1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2016 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
30 #include "elf-vxworks.h"
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
77 static reloc_howto_type elf32_arm_howto_table_1[] =
80 HOWTO (R_ARM_NONE, /* type */
82 3, /* size (0 = byte, 1 = short, 2 = long) */
84 FALSE, /* pc_relative */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
92 FALSE), /* pcrel_offset */
94 HOWTO (R_ARM_PC24, /* type */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
98 TRUE, /* pc_relative */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
113 FALSE, /* pc_relative */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
128 TRUE, /* pc_relative */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
143 TRUE, /* pc_relative */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
158 FALSE, /* pc_relative */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
173 FALSE, /* pc_relative */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
183 HOWTO (R_ARM_THM_ABS5, /* type */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
187 FALSE, /* pc_relative */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
198 HOWTO (R_ARM_ABS8, /* type */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
202 FALSE, /* pc_relative */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
212 HOWTO (R_ARM_SBREL32, /* type */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
216 FALSE, /* pc_relative */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
226 HOWTO (R_ARM_THM_CALL, /* type */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
230 TRUE, /* pc_relative */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
240 HOWTO (R_ARM_THM_PC8, /* type */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
244 TRUE, /* pc_relative */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
254 HOWTO (R_ARM_BREL_ADJ, /* type */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
258 FALSE, /* pc_relative */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
268 HOWTO (R_ARM_TLS_DESC, /* type */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
272 FALSE, /* pc_relative */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
282 HOWTO (R_ARM_THM_SWI8, /* type */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
286 FALSE, /* pc_relative */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
301 TRUE, /* pc_relative */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
316 TRUE, /* pc_relative */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
326 /* Dynamic TLS relocations. */
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
332 FALSE, /* pc_relative */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
346 FALSE, /* pc_relative */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
360 FALSE, /* pc_relative */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
370 /* Relocs used in ARM Linux */
372 HOWTO (R_ARM_COPY, /* type */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
376 FALSE, /* pc_relative */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
386 HOWTO (R_ARM_GLOB_DAT, /* type */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
390 FALSE, /* pc_relative */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
404 FALSE, /* pc_relative */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
414 HOWTO (R_ARM_RELATIVE, /* type */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
418 FALSE, /* pc_relative */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
428 HOWTO (R_ARM_GOTOFF32, /* type */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
432 FALSE, /* pc_relative */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
442 HOWTO (R_ARM_GOTPC, /* type */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
446 TRUE, /* pc_relative */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
456 HOWTO (R_ARM_GOT32, /* type */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
460 FALSE, /* pc_relative */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
470 HOWTO (R_ARM_PLT32, /* type */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
474 TRUE, /* pc_relative */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
484 HOWTO (R_ARM_CALL, /* type */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
488 TRUE, /* pc_relative */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
498 HOWTO (R_ARM_JUMP24, /* type */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
502 TRUE, /* pc_relative */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
512 HOWTO (R_ARM_THM_JUMP24, /* type */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
516 TRUE, /* pc_relative */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
526 HOWTO (R_ARM_BASE_ABS, /* type */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
530 FALSE, /* pc_relative */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
544 TRUE, /* pc_relative */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
558 TRUE, /* pc_relative */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
572 TRUE, /* pc_relative */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
586 FALSE, /* pc_relative */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
600 FALSE, /* pc_relative */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
614 FALSE, /* pc_relative */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
624 HOWTO (R_ARM_TARGET1, /* type */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
628 FALSE, /* pc_relative */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
638 HOWTO (R_ARM_ROSEGREL32, /* type */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
642 FALSE, /* pc_relative */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
652 HOWTO (R_ARM_V4BX, /* type */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
656 FALSE, /* pc_relative */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
666 HOWTO (R_ARM_TARGET2, /* type */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
670 FALSE, /* pc_relative */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
680 HOWTO (R_ARM_PREL31, /* type */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
684 TRUE, /* pc_relative */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
698 FALSE, /* pc_relative */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
708 HOWTO (R_ARM_MOVT_ABS, /* type */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
712 FALSE, /* pc_relative */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
726 TRUE, /* pc_relative */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
736 HOWTO (R_ARM_MOVT_PREL, /* type */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
740 TRUE, /* pc_relative */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
754 FALSE, /* pc_relative */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
768 FALSE, /* pc_relative */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
782 TRUE, /* pc_relative */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
796 TRUE, /* pc_relative */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
806 HOWTO (R_ARM_THM_JUMP19, /* type */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
810 TRUE, /* pc_relative */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
820 HOWTO (R_ARM_THM_JUMP6, /* type */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
824 TRUE, /* pc_relative */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
841 TRUE, /* pc_relative */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
851 HOWTO (R_ARM_THM_PC12, /* type */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
855 TRUE, /* pc_relative */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
865 HOWTO (R_ARM_ABS32_NOI, /* type */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
869 FALSE, /* pc_relative */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
879 HOWTO (R_ARM_REL32_NOI, /* type */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
883 TRUE, /* pc_relative */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
893 /* Group relocations. */
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
899 TRUE, /* pc_relative */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
913 TRUE, /* pc_relative */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
927 TRUE, /* pc_relative */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
941 TRUE, /* pc_relative */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
955 TRUE, /* pc_relative */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
969 TRUE, /* pc_relative */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
983 TRUE, /* pc_relative */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
997 TRUE, /* pc_relative */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1011 TRUE, /* pc_relative */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1025 TRUE, /* pc_relative */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1039 TRUE, /* pc_relative */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1053 TRUE, /* pc_relative */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 TRUE, /* pc_relative */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1081 TRUE, /* pc_relative */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1095 TRUE, /* pc_relative */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 TRUE, /* pc_relative */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1123 TRUE, /* pc_relative */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1137 TRUE, /* pc_relative */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1151 TRUE, /* pc_relative */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1165 TRUE, /* pc_relative */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1179 TRUE, /* pc_relative */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1193 TRUE, /* pc_relative */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1207 TRUE, /* pc_relative */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1221 TRUE, /* pc_relative */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1235 TRUE, /* pc_relative */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1249 TRUE, /* pc_relative */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1263 TRUE, /* pc_relative */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1273 /* End of group relocations. */
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1279 FALSE, /* pc_relative */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1293 FALSE, /* pc_relative */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1307 FALSE, /* pc_relative */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1321 FALSE, /* pc_relative */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1335 FALSE, /* pc_relative */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 FALSE, /* pc_relative */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 FALSE, /* pc_relative */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 FALSE, /* pc_relative */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1391 FALSE, /* pc_relative */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1405 FALSE, /* pc_relative */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1419 FALSE, /* pc_relative */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1433 FALSE, /* pc_relative */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 TRUE, /* pc_relative */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1461 FALSE, /* pc_relative */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1475 FALSE, /* pc_relative */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 FALSE, /* pc_relative */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1500 FALSE), /* pcrel_offset */
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 FALSE, /* pc_relative */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1515 FALSE), /* pcrel_offset */
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1521 TRUE, /* pc_relative */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1535 TRUE, /* pc_relative */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1550 FALSE, /* pc_relative */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 FALSE, /* pc_relative */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 FALSE, /* pc_relative */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1592 FALSE, /* pc_relative */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1606 FALSE, /* pc_relative */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 NULL, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1620 FALSE, /* pc_relative */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1634 FALSE, /* pc_relative */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1648 FALSE, /* pc_relative */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1658 /* 112-127 private relocations. */
1676 /* R_ARM_ME_TOO, obsolete. */
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1683 FALSE, /* pc_relative */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1694 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1695 0, /* rightshift. */
1696 1, /* size (0 = byte, 1 = short, 2 = long). */
1698 FALSE, /* pc_relative. */
1700 complain_overflow_bitfield,/* complain_on_overflow. */
1701 bfd_elf_generic_reloc, /* special_function. */
1702 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1703 FALSE, /* partial_inplace. */
1704 0x00000000, /* src_mask. */
1705 0x00000000, /* dst_mask. */
1706 FALSE), /* pcrel_offset. */
1707 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1708 0, /* rightshift. */
1709 1, /* size (0 = byte, 1 = short, 2 = long). */
1711 FALSE, /* pc_relative. */
1713 complain_overflow_bitfield,/* complain_on_overflow. */
1714 bfd_elf_generic_reloc, /* special_function. */
1715 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1716 FALSE, /* partial_inplace. */
1717 0x00000000, /* src_mask. */
1718 0x00000000, /* dst_mask. */
1719 FALSE), /* pcrel_offset. */
1720 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1721 0, /* rightshift. */
1722 1, /* size (0 = byte, 1 = short, 2 = long). */
1724 FALSE, /* pc_relative. */
1726 complain_overflow_bitfield,/* complain_on_overflow. */
1727 bfd_elf_generic_reloc, /* special_function. */
1728 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1729 FALSE, /* partial_inplace. */
1730 0x00000000, /* src_mask. */
1731 0x00000000, /* dst_mask. */
1732 FALSE), /* pcrel_offset. */
1733 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1734 0, /* rightshift. */
1735 1, /* size (0 = byte, 1 = short, 2 = long). */
1737 FALSE, /* pc_relative. */
1739 complain_overflow_bitfield,/* complain_on_overflow. */
1740 bfd_elf_generic_reloc, /* special_function. */
1741 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1742 FALSE, /* partial_inplace. */
1743 0x00000000, /* src_mask. */
1744 0x00000000, /* dst_mask. */
1745 FALSE), /* pcrel_offset. */
1749 static reloc_howto_type elf32_arm_howto_table_2[1] =
1751 HOWTO (R_ARM_IRELATIVE, /* type */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1755 FALSE, /* pc_relative */
1757 complain_overflow_bitfield,/* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 "R_ARM_IRELATIVE", /* name */
1760 TRUE, /* partial_inplace */
1761 0xffffffff, /* src_mask */
1762 0xffffffff, /* dst_mask */
1763 FALSE) /* pcrel_offset */
1766 /* 249-255 extended, currently unused, relocations: */
1767 static reloc_howto_type elf32_arm_howto_table_3[4] =
1769 HOWTO (R_ARM_RREL32, /* type */
1771 0, /* size (0 = byte, 1 = short, 2 = long) */
1773 FALSE, /* pc_relative */
1775 complain_overflow_dont,/* complain_on_overflow */
1776 bfd_elf_generic_reloc, /* special_function */
1777 "R_ARM_RREL32", /* name */
1778 FALSE, /* partial_inplace */
1781 FALSE), /* pcrel_offset */
1783 HOWTO (R_ARM_RABS32, /* type */
1785 0, /* size (0 = byte, 1 = short, 2 = long) */
1787 FALSE, /* pc_relative */
1789 complain_overflow_dont,/* complain_on_overflow */
1790 bfd_elf_generic_reloc, /* special_function */
1791 "R_ARM_RABS32", /* name */
1792 FALSE, /* partial_inplace */
1795 FALSE), /* pcrel_offset */
1797 HOWTO (R_ARM_RPC24, /* type */
1799 0, /* size (0 = byte, 1 = short, 2 = long) */
1801 FALSE, /* pc_relative */
1803 complain_overflow_dont,/* complain_on_overflow */
1804 bfd_elf_generic_reloc, /* special_function */
1805 "R_ARM_RPC24", /* name */
1806 FALSE, /* partial_inplace */
1809 FALSE), /* pcrel_offset */
1811 HOWTO (R_ARM_RBASE, /* type */
1813 0, /* size (0 = byte, 1 = short, 2 = long) */
1815 FALSE, /* pc_relative */
1817 complain_overflow_dont,/* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 "R_ARM_RBASE", /* name */
1820 FALSE, /* partial_inplace */
1823 FALSE) /* pcrel_offset */
1826 static reloc_howto_type *
1827 elf32_arm_howto_from_type (unsigned int r_type)
1829 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1830 return &elf32_arm_howto_table_1[r_type];
1832 if (r_type == R_ARM_IRELATIVE)
1833 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1835 if (r_type >= R_ARM_RREL32
1836 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1837 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1843 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1844 Elf_Internal_Rela * elf_reloc)
1846 unsigned int r_type;
1848 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1849 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1852 struct elf32_arm_reloc_map
1854 bfd_reloc_code_real_type bfd_reloc_val;
1855 unsigned char elf_reloc_val;
1858 /* All entries in this list must also be present in elf32_arm_howto_table. */
1859 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1861 {BFD_RELOC_NONE, R_ARM_NONE},
1862 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1863 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1864 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1865 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1866 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1867 {BFD_RELOC_32, R_ARM_ABS32},
1868 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1869 {BFD_RELOC_8, R_ARM_ABS8},
1870 {BFD_RELOC_16, R_ARM_ABS16},
1871 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1872 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1873 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1874 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1875 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1876 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1877 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1878 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1879 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1880 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1881 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1882 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1883 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1884 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1885 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1886 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1887 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1888 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1889 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1890 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1891 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1892 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1893 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1894 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1895 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1896 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1897 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1898 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1899 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1900 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1901 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1902 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1903 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1904 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1905 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1906 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1907 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1908 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1909 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1910 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1911 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1912 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1913 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1914 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1915 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1916 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1917 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1918 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1919 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1920 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1921 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1922 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1923 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1924 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1925 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1926 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1927 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1928 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1929 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1930 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1931 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1932 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1933 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1934 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1935 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1936 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1937 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1938 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1939 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1940 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1941 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1942 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1943 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1944 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1945 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1946 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
1947 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
1948 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
1949 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
1950 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}
1953 static reloc_howto_type *
1954 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1955 bfd_reloc_code_real_type code)
1959 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1960 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1961 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1966 static reloc_howto_type *
1967 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1972 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1973 if (elf32_arm_howto_table_1[i].name != NULL
1974 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1975 return &elf32_arm_howto_table_1[i];
1977 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1978 if (elf32_arm_howto_table_2[i].name != NULL
1979 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1980 return &elf32_arm_howto_table_2[i];
1982 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1983 if (elf32_arm_howto_table_3[i].name != NULL
1984 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1985 return &elf32_arm_howto_table_3[i];
1990 /* Support for core dump NOTE sections. */
1993 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1998 switch (note->descsz)
2003 case 148: /* Linux/ARM 32-bit. */
2005 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2008 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2017 /* Make a ".reg/999" section. */
2018 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2019 size, note->descpos + offset);
2023 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2025 switch (note->descsz)
2030 case 124: /* Linux/ARM elf_prpsinfo. */
2031 elf_tdata (abfd)->core->pid
2032 = bfd_get_32 (abfd, note->descdata + 12);
2033 elf_tdata (abfd)->core->program
2034 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2035 elf_tdata (abfd)->core->command
2036 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2039 /* Note that for some reason, a spurious space is tacked
2040 onto the end of the args in some (at least one anyway)
2041 implementations, so strip it off if it exists. */
2043 char *command = elf_tdata (abfd)->core->command;
2044 int n = strlen (command);
2046 if (0 < n && command[n - 1] == ' ')
2047 command[n - 1] = '\0';
2054 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2067 va_start (ap, note_type);
2068 memset (data, 0, sizeof (data));
2069 strncpy (data + 28, va_arg (ap, const char *), 16);
2070 strncpy (data + 44, va_arg (ap, const char *), 80);
2073 return elfcore_write_note (abfd, buf, bufsiz,
2074 "CORE", note_type, data, sizeof (data));
2085 va_start (ap, note_type);
2086 memset (data, 0, sizeof (data));
2087 pid = va_arg (ap, long);
2088 bfd_put_32 (abfd, pid, data + 24);
2089 cursig = va_arg (ap, int);
2090 bfd_put_16 (abfd, cursig, data + 12);
2091 greg = va_arg (ap, const void *);
2092 memcpy (data + 72, greg, 72);
2095 return elfcore_write_note (abfd, buf, bufsiz,
2096 "CORE", note_type, data, sizeof (data));
2101 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2102 #define TARGET_LITTLE_NAME "elf32-littlearm"
2103 #define TARGET_BIG_SYM arm_elf32_be_vec
2104 #define TARGET_BIG_NAME "elf32-bigarm"
2106 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2107 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2108 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2110 typedef unsigned long int insn32;
2111 typedef unsigned short int insn16;
2113 /* In lieu of proper flags, assume all EABIv4 or later objects are
2115 #define INTERWORK_FLAG(abfd) \
2116 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2117 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2118 || ((abfd)->flags & BFD_LINKER_CREATED))
2120 /* The linker script knows the section names for placement.
2121 The entry_names are used to do simple name mangling on the stubs.
2122 Given a function name, and its type, the stub can be found. The
2123 name can be changed. The only requirement is the %s be present. */
2124 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2125 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2127 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2128 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2130 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2131 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2133 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2134 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2136 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2137 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2139 #define STUB_ENTRY_NAME "__%s_veneer"
2141 #define CMSE_PREFIX "__acle_se_"
2143 /* The name of the dynamic interpreter. This is put in the .interp
2145 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2147 static const unsigned long tls_trampoline [] =
2149 0xe08e0000, /* add r0, lr, r0 */
2150 0xe5901004, /* ldr r1, [r0,#4] */
2151 0xe12fff11, /* bx r1 */
2154 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2156 0xe52d2004, /* push {r2} */
2157 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2158 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2159 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2160 0xe081100f, /* 2: add r1, pc */
2161 0xe12fff12, /* bx r2 */
2162 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2163 + dl_tlsdesc_lazy_resolver(GOT) */
2164 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2167 #ifdef FOUR_WORD_PLT
2169 /* The first entry in a procedure linkage table looks like
2170 this. It is set up so that any shared library function that is
2171 called before the relocation has been set up calls the dynamic
2173 static const bfd_vma elf32_arm_plt0_entry [] =
2175 0xe52de004, /* str lr, [sp, #-4]! */
2176 0xe59fe010, /* ldr lr, [pc, #16] */
2177 0xe08fe00e, /* add lr, pc, lr */
2178 0xe5bef008, /* ldr pc, [lr, #8]! */
2181 /* Subsequent entries in a procedure linkage table look like
2183 static const bfd_vma elf32_arm_plt_entry [] =
2185 0xe28fc600, /* add ip, pc, #NN */
2186 0xe28cca00, /* add ip, ip, #NN */
2187 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2188 0x00000000, /* unused */
2191 #else /* not FOUR_WORD_PLT */
2193 /* The first entry in a procedure linkage table looks like
2194 this. It is set up so that any shared library function that is
2195 called before the relocation has been set up calls the dynamic
2197 static const bfd_vma elf32_arm_plt0_entry [] =
2199 0xe52de004, /* str lr, [sp, #-4]! */
2200 0xe59fe004, /* ldr lr, [pc, #4] */
2201 0xe08fe00e, /* add lr, pc, lr */
2202 0xe5bef008, /* ldr pc, [lr, #8]! */
2203 0x00000000, /* &GOT[0] - . */
2206 /* By default subsequent entries in a procedure linkage table look like
2207 this. Offsets that don't fit into 28 bits will cause link error. */
2208 static const bfd_vma elf32_arm_plt_entry_short [] =
2210 0xe28fc600, /* add ip, pc, #0xNN00000 */
2211 0xe28cca00, /* add ip, ip, #0xNN000 */
2212 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2215 /* When explicitly asked, we'll use this "long" entry format
2216 which can cope with arbitrary displacements. */
2217 static const bfd_vma elf32_arm_plt_entry_long [] =
2219 0xe28fc200, /* add ip, pc, #0xN0000000 */
2220 0xe28cc600, /* add ip, ip, #0xNN00000 */
2221 0xe28cca00, /* add ip, ip, #0xNN000 */
2222 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2225 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2227 #endif /* not FOUR_WORD_PLT */
2229 /* The first entry in a procedure linkage table looks like this.
2230 It is set up so that any shared library function that is called before the
2231 relocation has been set up calls the dynamic linker first. */
2232 static const bfd_vma elf32_thumb2_plt0_entry [] =
2234 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2235 an instruction maybe encoded to one or two array elements. */
2236 0xf8dfb500, /* push {lr} */
2237 0x44fee008, /* ldr.w lr, [pc, #8] */
2239 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2240 0x00000000, /* &GOT[0] - . */
2243 /* Subsequent entries in a procedure linkage table for thumb only target
2245 static const bfd_vma elf32_thumb2_plt_entry [] =
2247 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2248 an instruction maybe encoded to one or two array elements. */
2249 0x0c00f240, /* movw ip, #0xNNNN */
2250 0x0c00f2c0, /* movt ip, #0xNNNN */
2251 0xf8dc44fc, /* add ip, pc */
2252 0xbf00f000 /* ldr.w pc, [ip] */
2256 /* The format of the first entry in the procedure linkage table
2257 for a VxWorks executable. */
2258 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2260 0xe52dc008, /* str ip,[sp,#-8]! */
2261 0xe59fc000, /* ldr ip,[pc] */
2262 0xe59cf008, /* ldr pc,[ip,#8] */
2263 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2266 /* The format of subsequent entries in a VxWorks executable. */
2267 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2269 0xe59fc000, /* ldr ip,[pc] */
2270 0xe59cf000, /* ldr pc,[ip] */
2271 0x00000000, /* .long @got */
2272 0xe59fc000, /* ldr ip,[pc] */
2273 0xea000000, /* b _PLT */
2274 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2277 /* The format of entries in a VxWorks shared library. */
2278 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2280 0xe59fc000, /* ldr ip,[pc] */
2281 0xe79cf009, /* ldr pc,[ip,r9] */
2282 0x00000000, /* .long @got */
2283 0xe59fc000, /* ldr ip,[pc] */
2284 0xe599f008, /* ldr pc,[r9,#8] */
2285 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2288 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2289 #define PLT_THUMB_STUB_SIZE 4
2290 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2296 /* The entries in a PLT when using a DLL-based target with multiple
2298 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2300 0xe51ff004, /* ldr pc, [pc, #-4] */
2301 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2304 /* The first entry in a procedure linkage table looks like
2305 this. It is set up so that any shared library function that is
2306 called before the relocation has been set up calls the dynamic
2308 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2311 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2312 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2313 0xe08cc00f, /* add ip, ip, pc */
2314 0xe52dc008, /* str ip, [sp, #-8]! */
2315 /* Second bundle: */
2316 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2317 0xe59cc000, /* ldr ip, [ip] */
2318 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2319 0xe12fff1c, /* bx ip */
2321 0xe320f000, /* nop */
2322 0xe320f000, /* nop */
2323 0xe320f000, /* nop */
2325 0xe50dc004, /* str ip, [sp, #-4] */
2326 /* Fourth bundle: */
2327 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2328 0xe59cc000, /* ldr ip, [ip] */
2329 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2330 0xe12fff1c, /* bx ip */
2332 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2334 /* Subsequent entries in a procedure linkage table look like this. */
2335 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2337 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2338 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2339 0xe08cc00f, /* add ip, ip, pc */
2340 0xea000000, /* b .Lplt_tail */
2343 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2344 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2345 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2346 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2347 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2348 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2349 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2350 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2360 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2361 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2362 is inserted in arm_build_one_stub(). */
2363 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2364 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2365 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2366 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2367 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2368 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2369 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2370 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2375 enum stub_insn_type type;
2376 unsigned int r_type;
2380 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2381 to reach the stub if necessary. */
2382 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2384 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2385 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2388 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2390 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2392 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2393 ARM_INSN (0xe12fff1c), /* bx ip */
2394 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2397 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2398 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2400 THUMB16_INSN (0xb401), /* push {r0} */
2401 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2402 THUMB16_INSN (0x4684), /* mov ip, r0 */
2403 THUMB16_INSN (0xbc01), /* pop {r0} */
2404 THUMB16_INSN (0x4760), /* bx ip */
2405 THUMB16_INSN (0xbf00), /* nop */
2406 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2409 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2410 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2412 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2413 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2416 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2417 M-profile architectures. */
2418 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2420 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2421 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2422 THUMB16_INSN (0x4760), /* bx ip */
2425 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2427 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2429 THUMB16_INSN (0x4778), /* bx pc */
2430 THUMB16_INSN (0x46c0), /* nop */
2431 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2432 ARM_INSN (0xe12fff1c), /* bx ip */
2433 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2436 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2438 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2440 THUMB16_INSN (0x4778), /* bx pc */
2441 THUMB16_INSN (0x46c0), /* nop */
2442 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2443 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2446 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2447 one, when the destination is close enough. */
2448 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2450 THUMB16_INSN (0x4778), /* bx pc */
2451 THUMB16_INSN (0x46c0), /* nop */
2452 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2455 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2456 blx to reach the stub if necessary. */
2457 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2459 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2460 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2461 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2464 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2465 blx to reach the stub if necessary. We can not add into pc;
2466 it is not guaranteed to mode switch (different in ARMv6 and
2468 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2470 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2471 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2472 ARM_INSN (0xe12fff1c), /* bx ip */
2473 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2476 /* V4T ARM -> ARM long branch stub, PIC. */
2477 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2479 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2480 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2481 ARM_INSN (0xe12fff1c), /* bx ip */
2482 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2485 /* V4T Thumb -> ARM long branch stub, PIC. */
2486 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2488 THUMB16_INSN (0x4778), /* bx pc */
2489 THUMB16_INSN (0x46c0), /* nop */
2490 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2491 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2492 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2495 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2497 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2499 THUMB16_INSN (0xb401), /* push {r0} */
2500 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2501 THUMB16_INSN (0x46fc), /* mov ip, pc */
2502 THUMB16_INSN (0x4484), /* add ip, r0 */
2503 THUMB16_INSN (0xbc01), /* pop {r0} */
2504 THUMB16_INSN (0x4760), /* bx ip */
2505 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2508 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2510 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2512 THUMB16_INSN (0x4778), /* bx pc */
2513 THUMB16_INSN (0x46c0), /* nop */
2514 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2515 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2516 ARM_INSN (0xe12fff1c), /* bx ip */
2517 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2520 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2521 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2522 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2524 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2525 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2526 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2529 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2530 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2531 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2533 THUMB16_INSN (0x4778), /* bx pc */
2534 THUMB16_INSN (0x46c0), /* nop */
2535 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2536 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2537 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2540 /* NaCl ARM -> ARM long branch stub. */
2541 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2543 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2544 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2545 ARM_INSN (0xe12fff1c), /* bx ip */
2546 ARM_INSN (0xe320f000), /* nop */
2547 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2548 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2549 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2550 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2553 /* NaCl ARM -> ARM long branch stub, PIC. */
2554 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2556 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2557 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2558 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2559 ARM_INSN (0xe12fff1c), /* bx ip */
2560 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2561 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2562 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2563 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2566 /* Stub used for transition to secure state (aka SG veneer). */
2567 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2569 THUMB32_INSN (0xe97fe97f), /* sg. */
2570 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2574 /* Cortex-A8 erratum-workaround stubs. */
2576 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2577 can't use a conditional branch to reach this stub). */
2579 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2581 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2582 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2583 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2586 /* Stub used for b.w and bl.w instructions. */
2588 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2590 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2593 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2595 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2598 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2599 instruction (which switches to ARM mode) to point to this stub. Jump to the
2600 real destination using an ARM-mode branch. */
2602 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2604 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2607 /* For each section group there can be a specially created linker section
2608 to hold the stubs for that group. The name of the stub section is based
2609 upon the name of another section within that group with the suffix below
2612 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2613 create what appeared to be a linker stub section when it actually
2614 contained user code/data. For example, consider this fragment:
2616 const char * stubborn_problems[] = { "np" };
2618 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2621 .data.rel.local.stubborn_problems
2623 This then causes problems in arm32_arm_build_stubs() as it triggers:
2625 // Ignore non-stub sections.
2626 if (!strstr (stub_sec->name, STUB_SUFFIX))
2629 And so the section would be ignored instead of being processed. Hence
2630 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2632 #define STUB_SUFFIX ".__stub"
2634 /* One entry per long/short branch stub defined above. */
2636 DEF_STUB(long_branch_any_any) \
2637 DEF_STUB(long_branch_v4t_arm_thumb) \
2638 DEF_STUB(long_branch_thumb_only) \
2639 DEF_STUB(long_branch_v4t_thumb_thumb) \
2640 DEF_STUB(long_branch_v4t_thumb_arm) \
2641 DEF_STUB(short_branch_v4t_thumb_arm) \
2642 DEF_STUB(long_branch_any_arm_pic) \
2643 DEF_STUB(long_branch_any_thumb_pic) \
2644 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2645 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2646 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2647 DEF_STUB(long_branch_thumb_only_pic) \
2648 DEF_STUB(long_branch_any_tls_pic) \
2649 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2650 DEF_STUB(long_branch_arm_nacl) \
2651 DEF_STUB(long_branch_arm_nacl_pic) \
2652 DEF_STUB(cmse_branch_thumb_only) \
2653 DEF_STUB(a8_veneer_b_cond) \
2654 DEF_STUB(a8_veneer_b) \
2655 DEF_STUB(a8_veneer_bl) \
2656 DEF_STUB(a8_veneer_blx) \
2657 DEF_STUB(long_branch_thumb2_only) \
2658 DEF_STUB(long_branch_thumb2_only_pure)
2660 #define DEF_STUB(x) arm_stub_##x,
2661 enum elf32_arm_stub_type
2669 /* Note the first a8_veneer type. */
2670 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2674 const insn_sequence* template_sequence;
2678 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2679 static const stub_def stub_definitions[] =
2685 struct elf32_arm_stub_hash_entry
2687 /* Base hash table entry structure. */
2688 struct bfd_hash_entry root;
2690 /* The stub section. */
2693 /* Offset within stub_sec of the beginning of this stub. */
2694 bfd_vma stub_offset;
2696 /* Given the symbol's value and its section we can determine its final
2697 value when building the stubs (so the stub knows where to jump). */
2698 bfd_vma target_value;
2699 asection *target_section;
2701 /* Same as above but for the source of the branch to the stub. Used for
2702 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2703 such, source section does not need to be recorded since Cortex-A8 erratum
2704 workaround stubs are only generated when both source and target are in the
2706 bfd_vma source_value;
2708 /* The instruction which caused this stub to be generated (only valid for
2709 Cortex-A8 erratum workaround stubs at present). */
2710 unsigned long orig_insn;
2712 /* The stub type. */
2713 enum elf32_arm_stub_type stub_type;
2714 /* Its encoding size in bytes. */
2717 const insn_sequence *stub_template;
2718 /* The size of the template (number of entries). */
2719 int stub_template_size;
2721 /* The symbol table entry, if any, that this was derived from. */
2722 struct elf32_arm_link_hash_entry *h;
2724 /* Type of branch. */
2725 enum arm_st_branch_type branch_type;
2727 /* Where this stub is being called from, or, in the case of combined
2728 stub sections, the first input section in the group. */
2731 /* The name for the local symbol at the start of this stub. The
2732 stub name in the hash table has to be unique; this does not, so
2733 it can be friendlier. */
2737 /* Used to build a map of a section. This is required for mixed-endian
2740 typedef struct elf32_elf_section_map
2745 elf32_arm_section_map;
2747 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2751 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2752 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2753 VFP11_ERRATUM_ARM_VENEER,
2754 VFP11_ERRATUM_THUMB_VENEER
2756 elf32_vfp11_erratum_type;
2758 typedef struct elf32_vfp11_erratum_list
2760 struct elf32_vfp11_erratum_list *next;
2766 struct elf32_vfp11_erratum_list *veneer;
2767 unsigned int vfp_insn;
2771 struct elf32_vfp11_erratum_list *branch;
2775 elf32_vfp11_erratum_type type;
2777 elf32_vfp11_erratum_list;
2779 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2783 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2784 STM32L4XX_ERRATUM_VENEER
2786 elf32_stm32l4xx_erratum_type;
2788 typedef struct elf32_stm32l4xx_erratum_list
2790 struct elf32_stm32l4xx_erratum_list *next;
2796 struct elf32_stm32l4xx_erratum_list *veneer;
2801 struct elf32_stm32l4xx_erratum_list *branch;
2805 elf32_stm32l4xx_erratum_type type;
2807 elf32_stm32l4xx_erratum_list;
2812 INSERT_EXIDX_CANTUNWIND_AT_END
2814 arm_unwind_edit_type;
2816 /* A (sorted) list of edits to apply to an unwind table. */
2817 typedef struct arm_unwind_table_edit
2819 arm_unwind_edit_type type;
2820 /* Note: we sometimes want to insert an unwind entry corresponding to a
2821 section different from the one we're currently writing out, so record the
2822 (text) section this edit relates to here. */
2823 asection *linked_section;
2825 struct arm_unwind_table_edit *next;
2827 arm_unwind_table_edit;
2829 typedef struct _arm_elf_section_data
2831 /* Information about mapping symbols. */
2832 struct bfd_elf_section_data elf;
2833 unsigned int mapcount;
2834 unsigned int mapsize;
2835 elf32_arm_section_map *map;
2836 /* Information about CPU errata. */
2837 unsigned int erratumcount;
2838 elf32_vfp11_erratum_list *erratumlist;
2839 unsigned int stm32l4xx_erratumcount;
2840 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
2841 unsigned int additional_reloc_count;
2842 /* Information about unwind tables. */
2845 /* Unwind info attached to a text section. */
2848 asection *arm_exidx_sec;
2851 /* Unwind info attached to an .ARM.exidx section. */
2854 arm_unwind_table_edit *unwind_edit_list;
2855 arm_unwind_table_edit *unwind_edit_tail;
2859 _arm_elf_section_data;
2861 #define elf32_arm_section_data(sec) \
2862 ((_arm_elf_section_data *) elf_section_data (sec))
2864 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2865 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2866 so may be created multiple times: we use an array of these entries whilst
2867 relaxing which we can refresh easily, then create stubs for each potentially
2868 erratum-triggering instruction once we've settled on a solution. */
2870 struct a8_erratum_fix
2875 bfd_vma target_offset;
2876 unsigned long orig_insn;
2878 enum elf32_arm_stub_type stub_type;
2879 enum arm_st_branch_type branch_type;
2882 /* A table of relocs applied to branches which might trigger Cortex-A8
2885 struct a8_erratum_reloc
2888 bfd_vma destination;
2889 struct elf32_arm_link_hash_entry *hash;
2890 const char *sym_name;
2891 unsigned int r_type;
2892 enum arm_st_branch_type branch_type;
2893 bfd_boolean non_a8_stub;
2896 /* The size of the thread control block. */
2899 /* ARM-specific information about a PLT entry, over and above the usual
2903 /* We reference count Thumb references to a PLT entry separately,
2904 so that we can emit the Thumb trampoline only if needed. */
2905 bfd_signed_vma thumb_refcount;
2907 /* Some references from Thumb code may be eliminated by BL->BLX
2908 conversion, so record them separately. */
2909 bfd_signed_vma maybe_thumb_refcount;
2911 /* How many of the recorded PLT accesses were from non-call relocations.
2912 This information is useful when deciding whether anything takes the
2913 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2914 non-call references to the function should resolve directly to the
2915 real runtime target. */
2916 unsigned int noncall_refcount;
2918 /* Since PLT entries have variable size if the Thumb prologue is
2919 used, we need to record the index into .got.plt instead of
2920 recomputing it from the PLT offset. */
2921 bfd_signed_vma got_offset;
2924 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2925 struct arm_local_iplt_info
2927 /* The information that is usually found in the generic ELF part of
2928 the hash table entry. */
2929 union gotplt_union root;
2931 /* The information that is usually found in the ARM-specific part of
2932 the hash table entry. */
2933 struct arm_plt_info arm;
2935 /* A list of all potential dynamic relocations against this symbol. */
2936 struct elf_dyn_relocs *dyn_relocs;
2939 struct elf_arm_obj_tdata
2941 struct elf_obj_tdata root;
2943 /* tls_type for each local got entry. */
2944 char *local_got_tls_type;
2946 /* GOTPLT entries for TLS descriptors. */
2947 bfd_vma *local_tlsdesc_gotent;
2949 /* Information for local symbols that need entries in .iplt. */
2950 struct arm_local_iplt_info **local_iplt;
2952 /* Zero to warn when linking objects with incompatible enum sizes. */
2953 int no_enum_size_warning;
2955 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2956 int no_wchar_size_warning;
2959 #define elf_arm_tdata(bfd) \
2960 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2962 #define elf32_arm_local_got_tls_type(bfd) \
2963 (elf_arm_tdata (bfd)->local_got_tls_type)
2965 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2966 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2968 #define elf32_arm_local_iplt(bfd) \
2969 (elf_arm_tdata (bfd)->local_iplt)
2971 #define is_arm_elf(bfd) \
2972 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2973 && elf_tdata (bfd) != NULL \
2974 && elf_object_id (bfd) == ARM_ELF_DATA)
2977 elf32_arm_mkobject (bfd *abfd)
2979 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2983 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2985 /* Arm ELF linker hash entry. */
2986 struct elf32_arm_link_hash_entry
2988 struct elf_link_hash_entry root;
2990 /* Track dynamic relocs copied for this symbol. */
2991 struct elf_dyn_relocs *dyn_relocs;
2993 /* ARM-specific PLT information. */
2994 struct arm_plt_info plt;
2996 #define GOT_UNKNOWN 0
2997 #define GOT_NORMAL 1
2998 #define GOT_TLS_GD 2
2999 #define GOT_TLS_IE 4
3000 #define GOT_TLS_GDESC 8
3001 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3002 unsigned int tls_type : 8;
3004 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3005 unsigned int is_iplt : 1;
3007 unsigned int unused : 23;
3009 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3010 starting at the end of the jump table. */
3011 bfd_vma tlsdesc_got;
3013 /* The symbol marking the real symbol location for exported thumb
3014 symbols with Arm stubs. */
3015 struct elf_link_hash_entry *export_glue;
3017 /* A pointer to the most recently used stub hash entry against this
3019 struct elf32_arm_stub_hash_entry *stub_cache;
3022 /* Traverse an arm ELF linker hash table. */
3023 #define elf32_arm_link_hash_traverse(table, func, info) \
3024 (elf_link_hash_traverse \
3026 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3029 /* Get the ARM elf linker hash table from a link_info structure. */
3030 #define elf32_arm_hash_table(info) \
3031 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3032 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3034 #define arm_stub_hash_lookup(table, string, create, copy) \
3035 ((struct elf32_arm_stub_hash_entry *) \
3036 bfd_hash_lookup ((table), (string), (create), (copy)))
3038 /* Array to keep track of which stub sections have been created, and
3039 information on stub grouping. */
3042 /* This is the section to which stubs in the group will be
3045 /* The stub section. */
3049 #define elf32_arm_compute_jump_table_size(htab) \
3050 ((htab)->next_tls_desc_index * 4)
3052 /* ARM ELF linker hash table. */
3053 struct elf32_arm_link_hash_table
3055 /* The main hash table. */
3056 struct elf_link_hash_table root;
3058 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3059 bfd_size_type thumb_glue_size;
3061 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3062 bfd_size_type arm_glue_size;
3064 /* The size in bytes of section containing the ARMv4 BX veneers. */
3065 bfd_size_type bx_glue_size;
3067 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3068 veneer has been populated. */
3069 bfd_vma bx_glue_offset[15];
3071 /* The size in bytes of the section containing glue for VFP11 erratum
3073 bfd_size_type vfp11_erratum_glue_size;
3075 /* The size in bytes of the section containing glue for STM32L4XX erratum
3077 bfd_size_type stm32l4xx_erratum_glue_size;
3079 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3080 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3081 elf32_arm_write_section(). */
3082 struct a8_erratum_fix *a8_erratum_fixes;
3083 unsigned int num_a8_erratum_fixes;
3085 /* An arbitrary input BFD chosen to hold the glue sections. */
3086 bfd * bfd_of_glue_owner;
3088 /* Nonzero to output a BE8 image. */
3091 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3092 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3095 /* The relocation to use for R_ARM_TARGET2 relocations. */
3098 /* 0 = Ignore R_ARM_V4BX.
3099 1 = Convert BX to MOV PC.
3100 2 = Generate v4 interworing stubs. */
3103 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3106 /* Whether we should fix the ARM1176 BLX immediate issue. */
3109 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3112 /* What sort of code sequences we should look for which may trigger the
3113 VFP11 denorm erratum. */
3114 bfd_arm_vfp11_fix vfp11_fix;
3116 /* Global counter for the number of fixes we have emitted. */
3117 int num_vfp11_fixes;
3119 /* What sort of code sequences we should look for which may trigger the
3120 STM32L4XX erratum. */
3121 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3123 /* Global counter for the number of fixes we have emitted. */
3124 int num_stm32l4xx_fixes;
3126 /* Nonzero to force PIC branch veneers. */
3129 /* The number of bytes in the initial entry in the PLT. */
3130 bfd_size_type plt_header_size;
3132 /* The number of bytes in the subsequent PLT etries. */
3133 bfd_size_type plt_entry_size;
3135 /* True if the target system is VxWorks. */
3138 /* True if the target system is Symbian OS. */
3141 /* True if the target system is Native Client. */
3144 /* True if the target uses REL relocations. */
3147 /* Nonzero if import library must be a secure gateway import library
3148 as per ARMv8-M Security Extensions. */
3151 /* The import library whose symbols' address must remain stable in
3152 the import library generated. */
3155 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3156 bfd_vma next_tls_desc_index;
3158 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3159 bfd_vma num_tls_desc;
3161 /* Short-cuts to get to dynamic linker sections. */
3165 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3168 /* The offset into splt of the PLT entry for the TLS descriptor
3169 resolver. Special values are 0, if not necessary (or not found
3170 to be necessary yet), and -1 if needed but not determined
3172 bfd_vma dt_tlsdesc_plt;
3174 /* The offset into sgot of the GOT entry used by the PLT entry
3176 bfd_vma dt_tlsdesc_got;
3178 /* Offset in .plt section of tls_arm_trampoline. */
3179 bfd_vma tls_trampoline;
3181 /* Data for R_ARM_TLS_LDM32 relocations. */
3184 bfd_signed_vma refcount;
3188 /* Small local sym cache. */
3189 struct sym_cache sym_cache;
3191 /* For convenience in allocate_dynrelocs. */
3194 /* The amount of space used by the reserved portion of the sgotplt
3195 section, plus whatever space is used by the jump slots. */
3196 bfd_vma sgotplt_jump_table_size;
3198 /* The stub hash table. */
3199 struct bfd_hash_table stub_hash_table;
3201 /* Linker stub bfd. */
3204 /* Linker call-backs. */
3205 asection * (*add_stub_section) (const char *, asection *, asection *,
3207 void (*layout_sections_again) (void);
3209 /* Array to keep track of which stub sections have been created, and
3210 information on stub grouping. */
3211 struct map_stub *stub_group;
3213 /* Input stub section holding secure gateway veneers. */
3214 asection *cmse_stub_sec;
3216 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3217 start to be allocated. */
3218 bfd_vma new_cmse_stub_offset;
3220 /* Number of elements in stub_group. */
3221 unsigned int top_id;
3223 /* Assorted information used by elf32_arm_size_stubs. */
3224 unsigned int bfd_count;
3225 unsigned int top_index;
3226 asection **input_list;
3230 ctz (unsigned int mask)
3232 #if GCC_VERSION >= 3004
3233 return __builtin_ctz (mask);
3237 for (i = 0; i < 8 * sizeof (mask); i++)
3248 popcount (unsigned int mask)
3250 #if GCC_VERSION >= 3004
3251 return __builtin_popcount (mask);
3253 unsigned int i, sum = 0;
3255 for (i = 0; i < 8 * sizeof (mask); i++)
3265 /* Create an entry in an ARM ELF linker hash table. */
3267 static struct bfd_hash_entry *
3268 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3269 struct bfd_hash_table * table,
3270 const char * string)
3272 struct elf32_arm_link_hash_entry * ret =
3273 (struct elf32_arm_link_hash_entry *) entry;
3275 /* Allocate the structure if it has not already been allocated by a
3278 ret = (struct elf32_arm_link_hash_entry *)
3279 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3281 return (struct bfd_hash_entry *) ret;
3283 /* Call the allocation method of the superclass. */
3284 ret = ((struct elf32_arm_link_hash_entry *)
3285 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3289 ret->dyn_relocs = NULL;
3290 ret->tls_type = GOT_UNKNOWN;
3291 ret->tlsdesc_got = (bfd_vma) -1;
3292 ret->plt.thumb_refcount = 0;
3293 ret->plt.maybe_thumb_refcount = 0;
3294 ret->plt.noncall_refcount = 0;
3295 ret->plt.got_offset = -1;
3296 ret->is_iplt = FALSE;
3297 ret->export_glue = NULL;
3299 ret->stub_cache = NULL;
3302 return (struct bfd_hash_entry *) ret;
3305 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3309 elf32_arm_allocate_local_sym_info (bfd *abfd)
3311 if (elf_local_got_refcounts (abfd) == NULL)
3313 bfd_size_type num_syms;
3317 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3318 size = num_syms * (sizeof (bfd_signed_vma)
3319 + sizeof (struct arm_local_iplt_info *)
3322 data = bfd_zalloc (abfd, size);
3326 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3327 data += num_syms * sizeof (bfd_signed_vma);
3329 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3330 data += num_syms * sizeof (struct arm_local_iplt_info *);
3332 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3333 data += num_syms * sizeof (bfd_vma);
3335 elf32_arm_local_got_tls_type (abfd) = data;
3340 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3341 to input bfd ABFD. Create the information if it doesn't already exist.
3342 Return null if an allocation fails. */
3344 static struct arm_local_iplt_info *
3345 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3347 struct arm_local_iplt_info **ptr;
3349 if (!elf32_arm_allocate_local_sym_info (abfd))
3352 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3353 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3355 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3359 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3360 in ABFD's symbol table. If the symbol is global, H points to its
3361 hash table entry, otherwise H is null.
3363 Return true if the symbol does have PLT information. When returning
3364 true, point *ROOT_PLT at the target-independent reference count/offset
3365 union and *ARM_PLT at the ARM-specific information. */
3368 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3369 struct elf32_arm_link_hash_entry *h,
3370 unsigned long r_symndx, union gotplt_union **root_plt,
3371 struct arm_plt_info **arm_plt)
3373 struct arm_local_iplt_info *local_iplt;
3375 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3380 *root_plt = &h->root.plt;
3385 if (elf32_arm_local_iplt (abfd) == NULL)
3388 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3389 if (local_iplt == NULL)
3392 *root_plt = &local_iplt->root;
3393 *arm_plt = &local_iplt->arm;
3397 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3401 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3402 struct arm_plt_info *arm_plt)
3404 struct elf32_arm_link_hash_table *htab;
3406 htab = elf32_arm_hash_table (info);
3407 return (arm_plt->thumb_refcount != 0
3408 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3411 /* Return a pointer to the head of the dynamic reloc list that should
3412 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3413 ABFD's symbol table. Return null if an error occurs. */
3415 static struct elf_dyn_relocs **
3416 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3417 Elf_Internal_Sym *isym)
3419 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3421 struct arm_local_iplt_info *local_iplt;
3423 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3424 if (local_iplt == NULL)
3426 return &local_iplt->dyn_relocs;
3430 /* Track dynamic relocs needed for local syms too.
