidx_bytes += 8;
11796 last_unwind_type = unwind_type;
11799 /* Free contents if we allocated it ourselves. */
11800 if (contents != hdr->contents)
11803 /* Record edits to be applied later (in elf32_arm_write_section). */
11804 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
11805 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
11807 if (deleted_exidx_bytes > 0)
11808 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
11810 last_exidx_sec = exidx_sec;
11811 last_text_sec = sec;
11814 /* Add terminating CANTUNWIND entry. */
11815 if (!bfd_link_relocatable (info) && last_exidx_sec
11816 && last_unwind_type != 0)
11817 insert_cantunwind_after(last_text_sec, last_exidx_sec);
11823 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
11824 bfd *ibfd, const char *name)
11826 asection *sec, *osec;
11828 sec = bfd_get_linker_section (ibfd, name);
11829 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
11832 osec = sec->output_section;
11833 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
11836 if (! bfd_set_section_contents (obfd, osec, sec->contents,
11837 sec->output_offset, sec->size))
11844 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
11846 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
11847 asection *sec, *osec;
11849 if (globals == NULL)
11852 /* Invoke the regular ELF backend linker to do all the work. */
11853 if (!bfd_elf_final_link (abfd, info))
11856 /* Process stub sections (eg BE8 encoding, ...). */
11857 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
11859 for (i=0; i<htab->top_id; i++)
11861 sec = htab->stub_group[i].stub_sec;
11862 /* Only process it once, in its link_sec slot. */
11863 if (sec && i == htab->stub_group[i].link_sec->id)
11865 osec = sec->output_section;
11866 elf32_arm_write_section (abfd, info, sec, sec->contents);
11867 if (! bfd_set_section_contents (abfd, osec, sec->contents,
11868 sec->output_offset, sec->size))
11873 /* Write out any glue sections now that we have created all the
11875 if (globals->bfd_of_glue_owner != NULL)
11877 if (! elf32_arm_output_glue_section (info, abfd,
11878 globals->bfd_of_glue_owner,
11879 ARM2THUMB_GLUE_SECTION_NAME))
11882 if (! elf32_arm_output_glue_section (info, abfd,
11883 globals->bfd_of_glue_owner,
11884 THUMB2ARM_GLUE_SECTION_NAME))
11887 if (! elf32_arm_output_glue_section (info, abfd,
11888 globals->bfd_of_glue_owner,
11889 VFP11_ERRATUM_VENEER_SECTION_NAME))
11892 if (! elf32_arm_output_glue_section (info, abfd,
11893 globals->bfd_of_glue_owner,
11894 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
11897 if (! elf32_arm_output_glue_section (info, abfd,
11898 globals->bfd_of_glue_owner,
11899 ARM_BX_GLUE_SECTION_NAME))
11906 /* Return a best guess for the machine number based on the attributes. */
11908 static unsigned int
11909 bfd_arm_get_mach_from_attributes (bfd * abfd)
11911 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
11915 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
11916 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
11917 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
11919 case TAG_CPU_ARCH_V5TE:
11923 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
11924 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
11928 if (strcmp (name, "IWMMXT2") == 0)
11929 return bfd_mach_arm_iWMMXt2;
11931 if (strcmp (name, "IWMMXT") == 0)
11932 return bfd_mach_arm_iWMMXt;
11934 if (strcmp (name, "XSCALE") == 0)
11938 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
11939 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
11942 case 1: return bfd_mach_arm_iWMMXt;
11943 case 2: return bfd_mach_arm_iWMMXt2;
11944 default: return bfd_mach_arm_XScale;
11949 return bfd_mach_arm_5TE;
11953 return bfd_mach_arm_unknown;
11957 /* Set the right machine number. */
11960 elf32_arm_object_p (bfd *abfd)
11964 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
11966 if (mach == bfd_mach_arm_unknown)
11968 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
11969 mach = bfd_mach_arm_ep9312;
11971 mach = bfd_arm_get_mach_from_attributes (abfd);
11974 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
11978 /* Function to keep ARM specific flags in the ELF header. */
11981 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
11983 if (elf_flags_init (abfd)
11984 && elf_elfheader (abfd)->e_flags != flags)
11986 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
11988 if (flags & EF_ARM_INTERWORK)
11989 (*_bfd_error_handler)
11990 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
11994 (_("Warning: Clearing the interworking flag of %B due to outside request"),
12000 elf_elfheader (abfd)->e_flags = flags;
12001 elf_flags_init (abfd) = TRUE;
12007 /* Copy backend specific data from one object module to another. */
12010 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
12013 flagword out_flags;
12015 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
12018 in_flags = elf_elfheader (ibfd)->e_flags;
12019 out_flags = elf_elfheader (obfd)->e_flags;
12021 if (elf_flags_init (obfd)
12022 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
12023 && in_flags != out_flags)
12025 /* Cannot mix APCS26 and APCS32 code. */
12026 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
12029 /* Cannot mix float APCS and non-float APCS code. */
12030 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
12033 /* If the src and dest have different interworking flags
12034 then turn off the interworking bit. */
12035 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
12037 if (out_flags & EF_ARM_INTERWORK)
12039 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
12042 in_flags &= ~EF_ARM_INTERWORK;
12045 /* Likewise for PIC, though don't warn for this case. */
12046 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
12047 in_flags &= ~EF_ARM_PIC;
12050 elf_elfheader (obfd)->e_flags = in_flags;
12051 elf_flags_init (obfd) = TRUE;
12053 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
12056 /* Values for Tag_ABI_PCS_R9_use. */
12065 /* Values for Tag_ABI_PCS_RW_data. */
12068 AEABI_PCS_RW_data_absolute,
12069 AEABI_PCS_RW_data_PCrel,
12070 AEABI_PCS_RW_data_SBrel,
12071 AEABI_PCS_RW_data_unused
12074 /* Values for Tag_ABI_enum_size. */
12080 AEABI_enum_forced_wide
12083 /* Determine whether an object attribute tag takes an integer, a
12087 elf32_arm_obj_attrs_arg_type (int tag)
12089 if (tag == Tag_compatibility)
12090 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
12091 else if (tag == Tag_nodefaults)
12092 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
12093 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
12094 return ATTR_TYPE_FLAG_STR_VAL;
12096 return ATTR_TYPE_FLAG_INT_VAL;
12098 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
12101 /* The ABI defines that Tag_conformance should be emitted first, and that
12102 Tag_nodefaults should be second (if either is defined). This sets those
12103 two positions, and bumps up the position of all the remaining tags to
12106 elf32_arm_obj_attrs_order (int num)
12108 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
12109 return Tag_conformance;
12110 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
12111 return Tag_nodefaults;
12112 if ((num - 2) < Tag_nodefaults)
12114 if ((num - 1) < Tag_conformance)
12119 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
12121 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
12123 if ((tag & 127) < 64)
12126 (_("%B: Unknown mandatory EABI object attribute %d"),
12128 bfd_set_error (bfd_error_bad_value);
12134 (_("Warning: %B: Unknown EABI object attribute %d"),
12140 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
12141 Returns -1 if no architecture could be read. */
12144 get_secondary_compatible_arch (bfd *abfd)
12146 obj_attribute *attr =
12147 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
12149 /* Note: the tag and its argument below are uleb128 values, though
12150 currently-defined values fit in one byte for each. */
12152 && attr->s[0] == Tag_CPU_arch
12153 && (attr->s[1] & 128) != 128
12154 && attr->s[2] == 0)
12157 /* This tag is "safely ignorable", so don't complain if it looks funny. */
12161 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
12162 The tag is removed if ARCH is -1. */
12165 set_secondary_compatible_arch (bfd *abfd, int arch)
12167 obj_attribute *attr =
12168 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
12176 /* Note: the tag and its argument below are uleb128 values, though
12177 currently-defined values fit in one byte for each. */
12179 attr->s = (char *) bfd_alloc (abfd, 3);
12180 attr->s[0] = Tag_CPU_arch;
12185 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
12189 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
12190 int newtag, int secondary_compat)
12192 #define T(X) TAG_CPU_ARCH_##X
12193 int tagl, tagh, result;
12196 T(V6T2), /* PRE_V4. */
12198 T(V6T2), /* V4T. */
12199 T(V6T2), /* V5T. */
12200 T(V6T2), /* V5TE. */
12201 T(V6T2), /* V5TEJ. */
12204 T(V6T2) /* V6T2. */
12208 T(V6K), /* PRE_V4. */
12212 T(V6K), /* V5TE. */
12213 T(V6K), /* V5TEJ. */
12215 T(V6KZ), /* V6KZ. */
12221 T(V7), /* PRE_V4. */
12226 T(V7), /* V5TEJ. */
12239 T(V6K), /* V5TE. */
12240 T(V6K), /* V5TEJ. */
12242 T(V6KZ), /* V6KZ. */
12246 T(V6_M) /* V6_M. */
12248 const int v6s_m[] =
12254 T(V6K), /* V5TE. */
12255 T(V6K), /* V5TEJ. */
12257 T(V6KZ), /* V6KZ. */
12261 T(V6S_M), /* V6_M. */
12262 T(V6S_M) /* V6S_M. */
12264 const int v7e_m[] =
12268 T(V7E_M), /* V4T. */
12269 T(V7E_M), /* V5T. */
12270 T(V7E_M), /* V5TE. */
12271 T(V7E_M), /* V5TEJ. */
12272 T(V7E_M), /* V6. */
12273 T(V7E_M), /* V6KZ. */
12274 T(V7E_M), /* V6T2. */
12275 T(V7E_M), /* V6K. */
12276 T(V7E_M), /* V7. */
12277 T(V7E_M), /* V6_M. */
12278 T(V7E_M), /* V6S_M. */
12279 T(V7E_M) /* V7E_M. */
12283 T(V8), /* PRE_V4. */
12288 T(V8), /* V5TEJ. */
12295 T(V8), /* V6S_M. */
12296 T(V8), /* V7E_M. */
12299 const int v8m_baseline[] =
12312 T(V8M_BASE), /* V6_M. */
12313 T(V8M_BASE), /* V6S_M. */
12317 T(V8M_BASE) /* V8-M BASELINE. */
12319 const int v8m_mainline[] =
12331 T(V8M_MAIN), /* V7. */
12332 T(V8M_MAIN), /* V6_M. */
12333 T(V8M_MAIN), /* V6S_M. */
12334 T(V8M_MAIN), /* V7E_M. */
12337 T(V8M_MAIN), /* V8-M BASELINE. */
12338 T(V8M_MAIN) /* V8-M MAINLINE. */
12340 const int v4t_plus_v6_m[] =
12346 T(V5TE), /* V5TE. */
12347 T(V5TEJ), /* V5TEJ. */
12349 T(V6KZ), /* V6KZ. */
12350 T(V6T2), /* V6T2. */
12353 T(V6_M), /* V6_M. */
12354 T(V6S_M), /* V6S_M. */
12355 T(V7E_M), /* V7E_M. */
12358 T(V8M_BASE), /* V8-M BASELINE. */
12359 T(V8M_MAIN), /* V8-M MAINLINE. */
12360 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
12362 const int *comb[] =
12374 /* Pseudo-architecture. */
12378 /* Check we've not got a higher architecture than we know about. */
12380 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
12382 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
12386 /* Override old tag if we have a Tag_also_compatible_with on the output. */
12388 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
12389 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
12390 oldtag = T(V4T_PLUS_V6_M);
12392 /* And override the new tag if we have a Tag_also_compatible_with on the
12395 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
12396 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
12397 newtag = T(V4T_PLUS_V6_M);
12399 tagl = (oldtag < newtag) ? oldtag : newtag;
12400 result = tagh = (oldtag > newtag) ? oldtag : newtag;
12402 /* Architectures before V6KZ add features monotonically. */
12403 if (tagh <= TAG_CPU_ARCH_V6KZ)
12406 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
12408 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
12409 as the canonical version. */
12410 if (result == T(V4T_PLUS_V6_M))
12413 *secondary_compat_out = T(V6_M);
12416 *secondary_compat_out = -1;
12420 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
12421 ibfd, oldtag, newtag);
12429 /* Query attributes object to see if integer divide instructions may be
12430 present in an object. */
12432 elf32_arm_attributes_accept_div (const obj_attribute *attr)
12434 int arch = attr[Tag_CPU_arch].i;
12435 int profile = attr[Tag_CPU_arch_profile].i;
12437 switch (attr[Tag_DIV_use].i)
12440 /* Integer divide allowed if instruction contained in archetecture. */
12441 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
12443 else if (arch >= TAG_CPU_ARCH_V7E_M)
12449 /* Integer divide explicitly prohibited. */
12453 /* Unrecognised case - treat as allowing divide everywhere. */
12455 /* Integer divide allowed in ARM state. */
12460 /* Query attributes object to see if integer divide instructions are
12461 forbidden to be in the object. This is not the inverse of
12462 elf32_arm_attributes_accept_div. */
12464 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
12466 return attr[Tag_DIV_use].i == 1;
12469 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
12470 are conflicting attributes. */
12473 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
12475 obj_attribute *in_attr;
12476 obj_attribute *out_attr;
12477 /* Some tags have 0 = don't care, 1 = strong requirement,
12478 2 = weak requirement. */
12479 static const int order_021[3] = {0, 2, 1};
12481 bfd_boolean result = TRUE;
12482 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
12484 /* Skip the linker stubs file. This preserves previous behavior
12485 of accepting unknown attributes in the first input file - but
12487 if (ibfd->flags & BFD_LINKER_CREATED)
12490 /* Skip any input that hasn't attribute section.
12491 This enables to link object files without attribute section with
12493 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
12496 if (!elf_known_obj_attributes_proc (obfd)[0].i)
12498 /* This is the first object. Copy the attributes. */
12499 _bfd_elf_copy_obj_attributes (ibfd, obfd);
12501 out_attr = elf_known_obj_attributes_proc (obfd);
12503 /* Use the Tag_null value to indicate the attributes have been
12507 /* We do not output objects with Tag_MPextension_use_legacy - we move
12508 the attribute's value to Tag_MPextension_use. */
12509 if (out_attr[Tag_MPextension_use_legacy].i != 0)
12511 if (out_attr[Tag_MPextension_use].i != 0
12512 && out_attr[Tag_MPextension_use_legacy].i
12513 != out_attr[Tag_MPextension_use].i)
12516 (_("Error: %B has both the current and legacy "
12517 "Tag_MPextension_use attributes"), ibfd);
12521 out_attr[Tag_MPextension_use] =
12522 out_attr[Tag_MPextension_use_legacy];
12523 out_attr[Tag_MPextension_use_legacy].type = 0;
12524 out_attr[Tag_MPextension_use_legacy].i = 0;
12530 in_attr = elf_known_obj_attributes_proc (ibfd);
12531 out_attr = elf_known_obj_attributes_proc (obfd);
12532 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
12533 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
12535 /* Ignore mismatches if the object doesn't use floating point or is
12536 floating point ABI independent. */
12537 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
12538 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
12539 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
12540 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
12541 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
12542 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
12545 (_("error: %B uses VFP register arguments, %B does not"),
12546 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
12547 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
12552 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
12554 /* Merge this attribute with existing attributes. */
12557 case Tag_CPU_raw_name:
12559 /* These are merged after Tag_CPU_arch. */
12562 case Tag_ABI_optimization_goals:
12563 case Tag_ABI_FP_optimization_goals:
12564 /* Use the first value seen. */
12569 int secondary_compat = -1, secondary_compat_out = -1;
12570 unsigned int saved_out_attr = out_attr[i].i;
12572 static const char *name_table[] =
12574 /* These aren't real CPU names, but we can't guess
12575 that from the architecture version alone. */
12591 "ARM v8-M.baseline",
12592 "ARM v8-M.mainline",
12595 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
12596 secondary_compat = get_secondary_compatible_arch (ibfd);
12597 secondary_compat_out = get_secondary_compatible_arch (obfd);
12598 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
12599 &secondary_compat_out,
12603 /* Return with error if failed to merge. */
12604 if (arch_attr == -1)
12607 out_attr[i].i = arch_attr;
12609 set_secondary_compatible_arch (obfd, secondary_compat_out);
12611 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
12612 if (out_attr[i].i == saved_out_attr)
12613 ; /* Leave the names alone. */
12614 else if (out_attr[i].i == in_attr[i].i)
12616 /* The output architecture has been changed to match the
12617 input architecture. Use the input names. */
12618 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
12619 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
12621 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
12622 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
12627 out_attr[Tag_CPU_name].s = NULL;
12628 out_attr[Tag_CPU_raw_name].s = NULL;
12631 /* If we still don't have a value for Tag_CPU_name,
12632 make one up now. Tag_CPU_raw_name remains blank. */
12633 if (out_attr[Tag_CPU_name].s == NULL
12634 && out_attr[i].i < ARRAY_SIZE (name_table))
12635 out_attr[Tag_CPU_name].s =
12636 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
12640 case Tag_ARM_ISA_use:
12641 case Tag_THUMB_ISA_use:
12642 case Tag_WMMX_arch:
12643 case Tag_Advanced_SIMD_arch:
12644 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
12645 case Tag_ABI_FP_rounding:
12646 case Tag_ABI_FP_exceptions:
12647 case Tag_ABI_FP_user_exceptions:
12648 case Tag_ABI_FP_number_model:
12649 case Tag_FP_HP_extension:
12650 case Tag_CPU_unaligned_access:
12652 case Tag_MPextension_use:
12653 /* Use the largest value specified. */
12654 if (in_attr[i].i > out_attr[i].i)
12655 out_attr[i].i = in_attr[i].i;
12658 case Tag_ABI_align_preserved:
12659 case Tag_ABI_PCS_RO_data:
12660 /* Use the smallest value specified. */
12661 if (in_attr[i].i < out_attr[i].i)
12662 out_attr[i].i = in_attr[i].i;
12665 case Tag_ABI_align_needed:
12666 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
12667 && (in_attr[Tag_ABI_align_preserved].i == 0
12668 || out_attr[Tag_ABI_align_preserved].i == 0))
12670 /* This error message should be enabled once all non-conformant
12671 binaries in the toolchain have had the attributes set
12674 (_("error: %B: 8-byte data alignment conflicts with %B"),
12678 /* Fall through. */
12679 case Tag_ABI_FP_denormal:
12680 case Tag_ABI_PCS_GOT_use:
12681 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
12682 value if greater than 2 (for future-proofing). */
12683 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
12684 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
12685 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
12686 out_attr[i].i = in_attr[i].i;
12689 case Tag_Virtualization_use:
12690 /* The virtualization tag effectively stores two bits of
12691 information: the intended use of TrustZone (in bit 0), and the
12692 intended use of Virtualization (in bit 1). */
12693 if (out_attr[i].i == 0)
12694 out_attr[i].i = in_attr[i].i;
12695 else if (in_attr[i].i != 0
12696 && in_attr[i].i != out_attr[i].i)
12698 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
12703 (_("error: %B: unable to merge virtualization attributes "
12711 case Tag_CPU_arch_profile:
12712 if (out_attr[i].i != in_attr[i].i)
12714 /* 0 will merge with anything.
12715 'A' and 'S' merge to 'A'.
12716 'R' and 'S' merge to 'R'.
12717 'M' and 'A|R|S' is an error. */
12718 if (out_attr[i].i == 0
12719 || (out_attr[i].i == 'S'
12720 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
12721 out_attr[i].i = in_attr[i].i;
12722 else if (in_attr[i].i == 0
12723 || (in_attr[i].i == 'S'
12724 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
12725 ; /* Do nothing. */
12729 (_("error: %B: Conflicting architecture profiles %c/%c"),
12731 in_attr[i].i ? in_attr[i].i : '0',
12732 out_attr[i].i ? out_attr[i].i : '0');
12739 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
12740 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
12741 when it's 0. It might mean absence of FP hardware if
12742 Tag_FP_arch is zero. */
12744 #define VFP_VERSION_COUNT 9
12745 static const struct
12749 } vfp_versions[VFP_VERSION_COUNT] =
12765 /* If the output has no requirement about FP hardware,
12766 follow the requirement of the input. */
12767 if (out_attr[i].i == 0)
12769 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
12770 out_attr[i].i = in_attr[i].i;
12771 out_attr[Tag_ABI_HardFP_use].i
12772 = in_attr[Tag_ABI_HardFP_use].i;
12775 /* If the input has no requirement about FP hardware, do
12777 else if (in_attr[i].i == 0)
12779 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
12783 /* Both the input and the output have nonzero Tag_FP_arch.
