1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2019 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
25 #include "libiberty.h"
29 #include "elf-vxworks.h"
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
58 #define elf_info_to_howto NULL
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64 /* The Adjusted Place, as defined by AAELF. */
65 #define Pa(X) ((X) & 0xfffffffc)
67 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
68 struct bfd_link_info *link_info,
72 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
73 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
76 static reloc_howto_type elf32_arm_howto_table_1[] =
79 HOWTO (R_ARM_NONE, /* type */
81 3, /* size (0 = byte, 1 = short, 2 = long) */
83 FALSE, /* pc_relative */
85 complain_overflow_dont,/* complain_on_overflow */
86 bfd_elf_generic_reloc, /* special_function */
87 "R_ARM_NONE", /* name */
88 FALSE, /* partial_inplace */
91 FALSE), /* pcrel_offset */
93 HOWTO (R_ARM_PC24, /* type */
95 2, /* size (0 = byte, 1 = short, 2 = long) */
97 TRUE, /* pc_relative */
99 complain_overflow_signed,/* complain_on_overflow */
100 bfd_elf_generic_reloc, /* special_function */
101 "R_ARM_PC24", /* name */
102 FALSE, /* partial_inplace */
103 0x00ffffff, /* src_mask */
104 0x00ffffff, /* dst_mask */
105 TRUE), /* pcrel_offset */
107 /* 32 bit absolute */
108 HOWTO (R_ARM_ABS32, /* type */
110 2, /* size (0 = byte, 1 = short, 2 = long) */
112 FALSE, /* pc_relative */
114 complain_overflow_bitfield,/* complain_on_overflow */
115 bfd_elf_generic_reloc, /* special_function */
116 "R_ARM_ABS32", /* name */
117 FALSE, /* partial_inplace */
118 0xffffffff, /* src_mask */
119 0xffffffff, /* dst_mask */
120 FALSE), /* pcrel_offset */
122 /* standard 32bit pc-relative reloc */
123 HOWTO (R_ARM_REL32, /* type */
125 2, /* size (0 = byte, 1 = short, 2 = long) */
127 TRUE, /* pc_relative */
129 complain_overflow_bitfield,/* complain_on_overflow */
130 bfd_elf_generic_reloc, /* special_function */
131 "R_ARM_REL32", /* name */
132 FALSE, /* partial_inplace */
133 0xffffffff, /* src_mask */
134 0xffffffff, /* dst_mask */
135 TRUE), /* pcrel_offset */
137 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
138 HOWTO (R_ARM_LDR_PC_G0, /* type */
140 0, /* size (0 = byte, 1 = short, 2 = long) */
142 TRUE, /* pc_relative */
144 complain_overflow_dont,/* complain_on_overflow */
145 bfd_elf_generic_reloc, /* special_function */
146 "R_ARM_LDR_PC_G0", /* name */
147 FALSE, /* partial_inplace */
148 0xffffffff, /* src_mask */
149 0xffffffff, /* dst_mask */
150 TRUE), /* pcrel_offset */
152 /* 16 bit absolute */
153 HOWTO (R_ARM_ABS16, /* type */
155 1, /* size (0 = byte, 1 = short, 2 = long) */
157 FALSE, /* pc_relative */
159 complain_overflow_bitfield,/* complain_on_overflow */
160 bfd_elf_generic_reloc, /* special_function */
161 "R_ARM_ABS16", /* name */
162 FALSE, /* partial_inplace */
163 0x0000ffff, /* src_mask */
164 0x0000ffff, /* dst_mask */
165 FALSE), /* pcrel_offset */
167 /* 12 bit absolute */
168 HOWTO (R_ARM_ABS12, /* type */
170 2, /* size (0 = byte, 1 = short, 2 = long) */
172 FALSE, /* pc_relative */
174 complain_overflow_bitfield,/* complain_on_overflow */
175 bfd_elf_generic_reloc, /* special_function */
176 "R_ARM_ABS12", /* name */
177 FALSE, /* partial_inplace */
178 0x00000fff, /* src_mask */
179 0x00000fff, /* dst_mask */
180 FALSE), /* pcrel_offset */
182 HOWTO (R_ARM_THM_ABS5, /* type */
184 1, /* size (0 = byte, 1 = short, 2 = long) */
186 FALSE, /* pc_relative */
188 complain_overflow_bitfield,/* complain_on_overflow */
189 bfd_elf_generic_reloc, /* special_function */
190 "R_ARM_THM_ABS5", /* name */
191 FALSE, /* partial_inplace */
192 0x000007e0, /* src_mask */
193 0x000007e0, /* dst_mask */
194 FALSE), /* pcrel_offset */
197 HOWTO (R_ARM_ABS8, /* type */
199 0, /* size (0 = byte, 1 = short, 2 = long) */
201 FALSE, /* pc_relative */
203 complain_overflow_bitfield,/* complain_on_overflow */
204 bfd_elf_generic_reloc, /* special_function */
205 "R_ARM_ABS8", /* name */
206 FALSE, /* partial_inplace */
207 0x000000ff, /* src_mask */
208 0x000000ff, /* dst_mask */
209 FALSE), /* pcrel_offset */
211 HOWTO (R_ARM_SBREL32, /* type */
213 2, /* size (0 = byte, 1 = short, 2 = long) */
215 FALSE, /* pc_relative */
217 complain_overflow_dont,/* complain_on_overflow */
218 bfd_elf_generic_reloc, /* special_function */
219 "R_ARM_SBREL32", /* name */
220 FALSE, /* partial_inplace */
221 0xffffffff, /* src_mask */
222 0xffffffff, /* dst_mask */
223 FALSE), /* pcrel_offset */
225 HOWTO (R_ARM_THM_CALL, /* type */
227 2, /* size (0 = byte, 1 = short, 2 = long) */
229 TRUE, /* pc_relative */
231 complain_overflow_signed,/* complain_on_overflow */
232 bfd_elf_generic_reloc, /* special_function */
233 "R_ARM_THM_CALL", /* name */
234 FALSE, /* partial_inplace */
235 0x07ff2fff, /* src_mask */
236 0x07ff2fff, /* dst_mask */
237 TRUE), /* pcrel_offset */
239 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* size (0 = byte, 1 = short, 2 = long) */
243 TRUE, /* pc_relative */
245 complain_overflow_signed,/* complain_on_overflow */
246 bfd_elf_generic_reloc, /* special_function */
247 "R_ARM_THM_PC8", /* name */
248 FALSE, /* partial_inplace */
249 0x000000ff, /* src_mask */
250 0x000000ff, /* dst_mask */
251 TRUE), /* pcrel_offset */
253 HOWTO (R_ARM_BREL_ADJ, /* type */
255 1, /* size (0 = byte, 1 = short, 2 = long) */
257 FALSE, /* pc_relative */
259 complain_overflow_signed,/* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_ARM_BREL_ADJ", /* name */
262 FALSE, /* partial_inplace */
263 0xffffffff, /* src_mask */
264 0xffffffff, /* dst_mask */
265 FALSE), /* pcrel_offset */
267 HOWTO (R_ARM_TLS_DESC, /* type */
269 2, /* size (0 = byte, 1 = short, 2 = long) */
271 FALSE, /* pc_relative */
273 complain_overflow_bitfield,/* complain_on_overflow */
274 bfd_elf_generic_reloc, /* special_function */
275 "R_ARM_TLS_DESC", /* name */
276 FALSE, /* partial_inplace */
277 0xffffffff, /* src_mask */
278 0xffffffff, /* dst_mask */
279 FALSE), /* pcrel_offset */
281 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* size (0 = byte, 1 = short, 2 = long) */
285 FALSE, /* pc_relative */
287 complain_overflow_signed,/* complain_on_overflow */
288 bfd_elf_generic_reloc, /* special_function */
289 "R_ARM_SWI8", /* name */
290 FALSE, /* partial_inplace */
291 0x00000000, /* src_mask */
292 0x00000000, /* dst_mask */
293 FALSE), /* pcrel_offset */
295 /* BLX instruction for the ARM. */
296 HOWTO (R_ARM_XPC25, /* type */
298 2, /* size (0 = byte, 1 = short, 2 = long) */
300 TRUE, /* pc_relative */
302 complain_overflow_signed,/* complain_on_overflow */
303 bfd_elf_generic_reloc, /* special_function */
304 "R_ARM_XPC25", /* name */
305 FALSE, /* partial_inplace */
306 0x00ffffff, /* src_mask */
307 0x00ffffff, /* dst_mask */
308 TRUE), /* pcrel_offset */
310 /* BLX instruction for the Thumb. */
311 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* size (0 = byte, 1 = short, 2 = long) */
315 TRUE, /* pc_relative */
317 complain_overflow_signed,/* complain_on_overflow */
318 bfd_elf_generic_reloc, /* special_function */
319 "R_ARM_THM_XPC22", /* name */
320 FALSE, /* partial_inplace */
321 0x07ff2fff, /* src_mask */
322 0x07ff2fff, /* dst_mask */
323 TRUE), /* pcrel_offset */
325 /* Dynamic TLS relocations. */
327 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
329 2, /* size (0 = byte, 1 = short, 2 = long) */
331 FALSE, /* pc_relative */
333 complain_overflow_bitfield,/* complain_on_overflow */
334 bfd_elf_generic_reloc, /* special_function */
335 "R_ARM_TLS_DTPMOD32", /* name */
336 TRUE, /* partial_inplace */
337 0xffffffff, /* src_mask */
338 0xffffffff, /* dst_mask */
339 FALSE), /* pcrel_offset */
341 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
343 2, /* size (0 = byte, 1 = short, 2 = long) */
345 FALSE, /* pc_relative */
347 complain_overflow_bitfield,/* complain_on_overflow */
348 bfd_elf_generic_reloc, /* special_function */
349 "R_ARM_TLS_DTPOFF32", /* name */
350 TRUE, /* partial_inplace */
351 0xffffffff, /* src_mask */
352 0xffffffff, /* dst_mask */
353 FALSE), /* pcrel_offset */
355 HOWTO (R_ARM_TLS_TPOFF32, /* type */
357 2, /* size (0 = byte, 1 = short, 2 = long) */
359 FALSE, /* pc_relative */
361 complain_overflow_bitfield,/* complain_on_overflow */
362 bfd_elf_generic_reloc, /* special_function */
363 "R_ARM_TLS_TPOFF32", /* name */
364 TRUE, /* partial_inplace */
365 0xffffffff, /* src_mask */
366 0xffffffff, /* dst_mask */
367 FALSE), /* pcrel_offset */
369 /* Relocs used in ARM Linux */
371 HOWTO (R_ARM_COPY, /* type */
373 2, /* size (0 = byte, 1 = short, 2 = long) */
375 FALSE, /* pc_relative */
377 complain_overflow_bitfield,/* complain_on_overflow */
378 bfd_elf_generic_reloc, /* special_function */
379 "R_ARM_COPY", /* name */
380 TRUE, /* partial_inplace */
381 0xffffffff, /* src_mask */
382 0xffffffff, /* dst_mask */
383 FALSE), /* pcrel_offset */
385 HOWTO (R_ARM_GLOB_DAT, /* type */
387 2, /* size (0 = byte, 1 = short, 2 = long) */
389 FALSE, /* pc_relative */
391 complain_overflow_bitfield,/* complain_on_overflow */
392 bfd_elf_generic_reloc, /* special_function */
393 "R_ARM_GLOB_DAT", /* name */
394 TRUE, /* partial_inplace */
395 0xffffffff, /* src_mask */
396 0xffffffff, /* dst_mask */
397 FALSE), /* pcrel_offset */
399 HOWTO (R_ARM_JUMP_SLOT, /* type */
401 2, /* size (0 = byte, 1 = short, 2 = long) */
403 FALSE, /* pc_relative */
405 complain_overflow_bitfield,/* complain_on_overflow */
406 bfd_elf_generic_reloc, /* special_function */
407 "R_ARM_JUMP_SLOT", /* name */
408 TRUE, /* partial_inplace */
409 0xffffffff, /* src_mask */
410 0xffffffff, /* dst_mask */
411 FALSE), /* pcrel_offset */
413 HOWTO (R_ARM_RELATIVE, /* type */
415 2, /* size (0 = byte, 1 = short, 2 = long) */
417 FALSE, /* pc_relative */
419 complain_overflow_bitfield,/* complain_on_overflow */
420 bfd_elf_generic_reloc, /* special_function */
421 "R_ARM_RELATIVE", /* name */
422 TRUE, /* partial_inplace */
423 0xffffffff, /* src_mask */
424 0xffffffff, /* dst_mask */
425 FALSE), /* pcrel_offset */
427 HOWTO (R_ARM_GOTOFF32, /* type */
429 2, /* size (0 = byte, 1 = short, 2 = long) */
431 FALSE, /* pc_relative */
433 complain_overflow_bitfield,/* complain_on_overflow */
434 bfd_elf_generic_reloc, /* special_function */
435 "R_ARM_GOTOFF32", /* name */
436 TRUE, /* partial_inplace */
437 0xffffffff, /* src_mask */
438 0xffffffff, /* dst_mask */
439 FALSE), /* pcrel_offset */
441 HOWTO (R_ARM_GOTPC, /* type */
443 2, /* size (0 = byte, 1 = short, 2 = long) */
445 TRUE, /* pc_relative */
447 complain_overflow_bitfield,/* complain_on_overflow */
448 bfd_elf_generic_reloc, /* special_function */
449 "R_ARM_GOTPC", /* name */
450 TRUE, /* partial_inplace */
451 0xffffffff, /* src_mask */
452 0xffffffff, /* dst_mask */
453 TRUE), /* pcrel_offset */
455 HOWTO (R_ARM_GOT32, /* type */
457 2, /* size (0 = byte, 1 = short, 2 = long) */
459 FALSE, /* pc_relative */
461 complain_overflow_bitfield,/* complain_on_overflow */
462 bfd_elf_generic_reloc, /* special_function */
463 "R_ARM_GOT32", /* name */
464 TRUE, /* partial_inplace */
465 0xffffffff, /* src_mask */
466 0xffffffff, /* dst_mask */
467 FALSE), /* pcrel_offset */
469 HOWTO (R_ARM_PLT32, /* type */
471 2, /* size (0 = byte, 1 = short, 2 = long) */
473 TRUE, /* pc_relative */
475 complain_overflow_bitfield,/* complain_on_overflow */
476 bfd_elf_generic_reloc, /* special_function */
477 "R_ARM_PLT32", /* name */
478 FALSE, /* partial_inplace */
479 0x00ffffff, /* src_mask */
480 0x00ffffff, /* dst_mask */
481 TRUE), /* pcrel_offset */
483 HOWTO (R_ARM_CALL, /* type */
485 2, /* size (0 = byte, 1 = short, 2 = long) */
487 TRUE, /* pc_relative */
489 complain_overflow_signed,/* complain_on_overflow */
490 bfd_elf_generic_reloc, /* special_function */
491 "R_ARM_CALL", /* name */
492 FALSE, /* partial_inplace */
493 0x00ffffff, /* src_mask */
494 0x00ffffff, /* dst_mask */
495 TRUE), /* pcrel_offset */
497 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* size (0 = byte, 1 = short, 2 = long) */
501 TRUE, /* pc_relative */
503 complain_overflow_signed,/* complain_on_overflow */
504 bfd_elf_generic_reloc, /* special_function */
505 "R_ARM_JUMP24", /* name */
506 FALSE, /* partial_inplace */
507 0x00ffffff, /* src_mask */
508 0x00ffffff, /* dst_mask */
509 TRUE), /* pcrel_offset */
511 HOWTO (R_ARM_THM_JUMP24, /* type */
513 2, /* size (0 = byte, 1 = short, 2 = long) */
515 TRUE, /* pc_relative */
517 complain_overflow_signed,/* complain_on_overflow */
518 bfd_elf_generic_reloc, /* special_function */
519 "R_ARM_THM_JUMP24", /* name */
520 FALSE, /* partial_inplace */
521 0x07ff2fff, /* src_mask */
522 0x07ff2fff, /* dst_mask */
523 TRUE), /* pcrel_offset */
525 HOWTO (R_ARM_BASE_ABS, /* type */
527 2, /* size (0 = byte, 1 = short, 2 = long) */
529 FALSE, /* pc_relative */
531 complain_overflow_dont,/* complain_on_overflow */
532 bfd_elf_generic_reloc, /* special_function */
533 "R_ARM_BASE_ABS", /* name */
534 FALSE, /* partial_inplace */
535 0xffffffff, /* src_mask */
536 0xffffffff, /* dst_mask */
537 FALSE), /* pcrel_offset */
539 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 2, /* size (0 = byte, 1 = short, 2 = long) */
543 TRUE, /* pc_relative */
545 complain_overflow_dont,/* complain_on_overflow */
546 bfd_elf_generic_reloc, /* special_function */
547 "R_ARM_ALU_PCREL_7_0", /* name */
548 FALSE, /* partial_inplace */
549 0x00000fff, /* src_mask */
550 0x00000fff, /* dst_mask */
551 TRUE), /* pcrel_offset */
553 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 2, /* size (0 = byte, 1 = short, 2 = long) */
557 TRUE, /* pc_relative */
559 complain_overflow_dont,/* complain_on_overflow */
560 bfd_elf_generic_reloc, /* special_function */
561 "R_ARM_ALU_PCREL_15_8",/* name */
562 FALSE, /* partial_inplace */
563 0x00000fff, /* src_mask */
564 0x00000fff, /* dst_mask */
565 TRUE), /* pcrel_offset */
567 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 2, /* size (0 = byte, 1 = short, 2 = long) */
571 TRUE, /* pc_relative */
573 complain_overflow_dont,/* complain_on_overflow */
574 bfd_elf_generic_reloc, /* special_function */
575 "R_ARM_ALU_PCREL_23_15",/* name */
576 FALSE, /* partial_inplace */
577 0x00000fff, /* src_mask */
578 0x00000fff, /* dst_mask */
579 TRUE), /* pcrel_offset */
581 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 2, /* size (0 = byte, 1 = short, 2 = long) */
585 FALSE, /* pc_relative */
587 complain_overflow_dont,/* complain_on_overflow */
588 bfd_elf_generic_reloc, /* special_function */
589 "R_ARM_LDR_SBREL_11_0",/* name */
590 FALSE, /* partial_inplace */
591 0x00000fff, /* src_mask */
592 0x00000fff, /* dst_mask */
593 FALSE), /* pcrel_offset */
595 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 2, /* size (0 = byte, 1 = short, 2 = long) */
599 FALSE, /* pc_relative */
601 complain_overflow_dont,/* complain_on_overflow */
602 bfd_elf_generic_reloc, /* special_function */
603 "R_ARM_ALU_SBREL_19_12",/* name */
604 FALSE, /* partial_inplace */
605 0x000ff000, /* src_mask */
606 0x000ff000, /* dst_mask */
607 FALSE), /* pcrel_offset */
609 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
613 FALSE, /* pc_relative */
615 complain_overflow_dont,/* complain_on_overflow */
616 bfd_elf_generic_reloc, /* special_function */
617 "R_ARM_ALU_SBREL_27_20",/* name */
618 FALSE, /* partial_inplace */
619 0x0ff00000, /* src_mask */
620 0x0ff00000, /* dst_mask */
621 FALSE), /* pcrel_offset */
623 HOWTO (R_ARM_TARGET1, /* type */
625 2, /* size (0 = byte, 1 = short, 2 = long) */
627 FALSE, /* pc_relative */
629 complain_overflow_dont,/* complain_on_overflow */
630 bfd_elf_generic_reloc, /* special_function */
631 "R_ARM_TARGET1", /* name */
632 FALSE, /* partial_inplace */
633 0xffffffff, /* src_mask */
634 0xffffffff, /* dst_mask */
635 FALSE), /* pcrel_offset */
637 HOWTO (R_ARM_ROSEGREL32, /* type */
639 2, /* size (0 = byte, 1 = short, 2 = long) */
641 FALSE, /* pc_relative */
643 complain_overflow_dont,/* complain_on_overflow */
644 bfd_elf_generic_reloc, /* special_function */
645 "R_ARM_ROSEGREL32", /* name */
646 FALSE, /* partial_inplace */
647 0xffffffff, /* src_mask */
648 0xffffffff, /* dst_mask */
649 FALSE), /* pcrel_offset */
651 HOWTO (R_ARM_V4BX, /* type */
653 2, /* size (0 = byte, 1 = short, 2 = long) */
655 FALSE, /* pc_relative */
657 complain_overflow_dont,/* complain_on_overflow */
658 bfd_elf_generic_reloc, /* special_function */
659 "R_ARM_V4BX", /* name */
660 FALSE, /* partial_inplace */
661 0xffffffff, /* src_mask */
662 0xffffffff, /* dst_mask */
663 FALSE), /* pcrel_offset */
665 HOWTO (R_ARM_TARGET2, /* type */
667 2, /* size (0 = byte, 1 = short, 2 = long) */
669 FALSE, /* pc_relative */
671 complain_overflow_signed,/* complain_on_overflow */
672 bfd_elf_generic_reloc, /* special_function */
673 "R_ARM_TARGET2", /* name */
674 FALSE, /* partial_inplace */
675 0xffffffff, /* src_mask */
676 0xffffffff, /* dst_mask */
677 TRUE), /* pcrel_offset */
679 HOWTO (R_ARM_PREL31, /* type */
681 2, /* size (0 = byte, 1 = short, 2 = long) */
683 TRUE, /* pc_relative */
685 complain_overflow_signed,/* complain_on_overflow */
686 bfd_elf_generic_reloc, /* special_function */
687 "R_ARM_PREL31", /* name */
688 FALSE, /* partial_inplace */
689 0x7fffffff, /* src_mask */
690 0x7fffffff, /* dst_mask */
691 TRUE), /* pcrel_offset */
693 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 2, /* size (0 = byte, 1 = short, 2 = long) */
697 FALSE, /* pc_relative */
699 complain_overflow_dont,/* complain_on_overflow */
700 bfd_elf_generic_reloc, /* special_function */
701 "R_ARM_MOVW_ABS_NC", /* name */
702 FALSE, /* partial_inplace */
703 0x000f0fff, /* src_mask */
704 0x000f0fff, /* dst_mask */
705 FALSE), /* pcrel_offset */
707 HOWTO (R_ARM_MOVT_ABS, /* type */
709 2, /* size (0 = byte, 1 = short, 2 = long) */
711 FALSE, /* pc_relative */
713 complain_overflow_bitfield,/* complain_on_overflow */
714 bfd_elf_generic_reloc, /* special_function */
715 "R_ARM_MOVT_ABS", /* name */
716 FALSE, /* partial_inplace */
717 0x000f0fff, /* src_mask */
718 0x000f0fff, /* dst_mask */
719 FALSE), /* pcrel_offset */
721 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
725 TRUE, /* pc_relative */
727 complain_overflow_dont,/* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 "R_ARM_MOVW_PREL_NC", /* name */
730 FALSE, /* partial_inplace */
731 0x000f0fff, /* src_mask */
732 0x000f0fff, /* dst_mask */
733 TRUE), /* pcrel_offset */
735 HOWTO (R_ARM_MOVT_PREL, /* type */
737 2, /* size (0 = byte, 1 = short, 2 = long) */
739 TRUE, /* pc_relative */
741 complain_overflow_bitfield,/* complain_on_overflow */
742 bfd_elf_generic_reloc, /* special_function */
743 "R_ARM_MOVT_PREL", /* name */
744 FALSE, /* partial_inplace */
745 0x000f0fff, /* src_mask */
746 0x000f0fff, /* dst_mask */
747 TRUE), /* pcrel_offset */
749 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 2, /* size (0 = byte, 1 = short, 2 = long) */
753 FALSE, /* pc_relative */
755 complain_overflow_dont,/* complain_on_overflow */
756 bfd_elf_generic_reloc, /* special_function */
757 "R_ARM_THM_MOVW_ABS_NC",/* name */
758 FALSE, /* partial_inplace */
759 0x040f70ff, /* src_mask */
760 0x040f70ff, /* dst_mask */
761 FALSE), /* pcrel_offset */
763 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 2, /* size (0 = byte, 1 = short, 2 = long) */
767 FALSE, /* pc_relative */
769 complain_overflow_bitfield,/* complain_on_overflow */
770 bfd_elf_generic_reloc, /* special_function */
771 "R_ARM_THM_MOVT_ABS", /* name */
772 FALSE, /* partial_inplace */
773 0x040f70ff, /* src_mask */
774 0x040f70ff, /* dst_mask */
775 FALSE), /* pcrel_offset */
777 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 2, /* size (0 = byte, 1 = short, 2 = long) */
781 TRUE, /* pc_relative */
783 complain_overflow_dont,/* complain_on_overflow */
784 bfd_elf_generic_reloc, /* special_function */
785 "R_ARM_THM_MOVW_PREL_NC",/* name */
786 FALSE, /* partial_inplace */
787 0x040f70ff, /* src_mask */
788 0x040f70ff, /* dst_mask */
789 TRUE), /* pcrel_offset */
791 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 2, /* size (0 = byte, 1 = short, 2 = long) */
795 TRUE, /* pc_relative */
797 complain_overflow_bitfield,/* complain_on_overflow */
798 bfd_elf_generic_reloc, /* special_function */
799 "R_ARM_THM_MOVT_PREL", /* name */
800 FALSE, /* partial_inplace */
801 0x040f70ff, /* src_mask */
802 0x040f70ff, /* dst_mask */
803 TRUE), /* pcrel_offset */
805 HOWTO (R_ARM_THM_JUMP19, /* type */
807 2, /* size (0 = byte, 1 = short, 2 = long) */
809 TRUE, /* pc_relative */
811 complain_overflow_signed,/* complain_on_overflow */
812 bfd_elf_generic_reloc, /* special_function */
813 "R_ARM_THM_JUMP19", /* name */
814 FALSE, /* partial_inplace */
815 0x043f2fff, /* src_mask */
816 0x043f2fff, /* dst_mask */
817 TRUE), /* pcrel_offset */
819 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* size (0 = byte, 1 = short, 2 = long) */
823 TRUE, /* pc_relative */
825 complain_overflow_unsigned,/* complain_on_overflow */
826 bfd_elf_generic_reloc, /* special_function */
827 "R_ARM_THM_JUMP6", /* name */
828 FALSE, /* partial_inplace */
829 0x02f8, /* src_mask */
830 0x02f8, /* dst_mask */
831 TRUE), /* pcrel_offset */
833 /* These are declared as 13-bit signed relocations because we can
834 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 2, /* size (0 = byte, 1 = short, 2 = long) */
840 TRUE, /* pc_relative */
842 complain_overflow_dont,/* complain_on_overflow */
843 bfd_elf_generic_reloc, /* special_function */
844 "R_ARM_THM_ALU_PREL_11_0",/* name */
845 FALSE, /* partial_inplace */
846 0xffffffff, /* src_mask */
847 0xffffffff, /* dst_mask */
848 TRUE), /* pcrel_offset */
850 HOWTO (R_ARM_THM_PC12, /* type */
852 2, /* size (0 = byte, 1 = short, 2 = long) */
854 TRUE, /* pc_relative */
856 complain_overflow_dont,/* complain_on_overflow */
857 bfd_elf_generic_reloc, /* special_function */
858 "R_ARM_THM_PC12", /* name */
859 FALSE, /* partial_inplace */
860 0xffffffff, /* src_mask */
861 0xffffffff, /* dst_mask */
862 TRUE), /* pcrel_offset */
864 HOWTO (R_ARM_ABS32_NOI, /* type */
866 2, /* size (0 = byte, 1 = short, 2 = long) */
868 FALSE, /* pc_relative */
870 complain_overflow_dont,/* complain_on_overflow */
871 bfd_elf_generic_reloc, /* special_function */
872 "R_ARM_ABS32_NOI", /* name */
873 FALSE, /* partial_inplace */
874 0xffffffff, /* src_mask */
875 0xffffffff, /* dst_mask */
876 FALSE), /* pcrel_offset */
878 HOWTO (R_ARM_REL32_NOI, /* type */
880 2, /* size (0 = byte, 1 = short, 2 = long) */
882 TRUE, /* pc_relative */
884 complain_overflow_dont,/* complain_on_overflow */
885 bfd_elf_generic_reloc, /* special_function */
886 "R_ARM_REL32_NOI", /* name */
887 FALSE, /* partial_inplace */
888 0xffffffff, /* src_mask */
889 0xffffffff, /* dst_mask */
890 FALSE), /* pcrel_offset */
892 /* Group relocations. */
894 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 2, /* size (0 = byte, 1 = short, 2 = long) */
898 TRUE, /* pc_relative */
900 complain_overflow_dont,/* complain_on_overflow */
901 bfd_elf_generic_reloc, /* special_function */
902 "R_ARM_ALU_PC_G0_NC", /* name */
903 FALSE, /* partial_inplace */
904 0xffffffff, /* src_mask */
905 0xffffffff, /* dst_mask */
906 TRUE), /* pcrel_offset */
908 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 2, /* size (0 = byte, 1 = short, 2 = long) */
912 TRUE, /* pc_relative */
914 complain_overflow_dont,/* complain_on_overflow */
915 bfd_elf_generic_reloc, /* special_function */
916 "R_ARM_ALU_PC_G0", /* name */
917 FALSE, /* partial_inplace */
918 0xffffffff, /* src_mask */
919 0xffffffff, /* dst_mask */
920 TRUE), /* pcrel_offset */
922 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 2, /* size (0 = byte, 1 = short, 2 = long) */
926 TRUE, /* pc_relative */
928 complain_overflow_dont,/* complain_on_overflow */
929 bfd_elf_generic_reloc, /* special_function */
930 "R_ARM_ALU_PC_G1_NC", /* name */
931 FALSE, /* partial_inplace */
932 0xffffffff, /* src_mask */
933 0xffffffff, /* dst_mask */
934 TRUE), /* pcrel_offset */
936 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
940 TRUE, /* pc_relative */
942 complain_overflow_dont,/* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 "R_ARM_ALU_PC_G1", /* name */
945 FALSE, /* partial_inplace */
946 0xffffffff, /* src_mask */
947 0xffffffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
950 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 2, /* size (0 = byte, 1 = short, 2 = long) */
954 TRUE, /* pc_relative */
956 complain_overflow_dont,/* complain_on_overflow */
957 bfd_elf_generic_reloc, /* special_function */
958 "R_ARM_ALU_PC_G2", /* name */
959 FALSE, /* partial_inplace */
960 0xffffffff, /* src_mask */
961 0xffffffff, /* dst_mask */
962 TRUE), /* pcrel_offset */
964 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 2, /* size (0 = byte, 1 = short, 2 = long) */
968 TRUE, /* pc_relative */
970 complain_overflow_dont,/* complain_on_overflow */
971 bfd_elf_generic_reloc, /* special_function */
972 "R_ARM_LDR_PC_G1", /* name */
973 FALSE, /* partial_inplace */
974 0xffffffff, /* src_mask */
975 0xffffffff, /* dst_mask */
976 TRUE), /* pcrel_offset */
978 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 2, /* size (0 = byte, 1 = short, 2 = long) */
982 TRUE, /* pc_relative */
984 complain_overflow_dont,/* complain_on_overflow */
985 bfd_elf_generic_reloc, /* special_function */
986 "R_ARM_LDR_PC_G2", /* name */
987 FALSE, /* partial_inplace */
988 0xffffffff, /* src_mask */
989 0xffffffff, /* dst_mask */
990 TRUE), /* pcrel_offset */
992 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 2, /* size (0 = byte, 1 = short, 2 = long) */
996 TRUE, /* pc_relative */
998 complain_overflow_dont,/* complain_on_overflow */
999 bfd_elf_generic_reloc, /* special_function */
1000 "R_ARM_LDRS_PC_G0", /* name */
1001 FALSE, /* partial_inplace */
1002 0xffffffff, /* src_mask */
1003 0xffffffff, /* dst_mask */
1004 TRUE), /* pcrel_offset */
1006 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 TRUE, /* pc_relative */
1012 complain_overflow_dont,/* complain_on_overflow */
1013 bfd_elf_generic_reloc, /* special_function */
1014 "R_ARM_LDRS_PC_G1", /* name */
1015 FALSE, /* partial_inplace */
1016 0xffffffff, /* src_mask */
1017 0xffffffff, /* dst_mask */
1018 TRUE), /* pcrel_offset */
1020 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 TRUE, /* pc_relative */
1026 complain_overflow_dont,/* complain_on_overflow */
1027 bfd_elf_generic_reloc, /* special_function */
1028 "R_ARM_LDRS_PC_G2", /* name */
1029 FALSE, /* partial_inplace */
1030 0xffffffff, /* src_mask */
1031 0xffffffff, /* dst_mask */
1032 TRUE), /* pcrel_offset */
1034 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 TRUE, /* pc_relative */
1040 complain_overflow_dont,/* complain_on_overflow */
1041 bfd_elf_generic_reloc, /* special_function */
1042 "R_ARM_LDC_PC_G0", /* name */
1043 FALSE, /* partial_inplace */
1044 0xffffffff, /* src_mask */
1045 0xffffffff, /* dst_mask */
1046 TRUE), /* pcrel_offset */
1048 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 TRUE, /* pc_relative */
1054 complain_overflow_dont,/* complain_on_overflow */
1055 bfd_elf_generic_reloc, /* special_function */
1056 "R_ARM_LDC_PC_G1", /* name */
1057 FALSE, /* partial_inplace */
1058 0xffffffff, /* src_mask */
1059 0xffffffff, /* dst_mask */
1060 TRUE), /* pcrel_offset */
1062 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 TRUE, /* pc_relative */
1068 complain_overflow_dont,/* complain_on_overflow */
1069 bfd_elf_generic_reloc, /* special_function */
1070 "R_ARM_LDC_PC_G2", /* name */
1071 FALSE, /* partial_inplace */
1072 0xffffffff, /* src_mask */
1073 0xffffffff, /* dst_mask */
1074 TRUE), /* pcrel_offset */
1076 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 TRUE, /* pc_relative */
1082 complain_overflow_dont,/* complain_on_overflow */
1083 bfd_elf_generic_reloc, /* special_function */
1084 "R_ARM_ALU_SB_G0_NC", /* name */
1085 FALSE, /* partial_inplace */
1086 0xffffffff, /* src_mask */
1087 0xffffffff, /* dst_mask */
1088 TRUE), /* pcrel_offset */
1090 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 TRUE, /* pc_relative */
1096 complain_overflow_dont,/* complain_on_overflow */
1097 bfd_elf_generic_reloc, /* special_function */
1098 "R_ARM_ALU_SB_G0", /* name */
1099 FALSE, /* partial_inplace */
1100 0xffffffff, /* src_mask */
1101 0xffffffff, /* dst_mask */
1102 TRUE), /* pcrel_offset */
1104 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 TRUE, /* pc_relative */
1110 complain_overflow_dont,/* complain_on_overflow */
1111 bfd_elf_generic_reloc, /* special_function */
1112 "R_ARM_ALU_SB_G1_NC", /* name */
1113 FALSE, /* partial_inplace */
1114 0xffffffff, /* src_mask */
1115 0xffffffff, /* dst_mask */
1116 TRUE), /* pcrel_offset */
1118 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 TRUE, /* pc_relative */
1124 complain_overflow_dont,/* complain_on_overflow */
1125 bfd_elf_generic_reloc, /* special_function */
1126 "R_ARM_ALU_SB_G1", /* name */
1127 FALSE, /* partial_inplace */
1128 0xffffffff, /* src_mask */
1129 0xffffffff, /* dst_mask */
1130 TRUE), /* pcrel_offset */
1132 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 TRUE, /* pc_relative */
1138 complain_overflow_dont,/* complain_on_overflow */
1139 bfd_elf_generic_reloc, /* special_function */
1140 "R_ARM_ALU_SB_G2", /* name */
1141 FALSE, /* partial_inplace */
1142 0xffffffff, /* src_mask */
1143 0xffffffff, /* dst_mask */
1144 TRUE), /* pcrel_offset */
1146 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 TRUE, /* pc_relative */
1152 complain_overflow_dont,/* complain_on_overflow */
1153 bfd_elf_generic_reloc, /* special_function */
1154 "R_ARM_LDR_SB_G0", /* name */
1155 FALSE, /* partial_inplace */
1156 0xffffffff, /* src_mask */
1157 0xffffffff, /* dst_mask */
1158 TRUE), /* pcrel_offset */
1160 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 TRUE, /* pc_relative */
1166 complain_overflow_dont,/* complain_on_overflow */
1167 bfd_elf_generic_reloc, /* special_function */
1168 "R_ARM_LDR_SB_G1", /* name */
1169 FALSE, /* partial_inplace */
1170 0xffffffff, /* src_mask */
1171 0xffffffff, /* dst_mask */
1172 TRUE), /* pcrel_offset */
1174 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 TRUE, /* pc_relative */
1180 complain_overflow_dont,/* complain_on_overflow */
1181 bfd_elf_generic_reloc, /* special_function */
1182 "R_ARM_LDR_SB_G2", /* name */
1183 FALSE, /* partial_inplace */
1184 0xffffffff, /* src_mask */
1185 0xffffffff, /* dst_mask */
1186 TRUE), /* pcrel_offset */
1188 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 TRUE, /* pc_relative */
1194 complain_overflow_dont,/* complain_on_overflow */
1195 bfd_elf_generic_reloc, /* special_function */
1196 "R_ARM_LDRS_SB_G0", /* name */
1197 FALSE, /* partial_inplace */
1198 0xffffffff, /* src_mask */
1199 0xffffffff, /* dst_mask */
1200 TRUE), /* pcrel_offset */
1202 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 TRUE, /* pc_relative */
1208 complain_overflow_dont,/* complain_on_overflow */
1209 bfd_elf_generic_reloc, /* special_function */
1210 "R_ARM_LDRS_SB_G1", /* name */
1211 FALSE, /* partial_inplace */
1212 0xffffffff, /* src_mask */
1213 0xffffffff, /* dst_mask */
1214 TRUE), /* pcrel_offset */
1216 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 TRUE, /* pc_relative */
1222 complain_overflow_dont,/* complain_on_overflow */
1223 bfd_elf_generic_reloc, /* special_function */
1224 "R_ARM_LDRS_SB_G2", /* name */
1225 FALSE, /* partial_inplace */
1226 0xffffffff, /* src_mask */
1227 0xffffffff, /* dst_mask */
1228 TRUE), /* pcrel_offset */
1230 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 TRUE, /* pc_relative */
1236 complain_overflow_dont,/* complain_on_overflow */
1237 bfd_elf_generic_reloc, /* special_function */
1238 "R_ARM_LDC_SB_G0", /* name */
1239 FALSE, /* partial_inplace */
1240 0xffffffff, /* src_mask */
1241 0xffffffff, /* dst_mask */
1242 TRUE), /* pcrel_offset */
1244 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 TRUE, /* pc_relative */
1250 complain_overflow_dont,/* complain_on_overflow */
1251 bfd_elf_generic_reloc, /* special_function */
1252 "R_ARM_LDC_SB_G1", /* name */
1253 FALSE, /* partial_inplace */
1254 0xffffffff, /* src_mask */
1255 0xffffffff, /* dst_mask */
1256 TRUE), /* pcrel_offset */
1258 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 TRUE, /* pc_relative */
1264 complain_overflow_dont,/* complain_on_overflow */
1265 bfd_elf_generic_reloc, /* special_function */
1266 "R_ARM_LDC_SB_G2", /* name */
1267 FALSE, /* partial_inplace */
1268 0xffffffff, /* src_mask */
1269 0xffffffff, /* dst_mask */
1270 TRUE), /* pcrel_offset */
1272 /* End of group relocations. */
1274 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 FALSE, /* pc_relative */
1280 complain_overflow_dont,/* complain_on_overflow */
1281 bfd_elf_generic_reloc, /* special_function */
1282 "R_ARM_MOVW_BREL_NC", /* name */
1283 FALSE, /* partial_inplace */
1284 0x0000ffff, /* src_mask */
1285 0x0000ffff, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1288 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 FALSE, /* pc_relative */
1294 complain_overflow_bitfield,/* complain_on_overflow */
1295 bfd_elf_generic_reloc, /* special_function */
1296 "R_ARM_MOVT_BREL", /* name */
1297 FALSE, /* partial_inplace */
1298 0x0000ffff, /* src_mask */
1299 0x0000ffff, /* dst_mask */
1300 FALSE), /* pcrel_offset */
1302 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 FALSE, /* pc_relative */
1308 complain_overflow_dont,/* complain_on_overflow */
1309 bfd_elf_generic_reloc, /* special_function */
1310 "R_ARM_MOVW_BREL", /* name */
1311 FALSE, /* partial_inplace */
1312 0x0000ffff, /* src_mask */
1313 0x0000ffff, /* dst_mask */
1314 FALSE), /* pcrel_offset */
1316 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 FALSE, /* pc_relative */
1322 complain_overflow_dont,/* complain_on_overflow */
1323 bfd_elf_generic_reloc, /* special_function */
1324 "R_ARM_THM_MOVW_BREL_NC",/* name */
1325 FALSE, /* partial_inplace */
1326 0x040f70ff, /* src_mask */
1327 0x040f70ff, /* dst_mask */
1328 FALSE), /* pcrel_offset */
1330 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 FALSE, /* pc_relative */
1336 complain_overflow_bitfield,/* complain_on_overflow */
1337 bfd_elf_generic_reloc, /* special_function */
1338 "R_ARM_THM_MOVT_BREL", /* name */
1339 FALSE, /* partial_inplace */
1340 0x040f70ff, /* src_mask */
1341 0x040f70ff, /* dst_mask */
1342 FALSE), /* pcrel_offset */
1344 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 FALSE, /* pc_relative */
1350 complain_overflow_dont,/* complain_on_overflow */
1351 bfd_elf_generic_reloc, /* special_function */
1352 "R_ARM_THM_MOVW_BREL", /* name */
1353 FALSE, /* partial_inplace */
1354 0x040f70ff, /* src_mask */
1355 0x040f70ff, /* dst_mask */
1356 FALSE), /* pcrel_offset */
1358 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 FALSE, /* pc_relative */
1364 complain_overflow_bitfield,/* complain_on_overflow */
1365 NULL, /* special_function */
1366 "R_ARM_TLS_GOTDESC", /* name */
1367 TRUE, /* partial_inplace */
1368 0xffffffff, /* src_mask */
1369 0xffffffff, /* dst_mask */
1370 FALSE), /* pcrel_offset */
1372 HOWTO (R_ARM_TLS_CALL, /* type */
1374 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 FALSE, /* pc_relative */
1378 complain_overflow_dont,/* complain_on_overflow */
1379 bfd_elf_generic_reloc, /* special_function */
1380 "R_ARM_TLS_CALL", /* name */
1381 FALSE, /* partial_inplace */
1382 0x00ffffff, /* src_mask */
1383 0x00ffffff, /* dst_mask */
1384 FALSE), /* pcrel_offset */
1386 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 FALSE, /* pc_relative */
1392 complain_overflow_bitfield,/* complain_on_overflow */
1393 bfd_elf_generic_reloc, /* special_function */
1394 "R_ARM_TLS_DESCSEQ", /* name */
1395 FALSE, /* partial_inplace */
1396 0x00000000, /* src_mask */
1397 0x00000000, /* dst_mask */
1398 FALSE), /* pcrel_offset */
1400 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 FALSE, /* pc_relative */
1406 complain_overflow_dont,/* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 "R_ARM_THM_TLS_CALL", /* name */
1409 FALSE, /* partial_inplace */
1410 0x07ff07ff, /* src_mask */
1411 0x07ff07ff, /* dst_mask */
1412 FALSE), /* pcrel_offset */
1414 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 FALSE, /* pc_relative */
1420 complain_overflow_dont,/* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 "R_ARM_PLT32_ABS", /* name */
1423 FALSE, /* partial_inplace */
1424 0xffffffff, /* src_mask */
1425 0xffffffff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1428 HOWTO (R_ARM_GOT_ABS, /* type */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 FALSE, /* pc_relative */
1434 complain_overflow_dont,/* complain_on_overflow */
1435 bfd_elf_generic_reloc, /* special_function */
1436 "R_ARM_GOT_ABS", /* name */
1437 FALSE, /* partial_inplace */
1438 0xffffffff, /* src_mask */
1439 0xffffffff, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1442 HOWTO (R_ARM_GOT_PREL, /* type */
1444 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 TRUE, /* pc_relative */
1448 complain_overflow_dont, /* complain_on_overflow */
1449 bfd_elf_generic_reloc, /* special_function */
1450 "R_ARM_GOT_PREL", /* name */
1451 FALSE, /* partial_inplace */
1452 0xffffffff, /* src_mask */
1453 0xffffffff, /* dst_mask */
1454 TRUE), /* pcrel_offset */
1456 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 FALSE, /* pc_relative */
1462 complain_overflow_bitfield,/* complain_on_overflow */
1463 bfd_elf_generic_reloc, /* special_function */
1464 "R_ARM_GOT_BREL12", /* name */
1465 FALSE, /* partial_inplace */
1466 0x00000fff, /* src_mask */
1467 0x00000fff, /* dst_mask */
1468 FALSE), /* pcrel_offset */
1470 HOWTO (R_ARM_GOTOFF12, /* type */
1472 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 FALSE, /* pc_relative */
1476 complain_overflow_bitfield,/* complain_on_overflow */
1477 bfd_elf_generic_reloc, /* special_function */
1478 "R_ARM_GOTOFF12", /* name */
1479 FALSE, /* partial_inplace */
1480 0x00000fff, /* src_mask */
1481 0x00000fff, /* dst_mask */
1482 FALSE), /* pcrel_offset */
1484 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486 /* GNU extension to record C++ vtable member usage */
1487 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1489 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 FALSE, /* pc_relative */
1493 complain_overflow_dont, /* complain_on_overflow */
1494 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1495 "R_ARM_GNU_VTENTRY", /* name */
1496 FALSE, /* partial_inplace */
1499 FALSE), /* pcrel_offset */
1501 /* GNU extension to record C++ vtable hierarchy */
1502 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 FALSE, /* pc_relative */
1508 complain_overflow_dont, /* complain_on_overflow */
1509 NULL, /* special_function */
1510 "R_ARM_GNU_VTINHERIT", /* name */
1511 FALSE, /* partial_inplace */
1514 FALSE), /* pcrel_offset */
1516 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 TRUE, /* pc_relative */
1522 complain_overflow_signed, /* complain_on_overflow */
1523 bfd_elf_generic_reloc, /* special_function */
1524 "R_ARM_THM_JUMP11", /* name */
1525 FALSE, /* partial_inplace */
1526 0x000007ff, /* src_mask */
1527 0x000007ff, /* dst_mask */
1528 TRUE), /* pcrel_offset */
1530 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 TRUE, /* pc_relative */
1536 complain_overflow_signed, /* complain_on_overflow */
1537 bfd_elf_generic_reloc, /* special_function */
1538 "R_ARM_THM_JUMP8", /* name */
1539 FALSE, /* partial_inplace */
1540 0x000000ff, /* src_mask */
1541 0x000000ff, /* dst_mask */
1542 TRUE), /* pcrel_offset */
1544 /* TLS relocations */
1545 HOWTO (R_ARM_TLS_GD32, /* type */
1547 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 FALSE, /* pc_relative */
1551 complain_overflow_bitfield,/* complain_on_overflow */
1552 NULL, /* special_function */
1553 "R_ARM_TLS_GD32", /* name */
1554 TRUE, /* partial_inplace */
1555 0xffffffff, /* src_mask */
1556 0xffffffff, /* dst_mask */
1557 FALSE), /* pcrel_offset */
1559 HOWTO (R_ARM_TLS_LDM32, /* type */
1561 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 FALSE, /* pc_relative */
1565 complain_overflow_bitfield,/* complain_on_overflow */
1566 bfd_elf_generic_reloc, /* special_function */
1567 "R_ARM_TLS_LDM32", /* name */
1568 TRUE, /* partial_inplace */
1569 0xffffffff, /* src_mask */
1570 0xffffffff, /* dst_mask */
1571 FALSE), /* pcrel_offset */
1573 HOWTO (R_ARM_TLS_LDO32, /* type */
1575 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 FALSE, /* pc_relative */
1579 complain_overflow_bitfield,/* complain_on_overflow */
1580 bfd_elf_generic_reloc, /* special_function */
1581 "R_ARM_TLS_LDO32", /* name */
1582 TRUE, /* partial_inplace */
1583 0xffffffff, /* src_mask */
1584 0xffffffff, /* dst_mask */
1585 FALSE), /* pcrel_offset */
1587 HOWTO (R_ARM_TLS_IE32, /* type */
1589 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 FALSE, /* pc_relative */
1593 complain_overflow_bitfield,/* complain_on_overflow */
1594 NULL, /* special_function */
1595 "R_ARM_TLS_IE32", /* name */
1596 TRUE, /* partial_inplace */
1597 0xffffffff, /* src_mask */
1598 0xffffffff, /* dst_mask */
1599 FALSE), /* pcrel_offset */
1601 HOWTO (R_ARM_TLS_LE32, /* type */
1603 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 FALSE, /* pc_relative */
1607 complain_overflow_bitfield,/* complain_on_overflow */
1608 NULL, /* special_function */
1609 "R_ARM_TLS_LE32", /* name */
1610 TRUE, /* partial_inplace */
1611 0xffffffff, /* src_mask */
1612 0xffffffff, /* dst_mask */
1613 FALSE), /* pcrel_offset */
1615 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 FALSE, /* pc_relative */
1621 complain_overflow_bitfield,/* complain_on_overflow */
1622 bfd_elf_generic_reloc, /* special_function */
1623 "R_ARM_TLS_LDO12", /* name */
1624 FALSE, /* partial_inplace */
1625 0x00000fff, /* src_mask */
1626 0x00000fff, /* dst_mask */
1627 FALSE), /* pcrel_offset */
1629 HOWTO (R_ARM_TLS_LE12, /* type */
1631 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 FALSE, /* pc_relative */
1635 complain_overflow_bitfield,/* complain_on_overflow */
1636 bfd_elf_generic_reloc, /* special_function */
1637 "R_ARM_TLS_LE12", /* name */
1638 FALSE, /* partial_inplace */
1639 0x00000fff, /* src_mask */
1640 0x00000fff, /* dst_mask */
1641 FALSE), /* pcrel_offset */
1643 HOWTO (R_ARM_TLS_IE12GP, /* type */
1645 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 FALSE, /* pc_relative */
1649 complain_overflow_bitfield,/* complain_on_overflow */
1650 bfd_elf_generic_reloc, /* special_function */
1651 "R_ARM_TLS_IE12GP", /* name */
1652 FALSE, /* partial_inplace */
1653 0x00000fff, /* src_mask */
1654 0x00000fff, /* dst_mask */
1655 FALSE), /* pcrel_offset */
1657 /* 112-127 private relocations. */
1675 /* R_ARM_ME_TOO, obsolete. */
1678 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 FALSE, /* pc_relative */
1684 complain_overflow_bitfield,/* complain_on_overflow */
1685 bfd_elf_generic_reloc, /* special_function */
1686 "R_ARM_THM_TLS_DESCSEQ",/* name */
1687 FALSE, /* partial_inplace */
1688 0x00000000, /* src_mask */
1689 0x00000000, /* dst_mask */
1690 FALSE), /* pcrel_offset */
1693 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1694 0, /* rightshift. */
1695 1, /* size (0 = byte, 1 = short, 2 = long). */
1697 FALSE, /* pc_relative. */
1699 complain_overflow_bitfield,/* complain_on_overflow. */
1700 bfd_elf_generic_reloc, /* special_function. */
1701 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1702 FALSE, /* partial_inplace. */
1703 0x00000000, /* src_mask. */
1704 0x00000000, /* dst_mask. */
1705 FALSE), /* pcrel_offset. */
1706 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1707 0, /* rightshift. */
1708 1, /* size (0 = byte, 1 = short, 2 = long). */
1710 FALSE, /* pc_relative. */
1712 complain_overflow_bitfield,/* complain_on_overflow. */
1713 bfd_elf_generic_reloc, /* special_function. */
1714 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1715 FALSE, /* partial_inplace. */
1716 0x00000000, /* src_mask. */
1717 0x00000000, /* dst_mask. */
1718 FALSE), /* pcrel_offset. */
1719 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1720 0, /* rightshift. */
1721 1, /* size (0 = byte, 1 = short, 2 = long). */
1723 FALSE, /* pc_relative. */
1725 complain_overflow_bitfield,/* complain_on_overflow. */
1726 bfd_elf_generic_reloc, /* special_function. */
1727 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1728 FALSE, /* partial_inplace. */
1729 0x00000000, /* src_mask. */
1730 0x00000000, /* dst_mask. */
1731 FALSE), /* pcrel_offset. */
1732 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1733 0, /* rightshift. */
1734 1, /* size (0 = byte, 1 = short, 2 = long). */
1736 FALSE, /* pc_relative. */
1738 complain_overflow_bitfield,/* complain_on_overflow. */
1739 bfd_elf_generic_reloc, /* special_function. */
1740 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1741 FALSE, /* partial_inplace. */
1742 0x00000000, /* src_mask. */
1743 0x00000000, /* dst_mask. */
1744 FALSE), /* pcrel_offset. */
1745 /* Relocations for Armv8.1-M Mainline. */
1746 HOWTO (R_ARM_THM_BF16, /* type. */
1747 0, /* rightshift. */
1748 1, /* size (0 = byte, 1 = short, 2 = long). */
1750 TRUE, /* pc_relative. */
1752 complain_overflow_dont,/* do not complain_on_overflow. */
1753 bfd_elf_generic_reloc, /* special_function. */
1754 "R_ARM_THM_BF16", /* name. */
1755 FALSE, /* partial_inplace. */
1756 0x001f0ffe, /* src_mask. */
1757 0x001f0ffe, /* dst_mask. */
1758 TRUE), /* pcrel_offset. */
1759 HOWTO (R_ARM_THM_BF12, /* type. */
1760 0, /* rightshift. */
1761 1, /* size (0 = byte, 1 = short, 2 = long). */
1763 TRUE, /* pc_relative. */
1765 complain_overflow_dont,/* do not complain_on_overflow. */
1766 bfd_elf_generic_reloc, /* special_function. */
1767 "R_ARM_THM_BF12", /* name. */
1768 FALSE, /* partial_inplace. */
1769 0x00010ffe, /* src_mask. */
1770 0x00010ffe, /* dst_mask. */
1771 TRUE), /* pcrel_offset. */
1772 HOWTO (R_ARM_THM_BF18, /* type. */
1773 0, /* rightshift. */
1774 1, /* size (0 = byte, 1 = short, 2 = long). */
1776 TRUE, /* pc_relative. */
1778 complain_overflow_dont,/* do not complain_on_overflow. */
1779 bfd_elf_generic_reloc, /* special_function. */
1780 "R_ARM_THM_BF18", /* name. */
1781 FALSE, /* partial_inplace. */
1782 0x007f0ffe, /* src_mask. */
1783 0x007f0ffe, /* dst_mask. */
1784 TRUE), /* pcrel_offset. */
1788 static reloc_howto_type elf32_arm_howto_table_2[8] =
1790 HOWTO (R_ARM_IRELATIVE, /* type */
1792 2, /* size (0 = byte, 1 = short, 2 = long) */
1794 FALSE, /* pc_relative */
1796 complain_overflow_bitfield,/* complain_on_overflow */
1797 bfd_elf_generic_reloc, /* special_function */
1798 "R_ARM_IRELATIVE", /* name */
1799 TRUE, /* partial_inplace */
1800 0xffffffff, /* src_mask */
1801 0xffffffff, /* dst_mask */
1802 FALSE), /* pcrel_offset */
1803 HOWTO (R_ARM_GOTFUNCDESC, /* type */
1805 2, /* size (0 = byte, 1 = short, 2 = long) */
1807 FALSE, /* pc_relative */
1809 complain_overflow_bitfield,/* complain_on_overflow */
1810 bfd_elf_generic_reloc, /* special_function */
1811 "R_ARM_GOTFUNCDESC", /* name */
1812 FALSE, /* partial_inplace */
1814 0xffffffff, /* dst_mask */
1815 FALSE), /* pcrel_offset */
1816 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */
1818 2, /* size (0 = byte, 1 = short, 2 = long) */
1820 FALSE, /* pc_relative */
1822 complain_overflow_bitfield,/* complain_on_overflow */
1823 bfd_elf_generic_reloc, /* special_function */
1824 "R_ARM_GOTOFFFUNCDESC",/* name */
1825 FALSE, /* partial_inplace */
1827 0xffffffff, /* dst_mask */
1828 FALSE), /* pcrel_offset */
1829 HOWTO (R_ARM_FUNCDESC, /* type */
1831 2, /* size (0 = byte, 1 = short, 2 = long) */
1833 FALSE, /* pc_relative */
1835 complain_overflow_bitfield,/* complain_on_overflow */
1836 bfd_elf_generic_reloc, /* special_function */
1837 "R_ARM_FUNCDESC", /* name */
1838 FALSE, /* partial_inplace */
1840 0xffffffff, /* dst_mask */
1841 FALSE), /* pcrel_offset */
1842 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */
1844 2, /* size (0 = byte, 1 = short, 2 = long) */
1846 FALSE, /* pc_relative */
1848 complain_overflow_bitfield,/* complain_on_overflow */
1849 bfd_elf_generic_reloc, /* special_function */
1850 "R_ARM_FUNCDESC_VALUE",/* name */
1851 FALSE, /* partial_inplace */
1853 0xffffffff, /* dst_mask */
1854 FALSE), /* pcrel_offset */
1855 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1859 FALSE, /* pc_relative */
1861 complain_overflow_bitfield,/* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 "R_ARM_TLS_GD32_FDPIC",/* name */
1864 FALSE, /* partial_inplace */
1866 0xffffffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */
1870 2, /* size (0 = byte, 1 = short, 2 = long) */
1872 FALSE, /* pc_relative */
1874 complain_overflow_bitfield,/* complain_on_overflow */
1875 bfd_elf_generic_reloc, /* special_function */
1876 "R_ARM_TLS_LDM32_FDPIC",/* name */
1877 FALSE, /* partial_inplace */
1879 0xffffffff, /* dst_mask */
1880 FALSE), /* pcrel_offset */
1881 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */
1883 2, /* size (0 = byte, 1 = short, 2 = long) */
1885 FALSE, /* pc_relative */
1887 complain_overflow_bitfield,/* complain_on_overflow */
1888 bfd_elf_generic_reloc, /* special_function */
1889 "R_ARM_TLS_IE32_FDPIC",/* name */
1890 FALSE, /* partial_inplace */
1892 0xffffffff, /* dst_mask */
1893 FALSE), /* pcrel_offset */
1896 /* 249-255 extended, currently unused, relocations: */
1897 static reloc_howto_type elf32_arm_howto_table_3[4] =
1899 HOWTO (R_ARM_RREL32, /* type */
1901 0, /* size (0 = byte, 1 = short, 2 = long) */
1903 FALSE, /* pc_relative */
1905 complain_overflow_dont,/* complain_on_overflow */
1906 bfd_elf_generic_reloc, /* special_function */
1907 "R_ARM_RREL32", /* name */
1908 FALSE, /* partial_inplace */
1911 FALSE), /* pcrel_offset */
1913 HOWTO (R_ARM_RABS32, /* type */
1915 0, /* size (0 = byte, 1 = short, 2 = long) */
1917 FALSE, /* pc_relative */
1919 complain_overflow_dont,/* complain_on_overflow */
1920 bfd_elf_generic_reloc, /* special_function */
1921 "R_ARM_RABS32", /* name */
1922 FALSE, /* partial_inplace */
1925 FALSE), /* pcrel_offset */
1927 HOWTO (R_ARM_RPC24, /* type */
1929 0, /* size (0 = byte, 1 = short, 2 = long) */
1931 FALSE, /* pc_relative */
1933 complain_overflow_dont,/* complain_on_overflow */
1934 bfd_elf_generic_reloc, /* special_function */
1935 "R_ARM_RPC24", /* name */
1936 FALSE, /* partial_inplace */
1939 FALSE), /* pcrel_offset */
1941 HOWTO (R_ARM_RBASE, /* type */
1943 0, /* size (0 = byte, 1 = short, 2 = long) */
1945 FALSE, /* pc_relative */
1947 complain_overflow_dont,/* complain_on_overflow */
1948 bfd_elf_generic_reloc, /* special_function */
1949 "R_ARM_RBASE", /* name */
1950 FALSE, /* partial_inplace */
1953 FALSE) /* pcrel_offset */
1956 static reloc_howto_type *
1957 elf32_arm_howto_from_type (unsigned int r_type)
1959 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1960 return &elf32_arm_howto_table_1[r_type];
1962 if (r_type >= R_ARM_IRELATIVE
1963 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2))
1964 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1966 if (r_type >= R_ARM_RREL32
1967 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1968 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1974 elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc,
1975 Elf_Internal_Rela * elf_reloc)
1977 unsigned int r_type;
1979 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1980 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL)
1982 /* xgettext:c-format */
1983 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1985 bfd_set_error (bfd_error_bad_value);
1991 struct elf32_arm_reloc_map
1993 bfd_reloc_code_real_type bfd_reloc_val;
1994 unsigned char elf_reloc_val;
1997 /* All entries in this list must also be present in elf32_arm_howto_table. */
1998 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
2000 {BFD_RELOC_NONE, R_ARM_NONE},
2001 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
2002 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
2003 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
2004 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
2005 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
2006 {BFD_RELOC_32, R_ARM_ABS32},
2007 {BFD_RELOC_32_PCREL, R_ARM_REL32},
2008 {BFD_RELOC_8, R_ARM_ABS8},
2009 {BFD_RELOC_16, R_ARM_ABS16},
2010 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
2011 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
2012 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
2013 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
2014 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
2015 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
2016 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
2017 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
2018 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
2019 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
2020 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
2021 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
2022 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
2023 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
2024 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
2025 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2026 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
2027 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
2028 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
2029 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
2030 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
2031 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2032 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
2033 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
2034 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
2035 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
2036 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
2037 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
2038 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
2039 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
2040 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
2041 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
2042 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
2043 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
2044 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
2045 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
2046 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
2047 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC},
2048 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC},
2049 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC},
2050 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE},
2051 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC},
2052 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC},
2053 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC},
2054 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
2055 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
2056 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
2057 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
2058 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
2059 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
2060 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
2061 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
2062 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
2063 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
2064 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
2065 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
2066 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
2067 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
2068 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
2069 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
2070 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
2071 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
2072 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
2073 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
2074 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
2075 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
2076 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
2077 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
2078 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
2079 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
2080 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
2081 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
2082 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
2083 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
2084 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
2085 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
2086 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
2087 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
2088 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
2089 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
2090 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
2091 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
2092 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
2093 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
2094 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
2095 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
2096 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC},
2097 {BFD_RELOC_ARM_THUMB_BF17, R_ARM_THM_BF16},
2098 {BFD_RELOC_ARM_THUMB_BF13, R_ARM_THM_BF12},
2099 {BFD_RELOC_ARM_THUMB_BF19, R_ARM_THM_BF18}
2102 static reloc_howto_type *
2103 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2104 bfd_reloc_code_real_type code)
2108 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
2109 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
2110 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
2115 static reloc_howto_type *
2116 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2121 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
2122 if (elf32_arm_howto_table_1[i].name != NULL
2123 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
2124 return &elf32_arm_howto_table_1[i];
2126 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
2127 if (elf32_arm_howto_table_2[i].name != NULL
2128 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
2129 return &elf32_arm_howto_table_2[i];
2131 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
2132 if (elf32_arm_howto_table_3[i].name != NULL
2133 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
2134 return &elf32_arm_howto_table_3[i];
2139 /* Support for core dump NOTE sections. */
2142 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2147 switch (note->descsz)
2152 case 148: /* Linux/ARM 32-bit. */
2154 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2157 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2166 /* Make a ".reg/999" section. */
2167 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2168 size, note->descpos + offset);
2172 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2174 switch (note->descsz)
2179 case 124: /* Linux/ARM elf_prpsinfo. */
2180 elf_tdata (abfd)->core->pid
2181 = bfd_get_32 (abfd, note->descdata + 12);
2182 elf_tdata (abfd)->core->program
2183 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2184 elf_tdata (abfd)->core->command
2185 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2188 /* Note that for some reason, a spurious space is tacked
2189 onto the end of the args in some (at least one anyway)
2190 implementations, so strip it off if it exists. */
2192 char *command = elf_tdata (abfd)->core->command;
2193 int n = strlen (command);
2195 if (0 < n && command[n - 1] == ' ')
2196 command[n - 1] = '\0';
2203 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2213 char data[124] ATTRIBUTE_NONSTRING;
2216 va_start (ap, note_type);
2217 memset (data, 0, sizeof (data));
2218 strncpy (data + 28, va_arg (ap, const char *), 16);
2219 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
2221 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
2222 -Wstringop-truncation:
2223 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
2225 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
2227 strncpy (data + 44, va_arg (ap, const char *), 80);
2228 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
2233 return elfcore_write_note (abfd, buf, bufsiz,
2234 "CORE", note_type, data, sizeof (data));
2245 va_start (ap, note_type);
2246 memset (data, 0, sizeof (data));
2247 pid = va_arg (ap, long);
2248 bfd_put_32 (abfd, pid, data + 24);
2249 cursig = va_arg (ap, int);
2250 bfd_put_16 (abfd, cursig, data + 12);
2251 greg = va_arg (ap, const void *);
2252 memcpy (data + 72, greg, 72);
2255 return elfcore_write_note (abfd, buf, bufsiz,
2256 "CORE", note_type, data, sizeof (data));
2261 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2262 #define TARGET_LITTLE_NAME "elf32-littlearm"
2263 #define TARGET_BIG_SYM arm_elf32_be_vec
2264 #define TARGET_BIG_NAME "elf32-bigarm"
2266 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2267 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2268 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2270 typedef unsigned long int insn32;
2271 typedef unsigned short int insn16;
2273 /* In lieu of proper flags, assume all EABIv4 or later objects are
2275 #define INTERWORK_FLAG(abfd) \
2276 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2277 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2278 || ((abfd)->flags & BFD_LINKER_CREATED))
2280 /* The linker script knows the section names for placement.