3431 We really need local syms available to do this
3436 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3440 vpp = &elf_section_data (s)->local_dynrel;
3441 return (struct elf_dyn_relocs **) vpp;
3445 /* Initialize an entry in the stub hash table. */
3447 static struct bfd_hash_entry *
3448 stub_hash_newfunc (struct bfd_hash_entry *entry,
3449 struct bfd_hash_table *table,
3452 /* Allocate the structure if it has not already been allocated by a
3456 entry = (struct bfd_hash_entry *)
3457 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3462 /* Call the allocation method of the superclass. */
3463 entry = bfd_hash_newfunc (entry, table, string);
3466 struct elf32_arm_stub_hash_entry *eh;
3468 /* Initialize the local fields. */
3469 eh = (struct elf32_arm_stub_hash_entry *) entry;
3470 eh->stub_sec = NULL;
3471 eh->stub_offset = (bfd_vma) -1;
3472 eh->source_value = 0;
3473 eh->target_value = 0;
3474 eh->target_section = NULL;
3476 eh->stub_type = arm_stub_none;
3478 eh->stub_template = NULL;
3479 eh->stub_template_size = -1;
3482 eh->output_name = NULL;
3488 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3489 shortcuts to them in our hash table. */
3492 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3494 struct elf32_arm_link_hash_table *htab;
3496 htab = elf32_arm_hash_table (info);
3500 /* BPABI objects never have a GOT, or associated sections. */
3501 if (htab->symbian_p)
3504 if (! _bfd_elf_create_got_section (dynobj, info))
3510 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3513 create_ifunc_sections (struct bfd_link_info *info)
3515 struct elf32_arm_link_hash_table *htab;
3516 const struct elf_backend_data *bed;
3521 htab = elf32_arm_hash_table (info);
3522 dynobj = htab->root.dynobj;
3523 bed = get_elf_backend_data (dynobj);
3524 flags = bed->dynamic_sec_flags;
3526 if (htab->root.iplt == NULL)
3528 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3529 flags | SEC_READONLY | SEC_CODE);
3531 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3533 htab->root.iplt = s;
3536 if (htab->root.irelplt == NULL)
3538 s = bfd_make_section_anyway_with_flags (dynobj,
3539 RELOC_SECTION (htab, ".iplt"),
3540 flags | SEC_READONLY);
3542 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3544 htab->root.irelplt = s;
3547 if (htab->root.igotplt == NULL)
3549 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3551 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3553 htab->root.igotplt = s;
3558 /* Determine if we're dealing with a Thumb only architecture. */
3561 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3564 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3565 Tag_CPU_arch_profile);
3568 return profile == 'M';
3570 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3572 /* Force return logic to be reviewed for each new architecture. */
3573 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3574 || arch == TAG_CPU_ARCH_V8M_BASE
3575 || arch == TAG_CPU_ARCH_V8M_MAIN);
3577 if (arch == TAG_CPU_ARCH_V6_M
3578 || arch == TAG_CPU_ARCH_V6S_M
3579 || arch == TAG_CPU_ARCH_V7E_M
3580 || arch == TAG_CPU_ARCH_V8M_BASE
3581 || arch == TAG_CPU_ARCH_V8M_MAIN)
3587 /* Determine if we're dealing with a Thumb-2 object. */
3590 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3593 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3597 return thumb_isa == 2;
3599 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3601 /* Force return logic to be reviewed for each new architecture. */
3602 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3603 || arch == TAG_CPU_ARCH_V8M_BASE
3604 || arch == TAG_CPU_ARCH_V8M_MAIN);
3606 return (arch == TAG_CPU_ARCH_V6T2
3607 || arch == TAG_CPU_ARCH_V7
3608 || arch == TAG_CPU_ARCH_V7E_M
3609 || arch == TAG_CPU_ARCH_V8
3610 || arch == TAG_CPU_ARCH_V8M_MAIN);
3613 /* Determine whether Thumb-2 BL instruction is available. */
3616 using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3619 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3621 /* Force return logic to be reviewed for each new architecture. */
3622 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3623 || arch == TAG_CPU_ARCH_V8M_BASE
3624 || arch == TAG_CPU_ARCH_V8M_MAIN);
3626 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3627 return (arch == TAG_CPU_ARCH_V6T2
3628 || arch >= TAG_CPU_ARCH_V7);
3631 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3632 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3636 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3638 struct elf32_arm_link_hash_table *htab;
3640 htab = elf32_arm_hash_table (info);
3644 if (!htab->root.sgot && !create_got_section (dynobj, info))
3647 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3650 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
3651 if (!bfd_link_pic (info))
3652 htab->srelbss = bfd_get_linker_section (dynobj,
3653 RELOC_SECTION (htab, ".bss"));
3655 if (htab->vxworks_p)
3657 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3660 if (bfd_link_pic (info))
3662 htab->plt_header_size = 0;
3663 htab->plt_entry_size
3664 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3668 htab->plt_header_size
3669 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3670 htab->plt_entry_size
3671 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3674 if (elf_elfheader (dynobj))
3675 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3680 Test for thumb only architectures. Note - we cannot just call
3681 using_thumb_only() as the attributes in the output bfd have not been
3682 initialised at this point, so instead we use the input bfd. */
3683 bfd * saved_obfd = htab->obfd;
3685 htab->obfd = dynobj;
3686 if (using_thumb_only (htab))
3688 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3689 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3691 htab->obfd = saved_obfd;
3694 if (!htab->root.splt
3695 || !htab->root.srelplt
3697 || (!bfd_link_pic (info) && !htab->srelbss))
3703 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3706 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3707 struct elf_link_hash_entry *dir,
3708 struct elf_link_hash_entry *ind)
3710 struct elf32_arm_link_hash_entry *edir, *eind;
3712 edir = (struct elf32_arm_link_hash_entry *) dir;
3713 eind = (struct elf32_arm_link_hash_entry *) ind;
3715 if (eind->dyn_relocs != NULL)
3717 if (edir->dyn_relocs != NULL)
3719 struct elf_dyn_relocs **pp;
3720 struct elf_dyn_relocs *p;
3722 /* Add reloc counts against the indirect sym to the direct sym
3723 list. Merge any entries against the same section. */
3724 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3726 struct elf_dyn_relocs *q;
3728 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3729 if (q->sec == p->sec)
3731 q->pc_count += p->pc_count;
3732 q->count += p->count;
3739 *pp = edir->dyn_relocs;
3742 edir->dyn_relocs = eind->dyn_relocs;
3743 eind->dyn_relocs = NULL;
3746 if (ind->root.type == bfd_link_hash_indirect)
3748 /* Copy over PLT info. */
3749 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3750 eind->plt.thumb_refcount = 0;
3751 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3752 eind->plt.maybe_thumb_refcount = 0;
3753 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3754 eind->plt.noncall_refcount = 0;
3756 /* We should only allocate a function to .iplt once the final
3757 symbol information is known. */
3758 BFD_ASSERT (!eind->is_iplt);
3760 if (dir->got.refcount <= 0)
3762 edir->tls_type = eind->tls_type;
3763 eind->tls_type = GOT_UNKNOWN;
3767 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3770 /* Destroy an ARM elf linker hash table. */
3773 elf32_arm_link_hash_table_free (bfd *obfd)
3775 struct elf32_arm_link_hash_table *ret
3776 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
3778 bfd_hash_table_free (&ret->stub_hash_table);
3779 _bfd_elf_link_hash_table_free (obfd);
3782 /* Create an ARM elf linker hash table. */
3784 static struct bfd_link_hash_table *
3785 elf32_arm_link_hash_table_create (bfd *abfd)
3787 struct elf32_arm_link_hash_table *ret;
3788 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3790 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3794 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3795 elf32_arm_link_hash_newfunc,
3796 sizeof (struct elf32_arm_link_hash_entry),
3803 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3804 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
3805 #ifdef FOUR_WORD_PLT
3806 ret->plt_header_size = 16;
3807 ret->plt_entry_size = 16;
3809 ret->plt_header_size = 20;
3810 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
3815 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3816 sizeof (struct elf32_arm_stub_hash_entry)))
3818 _bfd_elf_link_hash_table_free (abfd);
3821 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
3823 return &ret->root.root;
3826 /* Determine what kind of NOPs are available. */
3829 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3831 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3834 /* Force return logic to be reviewed for each new architecture. */
3835 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3836 || arch == TAG_CPU_ARCH_V8M_BASE
3837 || arch == TAG_CPU_ARCH_V8M_MAIN);
3839 return (arch == TAG_CPU_ARCH_V6T2
3840 || arch == TAG_CPU_ARCH_V6K
3841 || arch == TAG_CPU_ARCH_V7
3842 || arch == TAG_CPU_ARCH_V8);
3846 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3850 case arm_stub_long_branch_thumb_only:
3851 case arm_stub_long_branch_thumb2_only:
3852 case arm_stub_long_branch_thumb2_only_pure:
3853 case arm_stub_long_branch_v4t_thumb_arm:
3854 case arm_stub_short_branch_v4t_thumb_arm:
3855 case arm_stub_long_branch_v4t_thumb_arm_pic:
3856 case arm_stub_long_branch_v4t_thumb_tls_pic:
3857 case arm_stub_long_branch_thumb_only_pic:
3858 case arm_stub_cmse_branch_thumb_only:
3869 /* Determine the type of stub needed, if any, for a call. */
3871 static enum elf32_arm_stub_type
3872 arm_type_of_stub (struct bfd_link_info *info,
3873 asection *input_sec,
3874 const Elf_Internal_Rela *rel,
3875 unsigned char st_type,
3876 enum arm_st_branch_type *actual_branch_type,
3877 struct elf32_arm_link_hash_entry *hash,
3878 bfd_vma destination,
3884 bfd_signed_vma branch_offset;
3885 unsigned int r_type;
3886 struct elf32_arm_link_hash_table * globals;
3887 bfd_boolean thumb2, thumb2_bl, thumb_only;
3888 enum elf32_arm_stub_type stub_type = arm_stub_none;
3890 enum arm_st_branch_type branch_type = *actual_branch_type;
3891 union gotplt_union *root_plt;
3892 struct arm_plt_info *arm_plt;
3896 if (branch_type == ST_BRANCH_LONG)
3899 globals = elf32_arm_hash_table (info);
3900 if (globals == NULL)
3903 thumb_only = using_thumb_only (globals);
3904 thumb2 = using_thumb2 (globals);
3905 thumb2_bl = using_thumb2_bl (globals);
3907 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3909 /* True for architectures that implement the thumb2 movw instruction. */
3910 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
3912 /* Determine where the call point is. */
3913 location = (input_sec->output_offset
3914 + input_sec->output_section->vma
3917 r_type = ELF32_R_TYPE (rel->r_info);
3919 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3920 are considering a function call relocation. */
3921 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3922 || r_type == R_ARM_THM_JUMP19)
3923 && branch_type == ST_BRANCH_TO_ARM)
3924 branch_type = ST_BRANCH_TO_THUMB;
3926 /* For TLS call relocs, it is the caller's responsibility to provide
3927 the address of the appropriate trampoline. */
3928 if (r_type != R_ARM_TLS_CALL
3929 && r_type != R_ARM_THM_TLS_CALL
3930 && elf32_arm_get_plt_info (input_bfd, globals, hash,
3931 ELF32_R_SYM (rel->r_info), &root_plt,
3933 && root_plt->offset != (bfd_vma) -1)
3937 if (hash == NULL || hash->is_iplt)
3938 splt = globals->root.iplt;
3940 splt = globals->root.splt;
3945 /* Note when dealing with PLT entries: the main PLT stub is in
3946 ARM mode, so if the branch is in Thumb mode, another
3947 Thumb->ARM stub will be inserted later just before the ARM
3948 PLT stub. We don't take this extra distance into account
3949 here, because if a long branch stub is needed, we'll add a
3950 Thumb->Arm one and branch directly to the ARM PLT entry
3951 because it avoids spreading offset corrections in several
3954 destination = (splt->output_section->vma
3955 + splt->output_offset
3956 + root_plt->offset);
3958 branch_type = ST_BRANCH_TO_ARM;
3961 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3962 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3964 branch_offset = (bfd_signed_vma)(destination - location);
3966 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3967 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
3969 /* Handle cases where:
3970 - this call goes too far (different Thumb/Thumb2 max
3972 - it's a Thumb->Arm call and blx is not available, or it's a
3973 Thumb->Arm branch (not bl). A stub is needed in this case,
3974 but only if this call is not through a PLT entry. Indeed,
3975 PLT stubs handle mode switching already.
3978 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3979 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3981 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3982 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3984 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
3985 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
3986 && (r_type == R_ARM_THM_JUMP19))
3987 || (branch_type == ST_BRANCH_TO_ARM
3988 && (((r_type == R_ARM_THM_CALL
3989 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3990 || (r_type == R_ARM_THM_JUMP24)
3991 || (r_type == R_ARM_THM_JUMP19))
3994 if (branch_type == ST_BRANCH_TO_THUMB)
3996 /* Thumb to thumb. */
3999 if (input_sec->flags & SEC_ELF_PURECODE)
4000 (*_bfd_error_handler) (_("%B(%s): warning: long branch "
4001 " veneers used in section with "
4002 "SHF_ARM_PURECODE section "
4003 "attribute is only supported"
4004 " for M-profile targets that "
4005 "implement the movw "
4008 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4010 ? ((globals->use_blx
4011 && (r_type == R_ARM_THM_CALL))
4012 /* V5T and above. Stub starts with ARM code, so
4013 we must be able to switch mode before
4014 reaching it, which is only possible for 'bl'
4015 (ie R_ARM_THM_CALL relocation). */
4016 ? arm_stub_long_branch_any_thumb_pic
4017 /* On V4T, use Thumb code only. */
4018 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4020 /* non-PIC stubs. */
4021 : ((globals->use_blx
4022 && (r_type == R_ARM_THM_CALL))
4023 /* V5T and above. */
4024 ? arm_stub_long_branch_any_any
4026 : arm_stub_long_branch_v4t_thumb_thumb);
4030 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4031 stub_type = arm_stub_long_branch_thumb2_only_pure;
4034 if (input_sec->flags & SEC_ELF_PURECODE)
4035 (*_bfd_error_handler) (_("%B(%s): warning: long branch "
4036 " veneers used in section with "
4037 "SHF_ARM_PURECODE section "
4038 "attribute is only supported"
4039 " for M-profile targets that "
4040 "implement the movw "
4043 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4045 ? arm_stub_long_branch_thumb_only_pic
4047 : (thumb2 ? arm_stub_long_branch_thumb2_only
4048 : arm_stub_long_branch_thumb_only);
4054 if (input_sec->flags & SEC_ELF_PURECODE)
4055 (*_bfd_error_handler) (_("%B(%s): warning: long branch "
4056 " veneers used in section with "
4057 "SHF_ARM_PURECODE section "
4058 "attribute is only supported"
4059 " for M-profile targets that "
4060 "implement the movw "
4065 && sym_sec->owner != NULL
4066 && !INTERWORK_FLAG (sym_sec->owner))
4068 (*_bfd_error_handler)
4069 (_("%B(%s): warning: interworking not enabled.\n"
4070 " first occurrence: %B: Thumb call to ARM"),
4071 sym_sec->owner, input_bfd, name);
4075 (bfd_link_pic (info) | globals->pic_veneer)
4077 ? (r_type == R_ARM_THM_TLS_CALL
4078 /* TLS PIC stubs. */
4079 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4080 : arm_stub_long_branch_v4t_thumb_tls_pic)
4081 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4082 /* V5T PIC and above. */
4083 ? arm_stub_long_branch_any_arm_pic
4085 : arm_stub_long_branch_v4t_thumb_arm_pic))
4087 /* non-PIC stubs. */
4088 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4089 /* V5T and above. */
4090 ? arm_stub_long_branch_any_any
4092 : arm_stub_long_branch_v4t_thumb_arm);
4094 /* Handle v4t short branches. */
4095 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4096 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4097 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4098 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4102 else if (r_type == R_ARM_CALL
4103 || r_type == R_ARM_JUMP24
4104 || r_type == R_ARM_PLT32
4105 || r_type == R_ARM_TLS_CALL)
4107 if (input_sec->flags & SEC_ELF_PURECODE)
4108 (*_bfd_error_handler) (_("%B(%s): warning: long branch "
4109 " veneers used in section with "
4110 "SHF_ARM_PURECODE section "
4111 "attribute is only supported"
4112 " for M-profile targets that "
4113 "implement the movw "
4115 if (branch_type == ST_BRANCH_TO_THUMB)
4120 && sym_sec->owner != NULL
4121 && !INTERWORK_FLAG (sym_sec->owner))
4123 (*_bfd_error_handler)
4124 (_("%B(%s): warning: interworking not enabled.\n"
4125 " first occurrence: %B: ARM call to Thumb"),
4126 sym_sec->owner, input_bfd, name);
4129 /* We have an extra 2-bytes reach because of
4130 the mode change (bit 24 (H) of BLX encoding). */
4131 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4132 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4133 || (r_type == R_ARM_CALL && !globals->use_blx)
4134 || (r_type == R_ARM_JUMP24)
4135 || (r_type == R_ARM_PLT32))
4137 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4139 ? ((globals->use_blx)
4140 /* V5T and above. */
4141 ? arm_stub_long_branch_any_thumb_pic
4143 : arm_stub_long_branch_v4t_arm_thumb_pic)
4145 /* non-PIC stubs. */
4146 : ((globals->use_blx)
4147 /* V5T and above. */
4148 ? arm_stub_long_branch_any_any
4150 : arm_stub_long_branch_v4t_arm_thumb);
4156 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4157 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4160 (bfd_link_pic (info) | globals->pic_veneer)
4162 ? (r_type == R_ARM_TLS_CALL
4164 ? arm_stub_long_branch_any_tls_pic
4166 ? arm_stub_long_branch_arm_nacl_pic
4167 : arm_stub_long_branch_any_arm_pic))
4168 /* non-PIC stubs. */
4170 ? arm_stub_long_branch_arm_nacl
4171 : arm_stub_long_branch_any_any);
4176 /* If a stub is needed, record the actual destination type. */
4177 if (stub_type != arm_stub_none)
4178 *actual_branch_type = branch_type;
4183 /* Build a name for an entry in the stub hash table. */
4186 elf32_arm_stub_name (const asection *input_section,
4187 const asection *sym_sec,
4188 const struct elf32_arm_link_hash_entry *hash,
4189 const Elf_Internal_Rela *rel,
4190 enum elf32_arm_stub_type stub_type)
4197 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4198 stub_name = (char *) bfd_malloc (len);
4199 if (stub_name != NULL)
4200 sprintf (stub_name, "%08x_%s+%x_%d",
4201 input_section->id & 0xffffffff,
4202 hash->root.root.root.string,
4203 (int) rel->r_addend & 0xffffffff,
4208 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4209 stub_name = (char *) bfd_malloc (len);
4210 if (stub_name != NULL)
4211 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4212 input_section->id & 0xffffffff,
4213 sym_sec->id & 0xffffffff,
4214 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4215 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4216 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4217 (int) rel->r_addend & 0xffffffff,
4224 /* Look up an entry in the stub hash. Stub entries are cached because
4225 creating the stub name takes a bit of time. */
4227 static struct elf32_arm_stub_hash_entry *
4228 elf32_arm_get_stub_entry (const asection *input_section,
4229 const asection *sym_sec,
4230 struct elf_link_hash_entry *hash,
4231 const Elf_Internal_Rela *rel,
4232 struct elf32_arm_link_hash_table *htab,
4233 enum elf32_arm_stub_type stub_type)
4235 struct elf32_arm_stub_hash_entry *stub_entry;
4236 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4237 const asection *id_sec;
4239 if ((input_section->flags & SEC_CODE) == 0)
4242 /* If this input section is part of a group of sections sharing one
4243 stub section, then use the id of the first section in the group.
4244 Stub names need to include a section id, as there may well be
4245 more than one stub used to reach say, printf, and we need to
4246 distinguish between them. */
4247 BFD_ASSERT (input_section->id <= htab->top_id);
4248 id_sec = htab->stub_group[input_section->id].link_sec;
4250 if (h != NULL && h->stub_cache != NULL
4251 && h->stub_cache->h == h
4252 && h->stub_cache->id_sec == id_sec
4253 && h->stub_cache->stub_type == stub_type)
4255 stub_entry = h->stub_cache;
4261 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4262 if (stub_name == NULL)
4265 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4266 stub_name, FALSE, FALSE);
4268 h->stub_cache = stub_entry;
4276 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4280 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4282 if (stub_type >= max_stub_type)
4283 abort (); /* Should be unreachable. */
4287 case arm_stub_cmse_branch_thumb_only:
4294 abort (); /* Should be unreachable. */
4297 /* Required alignment (as a power of 2) for the dedicated section holding
4298 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4299 with input sections. */
4302 arm_dedicated_stub_output_section_required_alignment
4303 (enum elf32_arm_stub_type stub_type)
4305 if (stub_type >= max_stub_type)
4306 abort (); /* Should be unreachable. */
4310 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4312 case arm_stub_cmse_branch_thumb_only:
4316 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4320 abort (); /* Should be unreachable. */
4323 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4324 NULL if veneers of this type are interspersed with input sections. */
4327 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4329 if (stub_type >= max_stub_type)
4330 abort (); /* Should be unreachable. */
4334 case arm_stub_cmse_branch_thumb_only:
4335 return ".gnu.sgstubs";
4338 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4342 abort (); /* Should be unreachable. */
4345 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4346 returns the address of the hash table field in HTAB holding a pointer to the
4347 corresponding input section. Otherwise, returns NULL. */
4350 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4351 enum elf32_arm_stub_type stub_type)
4353 if (stub_type >= max_stub_type)
4354 abort (); /* Should be unreachable. */
4358 case arm_stub_cmse_branch_thumb_only:
4359 return &htab->cmse_stub_sec;
4362 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4366 abort (); /* Should be unreachable. */
4369 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4370 is the section that branch into veneer and can be NULL if stub should go in
4371 a dedicated output section. Returns a pointer to the stub section, and the
4372 section to which the stub section will be attached (in *LINK_SEC_P).
4373 LINK_SEC_P may be NULL. */
4376 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4377 struct elf32_arm_link_hash_table *htab,
4378 enum elf32_arm_stub_type stub_type)
4380 asection *link_sec, *out_sec, **stub_sec_p;
4381 const char *stub_sec_prefix;
4382 bfd_boolean dedicated_output_section =
4383 arm_dedicated_stub_output_section_required (stub_type);
4386 if (dedicated_output_section)
4388 bfd *output_bfd = htab->obfd;
4389 const char *out_sec_name =
4390 arm_dedicated_stub_output_section_name (stub_type);
4392 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4393 stub_sec_prefix = out_sec_name;
4394 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4395 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4396 if (out_sec == NULL)
4398 (*_bfd_error_handler) (_("No address assigned to the veneers output "
4399 "section %s"), out_sec_name);
4405 BFD_ASSERT (section->id <= htab->top_id);
4406 link_sec = htab->stub_group[section->id].link_sec;
4407 BFD_ASSERT (link_sec != NULL);
4408 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4409 if (*stub_sec_p == NULL)
4410 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4411 stub_sec_prefix = link_sec->name;
4412 out_sec = link_sec->output_section;
4413 align = htab->nacl_p ? 4 : 3;
4416 if (*stub_sec_p == NULL)
4422 namelen = strlen (stub_sec_prefix);
4423 len = namelen + sizeof (STUB_SUFFIX);
4424 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4428 memcpy (s_name, stub_sec_prefix, namelen);
4429 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4430 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4432 if (*stub_sec_p == NULL)
4435 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4436 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4440 if (!dedicated_output_section)
4441 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4444 *link_sec_p = link_sec;
4449 /* Add a new stub entry to the stub hash. Not all fields of the new
4450 stub entry are initialised. */
4452 static struct elf32_arm_stub_hash_entry *
4453 elf32_arm_add_stub (const char *stub_name, asection *section,
4454 struct elf32_arm_link_hash_table *htab,
4455 enum elf32_arm_stub_type stub_type)
4459 struct elf32_arm_stub_hash_entry *stub_entry;
4461 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4463 if (stub_sec == NULL)
4466 /* Enter this entry into the linker stub hash table. */
4467 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4469 if (stub_entry == NULL)
4471 if (section == NULL)
4473 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4479 stub_entry->stub_sec = stub_sec;
4480 stub_entry->stub_offset = (bfd_vma) -1;
4481 stub_entry->id_sec = link_sec;
4486 /* Store an Arm insn into an output section not processed by
4487 elf32_arm_write_section. */
4490 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4491 bfd * output_bfd, bfd_vma val, void * ptr)
4493 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4494 bfd_putl32 (val, ptr);
4496 bfd_putb32 (val, ptr);
4499 /* Store a 16-bit Thumb insn into an output section not processed by
4500 elf32_arm_write_section. */
4503 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4504 bfd * output_bfd, bfd_vma val, void * ptr)
4506 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4507 bfd_putl16 (val, ptr);
4509 bfd_putb16 (val, ptr);
4512 /* Store a Thumb2 insn into an output section not processed by
4513 elf32_arm_write_section. */
4516 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4517 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4519 /* T2 instructions are 16-bit streamed. */
4520 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4522 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4523 bfd_putl16 ((val & 0xffff), ptr + 2);
4527 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4528 bfd_putb16 ((val & 0xffff), ptr + 2);
4532 /* If it's possible to change R_TYPE to a more efficient access
4533 model, return the new reloc type. */
4536 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4537 struct elf_link_hash_entry *h)
4539 int is_local = (h == NULL);
4541 if (bfd_link_pic (info)
4542 || (h && h->root.type == bfd_link_hash_undefweak))
4545 /* We do not support relaxations for Old TLS models. */
4548 case R_ARM_TLS_GOTDESC:
4549 case R_ARM_TLS_CALL:
4550 case R_ARM_THM_TLS_CALL:
4551 case R_ARM_TLS_DESCSEQ:
4552 case R_ARM_THM_TLS_DESCSEQ:
4553 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4559 static bfd_reloc_status_type elf32_arm_final_link_relocate
4560 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4561 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4562 const char *, unsigned char, enum arm_st_branch_type,
4563 struct elf_link_hash_entry *, bfd_boolean *, char **);
4566 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4570 case arm_stub_a8_veneer_b_cond:
4571 case arm_stub_a8_veneer_b:
4572 case arm_stub_a8_veneer_bl:
4575 case arm_stub_long_branch_any_any:
4576 case arm_stub_long_branch_v4t_arm_thumb:
4577 case arm_stub_long_branch_thumb_only:
4578 case arm_stub_long_branch_thumb2_only:
4579 case arm_stub_long_branch_thumb2_only_pure:
4580 case arm_stub_long_branch_v4t_thumb_thumb:
4581 case arm_stub_long_branch_v4t_thumb_arm:
4582 case arm_stub_short_branch_v4t_thumb_arm:
4583 case arm_stub_long_branch_any_arm_pic:
4584 case arm_stub_long_branch_any_thumb_pic:
4585 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4586 case arm_stub_long_branch_v4t_arm_thumb_pic:
4587 case arm_stub_long_branch_v4t_thumb_arm_pic:
4588 case arm_stub_long_branch_thumb_only_pic:
4589 case arm_stub_long_branch_any_tls_pic:
4590 case arm_stub_long_branch_v4t_thumb_tls_pic:
4591 case arm_stub_cmse_branch_thumb_only:
4592 case arm_stub_a8_veneer_blx:
4595 case arm_stub_long_branch_arm_nacl:
4596 case arm_stub_long_branch_arm_nacl_pic:
4600 abort (); /* Should be unreachable. */
4604 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4605 veneering (TRUE) or have their own symbol (FALSE). */
4608 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4610 if (stub_type >= max_stub_type)
4611 abort (); /* Should be unreachable. */
4615 case arm_stub_cmse_branch_thumb_only:
4622 abort (); /* Should be unreachable. */
4625 /* Returns the padding needed for the dedicated section used stubs of type
4629 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4631 if (stub_type >= max_stub_type)
4632 abort (); /* Should be unreachable. */
4636 case arm_stub_cmse_branch_thumb_only:
4643 abort (); /* Should be unreachable. */
4646 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4647 returns the address of the hash table field in HTAB holding the offset at
4648 which new veneers should be layed out in the stub section. */
4651 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4652 enum elf32_arm_stub_type stub_type)
4656 case arm_stub_cmse_branch_thumb_only:
4657 return &htab->new_cmse_stub_offset;
4660 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4666 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4670 bfd_boolean removed_sg_veneer;
4671 struct elf32_arm_stub_hash_entry *stub_entry;
4672 struct elf32_arm_link_hash_table *globals;
4673 struct bfd_link_info *info;
4680 const insn_sequence *template_sequence;
4682 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4683 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4685 int just_allocated = 0;
4687 /* Massage our args to the form they really have. */
4688 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4689 info = (struct bfd_link_info *) in_arg;
4691 globals = elf32_arm_hash_table (info);
4692 if (globals == NULL)
4695 stub_sec = stub_entry->stub_sec;
4697 if ((globals->fix_cortex_a8 < 0)
4698 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4699 /* We have to do less-strictly-aligned fixes last. */
4702 /* Assign a slot at the end of section if none assigned yet. */
4703 if (stub_entry->stub_offset == (bfd_vma) -1)
4705 stub_entry->stub_offset = stub_sec->size;
4708 loc = stub_sec->contents + stub_entry->stub_offset;
4710 stub_bfd = stub_sec->owner;
4712 /* This is the address of the stub destination. */
4713 sym_value = (stub_entry->target_value
4714 + stub_entry->target_section->output_offset
4715 + stub_entry->target_section->output_section->vma);
4717 template_sequence = stub_entry->stub_template;
4718 template_size = stub_entry->stub_template_size;
4721 for (i = 0; i < template_size; i++)
4723 switch (template_sequence[i].type)
4727 bfd_vma data = (bfd_vma) template_sequence[i].data;
4728 if (template_sequence[i].reloc_addend != 0)
4730 /* We've borrowed the reloc_addend field to mean we should
4731 insert a condition code into this (Thumb-1 branch)
4732 instruction. See THUMB16_BCOND_INSN. */
4733 BFD_ASSERT ((data & 0xff00) == 0xd000);
4734 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4736 bfd_put_16 (stub_bfd, data, loc + size);
4742 bfd_put_16 (stub_bfd,
4743 (template_sequence[i].data >> 16) & 0xffff,
4745 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4747 if (template_sequence[i].r_type != R_ARM_NONE)
4749 stub_reloc_idx[nrelocs] = i;
4750 stub_reloc_offset[nrelocs++] = size;
4756 bfd_put_32 (stub_bfd, template_sequence[i].data,
4758 /* Handle cases where the target is encoded within the
4760 if (template_sequence[i].r_type == R_ARM_JUMP24)
4762 stub_reloc_idx[nrelocs] = i;
4763 stub_reloc_offset[nrelocs++] = size;
4769 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4770 stub_reloc_idx[nrelocs] = i;
4771 stub_reloc_offset[nrelocs++] = size;
4782 stub_sec->size += size;
4784 /* Stub size has already been computed in arm_size_one_stub. Check
4786 BFD_ASSERT (size == stub_entry->stub_size);
4788 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4789 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4792 /* Assume non empty slots have at least one and at most MAXRELOCS entries
4793 to relocate in each stub. */
4795 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
4796 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
4798 for (i = 0; i < nrelocs; i++)
4800 Elf_Internal_Rela rel;
4801 bfd_boolean unresolved_reloc;
4802 char *error_message;
4804 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
4806 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4807 rel.r_info = ELF32_R_INFO (0,
4808 template_sequence[stub_reloc_idx[i]].r_type);
4811 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4812 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4813 template should refer back to the instruction after the original
4814 branch. We use target_section as Cortex-A8 erratum workaround stubs
4815 are only generated when both source and target are in the same
4817 points_to = stub_entry->target_section->output_section->vma
4818 + stub_entry->target_section->output_offset
4819 + stub_entry->source_value;
4821 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4822 (template_sequence[stub_reloc_idx[i]].r_type),
4823 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4824 points_to, info, stub_entry->target_section, "", STT_FUNC,
4825 stub_entry->branch_type,
4826 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4834 /* Calculate the template, template size and instruction size for a stub.
4835 Return value is the instruction size. */
4838 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4839 const insn_sequence **stub_template,
4840 int *stub_template_size)
4842 const insn_sequence *template_sequence = NULL;
4843 int template_size = 0, i;
4846 template_sequence = stub_definitions[stub_type].template_sequence;
4848 *stub_template = template_sequence;
4850 template_size = stub_definitions[stub_type].template_size;
4851 if (stub_template_size)
4852 *stub_template_size = template_size;
4855 for (i = 0; i < template_size; i++)
4857 switch (template_sequence[i].type)
4878 /* As above, but don't actually build the stub. Just bump offset so
4879 we know stub section sizes. */
4882 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4883 void *in_arg ATTRIBUTE_UNUSED)
4885 struct elf32_arm_stub_hash_entry *stub_entry;
4886 const insn_sequence *template_sequence;
4887 int template_size, size;
4889 /* Massage our args to the form they really have. */
4890 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4892 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4893 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4895 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4898 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
4899 if (stub_entry->stub_template_size)
4901 stub_entry->stub_size = size;
4902 stub_entry->stub_template = template_sequence;
4903 stub_entry->stub_template_size = template_size;
4906 /* Already accounted for. */
4907 if (stub_entry->stub_offset != (bfd_vma) -1)
4910 size = (size + 7) & ~7;
4911 stub_entry->stub_sec->size += size;
4916 /* External entry points for sizing and building linker stubs. */
4918 /* Set up various things so that we can make a list of input sections
4919 for each output section included in the link. Returns -1 on error,
4920 0 when no stubs will be needed, and 1 on success. */
4923 elf32_arm_setup_section_lists (bfd *output_bfd,
4924 struct bfd_link_info *info)
4927 unsigned int bfd_count;
4928 unsigned int top_id, top_index;
4930 asection **input_list, **list;
4932 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4936 if (! is_elf_hash_table (htab))
4939 /* Count the number of input BFDs and find the top input section id. */
4940 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4942 input_bfd = input_bfd->link.next)
4945 for (section = input_bfd->sections;
4947 section = section->next)
4949 if (top_id < section->id)
4950 top_id = section->id;
4953 htab->bfd_count = bfd_count;
4955 amt = sizeof (struct map_stub) * (top_id + 1);
4956 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4957 if (htab->stub_group == NULL)
4959 htab->top_id = top_id;
4961 /* We can't use output_bfd->section_count here to find the top output
4962 section index as some sections may have been removed, and
4963 _bfd_strip_section_from_output doesn't renumber the indices. */
4964 for (section = output_bfd->sections, top_index = 0;
4966 section = section->next)
4968 if (top_index < section->index)
4969 top_index = section->index;
4972 htab->top_index = top_index;
4973 amt = sizeof (asection *) * (top_index + 1);
4974 input_list = (asection **) bfd_malloc (amt);
4975 htab->input_list = input_list;
4976 if (input_list == NULL)
4979 /* For sections we aren't interested in, mark their entries with a
4980 value we can check later. */
4981 list = input_list + top_index;
4983 *list = bfd_abs_section_ptr;
4984 while (list-- != input_list);
4986 for (section = output_bfd->sections;
4988 section = section->next)
4990 if ((section->flags & SEC_CODE) != 0)
4991 input_list[section->index] = NULL;
4997 /* The linker repeatedly calls this function for each input section,
4998 in the order that input sections are linked into output sections.
4999 Build lists of input sections to determine groupings between which
5000 we may insert linker stubs. */
5003 elf32_arm_next_input_section (struct bfd_link_info *info,
5006 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5011 if (isec->output_section->index <= htab->top_index)
5013 asection **list = htab->input_list + isec->output_section->index;
5015 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5017 /* Steal the link_sec pointer for our list. */
5018 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5019 /* This happens to make the list in reverse order,
5020 which we reverse later. */
5021 PREV_SEC (isec) = *list;
5027 /* See whether we can group stub sections together. Grouping stub
5028 sections may result in fewer stubs. More importantly, we need to
5029 put all .init* and .fini* stubs at the end of the .init or
5030 .fini output sections respectively, because glibc splits the
5031 _init and _fini functions into multiple parts. Putting a stub in
5032 the middle of a function is not a good idea. */
5035 group_sections (struct elf32_arm_link_hash_table *htab,
5036 bfd_size_type stub_group_size,
5037 bfd_boolean stubs_always_after_branch)
5039 asection **list = htab->input_list;
5043 asection *tail = *list;
5046 if (tail == bfd_abs_section_ptr)
5049 /* Reverse the list: we must avoid placing stubs at the
5050 beginning of the section because the beginning of the text
5051 section may be required for an interrupt vector in bare metal
5053 #define NEXT_SEC PREV_SEC
5055 while (tail != NULL)
5057 /* Pop from tail. */
5058 asection *item = tail;
5059 tail = PREV_SEC (item);
5062 NEXT_SEC (item) = head;
5066 while (head != NULL)
5070 bfd_vma stub_group_start = head->output_offset;
5071 bfd_vma end_of_next;
5074 while (NEXT_SEC (curr) != NULL)
5076 next = NEXT_SEC (curr);
5077 end_of_next = next->output_offset + next->size;
5078 if (end_of_next - stub_group_start >= stub_group_size)
5079 /* End of NEXT is too far from start, so stop. */
5081 /* Add NEXT to the group. */
5085 /* OK, the size from the start to the start of CURR is less
5086 than stub_group_size and thus can be handled by one stub
5087 section. (Or the head section is itself larger than
5088 stub_group_size, in which case we may be toast.)
5089 We should really be keeping track of the total size of
5090 stubs added here, as stubs contribute to the final output
5094 next = NEXT_SEC (head);
5095 /* Set up this stub group. */
5096 htab->stub_group[head->id].link_sec = curr;
5098 while (head != curr && (head = next) != NULL);
5100 /* But wait, there's more! Input sections up to stub_group_size
5101 bytes after the stub section can be handled by it too. */
5102 if (!stubs_always_after_branch)
5104 stub_group_start = curr->output_offset + curr->size;
5106 while (next != NULL)
5108 end_of_next = next->output_offset + next->size;
5109 if (end_of_next - stub_group_start >= stub_group_size)
5110 /* End of NEXT is too far from stubs, so stop. */
5112 /* Add NEXT to the stub group. */
5114 next = NEXT_SEC (head);
5115 htab->stub_group[head->id].link_sec = curr;
5121 while (list++ != htab->input_list + htab->top_index);
5123 free (htab->input_list);
5128 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5132 a8_reloc_compare (const void *a, const void *b)
5134 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5135 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5137 if (ra->from < rb->from)
5139 else if (ra->from > rb->from)
5145 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5146 const char *, char **);
5148 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5149 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5150 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5154 cortex_a8_erratum_scan (bfd *input_bfd,
5155 struct bfd_link_info *info,
5156 struct a8_erratum_fix **a8_fixes_p,
5157 unsigned int *num_a8_fixes_p,
5158 unsigned int *a8_fix_table_size_p,
5159 struct a8_erratum_reloc *a8_relocs,
5160 unsigned int num_a8_relocs,
5161 unsigned prev_num_a8_fixes,
5162 bfd_boolean *stub_changed_p)
5165 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5166 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5167 unsigned int num_a8_fixes = *num_a8_fixes_p;
5168 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5173 for (section = input_bfd->sections;
5175 section = section->next)
5177 bfd_byte *contents = NULL;
5178 struct _arm_elf_section_data *sec_data;
5182 if (elf_section_type (section) != SHT_PROGBITS
5183 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5184 || (section->flags & SEC_EXCLUDE) != 0
5185 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5186 || (section->output_section == bfd_abs_section_ptr))
5189 base_vma = section->output_section->vma + section->output_offset;
5191 if (elf_section_data (section)->this_hdr.contents != NULL)
5192 contents = elf_section_data (section)->this_hdr.contents;
5193 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5196 sec_data = elf32_arm_section_data (section);
5198 for (span = 0; span < sec_data->mapcount; span++)
5200 unsigned int span_start = sec_data->map[span].vma;
5201 unsigned int span_end = (span == sec_data->mapcount - 1)
5202 ? section->size : sec_data->map[span + 1].vma;
5204 char span_type = sec_data->map[span].type;
5205 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5207 if (span_type != 't')
5210 /* Span is entirely within a single 4KB region: skip scanning. */
5211 if (((base_vma + span_start) & ~0xfff)
5212 == ((base_vma + span_end) & ~0xfff))
5215 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5217 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5218 * The branch target is in the same 4KB region as the
5219 first half of the branch.
5220 * The instruction before the branch is a 32-bit
5221 length non-branch instruction. */
5222 for (i = span_start; i < span_end;)
5224 unsigned int insn = bfd_getl16 (&contents[i]);
5225 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5226 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5228 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5233 /* Load the rest of the insn (in manual-friendly order). */
5234 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5236 /* Encoding T4: B<c>.W. */
5237 is_b = (insn & 0xf800d000) == 0xf0009000;
5238 /* Encoding T1: BL<c>.W. */
5239 is_bl = (insn & 0xf800d000) == 0xf000d000;
5240 /* Encoding T2: BLX<c>.W. */
5241 is_blx = (insn & 0xf800d000) == 0xf000c000;
5242 /* Encoding T3: B<c>.W (not permitted in IT block). */
5243 is_bcc = (insn & 0xf800d000) == 0xf0008000
5244 && (insn & 0x07f00000) != 0x03800000;
5247 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5249 if (((base_vma + i) & 0xfff) == 0xffe
5253 && ! last_was_branch)
5255 bfd_signed_vma offset = 0;
5256 bfd_boolean force_target_arm = FALSE;
5257 bfd_boolean force_target_thumb = FALSE;
5259 enum elf32_arm_stub_type stub_type = arm_stub_none;
5260 struct a8_erratum_reloc key, *found;
5261 bfd_boolean use_plt = FALSE;
5263 key.from = base_vma + i;
5264 found = (struct a8_erratum_reloc *)
5265 bsearch (&key, a8_relocs, num_a8_relocs,
5266 sizeof (struct a8_erratum_reloc),
5271 char *error_message = NULL;
5272 struct elf_link_hash_entry *entry;
5274 /* We don't care about the error returned from this
5275 function, only if there is glue or not. */
5276 entry = find_thumb_glue (info, found->sym_name,
5280 found->non_a8_stub = TRUE;
5282 /* Keep a simpler condition, for the sake of clarity. */
5283 if (htab->root.splt != NULL && found->hash != NULL
5284 && found->hash->root.plt.offset != (bfd_vma) -1)
5287 if (found->r_type == R_ARM_THM_CALL)
5289 if (found->branch_type == ST_BRANCH_TO_ARM
5291 force_target_arm = TRUE;
5293 force_target_thumb = TRUE;
5297 /* Check if we have an offending branch instruction. */
5299 if (found && found->non_a8_stub)
5300 /* We've already made a stub for this instruction, e.g.
5301 it's a long branch or a Thumb->ARM stub. Assume that
5302 stub will suffice to work around the A8 erratum (see
5303 setting of always_after_branch above). */
5307 offset = (insn & 0x7ff) << 1;
5308 offset |= (insn & 0x3f0000) >> 4;
5309 offset |= (insn & 0x2000) ? 0x40000 : 0;
5310 offset |= (insn & 0x800) ? 0x80000 : 0;
5311 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5312 if (offset & 0x100000)
5313 offset |= ~ ((bfd_signed_vma) 0xfffff);
5314 stub_type = arm_stub_a8_veneer_b_cond;
5316 else if (is_b || is_bl || is_blx)
5318 int s = (insn & 0x4000000) != 0;
5319 int j1 = (insn & 0x2000) != 0;
5320 int j2 = (insn & 0x800) != 0;
5324 offset = (insn & 0x7ff) << 1;
5325 offset |= (insn & 0x3ff0000) >> 4;
5329 if (offset & 0x1000000)
5330 offset |= ~ ((bfd_signed_vma) 0xffffff);
5333 offset &= ~ ((bfd_signed_vma) 3);
5335 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5336 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5339 if (stub_type != arm_stub_none)
5341 bfd_vma pc_for_insn = base_vma + i + 4;
5343 /* The original instruction is a BL, but the target is
5344 an ARM instruction. If we were not making a stub,
5345 the BL would have been converted to a BLX. Use the
5346 BLX stub instead in that case. */
5347 if (htab->use_blx && force_target_arm
5348 && stub_type == arm_stub_a8_veneer_bl)
5350 stub_type = arm_stub_a8_veneer_blx;
5354 /* Conversely, if the original instruction was
5355 BLX but the target is Thumb mode, use the BL
5357 else if (force_target_thumb
5358 && stub_type == arm_stub_a8_veneer_blx)
5360 stub_type = arm_stub_a8_veneer_bl;
5366 pc_for_insn &= ~ ((bfd_vma) 3);
5368 /* If we found a relocation, use the proper destination,
5369 not the offset in the (unrelocated) instruction.
5370 Note this is always done if we switched the stub type
5374 (bfd_signed_vma) (found->destination - pc_for_insn);
5376 /* If the stub will use a Thumb-mode branch to a
5377 PLT target, redirect it to the preceding Thumb
5379 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5380 offset -= PLT_THUMB_STUB_SIZE;
5382 target = pc_for_insn + offset;
5384 /* The BLX stub is ARM-mode code. Adjust the offset to
5385 take the different PC value (+8 instead of +4) into
5387 if (stub_type == arm_stub_a8_veneer_blx)
5390 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5392 char *stub_name = NULL;
5394 if (num_a8_fixes == a8_fix_table_size)
5396 a8_fix_table_size *= 2;
5397 a8_fixes = (struct a8_erratum_fix *)
5398 bfd_realloc (a8_fixes,
5399 sizeof (struct a8_erratum_fix)
5400 * a8_fix_table_size);
5403 if (num_a8_fixes < prev_num_a8_fixes)
5405 /* If we're doing a subsequent scan,
5406 check if we've found the same fix as
5407 before, and try and reuse the stub
5409 stub_name = a8_fixes[num_a8_fixes].stub_name;
5410 if ((a8_fixes[num_a8_fixes].section != section)
5411 || (a8_fixes[num_a8_fixes].offset != i))
5415 *stub_changed_p = TRUE;
5421 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5422 if (stub_name != NULL)
5423 sprintf (stub_name, "%x:%x", section->id, i);
5426 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5427 a8_fixes[num_a8_fixes].section = section;
5428 a8_fixes[num_a8_fixes].offset = i;
5429 a8_fixes[num_a8_fixes].target_offset =
5431 a8_fixes[num_a8_fixes].orig_insn = insn;
5432 a8_fixes[num_a8_fixes].stub_name = stub_name;
5433 a8_fixes[num_a8_fixes].stub_type = stub_type;
5434 a8_fixes[num_a8_fixes].branch_type =
5435 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5442 i += insn_32bit ? 4 : 2;
5443 last_was_32bit = insn_32bit;
5444 last_was_branch = is_32bit_branch;
5448 if (elf_section_data (section)->this_hdr.contents == NULL)
5452 *a8_fixes_p = a8_fixes;
5453 *num_a8_fixes_p = num_a8_fixes;
5454 *a8_fix_table_size_p = a8_fix_table_size;
5459 /* Create or update a stub entry depending on whether the stub can already be
5460 found in HTAB. The stub is identified by:
5461 - its type STUB_TYPE
5462 - its source branch (note that several can share the same stub) whose
5463 section and relocation (if any) are given by SECTION and IRELA
5465 - its target symbol whose input section, hash, name, value and branch type
5466 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5469 If found, the value of the stub's target symbol is updated from SYM_VALUE
5470 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5471 TRUE and the stub entry is initialized.
5473 Returns the stub that was created or updated, or NULL if an error
5476 static struct elf32_arm_stub_hash_entry *
5477 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5478 enum elf32_arm_stub_type stub_type, asection *section,
5479 Elf_Internal_Rela *irela, asection *sym_sec,
5480 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5481 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5482 bfd_boolean *new_stub)
5484 const asection *id_sec;
5486 struct elf32_arm_stub_hash_entry *stub_entry;
5487 unsigned int r_type;
5488 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5490 BFD_ASSERT (stub_type != arm_stub_none);
5494 stub_name = sym_name;
5498 BFD_ASSERT (section);
5499 BFD_ASSERT (section->id <= htab->top_id);
5501 /* Support for grouping stub sections. */
5502 id_sec = htab->stub_group[section->id].link_sec;
5504 /* Get the name of this stub. */
5505 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5511 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5513 /* The proper stub has already been created, just update its value. */
5514 if (stub_entry != NULL)
5518 stub_entry->target_value = sym_value;
5522 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5523 if (stub_entry == NULL)
5530 stub_entry->target_value = sym_value;
5531 stub_entry->target_section = sym_sec;
5532 stub_entry->stub_type = stub_type;
5533 stub_entry->h = hash;
5534 stub_entry->branch_type = branch_type;
5537 stub_entry->output_name = sym_name;
5540 if (sym_name == NULL)
5541 sym_name = "unnamed";
5542 stub_entry->output_name = (char *)
5543 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5544 + strlen (sym_name));
5545 if (stub_entry->output_name == NULL)
5551 /* For historical reasons, use the existing names for ARM-to-Thumb and
5552 Thumb-to-ARM stubs. */
5553 r_type = ELF32_R_TYPE (irela->r_info);
5554 if ((r_type == (unsigned int) R_ARM_THM_CALL
5555 || r_type == (unsigned int) R_ARM_THM_JUMP24
5556 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5557 && branch_type == ST_BRANCH_TO_ARM)
5558 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5559 else if ((r_type == (unsigned int) R_ARM_CALL
5560 || r_type == (unsigned int) R_ARM_JUMP24)
5561 && branch_type == ST_BRANCH_TO_THUMB)
5562 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5564 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5571 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5572 gateway veneer to transition from non secure to secure state and create them
5575 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5576 defines the conditions that govern Secure Gateway veneer creation for a
5577 given symbol <SYM> as follows:
5578 - it has function type
5579 - it has non local binding
5580 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5581 same type, binding and value as <SYM> (called normal symbol).
5582 An entry function can handle secure state transition itself in which case
5583 its special symbol would have a different value from the normal symbol.
5585 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5586 entry mapping while HTAB gives the name to hash entry mapping.
5587 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5590 The return value gives whether a stub failed to be allocated. */
5593 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5594 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5595 int *cmse_stub_created)
5597 const struct elf_backend_data *bed;
5598 Elf_Internal_Shdr *symtab_hdr;
5599 unsigned i, j, sym_count, ext_start;
5600 Elf_Internal_Sym *cmse_sym, *local_syms;
5601 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5602 enum arm_st_branch_type branch_type;
5603 char *sym_name, *lsym_name;
5606 struct elf32_arm_stub_hash_entry *stub_entry;
5607 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5609 bed = get_elf_backend_data (input_bfd);
5610 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5611 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5612 ext_start = symtab_hdr->sh_info;
5613 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5614 && out_attr[Tag_CPU_arch_profile].i == 'M');
5616 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5617 if (local_syms == NULL)
5618 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5619 symtab_hdr->sh_info, 0, NULL, NULL,
5621 if (symtab_hdr->sh_info && local_syms == NULL)
5625 for (i = 0; i < sym_count; i++)
5627 cmse_invalid = FALSE;
5631 cmse_sym = &local_syms[i];
5632 /* Not a special symbol. */
5633 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
5635 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5636 symtab_hdr->sh_link,
5638 /* Special symbol with local binding. */
5639 cmse_invalid = TRUE;
5643 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5644 sym_name = (char *) cmse_hash->root.root.root.string;
5646 /* Not a special symbol. */
5647 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
5650 /* Special symbol has incorrect binding or type. */
5651 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5652 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5653 || cmse_hash->root.type != STT_FUNC)
5654 cmse_invalid = TRUE;
5659 (*_bfd_error_handler) (_("%B: Special symbol `%s' only allowed for "
5660 "ARMv8-M architecture or later."),
5661 input_bfd, sym_name);
5662 is_v8m = TRUE; /* Avoid multiple warning. */
5668 (*_bfd_error_handler) (_("%B: invalid special symbol `%s'."),
5669 input_bfd, sym_name);
5670 (*_bfd_error_handler) (_("It must be a global or weak function "
5677 sym_name += strlen (CMSE_PREFIX);
5678 hash = (struct elf32_arm_link_hash_entry *)
5679 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5681 /* No associated normal symbol or it is neither global nor weak. */
5683 || (hash->root.root.type != bfd_link_hash_defined
5684 && hash->root.root.type != bfd_link_hash_defweak)
5685 || hash->root.type != STT_FUNC)
5687 /* Initialize here to avoid warning about use of possibly
5688 uninitialized variable. */
5693 /* Searching for a normal symbol with local binding. */
5694 for (; j < ext_start; j++)
5697 bfd_elf_string_from_elf_section (input_bfd,
5698 symtab_hdr->sh_link,
5699 local_syms[j].st_name);
5700 if (!strcmp (sym_name, lsym_name))
5705 if (hash || j < ext_start)
5707 (*_bfd_error_handler)
5708 (_("%B: invalid standard symbol `%s'."), input_bfd, sym_name);
5709 (*_bfd_error_handler)
5710 (_("It must be a global or weak function symbol."));
5713 (*_bfd_error_handler)
5714 (_("%B: absent standard symbol `%s'."), input_bfd, sym_name);
5720 sym_value = hash->root.root.u.def.value;
5721 section = hash->root.root.u.def.section;
5723 if (cmse_hash->root.root.u.def.section != section)
5725 (*_bfd_error_handler)
5726 (_("%B: `%s' and its special symbol are in different sections."),
5727 input_bfd, sym_name);
5730 if (cmse_hash->root.root.u.def.value != sym_value)
5731 continue; /* Ignore: could be an entry function starting with SG. */
5733 /* If this section is a link-once section that will be discarded, then
5734 don't create any stubs. */
5735 if (section->output_section == NULL)
5737 (*_bfd_error_handler)
5738 (_("%B: entry function `%s' not output."), input_bfd, sym_name);
5742 if (hash->root.size == 0)
5744 (*_bfd_error_handler)
5745 (_("%B: entry function `%s' is empty."), input_bfd, sym_name);
5751 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
5753 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5754 NULL, NULL, section, hash, sym_name,
5755 sym_value, branch_type, &new_stub);
5757 if (stub_entry == NULL)
5761 BFD_ASSERT (new_stub);
5762 (*cmse_stub_created)++;
5766 if (!symtab_hdr->contents)
5771 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
5772 code entry function, ie can be called from non secure code without using a
5776 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
5778 uint32_t first_insn;
5783 /* Defined symbol of function type. */
5784 if (hash->root.root.type != bfd_link_hash_defined
5785 && hash->root.root.type != bfd_link_hash_defweak)
5787 if (hash->root.type != STT_FUNC)
5790 /* Read first instruction. */
5791 section = hash->root.root.u.def.section;
5792 abfd = section->owner;
5793 offset = hash->root.root.u.def.value - section->vma;
5794 if (!bfd_get_section_contents (abfd, section, &first_insn, offset,
5795 sizeof (first_insn)))
5798 /* Start by SG instruction. */
5799 return first_insn == 0xe97fe97f;
5802 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
5803 secure gateway veneers (ie. the veneers was not in the input import library)
5804 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
5807 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
5809 struct elf32_arm_stub_hash_entry *stub_entry;
5810 struct bfd_link_info *info;
5812 /* Massage our args to the form they really have. */
5813 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5814 info = (struct bfd_link_info *) gen_info;
5816 if (info->out_implib_bfd)
5819 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
5822 if (stub_entry->stub_offset == (bfd_vma) -1)
5823 (*_bfd_error_handler) (" %s", stub_entry->output_name);
5828 /* Set offset of each secure gateway veneers so that its address remain
5829 identical to the one in the input import library referred by
5830 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
5831 (present in input import library but absent from the executable being
5832 linked) or if new veneers appeared and there is no output import library
5833 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
5834 number of secure gateway veneers found in the input import library.
5836 The function returns whether an error occurred. If no error occurred,
5837 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
5838 and this function and HTAB->new_cmse_stub_offset is set to the biggest
5839 veneer observed set for new veneers to be layed out after. */
5842 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
5843 struct elf32_arm_link_hash_table *htab,
5844 int *cmse_stub_created)
5851 asection *stub_out_sec;
5852 bfd_boolean ret = TRUE;
5853 Elf_Internal_Sym *intsym;
5854 const char *out_sec_name;
5855 bfd_size_type cmse_stub_size;
5856 asymbol **sympp = NULL, *sym;
5857 struct elf32_arm_link_hash_entry *hash;
5858 const insn_sequence *cmse_stub_template;
5859 struct elf32_arm_stub_hash_entry *stub_entry;
5860 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
5861 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
5862 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
5864 /* No input secure gateway import library. */
5865 if (!htab->in_implib_bfd)
5868 in_implib_bfd = htab->in_implib_bfd;
5869 if (!htab->cmse_implib)
5871 (*_bfd_error_handler) (_("%B: --in-implib only supported for Secure "
5872 "Gateway import libraries."), in_implib_bfd);
5876 /* Get symbol table size. */
5877 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
5881 /* Read in the input secure gateway import library's symbol table. */
5882 sympp = (asymbol **) xmalloc (symsize);
5883 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
5890 htab->new_cmse_stub_offset = 0;
5892 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
5893 &cmse_stub_template,
5894 &cmse_stub_template_size);
5896 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
5898 bfd_get_section_by_name (htab->obfd, out_sec_name);
5899 if (stub_out_sec != NULL)
5900 cmse_stub_sec_vma = stub_out_sec->vma;
5902 /* Set addresses of veneers mentionned in input secure gateway import
5903 library's symbol table. */
5904 for (i = 0; i < symcount; i++)
5908 sym_name = (char *) bfd_asymbol_name (sym);
5909 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
5911 if (sym->section != bfd_abs_section_ptr
5912 || !(flags & (BSF_GLOBAL | BSF_WEAK))
5913 || (flags & BSF_FUNCTION) != BSF_FUNCTION
5914 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
5915 != ST_BRANCH_TO_THUMB))
5917 (*_bfd_error_handler) (_("%B: invalid import library entry: `%s'."),
5918 in_implib_bfd, sym_name);
5919 (*_bfd_error_handler) (_("Symbol should be absolute, global and "
5920 "refer to Thumb functions."));
5925 veneer_value = bfd_asymbol_value (sym);
5926 stub_offset = veneer_value - cmse_stub_sec_vma;
5927 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
5929 hash = (struct elf32_arm_link_hash_entry *)
5930 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5932 /* Stub entry should have been created by cmse_scan or the symbol be of
5933 a secure function callable from non secure code. */
5934 if (!stub_entry && !hash)
5936 bfd_boolean new_stub;
5938 (*_bfd_error_handler)
5939 (_("Entry function `%s' disappeared from secure code."), sym_name);
5940 hash = (struct elf32_arm_link_hash_entry *)
5941 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
5943 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5944 NULL, NULL, bfd_abs_section_ptr, hash,
5945 sym_name, veneer_value,
5946 ST_BRANCH_TO_THUMB, &new_stub);
5947 if (stub_entry == NULL)
5951 BFD_ASSERT (new_stub);
5952 new_cmse_stubs_created++;
5953 (*cmse_stub_created)++;
5955 stub_entry->stub_template_size = stub_entry->stub_size = 0;
5956 stub_entry->stub_offset = stub_offset;
5958 /* Symbol found is not callable from non secure code. */
5959 else if (!stub_entry)
5961 if (!cmse_entry_fct_p (hash))
5963 (*_bfd_error_handler) (_("`%s' refers to a non entry function."),
5971 /* Only stubs for SG veneers should have been created. */
5972 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5974 /* Check visibility hasn't changed. */
5975 if (!!(flags & BSF_GLOBAL)
5976 != (hash->root.root.type == bfd_link_hash_defined))
5977 (*_bfd_error_handler)
5978 (_("%B: visibility of symbol `%s' has changed."), in_implib_bfd,
5981 stub_entry->stub_offset = stub_offset;
5984 /* Size should match that of a SG veneer. */
5985 if (intsym->st_size != cmse_stub_size)
5987 (*_bfd_error_handler) (_("%B: incorrect size for symbol `%s'."),
5988 in_implib_bfd, sym_name);
5992 /* Previous veneer address is before current SG veneer section. */
5993 if (veneer_value < cmse_stub_sec_vma)
5995 /* Avoid offset underflow. */
5997 stub_entry->stub_offset = 0;
6002 /* Complain if stub offset not a multiple of stub size. */
6003 if (stub_offset % cmse_stub_size)
6005 (*_bfd_error_handler)
6006 (_("Offset of veneer for entry function `%s' not a multiple of "
6007 "its size."), sym_name);
6014 new_cmse_stubs_created--;
6015 if (veneer_value < cmse_stub_array_start)
6016 cmse_stub_array_start = veneer_value;
6017 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6018 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6019 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6022 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6024 BFD_ASSERT (new_cmse_stubs_created > 0);
6025 (*_bfd_error_handler)
6026 (_("new entry function(s) introduced but no output import library "
6028 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6031 if (cmse_stub_array_start != cmse_stub_sec_vma)
6033 (*_bfd_error_handler)
6034 (_("Start address of `%s' is different from previous link."),
6044 /* Determine and set the size of the stub section for a final link.
6046 The basic idea here is to examine all the relocations looking for
6047 PC-relative calls to a target that is unreachable with a "bl"
6051 elf32_arm_size_stubs (bfd *output_bfd,
6053 struct bfd_link_info *info,
6054 bfd_signed_vma group_size,
6055 asection * (*add_stub_section) (const char *, asection *,
6058 void (*layout_sections_again) (void))
6060 bfd_boolean ret = TRUE;
6061 obj_attribute *out_attr;
6062 int cmse_stub_created = 0;
6063 bfd_size_type stub_group_size;
6064 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6065 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6066 struct a8_erratum_fix *a8_fixes = NULL;
6067 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6068 struct a8_erratum_reloc *a8_relocs = NULL;
6069 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6074 if (htab->fix_cortex_a8)
6076 a8_fixes = (struct a8_erratum_fix *)
6077 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6078 a8_relocs = (struct a8_erratum_reloc *)
6079 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6082 /* Propagate mach to stub bfd, because it may not have been
6083 finalized when we created stub_bfd. */
6084 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6085 bfd_get_mach (output_bfd));
6087 /* Stash our params away. */
6088 htab->stub_bfd = stub_bfd;
6089 htab->add_stub_section = add_stub_section;
6090 htab->layout_sections_again = layout_sections_again;
6091 stubs_always_after_branch = group_size < 0;
6093 out_attr = elf_known_obj_attributes_proc (output_bfd);
6094 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6096 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6097 as the first half of a 32-bit branch straddling two 4K pages. This is a
6098 crude way of enforcing that. */
6099 if (htab->fix_cortex_a8)
6100 stubs_always_after_branch = 1;
6103 stub_group_size = -group_size;
6105 stub_group_size = group_size;
6107 if (stub_group_size == 1)
6109 /* Default values. */
6110 /* Thumb branch range is +-4MB has to be used as the default
6111 maximum size (a given section can contain both ARM and Thumb
6112 code, so the worst case has to be taken into account).
6114 This value is 24K less than that, which allows for 2025
6115 12-byte stubs. If we exceed that, then we will fail to link.