12784 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
12786 /* If both the input and the output have zero Tag_ABI_HardFP_use,
12788 if (in_attr[Tag_ABI_HardFP_use].i == 0
12789 && out_attr[Tag_ABI_HardFP_use].i == 0)
12791 /* If the input and the output have different Tag_ABI_HardFP_use,
12792 the combination of them is 0 (implied by Tag_FP_arch). */
12793 else if (in_attr[Tag_ABI_HardFP_use].i
12794 != out_attr[Tag_ABI_HardFP_use].i)
12795 out_attr[Tag_ABI_HardFP_use].i = 0;
12797 /* Now we can handle Tag_FP_arch. */
12799 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
12800 pick the biggest. */
12801 if (in_attr[i].i >= VFP_VERSION_COUNT
12802 && in_attr[i].i > out_attr[i].i)
12804 out_attr[i] = in_attr[i];
12807 /* The output uses the superset of input features
12808 (ISA version) and registers. */
12809 ver = vfp_versions[in_attr[i].i].ver;
12810 if (ver < vfp_versions[out_attr[i].i].ver)
12811 ver = vfp_versions[out_attr[i].i].ver;
12812 regs = vfp_versions[in_attr[i].i].regs;
12813 if (regs < vfp_versions[out_attr[i].i].regs)
12814 regs = vfp_versions[out_attr[i].i].regs;
12815 /* This assumes all possible supersets are also a valid
12817 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
12819 if (regs == vfp_versions[newval].regs
12820 && ver == vfp_versions[newval].ver)
12823 out_attr[i].i = newval;
12826 case Tag_PCS_config:
12827 if (out_attr[i].i == 0)
12828 out_attr[i].i = in_attr[i].i;
12829 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
12831 /* It's sometimes ok to mix different configs, so this is only
12834 (_("Warning: %B: Conflicting platform configuration"), ibfd);
12837 case Tag_ABI_PCS_R9_use:
12838 if (in_attr[i].i != out_attr[i].i
12839 && out_attr[i].i != AEABI_R9_unused
12840 && in_attr[i].i != AEABI_R9_unused)
12843 (_("error: %B: Conflicting use of R9"), ibfd);
12846 if (out_attr[i].i == AEABI_R9_unused)
12847 out_attr[i].i = in_attr[i].i;
12849 case Tag_ABI_PCS_RW_data:
12850 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
12851 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
12852 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
12855 (_("error: %B: SB relative addressing conflicts with use of R9"),
12859 /* Use the smallest value specified. */
12860 if (in_attr[i].i < out_attr[i].i)
12861 out_attr[i].i = in_attr[i].i;
12863 case Tag_ABI_PCS_wchar_t:
12864 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
12865 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
12868 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
12869 ibfd, in_attr[i].i, out_attr[i].i);
12871 else if (in_attr[i].i && !out_attr[i].i)
12872 out_attr[i].i = in_attr[i].i;
12874 case Tag_ABI_enum_size:
12875 if (in_attr[i].i != AEABI_enum_unused)
12877 if (out_attr[i].i == AEABI_enum_unused
12878 || out_attr[i].i == AEABI_enum_forced_wide)
12880 /* The existing object is compatible with anything.
12881 Use whatever requirements the new object has. */
12882 out_attr[i].i = in_attr[i].i;
12884 else if (in_attr[i].i != AEABI_enum_forced_wide
12885 && out_attr[i].i != in_attr[i].i
12886 && !elf_arm_tdata (obfd)->no_enum_size_warning)
12888 static const char *aeabi_enum_names[] =
12889 { "", "variable-size", "32-bit", "" };
12890 const char *in_name =
12891 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
12892 ? aeabi_enum_names[in_attr[i].i]
12894 const char *out_name =
12895 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
12896 ? aeabi_enum_names[out_attr[i].i]
12899 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
12900 ibfd, in_name, out_name);
12904 case Tag_ABI_VFP_args:
12907 case Tag_ABI_WMMX_args:
12908 if (in_attr[i].i != out_attr[i].i)
12911 (_("error: %B uses iWMMXt register arguments, %B does not"),
12916 case Tag_compatibility:
12917 /* Merged in target-independent code. */
12919 case Tag_ABI_HardFP_use:
12920 /* This is handled along with Tag_FP_arch. */
12922 case Tag_ABI_FP_16bit_format:
12923 if (in_attr[i].i != 0 && out_attr[i].i != 0)
12925 if (in_attr[i].i != out_attr[i].i)
12928 (_("error: fp16 format mismatch between %B and %B"),
12933 if (in_attr[i].i != 0)
12934 out_attr[i].i = in_attr[i].i;
12938 /* A value of zero on input means that the divide instruction may
12939 be used if available in the base architecture as specified via
12940 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
12941 the user did not want divide instructions. A value of 2
12942 explicitly means that divide instructions were allowed in ARM
12943 and Thumb state. */
12944 if (in_attr[i].i == out_attr[i].i)
12945 /* Do nothing. */ ;
12946 else if (elf32_arm_attributes_forbid_div (in_attr)
12947 && !elf32_arm_attributes_accept_div (out_attr))
12949 else if (elf32_arm_attributes_forbid_div (out_attr)
12950 && elf32_arm_attributes_accept_div (in_attr))
12951 out_attr[i].i = in_attr[i].i;
12952 else if (in_attr[i].i == 2)
12953 out_attr[i].i = in_attr[i].i;
12956 case Tag_MPextension_use_legacy:
12957 /* We don't output objects with Tag_MPextension_use_legacy - we
12958 move the value to Tag_MPextension_use. */
12959 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
12961 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
12964 (_("%B has has both the current and legacy "
12965 "Tag_MPextension_use attributes"),
12971 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
12972 out_attr[Tag_MPextension_use] = in_attr[i];
12976 case Tag_nodefaults:
12977 /* This tag is set if it exists, but the value is unused (and is
12978 typically zero). We don't actually need to do anything here -
12979 the merge happens automatically when the type flags are merged
12982 case Tag_also_compatible_with:
12983 /* Already done in Tag_CPU_arch. */
12985 case Tag_conformance:
12986 /* Keep the attribute if it matches. Throw it away otherwise.
12987 No attribute means no claim to conform. */
12988 if (!in_attr[i].s || !out_attr[i].s
12989 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
12990 out_attr[i].s = NULL;
12995 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
12998 /* If out_attr was copied from in_attr then it won't have a type yet. */
12999 if (in_attr[i].type && !out_attr[i].type)
13000 out_attr[i].type = in_attr[i].type;
13003 /* Merge Tag_compatibility attributes and any common GNU ones. */
13004 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
13007 /* Check for any attributes not known on ARM. */
13008 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
13014 /* Return TRUE if the two EABI versions are incompatible. */
13017 elf32_arm_versions_compatible (unsigned iver, unsigned over)
13019 /* v4 and v5 are the same spec before and after it was released,
13020 so allow mixing them. */
13021 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
13022 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
13025 return (iver == over);
13028 /* Merge backend specific data from an object file to the output
13029 object file when linking. */
13032 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
13034 /* Display the flags field. */
13037 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
13039 FILE * file = (FILE *) ptr;
13040 unsigned long flags;
13042 BFD_ASSERT (abfd != NULL && ptr != NULL);
13044 /* Print normal ELF private data. */
13045 _bfd_elf_print_private_bfd_data (abfd, ptr);
13047 flags = elf_elfheader (abfd)->e_flags;
13048 /* Ignore init flag - it may not be set, despite the flags field
13049 containing valid data. */
13051 /* xgettext:c-format */
13052 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
13054 switch (EF_ARM_EABI_VERSION (flags))
13056 case EF_ARM_EABI_UNKNOWN:
13057 /* The following flag bits are GNU extensions and not part of the
13058 official ARM ELF extended ABI. Hence they are only decoded if
13059 the EABI version is not set. */
13060 if (flags & EF_ARM_INTERWORK)
13061 fprintf (file, _(" [interworking enabled]"));
13063 if (flags & EF_ARM_APCS_26)
13064 fprintf (file, " [APCS-26]");
13066 fprintf (file, " [APCS-32]");
13068 if (flags & EF_ARM_VFP_FLOAT)
13069 fprintf (file, _(" [VFP float format]"));
13070 else if (flags & EF_ARM_MAVERICK_FLOAT)
13071 fprintf (file, _(" [Maverick float format]"));
13073 fprintf (file, _(" [FPA float format]"));
13075 if (flags & EF_ARM_APCS_FLOAT)
13076 fprintf (file, _(" [floats passed in float registers]"));
13078 if (flags & EF_ARM_PIC)
13079 fprintf (file, _(" [position independent]"));
13081 if (flags & EF_ARM_NEW_ABI)
13082 fprintf (file, _(" [new ABI]"));
13084 if (flags & EF_ARM_OLD_ABI)
13085 fprintf (file, _(" [old ABI]"));
13087 if (flags & EF_ARM_SOFT_FLOAT)
13088 fprintf (file, _(" [software FP]"));
13090 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
13091 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
13092 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
13093 | EF_ARM_MAVERICK_FLOAT);
13096 case EF_ARM_EABI_VER1:
13097 fprintf (file, _(" [Version1 EABI]"));
13099 if (flags & EF_ARM_SYMSARESORTED)
13100 fprintf (file, _(" [sorted symbol table]"));
13102 fprintf (file, _(" [unsorted symbol table]"));
13104 flags &= ~ EF_ARM_SYMSARESORTED;
13107 case EF_ARM_EABI_VER2:
13108 fprintf (file, _(" [Version2 EABI]"));
13110 if (flags & EF_ARM_SYMSARESORTED)
13111 fprintf (file, _(" [sorted symbol table]"));
13113 fprintf (file, _(" [unsorted symbol table]"));
13115 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
13116 fprintf (file, _(" [dynamic symbols use segment index]"));
13118 if (flags & EF_ARM_MAPSYMSFIRST)
13119 fprintf (file, _(" [mapping symbols precede others]"));
13121 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
13122 | EF_ARM_MAPSYMSFIRST);
13125 case EF_ARM_EABI_VER3:
13126 fprintf (file, _(" [Version3 EABI]"));
13129 case EF_ARM_EABI_VER4:
13130 fprintf (file, _(" [Version4 EABI]"));
13133 case EF_ARM_EABI_VER5:
13134 fprintf (file, _(" [Version5 EABI]"));
13136 if (flags & EF_ARM_ABI_FLOAT_SOFT)
13137 fprintf (file, _(" [soft-float ABI]"));
13139 if (flags & EF_ARM_ABI_FLOAT_HARD)
13140 fprintf (file, _(" [hard-float ABI]"));
13142 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
13145 if (flags & EF_ARM_BE8)
13146 fprintf (file, _(" [BE8]"));
13148 if (flags & EF_ARM_LE8)
13149 fprintf (file, _(" [LE8]"));
13151 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
13155 fprintf (file, _(" <EABI version unrecognised>"));
13159 flags &= ~ EF_ARM_EABIMASK;
13161 if (flags & EF_ARM_RELEXEC)
13162 fprintf (file, _(" [relocatable executable]"));
13164 flags &= ~EF_ARM_RELEXEC;
13167 fprintf (file, _("<Unrecognised flag bits set>"));
13169 fputc ('\n', file);
13175 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
13177 switch (ELF_ST_TYPE (elf_sym->st_info))
13179 case STT_ARM_TFUNC:
13180 return ELF_ST_TYPE (elf_sym->st_info);
13182 case STT_ARM_16BIT:
13183 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
13184 This allows us to distinguish between data used by Thumb instructions
13185 and non-data (which is probably code) inside Thumb regions of an
13187 if (type != STT_OBJECT && type != STT_TLS)
13188 return ELF_ST_TYPE (elf_sym->st_info);
13199 elf32_arm_gc_mark_hook (asection *sec,
13200 struct bfd_link_info *info,
13201 Elf_Internal_Rela *rel,
13202 struct elf_link_hash_entry *h,
13203 Elf_Internal_Sym *sym)
13206 switch (ELF32_R_TYPE (rel->r_info))
13208 case R_ARM_GNU_VTINHERIT:
13209 case R_ARM_GNU_VTENTRY:
13213 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
13216 /* Update the got entry reference counts for the section being removed. */
13219 elf32_arm_gc_sweep_hook (bfd * abfd,
13220 struct bfd_link_info * info,
13222 const Elf_Internal_Rela * relocs)
13224 Elf_Internal_Shdr *symtab_hdr;
13225 struct elf_link_hash_entry **sym_hashes;
13226 bfd_signed_vma *local_got_refcounts;
13227 const Elf_Internal_Rela *rel, *relend;
13228 struct elf32_arm_link_hash_table * globals;
13230 if (bfd_link_relocatable (info))
13233 globals = elf32_arm_hash_table (info);
13234 if (globals == NULL)
13237 elf_section_data (sec)->local_dynrel = NULL;
13239 symtab_hdr = & elf_symtab_hdr (abfd);
13240 sym_hashes = elf_sym_hashes (abfd);
13241 local_got_refcounts = elf_local_got_refcounts (abfd);
13243 check_use_blx (globals);
13245 relend = relocs + sec->reloc_count;
13246 for (rel = relocs; rel < relend; rel++)
13248 unsigned long r_symndx;
13249 struct elf_link_hash_entry *h = NULL;
13250 struct elf32_arm_link_hash_entry *eh;
13252 bfd_boolean call_reloc_p;
13253 bfd_boolean may_become_dynamic_p;
13254 bfd_boolean may_need_local_target_p;
13255 union gotplt_union *root_plt;
13256 struct arm_plt_info *arm_plt;
13258 r_symndx = ELF32_R_SYM (rel->r_info);
13259 if (r_symndx >= symtab_hdr->sh_info)
13261 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
13262 while (h->root.type == bfd_link_hash_indirect
13263 || h->root.type == bfd_link_hash_warning)
13264 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13266 eh = (struct elf32_arm_link_hash_entry *) h;
13268 call_reloc_p = FALSE;
13269 may_become_dynamic_p = FALSE;
13270 may_need_local_target_p = FALSE;
13272 r_type = ELF32_R_TYPE (rel->r_info);
13273 r_type = arm_real_reloc_type (globals, r_type);
13277 case R_ARM_GOT_PREL:
13278 case R_ARM_TLS_GD32:
13279 case R_ARM_TLS_IE32:
13282 if (h->got.refcount > 0)
13283 h->got.refcount -= 1;
13285 else if (local_got_refcounts != NULL)
13287 if (local_got_refcounts[r_symndx] > 0)
13288 local_got_refcounts[r_symndx] -= 1;
13292 case R_ARM_TLS_LDM32:
13293 globals->tls_ldm_got.refcount -= 1;
13301 case R_ARM_THM_CALL:
13302 case R_ARM_THM_JUMP24:
13303 case R_ARM_THM_JUMP19:
13304 call_reloc_p = TRUE;
13305 may_need_local_target_p = TRUE;
13309 if (!globals->vxworks_p)
13311 may_need_local_target_p = TRUE;
13314 /* Fall through. */
13316 case R_ARM_ABS32_NOI:
13318 case R_ARM_REL32_NOI:
13319 case R_ARM_MOVW_ABS_NC:
13320 case R_ARM_MOVT_ABS:
13321 case R_ARM_MOVW_PREL_NC:
13322 case R_ARM_MOVT_PREL:
13323 case R_ARM_THM_MOVW_ABS_NC:
13324 case R_ARM_THM_MOVT_ABS:
13325 case R_ARM_THM_MOVW_PREL_NC:
13326 case R_ARM_THM_MOVT_PREL:
13327 /* Should the interworking branches be here also? */
13328 if ((bfd_link_pic (info) || globals->root.is_relocatable_executable)
13329 && (sec->flags & SEC_ALLOC) != 0)
13332 && elf32_arm_howto_from_type (r_type)->pc_relative)
13334 call_reloc_p = TRUE;
13335 may_need_local_target_p = TRUE;
13338 may_become_dynamic_p = TRUE;
13341 may_need_local_target_p = TRUE;
13348 if (may_need_local_target_p
13349 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
13351 /* If PLT refcount book-keeping is wrong and too low, we'll
13352 see a zero value (going to -1) for the root PLT reference
13354 if (root_plt->refcount >= 0)
13356 BFD_ASSERT (root_plt->refcount != 0);
13357 root_plt->refcount -= 1;
13360 /* A value of -1 means the symbol has become local, forced
13361 or seeing a hidden definition. Any other negative value
13363 BFD_ASSERT (root_plt->refcount == -1);
13366 arm_plt->noncall_refcount--;
13368 if (r_type == R_ARM_THM_CALL)
13369 arm_plt->maybe_thumb_refcount--;
13371 if (r_type == R_ARM_THM_JUMP24
13372 || r_type == R_ARM_THM_JUMP19)
13373 arm_plt->thumb_refcount--;
13376 if (may_become_dynamic_p)
13378 struct elf_dyn_relocs **pp;
13379 struct elf_dyn_relocs *p;
13382 pp = &(eh->dyn_relocs);
13385 Elf_Internal_Sym *isym;
13387 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
13391 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
13395 for (; (p = *pp) != NULL; pp = &p->next)
13398 /* Everything must go for SEC. */
13408 /* Look through the relocs for a section during the first phase. */
13411 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
13412 asection *sec, const Elf_Internal_Rela *relocs)
13414 Elf_Internal_Shdr *symtab_hdr;
13415 struct elf_link_hash_entry **sym_hashes;
13416 const Elf_Internal_Rela *rel;
13417 const Elf_Internal_Rela *rel_end;
13420 struct elf32_arm_link_hash_table *htab;
13421 bfd_boolean call_reloc_p;
13422 bfd_boolean may_become_dynamic_p;
13423 bfd_boolean may_need_local_target_p;
13424 unsigned long nsyms;
13426 if (bfd_link_relocatable (info))
13429 BFD_ASSERT (is_arm_elf (abfd));
13431 htab = elf32_arm_hash_table (info);
13437 /* Create dynamic sections for relocatable executables so that we can
13438 copy relocations. */
13439 if (htab->root.is_relocatable_executable
13440 && ! htab->root.dynamic_sections_created)
13442 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
13446 if (htab->root.dynobj == NULL)
13447 htab->root.dynobj = abfd;
13448 if (!create_ifunc_sections (info))
13451 dynobj = htab->root.dynobj;
13453 symtab_hdr = & elf_symtab_hdr (abfd);
13454 sym_hashes = elf_sym_hashes (abfd);
13455 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
13457 rel_end = relocs + sec->reloc_count;
13458 for (rel = relocs; rel < rel_end; rel++)
13460 Elf_Internal_Sym *isym;
13461 struct elf_link_hash_entry *h;
13462 struct elf32_arm_link_hash_entry *eh;
13463 unsigned long r_symndx;
13466 r_symndx = ELF32_R_SYM (rel->r_info);
13467 r_type = ELF32_R_TYPE (rel->r_info);
13468 r_type = arm_real_reloc_type (htab, r_type);
13470 if (r_symndx >= nsyms
13471 /* PR 9934: It is possible to have relocations that do not
13472 refer to symbols, thus it is also possible to have an
13473 object file containing relocations but no symbol table. */
13474 && (r_symndx > STN_UNDEF || nsyms > 0))
13476 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
13485 if (r_symndx < symtab_hdr->sh_info)
13487 /* A local symbol. */
13488 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
13495 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
13496 while (h->root.type == bfd_link_hash_indirect
13497 || h->root.type == bfd_link_hash_warning)
13498 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13500 /* PR15323, ref flags aren't set for references in the
13502 h->root.non_ir_ref = 1;
13506 eh = (struct elf32_arm_link_hash_entry *) h;
13508 call_reloc_p = FALSE;
13509 may_become_dynamic_p = FALSE;
13510 may_need_local_target_p = FALSE;
13512 /* Could be done earlier, if h were already available. */
13513 r_type = elf32_arm_tls_transition (info, r_type, h);
13517 case R_ARM_GOT_PREL:
13518 case R_ARM_TLS_GD32:
13519 case R_ARM_TLS_IE32:
13520 case R_ARM_TLS_GOTDESC:
13521 case R_ARM_TLS_DESCSEQ:
13522 case R_ARM_THM_TLS_DESCSEQ:
13523 case R_ARM_TLS_CALL:
13524 case R_ARM_THM_TLS_CALL:
13525 /* This symbol requires a global offset table entry. */
13527 int tls_type, old_tls_type;
13531 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
13533 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
13535 case R_ARM_TLS_GOTDESC:
13536 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
13537 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
13538 tls_type = GOT_TLS_GDESC; break;
13540 default: tls_type = GOT_NORMAL; break;
13543 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
13544 info->flags |= DF_STATIC_TLS;
13549 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
13553 /* This is a global offset table entry for a local symbol. */
13554 if (!elf32_arm_allocate_local_sym_info (abfd))
13556 elf_local_got_refcounts (abfd)[r_symndx] += 1;
13557 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
13560 /* If a variable is accessed with both tls methods, two
13561 slots may be created. */
13562 if (GOT_TLS_GD_ANY_P (old_tls_type)
13563 && GOT_TLS_GD_ANY_P (tls_type))
13564 tls_type |= old_tls_type;
13566 /* We will already have issued an error message if there
13567 is a TLS/non-TLS mismatch, based on the symbol
13568 type. So just combine any TLS types needed. */
13569 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
13570 && tls_type != GOT_NORMAL)
13571 tls_type |= old_tls_type;
13573 /* If the symbol is accessed in both IE and GDESC
13574 method, we're able to relax. Turn off the GDESC flag,
13575 without messing up with any other kind of tls types
13576 that may be involved. */
13577 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
13578 tls_type &= ~GOT_TLS_GDESC;
13580 if (old_tls_type != tls_type)
13583 elf32_arm_hash_entry (h)->tls_type = tls_type;
13585 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
13588 /* Fall through. */
13590 case R_ARM_TLS_LDM32:
13591 if (r_type == R_ARM_TLS_LDM32)
13592 htab->tls_ldm_got.refcount++;
13593 /* Fall through. */
13595 case R_ARM_GOTOFF32:
13597 if (htab->root.sgot == NULL
13598 && !create_got_section (htab->root.dynobj, info))
13607 case R_ARM_THM_CALL:
13608 case R_ARM_THM_JUMP24:
13609 case R_ARM_THM_JUMP19:
13610 call_reloc_p = TRUE;
13611 may_need_local_target_p = TRUE;
13615 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
13616 ldr __GOTT_INDEX__ offsets. */
13617 if (!htab->vxworks_p)
13619 may_need_local_target_p = TRUE;
13622 else goto jump_over;
13624 /* Fall through. */
13626 case R_ARM_MOVW_ABS_NC:
13627 case R_ARM_MOVT_ABS:
13628 case R_ARM_THM_MOVW_ABS_NC:
13629 case R_ARM_THM_MOVT_ABS:
13630 if (bfd_link_pic (info))
13632 (*_bfd_error_handler)
13633 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
13634 abfd, elf32_arm_howto_table_1[r_type].name,
13635 (h) ? h->root.root.string : "a local symbol");
13636 bfd_set_error (bfd_error_bad_value);
13640 /* Fall through. */
13642 case R_ARM_ABS32_NOI:
13644 if (h != NULL && bfd_link_executable (info))
13646 h->pointer_equality_needed = 1;
13648 /* Fall through. */
13650 case R_ARM_REL32_NOI:
13651 case R_ARM_MOVW_PREL_NC:
13652 case R_ARM_MOVT_PREL:
13653 case R_ARM_THM_MOVW_PREL_NC:
13654 case R_ARM_THM_MOVT_PREL:
13656 /* Should the interworking branches be listed here? */
13657 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable)
13658 && (sec->flags & SEC_ALLOC) != 0)
13661 && elf32_arm_howto_from_type (r_type)->pc_relative)
13663 /* In shared libraries and relocatable executables,
13664 we treat local relative references as calls;
13665 see the related SYMBOL_CALLS_LOCAL code in
13666 allocate_dynrelocs. */
13667 call_reloc_p = TRUE;
13668 may_need_local_target_p = TRUE;
13671 /* We are creating a shared library or relocatable
13672 executable, and this is a reloc against a global symbol,
13673 or a non-PC-relative reloc against a local symbol.