2281 The entry_names are used to do simple name mangling on the stubs.
2282 Given a function name, and its type, the stub can be found. The
2283 name can be changed. The only requirement is the %s be present. */
2284 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2285 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2287 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2288 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2290 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2291 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2293 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2294 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2296 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2297 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2299 #define STUB_ENTRY_NAME "__%s_veneer"
2301 #define CMSE_PREFIX "__acle_se_"
2303 /* The name of the dynamic interpreter. This is put in the .interp
2305 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2307 /* FDPIC default stack size. */
2308 #define DEFAULT_STACK_SIZE 0x8000
2310 static const unsigned long tls_trampoline [] =
2312 0xe08e0000, /* add r0, lr, r0 */
2313 0xe5901004, /* ldr r1, [r0,#4] */
2314 0xe12fff11, /* bx r1 */
2317 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2319 0xe52d2004, /* push {r2} */
2320 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2321 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2322 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2323 0xe081100f, /* 2: add r1, pc */
2324 0xe12fff12, /* bx r2 */
2325 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2326 + dl_tlsdesc_lazy_resolver(GOT) */
2327 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2330 /* ARM FDPIC PLT entry. */
2331 /* The last 5 words contain PLT lazy fragment code and data. */
2332 static const bfd_vma elf32_arm_fdpic_plt_entry [] =
2334 0xe59fc008, /* ldr r12, .L1 */
2335 0xe08cc009, /* add r12, r12, r9 */
2336 0xe59c9004, /* ldr r9, [r12, #4] */
2337 0xe59cf000, /* ldr pc, [r12] */
2338 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2339 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2340 0xe51fc00c, /* ldr r12, [pc, #-12] */
2341 0xe92d1000, /* push {r12} */
2342 0xe599c004, /* ldr r12, [r9, #4] */
2343 0xe599f000, /* ldr pc, [r9] */
2346 /* Thumb FDPIC PLT entry. */
2347 /* The last 5 words contain PLT lazy fragment code and data. */
2348 static const bfd_vma elf32_arm_fdpic_thumb_plt_entry [] =
2350 0xc00cf8df, /* ldr.w r12, .L1 */
2351 0x0c09eb0c, /* add.w r12, r12, r9 */
2352 0x9004f8dc, /* ldr.w r9, [r12, #4] */
2353 0xf000f8dc, /* ldr.w pc, [r12] */
2354 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */
2355 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */
2356 0xc008f85f, /* ldr.w r12, .L2 */
2357 0xcd04f84d, /* push {r12} */
2358 0xc004f8d9, /* ldr.w r12, [r9, #4] */
2359 0xf000f8d9, /* ldr.w pc, [r9] */
2362 #ifdef FOUR_WORD_PLT
2364 /* The first entry in a procedure linkage table looks like
2365 this. It is set up so that any shared library function that is
2366 called before the relocation has been set up calls the dynamic
2368 static const bfd_vma elf32_arm_plt0_entry [] =
2370 0xe52de004, /* str lr, [sp, #-4]! */
2371 0xe59fe010, /* ldr lr, [pc, #16] */
2372 0xe08fe00e, /* add lr, pc, lr */
2373 0xe5bef008, /* ldr pc, [lr, #8]! */
2376 /* Subsequent entries in a procedure linkage table look like
2378 static const bfd_vma elf32_arm_plt_entry [] =
2380 0xe28fc600, /* add ip, pc, #NN */
2381 0xe28cca00, /* add ip, ip, #NN */
2382 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2383 0x00000000, /* unused */
2386 #else /* not FOUR_WORD_PLT */
2388 /* The first entry in a procedure linkage table looks like
2389 this. It is set up so that any shared library function that is
2390 called before the relocation has been set up calls the dynamic
2392 static const bfd_vma elf32_arm_plt0_entry [] =
2394 0xe52de004, /* str lr, [sp, #-4]! */
2395 0xe59fe004, /* ldr lr, [pc, #4] */
2396 0xe08fe00e, /* add lr, pc, lr */
2397 0xe5bef008, /* ldr pc, [lr, #8]! */
2398 0x00000000, /* &GOT[0] - . */
2401 /* By default subsequent entries in a procedure linkage table look like
2402 this. Offsets that don't fit into 28 bits will cause link error. */
2403 static const bfd_vma elf32_arm_plt_entry_short [] =
2405 0xe28fc600, /* add ip, pc, #0xNN00000 */
2406 0xe28cca00, /* add ip, ip, #0xNN000 */
2407 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2410 /* When explicitly asked, we'll use this "long" entry format
2411 which can cope with arbitrary displacements. */
2412 static const bfd_vma elf32_arm_plt_entry_long [] =
2414 0xe28fc200, /* add ip, pc, #0xN0000000 */
2415 0xe28cc600, /* add ip, ip, #0xNN00000 */
2416 0xe28cca00, /* add ip, ip, #0xNN000 */
2417 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2420 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2422 #endif /* not FOUR_WORD_PLT */
2424 /* The first entry in a procedure linkage table looks like this.
2425 It is set up so that any shared library function that is called before the
2426 relocation has been set up calls the dynamic linker first. */
2427 static const bfd_vma elf32_thumb2_plt0_entry [] =
2429 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2430 an instruction maybe encoded to one or two array elements. */
2431 0xf8dfb500, /* push {lr} */
2432 0x44fee008, /* ldr.w lr, [pc, #8] */
2434 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2435 0x00000000, /* &GOT[0] - . */
2438 /* Subsequent entries in a procedure linkage table for thumb only target
2440 static const bfd_vma elf32_thumb2_plt_entry [] =
2442 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2443 an instruction maybe encoded to one or two array elements. */
2444 0x0c00f240, /* movw ip, #0xNNNN */
2445 0x0c00f2c0, /* movt ip, #0xNNNN */
2446 0xf8dc44fc, /* add ip, pc */
2447 0xbf00f000 /* ldr.w pc, [ip] */
2451 /* The format of the first entry in the procedure linkage table
2452 for a VxWorks executable. */
2453 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2455 0xe52dc008, /* str ip,[sp,#-8]! */
2456 0xe59fc000, /* ldr ip,[pc] */
2457 0xe59cf008, /* ldr pc,[ip,#8] */
2458 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2461 /* The format of subsequent entries in a VxWorks executable. */
2462 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2464 0xe59fc000, /* ldr ip,[pc] */
2465 0xe59cf000, /* ldr pc,[ip] */
2466 0x00000000, /* .long @got */
2467 0xe59fc000, /* ldr ip,[pc] */
2468 0xea000000, /* b _PLT */
2469 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2472 /* The format of entries in a VxWorks shared library. */
2473 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2475 0xe59fc000, /* ldr ip,[pc] */
2476 0xe79cf009, /* ldr pc,[ip,r9] */
2477 0x00000000, /* .long @got */
2478 0xe59fc000, /* ldr ip,[pc] */
2479 0xe599f008, /* ldr pc,[r9,#8] */
2480 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2483 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2484 #define PLT_THUMB_STUB_SIZE 4
2485 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2491 /* The entries in a PLT when using a DLL-based target with multiple
2493 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2495 0xe51ff004, /* ldr pc, [pc, #-4] */
2496 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2499 /* The first entry in a procedure linkage table looks like
2500 this. It is set up so that any shared library function that is
2501 called before the relocation has been set up calls the dynamic
2503 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2506 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2507 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2508 0xe08cc00f, /* add ip, ip, pc */
2509 0xe52dc008, /* str ip, [sp, #-8]! */
2510 /* Second bundle: */
2511 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2512 0xe59cc000, /* ldr ip, [ip] */
2513 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2514 0xe12fff1c, /* bx ip */
2516 0xe320f000, /* nop */
2517 0xe320f000, /* nop */
2518 0xe320f000, /* nop */
2520 0xe50dc004, /* str ip, [sp, #-4] */
2521 /* Fourth bundle: */
2522 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2523 0xe59cc000, /* ldr ip, [ip] */
2524 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2525 0xe12fff1c, /* bx ip */
2527 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2529 /* Subsequent entries in a procedure linkage table look like this. */
2530 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2532 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2533 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2534 0xe08cc00f, /* add ip, ip, pc */
2535 0xea000000, /* b .Lplt_tail */
2538 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2539 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2540 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2541 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2542 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2543 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2544 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2545 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2555 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2556 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2557 is inserted in arm_build_one_stub(). */
2558 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2559 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2560 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2561 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2562 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2563 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2564 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2565 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2570 enum stub_insn_type type;
2571 unsigned int r_type;
2575 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2576 to reach the stub if necessary. */
2577 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2579 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2580 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2583 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2585 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2587 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2588 ARM_INSN (0xe12fff1c), /* bx ip */
2589 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2592 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2593 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2595 THUMB16_INSN (0xb401), /* push {r0} */
2596 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2597 THUMB16_INSN (0x4684), /* mov ip, r0 */
2598 THUMB16_INSN (0xbc01), /* pop {r0} */
2599 THUMB16_INSN (0x4760), /* bx ip */
2600 THUMB16_INSN (0xbf00), /* nop */
2601 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2604 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2605 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2607 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2608 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2611 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2612 M-profile architectures. */
2613 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2615 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2616 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2617 THUMB16_INSN (0x4760), /* bx ip */
2620 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2622 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2624 THUMB16_INSN (0x4778), /* bx pc */
2625 THUMB16_INSN (0x46c0), /* nop */
2626 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2627 ARM_INSN (0xe12fff1c), /* bx ip */
2628 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2631 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2633 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2635 THUMB16_INSN (0x4778), /* bx pc */
2636 THUMB16_INSN (0x46c0), /* nop */
2637 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2638 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2641 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2642 one, when the destination is close enough. */
2643 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2645 THUMB16_INSN (0x4778), /* bx pc */
2646 THUMB16_INSN (0x46c0), /* nop */
2647 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2650 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2651 blx to reach the stub if necessary. */
2652 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2654 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2655 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2656 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2659 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2660 blx to reach the stub if necessary. We can not add into pc;
2661 it is not guaranteed to mode switch (different in ARMv6 and
2663 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2665 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2666 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2667 ARM_INSN (0xe12fff1c), /* bx ip */
2668 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2671 /* V4T ARM -> ARM long branch stub, PIC. */
2672 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2674 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2675 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2676 ARM_INSN (0xe12fff1c), /* bx ip */
2677 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2680 /* V4T Thumb -> ARM long branch stub, PIC. */
2681 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2683 THUMB16_INSN (0x4778), /* bx pc */
2684 THUMB16_INSN (0x46c0), /* nop */
2685 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2686 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2687 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2690 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2692 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2694 THUMB16_INSN (0xb401), /* push {r0} */
2695 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2696 THUMB16_INSN (0x46fc), /* mov ip, pc */
2697 THUMB16_INSN (0x4484), /* add ip, r0 */
2698 THUMB16_INSN (0xbc01), /* pop {r0} */
2699 THUMB16_INSN (0x4760), /* bx ip */
2700 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2703 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2705 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2707 THUMB16_INSN (0x4778), /* bx pc */
2708 THUMB16_INSN (0x46c0), /* nop */
2709 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2710 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2711 ARM_INSN (0xe12fff1c), /* bx ip */
2712 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2715 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2716 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2717 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2719 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2720 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2721 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2724 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2725 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2726 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2728 THUMB16_INSN (0x4778), /* bx pc */
2729 THUMB16_INSN (0x46c0), /* nop */
2730 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2731 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2732 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2735 /* NaCl ARM -> ARM long branch stub. */
2736 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2738 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2739 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2740 ARM_INSN (0xe12fff1c), /* bx ip */
2741 ARM_INSN (0xe320f000), /* nop */
2742 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2743 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2744 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2745 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2748 /* NaCl ARM -> ARM long branch stub, PIC. */
2749 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2751 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2752 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2753 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2754 ARM_INSN (0xe12fff1c), /* bx ip */
2755 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2756 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2757 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2758 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2761 /* Stub used for transition to secure state (aka SG veneer). */
2762 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2764 THUMB32_INSN (0xe97fe97f), /* sg. */
2765 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2769 /* Cortex-A8 erratum-workaround stubs. */
2771 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2772 can't use a conditional branch to reach this stub). */
2774 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2776 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2777 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2778 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2781 /* Stub used for b.w and bl.w instructions. */
2783 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2785 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2788 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2790 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2793 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2794 instruction (which switches to ARM mode) to point to this stub. Jump to the
2795 real destination using an ARM-mode branch. */
2797 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2799 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2802 /* For each section group there can be a specially created linker section
2803 to hold the stubs for that group. The name of the stub section is based
2804 upon the name of another section within that group with the suffix below
2807 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2808 create what appeared to be a linker stub section when it actually
2809 contained user code/data. For example, consider this fragment:
2811 const char * stubborn_problems[] = { "np" };
2813 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2816 .data.rel.local.stubborn_problems
2818 This then causes problems in arm32_arm_build_stubs() as it triggers:
2820 // Ignore non-stub sections.
2821 if (!strstr (stub_sec->name, STUB_SUFFIX))
2824 And so the section would be ignored instead of being processed. Hence
2825 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2827 #define STUB_SUFFIX ".__stub"
2829 /* One entry per long/short branch stub defined above. */
2831 DEF_STUB(long_branch_any_any) \
2832 DEF_STUB(long_branch_v4t_arm_thumb) \
2833 DEF_STUB(long_branch_thumb_only) \
2834 DEF_STUB(long_branch_v4t_thumb_thumb) \
2835 DEF_STUB(long_branch_v4t_thumb_arm) \
2836 DEF_STUB(short_branch_v4t_thumb_arm) \
2837 DEF_STUB(long_branch_any_arm_pic) \
2838 DEF_STUB(long_branch_any_thumb_pic) \
2839 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2840 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2841 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2842 DEF_STUB(long_branch_thumb_only_pic) \
2843 DEF_STUB(long_branch_any_tls_pic) \
2844 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2845 DEF_STUB(long_branch_arm_nacl) \
2846 DEF_STUB(long_branch_arm_nacl_pic) \
2847 DEF_STUB(cmse_branch_thumb_only) \
2848 DEF_STUB(a8_veneer_b_cond) \
2849 DEF_STUB(a8_veneer_b) \
2850 DEF_STUB(a8_veneer_bl) \
2851 DEF_STUB(a8_veneer_blx) \
2852 DEF_STUB(long_branch_thumb2_only) \
2853 DEF_STUB(long_branch_thumb2_only_pure)
2855 #define DEF_STUB(x) arm_stub_##x,
2856 enum elf32_arm_stub_type
2864 /* Note the first a8_veneer type. */
2865 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2869 const insn_sequence* template_sequence;
2873 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2874 static const stub_def stub_definitions[] =
2880 struct elf32_arm_stub_hash_entry
2882 /* Base hash table entry structure. */
2883 struct bfd_hash_entry root;
2885 /* The stub section. */
2888 /* Offset within stub_sec of the beginning of this stub. */
2889 bfd_vma stub_offset;
2891 /* Given the symbol's value and its section we can determine its final
2892 value when building the stubs (so the stub knows where to jump). */
2893 bfd_vma target_value;
2894 asection *target_section;
2896 /* Same as above but for the source of the branch to the stub. Used for
2897 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2898 such, source section does not need to be recorded since Cortex-A8 erratum
2899 workaround stubs are only generated when both source and target are in the
2901 bfd_vma source_value;
2903 /* The instruction which caused this stub to be generated (only valid for
2904 Cortex-A8 erratum workaround stubs at present). */
2905 unsigned long orig_insn;
2907 /* The stub type. */
2908 enum elf32_arm_stub_type stub_type;
2909 /* Its encoding size in bytes. */
2912 const insn_sequence *stub_template;
2913 /* The size of the template (number of entries). */
2914 int stub_template_size;
2916 /* The symbol table entry, if any, that this was derived from. */
2917 struct elf32_arm_link_hash_entry *h;
2919 /* Type of branch. */
2920 enum arm_st_branch_type branch_type;
2922 /* Where this stub is being called from, or, in the case of combined
2923 stub sections, the first input section in the group. */
2926 /* The name for the local symbol at the start of this stub. The
2927 stub name in the hash table has to be unique; this does not, so
2928 it can be friendlier. */
2932 /* Used to build a map of a section. This is required for mixed-endian
2935 typedef struct elf32_elf_section_map
2940 elf32_arm_section_map;
2942 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2946 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2947 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2948 VFP11_ERRATUM_ARM_VENEER,
2949 VFP11_ERRATUM_THUMB_VENEER
2951 elf32_vfp11_erratum_type;
2953 typedef struct elf32_vfp11_erratum_list
2955 struct elf32_vfp11_erratum_list *next;
2961 struct elf32_vfp11_erratum_list *veneer;
2962 unsigned int vfp_insn;
2966 struct elf32_vfp11_erratum_list *branch;
2970 elf32_vfp11_erratum_type type;
2972 elf32_vfp11_erratum_list;
2974 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2978 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2979 STM32L4XX_ERRATUM_VENEER
2981 elf32_stm32l4xx_erratum_type;
2983 typedef struct elf32_stm32l4xx_erratum_list
2985 struct elf32_stm32l4xx_erratum_list *next;
2991 struct elf32_stm32l4xx_erratum_list *veneer;
2996 struct elf32_stm32l4xx_erratum_list *branch;
3000 elf32_stm32l4xx_erratum_type type;
3002 elf32_stm32l4xx_erratum_list;
3007 INSERT_EXIDX_CANTUNWIND_AT_END
3009 arm_unwind_edit_type;
3011 /* A (sorted) list of edits to apply to an unwind table. */
3012 typedef struct arm_unwind_table_edit
3014 arm_unwind_edit_type type;
3015 /* Note: we sometimes want to insert an unwind entry corresponding to a
3016 section different from the one we're currently writing out, so record the
3017 (text) section this edit relates to here. */
3018 asection *linked_section;
3020 struct arm_unwind_table_edit *next;
3022 arm_unwind_table_edit;
3024 typedef struct _arm_elf_section_data
3026 /* Information about mapping symbols. */
3027 struct bfd_elf_section_data elf;
3028 unsigned int mapcount;
3029 unsigned int mapsize;
3030 elf32_arm_section_map *map;
3031 /* Information about CPU errata. */
3032 unsigned int erratumcount;
3033 elf32_vfp11_erratum_list *erratumlist;
3034 unsigned int stm32l4xx_erratumcount;
3035 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
3036 unsigned int additional_reloc_count;
3037 /* Information about unwind tables. */
3040 /* Unwind info attached to a text section. */
3043 asection *arm_exidx_sec;
3046 /* Unwind info attached to an .ARM.exidx section. */
3049 arm_unwind_table_edit *unwind_edit_list;
3050 arm_unwind_table_edit *unwind_edit_tail;
3054 _arm_elf_section_data;
3056 #define elf32_arm_section_data(sec) \
3057 ((_arm_elf_section_data *) elf_section_data (sec))
3059 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
3060 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
3061 so may be created multiple times: we use an array of these entries whilst
3062 relaxing which we can refresh easily, then create stubs for each potentially
3063 erratum-triggering instruction once we've settled on a solution. */
3065 struct a8_erratum_fix
3070 bfd_vma target_offset;
3071 unsigned long orig_insn;
3073 enum elf32_arm_stub_type stub_type;
3074 enum arm_st_branch_type branch_type;
3077 /* A table of relocs applied to branches which might trigger Cortex-A8
3080 struct a8_erratum_reloc
3083 bfd_vma destination;
3084 struct elf32_arm_link_hash_entry *hash;
3085 const char *sym_name;
3086 unsigned int r_type;
3087 enum arm_st_branch_type branch_type;
3088 bfd_boolean non_a8_stub;
3091 /* The size of the thread control block. */
3094 /* ARM-specific information about a PLT entry, over and above the usual
3098 /* We reference count Thumb references to a PLT entry separately,
3099 so that we can emit the Thumb trampoline only if needed. */
3100 bfd_signed_vma thumb_refcount;
3102 /* Some references from Thumb code may be eliminated by BL->BLX
3103 conversion, so record them separately. */
3104 bfd_signed_vma maybe_thumb_refcount;
3106 /* How many of the recorded PLT accesses were from non-call relocations.
3107 This information is useful when deciding whether anything takes the
3108 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3109 non-call references to the function should resolve directly to the
3110 real runtime target. */
3111 unsigned int noncall_refcount;
3113 /* Since PLT entries have variable size if the Thumb prologue is
3114 used, we need to record the index into .got.plt instead of
3115 recomputing it from the PLT offset. */
3116 bfd_signed_vma got_offset;
3119 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
3120 struct arm_local_iplt_info
3122 /* The information that is usually found in the generic ELF part of
3123 the hash table entry. */
3124 union gotplt_union root;
3126 /* The information that is usually found in the ARM-specific part of
3127 the hash table entry. */
3128 struct arm_plt_info arm;
3130 /* A list of all potential dynamic relocations against this symbol. */
3131 struct elf_dyn_relocs *dyn_relocs;
3134 /* Structure to handle FDPIC support for local functions. */
3135 struct fdpic_local {
3136 unsigned int funcdesc_cnt;
3137 unsigned int gotofffuncdesc_cnt;
3138 int funcdesc_offset;
3141 struct elf_arm_obj_tdata
3143 struct elf_obj_tdata root;
3145 /* tls_type for each local got entry. */
3146 char *local_got_tls_type;
3148 /* GOTPLT entries for TLS descriptors. */
3149 bfd_vma *local_tlsdesc_gotent;
3151 /* Information for local symbols that need entries in .iplt. */
3152 struct arm_local_iplt_info **local_iplt;
3154 /* Zero to warn when linking objects with incompatible enum sizes. */
3155 int no_enum_size_warning;
3157 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3158 int no_wchar_size_warning;
3160 /* Maintains FDPIC counters and funcdesc info. */
3161 struct fdpic_local *local_fdpic_cnts;
3164 #define elf_arm_tdata(bfd) \
3165 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
3167 #define elf32_arm_local_got_tls_type(bfd) \
3168 (elf_arm_tdata (bfd)->local_got_tls_type)
3170 #define elf32_arm_local_tlsdesc_gotent(bfd) \
3171 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3173 #define elf32_arm_local_iplt(bfd) \
3174 (elf_arm_tdata (bfd)->local_iplt)
3176 #define elf32_arm_local_fdpic_cnts(bfd) \
3177 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3179 #define is_arm_elf(bfd) \
3180 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3181 && elf_tdata (bfd) != NULL \
3182 && elf_object_id (bfd) == ARM_ELF_DATA)
3185 elf32_arm_mkobject (bfd *abfd)
3187 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
3191 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3193 /* Structure to handle FDPIC support for extern functions. */
3194 struct fdpic_global {
3195 unsigned int gotofffuncdesc_cnt;
3196 unsigned int gotfuncdesc_cnt;
3197 unsigned int funcdesc_cnt;
3198 int funcdesc_offset;
3199 int gotfuncdesc_offset;
3202 /* Arm ELF linker hash entry. */
3203 struct elf32_arm_link_hash_entry
3205 struct elf_link_hash_entry root;
3207 /* Track dynamic relocs copied for this symbol. */
3208 struct elf_dyn_relocs *dyn_relocs;
3210 /* ARM-specific PLT information. */
3211 struct arm_plt_info plt;
3213 #define GOT_UNKNOWN 0
3214 #define GOT_NORMAL 1
3215 #define GOT_TLS_GD 2
3216 #define GOT_TLS_IE 4
3217 #define GOT_TLS_GDESC 8
3218 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3219 unsigned int tls_type : 8;
3221 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3222 unsigned int is_iplt : 1;
3224 unsigned int unused : 23;
3226 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3227 starting at the end of the jump table. */
3228 bfd_vma tlsdesc_got;
3230 /* The symbol marking the real symbol location for exported thumb
3231 symbols with Arm stubs. */
3232 struct elf_link_hash_entry *export_glue;
3234 /* A pointer to the most recently used stub hash entry against this
3236 struct elf32_arm_stub_hash_entry *stub_cache;
3238 /* Counter for FDPIC relocations against this symbol. */
3239 struct fdpic_global fdpic_cnts;
3242 /* Traverse an arm ELF linker hash table. */
3243 #define elf32_arm_link_hash_traverse(table, func, info) \
3244 (elf_link_hash_traverse \
3246 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3249 /* Get the ARM elf linker hash table from a link_info structure. */
3250 #define elf32_arm_hash_table(info) \
3251 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3252 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3254 #define arm_stub_hash_lookup(table, string, create, copy) \
3255 ((struct elf32_arm_stub_hash_entry *) \
3256 bfd_hash_lookup ((table), (string), (create), (copy)))
3258 /* Array to keep track of which stub sections have been created, and
3259 information on stub grouping. */
3262 /* This is the section to which stubs in the group will be
3265 /* The stub section. */
3269 #define elf32_arm_compute_jump_table_size(htab) \
3270 ((htab)->next_tls_desc_index * 4)
3272 /* ARM ELF linker hash table. */
3273 struct elf32_arm_link_hash_table
3275 /* The main hash table. */
3276 struct elf_link_hash_table root;
3278 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3279 bfd_size_type thumb_glue_size;
3281 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3282 bfd_size_type arm_glue_size;
3284 /* The size in bytes of section containing the ARMv4 BX veneers. */
3285 bfd_size_type bx_glue_size;
3287 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3288 veneer has been populated. */
3289 bfd_vma bx_glue_offset[15];
3291 /* The size in bytes of the section containing glue for VFP11 erratum
3293 bfd_size_type vfp11_erratum_glue_size;
3295 /* The size in bytes of the section containing glue for STM32L4XX erratum
3297 bfd_size_type stm32l4xx_erratum_glue_size;
3299 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3300 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3301 elf32_arm_write_section(). */
3302 struct a8_erratum_fix *a8_erratum_fixes;
3303 unsigned int num_a8_erratum_fixes;
3305 /* An arbitrary input BFD chosen to hold the glue sections. */
3306 bfd * bfd_of_glue_owner;
3308 /* Nonzero to output a BE8 image. */
3311 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3312 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3315 /* The relocation to use for R_ARM_TARGET2 relocations. */
3318 /* 0 = Ignore R_ARM_V4BX.
3319 1 = Convert BX to MOV PC.
3320 2 = Generate v4 interworing stubs. */
3323 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3326 /* Whether we should fix the ARM1176 BLX immediate issue. */
3329 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3332 /* What sort of code sequences we should look for which may trigger the
3333 VFP11 denorm erratum. */
3334 bfd_arm_vfp11_fix vfp11_fix;
3336 /* Global counter for the number of fixes we have emitted. */
3337 int num_vfp11_fixes;
3339 /* What sort of code sequences we should look for which may trigger the
3340 STM32L4XX erratum. */
3341 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3343 /* Global counter for the number of fixes we have emitted. */
3344 int num_stm32l4xx_fixes;
3346 /* Nonzero to force PIC branch veneers. */
3349 /* The number of bytes in the initial entry in the PLT. */
3350 bfd_size_type plt_header_size;
3352 /* The number of bytes in the subsequent PLT etries. */
3353 bfd_size_type plt_entry_size;
3355 /* True if the target system is VxWorks. */
3358 /* True if the target system is Symbian OS. */
3361 /* True if the target system is Native Client. */
3364 /* True if the target uses REL relocations. */
3365 bfd_boolean use_rel;
3367 /* Nonzero if import library must be a secure gateway import library
3368 as per ARMv8-M Security Extensions. */
3371 /* The import library whose symbols' address must remain stable in
3372 the import library generated. */
3375 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3376 bfd_vma next_tls_desc_index;
3378 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3379 bfd_vma num_tls_desc;
3381 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3384 /* The offset into splt of the PLT entry for the TLS descriptor
3385 resolver. Special values are 0, if not necessary (or not found
3386 to be necessary yet), and -1 if needed but not determined
3388 bfd_vma dt_tlsdesc_plt;
3390 /* The offset into sgot of the GOT entry used by the PLT entry
3392 bfd_vma dt_tlsdesc_got;
3394 /* Offset in .plt section of tls_arm_trampoline. */
3395 bfd_vma tls_trampoline;
3397 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
3400 bfd_signed_vma refcount;
3404 /* Small local sym cache. */
3405 struct sym_cache sym_cache;
3407 /* For convenience in allocate_dynrelocs. */
3410 /* The amount of space used by the reserved portion of the sgotplt
3411 section, plus whatever space is used by the jump slots. */
3412 bfd_vma sgotplt_jump_table_size;
3414 /* The stub hash table. */
3415 struct bfd_hash_table stub_hash_table;
3417 /* Linker stub bfd. */
3420 /* Linker call-backs. */
3421 asection * (*add_stub_section) (const char *, asection *, asection *,
3423 void (*layout_sections_again) (void);
3425 /* Array to keep track of which stub sections have been created, and
3426 information on stub grouping. */
3427 struct map_stub *stub_group;
3429 /* Input stub section holding secure gateway veneers. */
3430 asection *cmse_stub_sec;
3432 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3433 start to be allocated. */
3434 bfd_vma new_cmse_stub_offset;
3436 /* Number of elements in stub_group. */
3437 unsigned int top_id;
3439 /* Assorted information used by elf32_arm_size_stubs. */
3440 unsigned int bfd_count;
3441 unsigned int top_index;
3442 asection **input_list;
3444 /* True if the target system uses FDPIC. */
3447 /* Fixup section. Used for FDPIC. */
3451 /* Add an FDPIC read-only fixup. */
3453 arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset)
3455 bfd_vma fixup_offset;
3457 fixup_offset = srofixup->reloc_count++ * 4;
3458 BFD_ASSERT (fixup_offset < srofixup->size);
3459 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset);
3463 ctz (unsigned int mask)
3465 #if GCC_VERSION >= 3004
3466 return __builtin_ctz (mask);
3470 for (i = 0; i < 8 * sizeof (mask); i++)
3481 elf32_arm_popcount (unsigned int mask)
3483 #if GCC_VERSION >= 3004
3484 return __builtin_popcount (mask);
3489 for (i = 0; i < 8 * sizeof (mask); i++)
3499 static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
3500 asection *sreloc, Elf_Internal_Rela *rel);
3503 arm_elf_fill_funcdesc(bfd *output_bfd,
3504 struct bfd_link_info *info,
3505 int *funcdesc_offset,
3509 bfd_vma dynreloc_value,
3512 if ((*funcdesc_offset & 1) == 0)
3514 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
3515 asection *sgot = globals->root.sgot;
3517 if (bfd_link_pic(info))
3519 asection *srelgot = globals->root.srelgot;
3520 Elf_Internal_Rela outrel;
3522 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
3523 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset;
3524 outrel.r_addend = 0;
3526 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
3527 bfd_put_32 (output_bfd, addr, sgot->contents + offset);
3528 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4);
3532 struct elf_link_hash_entry *hgot = globals->root.hgot;
3533 bfd_vma got_value = hgot->root.u.def.value
3534 + hgot->root.u.def.section->output_section->vma
3535 + hgot->root.u.def.section->output_offset;
3537 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3538 sgot->output_section->vma + sgot->output_offset
3540 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3541 sgot->output_section->vma + sgot->output_offset
3543 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset);
3544 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4);
3546 *funcdesc_offset |= 1;
3550 /* Create an entry in an ARM ELF linker hash table. */
3552 static struct bfd_hash_entry *
3553 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3554 struct bfd_hash_table * table,
3555 const char * string)
3557 struct elf32_arm_link_hash_entry * ret =
3558 (struct elf32_arm_link_hash_entry *) entry;
3560 /* Allocate the structure if it has not already been allocated by a
3563 ret = (struct elf32_arm_link_hash_entry *)
3564 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3566 return (struct bfd_hash_entry *) ret;
3568 /* Call the allocation method of the superclass. */
3569 ret = ((struct elf32_arm_link_hash_entry *)
3570 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3574 ret->dyn_relocs = NULL;
3575 ret->tls_type = GOT_UNKNOWN;
3576 ret->tlsdesc_got = (bfd_vma) -1;
3577 ret->plt.thumb_refcount = 0;
3578 ret->plt.maybe_thumb_refcount = 0;
3579 ret->plt.noncall_refcount = 0;
3580 ret->plt.got_offset = -1;
3581 ret->is_iplt = FALSE;
3582 ret->export_glue = NULL;
3584 ret->stub_cache = NULL;
3586 ret->fdpic_cnts.gotofffuncdesc_cnt = 0;
3587 ret->fdpic_cnts.gotfuncdesc_cnt = 0;
3588 ret->fdpic_cnts.funcdesc_cnt = 0;
3589 ret->fdpic_cnts.funcdesc_offset = -1;
3590 ret->fdpic_cnts.gotfuncdesc_offset = -1;
3593 return (struct bfd_hash_entry *) ret;
3596 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3600 elf32_arm_allocate_local_sym_info (bfd *abfd)
3602 if (elf_local_got_refcounts (abfd) == NULL)
3604 bfd_size_type num_syms;
3608 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3609 size = num_syms * (sizeof (bfd_signed_vma)
3610 + sizeof (struct arm_local_iplt_info *)
3613 + sizeof (struct fdpic_local));
3614 data = bfd_zalloc (abfd, size);
3618 elf32_arm_local_fdpic_cnts (abfd) = (struct fdpic_local *) data;
3619 data += num_syms * sizeof (struct fdpic_local);
3621 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3622 data += num_syms * sizeof (bfd_signed_vma);
3624 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3625 data += num_syms * sizeof (struct arm_local_iplt_info *);
3627 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3628 data += num_syms * sizeof (bfd_vma);
3630 elf32_arm_local_got_tls_type (abfd) = data;
3635 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3636 to input bfd ABFD. Create the information if it doesn't already exist.
3637 Return null if an allocation fails. */
3639 static struct arm_local_iplt_info *
3640 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3642 struct arm_local_iplt_info **ptr;
3644 if (!elf32_arm_allocate_local_sym_info (abfd))
3647 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3648 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3650 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3654 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3655 in ABFD's symbol table. If the symbol is global, H points to its
3656 hash table entry, otherwise H is null.
3658 Return true if the symbol does have PLT information. When returning
3659 true, point *ROOT_PLT at the target-independent reference count/offset
3660 union and *ARM_PLT at the ARM-specific information. */
3663 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3664 struct elf32_arm_link_hash_entry *h,
3665 unsigned long r_symndx, union gotplt_union **root_plt,
3666 struct arm_plt_info **arm_plt)
3668 struct arm_local_iplt_info *local_iplt;
3670 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3675 *root_plt = &h->root.plt;
3680 if (elf32_arm_local_iplt (abfd) == NULL)
3683 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3684 if (local_iplt == NULL)
3687 *root_plt = &local_iplt->root;
3688 *arm_plt = &local_iplt->arm;
3692 static bfd_boolean using_thumb_only (struct elf32_arm_link_hash_table *globals);
3694 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3698 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3699 struct arm_plt_info *arm_plt)
3701 struct elf32_arm_link_hash_table *htab;
3703 htab = elf32_arm_hash_table (info);
3705 return (!using_thumb_only(htab) && (arm_plt->thumb_refcount != 0
3706 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)));
3709 /* Return a pointer to the head of the dynamic reloc list that should
3710 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3711 ABFD's symbol table. Return null if an error occurs. */
3713 static struct elf_dyn_relocs **
3714 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3715 Elf_Internal_Sym *isym)
3717 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3719 struct arm_local_iplt_info *local_iplt;
3721 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3722 if (local_iplt == NULL)
3724 return &local_iplt->dyn_relocs;
3728 /* Track dynamic relocs needed for local syms too.