6116 The user will have to relink with an explicit group size
6118 stub_group_size = 4170000;
6121 group_sections (htab, stub_group_size, stubs_always_after_branch);
6123 /* If we're applying the cortex A8 fix, we need to determine the
6124 program header size now, because we cannot change it later --
6125 that could alter section placements. Notice the A8 erratum fix
6126 ends up requiring the section addresses to remain unchanged
6127 modulo the page size. That's something we cannot represent
6128 inside BFD, and we don't want to force the section alignment to
6129 be the page size. */
6130 if (htab->fix_cortex_a8)
6131 (*htab->layout_sections_again) ();
6136 unsigned int bfd_indx;
6138 enum elf32_arm_stub_type stub_type;
6139 bfd_boolean stub_changed = FALSE;
6140 unsigned prev_num_a8_fixes = num_a8_fixes;
6143 for (input_bfd = info->input_bfds, bfd_indx = 0;
6145 input_bfd = input_bfd->link.next, bfd_indx++)
6147 Elf_Internal_Shdr *symtab_hdr;
6149 Elf_Internal_Sym *local_syms = NULL;
6151 if (!is_arm_elf (input_bfd))
6156 /* We'll need the symbol table in a second. */
6157 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6158 if (symtab_hdr->sh_info == 0)
6161 /* Limit scan of symbols to object file whose profile is
6162 Microcontroller to not hinder performance in the general case. */
6163 if (m_profile && first_veneer_scan)
6165 struct elf_link_hash_entry **sym_hashes;
6167 sym_hashes = elf_sym_hashes (input_bfd);
6168 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6169 &cmse_stub_created))
6170 goto error_ret_free_local;
6172 if (cmse_stub_created != 0)
6173 stub_changed = TRUE;
6176 /* Walk over each section attached to the input bfd. */
6177 for (section = input_bfd->sections;
6179 section = section->next)
6181 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6183 /* If there aren't any relocs, then there's nothing more
6185 if ((section->flags & SEC_RELOC) == 0
6186 || section->reloc_count == 0
6187 || (section->flags & SEC_CODE) == 0)
6190 /* If this section is a link-once section that will be
6191 discarded, then don't create any stubs. */
6192 if (section->output_section == NULL
6193 || section->output_section->owner != output_bfd)
6196 /* Get the relocs. */
6198 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6199 NULL, info->keep_memory);
6200 if (internal_relocs == NULL)
6201 goto error_ret_free_local;
6203 /* Now examine each relocation. */
6204 irela = internal_relocs;
6205 irelaend = irela + section->reloc_count;
6206 for (; irela < irelaend; irela++)
6208 unsigned int r_type, r_indx;
6211 bfd_vma destination;
6212 struct elf32_arm_link_hash_entry *hash;
6213 const char *sym_name;
6214 unsigned char st_type;
6215 enum arm_st_branch_type branch_type;
6216 bfd_boolean created_stub = FALSE;
6218 r_type = ELF32_R_TYPE (irela->r_info);
6219 r_indx = ELF32_R_SYM (irela->r_info);
6221 if (r_type >= (unsigned int) R_ARM_max)
6223 bfd_set_error (bfd_error_bad_value);
6224 error_ret_free_internal:
6225 if (elf_section_data (section)->relocs == NULL)
6226 free (internal_relocs);
6228 error_ret_free_local:
6229 if (local_syms != NULL
6230 && (symtab_hdr->contents
6231 != (unsigned char *) local_syms))
6237 if (r_indx >= symtab_hdr->sh_info)
6238 hash = elf32_arm_hash_entry
6239 (elf_sym_hashes (input_bfd)
6240 [r_indx - symtab_hdr->sh_info]);
6242 /* Only look for stubs on branch instructions, or
6243 non-relaxed TLSCALL */
6244 if ((r_type != (unsigned int) R_ARM_CALL)
6245 && (r_type != (unsigned int) R_ARM_THM_CALL)
6246 && (r_type != (unsigned int) R_ARM_JUMP24)
6247 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6248 && (r_type != (unsigned int) R_ARM_THM_XPC22)
6249 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6250 && (r_type != (unsigned int) R_ARM_PLT32)
6251 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6252 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6253 && r_type == elf32_arm_tls_transition
6254 (info, r_type, &hash->root)
6255 && ((hash ? hash->tls_type
6256 : (elf32_arm_local_got_tls_type
6257 (input_bfd)[r_indx]))
6258 & GOT_TLS_GDESC) != 0))
6261 /* Now determine the call target, its name, value,
6268 if (r_type == (unsigned int) R_ARM_TLS_CALL
6269 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6271 /* A non-relaxed TLS call. The target is the
6272 plt-resident trampoline and nothing to do
6274 BFD_ASSERT (htab->tls_trampoline > 0);
6275 sym_sec = htab->root.splt;
6276 sym_value = htab->tls_trampoline;
6279 branch_type = ST_BRANCH_TO_ARM;
6283 /* It's a local symbol. */
6284 Elf_Internal_Sym *sym;
6286 if (local_syms == NULL)
6289 = (Elf_Internal_Sym *) symtab_hdr->contents;
6290 if (local_syms == NULL)
6292 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6293 symtab_hdr->sh_info, 0,
6295 if (local_syms == NULL)
6296 goto error_ret_free_internal;
6299 sym = local_syms + r_indx;
6300 if (sym->st_shndx == SHN_UNDEF)
6301 sym_sec = bfd_und_section_ptr;
6302 else if (sym->st_shndx == SHN_ABS)
6303 sym_sec = bfd_abs_section_ptr;
6304 else if (sym->st_shndx == SHN_COMMON)
6305 sym_sec = bfd_com_section_ptr;
6308 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6311 /* This is an undefined symbol. It can never
6315 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6316 sym_value = sym->st_value;
6317 destination = (sym_value + irela->r_addend
6318 + sym_sec->output_offset
6319 + sym_sec->output_section->vma);
6320 st_type = ELF_ST_TYPE (sym->st_info);
6322 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6324 = bfd_elf_string_from_elf_section (input_bfd,
6325 symtab_hdr->sh_link,
6330 /* It's an external symbol. */
6331 while (hash->root.root.type == bfd_link_hash_indirect
6332 || hash->root.root.type == bfd_link_hash_warning)
6333 hash = ((struct elf32_arm_link_hash_entry *)
6334 hash->root.root.u.i.link);
6336 if (hash->root.root.type == bfd_link_hash_defined
6337 || hash->root.root.type == bfd_link_hash_defweak)
6339 sym_sec = hash->root.root.u.def.section;
6340 sym_value = hash->root.root.u.def.value;
6342 struct elf32_arm_link_hash_table *globals =
6343 elf32_arm_hash_table (info);
6345 /* For a destination in a shared library,
6346 use the PLT stub as target address to
6347 decide whether a branch stub is
6350 && globals->root.splt != NULL
6352 && hash->root.plt.offset != (bfd_vma) -1)
6354 sym_sec = globals->root.splt;
6355 sym_value = hash->root.plt.offset;
6356 if (sym_sec->output_section != NULL)
6357 destination = (sym_value
6358 + sym_sec->output_offset
6359 + sym_sec->output_section->vma);
6361 else if (sym_sec->output_section != NULL)
6362 destination = (sym_value + irela->r_addend
6363 + sym_sec->output_offset
6364 + sym_sec->output_section->vma);
6366 else if ((hash->root.root.type == bfd_link_hash_undefined)
6367 || (hash->root.root.type == bfd_link_hash_undefweak))
6369 /* For a shared library, use the PLT stub as
6370 target address to decide whether a long
6371 branch stub is needed.
6372 For absolute code, they cannot be handled. */
6373 struct elf32_arm_link_hash_table *globals =
6374 elf32_arm_hash_table (info);
6377 && globals->root.splt != NULL
6379 && hash->root.plt.offset != (bfd_vma) -1)
6381 sym_sec = globals->root.splt;
6382 sym_value = hash->root.plt.offset;
6383 if (sym_sec->output_section != NULL)
6384 destination = (sym_value
6385 + sym_sec->output_offset
6386 + sym_sec->output_section->vma);
6393 bfd_set_error (bfd_error_bad_value);
6394 goto error_ret_free_internal;
6396 st_type = hash->root.type;
6398 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6399 sym_name = hash->root.root.root.string;
6404 bfd_boolean new_stub;
6405 struct elf32_arm_stub_hash_entry *stub_entry;
6407 /* Determine what (if any) linker stub is needed. */
6408 stub_type = arm_type_of_stub (info, section, irela,
6409 st_type, &branch_type,
6410 hash, destination, sym_sec,
6411 input_bfd, sym_name);
6412 if (stub_type == arm_stub_none)
6415 /* We've either created a stub for this reloc already,
6416 or we are about to. */
6418 elf32_arm_create_stub (htab, stub_type, section, irela,
6420 (char *) sym_name, sym_value,
6421 branch_type, &new_stub);
6423 created_stub = stub_entry != NULL;
6425 goto error_ret_free_internal;
6429 stub_changed = TRUE;
6433 /* Look for relocations which might trigger Cortex-A8
6435 if (htab->fix_cortex_a8
6436 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6437 || r_type == (unsigned int) R_ARM_THM_JUMP19
6438 || r_type == (unsigned int) R_ARM_THM_CALL
6439 || r_type == (unsigned int) R_ARM_THM_XPC22))
6441 bfd_vma from = section->output_section->vma
6442 + section->output_offset
6445 if ((from & 0xfff) == 0xffe)
6447 /* Found a candidate. Note we haven't checked the
6448 destination is within 4K here: if we do so (and
6449 don't create an entry in a8_relocs) we can't tell
6450 that a branch should have been relocated when
6452 if (num_a8_relocs == a8_reloc_table_size)
6454 a8_reloc_table_size *= 2;
6455 a8_relocs = (struct a8_erratum_reloc *)
6456 bfd_realloc (a8_relocs,
6457 sizeof (struct a8_erratum_reloc)
6458 * a8_reloc_table_size);
6461 a8_relocs[num_a8_relocs].from = from;
6462 a8_relocs[num_a8_relocs].destination = destination;
6463 a8_relocs[num_a8_relocs].r_type = r_type;
6464 a8_relocs[num_a8_relocs].branch_type = branch_type;
6465 a8_relocs[num_a8_relocs].sym_name = sym_name;
6466 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6467 a8_relocs[num_a8_relocs].hash = hash;
6474 /* We're done with the internal relocs, free them. */
6475 if (elf_section_data (section)->relocs == NULL)
6476 free (internal_relocs);
6479 if (htab->fix_cortex_a8)
6481 /* Sort relocs which might apply to Cortex-A8 erratum. */
6482 qsort (a8_relocs, num_a8_relocs,
6483 sizeof (struct a8_erratum_reloc),
6486 /* Scan for branches which might trigger Cortex-A8 erratum. */
6487 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6488 &num_a8_fixes, &a8_fix_table_size,
6489 a8_relocs, num_a8_relocs,
6490 prev_num_a8_fixes, &stub_changed)
6492 goto error_ret_free_local;
6495 if (local_syms != NULL
6496 && symtab_hdr->contents != (unsigned char *) local_syms)
6498 if (!info->keep_memory)
6501 symtab_hdr->contents = (unsigned char *) local_syms;
6505 if (first_veneer_scan
6506 && !set_cmse_veneer_addr_from_implib (info, htab,
6507 &cmse_stub_created))
6510 if (prev_num_a8_fixes != num_a8_fixes)
6511 stub_changed = TRUE;
6516 /* OK, we've added some stubs. Find out the new size of the
6518 for (stub_sec = htab->stub_bfd->sections;
6520 stub_sec = stub_sec->next)
6522 /* Ignore non-stub sections. */
6523 if (!strstr (stub_sec->name, STUB_SUFFIX))
6529 /* Add new SG veneers after those already in the input import
6531 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6534 bfd_vma *start_offset_p;
6535 asection **stub_sec_p;
6537 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6538 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6539 if (start_offset_p == NULL)
6542 BFD_ASSERT (stub_sec_p != NULL);
6543 if (*stub_sec_p != NULL)
6544 (*stub_sec_p)->size = *start_offset_p;
6547 /* Compute stub section size, considering padding. */
6548 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6549 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6553 asection **stub_sec_p;
6555 padding = arm_dedicated_stub_section_padding (stub_type);
6556 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6557 /* Skip if no stub input section or no stub section padding
6559 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6561 /* Stub section padding required but no dedicated section. */
6562 BFD_ASSERT (stub_sec_p);
6564 size = (*stub_sec_p)->size;
6565 size = (size + padding - 1) & ~(padding - 1);
6566 (*stub_sec_p)->size = size;
6569 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6570 if (htab->fix_cortex_a8)
6571 for (i = 0; i < num_a8_fixes; i++)
6573 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6574 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6576 if (stub_sec == NULL)
6580 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6585 /* Ask the linker to do its stuff. */
6586 (*htab->layout_sections_again) ();
6587 first_veneer_scan = FALSE;
6590 /* Add stubs for Cortex-A8 erratum fixes now. */
6591 if (htab->fix_cortex_a8)
6593 for (i = 0; i < num_a8_fixes; i++)
6595 struct elf32_arm_stub_hash_entry *stub_entry;
6596 char *stub_name = a8_fixes[i].stub_name;
6597 asection *section = a8_fixes[i].section;
6598 unsigned int section_id = a8_fixes[i].section->id;
6599 asection *link_sec = htab->stub_group[section_id].link_sec;
6600 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6601 const insn_sequence *template_sequence;
6602 int template_size, size = 0;
6604 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6606 if (stub_entry == NULL)
6608 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
6614 stub_entry->stub_sec = stub_sec;
6615 stub_entry->stub_offset = (bfd_vma) -1;
6616 stub_entry->id_sec = link_sec;
6617 stub_entry->stub_type = a8_fixes[i].stub_type;
6618 stub_entry->source_value = a8_fixes[i].offset;
6619 stub_entry->target_section = a8_fixes[i].section;
6620 stub_entry->target_value = a8_fixes[i].target_offset;
6621 stub_entry->orig_insn = a8_fixes[i].orig_insn;
6622 stub_entry->branch_type = a8_fixes[i].branch_type;
6624 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6628 stub_entry->stub_size = size;
6629 stub_entry->stub_template = template_sequence;
6630 stub_entry->stub_template_size = template_size;
6633 /* Stash the Cortex-A8 erratum fix array for use later in
6634 elf32_arm_write_section(). */
6635 htab->a8_erratum_fixes = a8_fixes;
6636 htab->num_a8_erratum_fixes = num_a8_fixes;
6640 htab->a8_erratum_fixes = NULL;
6641 htab->num_a8_erratum_fixes = 0;
6646 /* Build all the stubs associated with the current output file. The
6647 stubs are kept in a hash table attached to the main linker hash
6648 table. We also set up the .plt entries for statically linked PIC
6649 functions here. This function is called via arm_elf_finish in the
6653 elf32_arm_build_stubs (struct bfd_link_info *info)
6656 struct bfd_hash_table *table;
6657 enum elf32_arm_stub_type stub_type;
6658 struct elf32_arm_link_hash_table *htab;
6660 htab = elf32_arm_hash_table (info);
6664 for (stub_sec = htab->stub_bfd->sections;
6666 stub_sec = stub_sec->next)
6670 /* Ignore non-stub sections. */
6671 if (!strstr (stub_sec->name, STUB_SUFFIX))
6674 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
6675 must at least be done for stub section requiring padding and for SG
6676 veneers to ensure that a non secure code branching to a removed SG
6677 veneer causes an error. */
6678 size = stub_sec->size;
6679 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
6680 if (stub_sec->contents == NULL && size != 0)
6686 /* Add new SG veneers after those already in the input import library. */
6687 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
6689 bfd_vma *start_offset_p;
6690 asection **stub_sec_p;
6692 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6693 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6694 if (start_offset_p == NULL)
6697 BFD_ASSERT (stub_sec_p != NULL);
6698 if (*stub_sec_p != NULL)
6699 (*stub_sec_p)->size = *start_offset_p;
6702 /* Build the stubs as directed by the stub hash table. */
6703 table = &htab->stub_hash_table;
6704 bfd_hash_traverse (table, arm_build_one_stub, info);
6705 if (htab->fix_cortex_a8)
6707 /* Place the cortex a8 stubs last. */
6708 htab->fix_cortex_a8 = -1;
6709 bfd_hash_traverse (table, arm_build_one_stub, info);
6715 /* Locate the Thumb encoded calling stub for NAME. */
6717 static struct elf_link_hash_entry *
6718 find_thumb_glue (struct bfd_link_info *link_info,
6720 char **error_message)
6723 struct elf_link_hash_entry *hash;
6724 struct elf32_arm_link_hash_table *hash_table;
6726 /* We need a pointer to the armelf specific hash table. */
6727 hash_table = elf32_arm_hash_table (link_info);
6728 if (hash_table == NULL)
6731 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6732 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
6734 BFD_ASSERT (tmp_name);
6736 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
6738 hash = elf_link_hash_lookup
6739 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6742 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
6743 tmp_name, name) == -1)
6744 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6751 /* Locate the ARM encoded calling stub for NAME. */
6753 static struct elf_link_hash_entry *
6754 find_arm_glue (struct bfd_link_info *link_info,
6756 char **error_message)
6759 struct elf_link_hash_entry *myh;
6760 struct elf32_arm_link_hash_table *hash_table;
6762 /* We need a pointer to the elfarm specific hash table. */
6763 hash_table = elf32_arm_hash_table (link_info);
6764 if (hash_table == NULL)
6767 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6768 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6770 BFD_ASSERT (tmp_name);
6772 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6774 myh = elf_link_hash_lookup
6775 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6778 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
6779 tmp_name, name) == -1)
6780 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6787 /* ARM->Thumb glue (static images):
6791 ldr r12, __func_addr
6794 .word func @ behave as if you saw a ARM_32 reloc.
6801 .word func @ behave as if you saw a ARM_32 reloc.
6803 (relocatable images)
6806 ldr r12, __func_offset
6812 #define ARM2THUMB_STATIC_GLUE_SIZE 12
6813 static const insn32 a2t1_ldr_insn = 0xe59fc000;
6814 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
6815 static const insn32 a2t3_func_addr_insn = 0x00000001;
6817 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
6818 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
6819 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
6821 #define ARM2THUMB_PIC_GLUE_SIZE 16
6822 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
6823 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
6824 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
6826 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
6830 __func_from_thumb: __func_from_thumb:
6832 nop ldr r6, __func_addr
6842 #define THUMB2ARM_GLUE_SIZE 8
6843 static const insn16 t2a1_bx_pc_insn = 0x4778;
6844 static const insn16 t2a2_noop_insn = 0x46c0;
6845 static const insn32 t2a3_b_insn = 0xea000000;
6847 #define VFP11_ERRATUM_VENEER_SIZE 8
6848 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
6849 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
6851 #define ARM_BX_VENEER_SIZE 12
6852 static const insn32 armbx1_tst_insn = 0xe3100001;
6853 static const insn32 armbx2_moveq_insn = 0x01a0f000;
6854 static const insn32 armbx3_bx_insn = 0xe12fff10;
6856 #ifndef ELFARM_NABI_C_INCLUDED
6858 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
6861 bfd_byte * contents;
6865 /* Do not include empty glue sections in the output. */
6868 s = bfd_get_linker_section (abfd, name);
6870 s->flags |= SEC_EXCLUDE;
6875 BFD_ASSERT (abfd != NULL);
6877 s = bfd_get_linker_section (abfd, name);
6878 BFD_ASSERT (s != NULL);
6880 contents = (bfd_byte *) bfd_alloc (abfd, size);
6882 BFD_ASSERT (s->size == size);
6883 s->contents = contents;
6887 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
6889 struct elf32_arm_link_hash_table * globals;
6891 globals = elf32_arm_hash_table (info);
6892 BFD_ASSERT (globals != NULL);
6894 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6895 globals->arm_glue_size,
6896 ARM2THUMB_GLUE_SECTION_NAME);
6898 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6899 globals->thumb_glue_size,
6900 THUMB2ARM_GLUE_SECTION_NAME);
6902 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6903 globals->vfp11_erratum_glue_size,
6904 VFP11_ERRATUM_VENEER_SECTION_NAME);
6906 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6907 globals->stm32l4xx_erratum_glue_size,
6908 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6910 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6911 globals->bx_glue_size,
6912 ARM_BX_GLUE_SECTION_NAME);
6917 /* Allocate space and symbols for calling a Thumb function from Arm mode.
6918 returns the symbol identifying the stub. */
6920 static struct elf_link_hash_entry *
6921 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
6922 struct elf_link_hash_entry * h)
6924 const char * name = h->root.root.string;
6927 struct elf_link_hash_entry * myh;
6928 struct bfd_link_hash_entry * bh;
6929 struct elf32_arm_link_hash_table * globals;
6933 globals = elf32_arm_hash_table (link_info);
6934 BFD_ASSERT (globals != NULL);
6935 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6937 s = bfd_get_linker_section
6938 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
6940 BFD_ASSERT (s != NULL);
6942 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6943 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6945 BFD_ASSERT (tmp_name);
6947 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6949 myh = elf_link_hash_lookup
6950 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6954 /* We've already seen this guy. */
6959 /* The only trick here is using hash_table->arm_glue_size as the value.
6960 Even though the section isn't allocated yet, this is where we will be
6961 putting it. The +1 on the value marks that the stub has not been
6962 output yet - not that it is a Thumb function. */
6964 val = globals->arm_glue_size + 1;
6965 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
6966 tmp_name, BSF_GLOBAL, s, val,
6967 NULL, TRUE, FALSE, &bh);
6969 myh = (struct elf_link_hash_entry *) bh;
6970 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6971 myh->forced_local = 1;
6975 if (bfd_link_pic (link_info)
6976 || globals->root.is_relocatable_executable
6977 || globals->pic_veneer)
6978 size = ARM2THUMB_PIC_GLUE_SIZE;
6979 else if (globals->use_blx)
6980 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
6982 size = ARM2THUMB_STATIC_GLUE_SIZE;
6985 globals->arm_glue_size += size;
6990 /* Allocate space for ARMv4 BX veneers. */
6993 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
6996 struct elf32_arm_link_hash_table *globals;
6998 struct elf_link_hash_entry *myh;
6999 struct bfd_link_hash_entry *bh;
7002 /* BX PC does not need a veneer. */
7006 globals = elf32_arm_hash_table (link_info);
7007 BFD_ASSERT (globals != NULL);
7008 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7010 /* Check if this veneer has already been allocated. */
7011 if (globals->bx_glue_offset[reg])
7014 s = bfd_get_linker_section
7015 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7017 BFD_ASSERT (s != NULL);
7019 /* Add symbol for veneer. */
7021 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7023 BFD_ASSERT (tmp_name);
7025 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7027 myh = elf_link_hash_lookup
7028 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7030 BFD_ASSERT (myh == NULL);
7033 val = globals->bx_glue_size;
7034 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7035 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7036 NULL, TRUE, FALSE, &bh);
7038 myh = (struct elf_link_hash_entry *) bh;
7039 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7040 myh->forced_local = 1;
7042 s->size += ARM_BX_VENEER_SIZE;
7043 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7044 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7048 /* Add an entry to the code/data map for section SEC. */
7051 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7053 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7054 unsigned int newidx;
7056 if (sec_data->map == NULL)
7058 sec_data->map = (elf32_arm_section_map *)
7059 bfd_malloc (sizeof (elf32_arm_section_map));
7060 sec_data->mapcount = 0;
7061 sec_data->mapsize = 1;
7064 newidx = sec_data->mapcount++;
7066 if (sec_data->mapcount > sec_data->mapsize)
7068 sec_data->mapsize *= 2;
7069 sec_data->map = (elf32_arm_section_map *)
7070 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7071 * sizeof (elf32_arm_section_map));
7076 sec_data->map[newidx].vma = vma;
7077 sec_data->map[newidx].type = type;
7082 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7083 veneers are handled for now. */
7086 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7087 elf32_vfp11_erratum_list *branch,
7089 asection *branch_sec,
7090 unsigned int offset)
7093 struct elf32_arm_link_hash_table *hash_table;
7095 struct elf_link_hash_entry *myh;
7096 struct bfd_link_hash_entry *bh;
7098 struct _arm_elf_section_data *sec_data;
7099 elf32_vfp11_erratum_list *newerr;
7101 hash_table = elf32_arm_hash_table (link_info);
7102 BFD_ASSERT (hash_table != NULL);
7103 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7105 s = bfd_get_linker_section
7106 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7108 sec_data = elf32_arm_section_data (s);
7110 BFD_ASSERT (s != NULL);
7112 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7113 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7115 BFD_ASSERT (tmp_name);
7117 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7118 hash_table->num_vfp11_fixes);
7120 myh = elf_link_hash_lookup
7121 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7123 BFD_ASSERT (myh == NULL);
7126 val = hash_table->vfp11_erratum_glue_size;
7127 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7128 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7129 NULL, TRUE, FALSE, &bh);
7131 myh = (struct elf_link_hash_entry *) bh;
7132 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7133 myh->forced_local = 1;
7135 /* Link veneer back to calling location. */
7136 sec_data->erratumcount += 1;
7137 newerr = (elf32_vfp11_erratum_list *)
7138 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7140 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7142 newerr->u.v.branch = branch;
7143 newerr->u.v.id = hash_table->num_vfp11_fixes;
7144 branch->u.b.veneer = newerr;
7146 newerr->next = sec_data->erratumlist;
7147 sec_data->erratumlist = newerr;
7149 /* A symbol for the return from the veneer. */
7150 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7151 hash_table->num_vfp11_fixes);
7153 myh = elf_link_hash_lookup
7154 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7161 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7162 branch_sec, val, NULL, TRUE, FALSE, &bh);
7164 myh = (struct elf_link_hash_entry *) bh;
7165 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7166 myh->forced_local = 1;
7170 /* Generate a mapping symbol for the veneer section, and explicitly add an
7171 entry for that symbol to the code/data map for the section. */
7172 if (hash_table->vfp11_erratum_glue_size == 0)
7175 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7176 ever requires this erratum fix. */
7177 _bfd_generic_link_add_one_symbol (link_info,
7178 hash_table->bfd_of_glue_owner, "$a",
7179 BSF_LOCAL, s, 0, NULL,
7182 myh = (struct elf_link_hash_entry *) bh;
7183 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7184 myh->forced_local = 1;
7186 /* The elf32_arm_init_maps function only cares about symbols from input
7187 BFDs. We must make a note of this generated mapping symbol
7188 ourselves so that code byteswapping works properly in
7189 elf32_arm_write_section. */
7190 elf32_arm_section_map_add (s, 'a', 0);
7193 s->size += VFP11_ERRATUM_VENEER_SIZE;
7194 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7195 hash_table->num_vfp11_fixes++;
7197 /* The offset of the veneer. */
7201 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7202 veneers need to be handled because used only in Cortex-M. */
7205 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7206 elf32_stm32l4xx_erratum_list *branch,
7208 asection *branch_sec,
7209 unsigned int offset,
7210 bfd_size_type veneer_size)
7213 struct elf32_arm_link_hash_table *hash_table;
7215 struct elf_link_hash_entry *myh;
7216 struct bfd_link_hash_entry *bh;
7218 struct _arm_elf_section_data *sec_data;
7219 elf32_stm32l4xx_erratum_list *newerr;
7221 hash_table = elf32_arm_hash_table (link_info);
7222 BFD_ASSERT (hash_table != NULL);
7223 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7225 s = bfd_get_linker_section
7226 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7228 BFD_ASSERT (s != NULL);
7230 sec_data = elf32_arm_section_data (s);
7232 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7233 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7235 BFD_ASSERT (tmp_name);
7237 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7238 hash_table->num_stm32l4xx_fixes);
7240 myh = elf_link_hash_lookup
7241 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7243 BFD_ASSERT (myh == NULL);
7246 val = hash_table->stm32l4xx_erratum_glue_size;
7247 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7248 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7249 NULL, TRUE, FALSE, &bh);
7251 myh = (struct elf_link_hash_entry *) bh;
7252 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7253 myh->forced_local = 1;
7255 /* Link veneer back to calling location. */
7256 sec_data->stm32l4xx_erratumcount += 1;
7257 newerr = (elf32_stm32l4xx_erratum_list *)
7258 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7260 newerr->type = STM32L4XX_ERRATUM_VENEER;
7262 newerr->u.v.branch = branch;
7263 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7264 branch->u.b.veneer = newerr;
7266 newerr->next = sec_data->stm32l4xx_erratumlist;
7267 sec_data->stm32l4xx_erratumlist = newerr;
7269 /* A symbol for the return from the veneer. */
7270 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7271 hash_table->num_stm32l4xx_fixes);
7273 myh = elf_link_hash_lookup
7274 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7281 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7282 branch_sec, val, NULL, TRUE, FALSE, &bh);
7284 myh = (struct elf_link_hash_entry *) bh;
7285 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7286 myh->forced_local = 1;
7290 /* Generate a mapping symbol for the veneer section, and explicitly add an
7291 entry for that symbol to the code/data map for the section. */
7292 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7295 /* Creates a THUMB symbol since there is no other choice. */
7296 _bfd_generic_link_add_one_symbol (link_info,
7297 hash_table->bfd_of_glue_owner, "$t",
7298 BSF_LOCAL, s, 0, NULL,
7301 myh = (struct elf_link_hash_entry *) bh;
7302 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7303 myh->forced_local = 1;
7305 /* The elf32_arm_init_maps function only cares about symbols from input
7306 BFDs. We must make a note of this generated mapping symbol
7307 ourselves so that code byteswapping works properly in
7308 elf32_arm_write_section. */
7309 elf32_arm_section_map_add (s, 't', 0);
7312 s->size += veneer_size;
7313 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7314 hash_table->num_stm32l4xx_fixes++;
7316 /* The offset of the veneer. */
7320 #define ARM_GLUE_SECTION_FLAGS \
7321 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7322 | SEC_READONLY | SEC_LINKER_CREATED)
7324 /* Create a fake section for use by the ARM backend of the linker. */
7327 arm_make_glue_section (bfd * abfd, const char * name)
7331 sec = bfd_get_linker_section (abfd, name);
7336 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7339 || !bfd_set_section_alignment (abfd, sec, 2))
7342 /* Set the gc mark to prevent the section from being removed by garbage
7343 collection, despite the fact that no relocs refer to this section. */
7349 /* Set size of .plt entries. This function is called from the
7350 linker scripts in ld/emultempl/{armelf}.em. */
7353 bfd_elf32_arm_use_long_plt (void)
7355 elf32_arm_use_long_plt_entry = TRUE;
7358 /* Add the glue sections to ABFD. This function is called from the
7359 linker scripts in ld/emultempl/{armelf}.em. */
7362 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7363 struct bfd_link_info *info)
7365 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7366 bfd_boolean dostm32l4xx = globals
7367 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7368 bfd_boolean addglue;
7370 /* If we are only performing a partial
7371 link do not bother adding the glue. */
7372 if (bfd_link_relocatable (info))
7375 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7376 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7377 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7378 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7384 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7387 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7388 ensures they are not marked for deletion by
7389 strip_excluded_output_sections () when veneers are going to be created
7390 later. Not doing so would trigger assert on empty section size in
7391 lang_size_sections_1 (). */
7394 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7396 enum elf32_arm_stub_type stub_type;
7398 /* If we are only performing a partial
7399 link do not bother adding the glue. */
7400 if (bfd_link_relocatable (info))
7403 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7406 const char *out_sec_name;
7408 if (!arm_dedicated_stub_output_section_required (stub_type))
7411 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7412 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7413 if (out_sec != NULL)
7414 out_sec->flags |= SEC_KEEP;
7418 /* Select a BFD to be used to hold the sections used by the glue code.
7419 This function is called from the linker scripts in ld/emultempl/
7423 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7425 struct elf32_arm_link_hash_table *globals;
7427 /* If we are only performing a partial link
7428 do not bother getting a bfd to hold the glue. */
7429 if (bfd_link_relocatable (info))
7432 /* Make sure we don't attach the glue sections to a dynamic object. */
7433 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7435 globals = elf32_arm_hash_table (info);
7436 BFD_ASSERT (globals != NULL);
7438 if (globals->bfd_of_glue_owner != NULL)
7441 /* Save the bfd for later use. */
7442 globals->bfd_of_glue_owner = abfd;
7448 check_use_blx (struct elf32_arm_link_hash_table *globals)
7452 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7455 if (globals->fix_arm1176)
7457 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7458 globals->use_blx = 1;
7462 if (cpu_arch > TAG_CPU_ARCH_V4T)
7463 globals->use_blx = 1;
7468 bfd_elf32_arm_process_before_allocation (bfd *abfd,
7469 struct bfd_link_info *link_info)
7471 Elf_Internal_Shdr *symtab_hdr;
7472 Elf_Internal_Rela *internal_relocs = NULL;
7473 Elf_Internal_Rela *irel, *irelend;
7474 bfd_byte *contents = NULL;
7477 struct elf32_arm_link_hash_table *globals;
7479 /* If we are only performing a partial link do not bother
7480 to construct any glue. */
7481 if (bfd_link_relocatable (link_info))
7484 /* Here we have a bfd that is to be included on the link. We have a
7485 hook to do reloc rummaging, before section sizes are nailed down. */
7486 globals = elf32_arm_hash_table (link_info);
7487 BFD_ASSERT (globals != NULL);
7489 check_use_blx (globals);
7491 if (globals->byteswap_code && !bfd_big_endian (abfd))
7493 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
7498 /* PR 5398: If we have not decided to include any loadable sections in
7499 the output then we will not have a glue owner bfd. This is OK, it
7500 just means that there is nothing else for us to do here. */
7501 if (globals->bfd_of_glue_owner == NULL)
7504 /* Rummage around all the relocs and map the glue vectors. */
7505 sec = abfd->sections;
7510 for (; sec != NULL; sec = sec->next)
7512 if (sec->reloc_count == 0)
7515 if ((sec->flags & SEC_EXCLUDE) != 0)
7518 symtab_hdr = & elf_symtab_hdr (abfd);
7520 /* Load the relocs. */
7522 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7524 if (internal_relocs == NULL)
7527 irelend = internal_relocs + sec->reloc_count;
7528 for (irel = internal_relocs; irel < irelend; irel++)
7531 unsigned long r_index;
7533 struct elf_link_hash_entry *h;
7535 r_type = ELF32_R_TYPE (irel->r_info);
7536 r_index = ELF32_R_SYM (irel->r_info);
7538 /* These are the only relocation types we care about. */
7539 if ( r_type != R_ARM_PC24
7540 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7543 /* Get the section contents if we haven't done so already. */
7544 if (contents == NULL)
7546 /* Get cached copy if it exists. */
7547 if (elf_section_data (sec)->this_hdr.contents != NULL)
7548 contents = elf_section_data (sec)->this_hdr.contents;
7551 /* Go get them off disk. */
7552 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7557 if (r_type == R_ARM_V4BX)
7561 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7562 record_arm_bx_glue (link_info, reg);
7566 /* If the relocation is not against a symbol it cannot concern us. */
7569 /* We don't care about local symbols. */
7570 if (r_index < symtab_hdr->sh_info)
7573 /* This is an external symbol. */
7574 r_index -= symtab_hdr->sh_info;
7575 h = (struct elf_link_hash_entry *)
7576 elf_sym_hashes (abfd)[r_index];
7578 /* If the relocation is against a static symbol it must be within
7579 the current section and so cannot be a cross ARM/Thumb relocation. */
7583 /* If the call will go through a PLT entry then we do not need
7585 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7591 /* This one is a call from arm code. We need to look up
7592 the target of the call. If it is a thumb target, we
7594 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7595 == ST_BRANCH_TO_THUMB)
7596 record_arm_to_thumb_glue (link_info, h);
7604 if (contents != NULL
7605 && elf_section_data (sec)->this_hdr.contents != contents)
7609 if (internal_relocs != NULL
7610 && elf_section_data (sec)->relocs != internal_relocs)
7611 free (internal_relocs);
7612 internal_relocs = NULL;
7618 if (contents != NULL
7619 && elf_section_data (sec)->this_hdr.contents != contents)
7621 if (internal_relocs != NULL
7622 && elf_section_data (sec)->relocs != internal_relocs)
7623 free (internal_relocs);
7630 /* Initialise maps of ARM/Thumb/data for input BFDs. */
7633 bfd_elf32_arm_init_maps (bfd *abfd)
7635 Elf_Internal_Sym *isymbuf;
7636 Elf_Internal_Shdr *hdr;
7637 unsigned int i, localsyms;
7639 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7640 if (! is_arm_elf (abfd))
7643 if ((abfd->flags & DYNAMIC) != 0)
7646 hdr = & elf_symtab_hdr (abfd);
7647 localsyms = hdr->sh_info;
7649 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7650 should contain the number of local symbols, which should come before any
7651 global symbols. Mapping symbols are always local. */
7652 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7655 /* No internal symbols read? Skip this BFD. */
7656 if (isymbuf == NULL)
7659 for (i = 0; i < localsyms; i++)
7661 Elf_Internal_Sym *isym = &isymbuf[i];
7662 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
7666 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
7668 name = bfd_elf_string_from_elf_section (abfd,
7669 hdr->sh_link, isym->st_name);
7671 if (bfd_is_arm_special_symbol_name (name,
7672 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
7673 elf32_arm_section_map_add (sec, name[1], isym->st_value);
7679 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
7680 say what they wanted. */
7683 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
7685 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7686 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7688 if (globals == NULL)
7691 if (globals->fix_cortex_a8 == -1)
7693 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
7694 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
7695 && (out_attr[Tag_CPU_arch_profile].i == 'A'
7696 || out_attr[Tag_CPU_arch_profile].i == 0))
7697 globals->fix_cortex_a8 = 1;
7699 globals->fix_cortex_a8 = 0;
7705 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
7707 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7708 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7710 if (globals == NULL)
7712 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
7713 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
7715 switch (globals->vfp11_fix)
7717 case BFD_ARM_VFP11_FIX_DEFAULT:
7718 case BFD_ARM_VFP11_FIX_NONE:
7719 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7723 /* Give a warning, but do as the user requests anyway. */
7724 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
7725 "workaround is not necessary for target architecture"), obfd);
7728 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
7729 /* For earlier architectures, we might need the workaround, but do not
7730 enable it by default. If users is running with broken hardware, they
7731 must enable the erratum fix explicitly. */
7732 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7736 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
7738 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7739 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7741 if (globals == NULL)
7744 /* We assume only Cortex-M4 may require the fix. */
7745 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
7746 || out_attr[Tag_CPU_arch_profile].i != 'M')
7748 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
7749 /* Give a warning, but do as the user requests anyway. */
7750 (*_bfd_error_handler)
7751 (_("%B: warning: selected STM32L4XX erratum "
7752 "workaround is not necessary for target architecture"), obfd);
7756 enum bfd_arm_vfp11_pipe
7764 /* Return a VFP register number. This is encoded as RX:X for single-precision
7765 registers, or X:RX for double-precision registers, where RX is the group of
7766 four bits in the instruction encoding and X is the single extension bit.
7767 RX and X fields are specified using their lowest (starting) bit. The return
7770 0...31: single-precision registers s0...s31
7771 32...63: double-precision registers d0...d31.
7773 Although X should be zero for VFP11 (encoding d0...d15 only), we might
7774 encounter VFP3 instructions, so we allow the full range for DP registers. */
7777 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
7781 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
7783 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
7786 /* Set bits in *WMASK according to a register number REG as encoded by
7787 bfd_arm_vfp11_regno(). Ignore d16-d31. */
7790 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
7795 *wmask |= 3 << ((reg - 32) * 2);
7798 /* Return TRUE if WMASK overwrites anything in REGS. */
7801 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
7805 for (i = 0; i < numregs; i++)
7807 unsigned int reg = regs[i];
7809 if (reg < 32 && (wmask & (1 << reg)) != 0)
7817 if ((wmask & (3 << (reg * 2))) != 0)
7824 /* In this function, we're interested in two things: finding input registers
7825 for VFP data-processing instructions, and finding the set of registers which
7826 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
7827 hold the written set, so FLDM etc. are easy to deal with (we're only
7828 interested in 32 SP registers or 16 dp registers, due to the VFP version
7829 implemented by the chip in question). DP registers are marked by setting
7830 both SP registers in the write mask). */
7832 static enum bfd_arm_vfp11_pipe
7833 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
7836 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
7837 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
7839 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
7842 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7843 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7845 pqrs = ((insn & 0x00800000) >> 20)
7846 | ((insn & 0x00300000) >> 19)
7847 | ((insn & 0x00000040) >> 6);
7851 case 0: /* fmac[sd]. */
7852 case 1: /* fnmac[sd]. */
7853 case 2: /* fmsc[sd]. */
7854 case 3: /* fnmsc[sd]. */
7856 bfd_arm_vfp11_write_mask (destmask, fd);
7858 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7863 case 4: /* fmul[sd]. */
7864 case 5: /* fnmul[sd]. */
7865 case 6: /* fadd[sd]. */
7866 case 7: /* fsub[sd]. */
7870 case 8: /* fdiv[sd]. */
7873 bfd_arm_vfp11_write_mask (destmask, fd);
7874 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7879 case 15: /* extended opcode. */
7881 unsigned int extn = ((insn >> 15) & 0x1e)
7882 | ((insn >> 7) & 1);
7886 case 0: /* fcpy[sd]. */
7887 case 1: /* fabs[sd]. */
7888 case 2: /* fneg[sd]. */
7889 case 8: /* fcmp[sd]. */
7890 case 9: /* fcmpe[sd]. */
7891 case 10: /* fcmpz[sd]. */
7892 case 11: /* fcmpez[sd]. */
7893 case 16: /* fuito[sd]. */
7894 case 17: /* fsito[sd]. */
7895 case 24: /* ftoui[sd]. */
7896 case 25: /* ftouiz[sd]. */
7897 case 26: /* ftosi[sd]. */
7898 case 27: /* ftosiz[sd]. */
7899 /* These instructions will not bounce due to underflow. */
7904 case 3: /* fsqrt[sd]. */
7905 /* fsqrt cannot underflow, but it can (perhaps) overwrite
7906 registers to cause the erratum in previous instructions. */
7907 bfd_arm_vfp11_write_mask (destmask, fd);
7911 case 15: /* fcvt{ds,sd}. */
7915 bfd_arm_vfp11_write_mask (destmask, fd);
7917 /* Only FCVTSD can underflow. */
7918 if ((insn & 0x100) != 0)
7937 /* Two-register transfer. */
7938 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
7940 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7942 if ((insn & 0x100000) == 0)
7945 bfd_arm_vfp11_write_mask (destmask, fm);
7948 bfd_arm_vfp11_write_mask (destmask, fm);
7949 bfd_arm_vfp11_write_mask (destmask, fm + 1);
7955 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
7957 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7958 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
7962 case 0: /* Two-reg transfer. We should catch these above. */
7965 case 2: /* fldm[sdx]. */
7969 unsigned int i, offset = insn & 0xff;
7974 for (i = fd; i < fd + offset; i++)
7975 bfd_arm_vfp11_write_mask (destmask, i);
7979 case 4: /* fld[sd]. */
7981 bfd_arm_vfp11_write_mask (destmask, fd);
7990 /* Single-register transfer. Note L==0. */
7991 else if ((insn & 0x0f100e10) == 0x0e000a10)
7993 unsigned int opcode = (insn >> 21) & 7;
7994 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
7998 case 0: /* fmsr/fmdlr. */
7999 case 1: /* fmdhr. */
8000 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8001 destination register. I don't know if this is exactly right,
8002 but it is the conservative choice. */
8003 bfd_arm_vfp11_write_mask (destmask, fn);
8017 static int elf32_arm_compare_mapping (const void * a, const void * b);
8020 /* Look for potentially-troublesome code sequences which might trigger the
8021 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8022 (available from ARM) for details of the erratum. A short version is
8023 described in ld.texinfo. */
8026 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8029 bfd_byte *contents = NULL;
8031 int regs[3], numregs = 0;
8032 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8033 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8035 if (globals == NULL)
8038 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8039 The states transition as follows:
8041 0 -> 1 (vector) or 0 -> 2 (scalar)
8042 A VFP FMAC-pipeline instruction has been seen. Fill
8043 regs[0]..regs[numregs-1] with its input operands. Remember this
8044 instruction in 'first_fmac'.
8047 Any instruction, except for a VFP instruction which overwrites
8052 A VFP instruction has been seen which overwrites any of regs[*].
8053 We must make a veneer! Reset state to 0 before examining next
8057 If we fail to match anything in state 2, reset to state 0 and reset
8058 the instruction pointer to the instruction after 'first_fmac'.
8060 If the VFP11 vector mode is in use, there must be at least two unrelated
8061 instructions between anti-dependent VFP11 instructions to properly avoid
8062 triggering the erratum, hence the use of the extra state 1. */
8064 /* If we are only performing a partial link do not bother
8065 to construct any glue. */
8066 if (bfd_link_relocatable (link_info))
8069 /* Skip if this bfd does not correspond to an ELF image. */
8070 if (! is_arm_elf (abfd))
8073 /* We should have chosen a fix type by the time we get here. */
8074 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8076 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8079 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8080 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8083 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8085 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8086 struct _arm_elf_section_data *sec_data;
8088 /* If we don't have executable progbits, we're not interested in this
8089 section. Also skip if section is to be excluded. */
8090 if (elf_section_type (sec) != SHT_PROGBITS
8091 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8092 || (sec->flags & SEC_EXCLUDE) != 0
8093 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8094 || sec->output_section == bfd_abs_section_ptr
8095 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8098 sec_data = elf32_arm_section_data (sec);
8100 if (sec_data->mapcount == 0)
8103 if (elf_section_data (sec)->this_hdr.contents != NULL)
8104 contents = elf_section_data (sec)->this_hdr.contents;
8105 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8108 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8109 elf32_arm_compare_mapping);
8111 for (span = 0; span < sec_data->mapcount; span++)
8113 unsigned int span_start = sec_data->map[span].vma;
8114 unsigned int span_end = (span == sec_data->mapcount - 1)
8115 ? sec->size : sec_data->map[span + 1].vma;
8116 char span_type = sec_data->map[span].type;
8118 /* FIXME: Only ARM mode is supported at present. We may need to
8119 support Thumb-2 mode also at some point. */
8120 if (span_type != 'a')
8123 for (i = span_start; i < span_end;)
8125 unsigned int next_i = i + 4;
8126 unsigned int insn = bfd_big_endian (abfd)
8127 ? (contents[i] << 24)
8128 | (contents[i + 1] << 16)
8129 | (contents[i + 2] << 8)
8131 : (contents[i + 3] << 24)
8132 | (contents[i + 2] << 16)
8133 | (contents[i + 1] << 8)
8135 unsigned int writemask = 0;
8136 enum bfd_arm_vfp11_pipe vpipe;
8141 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8143 /* I'm assuming the VFP11 erratum can trigger with denorm
8144 operands on either the FMAC or the DS pipeline. This might
8145 lead to slightly overenthusiastic veneer insertion. */
8146 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8148 state = use_vector ? 1 : 2;
8150 veneer_of_insn = insn;
8156 int other_regs[3], other_numregs;
8157 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8160 if (vpipe != VFP11_BAD
8161 && bfd_arm_vfp11_antidependency (writemask, regs,
8171 int other_regs[3], other_numregs;
8172 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8175 if (vpipe != VFP11_BAD
8176 && bfd_arm_vfp11_antidependency (writemask, regs,
8182 next_i = first_fmac + 4;
8188 abort (); /* Should be unreachable. */
8193 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8194 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8196 elf32_arm_section_data (sec)->erratumcount += 1;
8198 newerr->u.b.vfp_insn = veneer_of_insn;
8203 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8210 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8215 newerr->next = sec_data->erratumlist;
8216 sec_data->erratumlist = newerr;
8225 if (contents != NULL
8226 && elf_section_data (sec)->this_hdr.contents != contents)
8234 if (contents != NULL
8235 && elf_section_data (sec)->this_hdr.contents != contents)
8241 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8242 after sections have been laid out, using specially-named symbols. */
8245 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8246 struct bfd_link_info *link_info)
8249 struct elf32_arm_link_hash_table *globals;
8252 if (bfd_link_relocatable (link_info))
8255 /* Skip if this bfd does not correspond to an ELF image. */
8256 if (! is_arm_elf (abfd))
8259 globals = elf32_arm_hash_table (link_info);
8260 if (globals == NULL)
8263 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8264 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8266 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8268 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8269 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8271 for (; errnode != NULL; errnode = errnode->next)
8273 struct elf_link_hash_entry *myh;
8276 switch (errnode->type)
8278 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8279 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8280 /* Find veneer symbol. */
8281 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8282 errnode->u.b.veneer->u.v.id);
8284 myh = elf_link_hash_lookup
8285 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8288 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
8289 "`%s'"), abfd, tmp_name);
8291 vma = myh->root.u.def.section->output_section->vma
8292 + myh->root.u.def.section->output_offset
8293 + myh->root.u.def.value;
8295 errnode->u.b.veneer->vma = vma;
8298 case VFP11_ERRATUM_ARM_VENEER:
8299 case VFP11_ERRATUM_THUMB_VENEER:
8300 /* Find return location. */
8301 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8304 myh = elf_link_hash_lookup
8305 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8308 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
8309 "`%s'"), abfd, tmp_name);
8311 vma = myh->root.u.def.section->output_section->vma
8312 + myh->root.u.def.section->output_offset
8313 + myh->root.u.def.value;
8315 errnode->u.v.branch->vma = vma;
8327 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8328 return locations after sections have been laid out, using
8329 specially-named symbols. */
8332 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8333 struct bfd_link_info *link_info)
8336 struct elf32_arm_link_hash_table *globals;
8339 if (bfd_link_relocatable (link_info))
8342 /* Skip if this bfd does not correspond to an ELF image. */
8343 if (! is_arm_elf (abfd))
8346 globals = elf32_arm_hash_table (link_info);
8347 if (globals == NULL)
8350 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8351 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8353 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8355 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8356 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8358 for (; errnode != NULL; errnode = errnode->next)
8360 struct elf_link_hash_entry *myh;
8363 switch (errnode->type)
8365 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8366 /* Find veneer symbol. */
8367 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8368 errnode->u.b.veneer->u.v.id);
8370 myh = elf_link_hash_lookup
8371 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8374 (*_bfd_error_handler) (_("%B: unable to find STM32L4XX veneer "
8375 "`%s'"), abfd, tmp_name);
8377 vma = myh->root.u.def.section->output_section->vma
8378 + myh->root.u.def.section->output_offset
8379 + myh->root.u.def.value;
8381 errnode->u.b.veneer->vma = vma;
8384 case STM32L4XX_ERRATUM_VENEER:
8385 /* Find return location. */
8386 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8389 myh = elf_link_hash_lookup
8390 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8393 (*_bfd_error_handler) (_("%B: unable to find STM32L4XX veneer "
8394 "`%s'"), abfd, tmp_name);
8396 vma = myh->root.u.def.section->output_section->vma
8397 + myh->root.u.def.section->output_offset
8398 + myh->root.u.def.value;
8400 errnode->u.v.branch->vma = vma;
8412 static inline bfd_boolean
8413 is_thumb2_ldmia (const insn32 insn)
8415 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8416 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8417 return (insn & 0xffd02000) == 0xe8900000;
8420 static inline bfd_boolean
8421 is_thumb2_ldmdb (const insn32 insn)
8423 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8424 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8425 return (insn & 0xffd02000) == 0xe9100000;
8428 static inline bfd_boolean
8429 is_thumb2_vldm (const insn32 insn)
8431 /* A6.5 Extension register load or store instruction
8433 We look for SP 32-bit and DP 64-bit registers.
8434 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8435 <list> is consecutive 64-bit registers
8436 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8437 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8438 <list> is consecutive 32-bit registers
8439 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8440 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8441 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8443 (((insn & 0xfe100f00) == 0xec100b00) ||
8444 ((insn & 0xfe100f00) == 0xec100a00))
8445 && /* (IA without !). */
8446 (((((insn << 7) >> 28) & 0xd) == 0x4)
8447 /* (IA with !), includes VPOP (when reg number is SP). */
8448 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8450 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8453 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8455 - computes the number and the mode of memory accesses
8456 - decides if the replacement should be done:
8457 . replaces only if > 8-word accesses
8458 . or (testing purposes only) replaces all accesses. */
8461 stm32l4xx_need_create_replacing_stub (const insn32 insn,
8462 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8466 /* The field encoding the register list is the same for both LDMIA
8467 and LDMDB encodings. */
8468 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8469 nb_words = popcount (insn & 0x0000ffff);
8470 else if (is_thumb2_vldm (insn))
8471 nb_words = (insn & 0xff);
8473 /* DEFAULT mode accounts for the real bug condition situation,
8474 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8476 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8477 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8480 /* Look for potentially-troublesome code sequences which might trigger
8481 the STM STM32L4XX erratum. */
8484 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8485 struct bfd_link_info *link_info)
8488 bfd_byte *contents = NULL;
8489 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8491 if (globals == NULL)
8494 /* If we are only performing a partial link do not bother
8495 to construct any glue. */
8496 if (bfd_link_relocatable (link_info))
8499 /* Skip if this bfd does not correspond to an ELF image. */
8500 if (! is_arm_elf (abfd))
8503 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8506 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8507 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8510 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8512 unsigned int i, span;
8513 struct _arm_elf_section_data *sec_data;
8515 /* If we don't have executable progbits, we're not interested in this
8516 section. Also skip if section is to be excluded. */
8517 if (elf_section_type (sec) != SHT_PROGBITS
8518 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8519 || (sec->flags & SEC_EXCLUDE) != 0
8520 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8521 || sec->output_section == bfd_abs_section_ptr
8522 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8525 sec_data = elf32_arm_section_data (sec);
8527 if (sec_data->mapcount == 0)
8530 if (elf_section_data (sec)->this_hdr.contents != NULL)
8531 contents = elf_section_data (sec)->this_hdr.contents;
8532 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8535 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8536 elf32_arm_compare_mapping);
8538 for (span = 0; span < sec_data->mapcount; span++)
8540 unsigned int span_start = sec_data->map[span].vma;
8541 unsigned int span_end = (span == sec_data->mapcount - 1)
8542 ? sec->size : sec_data->map[span + 1].vma;
8543 char span_type = sec_data->map[span].type;
8544 int itblock_current_pos = 0;
8546 /* Only Thumb2 mode need be supported with this CM4 specific
8547 code, we should not encounter any arm mode eg span_type
8549 if (span_type != 't')
8552 for (i = span_start; i < span_end;)
8554 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8555 bfd_boolean insn_32bit = FALSE;
8556 bfd_boolean is_ldm = FALSE;
8557 bfd_boolean is_vldm = FALSE;
8558 bfd_boolean is_not_last_in_it_block = FALSE;
8560 /* The first 16-bits of all 32-bit thumb2 instructions start
8561 with opcode[15..13]=0b111 and the encoded op1 can be anything
8562 except opcode[12..11]!=0b00.