13674 We may need to copy the reloc into the output. */
13675 may_become_dynamic_p = TRUE;
13678 may_need_local_target_p = TRUE;
13681 /* This relocation describes the C++ object vtable hierarchy.
13682 Reconstruct it for later use during GC. */
13683 case R_ARM_GNU_VTINHERIT:
13684 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
13688 /* This relocation describes which C++ vtable entries are actually
13689 used. Record for later use during GC. */
13690 case R_ARM_GNU_VTENTRY:
13691 BFD_ASSERT (h != NULL);
13693 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
13701 /* We may need a .plt entry if the function this reloc
13702 refers to is in a different object, regardless of the
13703 symbol's type. We can't tell for sure yet, because
13704 something later might force the symbol local. */
13706 else if (may_need_local_target_p)
13707 /* If this reloc is in a read-only section, we might
13708 need a copy reloc. We can't check reliably at this
13709 stage whether the section is read-only, as input
13710 sections have not yet been mapped to output sections.
13711 Tentatively set the flag for now, and correct in
13712 adjust_dynamic_symbol. */
13713 h->non_got_ref = 1;
13716 if (may_need_local_target_p
13717 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
13719 union gotplt_union *root_plt;
13720 struct arm_plt_info *arm_plt;
13721 struct arm_local_iplt_info *local_iplt;
13725 root_plt = &h->plt;
13726 arm_plt = &eh->plt;
13730 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
13731 if (local_iplt == NULL)
13733 root_plt = &local_iplt->root;
13734 arm_plt = &local_iplt->arm;
13737 /* If the symbol is a function that doesn't bind locally,
13738 this relocation will need a PLT entry. */
13739 if (root_plt->refcount != -1)
13740 root_plt->refcount += 1;
13743 arm_plt->noncall_refcount++;
13745 /* It's too early to use htab->use_blx here, so we have to
13746 record possible blx references separately from
13747 relocs that definitely need a thumb stub. */
13749 if (r_type == R_ARM_THM_CALL)
13750 arm_plt->maybe_thumb_refcount += 1;
13752 if (r_type == R_ARM_THM_JUMP24
13753 || r_type == R_ARM_THM_JUMP19)
13754 arm_plt->thumb_refcount += 1;
13757 if (may_become_dynamic_p)
13759 struct elf_dyn_relocs *p, **head;
13761 /* Create a reloc section in dynobj. */
13762 if (sreloc == NULL)
13764 sreloc = _bfd_elf_make_dynamic_reloc_section
13765 (sec, dynobj, 2, abfd, ! htab->use_rel);
13767 if (sreloc == NULL)
13770 /* BPABI objects never have dynamic relocations mapped. */
13771 if (htab->symbian_p)
13775 flags = bfd_get_section_flags (dynobj, sreloc);
13776 flags &= ~(SEC_LOAD | SEC_ALLOC);
13777 bfd_set_section_flags (dynobj, sreloc, flags);
13781 /* If this is a global symbol, count the number of
13782 relocations we need for this symbol. */
13784 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
13787 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
13793 if (p == NULL || p->sec != sec)
13795 bfd_size_type amt = sizeof *p;
13797 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
13807 if (elf32_arm_howto_from_type (r_type)->pc_relative)
13816 /* Unwinding tables are not referenced directly. This pass marks them as
13817 required if the corresponding code section is marked. */
13820 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
13821 elf_gc_mark_hook_fn gc_mark_hook)
13824 Elf_Internal_Shdr **elf_shdrp;
13827 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
13829 /* Marking EH data may cause additional code sections to be marked,
13830 requiring multiple passes. */
13835 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13839 if (! is_arm_elf (sub))
13842 elf_shdrp = elf_elfsections (sub);
13843 for (o = sub->sections; o != NULL; o = o->next)
13845 Elf_Internal_Shdr *hdr;
13847 hdr = &elf_section_data (o)->this_hdr;
13848 if (hdr->sh_type == SHT_ARM_EXIDX
13850 && hdr->sh_link < elf_numsections (sub)
13852 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
13855 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13865 /* Treat mapping symbols as special target symbols. */
13868 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
13870 return bfd_is_arm_special_symbol_name (sym->name,
13871 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
13874 /* This is a copy of elf_find_function() from elf.c except that
13875 ARM mapping symbols are ignored when looking for function names
13876 and STT_ARM_TFUNC is considered to a function type. */
13879 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
13880 asymbol ** symbols,
13881 asection * section,
13883 const char ** filename_ptr,
13884 const char ** functionname_ptr)
13886 const char * filename = NULL;
13887 asymbol * func = NULL;
13888 bfd_vma low_func = 0;
13891 for (p = symbols; *p != NULL; p++)
13893 elf_symbol_type *q;
13895 q = (elf_symbol_type *) *p;
13897 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
13902 filename = bfd_asymbol_name (&q->symbol);
13905 case STT_ARM_TFUNC:
13907 /* Skip mapping symbols. */
13908 if ((q->symbol.flags & BSF_LOCAL)
13909 && bfd_is_arm_special_symbol_name (q->symbol.name,
13910 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
13912 /* Fall through. */
13913 if (bfd_get_section (&q->symbol) == section
13914 && q->symbol.value >= low_func
13915 && q->symbol.value <= offset)
13917 func = (asymbol *) q;
13918 low_func = q->symbol.value;
13928 *filename_ptr = filename;
13929 if (functionname_ptr)
13930 *functionname_ptr = bfd_asymbol_name (func);
13936 /* Find the nearest line to a particular section and offset, for error
13937 reporting. This code is a duplicate of the code in elf.c, except
13938 that it uses arm_elf_find_function. */
13941 elf32_arm_find_nearest_line (bfd * abfd,
13942 asymbol ** symbols,
13943 asection * section,
13945 const char ** filename_ptr,
13946 const char ** functionname_ptr,
13947 unsigned int * line_ptr,
13948 unsigned int * discriminator_ptr)
13950 bfd_boolean found = FALSE;
13952 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13953 filename_ptr, functionname_ptr,
13954 line_ptr, discriminator_ptr,
13955 dwarf_debug_sections, 0,
13956 & elf_tdata (abfd)->dwarf2_find_line_info))
13958 if (!*functionname_ptr)
13959 arm_elf_find_function (abfd, symbols, section, offset,
13960 *filename_ptr ? NULL : filename_ptr,
13966 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
13969 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
13970 & found, filename_ptr,
13971 functionname_ptr, line_ptr,
13972 & elf_tdata (abfd)->line_info))
13975 if (found && (*functionname_ptr || *line_ptr))
13978 if (symbols == NULL)
13981 if (! arm_elf_find_function (abfd, symbols, section, offset,
13982 filename_ptr, functionname_ptr))
13990 elf32_arm_find_inliner_info (bfd * abfd,
13991 const char ** filename_ptr,
13992 const char ** functionname_ptr,
13993 unsigned int * line_ptr)
13996 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13997 functionname_ptr, line_ptr,
13998 & elf_tdata (abfd)->dwarf2_find_line_info);
14002 /* Adjust a symbol defined by a dynamic object and referenced by a
14003 regular object. The current definition is in some section of the
14004 dynamic object, but we're not including those sections. We have to
14005 change the definition to something the rest of the link can
14009 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
14010 struct elf_link_hash_entry * h)
14014 struct elf32_arm_link_hash_entry * eh;
14015 struct elf32_arm_link_hash_table *globals;
14017 globals = elf32_arm_hash_table (info);
14018 if (globals == NULL)
14021 dynobj = elf_hash_table (info)->dynobj;
14023 /* Make sure we know what is going on here. */
14024 BFD_ASSERT (dynobj != NULL
14026 || h->type == STT_GNU_IFUNC
14027 || h->u.weakdef != NULL
14030 && !h->def_regular)));
14032 eh = (struct elf32_arm_link_hash_entry *) h;
14034 /* If this is a function, put it in the procedure linkage table. We
14035 will fill in the contents of the procedure linkage table later,
14036 when we know the address of the .got section. */
14037 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
14039 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
14040 symbol binds locally. */
14041 if (h->plt.refcount <= 0
14042 || (h->type != STT_GNU_IFUNC
14043 && (SYMBOL_CALLS_LOCAL (info, h)
14044 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
14045 && h->root.type == bfd_link_hash_undefweak))))
14047 /* This case can occur if we saw a PLT32 reloc in an input
14048 file, but the symbol was never referred to by a dynamic
14049 object, or if all references were garbage collected. In
14050 such a case, we don't actually need to build a procedure
14051 linkage table, and we can just do a PC24 reloc instead. */
14052 h->plt.offset = (bfd_vma) -1;
14053 eh->plt.thumb_refcount = 0;
14054 eh->plt.maybe_thumb_refcount = 0;
14055 eh->plt.noncall_refcount = 0;
14063 /* It's possible that we incorrectly decided a .plt reloc was
14064 needed for an R_ARM_PC24 or similar reloc to a non-function sym
14065 in check_relocs. We can't decide accurately between function
14066 and non-function syms in check-relocs; Objects loaded later in
14067 the link may change h->type. So fix it now. */
14068 h->plt.offset = (bfd_vma) -1;
14069 eh->plt.thumb_refcount = 0;
14070 eh->plt.maybe_thumb_refcount = 0;
14071 eh->plt.noncall_refcount = 0;
14074 /* If this is a weak symbol, and there is a real definition, the
14075 processor independent code will have arranged for us to see the
14076 real definition first, and we can just use the same value. */
14077 if (h->u.weakdef != NULL)
14079 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
14080 || h->u.weakdef->root.type == bfd_link_hash_defweak);
14081 h->root.u.def.section = h->u.weakdef->root.u.def.section;
14082 h->root.u.def.value = h->u.weakdef->root.u.def.value;
14086 /* If there are no non-GOT references, we do not need a copy
14088 if (!h->non_got_ref)
14091 /* This is a reference to a symbol defined by a dynamic object which
14092 is not a function. */
14094 /* If we are creating a shared library, we must presume that the
14095 only references to the symbol are via the global offset table.
14096 For such cases we need not do anything here; the relocations will
14097 be handled correctly by relocate_section. Relocatable executables
14098 can reference data in shared objects directly, so we don't need to
14099 do anything here. */
14100 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
14103 /* We must allocate the symbol in our .dynbss section, which will
14104 become part of the .bss section of the executable. There will be
14105 an entry for this symbol in the .dynsym section. The dynamic
14106 object will contain position independent code, so all references
14107 from the dynamic object to this symbol will go through the global
14108 offset table. The dynamic linker will use the .dynsym entry to
14109 determine the address it must put in the global offset table, so
14110 both the dynamic object and the regular object will refer to the
14111 same memory location for the variable. */
14112 s = bfd_get_linker_section (dynobj, ".dynbss");
14113 BFD_ASSERT (s != NULL);
14115 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
14116 linker to copy the initial value out of the dynamic object and into
14117 the runtime process image. We need to remember the offset into the
14118 .rel(a).bss section we are going to use. */
14119 if (info->nocopyreloc == 0
14120 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
14121 /* PR 16177: A copy is only needed if the input section is readonly. */
14122 && (h->root.u.def.section->flags & SEC_READONLY) == 0
14127 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
14128 elf32_arm_allocate_dynrelocs (info, srel, 1);
14132 return _bfd_elf_adjust_dynamic_copy (info, h, s);
14135 /* Allocate space in .plt, .got and associated reloc sections for
14139 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
14141 struct bfd_link_info *info;
14142 struct elf32_arm_link_hash_table *htab;
14143 struct elf32_arm_link_hash_entry *eh;
14144 struct elf_dyn_relocs *p;
14146 if (h->root.type == bfd_link_hash_indirect)
14149 eh = (struct elf32_arm_link_hash_entry *) h;
14151 info = (struct bfd_link_info *) inf;
14152 htab = elf32_arm_hash_table (info);
14156 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
14157 && h->plt.refcount > 0)
14159 /* Make sure this symbol is output as a dynamic symbol.
14160 Undefined weak syms won't yet be marked as dynamic. */
14161 if (h->dynindx == -1
14162 && !h->forced_local)
14164 if (! bfd_elf_link_record_dynamic_symbol (info, h))
14168 /* If the call in the PLT entry binds locally, the associated
14169 GOT entry should use an R_ARM_IRELATIVE relocation instead of
14170 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
14171 than the .plt section. */
14172 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
14175 if (eh->plt.noncall_refcount == 0
14176 && SYMBOL_REFERENCES_LOCAL (info, h))
14177 /* All non-call references can be resolved directly.
14178 This means that they can (and in some cases, must)
14179 resolve directly to the run-time target, rather than
14180 to the PLT. That in turns means that any .got entry
14181 would be equal to the .igot.plt entry, so there's
14182 no point having both. */
14183 h->got.refcount = 0;
14186 if (bfd_link_pic (info)
14188 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
14190 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
14192 /* If this symbol is not defined in a regular file, and we are
14193 not generating a shared library, then set the symbol to this
14194 location in the .plt. This is required to make function
14195 pointers compare as equal between the normal executable and
14196 the shared library. */
14197 if (! bfd_link_pic (info)
14198 && !h->def_regular)
14200 h->root.u.def.section = htab->root.splt;
14201 h->root.u.def.value = h->plt.offset;
14203 /* Make sure the function is not marked as Thumb, in case
14204 it is the target of an ABS32 relocation, which will
14205 point to the PLT entry. */
14206 h->target_internal = ST_BRANCH_TO_ARM;
14209 /* VxWorks executables have a second set of relocations for
14210 each PLT entry. They go in a separate relocation section,
14211 which is processed by the kernel loader. */
14212 if (htab->vxworks_p && !bfd_link_pic (info))
14214 /* There is a relocation for the initial PLT entry:
14215 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
14216 if (h->plt.offset == htab->plt_header_size)
14217 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
14219 /* There are two extra relocations for each subsequent
14220 PLT entry: an R_ARM_32 relocation for the GOT entry,
14221 and an R_ARM_32 relocation for the PLT entry. */
14222 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
14227 h->plt.offset = (bfd_vma) -1;
14233 h->plt.offset = (bfd_vma) -1;
14237 eh = (struct elf32_arm_link_hash_entry *) h;
14238 eh->tlsdesc_got = (bfd_vma) -1;
14240 if (h->got.refcount > 0)
14244 int tls_type = elf32_arm_hash_entry (h)->tls_type;
14247 /* Make sure this symbol is output as a dynamic symbol.
14248 Undefined weak syms won't yet be marked as dynamic. */
14249 if (h->dynindx == -1
14250 && !h->forced_local)
14252 if (! bfd_elf_link_record_dynamic_symbol (info, h))
14256 if (!htab->symbian_p)
14258 s = htab->root.sgot;
14259 h->got.offset = s->size;
14261 if (tls_type == GOT_UNKNOWN)
14264 if (tls_type == GOT_NORMAL)
14265 /* Non-TLS symbols need one GOT slot. */
14269 if (tls_type & GOT_TLS_GDESC)
14271 /* R_ARM_TLS_DESC needs 2 GOT slots. */
14273 = (htab->root.sgotplt->size
14274 - elf32_arm_compute_jump_table_size (htab));
14275 htab->root.sgotplt->size += 8;
14276 h->got.offset = (bfd_vma) -2;
14277 /* plt.got_offset needs to know there's a TLS_DESC
14278 reloc in the middle of .got.plt. */
14279 htab->num_tls_desc++;
14282 if (tls_type & GOT_TLS_GD)
14284 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
14285 the symbol is both GD and GDESC, got.offset may
14286 have been overwritten. */
14287 h->got.offset = s->size;
14291 if (tls_type & GOT_TLS_IE)
14292 /* R_ARM_TLS_IE32 needs one GOT slot. */
14296 dyn = htab->root.dynamic_sections_created;
14299 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
14300 bfd_link_pic (info),
14302 && (!bfd_link_pic (info)
14303 || !SYMBOL_REFERENCES_LOCAL (info, h)))
14306 if (tls_type != GOT_NORMAL
14307 && (bfd_link_pic (info) || indx != 0)
14308 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
14309 || h->root.type != bfd_link_hash_undefweak))
14311 if (tls_type & GOT_TLS_IE)
14312 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14314 if (tls_type & GOT_TLS_GD)
14315 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14317 if (tls_type & GOT_TLS_GDESC)
14319 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
14320 /* GDESC needs a trampoline to jump to. */
14321 htab->tls_trampoline = -1;
14324 /* Only GD needs it. GDESC just emits one relocation per
14326 if ((tls_type & GOT_TLS_GD) && indx != 0)
14327 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14329 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
14331 if (htab->root.dynamic_sections_created)
14332 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
14333 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14335 else if (h->type == STT_GNU_IFUNC
14336 && eh->plt.noncall_refcount == 0)
14337 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
14338 they all resolve dynamically instead. Reserve room for the
14339 GOT entry's R_ARM_IRELATIVE relocation. */
14340 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
14341 else if (bfd_link_pic (info)
14342 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
14343 || h->root.type != bfd_link_hash_undefweak))
14344 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
14345 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14349 h->got.offset = (bfd_vma) -1;
14351 /* Allocate stubs for exported Thumb functions on v4t. */
14352 if (!htab->use_blx && h->dynindx != -1
14354 && h->target_internal == ST_BRANCH_TO_THUMB
14355 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14357 struct elf_link_hash_entry * th;
14358 struct bfd_link_hash_entry * bh;
14359 struct elf_link_hash_entry * myh;
14363 /* Create a new symbol to regist the real location of the function. */
14364 s = h->root.u.def.section;
14365 sprintf (name, "__real_%s", h->root.root.string);
14366 _bfd_generic_link_add_one_symbol (info, s->owner,
14367 name, BSF_GLOBAL, s,
14368 h->root.u.def.value,
14369 NULL, TRUE, FALSE, &bh);
14371 myh = (struct elf_link_hash_entry *) bh;
14372 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14373 myh->forced_local = 1;
14374 myh->target_internal = ST_BRANCH_TO_THUMB;
14375 eh->export_glue = myh;
14376 th = record_arm_to_thumb_glue (info, h);
14377 /* Point the symbol at the stub. */
14378 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
14379 h->target_internal = ST_BRANCH_TO_ARM;
14380 h->root.u.def.section = th->root.u.def.section;
14381 h->root.u.def.value = th->root.u.def.value & ~1;
14384 if (eh->dyn_relocs == NULL)
14387 /* In the shared -Bsymbolic case, discard space allocated for
14388 dynamic pc-relative relocs against symbols which turn out to be
14389 defined in regular objects. For the normal shared case, discard
14390 space for pc-relative relocs that have become local due to symbol
14391 visibility changes. */
14393 if (bfd_link_pic (info) || htab->root.is_relocatable_executable)
14395 /* Relocs that use pc_count are PC-relative forms, which will appear
14396 on something like ".long foo - ." or "movw REG, foo - .". We want
14397 calls to protected symbols to resolve directly to the function
14398 rather than going via the plt. If people want function pointer
14399 comparisons to work as expected then they should avoid writing
14400 assembly like ".long foo - .". */
14401 if (SYMBOL_CALLS_LOCAL (info, h))
14403 struct elf_dyn_relocs **pp;
14405 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
14407 p->count -= p->pc_count;
14416 if (htab->vxworks_p)
14418 struct elf_dyn_relocs **pp;
14420 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
14422 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
14429 /* Also discard relocs on undefined weak syms with non-default
14431 if (eh->dyn_relocs != NULL
14432 && h->root.type == bfd_link_hash_undefweak)
14434 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
14435 eh->dyn_relocs = NULL;
14437 /* Make sure undefined weak symbols are output as a dynamic
14439 else if (h->dynindx == -1
14440 && !h->forced_local)
14442 if (! bfd_elf_link_record_dynamic_symbol (info, h))
14447 else if (htab->root.is_relocatable_executable && h->dynindx == -1
14448 && h->root.type == bfd_link_hash_new)
14450 /* Output absolute symbols so that we can create relocations
14451 against them. For normal symbols we output a relocation
14452 against the section that contains them. */
14453 if (! bfd_elf_link_record_dynamic_symbol (info, h))
14460 /* For the non-shared case, discard space for relocs against
14461 symbols which turn out to need copy relocs or are not
14464 if (!h->non_got_ref
14465 && ((h->def_dynamic
14466 && !h->def_regular)
14467 || (htab->root.dynamic_sections_created
14468 && (h->root.type == bfd_link_hash_undefweak
14469 || h->root.type == bfd_link_hash_undefined))))
14471 /* Make sure this symbol is output as a dynamic symbol.