3729 We really need local syms available to do this
3734 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3738 vpp = &elf_section_data (s)->local_dynrel;
3739 return (struct elf_dyn_relocs **) vpp;
3743 /* Initialize an entry in the stub hash table. */
3745 static struct bfd_hash_entry *
3746 stub_hash_newfunc (struct bfd_hash_entry *entry,
3747 struct bfd_hash_table *table,
3750 /* Allocate the structure if it has not already been allocated by a
3754 entry = (struct bfd_hash_entry *)
3755 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3760 /* Call the allocation method of the superclass. */
3761 entry = bfd_hash_newfunc (entry, table, string);
3764 struct elf32_arm_stub_hash_entry *eh;
3766 /* Initialize the local fields. */
3767 eh = (struct elf32_arm_stub_hash_entry *) entry;
3768 eh->stub_sec = NULL;
3769 eh->stub_offset = (bfd_vma) -1;
3770 eh->source_value = 0;
3771 eh->target_value = 0;
3772 eh->target_section = NULL;
3774 eh->stub_type = arm_stub_none;
3776 eh->stub_template = NULL;
3777 eh->stub_template_size = -1;
3780 eh->output_name = NULL;
3786 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3787 shortcuts to them in our hash table. */
3790 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3792 struct elf32_arm_link_hash_table *htab;
3794 htab = elf32_arm_hash_table (info);
3798 /* BPABI objects never have a GOT, or associated sections. */
3799 if (htab->symbian_p)
3802 if (! _bfd_elf_create_got_section (dynobj, info))
3805 /* Also create .rofixup. */
3808 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup",
3809 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3810 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY));
3811 if (htab->srofixup == NULL || ! bfd_set_section_alignment (dynobj, htab->srofixup, 2))
3818 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3821 create_ifunc_sections (struct bfd_link_info *info)
3823 struct elf32_arm_link_hash_table *htab;
3824 const struct elf_backend_data *bed;
3829 htab = elf32_arm_hash_table (info);
3830 dynobj = htab->root.dynobj;
3831 bed = get_elf_backend_data (dynobj);
3832 flags = bed->dynamic_sec_flags;
3834 if (htab->root.iplt == NULL)
3836 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3837 flags | SEC_READONLY | SEC_CODE);
3839 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3841 htab->root.iplt = s;
3844 if (htab->root.irelplt == NULL)
3846 s = bfd_make_section_anyway_with_flags (dynobj,
3847 RELOC_SECTION (htab, ".iplt"),
3848 flags | SEC_READONLY);
3850 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3852 htab->root.irelplt = s;
3855 if (htab->root.igotplt == NULL)
3857 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3859 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3861 htab->root.igotplt = s;
3866 /* Determine if we're dealing with a Thumb only architecture. */
3869 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3872 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3873 Tag_CPU_arch_profile);
3876 return profile == 'M';
3878 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3880 /* Force return logic to be reviewed for each new architecture. */
3881 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3883 if (arch == TAG_CPU_ARCH_V6_M
3884 || arch == TAG_CPU_ARCH_V6S_M
3885 || arch == TAG_CPU_ARCH_V7E_M
3886 || arch == TAG_CPU_ARCH_V8M_BASE
3887 || arch == TAG_CPU_ARCH_V8M_MAIN
3888 || arch == TAG_CPU_ARCH_V8_1M_MAIN)
3894 /* Determine if we're dealing with a Thumb-2 object. */
3897 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3900 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3904 return thumb_isa == 2;
3906 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3908 /* Force return logic to be reviewed for each new architecture. */
3909 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3911 return (arch == TAG_CPU_ARCH_V6T2
3912 || arch == TAG_CPU_ARCH_V7
3913 || arch == TAG_CPU_ARCH_V7E_M
3914 || arch == TAG_CPU_ARCH_V8
3915 || arch == TAG_CPU_ARCH_V8R
3916 || arch == TAG_CPU_ARCH_V8M_MAIN
3917 || arch == TAG_CPU_ARCH_V8_1M_MAIN);
3920 /* Determine whether Thumb-2 BL instruction is available. */
3923 using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3926 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3928 /* Force return logic to be reviewed for each new architecture. */
3929 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3931 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3932 return (arch == TAG_CPU_ARCH_V6T2
3933 || arch >= TAG_CPU_ARCH_V7);
3936 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3937 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3941 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3943 struct elf32_arm_link_hash_table *htab;
3945 htab = elf32_arm_hash_table (info);
3949 if (!htab->root.sgot && !create_got_section (dynobj, info))
3952 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3955 if (htab->vxworks_p)
3957 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3960 if (bfd_link_pic (info))
3962 htab->plt_header_size = 0;
3963 htab->plt_entry_size
3964 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3968 htab->plt_header_size
3969 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3970 htab->plt_entry_size
3971 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3974 if (elf_elfheader (dynobj))
3975 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3980 Test for thumb only architectures. Note - we cannot just call
3981 using_thumb_only() as the attributes in the output bfd have not been
3982 initialised at this point, so instead we use the input bfd. */
3983 bfd * saved_obfd = htab->obfd;
3985 htab->obfd = dynobj;
3986 if (using_thumb_only (htab))
3988 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3989 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3991 htab->obfd = saved_obfd;
3994 if (htab->fdpic_p) {
3995 htab->plt_header_size = 0;
3996 if (info->flags & DF_BIND_NOW)
3997 htab->plt_entry_size = 4 * (ARRAY_SIZE(elf32_arm_fdpic_plt_entry) - 5);
3999 htab->plt_entry_size = 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry);
4002 if (!htab->root.splt
4003 || !htab->root.srelplt
4004 || !htab->root.sdynbss
4005 || (!bfd_link_pic (info) && !htab->root.srelbss))
4011 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4014 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
4015 struct elf_link_hash_entry *dir,
4016 struct elf_link_hash_entry *ind)
4018 struct elf32_arm_link_hash_entry *edir, *eind;
4020 edir = (struct elf32_arm_link_hash_entry *) dir;
4021 eind = (struct elf32_arm_link_hash_entry *) ind;
4023 if (eind->dyn_relocs != NULL)
4025 if (edir->dyn_relocs != NULL)
4027 struct elf_dyn_relocs **pp;
4028 struct elf_dyn_relocs *p;
4030 /* Add reloc counts against the indirect sym to the direct sym
4031 list. Merge any entries against the same section. */
4032 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4034 struct elf_dyn_relocs *q;
4036 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4037 if (q->sec == p->sec)
4039 q->pc_count += p->pc_count;
4040 q->count += p->count;
4047 *pp = edir->dyn_relocs;
4050 edir->dyn_relocs = eind->dyn_relocs;
4051 eind->dyn_relocs = NULL;
4054 if (ind->root.type == bfd_link_hash_indirect)
4056 /* Copy over PLT info. */
4057 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
4058 eind->plt.thumb_refcount = 0;
4059 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
4060 eind->plt.maybe_thumb_refcount = 0;
4061 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
4062 eind->plt.noncall_refcount = 0;
4064 /* Copy FDPIC counters. */
4065 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt;
4066 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt;
4067 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt;
4069 /* We should only allocate a function to .iplt once the final
4070 symbol information is known. */
4071 BFD_ASSERT (!eind->is_iplt);
4073 if (dir->got.refcount <= 0)
4075 edir->tls_type = eind->tls_type;
4076 eind->tls_type = GOT_UNKNOWN;
4080 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4083 /* Destroy an ARM elf linker hash table. */
4086 elf32_arm_link_hash_table_free (bfd *obfd)
4088 struct elf32_arm_link_hash_table *ret
4089 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
4091 bfd_hash_table_free (&ret->stub_hash_table);
4092 _bfd_elf_link_hash_table_free (obfd);
4095 /* Create an ARM elf linker hash table. */
4097 static struct bfd_link_hash_table *
4098 elf32_arm_link_hash_table_create (bfd *abfd)
4100 struct elf32_arm_link_hash_table *ret;
4101 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
4103 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
4107 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
4108 elf32_arm_link_hash_newfunc,
4109 sizeof (struct elf32_arm_link_hash_entry),
4116 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4117 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
4118 #ifdef FOUR_WORD_PLT
4119 ret->plt_header_size = 16;
4120 ret->plt_entry_size = 16;
4122 ret->plt_header_size = 20;
4123 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
4125 ret->use_rel = TRUE;
4129 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
4130 sizeof (struct elf32_arm_stub_hash_entry)))
4132 _bfd_elf_link_hash_table_free (abfd);
4135 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
4137 return &ret->root.root;
4140 /* Determine what kind of NOPs are available. */
4143 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
4145 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4148 /* Force return logic to be reviewed for each new architecture. */
4149 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4151 return (arch == TAG_CPU_ARCH_V6T2
4152 || arch == TAG_CPU_ARCH_V6K
4153 || arch == TAG_CPU_ARCH_V7
4154 || arch == TAG_CPU_ARCH_V8
4155 || arch == TAG_CPU_ARCH_V8R);
4159 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
4163 case arm_stub_long_branch_thumb_only:
4164 case arm_stub_long_branch_thumb2_only:
4165 case arm_stub_long_branch_thumb2_only_pure:
4166 case arm_stub_long_branch_v4t_thumb_arm:
4167 case arm_stub_short_branch_v4t_thumb_arm:
4168 case arm_stub_long_branch_v4t_thumb_arm_pic:
4169 case arm_stub_long_branch_v4t_thumb_tls_pic:
4170 case arm_stub_long_branch_thumb_only_pic:
4171 case arm_stub_cmse_branch_thumb_only:
4182 /* Determine the type of stub needed, if any, for a call. */
4184 static enum elf32_arm_stub_type
4185 arm_type_of_stub (struct bfd_link_info *info,
4186 asection *input_sec,
4187 const Elf_Internal_Rela *rel,
4188 unsigned char st_type,
4189 enum arm_st_branch_type *actual_branch_type,
4190 struct elf32_arm_link_hash_entry *hash,
4191 bfd_vma destination,
4197 bfd_signed_vma branch_offset;
4198 unsigned int r_type;
4199 struct elf32_arm_link_hash_table * globals;
4200 bfd_boolean thumb2, thumb2_bl, thumb_only;
4201 enum elf32_arm_stub_type stub_type = arm_stub_none;
4203 enum arm_st_branch_type branch_type = *actual_branch_type;
4204 union gotplt_union *root_plt;
4205 struct arm_plt_info *arm_plt;
4209 if (branch_type == ST_BRANCH_LONG)
4212 globals = elf32_arm_hash_table (info);
4213 if (globals == NULL)
4216 thumb_only = using_thumb_only (globals);
4217 thumb2 = using_thumb2 (globals);
4218 thumb2_bl = using_thumb2_bl (globals);
4220 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
4222 /* True for architectures that implement the thumb2 movw instruction. */
4223 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
4225 /* Determine where the call point is. */
4226 location = (input_sec->output_offset
4227 + input_sec->output_section->vma
4230 r_type = ELF32_R_TYPE (rel->r_info);
4232 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4233 are considering a function call relocation. */
4234 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4235 || r_type == R_ARM_THM_JUMP19)
4236 && branch_type == ST_BRANCH_TO_ARM)
4237 branch_type = ST_BRANCH_TO_THUMB;
4239 /* For TLS call relocs, it is the caller's responsibility to provide
4240 the address of the appropriate trampoline. */
4241 if (r_type != R_ARM_TLS_CALL
4242 && r_type != R_ARM_THM_TLS_CALL
4243 && elf32_arm_get_plt_info (input_bfd, globals, hash,
4244 ELF32_R_SYM (rel->r_info), &root_plt,
4246 && root_plt->offset != (bfd_vma) -1)
4250 if (hash == NULL || hash->is_iplt)
4251 splt = globals->root.iplt;
4253 splt = globals->root.splt;
4258 /* Note when dealing with PLT entries: the main PLT stub is in
4259 ARM mode, so if the branch is in Thumb mode, another
4260 Thumb->ARM stub will be inserted later just before the ARM
4261 PLT stub. If a long branch stub is needed, we'll add a
4262 Thumb->Arm one and branch directly to the ARM PLT entry.
4263 Here, we have to check if a pre-PLT Thumb->ARM stub
4264 is needed and if it will be close enough. */
4266 destination = (splt->output_section->vma
4267 + splt->output_offset
4268 + root_plt->offset);
4271 /* Thumb branch/call to PLT: it can become a branch to ARM
4272 or to Thumb. We must perform the same checks and
4273 corrections as in elf32_arm_final_link_relocate. */
4274 if ((r_type == R_ARM_THM_CALL)
4275 || (r_type == R_ARM_THM_JUMP24))
4277 if (globals->use_blx
4278 && r_type == R_ARM_THM_CALL
4281 /* If the Thumb BLX instruction is available, convert
4282 the BL to a BLX instruction to call the ARM-mode
4284 branch_type = ST_BRANCH_TO_ARM;
4289 /* Target the Thumb stub before the ARM PLT entry. */
4290 destination -= PLT_THUMB_STUB_SIZE;
4291 branch_type = ST_BRANCH_TO_THUMB;
4296 branch_type = ST_BRANCH_TO_ARM;
4300 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4301 BFD_ASSERT (st_type != STT_GNU_IFUNC);
4303 branch_offset = (bfd_signed_vma)(destination - location);
4305 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4306 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
4308 /* Handle cases where:
4309 - this call goes too far (different Thumb/Thumb2 max
4311 - it's a Thumb->Arm call and blx is not available, or it's a
4312 Thumb->Arm branch (not bl). A stub is needed in this case,
4313 but only if this call is not through a PLT entry. Indeed,
4314 PLT stubs handle mode switching already. */
4316 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4317 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4319 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4320 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4322 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4323 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4324 && (r_type == R_ARM_THM_JUMP19))
4325 || (branch_type == ST_BRANCH_TO_ARM
4326 && (((r_type == R_ARM_THM_CALL
4327 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
4328 || (r_type == R_ARM_THM_JUMP24)
4329 || (r_type == R_ARM_THM_JUMP19))
4332 /* If we need to insert a Thumb-Thumb long branch stub to a
4333 PLT, use one that branches directly to the ARM PLT
4334 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4335 stub, undo this now. */
4336 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4338 branch_type = ST_BRANCH_TO_ARM;
4339 branch_offset += PLT_THUMB_STUB_SIZE;
4342 if (branch_type == ST_BRANCH_TO_THUMB)
4344 /* Thumb to thumb. */
4347 if (input_sec->flags & SEC_ELF_PURECODE)
4349 (_("%pB(%pA): warning: long branch veneers used in"
4350 " section with SHF_ARM_PURECODE section"
4351 " attribute is only supported for M-profile"
4352 " targets that implement the movw instruction"),
4353 input_bfd, input_sec);
4355 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4357 ? ((globals->use_blx
4358 && (r_type == R_ARM_THM_CALL))
4359 /* V5T and above. Stub starts with ARM code, so
4360 we must be able to switch mode before
4361 reaching it, which is only possible for 'bl'
4362 (ie R_ARM_THM_CALL relocation). */
4363 ? arm_stub_long_branch_any_thumb_pic
4364 /* On V4T, use Thumb code only. */
4365 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4367 /* non-PIC stubs. */
4368 : ((globals->use_blx
4369 && (r_type == R_ARM_THM_CALL))
4370 /* V5T and above. */
4371 ? arm_stub_long_branch_any_any
4373 : arm_stub_long_branch_v4t_thumb_thumb);
4377 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4378 stub_type = arm_stub_long_branch_thumb2_only_pure;
4381 if (input_sec->flags & SEC_ELF_PURECODE)
4383 (_("%pB(%pA): warning: long branch veneers used in"
4384 " section with SHF_ARM_PURECODE section"
4385 " attribute is only supported for M-profile"
4386 " targets that implement the movw instruction"),
4387 input_bfd, input_sec);
4389 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4391 ? arm_stub_long_branch_thumb_only_pic
4393 : (thumb2 ? arm_stub_long_branch_thumb2_only
4394 : arm_stub_long_branch_thumb_only);
4400 if (input_sec->flags & SEC_ELF_PURECODE)
4402 (_("%pB(%pA): warning: long branch veneers used in"
4403 " section with SHF_ARM_PURECODE section"
4404 " attribute is only supported" " for M-profile"
4405 " targets that implement the movw instruction"),
4406 input_bfd, input_sec);
4410 && sym_sec->owner != NULL
4411 && !INTERWORK_FLAG (sym_sec->owner))
4414 (_("%pB(%s): warning: interworking not enabled;"
4415 " first occurrence: %pB: %s call to %s"),
4416 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
4420 (bfd_link_pic (info) | globals->pic_veneer)
4422 ? (r_type == R_ARM_THM_TLS_CALL
4423 /* TLS PIC stubs. */
4424 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4425 : arm_stub_long_branch_v4t_thumb_tls_pic)
4426 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4427 /* V5T PIC and above. */
4428 ? arm_stub_long_branch_any_arm_pic
4430 : arm_stub_long_branch_v4t_thumb_arm_pic))
4432 /* non-PIC stubs. */
4433 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4434 /* V5T and above. */
4435 ? arm_stub_long_branch_any_any
4437 : arm_stub_long_branch_v4t_thumb_arm);
4439 /* Handle v4t short branches. */
4440 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4441 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4442 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4443 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4447 else if (r_type == R_ARM_CALL
4448 || r_type == R_ARM_JUMP24
4449 || r_type == R_ARM_PLT32
4450 || r_type == R_ARM_TLS_CALL)
4452 if (input_sec->flags & SEC_ELF_PURECODE)
4454 (_("%pB(%pA): warning: long branch veneers used in"
4455 " section with SHF_ARM_PURECODE section"
4456 " attribute is only supported for M-profile"
4457 " targets that implement the movw instruction"),
4458 input_bfd, input_sec);
4459 if (branch_type == ST_BRANCH_TO_THUMB)
4464 && sym_sec->owner != NULL
4465 && !INTERWORK_FLAG (sym_sec->owner))
4468 (_("%pB(%s): warning: interworking not enabled;"
4469 " first occurrence: %pB: %s call to %s"),
4470 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
4473 /* We have an extra 2-bytes reach because of
4474 the mode change (bit 24 (H) of BLX encoding). */
4475 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4476 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4477 || (r_type == R_ARM_CALL && !globals->use_blx)
4478 || (r_type == R_ARM_JUMP24)
4479 || (r_type == R_ARM_PLT32))
4481 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4483 ? ((globals->use_blx)
4484 /* V5T and above. */
4485 ? arm_stub_long_branch_any_thumb_pic
4487 : arm_stub_long_branch_v4t_arm_thumb_pic)
4489 /* non-PIC stubs. */
4490 : ((globals->use_blx)
4491 /* V5T and above. */
4492 ? arm_stub_long_branch_any_any
4494 : arm_stub_long_branch_v4t_arm_thumb);
4500 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4501 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4504 (bfd_link_pic (info) | globals->pic_veneer)
4506 ? (r_type == R_ARM_TLS_CALL
4508 ? arm_stub_long_branch_any_tls_pic
4510 ? arm_stub_long_branch_arm_nacl_pic
4511 : arm_stub_long_branch_any_arm_pic))
4512 /* non-PIC stubs. */
4514 ? arm_stub_long_branch_arm_nacl
4515 : arm_stub_long_branch_any_any);
4520 /* If a stub is needed, record the actual destination type. */
4521 if (stub_type != arm_stub_none)
4522 *actual_branch_type = branch_type;
4527 /* Build a name for an entry in the stub hash table. */
4530 elf32_arm_stub_name (const asection *input_section,
4531 const asection *sym_sec,
4532 const struct elf32_arm_link_hash_entry *hash,
4533 const Elf_Internal_Rela *rel,
4534 enum elf32_arm_stub_type stub_type)
4541 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4542 stub_name = (char *) bfd_malloc (len);
4543 if (stub_name != NULL)
4544 sprintf (stub_name, "%08x_%s+%x_%d",
4545 input_section->id & 0xffffffff,
4546 hash->root.root.root.string,
4547 (int) rel->r_addend & 0xffffffff,
4552 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4553 stub_name = (char *) bfd_malloc (len);
4554 if (stub_name != NULL)
4555 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4556 input_section->id & 0xffffffff,
4557 sym_sec->id & 0xffffffff,
4558 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4559 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4560 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4561 (int) rel->r_addend & 0xffffffff,
4568 /* Look up an entry in the stub hash. Stub entries are cached because
4569 creating the stub name takes a bit of time. */
4571 static struct elf32_arm_stub_hash_entry *
4572 elf32_arm_get_stub_entry (const asection *input_section,
4573 const asection *sym_sec,
4574 struct elf_link_hash_entry *hash,
4575 const Elf_Internal_Rela *rel,
4576 struct elf32_arm_link_hash_table *htab,
4577 enum elf32_arm_stub_type stub_type)
4579 struct elf32_arm_stub_hash_entry *stub_entry;
4580 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4581 const asection *id_sec;
4583 if ((input_section->flags & SEC_CODE) == 0)
4586 /* If this input section is part of a group of sections sharing one
4587 stub section, then use the id of the first section in the group.
4588 Stub names need to include a section id, as there may well be
4589 more than one stub used to reach say, printf, and we need to
4590 distinguish between them. */
4591 BFD_ASSERT (input_section->id <= htab->top_id);
4592 id_sec = htab->stub_group[input_section->id].link_sec;
4594 if (h != NULL && h->stub_cache != NULL
4595 && h->stub_cache->h == h
4596 && h->stub_cache->id_sec == id_sec
4597 && h->stub_cache->stub_type == stub_type)
4599 stub_entry = h->stub_cache;
4605 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4606 if (stub_name == NULL)
4609 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4610 stub_name, FALSE, FALSE);
4612 h->stub_cache = stub_entry;
4620 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4624 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4626 if (stub_type >= max_stub_type)
4627 abort (); /* Should be unreachable. */
4631 case arm_stub_cmse_branch_thumb_only:
4638 abort (); /* Should be unreachable. */
4641 /* Required alignment (as a power of 2) for the dedicated section holding
4642 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4643 with input sections. */
4646 arm_dedicated_stub_output_section_required_alignment
4647 (enum elf32_arm_stub_type stub_type)
4649 if (stub_type >= max_stub_type)
4650 abort (); /* Should be unreachable. */
4654 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4656 case arm_stub_cmse_branch_thumb_only:
4660 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4664 abort (); /* Should be unreachable. */
4667 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4668 NULL if veneers of this type are interspersed with input sections. */
4671 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4673 if (stub_type >= max_stub_type)
4674 abort (); /* Should be unreachable. */
4678 case arm_stub_cmse_branch_thumb_only:
4679 return ".gnu.sgstubs";
4682 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4686 abort (); /* Should be unreachable. */
4689 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4690 returns the address of the hash table field in HTAB holding a pointer to the
4691 corresponding input section. Otherwise, returns NULL. */
4694 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4695 enum elf32_arm_stub_type stub_type)
4697 if (stub_type >= max_stub_type)
4698 abort (); /* Should be unreachable. */
4702 case arm_stub_cmse_branch_thumb_only:
4703 return &htab->cmse_stub_sec;
4706 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4710 abort (); /* Should be unreachable. */
4713 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4714 is the section that branch into veneer and can be NULL if stub should go in
4715 a dedicated output section. Returns a pointer to the stub section, and the
4716 section to which the stub section will be attached (in *LINK_SEC_P).
4717 LINK_SEC_P may be NULL. */
4720 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4721 struct elf32_arm_link_hash_table *htab,
4722 enum elf32_arm_stub_type stub_type)
4724 asection *link_sec, *out_sec, **stub_sec_p;
4725 const char *stub_sec_prefix;
4726 bfd_boolean dedicated_output_section =
4727 arm_dedicated_stub_output_section_required (stub_type);
4730 if (dedicated_output_section)
4732 bfd *output_bfd = htab->obfd;
4733 const char *out_sec_name =
4734 arm_dedicated_stub_output_section_name (stub_type);
4736 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4737 stub_sec_prefix = out_sec_name;
4738 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4739 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4740 if (out_sec == NULL)
4742 _bfd_error_handler (_("no address assigned to the veneers output "
4743 "section %s"), out_sec_name);
4749 BFD_ASSERT (section->id <= htab->top_id);
4750 link_sec = htab->stub_group[section->id].link_sec;
4751 BFD_ASSERT (link_sec != NULL);
4752 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4753 if (*stub_sec_p == NULL)
4754 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4755 stub_sec_prefix = link_sec->name;
4756 out_sec = link_sec->output_section;
4757 align = htab->nacl_p ? 4 : 3;
4760 if (*stub_sec_p == NULL)
4766 namelen = strlen (stub_sec_prefix);
4767 len = namelen + sizeof (STUB_SUFFIX);
4768 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4772 memcpy (s_name, stub_sec_prefix, namelen);
4773 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4774 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4776 if (*stub_sec_p == NULL)
4779 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4780 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4784 if (!dedicated_output_section)
4785 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4788 *link_sec_p = link_sec;
4793 /* Add a new stub entry to the stub hash. Not all fields of the new
4794 stub entry are initialised. */
4796 static struct elf32_arm_stub_hash_entry *
4797 elf32_arm_add_stub (const char *stub_name, asection *section,
4798 struct elf32_arm_link_hash_table *htab,
4799 enum elf32_arm_stub_type stub_type)
4803 struct elf32_arm_stub_hash_entry *stub_entry;
4805 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4807 if (stub_sec == NULL)
4810 /* Enter this entry into the linker stub hash table. */
4811 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4813 if (stub_entry == NULL)
4815 if (section == NULL)
4817 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4818 section->owner, stub_name);
4822 stub_entry->stub_sec = stub_sec;
4823 stub_entry->stub_offset = (bfd_vma) -1;
4824 stub_entry->id_sec = link_sec;
4829 /* Store an Arm insn into an output section not processed by
4830 elf32_arm_write_section. */
4833 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4834 bfd * output_bfd, bfd_vma val, void * ptr)
4836 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4837 bfd_putl32 (val, ptr);
4839 bfd_putb32 (val, ptr);
4842 /* Store a 16-bit Thumb insn into an output section not processed by
4843 elf32_arm_write_section. */
4846 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4847 bfd * output_bfd, bfd_vma val, void * ptr)
4849 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4850 bfd_putl16 (val, ptr);
4852 bfd_putb16 (val, ptr);
4855 /* Store a Thumb2 insn into an output section not processed by
4856 elf32_arm_write_section. */
4859 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4860 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4862 /* T2 instructions are 16-bit streamed. */
4863 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4865 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4866 bfd_putl16 ((val & 0xffff), ptr + 2);
4870 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4871 bfd_putb16 ((val & 0xffff), ptr + 2);
4875 /* If it's possible to change R_TYPE to a more efficient access
4876 model, return the new reloc type. */
4879 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4880 struct elf_link_hash_entry *h)
4882 int is_local = (h == NULL);
4884 if (bfd_link_pic (info)
4885 || (h && h->root.type == bfd_link_hash_undefweak))
4888 /* We do not support relaxations for Old TLS models. */
4891 case R_ARM_TLS_GOTDESC:
4892 case R_ARM_TLS_CALL:
4893 case R_ARM_THM_TLS_CALL:
4894 case R_ARM_TLS_DESCSEQ:
4895 case R_ARM_THM_TLS_DESCSEQ:
4896 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4902 static bfd_reloc_status_type elf32_arm_final_link_relocate
4903 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4904 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4905 const char *, unsigned char, enum arm_st_branch_type,
4906 struct elf_link_hash_entry *, bfd_boolean *, char **);
4909 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4913 case arm_stub_a8_veneer_b_cond:
4914 case arm_stub_a8_veneer_b:
4915 case arm_stub_a8_veneer_bl:
4918 case arm_stub_long_branch_any_any:
4919 case arm_stub_long_branch_v4t_arm_thumb:
4920 case arm_stub_long_branch_thumb_only:
4921 case arm_stub_long_branch_thumb2_only:
4922 case arm_stub_long_branch_thumb2_only_pure:
4923 case arm_stub_long_branch_v4t_thumb_thumb:
4924 case arm_stub_long_branch_v4t_thumb_arm:
4925 case arm_stub_short_branch_v4t_thumb_arm:
4926 case arm_stub_long_branch_any_arm_pic:
4927 case arm_stub_long_branch_any_thumb_pic:
4928 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4929 case arm_stub_long_branch_v4t_arm_thumb_pic:
4930 case arm_stub_long_branch_v4t_thumb_arm_pic:
4931 case arm_stub_long_branch_thumb_only_pic:
4932 case arm_stub_long_branch_any_tls_pic:
4933 case arm_stub_long_branch_v4t_thumb_tls_pic:
4934 case arm_stub_cmse_branch_thumb_only:
4935 case arm_stub_a8_veneer_blx:
4938 case arm_stub_long_branch_arm_nacl:
4939 case arm_stub_long_branch_arm_nacl_pic:
4943 abort (); /* Should be unreachable. */
4947 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4948 veneering (TRUE) or have their own symbol (FALSE). */
4951 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4953 if (stub_type >= max_stub_type)
4954 abort (); /* Should be unreachable. */
4958 case arm_stub_cmse_branch_thumb_only:
4965 abort (); /* Should be unreachable. */
4968 /* Returns the padding needed for the dedicated section used stubs of type
4972 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4974 if (stub_type >= max_stub_type)
4975 abort (); /* Should be unreachable. */
4979 case arm_stub_cmse_branch_thumb_only:
4986 abort (); /* Should be unreachable. */
4989 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4990 returns the address of the hash table field in HTAB holding the offset at
4991 which new veneers should be layed out in the stub section. */
4994 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4995 enum elf32_arm_stub_type stub_type)
4999 case arm_stub_cmse_branch_thumb_only:
5000 return &htab->new_cmse_stub_offset;
5003 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
5009 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
5013 bfd_boolean removed_sg_veneer;
5014 struct elf32_arm_stub_hash_entry *stub_entry;
5015 struct elf32_arm_link_hash_table *globals;
5016 struct bfd_link_info *info;
5023 const insn_sequence *template_sequence;
5025 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
5026 int stub_reloc_offset[MAXRELOCS] = {0, 0};
5028 int just_allocated = 0;
5030 /* Massage our args to the form they really have. */
5031 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5032 info = (struct bfd_link_info *) in_arg;
5034 globals = elf32_arm_hash_table (info);
5035 if (globals == NULL)
5038 stub_sec = stub_entry->stub_sec;
5040 if ((globals->fix_cortex_a8 < 0)
5041 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
5042 /* We have to do less-strictly-aligned fixes last. */
5045 /* Assign a slot at the end of section if none assigned yet. */
5046 if (stub_entry->stub_offset == (bfd_vma) -1)
5048 stub_entry->stub_offset = stub_sec->size;
5051 loc = stub_sec->contents + stub_entry->stub_offset;
5053 stub_bfd = stub_sec->owner;
5055 /* This is the address of the stub destination. */
5056 sym_value = (stub_entry->target_value
5057 + stub_entry->target_section->output_offset
5058 + stub_entry->target_section->output_section->vma);
5060 template_sequence = stub_entry->stub_template;
5061 template_size = stub_entry->stub_template_size;
5064 for (i = 0; i < template_size; i++)
5066 switch (template_sequence[i].type)
5070 bfd_vma data = (bfd_vma) template_sequence[i].data;
5071 if (template_sequence[i].reloc_addend != 0)
5073 /* We've borrowed the reloc_addend field to mean we should
5074 insert a condition code into this (Thumb-1 branch)
5075 instruction. See THUMB16_BCOND_INSN. */
5076 BFD_ASSERT ((data & 0xff00) == 0xd000);
5077 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
5079 bfd_put_16 (stub_bfd, data, loc + size);
5085 bfd_put_16 (stub_bfd,
5086 (template_sequence[i].data >> 16) & 0xffff,
5088 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
5090 if (template_sequence[i].r_type != R_ARM_NONE)
5092 stub_reloc_idx[nrelocs] = i;
5093 stub_reloc_offset[nrelocs++] = size;
5099 bfd_put_32 (stub_bfd, template_sequence[i].data,
5101 /* Handle cases where the target is encoded within the
5103 if (template_sequence[i].r_type == R_ARM_JUMP24)
5105 stub_reloc_idx[nrelocs] = i;
5106 stub_reloc_offset[nrelocs++] = size;
5112 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
5113 stub_reloc_idx[nrelocs] = i;
5114 stub_reloc_offset[nrelocs++] = size;
5125 stub_sec->size += size;
5127 /* Stub size has already been computed in arm_size_one_stub. Check
5129 BFD_ASSERT (size == stub_entry->stub_size);
5131 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
5132 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
5135 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5136 to relocate in each stub. */
5138 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5139 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
5141 for (i = 0; i < nrelocs; i++)
5143 Elf_Internal_Rela rel;
5144 bfd_boolean unresolved_reloc;
5145 char *error_message;
5147 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
5149 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
5150 rel.r_info = ELF32_R_INFO (0,
5151 template_sequence[stub_reloc_idx[i]].r_type);
5154 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
5155 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5156 template should refer back to the instruction after the original
5157 branch. We use target_section as Cortex-A8 erratum workaround stubs
5158 are only generated when both source and target are in the same
5160 points_to = stub_entry->target_section->output_section->vma
5161 + stub_entry->target_section->output_offset
5162 + stub_entry->source_value;
5164 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5165 (template_sequence[stub_reloc_idx[i]].r_type),
5166 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
5167 points_to, info, stub_entry->target_section, "", STT_FUNC,
5168 stub_entry->branch_type,
5169 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
5177 /* Calculate the template, template size and instruction size for a stub.
5178 Return value is the instruction size. */
5181 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
5182 const insn_sequence **stub_template,
5183 int *stub_template_size)
5185 const insn_sequence *template_sequence = NULL;
5186 int template_size = 0, i;
5189 template_sequence = stub_definitions[stub_type].template_sequence;
5191 *stub_template = template_sequence;
5193 template_size = stub_definitions[stub_type].template_size;
5194 if (stub_template_size)
5195 *stub_template_size = template_size;
5198 for (i = 0; i < template_size; i++)
5200 switch (template_sequence[i].type)
5221 /* As above, but don't actually build the stub. Just bump offset so
5222 we know stub section sizes. */
5225 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
5226 void *in_arg ATTRIBUTE_UNUSED)
5228 struct elf32_arm_stub_hash_entry *stub_entry;
5229 const insn_sequence *template_sequence;
5230 int template_size, size;
5232 /* Massage our args to the form they really have. */
5233 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5235 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
5236 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
5238 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
5241 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5242 if (stub_entry->stub_template_size)
5244 stub_entry->stub_size = size;
5245 stub_entry->stub_template = template_sequence;
5246 stub_entry->stub_template_size = template_size;
5249 /* Already accounted for. */
5250 if (stub_entry->stub_offset != (bfd_vma) -1)
5253 size = (size + 7) & ~7;
5254 stub_entry->stub_sec->size += size;
5259 /* External entry points for sizing and building linker stubs. */
5261 /* Set up various things so that we can make a list of input sections
5262 for each output section included in the link. Returns -1 on error,
5263 0 when no stubs will be needed, and 1 on success. */
5266 elf32_arm_setup_section_lists (bfd *output_bfd,
5267 struct bfd_link_info *info)
5270 unsigned int bfd_count;
5271 unsigned int top_id, top_index;
5273 asection **input_list, **list;
5275 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5279 if (! is_elf_hash_table (htab))
5282 /* Count the number of input BFDs and find the top input section id. */
5283 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
5285 input_bfd = input_bfd->link.next)
5288 for (section = input_bfd->sections;
5290 section = section->next)
5292 if (top_id < section->id)
5293 top_id = section->id;
5296 htab->bfd_count = bfd_count;
5298 amt = sizeof (struct map_stub) * (top_id + 1);
5299 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
5300 if (htab->stub_group == NULL)
5302 htab->top_id = top_id;
5304 /* We can't use output_bfd->section_count here to find the top output
5305 section index as some sections may have been removed, and
5306 _bfd_strip_section_from_output doesn't renumber the indices. */
5307 for (section = output_bfd->sections, top_index = 0;
5309 section = section->next)
5311 if (top_index < section->index)
5312 top_index = section->index;
5315 htab->top_index = top_index;
5316 amt = sizeof (asection *) * (top_index + 1);
5317 input_list = (asection **) bfd_malloc (amt);
5318 htab->input_list = input_list;
5319 if (input_list == NULL)
5322 /* For sections we aren't interested in, mark their entries with a
5323 value we can check later. */
5324 list = input_list + top_index;
5326 *list = bfd_abs_section_ptr;
5327 while (list-- != input_list);
5329 for (section = output_bfd->sections;
5331 section = section->next)
5333 if ((section->flags & SEC_CODE) != 0)
5334 input_list[section->index] = NULL;
5340 /* The linker repeatedly calls this function for each input section,
5341 in the order that input sections are linked into output sections.
5342 Build lists of input sections to determine groupings between which
5343 we may insert linker stubs. */
5346 elf32_arm_next_input_section (struct bfd_link_info *info,
5349 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5354 if (isec->output_section->index <= htab->top_index)
5356 asection **list = htab->input_list + isec->output_section->index;
5358 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5360 /* Steal the link_sec pointer for our list. */
5361 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5362 /* This happens to make the list in reverse order,
5363 which we reverse later. */
5364 PREV_SEC (isec) = *list;
5370 /* See whether we can group stub sections together. Grouping stub
5371 sections may result in fewer stubs. More importantly, we need to
5372 put all .init* and .fini* stubs at the end of the .init or
5373 .fini output sections respectively, because glibc splits the
5374 _init and _fini functions into multiple parts. Putting a stub in
5375 the middle of a function is not a good idea. */
5378 group_sections (struct elf32_arm_link_hash_table *htab,
5379 bfd_size_type stub_group_size,
5380 bfd_boolean stubs_always_after_branch)
5382 asection **list = htab->input_list;
5386 asection *tail = *list;
5389 if (tail == bfd_abs_section_ptr)
5392 /* Reverse the list: we must avoid placing stubs at the
5393 beginning of the section because the beginning of the text
5394 section may be required for an interrupt vector in bare metal
5396 #define NEXT_SEC PREV_SEC
5398 while (tail != NULL)
5400 /* Pop from tail. */
5401 asection *item = tail;
5402 tail = PREV_SEC (item);
5405 NEXT_SEC (item) = head;
5409 while (head != NULL)
5413 bfd_vma stub_group_start = head->output_offset;
5414 bfd_vma end_of_next;
5417 while (NEXT_SEC (curr) != NULL)
5419 next = NEXT_SEC (curr);
5420 end_of_next = next->output_offset + next->size;
5421 if (end_of_next - stub_group_start >= stub_group_size)
5422 /* End of NEXT is too far from start, so stop. */
5424 /* Add NEXT to the group. */
5428 /* OK, the size from the start to the start of CURR is less
5429 than stub_group_size and thus can be handled by one stub
5430 section. (Or the head section is itself larger than
5431 stub_group_size, in which case we may be toast.)
5432 We should really be keeping track of the total size of
5433 stubs added here, as stubs contribute to the final output
5437 next = NEXT_SEC (head);
5438 /* Set up this stub group. */
5439 htab->stub_group[head->id].link_sec = curr;
5441 while (head != curr && (head = next) != NULL);
5443 /* But wait, there's more! Input sections up to stub_group_size
5444 bytes after the stub section can be handled by it too. */
5445 if (!stubs_always_after_branch)
5447 stub_group_start = curr->output_offset + curr->size;
5449 while (next != NULL)
5451 end_of_next = next->output_offset + next->size;
5452 if (end_of_next - stub_group_start >= stub_group_size)
5453 /* End of NEXT is too far from stubs, so stop. */
5455 /* Add NEXT to the stub group. */
5457 next = NEXT_SEC (head);
5458 htab->stub_group[head->id].link_sec = curr;
5464 while (list++ != htab->input_list + htab->top_index);
5466 free (htab->input_list);
5471 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5475 a8_reloc_compare (const void *a, const void *b)
5477 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5478 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5480 if (ra->from < rb->from)
5482 else if (ra->from > rb->from)
5488 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5489 const char *, char **);
5491 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5492 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5493 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5497 cortex_a8_erratum_scan (bfd *input_bfd,
5498 struct bfd_link_info *info,
5499 struct a8_erratum_fix **a8_fixes_p,
5500 unsigned int *num_a8_fixes_p,
5501 unsigned int *a8_fix_table_size_p,
5502 struct a8_erratum_reloc *a8_relocs,
5503 unsigned int num_a8_relocs,
5504 unsigned prev_num_a8_fixes,
5505 bfd_boolean *stub_changed_p)
5508 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5509 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5510 unsigned int num_a8_fixes = *num_a8_fixes_p;
5511 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5516 for (section = input_bfd->sections;
5518 section = section->next)
5520 bfd_byte *contents = NULL;
5521 struct _arm_elf_section_data *sec_data;
5525 if (elf_section_type (section) != SHT_PROGBITS
5526 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5527 || (section->flags & SEC_EXCLUDE) != 0
5528 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5529 || (section->output_section == bfd_abs_section_ptr))
5532 base_vma = section->output_section->vma + section->output_offset;
5534 if (elf_section_data (section)->this_hdr.contents != NULL)
5535 contents = elf_section_data (section)->this_hdr.contents;
5536 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5539 sec_data = elf32_arm_section_data (section);
5541 for (span = 0; span < sec_data->mapcount; span++)
5543 unsigned int span_start = sec_data->map[span].vma;
5544 unsigned int span_end = (span == sec_data->mapcount - 1)
5545 ? section->size : sec_data->map[span + 1].vma;
5547 char span_type = sec_data->map[span].type;
5548 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5550 if (span_type != 't')
5553 /* Span is entirely within a single 4KB region: skip scanning. */
5554 if (((base_vma + span_start) & ~0xfff)
5555 == ((base_vma + span_end) & ~0xfff))
5558 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5560 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5561 * The branch target is in the same 4KB region as the
5562 first half of the branch.
5563 * The instruction before the branch is a 32-bit
5564 length non-branch instruction. */
5565 for (i = span_start; i < span_end;)
5567 unsigned int insn = bfd_getl16 (&contents[i]);
5568 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5569 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5571 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5576 /* Load the rest of the insn (in manual-friendly order). */
5577 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5579 /* Encoding T4: B<c>.W. */
5580 is_b = (insn & 0xf800d000) == 0xf0009000;
5581 /* Encoding T1: BL<c>.W. */
5582 is_bl = (insn & 0xf800d000) == 0xf000d000;
5583 /* Encoding T2: BLX<c>.W. */
5584 is_blx = (insn & 0xf800d000) == 0xf000c000;
5585 /* Encoding T3: B<c>.W (not permitted in IT block). */
5586 is_bcc = (insn & 0xf800d000) == 0xf0008000
5587 && (insn & 0x07f00000) != 0x03800000;
5590 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5592 if (((base_vma + i) & 0xfff) == 0xffe
5596 && ! last_was_branch)
5598 bfd_signed_vma offset = 0;
5599 bfd_boolean force_target_arm = FALSE;
5600 bfd_boolean force_target_thumb = FALSE;
5602 enum elf32_arm_stub_type stub_type = arm_stub_none;
5603 struct a8_erratum_reloc key, *found;
5604 bfd_boolean use_plt = FALSE;
5606 key.from = base_vma + i;
5607 found = (struct a8_erratum_reloc *)
5608 bsearch (&key, a8_relocs, num_a8_relocs,
5609 sizeof (struct a8_erratum_reloc),
5614 char *error_message = NULL;
5615 struct elf_link_hash_entry *entry;
5617 /* We don't care about the error returned from this
5618 function, only if there is glue or not. */
5619 entry = find_thumb_glue (info, found->sym_name,
5623 found->non_a8_stub = TRUE;
5625 /* Keep a simpler condition, for the sake of clarity. */
5626 if (htab->root.splt != NULL && found->hash != NULL
5627 && found->hash->root.plt.offset != (bfd_vma) -1)
5630 if (found->r_type == R_ARM_THM_CALL)
5632 if (found->branch_type == ST_BRANCH_TO_ARM
5634 force_target_arm = TRUE;
5636 force_target_thumb = TRUE;
5640 /* Check if we have an offending branch instruction. */
5642 if (found && found->non_a8_stub)
5643 /* We've already made a stub for this instruction, e.g.
5644 it's a long branch or a Thumb->ARM stub. Assume that
5645 stub will suffice to work around the A8 erratum (see
5646 setting of always_after_branch above). */
5650 offset = (insn & 0x7ff) << 1;
5651 offset |= (insn & 0x3f0000) >> 4;
5652 offset |= (insn & 0x2000) ? 0x40000 : 0;
5653 offset |= (insn & 0x800) ? 0x80000 : 0;
5654 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5655 if (offset & 0x100000)
5656 offset |= ~ ((bfd_signed_vma) 0xfffff);
5657 stub_type = arm_stub_a8_veneer_b_cond;
5659 else if (is_b || is_bl || is_blx)
5661 int s = (insn & 0x4000000) != 0;
5662 int j1 = (insn & 0x2000) != 0;
5663 int j2 = (insn & 0x800) != 0;
5667 offset = (insn & 0x7ff) << 1;
5668 offset |= (insn & 0x3ff0000) >> 4;
5672 if (offset & 0x1000000)
5673 offset |= ~ ((bfd_signed_vma) 0xffffff);
5676 offset &= ~ ((bfd_signed_vma) 3);
5678 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5679 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5682 if (stub_type != arm_stub_none)
5684 bfd_vma pc_for_insn = base_vma + i + 4;
5686 /* The original instruction is a BL, but the target is
5687 an ARM instruction. If we were not making a stub,
5688 the BL would have been converted to a BLX. Use the
5689 BLX stub instead in that case. */
5690 if (htab->use_blx && force_target_arm
5691 && stub_type == arm_stub_a8_veneer_bl)
5693 stub_type = arm_stub_a8_veneer_blx;
5697 /* Conversely, if the original instruction was
5698 BLX but the target is Thumb mode, use the BL
5700 else if (force_target_thumb
5701 && stub_type == arm_stub_a8_veneer_blx)
5703 stub_type = arm_stub_a8_veneer_bl;
5709 pc_for_insn &= ~ ((bfd_vma) 3);
5711 /* If we found a relocation, use the proper destination,
5712 not the offset in the (unrelocated) instruction.
5713 Note this is always done if we switched the stub type
5717 (bfd_signed_vma) (found->destination - pc_for_insn);
5719 /* If the stub will use a Thumb-mode branch to a
5720 PLT target, redirect it to the preceding Thumb
5722 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5723 offset -= PLT_THUMB_STUB_SIZE;
5725 target = pc_for_insn + offset;
5727 /* The BLX stub is ARM-mode code. Adjust the offset to
5728 take the different PC value (+8 instead of +4) into
5730 if (stub_type == arm_stub_a8_veneer_blx)
5733 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5735 char *stub_name = NULL;
5737 if (num_a8_fixes == a8_fix_table_size)
5739 a8_fix_table_size *= 2;
5740 a8_fixes = (struct a8_erratum_fix *)
5741 bfd_realloc (a8_fixes,
5742 sizeof (struct a8_erratum_fix)
5743 * a8_fix_table_size);
5746 if (num_a8_fixes < prev_num_a8_fixes)
5748 /* If we're doing a subsequent scan,
5749 check if we've found the same fix as
5750 before, and try and reuse the stub
5752 stub_name = a8_fixes[num_a8_fixes].stub_name;
5753 if ((a8_fixes[num_a8_fixes].section != section)
5754 || (a8_fixes[num_a8_fixes].offset != i))
5758 *stub_changed_p = TRUE;
5764 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5765 if (stub_name != NULL)
5766 sprintf (stub_name, "%x:%x", section->id, i);
5769 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5770 a8_fixes[num_a8_fixes].section = section;
5771 a8_fixes[num_a8_fixes].offset = i;
5772 a8_fixes[num_a8_fixes].target_offset =
5774 a8_fixes[num_a8_fixes].orig_insn = insn;
5775 a8_fixes[num_a8_fixes].stub_name = stub_name;
5776 a8_fixes[num_a8_fixes].stub_type = stub_type;
5777 a8_fixes[num_a8_fixes].branch_type =
5778 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5785 i += insn_32bit ? 4 : 2;
5786 last_was_32bit = insn_32bit;
5787 last_was_branch = is_32bit_branch;
5791 if (elf_section_data (section)->this_hdr.contents == NULL)
5795 *a8_fixes_p = a8_fixes;
5796 *num_a8_fixes_p = num_a8_fixes;
5797 *a8_fix_table_size_p = a8_fix_table_size;
5802 /* Create or update a stub entry depending on whether the stub can already be
5803 found in HTAB. The stub is identified by:
5804 - its type STUB_TYPE
5805 - its source branch (note that several can share the same stub) whose
5806 section and relocation (if any) are given by SECTION and IRELA
5808 - its target symbol whose input section, hash, name, value and branch type
5809 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5812 If found, the value of the stub's target symbol is updated from SYM_VALUE
5813 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5814 TRUE and the stub entry is initialized.
5816 Returns the stub that was created or updated, or NULL if an error
5819 static struct elf32_arm_stub_hash_entry *
5820 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5821 enum elf32_arm_stub_type stub_type, asection *section,
5822 Elf_Internal_Rela *irela, asection *sym_sec,
5823 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5824 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5825 bfd_boolean *new_stub)
5827 const asection *id_sec;
5829 struct elf32_arm_stub_hash_entry *stub_entry;
5830 unsigned int r_type;
5831 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5833 BFD_ASSERT (stub_type != arm_stub_none);
5837 stub_name = sym_name;
5841 BFD_ASSERT (section);
5842 BFD_ASSERT (section->id <= htab->top_id);
5844 /* Support for grouping stub sections. */
5845 id_sec = htab->stub_group[section->id].link_sec;
5847 /* Get the name of this stub. */
5848 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5854 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5856 /* The proper stub has already been created, just update its value. */
5857 if (stub_entry != NULL)
5861 stub_entry->target_value = sym_value;
5865 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5866 if (stub_entry == NULL)
5873 stub_entry->target_value = sym_value;
5874 stub_entry->target_section = sym_sec;
5875 stub_entry->stub_type = stub_type;
5876 stub_entry->h = hash;
5877 stub_entry->branch_type = branch_type;
5880 stub_entry->output_name = sym_name;
5883 if (sym_name == NULL)
5884 sym_name = "unnamed";
5885 stub_entry->output_name = (char *)
5886 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5887 + strlen (sym_name));
5888 if (stub_entry->output_name == NULL)
5894 /* For historical reasons, use the existing names for ARM-to-Thumb and
5895 Thumb-to-ARM stubs. */
5896 r_type = ELF32_R_TYPE (irela->r_info);
5897 if ((r_type == (unsigned int) R_ARM_THM_CALL
5898 || r_type == (unsigned int) R_ARM_THM_JUMP24
5899 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5900 && branch_type == ST_BRANCH_TO_ARM)
5901 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5902 else if ((r_type == (unsigned int) R_ARM_CALL
5903 || r_type == (unsigned int) R_ARM_JUMP24)
5904 && branch_type == ST_BRANCH_TO_THUMB)
5905 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5907 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5914 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5915 gateway veneer to transition from non secure to secure state and create them
5918 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5919 defines the conditions that govern Secure Gateway veneer creation for a
5920 given symbol <SYM> as follows:
5921 - it has function type
5922 - it has non local binding
5923 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5924 same type, binding and value as <SYM> (called normal symbol).
5925 An entry function can handle secure state transition itself in which case
5926 its special symbol would have a different value from the normal symbol.
5928 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5929 entry mapping while HTAB gives the name to hash entry mapping.
5930 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5933 The return value gives whether a stub failed to be allocated. */
5936 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5937 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5938 int *cmse_stub_created)
5940 const struct elf_backend_data *bed;
5941 Elf_Internal_Shdr *symtab_hdr;
5942 unsigned i, j, sym_count, ext_start;
5943 Elf_Internal_Sym *cmse_sym, *local_syms;
5944 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5945 enum arm_st_branch_type branch_type;
5946 char *sym_name, *lsym_name;
5949 struct elf32_arm_stub_hash_entry *stub_entry;
5950 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5952 bed = get_elf_backend_data (input_bfd);
5953 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5954 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5955 ext_start = symtab_hdr->sh_info;
5956 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5957 && out_attr[Tag_CPU_arch_profile].i == 'M');
5959 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5960 if (local_syms == NULL)
5961 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5962 symtab_hdr->sh_info, 0, NULL, NULL,
5964 if (symtab_hdr->sh_info && local_syms == NULL)
5968 for (i = 0; i < sym_count; i++)
5970 cmse_invalid = FALSE;
5974 cmse_sym = &local_syms[i];
5975 /* Not a special symbol. */
5976 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
5978 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5979 symtab_hdr->sh_link,
5981 /* Special symbol with local binding. */
5982 cmse_invalid = TRUE;
5986 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5987 sym_name = (char *) cmse_hash->root.root.root.string;
5989 /* Not a special symbol. */
5990 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
5993 /* Special symbol has incorrect binding or type. */
5994 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5995 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5996 || cmse_hash->root.type != STT_FUNC)
5997 cmse_invalid = TRUE;
6002 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
6003 "ARMv8-M architecture or later"),
6004 input_bfd, sym_name);
6005 is_v8m = TRUE; /* Avoid multiple warning. */
6011 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
6012 " a global or weak function symbol"),
6013 input_bfd, sym_name);
6019 sym_name += strlen (CMSE_PREFIX);
6020 hash = (struct elf32_arm_link_hash_entry *)
6021 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6023 /* No associated normal symbol or it is neither global nor weak. */
6025 || (hash->root.root.type != bfd_link_hash_defined
6026 && hash->root.root.type != bfd_link_hash_defweak)
6027 || hash->root.type != STT_FUNC)
6029 /* Initialize here to avoid warning about use of possibly
6030 uninitialized variable. */
6035 /* Searching for a normal symbol with local binding. */
6036 for (; j < ext_start; j++)
6039 bfd_elf_string_from_elf_section (input_bfd,
6040 symtab_hdr->sh_link,
6041 local_syms[j].st_name);
6042 if (!strcmp (sym_name, lsym_name))
6047 if (hash || j < ext_start)
6050 (_("%pB: invalid standard symbol `%s'; it must be "
6051 "a global or weak function symbol"),
6052 input_bfd, sym_name);
6056 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name);
6062 sym_value = hash->root.root.u.def.value;
6063 section = hash->root.root.u.def.section;
6065 if (cmse_hash->root.root.u.def.section != section)
6068 (_("%pB: `%s' and its special symbol are in different sections"),
6069 input_bfd, sym_name);
6072 if (cmse_hash->root.root.u.def.value != sym_value)
6073 continue; /* Ignore: could be an entry function starting with SG. */
6075 /* If this section is a link-once section that will be discarded, then
6076 don't create any stubs. */
6077 if (section->output_section == NULL)
6080 (_("%pB: entry function `%s' not output"), input_bfd, sym_name);
6084 if (hash->root.size == 0)
6087 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name);
6093 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6095 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6096 NULL, NULL, section, hash, sym_name,
6097 sym_value, branch_type, &new_stub);
6099 if (stub_entry == NULL)
6103 BFD_ASSERT (new_stub);
6104 (*cmse_stub_created)++;
6108 if (!symtab_hdr->contents)
6113 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6114 code entry function, ie can be called from non secure code without using a
6118 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
6120 bfd_byte contents[4];
6121 uint32_t first_insn;
6126 /* Defined symbol of function type. */
6127 if (hash->root.root.type != bfd_link_hash_defined
6128 && hash->root.root.type != bfd_link_hash_defweak)
6130 if (hash->root.type != STT_FUNC)
6133 /* Read first instruction. */
6134 section = hash->root.root.u.def.section;
6135 abfd = section->owner;
6136 offset = hash->root.root.u.def.value - section->vma;
6137 if (!bfd_get_section_contents (abfd, section, contents, offset,
6141 first_insn = bfd_get_32 (abfd, contents);
6143 /* Starts by SG instruction. */
6144 return first_insn == 0xe97fe97f;
6147 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6148 secure gateway veneers (ie. the veneers was not in the input import library)
6149 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6152 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
6154 struct elf32_arm_stub_hash_entry *stub_entry;
6155 struct bfd_link_info *info;
6157 /* Massage our args to the form they really have. */
6158 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
6159 info = (struct bfd_link_info *) gen_info;
6161 if (info->out_implib_bfd)
6164 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
6167 if (stub_entry->stub_offset == (bfd_vma) -1)
6168 _bfd_error_handler (" %s", stub_entry->output_name);
6173 /* Set offset of each secure gateway veneers so that its address remain
6174 identical to the one in the input import library referred by
6175 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6176 (present in input import library but absent from the executable being
6177 linked) or if new veneers appeared and there is no output import library
6178 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6179 number of secure gateway veneers found in the input import library.
6181 The function returns whether an error occurred. If no error occurred,
6182 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6183 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6184 veneer observed set for new veneers to be layed out after. */
6187 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
6188 struct elf32_arm_link_hash_table *htab,
6189 int *cmse_stub_created)
6196 asection *stub_out_sec;
6197 bfd_boolean ret = TRUE;
6198 Elf_Internal_Sym *intsym;
6199 const char *out_sec_name;
6200 bfd_size_type cmse_stub_size;
6201 asymbol **sympp = NULL, *sym;
6202 struct elf32_arm_link_hash_entry *hash;
6203 const insn_sequence *cmse_stub_template;
6204 struct elf32_arm_stub_hash_entry *stub_entry;
6205 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
6206 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
6207 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
6209 /* No input secure gateway import library. */
6210 if (!htab->in_implib_bfd)
6213 in_implib_bfd = htab->in_implib_bfd;
6214 if (!htab->cmse_implib)
6216 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
6217 "Gateway import libraries"), in_implib_bfd);
6221 /* Get symbol table size. */
6222 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
6226 /* Read in the input secure gateway import library's symbol table. */
6227 sympp = (asymbol **) xmalloc (symsize);
6228 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
6235 htab->new_cmse_stub_offset = 0;
6237 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
6238 &cmse_stub_template,
6239 &cmse_stub_template_size);
6241 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
6243 bfd_get_section_by_name (htab->obfd, out_sec_name);
6244 if (stub_out_sec != NULL)
6245 cmse_stub_sec_vma = stub_out_sec->vma;
6247 /* Set addresses of veneers mentionned in input secure gateway import
6248 library's symbol table. */
6249 for (i = 0; i < symcount; i++)
6253 sym_name = (char *) bfd_asymbol_name (sym);
6254 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
6256 if (sym->section != bfd_abs_section_ptr
6257 || !(flags & (BSF_GLOBAL | BSF_WEAK))
6258 || (flags & BSF_FUNCTION) != BSF_FUNCTION
6259 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
6260 != ST_BRANCH_TO_THUMB))
6262 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6263 "symbol should be absolute, global and "
6264 "refer to Thumb functions"),
6265 in_implib_bfd, sym_name);
6270 veneer_value = bfd_asymbol_value (sym);
6271 stub_offset = veneer_value - cmse_stub_sec_vma;
6272 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
6274 hash = (struct elf32_arm_link_hash_entry *)
6275 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6277 /* Stub entry should have been created by cmse_scan or the symbol be of
6278 a secure function callable from non secure code. */
6279 if (!stub_entry && !hash)
6281 bfd_boolean new_stub;
6284 (_("entry function `%s' disappeared from secure code"), sym_name);
6285 hash = (struct elf32_arm_link_hash_entry *)
6286 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
6288 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6289 NULL, NULL, bfd_abs_section_ptr, hash,
6290 sym_name, veneer_value,
6291 ST_BRANCH_TO_THUMB, &new_stub);
6292 if (stub_entry == NULL)
6296 BFD_ASSERT (new_stub);
6297 new_cmse_stubs_created++;
6298 (*cmse_stub_created)++;
6300 stub_entry->stub_template_size = stub_entry->stub_size = 0;
6301 stub_entry->stub_offset = stub_offset;
6303 /* Symbol found is not callable from non secure code. */
6304 else if (!stub_entry)
6306 if (!cmse_entry_fct_p (hash))
6308 _bfd_error_handler (_("`%s' refers to a non entry function"),
6316 /* Only stubs for SG veneers should have been created. */
6317 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6319 /* Check visibility hasn't changed. */
6320 if (!!(flags & BSF_GLOBAL)
6321 != (hash->root.root.type == bfd_link_hash_defined))
6323 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd,
6326 stub_entry->stub_offset = stub_offset;
6329 /* Size should match that of a SG veneer. */
6330 if (intsym->st_size != cmse_stub_size)
6332 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
6333 in_implib_bfd, sym_name);
6337 /* Previous veneer address is before current SG veneer section. */
6338 if (veneer_value < cmse_stub_sec_vma)
6340 /* Avoid offset underflow. */
6342 stub_entry->stub_offset = 0;
6347 /* Complain if stub offset not a multiple of stub size. */
6348 if (stub_offset % cmse_stub_size)
6351 (_("offset of veneer for entry function `%s' not a multiple of "
6352 "its size"), sym_name);
6359 new_cmse_stubs_created--;
6360 if (veneer_value < cmse_stub_array_start)
6361 cmse_stub_array_start = veneer_value;
6362 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6363 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6364 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6367 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6369 BFD_ASSERT (new_cmse_stubs_created > 0);
6371 (_("new entry function(s) introduced but no output import library "
6373 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6376 if (cmse_stub_array_start != cmse_stub_sec_vma)
6379 (_("start address of `%s' is different from previous link"),
6389 /* Determine and set the size of the stub section for a final link.