8563 See 32-bit Thumb instruction encoding. */
8564 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8567 /* Compute the predicate that tells if the instruction
8568 is concerned by the IT block
8569 - Creates an error if there is a ldm that is not
8570 last in the IT block thus cannot be replaced
8571 - Otherwise we can create a branch at the end of the
8572 IT block, it will be controlled naturally by IT
8573 with the proper pseudo-predicate
8574 - So the only interesting predicate is the one that
8575 tells that we are not on the last item of an IT
8577 if (itblock_current_pos != 0)
8578 is_not_last_in_it_block = !!--itblock_current_pos;
8582 /* Load the rest of the insn (in manual-friendly order). */
8583 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8584 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8585 is_vldm = is_thumb2_vldm (insn);
8587 /* Veneers are created for (v)ldm depending on
8588 option flags and memory accesses conditions; but
8589 if the instruction is not the last instruction of
8590 an IT block, we cannot create a jump there, so we
8592 if ((is_ldm || is_vldm) &&
8593 stm32l4xx_need_create_replacing_stub
8594 (insn, globals->stm32l4xx_fix))
8596 if (is_not_last_in_it_block)
8598 (*_bfd_error_handler)
8599 /* Note - overlong line used here to allow for translation. */
8601 %B(%A+0x%lx): error: multiple load detected in non-last IT block instruction : STM32L4XX veneer cannot be generated.\n"
8602 "Use gcc option -mrestrict-it to generate only one instruction per IT block.\n"),
8603 abfd, sec, (long)i);
8607 elf32_stm32l4xx_erratum_list *newerr =
8608 (elf32_stm32l4xx_erratum_list *)
8610 (sizeof (elf32_stm32l4xx_erratum_list));
8612 elf32_arm_section_data (sec)
8613 ->stm32l4xx_erratumcount += 1;
8614 newerr->u.b.insn = insn;
8615 /* We create only thumb branches. */
8617 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8618 record_stm32l4xx_erratum_veneer
8619 (link_info, newerr, abfd, sec,
8622 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8623 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8625 newerr->next = sec_data->stm32l4xx_erratumlist;
8626 sec_data->stm32l4xx_erratumlist = newerr;
8633 IT blocks are only encoded in T1
8634 Encoding T1: IT{x{y{z}}} <firstcond>
8635 1 0 1 1 - 1 1 1 1 - firstcond - mask
8636 if mask = '0000' then see 'related encodings'
8637 We don't deal with UNPREDICTABLE, just ignore these.
8638 There can be no nested IT blocks so an IT block
8639 is naturally a new one for which it is worth
8640 computing its size. */
8641 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00) &&
8642 ((insn & 0x000f) != 0x0000);
8643 /* If we have a new IT block we compute its size. */
8646 /* Compute the number of instructions controlled
8647 by the IT block, it will be used to decide
8648 whether we are inside an IT block or not. */
8649 unsigned int mask = insn & 0x000f;
8650 itblock_current_pos = 4 - ctz (mask);
8654 i += insn_32bit ? 4 : 2;
8658 if (contents != NULL
8659 && elf_section_data (sec)->this_hdr.contents != contents)
8667 if (contents != NULL
8668 && elf_section_data (sec)->this_hdr.contents != contents)
8674 /* Set target relocation values needed during linking. */
8677 bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
8678 struct bfd_link_info *link_info,
8679 struct elf32_arm_params *params)
8681 struct elf32_arm_link_hash_table *globals;
8683 globals = elf32_arm_hash_table (link_info);
8684 if (globals == NULL)
8687 globals->target1_is_rel = params->target1_is_rel;
8688 if (strcmp (params->target2_type, "rel") == 0)
8689 globals->target2_reloc = R_ARM_REL32;
8690 else if (strcmp (params->target2_type, "abs") == 0)
8691 globals->target2_reloc = R_ARM_ABS32;
8692 else if (strcmp (params->target2_type, "got-rel") == 0)
8693 globals->target2_reloc = R_ARM_GOT_PREL;
8696 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
8697 params->target2_type);
8699 globals->fix_v4bx = params->fix_v4bx;
8700 globals->use_blx |= params->use_blx;
8701 globals->vfp11_fix = params->vfp11_denorm_fix;
8702 globals->stm32l4xx_fix = params->stm32l4xx_fix;
8703 globals->pic_veneer = params->pic_veneer;
8704 globals->fix_cortex_a8 = params->fix_cortex_a8;
8705 globals->fix_arm1176 = params->fix_arm1176;
8706 globals->cmse_implib = params->cmse_implib;
8707 globals->in_implib_bfd = params->in_implib_bfd;
8709 BFD_ASSERT (is_arm_elf (output_bfd));
8710 elf_arm_tdata (output_bfd)->no_enum_size_warning
8711 = params->no_enum_size_warning;
8712 elf_arm_tdata (output_bfd)->no_wchar_size_warning
8713 = params->no_wchar_size_warning;
8716 /* Replace the target offset of a Thumb bl or b.w instruction. */
8719 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
8725 BFD_ASSERT ((offset & 1) == 0);
8727 upper = bfd_get_16 (abfd, insn);
8728 lower = bfd_get_16 (abfd, insn + 2);
8729 reloc_sign = (offset < 0) ? 1 : 0;
8730 upper = (upper & ~(bfd_vma) 0x7ff)
8731 | ((offset >> 12) & 0x3ff)
8732 | (reloc_sign << 10);
8733 lower = (lower & ~(bfd_vma) 0x2fff)
8734 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
8735 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
8736 | ((offset >> 1) & 0x7ff);
8737 bfd_put_16 (abfd, upper, insn);
8738 bfd_put_16 (abfd, lower, insn + 2);
8741 /* Thumb code calling an ARM function. */
8744 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
8748 asection * input_section,
8749 bfd_byte * hit_data,
8752 bfd_signed_vma addend,
8754 char **error_message)
8758 long int ret_offset;
8759 struct elf_link_hash_entry * myh;
8760 struct elf32_arm_link_hash_table * globals;
8762 myh = find_thumb_glue (info, name, error_message);
8766 globals = elf32_arm_hash_table (info);
8767 BFD_ASSERT (globals != NULL);
8768 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8770 my_offset = myh->root.u.def.value;
8772 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8773 THUMB2ARM_GLUE_SECTION_NAME);
8775 BFD_ASSERT (s != NULL);
8776 BFD_ASSERT (s->contents != NULL);
8777 BFD_ASSERT (s->output_section != NULL);
8779 if ((my_offset & 0x01) == 0x01)
8782 && sym_sec->owner != NULL
8783 && !INTERWORK_FLAG (sym_sec->owner))
8785 (*_bfd_error_handler)
8786 (_("%B(%s): warning: interworking not enabled.\n"
8787 " first occurrence: %B: Thumb call to ARM"),
8788 sym_sec->owner, input_bfd, name);
8794 myh->root.u.def.value = my_offset;
8796 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
8797 s->contents + my_offset);
8799 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
8800 s->contents + my_offset + 2);
8803 /* Address of destination of the stub. */
8804 ((bfd_signed_vma) val)
8806 /* Offset from the start of the current section
8807 to the start of the stubs. */
8809 /* Offset of the start of this stub from the start of the stubs. */
8811 /* Address of the start of the current section. */
8812 + s->output_section->vma)
8813 /* The branch instruction is 4 bytes into the stub. */
8815 /* ARM branches work from the pc of the instruction + 8. */
8818 put_arm_insn (globals, output_bfd,
8819 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
8820 s->contents + my_offset + 4);
8823 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
8825 /* Now go back and fix up the original BL insn to point to here. */
8827 /* Address of where the stub is located. */
8828 (s->output_section->vma + s->output_offset + my_offset)
8829 /* Address of where the BL is located. */
8830 - (input_section->output_section->vma + input_section->output_offset
8832 /* Addend in the relocation. */
8834 /* Biassing for PC-relative addressing. */
8837 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
8842 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
8844 static struct elf_link_hash_entry *
8845 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
8852 char ** error_message)
8855 long int ret_offset;
8856 struct elf_link_hash_entry * myh;
8857 struct elf32_arm_link_hash_table * globals;
8859 myh = find_arm_glue (info, name, error_message);
8863 globals = elf32_arm_hash_table (info);
8864 BFD_ASSERT (globals != NULL);
8865 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8867 my_offset = myh->root.u.def.value;
8869 if ((my_offset & 0x01) == 0x01)
8872 && sym_sec->owner != NULL
8873 && !INTERWORK_FLAG (sym_sec->owner))
8875 (*_bfd_error_handler)
8876 (_("%B(%s): warning: interworking not enabled.\n"
8877 " first occurrence: %B: arm call to thumb"),
8878 sym_sec->owner, input_bfd, name);
8882 myh->root.u.def.value = my_offset;
8884 if (bfd_link_pic (info)
8885 || globals->root.is_relocatable_executable
8886 || globals->pic_veneer)
8888 /* For relocatable objects we can't use absolute addresses,
8889 so construct the address from a relative offset. */
8890 /* TODO: If the offset is small it's probably worth
8891 constructing the address with adds. */
8892 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
8893 s->contents + my_offset);
8894 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
8895 s->contents + my_offset + 4);
8896 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
8897 s->contents + my_offset + 8);
8898 /* Adjust the offset by 4 for the position of the add,
8899 and 8 for the pipeline offset. */
8900 ret_offset = (val - (s->output_offset
8901 + s->output_section->vma
8904 bfd_put_32 (output_bfd, ret_offset,
8905 s->contents + my_offset + 12);
8907 else if (globals->use_blx)
8909 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
8910 s->contents + my_offset);
8912 /* It's a thumb address. Add the low order bit. */
8913 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
8914 s->contents + my_offset + 4);
8918 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
8919 s->contents + my_offset);
8921 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
8922 s->contents + my_offset + 4);
8924 /* It's a thumb address. Add the low order bit. */
8925 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
8926 s->contents + my_offset + 8);
8932 BFD_ASSERT (my_offset <= globals->arm_glue_size);
8937 /* Arm code calling a Thumb function. */
8940 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
8944 asection * input_section,
8945 bfd_byte * hit_data,
8948 bfd_signed_vma addend,
8950 char **error_message)
8952 unsigned long int tmp;
8955 long int ret_offset;
8956 struct elf_link_hash_entry * myh;
8957 struct elf32_arm_link_hash_table * globals;
8959 globals = elf32_arm_hash_table (info);
8960 BFD_ASSERT (globals != NULL);
8961 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8963 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8964 ARM2THUMB_GLUE_SECTION_NAME);
8965 BFD_ASSERT (s != NULL);
8966 BFD_ASSERT (s->contents != NULL);
8967 BFD_ASSERT (s->output_section != NULL);
8969 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
8970 sym_sec, val, s, error_message);
8974 my_offset = myh->root.u.def.value;
8975 tmp = bfd_get_32 (input_bfd, hit_data);
8976 tmp = tmp & 0xFF000000;
8978 /* Somehow these are both 4 too far, so subtract 8. */
8979 ret_offset = (s->output_offset
8981 + s->output_section->vma
8982 - (input_section->output_offset
8983 + input_section->output_section->vma
8987 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
8989 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
8994 /* Populate Arm stub for an exported Thumb function. */
8997 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
8999 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9001 struct elf_link_hash_entry * myh;
9002 struct elf32_arm_link_hash_entry *eh;
9003 struct elf32_arm_link_hash_table * globals;
9006 char *error_message;
9008 eh = elf32_arm_hash_entry (h);
9009 /* Allocate stubs for exported Thumb functions on v4t. */
9010 if (eh->export_glue == NULL)
9013 globals = elf32_arm_hash_table (info);
9014 BFD_ASSERT (globals != NULL);
9015 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9017 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9018 ARM2THUMB_GLUE_SECTION_NAME);
9019 BFD_ASSERT (s != NULL);
9020 BFD_ASSERT (s->contents != NULL);
9021 BFD_ASSERT (s->output_section != NULL);
9023 sec = eh->export_glue->root.u.def.section;
9025 BFD_ASSERT (sec->output_section != NULL);
9027 val = eh->export_glue->root.u.def.value + sec->output_offset
9028 + sec->output_section->vma;
9030 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9031 h->root.u.def.section->owner,
9032 globals->obfd, sec, val, s,
9038 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9041 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9046 struct elf32_arm_link_hash_table *globals;
9048 globals = elf32_arm_hash_table (info);
9049 BFD_ASSERT (globals != NULL);
9050 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9052 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9053 ARM_BX_GLUE_SECTION_NAME);
9054 BFD_ASSERT (s != NULL);
9055 BFD_ASSERT (s->contents != NULL);
9056 BFD_ASSERT (s->output_section != NULL);
9058 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9060 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9062 if ((globals->bx_glue_offset[reg] & 1) == 0)
9064 p = s->contents + glue_addr;
9065 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9066 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9067 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9068 globals->bx_glue_offset[reg] |= 1;
9071 return glue_addr + s->output_section->vma + s->output_offset;
9074 /* Generate Arm stubs for exported Thumb symbols. */
9076 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9077 struct bfd_link_info *link_info)
9079 struct elf32_arm_link_hash_table * globals;
9081 if (link_info == NULL)
9082 /* Ignore this if we are not called by the ELF backend linker. */
9085 globals = elf32_arm_hash_table (link_info);
9086 if (globals == NULL)
9089 /* If blx is available then exported Thumb symbols are OK and there is
9091 if (globals->use_blx)
9094 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9098 /* Reserve space for COUNT dynamic relocations in relocation selection
9102 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9103 bfd_size_type count)
9105 struct elf32_arm_link_hash_table *htab;
9107 htab = elf32_arm_hash_table (info);
9108 BFD_ASSERT (htab->root.dynamic_sections_created);
9111 sreloc->size += RELOC_SIZE (htab) * count;
9114 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9115 dynamic, the relocations should go in SRELOC, otherwise they should
9116 go in the special .rel.iplt section. */
9119 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9120 bfd_size_type count)
9122 struct elf32_arm_link_hash_table *htab;
9124 htab = elf32_arm_hash_table (info);
9125 if (!htab->root.dynamic_sections_created)
9126 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9129 BFD_ASSERT (sreloc != NULL);
9130 sreloc->size += RELOC_SIZE (htab) * count;
9134 /* Add relocation REL to the end of relocation section SRELOC. */
9137 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9138 asection *sreloc, Elf_Internal_Rela *rel)
9141 struct elf32_arm_link_hash_table *htab;
9143 htab = elf32_arm_hash_table (info);
9144 if (!htab->root.dynamic_sections_created
9145 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9146 sreloc = htab->root.irelplt;
9149 loc = sreloc->contents;
9150 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9151 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9153 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9156 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9157 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9161 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9162 bfd_boolean is_iplt_entry,
9163 union gotplt_union *root_plt,
9164 struct arm_plt_info *arm_plt)
9166 struct elf32_arm_link_hash_table *htab;
9170 htab = elf32_arm_hash_table (info);
9174 splt = htab->root.iplt;
9175 sgotplt = htab->root.igotplt;
9177 /* NaCl uses a special first entry in .iplt too. */
9178 if (htab->nacl_p && splt->size == 0)
9179 splt->size += htab->plt_header_size;
9181 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9182 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9186 splt = htab->root.splt;
9187 sgotplt = htab->root.sgotplt;
9189 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9190 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9192 /* If this is the first .plt entry, make room for the special
9194 if (splt->size == 0)
9195 splt->size += htab->plt_header_size;
9197 htab->next_tls_desc_index++;
9200 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9201 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9202 splt->size += PLT_THUMB_STUB_SIZE;
9203 root_plt->offset = splt->size;
9204 splt->size += htab->plt_entry_size;
9206 if (!htab->symbian_p)
9208 /* We also need to make an entry in the .got.plt section, which
9209 will be placed in the .got section by the linker script. */
9211 arm_plt->got_offset = sgotplt->size;
9213 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9219 arm_movw_immediate (bfd_vma value)
9221 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9225 arm_movt_immediate (bfd_vma value)
9227 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9230 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9231 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9232 Otherwise, DYNINDX is the index of the symbol in the dynamic
9233 symbol table and SYM_VALUE is undefined.
9235 ROOT_PLT points to the offset of the PLT entry from the start of its
9236 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9237 bookkeeping information.
9239 Returns FALSE if there was a problem. */
9242 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9243 union gotplt_union *root_plt,
9244 struct arm_plt_info *arm_plt,
9245 int dynindx, bfd_vma sym_value)
9247 struct elf32_arm_link_hash_table *htab;
9253 Elf_Internal_Rela rel;
9254 bfd_vma plt_header_size;
9255 bfd_vma got_header_size;
9257 htab = elf32_arm_hash_table (info);
9259 /* Pick the appropriate sections and sizes. */
9262 splt = htab->root.iplt;
9263 sgot = htab->root.igotplt;
9264 srel = htab->root.irelplt;
9266 /* There are no reserved entries in .igot.plt, and no special
9267 first entry in .iplt. */
9268 got_header_size = 0;
9269 plt_header_size = 0;
9273 splt = htab->root.splt;
9274 sgot = htab->root.sgotplt;
9275 srel = htab->root.srelplt;
9277 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9278 plt_header_size = htab->plt_header_size;
9280 BFD_ASSERT (splt != NULL && srel != NULL);
9282 /* Fill in the entry in the procedure linkage table. */
9283 if (htab->symbian_p)
9285 BFD_ASSERT (dynindx >= 0);
9286 put_arm_insn (htab, output_bfd,
9287 elf32_arm_symbian_plt_entry[0],
9288 splt->contents + root_plt->offset);
9289 bfd_put_32 (output_bfd,
9290 elf32_arm_symbian_plt_entry[1],
9291 splt->contents + root_plt->offset + 4);
9293 /* Fill in the entry in the .rel.plt section. */
9294 rel.r_offset = (splt->output_section->vma
9295 + splt->output_offset
9296 + root_plt->offset + 4);
9297 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9299 /* Get the index in the procedure linkage table which
9300 corresponds to this symbol. This is the index of this symbol
9301 in all the symbols for which we are making plt entries. The
9302 first entry in the procedure linkage table is reserved. */
9303 plt_index = ((root_plt->offset - plt_header_size)
9304 / htab->plt_entry_size);
9308 bfd_vma got_offset, got_address, plt_address;
9309 bfd_vma got_displacement, initial_got_entry;
9312 BFD_ASSERT (sgot != NULL);
9314 /* Get the offset into the .(i)got.plt table of the entry that
9315 corresponds to this function. */
9316 got_offset = (arm_plt->got_offset & -2);
9318 /* Get the index in the procedure linkage table which
9319 corresponds to this symbol. This is the index of this symbol
9320 in all the symbols for which we are making plt entries.
9321 After the reserved .got.plt entries, all symbols appear in
9322 the same order as in .plt. */
9323 plt_index = (got_offset - got_header_size) / 4;
9325 /* Calculate the address of the GOT entry. */
9326 got_address = (sgot->output_section->vma
9327 + sgot->output_offset
9330 /* ...and the address of the PLT entry. */
9331 plt_address = (splt->output_section->vma
9332 + splt->output_offset
9333 + root_plt->offset);
9335 ptr = splt->contents + root_plt->offset;
9336 if (htab->vxworks_p && bfd_link_pic (info))
9341 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9343 val = elf32_arm_vxworks_shared_plt_entry[i];
9345 val |= got_address - sgot->output_section->vma;
9347 val |= plt_index * RELOC_SIZE (htab);
9348 if (i == 2 || i == 5)
9349 bfd_put_32 (output_bfd, val, ptr);
9351 put_arm_insn (htab, output_bfd, val, ptr);
9354 else if (htab->vxworks_p)
9359 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9361 val = elf32_arm_vxworks_exec_plt_entry[i];
9365 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9367 val |= plt_index * RELOC_SIZE (htab);
9368 if (i == 2 || i == 5)
9369 bfd_put_32 (output_bfd, val, ptr);
9371 put_arm_insn (htab, output_bfd, val, ptr);
9374 loc = (htab->srelplt2->contents
9375 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9377 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9378 referencing the GOT for this PLT entry. */
9379 rel.r_offset = plt_address + 8;
9380 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9381 rel.r_addend = got_offset;
9382 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9383 loc += RELOC_SIZE (htab);
9385 /* Create the R_ARM_ABS32 relocation referencing the
9386 beginning of the PLT for this GOT entry. */
9387 rel.r_offset = got_address;
9388 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9390 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9392 else if (htab->nacl_p)
9394 /* Calculate the displacement between the PLT slot and the
9395 common tail that's part of the special initial PLT slot. */
9396 int32_t tail_displacement
9397 = ((splt->output_section->vma + splt->output_offset
9398 + ARM_NACL_PLT_TAIL_OFFSET)
9399 - (plt_address + htab->plt_entry_size + 4));
9400 BFD_ASSERT ((tail_displacement & 3) == 0);
9401 tail_displacement >>= 2;
9403 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9404 || (-tail_displacement & 0xff000000) == 0);
9406 /* Calculate the displacement between the PLT slot and the entry
9407 in the GOT. The offset accounts for the value produced by
9408 adding to pc in the penultimate instruction of the PLT stub. */
9409 got_displacement = (got_address
9410 - (plt_address + htab->plt_entry_size));
9412 /* NaCl does not support interworking at all. */
9413 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9415 put_arm_insn (htab, output_bfd,
9416 elf32_arm_nacl_plt_entry[0]
9417 | arm_movw_immediate (got_displacement),
9419 put_arm_insn (htab, output_bfd,
9420 elf32_arm_nacl_plt_entry[1]
9421 | arm_movt_immediate (got_displacement),
9423 put_arm_insn (htab, output_bfd,
9424 elf32_arm_nacl_plt_entry[2],
9426 put_arm_insn (htab, output_bfd,
9427 elf32_arm_nacl_plt_entry[3]
9428 | (tail_displacement & 0x00ffffff),
9431 else if (using_thumb_only (htab))
9433 /* PR ld/16017: Generate thumb only PLT entries. */
9434 if (!using_thumb2 (htab))
9436 /* FIXME: We ought to be able to generate thumb-1 PLT
9438 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
9443 /* Calculate the displacement between the PLT slot and the entry in
9444 the GOT. The 12-byte offset accounts for the value produced by
9445 adding to pc in the 3rd instruction of the PLT stub. */
9446 got_displacement = got_address - (plt_address + 12);
9448 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9449 instead of 'put_thumb_insn'. */
9450 put_arm_insn (htab, output_bfd,
9451 elf32_thumb2_plt_entry[0]
9452 | ((got_displacement & 0x000000ff) << 16)
9453 | ((got_displacement & 0x00000700) << 20)
9454 | ((got_displacement & 0x00000800) >> 1)
9455 | ((got_displacement & 0x0000f000) >> 12),
9457 put_arm_insn (htab, output_bfd,
9458 elf32_thumb2_plt_entry[1]
9459 | ((got_displacement & 0x00ff0000) )
9460 | ((got_displacement & 0x07000000) << 4)
9461 | ((got_displacement & 0x08000000) >> 17)
9462 | ((got_displacement & 0xf0000000) >> 28),
9464 put_arm_insn (htab, output_bfd,
9465 elf32_thumb2_plt_entry[2],
9467 put_arm_insn (htab, output_bfd,
9468 elf32_thumb2_plt_entry[3],
9473 /* Calculate the displacement between the PLT slot and the
9474 entry in the GOT. The eight-byte offset accounts for the
9475 value produced by adding to pc in the first instruction
9477 got_displacement = got_address - (plt_address + 8);
9479 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9481 put_thumb_insn (htab, output_bfd,
9482 elf32_arm_plt_thumb_stub[0], ptr - 4);
9483 put_thumb_insn (htab, output_bfd,
9484 elf32_arm_plt_thumb_stub[1], ptr - 2);
9487 if (!elf32_arm_use_long_plt_entry)
9489 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9491 put_arm_insn (htab, output_bfd,
9492 elf32_arm_plt_entry_short[0]
9493 | ((got_displacement & 0x0ff00000) >> 20),
9495 put_arm_insn (htab, output_bfd,
9496 elf32_arm_plt_entry_short[1]
9497 | ((got_displacement & 0x000ff000) >> 12),
9499 put_arm_insn (htab, output_bfd,
9500 elf32_arm_plt_entry_short[2]
9501 | (got_displacement & 0x00000fff),
9503 #ifdef FOUR_WORD_PLT
9504 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9509 put_arm_insn (htab, output_bfd,
9510 elf32_arm_plt_entry_long[0]
9511 | ((got_displacement & 0xf0000000) >> 28),
9513 put_arm_insn (htab, output_bfd,
9514 elf32_arm_plt_entry_long[1]
9515 | ((got_displacement & 0x0ff00000) >> 20),
9517 put_arm_insn (htab, output_bfd,
9518 elf32_arm_plt_entry_long[2]
9519 | ((got_displacement & 0x000ff000) >> 12),
9521 put_arm_insn (htab, output_bfd,
9522 elf32_arm_plt_entry_long[3]
9523 | (got_displacement & 0x00000fff),
9528 /* Fill in the entry in the .rel(a).(i)plt section. */
9529 rel.r_offset = got_address;
9533 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9534 The dynamic linker or static executable then calls SYM_VALUE
9535 to determine the correct run-time value of the .igot.plt entry. */
9536 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9537 initial_got_entry = sym_value;
9541 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9542 initial_got_entry = (splt->output_section->vma
9543 + splt->output_offset);
9546 /* Fill in the entry in the global offset table. */
9547 bfd_put_32 (output_bfd, initial_got_entry,
9548 sgot->contents + got_offset);
9552 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9555 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9556 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9562 /* Some relocations map to different relocations depending on the
9563 target. Return the real relocation. */
9566 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
9572 if (globals->target1_is_rel)
9578 return globals->target2_reloc;
9585 /* Return the base VMA address which should be subtracted from real addresses
9586 when resolving @dtpoff relocation.
9587 This is PT_TLS segment p_vaddr. */
9590 dtpoff_base (struct bfd_link_info *info)
9592 /* If tls_sec is NULL, we should have signalled an error already. */
9593 if (elf_hash_table (info)->tls_sec == NULL)
9595 return elf_hash_table (info)->tls_sec->vma;
9598 /* Return the relocation value for @tpoff relocation
9599 if STT_TLS virtual address is ADDRESS. */
9602 tpoff (struct bfd_link_info *info, bfd_vma address)
9604 struct elf_link_hash_table *htab = elf_hash_table (info);
9607 /* If tls_sec is NULL, we should have signalled an error already. */
9608 if (htab->tls_sec == NULL)
9610 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
9611 return address - htab->tls_sec->vma + base;
9614 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
9615 VALUE is the relocation value. */
9617 static bfd_reloc_status_type
9618 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
9621 return bfd_reloc_overflow;
9623 value |= bfd_get_32 (abfd, data) & 0xfffff000;
9624 bfd_put_32 (abfd, value, data);
9625 return bfd_reloc_ok;
9628 /* Handle TLS relaxations. Relaxing is possible for symbols that use
9629 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
9630 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
9632 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
9633 is to then call final_link_relocate. Return other values in the
9636 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
9637 the pre-relaxed code. It would be nice if the relocs were updated
9638 to match the optimization. */
9640 static bfd_reloc_status_type
9641 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
9642 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
9643 Elf_Internal_Rela *rel, unsigned long is_local)
9647 switch (ELF32_R_TYPE (rel->r_info))
9650 return bfd_reloc_notsupported;
9652 case R_ARM_TLS_GOTDESC:
9657 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9659 insn -= 5; /* THUMB */
9661 insn -= 8; /* ARM */
9663 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9664 return bfd_reloc_continue;
9666 case R_ARM_THM_TLS_DESCSEQ:
9668 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
9669 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
9673 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9675 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
9679 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9682 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
9684 else if ((insn & 0xff87) == 0x4780) /* blx rx */
9688 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9691 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
9692 contents + rel->r_offset);
9696 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9697 /* It's a 32 bit instruction, fetch the rest of it for
9698 error generation. */
9700 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
9701 (*_bfd_error_handler)
9702 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
9703 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9704 return bfd_reloc_notsupported;
9708 case R_ARM_TLS_DESCSEQ:
9710 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9711 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
9715 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
9716 contents + rel->r_offset);
9718 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
9722 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9725 bfd_put_32 (input_bfd, insn & 0xfffff000,
9726 contents + rel->r_offset);
9728 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
9732 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9735 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
9736 contents + rel->r_offset);
9740 (*_bfd_error_handler)
9741 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
9742 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9743 return bfd_reloc_notsupported;
9747 case R_ARM_TLS_CALL:
9748 /* GD->IE relaxation, turn the instruction into 'nop' or
9749 'ldr r0, [pc,r0]' */
9750 insn = is_local ? 0xe1a00000 : 0xe79f0000;
9751 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9754 case R_ARM_THM_TLS_CALL:
9755 /* GD->IE relaxation. */
9757 /* add r0,pc; ldr r0, [r0] */
9759 else if (using_thumb2 (globals))
9766 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
9767 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
9770 return bfd_reloc_ok;
9773 /* For a given value of n, calculate the value of G_n as required to
9774 deal with group relocations. We return it in the form of an
9775 encoded constant-and-rotation, together with the final residual. If n is
9776 specified as less than zero, then final_residual is filled with the
9777 input value and no further action is performed. */
9780 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
9784 bfd_vma encoded_g_n = 0;
9785 bfd_vma residual = value; /* Also known as Y_n. */
9787 for (current_n = 0; current_n <= n; current_n++)
9791 /* Calculate which part of the value to mask. */
9798 /* Determine the most significant bit in the residual and
9799 align the resulting value to a 2-bit boundary. */
9800 for (msb = 30; msb >= 0; msb -= 2)
9801 if (residual & (3 << msb))
9804 /* The desired shift is now (msb - 6), or zero, whichever
9811 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
9812 g_n = residual & (0xff << shift);
9813 encoded_g_n = (g_n >> shift)
9814 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
9816 /* Calculate the residual for the next time around. */
9820 *final_residual = residual;
9825 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
9826 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
9829 identify_add_or_sub (bfd_vma insn)
9831 int opcode = insn & 0x1e00000;
9833 if (opcode == 1 << 23) /* ADD */
9836 if (opcode == 1 << 22) /* SUB */
9842 /* Perform a relocation as part of a final link. */
9844 static bfd_reloc_status_type
9845 elf32_arm_final_link_relocate (reloc_howto_type * howto,
9848 asection * input_section,
9849 bfd_byte * contents,
9850 Elf_Internal_Rela * rel,
9852 struct bfd_link_info * info,
9854 const char * sym_name,
9855 unsigned char st_type,
9856 enum arm_st_branch_type branch_type,
9857 struct elf_link_hash_entry * h,
9858 bfd_boolean * unresolved_reloc_p,
9859 char ** error_message)
9861 unsigned long r_type = howto->type;
9862 unsigned long r_symndx;
9863 bfd_byte * hit_data = contents + rel->r_offset;
9864 bfd_vma * local_got_offsets;
9865 bfd_vma * local_tlsdesc_gotents;
9868 asection * sreloc = NULL;
9871 bfd_signed_vma signed_addend;
9872 unsigned char dynreloc_st_type;
9873 bfd_vma dynreloc_value;
9874 struct elf32_arm_link_hash_table * globals;
9875 struct elf32_arm_link_hash_entry *eh;
9876 union gotplt_union *root_plt;
9877 struct arm_plt_info *arm_plt;
9879 bfd_vma gotplt_offset;
9880 bfd_boolean has_iplt_entry;
9882 globals = elf32_arm_hash_table (info);
9883 if (globals == NULL)
9884 return bfd_reloc_notsupported;
9886 BFD_ASSERT (is_arm_elf (input_bfd));
9888 /* Some relocation types map to different relocations depending on the
9889 target. We pick the right one here. */
9890 r_type = arm_real_reloc_type (globals, r_type);
9892 /* It is possible to have linker relaxations on some TLS access
9893 models. Update our information here. */
9894 r_type = elf32_arm_tls_transition (info, r_type, h);
9896 if (r_type != howto->type)
9897 howto = elf32_arm_howto_from_type (r_type);
9899 eh = (struct elf32_arm_link_hash_entry *) h;
9900 sgot = globals->root.sgot;
9901 local_got_offsets = elf_local_got_offsets (input_bfd);
9902 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
9904 if (globals->root.dynamic_sections_created)
9905 srelgot = globals->root.srelgot;
9909 r_symndx = ELF32_R_SYM (rel->r_info);
9911 if (globals->use_rel)
9913 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
9915 if (addend & ((howto->src_mask + 1) >> 1))
9918 signed_addend &= ~ howto->src_mask;
9919 signed_addend |= addend;
9922 signed_addend = addend;
9925 addend = signed_addend = rel->r_addend;
9927 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
9928 are resolving a function call relocation. */
9929 if (using_thumb_only (globals)
9930 && (r_type == R_ARM_THM_CALL
9931 || r_type == R_ARM_THM_JUMP24)
9932 && branch_type == ST_BRANCH_TO_ARM)
9933 branch_type = ST_BRANCH_TO_THUMB;
9935 /* Record the symbol information that should be used in dynamic
9937 dynreloc_st_type = st_type;
9938 dynreloc_value = value;
9939 if (branch_type == ST_BRANCH_TO_THUMB)
9940 dynreloc_value |= 1;
9942 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
9943 VALUE appropriately for relocations that we resolve at link time. */
9944 has_iplt_entry = FALSE;
9945 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
9947 && root_plt->offset != (bfd_vma) -1)
9949 plt_offset = root_plt->offset;
9950 gotplt_offset = arm_plt->got_offset;
9952 if (h == NULL || eh->is_iplt)
9954 has_iplt_entry = TRUE;
9955 splt = globals->root.iplt;
9957 /* Populate .iplt entries here, because not all of them will
9958 be seen by finish_dynamic_symbol. The lower bit is set if
9959 we have already populated the entry. */
9964 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
9965 -1, dynreloc_value))
9966 root_plt->offset |= 1;
9968 return bfd_reloc_notsupported;
9971 /* Static relocations always resolve to the .iplt entry. */
9973 value = (splt->output_section->vma
9974 + splt->output_offset
9976 branch_type = ST_BRANCH_TO_ARM;
9978 /* If there are non-call relocations that resolve to the .iplt
9979 entry, then all dynamic ones must too. */
9980 if (arm_plt->noncall_refcount != 0)
9982 dynreloc_st_type = st_type;
9983 dynreloc_value = value;
9987 /* We populate the .plt entry in finish_dynamic_symbol. */
9988 splt = globals->root.splt;
9993 plt_offset = (bfd_vma) -1;
9994 gotplt_offset = (bfd_vma) -1;
10000 /* We don't need to find a value for this symbol. It's just a
10002 *unresolved_reloc_p = FALSE;
10003 return bfd_reloc_ok;
10006 if (!globals->vxworks_p)
10007 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10011 case R_ARM_ABS32_NOI:
10013 case R_ARM_REL32_NOI:
10019 /* Handle relocations which should use the PLT entry. ABS32/REL32
10020 will use the symbol's value, which may point to a PLT entry, but we
10021 don't need to handle that here. If we created a PLT entry, all
10022 branches in this object should go to it, except if the PLT is too
10023 far away, in which case a long branch stub should be inserted. */
10024 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10025 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10026 && r_type != R_ARM_CALL
10027 && r_type != R_ARM_JUMP24
10028 && r_type != R_ARM_PLT32)
10029 && plt_offset != (bfd_vma) -1)
10031 /* If we've created a .plt section, and assigned a PLT entry
10032 to this function, it must either be a STT_GNU_IFUNC reference
10033 or not be known to bind locally. In other cases, we should
10034 have cleared the PLT entry by now. */
10035 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10037 value = (splt->output_section->vma
10038 + splt->output_offset
10040 *unresolved_reloc_p = FALSE;
10041 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10042 contents, rel->r_offset, value,
10046 /* When generating a shared object or relocatable executable, these
10047 relocations are copied into the output file to be resolved at
10049 if ((bfd_link_pic (info)
10050 || globals->root.is_relocatable_executable)
10051 && (input_section->flags & SEC_ALLOC)
10052 && !(globals->vxworks_p
10053 && strcmp (input_section->output_section->name,
10055 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10056 || !SYMBOL_CALLS_LOCAL (info, h))
10057 && !(input_bfd == globals->stub_bfd
10058 && strstr (input_section->name, STUB_SUFFIX))
10060 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10061 || h->root.type != bfd_link_hash_undefweak)
10062 && r_type != R_ARM_PC24
10063 && r_type != R_ARM_CALL
10064 && r_type != R_ARM_JUMP24
10065 && r_type != R_ARM_PREL31
10066 && r_type != R_ARM_PLT32)
10068 Elf_Internal_Rela outrel;
10069 bfd_boolean skip, relocate;
10071 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10072 && !h->def_regular)
10074 char *v = _("shared object");
10076 if (bfd_link_executable (info))
10077 v = _("PIE executable");
10079 (*_bfd_error_handler)
10080 (_("%B: relocation %s against external or undefined symbol `%s'"
10081 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10082 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10083 return bfd_reloc_notsupported;
10086 *unresolved_reloc_p = FALSE;
10088 if (sreloc == NULL && globals->root.dynamic_sections_created)
10090 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10091 ! globals->use_rel);
10093 if (sreloc == NULL)
10094 return bfd_reloc_notsupported;
10100 outrel.r_addend = addend;
10102 _bfd_elf_section_offset (output_bfd, info, input_section,
10104 if (outrel.r_offset == (bfd_vma) -1)
10106 else if (outrel.r_offset == (bfd_vma) -2)
10107 skip = TRUE, relocate = TRUE;
10108 outrel.r_offset += (input_section->output_section->vma
10109 + input_section->output_offset);
10112 memset (&outrel, 0, sizeof outrel);
10114 && h->dynindx != -1
10115 && (!bfd_link_pic (info)
10116 || !SYMBOLIC_BIND (info, h)
10117 || !h->def_regular))
10118 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10123 /* This symbol is local, or marked to become local. */
10124 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
10125 if (globals->symbian_p)
10129 /* On Symbian OS, the data segment and text segement
10130 can be relocated independently. Therefore, we
10131 must indicate the segment to which this
10132 relocation is relative. The BPABI allows us to
10133 use any symbol in the right segment; we just use
10134 the section symbol as it is convenient. (We
10135 cannot use the symbol given by "h" directly as it
10136 will not appear in the dynamic symbol table.)
10138 Note that the dynamic linker ignores the section
10139 symbol value, so we don't subtract osec->vma
10140 from the emitted reloc addend. */
10142 osec = sym_sec->output_section;
10144 osec = input_section->output_section;
10145 symbol = elf_section_data (osec)->dynindx;
10148 struct elf_link_hash_table *htab = elf_hash_table (info);
10150 if ((osec->flags & SEC_READONLY) == 0
10151 && htab->data_index_section != NULL)
10152 osec = htab->data_index_section;
10154 osec = htab->text_index_section;
10155 symbol = elf_section_data (osec)->dynindx;
10157 BFD_ASSERT (symbol != 0);
10160 /* On SVR4-ish systems, the dynamic loader cannot
10161 relocate the text and data segments independently,
10162 so the symbol does not matter. */
10164 if (dynreloc_st_type == STT_GNU_IFUNC)
10165 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10166 to the .iplt entry. Instead, every non-call reference
10167 must use an R_ARM_IRELATIVE relocation to obtain the
10168 correct run-time address. */
10169 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10171 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10172 if (globals->use_rel)
10175 outrel.r_addend += dynreloc_value;
10178 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10180 /* If this reloc is against an external symbol, we do not want to
10181 fiddle with the addend. Otherwise, we need to include the symbol
10182 value so that it becomes an addend for the dynamic reloc. */
10184 return bfd_reloc_ok;
10186 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10187 contents, rel->r_offset,
10188 dynreloc_value, (bfd_vma) 0);
10190 else switch (r_type)
10193 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10195 case R_ARM_XPC25: /* Arm BLX instruction. */
10198 case R_ARM_PC24: /* Arm B/BL instruction. */
10201 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10203 if (r_type == R_ARM_XPC25)
10205 /* Check for Arm calling Arm function. */
10206 /* FIXME: Should we translate the instruction into a BL
10207 instruction instead ? */
10208 if (branch_type != ST_BRANCH_TO_THUMB)
10209 (*_bfd_error_handler)
10210 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
10212 h ? h->root.root.string : "(local)");
10214 else if (r_type == R_ARM_PC24)
10216 /* Check for Arm calling Thumb function. */
10217 if (branch_type == ST_BRANCH_TO_THUMB)
10219 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10220 output_bfd, input_section,
10221 hit_data, sym_sec, rel->r_offset,
10222 signed_addend, value,
10224 return bfd_reloc_ok;
10226 return bfd_reloc_dangerous;
10230 /* Check if a stub has to be inserted because the
10231 destination is too far or we are changing mode. */
10232 if ( r_type == R_ARM_CALL
10233 || r_type == R_ARM_JUMP24
10234 || r_type == R_ARM_PLT32)
10236 enum elf32_arm_stub_type stub_type = arm_stub_none;
10237 struct elf32_arm_link_hash_entry *hash;
10239 hash = (struct elf32_arm_link_hash_entry *) h;
10240 stub_type = arm_type_of_stub (info, input_section, rel,
10241 st_type, &branch_type,
10242 hash, value, sym_sec,
10243 input_bfd, sym_name);
10245 if (stub_type != arm_stub_none)
10247 /* The target is out of reach, so redirect the
10248 branch to the local stub for this function. */
10249 stub_entry = elf32_arm_get_stub_entry (input_section,
10254 if (stub_entry != NULL)
10255 value = (stub_entry->stub_offset
10256 + stub_entry->stub_sec->output_offset
10257 + stub_entry->stub_sec->output_section->vma);
10259 if (plt_offset != (bfd_vma) -1)
10260 *unresolved_reloc_p = FALSE;
10265 /* If the call goes through a PLT entry, make sure to
10266 check distance to the right destination address. */
10267 if (plt_offset != (bfd_vma) -1)
10269 value = (splt->output_section->vma
10270 + splt->output_offset
10272 *unresolved_reloc_p = FALSE;
10273 /* The PLT entry is in ARM mode, regardless of the
10274 target function. */
10275 branch_type = ST_BRANCH_TO_ARM;
10280 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10282 S is the address of the symbol in the relocation.
10283 P is address of the instruction being relocated.
10284 A is the addend (extracted from the instruction) in bytes.
10286 S is held in 'value'.
10287 P is the base address of the section containing the
10288 instruction plus the offset of the reloc into that
10290 (input_section->output_section->vma +
10291 input_section->output_offset +
10293 A is the addend, converted into bytes, ie:
10294 (signed_addend * 4)
10296 Note: None of these operations have knowledge of the pipeline
10297 size of the processor, thus it is up to the assembler to
10298 encode this information into the addend. */
10299 value -= (input_section->output_section->vma
10300 + input_section->output_offset);
10301 value -= rel->r_offset;
10302 if (globals->use_rel)
10303 value += (signed_addend << howto->size);
10305 /* RELA addends do not have to be adjusted by howto->size. */
10306 value += signed_addend;
10308 signed_addend = value;
10309 signed_addend >>= howto->rightshift;
10311 /* A branch to an undefined weak symbol is turned into a jump to
10312 the next instruction unless a PLT entry will be created.
10313 Do the same for local undefined symbols (but not for STN_UNDEF).
10314 The jump to the next instruction is optimized as a NOP depending
10315 on the architecture. */
10316 if (h ? (h->root.type == bfd_link_hash_undefweak
10317 && plt_offset == (bfd_vma) -1)
10318 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10320 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10322 if (arch_has_arm_nop (globals))
10323 value |= 0x0320f000;
10325 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10329 /* Perform a signed range check. */
10330 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
10331 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10332 return bfd_reloc_overflow;
10334 addend = (value & 2);
10336 value = (signed_addend & howto->dst_mask)
10337 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10339 if (r_type == R_ARM_CALL)
10341 /* Set the H bit in the BLX instruction. */
10342 if (branch_type == ST_BRANCH_TO_THUMB)
10345 value |= (1 << 24);
10347 value &= ~(bfd_vma)(1 << 24);
10350 /* Select the correct instruction (BL or BLX). */
10351 /* Only if we are not handling a BL to a stub. In this
10352 case, mode switching is performed by the stub. */
10353 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10354 value |= (1 << 28);
10355 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10357 value &= ~(bfd_vma)(1 << 28);
10358 value |= (1 << 24);
10367 if (branch_type == ST_BRANCH_TO_THUMB)
10371 case R_ARM_ABS32_NOI:
10377 if (branch_type == ST_BRANCH_TO_THUMB)
10379 value -= (input_section->output_section->vma
10380 + input_section->output_offset + rel->r_offset);
10383 case R_ARM_REL32_NOI:
10385 value -= (input_section->output_section->vma
10386 + input_section->output_offset + rel->r_offset);
10390 value -= (input_section->output_section->vma
10391 + input_section->output_offset + rel->r_offset);
10392 value += signed_addend;
10393 if (! h || h->root.type != bfd_link_hash_undefweak)
10395 /* Check for overflow. */
10396 if ((value ^ (value >> 1)) & (1 << 30))
10397 return bfd_reloc_overflow;
10399 value &= 0x7fffffff;
10400 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10401 if (branch_type == ST_BRANCH_TO_THUMB)
10406 bfd_put_32 (input_bfd, value, hit_data);
10407 return bfd_reloc_ok;
10410 /* PR 16202: Refectch the addend using the correct size. */
10411 if (globals->use_rel)
10412 addend = bfd_get_8 (input_bfd, hit_data);
10415 /* There is no way to tell whether the user intended to use a signed or
10416 unsigned addend. When checking for overflow we accept either,
10417 as specified by the AAELF. */
10418 if ((long) value > 0xff || (long) value < -0x80)
10419 return bfd_reloc_overflow;
10421 bfd_put_8 (input_bfd, value, hit_data);
10422 return bfd_reloc_ok;
10425 /* PR 16202: Refectch the addend using the correct size. */
10426 if (globals->use_rel)
10427 addend = bfd_get_16 (input_bfd, hit_data);
10430 /* See comment for R_ARM_ABS8. */
10431 if ((long) value > 0xffff || (long) value < -0x8000)
10432 return bfd_reloc_overflow;
10434 bfd_put_16 (input_bfd, value, hit_data);
10435 return bfd_reloc_ok;
10437 case R_ARM_THM_ABS5:
10438 /* Support ldr and str instructions for the thumb. */
10439 if (globals->use_rel)
10441 /* Need to refetch addend. */
10442 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10443 /* ??? Need to determine shift amount from operand size. */
10444 addend >>= howto->rightshift;
10448 /* ??? Isn't value unsigned? */
10449 if ((long) value > 0x1f || (long) value < -0x10)
10450 return bfd_reloc_overflow;
10452 /* ??? Value needs to be properly shifted into place first. */
10453 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10454 bfd_put_16 (input_bfd, value, hit_data);
10455 return bfd_reloc_ok;
10457 case R_ARM_THM_ALU_PREL_11_0:
10458 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10461 bfd_signed_vma relocation;
10463 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10464 | bfd_get_16 (input_bfd, hit_data + 2);
10466 if (globals->use_rel)
10468 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10469 | ((insn & (1 << 26)) >> 15);
10470 if (insn & 0xf00000)
10471 signed_addend = -signed_addend;
10474 relocation = value + signed_addend;
10475 relocation -= Pa (input_section->output_section->vma
10476 + input_section->output_offset
10479 value = relocation;
10481 if (value >= 0x1000)
10482 return bfd_reloc_overflow;
10484 insn = (insn & 0xfb0f8f00) | (value & 0xff)
10485 | ((value & 0x700) << 4)
10486 | ((value & 0x800) << 15);
10487 if (relocation < 0)
10490 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10491 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10493 return bfd_reloc_ok;
10496 case R_ARM_THM_PC8:
10497 /* PR 10073: This reloc is not generated by the GNU toolchain,
10498 but it is supported for compatibility with third party libraries
10499 generated by other compilers, specifically the ARM/IAR. */
10502 bfd_signed_vma relocation;
10504 insn = bfd_get_16 (input_bfd, hit_data);
10506 if (globals->use_rel)
10507 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
10509 relocation = value + addend;
10510 relocation -= Pa (input_section->output_section->vma
10511 + input_section->output_offset
10514 value = relocation;
10516 /* We do not check for overflow of this reloc. Although strictly
10517 speaking this is incorrect, it appears to be necessary in order
10518 to work with IAR generated relocs. Since GCC and GAS do not
10519 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10520 a problem for them. */
10523 insn = (insn & 0xff00) | (value >> 2);
10525 bfd_put_16 (input_bfd, insn, hit_data);
10527 return bfd_reloc_ok;
10530 case R_ARM_THM_PC12:
10531 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10534 bfd_signed_vma relocation;
10536 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10537 | bfd_get_16 (input_bfd, hit_data + 2);
10539 if (globals->use_rel)
10541 signed_addend = insn & 0xfff;
10542 if (!(insn & (1 << 23)))
10543 signed_addend = -signed_addend;
10546 relocation = value + signed_addend;
10547 relocation -= Pa (input_section->output_section->vma
10548 + input_section->output_offset
10551 value = relocation;
10553 if (value >= 0x1000)
10554 return bfd_reloc_overflow;
10556 insn = (insn & 0xff7ff000) | value;
10557 if (relocation >= 0)
10560 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10561 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10563 return bfd_reloc_ok;
10566 case R_ARM_THM_XPC22:
10567 case R_ARM_THM_CALL:
10568 case R_ARM_THM_JUMP24:
10569 /* Thumb BL (branch long instruction). */
10571 bfd_vma relocation;
10572 bfd_vma reloc_sign;
10573 bfd_boolean overflow = FALSE;
10574 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10575 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10576 bfd_signed_vma reloc_signed_max;
10577 bfd_signed_vma reloc_signed_min;
10579 bfd_signed_vma signed_check;
10581 const int thumb2 = using_thumb2 (globals);
10582 const int thumb2_bl = using_thumb2_bl (globals);
10584 /* A branch to an undefined weak symbol is turned into a jump to
10585 the next instruction unless a PLT entry will be created.
10586 The jump to the next instruction is optimized as a NOP.W for
10587 Thumb-2 enabled architectures. */
10588 if (h && h->root.type == bfd_link_hash_undefweak
10589 && plt_offset == (bfd_vma) -1)
10593 bfd_put_16 (input_bfd, 0xf3af, hit_data);
10594 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
10598 bfd_put_16 (input_bfd, 0xe000, hit_data);
10599 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
10601 return bfd_reloc_ok;
10604 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
10605 with Thumb-1) involving the J1 and J2 bits. */
10606 if (globals->use_rel)
10608 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
10609 bfd_vma upper = upper_insn & 0x3ff;
10610 bfd_vma lower = lower_insn & 0x7ff;
10611 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
10612 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
10613 bfd_vma i1 = j1 ^ s ? 0 : 1;
10614 bfd_vma i2 = j2 ^ s ? 0 : 1;
10616 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
10618 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
10620 signed_addend = addend;
10623 if (r_type == R_ARM_THM_XPC22)
10625 /* Check for Thumb to Thumb call. */
10626 /* FIXME: Should we translate the instruction into a BL
10627 instruction instead ? */
10628 if (branch_type == ST_BRANCH_TO_THUMB)
10629 (*_bfd_error_handler)
10630 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
10632 h ? h->root.root.string : "(local)");
10636 /* If it is not a call to Thumb, assume call to Arm.
10637 If it is a call relative to a section name, then it is not a
10638 function call at all, but rather a long jump. Calls through
10639 the PLT do not require stubs. */
10640 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
10642 if (globals->use_blx && r_type == R_ARM_THM_CALL)
10644 /* Convert BL to BLX. */
10645 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10647 else if (( r_type != R_ARM_THM_CALL)
10648 && (r_type != R_ARM_THM_JUMP24))
10650 if (elf32_thumb_to_arm_stub
10651 (info, sym_name, input_bfd, output_bfd, input_section,
10652 hit_data, sym_sec, rel->r_offset, signed_addend, value,
10654 return bfd_reloc_ok;
10656 return bfd_reloc_dangerous;
10659 else if (branch_type == ST_BRANCH_TO_THUMB
10660 && globals->use_blx
10661 && r_type == R_ARM_THM_CALL)
10663 /* Make sure this is a BL. */
10664 lower_insn |= 0x1800;
10668 enum elf32_arm_stub_type stub_type = arm_stub_none;
10669 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
10671 /* Check if a stub has to be inserted because the destination
10673 struct elf32_arm_stub_hash_entry *stub_entry;
10674 struct elf32_arm_link_hash_entry *hash;
10676 hash = (struct elf32_arm_link_hash_entry *) h;
10678 stub_type = arm_type_of_stub (info, input_section, rel,
10679 st_type, &branch_type,
10680 hash, value, sym_sec,
10681 input_bfd, sym_name);
10683 if (stub_type != arm_stub_none)
10685 /* The target is out of reach or we are changing modes, so
10686 redirect the branch to the local stub for this
10688 stub_entry = elf32_arm_get_stub_entry (input_section,
10692 if (stub_entry != NULL)
10694 value = (stub_entry->stub_offset
10695 + stub_entry->stub_sec->output_offset
10696 + stub_entry->stub_sec->output_section->vma);
10698 if (plt_offset != (bfd_vma) -1)
10699 *unresolved_reloc_p = FALSE;
10702 /* If this call becomes a call to Arm, force BLX. */
10703 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
10706 && !arm_stub_is_thumb (stub_entry->stub_type))
10707 || branch_type != ST_BRANCH_TO_THUMB)
10708 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10713 /* Handle calls via the PLT. */
10714 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
10716 value = (splt->output_section->vma
10717 + splt->output_offset
10720 if (globals->use_blx
10721 && r_type == R_ARM_THM_CALL
10722 && ! using_thumb_only (globals))
10724 /* If the Thumb BLX instruction is available, convert
10725 the BL to a BLX instruction to call the ARM-mode
10727 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10728 branch_type = ST_BRANCH_TO_ARM;
10732 if (! using_thumb_only (globals))
10733 /* Target the Thumb stub before the ARM PLT entry. */
10734 value -= PLT_THUMB_STUB_SIZE;
10735 branch_type = ST_BRANCH_TO_THUMB;
10737 *unresolved_reloc_p = FALSE;
10740 relocation = value + signed_addend;
10742 relocation -= (input_section->output_section->vma
10743 + input_section->output_offset
10746 check = relocation >> howto->rightshift;
10748 /* If this is a signed value, the rightshift just dropped
10749 leading 1 bits (assuming twos complement). */
10750 if ((bfd_signed_vma) relocation >= 0)
10751 signed_check = check;
10753 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
10755 /* Calculate the permissable maximum and minimum values for
10756 this relocation according to whether we're relocating for
10758 bitsize = howto->bitsize;
10761 reloc_signed_max = (1 << (bitsize - 1)) - 1;
10762 reloc_signed_min = ~reloc_signed_max;
10764 /* Assumes two's complement. */
10765 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10768 if ((lower_insn & 0x5000) == 0x4000)
10769 /* For a BLX instruction, make sure that the relocation is rounded up
10770 to a word boundary. This follows the semantics of the instruction
10771 which specifies that bit 1 of the target address will come from bit
10772 1 of the base address. */
10773 relocation = (relocation + 2) & ~ 3;
10775 /* Put RELOCATION back into the insn. Assumes two's complement.