14472 Undefined weak syms won't yet be marked as dynamic. */
14473 if (h->dynindx == -1
14474 && !h->forced_local)
14476 if (! bfd_elf_link_record_dynamic_symbol (info, h))
14480 /* If that succeeded, we know we'll be keeping all the
14482 if (h->dynindx != -1)
14486 eh->dyn_relocs = NULL;
14491 /* Finally, allocate space. */
14492 for (p = eh->dyn_relocs; p != NULL; p = p->next)
14494 asection *sreloc = elf_section_data (p->sec)->sreloc;
14495 if (h->type == STT_GNU_IFUNC
14496 && eh->plt.noncall_refcount == 0
14497 && SYMBOL_REFERENCES_LOCAL (info, h))
14498 elf32_arm_allocate_irelocs (info, sreloc, p->count);
14500 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
14506 /* Find any dynamic relocs that apply to read-only sections. */
14509 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
14511 struct elf32_arm_link_hash_entry * eh;
14512 struct elf_dyn_relocs * p;
14514 eh = (struct elf32_arm_link_hash_entry *) h;
14515 for (p = eh->dyn_relocs; p != NULL; p = p->next)
14517 asection *s = p->sec;
14519 if (s != NULL && (s->flags & SEC_READONLY) != 0)
14521 struct bfd_link_info *info = (struct bfd_link_info *) inf;
14523 info->flags |= DF_TEXTREL;
14525 /* Not an error, just cut short the traversal. */
14533 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
14536 struct elf32_arm_link_hash_table *globals;
14538 globals = elf32_arm_hash_table (info);
14539 if (globals == NULL)
14542 globals->byteswap_code = byteswap_code;
14545 /* Set the sizes of the dynamic sections. */
14548 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
14549 struct bfd_link_info * info)
14554 bfd_boolean relocs;
14556 struct elf32_arm_link_hash_table *htab;
14558 htab = elf32_arm_hash_table (info);
14562 dynobj = elf_hash_table (info)->dynobj;
14563 BFD_ASSERT (dynobj != NULL);
14564 check_use_blx (htab);
14566 if (elf_hash_table (info)->dynamic_sections_created)
14568 /* Set the contents of the .interp section to the interpreter. */
14569 if (bfd_link_executable (info) && !info->nointerp)
14571 s = bfd_get_linker_section (dynobj, ".interp");
14572 BFD_ASSERT (s != NULL);
14573 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
14574 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
14578 /* Set up .got offsets for local syms, and space for local dynamic
14580 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
14582 bfd_signed_vma *local_got;
14583 bfd_signed_vma *end_local_got;
14584 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
14585 char *local_tls_type;
14586 bfd_vma *local_tlsdesc_gotent;
14587 bfd_size_type locsymcount;
14588 Elf_Internal_Shdr *symtab_hdr;
14590 bfd_boolean is_vxworks = htab->vxworks_p;
14591 unsigned int symndx;
14593 if (! is_arm_elf (ibfd))
14596 for (s = ibfd->sections; s != NULL; s = s->next)
14598 struct elf_dyn_relocs *p;
14600 for (p = (struct elf_dyn_relocs *)
14601 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
14603 if (!bfd_is_abs_section (p->sec)
14604 && bfd_is_abs_section (p->sec->output_section))
14606 /* Input section has been discarded, either because
14607 it is a copy of a linkonce section or due to
14608 linker script /DISCARD/, so we'll be discarding
14611 else if (is_vxworks
14612 && strcmp (p->sec->output_section->name,
14615 /* Relocations in vxworks .tls_vars sections are
14616 handled specially by the loader. */
14618 else if (p->count != 0)
14620 srel = elf_section_data (p->sec)->sreloc;
14621 elf32_arm_allocate_dynrelocs (info, srel, p->count);
14622 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
14623 info->flags |= DF_TEXTREL;
14628 local_got = elf_local_got_refcounts (ibfd);
14632 symtab_hdr = & elf_symtab_hdr (ibfd);
14633 locsymcount = symtab_hdr->sh_info;
14634 end_local_got = local_got + locsymcount;
14635 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
14636 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
14637 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
14639 s = htab->root.sgot;
14640 srel = htab->root.srelgot;
14641 for (; local_got < end_local_got;
14642 ++local_got, ++local_iplt_ptr, ++local_tls_type,
14643 ++local_tlsdesc_gotent, ++symndx)
14645 *local_tlsdesc_gotent = (bfd_vma) -1;
14646 local_iplt = *local_iplt_ptr;
14647 if (local_iplt != NULL)
14649 struct elf_dyn_relocs *p;
14651 if (local_iplt->root.refcount > 0)
14653 elf32_arm_allocate_plt_entry (info, TRUE,
14656 if (local_iplt->arm.noncall_refcount == 0)
14657 /* All references to the PLT are calls, so all
14658 non-call references can resolve directly to the
14659 run-time target. This means that the .got entry
14660 would be the same as the .igot.plt entry, so there's
14661 no point creating both. */
14666 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
14667 local_iplt->root.offset = (bfd_vma) -1;
14670 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
14674 psrel = elf_section_data (p->sec)->sreloc;
14675 if (local_iplt->arm.noncall_refcount == 0)
14676 elf32_arm_allocate_irelocs (info, psrel, p->count);
14678 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
14681 if (*local_got > 0)
14683 Elf_Internal_Sym *isym;
14685 *local_got = s->size;
14686 if (*local_tls_type & GOT_TLS_GD)
14687 /* TLS_GD relocs need an 8-byte structure in the GOT. */
14689 if (*local_tls_type & GOT_TLS_GDESC)
14691 *local_tlsdesc_gotent = htab->root.sgotplt->size
14692 - elf32_arm_compute_jump_table_size (htab);
14693 htab->root.sgotplt->size += 8;
14694 *local_got = (bfd_vma) -2;
14695 /* plt.got_offset needs to know there's a TLS_DESC
14696 reloc in the middle of .got.plt. */
14697 htab->num_tls_desc++;
14699 if (*local_tls_type & GOT_TLS_IE)
14702 if (*local_tls_type & GOT_NORMAL)
14704 /* If the symbol is both GD and GDESC, *local_got
14705 may have been overwritten. */
14706 *local_got = s->size;
14710 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
14714 /* If all references to an STT_GNU_IFUNC PLT are calls,
14715 then all non-call references, including this GOT entry,
14716 resolve directly to the run-time target. */
14717 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
14718 && (local_iplt == NULL
14719 || local_iplt->arm.noncall_refcount == 0))
14720 elf32_arm_allocate_irelocs (info, srel, 1);
14721 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC)
14723 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC))
14724 || *local_tls_type & GOT_TLS_GD)
14725 elf32_arm_allocate_dynrelocs (info, srel, 1);
14727 if (bfd_link_pic (info) && *local_tls_type & GOT_TLS_GDESC)
14729 elf32_arm_allocate_dynrelocs (info,
14730 htab->root.srelplt, 1);
14731 htab->tls_trampoline = -1;
14736 *local_got = (bfd_vma) -1;
14740 if (htab->tls_ldm_got.refcount > 0)
14742 /* Allocate two GOT entries and one dynamic relocation (if necessary)
14743 for R_ARM_TLS_LDM32 relocations. */
14744 htab->tls_ldm_got.offset = htab->root.sgot->size;
14745 htab->root.sgot->size += 8;
14746 if (bfd_link_pic (info))
14747 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14750 htab->tls_ldm_got.offset = -1;
14752 /* Allocate global sym .plt and .got entries, and space for global
14753 sym dynamic relocs. */
14754 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
14756 /* Here we rummage through the found bfds to collect glue information. */
14757 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
14759 if (! is_arm_elf (ibfd))
14762 /* Initialise mapping tables for code/data. */
14763 bfd_elf32_arm_init_maps (ibfd);
14765 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
14766 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
14767 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
14768 /* xgettext:c-format */
14769 _bfd_error_handler (_("Errors encountered processing file %s"),
14773 /* Allocate space for the glue sections now that we've sized them. */
14774 bfd_elf32_arm_allocate_interworking_sections (info);
14776 /* For every jump slot reserved in the sgotplt, reloc_count is
14777 incremented. However, when we reserve space for TLS descriptors,
14778 it's not incremented, so in order to compute the space reserved
14779 for them, it suffices to multiply the reloc count by the jump
14781 if (htab->root.srelplt)
14782 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
14784 if (htab->tls_trampoline)
14786 if (htab->root.splt->size == 0)
14787 htab->root.splt->size += htab->plt_header_size;
14789 htab->tls_trampoline = htab->root.splt->size;
14790 htab->root.splt->size += htab->plt_entry_size;
14792 /* If we're not using lazy TLS relocations, don't generate the
14793 PLT and GOT entries they require. */
14794 if (!(info->flags & DF_BIND_NOW))
14796 htab->dt_tlsdesc_got = htab->root.sgot->size;
14797 htab->root.sgot->size += 4;
14799 htab->dt_tlsdesc_plt = htab->root.splt->size;
14800 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
14804 /* The check_relocs and adjust_dynamic_symbol entry points have
14805 determined the sizes of the various dynamic sections. Allocate
14806 memory for them. */
14809 for (s = dynobj->sections; s != NULL; s = s->next)
14813 if ((s->flags & SEC_LINKER_CREATED) == 0)
14816 /* It's OK to base decisions on the section name, because none
14817 of the dynobj section names depend upon the input files. */
14818 name = bfd_get_section_name (dynobj, s);
14820 if (s == htab->root.splt)
14822 /* Remember whether there is a PLT. */
14823 plt = s->size != 0;
14825 else if (CONST_STRNEQ (name, ".rel"))
14829 /* Remember whether there are any reloc sections other
14830 than .rel(a).plt and .rela.plt.unloaded. */
14831 if (s != htab->root.srelplt && s != htab->srelplt2)
14834 /* We use the reloc_count field as a counter if we need
14835 to copy relocs into the output file. */
14836 s->reloc_count = 0;
14839 else if (s != htab->root.sgot
14840 && s != htab->root.sgotplt
14841 && s != htab->root.iplt
14842 && s != htab->root.igotplt
14843 && s != htab->sdynbss)
14845 /* It's not one of our sections, so don't allocate space. */
14851 /* If we don't need this section, strip it from the
14852 output file. This is mostly to handle .rel(a).bss and
14853 .rel(a).plt. We must create both sections in
14854 create_dynamic_sections, because they must be created
14855 before the linker maps input sections to output
14856 sections. The linker does that before
14857 adjust_dynamic_symbol is called, and it is that
14858 function which decides whether anything needs to go
14859 into these sections. */
14860 s->flags |= SEC_EXCLUDE;
14864 if ((s->flags & SEC_HAS_CONTENTS) == 0)
14867 /* Allocate memory for the section contents. */
14868 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
14869 if (s->contents == NULL)
14873 if (elf_hash_table (info)->dynamic_sections_created)
14875 /* Add some entries to the .dynamic section. We fill in the
14876 values later, in elf32_arm_finish_dynamic_sections, but we
14877 must add the entries now so that we get the correct size for
14878 the .dynamic section. The DT_DEBUG entry is filled in by the
14879 dynamic linker and used by the debugger. */
14880 #define add_dynamic_entry(TAG, VAL) \
14881 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
14883 if (bfd_link_executable (info))
14885 if (!add_dynamic_entry (DT_DEBUG, 0))
14891 if ( !add_dynamic_entry (DT_PLTGOT, 0)
14892 || !add_dynamic_entry (DT_PLTRELSZ, 0)
14893 || !add_dynamic_entry (DT_PLTREL,
14894 htab->use_rel ? DT_REL : DT_RELA)
14895 || !add_dynamic_entry (DT_JMPREL, 0))
14898 if (htab->dt_tlsdesc_plt &&
14899 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
14900 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
14908 if (!add_dynamic_entry (DT_REL, 0)
14909 || !add_dynamic_entry (DT_RELSZ, 0)
14910 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
14915 if (!add_dynamic_entry (DT_RELA, 0)
14916 || !add_dynamic_entry (DT_RELASZ, 0)
14917 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
14922 /* If any dynamic relocs apply to a read-only section,
14923 then we need a DT_TEXTREL entry. */
14924 if ((info->flags & DF_TEXTREL) == 0)
14925 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
14928 if ((info->flags & DF_TEXTREL) != 0)
14930 if (!add_dynamic_entry (DT_TEXTREL, 0))
14933 if (htab->vxworks_p
14934 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
14937 #undef add_dynamic_entry
14942 /* Size sections even though they're not dynamic. We use it to setup
14943 _TLS_MODULE_BASE_, if needed. */
14946 elf32_arm_always_size_sections (bfd *output_bfd,
14947 struct bfd_link_info *info)
14951 if (bfd_link_relocatable (info))
14954 tls_sec = elf_hash_table (info)->tls_sec;
14958 struct elf_link_hash_entry *tlsbase;
14960 tlsbase = elf_link_hash_lookup
14961 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
14965 struct bfd_link_hash_entry *bh = NULL;
14966 const struct elf_backend_data *bed
14967 = get_elf_backend_data (output_bfd);
14969 if (!(_bfd_generic_link_add_one_symbol
14970 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
14971 tls_sec, 0, NULL, FALSE,
14972 bed->collect, &bh)))
14975 tlsbase->type = STT_TLS;
14976 tlsbase = (struct elf_link_hash_entry *)bh;
14977 tlsbase->def_regular = 1;
14978 tlsbase->other = STV_HIDDEN;
14979 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
14985 /* Finish up dynamic symbol handling. We set the contents of various
14986 dynamic sections here. */
14989 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
14990 struct bfd_link_info * info,
14991 struct elf_link_hash_entry * h,
14992 Elf_Internal_Sym * sym)
14994 struct elf32_arm_link_hash_table *htab;
14995 struct elf32_arm_link_hash_entry *eh;
14997 htab = elf32_arm_hash_table (info);
15001 eh = (struct elf32_arm_link_hash_entry *) h;
15003 if (h->plt.offset != (bfd_vma) -1)
15007 BFD_ASSERT (h->dynindx != -1);
15008 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
15013 if (!h->def_regular)
15015 /* Mark the symbol as undefined, rather than as defined in
15016 the .plt section. */
15017 sym->st_shndx = SHN_UNDEF;
15018 /* If the symbol is weak we need to clear the value.
15019 Otherwise, the PLT entry would provide a definition for
15020 the symbol even if the symbol wasn't defined anywhere,
15021 and so the symbol would never be NULL. Leave the value if
15022 there were any relocations where pointer equality matters
15023 (this is a clue for the dynamic linker, to make function
15024 pointer comparisons work between an application and shared
15026 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
15029 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
15031 /* At least one non-call relocation references this .iplt entry,
15032 so the .iplt entry is the function's canonical address. */
15033 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
15034 sym->st_target_internal = ST_BRANCH_TO_ARM;
15035 sym->st_shndx = (_bfd_elf_section_from_bfd_section
15036 (output_bfd, htab->root.iplt->output_section));
15037 sym->st_value = (h->plt.offset
15038 + htab->root.iplt->output_section->vma
15039 + htab->root.iplt->output_offset);
15046 Elf_Internal_Rela rel;
15048 /* This symbol needs a copy reloc. Set it up. */
15049 BFD_ASSERT (h->dynindx != -1
15050 && (h->root.type == bfd_link_hash_defined
15051 || h->root.type == bfd_link_hash_defweak));
15054 BFD_ASSERT (s != NULL);
15057 rel.r_offset = (h->root.u.def.value
15058 + h->root.u.def.section->output_section->vma
15059 + h->root.u.def.section->output_offset);
15060 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
15061 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
15064 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
15065 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
15066 to the ".got" section. */
15067 if (h == htab->root.hdynamic
15068 || (!htab->vxworks_p && h == htab->root.hgot))
15069 sym->st_shndx = SHN_ABS;
15075 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
15077 const unsigned long *template, unsigned count)
15081 for (ix = 0; ix != count; ix++)
15083 unsigned long insn = template[ix];
15085 /* Emit mov pc,rx if bx is not permitted. */
15086 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
15087 insn = (insn & 0xf000000f) | 0x01a0f000;
15088 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
15092 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
15093 other variants, NaCl needs this entry in a static executable's
15094 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
15095 zero. For .iplt really only the last bundle is useful, and .iplt
15096 could have a shorter first entry, with each individual PLT entry's
15097 relative branch calculated differently so it targets the last
15098 bundle instead of the instruction before it (labelled .Lplt_tail
15099 above). But it's simpler to keep the size and layout of PLT0
15100 consistent with the dynamic case, at the cost of some dead code at
15101 the start of .iplt and the one dead store to the stack at the start
15104 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
15105 asection *plt, bfd_vma got_displacement)
15109 put_arm_insn (htab, output_bfd,
15110 elf32_arm_nacl_plt0_entry[0]
15111 | arm_movw_immediate (got_displacement),
15112 plt->contents + 0);
15113 put_arm_insn (htab, output_bfd,
15114 elf32_arm_nacl_plt0_entry[1]
15115 | arm_movt_immediate (got_displacement),
15116 plt->contents + 4);
15118 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
15119 put_arm_insn (htab, output_bfd,
15120 elf32_arm_nacl_plt0_entry[i],
15121 plt->contents + (i * 4));
15124 /* Finish up the dynamic sections. */
15127 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
15132 struct elf32_arm_link_hash_table *htab;
15134 htab = elf32_arm_hash_table (info);
15138 dynobj = elf_hash_table (info)->dynobj;
15140 sgot = htab->root.sgotplt;
15141 /* A broken linker script might have discarded the dynamic sections.