6391 The basic idea here is to examine all the relocations looking for
6392 PC-relative calls to a target that is unreachable with a "bl"
6396 elf32_arm_size_stubs (bfd *output_bfd,
6398 struct bfd_link_info *info,
6399 bfd_signed_vma group_size,
6400 asection * (*add_stub_section) (const char *, asection *,
6403 void (*layout_sections_again) (void))
6405 bfd_boolean ret = TRUE;
6406 obj_attribute *out_attr;
6407 int cmse_stub_created = 0;
6408 bfd_size_type stub_group_size;
6409 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6410 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6411 struct a8_erratum_fix *a8_fixes = NULL;
6412 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6413 struct a8_erratum_reloc *a8_relocs = NULL;
6414 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6419 if (htab->fix_cortex_a8)
6421 a8_fixes = (struct a8_erratum_fix *)
6422 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6423 a8_relocs = (struct a8_erratum_reloc *)
6424 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6427 /* Propagate mach to stub bfd, because it may not have been
6428 finalized when we created stub_bfd. */
6429 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6430 bfd_get_mach (output_bfd));
6432 /* Stash our params away. */
6433 htab->stub_bfd = stub_bfd;
6434 htab->add_stub_section = add_stub_section;
6435 htab->layout_sections_again = layout_sections_again;
6436 stubs_always_after_branch = group_size < 0;
6438 out_attr = elf_known_obj_attributes_proc (output_bfd);
6439 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6441 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6442 as the first half of a 32-bit branch straddling two 4K pages. This is a
6443 crude way of enforcing that. */
6444 if (htab->fix_cortex_a8)
6445 stubs_always_after_branch = 1;
6448 stub_group_size = -group_size;
6450 stub_group_size = group_size;
6452 if (stub_group_size == 1)
6454 /* Default values. */
6455 /* Thumb branch range is +-4MB has to be used as the default
6456 maximum size (a given section can contain both ARM and Thumb
6457 code, so the worst case has to be taken into account).
6459 This value is 24K less than that, which allows for 2025
6460 12-byte stubs. If we exceed that, then we will fail to link.
6461 The user will have to relink with an explicit group size
6463 stub_group_size = 4170000;
6466 group_sections (htab, stub_group_size, stubs_always_after_branch);
6468 /* If we're applying the cortex A8 fix, we need to determine the
6469 program header size now, because we cannot change it later --
6470 that could alter section placements. Notice the A8 erratum fix
6471 ends up requiring the section addresses to remain unchanged
6472 modulo the page size. That's something we cannot represent
6473 inside BFD, and we don't want to force the section alignment to
6474 be the page size. */
6475 if (htab->fix_cortex_a8)
6476 (*htab->layout_sections_again) ();
6481 unsigned int bfd_indx;
6483 enum elf32_arm_stub_type stub_type;
6484 bfd_boolean stub_changed = FALSE;
6485 unsigned prev_num_a8_fixes = num_a8_fixes;
6488 for (input_bfd = info->input_bfds, bfd_indx = 0;
6490 input_bfd = input_bfd->link.next, bfd_indx++)
6492 Elf_Internal_Shdr *symtab_hdr;
6494 Elf_Internal_Sym *local_syms = NULL;
6496 if (!is_arm_elf (input_bfd)
6497 || (elf_dyn_lib_class (input_bfd) & DYN_AS_NEEDED) != 0)
6502 /* We'll need the symbol table in a second. */
6503 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6504 if (symtab_hdr->sh_info == 0)
6507 /* Limit scan of symbols to object file whose profile is
6508 Microcontroller to not hinder performance in the general case. */
6509 if (m_profile && first_veneer_scan)
6511 struct elf_link_hash_entry **sym_hashes;
6513 sym_hashes = elf_sym_hashes (input_bfd);
6514 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6515 &cmse_stub_created))
6516 goto error_ret_free_local;
6518 if (cmse_stub_created != 0)
6519 stub_changed = TRUE;
6522 /* Walk over each section attached to the input bfd. */
6523 for (section = input_bfd->sections;
6525 section = section->next)
6527 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6529 /* If there aren't any relocs, then there's nothing more
6531 if ((section->flags & SEC_RELOC) == 0
6532 || section->reloc_count == 0
6533 || (section->flags & SEC_CODE) == 0)
6536 /* If this section is a link-once section that will be
6537 discarded, then don't create any stubs. */
6538 if (section->output_section == NULL
6539 || section->output_section->owner != output_bfd)
6542 /* Get the relocs. */
6544 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6545 NULL, info->keep_memory);
6546 if (internal_relocs == NULL)
6547 goto error_ret_free_local;
6549 /* Now examine each relocation. */
6550 irela = internal_relocs;
6551 irelaend = irela + section->reloc_count;
6552 for (; irela < irelaend; irela++)
6554 unsigned int r_type, r_indx;
6557 bfd_vma destination;
6558 struct elf32_arm_link_hash_entry *hash;
6559 const char *sym_name;
6560 unsigned char st_type;
6561 enum arm_st_branch_type branch_type;
6562 bfd_boolean created_stub = FALSE;
6564 r_type = ELF32_R_TYPE (irela->r_info);
6565 r_indx = ELF32_R_SYM (irela->r_info);
6567 if (r_type >= (unsigned int) R_ARM_max)
6569 bfd_set_error (bfd_error_bad_value);
6570 error_ret_free_internal:
6571 if (elf_section_data (section)->relocs == NULL)
6572 free (internal_relocs);
6574 error_ret_free_local:
6575 if (local_syms != NULL
6576 && (symtab_hdr->contents
6577 != (unsigned char *) local_syms))
6583 if (r_indx >= symtab_hdr->sh_info)
6584 hash = elf32_arm_hash_entry
6585 (elf_sym_hashes (input_bfd)
6586 [r_indx - symtab_hdr->sh_info]);
6588 /* Only look for stubs on branch instructions, or
6589 non-relaxed TLSCALL */
6590 if ((r_type != (unsigned int) R_ARM_CALL)
6591 && (r_type != (unsigned int) R_ARM_THM_CALL)
6592 && (r_type != (unsigned int) R_ARM_JUMP24)
6593 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6594 && (r_type != (unsigned int) R_ARM_THM_XPC22)
6595 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6596 && (r_type != (unsigned int) R_ARM_PLT32)
6597 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6598 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6599 && r_type == elf32_arm_tls_transition
6600 (info, r_type, &hash->root)
6601 && ((hash ? hash->tls_type
6602 : (elf32_arm_local_got_tls_type
6603 (input_bfd)[r_indx]))
6604 & GOT_TLS_GDESC) != 0))
6607 /* Now determine the call target, its name, value,
6614 if (r_type == (unsigned int) R_ARM_TLS_CALL
6615 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6617 /* A non-relaxed TLS call. The target is the
6618 plt-resident trampoline and nothing to do
6620 BFD_ASSERT (htab->tls_trampoline > 0);
6621 sym_sec = htab->root.splt;
6622 sym_value = htab->tls_trampoline;
6625 branch_type = ST_BRANCH_TO_ARM;
6629 /* It's a local symbol. */
6630 Elf_Internal_Sym *sym;
6632 if (local_syms == NULL)
6635 = (Elf_Internal_Sym *) symtab_hdr->contents;
6636 if (local_syms == NULL)
6638 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6639 symtab_hdr->sh_info, 0,
6641 if (local_syms == NULL)
6642 goto error_ret_free_internal;
6645 sym = local_syms + r_indx;
6646 if (sym->st_shndx == SHN_UNDEF)
6647 sym_sec = bfd_und_section_ptr;
6648 else if (sym->st_shndx == SHN_ABS)
6649 sym_sec = bfd_abs_section_ptr;
6650 else if (sym->st_shndx == SHN_COMMON)
6651 sym_sec = bfd_com_section_ptr;
6654 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6657 /* This is an undefined symbol. It can never
6661 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6662 sym_value = sym->st_value;
6663 destination = (sym_value + irela->r_addend
6664 + sym_sec->output_offset
6665 + sym_sec->output_section->vma);
6666 st_type = ELF_ST_TYPE (sym->st_info);
6668 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6670 = bfd_elf_string_from_elf_section (input_bfd,
6671 symtab_hdr->sh_link,
6676 /* It's an external symbol. */
6677 while (hash->root.root.type == bfd_link_hash_indirect
6678 || hash->root.root.type == bfd_link_hash_warning)
6679 hash = ((struct elf32_arm_link_hash_entry *)
6680 hash->root.root.u.i.link);
6682 if (hash->root.root.type == bfd_link_hash_defined
6683 || hash->root.root.type == bfd_link_hash_defweak)
6685 sym_sec = hash->root.root.u.def.section;
6686 sym_value = hash->root.root.u.def.value;
6688 struct elf32_arm_link_hash_table *globals =
6689 elf32_arm_hash_table (info);
6691 /* For a destination in a shared library,
6692 use the PLT stub as target address to
6693 decide whether a branch stub is
6696 && globals->root.splt != NULL
6698 && hash->root.plt.offset != (bfd_vma) -1)
6700 sym_sec = globals->root.splt;
6701 sym_value = hash->root.plt.offset;
6702 if (sym_sec->output_section != NULL)
6703 destination = (sym_value
6704 + sym_sec->output_offset
6705 + sym_sec->output_section->vma);
6707 else if (sym_sec->output_section != NULL)
6708 destination = (sym_value + irela->r_addend
6709 + sym_sec->output_offset
6710 + sym_sec->output_section->vma);
6712 else if ((hash->root.root.type == bfd_link_hash_undefined)
6713 || (hash->root.root.type == bfd_link_hash_undefweak))
6715 /* For a shared library, use the PLT stub as
6716 target address to decide whether a long
6717 branch stub is needed.
6718 For absolute code, they cannot be handled. */
6719 struct elf32_arm_link_hash_table *globals =
6720 elf32_arm_hash_table (info);
6723 && globals->root.splt != NULL
6725 && hash->root.plt.offset != (bfd_vma) -1)
6727 sym_sec = globals->root.splt;
6728 sym_value = hash->root.plt.offset;
6729 if (sym_sec->output_section != NULL)
6730 destination = (sym_value
6731 + sym_sec->output_offset
6732 + sym_sec->output_section->vma);
6739 bfd_set_error (bfd_error_bad_value);
6740 goto error_ret_free_internal;
6742 st_type = hash->root.type;
6744 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6745 sym_name = hash->root.root.root.string;
6750 bfd_boolean new_stub;
6751 struct elf32_arm_stub_hash_entry *stub_entry;
6753 /* Determine what (if any) linker stub is needed. */
6754 stub_type = arm_type_of_stub (info, section, irela,
6755 st_type, &branch_type,
6756 hash, destination, sym_sec,
6757 input_bfd, sym_name);
6758 if (stub_type == arm_stub_none)
6761 /* We've either created a stub for this reloc already,
6762 or we are about to. */
6764 elf32_arm_create_stub (htab, stub_type, section, irela,
6766 (char *) sym_name, sym_value,
6767 branch_type, &new_stub);
6769 created_stub = stub_entry != NULL;
6771 goto error_ret_free_internal;
6775 stub_changed = TRUE;
6779 /* Look for relocations which might trigger Cortex-A8
6781 if (htab->fix_cortex_a8
6782 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6783 || r_type == (unsigned int) R_ARM_THM_JUMP19
6784 || r_type == (unsigned int) R_ARM_THM_CALL
6785 || r_type == (unsigned int) R_ARM_THM_XPC22))
6787 bfd_vma from = section->output_section->vma
6788 + section->output_offset
6791 if ((from & 0xfff) == 0xffe)
6793 /* Found a candidate. Note we haven't checked the
6794 destination is within 4K here: if we do so (and
6795 don't create an entry in a8_relocs) we can't tell
6796 that a branch should have been relocated when
6798 if (num_a8_relocs == a8_reloc_table_size)
6800 a8_reloc_table_size *= 2;
6801 a8_relocs = (struct a8_erratum_reloc *)
6802 bfd_realloc (a8_relocs,
6803 sizeof (struct a8_erratum_reloc)
6804 * a8_reloc_table_size);
6807 a8_relocs[num_a8_relocs].from = from;
6808 a8_relocs[num_a8_relocs].destination = destination;
6809 a8_relocs[num_a8_relocs].r_type = r_type;
6810 a8_relocs[num_a8_relocs].branch_type = branch_type;
6811 a8_relocs[num_a8_relocs].sym_name = sym_name;
6812 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6813 a8_relocs[num_a8_relocs].hash = hash;
6820 /* We're done with the internal relocs, free them. */
6821 if (elf_section_data (section)->relocs == NULL)
6822 free (internal_relocs);
6825 if (htab->fix_cortex_a8)
6827 /* Sort relocs which might apply to Cortex-A8 erratum. */
6828 qsort (a8_relocs, num_a8_relocs,
6829 sizeof (struct a8_erratum_reloc),
6832 /* Scan for branches which might trigger Cortex-A8 erratum. */
6833 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6834 &num_a8_fixes, &a8_fix_table_size,
6835 a8_relocs, num_a8_relocs,
6836 prev_num_a8_fixes, &stub_changed)
6838 goto error_ret_free_local;
6841 if (local_syms != NULL
6842 && symtab_hdr->contents != (unsigned char *) local_syms)
6844 if (!info->keep_memory)
6847 symtab_hdr->contents = (unsigned char *) local_syms;
6851 if (first_veneer_scan
6852 && !set_cmse_veneer_addr_from_implib (info, htab,
6853 &cmse_stub_created))
6856 if (prev_num_a8_fixes != num_a8_fixes)
6857 stub_changed = TRUE;
6862 /* OK, we've added some stubs. Find out the new size of the
6864 for (stub_sec = htab->stub_bfd->sections;
6866 stub_sec = stub_sec->next)
6868 /* Ignore non-stub sections. */
6869 if (!strstr (stub_sec->name, STUB_SUFFIX))
6875 /* Add new SG veneers after those already in the input import
6877 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6880 bfd_vma *start_offset_p;
6881 asection **stub_sec_p;
6883 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6884 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6885 if (start_offset_p == NULL)
6888 BFD_ASSERT (stub_sec_p != NULL);
6889 if (*stub_sec_p != NULL)
6890 (*stub_sec_p)->size = *start_offset_p;
6893 /* Compute stub section size, considering padding. */
6894 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6895 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6899 asection **stub_sec_p;
6901 padding = arm_dedicated_stub_section_padding (stub_type);
6902 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6903 /* Skip if no stub input section or no stub section padding
6905 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6907 /* Stub section padding required but no dedicated section. */
6908 BFD_ASSERT (stub_sec_p);
6910 size = (*stub_sec_p)->size;
6911 size = (size + padding - 1) & ~(padding - 1);
6912 (*stub_sec_p)->size = size;
6915 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6916 if (htab->fix_cortex_a8)
6917 for (i = 0; i < num_a8_fixes; i++)
6919 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6920 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6922 if (stub_sec == NULL)
6926 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6931 /* Ask the linker to do its stuff. */
6932 (*htab->layout_sections_again) ();
6933 first_veneer_scan = FALSE;
6936 /* Add stubs for Cortex-A8 erratum fixes now. */
6937 if (htab->fix_cortex_a8)
6939 for (i = 0; i < num_a8_fixes; i++)
6941 struct elf32_arm_stub_hash_entry *stub_entry;
6942 char *stub_name = a8_fixes[i].stub_name;
6943 asection *section = a8_fixes[i].section;
6944 unsigned int section_id = a8_fixes[i].section->id;
6945 asection *link_sec = htab->stub_group[section_id].link_sec;
6946 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6947 const insn_sequence *template_sequence;
6948 int template_size, size = 0;
6950 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6952 if (stub_entry == NULL)
6954 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
6955 section->owner, stub_name);
6959 stub_entry->stub_sec = stub_sec;
6960 stub_entry->stub_offset = (bfd_vma) -1;
6961 stub_entry->id_sec = link_sec;
6962 stub_entry->stub_type = a8_fixes[i].stub_type;
6963 stub_entry->source_value = a8_fixes[i].offset;
6964 stub_entry->target_section = a8_fixes[i].section;
6965 stub_entry->target_value = a8_fixes[i].target_offset;
6966 stub_entry->orig_insn = a8_fixes[i].orig_insn;
6967 stub_entry->branch_type = a8_fixes[i].branch_type;
6969 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6973 stub_entry->stub_size = size;
6974 stub_entry->stub_template = template_sequence;
6975 stub_entry->stub_template_size = template_size;
6978 /* Stash the Cortex-A8 erratum fix array for use later in
6979 elf32_arm_write_section(). */
6980 htab->a8_erratum_fixes = a8_fixes;
6981 htab->num_a8_erratum_fixes = num_a8_fixes;
6985 htab->a8_erratum_fixes = NULL;
6986 htab->num_a8_erratum_fixes = 0;
6991 /* Build all the stubs associated with the current output file. The
6992 stubs are kept in a hash table attached to the main linker hash
6993 table. We also set up the .plt entries for statically linked PIC
6994 functions here. This function is called via arm_elf_finish in the
6998 elf32_arm_build_stubs (struct bfd_link_info *info)
7001 struct bfd_hash_table *table;
7002 enum elf32_arm_stub_type stub_type;
7003 struct elf32_arm_link_hash_table *htab;
7005 htab = elf32_arm_hash_table (info);
7009 for (stub_sec = htab->stub_bfd->sections;
7011 stub_sec = stub_sec->next)
7015 /* Ignore non-stub sections. */
7016 if (!strstr (stub_sec->name, STUB_SUFFIX))
7019 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
7020 must at least be done for stub section requiring padding and for SG
7021 veneers to ensure that a non secure code branching to a removed SG
7022 veneer causes an error. */
7023 size = stub_sec->size;
7024 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
7025 if (stub_sec->contents == NULL && size != 0)
7031 /* Add new SG veneers after those already in the input import library. */
7032 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7034 bfd_vma *start_offset_p;
7035 asection **stub_sec_p;
7037 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
7038 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
7039 if (start_offset_p == NULL)
7042 BFD_ASSERT (stub_sec_p != NULL);
7043 if (*stub_sec_p != NULL)
7044 (*stub_sec_p)->size = *start_offset_p;
7047 /* Build the stubs as directed by the stub hash table. */
7048 table = &htab->stub_hash_table;
7049 bfd_hash_traverse (table, arm_build_one_stub, info);
7050 if (htab->fix_cortex_a8)
7052 /* Place the cortex a8 stubs last. */
7053 htab->fix_cortex_a8 = -1;
7054 bfd_hash_traverse (table, arm_build_one_stub, info);
7060 /* Locate the Thumb encoded calling stub for NAME. */
7062 static struct elf_link_hash_entry *
7063 find_thumb_glue (struct bfd_link_info *link_info,
7065 char **error_message)
7068 struct elf_link_hash_entry *hash;
7069 struct elf32_arm_link_hash_table *hash_table;
7071 /* We need a pointer to the armelf specific hash table. */
7072 hash_table = elf32_arm_hash_table (link_info);
7073 if (hash_table == NULL)
7076 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7077 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
7079 BFD_ASSERT (tmp_name);
7081 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
7083 hash = elf_link_hash_lookup
7084 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7087 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7088 "Thumb", tmp_name, name) == -1)
7089 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7096 /* Locate the ARM encoded calling stub for NAME. */
7098 static struct elf_link_hash_entry *
7099 find_arm_glue (struct bfd_link_info *link_info,
7101 char **error_message)
7104 struct elf_link_hash_entry *myh;
7105 struct elf32_arm_link_hash_table *hash_table;
7107 /* We need a pointer to the elfarm specific hash table. */
7108 hash_table = elf32_arm_hash_table (link_info);
7109 if (hash_table == NULL)
7112 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7113 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7115 BFD_ASSERT (tmp_name);
7117 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7119 myh = elf_link_hash_lookup
7120 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7123 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7124 "ARM", tmp_name, name) == -1)
7125 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7132 /* ARM->Thumb glue (static images):
7136 ldr r12, __func_addr
7139 .word func @ behave as if you saw a ARM_32 reloc.
7146 .word func @ behave as if you saw a ARM_32 reloc.
7148 (relocatable images)
7151 ldr r12, __func_offset
7157 #define ARM2THUMB_STATIC_GLUE_SIZE 12
7158 static const insn32 a2t1_ldr_insn = 0xe59fc000;
7159 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
7160 static const insn32 a2t3_func_addr_insn = 0x00000001;
7162 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7163 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
7164 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
7166 #define ARM2THUMB_PIC_GLUE_SIZE 16
7167 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
7168 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
7169 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
7171 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
7175 __func_from_thumb: __func_from_thumb:
7177 nop ldr r6, __func_addr
7187 #define THUMB2ARM_GLUE_SIZE 8
7188 static const insn16 t2a1_bx_pc_insn = 0x4778;
7189 static const insn16 t2a2_noop_insn = 0x46c0;
7190 static const insn32 t2a3_b_insn = 0xea000000;
7192 #define VFP11_ERRATUM_VENEER_SIZE 8
7193 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7194 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
7196 #define ARM_BX_VENEER_SIZE 12
7197 static const insn32 armbx1_tst_insn = 0xe3100001;
7198 static const insn32 armbx2_moveq_insn = 0x01a0f000;
7199 static const insn32 armbx3_bx_insn = 0xe12fff10;
7201 #ifndef ELFARM_NABI_C_INCLUDED
7203 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
7206 bfd_byte * contents;
7210 /* Do not include empty glue sections in the output. */
7213 s = bfd_get_linker_section (abfd, name);
7215 s->flags |= SEC_EXCLUDE;
7220 BFD_ASSERT (abfd != NULL);
7222 s = bfd_get_linker_section (abfd, name);
7223 BFD_ASSERT (s != NULL);
7225 contents = (bfd_byte *) bfd_alloc (abfd, size);
7227 BFD_ASSERT (s->size == size);
7228 s->contents = contents;
7232 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
7234 struct elf32_arm_link_hash_table * globals;
7236 globals = elf32_arm_hash_table (info);
7237 BFD_ASSERT (globals != NULL);
7239 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7240 globals->arm_glue_size,
7241 ARM2THUMB_GLUE_SECTION_NAME);
7243 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7244 globals->thumb_glue_size,
7245 THUMB2ARM_GLUE_SECTION_NAME);
7247 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7248 globals->vfp11_erratum_glue_size,
7249 VFP11_ERRATUM_VENEER_SECTION_NAME);
7251 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7252 globals->stm32l4xx_erratum_glue_size,
7253 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7255 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7256 globals->bx_glue_size,
7257 ARM_BX_GLUE_SECTION_NAME);
7262 /* Allocate space and symbols for calling a Thumb function from Arm mode.
7263 returns the symbol identifying the stub. */
7265 static struct elf_link_hash_entry *
7266 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
7267 struct elf_link_hash_entry * h)
7269 const char * name = h->root.root.string;
7272 struct elf_link_hash_entry * myh;
7273 struct bfd_link_hash_entry * bh;
7274 struct elf32_arm_link_hash_table * globals;
7278 globals = elf32_arm_hash_table (link_info);
7279 BFD_ASSERT (globals != NULL);
7280 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7282 s = bfd_get_linker_section
7283 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
7285 BFD_ASSERT (s != NULL);
7287 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7288 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7290 BFD_ASSERT (tmp_name);
7292 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7294 myh = elf_link_hash_lookup
7295 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7299 /* We've already seen this guy. */
7304 /* The only trick here is using hash_table->arm_glue_size as the value.
7305 Even though the section isn't allocated yet, this is where we will be
7306 putting it. The +1 on the value marks that the stub has not been
7307 output yet - not that it is a Thumb function. */
7309 val = globals->arm_glue_size + 1;
7310 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7311 tmp_name, BSF_GLOBAL, s, val,
7312 NULL, TRUE, FALSE, &bh);
7314 myh = (struct elf_link_hash_entry *) bh;
7315 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7316 myh->forced_local = 1;
7320 if (bfd_link_pic (link_info)
7321 || globals->root.is_relocatable_executable
7322 || globals->pic_veneer)
7323 size = ARM2THUMB_PIC_GLUE_SIZE;
7324 else if (globals->use_blx)
7325 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
7327 size = ARM2THUMB_STATIC_GLUE_SIZE;
7330 globals->arm_glue_size += size;
7335 /* Allocate space for ARMv4 BX veneers. */
7338 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7341 struct elf32_arm_link_hash_table *globals;
7343 struct elf_link_hash_entry *myh;
7344 struct bfd_link_hash_entry *bh;
7347 /* BX PC does not need a veneer. */
7351 globals = elf32_arm_hash_table (link_info);
7352 BFD_ASSERT (globals != NULL);
7353 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7355 /* Check if this veneer has already been allocated. */
7356 if (globals->bx_glue_offset[reg])
7359 s = bfd_get_linker_section
7360 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7362 BFD_ASSERT (s != NULL);
7364 /* Add symbol for veneer. */
7366 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7368 BFD_ASSERT (tmp_name);
7370 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7372 myh = elf_link_hash_lookup
7373 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7375 BFD_ASSERT (myh == NULL);
7378 val = globals->bx_glue_size;
7379 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7380 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7381 NULL, TRUE, FALSE, &bh);
7383 myh = (struct elf_link_hash_entry *) bh;
7384 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7385 myh->forced_local = 1;
7387 s->size += ARM_BX_VENEER_SIZE;
7388 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7389 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7393 /* Add an entry to the code/data map for section SEC. */
7396 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7398 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7399 unsigned int newidx;
7401 if (sec_data->map == NULL)
7403 sec_data->map = (elf32_arm_section_map *)
7404 bfd_malloc (sizeof (elf32_arm_section_map));
7405 sec_data->mapcount = 0;
7406 sec_data->mapsize = 1;
7409 newidx = sec_data->mapcount++;
7411 if (sec_data->mapcount > sec_data->mapsize)
7413 sec_data->mapsize *= 2;
7414 sec_data->map = (elf32_arm_section_map *)
7415 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7416 * sizeof (elf32_arm_section_map));
7421 sec_data->map[newidx].vma = vma;
7422 sec_data->map[newidx].type = type;
7427 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7428 veneers are handled for now. */
7431 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7432 elf32_vfp11_erratum_list *branch,
7434 asection *branch_sec,
7435 unsigned int offset)
7438 struct elf32_arm_link_hash_table *hash_table;
7440 struct elf_link_hash_entry *myh;
7441 struct bfd_link_hash_entry *bh;
7443 struct _arm_elf_section_data *sec_data;
7444 elf32_vfp11_erratum_list *newerr;
7446 hash_table = elf32_arm_hash_table (link_info);
7447 BFD_ASSERT (hash_table != NULL);
7448 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7450 s = bfd_get_linker_section
7451 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7453 sec_data = elf32_arm_section_data (s);
7455 BFD_ASSERT (s != NULL);
7457 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7458 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7460 BFD_ASSERT (tmp_name);
7462 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7463 hash_table->num_vfp11_fixes);
7465 myh = elf_link_hash_lookup
7466 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7468 BFD_ASSERT (myh == NULL);
7471 val = hash_table->vfp11_erratum_glue_size;
7472 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7473 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7474 NULL, TRUE, FALSE, &bh);
7476 myh = (struct elf_link_hash_entry *) bh;
7477 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7478 myh->forced_local = 1;
7480 /* Link veneer back to calling location. */
7481 sec_data->erratumcount += 1;
7482 newerr = (elf32_vfp11_erratum_list *)
7483 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7485 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7487 newerr->u.v.branch = branch;
7488 newerr->u.v.id = hash_table->num_vfp11_fixes;
7489 branch->u.b.veneer = newerr;
7491 newerr->next = sec_data->erratumlist;
7492 sec_data->erratumlist = newerr;
7494 /* A symbol for the return from the veneer. */
7495 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7496 hash_table->num_vfp11_fixes);
7498 myh = elf_link_hash_lookup
7499 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7506 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7507 branch_sec, val, NULL, TRUE, FALSE, &bh);
7509 myh = (struct elf_link_hash_entry *) bh;
7510 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7511 myh->forced_local = 1;
7515 /* Generate a mapping symbol for the veneer section, and explicitly add an
7516 entry for that symbol to the code/data map for the section. */
7517 if (hash_table->vfp11_erratum_glue_size == 0)
7520 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7521 ever requires this erratum fix. */
7522 _bfd_generic_link_add_one_symbol (link_info,
7523 hash_table->bfd_of_glue_owner, "$a",
7524 BSF_LOCAL, s, 0, NULL,
7527 myh = (struct elf_link_hash_entry *) bh;
7528 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7529 myh->forced_local = 1;
7531 /* The elf32_arm_init_maps function only cares about symbols from input
7532 BFDs. We must make a note of this generated mapping symbol
7533 ourselves so that code byteswapping works properly in
7534 elf32_arm_write_section. */
7535 elf32_arm_section_map_add (s, 'a', 0);
7538 s->size += VFP11_ERRATUM_VENEER_SIZE;
7539 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7540 hash_table->num_vfp11_fixes++;
7542 /* The offset of the veneer. */
7546 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7547 veneers need to be handled because used only in Cortex-M. */
7550 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7551 elf32_stm32l4xx_erratum_list *branch,
7553 asection *branch_sec,
7554 unsigned int offset,
7555 bfd_size_type veneer_size)
7558 struct elf32_arm_link_hash_table *hash_table;
7560 struct elf_link_hash_entry *myh;
7561 struct bfd_link_hash_entry *bh;
7563 struct _arm_elf_section_data *sec_data;
7564 elf32_stm32l4xx_erratum_list *newerr;
7566 hash_table = elf32_arm_hash_table (link_info);
7567 BFD_ASSERT (hash_table != NULL);
7568 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7570 s = bfd_get_linker_section
7571 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7573 BFD_ASSERT (s != NULL);
7575 sec_data = elf32_arm_section_data (s);
7577 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7578 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7580 BFD_ASSERT (tmp_name);
7582 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7583 hash_table->num_stm32l4xx_fixes);
7585 myh = elf_link_hash_lookup
7586 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7588 BFD_ASSERT (myh == NULL);
7591 val = hash_table->stm32l4xx_erratum_glue_size;
7592 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7593 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7594 NULL, TRUE, FALSE, &bh);
7596 myh = (struct elf_link_hash_entry *) bh;
7597 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7598 myh->forced_local = 1;
7600 /* Link veneer back to calling location. */
7601 sec_data->stm32l4xx_erratumcount += 1;
7602 newerr = (elf32_stm32l4xx_erratum_list *)
7603 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7605 newerr->type = STM32L4XX_ERRATUM_VENEER;
7607 newerr->u.v.branch = branch;
7608 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7609 branch->u.b.veneer = newerr;
7611 newerr->next = sec_data->stm32l4xx_erratumlist;
7612 sec_data->stm32l4xx_erratumlist = newerr;
7614 /* A symbol for the return from the veneer. */
7615 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7616 hash_table->num_stm32l4xx_fixes);
7618 myh = elf_link_hash_lookup
7619 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7626 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7627 branch_sec, val, NULL, TRUE, FALSE, &bh);
7629 myh = (struct elf_link_hash_entry *) bh;
7630 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7631 myh->forced_local = 1;
7635 /* Generate a mapping symbol for the veneer section, and explicitly add an
7636 entry for that symbol to the code/data map for the section. */
7637 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7640 /* Creates a THUMB symbol since there is no other choice. */
7641 _bfd_generic_link_add_one_symbol (link_info,
7642 hash_table->bfd_of_glue_owner, "$t",
7643 BSF_LOCAL, s, 0, NULL,
7646 myh = (struct elf_link_hash_entry *) bh;
7647 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7648 myh->forced_local = 1;
7650 /* The elf32_arm_init_maps function only cares about symbols from input
7651 BFDs. We must make a note of this generated mapping symbol
7652 ourselves so that code byteswapping works properly in
7653 elf32_arm_write_section. */
7654 elf32_arm_section_map_add (s, 't', 0);
7657 s->size += veneer_size;
7658 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7659 hash_table->num_stm32l4xx_fixes++;
7661 /* The offset of the veneer. */
7665 #define ARM_GLUE_SECTION_FLAGS \
7666 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7667 | SEC_READONLY | SEC_LINKER_CREATED)
7669 /* Create a fake section for use by the ARM backend of the linker. */
7672 arm_make_glue_section (bfd * abfd, const char * name)
7676 sec = bfd_get_linker_section (abfd, name);
7681 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7684 || !bfd_set_section_alignment (abfd, sec, 2))
7687 /* Set the gc mark to prevent the section from being removed by garbage
7688 collection, despite the fact that no relocs refer to this section. */
7694 /* Set size of .plt entries. This function is called from the
7695 linker scripts in ld/emultempl/{armelf}.em. */
7698 bfd_elf32_arm_use_long_plt (void)
7700 elf32_arm_use_long_plt_entry = TRUE;
7703 /* Add the glue sections to ABFD. This function is called from the
7704 linker scripts in ld/emultempl/{armelf}.em. */
7707 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7708 struct bfd_link_info *info)
7710 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7711 bfd_boolean dostm32l4xx = globals
7712 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7713 bfd_boolean addglue;
7715 /* If we are only performing a partial
7716 link do not bother adding the glue. */
7717 if (bfd_link_relocatable (info))
7720 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7721 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7722 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7723 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7729 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7732 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7733 ensures they are not marked for deletion by
7734 strip_excluded_output_sections () when veneers are going to be created
7735 later. Not doing so would trigger assert on empty section size in
7736 lang_size_sections_1 (). */
7739 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7741 enum elf32_arm_stub_type stub_type;
7743 /* If we are only performing a partial
7744 link do not bother adding the glue. */
7745 if (bfd_link_relocatable (info))
7748 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7751 const char *out_sec_name;
7753 if (!arm_dedicated_stub_output_section_required (stub_type))
7756 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7757 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7758 if (out_sec != NULL)
7759 out_sec->flags |= SEC_KEEP;
7763 /* Select a BFD to be used to hold the sections used by the glue code.
7764 This function is called from the linker scripts in ld/emultempl/
7768 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7770 struct elf32_arm_link_hash_table *globals;
7772 /* If we are only performing a partial link
7773 do not bother getting a bfd to hold the glue. */
7774 if (bfd_link_relocatable (info))
7777 /* Make sure we don't attach the glue sections to a dynamic object. */
7778 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7780 globals = elf32_arm_hash_table (info);
7781 BFD_ASSERT (globals != NULL);
7783 if (globals->bfd_of_glue_owner != NULL)
7786 /* Save the bfd for later use. */
7787 globals->bfd_of_glue_owner = abfd;
7793 check_use_blx (struct elf32_arm_link_hash_table *globals)
7797 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7800 if (globals->fix_arm1176)
7802 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7803 globals->use_blx = 1;
7807 if (cpu_arch > TAG_CPU_ARCH_V4T)
7808 globals->use_blx = 1;
7813 bfd_elf32_arm_process_before_allocation (bfd *abfd,
7814 struct bfd_link_info *link_info)
7816 Elf_Internal_Shdr *symtab_hdr;
7817 Elf_Internal_Rela *internal_relocs = NULL;
7818 Elf_Internal_Rela *irel, *irelend;
7819 bfd_byte *contents = NULL;
7822 struct elf32_arm_link_hash_table *globals;
7824 /* If we are only performing a partial link do not bother
7825 to construct any glue. */
7826 if (bfd_link_relocatable (link_info))
7829 /* Here we have a bfd that is to be included on the link. We have a
7830 hook to do reloc rummaging, before section sizes are nailed down. */
7831 globals = elf32_arm_hash_table (link_info);
7832 BFD_ASSERT (globals != NULL);
7834 check_use_blx (globals);
7836 if (globals->byteswap_code && !bfd_big_endian (abfd))
7838 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
7843 /* PR 5398: If we have not decided to include any loadable sections in
7844 the output then we will not have a glue owner bfd. This is OK, it
7845 just means that there is nothing else for us to do here. */
7846 if (globals->bfd_of_glue_owner == NULL)
7849 /* Rummage around all the relocs and map the glue vectors. */
7850 sec = abfd->sections;
7855 for (; sec != NULL; sec = sec->next)
7857 if (sec->reloc_count == 0)
7860 if ((sec->flags & SEC_EXCLUDE) != 0)
7863 symtab_hdr = & elf_symtab_hdr (abfd);
7865 /* Load the relocs. */
7867 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7869 if (internal_relocs == NULL)
7872 irelend = internal_relocs + sec->reloc_count;
7873 for (irel = internal_relocs; irel < irelend; irel++)
7876 unsigned long r_index;
7878 struct elf_link_hash_entry *h;
7880 r_type = ELF32_R_TYPE (irel->r_info);
7881 r_index = ELF32_R_SYM (irel->r_info);
7883 /* These are the only relocation types we care about. */
7884 if ( r_type != R_ARM_PC24
7885 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7888 /* Get the section contents if we haven't done so already. */
7889 if (contents == NULL)
7891 /* Get cached copy if it exists. */
7892 if (elf_section_data (sec)->this_hdr.contents != NULL)
7893 contents = elf_section_data (sec)->this_hdr.contents;
7896 /* Go get them off disk. */
7897 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7902 if (r_type == R_ARM_V4BX)
7906 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7907 record_arm_bx_glue (link_info, reg);
7911 /* If the relocation is not against a symbol it cannot concern us. */
7914 /* We don't care about local symbols. */
7915 if (r_index < symtab_hdr->sh_info)
7918 /* This is an external symbol. */
7919 r_index -= symtab_hdr->sh_info;
7920 h = (struct elf_link_hash_entry *)
7921 elf_sym_hashes (abfd)[r_index];
7923 /* If the relocation is against a static symbol it must be within
7924 the current section and so cannot be a cross ARM/Thumb relocation. */
7928 /* If the call will go through a PLT entry then we do not need
7930 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7936 /* This one is a call from arm code. We need to look up
7937 the target of the call. If it is a thumb target, we
7939 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7940 == ST_BRANCH_TO_THUMB)
7941 record_arm_to_thumb_glue (link_info, h);
7949 if (contents != NULL
7950 && elf_section_data (sec)->this_hdr.contents != contents)
7954 if (internal_relocs != NULL
7955 && elf_section_data (sec)->relocs != internal_relocs)
7956 free (internal_relocs);
7957 internal_relocs = NULL;
7963 if (contents != NULL
7964 && elf_section_data (sec)->this_hdr.contents != contents)
7966 if (internal_relocs != NULL
7967 && elf_section_data (sec)->relocs != internal_relocs)
7968 free (internal_relocs);
7975 /* Initialise maps of ARM/Thumb/data for input BFDs. */
7978 bfd_elf32_arm_init_maps (bfd *abfd)
7980 Elf_Internal_Sym *isymbuf;
7981 Elf_Internal_Shdr *hdr;
7982 unsigned int i, localsyms;
7984 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7985 if (! is_arm_elf (abfd))
7988 if ((abfd->flags & DYNAMIC) != 0)
7991 hdr = & elf_symtab_hdr (abfd);
7992 localsyms = hdr->sh_info;
7994 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7995 should contain the number of local symbols, which should come before any
7996 global symbols. Mapping symbols are always local. */
7997 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
8000 /* No internal symbols read? Skip this BFD. */
8001 if (isymbuf == NULL)
8004 for (i = 0; i < localsyms; i++)
8006 Elf_Internal_Sym *isym = &isymbuf[i];
8007 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
8011 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
8013 name = bfd_elf_string_from_elf_section (abfd,
8014 hdr->sh_link, isym->st_name);
8016 if (bfd_is_arm_special_symbol_name (name,
8017 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
8018 elf32_arm_section_map_add (sec, name[1], isym->st_value);
8024 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
8025 say what they wanted. */
8028 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
8030 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8031 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8033 if (globals == NULL)
8036 if (globals->fix_cortex_a8 == -1)
8038 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
8039 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
8040 && (out_attr[Tag_CPU_arch_profile].i == 'A'
8041 || out_attr[Tag_CPU_arch_profile].i == 0))
8042 globals->fix_cortex_a8 = 1;
8044 globals->fix_cortex_a8 = 0;
8050 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
8052 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8053 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8055 if (globals == NULL)
8057 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
8058 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
8060 switch (globals->vfp11_fix)
8062 case BFD_ARM_VFP11_FIX_DEFAULT:
8063 case BFD_ARM_VFP11_FIX_NONE:
8064 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8068 /* Give a warning, but do as the user requests anyway. */
8069 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
8070 "workaround is not necessary for target architecture"), obfd);
8073 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
8074 /* For earlier architectures, we might need the workaround, but do not
8075 enable it by default. If users is running with broken hardware, they
8076 must enable the erratum fix explicitly. */
8077 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8081 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
8083 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8084 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8086 if (globals == NULL)
8089 /* We assume only Cortex-M4 may require the fix. */
8090 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
8091 || out_attr[Tag_CPU_arch_profile].i != 'M')
8093 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
8094 /* Give a warning, but do as the user requests anyway. */
8096 (_("%pB: warning: selected STM32L4XX erratum "
8097 "workaround is not necessary for target architecture"), obfd);
8101 enum bfd_arm_vfp11_pipe
8109 /* Return a VFP register number. This is encoded as RX:X for single-precision
8110 registers, or X:RX for double-precision registers, where RX is the group of
8111 four bits in the instruction encoding and X is the single extension bit.
8112 RX and X fields are specified using their lowest (starting) bit. The return
8115 0...31: single-precision registers s0...s31
8116 32...63: double-precision registers d0...d31.
8118 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8119 encounter VFP3 instructions, so we allow the full range for DP registers. */
8122 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
8126 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
8128 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
8131 /* Set bits in *WMASK according to a register number REG as encoded by
8132 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8135 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
8140 *wmask |= 3 << ((reg - 32) * 2);
8143 /* Return TRUE if WMASK overwrites anything in REGS. */
8146 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
8150 for (i = 0; i < numregs; i++)
8152 unsigned int reg = regs[i];
8154 if (reg < 32 && (wmask & (1 << reg)) != 0)
8162 if ((wmask & (3 << (reg * 2))) != 0)
8169 /* In this function, we're interested in two things: finding input registers
8170 for VFP data-processing instructions, and finding the set of registers which
8171 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8172 hold the written set, so FLDM etc. are easy to deal with (we're only
8173 interested in 32 SP registers or 16 dp registers, due to the VFP version
8174 implemented by the chip in question). DP registers are marked by setting
8175 both SP registers in the write mask). */
8177 static enum bfd_arm_vfp11_pipe
8178 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
8181 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
8182 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
8184 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8187 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8188 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8190 pqrs = ((insn & 0x00800000) >> 20)
8191 | ((insn & 0x00300000) >> 19)
8192 | ((insn & 0x00000040) >> 6);
8196 case 0: /* fmac[sd]. */
8197 case 1: /* fnmac[sd]. */
8198 case 2: /* fmsc[sd]. */
8199 case 3: /* fnmsc[sd]. */
8201 bfd_arm_vfp11_write_mask (destmask, fd);
8203 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8208 case 4: /* fmul[sd]. */
8209 case 5: /* fnmul[sd]. */
8210 case 6: /* fadd[sd]. */
8211 case 7: /* fsub[sd]. */
8215 case 8: /* fdiv[sd]. */
8218 bfd_arm_vfp11_write_mask (destmask, fd);
8219 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8224 case 15: /* extended opcode. */
8226 unsigned int extn = ((insn >> 15) & 0x1e)
8227 | ((insn >> 7) & 1);
8231 case 0: /* fcpy[sd]. */
8232 case 1: /* fabs[sd]. */
8233 case 2: /* fneg[sd]. */
8234 case 8: /* fcmp[sd]. */
8235 case 9: /* fcmpe[sd]. */
8236 case 10: /* fcmpz[sd]. */
8237 case 11: /* fcmpez[sd]. */
8238 case 16: /* fuito[sd]. */
8239 case 17: /* fsito[sd]. */
8240 case 24: /* ftoui[sd]. */
8241 case 25: /* ftouiz[sd]. */
8242 case 26: /* ftosi[sd]. */
8243 case 27: /* ftosiz[sd]. */
8244 /* These instructions will not bounce due to underflow. */
8249 case 3: /* fsqrt[sd]. */
8250 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8251 registers to cause the erratum in previous instructions. */
8252 bfd_arm_vfp11_write_mask (destmask, fd);
8256 case 15: /* fcvt{ds,sd}. */
8260 bfd_arm_vfp11_write_mask (destmask, fd);
8262 /* Only FCVTSD can underflow. */
8263 if ((insn & 0x100) != 0)
8282 /* Two-register transfer. */
8283 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
8285 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8287 if ((insn & 0x100000) == 0)
8290 bfd_arm_vfp11_write_mask (destmask, fm);
8293 bfd_arm_vfp11_write_mask (destmask, fm);
8294 bfd_arm_vfp11_write_mask (destmask, fm + 1);
8300 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
8302 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8303 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
8307 case 0: /* Two-reg transfer. We should catch these above. */
8310 case 2: /* fldm[sdx]. */
8314 unsigned int i, offset = insn & 0xff;
8319 for (i = fd; i < fd + offset; i++)
8320 bfd_arm_vfp11_write_mask (destmask, i);
8324 case 4: /* fld[sd]. */
8326 bfd_arm_vfp11_write_mask (destmask, fd);
8335 /* Single-register transfer. Note L==0. */
8336 else if ((insn & 0x0f100e10) == 0x0e000a10)
8338 unsigned int opcode = (insn >> 21) & 7;
8339 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8343 case 0: /* fmsr/fmdlr. */
8344 case 1: /* fmdhr. */
8345 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8346 destination register. I don't know if this is exactly right,
8347 but it is the conservative choice. */
8348 bfd_arm_vfp11_write_mask (destmask, fn);
8362 static int elf32_arm_compare_mapping (const void * a, const void * b);
8365 /* Look for potentially-troublesome code sequences which might trigger the
8366 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8367 (available from ARM) for details of the erratum. A short version is
8368 described in ld.texinfo. */
8371 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8374 bfd_byte *contents = NULL;
8376 int regs[3], numregs = 0;
8377 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8378 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8380 if (globals == NULL)
8383 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8384 The states transition as follows:
8386 0 -> 1 (vector) or 0 -> 2 (scalar)
8387 A VFP FMAC-pipeline instruction has been seen. Fill
8388 regs[0]..regs[numregs-1] with its input operands. Remember this
8389 instruction in 'first_fmac'.
8392 Any instruction, except for a VFP instruction which overwrites
8397 A VFP instruction has been seen which overwrites any of regs[*].
8398 We must make a veneer! Reset state to 0 before examining next
8402 If we fail to match anything in state 2, reset to state 0 and reset
8403 the instruction pointer to the instruction after 'first_fmac'.