10776 We use the Thumb-2 encoding, which is safe even if dealing with
10777 a Thumb-1 instruction by virtue of our overflow check above. */
10778 reloc_sign = (signed_check < 0) ? 1 : 0;
10779 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
10780 | ((relocation >> 12) & 0x3ff)
10781 | (reloc_sign << 10);
10782 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
10783 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
10784 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
10785 | ((relocation >> 1) & 0x7ff);
10787 /* Put the relocated value back in the object file: */
10788 bfd_put_16 (input_bfd, upper_insn, hit_data);
10789 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10791 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10795 case R_ARM_THM_JUMP19:
10796 /* Thumb32 conditional branch instruction. */
10798 bfd_vma relocation;
10799 bfd_boolean overflow = FALSE;
10800 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10801 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10802 bfd_signed_vma reloc_signed_max = 0xffffe;
10803 bfd_signed_vma reloc_signed_min = -0x100000;
10804 bfd_signed_vma signed_check;
10805 enum elf32_arm_stub_type stub_type = arm_stub_none;
10806 struct elf32_arm_stub_hash_entry *stub_entry;
10807 struct elf32_arm_link_hash_entry *hash;
10809 /* Need to refetch the addend, reconstruct the top three bits,
10810 and squish the two 11 bit pieces together. */
10811 if (globals->use_rel)
10813 bfd_vma S = (upper_insn & 0x0400) >> 10;
10814 bfd_vma upper = (upper_insn & 0x003f);
10815 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
10816 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
10817 bfd_vma lower = (lower_insn & 0x07ff);
10821 upper |= (!S) << 8;
10822 upper -= 0x0100; /* Sign extend. */
10824 addend = (upper << 12) | (lower << 1);
10825 signed_addend = addend;
10828 /* Handle calls via the PLT. */
10829 if (plt_offset != (bfd_vma) -1)
10831 value = (splt->output_section->vma
10832 + splt->output_offset
10834 /* Target the Thumb stub before the ARM PLT entry. */
10835 value -= PLT_THUMB_STUB_SIZE;
10836 *unresolved_reloc_p = FALSE;
10839 hash = (struct elf32_arm_link_hash_entry *)h;
10841 stub_type = arm_type_of_stub (info, input_section, rel,
10842 st_type, &branch_type,
10843 hash, value, sym_sec,
10844 input_bfd, sym_name);
10845 if (stub_type != arm_stub_none)
10847 stub_entry = elf32_arm_get_stub_entry (input_section,
10851 if (stub_entry != NULL)
10853 value = (stub_entry->stub_offset
10854 + stub_entry->stub_sec->output_offset
10855 + stub_entry->stub_sec->output_section->vma);
10859 relocation = value + signed_addend;
10860 relocation -= (input_section->output_section->vma
10861 + input_section->output_offset
10863 signed_check = (bfd_signed_vma) relocation;
10865 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10868 /* Put RELOCATION back into the insn. */
10870 bfd_vma S = (relocation & 0x00100000) >> 20;
10871 bfd_vma J2 = (relocation & 0x00080000) >> 19;
10872 bfd_vma J1 = (relocation & 0x00040000) >> 18;
10873 bfd_vma hi = (relocation & 0x0003f000) >> 12;
10874 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
10876 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
10877 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
10880 /* Put the relocated value back in the object file: */
10881 bfd_put_16 (input_bfd, upper_insn, hit_data);
10882 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10884 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10887 case R_ARM_THM_JUMP11:
10888 case R_ARM_THM_JUMP8:
10889 case R_ARM_THM_JUMP6:
10890 /* Thumb B (branch) instruction). */
10892 bfd_signed_vma relocation;
10893 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
10894 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
10895 bfd_signed_vma signed_check;
10897 /* CZB cannot jump backward. */
10898 if (r_type == R_ARM_THM_JUMP6)
10899 reloc_signed_min = 0;
10901 if (globals->use_rel)
10903 /* Need to refetch addend. */
10904 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10905 if (addend & ((howto->src_mask + 1) >> 1))
10907 signed_addend = -1;
10908 signed_addend &= ~ howto->src_mask;
10909 signed_addend |= addend;
10912 signed_addend = addend;
10913 /* The value in the insn has been right shifted. We need to
10914 undo this, so that we can perform the address calculation
10915 in terms of bytes. */
10916 signed_addend <<= howto->rightshift;
10918 relocation = value + signed_addend;
10920 relocation -= (input_section->output_section->vma
10921 + input_section->output_offset
10924 relocation >>= howto->rightshift;
10925 signed_check = relocation;
10927 if (r_type == R_ARM_THM_JUMP6)
10928 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
10930 relocation &= howto->dst_mask;
10931 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
10933 bfd_put_16 (input_bfd, relocation, hit_data);
10935 /* Assumes two's complement. */
10936 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10937 return bfd_reloc_overflow;
10939 return bfd_reloc_ok;
10942 case R_ARM_ALU_PCREL7_0:
10943 case R_ARM_ALU_PCREL15_8:
10944 case R_ARM_ALU_PCREL23_15:
10947 bfd_vma relocation;
10949 insn = bfd_get_32 (input_bfd, hit_data);
10950 if (globals->use_rel)
10952 /* Extract the addend. */
10953 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
10954 signed_addend = addend;
10956 relocation = value + signed_addend;
10958 relocation -= (input_section->output_section->vma
10959 + input_section->output_offset
10961 insn = (insn & ~0xfff)
10962 | ((howto->bitpos << 7) & 0xf00)
10963 | ((relocation >> howto->bitpos) & 0xff);
10964 bfd_put_32 (input_bfd, value, hit_data);
10966 return bfd_reloc_ok;
10968 case R_ARM_GNU_VTINHERIT:
10969 case R_ARM_GNU_VTENTRY:
10970 return bfd_reloc_ok;
10972 case R_ARM_GOTOFF32:
10973 /* Relocation is relative to the start of the
10974 global offset table. */
10976 BFD_ASSERT (sgot != NULL);
10978 return bfd_reloc_notsupported;
10980 /* If we are addressing a Thumb function, we need to adjust the
10981 address by one, so that attempts to call the function pointer will
10982 correctly interpret it as Thumb code. */
10983 if (branch_type == ST_BRANCH_TO_THUMB)
10986 /* Note that sgot->output_offset is not involved in this
10987 calculation. We always want the start of .got. If we
10988 define _GLOBAL_OFFSET_TABLE in a different way, as is
10989 permitted by the ABI, we might have to change this
10991 value -= sgot->output_section->vma;
10992 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10993 contents, rel->r_offset, value,
10997 /* Use global offset table as symbol value. */
10998 BFD_ASSERT (sgot != NULL);
11001 return bfd_reloc_notsupported;
11003 *unresolved_reloc_p = FALSE;
11004 value = sgot->output_section->vma;
11005 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11006 contents, rel->r_offset, value,
11010 case R_ARM_GOT_PREL:
11011 /* Relocation is to the entry for this symbol in the
11012 global offset table. */
11014 return bfd_reloc_notsupported;
11016 if (dynreloc_st_type == STT_GNU_IFUNC
11017 && plt_offset != (bfd_vma) -1
11018 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11020 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11021 symbol, and the relocation resolves directly to the runtime
11022 target rather than to the .iplt entry. This means that any
11023 .got entry would be the same value as the .igot.plt entry,
11024 so there's no point creating both. */
11025 sgot = globals->root.igotplt;
11026 value = sgot->output_offset + gotplt_offset;
11028 else if (h != NULL)
11032 off = h->got.offset;
11033 BFD_ASSERT (off != (bfd_vma) -1);
11034 if ((off & 1) != 0)
11036 /* We have already processsed one GOT relocation against
11039 if (globals->root.dynamic_sections_created
11040 && !SYMBOL_REFERENCES_LOCAL (info, h))
11041 *unresolved_reloc_p = FALSE;
11045 Elf_Internal_Rela outrel;
11047 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
11049 /* If the symbol doesn't resolve locally in a static
11050 object, we have an undefined reference. If the
11051 symbol doesn't resolve locally in a dynamic object,
11052 it should be resolved by the dynamic linker. */
11053 if (globals->root.dynamic_sections_created)
11055 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11056 *unresolved_reloc_p = FALSE;
11060 outrel.r_addend = 0;
11064 if (dynreloc_st_type == STT_GNU_IFUNC)
11065 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11066 else if (bfd_link_pic (info) &&
11067 (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11068 || h->root.type != bfd_link_hash_undefweak))
11069 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11072 outrel.r_addend = dynreloc_value;
11075 /* The GOT entry is initialized to zero by default.
11076 See if we should install a different value. */
11077 if (outrel.r_addend != 0
11078 && (outrel.r_info == 0 || globals->use_rel))
11080 bfd_put_32 (output_bfd, outrel.r_addend,
11081 sgot->contents + off);
11082 outrel.r_addend = 0;
11085 if (outrel.r_info != 0)
11087 outrel.r_offset = (sgot->output_section->vma
11088 + sgot->output_offset
11090 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11092 h->got.offset |= 1;
11094 value = sgot->output_offset + off;
11100 BFD_ASSERT (local_got_offsets != NULL &&
11101 local_got_offsets[r_symndx] != (bfd_vma) -1);
11103 off = local_got_offsets[r_symndx];
11105 /* The offset must always be a multiple of 4. We use the
11106 least significant bit to record whether we have already
11107 generated the necessary reloc. */
11108 if ((off & 1) != 0)
11112 if (globals->use_rel)
11113 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11115 if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC)
11117 Elf_Internal_Rela outrel;
11119 outrel.r_addend = addend + dynreloc_value;
11120 outrel.r_offset = (sgot->output_section->vma
11121 + sgot->output_offset
11123 if (dynreloc_st_type == STT_GNU_IFUNC)
11124 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11126 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11127 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11130 local_got_offsets[r_symndx] |= 1;
11133 value = sgot->output_offset + off;
11135 if (r_type != R_ARM_GOT32)
11136 value += sgot->output_section->vma;
11138 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11139 contents, rel->r_offset, value,
11142 case R_ARM_TLS_LDO32:
11143 value = value - dtpoff_base (info);
11145 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11146 contents, rel->r_offset, value,
11149 case R_ARM_TLS_LDM32:
11156 off = globals->tls_ldm_got.offset;
11158 if ((off & 1) != 0)
11162 /* If we don't know the module number, create a relocation
11164 if (bfd_link_pic (info))
11166 Elf_Internal_Rela outrel;
11168 if (srelgot == NULL)
11171 outrel.r_addend = 0;
11172 outrel.r_offset = (sgot->output_section->vma
11173 + sgot->output_offset + off);
11174 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11176 if (globals->use_rel)
11177 bfd_put_32 (output_bfd, outrel.r_addend,
11178 sgot->contents + off);
11180 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11183 bfd_put_32 (output_bfd, 1, sgot->contents + off);
11185 globals->tls_ldm_got.offset |= 1;
11188 value = sgot->output_section->vma + sgot->output_offset + off
11189 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
11191 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11192 contents, rel->r_offset, value,
11196 case R_ARM_TLS_CALL:
11197 case R_ARM_THM_TLS_CALL:
11198 case R_ARM_TLS_GD32:
11199 case R_ARM_TLS_IE32:
11200 case R_ARM_TLS_GOTDESC:
11201 case R_ARM_TLS_DESCSEQ:
11202 case R_ARM_THM_TLS_DESCSEQ:
11204 bfd_vma off, offplt;
11208 BFD_ASSERT (sgot != NULL);
11213 dyn = globals->root.dynamic_sections_created;
11214 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11215 bfd_link_pic (info),
11217 && (!bfd_link_pic (info)
11218 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11220 *unresolved_reloc_p = FALSE;
11223 off = h->got.offset;
11224 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11225 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11229 BFD_ASSERT (local_got_offsets != NULL);
11230 off = local_got_offsets[r_symndx];
11231 offplt = local_tlsdesc_gotents[r_symndx];
11232 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11235 /* Linker relaxations happens from one of the
11236 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11237 if (ELF32_R_TYPE(rel->r_info) != r_type)
11238 tls_type = GOT_TLS_IE;
11240 BFD_ASSERT (tls_type != GOT_UNKNOWN);
11242 if ((off & 1) != 0)
11246 bfd_boolean need_relocs = FALSE;
11247 Elf_Internal_Rela outrel;
11250 /* The GOT entries have not been initialized yet. Do it
11251 now, and emit any relocations. If both an IE GOT and a
11252 GD GOT are necessary, we emit the GD first. */
11254 if ((bfd_link_pic (info) || indx != 0)
11256 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11257 || h->root.type != bfd_link_hash_undefweak))
11259 need_relocs = TRUE;
11260 BFD_ASSERT (srelgot != NULL);
11263 if (tls_type & GOT_TLS_GDESC)
11267 /* We should have relaxed, unless this is an undefined
11269 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11270 || bfd_link_pic (info));
11271 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11272 <= globals->root.sgotplt->size);
11274 outrel.r_addend = 0;
11275 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11276 + globals->root.sgotplt->output_offset
11278 + globals->sgotplt_jump_table_size);
11280 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11281 sreloc = globals->root.srelplt;
11282 loc = sreloc->contents;
11283 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11284 BFD_ASSERT (loc + RELOC_SIZE (globals)
11285 <= sreloc->contents + sreloc->size);
11287 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11289 /* For globals, the first word in the relocation gets
11290 the relocation index and the top bit set, or zero,
11291 if we're binding now. For locals, it gets the
11292 symbol's offset in the tls section. */
11293 bfd_put_32 (output_bfd,
11294 !h ? value - elf_hash_table (info)->tls_sec->vma
11295 : info->flags & DF_BIND_NOW ? 0
11296 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11297 globals->root.sgotplt->contents + offplt
11298 + globals->sgotplt_jump_table_size);
11300 /* Second word in the relocation is always zero. */
11301 bfd_put_32 (output_bfd, 0,
11302 globals->root.sgotplt->contents + offplt
11303 + globals->sgotplt_jump_table_size + 4);
11305 if (tls_type & GOT_TLS_GD)
11309 outrel.r_addend = 0;
11310 outrel.r_offset = (sgot->output_section->vma
11311 + sgot->output_offset
11313 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11315 if (globals->use_rel)
11316 bfd_put_32 (output_bfd, outrel.r_addend,
11317 sgot->contents + cur_off);
11319 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11322 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11323 sgot->contents + cur_off + 4);
11326 outrel.r_addend = 0;
11327 outrel.r_info = ELF32_R_INFO (indx,
11328 R_ARM_TLS_DTPOFF32);
11329 outrel.r_offset += 4;
11331 if (globals->use_rel)
11332 bfd_put_32 (output_bfd, outrel.r_addend,
11333 sgot->contents + cur_off + 4);
11335 elf32_arm_add_dynreloc (output_bfd, info,
11341 /* If we are not emitting relocations for a
11342 general dynamic reference, then we must be in a
11343 static link or an executable link with the
11344 symbol binding locally. Mark it as belonging
11345 to module 1, the executable. */
11346 bfd_put_32 (output_bfd, 1,
11347 sgot->contents + cur_off);
11348 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11349 sgot->contents + cur_off + 4);
11355 if (tls_type & GOT_TLS_IE)
11360 outrel.r_addend = value - dtpoff_base (info);
11362 outrel.r_addend = 0;
11363 outrel.r_offset = (sgot->output_section->vma
11364 + sgot->output_offset
11366 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11368 if (globals->use_rel)
11369 bfd_put_32 (output_bfd, outrel.r_addend,
11370 sgot->contents + cur_off);
11372 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11375 bfd_put_32 (output_bfd, tpoff (info, value),
11376 sgot->contents + cur_off);
11381 h->got.offset |= 1;
11383 local_got_offsets[r_symndx] |= 1;
11386 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
11388 else if (tls_type & GOT_TLS_GDESC)
11391 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11392 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11394 bfd_signed_vma offset;
11395 /* TLS stubs are arm mode. The original symbol is a
11396 data object, so branch_type is bogus. */
11397 branch_type = ST_BRANCH_TO_ARM;
11398 enum elf32_arm_stub_type stub_type
11399 = arm_type_of_stub (info, input_section, rel,
11400 st_type, &branch_type,
11401 (struct elf32_arm_link_hash_entry *)h,
11402 globals->tls_trampoline, globals->root.splt,
11403 input_bfd, sym_name);
11405 if (stub_type != arm_stub_none)
11407 struct elf32_arm_stub_hash_entry *stub_entry
11408 = elf32_arm_get_stub_entry
11409 (input_section, globals->root.splt, 0, rel,
11410 globals, stub_type);
11411 offset = (stub_entry->stub_offset
11412 + stub_entry->stub_sec->output_offset
11413 + stub_entry->stub_sec->output_section->vma);
11416 offset = (globals->root.splt->output_section->vma
11417 + globals->root.splt->output_offset
11418 + globals->tls_trampoline);
11420 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11422 unsigned long inst;
11424 offset -= (input_section->output_section->vma
11425 + input_section->output_offset
11426 + rel->r_offset + 8);
11428 inst = offset >> 2;
11429 inst &= 0x00ffffff;
11430 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11434 /* Thumb blx encodes the offset in a complicated
11436 unsigned upper_insn, lower_insn;
11439 offset -= (input_section->output_section->vma
11440 + input_section->output_offset
11441 + rel->r_offset + 4);
11443 if (stub_type != arm_stub_none
11444 && arm_stub_is_thumb (stub_type))
11446 lower_insn = 0xd000;
11450 lower_insn = 0xc000;
11451 /* Round up the offset to a word boundary. */
11452 offset = (offset + 2) & ~2;
11456 upper_insn = (0xf000
11457 | ((offset >> 12) & 0x3ff)
11459 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
11460 | (((!((offset >> 22) & 1)) ^ neg) << 11)
11461 | ((offset >> 1) & 0x7ff);
11462 bfd_put_16 (input_bfd, upper_insn, hit_data);
11463 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11464 return bfd_reloc_ok;
11467 /* These relocations needs special care, as besides the fact
11468 they point somewhere in .gotplt, the addend must be
11469 adjusted accordingly depending on the type of instruction
11471 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11473 unsigned long data, insn;
11476 data = bfd_get_32 (input_bfd, hit_data);
11482 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11483 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11484 insn = (insn << 16)
11485 | bfd_get_16 (input_bfd,
11486 contents + rel->r_offset - data + 2);
11487 if ((insn & 0xf800c000) == 0xf000c000)
11490 else if ((insn & 0xffffff00) == 0x4400)
11495 (*_bfd_error_handler)
11496 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
11497 input_bfd, input_section,
11498 (unsigned long)rel->r_offset, insn);
11499 return bfd_reloc_notsupported;
11504 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11506 switch (insn >> 24)
11508 case 0xeb: /* bl */
11509 case 0xfa: /* blx */
11513 case 0xe0: /* add */
11518 (*_bfd_error_handler)
11519 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
11520 input_bfd, input_section,
11521 (unsigned long)rel->r_offset, insn);
11522 return bfd_reloc_notsupported;
11526 value += ((globals->root.sgotplt->output_section->vma
11527 + globals->root.sgotplt->output_offset + off)
11528 - (input_section->output_section->vma
11529 + input_section->output_offset
11531 + globals->sgotplt_jump_table_size);
11534 value = ((globals->root.sgot->output_section->vma
11535 + globals->root.sgot->output_offset + off)
11536 - (input_section->output_section->vma
11537 + input_section->output_offset + rel->r_offset));
11539 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11540 contents, rel->r_offset, value,
11544 case R_ARM_TLS_LE32:
11545 if (bfd_link_dll (info))
11547 (*_bfd_error_handler)
11548 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
11549 input_bfd, input_section,
11550 (long) rel->r_offset, howto->name);
11551 return bfd_reloc_notsupported;
11554 value = tpoff (info, value);
11556 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11557 contents, rel->r_offset, value,
11561 if (globals->fix_v4bx)
11563 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11565 /* Ensure that we have a BX instruction. */
11566 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
11568 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
11570 /* Branch to veneer. */
11572 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
11573 glue_addr -= input_section->output_section->vma
11574 + input_section->output_offset
11575 + rel->r_offset + 8;
11576 insn = (insn & 0xf0000000) | 0x0a000000
11577 | ((glue_addr >> 2) & 0x00ffffff);
11581 /* Preserve Rm (lowest four bits) and the condition code
11582 (highest four bits). Other bits encode MOV PC,Rm. */
11583 insn = (insn & 0xf000000f) | 0x01a0f000;
11586 bfd_put_32 (input_bfd, insn, hit_data);
11588 return bfd_reloc_ok;
11590 case R_ARM_MOVW_ABS_NC:
11591 case R_ARM_MOVT_ABS:
11592 case R_ARM_MOVW_PREL_NC:
11593 case R_ARM_MOVT_PREL:
11594 /* Until we properly support segment-base-relative addressing then
11595 we assume the segment base to be zero, as for the group relocations.
11596 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
11597 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
11598 case R_ARM_MOVW_BREL_NC:
11599 case R_ARM_MOVW_BREL:
11600 case R_ARM_MOVT_BREL:
11602 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11604 if (globals->use_rel)
11606 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
11607 signed_addend = (addend ^ 0x8000) - 0x8000;
11610 value += signed_addend;
11612 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
11613 value -= (input_section->output_section->vma
11614 + input_section->output_offset + rel->r_offset);
11616 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
11617 return bfd_reloc_overflow;
11619 if (branch_type == ST_BRANCH_TO_THUMB)
11622 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
11623 || r_type == R_ARM_MOVT_BREL)
11626 insn &= 0xfff0f000;
11627 insn |= value & 0xfff;
11628 insn |= (value & 0xf000) << 4;
11629 bfd_put_32 (input_bfd, insn, hit_data);
11631 return bfd_reloc_ok;
11633 case R_ARM_THM_MOVW_ABS_NC:
11634 case R_ARM_THM_MOVT_ABS:
11635 case R_ARM_THM_MOVW_PREL_NC:
11636 case R_ARM_THM_MOVT_PREL:
11637 /* Until we properly support segment-base-relative addressing then
11638 we assume the segment base to be zero, as for the above relocations.
11639 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
11640 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
11641 as R_ARM_THM_MOVT_ABS. */
11642 case R_ARM_THM_MOVW_BREL_NC:
11643 case R_ARM_THM_MOVW_BREL:
11644 case R_ARM_THM_MOVT_BREL:
11648 insn = bfd_get_16 (input_bfd, hit_data) << 16;
11649 insn |= bfd_get_16 (input_bfd, hit_data + 2);
11651 if (globals->use_rel)
11653 addend = ((insn >> 4) & 0xf000)
11654 | ((insn >> 15) & 0x0800)
11655 | ((insn >> 4) & 0x0700)
11657 signed_addend = (addend ^ 0x8000) - 0x8000;
11660 value += signed_addend;
11662 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
11663 value -= (input_section->output_section->vma
11664 + input_section->output_offset + rel->r_offset);
11666 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
11667 return bfd_reloc_overflow;
11669 if (branch_type == ST_BRANCH_TO_THUMB)
11672 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
11673 || r_type == R_ARM_THM_MOVT_BREL)
11676 insn &= 0xfbf08f00;
11677 insn |= (value & 0xf000) << 4;
11678 insn |= (value & 0x0800) << 15;
11679 insn |= (value & 0x0700) << 4;
11680 insn |= (value & 0x00ff);
11682 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11683 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11685 return bfd_reloc_ok;
11687 case R_ARM_ALU_PC_G0_NC:
11688 case R_ARM_ALU_PC_G1_NC:
11689 case R_ARM_ALU_PC_G0:
11690 case R_ARM_ALU_PC_G1:
11691 case R_ARM_ALU_PC_G2:
11692 case R_ARM_ALU_SB_G0_NC:
11693 case R_ARM_ALU_SB_G1_NC:
11694 case R_ARM_ALU_SB_G0:
11695 case R_ARM_ALU_SB_G1:
11696 case R_ARM_ALU_SB_G2:
11698 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11699 bfd_vma pc = input_section->output_section->vma
11700 + input_section->output_offset + rel->r_offset;
11701 /* sb is the origin of the *segment* containing the symbol. */
11702 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11705 bfd_signed_vma signed_value;
11708 /* Determine which group of bits to select. */
11711 case R_ARM_ALU_PC_G0_NC:
11712 case R_ARM_ALU_PC_G0:
11713 case R_ARM_ALU_SB_G0_NC:
11714 case R_ARM_ALU_SB_G0:
11718 case R_ARM_ALU_PC_G1_NC:
11719 case R_ARM_ALU_PC_G1:
11720 case R_ARM_ALU_SB_G1_NC:
11721 case R_ARM_ALU_SB_G1:
11725 case R_ARM_ALU_PC_G2:
11726 case R_ARM_ALU_SB_G2:
11734 /* If REL, extract the addend from the insn. If RELA, it will
11735 have already been fetched for us. */
11736 if (globals->use_rel)
11739 bfd_vma constant = insn & 0xff;
11740 bfd_vma rotation = (insn & 0xf00) >> 8;
11743 signed_addend = constant;
11746 /* Compensate for the fact that in the instruction, the
11747 rotation is stored in multiples of 2 bits. */
11750 /* Rotate "constant" right by "rotation" bits. */
11751 signed_addend = (constant >> rotation) |
11752 (constant << (8 * sizeof (bfd_vma) - rotation));
11755 /* Determine if the instruction is an ADD or a SUB.
11756 (For REL, this determines the sign of the addend.) */
11757 negative = identify_add_or_sub (insn);
11760 (*_bfd_error_handler)
11761 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
11762 input_bfd, input_section,
11763 (long) rel->r_offset, howto->name);
11764 return bfd_reloc_overflow;
11767 signed_addend *= negative;
11770 /* Compute the value (X) to go in the place. */
11771 if (r_type == R_ARM_ALU_PC_G0_NC
11772 || r_type == R_ARM_ALU_PC_G1_NC
11773 || r_type == R_ARM_ALU_PC_G0
11774 || r_type == R_ARM_ALU_PC_G1
11775 || r_type == R_ARM_ALU_PC_G2)
11777 signed_value = value - pc + signed_addend;
11779 /* Section base relative. */
11780 signed_value = value - sb + signed_addend;
11782 /* If the target symbol is a Thumb function, then set the
11783 Thumb bit in the address. */
11784 if (branch_type == ST_BRANCH_TO_THUMB)
11787 /* Calculate the value of the relevant G_n, in encoded
11788 constant-with-rotation format. */
11789 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11792 /* Check for overflow if required. */
11793 if ((r_type == R_ARM_ALU_PC_G0
11794 || r_type == R_ARM_ALU_PC_G1
11795 || r_type == R_ARM_ALU_PC_G2
11796 || r_type == R_ARM_ALU_SB_G0
11797 || r_type == R_ARM_ALU_SB_G1
11798 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
11800 (*_bfd_error_handler)
11801 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11802 input_bfd, input_section,
11803 (long) rel->r_offset, signed_value < 0 ? - signed_value : signed_value,
11805 return bfd_reloc_overflow;
11808 /* Mask out the value and the ADD/SUB part of the opcode; take care
11809 not to destroy the S bit. */
11810 insn &= 0xff1ff000;
11812 /* Set the opcode according to whether the value to go in the
11813 place is negative. */
11814 if (signed_value < 0)
11819 /* Encode the offset. */
11822 bfd_put_32 (input_bfd, insn, hit_data);
11824 return bfd_reloc_ok;
11826 case R_ARM_LDR_PC_G0:
11827 case R_ARM_LDR_PC_G1:
11828 case R_ARM_LDR_PC_G2:
11829 case R_ARM_LDR_SB_G0:
11830 case R_ARM_LDR_SB_G1:
11831 case R_ARM_LDR_SB_G2:
11833 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11834 bfd_vma pc = input_section->output_section->vma
11835 + input_section->output_offset + rel->r_offset;
11836 /* sb is the origin of the *segment* containing the symbol. */
11837 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11839 bfd_signed_vma signed_value;
11842 /* Determine which groups of bits to calculate. */
11845 case R_ARM_LDR_PC_G0:
11846 case R_ARM_LDR_SB_G0:
11850 case R_ARM_LDR_PC_G1:
11851 case R_ARM_LDR_SB_G1:
11855 case R_ARM_LDR_PC_G2:
11856 case R_ARM_LDR_SB_G2:
11864 /* If REL, extract the addend from the insn. If RELA, it will
11865 have already been fetched for us. */
11866 if (globals->use_rel)
11868 int negative = (insn & (1 << 23)) ? 1 : -1;
11869 signed_addend = negative * (insn & 0xfff);
11872 /* Compute the value (X) to go in the place. */
11873 if (r_type == R_ARM_LDR_PC_G0
11874 || r_type == R_ARM_LDR_PC_G1
11875 || r_type == R_ARM_LDR_PC_G2)
11877 signed_value = value - pc + signed_addend;
11879 /* Section base relative. */
11880 signed_value = value - sb + signed_addend;
11882 /* Calculate the value of the relevant G_{n-1} to obtain
11883 the residual at that stage. */
11884 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11885 group - 1, &residual);
11887 /* Check for overflow. */
11888 if (residual >= 0x1000)
11890 (*_bfd_error_handler)
11891 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11892 input_bfd, input_section,
11893 (long) rel->r_offset, labs (signed_value), howto->name);
11894 return bfd_reloc_overflow;
11897 /* Mask out the value and U bit. */
11898 insn &= 0xff7ff000;
11900 /* Set the U bit if the value to go in the place is non-negative. */
11901 if (signed_value >= 0)
11904 /* Encode the offset. */
11907 bfd_put_32 (input_bfd, insn, hit_data);
11909 return bfd_reloc_ok;
11911 case R_ARM_LDRS_PC_G0:
11912 case R_ARM_LDRS_PC_G1:
11913 case R_ARM_LDRS_PC_G2:
11914 case R_ARM_LDRS_SB_G0:
11915 case R_ARM_LDRS_SB_G1:
11916 case R_ARM_LDRS_SB_G2:
11918 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11919 bfd_vma pc = input_section->output_section->vma
11920 + input_section->output_offset + rel->r_offset;
11921 /* sb is the origin of the *segment* containing the symbol. */
11922 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11924 bfd_signed_vma signed_value;
11927 /* Determine which groups of bits to calculate. */
11930 case R_ARM_LDRS_PC_G0:
11931 case R_ARM_LDRS_SB_G0:
11935 case R_ARM_LDRS_PC_G1:
11936 case R_ARM_LDRS_SB_G1:
11940 case R_ARM_LDRS_PC_G2:
11941 case R_ARM_LDRS_SB_G2:
11949 /* If REL, extract the addend from the insn. If RELA, it will
11950 have already been fetched for us. */
11951 if (globals->use_rel)
11953 int negative = (insn & (1 << 23)) ? 1 : -1;
11954 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
11957 /* Compute the value (X) to go in the place. */
11958 if (r_type == R_ARM_LDRS_PC_G0
11959 || r_type == R_ARM_LDRS_PC_G1
11960 || r_type == R_ARM_LDRS_PC_G2)
11962 signed_value = value - pc + signed_addend;
11964 /* Section base relative. */
11965 signed_value = value - sb + signed_addend;
11967 /* Calculate the value of the relevant G_{n-1} to obtain
11968 the residual at that stage. */
11969 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11970 group - 1, &residual);
11972 /* Check for overflow. */
11973 if (residual >= 0x100)
11975 (*_bfd_error_handler)
11976 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11977 input_bfd, input_section,
11978 (long) rel->r_offset, labs (signed_value), howto->name);
11979 return bfd_reloc_overflow;
11982 /* Mask out the value and U bit. */
11983 insn &= 0xff7ff0f0;
11985 /* Set the U bit if the value to go in the place is non-negative. */
11986 if (signed_value >= 0)
11989 /* Encode the offset. */
11990 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
11992 bfd_put_32 (input_bfd, insn, hit_data);
11994 return bfd_reloc_ok;
11996 case R_ARM_LDC_PC_G0:
11997 case R_ARM_LDC_PC_G1:
11998 case R_ARM_LDC_PC_G2:
11999 case R_ARM_LDC_SB_G0:
12000 case R_ARM_LDC_SB_G1:
12001 case R_ARM_LDC_SB_G2:
12003 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12004 bfd_vma pc = input_section->output_section->vma
12005 + input_section->output_offset + rel->r_offset;
12006 /* sb is the origin of the *segment* containing the symbol. */
12007 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12009 bfd_signed_vma signed_value;
12012 /* Determine which groups of bits to calculate. */
12015 case R_ARM_LDC_PC_G0:
12016 case R_ARM_LDC_SB_G0:
12020 case R_ARM_LDC_PC_G1:
12021 case R_ARM_LDC_SB_G1:
12025 case R_ARM_LDC_PC_G2:
12026 case R_ARM_LDC_SB_G2:
12034 /* If REL, extract the addend from the insn. If RELA, it will
12035 have already been fetched for us. */
12036 if (globals->use_rel)
12038 int negative = (insn & (1 << 23)) ? 1 : -1;
12039 signed_addend = negative * ((insn & 0xff) << 2);
12042 /* Compute the value (X) to go in the place. */
12043 if (r_type == R_ARM_LDC_PC_G0
12044 || r_type == R_ARM_LDC_PC_G1
12045 || r_type == R_ARM_LDC_PC_G2)
12047 signed_value = value - pc + signed_addend;
12049 /* Section base relative. */
12050 signed_value = value - sb + signed_addend;
12052 /* Calculate the value of the relevant G_{n-1} to obtain
12053 the residual at that stage. */
12054 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12055 group - 1, &residual);
12057 /* Check for overflow. (The absolute value to go in the place must be
12058 divisible by four and, after having been divided by four, must
12059 fit in eight bits.) */
12060 if ((residual & 0x3) != 0 || residual >= 0x400)
12062 (*_bfd_error_handler)
12063 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
12064 input_bfd, input_section,
12065 (long) rel->r_offset, labs (signed_value), howto->name);
12066 return bfd_reloc_overflow;
12069 /* Mask out the value and U bit. */
12070 insn &= 0xff7fff00;
12072 /* Set the U bit if the value to go in the place is non-negative. */
12073 if (signed_value >= 0)
12076 /* Encode the offset. */
12077 insn |= residual >> 2;
12079 bfd_put_32 (input_bfd, insn, hit_data);
12081 return bfd_reloc_ok;
12083 case R_ARM_THM_ALU_ABS_G0_NC:
12084 case R_ARM_THM_ALU_ABS_G1_NC:
12085 case R_ARM_THM_ALU_ABS_G2_NC:
12086 case R_ARM_THM_ALU_ABS_G3_NC:
12088 const int shift_array[4] = {0, 8, 16, 24};
12089 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12090 bfd_vma addr = value;
12091 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12093 /* Compute address. */
12094 if (globals->use_rel)
12095 signed_addend = insn & 0xff;
12096 addr += signed_addend;
12097 if (branch_type == ST_BRANCH_TO_THUMB)
12099 /* Clean imm8 insn. */
12101 /* And update with correct part of address. */
12102 insn |= (addr >> shift) & 0xff;
12104 bfd_put_16 (input_bfd, insn, hit_data);
12107 *unresolved_reloc_p = FALSE;
12108 return bfd_reloc_ok;
12111 return bfd_reloc_notsupported;
12115 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
12117 arm_add_to_rel (bfd * abfd,
12118 bfd_byte * address,
12119 reloc_howto_type * howto,
12120 bfd_signed_vma increment)
12122 bfd_signed_vma addend;
12124 if (howto->type == R_ARM_THM_CALL
12125 || howto->type == R_ARM_THM_JUMP24)
12127 int upper_insn, lower_insn;
12130 upper_insn = bfd_get_16 (abfd, address);
12131 lower_insn = bfd_get_16 (abfd, address + 2);
12132 upper = upper_insn & 0x7ff;
12133 lower = lower_insn & 0x7ff;
12135 addend = (upper << 12) | (lower << 1);
12136 addend += increment;
12139 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
12140 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
12142 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
12143 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
12149 contents = bfd_get_32 (abfd, address);
12151 /* Get the (signed) value from the instruction. */
12152 addend = contents & howto->src_mask;
12153 if (addend & ((howto->src_mask + 1) >> 1))
12155 bfd_signed_vma mask;
12158 mask &= ~ howto->src_mask;
12162 /* Add in the increment, (which is a byte value). */
12163 switch (howto->type)
12166 addend += increment;
12173 addend <<= howto->size;
12174 addend += increment;
12176 /* Should we check for overflow here ? */
12178 /* Drop any undesired bits. */
12179 addend >>= howto->rightshift;
12183 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
12185 bfd_put_32 (abfd, contents, address);
12189 #define IS_ARM_TLS_RELOC(R_TYPE) \
12190 ((R_TYPE) == R_ARM_TLS_GD32 \
12191 || (R_TYPE) == R_ARM_TLS_LDO32 \
12192 || (R_TYPE) == R_ARM_TLS_LDM32 \
12193 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
12194 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
12195 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
12196 || (R_TYPE) == R_ARM_TLS_LE32 \
12197 || (R_TYPE) == R_ARM_TLS_IE32 \
12198 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
12200 /* Specific set of relocations for the gnu tls dialect. */
12201 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
12202 ((R_TYPE) == R_ARM_TLS_GOTDESC \
12203 || (R_TYPE) == R_ARM_TLS_CALL \
12204 || (R_TYPE) == R_ARM_THM_TLS_CALL \
12205 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
12206 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
12208 /* Relocate an ARM ELF section. */
12211 elf32_arm_relocate_section (bfd * output_bfd,
12212 struct bfd_link_info * info,
12214 asection * input_section,
12215 bfd_byte * contents,
12216 Elf_Internal_Rela * relocs,
12217 Elf_Internal_Sym * local_syms,
12218 asection ** local_sections)
12220 Elf_Internal_Shdr *symtab_hdr;
12221 struct elf_link_hash_entry **sym_hashes;
12222 Elf_Internal_Rela *rel;
12223 Elf_Internal_Rela *relend;
12225 struct elf32_arm_link_hash_table * globals;
12227 globals = elf32_arm_hash_table (info);
12228 if (globals == NULL)
12231 symtab_hdr = & elf_symtab_hdr (input_bfd);
12232 sym_hashes = elf_sym_hashes (input_bfd);
12235 relend = relocs + input_section->reloc_count;
12236 for (; rel < relend; rel++)
12239 reloc_howto_type * howto;
12240 unsigned long r_symndx;
12241 Elf_Internal_Sym * sym;
12243 struct elf_link_hash_entry * h;
12244 bfd_vma relocation;
12245 bfd_reloc_status_type r;
12248 bfd_boolean unresolved_reloc = FALSE;
12249 char *error_message = NULL;
12251 r_symndx = ELF32_R_SYM (rel->r_info);
12252 r_type = ELF32_R_TYPE (rel->r_info);
12253 r_type = arm_real_reloc_type (globals, r_type);
12255 if ( r_type == R_ARM_GNU_VTENTRY
12256 || r_type == R_ARM_GNU_VTINHERIT)
12259 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
12260 howto = bfd_reloc.howto;
12266 if (r_symndx < symtab_hdr->sh_info)
12268 sym = local_syms + r_symndx;
12269 sym_type = ELF32_ST_TYPE (sym->st_info);
12270 sec = local_sections[r_symndx];
12272 /* An object file might have a reference to a local
12273 undefined symbol. This is a daft object file, but we
12274 should at least do something about it. V4BX & NONE
12275 relocations do not use the symbol and are explicitly
12276 allowed to use the undefined symbol, so allow those.
12277 Likewise for relocations against STN_UNDEF. */
12278 if (r_type != R_ARM_V4BX
12279 && r_type != R_ARM_NONE
12280 && r_symndx != STN_UNDEF
12281 && bfd_is_und_section (sec)
12282 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
12283 (*info->callbacks->undefined_symbol)
12284 (info, bfd_elf_string_from_elf_section
12285 (input_bfd, symtab_hdr->sh_link, sym->st_name),
12286 input_bfd, input_section,
12287 rel->r_offset, TRUE);
12289 if (globals->use_rel)
12291 relocation = (sec->output_section->vma
12292 + sec->output_offset
12294 if (!bfd_link_relocatable (info)
12295 && (sec->flags & SEC_MERGE)
12296 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12299 bfd_vma addend, value;
12303 case R_ARM_MOVW_ABS_NC:
12304 case R_ARM_MOVT_ABS:
12305 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12306 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
12307 addend = (addend ^ 0x8000) - 0x8000;
12310 case R_ARM_THM_MOVW_ABS_NC:
12311 case R_ARM_THM_MOVT_ABS:
12312 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
12314 value |= bfd_get_16 (input_bfd,
12315 contents + rel->r_offset + 2);
12316 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
12317 | ((value & 0x04000000) >> 15);
12318 addend = (addend ^ 0x8000) - 0x8000;
12322 if (howto->rightshift
12323 || (howto->src_mask & (howto->src_mask + 1)))
12325 (*_bfd_error_handler)
12326 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
12327 input_bfd, input_section,
12328 (long) rel->r_offset, howto->name);
12332 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12334 /* Get the (signed) value from the instruction. */
12335 addend = value & howto->src_mask;
12336 if (addend & ((howto->src_mask + 1) >> 1))
12338 bfd_signed_vma mask;
12341 mask &= ~ howto->src_mask;
12349 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
12351 addend += msec->output_section->vma + msec->output_offset;
12353 /* Cases here must match those in the preceding
12354 switch statement. */
12357 case R_ARM_MOVW_ABS_NC:
12358 case R_ARM_MOVT_ABS:
12359 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
12360 | (addend & 0xfff);
12361 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12364 case R_ARM_THM_MOVW_ABS_NC:
12365 case R_ARM_THM_MOVT_ABS:
12366 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
12367 | (addend & 0xff) | ((addend & 0x0800) << 15);
12368 bfd_put_16 (input_bfd, value >> 16,
12369 contents + rel->r_offset);
12370 bfd_put_16 (input_bfd, value,
12371 contents + rel->r_offset + 2);
12375 value = (value & ~ howto->dst_mask)
12376 | (addend & howto->dst_mask);
12377 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12383 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12387 bfd_boolean warned, ignored;
12389 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12390 r_symndx, symtab_hdr, sym_hashes,
12391 h, sec, relocation,
12392 unresolved_reloc, warned, ignored);
12394 sym_type = h->type;
12397 if (sec != NULL && discarded_section (sec))
12398 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
12399 rel, 1, relend, howto, 0, contents);
12401 if (bfd_link_relocatable (info))
12403 /* This is a relocatable link. We don't have to change
12404 anything, unless the reloc is against a section symbol,
12405 in which case we have to adjust according to where the
12406 section symbol winds up in the output section. */
12407 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12409 if (globals->use_rel)
12410 arm_add_to_rel (input_bfd, contents + rel->r_offset,
12411 howto, (bfd_signed_vma) sec->output_offset);
12413 rel->r_addend += sec->output_offset;
12419 name = h->root.root.string;
12422 name = (bfd_elf_string_from_elf_section
12423 (input_bfd, symtab_hdr->sh_link, sym->st_name));
12424 if (name == NULL || *name == '\0')
12425 name = bfd_section_name (input_bfd, sec);
12428 if (r_symndx != STN_UNDEF
12429 && r_type != R_ARM_NONE
12431 || h->root.type == bfd_link_hash_defined
12432 || h->root.type == bfd_link_hash_defweak)
12433 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
12435 (*_bfd_error_handler)
12436 ((sym_type == STT_TLS
12437 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
12438 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
12441 (long) rel->r_offset,
12446 /* We call elf32_arm_final_link_relocate unless we're completely
12447 done, i.e., the relaxation produced the final output we want,
12448 and we won't let anybody mess with it. Also, we have to do
12449 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
12450 both in relaxed and non-relaxed cases. */
12451 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
12452 || (IS_ARM_TLS_GNU_RELOC (r_type)
12453 && !((h ? elf32_arm_hash_entry (h)->tls_type :
12454 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
12457 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
12458 contents, rel, h == NULL);
12459 /* This may have been marked unresolved because it came from
12460 a shared library. But we've just dealt with that. */
12461 unresolved_reloc = 0;
12464 r = bfd_reloc_continue;
12466 if (r == bfd_reloc_continue)
12468 unsigned char branch_type =
12469 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
12470 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
12472 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
12473 input_section, contents, rel,
12474 relocation, info, sec, name,
12475 sym_type, branch_type, h,
12480 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
12481 because such sections are not SEC_ALLOC and thus ld.so will
12482 not process them. */
12483 if (unresolved_reloc
12484 && !((input_section->flags & SEC_DEBUGGING) != 0
12486 && _bfd_elf_section_offset (output_bfd, info, input_section,
12487 rel->r_offset) != (bfd_vma) -1)
12489 (*_bfd_error_handler)
12490 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
12493 (long) rel->r_offset,
12495 h->root.root.string);
12499 if (r != bfd_reloc_ok)
12503 case bfd_reloc_overflow:
12504 /* If the overflowing reloc was to an undefined symbol,
12505 we have already printed one error message and there
12506 is no point complaining again. */
12507 if (!h || h->root.type != bfd_link_hash_undefined)
12508 (*info->callbacks->reloc_overflow)
12509 (info, (h ? &h->root : NULL), name, howto->name,
12510 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
12513 case bfd_reloc_undefined:
12514 (*info->callbacks->undefined_symbol)
12515 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
12518 case bfd_reloc_outofrange:
12519 error_message = _("out of range");
12522 case bfd_reloc_notsupported:
12523 error_message = _("unsupported relocation");
12526 case bfd_reloc_dangerous:
12527 /* error_message should already be set. */
12531 error_message = _("unknown error");
12532 /* Fall through. */
12535 BFD_ASSERT (error_message != NULL);
12536 (*info->callbacks->reloc_dangerous)
12537 (info, error_message, input_bfd, input_section, rel->r_offset);
12546 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
12547 adds the edit to the start of the list. (The list must be built in order of
12548 ascending TINDEX: the function's callers are primarily responsible for
12549 maintaining that condition). */
12552 add_unwind_table_edit (arm_unwind_table_edit **head,
12553 arm_unwind_table_edit **tail,
12554 arm_unwind_edit_type type,
12555 asection *linked_section,
12556 unsigned int tindex)
12558 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
12559 xmalloc (sizeof (arm_unwind_table_edit));
12561 new_edit->type = type;
12562 new_edit->linked_section = linked_section;
12563 new_edit->index = tindex;
12567 new_edit->next = NULL;
12570 (*tail)->next = new_edit;
12572 (*tail) = new_edit;
12575 (*head) = new_edit;
12579 new_edit->next = *head;
12588 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
12590 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
12592 adjust_exidx_size(asection *exidx_sec, int adjust)
12596 if (!exidx_sec->rawsize)
12597 exidx_sec->rawsize = exidx_sec->size;
12599 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
12600 out_sec = exidx_sec->output_section;
12601 /* Adjust size of output section. */
12602 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
12605 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
12607 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
12609 struct _arm_elf_section_data *exidx_arm_data;
12611 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12612 add_unwind_table_edit (
12613 &exidx_arm_data->u.exidx.unwind_edit_list,
12614 &exidx_arm_data->u.exidx.unwind_edit_tail,
12615 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
12617 exidx_arm_data->additional_reloc_count++;
12619 adjust_exidx_size(exidx_sec, 8);
12622 /* Scan .ARM.exidx tables, and create a list describing edits which should be
12623 made to those tables, such that:
12625 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
12626 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
12627 codes which have been inlined into the index).