15142 Catch this here so that we do not seg-fault later on. */
15143 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
15145 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
15147 if (elf_hash_table (info)->dynamic_sections_created)
15150 Elf32_External_Dyn *dyncon, *dynconend;
15152 splt = htab->root.splt;
15153 BFD_ASSERT (splt != NULL && sdyn != NULL);
15154 BFD_ASSERT (htab->symbian_p || sgot != NULL);
15156 dyncon = (Elf32_External_Dyn *) sdyn->contents;
15157 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
15159 for (; dyncon < dynconend; dyncon++)
15161 Elf_Internal_Dyn dyn;
15165 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
15172 if (htab->vxworks_p
15173 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
15174 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15179 goto get_vma_if_bpabi;
15182 goto get_vma_if_bpabi;
15185 goto get_vma_if_bpabi;
15187 name = ".gnu.version";
15188 goto get_vma_if_bpabi;
15190 name = ".gnu.version_d";
15191 goto get_vma_if_bpabi;
15193 name = ".gnu.version_r";
15194 goto get_vma_if_bpabi;
15200 name = RELOC_SECTION (htab, ".plt");
15202 s = bfd_get_section_by_name (output_bfd, name);
15205 /* PR ld/14397: Issue an error message if a required section is missing. */
15206 (*_bfd_error_handler)
15207 (_("error: required section '%s' not found in the linker script"), name);
15208 bfd_set_error (bfd_error_invalid_operation);
15211 if (!htab->symbian_p)
15212 dyn.d_un.d_ptr = s->vma;
15214 /* In the BPABI, tags in the PT_DYNAMIC section point
15215 at the file offset, not the memory address, for the
15216 convenience of the post linker. */
15217 dyn.d_un.d_ptr = s->filepos;
15218 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15222 if (htab->symbian_p)
15227 s = htab->root.srelplt;
15228 BFD_ASSERT (s != NULL);
15229 dyn.d_un.d_val = s->size;
15230 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15235 if (!htab->symbian_p)
15237 /* My reading of the SVR4 ABI indicates that the
15238 procedure linkage table relocs (DT_JMPREL) should be
15239 included in the overall relocs (DT_REL). This is
15240 what Solaris does. However, UnixWare can not handle
15241 that case. Therefore, we override the DT_RELSZ entry
15242 here to make it not include the JMPREL relocs. Since
15243 the linker script arranges for .rel(a).plt to follow all
15244 other relocation sections, we don't have to worry
15245 about changing the DT_REL entry. */
15246 s = htab->root.srelplt;
15248 dyn.d_un.d_val -= s->size;
15249 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15252 /* Fall through. */
15256 /* In the BPABI, the DT_REL tag must point at the file
15257 offset, not the VMA, of the first relocation
15258 section. So, we use code similar to that in
15259 elflink.c, but do not check for SHF_ALLOC on the
15260 relcoation section, since relocations sections are
15261 never allocated under the BPABI. The comments above
15262 about Unixware notwithstanding, we include all of the
15263 relocations here. */
15264 if (htab->symbian_p)
15267 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
15268 ? SHT_REL : SHT_RELA);
15269 dyn.d_un.d_val = 0;
15270 for (i = 1; i < elf_numsections (output_bfd); i++)
15272 Elf_Internal_Shdr *hdr
15273 = elf_elfsections (output_bfd)[i];
15274 if (hdr->sh_type == type)
15276 if (dyn.d_tag == DT_RELSZ
15277 || dyn.d_tag == DT_RELASZ)
15278 dyn.d_un.d_val += hdr->sh_size;
15279 else if ((ufile_ptr) hdr->sh_offset
15280 <= dyn.d_un.d_val - 1)
15281 dyn.d_un.d_val = hdr->sh_offset;
15284 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15288 case DT_TLSDESC_PLT:
15289 s = htab->root.splt;
15290 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
15291 + htab->dt_tlsdesc_plt);
15292 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15295 case DT_TLSDESC_GOT:
15296 s = htab->root.sgot;
15297 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
15298 + htab->dt_tlsdesc_got);
15299 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15302 /* Set the bottom bit of DT_INIT/FINI if the
15303 corresponding function is Thumb. */
15305 name = info->init_function;
15308 name = info->fini_function;
15310 /* If it wasn't set by elf_bfd_final_link
15311 then there is nothing to adjust. */
15312 if (dyn.d_un.d_val != 0)
15314 struct elf_link_hash_entry * eh;
15316 eh = elf_link_hash_lookup (elf_hash_table (info), name,
15317 FALSE, FALSE, TRUE);
15318 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
15320 dyn.d_un.d_val |= 1;
15321 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15328 /* Fill in the first entry in the procedure linkage table. */
15329 if (splt->size > 0 && htab->plt_header_size)
15331 const bfd_vma *plt0_entry;
15332 bfd_vma got_address, plt_address, got_displacement;
15334 /* Calculate the addresses of the GOT and PLT. */
15335 got_address = sgot->output_section->vma + sgot->output_offset;
15336 plt_address = splt->output_section->vma + splt->output_offset;
15338 if (htab->vxworks_p)
15340 /* The VxWorks GOT is relocated by the dynamic linker.
15341 Therefore, we must emit relocations rather than simply
15342 computing the values now. */
15343 Elf_Internal_Rela rel;
15345 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
15346 put_arm_insn (htab, output_bfd, plt0_entry[0],
15347 splt->contents + 0);
15348 put_arm_insn (htab, output_bfd, plt0_entry[1],
15349 splt->contents + 4);
15350 put_arm_insn (htab, output_bfd, plt0_entry[2],
15351 splt->contents + 8);
15352 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
15354 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
15355 rel.r_offset = plt_address + 12;
15356 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
15358 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
15359 htab->srelplt2->contents);
15361 else if (htab->nacl_p)
15362 arm_nacl_put_plt0 (htab, output_bfd, splt,
15363 got_address + 8 - (plt_address + 16));
15364 else if (using_thumb_only (htab))
15366 got_displacement = got_address - (plt_address + 12);
15368 plt0_entry = elf32_thumb2_plt0_entry;
15369 put_arm_insn (htab, output_bfd, plt0_entry[0],
15370 splt->contents + 0);
15371 put_arm_insn (htab, output_bfd, plt0_entry[1],
15372 splt->contents + 4);
15373 put_arm_insn (htab, output_bfd, plt0_entry[2],
15374 splt->contents + 8);
15376 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
15380 got_displacement = got_address - (plt_address + 16);
15382 plt0_entry = elf32_arm_plt0_entry;
15383 put_arm_insn (htab, output_bfd, plt0_entry[0],
15384 splt->contents + 0);
15385 put_arm_insn (htab, output_bfd, plt0_entry[1],
15386 splt->contents + 4);
15387 put_arm_insn (htab, output_bfd, plt0_entry[2],
15388 splt->contents + 8);
15389 put_arm_insn (htab, output_bfd, plt0_entry[3],
15390 splt->contents + 12);
15392 #ifdef FOUR_WORD_PLT
15393 /* The displacement value goes in the otherwise-unused
15394 last word of the second entry. */
15395 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
15397 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
15402 /* UnixWare sets the entsize of .plt to 4, although that doesn't
15403 really seem like the right value. */
15404 if (splt->output_section->owner == output_bfd)
15405 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
15407 if (htab->dt_tlsdesc_plt)
15409 bfd_vma got_address
15410 = sgot->output_section->vma + sgot->output_offset;
15411 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
15412 + htab->root.sgot->output_offset);
15413 bfd_vma plt_address
15414 = splt->output_section->vma + splt->output_offset;
15416 arm_put_trampoline (htab, output_bfd,
15417 splt->contents + htab->dt_tlsdesc_plt,
15418 dl_tlsdesc_lazy_trampoline, 6);
15420 bfd_put_32 (output_bfd,
15421 gotplt_address + htab->dt_tlsdesc_got
15422 - (plt_address + htab->dt_tlsdesc_plt)
15423 - dl_tlsdesc_lazy_trampoline[6],
15424 splt->contents + htab->dt_tlsdesc_plt + 24);
15425 bfd_put_32 (output_bfd,
15426 got_address - (plt_address + htab->dt_tlsdesc_plt)
15427 - dl_tlsdesc_lazy_trampoline[7],
15428 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
15431 if (htab->tls_trampoline)
15433 arm_put_trampoline (htab, output_bfd,
15434 splt->contents + htab->tls_trampoline,
15435 tls_trampoline, 3);
15436 #ifdef FOUR_WORD_PLT
15437 bfd_put_32 (output_bfd, 0x00000000,
15438 splt->contents + htab->tls_trampoline + 12);
15442 if (htab->vxworks_p
15443 && !bfd_link_pic (info)
15444 && htab->root.splt->size > 0)
15446 /* Correct the .rel(a).plt.unloaded relocations. They will have
15447 incorrect symbol indexes. */
15451 num_plts = ((htab->root.splt->size - htab->plt_header_size)
15452 / htab->plt_entry_size);
15453 p = htab->srelplt2->contents + RELOC_SIZE (htab);
15455 for (; num_plts; num_plts--)
15457 Elf_Internal_Rela rel;
15459 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
15460 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
15461 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
15462 p += RELOC_SIZE (htab);
15464 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
15465 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
15466 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
15467 p += RELOC_SIZE (htab);
15472 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
15473 /* NaCl uses a special first entry in .iplt too. */
15474 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
15476 /* Fill in the first three entries in the global offset table. */
15479 if (sgot->size > 0)
15482 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
15484 bfd_put_32 (output_bfd,
15485 sdyn->output_section->vma + sdyn->output_offset,
15487 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
15488 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
15491 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
15498 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
15500 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
15501 struct elf32_arm_link_hash_table *globals;
15502 struct elf_segment_map *m;
15504 i_ehdrp = elf_elfheader (abfd);
15506 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
15507 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
15509 _bfd_elf_post_process_headers (abfd, link_info);
15510 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
15514 globals = elf32_arm_hash_table (link_info);
15515 if (globals != NULL && globals->byteswap_code)
15516 i_ehdrp->e_flags |= EF_ARM_BE8;
15519 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
15520 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
15522 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
15523 if (abi == AEABI_VFP_args_vfp)
15524 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
15526 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
15529 /* Scan segment to set p_flags attribute if it contains only sections with
15530 SHF_ARM_NOREAD flag. */
15531 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
15537 for (j = 0; j < m->count; j++)
15539 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_NOREAD))
15545 m->p_flags_valid = 1;
15550 static enum elf_reloc_type_class
15551 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
15552 const asection *rel_sec ATTRIBUTE_UNUSED,
15553 const Elf_Internal_Rela *rela)
15555 switch ((int) ELF32_R_TYPE (rela->r_info))
15557 case R_ARM_RELATIVE:
15558 return reloc_class_relative;
15559 case R_ARM_JUMP_SLOT:
15560 return reloc_class_plt;
15562 return reloc_class_copy;
15563 case R_ARM_IRELATIVE:
15564 return reloc_class_ifunc;
15566 return reloc_class_normal;
15571 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
15573 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
15576 /* Return TRUE if this is an unwinding table entry. */
15579 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
15581 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
15582 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
15586 /* Set the type and flags for an ARM section. We do this by
15587 the section name, which is a hack, but ought to work. */
15590 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
15594 name = bfd_get_section_name (abfd, sec);
15596 if (is_arm_elf_unwind_section_name (abfd, name))
15598 hdr->sh_type = SHT_ARM_EXIDX;
15599 hdr->sh_flags |= SHF_LINK_ORDER;
15602 if (sec->flags & SEC_ELF_NOREAD)
15603 hdr->sh_flags |= SHF_ARM_NOREAD;
15608 /* Handle an ARM specific section when reading an object file. This is
15609 called when bfd_section_from_shdr finds a section with an unknown
15613 elf32_arm_section_from_shdr (bfd *abfd,
15614 Elf_Internal_Shdr * hdr,
15618 /* There ought to be a place to keep ELF backend specific flags, but
15619 at the moment there isn't one. We just keep track of the
15620 sections by their name, instead. Fortunately, the ABI gives
15621 names for all the ARM specific sections, so we will probably get
15623 switch (hdr->sh_type)
15625 case SHT_ARM_EXIDX:
15626 case SHT_ARM_PREEMPTMAP:
15627 case SHT_ARM_ATTRIBUTES:
15634 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
15640 static _arm_elf_section_data *
15641 get_arm_elf_section_data (asection * sec)
15643 if (sec && sec->owner && is_arm_elf (sec->owner))
15644 return elf32_arm_section_data (sec);
15652 struct bfd_link_info *info;
15655 int (*func) (void *, const char *, Elf_Internal_Sym *,
15656 asection *, struct elf_link_hash_entry *);
15657 } output_arch_syminfo;
15659 enum map_symbol_type
15667 /* Output a single mapping symbol. */
15670 elf32_arm_output_map_sym (output_arch_syminfo *osi,
15671 enum map_symbol_type type,
15674 static const char *names[3] = {"$a", "$t", "$d"};
15675 Elf_Internal_Sym sym;
15677 sym.st_value = osi->sec->output_section->vma
15678 + osi->sec->output_offset
15682 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
15683 sym.st_shndx = osi->sec_shndx;
15684 sym.st_target_internal = 0;
15685 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
15686 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
15689 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
15690 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
15693 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
15694 bfd_boolean is_iplt_entry_p,
15695 union gotplt_union *root_plt,
15696 struct arm_plt_info *arm_plt)
15698 struct elf32_arm_link_hash_table *htab;
15699 bfd_vma addr, plt_header_size;
15701 if (root_plt->offset == (bfd_vma) -1)
15704 htab = elf32_arm_hash_table (osi->info);
15708 if (is_iplt_entry_p)
15710 osi->sec = htab->root.iplt;
15711 plt_header_size = 0;
15715 osi->sec = htab->root.splt;
15716 plt_header_size = htab->plt_header_size;
15718 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
15719 (osi->info->output_bfd, osi->sec->output_section));
15721 addr = root_plt->offset & -2;
15722 if (htab->symbian_p)
15724 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
15726 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
15729 else if (htab->vxworks_p)
15731 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
15733 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
15735 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
15737 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
15740 else if (htab->nacl_p)
15742 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
15745 else if (using_thumb_only (htab))
15747 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
15752 bfd_boolean thumb_stub_p;
15754 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
15757 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
15760 #ifdef FOUR_WORD_PLT
15761 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
15763 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
15766 /* A three-word PLT with no Thumb thunk contains only Arm code,
15767 so only need to output a mapping symbol for the first PLT entry and
15768 entries with thumb thunks. */
15769 if (thumb_stub_p || addr == plt_header_size)
15771 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
15780 /* Output mapping symbols for PLT entries associated with H. */
15783 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
15785 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
15786 struct elf32_arm_link_hash_entry *eh;
15788 if (h->root.type == bfd_link_hash_indirect)
15791 if (h->root.type == bfd_link_hash_warning)
15792 /* When warning symbols are created, they **replace** the "real"
15793 entry in the hash table, thus we never get to see the real
15794 symbol in a hash traversal. So look at it now. */
15795 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15797 eh = (struct elf32_arm_link_hash_entry *) h;
15798 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
15799 &h->plt, &eh->plt);
15802 /* Output a single local symbol for a generated stub. */
15805 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
15806 bfd_vma offset, bfd_vma size)
15808 Elf_Internal_Sym sym;
15810 sym.st_value = osi->sec->output_section->vma
15811 + osi->sec->output_offset
15813 sym.st_size = size;
15815 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
15816 sym.st_shndx = osi->sec_shndx;
15817 sym.st_target_internal = 0;
15818 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
15822 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
15825 struct elf32_arm_stub_hash_entry *stub_entry;
15826 asection *stub_sec;
15829 output_arch_syminfo *osi;
15830 const insn_sequence *template_sequence;
15831 enum stub_insn_type prev_type;
15834 enum map_symbol_type sym_type;
15836 /* Massage our args to the form they really have. */
15837 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
15838 osi = (output_arch_syminfo *) in_arg;
15840 stub_sec = stub_entry->stub_sec;
15842 /* Ensure this stub is attached to the current section being
15844 if (stub_sec != osi->sec)
15847 addr = (bfd_vma) stub_entry->stub_offset;
15848 stub_name = stub_entry->output_name;
15850 template_sequence = stub_entry->stub_template;
15851 switch (template_sequence[0].type)
15854 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
15859 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
15860 stub_entry->stub_size))
15868 prev_type = DATA_TYPE;
15870 for (i = 0; i < stub_entry->stub_template_size; i++)
15872 switch (template_sequence[i].type)
15875 sym_type = ARM_MAP_ARM;
15880 sym_type = ARM_MAP_THUMB;
15884 sym_type = ARM_MAP_DATA;
15892 if (template_sequence[i].type != prev_type)
15894 prev_type = template_sequence[i].type;
15895 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
15899 switch (template_sequence[i].type)
15923 /* Output mapping symbols for linker generated sections,
15924 and for those data-only sections that do not have a
15928 elf32_arm_output_arch_local_syms (bfd *output_bfd,
15929 struct bfd_link_info *info,
15931 int (*func) (void *, const char *,
15932 Elf_Internal_Sym *,
15934 struct elf_link_hash_entry *))
15936 output_arch_syminfo osi;
15937 struct elf32_arm_link_hash_table *htab;
15939 bfd_size_type size;
15942 htab = elf32_arm_hash_table (info);
15946 check_use_blx (htab);
15948 osi.flaginfo = flaginfo;
15952 /* Add a $d mapping symbol to data-only sections that
15953 don't have any mapping symbol. This may result in (harmless) redundant
15954 mapping symbols. */
15955 for (input_bfd = info->input_bfds;
15957 input_bfd = input_bfd->link.next)
15959 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
15960 for (osi.sec = input_bfd->sections;
15962 osi.sec = osi.sec->next)
15964 if (osi.sec->output_section != NULL
15965 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
15967 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
15968 == SEC_HAS_CONTENTS
15969 && get_arm_elf_section_data (osi.sec) != NULL
15970 && get_arm_elf_section_data (osi.sec)->mapcount == 0
15971 && osi.sec->size > 0
15972 && (osi.sec->flags & SEC_EXCLUDE) == 0)
15974 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15975 (output_bfd, osi.sec->output_section);
15976 if (osi.sec_shndx != (int)SHN_BAD)
15977 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
15982 /* ARM->Thumb glue. */
15983 if (htab->arm_glue_size > 0)
15985 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
15986 ARM2THUMB_GLUE_SECTION_NAME);
15988 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15989 (output_bfd, osi.sec->output_section);
15990 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
15991 || htab->pic_veneer)
15992 size = ARM2THUMB_PIC_GLUE_SIZE;
15993 else if (htab->use_blx)
15994 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
15996 size = ARM2THUMB_STATIC_GLUE_SIZE;
15998 for (offset = 0; offset < htab->arm_glue_size; offset += size)
16000 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
16001 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
16005 /* Thumb->ARM glue. */
16006 if (htab->thumb_glue_size > 0)
16008 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
16009 THUMB2ARM_GLUE_SECTION_NAME);
16011 osi.sec_shndx = _bfd_elf_section_from_bfd_section
16012 (output_bfd, osi.sec->output_section);
16013 size = THUMB2ARM_GLUE_SIZE;
16015 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
16017 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
16018 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
16022 /* ARMv4 BX veneers. */
16023 if (htab->bx_glue_size > 0)
16025 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
16026 ARM_BX_GLUE_SECTION_NAME);
16028 osi.sec_shndx = _bfd_elf_section_from_bfd_section
16029 (output_bfd, osi.sec->output_section);
16031 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
16034 /* Long calls stubs. */
16035 if (htab->stub_bfd && htab->stub_bfd->sections)
16037 asection* stub_sec;
16039 for (stub_sec = htab->stub_bfd->sections;
16041 stub_sec = stub_sec->next)
16043 /* Ignore non-stub sections. */
16044 if (!strstr (stub_sec->name, STUB_SUFFIX))
16047 osi.sec = stub_sec;
16049 osi.sec_shndx = _bfd_elf_section_from_bfd_section
16050 (output_bfd, osi.sec->output_section);
16052 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
16056 /* Finally, output mapping symbols for the PLT. */
16057 if (htab->root.splt && htab->root.splt->size > 0)
16059 osi.sec = htab->root.splt;
16060 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
16061 (output_bfd, osi.sec->output_section));
16063 /* Output mapping symbols for the plt header. SymbianOS does not have a
16065 if (htab->vxworks_p)
16067 /* VxWorks shared libraries have no PLT header. */
16068 if (!bfd_link_pic (info))
16070 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
16072 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
16076 else if (htab->nacl_p)
16078 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
16081 else if (using_thumb_only (htab))
16083 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
16085 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
16087 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
16090 else if (!htab->symbian_p)
16092 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
16094 #ifndef FOUR_WORD_PLT
16095 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
16100 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
16102 /* NaCl uses a special first entry in .iplt too. */
16103 osi.sec = htab->root.iplt;
16104 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
16105 (output_bfd, osi.sec->output_section));
16106 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
16109 if ((htab->root.splt && htab->root.splt->size > 0)
16110 || (htab->root.iplt && htab->root.iplt->size > 0))
16112 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
16113 for (input_bfd = info->input_bfds;
16115 input_bfd = input_bfd->link.next)
16117 struct arm_local_iplt_info **local_iplt;
16118 unsigned int i, num_syms;
16120 local_iplt = elf32_arm_local_iplt (input_bfd);
16121 if (local_iplt != NULL)
16123 num_syms = elf_symtab_hdr (input_bfd).sh_info;
16124 for (i = 0; i < num_syms; i++)
16125 if (local_iplt[i] != NULL
16126 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
16127 &local_iplt[i]->root,
16128 &local_iplt[i]->arm))
16133 if (htab->dt_tlsdesc_plt != 0)
16135 /* Mapping symbols for the lazy tls trampoline. */
16136 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
16139 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
16140 htab->dt_tlsdesc_plt + 24))
16143 if (htab->tls_trampoline != 0)
16145 /* Mapping symbols for the tls trampoline. */
16146 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
16148 #ifdef FOUR_WORD_PLT
16149 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
16150 htab->tls_trampoline + 12))
16158 /* Allocate target specific section data. */
16161 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
16163 if (!sec->used_by_bfd)
16165 _arm_elf_section_data *sdata;
16166 bfd_size_type amt = sizeof (*sdata);
16168 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
16171 sec->used_by_bfd = sdata;
16174 return _bfd_elf_new_section_hook (abfd, sec);
16178 /* Used to order a list of mapping symbols by address. */
16181 elf32_arm_compare_mapping (const void * a, const void * b)
16183 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
16184 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
16186 if (amap->vma > bmap->vma)
16188 else if (amap->vma < bmap->vma)
16190 else if (amap->type > bmap->type)
16191 /* Ensure results do not depend on the host qsort for objects with
16192 multiple mapping symbols at the same address by sorting on type
16195 else if (amap->type < bmap->type)
16201 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
16203 static unsigned long
16204 offset_prel31 (unsigned long addr, bfd_vma offset)
16206 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
16209 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
16213 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
16215 unsigned long first_word = bfd_get_32 (output_bfd, from);
16216 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
16218 /* High bit of first word is supposed to be zero. */
16219 if ((first_word & 0x80000000ul) == 0)
16220 first_word = offset_prel31 (first_word, offset);
16222 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
16223 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
16224 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
16225 second_word = offset_prel31 (second_word, offset);
16227 bfd_put_32 (output_bfd, first_word, to);
16228 bfd_put_32 (output_bfd, second_word, to + 4);
16231 /* Data for make_branch_to_a8_stub(). */
16233 struct a8_branch_to_stub_data
16235 asection *writing_section;
16236 bfd_byte *contents;
16240 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
16241 places for a particular section. */
16244 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
16247 struct elf32_arm_stub_hash_entry *stub_entry;
16248 struct a8_branch_to_stub_data *data;
16249 bfd_byte *contents;
16250 unsigned long branch_insn;
16251 bfd_vma veneered_insn_loc, veneer_entry_loc;
16252 bfd_signed_vma branch_offset;
16254 unsigned int target;
16256 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
16257 data = (struct a8_branch_to_stub_data *) in_arg;
16259 if (stub_entry->target_section != data->writing_section
16260 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
16263 contents = data->contents;
16265 veneered_insn_loc = stub_entry->target_section->output_section->vma
16266 + stub_entry->target_section->output_offset
16267 + stub_entry->target_value;
16269 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
16270 + stub_entry->stub_sec->output_offset
16271 + stub_entry->stub_offset;
16273 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
16274 veneered_insn_loc &= ~3u;
16276 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
16278 abfd = stub_entry->target_section->owner;
16279 target = stub_entry->target_value;
16281 /* We attempt to avoid this condition by setting stubs_always_after_branch
16282 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
16283 This check is just to be on the safe side... */
16284 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
16286 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
16287 "allocated in unsafe location"), abfd);
16291 switch (stub_entry->stub_type)
16293 case arm_stub_a8_veneer_b:
16294 case arm_stub_a8_veneer_b_cond:
16295 branch_insn = 0xf0009000;
16298 case arm_stub_a8_veneer_blx:
16299 branch_insn = 0xf000e800;
16302 case arm_stub_a8_veneer_bl:
16304 unsigned int i1, j1, i2, j2, s;
16306 branch_insn = 0xf000d000;
16309 if (branch_offset < -16777216 || branch_offset > 16777214)
16311 /* There's not much we can do apart from complain if this
16313 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
16314 "of range (input file too large)"), abfd);
16318 /* i1 = not(j1 eor s), so:
16320 j1 = (not i1) eor s. */
16322 branch_insn |= (branch_offset >> 1) & 0x7ff;
16323 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
16324 i2 = (branch_offset >> 22) & 1;
16325 i1 = (branch_offset >> 23) & 1;
16326 s = (branch_offset >> 24) & 1;
16329 branch_insn |= j2 << 11;
16330 branch_insn |= j1 << 13;
16331 branch_insn |= s << 26;
16340 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
16341 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
16346 /* Beginning of stm32l4xx work-around. */
16348 /* Functions encoding instructions necessary for the emission of the
16349 fix-stm32l4xx-629360.