8405 If the VFP11 vector mode is in use, there must be at least two unrelated
8406 instructions between anti-dependent VFP11 instructions to properly avoid
8407 triggering the erratum, hence the use of the extra state 1. */
8409 /* If we are only performing a partial link do not bother
8410 to construct any glue. */
8411 if (bfd_link_relocatable (link_info))
8414 /* Skip if this bfd does not correspond to an ELF image. */
8415 if (! is_arm_elf (abfd))
8418 /* We should have chosen a fix type by the time we get here. */
8419 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8421 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8424 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8425 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8428 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8430 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8431 struct _arm_elf_section_data *sec_data;
8433 /* If we don't have executable progbits, we're not interested in this
8434 section. Also skip if section is to be excluded. */
8435 if (elf_section_type (sec) != SHT_PROGBITS
8436 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8437 || (sec->flags & SEC_EXCLUDE) != 0
8438 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8439 || sec->output_section == bfd_abs_section_ptr
8440 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8443 sec_data = elf32_arm_section_data (sec);
8445 if (sec_data->mapcount == 0)
8448 if (elf_section_data (sec)->this_hdr.contents != NULL)
8449 contents = elf_section_data (sec)->this_hdr.contents;
8450 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8453 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8454 elf32_arm_compare_mapping);
8456 for (span = 0; span < sec_data->mapcount; span++)
8458 unsigned int span_start = sec_data->map[span].vma;
8459 unsigned int span_end = (span == sec_data->mapcount - 1)
8460 ? sec->size : sec_data->map[span + 1].vma;
8461 char span_type = sec_data->map[span].type;
8463 /* FIXME: Only ARM mode is supported at present. We may need to
8464 support Thumb-2 mode also at some point. */
8465 if (span_type != 'a')
8468 for (i = span_start; i < span_end;)
8470 unsigned int next_i = i + 4;
8471 unsigned int insn = bfd_big_endian (abfd)
8472 ? (contents[i] << 24)
8473 | (contents[i + 1] << 16)
8474 | (contents[i + 2] << 8)
8476 : (contents[i + 3] << 24)
8477 | (contents[i + 2] << 16)
8478 | (contents[i + 1] << 8)
8480 unsigned int writemask = 0;
8481 enum bfd_arm_vfp11_pipe vpipe;
8486 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8488 /* I'm assuming the VFP11 erratum can trigger with denorm
8489 operands on either the FMAC or the DS pipeline. This might
8490 lead to slightly overenthusiastic veneer insertion. */
8491 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8493 state = use_vector ? 1 : 2;
8495 veneer_of_insn = insn;
8501 int other_regs[3], other_numregs;
8502 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8505 if (vpipe != VFP11_BAD
8506 && bfd_arm_vfp11_antidependency (writemask, regs,
8516 int other_regs[3], other_numregs;
8517 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8520 if (vpipe != VFP11_BAD
8521 && bfd_arm_vfp11_antidependency (writemask, regs,
8527 next_i = first_fmac + 4;
8533 abort (); /* Should be unreachable. */
8538 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8539 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8541 elf32_arm_section_data (sec)->erratumcount += 1;
8543 newerr->u.b.vfp_insn = veneer_of_insn;
8548 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8555 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8560 newerr->next = sec_data->erratumlist;
8561 sec_data->erratumlist = newerr;
8570 if (contents != NULL
8571 && elf_section_data (sec)->this_hdr.contents != contents)
8579 if (contents != NULL
8580 && elf_section_data (sec)->this_hdr.contents != contents)
8586 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8587 after sections have been laid out, using specially-named symbols. */
8590 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8591 struct bfd_link_info *link_info)
8594 struct elf32_arm_link_hash_table *globals;
8597 if (bfd_link_relocatable (link_info))
8600 /* Skip if this bfd does not correspond to an ELF image. */
8601 if (! is_arm_elf (abfd))
8604 globals = elf32_arm_hash_table (link_info);
8605 if (globals == NULL)
8608 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8609 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8611 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8613 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8614 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8616 for (; errnode != NULL; errnode = errnode->next)
8618 struct elf_link_hash_entry *myh;
8621 switch (errnode->type)
8623 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8624 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8625 /* Find veneer symbol. */
8626 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8627 errnode->u.b.veneer->u.v.id);
8629 myh = elf_link_hash_lookup
8630 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8633 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8634 abfd, "VFP11", tmp_name);
8636 vma = myh->root.u.def.section->output_section->vma
8637 + myh->root.u.def.section->output_offset
8638 + myh->root.u.def.value;
8640 errnode->u.b.veneer->vma = vma;
8643 case VFP11_ERRATUM_ARM_VENEER:
8644 case VFP11_ERRATUM_THUMB_VENEER:
8645 /* Find return location. */
8646 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8649 myh = elf_link_hash_lookup
8650 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8653 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8654 abfd, "VFP11", tmp_name);
8656 vma = myh->root.u.def.section->output_section->vma
8657 + myh->root.u.def.section->output_offset
8658 + myh->root.u.def.value;
8660 errnode->u.v.branch->vma = vma;
8672 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8673 return locations after sections have been laid out, using
8674 specially-named symbols. */
8677 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8678 struct bfd_link_info *link_info)
8681 struct elf32_arm_link_hash_table *globals;
8684 if (bfd_link_relocatable (link_info))
8687 /* Skip if this bfd does not correspond to an ELF image. */
8688 if (! is_arm_elf (abfd))
8691 globals = elf32_arm_hash_table (link_info);
8692 if (globals == NULL)
8695 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8696 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8698 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8700 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8701 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8703 for (; errnode != NULL; errnode = errnode->next)
8705 struct elf_link_hash_entry *myh;
8708 switch (errnode->type)
8710 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8711 /* Find veneer symbol. */
8712 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8713 errnode->u.b.veneer->u.v.id);
8715 myh = elf_link_hash_lookup
8716 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8719 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8720 abfd, "STM32L4XX", tmp_name);
8722 vma = myh->root.u.def.section->output_section->vma
8723 + myh->root.u.def.section->output_offset
8724 + myh->root.u.def.value;
8726 errnode->u.b.veneer->vma = vma;
8729 case STM32L4XX_ERRATUM_VENEER:
8730 /* Find return location. */
8731 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8734 myh = elf_link_hash_lookup
8735 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8738 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8739 abfd, "STM32L4XX", tmp_name);
8741 vma = myh->root.u.def.section->output_section->vma
8742 + myh->root.u.def.section->output_offset
8743 + myh->root.u.def.value;
8745 errnode->u.v.branch->vma = vma;
8757 static inline bfd_boolean
8758 is_thumb2_ldmia (const insn32 insn)
8760 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8761 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8762 return (insn & 0xffd02000) == 0xe8900000;
8765 static inline bfd_boolean
8766 is_thumb2_ldmdb (const insn32 insn)
8768 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8769 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8770 return (insn & 0xffd02000) == 0xe9100000;
8773 static inline bfd_boolean
8774 is_thumb2_vldm (const insn32 insn)
8776 /* A6.5 Extension register load or store instruction
8778 We look for SP 32-bit and DP 64-bit registers.
8779 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8780 <list> is consecutive 64-bit registers
8781 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8782 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8783 <list> is consecutive 32-bit registers
8784 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8785 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8786 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8788 (((insn & 0xfe100f00) == 0xec100b00) ||
8789 ((insn & 0xfe100f00) == 0xec100a00))
8790 && /* (IA without !). */
8791 (((((insn << 7) >> 28) & 0xd) == 0x4)
8792 /* (IA with !), includes VPOP (when reg number is SP). */
8793 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8795 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8798 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8800 - computes the number and the mode of memory accesses
8801 - decides if the replacement should be done:
8802 . replaces only if > 8-word accesses
8803 . or (testing purposes only) replaces all accesses. */
8806 stm32l4xx_need_create_replacing_stub (const insn32 insn,
8807 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8811 /* The field encoding the register list is the same for both LDMIA
8812 and LDMDB encodings. */
8813 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8814 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
8815 else if (is_thumb2_vldm (insn))
8816 nb_words = (insn & 0xff);
8818 /* DEFAULT mode accounts for the real bug condition situation,
8819 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8821 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8822 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8825 /* Look for potentially-troublesome code sequences which might trigger
8826 the STM STM32L4XX erratum. */
8829 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8830 struct bfd_link_info *link_info)
8833 bfd_byte *contents = NULL;
8834 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8836 if (globals == NULL)
8839 /* If we are only performing a partial link do not bother
8840 to construct any glue. */
8841 if (bfd_link_relocatable (link_info))
8844 /* Skip if this bfd does not correspond to an ELF image. */
8845 if (! is_arm_elf (abfd))
8848 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8851 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8852 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8855 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8857 unsigned int i, span;
8858 struct _arm_elf_section_data *sec_data;
8860 /* If we don't have executable progbits, we're not interested in this
8861 section. Also skip if section is to be excluded. */
8862 if (elf_section_type (sec) != SHT_PROGBITS
8863 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8864 || (sec->flags & SEC_EXCLUDE) != 0
8865 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8866 || sec->output_section == bfd_abs_section_ptr
8867 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8870 sec_data = elf32_arm_section_data (sec);
8872 if (sec_data->mapcount == 0)
8875 if (elf_section_data (sec)->this_hdr.contents != NULL)
8876 contents = elf_section_data (sec)->this_hdr.contents;
8877 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8880 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8881 elf32_arm_compare_mapping);
8883 for (span = 0; span < sec_data->mapcount; span++)
8885 unsigned int span_start = sec_data->map[span].vma;
8886 unsigned int span_end = (span == sec_data->mapcount - 1)
8887 ? sec->size : sec_data->map[span + 1].vma;
8888 char span_type = sec_data->map[span].type;
8889 int itblock_current_pos = 0;
8891 /* Only Thumb2 mode need be supported with this CM4 specific
8892 code, we should not encounter any arm mode eg span_type
8894 if (span_type != 't')
8897 for (i = span_start; i < span_end;)
8899 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8900 bfd_boolean insn_32bit = FALSE;
8901 bfd_boolean is_ldm = FALSE;
8902 bfd_boolean is_vldm = FALSE;
8903 bfd_boolean is_not_last_in_it_block = FALSE;
8905 /* The first 16-bits of all 32-bit thumb2 instructions start
8906 with opcode[15..13]=0b111 and the encoded op1 can be anything
8907 except opcode[12..11]!=0b00.
8908 See 32-bit Thumb instruction encoding. */
8909 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8912 /* Compute the predicate that tells if the instruction
8913 is concerned by the IT block
8914 - Creates an error if there is a ldm that is not
8915 last in the IT block thus cannot be replaced
8916 - Otherwise we can create a branch at the end of the
8917 IT block, it will be controlled naturally by IT
8918 with the proper pseudo-predicate
8919 - So the only interesting predicate is the one that
8920 tells that we are not on the last item of an IT
8922 if (itblock_current_pos != 0)
8923 is_not_last_in_it_block = !!--itblock_current_pos;
8927 /* Load the rest of the insn (in manual-friendly order). */
8928 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8929 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8930 is_vldm = is_thumb2_vldm (insn);
8932 /* Veneers are created for (v)ldm depending on
8933 option flags and memory accesses conditions; but
8934 if the instruction is not the last instruction of
8935 an IT block, we cannot create a jump there, so we
8937 if ((is_ldm || is_vldm)
8938 && stm32l4xx_need_create_replacing_stub
8939 (insn, globals->stm32l4xx_fix))
8941 if (is_not_last_in_it_block)
8944 /* xgettext:c-format */
8945 (_("%pB(%pA+%#x): error: multiple load detected"
8946 " in non-last IT block instruction:"
8947 " STM32L4XX veneer cannot be generated; "
8948 "use gcc option -mrestrict-it to generate"
8949 " only one instruction per IT block"),
8954 elf32_stm32l4xx_erratum_list *newerr =
8955 (elf32_stm32l4xx_erratum_list *)
8957 (sizeof (elf32_stm32l4xx_erratum_list));
8959 elf32_arm_section_data (sec)
8960 ->stm32l4xx_erratumcount += 1;
8961 newerr->u.b.insn = insn;
8962 /* We create only thumb branches. */
8964 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8965 record_stm32l4xx_erratum_veneer
8966 (link_info, newerr, abfd, sec,
8969 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8970 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8972 newerr->next = sec_data->stm32l4xx_erratumlist;
8973 sec_data->stm32l4xx_erratumlist = newerr;
8980 IT blocks are only encoded in T1
8981 Encoding T1: IT{x{y{z}}} <firstcond>
8982 1 0 1 1 - 1 1 1 1 - firstcond - mask
8983 if mask = '0000' then see 'related encodings'
8984 We don't deal with UNPREDICTABLE, just ignore these.
8985 There can be no nested IT blocks so an IT block
8986 is naturally a new one for which it is worth
8987 computing its size. */
8988 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
8989 && ((insn & 0x000f) != 0x0000);
8990 /* If we have a new IT block we compute its size. */
8993 /* Compute the number of instructions controlled
8994 by the IT block, it will be used to decide
8995 whether we are inside an IT block or not. */
8996 unsigned int mask = insn & 0x000f;
8997 itblock_current_pos = 4 - ctz (mask);
9001 i += insn_32bit ? 4 : 2;
9005 if (contents != NULL
9006 && elf_section_data (sec)->this_hdr.contents != contents)
9014 if (contents != NULL
9015 && elf_section_data (sec)->this_hdr.contents != contents)
9021 /* Set target relocation values needed during linking. */
9024 bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
9025 struct bfd_link_info *link_info,
9026 struct elf32_arm_params *params)
9028 struct elf32_arm_link_hash_table *globals;
9030 globals = elf32_arm_hash_table (link_info);
9031 if (globals == NULL)
9034 globals->target1_is_rel = params->target1_is_rel;
9035 if (globals->fdpic_p)
9036 globals->target2_reloc = R_ARM_GOT32;
9037 else if (strcmp (params->target2_type, "rel") == 0)
9038 globals->target2_reloc = R_ARM_REL32;
9039 else if (strcmp (params->target2_type, "abs") == 0)
9040 globals->target2_reloc = R_ARM_ABS32;
9041 else if (strcmp (params->target2_type, "got-rel") == 0)
9042 globals->target2_reloc = R_ARM_GOT_PREL;
9045 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
9046 params->target2_type);
9048 globals->fix_v4bx = params->fix_v4bx;
9049 globals->use_blx |= params->use_blx;
9050 globals->vfp11_fix = params->vfp11_denorm_fix;
9051 globals->stm32l4xx_fix = params->stm32l4xx_fix;
9052 if (globals->fdpic_p)
9053 globals->pic_veneer = 1;
9055 globals->pic_veneer = params->pic_veneer;
9056 globals->fix_cortex_a8 = params->fix_cortex_a8;
9057 globals->fix_arm1176 = params->fix_arm1176;
9058 globals->cmse_implib = params->cmse_implib;
9059 globals->in_implib_bfd = params->in_implib_bfd;
9061 BFD_ASSERT (is_arm_elf (output_bfd));
9062 elf_arm_tdata (output_bfd)->no_enum_size_warning
9063 = params->no_enum_size_warning;
9064 elf_arm_tdata (output_bfd)->no_wchar_size_warning
9065 = params->no_wchar_size_warning;
9068 /* Replace the target offset of a Thumb bl or b.w instruction. */
9071 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
9077 BFD_ASSERT ((offset & 1) == 0);
9079 upper = bfd_get_16 (abfd, insn);
9080 lower = bfd_get_16 (abfd, insn + 2);
9081 reloc_sign = (offset < 0) ? 1 : 0;
9082 upper = (upper & ~(bfd_vma) 0x7ff)
9083 | ((offset >> 12) & 0x3ff)
9084 | (reloc_sign << 10);
9085 lower = (lower & ~(bfd_vma) 0x2fff)
9086 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
9087 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
9088 | ((offset >> 1) & 0x7ff);
9089 bfd_put_16 (abfd, upper, insn);
9090 bfd_put_16 (abfd, lower, insn + 2);
9093 /* Thumb code calling an ARM function. */
9096 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
9100 asection * input_section,
9101 bfd_byte * hit_data,
9104 bfd_signed_vma addend,
9106 char **error_message)
9110 long int ret_offset;
9111 struct elf_link_hash_entry * myh;
9112 struct elf32_arm_link_hash_table * globals;
9114 myh = find_thumb_glue (info, name, error_message);
9118 globals = elf32_arm_hash_table (info);
9119 BFD_ASSERT (globals != NULL);
9120 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9122 my_offset = myh->root.u.def.value;
9124 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9125 THUMB2ARM_GLUE_SECTION_NAME);
9127 BFD_ASSERT (s != NULL);
9128 BFD_ASSERT (s->contents != NULL);
9129 BFD_ASSERT (s->output_section != NULL);
9131 if ((my_offset & 0x01) == 0x01)
9134 && sym_sec->owner != NULL
9135 && !INTERWORK_FLAG (sym_sec->owner))
9138 (_("%pB(%s): warning: interworking not enabled;"
9139 " first occurrence: %pB: %s call to %s"),
9140 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
9146 myh->root.u.def.value = my_offset;
9148 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
9149 s->contents + my_offset);
9151 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
9152 s->contents + my_offset + 2);
9155 /* Address of destination of the stub. */
9156 ((bfd_signed_vma) val)
9158 /* Offset from the start of the current section
9159 to the start of the stubs. */
9161 /* Offset of the start of this stub from the start of the stubs. */
9163 /* Address of the start of the current section. */
9164 + s->output_section->vma)
9165 /* The branch instruction is 4 bytes into the stub. */
9167 /* ARM branches work from the pc of the instruction + 8. */
9170 put_arm_insn (globals, output_bfd,
9171 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
9172 s->contents + my_offset + 4);
9175 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
9177 /* Now go back and fix up the original BL insn to point to here. */
9179 /* Address of where the stub is located. */
9180 (s->output_section->vma + s->output_offset + my_offset)
9181 /* Address of where the BL is located. */
9182 - (input_section->output_section->vma + input_section->output_offset
9184 /* Addend in the relocation. */
9186 /* Biassing for PC-relative addressing. */
9189 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
9194 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
9196 static struct elf_link_hash_entry *
9197 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
9204 char ** error_message)
9207 long int ret_offset;
9208 struct elf_link_hash_entry * myh;
9209 struct elf32_arm_link_hash_table * globals;
9211 myh = find_arm_glue (info, name, error_message);
9215 globals = elf32_arm_hash_table (info);
9216 BFD_ASSERT (globals != NULL);
9217 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9219 my_offset = myh->root.u.def.value;
9221 if ((my_offset & 0x01) == 0x01)
9224 && sym_sec->owner != NULL
9225 && !INTERWORK_FLAG (sym_sec->owner))
9228 (_("%pB(%s): warning: interworking not enabled;"
9229 " first occurrence: %pB: %s call to %s"),
9230 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
9234 myh->root.u.def.value = my_offset;
9236 if (bfd_link_pic (info)
9237 || globals->root.is_relocatable_executable
9238 || globals->pic_veneer)
9240 /* For relocatable objects we can't use absolute addresses,
9241 so construct the address from a relative offset. */
9242 /* TODO: If the offset is small it's probably worth
9243 constructing the address with adds. */
9244 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
9245 s->contents + my_offset);
9246 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
9247 s->contents + my_offset + 4);
9248 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
9249 s->contents + my_offset + 8);
9250 /* Adjust the offset by 4 for the position of the add,
9251 and 8 for the pipeline offset. */
9252 ret_offset = (val - (s->output_offset
9253 + s->output_section->vma
9256 bfd_put_32 (output_bfd, ret_offset,
9257 s->contents + my_offset + 12);
9259 else if (globals->use_blx)
9261 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
9262 s->contents + my_offset);
9264 /* It's a thumb address. Add the low order bit. */
9265 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
9266 s->contents + my_offset + 4);
9270 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
9271 s->contents + my_offset);
9273 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
9274 s->contents + my_offset + 4);
9276 /* It's a thumb address. Add the low order bit. */
9277 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
9278 s->contents + my_offset + 8);
9284 BFD_ASSERT (my_offset <= globals->arm_glue_size);
9289 /* Arm code calling a Thumb function. */
9292 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
9296 asection * input_section,
9297 bfd_byte * hit_data,
9300 bfd_signed_vma addend,
9302 char **error_message)
9304 unsigned long int tmp;
9307 long int ret_offset;
9308 struct elf_link_hash_entry * myh;
9309 struct elf32_arm_link_hash_table * globals;
9311 globals = elf32_arm_hash_table (info);
9312 BFD_ASSERT (globals != NULL);
9313 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9315 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9316 ARM2THUMB_GLUE_SECTION_NAME);
9317 BFD_ASSERT (s != NULL);
9318 BFD_ASSERT (s->contents != NULL);
9319 BFD_ASSERT (s->output_section != NULL);
9321 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
9322 sym_sec, val, s, error_message);
9326 my_offset = myh->root.u.def.value;
9327 tmp = bfd_get_32 (input_bfd, hit_data);
9328 tmp = tmp & 0xFF000000;
9330 /* Somehow these are both 4 too far, so subtract 8. */
9331 ret_offset = (s->output_offset
9333 + s->output_section->vma
9334 - (input_section->output_offset
9335 + input_section->output_section->vma
9339 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9341 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
9346 /* Populate Arm stub for an exported Thumb function. */
9349 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9351 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9353 struct elf_link_hash_entry * myh;
9354 struct elf32_arm_link_hash_entry *eh;
9355 struct elf32_arm_link_hash_table * globals;
9358 char *error_message;
9360 eh = elf32_arm_hash_entry (h);
9361 /* Allocate stubs for exported Thumb functions on v4t. */
9362 if (eh->export_glue == NULL)
9365 globals = elf32_arm_hash_table (info);
9366 BFD_ASSERT (globals != NULL);
9367 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9369 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9370 ARM2THUMB_GLUE_SECTION_NAME);
9371 BFD_ASSERT (s != NULL);
9372 BFD_ASSERT (s->contents != NULL);
9373 BFD_ASSERT (s->output_section != NULL);
9375 sec = eh->export_glue->root.u.def.section;
9377 BFD_ASSERT (sec->output_section != NULL);
9379 val = eh->export_glue->root.u.def.value + sec->output_offset
9380 + sec->output_section->vma;
9382 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9383 h->root.u.def.section->owner,
9384 globals->obfd, sec, val, s,
9390 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9393 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9398 struct elf32_arm_link_hash_table *globals;
9400 globals = elf32_arm_hash_table (info);
9401 BFD_ASSERT (globals != NULL);
9402 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9404 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9405 ARM_BX_GLUE_SECTION_NAME);
9406 BFD_ASSERT (s != NULL);
9407 BFD_ASSERT (s->contents != NULL);
9408 BFD_ASSERT (s->output_section != NULL);
9410 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9412 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9414 if ((globals->bx_glue_offset[reg] & 1) == 0)
9416 p = s->contents + glue_addr;
9417 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9418 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9419 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9420 globals->bx_glue_offset[reg] |= 1;
9423 return glue_addr + s->output_section->vma + s->output_offset;
9426 /* Generate Arm stubs for exported Thumb symbols. */
9428 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9429 struct bfd_link_info *link_info)
9431 struct elf32_arm_link_hash_table * globals;
9433 if (link_info == NULL)
9434 /* Ignore this if we are not called by the ELF backend linker. */
9437 globals = elf32_arm_hash_table (link_info);
9438 if (globals == NULL)
9441 /* If blx is available then exported Thumb symbols are OK and there is
9443 if (globals->use_blx)
9446 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9450 /* Reserve space for COUNT dynamic relocations in relocation selection
9454 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9455 bfd_size_type count)
9457 struct elf32_arm_link_hash_table *htab;
9459 htab = elf32_arm_hash_table (info);
9460 BFD_ASSERT (htab->root.dynamic_sections_created);
9463 sreloc->size += RELOC_SIZE (htab) * count;
9466 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9467 dynamic, the relocations should go in SRELOC, otherwise they should
9468 go in the special .rel.iplt section. */
9471 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9472 bfd_size_type count)
9474 struct elf32_arm_link_hash_table *htab;
9476 htab = elf32_arm_hash_table (info);
9477 if (!htab->root.dynamic_sections_created)
9478 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9481 BFD_ASSERT (sreloc != NULL);
9482 sreloc->size += RELOC_SIZE (htab) * count;
9486 /* Add relocation REL to the end of relocation section SRELOC. */
9489 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9490 asection *sreloc, Elf_Internal_Rela *rel)
9493 struct elf32_arm_link_hash_table *htab;
9495 htab = elf32_arm_hash_table (info);
9496 if (!htab->root.dynamic_sections_created
9497 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9498 sreloc = htab->root.irelplt;
9501 loc = sreloc->contents;
9502 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9503 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9505 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9508 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9509 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9513 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9514 bfd_boolean is_iplt_entry,
9515 union gotplt_union *root_plt,
9516 struct arm_plt_info *arm_plt)
9518 struct elf32_arm_link_hash_table *htab;
9522 htab = elf32_arm_hash_table (info);
9526 splt = htab->root.iplt;
9527 sgotplt = htab->root.igotplt;
9529 /* NaCl uses a special first entry in .iplt too. */
9530 if (htab->nacl_p && splt->size == 0)
9531 splt->size += htab->plt_header_size;
9533 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9534 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9538 splt = htab->root.splt;
9539 sgotplt = htab->root.sgotplt;
9543 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9544 /* For lazy binding, relocations will be put into .rel.plt, in
9545 .rel.got otherwise. */
9546 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9547 if (info->flags & DF_BIND_NOW)
9548 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
9550 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9554 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9555 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9558 /* If this is the first .plt entry, make room for the special
9560 if (splt->size == 0)
9561 splt->size += htab->plt_header_size;
9563 htab->next_tls_desc_index++;
9566 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9567 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9568 splt->size += PLT_THUMB_STUB_SIZE;
9569 root_plt->offset = splt->size;
9570 splt->size += htab->plt_entry_size;
9572 if (!htab->symbian_p)
9574 /* We also need to make an entry in the .got.plt section, which
9575 will be placed in the .got section by the linker script. */
9577 arm_plt->got_offset = sgotplt->size;
9579 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9581 /* Function descriptor takes 64 bits in GOT. */
9589 arm_movw_immediate (bfd_vma value)
9591 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9595 arm_movt_immediate (bfd_vma value)
9597 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9600 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9601 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9602 Otherwise, DYNINDX is the index of the symbol in the dynamic
9603 symbol table and SYM_VALUE is undefined.
9605 ROOT_PLT points to the offset of the PLT entry from the start of its
9606 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9607 bookkeeping information.
9609 Returns FALSE if there was a problem. */
9612 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9613 union gotplt_union *root_plt,
9614 struct arm_plt_info *arm_plt,
9615 int dynindx, bfd_vma sym_value)
9617 struct elf32_arm_link_hash_table *htab;
9623 Elf_Internal_Rela rel;
9624 bfd_vma plt_header_size;
9625 bfd_vma got_header_size;
9627 htab = elf32_arm_hash_table (info);
9629 /* Pick the appropriate sections and sizes. */
9632 splt = htab->root.iplt;
9633 sgot = htab->root.igotplt;
9634 srel = htab->root.irelplt;
9636 /* There are no reserved entries in .igot.plt, and no special
9637 first entry in .iplt. */
9638 got_header_size = 0;
9639 plt_header_size = 0;
9643 splt = htab->root.splt;
9644 sgot = htab->root.sgotplt;
9645 srel = htab->root.srelplt;
9647 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9648 plt_header_size = htab->plt_header_size;
9650 BFD_ASSERT (splt != NULL && srel != NULL);
9652 /* Fill in the entry in the procedure linkage table. */
9653 if (htab->symbian_p)
9655 BFD_ASSERT (dynindx >= 0);
9656 put_arm_insn (htab, output_bfd,
9657 elf32_arm_symbian_plt_entry[0],
9658 splt->contents + root_plt->offset);
9659 bfd_put_32 (output_bfd,
9660 elf32_arm_symbian_plt_entry[1],
9661 splt->contents + root_plt->offset + 4);
9663 /* Fill in the entry in the .rel.plt section. */
9664 rel.r_offset = (splt->output_section->vma
9665 + splt->output_offset
9666 + root_plt->offset + 4);
9667 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9669 /* Get the index in the procedure linkage table which
9670 corresponds to this symbol. This is the index of this symbol
9671 in all the symbols for which we are making plt entries. The
9672 first entry in the procedure linkage table is reserved. */
9673 plt_index = ((root_plt->offset - plt_header_size)
9674 / htab->plt_entry_size);
9678 bfd_vma got_offset, got_address, plt_address;
9679 bfd_vma got_displacement, initial_got_entry;
9682 BFD_ASSERT (sgot != NULL);
9684 /* Get the offset into the .(i)got.plt table of the entry that
9685 corresponds to this function. */
9686 got_offset = (arm_plt->got_offset & -2);
9688 /* Get the index in the procedure linkage table which
9689 corresponds to this symbol. This is the index of this symbol
9690 in all the symbols for which we are making plt entries.
9691 After the reserved .got.plt entries, all symbols appear in
9692 the same order as in .plt. */
9694 /* Function descriptor takes 8 bytes. */
9695 plt_index = (got_offset - got_header_size) / 8;
9697 plt_index = (got_offset - got_header_size) / 4;
9699 /* Calculate the address of the GOT entry. */
9700 got_address = (sgot->output_section->vma
9701 + sgot->output_offset
9704 /* ...and the address of the PLT entry. */
9705 plt_address = (splt->output_section->vma
9706 + splt->output_offset
9707 + root_plt->offset);
9709 ptr = splt->contents + root_plt->offset;
9710 if (htab->vxworks_p && bfd_link_pic (info))
9715 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9717 val = elf32_arm_vxworks_shared_plt_entry[i];
9719 val |= got_address - sgot->output_section->vma;
9721 val |= plt_index * RELOC_SIZE (htab);
9722 if (i == 2 || i == 5)
9723 bfd_put_32 (output_bfd, val, ptr);
9725 put_arm_insn (htab, output_bfd, val, ptr);
9728 else if (htab->vxworks_p)
9733 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9735 val = elf32_arm_vxworks_exec_plt_entry[i];
9739 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9741 val |= plt_index * RELOC_SIZE (htab);
9742 if (i == 2 || i == 5)
9743 bfd_put_32 (output_bfd, val, ptr);
9745 put_arm_insn (htab, output_bfd, val, ptr);
9748 loc = (htab->srelplt2->contents
9749 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9751 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9752 referencing the GOT for this PLT entry. */
9753 rel.r_offset = plt_address + 8;
9754 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9755 rel.r_addend = got_offset;
9756 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9757 loc += RELOC_SIZE (htab);
9759 /* Create the R_ARM_ABS32 relocation referencing the
9760 beginning of the PLT for this GOT entry. */
9761 rel.r_offset = got_address;
9762 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9764 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9766 else if (htab->nacl_p)
9768 /* Calculate the displacement between the PLT slot and the
9769 common tail that's part of the special initial PLT slot. */
9770 int32_t tail_displacement
9771 = ((splt->output_section->vma + splt->output_offset
9772 + ARM_NACL_PLT_TAIL_OFFSET)
9773 - (plt_address + htab->plt_entry_size + 4));
9774 BFD_ASSERT ((tail_displacement & 3) == 0);
9775 tail_displacement >>= 2;
9777 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9778 || (-tail_displacement & 0xff000000) == 0);
9780 /* Calculate the displacement between the PLT slot and the entry
9781 in the GOT. The offset accounts for the value produced by
9782 adding to pc in the penultimate instruction of the PLT stub. */
9783 got_displacement = (got_address
9784 - (plt_address + htab->plt_entry_size));
9786 /* NaCl does not support interworking at all. */
9787 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9789 put_arm_insn (htab, output_bfd,
9790 elf32_arm_nacl_plt_entry[0]
9791 | arm_movw_immediate (got_displacement),
9793 put_arm_insn (htab, output_bfd,
9794 elf32_arm_nacl_plt_entry[1]
9795 | arm_movt_immediate (got_displacement),
9797 put_arm_insn (htab, output_bfd,
9798 elf32_arm_nacl_plt_entry[2],
9800 put_arm_insn (htab, output_bfd,
9801 elf32_arm_nacl_plt_entry[3]
9802 | (tail_displacement & 0x00ffffff),
9805 else if (htab->fdpic_p)
9807 const bfd_vma *plt_entry = using_thumb_only(htab)
9808 ? elf32_arm_fdpic_thumb_plt_entry
9809 : elf32_arm_fdpic_plt_entry;
9811 /* Fill-up Thumb stub if needed. */
9812 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9814 put_thumb_insn (htab, output_bfd,
9815 elf32_arm_plt_thumb_stub[0], ptr - 4);
9816 put_thumb_insn (htab, output_bfd,
9817 elf32_arm_plt_thumb_stub[1], ptr - 2);
9819 /* As we are using 32 bit instructions even for the Thumb
9820 version, we have to use 'put_arm_insn' instead of
9821 'put_thumb_insn'. */
9822 put_arm_insn(htab, output_bfd, plt_entry[0], ptr + 0);
9823 put_arm_insn(htab, output_bfd, plt_entry[1], ptr + 4);
9824 put_arm_insn(htab, output_bfd, plt_entry[2], ptr + 8);
9825 put_arm_insn(htab, output_bfd, plt_entry[3], ptr + 12);
9826 bfd_put_32 (output_bfd, got_offset, ptr + 16);
9828 if (!(info->flags & DF_BIND_NOW))
9830 /* funcdesc_value_reloc_offset. */
9831 bfd_put_32 (output_bfd,
9832 htab->root.srelplt->reloc_count * RELOC_SIZE (htab),
9834 put_arm_insn(htab, output_bfd, plt_entry[6], ptr + 24);
9835 put_arm_insn(htab, output_bfd, plt_entry[7], ptr + 28);
9836 put_arm_insn(htab, output_bfd, plt_entry[8], ptr + 32);
9837 put_arm_insn(htab, output_bfd, plt_entry[9], ptr + 36);
9840 else if (using_thumb_only (htab))
9842 /* PR ld/16017: Generate thumb only PLT entries. */
9843 if (!using_thumb2 (htab))
9845 /* FIXME: We ought to be able to generate thumb-1 PLT
9847 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
9852 /* Calculate the displacement between the PLT slot and the entry in
9853 the GOT. The 12-byte offset accounts for the value produced by
9854 adding to pc in the 3rd instruction of the PLT stub. */
9855 got_displacement = got_address - (plt_address + 12);
9857 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9858 instead of 'put_thumb_insn'. */
9859 put_arm_insn (htab, output_bfd,
9860 elf32_thumb2_plt_entry[0]
9861 | ((got_displacement & 0x000000ff) << 16)
9862 | ((got_displacement & 0x00000700) << 20)
9863 | ((got_displacement & 0x00000800) >> 1)
9864 | ((got_displacement & 0x0000f000) >> 12),
9866 put_arm_insn (htab, output_bfd,
9867 elf32_thumb2_plt_entry[1]
9868 | ((got_displacement & 0x00ff0000) )
9869 | ((got_displacement & 0x07000000) << 4)
9870 | ((got_displacement & 0x08000000) >> 17)
9871 | ((got_displacement & 0xf0000000) >> 28),
9873 put_arm_insn (htab, output_bfd,
9874 elf32_thumb2_plt_entry[2],
9876 put_arm_insn (htab, output_bfd,
9877 elf32_thumb2_plt_entry[3],
9882 /* Calculate the displacement between the PLT slot and the
9883 entry in the GOT. The eight-byte offset accounts for the
9884 value produced by adding to pc in the first instruction
9886 got_displacement = got_address - (plt_address + 8);
9888 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9890 put_thumb_insn (htab, output_bfd,
9891 elf32_arm_plt_thumb_stub[0], ptr - 4);
9892 put_thumb_insn (htab, output_bfd,
9893 elf32_arm_plt_thumb_stub[1], ptr - 2);
9896 if (!elf32_arm_use_long_plt_entry)
9898 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9900 put_arm_insn (htab, output_bfd,
9901 elf32_arm_plt_entry_short[0]
9902 | ((got_displacement & 0x0ff00000) >> 20),
9904 put_arm_insn (htab, output_bfd,
9905 elf32_arm_plt_entry_short[1]
9906 | ((got_displacement & 0x000ff000) >> 12),
9908 put_arm_insn (htab, output_bfd,
9909 elf32_arm_plt_entry_short[2]
9910 | (got_displacement & 0x00000fff),
9912 #ifdef FOUR_WORD_PLT
9913 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9918 put_arm_insn (htab, output_bfd,
9919 elf32_arm_plt_entry_long[0]
9920 | ((got_displacement & 0xf0000000) >> 28),
9922 put_arm_insn (htab, output_bfd,
9923 elf32_arm_plt_entry_long[1]
9924 | ((got_displacement & 0x0ff00000) >> 20),
9926 put_arm_insn (htab, output_bfd,
9927 elf32_arm_plt_entry_long[2]
9928 | ((got_displacement & 0x000ff000) >> 12),
9930 put_arm_insn (htab, output_bfd,
9931 elf32_arm_plt_entry_long[3]
9932 | (got_displacement & 0x00000fff),
9937 /* Fill in the entry in the .rel(a).(i)plt section. */
9938 rel.r_offset = got_address;
9942 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9943 The dynamic linker or static executable then calls SYM_VALUE
9944 to determine the correct run-time value of the .igot.plt entry. */
9945 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9946 initial_got_entry = sym_value;
9950 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9951 used by PLT entry. */
9954 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
9955 initial_got_entry = 0;
9959 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9960 initial_got_entry = (splt->output_section->vma
9961 + splt->output_offset);
9965 /* Fill in the entry in the global offset table. */
9966 bfd_put_32 (output_bfd, initial_got_entry,
9967 sgot->contents + got_offset);
9969 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW))
9971 /* Setup initial funcdesc value. */
9972 /* FIXME: we don't support lazy binding because there is a
9973 race condition between both words getting written and
9974 some other thread attempting to read them. The ARM
9975 architecture does not have an atomic 64 bit load/store
9976 instruction that could be used to prevent it; it is
9977 recommended that threaded FDPIC applications run with the
9978 LD_BIND_NOW environment variable set. */
9979 bfd_put_32(output_bfd, plt_address + 0x18,
9980 sgot->contents + got_offset);
9981 bfd_put_32(output_bfd, -1 /*TODO*/,
9982 sgot->contents + got_offset + 4);
9987 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9992 /* For FDPIC we put PLT relocationss into .rel.got when not
9993 lazy binding otherwise we put them in .rel.plt. For now,
9994 we don't support lazy binding so put it in .rel.got. */
9995 if (info->flags & DF_BIND_NOW)
9996 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelgot, &rel);
9998 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelplt, &rel);
10002 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10003 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10010 /* Some relocations map to different relocations depending on the
10011 target. Return the real relocation. */
10014 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
10019 case R_ARM_TARGET1:
10020 if (globals->target1_is_rel)
10021 return R_ARM_REL32;
10023 return R_ARM_ABS32;
10025 case R_ARM_TARGET2:
10026 return globals->target2_reloc;
10033 /* Return the base VMA address which should be subtracted from real addresses
10034 when resolving @dtpoff relocation.
10035 This is PT_TLS segment p_vaddr. */
10038 dtpoff_base (struct bfd_link_info *info)
10040 /* If tls_sec is NULL, we should have signalled an error already. */
10041 if (elf_hash_table (info)->tls_sec == NULL)
10043 return elf_hash_table (info)->tls_sec->vma;
10046 /* Return the relocation value for @tpoff relocation
10047 if STT_TLS virtual address is ADDRESS. */
10050 tpoff (struct bfd_link_info *info, bfd_vma address)
10052 struct elf_link_hash_table *htab = elf_hash_table (info);
10055 /* If tls_sec is NULL, we should have signalled an error already. */
10056 if (htab->tls_sec == NULL)
10058 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
10059 return address - htab->tls_sec->vma + base;
10062 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
10063 VALUE is the relocation value. */
10065 static bfd_reloc_status_type
10066 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
10069 return bfd_reloc_overflow;
10071 value |= bfd_get_32 (abfd, data) & 0xfffff000;
10072 bfd_put_32 (abfd, value, data);
10073 return bfd_reloc_ok;
10076 /* Handle TLS relaxations. Relaxing is possible for symbols that use
10077 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
10078 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10080 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10081 is to then call final_link_relocate. Return other values in the
10084 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10085 the pre-relaxed code. It would be nice if the relocs were updated
10086 to match the optimization. */
10088 static bfd_reloc_status_type
10089 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
10090 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
10091 Elf_Internal_Rela *rel, unsigned long is_local)
10093 unsigned long insn;
10095 switch (ELF32_R_TYPE (rel->r_info))
10098 return bfd_reloc_notsupported;
10100 case R_ARM_TLS_GOTDESC:
10105 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10107 insn -= 5; /* THUMB */
10109 insn -= 8; /* ARM */
10111 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10112 return bfd_reloc_continue;
10114 case R_ARM_THM_TLS_DESCSEQ:
10116 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
10117 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
10121 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10123 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10127 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10130 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
10132 else if ((insn & 0xff87) == 0x4780) /* blx rx */
10136 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10139 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
10140 contents + rel->r_offset);
10144 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10145 /* It's a 32 bit instruction, fetch the rest of it for
10146 error generation. */
10147 insn = (insn << 16)
10148 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
10150 /* xgettext:c-format */
10151 (_("%pB(%pA+%#" PRIx64 "): "
10152 "unexpected %s instruction '%#lx' in TLS trampoline"),
10153 input_bfd, input_sec, (uint64_t) rel->r_offset,
10155 return bfd_reloc_notsupported;
10159 case R_ARM_TLS_DESCSEQ:
10161 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10162 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10166 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
10167 contents + rel->r_offset);
10169 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10173 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10176 bfd_put_32 (input_bfd, insn & 0xfffff000,
10177 contents + rel->r_offset);
10179 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
10183 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10186 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
10187 contents + rel->r_offset);
10192 /* xgettext:c-format */
10193 (_("%pB(%pA+%#" PRIx64 "): "
10194 "unexpected %s instruction '%#lx' in TLS trampoline"),
10195 input_bfd, input_sec, (uint64_t) rel->r_offset,
10197 return bfd_reloc_notsupported;
10201 case R_ARM_TLS_CALL:
10202 /* GD->IE relaxation, turn the instruction into 'nop' or
10203 'ldr r0, [pc,r0]' */
10204 insn = is_local ? 0xe1a00000 : 0xe79f0000;
10205 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10208 case R_ARM_THM_TLS_CALL:
10209 /* GD->IE relaxation. */
10211 /* add r0,pc; ldr r0, [r0] */
10213 else if (using_thumb2 (globals))
10220 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
10221 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
10224 return bfd_reloc_ok;
10227 /* For a given value of n, calculate the value of G_n as required to
10228 deal with group relocations. We return it in the form of an
10229 encoded constant-and-rotation, together with the final residual. If n is
10230 specified as less than zero, then final_residual is filled with the
10231 input value and no further action is performed. */
10234 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
10238 bfd_vma encoded_g_n = 0;
10239 bfd_vma residual = value; /* Also known as Y_n. */
10241 for (current_n = 0; current_n <= n; current_n++)
10245 /* Calculate which part of the value to mask. */
10252 /* Determine the most significant bit in the residual and
10253 align the resulting value to a 2-bit boundary. */
10254 for (msb = 30; msb >= 0; msb -= 2)
10255 if (residual & (3 << msb))
10258 /* The desired shift is now (msb - 6), or zero, whichever
10265 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10266 g_n = residual & (0xff << shift);
10267 encoded_g_n = (g_n >> shift)
10268 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
10270 /* Calculate the residual for the next time around. */
10274 *final_residual = residual;
10276 return encoded_g_n;
10279 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
10280 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
10283 identify_add_or_sub (bfd_vma insn)
10285 int opcode = insn & 0x1e00000;
10287 if (opcode == 1 << 23) /* ADD */
10290 if (opcode == 1 << 22) /* SUB */
10296 /* Helper function to compute the Addend for Armv8.1-M Mainline relocations. */
10298 get_value_helper (bfd_vma plt_offset,
10300 asection *input_section,
10302 struct elf_link_hash_entry * h,
10303 struct bfd_link_info *info,
10305 Elf_Internal_Rela *rel,
10306 const char *sym_name,
10307 unsigned char st_type,
10308 struct elf32_arm_link_hash_table *globals,
10309 bfd_boolean *unresolved_reloc_p)
10312 enum arm_st_branch_type branch_type;
10313 enum elf32_arm_stub_type stub_type = arm_stub_none;
10314 struct elf32_arm_stub_hash_entry *stub_entry;
10315 struct elf32_arm_link_hash_entry *hash
10316 = (struct elf32_arm_link_hash_entry *)h;
10319 if (plt_offset != (bfd_vma) -1)
10321 value = (splt->output_section->vma
10322 + splt->output_offset
10324 value -= PLT_THUMB_STUB_SIZE;
10325 *unresolved_reloc_p = FALSE;
10328 stub_type = arm_type_of_stub (info, input_section, rel,
10329 st_type, &branch_type,
10330 hash, value, sym_sec,
10331 input_bfd, sym_name);
10333 if (stub_type != arm_stub_none)
10335 stub_entry = elf32_arm_get_stub_entry (input_section,
10339 if (stub_entry != NULL)
10341 value = (stub_entry->stub_offset
10342 + stub_entry->stub_sec->output_offset
10343 + stub_entry->stub_sec->output_section->vma);
10349 /* Perform a relocation as part of a final link. */
10351 static bfd_reloc_status_type
10352 elf32_arm_final_link_relocate (reloc_howto_type * howto,
10355 asection * input_section,
10356 bfd_byte * contents,
10357 Elf_Internal_Rela * rel,
10359 struct bfd_link_info * info,
10360 asection * sym_sec,
10361 const char * sym_name,
10362 unsigned char st_type,
10363 enum arm_st_branch_type branch_type,
10364 struct elf_link_hash_entry * h,
10365 bfd_boolean * unresolved_reloc_p,
10366 char ** error_message)
10368 unsigned long r_type = howto->type;
10369 unsigned long r_symndx;
10370 bfd_byte * hit_data = contents + rel->r_offset;
10371 bfd_vma * local_got_offsets;
10372 bfd_vma * local_tlsdesc_gotents;
10375 asection * sreloc = NULL;
10376 asection * srelgot;
10378 bfd_signed_vma signed_addend;
10379 unsigned char dynreloc_st_type;
10380 bfd_vma dynreloc_value;
10381 struct elf32_arm_link_hash_table * globals;
10382 struct elf32_arm_link_hash_entry *eh;
10383 union gotplt_union *root_plt;
10384 struct arm_plt_info *arm_plt;
10385 bfd_vma plt_offset;
10386 bfd_vma gotplt_offset;
10387 bfd_boolean has_iplt_entry;
10388 bfd_boolean resolved_to_zero;
10390 globals = elf32_arm_hash_table (info);
10391 if (globals == NULL)
10392 return bfd_reloc_notsupported;
10394 BFD_ASSERT (is_arm_elf (input_bfd));
10395 BFD_ASSERT (howto != NULL);
10397 /* Some relocation types map to different relocations depending on the
10398 target. We pick the right one here. */
10399 r_type = arm_real_reloc_type (globals, r_type);
10401 /* It is possible to have linker relaxations on some TLS access
10402 models. Update our information here. */
10403 r_type = elf32_arm_tls_transition (info, r_type, h);
10405 if (r_type != howto->type)
10406 howto = elf32_arm_howto_from_type (r_type);
10408 eh = (struct elf32_arm_link_hash_entry *) h;
10409 sgot = globals->root.sgot;
10410 local_got_offsets = elf_local_got_offsets (input_bfd);
10411 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
10413 if (globals->root.dynamic_sections_created)
10414 srelgot = globals->root.srelgot;
10418 r_symndx = ELF32_R_SYM (rel->r_info);
10420 if (globals->use_rel)
10422 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
10424 if (addend & ((howto->src_mask + 1) >> 1))
10426 signed_addend = -1;
10427 signed_addend &= ~ howto->src_mask;
10428 signed_addend |= addend;
10431 signed_addend = addend;
10434 addend = signed_addend = rel->r_addend;
10436 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10437 are resolving a function call relocation. */
10438 if (using_thumb_only (globals)
10439 && (r_type == R_ARM_THM_CALL
10440 || r_type == R_ARM_THM_JUMP24)
10441 && branch_type == ST_BRANCH_TO_ARM)
10442 branch_type = ST_BRANCH_TO_THUMB;
10444 /* Record the symbol information that should be used in dynamic
10446 dynreloc_st_type = st_type;
10447 dynreloc_value = value;
10448 if (branch_type == ST_BRANCH_TO_THUMB)
10449 dynreloc_value |= 1;
10451 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10452 VALUE appropriately for relocations that we resolve at link time. */
10453 has_iplt_entry = FALSE;
10454 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
10456 && root_plt->offset != (bfd_vma) -1)
10458 plt_offset = root_plt->offset;
10459 gotplt_offset = arm_plt->got_offset;
10461 if (h == NULL || eh->is_iplt)
10463 has_iplt_entry = TRUE;
10464 splt = globals->root.iplt;
10466 /* Populate .iplt entries here, because not all of them will
10467 be seen by finish_dynamic_symbol. The lower bit is set if
10468 we have already populated the entry. */
10469 if (plt_offset & 1)
10473 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10474 -1, dynreloc_value))
10475 root_plt->offset |= 1;
10477 return bfd_reloc_notsupported;
10480 /* Static relocations always resolve to the .iplt entry. */
10481 st_type = STT_FUNC;
10482 value = (splt->output_section->vma
10483 + splt->output_offset
10485 branch_type = ST_BRANCH_TO_ARM;
10487 /* If there are non-call relocations that resolve to the .iplt
10488 entry, then all dynamic ones must too. */
10489 if (arm_plt->noncall_refcount != 0)
10491 dynreloc_st_type = st_type;
10492 dynreloc_value = value;
10496 /* We populate the .plt entry in finish_dynamic_symbol. */
10497 splt = globals->root.splt;
10502 plt_offset = (bfd_vma) -1;
10503 gotplt_offset = (bfd_vma) -1;
10506 resolved_to_zero = (h != NULL
10507 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
10512 /* We don't need to find a value for this symbol. It's just a
10514 *unresolved_reloc_p = FALSE;
10515 return bfd_reloc_ok;
10518 if (!globals->vxworks_p)
10519 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10520 /* Fall through. */
10524 case R_ARM_ABS32_NOI:
10526 case R_ARM_REL32_NOI:
10532 /* Handle relocations which should use the PLT entry. ABS32/REL32
10533 will use the symbol's value, which may point to a PLT entry, but we
10534 don't need to handle that here. If we created a PLT entry, all
10535 branches in this object should go to it, except if the PLT is too
10536 far away, in which case a long branch stub should be inserted. */
10537 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10538 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10539 && r_type != R_ARM_CALL
10540 && r_type != R_ARM_JUMP24
10541 && r_type != R_ARM_PLT32)
10542 && plt_offset != (bfd_vma) -1)
10544 /* If we've created a .plt section, and assigned a PLT entry
10545 to this function, it must either be a STT_GNU_IFUNC reference
10546 or not be known to bind locally. In other cases, we should
10547 have cleared the PLT entry by now. */
10548 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10550 value = (splt->output_section->vma
10551 + splt->output_offset
10553 *unresolved_reloc_p = FALSE;
10554 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10555 contents, rel->r_offset, value,
10559 /* When generating a shared object or relocatable executable, these
10560 relocations are copied into the output file to be resolved at
10562 if ((bfd_link_pic (info)
10563 || globals->root.is_relocatable_executable
10564 || globals->fdpic_p)
10565 && (input_section->flags & SEC_ALLOC)
10566 && !(globals->vxworks_p
10567 && strcmp (input_section->output_section->name,
10569 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10570 || !SYMBOL_CALLS_LOCAL (info, h))
10571 && !(input_bfd == globals->stub_bfd
10572 && strstr (input_section->name, STUB_SUFFIX))
10574 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10575 && !resolved_to_zero)
10576 || h->root.type != bfd_link_hash_undefweak)
10577 && r_type != R_ARM_PC24
10578 && r_type != R_ARM_CALL
10579 && r_type != R_ARM_JUMP24
10580 && r_type != R_ARM_PREL31
10581 && r_type != R_ARM_PLT32)
10583 Elf_Internal_Rela outrel;
10584 bfd_boolean skip, relocate;
10587 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10588 && !h->def_regular)
10590 char *v = _("shared object");
10592 if (bfd_link_executable (info))
10593 v = _("PIE executable");
10596 (_("%pB: relocation %s against external or undefined symbol `%s'"
10597 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10598 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10599 return bfd_reloc_notsupported;
10602 *unresolved_reloc_p = FALSE;
10604 if (sreloc == NULL && globals->root.dynamic_sections_created)
10606 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10607 ! globals->use_rel);
10609 if (sreloc == NULL)
10610 return bfd_reloc_notsupported;
10616 outrel.r_addend = addend;
10618 _bfd_elf_section_offset (output_bfd, info, input_section,
10620 if (outrel.r_offset == (bfd_vma) -1)
10622 else if (outrel.r_offset == (bfd_vma) -2)
10623 skip = TRUE, relocate = TRUE;
10624 outrel.r_offset += (input_section->output_section->vma
10625 + input_section->output_offset);
10628 memset (&outrel, 0, sizeof outrel);
10630 && h->dynindx != -1
10631 && (!bfd_link_pic (info)
10632 || !(bfd_link_pie (info)
10633 || SYMBOLIC_BIND (info, h))
10634 || !h->def_regular))
10635 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10640 /* This symbol is local, or marked to become local. */
10641 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI
10642 || (globals->fdpic_p && !bfd_link_pic(info)));
10643 if (globals->symbian_p)
10647 /* On Symbian OS, the data segment and text segement
10648 can be relocated independently. Therefore, we
10649 must indicate the segment to which this
10650 relocation is relative. The BPABI allows us to
10651 use any symbol in the right segment; we just use
10652 the section symbol as it is convenient. (We
10653 cannot use the symbol given by "h" directly as it
10654 will not appear in the dynamic symbol table.)
10656 Note that the dynamic linker ignores the section
10657 symbol value, so we don't subtract osec->vma
10658 from the emitted reloc addend. */
10660 osec = sym_sec->output_section;
10662 osec = input_section->output_section;
10663 symbol = elf_section_data (osec)->dynindx;
10666 struct elf_link_hash_table *htab = elf_hash_table (info);
10668 if ((osec->flags & SEC_READONLY) == 0
10669 && htab->data_index_section != NULL)
10670 osec = htab->data_index_section;
10672 osec = htab->text_index_section;
10673 symbol = elf_section_data (osec)->dynindx;
10675 BFD_ASSERT (symbol != 0);
10678 /* On SVR4-ish systems, the dynamic loader cannot
10679 relocate the text and data segments independently,
10680 so the symbol does not matter. */
10682 if (dynreloc_st_type == STT_GNU_IFUNC)
10683 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10684 to the .iplt entry. Instead, every non-call reference
10685 must use an R_ARM_IRELATIVE relocation to obtain the
10686 correct run-time address. */
10687 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10688 else if (globals->fdpic_p && !bfd_link_pic(info))
10691 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10692 if (globals->use_rel)
10695 outrel.r_addend += dynreloc_value;
10699 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
10701 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10703 /* If this reloc is against an external symbol, we do not want to
10704 fiddle with the addend. Otherwise, we need to include the symbol
10705 value so that it becomes an addend for the dynamic reloc. */
10707 return bfd_reloc_ok;
10709 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10710 contents, rel->r_offset,
10711 dynreloc_value, (bfd_vma) 0);
10713 else switch (r_type)
10716 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10718 case R_ARM_XPC25: /* Arm BLX instruction. */
10721 case R_ARM_PC24: /* Arm B/BL instruction. */
10724 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10726 if (r_type == R_ARM_XPC25)
10728 /* Check for Arm calling Arm function. */
10729 /* FIXME: Should we translate the instruction into a BL
10730 instruction instead ? */
10731 if (branch_type != ST_BRANCH_TO_THUMB)
10733 (_("\%pB: warning: %s BLX instruction targets"
10734 " %s function '%s'"),
10736 "ARM", h ? h->root.root.string : "(local)");
10738 else if (r_type == R_ARM_PC24)
10740 /* Check for Arm calling Thumb function. */
10741 if (branch_type == ST_BRANCH_TO_THUMB)
10743 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10744 output_bfd, input_section,
10745 hit_data, sym_sec, rel->r_offset,
10746 signed_addend, value,
10748 return bfd_reloc_ok;
10750 return bfd_reloc_dangerous;
10754 /* Check if a stub has to be inserted because the
10755 destination is too far or we are changing mode. */
10756 if ( r_type == R_ARM_CALL
10757 || r_type == R_ARM_JUMP24
10758 || r_type == R_ARM_PLT32)
10760 enum elf32_arm_stub_type stub_type = arm_stub_none;
10761 struct elf32_arm_link_hash_entry *hash;
10763 hash = (struct elf32_arm_link_hash_entry *) h;
10764 stub_type = arm_type_of_stub (info, input_section, rel,
10765 st_type, &branch_type,
10766 hash, value, sym_sec,
10767 input_bfd, sym_name);
10769 if (stub_type != arm_stub_none)
10771 /* The target is out of reach, so redirect the
10772 branch to the local stub for this function. */
10773 stub_entry = elf32_arm_get_stub_entry (input_section,
10778 if (stub_entry != NULL)
10779 value = (stub_entry->stub_offset
10780 + stub_entry->stub_sec->output_offset
10781 + stub_entry->stub_sec->output_section->vma);
10783 if (plt_offset != (bfd_vma) -1)
10784 *unresolved_reloc_p = FALSE;
10789 /* If the call goes through a PLT entry, make sure to
10790 check distance to the right destination address. */
10791 if (plt_offset != (bfd_vma) -1)
10793 value = (splt->output_section->vma
10794 + splt->output_offset
10796 *unresolved_reloc_p = FALSE;
10797 /* The PLT entry is in ARM mode, regardless of the
10798 target function. */
10799 branch_type = ST_BRANCH_TO_ARM;
10804 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10806 S is the address of the symbol in the relocation.
10807 P is address of the instruction being relocated.
10808 A is the addend (extracted from the instruction) in bytes.
10810 S is held in 'value'.
10811 P is the base address of the section containing the
10812 instruction plus the offset of the reloc into that
10814 (input_section->output_section->vma +
10815 input_section->output_offset +
10817 A is the addend, converted into bytes, ie:
10818 (signed_addend * 4)
10820 Note: None of these operations have knowledge of the pipeline
10821 size of the processor, thus it is up to the assembler to
10822 encode this information into the addend. */
10823 value -= (input_section->output_section->vma
10824 + input_section->output_offset);
10825 value -= rel->r_offset;
10826 if (globals->use_rel)
10827 value += (signed_addend << howto->size);
10829 /* RELA addends do not have to be adjusted by howto->size. */
10830 value += signed_addend;
10832 signed_addend = value;
10833 signed_addend >>= howto->rightshift;
10835 /* A branch to an undefined weak symbol is turned into a jump to
10836 the next instruction unless a PLT entry will be created.