12629 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
12631 The edits are applied when the tables are written
12632 (in elf32_arm_write_section). */
12635 elf32_arm_fix_exidx_coverage (asection **text_section_order,
12636 unsigned int num_text_sections,
12637 struct bfd_link_info *info,
12638 bfd_boolean merge_exidx_entries)
12641 unsigned int last_second_word = 0, i;
12642 asection *last_exidx_sec = NULL;
12643 asection *last_text_sec = NULL;
12644 int last_unwind_type = -1;
12646 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
12648 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
12652 for (sec = inp->sections; sec != NULL; sec = sec->next)
12654 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
12655 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
12657 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
12660 if (elf_sec->linked_to)
12662 Elf_Internal_Shdr *linked_hdr
12663 = &elf_section_data (elf_sec->linked_to)->this_hdr;
12664 struct _arm_elf_section_data *linked_sec_arm_data
12665 = get_arm_elf_section_data (linked_hdr->bfd_section);
12667 if (linked_sec_arm_data == NULL)
12670 /* Link this .ARM.exidx section back from the text section it
12672 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
12677 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
12678 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
12679 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
12681 for (i = 0; i < num_text_sections; i++)
12683 asection *sec = text_section_order[i];
12684 asection *exidx_sec;
12685 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
12686 struct _arm_elf_section_data *exidx_arm_data;
12687 bfd_byte *contents = NULL;
12688 int deleted_exidx_bytes = 0;
12690 arm_unwind_table_edit *unwind_edit_head = NULL;
12691 arm_unwind_table_edit *unwind_edit_tail = NULL;
12692 Elf_Internal_Shdr *hdr;
12695 if (arm_data == NULL)
12698 exidx_sec = arm_data->u.text.arm_exidx_sec;
12699 if (exidx_sec == NULL)
12701 /* Section has no unwind data. */
12702 if (last_unwind_type == 0 || !last_exidx_sec)
12705 /* Ignore zero sized sections. */
12706 if (sec->size == 0)
12709 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12710 last_unwind_type = 0;
12714 /* Skip /DISCARD/ sections. */
12715 if (bfd_is_abs_section (exidx_sec->output_section))
12718 hdr = &elf_section_data (exidx_sec)->this_hdr;
12719 if (hdr->sh_type != SHT_ARM_EXIDX)
12722 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12723 if (exidx_arm_data == NULL)
12726 ibfd = exidx_sec->owner;
12728 if (hdr->contents != NULL)
12729 contents = hdr->contents;
12730 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
12734 if (last_unwind_type > 0)
12736 unsigned int first_word = bfd_get_32 (ibfd, contents);
12737 /* Add cantunwind if first unwind item does not match section
12739 if (first_word != sec->vma)
12741 insert_cantunwind_after (last_text_sec, last_exidx_sec);
12742 last_unwind_type = 0;
12746 for (j = 0; j < hdr->sh_size; j += 8)
12748 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
12752 /* An EXIDX_CANTUNWIND entry. */
12753 if (second_word == 1)
12755 if (last_unwind_type == 0)
12759 /* Inlined unwinding data. Merge if equal to previous. */
12760 else if ((second_word & 0x80000000) != 0)
12762 if (merge_exidx_entries
12763 && last_second_word == second_word && last_unwind_type == 1)
12766 last_second_word = second_word;
12768 /* Normal table entry. In theory we could merge these too,
12769 but duplicate entries are likely to be much less common. */
12773 if (elide && !bfd_link_relocatable (info))
12775 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
12776 DELETE_EXIDX_ENTRY, NULL, j / 8);
12778 deleted_exidx_bytes += 8;
12781 last_unwind_type = unwind_type;
12784 /* Free contents if we allocated it ourselves. */
12785 if (contents != hdr->contents)
12788 /* Record edits to be applied later (in elf32_arm_write_section). */
12789 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
12790 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
12792 if (deleted_exidx_bytes > 0)
12793 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
12795 last_exidx_sec = exidx_sec;
12796 last_text_sec = sec;
12799 /* Add terminating CANTUNWIND entry. */
12800 if (!bfd_link_relocatable (info) && last_exidx_sec
12801 && last_unwind_type != 0)
12802 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12808 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
12809 bfd *ibfd, const char *name)
12811 asection *sec, *osec;
12813 sec = bfd_get_linker_section (ibfd, name);
12814 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
12817 osec = sec->output_section;
12818 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
12821 if (! bfd_set_section_contents (obfd, osec, sec->contents,
12822 sec->output_offset, sec->size))
12829 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
12831 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
12832 asection *sec, *osec;
12834 if (globals == NULL)
12837 /* Invoke the regular ELF backend linker to do all the work. */
12838 if (!bfd_elf_final_link (abfd, info))
12841 /* Process stub sections (eg BE8 encoding, ...). */
12842 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
12844 for (i=0; i<htab->top_id; i++)
12846 sec = htab->stub_group[i].stub_sec;
12847 /* Only process it once, in its link_sec slot. */
12848 if (sec && i == htab->stub_group[i].link_sec->id)
12850 osec = sec->output_section;
12851 elf32_arm_write_section (abfd, info, sec, sec->contents);
12852 if (! bfd_set_section_contents (abfd, osec, sec->contents,
12853 sec->output_offset, sec->size))
12858 /* Write out any glue sections now that we have created all the
12860 if (globals->bfd_of_glue_owner != NULL)
12862 if (! elf32_arm_output_glue_section (info, abfd,
12863 globals->bfd_of_glue_owner,
12864 ARM2THUMB_GLUE_SECTION_NAME))
12867 if (! elf32_arm_output_glue_section (info, abfd,
12868 globals->bfd_of_glue_owner,
12869 THUMB2ARM_GLUE_SECTION_NAME))
12872 if (! elf32_arm_output_glue_section (info, abfd,
12873 globals->bfd_of_glue_owner,
12874 VFP11_ERRATUM_VENEER_SECTION_NAME))
12877 if (! elf32_arm_output_glue_section (info, abfd,
12878 globals->bfd_of_glue_owner,
12879 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
12882 if (! elf32_arm_output_glue_section (info, abfd,
12883 globals->bfd_of_glue_owner,
12884 ARM_BX_GLUE_SECTION_NAME))
12891 /* Return a best guess for the machine number based on the attributes. */
12893 static unsigned int
12894 bfd_arm_get_mach_from_attributes (bfd * abfd)
12896 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
12900 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
12901 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
12902 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
12904 case TAG_CPU_ARCH_V5TE:
12908 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
12909 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
12913 if (strcmp (name, "IWMMXT2") == 0)
12914 return bfd_mach_arm_iWMMXt2;
12916 if (strcmp (name, "IWMMXT") == 0)
12917 return bfd_mach_arm_iWMMXt;
12919 if (strcmp (name, "XSCALE") == 0)
12923 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
12924 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
12927 case 1: return bfd_mach_arm_iWMMXt;
12928 case 2: return bfd_mach_arm_iWMMXt2;
12929 default: return bfd_mach_arm_XScale;
12934 return bfd_mach_arm_5TE;
12938 return bfd_mach_arm_unknown;
12942 /* Set the right machine number. */
12945 elf32_arm_object_p (bfd *abfd)
12949 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
12951 if (mach == bfd_mach_arm_unknown)
12953 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
12954 mach = bfd_mach_arm_ep9312;
12956 mach = bfd_arm_get_mach_from_attributes (abfd);
12959 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
12963 /* Function to keep ARM specific flags in the ELF header. */
12966 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
12968 if (elf_flags_init (abfd)
12969 && elf_elfheader (abfd)->e_flags != flags)
12971 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
12973 if (flags & EF_ARM_INTERWORK)
12974 (*_bfd_error_handler)
12975 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
12979 (_("Warning: Clearing the interworking flag of %B due to outside request"),
12985 elf_elfheader (abfd)->e_flags = flags;
12986 elf_flags_init (abfd) = TRUE;
12992 /* Copy backend specific data from one object module to another. */
12995 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
12998 flagword out_flags;
13000 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13003 in_flags = elf_elfheader (ibfd)->e_flags;
13004 out_flags = elf_elfheader (obfd)->e_flags;
13006 if (elf_flags_init (obfd)
13007 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13008 && in_flags != out_flags)
13010 /* Cannot mix APCS26 and APCS32 code. */
13011 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
13014 /* Cannot mix float APCS and non-float APCS code. */
13015 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
13018 /* If the src and dest have different interworking flags
13019 then turn off the interworking bit. */
13020 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
13022 if (out_flags & EF_ARM_INTERWORK)
13024 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
13027 in_flags &= ~EF_ARM_INTERWORK;
13030 /* Likewise for PIC, though don't warn for this case. */
13031 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13032 in_flags &= ~EF_ARM_PIC;
13035 elf_elfheader (obfd)->e_flags = in_flags;
13036 elf_flags_init (obfd) = TRUE;
13038 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
13041 /* Values for Tag_ABI_PCS_R9_use. */
13050 /* Values for Tag_ABI_PCS_RW_data. */
13053 AEABI_PCS_RW_data_absolute,
13054 AEABI_PCS_RW_data_PCrel,
13055 AEABI_PCS_RW_data_SBrel,
13056 AEABI_PCS_RW_data_unused
13059 /* Values for Tag_ABI_enum_size. */
13065 AEABI_enum_forced_wide
13068 /* Determine whether an object attribute tag takes an integer, a
13072 elf32_arm_obj_attrs_arg_type (int tag)
13074 if (tag == Tag_compatibility)
13075 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
13076 else if (tag == Tag_nodefaults)
13077 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
13078 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
13079 return ATTR_TYPE_FLAG_STR_VAL;
13081 return ATTR_TYPE_FLAG_INT_VAL;
13083 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
13086 /* The ABI defines that Tag_conformance should be emitted first, and that
13087 Tag_nodefaults should be second (if either is defined). This sets those
13088 two positions, and bumps up the position of all the remaining tags to
13091 elf32_arm_obj_attrs_order (int num)
13093 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
13094 return Tag_conformance;
13095 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
13096 return Tag_nodefaults;
13097 if ((num - 2) < Tag_nodefaults)
13099 if ((num - 1) < Tag_conformance)
13104 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
13106 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
13108 if ((tag & 127) < 64)
13111 (_("%B: Unknown mandatory EABI object attribute %d"),
13113 bfd_set_error (bfd_error_bad_value);
13119 (_("Warning: %B: Unknown EABI object attribute %d"),
13125 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
13126 Returns -1 if no architecture could be read. */
13129 get_secondary_compatible_arch (bfd *abfd)
13131 obj_attribute *attr =
13132 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13134 /* Note: the tag and its argument below are uleb128 values, though
13135 currently-defined values fit in one byte for each. */
13137 && attr->s[0] == Tag_CPU_arch
13138 && (attr->s[1] & 128) != 128
13139 && attr->s[2] == 0)
13142 /* This tag is "safely ignorable", so don't complain if it looks funny. */
13146 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
13147 The tag is removed if ARCH is -1. */
13150 set_secondary_compatible_arch (bfd *abfd, int arch)
13152 obj_attribute *attr =
13153 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13161 /* Note: the tag and its argument below are uleb128 values, though
13162 currently-defined values fit in one byte for each. */
13164 attr->s = (char *) bfd_alloc (abfd, 3);
13165 attr->s[0] = Tag_CPU_arch;
13170 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
13174 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
13175 int newtag, int secondary_compat)
13177 #define T(X) TAG_CPU_ARCH_##X
13178 int tagl, tagh, result;
13181 T(V6T2), /* PRE_V4. */
13183 T(V6T2), /* V4T. */
13184 T(V6T2), /* V5T. */
13185 T(V6T2), /* V5TE. */
13186 T(V6T2), /* V5TEJ. */
13189 T(V6T2) /* V6T2. */
13193 T(V6K), /* PRE_V4. */
13197 T(V6K), /* V5TE. */
13198 T(V6K), /* V5TEJ. */
13200 T(V6KZ), /* V6KZ. */
13206 T(V7), /* PRE_V4. */
13211 T(V7), /* V5TEJ. */
13224 T(V6K), /* V5TE. */
13225 T(V6K), /* V5TEJ. */
13227 T(V6KZ), /* V6KZ. */
13231 T(V6_M) /* V6_M. */
13233 const int v6s_m[] =
13239 T(V6K), /* V5TE. */
13240 T(V6K), /* V5TEJ. */
13242 T(V6KZ), /* V6KZ. */
13246 T(V6S_M), /* V6_M. */
13247 T(V6S_M) /* V6S_M. */
13249 const int v7e_m[] =
13253 T(V7E_M), /* V4T. */
13254 T(V7E_M), /* V5T. */
13255 T(V7E_M), /* V5TE. */
13256 T(V7E_M), /* V5TEJ. */
13257 T(V7E_M), /* V6. */
13258 T(V7E_M), /* V6KZ. */
13259 T(V7E_M), /* V6T2. */
13260 T(V7E_M), /* V6K. */
13261 T(V7E_M), /* V7. */
13262 T(V7E_M), /* V6_M. */
13263 T(V7E_M), /* V6S_M. */
13264 T(V7E_M) /* V7E_M. */
13268 T(V8), /* PRE_V4. */
13273 T(V8), /* V5TEJ. */
13280 T(V8), /* V6S_M. */
13281 T(V8), /* V7E_M. */
13284 const int v8m_baseline[] =
13297 T(V8M_BASE), /* V6_M. */
13298 T(V8M_BASE), /* V6S_M. */
13302 T(V8M_BASE) /* V8-M BASELINE. */
13304 const int v8m_mainline[] =
13316 T(V8M_MAIN), /* V7. */
13317 T(V8M_MAIN), /* V6_M. */
13318 T(V8M_MAIN), /* V6S_M. */
13319 T(V8M_MAIN), /* V7E_M. */
13322 T(V8M_MAIN), /* V8-M BASELINE. */
13323 T(V8M_MAIN) /* V8-M MAINLINE. */
13325 const int v4t_plus_v6_m[] =
13331 T(V5TE), /* V5TE. */
13332 T(V5TEJ), /* V5TEJ. */
13334 T(V6KZ), /* V6KZ. */
13335 T(V6T2), /* V6T2. */
13338 T(V6_M), /* V6_M. */
13339 T(V6S_M), /* V6S_M. */
13340 T(V7E_M), /* V7E_M. */
13343 T(V8M_BASE), /* V8-M BASELINE. */
13344 T(V8M_MAIN), /* V8-M MAINLINE. */
13345 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
13347 const int *comb[] =
13359 /* Pseudo-architecture. */
13363 /* Check we've not got a higher architecture than we know about. */
13365 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
13367 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
13371 /* Override old tag if we have a Tag_also_compatible_with on the output. */
13373 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
13374 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
13375 oldtag = T(V4T_PLUS_V6_M);
13377 /* And override the new tag if we have a Tag_also_compatible_with on the
13380 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
13381 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
13382 newtag = T(V4T_PLUS_V6_M);
13384 tagl = (oldtag < newtag) ? oldtag : newtag;
13385 result = tagh = (oldtag > newtag) ? oldtag : newtag;
13387 /* Architectures before V6KZ add features monotonically. */
13388 if (tagh <= TAG_CPU_ARCH_V6KZ)
13391 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
13393 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
13394 as the canonical version. */
13395 if (result == T(V4T_PLUS_V6_M))
13398 *secondary_compat_out = T(V6_M);
13401 *secondary_compat_out = -1;
13405 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
13406 ibfd, oldtag, newtag);
13414 /* Query attributes object to see if integer divide instructions may be
13415 present in an object. */
13417 elf32_arm_attributes_accept_div (const obj_attribute *attr)
13419 int arch = attr[Tag_CPU_arch].i;
13420 int profile = attr[Tag_CPU_arch_profile].i;
13422 switch (attr[Tag_DIV_use].i)
13425 /* Integer divide allowed if instruction contained in archetecture. */
13426 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
13428 else if (arch >= TAG_CPU_ARCH_V7E_M)
13434 /* Integer divide explicitly prohibited. */
13438 /* Unrecognised case - treat as allowing divide everywhere. */
13440 /* Integer divide allowed in ARM state. */
13445 /* Query attributes object to see if integer divide instructions are
13446 forbidden to be in the object. This is not the inverse of
13447 elf32_arm_attributes_accept_div. */
13449 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
13451 return attr[Tag_DIV_use].i == 1;
13454 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
13455 are conflicting attributes. */
13458 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
13460 obj_attribute *in_attr;
13461 obj_attribute *out_attr;
13462 /* Some tags have 0 = don't care, 1 = strong requirement,
13463 2 = weak requirement. */
13464 static const int order_021[3] = {0, 2, 1};
13466 bfd_boolean result = TRUE;
13467 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
13469 /* Skip the linker stubs file. This preserves previous behavior
13470 of accepting unknown attributes in the first input file - but
13472 if (ibfd->flags & BFD_LINKER_CREATED)
13475 /* Skip any input that hasn't attribute section.
13476 This enables to link object files without attribute section with
13478 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
13481 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13483 /* This is the first object. Copy the attributes. */
13484 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13486 out_attr = elf_known_obj_attributes_proc (obfd);
13488 /* Use the Tag_null value to indicate the attributes have been
13492 /* We do not output objects with Tag_MPextension_use_legacy - we move
13493 the attribute's value to Tag_MPextension_use. */
13494 if (out_attr[Tag_MPextension_use_legacy].i != 0)
13496 if (out_attr[Tag_MPextension_use].i != 0
13497 && out_attr[Tag_MPextension_use_legacy].i
13498 != out_attr[Tag_MPextension_use].i)
13501 (_("Error: %B has both the current and legacy "
13502 "Tag_MPextension_use attributes"), ibfd);
13506 out_attr[Tag_MPextension_use] =
13507 out_attr[Tag_MPextension_use_legacy];
13508 out_attr[Tag_MPextension_use_legacy].type = 0;
13509 out_attr[Tag_MPextension_use_legacy].i = 0;
13515 in_attr = elf_known_obj_attributes_proc (ibfd);
13516 out_attr = elf_known_obj_attributes_proc (obfd);
13517 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
13518 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
13520 /* Ignore mismatches if the object doesn't use floating point or is
13521 floating point ABI independent. */
13522 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
13523 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13524 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
13525 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
13526 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13527 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
13530 (_("error: %B uses VFP register arguments, %B does not"),
13531 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
13532 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
13537 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
13539 /* Merge this attribute with existing attributes. */
13542 case Tag_CPU_raw_name:
13544 /* These are merged after Tag_CPU_arch. */
13547 case Tag_ABI_optimization_goals:
13548 case Tag_ABI_FP_optimization_goals:
13549 /* Use the first value seen. */
13554 int secondary_compat = -1, secondary_compat_out = -1;
13555 unsigned int saved_out_attr = out_attr[i].i;
13557 static const char *name_table[] =
13559 /* These aren't real CPU names, but we can't guess
13560 that from the architecture version alone. */
13576 "ARM v8-M.baseline",
13577 "ARM v8-M.mainline",
13580 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
13581 secondary_compat = get_secondary_compatible_arch (ibfd);
13582 secondary_compat_out = get_secondary_compatible_arch (obfd);
13583 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
13584 &secondary_compat_out,
13588 /* Return with error if failed to merge. */
13589 if (arch_attr == -1)
13592 out_attr[i].i = arch_attr;
13594 set_secondary_compatible_arch (obfd, secondary_compat_out);
13596 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
13597 if (out_attr[i].i == saved_out_attr)
13598 ; /* Leave the names alone. */
13599 else if (out_attr[i].i == in_attr[i].i)
13601 /* The output architecture has been changed to match the
13602 input architecture. Use the input names. */
13603 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
13604 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
13606 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
13607 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
13612 out_attr[Tag_CPU_name].s = NULL;
13613 out_attr[Tag_CPU_raw_name].s = NULL;
13616 /* If we still don't have a value for Tag_CPU_name,
13617 make one up now. Tag_CPU_raw_name remains blank. */
13618 if (out_attr[Tag_CPU_name].s == NULL
13619 && out_attr[i].i < ARRAY_SIZE (name_table))
13620 out_attr[Tag_CPU_name].s =
13621 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
13625 case Tag_ARM_ISA_use:
13626 case Tag_THUMB_ISA_use:
13627 case Tag_WMMX_arch:
13628 case Tag_Advanced_SIMD_arch:
13629 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
13630 case Tag_ABI_FP_rounding:
13631 case Tag_ABI_FP_exceptions:
13632 case Tag_ABI_FP_user_exceptions:
13633 case Tag_ABI_FP_number_model:
13634 case Tag_FP_HP_extension:
13635 case Tag_CPU_unaligned_access:
13637 case Tag_MPextension_use:
13638 /* Use the largest value specified. */
13639 if (in_attr[i].i > out_attr[i].i)
13640 out_attr[i].i = in_attr[i].i;
13643 case Tag_ABI_align_preserved:
13644 case Tag_ABI_PCS_RO_data:
13645 /* Use the smallest value specified. */
13646 if (in_attr[i].i < out_attr[i].i)
13647 out_attr[i].i = in_attr[i].i;
13650 case Tag_ABI_align_needed:
13651 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
13652 && (in_attr[Tag_ABI_align_preserved].i == 0
13653 || out_attr[Tag_ABI_align_preserved].i == 0))
13655 /* This error message should be enabled once all non-conformant
13656 binaries in the toolchain have had the attributes set
13659 (_("error: %B: 8-byte data alignment conflicts with %B"),
13663 /* Fall through. */
13664 case Tag_ABI_FP_denormal:
13665 case Tag_ABI_PCS_GOT_use:
13666 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
13667 value if greater than 2 (for future-proofing). */
13668 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
13669 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
13670 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
13671 out_attr[i].i = in_attr[i].i;
13674 case Tag_Virtualization_use:
13675 /* The virtualization tag effectively stores two bits of
13676 information: the intended use of TrustZone (in bit 0), and the
13677 intended use of Virtualization (in bit 1). */
13678 if (out_attr[i].i == 0)
13679 out_attr[i].i = in_attr[i].i;
13680 else if (in_attr[i].i != 0
13681 && in_attr[i].i != out_attr[i].i)
13683 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
13688 (_("error: %B: unable to merge virtualization attributes "
13696 case Tag_CPU_arch_profile:
13697 if (out_attr[i].i != in_attr[i].i)
13699 /* 0 will merge with anything.
13700 'A' and 'S' merge to 'A'.
13701 'R' and 'S' merge to 'R'.
13702 'M' and 'A|R|S' is an error. */
13703 if (out_attr[i].i == 0
13704 || (out_attr[i].i == 'S'
13705 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
13706 out_attr[i].i = in_attr[i].i;
13707 else if (in_attr[i].i == 0
13708 || (in_attr[i].i == 'S'
13709 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
13710 ; /* Do nothing. */
13714 (_("error: %B: Conflicting architecture profiles %c/%c"),
13716 in_attr[i].i ? in_attr[i].i : '0',
13717 out_attr[i].i ? out_attr[i].i : '0');
13723 case Tag_DSP_extension:
13724 /* No need to change output value if any of:
13725 - pre (<=) ARMv5T input architecture (do not have DSP)
13726 - M input profile not ARMv7E-M and do not have DSP. */
13727 if (in_attr[Tag_CPU_arch].i <= 3
13728 || (in_attr[Tag_CPU_arch_profile].i == 'M'
13729 && in_attr[Tag_CPU_arch].i != 13
13730 && in_attr[i].i == 0))
13731 ; /* Do nothing. */
13732 /* Output value should be 0 if DSP part of architecture, ie.
13733 - post (>=) ARMv5te architecture output
13734 - A, R or S profile output or ARMv7E-M output architecture. */
13735 else if (out_attr[Tag_CPU_arch].i >= 4
13736 && (out_attr[Tag_CPU_arch_profile].i == 'A'
13737 || out_attr[Tag_CPU_arch_profile].i == 'R'
13738 || out_attr[Tag_CPU_arch_profile].i == 'S'
13739 || out_attr[Tag_CPU_arch].i == 13))
13741 /* Otherwise, DSP instructions are added and not part of output
13749 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
13750 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
13751 when it's 0. It might mean absence of FP hardware if
13752 Tag_FP_arch is zero. */
13754 #define VFP_VERSION_COUNT 9
13755 static const struct
13759 } vfp_versions[VFP_VERSION_COUNT] =
13775 /* If the output has no requirement about FP hardware,
13776 follow the requirement of the input. */
13777 if (out_attr[i].i == 0)
13779 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
13780 out_attr[i].i = in_attr[i].i;
13781 out_attr[Tag_ABI_HardFP_use].i
13782 = in_attr[Tag_ABI_HardFP_use].i;
13785 /* If the input has no requirement about FP hardware, do
13787 else if (in_attr[i].i == 0)
13789 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
13793 /* Both the input and the output have nonzero Tag_FP_arch.
13794 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
13796 /* If both the input and the output have zero Tag_ABI_HardFP_use,
13798 if (in_attr[Tag_ABI_HardFP_use].i == 0
13799 && out_attr[Tag_ABI_HardFP_use].i == 0)
13801 /* If the input and the output have different Tag_ABI_HardFP_use,
13802 the combination of them is 0 (implied by Tag_FP_arch). */
13803 else if (in_attr[Tag_ABI_HardFP_use].i
13804 != out_attr[Tag_ABI_HardFP_use].i)
13805 out_attr[Tag_ABI_HardFP_use].i = 0;
13807 /* Now we can handle Tag_FP_arch. */
13809 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
13810 pick the biggest. */
13811 if (in_attr[i].i >= VFP_VERSION_COUNT
13812 && in_attr[i].i > out_attr[i].i)
13814 out_attr[i] = in_attr[i];
13817 /* The output uses the superset of input features
13818 (ISA version) and registers. */
13819 ver = vfp_versions[in_attr[i].i].ver;
13820 if (ver < vfp_versions[out_attr[i].i].ver)
13821 ver = vfp_versions[out_attr[i].i].ver;
13822 regs = vfp_versions[in_attr[i].i].regs;
13823 if (regs < vfp_versions[out_attr[i].i].regs)
13824 regs = vfp_versions[out_attr[i].i].regs;
13825 /* This assumes all possible supersets are also a valid
13827 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
13829 if (regs == vfp_versions[newval].regs
13830 && ver == vfp_versions[newval].ver)
13833 out_attr[i].i = newval;
13836 case Tag_PCS_config:
13837 if (out_attr[i].i == 0)
13838 out_attr[i].i = in_attr[i].i;
13839 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
13841 /* It's sometimes ok to mix different configs, so this is only
13844 (_("Warning: %B: Conflicting platform configuration"), ibfd);
13847 case Tag_ABI_PCS_R9_use:
13848 if (in_attr[i].i != out_attr[i].i
13849 && out_attr[i].i != AEABI_R9_unused
13850 && in_attr[i].i != AEABI_R9_unused)
13853 (_("error: %B: Conflicting use of R9"), ibfd);
13856 if (out_attr[i].i == AEABI_R9_unused)
13857 out_attr[i].i = in_attr[i].i;
13859 case Tag_ABI_PCS_RW_data:
13860 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
13861 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
13862 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
13865 (_("error: %B: SB relative addressing conflicts with use of R9"),
13869 /* Use the smallest value specified. */
13870 if (in_attr[i].i < out_attr[i].i)
13871 out_attr[i].i = in_attr[i].i;
13873 case Tag_ABI_PCS_wchar_t:
13874 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
13875 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
13878 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
13879 ibfd, in_attr[i].i, out_attr[i].i);
13881 else if (in_attr[i].i && !out_attr[i].i)
13882 out_attr[i].i = in_attr[i].i;
13884 case Tag_ABI_enum_size:
13885 if (in_attr[i].i != AEABI_enum_unused)
13887 if (out_attr[i].i == AEABI_enum_unused
13888 || out_attr[i].i == AEABI_enum_forced_wide)
13890 /* The existing object is compatible with anything.
13891 Use whatever requirements the new object has. */
13892 out_attr[i].i = in_attr[i].i;
13894 else if (in_attr[i].i != AEABI_enum_forced_wide
13895 && out_attr[i].i != in_attr[i].i
13896 && !elf_arm_tdata (obfd)->no_enum_size_warning)
13898 static const char *aeabi_enum_names[] =
13899 { "", "variable-size", "32-bit", "" };
13900 const char *in_name =
13901 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13902 ? aeabi_enum_names[in_attr[i].i]
13904 const char *out_name =
13905 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13906 ? aeabi_enum_names[out_attr[i].i]
13909 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
13910 ibfd, in_name, out_name);
13914 case Tag_ABI_VFP_args:
13917 case Tag_ABI_WMMX_args:
13918 if (in_attr[i].i != out_attr[i].i)
13921 (_("error: %B uses iWMMXt register arguments, %B does not"),
13926 case Tag_compatibility:
13927 /* Merged in target-independent code. */
13929 case Tag_ABI_HardFP_use:
13930 /* This is handled along with Tag_FP_arch. */
13932 case Tag_ABI_FP_16bit_format:
13933 if (in_attr[i].i != 0 && out_attr[i].i != 0)
13935 if (in_attr[i].i != out_attr[i].i)
13938 (_("error: fp16 format mismatch between %B and %B"),
13943 if (in_attr[i].i != 0)
13944 out_attr[i].i = in_attr[i].i;
13948 /* A value of zero on input means that the divide instruction may
13949 be used if available in the base architecture as specified via
13950 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
13951 the user did not want divide instructions. A value of 2
13952 explicitly means that divide instructions were allowed in ARM
13953 and Thumb state. */
13954 if (in_attr[i].i == out_attr[i].i)
13955 /* Do nothing. */ ;
13956 else if (elf32_arm_attributes_forbid_div (in_attr)
13957 && !elf32_arm_attributes_accept_div (out_attr))
13959 else if (elf32_arm_attributes_forbid_div (out_attr)
13960 && elf32_arm_attributes_accept_div (in_attr))
13961 out_attr[i].i = in_attr[i].i;
13962 else if (in_attr[i].i == 2)
13963 out_attr[i].i = in_attr[i].i;
13966 case Tag_MPextension_use_legacy:
13967 /* We don't output objects with Tag_MPextension_use_legacy - we
13968 move the value to Tag_MPextension_use. */
13969 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
13971 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
13974 (_("%B has has both the current and legacy "
13975 "Tag_MPextension_use attributes"),
13981 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
13982 out_attr[Tag_MPextension_use] = in_attr[i];
13986 case Tag_nodefaults:
13987 /* This tag is set if it exists, but the value is unused (and is
13988 typically zero). We don't actually need to do anything here -
13989 the merge happens automatically when the type flags are merged
13992 case Tag_also_compatible_with:
13993 /* Already done in Tag_CPU_arch. */
13995 case Tag_conformance:
13996 /* Keep the attribute if it matches. Throw it away otherwise.
13997 No attribute means no claim to conform. */
13998 if (!in_attr[i].s || !out_attr[i].s
13999 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
14000 out_attr[i].s = NULL;
14005 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
14008 /* If out_attr was copied from in_attr then it won't have a type yet. */
14009 if (in_attr[i].type && !out_attr[i].type)
14010 out_attr[i].type = in_attr[i].type;
14013 /* Merge Tag_compatibility attributes and any common GNU ones. */
14014 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
14017 /* Check for any attributes not known on ARM. */
14018 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
14024 /* Return TRUE if the two EABI versions are incompatible. */
14027 elf32_arm_versions_compatible (unsigned iver, unsigned over)
14029 /* v4 and v5 are the same spec before and after it was released,
14030 so allow mixing them. */
14031 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
14032 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
14035 return (iver == over);
14038 /* Merge backend specific data from an object file to the output
14039 object file when linking. */
14042 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
14044 /* Display the flags field. */
14047 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
14049 FILE * file = (FILE *) ptr;
14050 unsigned long flags;
14052 BFD_ASSERT (abfd != NULL && ptr != NULL);
14054 /* Print normal ELF private data. */
14055 _bfd_elf_print_private_bfd_data (abfd, ptr);
14057 flags = elf_elfheader (abfd)->e_flags;
14058 /* Ignore init flag - it may not be set, despite the flags field
14059 containing valid data. */
14061 /* xgettext:c-format */
14062 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14064 switch (EF_ARM_EABI_VERSION (flags))
14066 case EF_ARM_EABI_UNKNOWN:
14067 /* The following flag bits are GNU extensions and not part of the
14068 official ARM ELF extended ABI. Hence they are only decoded if
14069 the EABI version is not set. */
14070 if (flags & EF_ARM_INTERWORK)
14071 fprintf (file, _(" [interworking enabled]"));
14073 if (flags & EF_ARM_APCS_26)
14074 fprintf (file, " [APCS-26]");
14076 fprintf (file, " [APCS-32]");
14078 if (flags & EF_ARM_VFP_FLOAT)
14079 fprintf (file, _(" [VFP float format]"));
14080 else if (flags & EF_ARM_MAVERICK_FLOAT)
14081 fprintf (file, _(" [Maverick float format]"));
14083 fprintf (file, _(" [FPA float format]"));
14085 if (flags & EF_ARM_APCS_FLOAT)
14086 fprintf (file, _(" [floats passed in float registers]"));
14088 if (flags & EF_ARM_PIC)
14089 fprintf (file, _(" [position independent]"));
14091 if (flags & EF_ARM_NEW_ABI)
14092 fprintf (file, _(" [new ABI]"));
14094 if (flags & EF_ARM_OLD_ABI)
14095 fprintf (file, _(" [old ABI]"));
14097 if (flags & EF_ARM_SOFT_FLOAT)
14098 fprintf (file, _(" [software FP]"));
14100 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
14101 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
14102 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
14103 | EF_ARM_MAVERICK_FLOAT);
14106 case EF_ARM_EABI_VER1:
14107 fprintf (file, _(" [Version1 EABI]"));
14109 if (flags & EF_ARM_SYMSARESORTED)
14110 fprintf (file, _(" [sorted symbol table]"));
14112 fprintf (file, _(" [unsorted symbol table]"));
14114 flags &= ~ EF_ARM_SYMSARESORTED;
14117 case EF_ARM_EABI_VER2:
14118 fprintf (file, _(" [Version2 EABI]"));
14120 if (flags & EF_ARM_SYMSARESORTED)
14121 fprintf (file, _(" [sorted symbol table]"));
14123 fprintf (file, _(" [unsorted symbol table]"));
14125 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
14126 fprintf (file, _(" [dynamic symbols use segment index]"));
14128 if (flags & EF_ARM_MAPSYMSFIRST)
14129 fprintf (file, _(" [mapping symbols precede others]"));
14131 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
14132 | EF_ARM_MAPSYMSFIRST);
14135 case EF_ARM_EABI_VER3:
14136 fprintf (file, _(" [Version3 EABI]"));
14139 case EF_ARM_EABI_VER4:
14140 fprintf (file, _(" [Version4 EABI]"));
14143 case EF_ARM_EABI_VER5:
14144 fprintf (file, _(" [Version5 EABI]"));
14146 if (flags & EF_ARM_ABI_FLOAT_SOFT)
14147 fprintf (file, _(" [soft-float ABI]"));
14149 if (flags & EF_ARM_ABI_FLOAT_HARD)
14150 fprintf (file, _(" [hard-float ABI]"));
14152 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
14155 if (flags & EF_ARM_BE8)
14156 fprintf (file, _(" [BE8]"));
14158 if (flags & EF_ARM_LE8)
14159 fprintf (file, _(" [LE8]"));
14161 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
14165 fprintf (file, _(" <EABI version unrecognised>"));
14169 flags &= ~ EF_ARM_EABIMASK;
14171 if (flags & EF_ARM_RELEXEC)
14172 fprintf (file, _(" [relocatable executable]"));
14174 flags &= ~EF_ARM_RELEXEC;
14177 fprintf (file, _("<Unrecognised flag bits set>"));
14179 fputc ('\n', file);
14185 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
14187 switch (ELF_ST_TYPE (elf_sym->st_info))
14189 case STT_ARM_TFUNC:
14190 return ELF_ST_TYPE (elf_sym->st_info);
14192 case STT_ARM_16BIT:
14193 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
14194 This allows us to distinguish between data used by Thumb instructions
14195 and non-data (which is probably code) inside Thumb regions of an
14197 if (type != STT_OBJECT && type != STT_TLS)
14198 return ELF_ST_TYPE (elf_sym->st_info);
14209 elf32_arm_gc_mark_hook (asection *sec,
14210 struct bfd_link_info *info,
14211 Elf_Internal_Rela *rel,
14212 struct elf_link_hash_entry *h,
14213 Elf_Internal_Sym *sym)
14216 switch (ELF32_R_TYPE (rel->r_info))
14218 case R_ARM_GNU_VTINHERIT:
14219 case R_ARM_GNU_VTENTRY:
14223 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
14226 /* Update the got entry reference counts for the section being removed. */
14229 elf32_arm_gc_sweep_hook (bfd * abfd,
14230 struct bfd_link_info * info,
14232 const Elf_Internal_Rela * relocs)
14234 Elf_Internal_Shdr *symtab_hdr;
14235 struct elf_link_hash_entry **sym_hashes;
14236 bfd_signed_vma *local_got_refcounts;
14237 const Elf_Internal_Rela *rel, *relend;
14238 struct elf32_arm_link_hash_table * globals;
14240 if (bfd_link_relocatable (info))
14243 globals = elf32_arm_hash_table (info);
14244 if (globals == NULL)
14247 elf_section_data (sec)->local_dynrel = NULL;
14249 symtab_hdr = & elf_symtab_hdr (abfd);
14250 sym_hashes = elf_sym_hashes (abfd);
14251 local_got_refcounts = elf_local_got_refcounts (abfd);
14253 check_use_blx (globals);
14255 relend = relocs + sec->reloc_count;
14256 for (rel = relocs; rel < relend; rel++)
14258 unsigned long r_symndx;
14259 struct elf_link_hash_entry *h = NULL;
14260 struct elf32_arm_link_hash_entry *eh;
14262 bfd_boolean call_reloc_p;
14263 bfd_boolean may_become_dynamic_p;
14264 bfd_boolean may_need_local_target_p;
14265 union gotplt_union *root_plt;
14266 struct arm_plt_info *arm_plt;
14268 r_symndx = ELF32_R_SYM (rel->r_info);
14269 if (r_symndx >= symtab_hdr->sh_info)
14271 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14272 while (h->root.type == bfd_link_hash_indirect
14273 || h->root.type == bfd_link_hash_warning)
14274 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14276 eh = (struct elf32_arm_link_hash_entry *) h;
14278 call_reloc_p = FALSE;
14279 may_become_dynamic_p = FALSE;
14280 may_need_local_target_p = FALSE;
14282 r_type = ELF32_R_TYPE (rel->r_info);
14283 r_type = arm_real_reloc_type (globals, r_type);
14287 case R_ARM_GOT_PREL:
14288 case R_ARM_TLS_GD32:
14289 case R_ARM_TLS_IE32:
14292 if (h->got.refcount > 0)
14293 h->got.refcount -= 1;
14295 else if (local_got_refcounts != NULL)
14297 if (local_got_refcounts[r_symndx] > 0)
14298 local_got_refcounts[r_symndx] -= 1;
14302 case R_ARM_TLS_LDM32:
14303 globals->tls_ldm_got.refcount -= 1;
14311 case R_ARM_THM_CALL:
14312 case R_ARM_THM_JUMP24:
14313 case R_ARM_THM_JUMP19:
14314 call_reloc_p = TRUE;
14315 may_need_local_target_p = TRUE;
14319 if (!globals->vxworks_p)
14321 may_need_local_target_p = TRUE;
14324 /* Fall through. */
14326 case R_ARM_ABS32_NOI:
14328 case R_ARM_REL32_NOI:
14329 case R_ARM_MOVW_ABS_NC:
14330 case R_ARM_MOVT_ABS:
14331 case R_ARM_MOVW_PREL_NC:
14332 case R_ARM_MOVT_PREL:
14333 case R_ARM_THM_MOVW_ABS_NC:
14334 case R_ARM_THM_MOVT_ABS:
14335 case R_ARM_THM_MOVW_PREL_NC:
14336 case R_ARM_THM_MOVT_PREL:
14337 /* Should the interworking branches be here also? */
14338 if ((bfd_link_pic (info) || globals->root.is_relocatable_executable)
14339 && (sec->flags & SEC_ALLOC) != 0)
14342 && elf32_arm_howto_from_type (r_type)->pc_relative)
14344 call_reloc_p = TRUE;
14345 may_need_local_target_p = TRUE;
14348 may_become_dynamic_p = TRUE;
14351 may_need_local_target_p = TRUE;
14358 if (may_need_local_target_p
14359 && elf32_arm_get_plt_info (abfd, globals, eh, r_symndx, &root_plt,
14362 /* If PLT refcount book-keeping is wrong and too low, we'll
14363 see a zero value (going to -1) for the root PLT reference
14365 if (root_plt->refcount >= 0)
14367 BFD_ASSERT (root_plt->refcount != 0);
14368 root_plt->refcount -= 1;
14371 /* A value of -1 means the symbol has become local, forced
14372 or seeing a hidden definition. Any other negative value
14374 BFD_ASSERT (root_plt->refcount == -1);
14377 arm_plt->noncall_refcount--;
14379 if (r_type == R_ARM_THM_CALL)
14380 arm_plt->maybe_thumb_refcount--;
14382 if (r_type == R_ARM_THM_JUMP24
14383 || r_type == R_ARM_THM_JUMP19)
14384 arm_plt->thumb_refcount--;
14387 if (may_become_dynamic_p)
14389 struct elf_dyn_relocs **pp;
14390 struct elf_dyn_relocs *p;
14393 pp = &(eh->dyn_relocs);
14396 Elf_Internal_Sym *isym;
14398 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
14402 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14406 for (; (p = *pp) != NULL; pp = &p->next)
14409 /* Everything must go for SEC. */
14419 /* Look through the relocs for a section during the first phase. */
14422 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
14423 asection *sec, const Elf_Internal_Rela *relocs)
14425 Elf_Internal_Shdr *symtab_hdr;
14426 struct elf_link_hash_entry **sym_hashes;
14427 const Elf_Internal_Rela *rel;
14428 const Elf_Internal_Rela *rel_end;
14431 struct elf32_arm_link_hash_table *htab;
14432 bfd_boolean call_reloc_p;
14433 bfd_boolean may_become_dynamic_p;
14434 bfd_boolean may_need_local_target_p;
14435 unsigned long nsyms;
14437 if (bfd_link_relocatable (info))
14440 BFD_ASSERT (is_arm_elf (abfd));
14442 htab = elf32_arm_hash_table (info);
14448 /* Create dynamic sections for relocatable executables so that we can
14449 copy relocations. */
14450 if (htab->root.is_relocatable_executable
14451 && ! htab->root.dynamic_sections_created)
14453 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
14457 if (htab->root.dynobj == NULL)
14458 htab->root.dynobj = abfd;
14459 if (!create_ifunc_sections (info))
14462 dynobj = htab->root.dynobj;
14464 symtab_hdr = & elf_symtab_hdr (abfd);
14465 sym_hashes = elf_sym_hashes (abfd);
14466 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
14468 rel_end = relocs + sec->reloc_count;
14469 for (rel = relocs; rel < rel_end; rel++)
14471 Elf_Internal_Sym *isym;
14472 struct elf_link_hash_entry *h;
14473 struct elf32_arm_link_hash_entry *eh;
14474 unsigned long r_symndx;
14477 r_symndx = ELF32_R_SYM (rel->r_info);
14478 r_type = ELF32_R_TYPE (rel->r_info);
14479 r_type = arm_real_reloc_type (htab, r_type);
14481 if (r_symndx >= nsyms
14482 /* PR 9934: It is possible to have relocations that do not
14483 refer to symbols, thus it is also possible to have an
14484 object file containing relocations but no symbol table. */
14485 && (r_symndx > STN_UNDEF || nsyms > 0))
14487 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
14496 if (r_symndx < symtab_hdr->sh_info)
14498 /* A local symbol. */
14499 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
14506 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14507 while (h->root.type == bfd_link_hash_indirect
14508 || h->root.type == bfd_link_hash_warning)
14509 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14511 /* PR15323, ref flags aren't set for references in the
14513 h->root.non_ir_ref = 1;
14517 eh = (struct elf32_arm_link_hash_entry *) h;
14519 call_reloc_p = FALSE;
14520 may_become_dynamic_p = FALSE;
14521 may_need_local_target_p = FALSE;
14523 /* Could be done earlier, if h were already available. */
14524 r_type = elf32_arm_tls_transition (info, r_type, h);
14528 case R_ARM_GOT_PREL:
14529 case R_ARM_TLS_GD32:
14530 case R_ARM_TLS_IE32:
14531 case R_ARM_TLS_GOTDESC:
14532 case R_ARM_TLS_DESCSEQ:
14533 case R_ARM_THM_TLS_DESCSEQ:
14534 case R_ARM_TLS_CALL:
14535 case R_ARM_THM_TLS_CALL:
14536 /* This symbol requires a global offset table entry. */
14538 int tls_type, old_tls_type;
14542 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
14544 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
14546 case R_ARM_TLS_GOTDESC:
14547 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
14548 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
14549 tls_type = GOT_TLS_GDESC; break;
14551 default: tls_type = GOT_NORMAL; break;
14554 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
14555 info->flags |= DF_STATIC_TLS;
14560 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
14564 /* This is a global offset table entry for a local symbol. */
14565 if (!elf32_arm_allocate_local_sym_info (abfd))
14567 elf_local_got_refcounts (abfd)[r_symndx] += 1;
14568 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
14571 /* If a variable is accessed with both tls methods, two
14572 slots may be created. */
14573 if (GOT_TLS_GD_ANY_P (old_tls_type)
14574 && GOT_TLS_GD_ANY_P (tls_type))
14575 tls_type |= old_tls_type;
14577 /* We will already have issued an error message if there
14578 is a TLS/non-TLS mismatch, based on the symbol
14579 type. So just combine any TLS types needed. */
14580 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
14581 && tls_type != GOT_NORMAL)
14582 tls_type |= old_tls_type;
14584 /* If the symbol is accessed in both IE and GDESC
14585 method, we're able to relax. Turn off the GDESC flag,
14586 without messing up with any other kind of tls types
14587 that may be involved. */
14588 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
14589 tls_type &= ~GOT_TLS_GDESC;
14591 if (old_tls_type != tls_type)
14594 elf32_arm_hash_entry (h)->tls_type = tls_type;
14596 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
14599 /* Fall through. */
14601 case R_ARM_TLS_LDM32:
14602 if (r_type == R_ARM_TLS_LDM32)
14603 htab->tls_ldm_got.refcount++;
14604 /* Fall through. */
14606 case R_ARM_GOTOFF32:
14608 if (htab->root.sgot == NULL
14609 && !create_got_section (htab->root.dynobj, info))
14618 case R_ARM_THM_CALL:
14619 case R_ARM_THM_JUMP24:
14620 case R_ARM_THM_JUMP19:
14621 call_reloc_p = TRUE;
14622 may_need_local_target_p = TRUE;
14626 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
14627 ldr __GOTT_INDEX__ offsets. */
14628 if (!htab->vxworks_p)
14630 may_need_local_target_p = TRUE;
14633 else goto jump_over;
14635 /* Fall through. */
14637 case R_ARM_MOVW_ABS_NC:
14638 case R_ARM_MOVT_ABS:
14639 case R_ARM_THM_MOVW_ABS_NC:
14640 case R_ARM_THM_MOVT_ABS:
14641 if (bfd_link_pic (info))
14643 (*_bfd_error_handler)
14644 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
14645 abfd, elf32_arm_howto_table_1[r_type].name,
14646 (h) ? h->root.root.string : "a local symbol");
14647 bfd_set_error (bfd_error_bad_value);
14651 /* Fall through. */
14653 case R_ARM_ABS32_NOI:
14655 if (h != NULL && bfd_link_executable (info))
14657 h->pointer_equality_needed = 1;
14659 /* Fall through. */
14661 case R_ARM_REL32_NOI:
14662 case R_ARM_MOVW_PREL_NC:
14663 case R_ARM_MOVT_PREL:
14664 case R_ARM_THM_MOVW_PREL_NC:
14665 case R_ARM_THM_MOVT_PREL:
14667 /* Should the interworking branches be listed here? */
14668 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable)
14669 && (sec->flags & SEC_ALLOC) != 0)
14672 && elf32_arm_howto_from_type (r_type)->pc_relative)
14674 /* In shared libraries and relocatable executables,
14675 we treat local relative references as calls;
14676 see the related SYMBOL_CALLS_LOCAL code in
14677 allocate_dynrelocs. */
14678 call_reloc_p = TRUE;
14679 may_need_local_target_p = TRUE;
14682 /* We are creating a shared library or relocatable
14683 executable, and this is a reloc against a global symbol,
14684 or a non-PC-relative reloc against a local symbol.
14685 We may need to copy the reloc into the output. */
14686 may_become_dynamic_p = TRUE;
14689 may_need_local_target_p = TRUE;
14692 /* This relocation describes the C++ object vtable hierarchy.
14693 Reconstruct it for later use during GC. */
14694 case R_ARM_GNU_VTINHERIT:
14695 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
14699 /* This relocation describes which C++ vtable entries are actually
14700 used. Record for later use during GC. */
14701 case R_ARM_GNU_VTENTRY:
14702 BFD_ASSERT (h != NULL);
14704 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
14712 /* We may need a .plt entry if the function this reloc
14713 refers to is in a different object, regardless of the
14714 symbol's type. We can't tell for sure yet, because
14715 something later might force the symbol local. */
14717 else if (may_need_local_target_p)
14718 /* If this reloc is in a read-only section, we might
14719 need a copy reloc. We can't check reliably at this
14720 stage whether the section is read-only, as input
14721 sections have not yet been mapped to output sections.
14722 Tentatively set the flag for now, and correct in
14723 adjust_dynamic_symbol. */
14724 h->non_got_ref = 1;
14727 if (may_need_local_target_p
14728 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
14730 union gotplt_union *root_plt;
14731 struct arm_plt_info *arm_plt;
14732 struct arm_local_iplt_info *local_iplt;
14736 root_plt = &h->plt;
14737 arm_plt = &eh->plt;
14741 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
14742 if (local_iplt == NULL)
14744 root_plt = &local_iplt->root;
14745 arm_plt = &local_iplt->arm;
14748 /* If the symbol is a function that doesn't bind locally,
14749 this relocation will need a PLT entry. */
14750 if (root_plt->refcount != -1)
14751 root_plt->refcount += 1;
14754 arm_plt->noncall_refcount++;
14756 /* It's too early to use htab->use_blx here, so we have to
14757 record possible blx references separately from
14758 relocs that definitely need a thumb stub. */
14760 if (r_type == R_ARM_THM_CALL)
14761 arm_plt->maybe_thumb_refcount += 1;
14763 if (r_type == R_ARM_THM_JUMP24
14764 || r_type == R_ARM_THM_JUMP19)
14765 arm_plt->thumb_refcount += 1;
14768 if (may_become_dynamic_p)
14770 struct elf_dyn_relocs *p, **head;
14772 /* Create a reloc section in dynobj. */
14773 if (sreloc == NULL)
14775 sreloc = _bfd_elf_make_dynamic_reloc_section
14776 (sec, dynobj, 2, abfd, ! htab->use_rel);
14778 if (sreloc == NULL)
14781 /* BPABI objects never have dynamic relocations mapped. */
14782 if (htab->symbian_p)
14786 flags = bfd_get_section_flags (dynobj, sreloc);
14787 flags &= ~(SEC_LOAD | SEC_ALLOC);
14788 bfd_set_section_flags (dynobj, sreloc, flags);
14792 /* If this is a global symbol, count the number of
14793 relocations we need for this symbol. */
14795 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
14798 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14804 if (p == NULL || p->sec != sec)
14806 bfd_size_type amt = sizeof *p;
14808 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
14818 if (elf32_arm_howto_from_type (r_type)->pc_relative)
14827 /* Unwinding tables are not referenced directly. This pass marks them as
14828 required if the corresponding code section is marked. Similarly, ARMv8-M
14829 secure entry functions can only be referenced by SG veneers which are
14830 created after the GC process. They need to be marked in case they reside in
14831 their own section (as would be the case if code was compiled with
14832 -ffunction-sections). */
14835 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
14836 elf_gc_mark_hook_fn gc_mark_hook)
14839 Elf_Internal_Shdr **elf_shdrp;
14840 asection *cmse_sec;
14841 obj_attribute *out_attr;
14842 Elf_Internal_Shdr *symtab_hdr;
14843 unsigned i, sym_count, ext_start;
14844 const struct elf_backend_data *bed;
14845 struct elf_link_hash_entry **sym_hashes;
14846 struct elf32_arm_link_hash_entry *cmse_hash;
14847 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
14849 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
14851 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
14852 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
14853 && out_attr[Tag_CPU_arch_profile].i == 'M';
14855 /* Marking EH data may cause additional code sections to be marked,
14856 requiring multiple passes. */
14861 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
14865 if (! is_arm_elf (sub))
14868 elf_shdrp = elf_elfsections (sub);
14869 for (o = sub->sections; o != NULL; o = o->next)
14871 Elf_Internal_Shdr *hdr;
14873 hdr = &elf_section_data (o)->this_hdr;
14874 if (hdr->sh_type == SHT_ARM_EXIDX
14876 && hdr->sh_link < elf_numsections (sub)
14878 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
14881 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
14886 /* Mark section holding ARMv8-M secure entry functions. We mark all
14887 of them so no need for a second browsing. */
14888 if (is_v8m && first_bfd_browse)
14890 sym_hashes = elf_sym_hashes (sub);
14891 bed = get_elf_backend_data (sub);
14892 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
14893 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
14894 ext_start = symtab_hdr->sh_info;
14896 /* Scan symbols. */
14897 for (i = ext_start; i < sym_count; i++)
14899 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
14901 /* Assume it is a special symbol. If not, cmse_scan will
14902 warn about it and user can do something about it. */
14903 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
14905 cmse_sec = cmse_hash->root.root.u.def.section;
14906 if (!_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
14912 first_bfd_browse = FALSE;
14918 /* Treat mapping symbols as special target symbols. */
14921 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
14923 return bfd_is_arm_special_symbol_name (sym->name,
14924 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
14927 /* This is a copy of elf_find_function() from elf.c except that
14928 ARM mapping symbols are ignored when looking for function names
14929 and STT_ARM_TFUNC is considered to a function type. */
14932 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
14933 asymbol ** symbols,
14934 asection * section,
14936 const char ** filename_ptr,
14937 const char ** functionname_ptr)
14939 const char * filename = NULL;
14940 asymbol * func = NULL;
14941 bfd_vma low_func = 0;
14944 for (p = symbols; *p != NULL; p++)
14946 elf_symbol_type *q;
14948 q = (elf_symbol_type *) *p;
14950 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
14955 filename = bfd_asymbol_name (&q->symbol);
14958 case STT_ARM_TFUNC:
14960 /* Skip mapping symbols. */
14961 if ((q->symbol.flags & BSF_LOCAL)
14962 && bfd_is_arm_special_symbol_name (q->symbol.name,
14963 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
14965 /* Fall through. */
14966 if (bfd_get_section (&q->symbol) == section
14967 && q->symbol.value >= low_func
14968 && q->symbol.value <= offset)
14970 func = (asymbol *) q;
14971 low_func = q->symbol.value;
14981 *filename_ptr = filename;
14982 if (functionname_ptr)
14983 *functionname_ptr = bfd_asymbol_name (func);
14989 /* Find the nearest line to a particular section and offset, for error
14990 reporting. This code is a duplicate of the code in elf.c, except
14991 that it uses arm_elf_find_function. */
14994 elf32_arm_find_nearest_line (bfd * abfd,
14995 asymbol ** symbols,
14996 asection * section,
14998 const char ** filename_ptr,
14999 const char ** functionname_ptr,
15000 unsigned int * line_ptr,
15001 unsigned int * discriminator_ptr)
15003 bfd_boolean found = FALSE;
15005 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
15006 filename_ptr, functionname_ptr,
15007 line_ptr, discriminator_ptr,
15008 dwarf_debug_sections, 0,
15009 & elf_tdata (abfd)->dwarf2_find_line_info))
15011 if (!*functionname_ptr)
15012 arm_elf_find_function (abfd, symbols, section, offset,
15013 *filename_ptr ? NULL : filename_ptr,
15019 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
15022 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
15023 & found, filename_ptr,
15024 functionname_ptr, line_ptr,
15025 & elf_tdata (abfd)->line_info))
15028 if (found && (*functionname_ptr || *line_ptr))
15031 if (symbols == NULL)
15034 if (! arm_elf_find_function (abfd, symbols, section, offset,
15035 filename_ptr, functionname_ptr))
15043 elf32_arm_find_inliner_info (bfd * abfd,
15044 const char ** filename_ptr,
15045 const char ** functionname_ptr,
15046 unsigned int * line_ptr)
15049 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
15050 functionname_ptr, line_ptr,
15051 & elf_tdata (abfd)->dwarf2_find_line_info);
15055 /* Adjust a symbol defined by a dynamic object and referenced by a
15056 regular object. The current definition is in some section of the
15057 dynamic object, but we're not including those sections. We have to
15058 change the definition to something the rest of the link can
15062 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
15063 struct elf_link_hash_entry * h)
15067 struct elf32_arm_link_hash_entry * eh;
15068 struct elf32_arm_link_hash_table *globals;
15070 globals = elf32_arm_hash_table (info);
15071 if (globals == NULL)
15074 dynobj = elf_hash_table (info)->dynobj;
15076 /* Make sure we know what is going on here. */
15077 BFD_ASSERT (dynobj != NULL
15079 || h->type == STT_GNU_IFUNC
15080 || h->u.weakdef != NULL
15083 && !h->def_regular)));
15085 eh = (struct elf32_arm_link_hash_entry *) h;
15087 /* If this is a function, put it in the procedure linkage table. We
15088 will fill in the contents of the procedure linkage table later,
15089 when we know the address of the .got section. */
15090 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
15092 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
15093 symbol binds locally. */
15094 if (h->plt.refcount <= 0
15095 || (h->type != STT_GNU_IFUNC
15096 && (SYMBOL_CALLS_LOCAL (info, h)
15097 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
15098 && h->root.type == bfd_link_hash_undefweak))))
15100 /* This case can occur if we saw a PLT32 reloc in an input
15101 file, but the symbol was never referred to by a dynamic
15102 object, or if all references were garbage collected. In
15103 such a case, we don't actually need to build a procedure
15104 linkage table, and we can just do a PC24 reloc instead. */
15105 h->plt.offset = (bfd_vma) -1;
15106 eh->plt.thumb_refcount = 0;
15107 eh->plt.maybe_thumb_refcount = 0;
15108 eh->plt.noncall_refcount = 0;
15116 /* It's possible that we incorrectly decided a .plt reloc was
15117 needed for an R_ARM_PC24 or similar reloc to a non-function sym
15118 in check_relocs. We can't decide accurately between function
15119 and non-function syms in check-relocs; Objects loaded later in
15120 the link may change h->type. So fix it now. */
15121 h->plt.offset = (bfd_vma) -1;
15122 eh->plt.thumb_refcount = 0;
15123 eh->plt.maybe_thumb_refcount = 0;
15124 eh->plt.noncall_refcount = 0;
15127 /* If this is a weak symbol, and there is a real definition, the
15128 processor independent code will have arranged for us to see the
15129 real definition first, and we can just use the same value. */
15130 if (h->u.weakdef != NULL)
15132 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
15133 || h->u.weakdef->root.type == bfd_link_hash_defweak);
15134 h->root.u.def.section = h->u.weakdef->root.u.def.section;
15135 h->root.u.def.value = h->u.weakdef->root.u.def.value;
15139 /* If there are no non-GOT references, we do not need a copy
15141 if (!h->non_got_ref)
15144 /* This is a reference to a symbol defined by a dynamic object which
15145 is not a function. */
15147 /* If we are creating a shared library, we must presume that the
15148 only references to the symbol are via the global offset table.
15149 For such cases we need not do anything here; the relocations will
15150 be handled correctly by relocate_section. Relocatable executables
15151 can reference data in shared objects directly, so we don't need to
15152 do anything here. */
15153 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
15156 /* We must allocate the symbol in our .dynbss section, which will
15157 become part of the .bss section of the executable. There will be
15158 an entry for this symbol in the .dynsym section. The dynamic
15159 object will contain position independent code, so all references
15160 from the dynamic object to this symbol will go through the global
15161 offset table. The dynamic linker will use the .dynsym entry to
15162 determine the address it must put in the global offset table, so
15163 both the dynamic object and the regular object will refer to the
15164 same memory location for the variable. */
15165 s = bfd_get_linker_section (dynobj, ".dynbss");
15166 BFD_ASSERT (s != NULL);
15168 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
15169 linker to copy the initial value out of the dynamic object and into
15170 the runtime process image. We need to remember the offset into the
15171 .rel(a).bss section we are going to use. */
15172 if (info->nocopyreloc == 0
15173 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
15178 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
15179 elf32_arm_allocate_dynrelocs (info, srel, 1);
15183 return _bfd_elf_adjust_dynamic_copy (info, h, s);
15186 /* Allocate space in .plt, .got and associated reloc sections for
15190 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
15192 struct bfd_link_info *info;
15193 struct elf32_arm_link_hash_table *htab;
15194 struct elf32_arm_link_hash_entry *eh;
15195 struct elf_dyn_relocs *p;
15197 if (h->root.type == bfd_link_hash_indirect)
15200 eh = (struct elf32_arm_link_hash_entry *) h;
15202 info = (struct bfd_link_info *) inf;
15203 htab = elf32_arm_hash_table (info);
15207 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
15208 && h->plt.refcount > 0)
15210 /* Make sure this symbol is output as a dynamic symbol.
15211 Undefined weak syms won't yet be marked as dynamic. */
15212 if (h->dynindx == -1
15213 && !h->forced_local)
15215 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15219 /* If the call in the PLT entry binds locally, the associated
15220 GOT entry should use an R_ARM_IRELATIVE relocation instead of
15221 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
15222 than the .plt section. */
15223 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
15226 if (eh->plt.noncall_refcount == 0
15227 && SYMBOL_REFERENCES_LOCAL (info, h))
15228 /* All non-call references can be resolved directly.