16350 Encoding is extracted from the
16351 ARM (C) Architecture Reference Manual
16352 ARMv7-A and ARMv7-R edition
16353 ARM DDI 0406C.b (ID072512). */
16355 static inline bfd_vma
16356 create_instruction_branch_absolute (int branch_offset)
16358 /* A8.8.18 B (A8-334)
16359 B target_address (Encoding T4). */
16360 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
16361 /* jump offset is: S:I1:I2:imm10:imm11:0. */
16362 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
16364 int s = ((branch_offset & 0x1000000) >> 24);
16365 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
16366 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
16368 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
16369 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
16371 bfd_vma patched_inst = 0xf0009000
16373 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
16374 | j1 << 13 /* J1. */
16375 | j2 << 11 /* J2. */
16376 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
16378 return patched_inst;
16381 static inline bfd_vma
16382 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
16384 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
16385 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
16386 bfd_vma patched_inst = 0xe8900000
16387 | (/*W=*/wback << 21)
16389 | (reg_mask & 0x0000ffff);
16391 return patched_inst;
16394 static inline bfd_vma
16395 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
16397 /* A8.8.60 LDMDB/LDMEA (A8-402)
16398 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
16399 bfd_vma patched_inst = 0xe9100000
16400 | (/*W=*/wback << 21)
16402 | (reg_mask & 0x0000ffff);
16404 return patched_inst;
16407 static inline bfd_vma
16408 create_instruction_mov (int target_reg, int source_reg)
16410 /* A8.8.103 MOV (register) (A8-486)
16411 MOV Rd, Rm (Encoding T1). */
16412 bfd_vma patched_inst = 0x4600
16413 | (target_reg & 0x7)
16414 | ((target_reg & 0x8) >> 3) << 7
16415 | (source_reg << 3);
16417 return patched_inst;
16420 static inline bfd_vma
16421 create_instruction_sub (int target_reg, int source_reg, int value)
16423 /* A8.8.221 SUB (immediate) (A8-708)
16424 SUB Rd, Rn, #value (Encoding T3). */
16425 bfd_vma patched_inst = 0xf1a00000
16426 | (target_reg << 8)
16427 | (source_reg << 16)
16429 | ((value & 0x800) >> 11) << 26
16430 | ((value & 0x700) >> 8) << 12
16433 return patched_inst;
16436 static inline bfd_vma
16437 create_instruction_vldmia (int base_reg, int wback, int num_regs,
16440 /* A8.8.332 VLDM (A8-922)
16441 VLMD{MODE} Rn{!}, {list} (Encoding T2). */
16442 bfd_vma patched_inst = 0xec900a00
16443 | (/*W=*/wback << 21)
16445 | (num_regs & 0x000000ff)
16446 | (((unsigned)first_reg>>1) & 0x0000000f) << 12
16447 | (first_reg & 0x00000001) << 22;
16449 return patched_inst;
16452 static inline bfd_vma
16453 create_instruction_vldmdb (int base_reg, int num_regs, int first_reg)
16455 /* A8.8.332 VLDM (A8-922)
16456 VLMD{MODE} Rn!, {} (Encoding T2). */
16457 bfd_vma patched_inst = 0xed300a00
16459 | (num_regs & 0x000000ff)
16460 | (((unsigned)first_reg>>1) & 0x0000000f) << 12
16461 | (first_reg & 0x00000001) << 22;
16463 return patched_inst;
16466 static inline bfd_vma
16467 create_instruction_udf_w (int value)
16469 /* A8.8.247 UDF (A8-758)
16470 Undefined (Encoding T2). */
16471 bfd_vma patched_inst = 0xf7f0a000
16472 | (value & 0x00000fff)
16473 | (value & 0x000f0000) << 16;
16475 return patched_inst;
16478 static inline bfd_vma
16479 create_instruction_udf (int value)
16481 /* A8.8.247 UDF (A8-758)
16482 Undefined (Encoding T1). */
16483 bfd_vma patched_inst = 0xde00
16486 return patched_inst;
16489 /* Functions writing an instruction in memory, returning the next
16490 memory position to write to. */
16492 static inline bfd_byte *
16493 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
16494 bfd * output_bfd, bfd_byte *pt, insn32 insn)
16496 put_thumb2_insn (htab, output_bfd, insn, pt);
16500 static inline bfd_byte *
16501 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
16502 bfd * output_bfd, bfd_byte *pt, insn32 insn)
16504 put_thumb_insn (htab, output_bfd, insn, pt);
16508 /* Function filling up a region in memory with T1 and T2 UDFs taking
16509 care of alignment. */
16512 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
16514 const bfd_byte * const base_stub_contents,
16515 bfd_byte * const from_stub_contents,
16516 const bfd_byte * const end_stub_contents)
16518 bfd_byte *current_stub_contents = from_stub_contents;
16520 /* Fill the remaining of the stub with deterministic contents : UDF
16522 Check if realignment is needed on modulo 4 frontier using T1, to
16524 if ((current_stub_contents < end_stub_contents)
16525 && !((current_stub_contents - base_stub_contents) % 2)
16526 && ((current_stub_contents - base_stub_contents) % 4))
16527 current_stub_contents =
16528 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
16529 create_instruction_udf (0));
16531 for (; current_stub_contents < end_stub_contents;)
16532 current_stub_contents =
16533 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16534 create_instruction_udf_w (0));
16536 return current_stub_contents;
16539 /* Functions writing the stream of instructions equivalent to the
16540 derived sequence for ldmia, ldmdb, vldm respectively. */
16543 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
16545 const insn32 initial_insn,
16546 const bfd_byte *const initial_insn_addr,
16547 bfd_byte *const base_stub_contents)
16549 int wback = (initial_insn & 0x00200000) >> 21;
16550 int ri, rn = (initial_insn & 0x000F0000) >> 16;
16551 int insn_all_registers = initial_insn & 0x0000ffff;
16552 int insn_low_registers, insn_high_registers;
16553 int usable_register_mask;
16554 int nb_registers = popcount (insn_all_registers);
16555 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
16556 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
16557 bfd_byte *current_stub_contents = base_stub_contents;
16559 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
16561 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
16562 smaller than 8 registers load sequences that do not cause the
16564 if (nb_registers <= 8)
16566 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
16567 current_stub_contents =
16568 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16571 /* B initial_insn_addr+4. */
16573 current_stub_contents =
16574 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16575 create_instruction_branch_absolute
16576 (initial_insn_addr - current_stub_contents));
16579 /* Fill the remaining of the stub with deterministic contents. */
16580 current_stub_contents =
16581 stm32l4xx_fill_stub_udf (htab, output_bfd,
16582 base_stub_contents, current_stub_contents,
16583 base_stub_contents +
16584 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
16589 /* - reg_list[13] == 0. */
16590 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
16592 /* - reg_list[14] & reg_list[15] != 1. */
16593 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
16595 /* - if (wback==1) reg_list[rn] == 0. */
16596 BFD_ASSERT (!wback || !restore_rn);
16598 /* - nb_registers > 8. */
16599 BFD_ASSERT (popcount (insn_all_registers) > 8);
16601 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
16603 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
16604 - One with the 7 lowest registers (register mask 0x007F)
16605 This LDM will finally contain between 2 and 7 registers
16606 - One with the 7 highest registers (register mask 0xDF80)
16607 This ldm will finally contain between 2 and 7 registers. */
16608 insn_low_registers = insn_all_registers & 0x007F;
16609 insn_high_registers = insn_all_registers & 0xDF80;
16611 /* A spare register may be needed during this veneer to temporarily
16612 handle the base register. This register will be restored with the
16613 last LDM operation.
16614 The usable register may be any general purpose register (that
16615 excludes PC, SP, LR : register mask is 0x1FFF). */
16616 usable_register_mask = 0x1FFF;
16618 /* Generate the stub function. */
16621 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
16622 current_stub_contents =
16623 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16624 create_instruction_ldmia
16625 (rn, /*wback=*/1, insn_low_registers));
16627 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
16628 current_stub_contents =
16629 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16630 create_instruction_ldmia
16631 (rn, /*wback=*/1, insn_high_registers));
16634 /* B initial_insn_addr+4. */
16635 current_stub_contents =
16636 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16637 create_instruction_branch_absolute
16638 (initial_insn_addr - current_stub_contents));
16641 else /* if (!wback). */
16645 /* If Rn is not part of the high-register-list, move it there. */
16646 if (!(insn_high_registers & (1 << rn)))
16648 /* Choose a Ri in the high-register-list that will be restored. */
16649 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
16652 current_stub_contents =
16653 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
16654 create_instruction_mov (ri, rn));
16657 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
16658 current_stub_contents =
16659 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16660 create_instruction_ldmia
16661 (ri, /*wback=*/1, insn_low_registers));
16663 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
16664 current_stub_contents =
16665 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16666 create_instruction_ldmia
16667 (ri, /*wback=*/0, insn_high_registers));
16671 /* B initial_insn_addr+4. */
16672 current_stub_contents =
16673 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16674 create_instruction_branch_absolute
16675 (initial_insn_addr - current_stub_contents));
16679 /* Fill the remaining of the stub with deterministic contents. */
16680 current_stub_contents =
16681 stm32l4xx_fill_stub_udf (htab, output_bfd,
16682 base_stub_contents, current_stub_contents,
16683 base_stub_contents +
16684 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
16688 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
16690 const insn32 initial_insn,
16691 const bfd_byte *const initial_insn_addr,
16692 bfd_byte *const base_stub_contents)
16694 int wback = (initial_insn & 0x00200000) >> 21;
16695 int ri, rn = (initial_insn & 0x000f0000) >> 16;
16696 int insn_all_registers = initial_insn & 0x0000ffff;
16697 int insn_low_registers, insn_high_registers;
16698 int usable_register_mask;
16699 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
16700 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
16701 int nb_registers = popcount (insn_all_registers);
16702 bfd_byte *current_stub_contents = base_stub_contents;
16704 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
16706 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
16707 smaller than 8 registers load sequences that do not cause the
16709 if (nb_registers <= 8)
16711 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
16712 current_stub_contents =
16713 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16716 /* B initial_insn_addr+4. */
16717 current_stub_contents =
16718 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16719 create_instruction_branch_absolute
16720 (initial_insn_addr - current_stub_contents));
16722 /* Fill the remaining of the stub with deterministic contents. */
16723 current_stub_contents =
16724 stm32l4xx_fill_stub_udf (htab, output_bfd,
16725 base_stub_contents, current_stub_contents,
16726 base_stub_contents +
16727 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
16732 /* - reg_list[13] == 0. */
16733 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
16735 /* - reg_list[14] & reg_list[15] != 1. */
16736 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
16738 /* - if (wback==1) reg_list[rn] == 0. */
16739 BFD_ASSERT (!wback || !restore_rn);
16741 /* - nb_registers > 8. */
16742 BFD_ASSERT (popcount (insn_all_registers) > 8);
16744 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
16746 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
16747 - One with the 7 lowest registers (register mask 0x007F)
16748 This LDM will finally contain between 2 and 7 registers
16749 - One with the 7 highest registers (register mask 0xDF80)
16750 This ldm will finally contain between 2 and 7 registers. */
16751 insn_low_registers = insn_all_registers & 0x007F;
16752 insn_high_registers = insn_all_registers & 0xDF80;
16754 /* A spare register may be needed during this veneer to temporarily
16755 handle the base register. This register will be restored with
16756 the last LDM operation.
16757 The usable register may be any general purpose register (that excludes
16758 PC, SP, LR : register mask is 0x1FFF). */
16759 usable_register_mask = 0x1FFF;
16761 /* Generate the stub function. */
16762 if (!wback && !restore_pc && !restore_rn)
16764 /* Choose a Ri in the low-register-list that will be restored. */
16765 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
16768 current_stub_contents =
16769 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
16770 create_instruction_mov (ri, rn));
16772 /* LDMDB Ri!, {R-high-register-list}. */
16773 current_stub_contents =
16774 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16775 create_instruction_ldmdb
16776 (ri, /*wback=*/1, insn_high_registers));
16778 /* LDMDB Ri, {R-low-register-list}. */
16779 current_stub_contents =
16780 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16781 create_instruction_ldmdb
16782 (ri, /*wback=*/0, insn_low_registers));
16784 /* B initial_insn_addr+4. */
16785 current_stub_contents =
16786 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16787 create_instruction_branch_absolute
16788 (initial_insn_addr - current_stub_contents));
16790 else if (wback && !restore_pc && !restore_rn)
16792 /* LDMDB Rn!, {R-high-register-list}. */
16793 current_stub_contents =
16794 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16795 create_instruction_ldmdb
16796 (rn, /*wback=*/1, insn_high_registers));
16798 /* LDMDB Rn!, {R-low-register-list}. */
16799 current_stub_contents =
16800 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16801 create_instruction_ldmdb
16802 (rn, /*wback=*/1, insn_low_registers));
16804 /* B initial_insn_addr+4. */
16805 current_stub_contents =
16806 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16807 create_instruction_branch_absolute
16808 (initial_insn_addr - current_stub_contents));
16810 else if (!wback && restore_pc && !restore_rn)
16812 /* Choose a Ri in the high-register-list that will be restored. */
16813 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
16815 /* SUB Ri, Rn, #(4*nb_registers). */
16816 current_stub_contents =
16817 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16818 create_instruction_sub (ri, rn, (4 * nb_registers)));
16820 /* LDMIA Ri!, {R-low-register-list}. */
16821 current_stub_contents =
16822 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16823 create_instruction_ldmia
16824 (ri, /*wback=*/1, insn_low_registers));
16826 /* LDMIA Ri, {R-high-register-list}. */
16827 current_stub_contents =
16828 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16829 create_instruction_ldmia
16830 (ri, /*wback=*/0, insn_high_registers));
16832 else if (wback && restore_pc && !restore_rn)
16834 /* Choose a Ri in the high-register-list that will be restored. */
16835 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
16837 /* SUB Rn, Rn, #(4*nb_registers) */
16838 current_stub_contents =
16839 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16840 create_instruction_sub (rn, rn, (4 * nb_registers)));
16843 current_stub_contents =
16844 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
16845 create_instruction_mov (ri, rn));
16847 /* LDMIA Ri!, {R-low-register-list}. */
16848 current_stub_contents =
16849 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16850 create_instruction_ldmia
16851 (ri, /*wback=*/1, insn_low_registers));
16853 /* LDMIA Ri, {R-high-register-list}. */
16854 current_stub_contents =
16855 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16856 create_instruction_ldmia
16857 (ri, /*wback=*/0, insn_high_registers));
16859 else if (!wback && !restore_pc && restore_rn)
16862 if (!(insn_low_registers & (1 << rn)))
16864 /* Choose a Ri in the low-register-list that will be restored. */
16865 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
16868 current_stub_contents =
16869 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
16870 create_instruction_mov (ri, rn));
16873 /* LDMDB Ri!, {R-high-register-list}. */
16874 current_stub_contents =
16875 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16876 create_instruction_ldmdb
16877 (ri, /*wback=*/1, insn_high_registers));
16879 /* LDMDB Ri, {R-low-register-list}. */
16880 current_stub_contents =
16881 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16882 create_instruction_ldmdb
16883 (ri, /*wback=*/0, insn_low_registers));
16885 /* B initial_insn_addr+4. */
16886 current_stub_contents =
16887 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16888 create_instruction_branch_absolute
16889 (initial_insn_addr - current_stub_contents));
16891 else if (!wback && restore_pc && restore_rn)
16894 if (!(insn_high_registers & (1 << rn)))
16896 /* Choose a Ri in the high-register-list that will be restored. */
16897 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
16900 /* SUB Ri, Rn, #(4*nb_registers). */
16901 current_stub_contents =
16902 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16903 create_instruction_sub (ri, rn, (4 * nb_registers)));
16905 /* LDMIA Ri!, {R-low-register-list}. */
16906 current_stub_contents =
16907 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16908 create_instruction_ldmia
16909 (ri, /*wback=*/1, insn_low_registers));
16911 /* LDMIA Ri, {R-high-register-list}. */
16912 current_stub_contents =
16913 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16914 create_instruction_ldmia
16915 (ri, /*wback=*/0, insn_high_registers));
16917 else if (wback && restore_rn)
16919 /* The assembler should not have accepted to encode this. */
16920 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
16921 "undefined behavior.\n");
16924 /* Fill the remaining of the stub with deterministic contents. */
16925 current_stub_contents =
16926 stm32l4xx_fill_stub_udf (htab, output_bfd,
16927 base_stub_contents, current_stub_contents,
16928 base_stub_contents +
16929 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
16934 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
16936 const insn32 initial_insn,
16937 const bfd_byte *const initial_insn_addr,
16938 bfd_byte *const base_stub_contents)
16940 int num_regs = ((unsigned int)initial_insn << 24) >> 24;
16941 bfd_byte *current_stub_contents = base_stub_contents;
16943 BFD_ASSERT (is_thumb2_vldm (initial_insn));
16945 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
16946 smaller than 8 registers load sequences that do not cause the
16950 /* Untouched instruction. */
16951 current_stub_contents =
16952 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16955 /* B initial_insn_addr+4. */
16956 current_stub_contents =
16957 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16958 create_instruction_branch_absolute
16959 (initial_insn_addr - current_stub_contents));
16963 bfd_boolean is_ia_nobang = /* (IA without !). */
16964 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
16965 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
16966 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
16967 bfd_boolean is_db_bang = /* (DB with !). */
16968 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
16969 int base_reg = ((unsigned int)initial_insn << 12) >> 28;
16970 /* d = UInt (Vd:D);. */
16971 int first_reg = ((((unsigned int)initial_insn << 16) >> 28) << 1)
16972 | (((unsigned int)initial_insn << 9) >> 31);
16974 /* Compute the number of 8-register chunks needed to split. */
16975 int chunks = (num_regs%8) ? (num_regs/8 + 1) : (num_regs/8);
16978 /* The test coverage has been done assuming the following
16979 hypothesis that exactly one of the previous is_ predicates is
16981 BFD_ASSERT ((is_ia_nobang ^ is_ia_bang ^ is_db_bang) &&
16982 !(is_ia_nobang & is_ia_bang & is_db_bang));
16984 /* We treat the cutting of the register in one pass for all
16985 cases, then we emit the adjustments:
16988 -> vldm rx!, {8_words_or_less} for each needed 8_word
16989 -> sub rx, rx, #size (list)
16992 -> vldm rx!, {8_words_or_less} for each needed 8_word
16993 This also handles vpop instruction (when rx is sp)
16996 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
16997 for (chunk = 0; chunk<chunks; ++chunk)
16999 if (is_ia_nobang || is_ia_bang)
17001 current_stub_contents =
17002 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17003 create_instruction_vldmia
17006 chunks - (chunk + 1) ?