10837 Do the same for local undefined symbols (but not for STN_UNDEF).
10838 The jump to the next instruction is optimized as a NOP depending
10839 on the architecture. */
10840 if (h ? (h->root.type == bfd_link_hash_undefweak
10841 && plt_offset == (bfd_vma) -1)
10842 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10844 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10846 if (arch_has_arm_nop (globals))
10847 value |= 0x0320f000;
10849 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10853 /* Perform a signed range check. */
10854 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
10855 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10856 return bfd_reloc_overflow;
10858 addend = (value & 2);
10860 value = (signed_addend & howto->dst_mask)
10861 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10863 if (r_type == R_ARM_CALL)
10865 /* Set the H bit in the BLX instruction. */
10866 if (branch_type == ST_BRANCH_TO_THUMB)
10869 value |= (1 << 24);
10871 value &= ~(bfd_vma)(1 << 24);
10874 /* Select the correct instruction (BL or BLX). */
10875 /* Only if we are not handling a BL to a stub. In this
10876 case, mode switching is performed by the stub. */
10877 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10878 value |= (1 << 28);
10879 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10881 value &= ~(bfd_vma)(1 << 28);
10882 value |= (1 << 24);
10891 if (branch_type == ST_BRANCH_TO_THUMB)
10895 case R_ARM_ABS32_NOI:
10901 if (branch_type == ST_BRANCH_TO_THUMB)
10903 value -= (input_section->output_section->vma
10904 + input_section->output_offset + rel->r_offset);
10907 case R_ARM_REL32_NOI:
10909 value -= (input_section->output_section->vma
10910 + input_section->output_offset + rel->r_offset);
10914 value -= (input_section->output_section->vma
10915 + input_section->output_offset + rel->r_offset);
10916 value += signed_addend;
10917 if (! h || h->root.type != bfd_link_hash_undefweak)
10919 /* Check for overflow. */
10920 if ((value ^ (value >> 1)) & (1 << 30))
10921 return bfd_reloc_overflow;
10923 value &= 0x7fffffff;
10924 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10925 if (branch_type == ST_BRANCH_TO_THUMB)
10930 bfd_put_32 (input_bfd, value, hit_data);
10931 return bfd_reloc_ok;
10934 /* PR 16202: Refectch the addend using the correct size. */
10935 if (globals->use_rel)
10936 addend = bfd_get_8 (input_bfd, hit_data);
10939 /* There is no way to tell whether the user intended to use a signed or
10940 unsigned addend. When checking for overflow we accept either,
10941 as specified by the AAELF. */
10942 if ((long) value > 0xff || (long) value < -0x80)
10943 return bfd_reloc_overflow;
10945 bfd_put_8 (input_bfd, value, hit_data);
10946 return bfd_reloc_ok;
10949 /* PR 16202: Refectch the addend using the correct size. */
10950 if (globals->use_rel)
10951 addend = bfd_get_16 (input_bfd, hit_data);
10954 /* See comment for R_ARM_ABS8. */
10955 if ((long) value > 0xffff || (long) value < -0x8000)
10956 return bfd_reloc_overflow;
10958 bfd_put_16 (input_bfd, value, hit_data);
10959 return bfd_reloc_ok;
10961 case R_ARM_THM_ABS5:
10962 /* Support ldr and str instructions for the thumb. */
10963 if (globals->use_rel)
10965 /* Need to refetch addend. */
10966 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10967 /* ??? Need to determine shift amount from operand size. */
10968 addend >>= howto->rightshift;
10972 /* ??? Isn't value unsigned? */
10973 if ((long) value > 0x1f || (long) value < -0x10)
10974 return bfd_reloc_overflow;
10976 /* ??? Value needs to be properly shifted into place first. */
10977 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10978 bfd_put_16 (input_bfd, value, hit_data);
10979 return bfd_reloc_ok;
10981 case R_ARM_THM_ALU_PREL_11_0:
10982 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10985 bfd_signed_vma relocation;
10987 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10988 | bfd_get_16 (input_bfd, hit_data + 2);
10990 if (globals->use_rel)
10992 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10993 | ((insn & (1 << 26)) >> 15);
10994 if (insn & 0xf00000)
10995 signed_addend = -signed_addend;
10998 relocation = value + signed_addend;
10999 relocation -= Pa (input_section->output_section->vma
11000 + input_section->output_offset
11003 /* PR 21523: Use an absolute value. The user of this reloc will
11004 have already selected an ADD or SUB insn appropriately. */
11005 value = llabs (relocation);
11007 if (value >= 0x1000)
11008 return bfd_reloc_overflow;
11010 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
11011 if (branch_type == ST_BRANCH_TO_THUMB)
11014 insn = (insn & 0xfb0f8f00) | (value & 0xff)
11015 | ((value & 0x700) << 4)
11016 | ((value & 0x800) << 15);
11017 if (relocation < 0)
11020 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11021 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11023 return bfd_reloc_ok;
11026 case R_ARM_THM_PC8:
11027 /* PR 10073: This reloc is not generated by the GNU toolchain,
11028 but it is supported for compatibility with third party libraries
11029 generated by other compilers, specifically the ARM/IAR. */
11032 bfd_signed_vma relocation;
11034 insn = bfd_get_16 (input_bfd, hit_data);
11036 if (globals->use_rel)
11037 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
11039 relocation = value + addend;
11040 relocation -= Pa (input_section->output_section->vma
11041 + input_section->output_offset
11044 value = relocation;
11046 /* We do not check for overflow of this reloc. Although strictly
11047 speaking this is incorrect, it appears to be necessary in order
11048 to work with IAR generated relocs. Since GCC and GAS do not
11049 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
11050 a problem for them. */
11053 insn = (insn & 0xff00) | (value >> 2);
11055 bfd_put_16 (input_bfd, insn, hit_data);
11057 return bfd_reloc_ok;
11060 case R_ARM_THM_PC12:
11061 /* Corresponds to: ldr.w reg, [pc, #offset]. */
11064 bfd_signed_vma relocation;
11066 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
11067 | bfd_get_16 (input_bfd, hit_data + 2);
11069 if (globals->use_rel)
11071 signed_addend = insn & 0xfff;
11072 if (!(insn & (1 << 23)))
11073 signed_addend = -signed_addend;
11076 relocation = value + signed_addend;
11077 relocation -= Pa (input_section->output_section->vma
11078 + input_section->output_offset
11081 value = relocation;
11083 if (value >= 0x1000)
11084 return bfd_reloc_overflow;
11086 insn = (insn & 0xff7ff000) | value;
11087 if (relocation >= 0)
11090 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11091 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11093 return bfd_reloc_ok;
11096 case R_ARM_THM_XPC22:
11097 case R_ARM_THM_CALL:
11098 case R_ARM_THM_JUMP24:
11099 /* Thumb BL (branch long instruction). */
11101 bfd_vma relocation;
11102 bfd_vma reloc_sign;
11103 bfd_boolean overflow = FALSE;
11104 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11105 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11106 bfd_signed_vma reloc_signed_max;
11107 bfd_signed_vma reloc_signed_min;
11109 bfd_signed_vma signed_check;
11111 const int thumb2 = using_thumb2 (globals);
11112 const int thumb2_bl = using_thumb2_bl (globals);
11114 /* A branch to an undefined weak symbol is turned into a jump to
11115 the next instruction unless a PLT entry will be created.
11116 The jump to the next instruction is optimized as a NOP.W for
11117 Thumb-2 enabled architectures. */
11118 if (h && h->root.type == bfd_link_hash_undefweak
11119 && plt_offset == (bfd_vma) -1)
11123 bfd_put_16 (input_bfd, 0xf3af, hit_data);
11124 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
11128 bfd_put_16 (input_bfd, 0xe000, hit_data);
11129 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
11131 return bfd_reloc_ok;
11134 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
11135 with Thumb-1) involving the J1 and J2 bits. */
11136 if (globals->use_rel)
11138 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
11139 bfd_vma upper = upper_insn & 0x3ff;
11140 bfd_vma lower = lower_insn & 0x7ff;
11141 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
11142 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
11143 bfd_vma i1 = j1 ^ s ? 0 : 1;
11144 bfd_vma i2 = j2 ^ s ? 0 : 1;
11146 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
11148 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
11150 signed_addend = addend;
11153 if (r_type == R_ARM_THM_XPC22)
11155 /* Check for Thumb to Thumb call. */
11156 /* FIXME: Should we translate the instruction into a BL
11157 instruction instead ? */
11158 if (branch_type == ST_BRANCH_TO_THUMB)
11160 (_("%pB: warning: %s BLX instruction targets"
11161 " %s function '%s'"),
11162 input_bfd, "Thumb",
11163 "Thumb", h ? h->root.root.string : "(local)");
11167 /* If it is not a call to Thumb, assume call to Arm.
11168 If it is a call relative to a section name, then it is not a
11169 function call at all, but rather a long jump. Calls through
11170 the PLT do not require stubs. */
11171 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
11173 if (globals->use_blx && r_type == R_ARM_THM_CALL)
11175 /* Convert BL to BLX. */
11176 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11178 else if (( r_type != R_ARM_THM_CALL)
11179 && (r_type != R_ARM_THM_JUMP24))
11181 if (elf32_thumb_to_arm_stub
11182 (info, sym_name, input_bfd, output_bfd, input_section,
11183 hit_data, sym_sec, rel->r_offset, signed_addend, value,
11185 return bfd_reloc_ok;
11187 return bfd_reloc_dangerous;
11190 else if (branch_type == ST_BRANCH_TO_THUMB
11191 && globals->use_blx
11192 && r_type == R_ARM_THM_CALL)
11194 /* Make sure this is a BL. */
11195 lower_insn |= 0x1800;
11199 enum elf32_arm_stub_type stub_type = arm_stub_none;
11200 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
11202 /* Check if a stub has to be inserted because the destination
11204 struct elf32_arm_stub_hash_entry *stub_entry;
11205 struct elf32_arm_link_hash_entry *hash;
11207 hash = (struct elf32_arm_link_hash_entry *) h;
11209 stub_type = arm_type_of_stub (info, input_section, rel,
11210 st_type, &branch_type,
11211 hash, value, sym_sec,
11212 input_bfd, sym_name);
11214 if (stub_type != arm_stub_none)
11216 /* The target is out of reach or we are changing modes, so
11217 redirect the branch to the local stub for this
11219 stub_entry = elf32_arm_get_stub_entry (input_section,
11223 if (stub_entry != NULL)
11225 value = (stub_entry->stub_offset
11226 + stub_entry->stub_sec->output_offset
11227 + stub_entry->stub_sec->output_section->vma);
11229 if (plt_offset != (bfd_vma) -1)
11230 *unresolved_reloc_p = FALSE;
11233 /* If this call becomes a call to Arm, force BLX. */
11234 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
11237 && !arm_stub_is_thumb (stub_entry->stub_type))
11238 || branch_type != ST_BRANCH_TO_THUMB)
11239 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11244 /* Handle calls via the PLT. */
11245 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
11247 value = (splt->output_section->vma
11248 + splt->output_offset
11251 if (globals->use_blx
11252 && r_type == R_ARM_THM_CALL
11253 && ! using_thumb_only (globals))
11255 /* If the Thumb BLX instruction is available, convert
11256 the BL to a BLX instruction to call the ARM-mode
11258 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11259 branch_type = ST_BRANCH_TO_ARM;
11263 if (! using_thumb_only (globals))
11264 /* Target the Thumb stub before the ARM PLT entry. */
11265 value -= PLT_THUMB_STUB_SIZE;
11266 branch_type = ST_BRANCH_TO_THUMB;
11268 *unresolved_reloc_p = FALSE;
11271 relocation = value + signed_addend;
11273 relocation -= (input_section->output_section->vma
11274 + input_section->output_offset
11277 check = relocation >> howto->rightshift;
11279 /* If this is a signed value, the rightshift just dropped
11280 leading 1 bits (assuming twos complement). */
11281 if ((bfd_signed_vma) relocation >= 0)
11282 signed_check = check;
11284 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
11286 /* Calculate the permissable maximum and minimum values for
11287 this relocation according to whether we're relocating for
11289 bitsize = howto->bitsize;
11292 reloc_signed_max = (1 << (bitsize - 1)) - 1;
11293 reloc_signed_min = ~reloc_signed_max;
11295 /* Assumes two's complement. */
11296 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11299 if ((lower_insn & 0x5000) == 0x4000)
11300 /* For a BLX instruction, make sure that the relocation is rounded up
11301 to a word boundary. This follows the semantics of the instruction
11302 which specifies that bit 1 of the target address will come from bit
11303 1 of the base address. */
11304 relocation = (relocation + 2) & ~ 3;
11306 /* Put RELOCATION back into the insn. Assumes two's complement.
11307 We use the Thumb-2 encoding, which is safe even if dealing with
11308 a Thumb-1 instruction by virtue of our overflow check above. */
11309 reloc_sign = (signed_check < 0) ? 1 : 0;
11310 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
11311 | ((relocation >> 12) & 0x3ff)
11312 | (reloc_sign << 10);
11313 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
11314 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
11315 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
11316 | ((relocation >> 1) & 0x7ff);
11318 /* Put the relocated value back in the object file: */
11319 bfd_put_16 (input_bfd, upper_insn, hit_data);
11320 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11322 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11326 case R_ARM_THM_JUMP19:
11327 /* Thumb32 conditional branch instruction. */
11329 bfd_vma relocation;
11330 bfd_boolean overflow = FALSE;
11331 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11332 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11333 bfd_signed_vma reloc_signed_max = 0xffffe;
11334 bfd_signed_vma reloc_signed_min = -0x100000;
11335 bfd_signed_vma signed_check;
11336 enum elf32_arm_stub_type stub_type = arm_stub_none;
11337 struct elf32_arm_stub_hash_entry *stub_entry;
11338 struct elf32_arm_link_hash_entry *hash;
11340 /* Need to refetch the addend, reconstruct the top three bits,
11341 and squish the two 11 bit pieces together. */
11342 if (globals->use_rel)
11344 bfd_vma S = (upper_insn & 0x0400) >> 10;
11345 bfd_vma upper = (upper_insn & 0x003f);
11346 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
11347 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
11348 bfd_vma lower = (lower_insn & 0x07ff);
11352 upper |= (!S) << 8;
11353 upper -= 0x0100; /* Sign extend. */
11355 addend = (upper << 12) | (lower << 1);
11356 signed_addend = addend;
11359 /* Handle calls via the PLT. */
11360 if (plt_offset != (bfd_vma) -1)
11362 value = (splt->output_section->vma
11363 + splt->output_offset
11365 /* Target the Thumb stub before the ARM PLT entry. */
11366 value -= PLT_THUMB_STUB_SIZE;
11367 *unresolved_reloc_p = FALSE;
11370 hash = (struct elf32_arm_link_hash_entry *)h;
11372 stub_type = arm_type_of_stub (info, input_section, rel,
11373 st_type, &branch_type,
11374 hash, value, sym_sec,
11375 input_bfd, sym_name);
11376 if (stub_type != arm_stub_none)
11378 stub_entry = elf32_arm_get_stub_entry (input_section,
11382 if (stub_entry != NULL)
11384 value = (stub_entry->stub_offset
11385 + stub_entry->stub_sec->output_offset
11386 + stub_entry->stub_sec->output_section->vma);
11390 relocation = value + signed_addend;
11391 relocation -= (input_section->output_section->vma
11392 + input_section->output_offset
11394 signed_check = (bfd_signed_vma) relocation;
11396 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11399 /* Put RELOCATION back into the insn. */
11401 bfd_vma S = (relocation & 0x00100000) >> 20;
11402 bfd_vma J2 = (relocation & 0x00080000) >> 19;
11403 bfd_vma J1 = (relocation & 0x00040000) >> 18;
11404 bfd_vma hi = (relocation & 0x0003f000) >> 12;
11405 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
11407 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
11408 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
11411 /* Put the relocated value back in the object file: */
11412 bfd_put_16 (input_bfd, upper_insn, hit_data);
11413 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11415 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11418 case R_ARM_THM_JUMP11:
11419 case R_ARM_THM_JUMP8:
11420 case R_ARM_THM_JUMP6:
11421 /* Thumb B (branch) instruction). */
11423 bfd_signed_vma relocation;
11424 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
11425 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
11426 bfd_signed_vma signed_check;
11428 /* CZB cannot jump backward. */
11429 if (r_type == R_ARM_THM_JUMP6)
11430 reloc_signed_min = 0;
11432 if (globals->use_rel)
11434 /* Need to refetch addend. */
11435 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
11436 if (addend & ((howto->src_mask + 1) >> 1))
11438 signed_addend = -1;
11439 signed_addend &= ~ howto->src_mask;
11440 signed_addend |= addend;
11443 signed_addend = addend;
11444 /* The value in the insn has been right shifted. We need to
11445 undo this, so that we can perform the address calculation
11446 in terms of bytes. */
11447 signed_addend <<= howto->rightshift;
11449 relocation = value + signed_addend;
11451 relocation -= (input_section->output_section->vma
11452 + input_section->output_offset
11455 relocation >>= howto->rightshift;
11456 signed_check = relocation;
11458 if (r_type == R_ARM_THM_JUMP6)
11459 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
11461 relocation &= howto->dst_mask;
11462 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
11464 bfd_put_16 (input_bfd, relocation, hit_data);
11466 /* Assumes two's complement. */
11467 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11468 return bfd_reloc_overflow;
11470 return bfd_reloc_ok;
11473 case R_ARM_ALU_PCREL7_0:
11474 case R_ARM_ALU_PCREL15_8:
11475 case R_ARM_ALU_PCREL23_15:
11478 bfd_vma relocation;
11480 insn = bfd_get_32 (input_bfd, hit_data);
11481 if (globals->use_rel)
11483 /* Extract the addend. */
11484 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
11485 signed_addend = addend;
11487 relocation = value + signed_addend;
11489 relocation -= (input_section->output_section->vma
11490 + input_section->output_offset
11492 insn = (insn & ~0xfff)
11493 | ((howto->bitpos << 7) & 0xf00)
11494 | ((relocation >> howto->bitpos) & 0xff);
11495 bfd_put_32 (input_bfd, value, hit_data);
11497 return bfd_reloc_ok;
11499 case R_ARM_GNU_VTINHERIT:
11500 case R_ARM_GNU_VTENTRY:
11501 return bfd_reloc_ok;
11503 case R_ARM_GOTOFF32:
11504 /* Relocation is relative to the start of the
11505 global offset table. */
11507 BFD_ASSERT (sgot != NULL);
11509 return bfd_reloc_notsupported;
11511 /* If we are addressing a Thumb function, we need to adjust the
11512 address by one, so that attempts to call the function pointer will
11513 correctly interpret it as Thumb code. */
11514 if (branch_type == ST_BRANCH_TO_THUMB)
11517 /* Note that sgot->output_offset is not involved in this
11518 calculation. We always want the start of .got. If we
11519 define _GLOBAL_OFFSET_TABLE in a different way, as is
11520 permitted by the ABI, we might have to change this
11522 value -= sgot->output_section->vma;
11523 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11524 contents, rel->r_offset, value,
11528 /* Use global offset table as symbol value. */
11529 BFD_ASSERT (sgot != NULL);
11532 return bfd_reloc_notsupported;
11534 *unresolved_reloc_p = FALSE;
11535 value = sgot->output_section->vma;
11536 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11537 contents, rel->r_offset, value,
11541 case R_ARM_GOT_PREL:
11542 /* Relocation is to the entry for this symbol in the
11543 global offset table. */
11545 return bfd_reloc_notsupported;
11547 if (dynreloc_st_type == STT_GNU_IFUNC
11548 && plt_offset != (bfd_vma) -1
11549 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11551 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11552 symbol, and the relocation resolves directly to the runtime
11553 target rather than to the .iplt entry. This means that any
11554 .got entry would be the same value as the .igot.plt entry,
11555 so there's no point creating both. */
11556 sgot = globals->root.igotplt;
11557 value = sgot->output_offset + gotplt_offset;
11559 else if (h != NULL)
11563 off = h->got.offset;
11564 BFD_ASSERT (off != (bfd_vma) -1);
11565 if ((off & 1) != 0)
11567 /* We have already processsed one GOT relocation against
11570 if (globals->root.dynamic_sections_created
11571 && !SYMBOL_REFERENCES_LOCAL (info, h))
11572 *unresolved_reloc_p = FALSE;
11576 Elf_Internal_Rela outrel;
11579 if (((h->dynindx != -1) || globals->fdpic_p)
11580 && !SYMBOL_REFERENCES_LOCAL (info, h))
11582 /* If the symbol doesn't resolve locally in a static
11583 object, we have an undefined reference. If the
11584 symbol doesn't resolve locally in a dynamic object,
11585 it should be resolved by the dynamic linker. */
11586 if (globals->root.dynamic_sections_created)
11588 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11589 *unresolved_reloc_p = FALSE;
11593 outrel.r_addend = 0;
11597 if (dynreloc_st_type == STT_GNU_IFUNC)
11598 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11599 else if (bfd_link_pic (info)
11600 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11601 || h->root.type != bfd_link_hash_undefweak))
11602 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11606 if (globals->fdpic_p)
11609 outrel.r_addend = dynreloc_value;
11612 /* The GOT entry is initialized to zero by default.
11613 See if we should install a different value. */
11614 if (outrel.r_addend != 0
11615 && (globals->use_rel || outrel.r_info == 0))
11617 bfd_put_32 (output_bfd, outrel.r_addend,
11618 sgot->contents + off);
11619 outrel.r_addend = 0;
11623 arm_elf_add_rofixup (output_bfd,
11624 elf32_arm_hash_table(info)->srofixup,
11625 sgot->output_section->vma
11626 + sgot->output_offset + off);
11628 else if (outrel.r_info != 0)
11630 outrel.r_offset = (sgot->output_section->vma
11631 + sgot->output_offset
11633 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11636 h->got.offset |= 1;
11638 value = sgot->output_offset + off;
11644 BFD_ASSERT (local_got_offsets != NULL
11645 && local_got_offsets[r_symndx] != (bfd_vma) -1);
11647 off = local_got_offsets[r_symndx];
11649 /* The offset must always be a multiple of 4. We use the
11650 least significant bit to record whether we have already
11651 generated the necessary reloc. */
11652 if ((off & 1) != 0)
11656 Elf_Internal_Rela outrel;
11659 if (dynreloc_st_type == STT_GNU_IFUNC)
11660 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11661 else if (bfd_link_pic (info))
11662 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11666 if (globals->fdpic_p)
11670 /* The GOT entry is initialized to zero by default.
11671 See if we should install a different value. */
11672 if (globals->use_rel || outrel.r_info == 0)
11673 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11676 arm_elf_add_rofixup (output_bfd,
11678 sgot->output_section->vma
11679 + sgot->output_offset + off);
11681 else if (outrel.r_info != 0)
11683 outrel.r_addend = addend + dynreloc_value;
11684 outrel.r_offset = (sgot->output_section->vma
11685 + sgot->output_offset
11687 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11690 local_got_offsets[r_symndx] |= 1;
11693 value = sgot->output_offset + off;
11695 if (r_type != R_ARM_GOT32)
11696 value += sgot->output_section->vma;
11698 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11699 contents, rel->r_offset, value,
11702 case R_ARM_TLS_LDO32:
11703 value = value - dtpoff_base (info);
11705 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11706 contents, rel->r_offset, value,
11709 case R_ARM_TLS_LDM32:
11710 case R_ARM_TLS_LDM32_FDPIC:
11717 off = globals->tls_ldm_got.offset;
11719 if ((off & 1) != 0)
11723 /* If we don't know the module number, create a relocation
11725 if (bfd_link_pic (info))
11727 Elf_Internal_Rela outrel;
11729 if (srelgot == NULL)
11732 outrel.r_addend = 0;
11733 outrel.r_offset = (sgot->output_section->vma
11734 + sgot->output_offset + off);
11735 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11737 if (globals->use_rel)
11738 bfd_put_32 (output_bfd, outrel.r_addend,
11739 sgot->contents + off);
11741 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11744 bfd_put_32 (output_bfd, 1, sgot->contents + off);
11746 globals->tls_ldm_got.offset |= 1;
11749 if (r_type == R_ARM_TLS_LDM32_FDPIC)
11751 bfd_put_32(output_bfd,
11752 globals->root.sgot->output_offset + off,
11753 contents + rel->r_offset);
11755 return bfd_reloc_ok;
11759 value = sgot->output_section->vma + sgot->output_offset + off
11760 - (input_section->output_section->vma
11761 + input_section->output_offset + rel->r_offset);
11763 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11764 contents, rel->r_offset, value,
11769 case R_ARM_TLS_CALL:
11770 case R_ARM_THM_TLS_CALL:
11771 case R_ARM_TLS_GD32:
11772 case R_ARM_TLS_GD32_FDPIC:
11773 case R_ARM_TLS_IE32:
11774 case R_ARM_TLS_IE32_FDPIC:
11775 case R_ARM_TLS_GOTDESC:
11776 case R_ARM_TLS_DESCSEQ:
11777 case R_ARM_THM_TLS_DESCSEQ:
11779 bfd_vma off, offplt;
11783 BFD_ASSERT (sgot != NULL);
11788 dyn = globals->root.dynamic_sections_created;
11789 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11790 bfd_link_pic (info),
11792 && (!bfd_link_pic (info)
11793 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11795 *unresolved_reloc_p = FALSE;
11798 off = h->got.offset;
11799 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11800 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11804 BFD_ASSERT (local_got_offsets != NULL);
11805 off = local_got_offsets[r_symndx];
11806 offplt = local_tlsdesc_gotents[r_symndx];
11807 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11810 /* Linker relaxations happens from one of the
11811 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11812 if (ELF32_R_TYPE(rel->r_info) != r_type)
11813 tls_type = GOT_TLS_IE;
11815 BFD_ASSERT (tls_type != GOT_UNKNOWN);
11817 if ((off & 1) != 0)
11821 bfd_boolean need_relocs = FALSE;
11822 Elf_Internal_Rela outrel;
11825 /* The GOT entries have not been initialized yet. Do it
11826 now, and emit any relocations. If both an IE GOT and a
11827 GD GOT are necessary, we emit the GD first. */
11829 if ((bfd_link_pic (info) || indx != 0)
11831 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11832 && !resolved_to_zero)
11833 || h->root.type != bfd_link_hash_undefweak))
11835 need_relocs = TRUE;
11836 BFD_ASSERT (srelgot != NULL);
11839 if (tls_type & GOT_TLS_GDESC)
11843 /* We should have relaxed, unless this is an undefined
11845 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11846 || bfd_link_pic (info));
11847 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11848 <= globals->root.sgotplt->size);
11850 outrel.r_addend = 0;
11851 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11852 + globals->root.sgotplt->output_offset
11854 + globals->sgotplt_jump_table_size);
11856 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11857 sreloc = globals->root.srelplt;
11858 loc = sreloc->contents;
11859 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11860 BFD_ASSERT (loc + RELOC_SIZE (globals)
11861 <= sreloc->contents + sreloc->size);
11863 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11865 /* For globals, the first word in the relocation gets
11866 the relocation index and the top bit set, or zero,
11867 if we're binding now. For locals, it gets the
11868 symbol's offset in the tls section. */
11869 bfd_put_32 (output_bfd,
11870 !h ? value - elf_hash_table (info)->tls_sec->vma
11871 : info->flags & DF_BIND_NOW ? 0
11872 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11873 globals->root.sgotplt->contents + offplt
11874 + globals->sgotplt_jump_table_size);
11876 /* Second word in the relocation is always zero. */
11877 bfd_put_32 (output_bfd, 0,
11878 globals->root.sgotplt->contents + offplt
11879 + globals->sgotplt_jump_table_size + 4);
11881 if (tls_type & GOT_TLS_GD)
11885 outrel.r_addend = 0;
11886 outrel.r_offset = (sgot->output_section->vma
11887 + sgot->output_offset
11889 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11891 if (globals->use_rel)
11892 bfd_put_32 (output_bfd, outrel.r_addend,
11893 sgot->contents + cur_off);
11895 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11898 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11899 sgot->contents + cur_off + 4);
11902 outrel.r_addend = 0;
11903 outrel.r_info = ELF32_R_INFO (indx,
11904 R_ARM_TLS_DTPOFF32);
11905 outrel.r_offset += 4;
11907 if (globals->use_rel)
11908 bfd_put_32 (output_bfd, outrel.r_addend,
11909 sgot->contents + cur_off + 4);
11911 elf32_arm_add_dynreloc (output_bfd, info,
11917 /* If we are not emitting relocations for a
11918 general dynamic reference, then we must be in a
11919 static link or an executable link with the
11920 symbol binding locally. Mark it as belonging
11921 to module 1, the executable. */
11922 bfd_put_32 (output_bfd, 1,
11923 sgot->contents + cur_off);
11924 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11925 sgot->contents + cur_off + 4);
11931 if (tls_type & GOT_TLS_IE)
11936 outrel.r_addend = value - dtpoff_base (info);
11938 outrel.r_addend = 0;
11939 outrel.r_offset = (sgot->output_section->vma
11940 + sgot->output_offset
11942 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11944 if (globals->use_rel)
11945 bfd_put_32 (output_bfd, outrel.r_addend,
11946 sgot->contents + cur_off);
11948 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11951 bfd_put_32 (output_bfd, tpoff (info, value),
11952 sgot->contents + cur_off);
11957 h->got.offset |= 1;
11959 local_got_offsets[r_symndx] |= 1;
11962 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC)
11964 else if (tls_type & GOT_TLS_GDESC)
11967 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11968 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11970 bfd_signed_vma offset;
11971 /* TLS stubs are arm mode. The original symbol is a
11972 data object, so branch_type is bogus. */
11973 branch_type = ST_BRANCH_TO_ARM;
11974 enum elf32_arm_stub_type stub_type
11975 = arm_type_of_stub (info, input_section, rel,
11976 st_type, &branch_type,
11977 (struct elf32_arm_link_hash_entry *)h,
11978 globals->tls_trampoline, globals->root.splt,
11979 input_bfd, sym_name);
11981 if (stub_type != arm_stub_none)
11983 struct elf32_arm_stub_hash_entry *stub_entry
11984 = elf32_arm_get_stub_entry
11985 (input_section, globals->root.splt, 0, rel,
11986 globals, stub_type);
11987 offset = (stub_entry->stub_offset
11988 + stub_entry->stub_sec->output_offset
11989 + stub_entry->stub_sec->output_section->vma);
11992 offset = (globals->root.splt->output_section->vma
11993 + globals->root.splt->output_offset
11994 + globals->tls_trampoline);
11996 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11998 unsigned long inst;
12000 offset -= (input_section->output_section->vma
12001 + input_section->output_offset
12002 + rel->r_offset + 8);
12004 inst = offset >> 2;
12005 inst &= 0x00ffffff;
12006 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
12010 /* Thumb blx encodes the offset in a complicated
12012 unsigned upper_insn, lower_insn;
12015 offset -= (input_section->output_section->vma
12016 + input_section->output_offset
12017 + rel->r_offset + 4);
12019 if (stub_type != arm_stub_none
12020 && arm_stub_is_thumb (stub_type))
12022 lower_insn = 0xd000;
12026 lower_insn = 0xc000;
12027 /* Round up the offset to a word boundary. */
12028 offset = (offset + 2) & ~2;
12032 upper_insn = (0xf000
12033 | ((offset >> 12) & 0x3ff)
12035 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
12036 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12037 | ((offset >> 1) & 0x7ff);
12038 bfd_put_16 (input_bfd, upper_insn, hit_data);
12039 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12040 return bfd_reloc_ok;
12043 /* These relocations needs special care, as besides the fact
12044 they point somewhere in .gotplt, the addend must be
12045 adjusted accordingly depending on the type of instruction
12047 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
12049 unsigned long data, insn;
12052 data = bfd_get_32 (input_bfd, hit_data);
12058 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
12059 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
12060 insn = (insn << 16)
12061 | bfd_get_16 (input_bfd,
12062 contents + rel->r_offset - data + 2);
12063 if ((insn & 0xf800c000) == 0xf000c000)
12066 else if ((insn & 0xffffff00) == 0x4400)
12072 /* xgettext:c-format */
12073 (_("%pB(%pA+%#" PRIx64 "): "
12074 "unexpected %s instruction '%#lx' "
12075 "referenced by TLS_GOTDESC"),
12076 input_bfd, input_section, (uint64_t) rel->r_offset,
12078 return bfd_reloc_notsupported;
12083 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
12085 switch (insn >> 24)
12087 case 0xeb: /* bl */
12088 case 0xfa: /* blx */
12092 case 0xe0: /* add */
12098 /* xgettext:c-format */
12099 (_("%pB(%pA+%#" PRIx64 "): "
12100 "unexpected %s instruction '%#lx' "
12101 "referenced by TLS_GOTDESC"),
12102 input_bfd, input_section, (uint64_t) rel->r_offset,
12104 return bfd_reloc_notsupported;
12108 value += ((globals->root.sgotplt->output_section->vma
12109 + globals->root.sgotplt->output_offset + off)
12110 - (input_section->output_section->vma
12111 + input_section->output_offset
12113 + globals->sgotplt_jump_table_size);
12116 value = ((globals->root.sgot->output_section->vma
12117 + globals->root.sgot->output_offset + off)
12118 - (input_section->output_section->vma
12119 + input_section->output_offset + rel->r_offset));
12121 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC ||
12122 r_type == R_ARM_TLS_IE32_FDPIC))
12124 /* For FDPIC relocations, resolve to the offset of the GOT
12125 entry from the start of GOT. */
12126 bfd_put_32(output_bfd,
12127 globals->root.sgot->output_offset + off,
12128 contents + rel->r_offset);
12130 return bfd_reloc_ok;
12134 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12135 contents, rel->r_offset, value,
12140 case R_ARM_TLS_LE32:
12141 if (bfd_link_dll (info))
12144 /* xgettext:c-format */
12145 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted "
12146 "in shared object"),
12147 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name);
12148 return bfd_reloc_notsupported;
12151 value = tpoff (info, value);
12153 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12154 contents, rel->r_offset, value,
12158 if (globals->fix_v4bx)
12160 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12162 /* Ensure that we have a BX instruction. */
12163 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
12165 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
12167 /* Branch to veneer. */
12169 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
12170 glue_addr -= input_section->output_section->vma
12171 + input_section->output_offset
12172 + rel->r_offset + 8;
12173 insn = (insn & 0xf0000000) | 0x0a000000
12174 | ((glue_addr >> 2) & 0x00ffffff);
12178 /* Preserve Rm (lowest four bits) and the condition code
12179 (highest four bits). Other bits encode MOV PC,Rm. */
12180 insn = (insn & 0xf000000f) | 0x01a0f000;
12183 bfd_put_32 (input_bfd, insn, hit_data);
12185 return bfd_reloc_ok;
12187 case R_ARM_MOVW_ABS_NC:
12188 case R_ARM_MOVT_ABS:
12189 case R_ARM_MOVW_PREL_NC:
12190 case R_ARM_MOVT_PREL:
12191 /* Until we properly support segment-base-relative addressing then
12192 we assume the segment base to be zero, as for the group relocations.
12193 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12194 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12195 case R_ARM_MOVW_BREL_NC:
12196 case R_ARM_MOVW_BREL:
12197 case R_ARM_MOVT_BREL:
12199 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12201 if (globals->use_rel)
12203 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
12204 signed_addend = (addend ^ 0x8000) - 0x8000;
12207 value += signed_addend;
12209 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
12210 value -= (input_section->output_section->vma
12211 + input_section->output_offset + rel->r_offset);
12213 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
12214 return bfd_reloc_overflow;
12216 if (branch_type == ST_BRANCH_TO_THUMB)
12219 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
12220 || r_type == R_ARM_MOVT_BREL)
12223 insn &= 0xfff0f000;
12224 insn |= value & 0xfff;
12225 insn |= (value & 0xf000) << 4;
12226 bfd_put_32 (input_bfd, insn, hit_data);
12228 return bfd_reloc_ok;
12230 case R_ARM_THM_MOVW_ABS_NC:
12231 case R_ARM_THM_MOVT_ABS:
12232 case R_ARM_THM_MOVW_PREL_NC:
12233 case R_ARM_THM_MOVT_PREL:
12234 /* Until we properly support segment-base-relative addressing then
12235 we assume the segment base to be zero, as for the above relocations.
12236 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12237 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12238 as R_ARM_THM_MOVT_ABS. */
12239 case R_ARM_THM_MOVW_BREL_NC:
12240 case R_ARM_THM_MOVW_BREL:
12241 case R_ARM_THM_MOVT_BREL:
12245 insn = bfd_get_16 (input_bfd, hit_data) << 16;
12246 insn |= bfd_get_16 (input_bfd, hit_data + 2);
12248 if (globals->use_rel)
12250 addend = ((insn >> 4) & 0xf000)
12251 | ((insn >> 15) & 0x0800)
12252 | ((insn >> 4) & 0x0700)
12254 signed_addend = (addend ^ 0x8000) - 0x8000;
12257 value += signed_addend;
12259 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
12260 value -= (input_section->output_section->vma
12261 + input_section->output_offset + rel->r_offset);
12263 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
12264 return bfd_reloc_overflow;
12266 if (branch_type == ST_BRANCH_TO_THUMB)
12269 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
12270 || r_type == R_ARM_THM_MOVT_BREL)
12273 insn &= 0xfbf08f00;
12274 insn |= (value & 0xf000) << 4;
12275 insn |= (value & 0x0800) << 15;
12276 insn |= (value & 0x0700) << 4;
12277 insn |= (value & 0x00ff);
12279 bfd_put_16 (input_bfd, insn >> 16, hit_data);
12280 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
12282 return bfd_reloc_ok;
12284 case R_ARM_ALU_PC_G0_NC:
12285 case R_ARM_ALU_PC_G1_NC:
12286 case R_ARM_ALU_PC_G0:
12287 case R_ARM_ALU_PC_G1:
12288 case R_ARM_ALU_PC_G2:
12289 case R_ARM_ALU_SB_G0_NC:
12290 case R_ARM_ALU_SB_G1_NC:
12291 case R_ARM_ALU_SB_G0:
12292 case R_ARM_ALU_SB_G1:
12293 case R_ARM_ALU_SB_G2:
12295 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12296 bfd_vma pc = input_section->output_section->vma
12297 + input_section->output_offset + rel->r_offset;
12298 /* sb is the origin of the *segment* containing the symbol. */
12299 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12302 bfd_signed_vma signed_value;
12305 /* Determine which group of bits to select. */
12308 case R_ARM_ALU_PC_G0_NC:
12309 case R_ARM_ALU_PC_G0:
12310 case R_ARM_ALU_SB_G0_NC:
12311 case R_ARM_ALU_SB_G0:
12315 case R_ARM_ALU_PC_G1_NC:
12316 case R_ARM_ALU_PC_G1:
12317 case R_ARM_ALU_SB_G1_NC:
12318 case R_ARM_ALU_SB_G1:
12322 case R_ARM_ALU_PC_G2:
12323 case R_ARM_ALU_SB_G2:
12331 /* If REL, extract the addend from the insn. If RELA, it will
12332 have already been fetched for us. */
12333 if (globals->use_rel)
12336 bfd_vma constant = insn & 0xff;
12337 bfd_vma rotation = (insn & 0xf00) >> 8;
12340 signed_addend = constant;
12343 /* Compensate for the fact that in the instruction, the
12344 rotation is stored in multiples of 2 bits. */
12347 /* Rotate "constant" right by "rotation" bits. */
12348 signed_addend = (constant >> rotation) |
12349 (constant << (8 * sizeof (bfd_vma) - rotation));
12352 /* Determine if the instruction is an ADD or a SUB.
12353 (For REL, this determines the sign of the addend.) */
12354 negative = identify_add_or_sub (insn);
12358 /* xgettext:c-format */
12359 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions "
12360 "are allowed for ALU group relocations"),
12361 input_bfd, input_section, (uint64_t) rel->r_offset);
12362 return bfd_reloc_overflow;
12365 signed_addend *= negative;
12368 /* Compute the value (X) to go in the place. */
12369 if (r_type == R_ARM_ALU_PC_G0_NC
12370 || r_type == R_ARM_ALU_PC_G1_NC
12371 || r_type == R_ARM_ALU_PC_G0
12372 || r_type == R_ARM_ALU_PC_G1
12373 || r_type == R_ARM_ALU_PC_G2)
12375 signed_value = value - pc + signed_addend;
12377 /* Section base relative. */
12378 signed_value = value - sb + signed_addend;
12380 /* If the target symbol is a Thumb function, then set the
12381 Thumb bit in the address. */
12382 if (branch_type == ST_BRANCH_TO_THUMB)
12385 /* Calculate the value of the relevant G_n, in encoded
12386 constant-with-rotation format. */
12387 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12390 /* Check for overflow if required. */
12391 if ((r_type == R_ARM_ALU_PC_G0
12392 || r_type == R_ARM_ALU_PC_G1
12393 || r_type == R_ARM_ALU_PC_G2
12394 || r_type == R_ARM_ALU_SB_G0
12395 || r_type == R_ARM_ALU_SB_G1
12396 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
12399 /* xgettext:c-format */
12400 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12401 "splitting %#" PRIx64 " for group relocation %s"),
12402 input_bfd, input_section, (uint64_t) rel->r_offset,
12403 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12405 return bfd_reloc_overflow;
12408 /* Mask out the value and the ADD/SUB part of the opcode; take care
12409 not to destroy the S bit. */
12410 insn &= 0xff1ff000;
12412 /* Set the opcode according to whether the value to go in the
12413 place is negative. */
12414 if (signed_value < 0)
12419 /* Encode the offset. */
12422 bfd_put_32 (input_bfd, insn, hit_data);
12424 return bfd_reloc_ok;
12426 case R_ARM_LDR_PC_G0:
12427 case R_ARM_LDR_PC_G1:
12428 case R_ARM_LDR_PC_G2:
12429 case R_ARM_LDR_SB_G0:
12430 case R_ARM_LDR_SB_G1:
12431 case R_ARM_LDR_SB_G2:
12433 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12434 bfd_vma pc = input_section->output_section->vma
12435 + input_section->output_offset + rel->r_offset;
12436 /* sb is the origin of the *segment* containing the symbol. */
12437 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12439 bfd_signed_vma signed_value;
12442 /* Determine which groups of bits to calculate. */
12445 case R_ARM_LDR_PC_G0:
12446 case R_ARM_LDR_SB_G0:
12450 case R_ARM_LDR_PC_G1:
12451 case R_ARM_LDR_SB_G1:
12455 case R_ARM_LDR_PC_G2:
12456 case R_ARM_LDR_SB_G2:
12464 /* If REL, extract the addend from the insn. If RELA, it will
12465 have already been fetched for us. */
12466 if (globals->use_rel)
12468 int negative = (insn & (1 << 23)) ? 1 : -1;
12469 signed_addend = negative * (insn & 0xfff);
12472 /* Compute the value (X) to go in the place. */
12473 if (r_type == R_ARM_LDR_PC_G0
12474 || r_type == R_ARM_LDR_PC_G1
12475 || r_type == R_ARM_LDR_PC_G2)
12477 signed_value = value - pc + signed_addend;
12479 /* Section base relative. */
12480 signed_value = value - sb + signed_addend;
12482 /* Calculate the value of the relevant G_{n-1} to obtain
12483 the residual at that stage. */
12484 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12485 group - 1, &residual);
12487 /* Check for overflow. */
12488 if (residual >= 0x1000)
12491 /* xgettext:c-format */
12492 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12493 "splitting %#" PRIx64 " for group relocation %s"),
12494 input_bfd, input_section, (uint64_t) rel->r_offset,
12495 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12497 return bfd_reloc_overflow;
12500 /* Mask out the value and U bit. */
12501 insn &= 0xff7ff000;
12503 /* Set the U bit if the value to go in the place is non-negative. */
12504 if (signed_value >= 0)
12507 /* Encode the offset. */
12510 bfd_put_32 (input_bfd, insn, hit_data);
12512 return bfd_reloc_ok;
12514 case R_ARM_LDRS_PC_G0:
12515 case R_ARM_LDRS_PC_G1:
12516 case R_ARM_LDRS_PC_G2:
12517 case R_ARM_LDRS_SB_G0:
12518 case R_ARM_LDRS_SB_G1:
12519 case R_ARM_LDRS_SB_G2:
12521 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12522 bfd_vma pc = input_section->output_section->vma
12523 + input_section->output_offset + rel->r_offset;
12524 /* sb is the origin of the *segment* containing the symbol. */
12525 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12527 bfd_signed_vma signed_value;
12530 /* Determine which groups of bits to calculate. */
12533 case R_ARM_LDRS_PC_G0:
12534 case R_ARM_LDRS_SB_G0:
12538 case R_ARM_LDRS_PC_G1:
12539 case R_ARM_LDRS_SB_G1:
12543 case R_ARM_LDRS_PC_G2:
12544 case R_ARM_LDRS_SB_G2:
12552 /* If REL, extract the addend from the insn. If RELA, it will
12553 have already been fetched for us. */
12554 if (globals->use_rel)
12556 int negative = (insn & (1 << 23)) ? 1 : -1;
12557 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
12560 /* Compute the value (X) to go in the place. */
12561 if (r_type == R_ARM_LDRS_PC_G0
12562 || r_type == R_ARM_LDRS_PC_G1
12563 || r_type == R_ARM_LDRS_PC_G2)
12565 signed_value = value - pc + signed_addend;
12567 /* Section base relative. */
12568 signed_value = value - sb + signed_addend;
12570 /* Calculate the value of the relevant G_{n-1} to obtain
12571 the residual at that stage. */
12572 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12573 group - 1, &residual);
12575 /* Check for overflow. */
12576 if (residual >= 0x100)
12579 /* xgettext:c-format */
12580 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12581 "splitting %#" PRIx64 " for group relocation %s"),
12582 input_bfd, input_section, (uint64_t) rel->r_offset,
12583 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12585 return bfd_reloc_overflow;
12588 /* Mask out the value and U bit. */
12589 insn &= 0xff7ff0f0;
12591 /* Set the U bit if the value to go in the place is non-negative. */
12592 if (signed_value >= 0)
12595 /* Encode the offset. */
12596 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
12598 bfd_put_32 (input_bfd, insn, hit_data);
12600 return bfd_reloc_ok;
12602 case R_ARM_LDC_PC_G0:
12603 case R_ARM_LDC_PC_G1:
12604 case R_ARM_LDC_PC_G2:
12605 case R_ARM_LDC_SB_G0:
12606 case R_ARM_LDC_SB_G1:
12607 case R_ARM_LDC_SB_G2:
12609 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12610 bfd_vma pc = input_section->output_section->vma
12611 + input_section->output_offset + rel->r_offset;
12612 /* sb is the origin of the *segment* containing the symbol. */
12613 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12615 bfd_signed_vma signed_value;
12618 /* Determine which groups of bits to calculate. */
12621 case R_ARM_LDC_PC_G0:
12622 case R_ARM_LDC_SB_G0:
12626 case R_ARM_LDC_PC_G1:
12627 case R_ARM_LDC_SB_G1:
12631 case R_ARM_LDC_PC_G2:
12632 case R_ARM_LDC_SB_G2:
12640 /* If REL, extract the addend from the insn. If RELA, it will
12641 have already been fetched for us. */
12642 if (globals->use_rel)
12644 int negative = (insn & (1 << 23)) ? 1 : -1;
12645 signed_addend = negative * ((insn & 0xff) << 2);
12648 /* Compute the value (X) to go in the place. */
12649 if (r_type == R_ARM_LDC_PC_G0
12650 || r_type == R_ARM_LDC_PC_G1
12651 || r_type == R_ARM_LDC_PC_G2)
12653 signed_value = value - pc + signed_addend;
12655 /* Section base relative. */
12656 signed_value = value - sb + signed_addend;
12658 /* Calculate the value of the relevant G_{n-1} to obtain
12659 the residual at that stage. */
12660 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12661 group - 1, &residual);
12663 /* Check for overflow. (The absolute value to go in the place must be
12664 divisible by four and, after having been divided by four, must
12665 fit in eight bits.) */
12666 if ((residual & 0x3) != 0 || residual >= 0x400)
12669 /* xgettext:c-format */
12670 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12671 "splitting %#" PRIx64 " for group relocation %s"),
12672 input_bfd, input_section, (uint64_t) rel->r_offset,
12673 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12675 return bfd_reloc_overflow;
12678 /* Mask out the value and U bit. */
12679 insn &= 0xff7fff00;
12681 /* Set the U bit if the value to go in the place is non-negative. */
12682 if (signed_value >= 0)
12685 /* Encode the offset. */
12686 insn |= residual >> 2;
12688 bfd_put_32 (input_bfd, insn, hit_data);
12690 return bfd_reloc_ok;
12692 case R_ARM_THM_ALU_ABS_G0_NC:
12693 case R_ARM_THM_ALU_ABS_G1_NC:
12694 case R_ARM_THM_ALU_ABS_G2_NC:
12695 case R_ARM_THM_ALU_ABS_G3_NC:
12697 const int shift_array[4] = {0, 8, 16, 24};
12698 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12699 bfd_vma addr = value;
12700 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12702 /* Compute address. */
12703 if (globals->use_rel)
12704 signed_addend = insn & 0xff;
12705 addr += signed_addend;
12706 if (branch_type == ST_BRANCH_TO_THUMB)
12708 /* Clean imm8 insn. */
12710 /* And update with correct part of address. */
12711 insn |= (addr >> shift) & 0xff;
12713 bfd_put_16 (input_bfd, insn, hit_data);
12716 *unresolved_reloc_p = FALSE;
12717 return bfd_reloc_ok;
12719 case R_ARM_GOTOFFFUNCDESC:
12723 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12724 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12725 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12726 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12729 if (bfd_link_pic(info) && dynindx == 0)
12732 /* Resolve relocation. */
12733 bfd_put_32(output_bfd, (offset + sgot->output_offset)
12734 , contents + rel->r_offset);
12735 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12737 arm_elf_fill_funcdesc(output_bfd, info,
12738 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12739 dynindx, offset, addr, dynreloc_value, seg);
12744 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12748 /* For static binaries, sym_sec can be null. */
12751 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12752 addr = dynreloc_value - sym_sec->output_section->vma;
12760 if (bfd_link_pic(info) && dynindx == 0)
12763 /* This case cannot occur since funcdesc is allocated by
12764 the dynamic loader so we cannot resolve the relocation. */
12765 if (h->dynindx != -1)
12768 /* Resolve relocation. */
12769 bfd_put_32(output_bfd, (offset + sgot->output_offset),
12770 contents + rel->r_offset);
12771 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12772 arm_elf_fill_funcdesc(output_bfd, info,
12773 &eh->fdpic_cnts.funcdesc_offset,
12774 dynindx, offset, addr, dynreloc_value, seg);
12777 *unresolved_reloc_p = FALSE;
12778 return bfd_reloc_ok;
12780 case R_ARM_GOTFUNCDESC:
12784 Elf_Internal_Rela outrel;
12786 /* Resolve relocation. */
12787 bfd_put_32(output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1)
12788 + sgot->output_offset),
12789 contents + rel->r_offset);
12790 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
12791 if(h->dynindx == -1)
12794 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12798 /* For static binaries sym_sec can be null. */
12801 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12802 addr = dynreloc_value - sym_sec->output_section->vma;
12810 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12811 arm_elf_fill_funcdesc(output_bfd, info,
12812 &eh->fdpic_cnts.funcdesc_offset,
12813 dynindx, offset, addr, dynreloc_value, seg);
12816 /* Add a dynamic relocation on GOT entry if not already done. */
12817 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0)
12819 if (h->dynindx == -1)
12821 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12822 if (h->root.type == bfd_link_hash_undefweak)
12823 bfd_put_32(output_bfd, 0, sgot->contents
12824 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12826 bfd_put_32(output_bfd, sgot->output_section->vma
12827 + sgot->output_offset
12828 + (eh->fdpic_cnts.funcdesc_offset & ~1),
12830 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12834 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12836 outrel.r_offset = sgot->output_section->vma
12837 + sgot->output_offset
12838 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1);
12839 outrel.r_addend = 0;
12840 if (h->dynindx == -1 && !bfd_link_pic(info))
12841 if (h->root.type == bfd_link_hash_undefweak)
12842 arm_elf_add_rofixup(output_bfd, globals->srofixup, -1);
12844 arm_elf_add_rofixup(output_bfd, globals->srofixup,
12847 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12848 eh->fdpic_cnts.gotfuncdesc_offset |= 1;
12853 /* Such relocation on static function should not have been
12854 emitted by the compiler. */
12858 *unresolved_reloc_p = FALSE;
12859 return bfd_reloc_ok;
12861 case R_ARM_FUNCDESC:
12865 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12866 Elf_Internal_Rela outrel;
12867 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12868 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12869 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12872 if (bfd_link_pic(info) && dynindx == 0)
12875 /* Replace static FUNCDESC relocation with a
12876 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12878 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12879 outrel.r_offset = input_section->output_section->vma
12880 + input_section->output_offset + rel->r_offset;
12881 outrel.r_addend = 0;
12882 if (bfd_link_pic(info))
12883 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12885 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12887 bfd_put_32 (input_bfd, sgot->output_section->vma
12888 + sgot->output_offset + offset, hit_data);
12890 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12891 arm_elf_fill_funcdesc(output_bfd, info,
12892 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12893 dynindx, offset, addr, dynreloc_value, seg);
12897 if (h->dynindx == -1)
12900 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12903 Elf_Internal_Rela outrel;
12905 /* For static binaries sym_sec can be null. */
12908 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12909 addr = dynreloc_value - sym_sec->output_section->vma;
12917 if (bfd_link_pic(info) && dynindx == 0)
12920 /* Replace static FUNCDESC relocation with a
12921 R_ARM_RELATIVE dynamic relocation. */
12922 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12923 outrel.r_offset = input_section->output_section->vma
12924 + input_section->output_offset + rel->r_offset;
12925 outrel.r_addend = 0;
12926 if (bfd_link_pic(info))
12927 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12929 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12931 bfd_put_32 (input_bfd, sgot->output_section->vma
12932 + sgot->output_offset + offset, hit_data);
12934 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12935 arm_elf_fill_funcdesc(output_bfd, info,
12936 &eh->fdpic_cnts.funcdesc_offset,
12937 dynindx, offset, addr, dynreloc_value, seg);
12941 Elf_Internal_Rela outrel;
12943 /* Add a dynamic relocation. */
12944 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12945 outrel.r_offset = input_section->output_section->vma
12946 + input_section->output_offset + rel->r_offset;
12947 outrel.r_addend = 0;
12948 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12952 *unresolved_reloc_p = FALSE;
12953 return bfd_reloc_ok;
12955 case R_ARM_THM_BF16:
12957 bfd_vma relocation;
12958 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12959 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12961 if (globals->use_rel)
12963 bfd_vma immA = (upper_insn & 0x001f);
12964 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12965 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12966 addend = (immA << 12);
12967 addend |= (immB << 2);
12968 addend |= (immC << 1);
12971 addend = (addend & 0x10000) ? addend - (1 << 17) : addend;
12974 value = get_value_helper (plt_offset, splt, input_section, sym_sec, h,
12975 info, input_bfd, rel, sym_name, st_type,
12976 globals, unresolved_reloc_p);
12978 relocation = value + addend;
12979 relocation -= (input_section->output_section->vma
12980 + input_section->output_offset
12983 /* Put RELOCATION back into the insn. */
12985 bfd_vma immA = (relocation & 0x0001f000) >> 12;
12986 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12987 bfd_vma immC = (relocation & 0x00000002) >> 1;
12989 upper_insn = (upper_insn & 0xffe0) | immA;
12990 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12993 /* Put the relocated value back in the object file: */
12994 bfd_put_16 (input_bfd, upper_insn, hit_data);
12995 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12997 return bfd_reloc_ok;
13000 case R_ARM_THM_BF12:
13002 bfd_vma relocation;
13003 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
13004 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
13006 if (globals->use_rel)
13008 bfd_vma immA = (upper_insn & 0x0001);
13009 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
13010 bfd_vma immC = (lower_insn & 0x0800) >> 11;
13011 addend = (immA << 12);
13012 addend |= (immB << 2);
13013 addend |= (immC << 1);
13016 addend = (addend & 0x1000) ? addend - (1 << 13) : addend;
13019 value = get_value_helper (plt_offset, splt, input_section, sym_sec, h,
13020 info, input_bfd, rel, sym_name, st_type,
13021 globals, unresolved_reloc_p);
13023 relocation = value + addend;
13024 relocation -= (input_section->output_section->vma
13025 + input_section->output_offset
13028 /* Put RELOCATION back into the insn. */
13030 bfd_vma immA = (relocation & 0x00001000) >> 12;
13031 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
13032 bfd_vma immC = (relocation & 0x00000002) >> 1;
13034 upper_insn = (upper_insn & 0xfffe) | immA;
13035 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
13038 /* Put the relocated value back in the object file: */
13039 bfd_put_16 (input_bfd, upper_insn, hit_data);
13040 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13042 return bfd_reloc_ok;
13045 case R_ARM_THM_BF18:
13047 bfd_vma relocation;
13048 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
13049 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
13051 if (globals->use_rel)
13053 bfd_vma immA = (upper_insn & 0x007f);
13054 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
13055 bfd_vma immC = (lower_insn & 0x0800) >> 11;
13056 addend = (immA << 12);
13057 addend |= (immB << 2);
13058 addend |= (immC << 1);
13061 addend = (addend & 0x40000) ? addend - (1 << 19) : addend;
13064 value = get_value_helper (plt_offset, splt, input_section, sym_sec, h,
13065 info, input_bfd, rel, sym_name, st_type,
13066 globals, unresolved_reloc_p);
13068 relocation = value + addend;
13069 relocation -= (input_section->output_section->vma
13070 + input_section->output_offset
13073 /* Put RELOCATION back into the insn. */
13075 bfd_vma immA = (relocation & 0x0007f000) >> 12;
13076 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
13077 bfd_vma immC = (relocation & 0x00000002) >> 1;
13079 upper_insn = (upper_insn & 0xff80) | immA;
13080 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
13083 /* Put the relocated value back in the object file: */
13084 bfd_put_16 (input_bfd, upper_insn, hit_data);
13085 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13087 return bfd_reloc_ok;
13091 return bfd_reloc_notsupported;
13095 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
13097 arm_add_to_rel (bfd * abfd,
13098 bfd_byte * address,
13099 reloc_howto_type * howto,
13100 bfd_signed_vma increment)
13102 bfd_signed_vma addend;
13104 if (howto->type == R_ARM_THM_CALL
13105 || howto->type == R_ARM_THM_JUMP24)
13107 int upper_insn, lower_insn;
13110 upper_insn = bfd_get_16 (abfd, address);
13111 lower_insn = bfd_get_16 (abfd, address + 2);
13112 upper = upper_insn & 0x7ff;
13113 lower = lower_insn & 0x7ff;
13115 addend = (upper << 12) | (lower << 1);
13116 addend += increment;
13119 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
13120 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
13122 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
13123 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
13129 contents = bfd_get_32 (abfd, address);
13131 /* Get the (signed) value from the instruction. */
13132 addend = contents & howto->src_mask;
13133 if (addend & ((howto->src_mask + 1) >> 1))
13135 bfd_signed_vma mask;
13138 mask &= ~ howto->src_mask;
13142 /* Add in the increment, (which is a byte value). */
13143 switch (howto->type)
13146 addend += increment;
13153 addend <<= howto->size;
13154 addend += increment;
13156 /* Should we check for overflow here ? */
13158 /* Drop any undesired bits. */
13159 addend >>= howto->rightshift;
13163 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
13165 bfd_put_32 (abfd, contents, address);
13169 #define IS_ARM_TLS_RELOC(R_TYPE) \
13170 ((R_TYPE) == R_ARM_TLS_GD32 \
13171 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
13172 || (R_TYPE) == R_ARM_TLS_LDO32 \
13173 || (R_TYPE) == R_ARM_TLS_LDM32 \
13174 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
13175 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
13176 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
13177 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
13178 || (R_TYPE) == R_ARM_TLS_LE32 \
13179 || (R_TYPE) == R_ARM_TLS_IE32 \
13180 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
13181 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
13183 /* Specific set of relocations for the gnu tls dialect. */
13184 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
13185 ((R_TYPE) == R_ARM_TLS_GOTDESC \
13186 || (R_TYPE) == R_ARM_TLS_CALL \
13187 || (R_TYPE) == R_ARM_THM_TLS_CALL \
13188 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
13189 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
13191 /* Relocate an ARM ELF section. */
13194 elf32_arm_relocate_section (bfd * output_bfd,
13195 struct bfd_link_info * info,
13197 asection * input_section,
13198 bfd_byte * contents,
13199 Elf_Internal_Rela * relocs,
13200 Elf_Internal_Sym * local_syms,
13201 asection ** local_sections)
13203 Elf_Internal_Shdr *symtab_hdr;
13204 struct elf_link_hash_entry **sym_hashes;
13205 Elf_Internal_Rela *rel;
13206 Elf_Internal_Rela *relend;
13208 struct elf32_arm_link_hash_table * globals;
13210 globals = elf32_arm_hash_table (info);
13211 if (globals == NULL)
13214 symtab_hdr = & elf_symtab_hdr (input_bfd);
13215 sym_hashes = elf_sym_hashes (input_bfd);
13218 relend = relocs + input_section->reloc_count;
13219 for (; rel < relend; rel++)
13222 reloc_howto_type * howto;
13223 unsigned long r_symndx;
13224 Elf_Internal_Sym * sym;
13226 struct elf_link_hash_entry * h;
13227 bfd_vma relocation;
13228 bfd_reloc_status_type r;
13231 bfd_boolean unresolved_reloc = FALSE;
13232 char *error_message = NULL;
13234 r_symndx = ELF32_R_SYM (rel->r_info);
13235 r_type = ELF32_R_TYPE (rel->r_info);
13236 r_type = arm_real_reloc_type (globals, r_type);
13238 if ( r_type == R_ARM_GNU_VTENTRY
13239 || r_type == R_ARM_GNU_VTINHERIT)
13242 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
13245 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
13251 if (r_symndx < symtab_hdr->sh_info)
13253 sym = local_syms + r_symndx;
13254 sym_type = ELF32_ST_TYPE (sym->st_info);
13255 sec = local_sections[r_symndx];
13257 /* An object file might have a reference to a local
13258 undefined symbol. This is a daft object file, but we
13259 should at least do something about it. V4BX & NONE
13260 relocations do not use the symbol and are explicitly
13261 allowed to use the undefined symbol, so allow those.