15229 This means that they can (and in some cases, must)
15230 resolve directly to the run-time target, rather than
15231 to the PLT. That in turns means that any .got entry
15232 would be equal to the .igot.plt entry, so there's
15233 no point having both. */
15234 h->got.refcount = 0;
15237 if (bfd_link_pic (info)
15239 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
15241 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
15243 /* If this symbol is not defined in a regular file, and we are
15244 not generating a shared library, then set the symbol to this
15245 location in the .plt. This is required to make function
15246 pointers compare as equal between the normal executable and
15247 the shared library. */
15248 if (! bfd_link_pic (info)
15249 && !h->def_regular)
15251 h->root.u.def.section = htab->root.splt;
15252 h->root.u.def.value = h->plt.offset;
15254 /* Make sure the function is not marked as Thumb, in case
15255 it is the target of an ABS32 relocation, which will
15256 point to the PLT entry. */
15257 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15260 /* VxWorks executables have a second set of relocations for
15261 each PLT entry. They go in a separate relocation section,
15262 which is processed by the kernel loader. */
15263 if (htab->vxworks_p && !bfd_link_pic (info))
15265 /* There is a relocation for the initial PLT entry:
15266 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
15267 if (h->plt.offset == htab->plt_header_size)
15268 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
15270 /* There are two extra relocations for each subsequent
15271 PLT entry: an R_ARM_32 relocation for the GOT entry,
15272 and an R_ARM_32 relocation for the PLT entry. */
15273 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
15278 h->plt.offset = (bfd_vma) -1;
15284 h->plt.offset = (bfd_vma) -1;
15288 eh = (struct elf32_arm_link_hash_entry *) h;
15289 eh->tlsdesc_got = (bfd_vma) -1;
15291 if (h->got.refcount > 0)
15295 int tls_type = elf32_arm_hash_entry (h)->tls_type;
15298 /* Make sure this symbol is output as a dynamic symbol.
15299 Undefined weak syms won't yet be marked as dynamic. */
15300 if (h->dynindx == -1
15301 && !h->forced_local)
15303 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15307 if (!htab->symbian_p)
15309 s = htab->root.sgot;
15310 h->got.offset = s->size;
15312 if (tls_type == GOT_UNKNOWN)
15315 if (tls_type == GOT_NORMAL)
15316 /* Non-TLS symbols need one GOT slot. */
15320 if (tls_type & GOT_TLS_GDESC)
15322 /* R_ARM_TLS_DESC needs 2 GOT slots. */
15324 = (htab->root.sgotplt->size
15325 - elf32_arm_compute_jump_table_size (htab));
15326 htab->root.sgotplt->size += 8;
15327 h->got.offset = (bfd_vma) -2;
15328 /* plt.got_offset needs to know there's a TLS_DESC
15329 reloc in the middle of .got.plt. */
15330 htab->num_tls_desc++;
15333 if (tls_type & GOT_TLS_GD)
15335 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
15336 the symbol is both GD and GDESC, got.offset may
15337 have been overwritten. */
15338 h->got.offset = s->size;
15342 if (tls_type & GOT_TLS_IE)
15343 /* R_ARM_TLS_IE32 needs one GOT slot. */
15347 dyn = htab->root.dynamic_sections_created;
15350 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
15351 bfd_link_pic (info),
15353 && (!bfd_link_pic (info)
15354 || !SYMBOL_REFERENCES_LOCAL (info, h)))
15357 if (tls_type != GOT_NORMAL
15358 && (bfd_link_pic (info) || indx != 0)
15359 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15360 || h->root.type != bfd_link_hash_undefweak))
15362 if (tls_type & GOT_TLS_IE)
15363 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15365 if (tls_type & GOT_TLS_GD)
15366 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15368 if (tls_type & GOT_TLS_GDESC)
15370 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
15371 /* GDESC needs a trampoline to jump to. */
15372 htab->tls_trampoline = -1;
15375 /* Only GD needs it. GDESC just emits one relocation per
15377 if ((tls_type & GOT_TLS_GD) && indx != 0)
15378 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15380 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
15382 if (htab->root.dynamic_sections_created)
15383 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
15384 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15386 else if (h->type == STT_GNU_IFUNC
15387 && eh->plt.noncall_refcount == 0)
15388 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
15389 they all resolve dynamically instead. Reserve room for the
15390 GOT entry's R_ARM_IRELATIVE relocation. */
15391 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
15392 else if (bfd_link_pic (info)
15393 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15394 || h->root.type != bfd_link_hash_undefweak))
15395 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
15396 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15400 h->got.offset = (bfd_vma) -1;
15402 /* Allocate stubs for exported Thumb functions on v4t. */
15403 if (!htab->use_blx && h->dynindx != -1
15405 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
15406 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15408 struct elf_link_hash_entry * th;
15409 struct bfd_link_hash_entry * bh;
15410 struct elf_link_hash_entry * myh;
15414 /* Create a new symbol to regist the real location of the function. */
15415 s = h->root.u.def.section;
15416 sprintf (name, "__real_%s", h->root.root.string);
15417 _bfd_generic_link_add_one_symbol (info, s->owner,
15418 name, BSF_GLOBAL, s,
15419 h->root.u.def.value,
15420 NULL, TRUE, FALSE, &bh);
15422 myh = (struct elf_link_hash_entry *) bh;
15423 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
15424 myh->forced_local = 1;
15425 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
15426 eh->export_glue = myh;
15427 th = record_arm_to_thumb_glue (info, h);
15428 /* Point the symbol at the stub. */
15429 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
15430 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15431 h->root.u.def.section = th->root.u.def.section;
15432 h->root.u.def.value = th->root.u.def.value & ~1;
15435 if (eh->dyn_relocs == NULL)
15438 /* In the shared -Bsymbolic case, discard space allocated for
15439 dynamic pc-relative relocs against symbols which turn out to be
15440 defined in regular objects. For the normal shared case, discard
15441 space for pc-relative relocs that have become local due to symbol
15442 visibility changes. */
15444 if (bfd_link_pic (info) || htab->root.is_relocatable_executable)
15446 /* Relocs that use pc_count are PC-relative forms, which will appear
15447 on something like ".long foo - ." or "movw REG, foo - .". We want
15448 calls to protected symbols to resolve directly to the function
15449 rather than going via the plt. If people want function pointer
15450 comparisons to work as expected then they should avoid writing
15451 assembly like ".long foo - .". */
15452 if (SYMBOL_CALLS_LOCAL (info, h))
15454 struct elf_dyn_relocs **pp;
15456 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15458 p->count -= p->pc_count;
15467 if (htab->vxworks_p)
15469 struct elf_dyn_relocs **pp;
15471 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15473 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
15480 /* Also discard relocs on undefined weak syms with non-default
15482 if (eh->dyn_relocs != NULL
15483 && h->root.type == bfd_link_hash_undefweak)
15485 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
15486 eh->dyn_relocs = NULL;
15488 /* Make sure undefined weak symbols are output as a dynamic
15490 else if (h->dynindx == -1
15491 && !h->forced_local)
15493 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15498 else if (htab->root.is_relocatable_executable && h->dynindx == -1
15499 && h->root.type == bfd_link_hash_new)
15501 /* Output absolute symbols so that we can create relocations
15502 against them. For normal symbols we output a relocation
15503 against the section that contains them. */
15504 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15511 /* For the non-shared case, discard space for relocs against
15512 symbols which turn out to need copy relocs or are not
15515 if (!h->non_got_ref
15516 && ((h->def_dynamic
15517 && !h->def_regular)
15518 || (htab->root.dynamic_sections_created
15519 && (h->root.type == bfd_link_hash_undefweak
15520 || h->root.type == bfd_link_hash_undefined))))
15522 /* Make sure this symbol is output as a dynamic symbol.
15523 Undefined weak syms won't yet be marked as dynamic. */
15524 if (h->dynindx == -1
15525 && !h->forced_local)
15527 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15531 /* If that succeeded, we know we'll be keeping all the
15533 if (h->dynindx != -1)
15537 eh->dyn_relocs = NULL;
15542 /* Finally, allocate space. */
15543 for (p = eh->dyn_relocs; p != NULL; p = p->next)
15545 asection *sreloc = elf_section_data (p->sec)->sreloc;
15546 if (h->type == STT_GNU_IFUNC
15547 && eh->plt.noncall_refcount == 0
15548 && SYMBOL_REFERENCES_LOCAL (info, h))
15549 elf32_arm_allocate_irelocs (info, sreloc, p->count);
15551 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
15557 /* Find any dynamic relocs that apply to read-only sections. */
15560 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
15562 struct elf32_arm_link_hash_entry * eh;
15563 struct elf_dyn_relocs * p;
15565 eh = (struct elf32_arm_link_hash_entry *) h;
15566 for (p = eh->dyn_relocs; p != NULL; p = p->next)
15568 asection *s = p->sec;
15570 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15572 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15574 info->flags |= DF_TEXTREL;
15576 /* Not an error, just cut short the traversal. */
15584 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
15587 struct elf32_arm_link_hash_table *globals;
15589 globals = elf32_arm_hash_table (info);
15590 if (globals == NULL)
15593 globals->byteswap_code = byteswap_code;
15596 /* Set the sizes of the dynamic sections. */
15599 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
15600 struct bfd_link_info * info)
15605 bfd_boolean relocs;
15607 struct elf32_arm_link_hash_table *htab;
15609 htab = elf32_arm_hash_table (info);
15613 dynobj = elf_hash_table (info)->dynobj;
15614 BFD_ASSERT (dynobj != NULL);
15615 check_use_blx (htab);
15617 if (elf_hash_table (info)->dynamic_sections_created)
15619 /* Set the contents of the .interp section to the interpreter. */
15620 if (bfd_link_executable (info) && !info->nointerp)
15622 s = bfd_get_linker_section (dynobj, ".interp");
15623 BFD_ASSERT (s != NULL);
15624 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
15625 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
15629 /* Set up .got offsets for local syms, and space for local dynamic
15631 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
15633 bfd_signed_vma *local_got;
15634 bfd_signed_vma *end_local_got;
15635 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
15636 char *local_tls_type;
15637 bfd_vma *local_tlsdesc_gotent;
15638 bfd_size_type locsymcount;
15639 Elf_Internal_Shdr *symtab_hdr;
15641 bfd_boolean is_vxworks = htab->vxworks_p;
15642 unsigned int symndx;
15644 if (! is_arm_elf (ibfd))
15647 for (s = ibfd->sections; s != NULL; s = s->next)
15649 struct elf_dyn_relocs *p;
15651 for (p = (struct elf_dyn_relocs *)
15652 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
15654 if (!bfd_is_abs_section (p->sec)
15655 && bfd_is_abs_section (p->sec->output_section))
15657 /* Input section has been discarded, either because
15658 it is a copy of a linkonce section or due to
15659 linker script /DISCARD/, so we'll be discarding
15662 else if (is_vxworks
15663 && strcmp (p->sec->output_section->name,
15666 /* Relocations in vxworks .tls_vars sections are
15667 handled specially by the loader. */
15669 else if (p->count != 0)
15671 srel = elf_section_data (p->sec)->sreloc;
15672 elf32_arm_allocate_dynrelocs (info, srel, p->count);
15673 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
15674 info->flags |= DF_TEXTREL;
15679 local_got = elf_local_got_refcounts (ibfd);
15683 symtab_hdr = & elf_symtab_hdr (ibfd);
15684 locsymcount = symtab_hdr->sh_info;
15685 end_local_got = local_got + locsymcount;
15686 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
15687 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
15688 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
15690 s = htab->root.sgot;
15691 srel = htab->root.srelgot;
15692 for (; local_got < end_local_got;
15693 ++local_got, ++local_iplt_ptr, ++local_tls_type,
15694 ++local_tlsdesc_gotent, ++symndx)
15696 *local_tlsdesc_gotent = (bfd_vma) -1;
15697 local_iplt = *local_iplt_ptr;
15698 if (local_iplt != NULL)
15700 struct elf_dyn_relocs *p;
15702 if (local_iplt->root.refcount > 0)
15704 elf32_arm_allocate_plt_entry (info, TRUE,
15707 if (local_iplt->arm.noncall_refcount == 0)
15708 /* All references to the PLT are calls, so all
15709 non-call references can resolve directly to the
15710 run-time target. This means that the .got entry
15711 would be the same as the .igot.plt entry, so there's
15712 no point creating both. */
15717 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
15718 local_iplt->root.offset = (bfd_vma) -1;
15721 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
15725 psrel = elf_section_data (p->sec)->sreloc;
15726 if (local_iplt->arm.noncall_refcount == 0)
15727 elf32_arm_allocate_irelocs (info, psrel, p->count);
15729 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
15732 if (*local_got > 0)
15734 Elf_Internal_Sym *isym;
15736 *local_got = s->size;
15737 if (*local_tls_type & GOT_TLS_GD)
15738 /* TLS_GD relocs need an 8-byte structure in the GOT. */
15740 if (*local_tls_type & GOT_TLS_GDESC)
15742 *local_tlsdesc_gotent = htab->root.sgotplt->size
15743 - elf32_arm_compute_jump_table_size (htab);
15744 htab->root.sgotplt->size += 8;
15745 *local_got = (bfd_vma) -2;
15746 /* plt.got_offset needs to know there's a TLS_DESC
15747 reloc in the middle of .got.plt. */
15748 htab->num_tls_desc++;
15750 if (*local_tls_type & GOT_TLS_IE)
15753 if (*local_tls_type & GOT_NORMAL)
15755 /* If the symbol is both GD and GDESC, *local_got
15756 may have been overwritten. */
15757 *local_got = s->size;
15761 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
15765 /* If all references to an STT_GNU_IFUNC PLT are calls,
15766 then all non-call references, including this GOT entry,
15767 resolve directly to the run-time target. */
15768 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
15769 && (local_iplt == NULL
15770 || local_iplt->arm.noncall_refcount == 0))
15771 elf32_arm_allocate_irelocs (info, srel, 1);
15772 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC)
15774 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC))
15775 || *local_tls_type & GOT_TLS_GD)
15776 elf32_arm_allocate_dynrelocs (info, srel, 1);
15778 if (bfd_link_pic (info) && *local_tls_type & GOT_TLS_GDESC)
15780 elf32_arm_allocate_dynrelocs (info,
15781 htab->root.srelplt, 1);
15782 htab->tls_trampoline = -1;
15787 *local_got = (bfd_vma) -1;
15791 if (htab->tls_ldm_got.refcount > 0)
15793 /* Allocate two GOT entries and one dynamic relocation (if necessary)
15794 for R_ARM_TLS_LDM32 relocations. */
15795 htab->tls_ldm_got.offset = htab->root.sgot->size;
15796 htab->root.sgot->size += 8;
15797 if (bfd_link_pic (info))
15798 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15801 htab->tls_ldm_got.offset = -1;
15803 /* Allocate global sym .plt and .got entries, and space for global
15804 sym dynamic relocs. */
15805 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
15807 /* Here we rummage through the found bfds to collect glue information. */
15808 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
15810 if (! is_arm_elf (ibfd))
15813 /* Initialise mapping tables for code/data. */
15814 bfd_elf32_arm_init_maps (ibfd);
15816 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
15817 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
15818 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
15819 /* xgettext:c-format */
15820 _bfd_error_handler (_("Errors encountered processing file %s"),
15824 /* Allocate space for the glue sections now that we've sized them. */
15825 bfd_elf32_arm_allocate_interworking_sections (info);
15827 /* For every jump slot reserved in the sgotplt, reloc_count is
15828 incremented. However, when we reserve space for TLS descriptors,
15829 it's not incremented, so in order to compute the space reserved
15830 for them, it suffices to multiply the reloc count by the jump
15832 if (htab->root.srelplt)
15833 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
15835 if (htab->tls_trampoline)
15837 if (htab->root.splt->size == 0)
15838 htab->root.splt->size += htab->plt_header_size;
15840 htab->tls_trampoline = htab->root.splt->size;
15841 htab->root.splt->size += htab->plt_entry_size;
15843 /* If we're not using lazy TLS relocations, don't generate the
15844 PLT and GOT entries they require. */
15845 if (!(info->flags & DF_BIND_NOW))
15847 htab->dt_tlsdesc_got = htab->root.sgot->size;
15848 htab->root.sgot->size += 4;
15850 htab->dt_tlsdesc_plt = htab->root.splt->size;
15851 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
15855 /* The check_relocs and adjust_dynamic_symbol entry points have
15856 determined the sizes of the various dynamic sections. Allocate
15857 memory for them. */
15860 for (s = dynobj->sections; s != NULL; s = s->next)
15864 if ((s->flags & SEC_LINKER_CREATED) == 0)
15867 /* It's OK to base decisions on the section name, because none
15868 of the dynobj section names depend upon the input files. */
15869 name = bfd_get_section_name (dynobj, s);
15871 if (s == htab->root.splt)
15873 /* Remember whether there is a PLT. */
15874 plt = s->size != 0;
15876 else if (CONST_STRNEQ (name, ".rel"))
15880 /* Remember whether there are any reloc sections other
15881 than .rel(a).plt and .rela.plt.unloaded. */
15882 if (s != htab->root.srelplt && s != htab->srelplt2)
15885 /* We use the reloc_count field as a counter if we need
15886 to copy relocs into the output file. */
15887 s->reloc_count = 0;
15890 else if (s != htab->root.sgot
15891 && s != htab->root.sgotplt
15892 && s != htab->root.iplt
15893 && s != htab->root.igotplt
15894 && s != htab->sdynbss)
15896 /* It's not one of our sections, so don't allocate space. */
15902 /* If we don't need this section, strip it from the
15903 output file. This is mostly to handle .rel(a).bss and
15904 .rel(a).plt. We must create both sections in
15905 create_dynamic_sections, because they must be created
15906 before the linker maps input sections to output
15907 sections. The linker does that before
15908 adjust_dynamic_symbol is called, and it is that
15909 function which decides whether anything needs to go
15910 into these sections. */
15911 s->flags |= SEC_EXCLUDE;
15915 if ((s->flags & SEC_HAS_CONTENTS) == 0)
15918 /* Allocate memory for the section contents. */
15919 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
15920 if (s->contents == NULL)
15924 if (elf_hash_table (info)->dynamic_sections_created)
15926 /* Add some entries to the .dynamic section. We fill in the
15927 values later, in elf32_arm_finish_dynamic_sections, but we
15928 must add the entries now so that we get the correct size for
15929 the .dynamic section. The DT_DEBUG entry is filled in by the
15930 dynamic linker and used by the debugger. */
15931 #define add_dynamic_entry(TAG, VAL) \
15932 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
15934 if (bfd_link_executable (info))
15936 if (!add_dynamic_entry (DT_DEBUG, 0))
15942 if ( !add_dynamic_entry (DT_PLTGOT, 0)
15943 || !add_dynamic_entry (DT_PLTRELSZ, 0)
15944 || !add_dynamic_entry (DT_PLTREL,
15945 htab->use_rel ? DT_REL : DT_RELA)
15946 || !add_dynamic_entry (DT_JMPREL, 0))
15949 if (htab->dt_tlsdesc_plt &&
15950 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
15951 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
15959 if (!add_dynamic_entry (DT_REL, 0)
15960 || !add_dynamic_entry (DT_RELSZ, 0)
15961 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
15966 if (!add_dynamic_entry (DT_RELA, 0)
15967 || !add_dynamic_entry (DT_RELASZ, 0)
15968 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
15973 /* If any dynamic relocs apply to a read-only section,
15974 then we need a DT_TEXTREL entry. */
15975 if ((info->flags & DF_TEXTREL) == 0)
15976 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
15979 if ((info->flags & DF_TEXTREL) != 0)
15981 if (!add_dynamic_entry (DT_TEXTREL, 0))
15984 if (htab->vxworks_p
15985 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
15988 #undef add_dynamic_entry
15993 /* Size sections even though they're not dynamic. We use it to setup
15994 _TLS_MODULE_BASE_, if needed. */
15997 elf32_arm_always_size_sections (bfd *output_bfd,
15998 struct bfd_link_info *info)
16002 if (bfd_link_relocatable (info))
16005 tls_sec = elf_hash_table (info)->tls_sec;
16009 struct elf_link_hash_entry *tlsbase;
16011 tlsbase = elf_link_hash_lookup
16012 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
16016 struct bfd_link_hash_entry *bh = NULL;
16017 const struct elf_backend_data *bed
16018 = get_elf_backend_data (output_bfd);
16020 if (!(_bfd_generic_link_add_one_symbol
16021 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
16022 tls_sec, 0, NULL, FALSE,
16023 bed->collect, &bh)))
16026 tlsbase->type = STT_TLS;
16027 tlsbase = (struct elf_link_hash_entry *)bh;
16028 tlsbase->def_regular = 1;
16029 tlsbase->other = STV_HIDDEN;
16030 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
16036 /* Finish up dynamic symbol handling. We set the contents of various
16037 dynamic sections here. */
16040 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
16041 struct bfd_link_info * info,
16042 struct elf_link_hash_entry * h,
16043 Elf_Internal_Sym * sym)
16045 struct elf32_arm_link_hash_table *htab;
16046 struct elf32_arm_link_hash_entry *eh;
16048 htab = elf32_arm_hash_table (info);
16052 eh = (struct elf32_arm_link_hash_entry *) h;
16054 if (h->plt.offset != (bfd_vma) -1)
16058 BFD_ASSERT (h->dynindx != -1);
16059 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
16064 if (!h->def_regular)
16066 /* Mark the symbol as undefined, rather than as defined in
16067 the .plt section. */
16068 sym->st_shndx = SHN_UNDEF;
16069 /* If the symbol is weak we need to clear the value.
16070 Otherwise, the PLT entry would provide a definition for
16071 the symbol even if the symbol wasn't defined anywhere,
16072 and so the symbol would never be NULL. Leave the value if
16073 there were any relocations where pointer equality matters
16074 (this is a clue for the dynamic linker, to make function
16075 pointer comparisons work between an application and shared
16077 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
16080 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
16082 /* At least one non-call relocation references this .iplt entry,
16083 so the .iplt entry is the function's canonical address. */
16084 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
16085 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
16086 sym->st_shndx = (_bfd_elf_section_from_bfd_section
16087 (output_bfd, htab->root.iplt->output_section));
16088 sym->st_value = (h->plt.offset
16089 + htab->root.iplt->output_section->vma
16090 + htab->root.iplt->output_offset);
16097 Elf_Internal_Rela rel;
16099 /* This symbol needs a copy reloc. Set it up. */
16100 BFD_ASSERT (h->dynindx != -1
16101 && (h->root.type == bfd_link_hash_defined
16102 || h->root.type == bfd_link_hash_defweak));
16105 BFD_ASSERT (s != NULL);
16108 rel.r_offset = (h->root.u.def.value
16109 + h->root.u.def.section->output_section->vma
16110 + h->root.u.def.section->output_offset);
16111 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
16112 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
16115 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
16116 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
16117 to the ".got" section. */
16118 if (h == htab->root.hdynamic
16119 || (!htab->vxworks_p && h == htab->root.hgot))
16120 sym->st_shndx = SHN_ABS;
16126 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16128 const unsigned long *template, unsigned count)
16132 for (ix = 0; ix != count; ix++)
16134 unsigned long insn = template[ix];
16136 /* Emit mov pc,rx if bx is not permitted. */
16137 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
16138 insn = (insn & 0xf000000f) | 0x01a0f000;
16139 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
16143 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
16144 other variants, NaCl needs this entry in a static executable's
16145 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
16146 zero. For .iplt really only the last bundle is useful, and .iplt
16147 could have a shorter first entry, with each individual PLT entry's
16148 relative branch calculated differently so it targets the last
16149 bundle instead of the instruction before it (labelled .Lplt_tail
16150 above). But it's simpler to keep the size and layout of PLT0
16151 consistent with the dynamic case, at the cost of some dead code at
16152 the start of .iplt and the one dead store to the stack at the start
16155 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16156 asection *plt, bfd_vma got_displacement)
16160 put_arm_insn (htab, output_bfd,
16161 elf32_arm_nacl_plt0_entry[0]
16162 | arm_movw_immediate (got_displacement),
16163 plt->contents + 0);
16164 put_arm_insn (htab, output_bfd,
16165 elf32_arm_nacl_plt0_entry[1]
16166 | arm_movt_immediate (got_displacement),
16167 plt->contents + 4);
16169 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
16170 put_arm_insn (htab, output_bfd,
16171 elf32_arm_nacl_plt0_entry[i],
16172 plt->contents + (i * 4));
16175 /* Finish up the dynamic sections. */
16178 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
16183 struct elf32_arm_link_hash_table *htab;
16185 htab = elf32_arm_hash_table (info);
16189 dynobj = elf_hash_table (info)->dynobj;
16191 sgot = htab->root.sgotplt;
16192 /* A broken linker script might have discarded the dynamic sections.
16193 Catch this here so that we do not seg-fault later on. */
16194 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
16196 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
16198 if (elf_hash_table (info)->dynamic_sections_created)
16201 Elf32_External_Dyn *dyncon, *dynconend;
16203 splt = htab->root.splt;
16204 BFD_ASSERT (splt != NULL && sdyn != NULL);
16205 BFD_ASSERT (htab->symbian_p || sgot != NULL);
16207 dyncon = (Elf32_External_Dyn *) sdyn->contents;
16208 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
16210 for (; dyncon < dynconend; dyncon++)
16212 Elf_Internal_Dyn dyn;
16216 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
16223 if (htab->vxworks_p
16224 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
16225 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16230 goto get_vma_if_bpabi;
16233 goto get_vma_if_bpabi;
16236 goto get_vma_if_bpabi;
16238 name = ".gnu.version";
16239 goto get_vma_if_bpabi;
16241 name = ".gnu.version_d";
16242 goto get_vma_if_bpabi;
16244 name = ".gnu.version_r";
16245 goto get_vma_if_bpabi;
16248 name = htab->symbian_p ? ".got" : ".got.plt";
16251 name = RELOC_SECTION (htab, ".plt");
16253 s = bfd_get_linker_section (dynobj, name);
16256 (*_bfd_error_handler)
16257 (_("could not find section %s"), name);
16258 bfd_set_error (bfd_error_invalid_operation);
16261 if (!htab->symbian_p)
16262 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16264 /* In the BPABI, tags in the PT_DYNAMIC section point
16265 at the file offset, not the memory address, for the
16266 convenience of the post linker. */
16267 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
16268 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16272 if (htab->symbian_p)
16277 s = htab->root.srelplt;
16278 BFD_ASSERT (s != NULL);
16279 dyn.d_un.d_val = s->size;
16280 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16285 if (!htab->symbian_p)
16287 /* My reading of the SVR4 ABI indicates that the
16288 procedure linkage table relocs (DT_JMPREL) should be
16289 included in the overall relocs (DT_REL). This is
16290 what Solaris does. However, UnixWare can not handle
16291 that case. Therefore, we override the DT_RELSZ entry
16292 here to make it not include the JMPREL relocs. Since
16293 the linker script arranges for .rel(a).plt to follow all
16294 other relocation sections, we don't have to worry
16295 about changing the DT_REL entry. */
16296 s = htab->root.srelplt;
16298 dyn.d_un.d_val -= s->size;
16299 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16302 /* Fall through. */
16306 /* In the BPABI, the DT_REL tag must point at the file
16307 offset, not the VMA, of the first relocation
16308 section. So, we use code similar to that in
16309 elflink.c, but do not check for SHF_ALLOC on the
16310 relcoation section, since relocations sections are
16311 never allocated under the BPABI. The comments above
16312 about Unixware notwithstanding, we include all of the
16313 relocations here. */
16314 if (htab->symbian_p)
16317 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
16318 ? SHT_REL : SHT_RELA);
16319 dyn.d_un.d_val = 0;
16320 for (i = 1; i < elf_numsections (output_bfd); i++)
16322 Elf_Internal_Shdr *hdr
16323 = elf_elfsections (output_bfd)[i];
16324 if (hdr->sh_type == type)
16326 if (dyn.d_tag == DT_RELSZ
16327 || dyn.d_tag == DT_RELASZ)
16328 dyn.d_un.d_val += hdr->sh_size;
16329 else if ((ufile_ptr) hdr->sh_offset
16330 <= dyn.d_un.d_val - 1)
16331 dyn.d_un.d_val = hdr->sh_offset;
16334 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16338 case DT_TLSDESC_PLT:
16339 s = htab->root.splt;
16340 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16341 + htab->dt_tlsdesc_plt);
16342 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16345 case DT_TLSDESC_GOT:
16346 s = htab->root.sgot;
16347 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16348 + htab->dt_tlsdesc_got);
16349 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16352 /* Set the bottom bit of DT_INIT/FINI if the
16353 corresponding function is Thumb. */
16355 name = info->init_function;
16358 name = info->fini_function;
16360 /* If it wasn't set by elf_bfd_final_link
16361 then there is nothing to adjust. */
16362 if (dyn.d_un.d_val != 0)
16364 struct elf_link_hash_entry * eh;
16366 eh = elf_link_hash_lookup (elf_hash_table (info), name,
16367 FALSE, FALSE, TRUE);
16369 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
16370 == ST_BRANCH_TO_THUMB)
16372 dyn.d_un.d_val |= 1;
16373 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16380 /* Fill in the first entry in the procedure linkage table. */
16381 if (splt->size > 0 && htab->plt_header_size)
16383 const bfd_vma *plt0_entry;
16384 bfd_vma got_address, plt_address, got_displacement;
16386 /* Calculate the addresses of the GOT and PLT. */
16387 got_address = sgot->output_section->vma + sgot->output_offset;
16388 plt_address = splt->output_section->vma + splt->output_offset;
16390 if (htab->vxworks_p)
16392 /* The VxWorks GOT is relocated by the dynamic linker.
16393 Therefore, we must emit relocations rather than simply
16394 computing the values now. */
16395 Elf_Internal_Rela rel;
16397 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
16398 put_arm_insn (htab, output_bfd, plt0_entry[0],
16399 splt->contents + 0);
16400 put_arm_insn (htab, output_bfd, plt0_entry[1],
16401 splt->contents + 4);
16402 put_arm_insn (htab, output_bfd, plt0_entry[2],
16403 splt->contents + 8);
16404 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
16406 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
16407 rel.r_offset = plt_address + 12;
16408 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16410 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
16411 htab->srelplt2->contents);
16413 else if (htab->nacl_p)
16414 arm_nacl_put_plt0 (htab, output_bfd, splt,
16415 got_address + 8 - (plt_address + 16));
16416 else if (using_thumb_only (htab))
16418 got_displacement = got_address - (plt_address + 12);
16420 plt0_entry = elf32_thumb2_plt0_entry;
16421 put_arm_insn (htab, output_bfd, plt0_entry[0],
16422 splt->contents + 0);
16423 put_arm_insn (htab, output_bfd, plt0_entry[1],
16424 splt->contents + 4);
16425 put_arm_insn (htab, output_bfd, plt0_entry[2],
16426 splt->contents + 8);
16428 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
16432 got_displacement = got_address - (plt_address + 16);
16434 plt0_entry = elf32_arm_plt0_entry;
16435 put_arm_insn (htab, output_bfd, plt0_entry[0],
16436 splt->contents + 0);
16437 put_arm_insn (htab, output_bfd, plt0_entry[1],
16438 splt->contents + 4);
16439 put_arm_insn (htab, output_bfd, plt0_entry[2],
16440 splt->contents + 8);
16441 put_arm_insn (htab, output_bfd, plt0_entry[3],
16442 splt->contents + 12);
16444 #ifdef FOUR_WORD_PLT
16445 /* The displacement value goes in the otherwise-unused
16446 last word of the second entry. */
16447 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
16449 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
16454 /* UnixWare sets the entsize of .plt to 4, although that doesn't
16455 really seem like the right value. */
16456 if (splt->output_section->owner == output_bfd)
16457 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
16459 if (htab->dt_tlsdesc_plt)
16461 bfd_vma got_address
16462 = sgot->output_section->vma + sgot->output_offset;
16463 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
16464 + htab->root.sgot->output_offset);
16465 bfd_vma plt_address
16466 = splt->output_section->vma + splt->output_offset;
16468 arm_put_trampoline (htab, output_bfd,
16469 splt->contents + htab->dt_tlsdesc_plt,
16470 dl_tlsdesc_lazy_trampoline, 6);
16472 bfd_put_32 (output_bfd,
16473 gotplt_address + htab->dt_tlsdesc_got
16474 - (plt_address + htab->dt_tlsdesc_plt)
16475 - dl_tlsdesc_lazy_trampoline[6],
16476 splt->contents + htab->dt_tlsdesc_plt + 24);
16477 bfd_put_32 (output_bfd,
16478 got_address - (plt_address + htab->dt_tlsdesc_plt)
16479 - dl_tlsdesc_lazy_trampoline[7],
16480 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
16483 if (htab->tls_trampoline)
16485 arm_put_trampoline (htab, output_bfd,
16486 splt->contents + htab->tls_trampoline,
16487 tls_trampoline, 3);
16488 #ifdef FOUR_WORD_PLT
16489 bfd_put_32 (output_bfd, 0x00000000,
16490 splt->contents + htab->tls_trampoline + 12);
16494 if (htab->vxworks_p
16495 && !bfd_link_pic (info)
16496 && htab->root.splt->size > 0)
16498 /* Correct the .rel(a).plt.unloaded relocations. They will have
16499 incorrect symbol indexes. */
16503 num_plts = ((htab->root.splt->size - htab->plt_header_size)
16504 / htab->plt_entry_size);
16505 p = htab->srelplt2->contents + RELOC_SIZE (htab);
16507 for (; num_plts; num_plts--)
16509 Elf_Internal_Rela rel;
16511 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16512 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16513 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16514 p += RELOC_SIZE (htab);
16516 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16517 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
16518 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16519 p += RELOC_SIZE (htab);
16524 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
16525 /* NaCl uses a special first entry in .iplt too. */
16526 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
16528 /* Fill in the first three entries in the global offset table. */
16531 if (sgot->size > 0)
16534 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
16536 bfd_put_32 (output_bfd,
16537 sdyn->output_section->vma + sdyn->output_offset,
16539 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
16540 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
16543 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
16550 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
16552 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
16553 struct elf32_arm_link_hash_table *globals;
16554 struct elf_segment_map *m;
16556 i_ehdrp = elf_elfheader (abfd);
16558 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
16559 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
16561 _bfd_elf_post_process_headers (abfd, link_info);
16562 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
16566 globals = elf32_arm_hash_table (link_info);
16567 if (globals != NULL && globals->byteswap_code)
16568 i_ehdrp->e_flags |= EF_ARM_BE8;
16571 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
16572 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
16574 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
16575 if (abi == AEABI_VFP_args_vfp)
16576 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
16578 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
16581 /* Scan segment to set p_flags attribute if it contains only sections with
16582 SHF_ARM_PURECODE flag. */
16583 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16589 for (j = 0; j < m->count; j++)
16591 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
16597 m->p_flags_valid = 1;
16602 static enum elf_reloc_type_class
16603 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
16604 const asection *rel_sec ATTRIBUTE_UNUSED,
16605 const Elf_Internal_Rela *rela)
16607 switch ((int) ELF32_R_TYPE (rela->r_info))
16609 case R_ARM_RELATIVE:
16610 return reloc_class_relative;
16611 case R_ARM_JUMP_SLOT:
16612 return reloc_class_plt;
16614 return reloc_class_copy;
16615 case R_ARM_IRELATIVE:
16616 return reloc_class_ifunc;
16618 return reloc_class_normal;
16623 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
16625 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
16628 /* Return TRUE if this is an unwinding table entry. */
16631 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
16633 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
16634 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
16638 /* Set the type and flags for an ARM section. We do this by
16639 the section name, which is a hack, but ought to work. */
16642 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
16646 name = bfd_get_section_name (abfd, sec);
16648 if (is_arm_elf_unwind_section_name (abfd, name))
16650 hdr->sh_type = SHT_ARM_EXIDX;
16651 hdr->sh_flags |= SHF_LINK_ORDER;
16654 if (sec->flags & SEC_ELF_PURECODE)
16655 hdr->sh_flags |= SHF_ARM_PURECODE;
16660 /* Handle an ARM specific section when reading an object file. This is
16661 called when bfd_section_from_shdr finds a section with an unknown
16665 elf32_arm_section_from_shdr (bfd *abfd,
16666 Elf_Internal_Shdr * hdr,
16670 /* There ought to be a place to keep ELF backend specific flags, but
16671 at the moment there isn't one. We just keep track of the
16672 sections by their name, instead. Fortunately, the ABI gives
16673 names for all the ARM specific sections, so we will probably get
16675 switch (hdr->sh_type)
16677 case SHT_ARM_EXIDX:
16678 case SHT_ARM_PREEMPTMAP:
16679 case SHT_ARM_ATTRIBUTES:
16686 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
16692 static _arm_elf_section_data *
16693 get_arm_elf_section_data (asection * sec)
16695 if (sec && sec->owner && is_arm_elf (sec->owner))
16696 return elf32_arm_section_data (sec);
16704 struct bfd_link_info *info;
16707 int (*func) (void *, const char *, Elf_Internal_Sym *,
16708 asection *, struct elf_link_hash_entry *);
16709 } output_arch_syminfo;
16711 enum map_symbol_type
16719 /* Output a single mapping symbol. */
16722 elf32_arm_output_map_sym (output_arch_syminfo *osi,
16723 enum map_symbol_type type,
16726 static const char *names[3] = {"$a", "$t", "$d"};
16727 Elf_Internal_Sym sym;
16729 sym.st_value = osi->sec->output_section->vma
16730 + osi->sec->output_offset
16734 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
16735 sym.st_shndx = osi->sec_shndx;
16736 sym.st_target_internal = 0;
16737 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
16738 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
16741 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
16742 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
16745 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
16746 bfd_boolean is_iplt_entry_p,
16747 union gotplt_union *root_plt,
16748 struct arm_plt_info *arm_plt)
16750 struct elf32_arm_link_hash_table *htab;
16751 bfd_vma addr, plt_header_size;
16753 if (root_plt->offset == (bfd_vma) -1)
16756 htab = elf32_arm_hash_table (osi->info);
16760 if (is_iplt_entry_p)
16762 osi->sec = htab->root.iplt;
16763 plt_header_size = 0;
16767 osi->sec = htab->root.splt;
16768 plt_header_size = htab->plt_header_size;
16770 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
16771 (osi->info->output_bfd, osi->sec->output_section));
16773 addr = root_plt->offset & -2;
16774 if (htab->symbian_p)
16776 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16778 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
16781 else if (htab->vxworks_p)
16783 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16785 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
16787 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
16789 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
16792 else if (htab->nacl_p)
16794 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16797 else if (using_thumb_only (htab))
16799 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
16804 bfd_boolean thumb_stub_p;
16806 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
16809 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
16812 #ifdef FOUR_WORD_PLT
16813 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16815 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
16818 /* A three-word PLT with no Thumb thunk contains only Arm code,
16819 so only need to output a mapping symbol for the first PLT entry and
16820 entries with thumb thunks. */
16821 if (thumb_stub_p || addr == plt_header_size)
16823 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16832 /* Output mapping symbols for PLT entries associated with H. */
16835 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
16837 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
16838 struct elf32_arm_link_hash_entry *eh;
16840 if (h->root.type == bfd_link_hash_indirect)
16843 if (h->root.type == bfd_link_hash_warning)
16844 /* When warning symbols are created, they **replace** the "real"
16845 entry in the hash table, thus we never get to see the real
16846 symbol in a hash traversal. So look at it now. */
16847 h = (struct elf_link_hash_entry *) h->root.u.i.link;
16849 eh = (struct elf32_arm_link_hash_entry *) h;
16850 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
16851 &h->plt, &eh->plt);
16854 /* Bind a veneered symbol to its veneer identified by its hash entry
16855 STUB_ENTRY. The veneered location thus loose its symbol. */
16858 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
16860 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
16863 hash->root.root.u.def.section = stub_entry->stub_sec;
16864 hash->root.root.u.def.value = stub_entry->stub_offset;
16865 hash->root.size = stub_entry->stub_size;
16868 /* Output a single local symbol for a generated stub. */
16871 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
16872 bfd_vma offset, bfd_vma size)
16874 Elf_Internal_Sym sym;
16876 sym.st_value = osi->sec->output_section->vma
16877 + osi->sec->output_offset
16879 sym.st_size = size;
16881 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
16882 sym.st_shndx = osi->sec_shndx;
16883 sym.st_target_internal = 0;
16884 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
16888 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
16891 struct elf32_arm_stub_hash_entry *stub_entry;
16892 asection *stub_sec;
16895 output_arch_syminfo *osi;
16896 const insn_sequence *template_sequence;
16897 enum stub_insn_type prev_type;
16900 enum map_symbol_type sym_type;
16902 /* Massage our args to the form they really have. */
16903 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
16904 osi = (output_arch_syminfo *) in_arg;
16906 stub_sec = stub_entry->stub_sec;
16908 /* Ensure this stub is attached to the current section being
16910 if (stub_sec != osi->sec)
16913 addr = (bfd_vma) stub_entry->stub_offset;
16914 template_sequence = stub_entry->stub_template;
16916 if (arm_stub_sym_claimed (stub_entry->stub_type))
16917 arm_stub_claim_sym (stub_entry);
16920 stub_name = stub_entry->output_name;
16921 switch (template_sequence[0].type)
16924 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
16925 stub_entry->stub_size))
16930 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
16931 stub_entry->stub_size))
16940 prev_type = DATA_TYPE;
16942 for (i = 0; i < stub_entry->stub_template_size; i++)
16944 switch (template_sequence[i].type)
16947 sym_type = ARM_MAP_ARM;
16952 sym_type = ARM_MAP_THUMB;
16956 sym_type = ARM_MAP_DATA;
16964 if (template_sequence[i].type != prev_type)
16966 prev_type = template_sequence[i].type;
16967 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
16971 switch (template_sequence[i].type)
16995 /* Output mapping symbols for linker generated sections,
16996 and for those data-only sections that do not have a
17000 elf32_arm_output_arch_local_syms (bfd *output_bfd,
17001 struct bfd_link_info *info,
17003 int (*func) (void *, const char *,
17004 Elf_Internal_Sym *,
17006 struct elf_link_hash_entry *))
17008 output_arch_syminfo osi;
17009 struct elf32_arm_link_hash_table *htab;
17011 bfd_size_type size;
17014 htab = elf32_arm_hash_table (info);
17018 check_use_blx (htab);
17020 osi.flaginfo = flaginfo;
17024 /* Add a $d mapping symbol to data-only sections that
17025 don't have any mapping symbol. This may result in (harmless) redundant
17026 mapping symbols. */
17027 for (input_bfd = info->input_bfds;
17029 input_bfd = input_bfd->link.next)
17031 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
17032 for (osi.sec = input_bfd->sections;
17034 osi.sec = osi.sec->next)
17036 if (osi.sec->output_section != NULL
17037 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
17039 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
17040 == SEC_HAS_CONTENTS
17041 && get_arm_elf_section_data (osi.sec) != NULL
17042 && get_arm_elf_section_data (osi.sec)->mapcount == 0
17043 && osi.sec->size > 0
17044 && (osi.sec->flags & SEC_EXCLUDE) == 0)
17046 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17047 (output_bfd, osi.sec->output_section);
17048 if (osi.sec_shndx != (int)SHN_BAD)
17049 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
17054 /* ARM->Thumb glue. */
17055 if (htab->arm_glue_size > 0)
17057 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17058 ARM2THUMB_GLUE_SECTION_NAME);
17060 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17061 (output_bfd, osi.sec->output_section);
17062 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
17063 || htab->pic_veneer)
17064 size = ARM2THUMB_PIC_GLUE_SIZE;
17065 else if (htab->use_blx)
17066 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
17068 size = ARM2THUMB_STATIC_GLUE_SIZE;
17070 for (offset = 0; offset < htab->arm_glue_size; offset += size)
17072 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
17073 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
17077 /* Thumb->ARM glue. */
17078 if (htab->thumb_glue_size > 0)
17080 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17081 THUMB2ARM_GLUE_SECTION_NAME);
17083 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17084 (output_bfd, osi.sec->output_section);
17085 size = THUMB2ARM_GLUE_SIZE;
17087 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
17089 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
17090 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
17094 /* ARMv4 BX veneers. */
17095 if (htab->bx_glue_size > 0)
17097 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17098 ARM_BX_GLUE_SECTION_NAME);
17100 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17101 (output_bfd, osi.sec->output_section);
17103 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
17106 /* Long calls stubs. */
17107 if (htab->stub_bfd && htab->stub_bfd->sections)
17109 asection* stub_sec;
17111 for (stub_sec = htab->stub_bfd->sections;
17113 stub_sec = stub_sec->next)
17115 /* Ignore non-stub sections. */
17116 if (!strstr (stub_sec->name, STUB_SUFFIX))
17119 osi.sec = stub_sec;
17121 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17122 (output_bfd, osi.sec->output_section);
17124 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
17128 /* Finally, output mapping symbols for the PLT. */
17129 if (htab->root.splt && htab->root.splt->size > 0)
17131 osi.sec = htab->root.splt;
17132 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17133 (output_bfd, osi.sec->output_section));
17135 /* Output mapping symbols for the plt header. SymbianOS does not have a
17137 if (htab->vxworks_p)
17139 /* VxWorks shared libraries have no PLT header. */
17140 if (!bfd_link_pic (info))
17142 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17144 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17148 else if (htab->nacl_p)
17150 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17153 else if (using_thumb_only (htab))
17155 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
17157 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17159 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
17162 else if (!htab->symbian_p)
17164 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17166 #ifndef FOUR_WORD_PLT
17167 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
17172 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
17174 /* NaCl uses a special first entry in .iplt too. */
17175 osi.sec = htab->root.iplt;
17176 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17177 (output_bfd, osi.sec->output_section));
17178 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17181 if ((htab->root.splt && htab->root.splt->size > 0)
17182 || (htab->root.iplt && htab->root.iplt->size > 0))
17184 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
17185 for (input_bfd = info->input_bfds;
17187 input_bfd = input_bfd->link.next)
17189 struct arm_local_iplt_info **local_iplt;
17190 unsigned int i, num_syms;
17192 local_iplt = elf32_arm_local_iplt (input_bfd);
17193 if (local_iplt != NULL)
17195 num_syms = elf_symtab_hdr (input_bfd).sh_info;
17196 for (i = 0; i < num_syms; i++)
17197 if (local_iplt[i] != NULL
17198 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
17199 &local_iplt[i]->root,
17200 &local_iplt[i]->arm))
17205 if (htab->dt_tlsdesc_plt != 0)
17207 /* Mapping symbols for the lazy tls trampoline. */
17208 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
17211 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17212 htab->dt_tlsdesc_plt + 24))
17215 if (htab->tls_trampoline != 0)
17217 /* Mapping symbols for the tls trampoline. */
17218 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
17220 #ifdef FOUR_WORD_PLT
17221 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17222 htab->tls_trampoline + 12))
17230 /* Filter normal symbols of CMSE entry functions of ABFD to include in
17231 the import library. All SYMCOUNT symbols of ABFD can be examined
17232 from their pointers in SYMS. Pointers of symbols to keep should be
17233 stored continuously at the beginning of that array.
17235 Returns the number of symbols to keep. */
17237 static unsigned int
17238 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17239 struct bfd_link_info *info,
17240 asymbol **syms, long symcount)
17244 long src_count, dst_count = 0;
17245 struct elf32_arm_link_hash_table *htab;
17247 htab = elf32_arm_hash_table (info);
17248 if (!htab->stub_bfd || !htab->stub_bfd->sections)
17252 cmse_name = (char *) bfd_malloc (maxnamelen);
17253 for (src_count = 0; src_count < symcount; src_count++)
17255 struct elf32_arm_link_hash_entry *cmse_hash;
17261 sym = syms[src_count];
17262 flags = sym->flags;
17263 name = (char *) bfd_asymbol_name (sym);
17265 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
17267 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
17270 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
17271 if (namelen > maxnamelen)
17273 cmse_name = (char *)
17274 bfd_realloc (cmse_name, namelen);
17275 maxnamelen = namelen;
17277 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
17278 cmse_hash = (struct elf32_arm_link_hash_entry *)
17279 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
17282 || (cmse_hash->root.root.type != bfd_link_hash_defined
17283 && cmse_hash->root.root.type != bfd_link_hash_defweak)
17284 || cmse_hash->root.type != STT_FUNC)
17287 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
17290 syms[dst_count++] = sym;
17294 syms[dst_count] = NULL;
17299 /* Filter symbols of ABFD to include in the import library. All
17300 SYMCOUNT symbols of ABFD can be examined from their pointers in
17301 SYMS. Pointers of symbols to keep should be stored continuously at
17302 the beginning of that array.
17304 Returns the number of symbols to keep. */
17306 static unsigned int
17307 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17308 struct bfd_link_info *info,
17309 asymbol **syms, long symcount)
17311 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
17313 if (globals->cmse_implib)
17314 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
17316 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
17319 /* Allocate target specific section data. */
17322 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
17324 if (!sec->used_by_bfd)
17326 _arm_elf_section_data *sdata;
17327 bfd_size_type amt = sizeof (*sdata);
17329 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
17332 sec->used_by_bfd = sdata;
17335 return _bfd_elf_new_section_hook (abfd, sec);
17339 /* Used to order a list of mapping symbols by address. */
17342 elf32_arm_compare_mapping (const void * a, const void * b)
17344 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
17345 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
17347 if (amap->vma > bmap->vma)
17349 else if (amap->vma < bmap->vma)
17351 else if (amap->type > bmap->type)
17352 /* Ensure results do not depend on the host qsort for objects with
17353 multiple mapping symbols at the same address by sorting on type
17356 else if (amap->type < bmap->type)
17362 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
17364 static unsigned long
17365 offset_prel31 (unsigned long addr, bfd_vma offset)
17367 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
17370 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
17374 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
17376 unsigned long first_word = bfd_get_32 (output_bfd, from);
17377 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
17379 /* High bit of first word is supposed to be zero. */
17380 if ((first_word & 0x80000000ul) == 0)
17381 first_word = offset_prel31 (first_word, offset);
17383 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
17384 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
17385 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
17386 second_word = offset_prel31 (second_word, offset);
17388 bfd_put_32 (output_bfd, first_word, to);
17389 bfd_put_32 (output_bfd, second_word, to + 4);
17392 /* Data for make_branch_to_a8_stub(). */
17394 struct a8_branch_to_stub_data
17396 asection *writing_section;
17397 bfd_byte *contents;
17401 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
17402 places for a particular section. */
17405 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
17408 struct elf32_arm_stub_hash_entry *stub_entry;
17409 struct a8_branch_to_stub_data *data;
17410 bfd_byte *contents;
17411 unsigned long branch_insn;
17412 bfd_vma veneered_insn_loc, veneer_entry_loc;
17413 bfd_signed_vma branch_offset;
17417 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17418 data = (struct a8_branch_to_stub_data *) in_arg;
17420 if (stub_entry->target_section != data->writing_section
17421 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
17424 contents = data->contents;
17426 /* We use target_section as Cortex-A8 erratum workaround stubs are only
17427 generated when both source and target are in the same section. */
17428 veneered_insn_loc = stub_entry->target_section->output_section->vma
17429 + stub_entry->target_section->output_offset
17430 + stub_entry->source_value;
17432 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
17433 + stub_entry->stub_sec->output_offset
17434 + stub_entry->stub_offset;
17436 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
17437 veneered_insn_loc &= ~3u;
17439 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
17441 abfd = stub_entry->target_section->owner;
17442 loc = stub_entry->source_value;
17444 /* We attempt to avoid this condition by setting stubs_always_after_branch
17445 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
17446 This check is just to be on the safe side... */
17447 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
17449 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
17450 "allocated in unsafe location"), abfd);
17454 switch (stub_entry->stub_type)
17456 case arm_stub_a8_veneer_b:
17457 case arm_stub_a8_veneer_b_cond:
17458 branch_insn = 0xf0009000;
17461 case arm_stub_a8_veneer_blx:
17462 branch_insn = 0xf000e800;
17465 case arm_stub_a8_veneer_bl:
17467 unsigned int i1, j1, i2, j2, s;
17469 branch_insn = 0xf000d000;
17472 if (branch_offset < -16777216 || branch_offset > 16777214)
17474 /* There's not much we can do apart from complain if this
17476 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
17477 "of range (input file too large)"), abfd);
17481 /* i1 = not(j1 eor s), so:
17483 j1 = (not i1) eor s. */
17485 branch_insn |= (branch_offset >> 1) & 0x7ff;
17486 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
17487 i2 = (branch_offset >> 22) & 1;
17488 i1 = (branch_offset >> 23) & 1;
17489 s = (branch_offset >> 24) & 1;
17492 branch_insn |= j2 << 11;
17493 branch_insn |= j1 << 13;
17494 branch_insn |= s << 26;
17503 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
17504 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
17509 /* Beginning of stm32l4xx work-around. */
17511 /* Functions encoding instructions necessary for the emission of the
17512 fix-stm32l4xx-629360.