17007 8 : num_regs - chunk * 8,
17008 first_reg + chunk * 8));
17010 else if (is_db_bang)
17012 current_stub_contents =
17013 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17014 create_instruction_vldmdb
17016 chunks - (chunk + 1) ?
17017 8 : num_regs - chunk * 8,
17018 first_reg + chunk * 8));
17022 /* Only this case requires the base register compensation
17026 current_stub_contents =
17027 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17028 create_instruction_sub
17029 (base_reg, base_reg, 4*num_regs));
17032 /* B initial_insn_addr+4. */
17033 current_stub_contents =
17034 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17035 create_instruction_branch_absolute
17036 (initial_insn_addr - current_stub_contents));
17039 /* Fill the remaining of the stub with deterministic contents. */
17040 current_stub_contents =
17041 stm32l4xx_fill_stub_udf (htab, output_bfd,
17042 base_stub_contents, current_stub_contents,
17043 base_stub_contents +
17044 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
17048 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
17050 const insn32 wrong_insn,
17051 const bfd_byte *const wrong_insn_addr,
17052 bfd_byte *const stub_contents)
17054 if (is_thumb2_ldmia (wrong_insn))
17055 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
17056 wrong_insn, wrong_insn_addr,
17058 else if (is_thumb2_ldmdb (wrong_insn))
17059 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
17060 wrong_insn, wrong_insn_addr,
17062 else if (is_thumb2_vldm (wrong_insn))
17063 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
17064 wrong_insn, wrong_insn_addr,
17068 /* End of stm32l4xx work-around. */
17072 elf32_arm_add_relocation (bfd *output_bfd, struct bfd_link_info *info,
17073 asection *output_sec, Elf_Internal_Rela *rel)
17075 BFD_ASSERT (output_sec && rel);
17076 struct bfd_elf_section_reloc_data *output_reldata;
17077 struct elf32_arm_link_hash_table *htab;
17078 struct bfd_elf_section_data *oesd = elf_section_data (output_sec);
17079 Elf_Internal_Shdr *rel_hdr;
17084 rel_hdr = oesd->rel.hdr;
17085 output_reldata = &(oesd->rel);
17087 else if (oesd->rela.hdr)
17089 rel_hdr = oesd->rela.hdr;
17090 output_reldata = &(oesd->rela);
17097 bfd_byte *erel = rel_hdr->contents;
17098 erel += output_reldata->count * rel_hdr->sh_entsize;
17099 htab = elf32_arm_hash_table (info);
17100 SWAP_RELOC_OUT (htab) (output_bfd, rel, erel);
17101 output_reldata->count++;
17104 /* Do code byteswapping. Return FALSE afterwards so that the section is
17105 written out as normal. */
17108 elf32_arm_write_section (bfd *output_bfd,
17109 struct bfd_link_info *link_info,
17111 bfd_byte *contents)
17113 unsigned int mapcount, errcount;
17114 _arm_elf_section_data *arm_data;
17115 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
17116 elf32_arm_section_map *map;
17117 elf32_vfp11_erratum_list *errnode;
17118 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
17121 bfd_vma offset = sec->output_section->vma + sec->output_offset;
17125 if (globals == NULL)
17128 /* If this section has not been allocated an _arm_elf_section_data
17129 structure then we cannot record anything. */
17130 arm_data = get_arm_elf_section_data (sec);
17131 if (arm_data == NULL)
17134 mapcount = arm_data->mapcount;
17135 map = arm_data->map;
17136 errcount = arm_data->erratumcount;
17140 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
17142 for (errnode = arm_data->erratumlist; errnode != 0;
17143 errnode = errnode->next)
17145 bfd_vma target = errnode->vma - offset;
17147 switch (errnode->type)
17149 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
17151 bfd_vma branch_to_veneer;
17152 /* Original condition code of instruction, plus bit mask for
17153 ARM B instruction. */
17154 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
17157 /* The instruction is before the label. */
17160 /* Above offset included in -4 below. */
17161 branch_to_veneer = errnode->u.b.veneer->vma
17162 - errnode->vma - 4;
17164 if ((signed) branch_to_veneer < -(1 << 25)
17165 || (signed) branch_to_veneer >= (1 << 25))
17166 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
17167 "range"), output_bfd);
17169 insn |= (branch_to_veneer >> 2) & 0xffffff;
17170 contents[endianflip ^ target] = insn & 0xff;
17171 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
17172 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
17173 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
17177 case VFP11_ERRATUM_ARM_VENEER:
17179 bfd_vma branch_from_veneer;
17182 /* Take size of veneer into account. */
17183 branch_from_veneer = errnode->u.v.branch->vma
17184 - errnode->vma - 12;
17186 if ((signed) branch_from_veneer < -(1 << 25)
17187 || (signed) branch_from_veneer >= (1 << 25))
17188 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
17189 "range"), output_bfd);
17191 /* Original instruction. */
17192 insn = errnode->u.v.branch->u.b.vfp_insn;
17193 contents[endianflip ^ target] = insn & 0xff;
17194 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
17195 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
17196 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
17198 /* Branch back to insn after original insn. */
17199 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
17200 contents[endianflip ^ (target + 4)] = insn & 0xff;
17201 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
17202 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
17203 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
17213 if (arm_data->stm32l4xx_erratumcount != 0)
17215 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
17216 stm32l4xx_errnode != 0;
17217 stm32l4xx_errnode = stm32l4xx_errnode->next)
17219 bfd_vma target = stm32l4xx_errnode->vma - offset;
17221 switch (stm32l4xx_errnode->type)
17223 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
17226 bfd_vma branch_to_veneer =
17227 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
17229 if ((signed) branch_to_veneer < -(1 << 24)
17230 || (signed) branch_to_veneer >= (1 << 24))
17232 bfd_vma out_of_range =
17233 ((signed) branch_to_veneer < -(1 << 24)) ?
17234 - branch_to_veneer - (1 << 24) :
17235 ((signed) branch_to_veneer >= (1 << 24)) ?
17236 branch_to_veneer - (1 << 24) : 0;
17238 (*_bfd_error_handler)
17239 (_("%B(%#x): error: Cannot create STM32L4XX veneer. "
17240 "Jump out of range by %ld bytes. "
17241 "Cannot encode branch instruction. "),
17243 (long) (stm32l4xx_errnode->vma - 4),
17248 insn = create_instruction_branch_absolute
17249 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
17251 /* The instruction is before the label. */
17254 put_thumb2_insn (globals, output_bfd,
17255 (bfd_vma) insn, contents + target);
17259 case STM32L4XX_ERRATUM_VENEER:
17262 bfd_byte * veneer_r;
17265 veneer = contents + target;
17267 + stm32l4xx_errnode->u.b.veneer->vma
17268 - stm32l4xx_errnode->vma - 4;
17270 if ((signed) (veneer_r - veneer -
17271 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
17272 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
17273 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
17274 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
17275 || (signed) (veneer_r - veneer) >= (1 << 24))
17277 (*_bfd_error_handler) (_("%B: error: Cannot create STM32L4XX "
17278 "veneer."), output_bfd);
17282 /* Original instruction. */
17283 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
17285 stm32l4xx_create_replacing_stub
17286 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
17296 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
17298 arm_unwind_table_edit *edit_node
17299 = arm_data->u.exidx.unwind_edit_list;
17300 /* Now, sec->size is the size of the section we will write. The original
17301 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
17302 markers) was sec->rawsize. (This isn't the case if we perform no
17303 edits, then rawsize will be zero and we should use size). */
17304 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
17305 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
17306 unsigned int in_index, out_index;
17307 bfd_vma add_to_offsets = 0;
17309 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
17313 unsigned int edit_index = edit_node->index;
17315 if (in_index < edit_index && in_index * 8 < input_size)
17317 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
17318 contents + in_index * 8, add_to_offsets);
17322 else if (in_index == edit_index
17323 || (in_index * 8 >= input_size
17324 && edit_index == UINT_MAX))
17326 switch (edit_node->type)
17328 case DELETE_EXIDX_ENTRY:
17330 add_to_offsets += 8;
17333 case INSERT_EXIDX_CANTUNWIND_AT_END:
17335 asection *text_sec = edit_node->linked_section;
17336 bfd_vma text_offset = text_sec->output_section->vma
17337 + text_sec->output_offset
17339 bfd_vma exidx_offset = offset + out_index * 8;
17340 unsigned long prel31_offset;
17342 /* Note: this is meant to be equivalent to an
17343 R_ARM_PREL31 relocation. These synthetic
17344 EXIDX_CANTUNWIND markers are not relocated by the
17345 usual BFD method. */
17346 prel31_offset = (text_offset - exidx_offset)
17348 if (bfd_link_relocatable (link_info))
17350 /* Here relocation for new EXIDX_CANTUNWIND is
17351 created, so there is no need to
17352 adjust offset by hand. */
17353 prel31_offset = text_sec->output_offset
17356 /* New relocation entity. */
17357 asection *text_out = text_sec->output_section;
17358 Elf_Internal_Rela rel;
17360 rel.r_offset = exidx_offset;
17361 rel.r_info = ELF32_R_INFO (text_out->target_index,
17364 elf32_arm_add_relocation (output_bfd, link_info,
17365 sec->output_section,
17369 /* First address we can't unwind. */
17370 bfd_put_32 (output_bfd, prel31_offset,
17371 &edited_contents[out_index * 8]);
17373 /* Code for EXIDX_CANTUNWIND. */
17374 bfd_put_32 (output_bfd, 0x1,
17375 &edited_contents[out_index * 8 + 4]);
17378 add_to_offsets -= 8;
17383 edit_node = edit_node->next;
17388 /* No more edits, copy remaining entries verbatim. */
17389 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
17390 contents + in_index * 8, add_to_offsets);
17396 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
17397 bfd_set_section_contents (output_bfd, sec->output_section,
17399 (file_ptr) sec->output_offset, sec->size);
17404 /* Fix code to point to Cortex-A8 erratum stubs. */
17405 if (globals->fix_cortex_a8)
17407 struct a8_branch_to_stub_data data;
17409 data.writing_section = sec;
17410 data.contents = contents;
17412 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
17419 if (globals->byteswap_code)
17421 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
17424 for (i = 0; i < mapcount; i++)
17426 if (i == mapcount - 1)
17429 end = map[i + 1].vma;
17431 switch (map[i].type)
17434 /* Byte swap code words. */
17435 while (ptr + 3 < end)
17437 tmp = contents[ptr];
17438 contents[ptr] = contents[ptr + 3];
17439 contents[ptr + 3] = tmp;
17440 tmp = contents[ptr + 1];
17441 contents[ptr + 1] = contents[ptr + 2];
17442 contents[ptr + 2] = tmp;
17448 /* Byte swap code halfwords. */
17449 while (ptr + 1 < end)
17451 tmp = contents[ptr];
17452 contents[ptr] = contents[ptr + 1];
17453 contents[ptr + 1] = tmp;
17459 /* Leave data alone. */
17467 arm_data->mapcount = -1;
17468 arm_data->mapsize = 0;
17469 arm_data->map = NULL;
17474 /* Mangle thumb function symbols as we read them in. */
17477 elf32_arm_swap_symbol_in (bfd * abfd,
17480 Elf_Internal_Sym *dst)
17482 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
17485 /* New EABI objects mark thumb function symbols by setting the low bit of
17487 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
17488 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
17490 if (dst->st_value & 1)
17492 dst->st_value &= ~(bfd_vma) 1;
17493 dst->st_target_internal = ST_BRANCH_TO_THUMB;
17496 dst->st_target_internal = ST_BRANCH_TO_ARM;
17498 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
17500 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
17501 dst->st_target_internal = ST_BRANCH_TO_THUMB;
17503 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
17504 dst->st_target_internal = ST_BRANCH_LONG;
17506 dst->st_target_internal = ST_BRANCH_UNKNOWN;
17512 /* Mangle thumb function symbols as we write them out. */
17515 elf32_arm_swap_symbol_out (bfd *abfd,
17516 const Elf_Internal_Sym *src,
17520 Elf_Internal_Sym newsym;
17522 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
17523 of the address set, as per the new EABI. We do this unconditionally
17524 because objcopy does not set the elf header flags until after
17525 it writes out the symbol table. */
17526 if (src->st_target_internal == ST_BRANCH_TO_THUMB)
17529 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
17530 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
17531 if (newsym.st_shndx != SHN_UNDEF)
17533 /* Do this only for defined symbols. At link type, the static
17534 linker will simulate the work of dynamic linker of resolving
17535 symbols and will carry over the thumbness of found symbols to
17536 the output symbol table. It's not clear how it happens, but
17537 the thumbness of undefined symbols can well be different at
17538 runtime, and writing '1' for them will be confusing for users
17539 and possibly for dynamic linker itself.