13262 Likewise for relocations against STN_UNDEF. */
13263 if (r_type != R_ARM_V4BX
13264 && r_type != R_ARM_NONE
13265 && r_symndx != STN_UNDEF
13266 && bfd_is_und_section (sec)
13267 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
13268 (*info->callbacks->undefined_symbol)
13269 (info, bfd_elf_string_from_elf_section
13270 (input_bfd, symtab_hdr->sh_link, sym->st_name),
13271 input_bfd, input_section,
13272 rel->r_offset, TRUE);
13274 if (globals->use_rel)
13276 relocation = (sec->output_section->vma
13277 + sec->output_offset
13279 if (!bfd_link_relocatable (info)
13280 && (sec->flags & SEC_MERGE)
13281 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13284 bfd_vma addend, value;
13288 case R_ARM_MOVW_ABS_NC:
13289 case R_ARM_MOVT_ABS:
13290 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13291 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
13292 addend = (addend ^ 0x8000) - 0x8000;
13295 case R_ARM_THM_MOVW_ABS_NC:
13296 case R_ARM_THM_MOVT_ABS:
13297 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
13299 value |= bfd_get_16 (input_bfd,
13300 contents + rel->r_offset + 2);
13301 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
13302 | ((value & 0x04000000) >> 15);
13303 addend = (addend ^ 0x8000) - 0x8000;
13307 if (howto->rightshift
13308 || (howto->src_mask & (howto->src_mask + 1)))
13311 /* xgettext:c-format */
13312 (_("%pB(%pA+%#" PRIx64 "): "
13313 "%s relocation against SEC_MERGE section"),
13314 input_bfd, input_section,
13315 (uint64_t) rel->r_offset, howto->name);
13319 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13321 /* Get the (signed) value from the instruction. */
13322 addend = value & howto->src_mask;
13323 if (addend & ((howto->src_mask + 1) >> 1))
13325 bfd_signed_vma mask;
13328 mask &= ~ howto->src_mask;
13336 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
13338 addend += msec->output_section->vma + msec->output_offset;
13340 /* Cases here must match those in the preceding
13341 switch statement. */
13344 case R_ARM_MOVW_ABS_NC:
13345 case R_ARM_MOVT_ABS:
13346 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
13347 | (addend & 0xfff);
13348 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13351 case R_ARM_THM_MOVW_ABS_NC:
13352 case R_ARM_THM_MOVT_ABS:
13353 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
13354 | (addend & 0xff) | ((addend & 0x0800) << 15);
13355 bfd_put_16 (input_bfd, value >> 16,
13356 contents + rel->r_offset);
13357 bfd_put_16 (input_bfd, value,
13358 contents + rel->r_offset + 2);
13362 value = (value & ~ howto->dst_mask)
13363 | (addend & howto->dst_mask);
13364 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13370 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13374 bfd_boolean warned, ignored;
13376 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13377 r_symndx, symtab_hdr, sym_hashes,
13378 h, sec, relocation,
13379 unresolved_reloc, warned, ignored);
13381 sym_type = h->type;
13384 if (sec != NULL && discarded_section (sec))
13385 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13386 rel, 1, relend, howto, 0, contents);
13388 if (bfd_link_relocatable (info))
13390 /* This is a relocatable link. We don't have to change
13391 anything, unless the reloc is against a section symbol,
13392 in which case we have to adjust according to where the
13393 section symbol winds up in the output section. */
13394 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13396 if (globals->use_rel)
13397 arm_add_to_rel (input_bfd, contents + rel->r_offset,
13398 howto, (bfd_signed_vma) sec->output_offset);
13400 rel->r_addend += sec->output_offset;
13406 name = h->root.root.string;
13409 name = (bfd_elf_string_from_elf_section
13410 (input_bfd, symtab_hdr->sh_link, sym->st_name));
13411 if (name == NULL || *name == '\0')
13412 name = bfd_section_name (input_bfd, sec);
13415 if (r_symndx != STN_UNDEF
13416 && r_type != R_ARM_NONE
13418 || h->root.type == bfd_link_hash_defined
13419 || h->root.type == bfd_link_hash_defweak)
13420 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
13423 ((sym_type == STT_TLS
13424 /* xgettext:c-format */
13425 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
13426 /* xgettext:c-format */
13427 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
13430 (uint64_t) rel->r_offset,
13435 /* We call elf32_arm_final_link_relocate unless we're completely
13436 done, i.e., the relaxation produced the final output we want,
13437 and we won't let anybody mess with it. Also, we have to do
13438 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
13439 both in relaxed and non-relaxed cases. */
13440 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
13441 || (IS_ARM_TLS_GNU_RELOC (r_type)
13442 && !((h ? elf32_arm_hash_entry (h)->tls_type :
13443 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
13446 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
13447 contents, rel, h == NULL);
13448 /* This may have been marked unresolved because it came from
13449 a shared library. But we've just dealt with that. */
13450 unresolved_reloc = 0;
13453 r = bfd_reloc_continue;
13455 if (r == bfd_reloc_continue)
13457 unsigned char branch_type =
13458 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
13459 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
13461 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
13462 input_section, contents, rel,
13463 relocation, info, sec, name,
13464 sym_type, branch_type, h,
13469 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13470 because such sections are not SEC_ALLOC and thus ld.so will
13471 not process them. */
13472 if (unresolved_reloc
13473 && !((input_section->flags & SEC_DEBUGGING) != 0
13475 && _bfd_elf_section_offset (output_bfd, info, input_section,
13476 rel->r_offset) != (bfd_vma) -1)
13479 /* xgettext:c-format */
13480 (_("%pB(%pA+%#" PRIx64 "): "
13481 "unresolvable %s relocation against symbol `%s'"),
13484 (uint64_t) rel->r_offset,
13486 h->root.root.string);
13490 if (r != bfd_reloc_ok)
13494 case bfd_reloc_overflow:
13495 /* If the overflowing reloc was to an undefined symbol,
13496 we have already printed one error message and there
13497 is no point complaining again. */
13498 if (!h || h->root.type != bfd_link_hash_undefined)
13499 (*info->callbacks->reloc_overflow)
13500 (info, (h ? &h->root : NULL), name, howto->name,
13501 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
13504 case bfd_reloc_undefined:
13505 (*info->callbacks->undefined_symbol)
13506 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
13509 case bfd_reloc_outofrange:
13510 error_message = _("out of range");
13513 case bfd_reloc_notsupported:
13514 error_message = _("unsupported relocation");
13517 case bfd_reloc_dangerous:
13518 /* error_message should already be set. */
13522 error_message = _("unknown error");
13523 /* Fall through. */
13526 BFD_ASSERT (error_message != NULL);
13527 (*info->callbacks->reloc_dangerous)
13528 (info, error_message, input_bfd, input_section, rel->r_offset);
13537 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
13538 adds the edit to the start of the list. (The list must be built in order of
13539 ascending TINDEX: the function's callers are primarily responsible for
13540 maintaining that condition). */
13543 add_unwind_table_edit (arm_unwind_table_edit **head,
13544 arm_unwind_table_edit **tail,
13545 arm_unwind_edit_type type,
13546 asection *linked_section,
13547 unsigned int tindex)
13549 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
13550 xmalloc (sizeof (arm_unwind_table_edit));
13552 new_edit->type = type;
13553 new_edit->linked_section = linked_section;
13554 new_edit->index = tindex;
13558 new_edit->next = NULL;
13561 (*tail)->next = new_edit;
13563 (*tail) = new_edit;
13566 (*head) = new_edit;
13570 new_edit->next = *head;
13579 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
13581 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
13583 adjust_exidx_size(asection *exidx_sec, int adjust)
13587 if (!exidx_sec->rawsize)
13588 exidx_sec->rawsize = exidx_sec->size;
13590 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
13591 out_sec = exidx_sec->output_section;
13592 /* Adjust size of output section. */
13593 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
13596 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
13598 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
13600 struct _arm_elf_section_data *exidx_arm_data;
13602 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13603 add_unwind_table_edit (
13604 &exidx_arm_data->u.exidx.unwind_edit_list,
13605 &exidx_arm_data->u.exidx.unwind_edit_tail,
13606 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
13608 exidx_arm_data->additional_reloc_count++;
13610 adjust_exidx_size(exidx_sec, 8);
13613 /* Scan .ARM.exidx tables, and create a list describing edits which should be
13614 made to those tables, such that:
13616 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13617 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
13618 codes which have been inlined into the index).
13620 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13622 The edits are applied when the tables are written
13623 (in elf32_arm_write_section). */
13626 elf32_arm_fix_exidx_coverage (asection **text_section_order,
13627 unsigned int num_text_sections,
13628 struct bfd_link_info *info,
13629 bfd_boolean merge_exidx_entries)
13632 unsigned int last_second_word = 0, i;
13633 asection *last_exidx_sec = NULL;
13634 asection *last_text_sec = NULL;
13635 int last_unwind_type = -1;
13637 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13639 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
13643 for (sec = inp->sections; sec != NULL; sec = sec->next)
13645 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
13646 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
13648 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
13651 if (elf_sec->linked_to)
13653 Elf_Internal_Shdr *linked_hdr
13654 = &elf_section_data (elf_sec->linked_to)->this_hdr;
13655 struct _arm_elf_section_data *linked_sec_arm_data
13656 = get_arm_elf_section_data (linked_hdr->bfd_section);
13658 if (linked_sec_arm_data == NULL)
13661 /* Link this .ARM.exidx section back from the text section it
13663 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
13668 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13669 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
13670 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
13672 for (i = 0; i < num_text_sections; i++)
13674 asection *sec = text_section_order[i];
13675 asection *exidx_sec;
13676 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
13677 struct _arm_elf_section_data *exidx_arm_data;
13678 bfd_byte *contents = NULL;
13679 int deleted_exidx_bytes = 0;
13681 arm_unwind_table_edit *unwind_edit_head = NULL;
13682 arm_unwind_table_edit *unwind_edit_tail = NULL;
13683 Elf_Internal_Shdr *hdr;
13686 if (arm_data == NULL)
13689 exidx_sec = arm_data->u.text.arm_exidx_sec;
13690 if (exidx_sec == NULL)
13692 /* Section has no unwind data. */
13693 if (last_unwind_type == 0 || !last_exidx_sec)
13696 /* Ignore zero sized sections. */
13697 if (sec->size == 0)
13700 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13701 last_unwind_type = 0;
13705 /* Skip /DISCARD/ sections. */
13706 if (bfd_is_abs_section (exidx_sec->output_section))
13709 hdr = &elf_section_data (exidx_sec)->this_hdr;
13710 if (hdr->sh_type != SHT_ARM_EXIDX)
13713 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13714 if (exidx_arm_data == NULL)
13717 ibfd = exidx_sec->owner;
13719 if (hdr->contents != NULL)
13720 contents = hdr->contents;
13721 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
13725 if (last_unwind_type > 0)
13727 unsigned int first_word = bfd_get_32 (ibfd, contents);
13728 /* Add cantunwind if first unwind item does not match section
13730 if (first_word != sec->vma)
13732 insert_cantunwind_after (last_text_sec, last_exidx_sec);
13733 last_unwind_type = 0;
13737 for (j = 0; j < hdr->sh_size; j += 8)
13739 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
13743 /* An EXIDX_CANTUNWIND entry. */
13744 if (second_word == 1)
13746 if (last_unwind_type == 0)
13750 /* Inlined unwinding data. Merge if equal to previous. */
13751 else if ((second_word & 0x80000000) != 0)
13753 if (merge_exidx_entries
13754 && last_second_word == second_word && last_unwind_type == 1)
13757 last_second_word = second_word;
13759 /* Normal table entry. In theory we could merge these too,
13760 but duplicate entries are likely to be much less common. */
13764 if (elide && !bfd_link_relocatable (info))
13766 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
13767 DELETE_EXIDX_ENTRY, NULL, j / 8);
13769 deleted_exidx_bytes += 8;
13772 last_unwind_type = unwind_type;
13775 /* Free contents if we allocated it ourselves. */
13776 if (contents != hdr->contents)
13779 /* Record edits to be applied later (in elf32_arm_write_section). */
13780 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
13781 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
13783 if (deleted_exidx_bytes > 0)
13784 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
13786 last_exidx_sec = exidx_sec;
13787 last_text_sec = sec;
13790 /* Add terminating CANTUNWIND entry. */
13791 if (!bfd_link_relocatable (info) && last_exidx_sec
13792 && last_unwind_type != 0)
13793 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13799 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
13800 bfd *ibfd, const char *name)
13802 asection *sec, *osec;
13804 sec = bfd_get_linker_section (ibfd, name);
13805 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
13808 osec = sec->output_section;
13809 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
13812 if (! bfd_set_section_contents (obfd, osec, sec->contents,
13813 sec->output_offset, sec->size))
13820 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
13822 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
13823 asection *sec, *osec;
13825 if (globals == NULL)
13828 /* Invoke the regular ELF backend linker to do all the work. */
13829 if (!bfd_elf_final_link (abfd, info))
13832 /* Process stub sections (eg BE8 encoding, ...). */
13833 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
13835 for (i=0; i<htab->top_id; i++)
13837 sec = htab->stub_group[i].stub_sec;
13838 /* Only process it once, in its link_sec slot. */
13839 if (sec && i == htab->stub_group[i].link_sec->id)
13841 osec = sec->output_section;
13842 elf32_arm_write_section (abfd, info, sec, sec->contents);
13843 if (! bfd_set_section_contents (abfd, osec, sec->contents,
13844 sec->output_offset, sec->size))
13849 /* Write out any glue sections now that we have created all the
13851 if (globals->bfd_of_glue_owner != NULL)
13853 if (! elf32_arm_output_glue_section (info, abfd,
13854 globals->bfd_of_glue_owner,
13855 ARM2THUMB_GLUE_SECTION_NAME))
13858 if (! elf32_arm_output_glue_section (info, abfd,
13859 globals->bfd_of_glue_owner,
13860 THUMB2ARM_GLUE_SECTION_NAME))
13863 if (! elf32_arm_output_glue_section (info, abfd,
13864 globals->bfd_of_glue_owner,
13865 VFP11_ERRATUM_VENEER_SECTION_NAME))
13868 if (! elf32_arm_output_glue_section (info, abfd,
13869 globals->bfd_of_glue_owner,
13870 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
13873 if (! elf32_arm_output_glue_section (info, abfd,
13874 globals->bfd_of_glue_owner,
13875 ARM_BX_GLUE_SECTION_NAME))
13882 /* Return a best guess for the machine number based on the attributes. */
13884 static unsigned int
13885 bfd_arm_get_mach_from_attributes (bfd * abfd)
13887 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
13891 case TAG_CPU_ARCH_PRE_V4: return bfd_mach_arm_3M;
13892 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
13893 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
13894 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
13896 case TAG_CPU_ARCH_V5TE:
13900 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
13901 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
13905 if (strcmp (name, "IWMMXT2") == 0)
13906 return bfd_mach_arm_iWMMXt2;
13908 if (strcmp (name, "IWMMXT") == 0)
13909 return bfd_mach_arm_iWMMXt;
13911 if (strcmp (name, "XSCALE") == 0)
13915 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
13916 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
13919 case 1: return bfd_mach_arm_iWMMXt;
13920 case 2: return bfd_mach_arm_iWMMXt2;
13921 default: return bfd_mach_arm_XScale;
13926 return bfd_mach_arm_5TE;
13929 case TAG_CPU_ARCH_V5TEJ:
13930 return bfd_mach_arm_5TEJ;
13931 case TAG_CPU_ARCH_V6:
13932 return bfd_mach_arm_6;
13933 case TAG_CPU_ARCH_V6KZ:
13934 return bfd_mach_arm_6KZ;
13935 case TAG_CPU_ARCH_V6T2:
13936 return bfd_mach_arm_6T2;
13937 case TAG_CPU_ARCH_V6K:
13938 return bfd_mach_arm_6K;
13939 case TAG_CPU_ARCH_V7:
13940 return bfd_mach_arm_7;
13941 case TAG_CPU_ARCH_V6_M:
13942 return bfd_mach_arm_6M;
13943 case TAG_CPU_ARCH_V6S_M:
13944 return bfd_mach_arm_6SM;
13945 case TAG_CPU_ARCH_V7E_M:
13946 return bfd_mach_arm_7EM;
13947 case TAG_CPU_ARCH_V8:
13948 return bfd_mach_arm_8;
13949 case TAG_CPU_ARCH_V8R:
13950 return bfd_mach_arm_8R;
13951 case TAG_CPU_ARCH_V8M_BASE:
13952 return bfd_mach_arm_8M_BASE;
13953 case TAG_CPU_ARCH_V8M_MAIN:
13954 return bfd_mach_arm_8M_MAIN;
13955 case TAG_CPU_ARCH_V8_1M_MAIN:
13956 return bfd_mach_arm_8_1M_MAIN;
13959 /* Force entry to be added for any new known Tag_CPU_arch value. */
13960 BFD_ASSERT (arch > MAX_TAG_CPU_ARCH);
13962 /* Unknown Tag_CPU_arch value. */
13963 return bfd_mach_arm_unknown;
13967 /* Set the right machine number. */
13970 elf32_arm_object_p (bfd *abfd)
13974 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
13976 if (mach == bfd_mach_arm_unknown)
13978 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13979 mach = bfd_mach_arm_ep9312;
13981 mach = bfd_arm_get_mach_from_attributes (abfd);
13984 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
13988 /* Function to keep ARM specific flags in the ELF header. */
13991 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
13993 if (elf_flags_init (abfd)
13994 && elf_elfheader (abfd)->e_flags != flags)
13996 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13998 if (flags & EF_ARM_INTERWORK)
14000 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
14004 (_("warning: clearing the interworking flag of %pB due to outside request"),
14010 elf_elfheader (abfd)->e_flags = flags;
14011 elf_flags_init (abfd) = TRUE;
14017 /* Copy backend specific data from one object module to another. */
14020 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
14023 flagword out_flags;
14025 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
14028 in_flags = elf_elfheader (ibfd)->e_flags;
14029 out_flags = elf_elfheader (obfd)->e_flags;
14031 if (elf_flags_init (obfd)
14032 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
14033 && in_flags != out_flags)
14035 /* Cannot mix APCS26 and APCS32 code. */
14036 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
14039 /* Cannot mix float APCS and non-float APCS code. */
14040 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
14043 /* If the src and dest have different interworking flags
14044 then turn off the interworking bit. */
14045 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
14047 if (out_flags & EF_ARM_INTERWORK)
14049 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
14052 in_flags &= ~EF_ARM_INTERWORK;
14055 /* Likewise for PIC, though don't warn for this case. */
14056 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
14057 in_flags &= ~EF_ARM_PIC;
14060 elf_elfheader (obfd)->e_flags = in_flags;
14061 elf_flags_init (obfd) = TRUE;
14063 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
14066 /* Values for Tag_ABI_PCS_R9_use. */
14075 /* Values for Tag_ABI_PCS_RW_data. */
14078 AEABI_PCS_RW_data_absolute,
14079 AEABI_PCS_RW_data_PCrel,
14080 AEABI_PCS_RW_data_SBrel,
14081 AEABI_PCS_RW_data_unused
14084 /* Values for Tag_ABI_enum_size. */
14090 AEABI_enum_forced_wide
14093 /* Determine whether an object attribute tag takes an integer, a
14097 elf32_arm_obj_attrs_arg_type (int tag)
14099 if (tag == Tag_compatibility)
14100 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
14101 else if (tag == Tag_nodefaults)
14102 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
14103 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
14104 return ATTR_TYPE_FLAG_STR_VAL;
14106 return ATTR_TYPE_FLAG_INT_VAL;
14108 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
14111 /* The ABI defines that Tag_conformance should be emitted first, and that
14112 Tag_nodefaults should be second (if either is defined). This sets those
14113 two positions, and bumps up the position of all the remaining tags to
14116 elf32_arm_obj_attrs_order (int num)
14118 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
14119 return Tag_conformance;
14120 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
14121 return Tag_nodefaults;
14122 if ((num - 2) < Tag_nodefaults)
14124 if ((num - 1) < Tag_conformance)
14129 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
14131 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
14133 if ((tag & 127) < 64)
14136 (_("%pB: unknown mandatory EABI object attribute %d"),
14138 bfd_set_error (bfd_error_bad_value);
14144 (_("warning: %pB: unknown EABI object attribute %d"),
14150 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
14151 Returns -1 if no architecture could be read. */
14154 get_secondary_compatible_arch (bfd *abfd)
14156 obj_attribute *attr =
14157 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14159 /* Note: the tag and its argument below are uleb128 values, though
14160 currently-defined values fit in one byte for each. */
14162 && attr->s[0] == Tag_CPU_arch
14163 && (attr->s[1] & 128) != 128
14164 && attr->s[2] == 0)
14167 /* This tag is "safely ignorable", so don't complain if it looks funny. */
14171 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
14172 The tag is removed if ARCH is -1. */
14175 set_secondary_compatible_arch (bfd *abfd, int arch)
14177 obj_attribute *attr =
14178 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14186 /* Note: the tag and its argument below are uleb128 values, though
14187 currently-defined values fit in one byte for each. */
14189 attr->s = (char *) bfd_alloc (abfd, 3);
14190 attr->s[0] = Tag_CPU_arch;
14195 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
14199 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
14200 int newtag, int secondary_compat)
14202 #define T(X) TAG_CPU_ARCH_##X
14203 int tagl, tagh, result;
14206 T(V6T2), /* PRE_V4. */
14208 T(V6T2), /* V4T. */
14209 T(V6T2), /* V5T. */
14210 T(V6T2), /* V5TE. */
14211 T(V6T2), /* V5TEJ. */
14214 T(V6T2) /* V6T2. */
14218 T(V6K), /* PRE_V4. */
14222 T(V6K), /* V5TE. */
14223 T(V6K), /* V5TEJ. */
14225 T(V6KZ), /* V6KZ. */
14231 T(V7), /* PRE_V4. */
14236 T(V7), /* V5TEJ. */
14249 T(V6K), /* V5TE. */
14250 T(V6K), /* V5TEJ. */
14252 T(V6KZ), /* V6KZ. */
14256 T(V6_M) /* V6_M. */
14258 const int v6s_m[] =
14264 T(V6K), /* V5TE. */
14265 T(V6K), /* V5TEJ. */
14267 T(V6KZ), /* V6KZ. */
14271 T(V6S_M), /* V6_M. */
14272 T(V6S_M) /* V6S_M. */
14274 const int v7e_m[] =
14278 T(V7E_M), /* V4T. */
14279 T(V7E_M), /* V5T. */
14280 T(V7E_M), /* V5TE. */
14281 T(V7E_M), /* V5TEJ. */
14282 T(V7E_M), /* V6. */
14283 T(V7E_M), /* V6KZ. */
14284 T(V7E_M), /* V6T2. */
14285 T(V7E_M), /* V6K. */
14286 T(V7E_M), /* V7. */
14287 T(V7E_M), /* V6_M. */
14288 T(V7E_M), /* V6S_M. */
14289 T(V7E_M) /* V7E_M. */
14293 T(V8), /* PRE_V4. */
14298 T(V8), /* V5TEJ. */
14305 T(V8), /* V6S_M. */
14306 T(V8), /* V7E_M. */
14311 T(V8R), /* PRE_V4. */
14315 T(V8R), /* V5TE. */
14316 T(V8R), /* V5TEJ. */
14318 T(V8R), /* V6KZ. */
14319 T(V8R), /* V6T2. */
14322 T(V8R), /* V6_M. */
14323 T(V8R), /* V6S_M. */
14324 T(V8R), /* V7E_M. */
14328 const int v8m_baseline[] =
14341 T(V8M_BASE), /* V6_M. */
14342 T(V8M_BASE), /* V6S_M. */
14346 T(V8M_BASE) /* V8-M BASELINE. */
14348 const int v8m_mainline[] =
14360 T(V8M_MAIN), /* V7. */
14361 T(V8M_MAIN), /* V6_M. */
14362 T(V8M_MAIN), /* V6S_M. */
14363 T(V8M_MAIN), /* V7E_M. */
14366 T(V8M_MAIN), /* V8-M BASELINE. */
14367 T(V8M_MAIN) /* V8-M MAINLINE. */
14369 const int v8_1m_mainline[] =
14381 T(V8_1M_MAIN), /* V7. */
14382 T(V8_1M_MAIN), /* V6_M. */
14383 T(V8_1M_MAIN), /* V6S_M. */
14384 T(V8_1M_MAIN), /* V7E_M. */
14387 T(V8_1M_MAIN), /* V8-M BASELINE. */
14388 T(V8_1M_MAIN), /* V8-M MAINLINE. */
14389 -1, /* Unused (18). */
14390 -1, /* Unused (19). */
14391 -1, /* Unused (20). */
14392 T(V8_1M_MAIN) /* V8.1-M MAINLINE. */
14394 const int v4t_plus_v6_m[] =
14400 T(V5TE), /* V5TE. */
14401 T(V5TEJ), /* V5TEJ. */
14403 T(V6KZ), /* V6KZ. */
14404 T(V6T2), /* V6T2. */
14407 T(V6_M), /* V6_M. */
14408 T(V6S_M), /* V6S_M. */
14409 T(V7E_M), /* V7E_M. */
14412 T(V8M_BASE), /* V8-M BASELINE. */
14413 T(V8M_MAIN), /* V8-M MAINLINE. */
14414 -1, /* Unused (18). */
14415 -1, /* Unused (19). */
14416 -1, /* Unused (20). */
14417 T(V8_1M_MAIN), /* V8.1-M MAINLINE. */
14418 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
14420 const int *comb[] =
14436 /* Pseudo-architecture. */
14440 /* Check we've not got a higher architecture than we know about. */
14442 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
14444 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd);
14448 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14450 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
14451 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
14452 oldtag = T(V4T_PLUS_V6_M);
14454 /* And override the new tag if we have a Tag_also_compatible_with on the
14457 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
14458 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
14459 newtag = T(V4T_PLUS_V6_M);
14461 tagl = (oldtag < newtag) ? oldtag : newtag;
14462 result = tagh = (oldtag > newtag) ? oldtag : newtag;
14464 /* Architectures before V6KZ add features monotonically. */
14465 if (tagh <= TAG_CPU_ARCH_V6KZ)
14468 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
14470 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14471 as the canonical version. */
14472 if (result == T(V4T_PLUS_V6_M))
14475 *secondary_compat_out = T(V6_M);
14478 *secondary_compat_out = -1;
14482 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"),
14483 ibfd, oldtag, newtag);
14491 /* Query attributes object to see if integer divide instructions may be
14492 present in an object. */
14494 elf32_arm_attributes_accept_div (const obj_attribute *attr)
14496 int arch = attr[Tag_CPU_arch].i;
14497 int profile = attr[Tag_CPU_arch_profile].i;
14499 switch (attr[Tag_DIV_use].i)
14502 /* Integer divide allowed if instruction contained in archetecture. */
14503 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
14505 else if (arch >= TAG_CPU_ARCH_V7E_M)
14511 /* Integer divide explicitly prohibited. */
14515 /* Unrecognised case - treat as allowing divide everywhere. */
14517 /* Integer divide allowed in ARM state. */
14522 /* Query attributes object to see if integer divide instructions are
14523 forbidden to be in the object. This is not the inverse of
14524 elf32_arm_attributes_accept_div. */
14526 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
14528 return attr[Tag_DIV_use].i == 1;
14531 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14532 are conflicting attributes. */
14535 elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
14537 bfd *obfd = info->output_bfd;
14538 obj_attribute *in_attr;
14539 obj_attribute *out_attr;
14540 /* Some tags have 0 = don't care, 1 = strong requirement,
14541 2 = weak requirement. */
14542 static const int order_021[3] = {0, 2, 1};
14544 bfd_boolean result = TRUE;
14545 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
14547 /* Skip the linker stubs file. This preserves previous behavior
14548 of accepting unknown attributes in the first input file - but
14550 if (ibfd->flags & BFD_LINKER_CREATED)
14553 /* Skip any input that hasn't attribute section.
14554 This enables to link object files without attribute section with
14556 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
14559 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14561 /* This is the first object. Copy the attributes. */
14562 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14564 out_attr = elf_known_obj_attributes_proc (obfd);
14566 /* Use the Tag_null value to indicate the attributes have been
14570 /* We do not output objects with Tag_MPextension_use_legacy - we move
14571 the attribute's value to Tag_MPextension_use. */
14572 if (out_attr[Tag_MPextension_use_legacy].i != 0)
14574 if (out_attr[Tag_MPextension_use].i != 0
14575 && out_attr[Tag_MPextension_use_legacy].i
14576 != out_attr[Tag_MPextension_use].i)
14579 (_("Error: %pB has both the current and legacy "
14580 "Tag_MPextension_use attributes"), ibfd);
14584 out_attr[Tag_MPextension_use] =
14585 out_attr[Tag_MPextension_use_legacy];
14586 out_attr[Tag_MPextension_use_legacy].type = 0;
14587 out_attr[Tag_MPextension_use_legacy].i = 0;
14593 in_attr = elf_known_obj_attributes_proc (ibfd);
14594 out_attr = elf_known_obj_attributes_proc (obfd);
14595 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14596 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
14598 /* Ignore mismatches if the object doesn't use floating point or is
14599 floating point ABI independent. */
14600 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
14601 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14602 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
14603 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
14604 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14605 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
14608 (_("error: %pB uses VFP register arguments, %pB does not"),
14609 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
14610 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
14615 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
14617 /* Merge this attribute with existing attributes. */
14620 case Tag_CPU_raw_name:
14622 /* These are merged after Tag_CPU_arch. */
14625 case Tag_ABI_optimization_goals:
14626 case Tag_ABI_FP_optimization_goals:
14627 /* Use the first value seen. */
14632 int secondary_compat = -1, secondary_compat_out = -1;
14633 unsigned int saved_out_attr = out_attr[i].i;
14635 static const char *name_table[] =
14637 /* These aren't real CPU names, but we can't guess
14638 that from the architecture version alone. */
14654 "ARM v8-M.baseline",
14655 "ARM v8-M.mainline",
14658 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14659 secondary_compat = get_secondary_compatible_arch (ibfd);
14660 secondary_compat_out = get_secondary_compatible_arch (obfd);
14661 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
14662 &secondary_compat_out,
14666 /* Return with error if failed to merge. */
14667 if (arch_attr == -1)
14670 out_attr[i].i = arch_attr;
14672 set_secondary_compatible_arch (obfd, secondary_compat_out);
14674 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14675 if (out_attr[i].i == saved_out_attr)
14676 ; /* Leave the names alone. */
14677 else if (out_attr[i].i == in_attr[i].i)
14679 /* The output architecture has been changed to match the
14680 input architecture. Use the input names. */
14681 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
14682 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
14684 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
14685 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
14690 out_attr[Tag_CPU_name].s = NULL;
14691 out_attr[Tag_CPU_raw_name].s = NULL;
14694 /* If we still don't have a value for Tag_CPU_name,
14695 make one up now. Tag_CPU_raw_name remains blank. */
14696 if (out_attr[Tag_CPU_name].s == NULL
14697 && out_attr[i].i < ARRAY_SIZE (name_table))
14698 out_attr[Tag_CPU_name].s =
14699 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
14703 case Tag_ARM_ISA_use:
14704 case Tag_THUMB_ISA_use:
14705 case Tag_WMMX_arch:
14706 case Tag_Advanced_SIMD_arch:
14707 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
14708 case Tag_ABI_FP_rounding:
14709 case Tag_ABI_FP_exceptions:
14710 case Tag_ABI_FP_user_exceptions:
14711 case Tag_ABI_FP_number_model:
14712 case Tag_FP_HP_extension:
14713 case Tag_CPU_unaligned_access:
14715 case Tag_MPextension_use:
14716 /* Use the largest value specified. */
14717 if (in_attr[i].i > out_attr[i].i)
14718 out_attr[i].i = in_attr[i].i;
14721 case Tag_ABI_align_preserved:
14722 case Tag_ABI_PCS_RO_data:
14723 /* Use the smallest value specified. */
14724 if (in_attr[i].i < out_attr[i].i)
14725 out_attr[i].i = in_attr[i].i;
14728 case Tag_ABI_align_needed:
14729 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
14730 && (in_attr[Tag_ABI_align_preserved].i == 0
14731 || out_attr[Tag_ABI_align_preserved].i == 0))
14733 /* This error message should be enabled once all non-conformant
14734 binaries in the toolchain have had the attributes set
14737 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
14741 /* Fall through. */
14742 case Tag_ABI_FP_denormal:
14743 case Tag_ABI_PCS_GOT_use:
14744 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14745 value if greater than 2 (for future-proofing). */
14746 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
14747 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
14748 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
14749 out_attr[i].i = in_attr[i].i;
14752 case Tag_Virtualization_use:
14753 /* The virtualization tag effectively stores two bits of
14754 information: the intended use of TrustZone (in bit 0), and the
14755 intended use of Virtualization (in bit 1). */
14756 if (out_attr[i].i == 0)
14757 out_attr[i].i = in_attr[i].i;
14758 else if (in_attr[i].i != 0
14759 && in_attr[i].i != out_attr[i].i)
14761 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
14766 (_("error: %pB: unable to merge virtualization attributes "
14774 case Tag_CPU_arch_profile:
14775 if (out_attr[i].i != in_attr[i].i)
14777 /* 0 will merge with anything.
14778 'A' and 'S' merge to 'A'.
14779 'R' and 'S' merge to 'R'.
14780 'M' and 'A|R|S' is an error. */
14781 if (out_attr[i].i == 0
14782 || (out_attr[i].i == 'S'
14783 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
14784 out_attr[i].i = in_attr[i].i;
14785 else if (in_attr[i].i == 0
14786 || (in_attr[i].i == 'S'
14787 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
14788 ; /* Do nothing. */
14792 (_("error: %pB: conflicting architecture profiles %c/%c"),
14794 in_attr[i].i ? in_attr[i].i : '0',
14795 out_attr[i].i ? out_attr[i].i : '0');
14801 case Tag_DSP_extension:
14802 /* No need to change output value if any of:
14803 - pre (<=) ARMv5T input architecture (do not have DSP)
14804 - M input profile not ARMv7E-M and do not have DSP. */
14805 if (in_attr[Tag_CPU_arch].i <= 3
14806 || (in_attr[Tag_CPU_arch_profile].i == 'M'
14807 && in_attr[Tag_CPU_arch].i != 13
14808 && in_attr[i].i == 0))
14809 ; /* Do nothing. */
14810 /* Output value should be 0 if DSP part of architecture, ie.
14811 - post (>=) ARMv5te architecture output
14812 - A, R or S profile output or ARMv7E-M output architecture. */
14813 else if (out_attr[Tag_CPU_arch].i >= 4
14814 && (out_attr[Tag_CPU_arch_profile].i == 'A'
14815 || out_attr[Tag_CPU_arch_profile].i == 'R'
14816 || out_attr[Tag_CPU_arch_profile].i == 'S'
14817 || out_attr[Tag_CPU_arch].i == 13))
14819 /* Otherwise, DSP instructions are added and not part of output
14827 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14828 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14829 when it's 0. It might mean absence of FP hardware if
14830 Tag_FP_arch is zero. */
14832 #define VFP_VERSION_COUNT 9
14833 static const struct
14837 } vfp_versions[VFP_VERSION_COUNT] =
14853 /* If the output has no requirement about FP hardware,
14854 follow the requirement of the input. */
14855 if (out_attr[i].i == 0)
14857 /* This assert is still reasonable, we shouldn't
14858 produce the suspicious build attribute
14859 combination (See below for in_attr). */
14860 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
14861 out_attr[i].i = in_attr[i].i;
14862 out_attr[Tag_ABI_HardFP_use].i
14863 = in_attr[Tag_ABI_HardFP_use].i;
14866 /* If the input has no requirement about FP hardware, do
14868 else if (in_attr[i].i == 0)
14870 /* We used to assert that Tag_ABI_HardFP_use was
14871 zero here, but we should never assert when
14872 consuming an object file that has suspicious
14873 build attributes. The single precision variant
14874 of 'no FP architecture' is still 'no FP
14875 architecture', so we just ignore the tag in this
14880 /* Both the input and the output have nonzero Tag_FP_arch.
14881 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
14883 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14885 if (in_attr[Tag_ABI_HardFP_use].i == 0
14886 && out_attr[Tag_ABI_HardFP_use].i == 0)
14888 /* If the input and the output have different Tag_ABI_HardFP_use,
14889 the combination of them is 0 (implied by Tag_FP_arch). */
14890 else if (in_attr[Tag_ABI_HardFP_use].i
14891 != out_attr[Tag_ABI_HardFP_use].i)
14892 out_attr[Tag_ABI_HardFP_use].i = 0;
14894 /* Now we can handle Tag_FP_arch. */
14896 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14897 pick the biggest. */
14898 if (in_attr[i].i >= VFP_VERSION_COUNT
14899 && in_attr[i].i > out_attr[i].i)
14901 out_attr[i] = in_attr[i];
14904 /* The output uses the superset of input features
14905 (ISA version) and registers. */
14906 ver = vfp_versions[in_attr[i].i].ver;
14907 if (ver < vfp_versions[out_attr[i].i].ver)
14908 ver = vfp_versions[out_attr[i].i].ver;
14909 regs = vfp_versions[in_attr[i].i].regs;
14910 if (regs < vfp_versions[out_attr[i].i].regs)
14911 regs = vfp_versions[out_attr[i].i].regs;
14912 /* This assumes all possible supersets are also a valid
14914 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
14916 if (regs == vfp_versions[newval].regs
14917 && ver == vfp_versions[newval].ver)
14920 out_attr[i].i = newval;
14923 case Tag_PCS_config:
14924 if (out_attr[i].i == 0)
14925 out_attr[i].i = in_attr[i].i;
14926 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
14928 /* It's sometimes ok to mix different configs, so this is only
14931 (_("warning: %pB: conflicting platform configuration"), ibfd);
14934 case Tag_ABI_PCS_R9_use:
14935 if (in_attr[i].i != out_attr[i].i
14936 && out_attr[i].i != AEABI_R9_unused
14937 && in_attr[i].i != AEABI_R9_unused)
14940 (_("error: %pB: conflicting use of R9"), ibfd);
14943 if (out_attr[i].i == AEABI_R9_unused)
14944 out_attr[i].i = in_attr[i].i;
14946 case Tag_ABI_PCS_RW_data:
14947 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
14948 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
14949 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
14952 (_("error: %pB: SB relative addressing conflicts with use of R9"),
14956 /* Use the smallest value specified. */
14957 if (in_attr[i].i < out_attr[i].i)
14958 out_attr[i].i = in_attr[i].i;
14960 case Tag_ABI_PCS_wchar_t:
14961 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
14962 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
14965 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
14966 ibfd, in_attr[i].i, out_attr[i].i);
14968 else if (in_attr[i].i && !out_attr[i].i)
14969 out_attr[i].i = in_attr[i].i;
14971 case Tag_ABI_enum_size:
14972 if (in_attr[i].i != AEABI_enum_unused)
14974 if (out_attr[i].i == AEABI_enum_unused
14975 || out_attr[i].i == AEABI_enum_forced_wide)
14977 /* The existing object is compatible with anything.
14978 Use whatever requirements the new object has. */
14979 out_attr[i].i = in_attr[i].i;
14981 else if (in_attr[i].i != AEABI_enum_forced_wide
14982 && out_attr[i].i != in_attr[i].i
14983 && !elf_arm_tdata (obfd)->no_enum_size_warning)
14985 static const char *aeabi_enum_names[] =
14986 { "", "variable-size", "32-bit", "" };
14987 const char *in_name =
14988 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14989 ? aeabi_enum_names[in_attr[i].i]
14991 const char *out_name =
14992 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14993 ? aeabi_enum_names[out_attr[i].i]
14996 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
14997 ibfd, in_name, out_name);
15001 case Tag_ABI_VFP_args:
15004 case Tag_ABI_WMMX_args:
15005 if (in_attr[i].i != out_attr[i].i)
15008 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
15013 case Tag_compatibility:
15014 /* Merged in target-independent code. */
15016 case Tag_ABI_HardFP_use:
15017 /* This is handled along with Tag_FP_arch. */
15019 case Tag_ABI_FP_16bit_format:
15020 if (in_attr[i].i != 0 && out_attr[i].i != 0)
15022 if (in_attr[i].i != out_attr[i].i)
15025 (_("error: fp16 format mismatch between %pB and %pB"),
15030 if (in_attr[i].i != 0)
15031 out_attr[i].i = in_attr[i].i;
15035 /* A value of zero on input means that the divide instruction may
15036 be used if available in the base architecture as specified via
15037 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
15038 the user did not want divide instructions. A value of 2
15039 explicitly means that divide instructions were allowed in ARM
15040 and Thumb state. */
15041 if (in_attr[i].i == out_attr[i].i)
15042 /* Do nothing. */ ;
15043 else if (elf32_arm_attributes_forbid_div (in_attr)
15044 && !elf32_arm_attributes_accept_div (out_attr))
15046 else if (elf32_arm_attributes_forbid_div (out_attr)
15047 && elf32_arm_attributes_accept_div (in_attr))
15048 out_attr[i].i = in_attr[i].i;
15049 else if (in_attr[i].i == 2)
15050 out_attr[i].i = in_attr[i].i;
15053 case Tag_MPextension_use_legacy:
15054 /* We don't output objects with Tag_MPextension_use_legacy - we
15055 move the value to Tag_MPextension_use. */
15056 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
15058 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
15061 (_("%pB has both the current and legacy "
15062 "Tag_MPextension_use attributes"),
15068 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
15069 out_attr[Tag_MPextension_use] = in_attr[i];
15073 case Tag_nodefaults:
15074 /* This tag is set if it exists, but the value is unused (and is
15075 typically zero). We don't actually need to do anything here -
15076 the merge happens automatically when the type flags are merged
15079 case Tag_also_compatible_with:
15080 /* Already done in Tag_CPU_arch. */
15082 case Tag_conformance:
15083 /* Keep the attribute if it matches. Throw it away otherwise.