17513 Encoding is extracted from the
17514 ARM (C) Architecture Reference Manual
17515 ARMv7-A and ARMv7-R edition
17516 ARM DDI 0406C.b (ID072512). */
17518 static inline bfd_vma
17519 create_instruction_branch_absolute (int branch_offset)
17521 /* A8.8.18 B (A8-334)
17522 B target_address (Encoding T4). */
17523 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
17524 /* jump offset is: S:I1:I2:imm10:imm11:0. */
17525 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
17527 int s = ((branch_offset & 0x1000000) >> 24);
17528 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
17529 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
17531 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
17532 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
17534 bfd_vma patched_inst = 0xf0009000
17536 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
17537 | j1 << 13 /* J1. */
17538 | j2 << 11 /* J2. */
17539 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
17541 return patched_inst;
17544 static inline bfd_vma
17545 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
17547 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
17548 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
17549 bfd_vma patched_inst = 0xe8900000
17550 | (/*W=*/wback << 21)
17552 | (reg_mask & 0x0000ffff);
17554 return patched_inst;
17557 static inline bfd_vma
17558 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
17560 /* A8.8.60 LDMDB/LDMEA (A8-402)
17561 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
17562 bfd_vma patched_inst = 0xe9100000
17563 | (/*W=*/wback << 21)
17565 | (reg_mask & 0x0000ffff);
17567 return patched_inst;
17570 static inline bfd_vma
17571 create_instruction_mov (int target_reg, int source_reg)
17573 /* A8.8.103 MOV (register) (A8-486)
17574 MOV Rd, Rm (Encoding T1). */
17575 bfd_vma patched_inst = 0x4600
17576 | (target_reg & 0x7)
17577 | ((target_reg & 0x8) >> 3) << 7
17578 | (source_reg << 3);
17580 return patched_inst;
17583 static inline bfd_vma
17584 create_instruction_sub (int target_reg, int source_reg, int value)
17586 /* A8.8.221 SUB (immediate) (A8-708)
17587 SUB Rd, Rn, #value (Encoding T3). */
17588 bfd_vma patched_inst = 0xf1a00000
17589 | (target_reg << 8)
17590 | (source_reg << 16)
17592 | ((value & 0x800) >> 11) << 26
17593 | ((value & 0x700) >> 8) << 12
17596 return patched_inst;
17599 static inline bfd_vma
17600 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
17603 /* A8.8.332 VLDM (A8-922)
17604 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
17605 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
17606 | (/*W=*/wback << 21)
17608 | (num_words & 0x000000ff)
17609 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
17610 | (first_reg & 0x00000001) << 22;
17612 return patched_inst;
17615 static inline bfd_vma
17616 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
17619 /* A8.8.332 VLDM (A8-922)
17620 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
17621 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
17623 | (num_words & 0x000000ff)
17624 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
17625 | (first_reg & 0x00000001) << 22;
17627 return patched_inst;
17630 static inline bfd_vma
17631 create_instruction_udf_w (int value)
17633 /* A8.8.247 UDF (A8-758)
17634 Undefined (Encoding T2). */
17635 bfd_vma patched_inst = 0xf7f0a000
17636 | (value & 0x00000fff)
17637 | (value & 0x000f0000) << 16;
17639 return patched_inst;
17642 static inline bfd_vma
17643 create_instruction_udf (int value)
17645 /* A8.8.247 UDF (A8-758)
17646 Undefined (Encoding T1). */
17647 bfd_vma patched_inst = 0xde00
17650 return patched_inst;
17653 /* Functions writing an instruction in memory, returning the next
17654 memory position to write to. */
17656 static inline bfd_byte *
17657 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
17658 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17660 put_thumb2_insn (htab, output_bfd, insn, pt);
17664 static inline bfd_byte *
17665 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
17666 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17668 put_thumb_insn (htab, output_bfd, insn, pt);
17672 /* Function filling up a region in memory with T1 and T2 UDFs taking
17673 care of alignment. */
17676 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
17678 const bfd_byte * const base_stub_contents,
17679 bfd_byte * const from_stub_contents,
17680 const bfd_byte * const end_stub_contents)
17682 bfd_byte *current_stub_contents = from_stub_contents;
17684 /* Fill the remaining of the stub with deterministic contents : UDF
17686 Check if realignment is needed on modulo 4 frontier using T1, to
17688 if ((current_stub_contents < end_stub_contents)
17689 && !((current_stub_contents - base_stub_contents) % 2)
17690 && ((current_stub_contents - base_stub_contents) % 4))
17691 current_stub_contents =
17692 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17693 create_instruction_udf (0));
17695 for (; current_stub_contents < end_stub_contents;)
17696 current_stub_contents =
17697 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17698 create_instruction_udf_w (0));
17700 return current_stub_contents;
17703 /* Functions writing the stream of instructions equivalent to the
17704 derived sequence for ldmia, ldmdb, vldm respectively. */
17707 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
17709 const insn32 initial_insn,
17710 const bfd_byte *const initial_insn_addr,
17711 bfd_byte *const base_stub_contents)
17713 int wback = (initial_insn & 0x00200000) >> 21;
17714 int ri, rn = (initial_insn & 0x000F0000) >> 16;
17715 int insn_all_registers = initial_insn & 0x0000ffff;
17716 int insn_low_registers, insn_high_registers;
17717 int usable_register_mask;
17718 int nb_registers = popcount (insn_all_registers);
17719 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
17720 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
17721 bfd_byte *current_stub_contents = base_stub_contents;
17723 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
17725 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
17726 smaller than 8 registers load sequences that do not cause the
17728 if (nb_registers <= 8)
17730 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
17731 current_stub_contents =
17732 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17735 /* B initial_insn_addr+4. */
17737 current_stub_contents =
17738 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17739 create_instruction_branch_absolute
17740 (initial_insn_addr - current_stub_contents));
17743 /* Fill the remaining of the stub with deterministic contents. */
17744 current_stub_contents =
17745 stm32l4xx_fill_stub_udf (htab, output_bfd,
17746 base_stub_contents, current_stub_contents,
17747 base_stub_contents +
17748 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17753 /* - reg_list[13] == 0. */
17754 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
17756 /* - reg_list[14] & reg_list[15] != 1. */
17757 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
17759 /* - if (wback==1) reg_list[rn] == 0. */
17760 BFD_ASSERT (!wback || !restore_rn);
17762 /* - nb_registers > 8. */
17763 BFD_ASSERT (popcount (insn_all_registers) > 8);
17765 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
17767 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
17768 - One with the 7 lowest registers (register mask 0x007F)
17769 This LDM will finally contain between 2 and 7 registers
17770 - One with the 7 highest registers (register mask 0xDF80)
17771 This ldm will finally contain between 2 and 7 registers. */
17772 insn_low_registers = insn_all_registers & 0x007F;
17773 insn_high_registers = insn_all_registers & 0xDF80;
17775 /* A spare register may be needed during this veneer to temporarily
17776 handle the base register. This register will be restored with the
17777 last LDM operation.
17778 The usable register may be any general purpose register (that
17779 excludes PC, SP, LR : register mask is 0x1FFF). */
17780 usable_register_mask = 0x1FFF;
17782 /* Generate the stub function. */
17785 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
17786 current_stub_contents =
17787 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17788 create_instruction_ldmia
17789 (rn, /*wback=*/1, insn_low_registers));
17791 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
17792 current_stub_contents =
17793 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17794 create_instruction_ldmia
17795 (rn, /*wback=*/1, insn_high_registers));
17798 /* B initial_insn_addr+4. */
17799 current_stub_contents =
17800 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17801 create_instruction_branch_absolute
17802 (initial_insn_addr - current_stub_contents));
17805 else /* if (!wback). */
17809 /* If Rn is not part of the high-register-list, move it there. */
17810 if (!(insn_high_registers & (1 << rn)))
17812 /* Choose a Ri in the high-register-list that will be restored. */
17813 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
17816 current_stub_contents =
17817 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17818 create_instruction_mov (ri, rn));
17821 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
17822 current_stub_contents =
17823 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17824 create_instruction_ldmia
17825 (ri, /*wback=*/1, insn_low_registers));
17827 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
17828 current_stub_contents =
17829 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17830 create_instruction_ldmia
17831 (ri, /*wback=*/0, insn_high_registers));
17835 /* B initial_insn_addr+4. */
17836 current_stub_contents =
17837 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17838 create_instruction_branch_absolute
17839 (initial_insn_addr - current_stub_contents));
17843 /* Fill the remaining of the stub with deterministic contents. */
17844 current_stub_contents =
17845 stm32l4xx_fill_stub_udf (htab, output_bfd,
17846 base_stub_contents, current_stub_contents,
17847 base_stub_contents +
17848 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17852 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
17854 const insn32 initial_insn,
17855 const bfd_byte *const initial_insn_addr,
17856 bfd_byte *const base_stub_contents)
17858 int wback = (initial_insn & 0x00200000) >> 21;
17859 int ri, rn = (initial_insn & 0x000f0000) >> 16;
17860 int insn_all_registers = initial_insn & 0x0000ffff;
17861 int insn_low_registers, insn_high_registers;
17862 int usable_register_mask;
17863 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
17864 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
17865 int nb_registers = popcount (insn_all_registers);
17866 bfd_byte *current_stub_contents = base_stub_contents;
17868 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
17870 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
17871 smaller than 8 registers load sequences that do not cause the
17873 if (nb_registers <= 8)
17875 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
17876 current_stub_contents =
17877 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17880 /* B initial_insn_addr+4. */
17881 current_stub_contents =
17882 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17883 create_instruction_branch_absolute
17884 (initial_insn_addr - current_stub_contents));
17886 /* Fill the remaining of the stub with deterministic contents. */
17887 current_stub_contents =
17888 stm32l4xx_fill_stub_udf (htab, output_bfd,
17889 base_stub_contents, current_stub_contents,
17890 base_stub_contents +
17891 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17896 /* - reg_list[13] == 0. */
17897 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
17899 /* - reg_list[14] & reg_list[15] != 1. */
17900 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
17902 /* - if (wback==1) reg_list[rn] == 0. */
17903 BFD_ASSERT (!wback || !restore_rn);
17905 /* - nb_registers > 8. */
17906 BFD_ASSERT (popcount (insn_all_registers) > 8);
17908 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
17910 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
17911 - One with the 7 lowest registers (register mask 0x007F)
17912 This LDM will finally contain between 2 and 7 registers
17913 - One with the 7 highest registers (register mask 0xDF80)
17914 This ldm will finally contain between 2 and 7 registers. */
17915 insn_low_registers = insn_all_registers & 0x007F;
17916 insn_high_registers = insn_all_registers & 0xDF80;
17918 /* A spare register may be needed during this veneer to temporarily
17919 handle the base register. This register will be restored with
17920 the last LDM operation.
17921 The usable register may be any general purpose register (that excludes
17922 PC, SP, LR : register mask is 0x1FFF). */
17923 usable_register_mask = 0x1FFF;
17925 /* Generate the stub function. */
17926 if (!wback && !restore_pc && !restore_rn)
17928 /* Choose a Ri in the low-register-list that will be restored. */
17929 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
17932 current_stub_contents =
17933 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17934 create_instruction_mov (ri, rn));
17936 /* LDMDB Ri!, {R-high-register-list}. */
17937 current_stub_contents =
17938 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17939 create_instruction_ldmdb
17940 (ri, /*wback=*/1, insn_high_registers));
17942 /* LDMDB Ri, {R-low-register-list}. */
17943 current_stub_contents =
17944 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17945 create_instruction_ldmdb
17946 (ri, /*wback=*/0, insn_low_registers));
17948 /* B initial_insn_addr+4. */
17949 current_stub_contents =
17950 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17951 create_instruction_branch_absolute
17952 (initial_insn_addr - current_stub_contents));
17954 else if (wback && !restore_pc && !restore_rn)
17956 /* LDMDB Rn!, {R-high-register-list}. */
17957 current_stub_contents =
17958 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17959 create_instruction_ldmdb
17960 (rn, /*wback=*/1, insn_high_registers));
17962 /* LDMDB Rn!, {R-low-register-list}. */
17963 current_stub_contents =
17964 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17965 create_instruction_ldmdb
17966 (rn, /*wback=*/1, insn_low_registers));
17968 /* B initial_insn_addr+4. */
17969 current_stub_contents =
17970 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17971 create_instruction_branch_absolute
17972 (initial_insn_addr - current_stub_contents));
17974 else if (!wback && restore_pc && !restore_rn)
17976 /* Choose a Ri in the high-register-list that will be restored. */
17977 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
17979 /* SUB Ri, Rn, #(4*nb_registers). */
17980 current_stub_contents =
17981 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17982 create_instruction_sub (ri, rn, (4 * nb_registers)));
17984 /* LDMIA Ri!, {R-low-register-list}. */
17985 current_stub_contents =
17986 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17987 create_instruction_ldmia
17988 (ri, /*wback=*/1, insn_low_registers));
17990 /* LDMIA Ri, {R-high-register-list}. */
17991 current_stub_contents =
17992 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17993 create_instruction_ldmia
17994 (ri, /*wback=*/0, insn_high_registers));
17996 else if (wback && restore_pc && !restore_rn)
17998 /* Choose a Ri in the high-register-list that will be restored. */
17999 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18001 /* SUB Rn, Rn, #(4*nb_registers) */
18002 current_stub_contents =
18003 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18004 create_instruction_sub (rn, rn, (4 * nb_registers)));
18007 current_stub_contents =
18008 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18009 create_instruction_mov (ri, rn));
18011 /* LDMIA Ri!, {R-low-register-list}. */
18012 current_stub_contents =
18013 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18014 create_instruction_ldmia
18015 (ri, /*wback=*/1, insn_low_registers));
18017 /* LDMIA Ri, {R-high-register-list}. */
18018 current_stub_contents =
18019 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18020 create_instruction_ldmia
18021 (ri, /*wback=*/0, insn_high_registers));
18023 else if (!wback && !restore_pc && restore_rn)
18026 if (!(insn_low_registers & (1 << rn)))
18028 /* Choose a Ri in the low-register-list that will be restored. */
18029 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18032 current_stub_contents =
18033 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18034 create_instruction_mov (ri, rn));
18037 /* LDMDB Ri!, {R-high-register-list}. */
18038 current_stub_contents =
18039 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18040 create_instruction_ldmdb
18041 (ri, /*wback=*/1, insn_high_registers));
18043 /* LDMDB Ri, {R-low-register-list}. */
18044 current_stub_contents =
18045 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18046 create_instruction_ldmdb
18047 (ri, /*wback=*/0, insn_low_registers));
18049 /* B initial_insn_addr+4. */
18050 current_stub_contents =
18051 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18052 create_instruction_branch_absolute
18053 (initial_insn_addr - current_stub_contents));
18055 else if (!wback && restore_pc && restore_rn)
18058 if (!(insn_high_registers & (1 << rn)))
18060 /* Choose a Ri in the high-register-list that will be restored. */
18061 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18064 /* SUB Ri, Rn, #(4*nb_registers). */
18065 current_stub_contents =
18066 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18067 create_instruction_sub (ri, rn, (4 * nb_registers)));
18069 /* LDMIA Ri!, {R-low-register-list}. */
18070 current_stub_contents =
18071 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18072 create_instruction_ldmia
18073 (ri, /*wback=*/1, insn_low_registers));
18075 /* LDMIA Ri, {R-high-register-list}. */
18076 current_stub_contents =
18077 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18078 create_instruction_ldmia
18079 (ri, /*wback=*/0, insn_high_registers));
18081 else if (wback && restore_rn)
18083 /* The assembler should not have accepted to encode this. */
18084 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
18085 "undefined behavior.\n");
18088 /* Fill the remaining of the stub with deterministic contents. */
18089 current_stub_contents =
18090 stm32l4xx_fill_stub_udf (htab, output_bfd,
18091 base_stub_contents, current_stub_contents,
18092 base_stub_contents +
18093 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18098 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
18100 const insn32 initial_insn,
18101 const bfd_byte *const initial_insn_addr,
18102 bfd_byte *const base_stub_contents)
18104 int num_words = ((unsigned int) initial_insn << 24) >> 24;
18105 bfd_byte *current_stub_contents = base_stub_contents;
18107 BFD_ASSERT (is_thumb2_vldm (initial_insn));
18109 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18110 smaller than 8 words load sequences that do not cause the
18112 if (num_words <= 8)
18114 /* Untouched instruction. */
18115 current_stub_contents =
18116 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18119 /* B initial_insn_addr+4. */
18120 current_stub_contents =
18121 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18122 create_instruction_branch_absolute
18123 (initial_insn_addr - current_stub_contents));
18127 bfd_boolean is_dp = /* DP encoding. */
18128 (initial_insn & 0xfe100f00) == 0xec100b00;
18129 bfd_boolean is_ia_nobang = /* (IA without !). */
18130 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
18131 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
18132 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
18133 bfd_boolean is_db_bang = /* (DB with !). */
18134 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
18135 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
18136 /* d = UInt (Vd:D);. */
18137 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
18138 | (((unsigned int)initial_insn << 9) >> 31);
18140 /* Compute the number of 8-words chunks needed to split. */
18141 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
18144 /* The test coverage has been done assuming the following
18145 hypothesis that exactly one of the previous is_ predicates is
18147 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
18148 && !(is_ia_nobang & is_ia_bang & is_db_bang));
18150 /* We treat the cutting of the words in one pass for all
18151 cases, then we emit the adjustments:
18154 -> vldm rx!, {8_words_or_less} for each needed 8_word
18155 -> sub rx, rx, #size (list)
18158 -> vldm rx!, {8_words_or_less} for each needed 8_word
18159 This also handles vpop instruction (when rx is sp)
18162 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
18163 for (chunk = 0; chunk < chunks; ++chunk)
18165 bfd_vma new_insn = 0;
18167 if (is_ia_nobang || is_ia_bang)
18169 new_insn = create_instruction_vldmia
18173 chunks - (chunk + 1) ?
18174 8 : num_words - chunk * 8,
18175 first_reg + chunk * 8);
18177 else if (is_db_bang)
18179 new_insn = create_instruction_vldmdb
18182 chunks - (chunk + 1) ?
18183 8 : num_words - chunk * 8,
18184 first_reg + chunk * 8);
18188 current_stub_contents =
18189 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18193 /* Only this case requires the base register compensation
18197 current_stub_contents =
18198 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18199 create_instruction_sub
18200 (base_reg, base_reg, 4*num_words));
18203 /* B initial_insn_addr+4. */
18204 current_stub_contents =
18205 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18206 create_instruction_branch_absolute
18207 (initial_insn_addr - current_stub_contents));
18210 /* Fill the remaining of the stub with deterministic contents. */
18211 current_stub_contents =
18212 stm32l4xx_fill_stub_udf (htab, output_bfd,
18213 base_stub_contents, current_stub_contents,
18214 base_stub_contents +
18215 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
18219 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
18221 const insn32 wrong_insn,
18222 const bfd_byte *const wrong_insn_addr,
18223 bfd_byte *const stub_contents)
18225 if (is_thumb2_ldmia (wrong_insn))
18226 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
18227 wrong_insn, wrong_insn_addr,
18229 else if (is_thumb2_ldmdb (wrong_insn))
18230 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
18231 wrong_insn, wrong_insn_addr,
18233 else if (is_thumb2_vldm (wrong_insn))
18234 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
18235 wrong_insn, wrong_insn_addr,
18239 /* End of stm32l4xx work-around. */
18243 elf32_arm_add_relocation (bfd *output_bfd, struct bfd_link_info *info,
18244 asection *output_sec, Elf_Internal_Rela *rel)
18246 BFD_ASSERT (output_sec && rel);
18247 struct bfd_elf_section_reloc_data *output_reldata;
18248 struct elf32_arm_link_hash_table *htab;
18249 struct bfd_elf_section_data *oesd = elf_section_data (output_sec);
18250 Elf_Internal_Shdr *rel_hdr;
18255 rel_hdr = oesd->rel.hdr;
18256 output_reldata = &(oesd->rel);
18258 else if (oesd->rela.hdr)
18260 rel_hdr = oesd->rela.hdr;
18261 output_reldata = &(oesd->rela);
18268 bfd_byte *erel = rel_hdr->contents;
18269 erel += output_reldata->count * rel_hdr->sh_entsize;
18270 htab = elf32_arm_hash_table (info);
18271 SWAP_RELOC_OUT (htab) (output_bfd, rel, erel);
18272 output_reldata->count++;
18275 /* Do code byteswapping. Return FALSE afterwards so that the section is
18276 written out as normal. */
18279 elf32_arm_write_section (bfd *output_bfd,
18280 struct bfd_link_info *link_info,
18282 bfd_byte *contents)
18284 unsigned int mapcount, errcount;
18285 _arm_elf_section_data *arm_data;
18286 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
18287 elf32_arm_section_map *map;
18288 elf32_vfp11_erratum_list *errnode;
18289 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
18292 bfd_vma offset = sec->output_section->vma + sec->output_offset;
18296 if (globals == NULL)
18299 /* If this section has not been allocated an _arm_elf_section_data
18300 structure then we cannot record anything. */
18301 arm_data = get_arm_elf_section_data (sec);
18302 if (arm_data == NULL)
18305 mapcount = arm_data->mapcount;
18306 map = arm_data->map;
18307 errcount = arm_data->erratumcount;
18311 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
18313 for (errnode = arm_data->erratumlist; errnode != 0;
18314 errnode = errnode->next)
18316 bfd_vma target = errnode->vma - offset;
18318 switch (errnode->type)
18320 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
18322 bfd_vma branch_to_veneer;
18323 /* Original condition code of instruction, plus bit mask for
18324 ARM B instruction. */
18325 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
18328 /* The instruction is before the label. */
18331 /* Above offset included in -4 below. */
18332 branch_to_veneer = errnode->u.b.veneer->vma
18333 - errnode->vma - 4;
18335 if ((signed) branch_to_veneer < -(1 << 25)
18336 || (signed) branch_to_veneer >= (1 << 25))
18337 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
18338 "range"), output_bfd);
18340 insn |= (branch_to_veneer >> 2) & 0xffffff;
18341 contents[endianflip ^ target] = insn & 0xff;
18342 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18343 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18344 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18348 case VFP11_ERRATUM_ARM_VENEER:
18350 bfd_vma branch_from_veneer;
18353 /* Take size of veneer into account. */
18354 branch_from_veneer = errnode->u.v.branch->vma
18355 - errnode->vma - 12;
18357 if ((signed) branch_from_veneer < -(1 << 25)
18358 || (signed) branch_from_veneer >= (1 << 25))
18359 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
18360 "range"), output_bfd);
18362 /* Original instruction. */
18363 insn = errnode->u.v.branch->u.b.vfp_insn;
18364 contents[endianflip ^ target] = insn & 0xff;
18365 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18366 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18367 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18369 /* Branch back to insn after original insn. */
18370 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
18371 contents[endianflip ^ (target + 4)] = insn & 0xff;
18372 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
18373 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
18374 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
18384 if (arm_data->stm32l4xx_erratumcount != 0)
18386 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
18387 stm32l4xx_errnode != 0;
18388 stm32l4xx_errnode = stm32l4xx_errnode->next)
18390 bfd_vma target = stm32l4xx_errnode->vma - offset;
18392 switch (stm32l4xx_errnode->type)
18394 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
18397 bfd_vma branch_to_veneer =
18398 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
18400 if ((signed) branch_to_veneer < -(1 << 24)
18401 || (signed) branch_to_veneer >= (1 << 24))
18403 bfd_vma out_of_range =
18404 ((signed) branch_to_veneer < -(1 << 24)) ?
18405 - branch_to_veneer - (1 << 24) :
18406 ((signed) branch_to_veneer >= (1 << 24)) ?
18407 branch_to_veneer - (1 << 24) : 0;
18409 (*_bfd_error_handler)
18410 (_("%B(%#x): error: Cannot create STM32L4XX veneer. "
18411 "Jump out of range by %ld bytes. "
18412 "Cannot encode branch instruction. "),
18414 (long) (stm32l4xx_errnode->vma - 4),
18419 insn = create_instruction_branch_absolute
18420 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
18422 /* The instruction is before the label. */
18425 put_thumb2_insn (globals, output_bfd,
18426 (bfd_vma) insn, contents + target);
18430 case STM32L4XX_ERRATUM_VENEER:
18433 bfd_byte * veneer_r;
18436 veneer = contents + target;
18438 + stm32l4xx_errnode->u.b.veneer->vma
18439 - stm32l4xx_errnode->vma - 4;
18441 if ((signed) (veneer_r - veneer -
18442 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
18443 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
18444 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
18445 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
18446 || (signed) (veneer_r - veneer) >= (1 << 24))
18448 (*_bfd_error_handler) (_("%B: error: Cannot create STM32L4XX "
18449 "veneer."), output_bfd);
18453 /* Original instruction. */
18454 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
18456 stm32l4xx_create_replacing_stub
18457 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
18467 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
18469 arm_unwind_table_edit *edit_node
18470 = arm_data->u.exidx.unwind_edit_list;
18471 /* Now, sec->size is the size of the section we will write. The original
18472 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
18473 markers) was sec->rawsize. (This isn't the case if we perform no
18474 edits, then rawsize will be zero and we should use size). */
18475 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
18476 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
18477 unsigned int in_index, out_index;
18478 bfd_vma add_to_offsets = 0;
18480 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
18484 unsigned int edit_index = edit_node->index;
18486 if (in_index < edit_index && in_index * 8 < input_size)
18488 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18489 contents + in_index * 8, add_to_offsets);
18493 else if (in_index == edit_index
18494 || (in_index * 8 >= input_size
18495 && edit_index == UINT_MAX))
18497 switch (edit_node->type)
18499 case DELETE_EXIDX_ENTRY:
18501 add_to_offsets += 8;
18504 case INSERT_EXIDX_CANTUNWIND_AT_END:
18506 asection *text_sec = edit_node->linked_section;
18507 bfd_vma text_offset = text_sec->output_section->vma
18508 + text_sec->output_offset
18510 bfd_vma exidx_offset = offset + out_index * 8;
18511 unsigned long prel31_offset;
18513 /* Note: this is meant to be equivalent to an
18514 R_ARM_PREL31 relocation. These synthetic
18515 EXIDX_CANTUNWIND markers are not relocated by the
18516 usual BFD method. */
18517 prel31_offset = (text_offset - exidx_offset)
18519 if (bfd_link_relocatable (link_info))
18521 /* Here relocation for new EXIDX_CANTUNWIND is
18522 created, so there is no need to
18523 adjust offset by hand. */
18524 prel31_offset = text_sec->output_offset
18527 /* New relocation entity. */
18528 asection *text_out = text_sec->output_section;
18529 Elf_Internal_Rela rel;
18531 rel.r_offset = exidx_offset;
18532 rel.r_info = ELF32_R_INFO (text_out->target_index,
18535 elf32_arm_add_relocation (output_bfd, link_info,
18536 sec->output_section,
18540 /* First address we can't unwind. */
18541 bfd_put_32 (output_bfd, prel31_offset,
18542 &edited_contents[out_index * 8]);
18544 /* Code for EXIDX_CANTUNWIND. */
18545 bfd_put_32 (output_bfd, 0x1,
18546 &edited_contents[out_index * 8 + 4]);
18549 add_to_offsets -= 8;
18554 edit_node = edit_node->next;
18559 /* No more edits, copy remaining entries verbatim. */
18560 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18561 contents + in_index * 8, add_to_offsets);
18567 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
18568 bfd_set_section_contents (output_bfd, sec->output_section,
18570 (file_ptr) sec->output_offset, sec->size);
18575 /* Fix code to point to Cortex-A8 erratum stubs. */
18576 if (globals->fix_cortex_a8)
18578 struct a8_branch_to_stub_data data;
18580 data.writing_section = sec;
18581 data.contents = contents;
18583 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
18590 if (globals->byteswap_code)
18592 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
18595 for (i = 0; i < mapcount; i++)
18597 if (i == mapcount - 1)
18600 end = map[i + 1].vma;
18602 switch (map[i].type)
18605 /* Byte swap code words. */
18606 while (ptr + 3 < end)
18608 tmp = contents[ptr];
18609 contents[ptr] = contents[ptr + 3];
18610 contents[ptr + 3] = tmp;
18611 tmp = contents[ptr + 1];
18612 contents[ptr + 1] = contents[ptr + 2];
18613 contents[ptr + 2] = tmp;
18619 /* Byte swap code halfwords. */
18620 while (ptr + 1 < end)
18622 tmp = contents[ptr];
18623 contents[ptr] = contents[ptr + 1];
18624 contents[ptr + 1] = tmp;
18630 /* Leave data alone. */
18638 arm_data->mapcount = -1;
18639 arm_data->mapsize = 0;
18640 arm_data->map = NULL;
18645 /* Mangle thumb function symbols as we read them in. */
18648 elf32_arm_swap_symbol_in (bfd * abfd,
18651 Elf_Internal_Sym *dst)
18653 Elf_Internal_Shdr *symtab_hdr;
18654 const char *name = NULL;
18656 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
18658 dst->st_target_internal = 0;
18660 /* New EABI objects mark thumb function symbols by setting the low bit of
18662 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
18663 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
18665 if (dst->st_value & 1)
18667 dst->st_value &= ~(bfd_vma) 1;
18668 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
18669 ST_BRANCH_TO_THUMB);
18672 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
18674 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
18676 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
18677 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
18679 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
18680 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
18682 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
18684 /* Mark CMSE special symbols. */
18685 symtab_hdr = & elf_symtab_hdr (abfd);
18686 if (symtab_hdr->sh_size)
18687 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
18688 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
18689 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
18695 /* Mangle thumb function symbols as we write them out. */
18698 elf32_arm_swap_symbol_out (bfd *abfd,
18699 const Elf_Internal_Sym *src,
18703 Elf_Internal_Sym newsym;
18705 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
18706 of the address set, as per the new EABI. We do this unconditionally
18707 because objcopy does not set the elf header flags until after
18708 it writes out the symbol table. */
18709 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
18712 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
18713 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
18714 if (newsym.st_shndx != SHN_UNDEF)
18716 /* Do this only for defined symbols. At link type, the static
18717 linker will simulate the work of dynamic linker of resolving
18718 symbols and will carry over the thumbness of found symbols to
18719 the output symbol table. It's not clear how it happens, but
18720 the thumbness of undefined symbols can well be different at
18721 runtime, and writing '1' for them will be confusing for users
18722 and possibly for dynamic linker itself.
18724 newsym.st_value |= 1;
18729 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
18732 /* Add the PT_ARM_EXIDX program header. */
18735 elf32_arm_modify_segment_map (bfd *abfd,
18736 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18738 struct elf_segment_map *m;
18741 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18742 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18744 /* If there is already a PT_ARM_EXIDX header, then we do not
18745 want to add another one. This situation arises when running
18746 "strip"; the input binary already has the header. */
18747 m = elf_seg_map (abfd);
18748 while (m && m->p_type != PT_ARM_EXIDX)
18752 m = (struct elf_segment_map *)
18753 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
18756 m->p_type = PT_ARM_EXIDX;
18758 m->sections[0] = sec;
18760 m->next = elf_seg_map (abfd);
18761 elf_seg_map (abfd) = m;
18768 /* We may add a PT_ARM_EXIDX program header. */
18771 elf32_arm_additional_program_headers (bfd *abfd,
18772 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18776 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18777 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18783 /* Hook called by the linker routine which adds symbols from an object
18787 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
18788 Elf_Internal_Sym *sym, const char **namep,
18789 flagword *flagsp, asection **secp, bfd_vma *valp)
18791 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
18792 && (abfd->flags & DYNAMIC) == 0
18793 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
18794 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
18796 if (elf32_arm_hash_table (info) == NULL)
18799 if (elf32_arm_hash_table (info)->vxworks_p
18800 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
18801 flagsp, secp, valp))
18807 /* We use this to override swap_symbol_in and swap_symbol_out. */
18808 const struct elf_size_info elf32_arm_size_info =
18810 sizeof (Elf32_External_Ehdr),
18811 sizeof (Elf32_External_Phdr),
18812 sizeof (Elf32_External_Shdr),
18813 sizeof (Elf32_External_Rel),
18814 sizeof (Elf32_External_Rela),
18815 sizeof (Elf32_External_Sym),
18816 sizeof (Elf32_External_Dyn),
18817 sizeof (Elf_External_Note),
18821 ELFCLASS32, EV_CURRENT,
18822 bfd_elf32_write_out_phdrs,
18823 bfd_elf32_write_shdrs_and_ehdr,
18824 bfd_elf32_checksum_contents,
18825 bfd_elf32_write_relocs,
18826 elf32_arm_swap_symbol_in,
18827 elf32_arm_swap_symbol_out,
18828 bfd_elf32_slurp_reloc_table,
18829 bfd_elf32_slurp_symbol_table,
18830 bfd_elf32_swap_dyn_in,
18831 bfd_elf32_swap_dyn_out,
18832 bfd_elf32_swap_reloc_in,
18833 bfd_elf32_swap_reloc_out,
18834 bfd_elf32_swap_reloca_in,
18835 bfd_elf32_swap_reloca_out
18839 read_code32 (const bfd *abfd, const bfd_byte *addr)
18841 /* V7 BE8 code is always little endian. */
18842 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
18843 return bfd_getl32 (addr);
18845 return bfd_get_32 (abfd, addr);
18849 read_code16 (const bfd *abfd, const bfd_byte *addr)
18851 /* V7 BE8 code is always little endian. */
18852 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
18853 return bfd_getl16 (addr);
18855 return bfd_get_16 (abfd, addr);
18858 /* Return size of plt0 entry starting at ADDR
18859 or (bfd_vma) -1 if size can not be determined. */
18862 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
18864 bfd_vma first_word;
18867 first_word = read_code32 (abfd, addr);
18869 if (first_word == elf32_arm_plt0_entry[0])
18870 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
18871 else if (first_word == elf32_thumb2_plt0_entry[0])
18872 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
18874 /* We don't yet handle this PLT format. */
18875 return (bfd_vma) -1;
18880 /* Return size of plt entry starting at offset OFFSET
18881 of plt section located at address START
18882 or (bfd_vma) -1 if size can not be determined. */
18885 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
18887 bfd_vma first_insn;
18888 bfd_vma plt_size = 0;
18889 const bfd_byte *addr = start + offset;
18891 /* PLT entry size if fixed on Thumb-only platforms. */
18892 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
18893 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
18895 /* Respect Thumb stub if necessary. */
18896 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
18898 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
18901 /* Strip immediate from first add. */
18902 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
18904 #ifdef FOUR_WORD_PLT
18905 if (first_insn == elf32_arm_plt_entry[0])
18906 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
18908 if (first_insn == elf32_arm_plt_entry_long[0])
18909 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
18910 else if (first_insn == elf32_arm_plt_entry_short[0])
18911 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
18914 /* We don't yet handle this PLT format. */
18915 return (bfd_vma) -1;
18920 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
18923 elf32_arm_get_synthetic_symtab (bfd *abfd,
18924 long symcount ATTRIBUTE_UNUSED,
18925 asymbol **syms ATTRIBUTE_UNUSED,
18935 Elf_Internal_Shdr *hdr;
18943 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
18946 if (dynsymcount <= 0)
18949 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
18950 if (relplt == NULL)
18953 hdr = &elf_section_data (relplt)->this_hdr;
18954 if (hdr->sh_link != elf_dynsymtab (abfd)
18955 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
18958 plt = bfd_get_section_by_name (abfd, ".plt");
18962 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
18965 data = plt->contents;
18968 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
18970 bfd_cache_section_contents((asection *) plt, data);
18973 count = relplt->size / hdr->sh_entsize;
18974 size = count * sizeof (asymbol);
18975 p = relplt->relocation;
18976 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
18978 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
18979 if (p->addend != 0)
18980 size += sizeof ("+0x") - 1 + 8;
18983 s = *ret = (asymbol *) bfd_malloc (size);
18987 offset = elf32_arm_plt0_size (abfd, data);
18988 if (offset == (bfd_vma) -1)
18991 names = (char *) (s + count);
18992 p = relplt->relocation;
18994 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
18998 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
18999 if (plt_size == (bfd_vma) -1)
19002 *s = **p->sym_ptr_ptr;
19003 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
19004 we are defining a symbol, ensure one of them is set. */
19005 if ((s->flags & BSF_LOCAL) == 0)
19006 s->flags |= BSF_GLOBAL;
19007 s->flags |= BSF_SYNTHETIC;
19012 len = strlen ((*p->sym_ptr_ptr)->name);
19013 memcpy (names, (*p->sym_ptr_ptr)->name, len);
19015 if (p->addend != 0)
19019 memcpy (names, "+0x", sizeof ("+0x") - 1);
19020 names += sizeof ("+0x") - 1;
19021 bfd_sprintf_vma (abfd, buf, p->addend);
19022 for (a = buf; *a == '0'; ++a)
19025 memcpy (names, a, len);
19028 memcpy (names, "@plt", sizeof ("@plt"));
19029 names += sizeof ("@plt");
19031 offset += plt_size;
19038 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
19040 if (hdr->sh_flags & SHF_ARM_PURECODE)
19041 *flags |= SEC_ELF_PURECODE;
19046 elf32_arm_lookup_section_flags (char *flag_name)
19048 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
19049 return SHF_ARM_PURECODE;
19051 return SEC_NO_FLAGS;
19054 static unsigned int
19055 elf32_arm_count_additional_relocs (asection *sec)
19057 struct _arm_elf_section_data *arm_data;
19058 arm_data = get_arm_elf_section_data (sec);
19059 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
19062 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
19063 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
19064 FALSE otherwise. ISECTION is the best guess matching section from the
19065 input bfd IBFD, but it might be NULL. */
19068 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
19069 bfd *obfd ATTRIBUTE_UNUSED,
19070 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
19071 Elf_Internal_Shdr *osection)
19073 switch (osection->sh_type)
19075 case SHT_ARM_EXIDX:
19077 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
19078 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
19081 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
19082 osection->sh_info = 0;
19084 /* The sh_link field must be set to the text section associated with
19085 this index section. Unfortunately the ARM EHABI does not specify
19086 exactly how to determine this association. Our caller does try
19087 to match up OSECTION with its corresponding input section however
19088 so that is a good first guess. */
19089 if (isection != NULL
19090 && osection->bfd_section != NULL
19091 && isection->bfd_section != NULL
19092 && isection->bfd_section->output_section != NULL
19093 && isection->bfd_section->output_section == osection->bfd_section
19094 && iheaders != NULL
19095 && isection->sh_link > 0
19096 && isection->sh_link < elf_numsections (ibfd)
19097 && iheaders[isection->sh_link]->bfd_section != NULL
19098 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
19101 for (i = elf_numsections (obfd); i-- > 0;)
19102 if (oheaders[i]->bfd_section
19103 == iheaders[isection->sh_link]->bfd_section->output_section)
19109 /* Failing that we have to find a matching section ourselves. If
19110 we had the output section name available we could compare that
19111 with input section names. Unfortunately we don't. So instead
19112 we use a simple heuristic and look for the nearest executable
19113 section before this one. */
19114 for (i = elf_numsections (obfd); i-- > 0;)
19115 if (oheaders[i] == osection)
19121 if (oheaders[i]->sh_type == SHT_PROGBITS
19122 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
19123 == (SHF_ALLOC | SHF_EXECINSTR))
19129 osection->sh_link = i;
19130 /* If the text section was part of a group
19131 then the index section should be too. */
19132 if (oheaders[i]->sh_flags & SHF_GROUP)
19133 osection->sh_flags |= SHF_GROUP;
19139 case SHT_ARM_PREEMPTMAP:
19140 osection->sh_flags = SHF_ALLOC;
19143 case SHT_ARM_ATTRIBUTES:
19144 case SHT_ARM_DEBUGOVERLAY:
19145 case SHT_ARM_OVERLAYSECTION:
19153 /* Returns TRUE if NAME is an ARM mapping symbol.
19154 Traditionally the symbols $a, $d and $t have been used.
19155 The ARM ELF standard also defines $x (for A64 code). It also allows a
19156 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
19157 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
19158 not support them here. $t.x indicates the start of ThumbEE instructions. */
19161 is_arm_mapping_symbol (const char * name)
19163 return name != NULL /* Paranoia. */
19164 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
19165 the mapping symbols could have acquired a prefix.
19166 We do not support this here, since such symbols no
19167 longer conform to the ARM ELF ABI. */
19168 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
19169 && (name[2] == 0 || name[2] == '.');
19170 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
19171 any characters that follow the period are legal characters for the body
19172 of a symbol's name. For now we just assume that this is the case. */
19175 /* Make sure that mapping symbols in object files are not removed via the
19176 "strip --strip-unneeded" tool. These symbols are needed in order to
19177 correctly generate interworking veneers, and for byte swapping code
19178 regions. Once an object file has been linked, it is safe to remove the
19179 symbols as they will no longer be needed. */
19182 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
19184 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
19185 && sym->section != bfd_abs_section_ptr
19186 && is_arm_mapping_symbol (sym->name))
19187 sym->flags |= BSF_KEEP;
19190 #undef elf_backend_copy_special_section_fields
19191 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
19193 #define ELF_ARCH bfd_arch_arm
19194 #define ELF_TARGET_ID ARM_ELF_DATA
19195 #define ELF_MACHINE_CODE EM_ARM
19196 #ifdef __QNXTARGET__
19197 #define ELF_MAXPAGESIZE 0x1000
19199 #define ELF_MAXPAGESIZE 0x10000
19201 #define ELF_MINPAGESIZE 0x1000
19202 #define ELF_COMMONPAGESIZE 0x1000
19204 #define bfd_elf32_mkobject elf32_arm_mkobject
19206 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
19207 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
19208 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
19209 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
19210 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
19211 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
19212 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
19213 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
19214 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
19215 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
19216 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
19217 #define bfd_elf32_bfd_final_link elf32_arm_final_link
19218 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
19220 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
19221 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
19222 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
19223 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
19224 #define elf_backend_check_relocs elf32_arm_check_relocs
19225 #define elf_backend_relocate_section elf32_arm_relocate_section
19226 #define elf_backend_write_section elf32_arm_write_section
19227 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
19228 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
19229 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
19230 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
19231 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
19232 #define elf_backend_always_size_sections elf32_arm_always_size_sections
19233 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
19234 #define elf_backend_post_process_headers elf32_arm_post_process_headers
19235 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
19236 #define elf_backend_object_p elf32_arm_object_p
19237 #define elf_backend_fake_sections elf32_arm_fake_sections
19238 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
19239 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19240 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
19241 #define elf_backend_size_info elf32_arm_size_info
19242 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19243 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
19244 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
19245 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
19246 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
19247 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
19248 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
19249 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
19251 #define elf_backend_can_refcount 1
19252 #define elf_backend_can_gc_sections 1
19253 #define elf_backend_plt_readonly 1
19254 #define elf_backend_want_got_plt 1
19255 #define elf_backend_want_plt_sym 0
19256 #define elf_backend_may_use_rel_p 1
19257 #define elf_backend_may_use_rela_p 0
19258 #define elf_backend_default_use_rela_p 0
19260 #define elf_backend_got_header_size 12
19261 #define elf_backend_extern_protected_data 1
19263 #undef elf_backend_obj_attrs_vendor
19264 #define elf_backend_obj_attrs_vendor "aeabi"
19265 #undef elf_backend_obj_attrs_section
19266 #define elf_backend_obj_attrs_section ".ARM.attributes"
19267 #undef elf_backend_obj_attrs_arg_type
19268 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
19269 #undef elf_backend_obj_attrs_section_type
19270 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
19271 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
19272 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
19274 #undef elf_backend_section_flags
19275 #define elf_backend_section_flags elf32_arm_section_flags
19276 #undef elf_backend_lookup_section_flags_hook
19277 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
19279 #include "elf32-target.h"
19281 /* Native Client targets. */
19283 #undef TARGET_LITTLE_SYM
19284 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
19285 #undef TARGET_LITTLE_NAME
19286 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
19287 #undef TARGET_BIG_SYM
19288 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
19289 #undef TARGET_BIG_NAME
19290 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
19292 /* Like elf32_arm_link_hash_table_create -- but overrides
19293 appropriately for NaCl. */
19295 static struct bfd_link_hash_table *
19296 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
19298 struct bfd_link_hash_table *ret;
19300 ret = elf32_arm_link_hash_table_create (abfd);
19303 struct elf32_arm_link_hash_table *htab
19304 = (struct elf32_arm_link_hash_table *) ret;
19308 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
19309 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
19314 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
19315 really need to use elf32_arm_modify_segment_map. But we do it
19316 anyway just to reduce gratuitous differences with the stock ARM backend. */
19319 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
19321 return (elf32_arm_modify_segment_map (abfd, info)
19322 && nacl_modify_segment_map (abfd, info));
19326 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
19328 elf32_arm_final_write_processing (abfd, linker);
19329 nacl_final_write_processing (abfd, linker);
19333 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
19334 const arelent *rel ATTRIBUTE_UNUSED)
19337 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
19338 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
19342 #define elf32_bed elf32_arm_nacl_bed
19343 #undef bfd_elf32_bfd_link_hash_table_create
19344 #define bfd_elf32_bfd_link_hash_table_create \
19345 elf32_arm_nacl_link_hash_table_create
19346 #undef elf_backend_plt_alignment
19347 #define elf_backend_plt_alignment 4
19348 #undef elf_backend_modify_segment_map
19349 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
19350 #undef elf_backend_modify_program_headers
19351 #define elf_backend_modify_program_headers nacl_modify_program_headers
19352 #undef elf_backend_final_write_processing
19353 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
19354 #undef bfd_elf32_get_synthetic_symtab
19355 #undef elf_backend_plt_sym_val
19356 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
19357 #undef elf_backend_copy_special_section_fields
19359 #undef ELF_MINPAGESIZE
19360 #undef ELF_COMMONPAGESIZE
19363 #include "elf32-target.h"
19365 /* Reset to defaults. */
19366 #undef elf_backend_plt_alignment
19367 #undef elf_backend_modify_segment_map
19368 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19369 #undef elf_backend_modify_program_headers
19370 #undef elf_backend_final_write_processing
19371 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19372 #undef ELF_MINPAGESIZE
19373 #define ELF_MINPAGESIZE 0x1000
19374 #undef ELF_COMMONPAGESIZE
19375 #define ELF_COMMONPAGESIZE 0x1000
19378 /* VxWorks Targets. */
19380 #undef TARGET_LITTLE_SYM
19381 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
19382 #undef TARGET_LITTLE_NAME
19383 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
19384 #undef TARGET_BIG_SYM
19385 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
19386 #undef TARGET_BIG_NAME
19387 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
19389 /* Like elf32_arm_link_hash_table_create -- but overrides
19390 appropriately for VxWorks. */
19392 static struct bfd_link_hash_table *
19393 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
19395 struct bfd_link_hash_table *ret;
19397 ret = elf32_arm_link_hash_table_create (abfd);
19400 struct elf32_arm_link_hash_table *htab
19401 = (struct elf32_arm_link_hash_table *) ret;
19403 htab->vxworks_p = 1;
19409 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
19411 elf32_arm_final_write_processing (abfd, linker);
19412 elf_vxworks_final_write_processing (abfd, linker);
19416 #define elf32_bed elf32_arm_vxworks_bed
19418 #undef bfd_elf32_bfd_link_hash_table_create
19419 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
19420 #undef elf_backend_final_write_processing
19421 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
19422 #undef elf_backend_emit_relocs
19423 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
19425 #undef elf_backend_may_use_rel_p
19426 #define elf_backend_may_use_rel_p 0
19427 #undef elf_backend_may_use_rela_p
19428 #define elf_backend_may_use_rela_p 1
19429 #undef elf_backend_default_use_rela_p
19430 #define elf_backend_default_use_rela_p 1
19431 #undef elf_backend_want_plt_sym
19432 #define elf_backend_want_plt_sym 1
19433 #undef ELF_MAXPAGESIZE
19434 #define ELF_MAXPAGESIZE 0x1000
19436 #include "elf32-target.h"
19439 /* Merge backend specific data from an object file to the output
19440 object file when linking. */
19443 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
19445 flagword out_flags;
19447 bfd_boolean flags_compatible = TRUE;
19450 /* Check if we have the same endianness. */
19451 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
19454 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
19457 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
19460 /* The input BFD must have had its flags initialised. */
19461 /* The following seems bogus to me -- The flags are initialized in
19462 the assembler but I don't think an elf_flags_init field is
19463 written into the object. */
19464 /* BFD_ASSERT (elf_flags_init (ibfd)); */
19466 in_flags = elf_elfheader (ibfd)->e_flags;
19467 out_flags = elf_elfheader (obfd)->e_flags;
19469 /* In theory there is no reason why we couldn't handle this. However
19470 in practice it isn't even close to working and there is no real
19471 reason to want it. */
19472 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
19473 && !(ibfd->flags & DYNAMIC)
19474 && (in_flags & EF_ARM_BE8))
19476 _bfd_error_handler (_("error: %B is already in final BE8 format"),
19481 if (!elf_flags_init (obfd))
19483 /* If the input is the default architecture and had the default
19484 flags then do not bother setting the flags for the output
19485 architecture, instead allow future merges to do this. If no
19486 future merges ever set these flags then they will retain their
19487 uninitialised values, which surprise surprise, correspond
19488 to the default values. */
19489 if (bfd_get_arch_info (ibfd)->the_default
19490 && elf_elfheader (ibfd)->e_flags == 0)
19493 elf_flags_init (obfd) = TRUE;
19494 elf_elfheader (obfd)->e_flags = in_flags;
19496 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
19497 && bfd_get_arch_info (obfd)->the_default)
19498 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
19503 /* Determine what should happen if the input ARM architecture
19504 does not match the output ARM architecture. */
19505 if (! bfd_arm_merge_machines (ibfd, obfd))
19508 /* Identical flags must be compatible. */
19509 if (in_flags == out_flags)
19512 /* Check to see if the input BFD actually contains any sections. If
19513 not, its flags may not have been initialised either, but it
19514 cannot actually cause any incompatiblity. Do not short-circuit
19515 dynamic objects; their section list may be emptied by
19516 elf_link_add_object_symbols.
19518 Also check to see if there are no code sections in the input.
19519 In this case there is no need to check for code specific flags.
19520 XXX - do we need to worry about floating-point format compatability
19521 in data sections ? */
19522 if (!(ibfd->flags & DYNAMIC))
19524 bfd_boolean null_input_bfd = TRUE;
19525 bfd_boolean only_data_sections = TRUE;
19527 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
19529 /* Ignore synthetic glue sections. */
19530 if (strcmp (sec->name, ".glue_7")
19531 && strcmp (sec->name, ".glue_7t"))
19533 if ((bfd_get_section_flags (ibfd, sec)
19534 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19535 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19536 only_data_sections = FALSE;
19538 null_input_bfd = FALSE;
19543 if (null_input_bfd || only_data_sections)
19547 /* Complain about various flag mismatches. */
19548 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
19549 EF_ARM_EABI_VERSION (out_flags)))
19552 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
19554 (in_flags & EF_ARM_EABIMASK) >> 24,
19555 (out_flags & EF_ARM_EABIMASK) >> 24);
19559 /* Not sure what needs to be checked for EABI versions >= 1. */
19560 /* VxWorks libraries do not use these flags. */
19561 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
19562 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
19563 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
19565 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
19568 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
19570 in_flags & EF_ARM_APCS_26 ? 26 : 32,
19571 out_flags & EF_ARM_APCS_26 ? 26 : 32);
19572 flags_compatible = FALSE;
19575 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
19577 if (in_flags & EF_ARM_APCS_FLOAT)
19579 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
19583 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
19586 flags_compatible = FALSE;
19589 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
19591 if (in_flags & EF_ARM_VFP_FLOAT)
19593 (_("error: %B uses VFP instructions, whereas %B does not"),
19597 (_("error: %B uses FPA instructions, whereas %B does not"),
19600 flags_compatible = FALSE;
19603 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
19605 if (in_flags & EF_ARM_MAVERICK_FLOAT)
19607 (_("error: %B uses Maverick instructions, whereas %B does not"),
19611 (_("error: %B does not use Maverick instructions, whereas %B does"),
19614 flags_compatible = FALSE;
19617 #ifdef EF_ARM_SOFT_FLOAT
19618 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
19620 /* We can allow interworking between code that is VFP format
19621 layout, and uses either soft float or integer regs for
19622 passing floating point arguments and results. We already
19623 know that the APCS_FLOAT flags match; similarly for VFP
19625 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
19626 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
19628 if (in_flags & EF_ARM_SOFT_FLOAT)
19630 (_("error: %B uses software FP, whereas %B uses hardware FP"),
19634 (_("error: %B uses hardware FP, whereas %B uses software FP"),
19637 flags_compatible = FALSE;
19642 /* Interworking mismatch is only a warning. */
19643 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
19645 if (in_flags & EF_ARM_INTERWORK)
19648 (_("Warning: %B supports interworking, whereas %B does not"),
19654 (_("Warning: %B does not support interworking, whereas %B does"),
19660 return flags_compatible;
19664 /* Symbian OS Targets. */
19666 #undef TARGET_LITTLE_SYM
19667 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
19668 #undef TARGET_LITTLE_NAME
19669 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
19670 #undef TARGET_BIG_SYM
19671 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
19672 #undef TARGET_BIG_NAME
19673 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
19675 /* Like elf32_arm_link_hash_table_create -- but overrides
19676 appropriately for Symbian OS. */
19678 static struct bfd_link_hash_table *
19679 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
19681 struct bfd_link_hash_table *ret;
19683 ret = elf32_arm_link_hash_table_create (abfd);
19686 struct elf32_arm_link_hash_table *htab
19687 = (struct elf32_arm_link_hash_table *)ret;
19688 /* There is no PLT header for Symbian OS. */
19689 htab->plt_header_size = 0;
19690 /* The PLT entries are each one instruction and one word. */
19691 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
19692 htab->symbian_p = 1;
19693 /* Symbian uses armv5t or above, so use_blx is always true. */
19695 htab->root.is_relocatable_executable = 1;
19700 static const struct bfd_elf_special_section
19701 elf32_arm_symbian_special_sections[] =
19703 /* In a BPABI executable, the dynamic linking sections do not go in
19704 the loadable read-only segment. The post-linker may wish to
19705 refer to these sections, but they are not part of the final
19707 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
19708 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
19709 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
19710 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
19711 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
19712 /* These sections do not need to be writable as the SymbianOS
19713 postlinker will arrange things so that no dynamic relocation is
19715 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
19716 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
19717 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
19718 { NULL, 0, 0, 0, 0 }
19722 elf32_arm_symbian_begin_write_processing (bfd *abfd,
19723 struct bfd_link_info *link_info)
19725 /* BPABI objects are never loaded directly by an OS kernel; they are
19726 processed by a postlinker first, into an OS-specific format. If
19727 the D_PAGED bit is set on the file, BFD will align segments on
19728 page boundaries, so that an OS can directly map the file. With
19729 BPABI objects, that just results in wasted space. In addition,
19730 because we clear the D_PAGED bit, map_sections_to_segments will
19731 recognize that the program headers should not be mapped into any
19732 loadable segment. */
19733 abfd->flags &= ~D_PAGED;
19734 elf32_arm_begin_write_processing (abfd, link_info);
19738 elf32_arm_symbian_modify_segment_map (bfd *abfd,
19739 struct bfd_link_info *info)
19741 struct elf_segment_map *m;
19744 /* BPABI shared libraries and executables should have a PT_DYNAMIC
19745 segment. However, because the .dynamic section is not marked
19746 with SEC_LOAD, the generic ELF code will not create such a
19748 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
19751 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
19752 if (m->p_type == PT_DYNAMIC)
19757 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
19758 m->next = elf_seg_map (abfd);
19759 elf_seg_map (abfd) = m;
19763 /* Also call the generic arm routine. */
19764 return elf32_arm_modify_segment_map (abfd, info);
19767 /* Return address for Ith PLT stub in section PLT, for relocation REL
19768 or (bfd_vma) -1 if it should not be included. */
19771 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
19772 const arelent *rel ATTRIBUTE_UNUSED)
19774 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
19778 #define elf32_bed elf32_arm_symbian_bed
19780 /* The dynamic sections are not allocated on SymbianOS; the postlinker
19781 will process them and then discard them. */
19782 #undef ELF_DYNAMIC_SEC_FLAGS
19783 #define ELF_DYNAMIC_SEC_FLAGS \
19784 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
19786 #undef elf_backend_emit_relocs
19788 #undef bfd_elf32_bfd_link_hash_table_create
19789 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
19790 #undef elf_backend_special_sections
19791 #define elf_backend_special_sections elf32_arm_symbian_special_sections
19792 #undef elf_backend_begin_write_processing
19793 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
19794 #undef elf_backend_final_write_processing
19795 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19797 #undef elf_backend_modify_segment_map
19798 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
19800 /* There is no .got section for BPABI objects, and hence no header. */
19801 #undef elf_backend_got_header_size
19802 #define elf_backend_got_header_size 0
19804 /* Similarly, there is no .got.plt section. */
19805 #undef elf_backend_want_got_plt
19806 #define elf_backend_want_got_plt 0
19808 #undef elf_backend_plt_sym_val
19809 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
19811 #undef elf_backend_may_use_rel_p
19812 #define elf_backend_may_use_rel_p 1
19813 #undef elf_backend_may_use_rela_p
19814 #define elf_backend_may_use_rela_p 0
19815 #undef elf_backend_default_use_rela_p
19816 #define elf_backend_default_use_rela_p 0
19817 #undef elf_backend_want_plt_sym
19818 #define elf_backend_want_plt_sym 0
19819 #undef ELF_MAXPAGESIZE
19820 #define ELF_MAXPAGESIZE 0x8000
19822 #include "elf32-target.h"