17541 newsym.st_value |= 1;
17546 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
17549 /* Add the PT_ARM_EXIDX program header. */
17552 elf32_arm_modify_segment_map (bfd *abfd,
17553 struct bfd_link_info *info ATTRIBUTE_UNUSED)
17555 struct elf_segment_map *m;
17558 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
17559 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
17561 /* If there is already a PT_ARM_EXIDX header, then we do not
17562 want to add another one. This situation arises when running
17563 "strip"; the input binary already has the header. */
17564 m = elf_seg_map (abfd);
17565 while (m && m->p_type != PT_ARM_EXIDX)
17569 m = (struct elf_segment_map *)
17570 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
17573 m->p_type = PT_ARM_EXIDX;
17575 m->sections[0] = sec;
17577 m->next = elf_seg_map (abfd);
17578 elf_seg_map (abfd) = m;
17585 /* We may add a PT_ARM_EXIDX program header. */
17588 elf32_arm_additional_program_headers (bfd *abfd,
17589 struct bfd_link_info *info ATTRIBUTE_UNUSED)
17593 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
17594 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
17600 /* Hook called by the linker routine which adds symbols from an object
17604 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
17605 Elf_Internal_Sym *sym, const char **namep,
17606 flagword *flagsp, asection **secp, bfd_vma *valp)
17608 if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
17609 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)
17610 && (abfd->flags & DYNAMIC) == 0
17611 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
17612 elf_tdata (info->output_bfd)->has_gnu_symbols = elf_gnu_symbol_any;
17614 if (elf32_arm_hash_table (info) == NULL)
17617 if (elf32_arm_hash_table (info)->vxworks_p
17618 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
17619 flagsp, secp, valp))
17625 /* We use this to override swap_symbol_in and swap_symbol_out. */
17626 const struct elf_size_info elf32_arm_size_info =
17628 sizeof (Elf32_External_Ehdr),
17629 sizeof (Elf32_External_Phdr),
17630 sizeof (Elf32_External_Shdr),
17631 sizeof (Elf32_External_Rel),
17632 sizeof (Elf32_External_Rela),
17633 sizeof (Elf32_External_Sym),
17634 sizeof (Elf32_External_Dyn),
17635 sizeof (Elf_External_Note),
17639 ELFCLASS32, EV_CURRENT,
17640 bfd_elf32_write_out_phdrs,
17641 bfd_elf32_write_shdrs_and_ehdr,
17642 bfd_elf32_checksum_contents,
17643 bfd_elf32_write_relocs,
17644 elf32_arm_swap_symbol_in,
17645 elf32_arm_swap_symbol_out,
17646 bfd_elf32_slurp_reloc_table,
17647 bfd_elf32_slurp_symbol_table,
17648 bfd_elf32_swap_dyn_in,
17649 bfd_elf32_swap_dyn_out,
17650 bfd_elf32_swap_reloc_in,
17651 bfd_elf32_swap_reloc_out,
17652 bfd_elf32_swap_reloca_in,
17653 bfd_elf32_swap_reloca_out
17657 read_code32 (const bfd *abfd, const bfd_byte *addr)
17659 /* V7 BE8 code is always little endian. */
17660 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
17661 return bfd_getl32 (addr);
17663 return bfd_get_32 (abfd, addr);
17667 read_code16 (const bfd *abfd, const bfd_byte *addr)
17669 /* V7 BE8 code is always little endian. */
17670 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
17671 return bfd_getl16 (addr);
17673 return bfd_get_16 (abfd, addr);
17676 /* Return size of plt0 entry starting at ADDR
17677 or (bfd_vma) -1 if size can not be determined. */
17680 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
17682 bfd_vma first_word;
17685 first_word = read_code32 (abfd, addr);
17687 if (first_word == elf32_arm_plt0_entry[0])
17688 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
17689 else if (first_word == elf32_thumb2_plt0_entry[0])
17690 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
17692 /* We don't yet handle this PLT format. */
17693 return (bfd_vma) -1;
17698 /* Return size of plt entry starting at offset OFFSET
17699 of plt section located at address START
17700 or (bfd_vma) -1 if size can not be determined. */
17703 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
17705 bfd_vma first_insn;
17706 bfd_vma plt_size = 0;
17707 const bfd_byte *addr = start + offset;
17709 /* PLT entry size if fixed on Thumb-only platforms. */
17710 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
17711 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
17713 /* Respect Thumb stub if necessary. */
17714 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
17716 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
17719 /* Strip immediate from first add. */
17720 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
17722 #ifdef FOUR_WORD_PLT
17723 if (first_insn == elf32_arm_plt_entry[0])
17724 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
17726 if (first_insn == elf32_arm_plt_entry_long[0])
17727 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
17728 else if (first_insn == elf32_arm_plt_entry_short[0])
17729 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
17732 /* We don't yet handle this PLT format. */
17733 return (bfd_vma) -1;
17738 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
17741 elf32_arm_get_synthetic_symtab (bfd *abfd,
17742 long symcount ATTRIBUTE_UNUSED,
17743 asymbol **syms ATTRIBUTE_UNUSED,
17753 Elf_Internal_Shdr *hdr;
17761 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
17764 if (dynsymcount <= 0)
17767 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
17768 if (relplt == NULL)
17771 hdr = &elf_section_data (relplt)->this_hdr;
17772 if (hdr->sh_link != elf_dynsymtab (abfd)
17773 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
17776 plt = bfd_get_section_by_name (abfd, ".plt");
17780 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
17783 data = plt->contents;
17786 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
17788 bfd_cache_section_contents((asection *) plt, data);
17791 count = relplt->size / hdr->sh_entsize;
17792 size = count * sizeof (asymbol);
17793 p = relplt->relocation;
17794 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
17796 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
17797 if (p->addend != 0)
17798 size += sizeof ("+0x") - 1 + 8;
17801 s = *ret = (asymbol *) bfd_malloc (size);
17805 offset = elf32_arm_plt0_size (abfd, data);
17806 if (offset == (bfd_vma) -1)
17809 names = (char *) (s + count);
17810 p = relplt->relocation;
17812 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
17816 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
17817 if (plt_size == (bfd_vma) -1)
17820 *s = **p->sym_ptr_ptr;
17821 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
17822 we are defining a symbol, ensure one of them is set. */
17823 if ((s->flags & BSF_LOCAL) == 0)
17824 s->flags |= BSF_GLOBAL;
17825 s->flags |= BSF_SYNTHETIC;
17830 len = strlen ((*p->sym_ptr_ptr)->name);
17831 memcpy (names, (*p->sym_ptr_ptr)->name, len);
17833 if (p->addend != 0)
17837 memcpy (names, "+0x", sizeof ("+0x") - 1);
17838 names += sizeof ("+0x") - 1;
17839 bfd_sprintf_vma (abfd, buf, p->addend);
17840 for (a = buf; *a == '0'; ++a)
17843 memcpy (names, a, len);
17846 memcpy (names, "@plt", sizeof ("@plt"));
17847 names += sizeof ("@plt");
17849 offset += plt_size;
17856 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
17858 if (hdr->sh_flags & SHF_ARM_NOREAD)
17859 *flags |= SEC_ELF_NOREAD;
17864 elf32_arm_lookup_section_flags (char *flag_name)
17866 if (!strcmp (flag_name, "SHF_ARM_NOREAD"))
17867 return SHF_ARM_NOREAD;
17869 return SEC_NO_FLAGS;
17872 static unsigned int
17873 elf32_arm_count_additional_relocs (asection *sec)
17875 struct _arm_elf_section_data *arm_data;
17876 arm_data = get_arm_elf_section_data (sec);
17877 return arm_data->additional_reloc_count;
17880 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
17881 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
17882 FALSE otherwise. ISECTION is the best guess matching section from the
17883 input bfd IBFD, but it might be NULL. */
17886 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
17887 bfd *obfd ATTRIBUTE_UNUSED,
17888 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
17889 Elf_Internal_Shdr *osection)
17891 switch (osection->sh_type)
17893 case SHT_ARM_EXIDX:
17895 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
17896 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
17899 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
17900 osection->sh_info = 0;
17902 /* The sh_link field must be set to the text section associated with
17903 this index section. Unfortunately the ARM EHABI does not specify
17904 exactly how to determine this association. Our caller does try
17905 to match up OSECTION with its corresponding input section however
17906 so that is a good first guess. */
17907 if (isection != NULL
17908 && osection->bfd_section != NULL
17909 && isection->bfd_section != NULL
17910 && isection->bfd_section->output_section != NULL
17911 && isection->bfd_section->output_section == osection->bfd_section
17912 && iheaders != NULL
17913 && isection->sh_link > 0
17914 && isection->sh_link < elf_numsections (ibfd)
17915 && iheaders[isection->sh_link]->bfd_section != NULL
17916 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
17919 for (i = elf_numsections (obfd); i-- > 0;)
17920 if (oheaders[i]->bfd_section
17921 == iheaders[isection->sh_link]->bfd_section->output_section)
17927 /* Failing that we have to find a matching section ourselves. If
17928 we had the output section name available we could compare that
17929 with input section names. Unfortunately we don't. So instead
17930 we use a simple heuristic and look for the nearest executable
17931 section before this one. */
17932 for (i = elf_numsections (obfd); i-- > 0;)
17933 if (oheaders[i] == osection)
17939 if (oheaders[i]->sh_type == SHT_PROGBITS
17940 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
17941 == (SHF_ALLOC | SHF_EXECINSTR))
17947 osection->sh_link = i;
17948 /* If the text section was part of a group
17949 then the index section should be too. */
17950 if (oheaders[i]->sh_flags & SHF_GROUP)
17951 osection->sh_flags |= SHF_GROUP;
17957 case SHT_ARM_PREEMPTMAP:
17958 osection->sh_flags = SHF_ALLOC;
17961 case SHT_ARM_ATTRIBUTES:
17962 case SHT_ARM_DEBUGOVERLAY:
17963 case SHT_ARM_OVERLAYSECTION:
17971 #undef elf_backend_copy_special_section_fields
17972 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
17974 #define ELF_ARCH bfd_arch_arm
17975 #define ELF_TARGET_ID ARM_ELF_DATA
17976 #define ELF_MACHINE_CODE EM_ARM
17977 #ifdef __QNXTARGET__
17978 #define ELF_MAXPAGESIZE 0x1000
17980 #define ELF_MAXPAGESIZE 0x10000
17982 #define ELF_MINPAGESIZE 0x1000
17983 #define ELF_COMMONPAGESIZE 0x1000
17985 #define bfd_elf32_mkobject elf32_arm_mkobject
17987 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
17988 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
17989 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
17990 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
17991 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
17992 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
17993 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
17994 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
17995 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
17996 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
17997 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
17998 #define bfd_elf32_bfd_final_link elf32_arm_final_link
17999 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
18001 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
18002 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
18003 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
18004 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
18005 #define elf_backend_check_relocs elf32_arm_check_relocs
18006 #define elf_backend_relocate_section elf32_arm_relocate_section
18007 #define elf_backend_write_section elf32_arm_write_section
18008 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
18009 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
18010 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
18011 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
18012 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
18013 #define elf_backend_always_size_sections elf32_arm_always_size_sections
18014 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
18015 #define elf_backend_post_process_headers elf32_arm_post_process_headers
18016 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
18017 #define elf_backend_object_p elf32_arm_object_p
18018 #define elf_backend_fake_sections elf32_arm_fake_sections
18019 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
18020 #define elf_backend_final_write_processing elf32_arm_final_write_processing
18021 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
18022 #define elf_backend_size_info elf32_arm_size_info
18023 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
18024 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
18025 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
18026 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
18027 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
18028 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
18030 #define elf_backend_can_refcount 1
18031 #define elf_backend_can_gc_sections 1
18032 #define elf_backend_plt_readonly 1
18033 #define elf_backend_want_got_plt 1
18034 #define elf_backend_want_plt_sym 0
18035 #define elf_backend_may_use_rel_p 1
18036 #define elf_backend_may_use_rela_p 0
18037 #define elf_backend_default_use_rela_p 0
18039 #define elf_backend_got_header_size 12
18040 #define elf_backend_extern_protected_data 1
18042 #undef elf_backend_obj_attrs_vendor
18043 #define elf_backend_obj_attrs_vendor "aeabi"
18044 #undef elf_backend_obj_attrs_section
18045 #define elf_backend_obj_attrs_section ".ARM.attributes"
18046 #undef elf_backend_obj_attrs_arg_type
18047 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
18048 #undef elf_backend_obj_attrs_section_type
18049 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
18050 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
18051 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
18053 #undef elf_backend_section_flags
18054 #define elf_backend_section_flags elf32_arm_section_flags
18055 #undef elf_backend_lookup_section_flags_hook
18056 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
18058 #include "elf32-target.h"
18060 /* Native Client targets. */
18062 #undef TARGET_LITTLE_SYM
18063 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
18064 #undef TARGET_LITTLE_NAME
18065 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
18066 #undef TARGET_BIG_SYM
18067 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
18068 #undef TARGET_BIG_NAME
18069 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
18071 /* Like elf32_arm_link_hash_table_create -- but overrides
18072 appropriately for NaCl. */
18074 static struct bfd_link_hash_table *
18075 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
18077 struct bfd_link_hash_table *ret;
18079 ret = elf32_arm_link_hash_table_create (abfd);
18082 struct elf32_arm_link_hash_table *htab
18083 = (struct elf32_arm_link_hash_table *) ret;
18087 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
18088 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
18093 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
18094 really need to use elf32_arm_modify_segment_map. But we do it
18095 anyway just to reduce gratuitous differences with the stock ARM backend. */
18098 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
18100 return (elf32_arm_modify_segment_map (abfd, info)
18101 && nacl_modify_segment_map (abfd, info));
18105 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
18107 elf32_arm_final_write_processing (abfd, linker);
18108 nacl_final_write_processing (abfd, linker);
18112 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
18113 const arelent *rel ATTRIBUTE_UNUSED)
18116 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
18117 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
18121 #define elf32_bed elf32_arm_nacl_bed
18122 #undef bfd_elf32_bfd_link_hash_table_create
18123 #define bfd_elf32_bfd_link_hash_table_create \
18124 elf32_arm_nacl_link_hash_table_create
18125 #undef elf_backend_plt_alignment
18126 #define elf_backend_plt_alignment 4
18127 #undef elf_backend_modify_segment_map
18128 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
18129 #undef elf_backend_modify_program_headers
18130 #define elf_backend_modify_program_headers nacl_modify_program_headers
18131 #undef elf_backend_final_write_processing
18132 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
18133 #undef bfd_elf32_get_synthetic_symtab
18134 #undef elf_backend_plt_sym_val
18135 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
18136 #undef elf_backend_copy_special_section_fields
18138 #undef ELF_MINPAGESIZE
18139 #undef ELF_COMMONPAGESIZE
18142 #include "elf32-target.h"
18144 /* Reset to defaults. */
18145 #undef elf_backend_plt_alignment
18146 #undef elf_backend_modify_segment_map
18147 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
18148 #undef elf_backend_modify_program_headers
18149 #undef elf_backend_final_write_processing
18150 #define elf_backend_final_write_processing elf32_arm_final_write_processing
18151 #undef ELF_MINPAGESIZE
18152 #define ELF_MINPAGESIZE 0x1000
18153 #undef ELF_COMMONPAGESIZE
18154 #define ELF_COMMONPAGESIZE 0x1000
18157 /* VxWorks Targets. */
18159 #undef TARGET_LITTLE_SYM
18160 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
18161 #undef TARGET_LITTLE_NAME
18162 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
18163 #undef TARGET_BIG_SYM
18164 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
18165 #undef TARGET_BIG_NAME
18166 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
18168 /* Like elf32_arm_link_hash_table_create -- but overrides
18169 appropriately for VxWorks. */
18171 static struct bfd_link_hash_table *
18172 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
18174 struct bfd_link_hash_table *ret;
18176 ret = elf32_arm_link_hash_table_create (abfd);
18179 struct elf32_arm_link_hash_table *htab
18180 = (struct elf32_arm_link_hash_table *) ret;
18182 htab->vxworks_p = 1;
18188 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
18190 elf32_arm_final_write_processing (abfd, linker);
18191 elf_vxworks_final_write_processing (abfd, linker);
18195 #define elf32_bed elf32_arm_vxworks_bed
18197 #undef bfd_elf32_bfd_link_hash_table_create
18198 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
18199 #undef elf_backend_final_write_processing
18200 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
18201 #undef elf_backend_emit_relocs
18202 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
18204 #undef elf_backend_may_use_rel_p
18205 #define elf_backend_may_use_rel_p 0
18206 #undef elf_backend_may_use_rela_p
18207 #define elf_backend_may_use_rela_p 1
18208 #undef elf_backend_default_use_rela_p
18209 #define elf_backend_default_use_rela_p 1
18210 #undef elf_backend_want_plt_sym
18211 #define elf_backend_want_plt_sym 1
18212 #undef ELF_MAXPAGESIZE
18213 #define ELF_MAXPAGESIZE 0x1000
18215 #include "elf32-target.h"
18218 /* Merge backend specific data from an object file to the output
18219 object file when linking. */
18222 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
18224 flagword out_flags;
18226 bfd_boolean flags_compatible = TRUE;
18229 /* Check if we have the same endianness. */
18230 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
18233 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
18236 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
18239 /* The input BFD must have had its flags initialised. */
18240 /* The following seems bogus to me -- The flags are initialized in
18241 the assembler but I don't think an elf_flags_init field is
18242 written into the object. */
18243 /* BFD_ASSERT (elf_flags_init (ibfd)); */
18245 in_flags = elf_elfheader (ibfd)->e_flags;
18246 out_flags = elf_elfheader (obfd)->e_flags;
18248 /* In theory there is no reason why we couldn't handle this. However
18249 in practice it isn't even close to working and there is no real
18250 reason to want it. */
18251 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
18252 && !(ibfd->flags & DYNAMIC)
18253 && (in_flags & EF_ARM_BE8))
18255 _bfd_error_handler (_("error: %B is already in final BE8 format"),
18260 if (!elf_flags_init (obfd))
18262 /* If the input is the default architecture and had the default
18263 flags then do not bother setting the flags for the output
18264 architecture, instead allow future merges to do this. If no
18265 future merges ever set these flags then they will retain their
18266 uninitialised values, which surprise surprise, correspond
18267 to the default values. */
18268 if (bfd_get_arch_info (ibfd)->the_default
18269 && elf_elfheader (ibfd)->e_flags == 0)
18272 elf_flags_init (obfd) = TRUE;
18273 elf_elfheader (obfd)->e_flags = in_flags;
18275 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
18276 && bfd_get_arch_info (obfd)->the_default)
18277 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
18282 /* Determine what should happen if the input ARM architecture
18283 does not match the output ARM architecture. */
18284 if (! bfd_arm_merge_machines (ibfd, obfd))
18287 /* Identical flags must be compatible. */
18288 if (in_flags == out_flags)
18291 /* Check to see if the input BFD actually contains any sections. If
18292 not, its flags may not have been initialised either, but it
18293 cannot actually cause any incompatiblity. Do not short-circuit
18294 dynamic objects; their section list may be emptied by
18295 elf_link_add_object_symbols.
18297 Also check to see if there are no code sections in the input.
18298 In this case there is no need to check for code specific flags.
18299 XXX - do we need to worry about floating-point format compatability
18300 in data sections ? */
18301 if (!(ibfd->flags & DYNAMIC))
18303 bfd_boolean null_input_bfd = TRUE;
18304 bfd_boolean only_data_sections = TRUE;
18306 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
18308 /* Ignore synthetic glue sections. */
18309 if (strcmp (sec->name, ".glue_7")
18310 && strcmp (sec->name, ".glue_7t"))
18312 if ((bfd_get_section_flags (ibfd, sec)
18313 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
18314 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
18315 only_data_sections = FALSE;
18317 null_input_bfd = FALSE;
18322 if (null_input_bfd || only_data_sections)
18326 /* Complain about various flag mismatches. */
18327 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
18328 EF_ARM_EABI_VERSION (out_flags)))
18331 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
18333 (in_flags & EF_ARM_EABIMASK) >> 24,
18334 (out_flags & EF_ARM_EABIMASK) >> 24);
18338 /* Not sure what needs to be checked for EABI versions >= 1. */
18339 /* VxWorks libraries do not use these flags. */
18340 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
18341 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
18342 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
18344 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
18347 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
18349 in_flags & EF_ARM_APCS_26 ? 26 : 32,
18350 out_flags & EF_ARM_APCS_26 ? 26 : 32);
18351 flags_compatible = FALSE;
18354 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
18356 if (in_flags & EF_ARM_APCS_FLOAT)
18358 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
18362 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
18365 flags_compatible = FALSE;
18368 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
18370 if (in_flags & EF_ARM_VFP_FLOAT)
18372 (_("error: %B uses VFP instructions, whereas %B does not"),
18376 (_("error: %B uses FPA instructions, whereas %B does not"),
18379 flags_compatible = FALSE;
18382 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
18384 if (in_flags & EF_ARM_MAVERICK_FLOAT)
18386 (_("error: %B uses Maverick instructions, whereas %B does not"),
18390 (_("error: %B does not use Maverick instructions, whereas %B does"),
18393 flags_compatible = FALSE;
18396 #ifdef EF_ARM_SOFT_FLOAT
18397 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
18399 /* We can allow interworking between code that is VFP format
18400 layout, and uses either soft float or integer regs for
18401 passing floating point arguments and results. We already
18402 know that the APCS_FLOAT flags match; similarly for VFP
18404 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
18405 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
18407 if (in_flags & EF_ARM_SOFT_FLOAT)
18409 (_("error: %B uses software FP, whereas %B uses hardware FP"),
18413 (_("error: %B uses hardware FP, whereas %B uses software FP"),
18416 flags_compatible = FALSE;
18421 /* Interworking mismatch is only a warning. */
18422 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
18424 if (in_flags & EF_ARM_INTERWORK)
18427 (_("Warning: %B supports interworking, whereas %B does not"),
18433 (_("Warning: %B does not support interworking, whereas %B does"),
18439 return flags_compatible;
18443 /* Symbian OS Targets. */
18445 #undef TARGET_LITTLE_SYM
18446 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
18447 #undef TARGET_LITTLE_NAME
18448 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
18449 #undef TARGET_BIG_SYM
18450 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
18451 #undef TARGET_BIG_NAME
18452 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
18454 /* Like elf32_arm_link_hash_table_create -- but overrides
18455 appropriately for Symbian OS. */
18457 static struct bfd_link_hash_table *
18458 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
18460 struct bfd_link_hash_table *ret;
18462 ret = elf32_arm_link_hash_table_create (abfd);
18465 struct elf32_arm_link_hash_table *htab
18466 = (struct elf32_arm_link_hash_table *)ret;
18467 /* There is no PLT header for Symbian OS. */
18468 htab->plt_header_size = 0;
18469 /* The PLT entries are each one instruction and one word. */
18470 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
18471 htab->symbian_p = 1;
18472 /* Symbian uses armv5t or above, so use_blx is always true. */
18474 htab->root.is_relocatable_executable = 1;
18479 static const struct bfd_elf_special_section
18480 elf32_arm_symbian_special_sections[] =
18482 /* In a BPABI executable, the dynamic linking sections do not go in
18483 the loadable read-only segment. The post-linker may wish to
18484 refer to these sections, but they are not part of the final
18486 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
18487 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
18488 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
18489 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
18490 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
18491 /* These sections do not need to be writable as the SymbianOS
18492 postlinker will arrange things so that no dynamic relocation is
18494 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
18495 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
18496 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
18497 { NULL, 0, 0, 0, 0 }
18501 elf32_arm_symbian_begin_write_processing (bfd *abfd,
18502 struct bfd_link_info *link_info)
18504 /* BPABI objects are never loaded directly by an OS kernel; they are
18505 processed by a postlinker first, into an OS-specific format. If
18506 the D_PAGED bit is set on the file, BFD will align segments on
18507 page boundaries, so that an OS can directly map the file. With
18508 BPABI objects, that just results in wasted space. In addition,
18509 because we clear the D_PAGED bit, map_sections_to_segments will
18510 recognize that the program headers should not be mapped into any
18511 loadable segment. */
18512 abfd->flags &= ~D_PAGED;
18513 elf32_arm_begin_write_processing (abfd, link_info);
18517 elf32_arm_symbian_modify_segment_map (bfd *abfd,
18518 struct bfd_link_info *info)
18520 struct elf_segment_map *m;
18523 /* BPABI shared libraries and executables should have a PT_DYNAMIC
18524 segment. However, because the .dynamic section is not marked
18525 with SEC_LOAD, the generic ELF code will not create such a
18527 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
18530 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
18531 if (m->p_type == PT_DYNAMIC)
18536 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
18537 m->next = elf_seg_map (abfd);
18538 elf_seg_map (abfd) = m;
18542 /* Also call the generic arm routine. */
18543 return elf32_arm_modify_segment_map (abfd, info);
18546 /* Return address for Ith PLT stub in section PLT, for relocation REL
18547 or (bfd_vma) -1 if it should not be included. */
18550 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
18551 const arelent *rel ATTRIBUTE_UNUSED)
18553 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
18557 #define elf32_bed elf32_arm_symbian_bed
18559 /* The dynamic sections are not allocated on SymbianOS; the postlinker
18560 will process them and then discard them. */
18561 #undef ELF_DYNAMIC_SEC_FLAGS
18562 #define ELF_DYNAMIC_SEC_FLAGS \
18563 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
18565 #undef elf_backend_emit_relocs
18567 #undef bfd_elf32_bfd_link_hash_table_create
18568 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
18569 #undef elf_backend_special_sections
18570 #define elf_backend_special_sections elf32_arm_symbian_special_sections
18571 #undef elf_backend_begin_write_processing
18572 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
18573 #undef elf_backend_final_write_processing
18574 #define elf_backend_final_write_processing elf32_arm_final_write_processing
18576 #undef elf_backend_modify_segment_map
18577 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
18579 /* There is no .got section for BPABI objects, and hence no header. */
18580 #undef elf_backend_got_header_size
18581 #define elf_backend_got_header_size 0
18583 /* Similarly, there is no .got.plt section. */
18584 #undef elf_backend_want_got_plt
18585 #define elf_backend_want_got_plt 0
18587 #undef elf_backend_plt_sym_val
18588 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
18590 #undef elf_backend_may_use_rel_p
18591 #define elf_backend_may_use_rel_p 1
18592 #undef elf_backend_may_use_rela_p
18593 #define elf_backend_may_use_rela_p 0
18594 #undef elf_backend_default_use_rela_p
18595 #define elf_backend_default_use_rela_p 0
18596 #undef elf_backend_want_plt_sym
18597 #define elf_backend_want_plt_sym 0
18598 #undef ELF_MAXPAGESIZE
18599 #define ELF_MAXPAGESIZE 0x8000
18601 #include "elf32-target.h"