15084 No attribute means no claim to conform. */
15085 if (!in_attr[i].s || !out_attr[i].s
15086 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
15087 out_attr[i].s = NULL;
15092 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
15095 /* If out_attr was copied from in_attr then it won't have a type yet. */
15096 if (in_attr[i].type && !out_attr[i].type)
15097 out_attr[i].type = in_attr[i].type;
15100 /* Merge Tag_compatibility attributes and any common GNU ones. */
15101 if (!_bfd_elf_merge_object_attributes (ibfd, info))
15104 /* Check for any attributes not known on ARM. */
15105 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
15111 /* Return TRUE if the two EABI versions are incompatible. */
15114 elf32_arm_versions_compatible (unsigned iver, unsigned over)
15116 /* v4 and v5 are the same spec before and after it was released,
15117 so allow mixing them. */
15118 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
15119 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
15122 return (iver == over);
15125 /* Merge backend specific data from an object file to the output
15126 object file when linking. */
15129 elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
15131 /* Display the flags field. */
15134 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
15136 FILE * file = (FILE *) ptr;
15137 unsigned long flags;
15139 BFD_ASSERT (abfd != NULL && ptr != NULL);
15141 /* Print normal ELF private data. */
15142 _bfd_elf_print_private_bfd_data (abfd, ptr);
15144 flags = elf_elfheader (abfd)->e_flags;
15145 /* Ignore init flag - it may not be set, despite the flags field
15146 containing valid data. */
15148 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15150 switch (EF_ARM_EABI_VERSION (flags))
15152 case EF_ARM_EABI_UNKNOWN:
15153 /* The following flag bits are GNU extensions and not part of the
15154 official ARM ELF extended ABI. Hence they are only decoded if
15155 the EABI version is not set. */
15156 if (flags & EF_ARM_INTERWORK)
15157 fprintf (file, _(" [interworking enabled]"));
15159 if (flags & EF_ARM_APCS_26)
15160 fprintf (file, " [APCS-26]");
15162 fprintf (file, " [APCS-32]");
15164 if (flags & EF_ARM_VFP_FLOAT)
15165 fprintf (file, _(" [VFP float format]"));
15166 else if (flags & EF_ARM_MAVERICK_FLOAT)
15167 fprintf (file, _(" [Maverick float format]"));
15169 fprintf (file, _(" [FPA float format]"));
15171 if (flags & EF_ARM_APCS_FLOAT)
15172 fprintf (file, _(" [floats passed in float registers]"));
15174 if (flags & EF_ARM_PIC)
15175 fprintf (file, _(" [position independent]"));
15177 if (flags & EF_ARM_NEW_ABI)
15178 fprintf (file, _(" [new ABI]"));
15180 if (flags & EF_ARM_OLD_ABI)
15181 fprintf (file, _(" [old ABI]"));
15183 if (flags & EF_ARM_SOFT_FLOAT)
15184 fprintf (file, _(" [software FP]"));
15186 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
15187 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
15188 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
15189 | EF_ARM_MAVERICK_FLOAT);
15192 case EF_ARM_EABI_VER1:
15193 fprintf (file, _(" [Version1 EABI]"));
15195 if (flags & EF_ARM_SYMSARESORTED)
15196 fprintf (file, _(" [sorted symbol table]"));
15198 fprintf (file, _(" [unsorted symbol table]"));
15200 flags &= ~ EF_ARM_SYMSARESORTED;
15203 case EF_ARM_EABI_VER2:
15204 fprintf (file, _(" [Version2 EABI]"));
15206 if (flags & EF_ARM_SYMSARESORTED)
15207 fprintf (file, _(" [sorted symbol table]"));
15209 fprintf (file, _(" [unsorted symbol table]"));
15211 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
15212 fprintf (file, _(" [dynamic symbols use segment index]"));
15214 if (flags & EF_ARM_MAPSYMSFIRST)
15215 fprintf (file, _(" [mapping symbols precede others]"));
15217 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
15218 | EF_ARM_MAPSYMSFIRST);
15221 case EF_ARM_EABI_VER3:
15222 fprintf (file, _(" [Version3 EABI]"));
15225 case EF_ARM_EABI_VER4:
15226 fprintf (file, _(" [Version4 EABI]"));
15229 case EF_ARM_EABI_VER5:
15230 fprintf (file, _(" [Version5 EABI]"));
15232 if (flags & EF_ARM_ABI_FLOAT_SOFT)
15233 fprintf (file, _(" [soft-float ABI]"));
15235 if (flags & EF_ARM_ABI_FLOAT_HARD)
15236 fprintf (file, _(" [hard-float ABI]"));
15238 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
15241 if (flags & EF_ARM_BE8)
15242 fprintf (file, _(" [BE8]"));
15244 if (flags & EF_ARM_LE8)
15245 fprintf (file, _(" [LE8]"));
15247 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
15251 fprintf (file, _(" <EABI version unrecognised>"));
15255 flags &= ~ EF_ARM_EABIMASK;
15257 if (flags & EF_ARM_RELEXEC)
15258 fprintf (file, _(" [relocatable executable]"));
15260 if (flags & EF_ARM_PIC)
15261 fprintf (file, _(" [position independent]"));
15263 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC)
15264 fprintf (file, _(" [FDPIC ABI supplement]"));
15266 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC);
15269 fprintf (file, _("<Unrecognised flag bits set>"));
15271 fputc ('\n', file);
15277 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
15279 switch (ELF_ST_TYPE (elf_sym->st_info))
15281 case STT_ARM_TFUNC:
15282 return ELF_ST_TYPE (elf_sym->st_info);
15284 case STT_ARM_16BIT:
15285 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
15286 This allows us to distinguish between data used by Thumb instructions
15287 and non-data (which is probably code) inside Thumb regions of an
15289 if (type != STT_OBJECT && type != STT_TLS)
15290 return ELF_ST_TYPE (elf_sym->st_info);
15301 elf32_arm_gc_mark_hook (asection *sec,
15302 struct bfd_link_info *info,
15303 Elf_Internal_Rela *rel,
15304 struct elf_link_hash_entry *h,
15305 Elf_Internal_Sym *sym)
15308 switch (ELF32_R_TYPE (rel->r_info))
15310 case R_ARM_GNU_VTINHERIT:
15311 case R_ARM_GNU_VTENTRY:
15315 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
15318 /* Look through the relocs for a section during the first phase. */
15321 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
15322 asection *sec, const Elf_Internal_Rela *relocs)
15324 Elf_Internal_Shdr *symtab_hdr;
15325 struct elf_link_hash_entry **sym_hashes;
15326 const Elf_Internal_Rela *rel;
15327 const Elf_Internal_Rela *rel_end;
15330 struct elf32_arm_link_hash_table *htab;
15331 bfd_boolean call_reloc_p;
15332 bfd_boolean may_become_dynamic_p;
15333 bfd_boolean may_need_local_target_p;
15334 unsigned long nsyms;
15336 if (bfd_link_relocatable (info))
15339 BFD_ASSERT (is_arm_elf (abfd));
15341 htab = elf32_arm_hash_table (info);
15347 /* Create dynamic sections for relocatable executables so that we can
15348 copy relocations. */
15349 if (htab->root.is_relocatable_executable
15350 && ! htab->root.dynamic_sections_created)
15352 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
15356 if (htab->root.dynobj == NULL)
15357 htab->root.dynobj = abfd;
15358 if (!create_ifunc_sections (info))
15361 dynobj = htab->root.dynobj;
15363 symtab_hdr = & elf_symtab_hdr (abfd);
15364 sym_hashes = elf_sym_hashes (abfd);
15365 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
15367 rel_end = relocs + sec->reloc_count;
15368 for (rel = relocs; rel < rel_end; rel++)
15370 Elf_Internal_Sym *isym;
15371 struct elf_link_hash_entry *h;
15372 struct elf32_arm_link_hash_entry *eh;
15373 unsigned int r_symndx;
15376 r_symndx = ELF32_R_SYM (rel->r_info);
15377 r_type = ELF32_R_TYPE (rel->r_info);
15378 r_type = arm_real_reloc_type (htab, r_type);
15380 if (r_symndx >= nsyms
15381 /* PR 9934: It is possible to have relocations that do not
15382 refer to symbols, thus it is also possible to have an
15383 object file containing relocations but no symbol table. */
15384 && (r_symndx > STN_UNDEF || nsyms > 0))
15386 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
15395 if (r_symndx < symtab_hdr->sh_info)
15397 /* A local symbol. */
15398 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
15405 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
15406 while (h->root.type == bfd_link_hash_indirect
15407 || h->root.type == bfd_link_hash_warning)
15408 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15412 eh = (struct elf32_arm_link_hash_entry *) h;
15414 call_reloc_p = FALSE;
15415 may_become_dynamic_p = FALSE;
15416 may_need_local_target_p = FALSE;
15418 /* Could be done earlier, if h were already available. */
15419 r_type = elf32_arm_tls_transition (info, r_type, h);
15422 case R_ARM_GOTOFFFUNCDESC:
15426 if (!elf32_arm_allocate_local_sym_info (abfd))
15428 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].gotofffuncdesc_cnt += 1;
15429 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15433 eh->fdpic_cnts.gotofffuncdesc_cnt++;
15438 case R_ARM_GOTFUNCDESC:
15442 /* Such a relocation is not supposed to be generated
15443 by gcc on a static function. */
15444 /* Anyway if needed it could be handled. */
15449 eh->fdpic_cnts.gotfuncdesc_cnt++;
15454 case R_ARM_FUNCDESC:
15458 if (!elf32_arm_allocate_local_sym_info (abfd))
15460 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_cnt += 1;
15461 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15465 eh->fdpic_cnts.funcdesc_cnt++;
15471 case R_ARM_GOT_PREL:
15472 case R_ARM_TLS_GD32:
15473 case R_ARM_TLS_GD32_FDPIC:
15474 case R_ARM_TLS_IE32:
15475 case R_ARM_TLS_IE32_FDPIC:
15476 case R_ARM_TLS_GOTDESC:
15477 case R_ARM_TLS_DESCSEQ:
15478 case R_ARM_THM_TLS_DESCSEQ:
15479 case R_ARM_TLS_CALL:
15480 case R_ARM_THM_TLS_CALL:
15481 /* This symbol requires a global offset table entry. */
15483 int tls_type, old_tls_type;
15487 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
15488 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break;
15490 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
15491 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break;
15493 case R_ARM_TLS_GOTDESC:
15494 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
15495 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
15496 tls_type = GOT_TLS_GDESC; break;
15498 default: tls_type = GOT_NORMAL; break;
15501 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
15502 info->flags |= DF_STATIC_TLS;
15507 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
15511 /* This is a global offset table entry for a local symbol. */
15512 if (!elf32_arm_allocate_local_sym_info (abfd))
15514 elf_local_got_refcounts (abfd)[r_symndx] += 1;
15515 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
15518 /* If a variable is accessed with both tls methods, two
15519 slots may be created. */
15520 if (GOT_TLS_GD_ANY_P (old_tls_type)
15521 && GOT_TLS_GD_ANY_P (tls_type))
15522 tls_type |= old_tls_type;
15524 /* We will already have issued an error message if there
15525 is a TLS/non-TLS mismatch, based on the symbol
15526 type. So just combine any TLS types needed. */
15527 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
15528 && tls_type != GOT_NORMAL)
15529 tls_type |= old_tls_type;
15531 /* If the symbol is accessed in both IE and GDESC
15532 method, we're able to relax. Turn off the GDESC flag,
15533 without messing up with any other kind of tls types
15534 that may be involved. */
15535 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
15536 tls_type &= ~GOT_TLS_GDESC;
15538 if (old_tls_type != tls_type)
15541 elf32_arm_hash_entry (h)->tls_type = tls_type;
15543 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
15546 /* Fall through. */
15548 case R_ARM_TLS_LDM32:
15549 case R_ARM_TLS_LDM32_FDPIC:
15550 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC)
15551 htab->tls_ldm_got.refcount++;
15552 /* Fall through. */
15554 case R_ARM_GOTOFF32:
15556 if (htab->root.sgot == NULL
15557 && !create_got_section (htab->root.dynobj, info))
15566 case R_ARM_THM_CALL:
15567 case R_ARM_THM_JUMP24:
15568 case R_ARM_THM_JUMP19:
15569 call_reloc_p = TRUE;
15570 may_need_local_target_p = TRUE;
15574 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15575 ldr __GOTT_INDEX__ offsets. */
15576 if (!htab->vxworks_p)
15578 may_need_local_target_p = TRUE;
15581 else goto jump_over;
15583 /* Fall through. */
15585 case R_ARM_MOVW_ABS_NC:
15586 case R_ARM_MOVT_ABS:
15587 case R_ARM_THM_MOVW_ABS_NC:
15588 case R_ARM_THM_MOVT_ABS:
15589 if (bfd_link_pic (info))
15592 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
15593 abfd, elf32_arm_howto_table_1[r_type].name,
15594 (h) ? h->root.root.string : "a local symbol");
15595 bfd_set_error (bfd_error_bad_value);
15599 /* Fall through. */
15601 case R_ARM_ABS32_NOI:
15603 if (h != NULL && bfd_link_executable (info))
15605 h->pointer_equality_needed = 1;
15607 /* Fall through. */
15609 case R_ARM_REL32_NOI:
15610 case R_ARM_MOVW_PREL_NC:
15611 case R_ARM_MOVT_PREL:
15612 case R_ARM_THM_MOVW_PREL_NC:
15613 case R_ARM_THM_MOVT_PREL:
15615 /* Should the interworking branches be listed here? */
15616 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable
15618 && (sec->flags & SEC_ALLOC) != 0)
15621 && elf32_arm_howto_from_type (r_type)->pc_relative)
15623 /* In shared libraries and relocatable executables,
15624 we treat local relative references as calls;
15625 see the related SYMBOL_CALLS_LOCAL code in
15626 allocate_dynrelocs. */
15627 call_reloc_p = TRUE;
15628 may_need_local_target_p = TRUE;
15631 /* We are creating a shared library or relocatable
15632 executable, and this is a reloc against a global symbol,
15633 or a non-PC-relative reloc against a local symbol.
15634 We may need to copy the reloc into the output. */
15635 may_become_dynamic_p = TRUE;
15638 may_need_local_target_p = TRUE;
15641 /* This relocation describes the C++ object vtable hierarchy.
15642 Reconstruct it for later use during GC. */
15643 case R_ARM_GNU_VTINHERIT:
15644 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
15648 /* This relocation describes which C++ vtable entries are actually
15649 used. Record for later use during GC. */
15650 case R_ARM_GNU_VTENTRY:
15651 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
15659 /* We may need a .plt entry if the function this reloc
15660 refers to is in a different object, regardless of the
15661 symbol's type. We can't tell for sure yet, because
15662 something later might force the symbol local. */
15664 else if (may_need_local_target_p)
15665 /* If this reloc is in a read-only section, we might
15666 need a copy reloc. We can't check reliably at this
15667 stage whether the section is read-only, as input
15668 sections have not yet been mapped to output sections.
15669 Tentatively set the flag for now, and correct in
15670 adjust_dynamic_symbol. */
15671 h->non_got_ref = 1;
15674 if (may_need_local_target_p
15675 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
15677 union gotplt_union *root_plt;
15678 struct arm_plt_info *arm_plt;
15679 struct arm_local_iplt_info *local_iplt;
15683 root_plt = &h->plt;
15684 arm_plt = &eh->plt;
15688 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
15689 if (local_iplt == NULL)
15691 root_plt = &local_iplt->root;
15692 arm_plt = &local_iplt->arm;
15695 /* If the symbol is a function that doesn't bind locally,
15696 this relocation will need a PLT entry. */
15697 if (root_plt->refcount != -1)
15698 root_plt->refcount += 1;
15701 arm_plt->noncall_refcount++;
15703 /* It's too early to use htab->use_blx here, so we have to
15704 record possible blx references separately from
15705 relocs that definitely need a thumb stub. */
15707 if (r_type == R_ARM_THM_CALL)
15708 arm_plt->maybe_thumb_refcount += 1;
15710 if (r_type == R_ARM_THM_JUMP24
15711 || r_type == R_ARM_THM_JUMP19)
15712 arm_plt->thumb_refcount += 1;
15715 if (may_become_dynamic_p)
15717 struct elf_dyn_relocs *p, **head;
15719 /* Create a reloc section in dynobj. */
15720 if (sreloc == NULL)
15722 sreloc = _bfd_elf_make_dynamic_reloc_section
15723 (sec, dynobj, 2, abfd, ! htab->use_rel);
15725 if (sreloc == NULL)
15728 /* BPABI objects never have dynamic relocations mapped. */
15729 if (htab->symbian_p)
15733 flags = bfd_get_section_flags (dynobj, sreloc);
15734 flags &= ~(SEC_LOAD | SEC_ALLOC);
15735 bfd_set_section_flags (dynobj, sreloc, flags);
15739 /* If this is a global symbol, count the number of
15740 relocations we need for this symbol. */
15742 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
15745 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
15751 if (p == NULL || p->sec != sec)
15753 bfd_size_type amt = sizeof *p;
15755 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
15765 if (elf32_arm_howto_from_type (r_type)->pc_relative)
15768 if (h == NULL && htab->fdpic_p && !bfd_link_pic(info)
15769 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI) {
15770 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15771 that will become rofixup. */
15772 /* This is due to the fact that we suppose all will become rofixup. */
15773 fprintf(stderr, "FDPIC does not yet support %d relocation to become dynamic for executable\n", r_type);
15775 (_("FDPIC does not yet support %s relocation"
15776 " to become dynamic for executable"),
15777 elf32_arm_howto_table_1[r_type].name);
15787 elf32_arm_update_relocs (asection *o,
15788 struct bfd_elf_section_reloc_data *reldata)
15790 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
15791 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
15792 const struct elf_backend_data *bed;
15793 _arm_elf_section_data *eado;
15794 struct bfd_link_order *p;
15795 bfd_byte *erela_head, *erela;
15796 Elf_Internal_Rela *irela_head, *irela;
15797 Elf_Internal_Shdr *rel_hdr;
15799 unsigned int count;
15801 eado = get_arm_elf_section_data (o);
15803 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
15807 bed = get_elf_backend_data (abfd);
15808 rel_hdr = reldata->hdr;
15810 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
15812 swap_in = bed->s->swap_reloc_in;
15813 swap_out = bed->s->swap_reloc_out;
15815 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
15817 swap_in = bed->s->swap_reloca_in;
15818 swap_out = bed->s->swap_reloca_out;
15823 erela_head = rel_hdr->contents;
15824 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
15825 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
15827 erela = erela_head;
15828 irela = irela_head;
15831 for (p = o->map_head.link_order; p; p = p->next)
15833 if (p->type == bfd_section_reloc_link_order
15834 || p->type == bfd_symbol_reloc_link_order)
15836 (*swap_in) (abfd, erela, irela);
15837 erela += rel_hdr->sh_entsize;
15841 else if (p->type == bfd_indirect_link_order)
15843 struct bfd_elf_section_reloc_data *input_reldata;
15844 arm_unwind_table_edit *edit_list, *edit_tail;
15845 _arm_elf_section_data *eadi;
15850 i = p->u.indirect.section;
15852 eadi = get_arm_elf_section_data (i);
15853 edit_list = eadi->u.exidx.unwind_edit_list;
15854 edit_tail = eadi->u.exidx.unwind_edit_tail;
15855 offset = o->vma + i->output_offset;
15857 if (eadi->elf.rel.hdr &&
15858 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
15859 input_reldata = &eadi->elf.rel;
15860 else if (eadi->elf.rela.hdr &&
15861 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
15862 input_reldata = &eadi->elf.rela;
15868 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15870 arm_unwind_table_edit *edit_node, *edit_next;
15872 bfd_vma reloc_index;
15874 (*swap_in) (abfd, erela, irela);
15875 reloc_index = (irela->r_offset - offset) / 8;
15878 edit_node = edit_list;
15879 for (edit_next = edit_list;
15880 edit_next && edit_next->index <= reloc_index;
15881 edit_next = edit_node->next)
15884 edit_node = edit_next;
15887 if (edit_node->type != DELETE_EXIDX_ENTRY
15888 || edit_node->index != reloc_index)
15890 irela->r_offset -= bias * 8;
15895 erela += rel_hdr->sh_entsize;
15898 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
15900 /* New relocation entity. */
15901 asection *text_sec = edit_tail->linked_section;
15902 asection *text_out = text_sec->output_section;
15903 bfd_vma exidx_offset = offset + i->size - 8;
15905 irela->r_addend = 0;
15906 irela->r_offset = exidx_offset;
15907 irela->r_info = ELF32_R_INFO
15908 (text_out->target_index, R_ARM_PREL31);
15915 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15917 (*swap_in) (abfd, erela, irela);
15918 erela += rel_hdr->sh_entsize;
15922 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15927 reldata->count = count;
15928 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15930 erela = erela_head;
15931 irela = irela_head;
15934 (*swap_out) (abfd, irela, erela);
15935 erela += rel_hdr->sh_entsize;
15942 /* Hashes are no longer valid. */
15943 free (reldata->hashes);
15944 reldata->hashes = NULL;
15947 /* Unwinding tables are not referenced directly. This pass marks them as
15948 required if the corresponding code section is marked. Similarly, ARMv8-M
15949 secure entry functions can only be referenced by SG veneers which are
15950 created after the GC process. They need to be marked in case they reside in
15951 their own section (as would be the case if code was compiled with
15952 -ffunction-sections). */
15955 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15956 elf_gc_mark_hook_fn gc_mark_hook)
15959 Elf_Internal_Shdr **elf_shdrp;
15960 asection *cmse_sec;
15961 obj_attribute *out_attr;
15962 Elf_Internal_Shdr *symtab_hdr;
15963 unsigned i, sym_count, ext_start;
15964 const struct elf_backend_data *bed;
15965 struct elf_link_hash_entry **sym_hashes;
15966 struct elf32_arm_link_hash_entry *cmse_hash;
15967 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
15969 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15971 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15972 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15973 && out_attr[Tag_CPU_arch_profile].i == 'M';
15975 /* Marking EH data may cause additional code sections to be marked,
15976 requiring multiple passes. */
15981 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
15985 if (! is_arm_elf (sub))
15988 elf_shdrp = elf_elfsections (sub);
15989 for (o = sub->sections; o != NULL; o = o->next)
15991 Elf_Internal_Shdr *hdr;
15993 hdr = &elf_section_data (o)->this_hdr;
15994 if (hdr->sh_type == SHT_ARM_EXIDX
15996 && hdr->sh_link < elf_numsections (sub)
15998 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
16001 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
16006 /* Mark section holding ARMv8-M secure entry functions. We mark all
16007 of them so no need for a second browsing. */
16008 if (is_v8m && first_bfd_browse)
16010 sym_hashes = elf_sym_hashes (sub);
16011 bed = get_elf_backend_data (sub);
16012 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
16013 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
16014 ext_start = symtab_hdr->sh_info;
16016 /* Scan symbols. */
16017 for (i = ext_start; i < sym_count; i++)
16019 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
16021 /* Assume it is a special symbol. If not, cmse_scan will
16022 warn about it and user can do something about it. */
16023 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
16025 cmse_sec = cmse_hash->root.root.u.def.section;
16026 if (!cmse_sec->gc_mark
16027 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
16033 first_bfd_browse = FALSE;
16039 /* Treat mapping symbols as special target symbols. */
16042 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
16044 return bfd_is_arm_special_symbol_name (sym->name,
16045 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
16048 /* This is a copy of elf_find_function() from elf.c except that
16049 ARM mapping symbols are ignored when looking for function names
16050 and STT_ARM_TFUNC is considered to a function type. */
16053 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
16054 asymbol ** symbols,
16055 asection * section,
16057 const char ** filename_ptr,
16058 const char ** functionname_ptr)
16060 const char * filename = NULL;
16061 asymbol * func = NULL;
16062 bfd_vma low_func = 0;
16065 for (p = symbols; *p != NULL; p++)
16067 elf_symbol_type *q;
16069 q = (elf_symbol_type *) *p;
16071 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
16076 filename = bfd_asymbol_name (&q->symbol);
16079 case STT_ARM_TFUNC:
16081 /* Skip mapping symbols. */
16082 if ((q->symbol.flags & BSF_LOCAL)
16083 && bfd_is_arm_special_symbol_name (q->symbol.name,
16084 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
16086 /* Fall through. */
16087 if (bfd_get_section (&q->symbol) == section
16088 && q->symbol.value >= low_func
16089 && q->symbol.value <= offset)
16091 func = (asymbol *) q;
16092 low_func = q->symbol.value;
16102 *filename_ptr = filename;
16103 if (functionname_ptr)
16104 *functionname_ptr = bfd_asymbol_name (func);
16110 /* Find the nearest line to a particular section and offset, for error
16111 reporting. This code is a duplicate of the code in elf.c, except
16112 that it uses arm_elf_find_function. */
16115 elf32_arm_find_nearest_line (bfd * abfd,
16116 asymbol ** symbols,
16117 asection * section,
16119 const char ** filename_ptr,
16120 const char ** functionname_ptr,
16121 unsigned int * line_ptr,
16122 unsigned int * discriminator_ptr)
16124 bfd_boolean found = FALSE;
16126 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
16127 filename_ptr, functionname_ptr,
16128 line_ptr, discriminator_ptr,
16129 dwarf_debug_sections, 0,
16130 & elf_tdata (abfd)->dwarf2_find_line_info))
16132 if (!*functionname_ptr)
16133 arm_elf_find_function (abfd, symbols, section, offset,
16134 *filename_ptr ? NULL : filename_ptr,
16140 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
16143 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
16144 & found, filename_ptr,
16145 functionname_ptr, line_ptr,
16146 & elf_tdata (abfd)->line_info))
16149 if (found && (*functionname_ptr || *line_ptr))
16152 if (symbols == NULL)
16155 if (! arm_elf_find_function (abfd, symbols, section, offset,
16156 filename_ptr, functionname_ptr))
16164 elf32_arm_find_inliner_info (bfd * abfd,
16165 const char ** filename_ptr,
16166 const char ** functionname_ptr,
16167 unsigned int * line_ptr)
16170 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
16171 functionname_ptr, line_ptr,
16172 & elf_tdata (abfd)->dwarf2_find_line_info);
16176 /* Find dynamic relocs for H that apply to read-only sections. */
16179 readonly_dynrelocs (struct elf_link_hash_entry *h)
16181 struct elf_dyn_relocs *p;
16183 for (p = elf32_arm_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
16185 asection *s = p->sec->output_section;
16187 if (s != NULL && (s->flags & SEC_READONLY) != 0)
16193 /* Adjust a symbol defined by a dynamic object and referenced by a
16194 regular object. The current definition is in some section of the
16195 dynamic object, but we're not including those sections. We have to
16196 change the definition to something the rest of the link can
16200 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
16201 struct elf_link_hash_entry * h)
16204 asection *s, *srel;
16205 struct elf32_arm_link_hash_entry * eh;
16206 struct elf32_arm_link_hash_table *globals;
16208 globals = elf32_arm_hash_table (info);
16209 if (globals == NULL)
16212 dynobj = elf_hash_table (info)->dynobj;
16214 /* Make sure we know what is going on here. */
16215 BFD_ASSERT (dynobj != NULL
16217 || h->type == STT_GNU_IFUNC
16221 && !h->def_regular)));
16223 eh = (struct elf32_arm_link_hash_entry *) h;
16225 /* If this is a function, put it in the procedure linkage table. We
16226 will fill in the contents of the procedure linkage table later,
16227 when we know the address of the .got section. */
16228 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
16230 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
16231 symbol binds locally. */
16232 if (h->plt.refcount <= 0
16233 || (h->type != STT_GNU_IFUNC
16234 && (SYMBOL_CALLS_LOCAL (info, h)
16235 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16236 && h->root.type == bfd_link_hash_undefweak))))
16238 /* This case can occur if we saw a PLT32 reloc in an input
16239 file, but the symbol was never referred to by a dynamic
16240 object, or if all references were garbage collected. In
16241 such a case, we don't actually need to build a procedure
16242 linkage table, and we can just do a PC24 reloc instead. */
16243 h->plt.offset = (bfd_vma) -1;
16244 eh->plt.thumb_refcount = 0;
16245 eh->plt.maybe_thumb_refcount = 0;
16246 eh->plt.noncall_refcount = 0;
16254 /* It's possible that we incorrectly decided a .plt reloc was
16255 needed for an R_ARM_PC24 or similar reloc to a non-function sym
16256 in check_relocs. We can't decide accurately between function
16257 and non-function syms in check-relocs; Objects loaded later in
16258 the link may change h->type. So fix it now. */
16259 h->plt.offset = (bfd_vma) -1;
16260 eh->plt.thumb_refcount = 0;
16261 eh->plt.maybe_thumb_refcount = 0;
16262 eh->plt.noncall_refcount = 0;
16265 /* If this is a weak symbol, and there is a real definition, the
16266 processor independent code will have arranged for us to see the
16267 real definition first, and we can just use the same value. */
16268 if (h->is_weakalias)
16270 struct elf_link_hash_entry *def = weakdef (h);
16271 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
16272 h->root.u.def.section = def->root.u.def.section;
16273 h->root.u.def.value = def->root.u.def.value;
16277 /* If there are no non-GOT references, we do not need a copy
16279 if (!h->non_got_ref)
16282 /* This is a reference to a symbol defined by a dynamic object which
16283 is not a function. */
16285 /* If we are creating a shared library, we must presume that the
16286 only references to the symbol are via the global offset table.
16287 For such cases we need not do anything here; the relocations will
16288 be handled correctly by relocate_section. Relocatable executables
16289 can reference data in shared objects directly, so we don't need to
16290 do anything here. */
16291 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
16294 /* We must allocate the symbol in our .dynbss section, which will
16295 become part of the .bss section of the executable. There will be
16296 an entry for this symbol in the .dynsym section. The dynamic
16297 object will contain position independent code, so all references
16298 from the dynamic object to this symbol will go through the global
16299 offset table. The dynamic linker will use the .dynsym entry to
16300 determine the address it must put in the global offset table, so
16301 both the dynamic object and the regular object will refer to the
16302 same memory location for the variable. */
16303 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
16304 linker to copy the initial value out of the dynamic object and into
16305 the runtime process image. We need to remember the offset into the
16306 .rel(a).bss section we are going to use. */
16307 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
16309 s = globals->root.sdynrelro;
16310 srel = globals->root.sreldynrelro;
16314 s = globals->root.sdynbss;
16315 srel = globals->root.srelbss;
16317 if (info->nocopyreloc == 0
16318 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
16321 elf32_arm_allocate_dynrelocs (info, srel, 1);
16325 return _bfd_elf_adjust_dynamic_copy (info, h, s);
16328 /* Allocate space in .plt, .got and associated reloc sections for
16332 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
16334 struct bfd_link_info *info;
16335 struct elf32_arm_link_hash_table *htab;
16336 struct elf32_arm_link_hash_entry *eh;
16337 struct elf_dyn_relocs *p;
16339 if (h->root.type == bfd_link_hash_indirect)
16342 eh = (struct elf32_arm_link_hash_entry *) h;
16344 info = (struct bfd_link_info *) inf;
16345 htab = elf32_arm_hash_table (info);
16349 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
16350 && h->plt.refcount > 0)
16352 /* Make sure this symbol is output as a dynamic symbol.
16353 Undefined weak syms won't yet be marked as dynamic. */
16354 if (h->dynindx == -1 && !h->forced_local
16355 && h->root.type == bfd_link_hash_undefweak)
16357 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16361 /* If the call in the PLT entry binds locally, the associated
16362 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16363 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16364 than the .plt section. */
16365 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
16368 if (eh->plt.noncall_refcount == 0
16369 && SYMBOL_REFERENCES_LOCAL (info, h))
16370 /* All non-call references can be resolved directly.
16371 This means that they can (and in some cases, must)
16372 resolve directly to the run-time target, rather than
16373 to the PLT. That in turns means that any .got entry
16374 would be equal to the .igot.plt entry, so there's
16375 no point having both. */
16376 h->got.refcount = 0;
16379 if (bfd_link_pic (info)
16381 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
16383 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
16385 /* If this symbol is not defined in a regular file, and we are
16386 not generating a shared library, then set the symbol to this
16387 location in the .plt. This is required to make function
16388 pointers compare as equal between the normal executable and
16389 the shared library. */
16390 if (! bfd_link_pic (info)
16391 && !h->def_regular)
16393 h->root.u.def.section = htab->root.splt;
16394 h->root.u.def.value = h->plt.offset;
16396 /* Make sure the function is not marked as Thumb, in case
16397 it is the target of an ABS32 relocation, which will
16398 point to the PLT entry. */
16399 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16402 /* VxWorks executables have a second set of relocations for
16403 each PLT entry. They go in a separate relocation section,
16404 which is processed by the kernel loader. */
16405 if (htab->vxworks_p && !bfd_link_pic (info))
16407 /* There is a relocation for the initial PLT entry:
16408 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16409 if (h->plt.offset == htab->plt_header_size)
16410 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
16412 /* There are two extra relocations for each subsequent
16413 PLT entry: an R_ARM_32 relocation for the GOT entry,
16414 and an R_ARM_32 relocation for the PLT entry. */
16415 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
16420 h->plt.offset = (bfd_vma) -1;
16426 h->plt.offset = (bfd_vma) -1;
16430 eh = (struct elf32_arm_link_hash_entry *) h;
16431 eh->tlsdesc_got = (bfd_vma) -1;
16433 if (h->got.refcount > 0)
16437 int tls_type = elf32_arm_hash_entry (h)->tls_type;
16440 /* Make sure this symbol is output as a dynamic symbol.
16441 Undefined weak syms won't yet be marked as dynamic. */
16442 if (htab->root.dynamic_sections_created && h->dynindx == -1 && !h->forced_local
16443 && h->root.type == bfd_link_hash_undefweak)
16445 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16449 if (!htab->symbian_p)
16451 s = htab->root.sgot;
16452 h->got.offset = s->size;
16454 if (tls_type == GOT_UNKNOWN)
16457 if (tls_type == GOT_NORMAL)
16458 /* Non-TLS symbols need one GOT slot. */
16462 if (tls_type & GOT_TLS_GDESC)
16464 /* R_ARM_TLS_DESC needs 2 GOT slots. */
16466 = (htab->root.sgotplt->size
16467 - elf32_arm_compute_jump_table_size (htab));
16468 htab->root.sgotplt->size += 8;
16469 h->got.offset = (bfd_vma) -2;
16470 /* plt.got_offset needs to know there's a TLS_DESC
16471 reloc in the middle of .got.plt. */
16472 htab->num_tls_desc++;
16475 if (tls_type & GOT_TLS_GD)
16477 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16478 consecutive GOT slots. If the symbol is both GD
16479 and GDESC, got.offset may have been
16481 h->got.offset = s->size;
16485 if (tls_type & GOT_TLS_IE)
16486 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16491 dyn = htab->root.dynamic_sections_created;
16494 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
16495 bfd_link_pic (info),
16497 && (!bfd_link_pic (info)
16498 || !SYMBOL_REFERENCES_LOCAL (info, h)))
16501 if (tls_type != GOT_NORMAL
16502 && (bfd_link_pic (info) || indx != 0)
16503 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16504 || h->root.type != bfd_link_hash_undefweak))
16506 if (tls_type & GOT_TLS_IE)
16507 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16509 if (tls_type & GOT_TLS_GD)
16510 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16512 if (tls_type & GOT_TLS_GDESC)
16514 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
16515 /* GDESC needs a trampoline to jump to. */
16516 htab->tls_trampoline = -1;
16519 /* Only GD needs it. GDESC just emits one relocation per
16521 if ((tls_type & GOT_TLS_GD) && indx != 0)
16522 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16524 else if (((indx != -1) || htab->fdpic_p)
16525 && !SYMBOL_REFERENCES_LOCAL (info, h))
16527 if (htab->root.dynamic_sections_created)
16528 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16529 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16531 else if (h->type == STT_GNU_IFUNC
16532 && eh->plt.noncall_refcount == 0)
16533 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16534 they all resolve dynamically instead. Reserve room for the
16535 GOT entry's R_ARM_IRELATIVE relocation. */
16536 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
16537 else if (bfd_link_pic (info)
16538 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16539 || h->root.type != bfd_link_hash_undefweak))
16540 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
16541 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16542 else if (htab->fdpic_p && tls_type == GOT_NORMAL)
16543 /* Reserve room for rofixup for FDPIC executable. */
16544 /* TLS relocs do not need space since they are completely
16546 htab->srofixup->size += 4;
16550 h->got.offset = (bfd_vma) -1;
16552 /* FDPIC support. */
16553 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0)
16555 /* Symbol musn't be exported. */
16556 if (h->dynindx != -1)
16559 /* We only allocate one function descriptor with its associated relocation. */
16560 if (eh->fdpic_cnts.funcdesc_offset == -1)
16562 asection *s = htab->root.sgot;
16564 eh->fdpic_cnts.funcdesc_offset = s->size;
16566 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16567 if (bfd_link_pic(info))
16568 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16570 htab->srofixup->size += 8;
16574 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0)
16576 asection *s = htab->root.sgot;
16578 if (htab->root.dynamic_sections_created && h->dynindx == -1
16579 && !h->forced_local)
16580 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16583 if (h->dynindx == -1)
16585 /* We only allocate one function descriptor with its associated relocation. q */
16586 if (eh->fdpic_cnts.funcdesc_offset == -1)
16589 eh->fdpic_cnts.funcdesc_offset = s->size;
16591 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16592 if (bfd_link_pic(info))
16593 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16595 htab->srofixup->size += 8;
16599 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16600 R_ARM_RELATIVE/rofixup relocation on it. */
16601 eh->fdpic_cnts.gotfuncdesc_offset = s->size;
16603 if (h->dynindx == -1 && !bfd_link_pic(info))
16604 htab->srofixup->size += 4;
16606 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16609 if (eh->fdpic_cnts.funcdesc_cnt > 0)
16611 if (htab->root.dynamic_sections_created && h->dynindx == -1
16612 && !h->forced_local)
16613 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16616 if (h->dynindx == -1)
16618 /* We only allocate one function descriptor with its associated relocation. */
16619 if (eh->fdpic_cnts.funcdesc_offset == -1)
16621 asection *s = htab->root.sgot;
16623 eh->fdpic_cnts.funcdesc_offset = s->size;
16625 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16626 if (bfd_link_pic(info))
16627 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16629 htab->srofixup->size += 8;
16632 if (h->dynindx == -1 && !bfd_link_pic(info))
16634 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16635 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt;
16639 /* Will need one dynamic reloc per reference. will be either
16640 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16641 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot,
16642 eh->fdpic_cnts.funcdesc_cnt);
16646 /* Allocate stubs for exported Thumb functions on v4t. */
16647 if (!htab->use_blx && h->dynindx != -1
16649 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
16650 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
16652 struct elf_link_hash_entry * th;
16653 struct bfd_link_hash_entry * bh;
16654 struct elf_link_hash_entry * myh;
16658 /* Create a new symbol to regist the real location of the function. */
16659 s = h->root.u.def.section;
16660 sprintf (name, "__real_%s", h->root.root.string);
16661 _bfd_generic_link_add_one_symbol (info, s->owner,
16662 name, BSF_GLOBAL, s,
16663 h->root.u.def.value,
16664 NULL, TRUE, FALSE, &bh);
16666 myh = (struct elf_link_hash_entry *) bh;
16667 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
16668 myh->forced_local = 1;
16669 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
16670 eh->export_glue = myh;
16671 th = record_arm_to_thumb_glue (info, h);
16672 /* Point the symbol at the stub. */
16673 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
16674 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16675 h->root.u.def.section = th->root.u.def.section;
16676 h->root.u.def.value = th->root.u.def.value & ~1;
16679 if (eh->dyn_relocs == NULL)
16682 /* In the shared -Bsymbolic case, discard space allocated for
16683 dynamic pc-relative relocs against symbols which turn out to be
16684 defined in regular objects. For the normal shared case, discard
16685 space for pc-relative relocs that have become local due to symbol
16686 visibility changes. */
16688 if (bfd_link_pic (info) || htab->root.is_relocatable_executable || htab->fdpic_p)
16690 /* Relocs that use pc_count are PC-relative forms, which will appear
16691 on something like ".long foo - ." or "movw REG, foo - .". We want
16692 calls to protected symbols to resolve directly to the function
16693 rather than going via the plt. If people want function pointer
16694 comparisons to work as expected then they should avoid writing
16695 assembly like ".long foo - .". */
16696 if (SYMBOL_CALLS_LOCAL (info, h))
16698 struct elf_dyn_relocs **pp;
16700 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
16702 p->count -= p->pc_count;
16711 if (htab->vxworks_p)
16713 struct elf_dyn_relocs **pp;
16715 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
16717 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
16724 /* Also discard relocs on undefined weak syms with non-default
16726 if (eh->dyn_relocs != NULL
16727 && h->root.type == bfd_link_hash_undefweak)
16729 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16730 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
16731 eh->dyn_relocs = NULL;
16733 /* Make sure undefined weak symbols are output as a dynamic
16735 else if (htab->root.dynamic_sections_created && h->dynindx == -1
16736 && !h->forced_local)
16738 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16743 else if (htab->root.is_relocatable_executable && h->dynindx == -1
16744 && h->root.type == bfd_link_hash_new)
16746 /* Output absolute symbols so that we can create relocations
16747 against them. For normal symbols we output a relocation
16748 against the section that contains them. */
16749 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16756 /* For the non-shared case, discard space for relocs against
16757 symbols which turn out to need copy relocs or are not
16760 if (!h->non_got_ref
16761 && ((h->def_dynamic
16762 && !h->def_regular)
16763 || (htab->root.dynamic_sections_created
16764 && (h->root.type == bfd_link_hash_undefweak
16765 || h->root.type == bfd_link_hash_undefined))))
16767 /* Make sure this symbol is output as a dynamic symbol.
16768 Undefined weak syms won't yet be marked as dynamic. */
16769 if (h->dynindx == -1 && !h->forced_local
16770 && h->root.type == bfd_link_hash_undefweak)
16772 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16776 /* If that succeeded, we know we'll be keeping all the
16778 if (h->dynindx != -1)
16782 eh->dyn_relocs = NULL;
16787 /* Finally, allocate space. */
16788 for (p = eh->dyn_relocs; p != NULL; p = p->next)
16790 asection *sreloc = elf_section_data (p->sec)->sreloc;
16792 if (h->type == STT_GNU_IFUNC
16793 && eh->plt.noncall_refcount == 0
16794 && SYMBOL_REFERENCES_LOCAL (info, h))
16795 elf32_arm_allocate_irelocs (info, sreloc, p->count);
16796 else if (h->dynindx != -1 && (!bfd_link_pic(info) || !info->symbolic || !h->def_regular))
16797 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16798 else if (htab->fdpic_p && !bfd_link_pic(info))
16799 htab->srofixup->size += 4 * p->count;
16801 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16807 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
16808 read-only sections. */
16811 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
16815 if (h->root.type == bfd_link_hash_indirect)
16818 sec = readonly_dynrelocs (h);
16821 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
16823 info->flags |= DF_TEXTREL;
16824 info->callbacks->minfo
16825 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
16826 sec->owner, h->root.root.string, sec);
16828 /* Not an error, just cut short the traversal. */
16836 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
16839 struct elf32_arm_link_hash_table *globals;
16841 globals = elf32_arm_hash_table (info);
16842 if (globals == NULL)
16845 globals->byteswap_code = byteswap_code;
16848 /* Set the sizes of the dynamic sections. */
16851 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
16852 struct bfd_link_info * info)
16857 bfd_boolean relocs;
16859 struct elf32_arm_link_hash_table *htab;
16861 htab = elf32_arm_hash_table (info);
16865 dynobj = elf_hash_table (info)->dynobj;
16866 BFD_ASSERT (dynobj != NULL);
16867 check_use_blx (htab);
16869 if (elf_hash_table (info)->dynamic_sections_created)
16871 /* Set the contents of the .interp section to the interpreter. */
16872 if (bfd_link_executable (info) && !info->nointerp)
16874 s = bfd_get_linker_section (dynobj, ".interp");
16875 BFD_ASSERT (s != NULL);
16876 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
16877 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
16881 /* Set up .got offsets for local syms, and space for local dynamic
16883 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16885 bfd_signed_vma *local_got;
16886 bfd_signed_vma *end_local_got;
16887 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
16888 char *local_tls_type;
16889 bfd_vma *local_tlsdesc_gotent;
16890 bfd_size_type locsymcount;
16891 Elf_Internal_Shdr *symtab_hdr;
16893 bfd_boolean is_vxworks = htab->vxworks_p;
16894 unsigned int symndx;
16895 struct fdpic_local *local_fdpic_cnts;
16897 if (! is_arm_elf (ibfd))
16900 for (s = ibfd->sections; s != NULL; s = s->next)
16902 struct elf_dyn_relocs *p;
16904 for (p = (struct elf_dyn_relocs *)
16905 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
16907 if (!bfd_is_abs_section (p->sec)
16908 && bfd_is_abs_section (p->sec->output_section))
16910 /* Input section has been discarded, either because
16911 it is a copy of a linkonce section or due to
16912 linker script /DISCARD/, so we'll be discarding
16915 else if (is_vxworks
16916 && strcmp (p->sec->output_section->name,
16919 /* Relocations in vxworks .tls_vars sections are
16920 handled specially by the loader. */
16922 else if (p->count != 0)
16924 srel = elf_section_data (p->sec)->sreloc;
16925 if (htab->fdpic_p && !bfd_link_pic(info))
16926 htab->srofixup->size += 4 * p->count;
16928 elf32_arm_allocate_dynrelocs (info, srel, p->count);
16929 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
16930 info->flags |= DF_TEXTREL;
16935 local_got = elf_local_got_refcounts (ibfd);
16939 symtab_hdr = & elf_symtab_hdr (ibfd);
16940 locsymcount = symtab_hdr->sh_info;
16941 end_local_got = local_got + locsymcount;
16942 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
16943 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
16944 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
16945 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd);
16947 s = htab->root.sgot;
16948 srel = htab->root.srelgot;
16949 for (; local_got < end_local_got;
16950 ++local_got, ++local_iplt_ptr, ++local_tls_type,
16951 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts)
16953 *local_tlsdesc_gotent = (bfd_vma) -1;
16954 local_iplt = *local_iplt_ptr;
16956 /* FDPIC support. */
16957 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0)
16959 if (local_fdpic_cnts->funcdesc_offset == -1)
16961 local_fdpic_cnts->funcdesc_offset = s->size;
16964 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16965 if (bfd_link_pic(info))
16966 elf32_arm_allocate_dynrelocs (info, srel, 1);
16968 htab->srofixup->size += 8;
16972 if (local_fdpic_cnts->funcdesc_cnt > 0)
16974 if (local_fdpic_cnts->funcdesc_offset == -1)
16976 local_fdpic_cnts->funcdesc_offset = s->size;
16979 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16980 if (bfd_link_pic(info))
16981 elf32_arm_allocate_dynrelocs (info, srel, 1);
16983 htab->srofixup->size += 8;
16986 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
16987 if (bfd_link_pic(info))
16988 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt);
16990 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt;
16993 if (local_iplt != NULL)
16995 struct elf_dyn_relocs *p;
16997 if (local_iplt->root.refcount > 0)
16999 elf32_arm_allocate_plt_entry (info, TRUE,
17002 if (local_iplt->arm.noncall_refcount == 0)
17003 /* All references to the PLT are calls, so all
17004 non-call references can resolve directly to the
17005 run-time target. This means that the .got entry
17006 would be the same as the .igot.plt entry, so there's
17007 no point creating both. */
17012 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
17013 local_iplt->root.offset = (bfd_vma) -1;
17016 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
17020 psrel = elf_section_data (p->sec)->sreloc;
17021 if (local_iplt->arm.noncall_refcount == 0)
17022 elf32_arm_allocate_irelocs (info, psrel, p->count);
17024 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
17027 if (*local_got > 0)
17029 Elf_Internal_Sym *isym;
17031 *local_got = s->size;
17032 if (*local_tls_type & GOT_TLS_GD)
17033 /* TLS_GD relocs need an 8-byte structure in the GOT. */
17035 if (*local_tls_type & GOT_TLS_GDESC)
17037 *local_tlsdesc_gotent = htab->root.sgotplt->size
17038 - elf32_arm_compute_jump_table_size (htab);
17039 htab->root.sgotplt->size += 8;
17040 *local_got = (bfd_vma) -2;
17041 /* plt.got_offset needs to know there's a TLS_DESC
17042 reloc in the middle of .got.plt. */
17043 htab->num_tls_desc++;
17045 if (*local_tls_type & GOT_TLS_IE)
17048 if (*local_tls_type & GOT_NORMAL)
17050 /* If the symbol is both GD and GDESC, *local_got
17051 may have been overwritten. */
17052 *local_got = s->size;
17056 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
17060 /* If all references to an STT_GNU_IFUNC PLT are calls,
17061 then all non-call references, including this GOT entry,
17062 resolve directly to the run-time target. */
17063 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
17064 && (local_iplt == NULL
17065 || local_iplt->arm.noncall_refcount == 0))
17066 elf32_arm_allocate_irelocs (info, srel, 1);
17067 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p)
17069 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)))
17070 elf32_arm_allocate_dynrelocs (info, srel, 1);
17071 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL)
17072 htab->srofixup->size += 4;
17074 if ((bfd_link_pic (info) || htab->fdpic_p)
17075 && *local_tls_type & GOT_TLS_GDESC)
17077 elf32_arm_allocate_dynrelocs (info,
17078 htab->root.srelplt, 1);
17079 htab->tls_trampoline = -1;
17084 *local_got = (bfd_vma) -1;
17088 if (htab->tls_ldm_got.refcount > 0)
17090 /* Allocate two GOT entries and one dynamic relocation (if necessary)
17091 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
17092 htab->tls_ldm_got.offset = htab->root.sgot->size;
17093 htab->root.sgot->size += 8;
17094 if (bfd_link_pic (info))
17095 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
17098 htab->tls_ldm_got.offset = -1;
17100 /* At the very end of the .rofixup section is a pointer to the GOT,
17101 reserve space for it. */
17102 if (htab->fdpic_p && htab->srofixup != NULL)
17103 htab->srofixup->size += 4;
17105 /* Allocate global sym .plt and .got entries, and space for global
17106 sym dynamic relocs. */
17107 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
17109 /* Here we rummage through the found bfds to collect glue information. */
17110 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
17112 if (! is_arm_elf (ibfd))
17115 /* Initialise mapping tables for code/data. */
17116 bfd_elf32_arm_init_maps (ibfd);
17118 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
17119 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
17120 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
17121 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd);
17124 /* Allocate space for the glue sections now that we've sized them. */
17125 bfd_elf32_arm_allocate_interworking_sections (info);
17127 /* For every jump slot reserved in the sgotplt, reloc_count is
17128 incremented. However, when we reserve space for TLS descriptors,
17129 it's not incremented, so in order to compute the space reserved
17130 for them, it suffices to multiply the reloc count by the jump
17132 if (htab->root.srelplt)
17133 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
17135 if (htab->tls_trampoline)
17137 if (htab->root.splt->size == 0)
17138 htab->root.splt->size += htab->plt_header_size;
17140 htab->tls_trampoline = htab->root.splt->size;
17141 htab->root.splt->size += htab->plt_entry_size;
17143 /* If we're not using lazy TLS relocations, don't generate the
17144 PLT and GOT entries they require. */
17145 if (!(info->flags & DF_BIND_NOW))
17147 htab->dt_tlsdesc_got = htab->root.sgot->size;
17148 htab->root.sgot->size += 4;
17150 htab->dt_tlsdesc_plt = htab->root.splt->size;
17151 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
17155 /* The check_relocs and adjust_dynamic_symbol entry points have
17156 determined the sizes of the various dynamic sections. Allocate
17157 memory for them. */
17160 for (s = dynobj->sections; s != NULL; s = s->next)
17164 if ((s->flags & SEC_LINKER_CREATED) == 0)
17167 /* It's OK to base decisions on the section name, because none
17168 of the dynobj section names depend upon the input files. */
17169 name = bfd_get_section_name (dynobj, s);
17171 if (s == htab->root.splt)
17173 /* Remember whether there is a PLT. */
17174 plt = s->size != 0;
17176 else if (CONST_STRNEQ (name, ".rel"))
17180 /* Remember whether there are any reloc sections other
17181 than .rel(a).plt and .rela.plt.unloaded. */
17182 if (s != htab->root.srelplt && s != htab->srelplt2)
17185 /* We use the reloc_count field as a counter if we need
17186 to copy relocs into the output file. */
17187 s->reloc_count = 0;
17190 else if (s != htab->root.sgot
17191 && s != htab->root.sgotplt
17192 && s != htab->root.iplt
17193 && s != htab->root.igotplt
17194 && s != htab->root.sdynbss
17195 && s != htab->root.sdynrelro
17196 && s != htab->srofixup)
17198 /* It's not one of our sections, so don't allocate space. */
17204 /* If we don't need this section, strip it from the
17205 output file. This is mostly to handle .rel(a).bss and
17206 .rel(a).plt. We must create both sections in
17207 create_dynamic_sections, because they must be created
17208 before the linker maps input sections to output
17209 sections. The linker does that before
17210 adjust_dynamic_symbol is called, and it is that
17211 function which decides whether anything needs to go
17212 into these sections. */
17213 s->flags |= SEC_EXCLUDE;
17217 if ((s->flags & SEC_HAS_CONTENTS) == 0)
17220 /* Allocate memory for the section contents. */
17221 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
17222 if (s->contents == NULL)
17226 if (elf_hash_table (info)->dynamic_sections_created)
17228 /* Add some entries to the .dynamic section. We fill in the
17229 values later, in elf32_arm_finish_dynamic_sections, but we
17230 must add the entries now so that we get the correct size for
17231 the .dynamic section. The DT_DEBUG entry is filled in by the
17232 dynamic linker and used by the debugger. */
17233 #define add_dynamic_entry(TAG, VAL) \
17234 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
17236 if (bfd_link_executable (info))
17238 if (!add_dynamic_entry (DT_DEBUG, 0))
17244 if ( !add_dynamic_entry (DT_PLTGOT, 0)
17245 || !add_dynamic_entry (DT_PLTRELSZ, 0)
17246 || !add_dynamic_entry (DT_PLTREL,
17247 htab->use_rel ? DT_REL : DT_RELA)
17248 || !add_dynamic_entry (DT_JMPREL, 0))
17251 if (htab->dt_tlsdesc_plt
17252 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
17253 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
17261 if (!add_dynamic_entry (DT_REL, 0)
17262 || !add_dynamic_entry (DT_RELSZ, 0)
17263 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
17268 if (!add_dynamic_entry (DT_RELA, 0)
17269 || !add_dynamic_entry (DT_RELASZ, 0)
17270 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
17275 /* If any dynamic relocs apply to a read-only section,
17276 then we need a DT_TEXTREL entry. */
17277 if ((info->flags & DF_TEXTREL) == 0)
17278 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
17280 if ((info->flags & DF_TEXTREL) != 0)
17282 if (!add_dynamic_entry (DT_TEXTREL, 0))
17285 if (htab->vxworks_p
17286 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
17289 #undef add_dynamic_entry
17294 /* Size sections even though they're not dynamic. We use it to setup
17295 _TLS_MODULE_BASE_, if needed. */
17298 elf32_arm_always_size_sections (bfd *output_bfd,
17299 struct bfd_link_info *info)
17302 struct elf32_arm_link_hash_table *htab;
17304 htab = elf32_arm_hash_table (info);
17306 if (bfd_link_relocatable (info))
17309 tls_sec = elf_hash_table (info)->tls_sec;
17313 struct elf_link_hash_entry *tlsbase;
17315 tlsbase = elf_link_hash_lookup
17316 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
17320 struct bfd_link_hash_entry *bh = NULL;
17321 const struct elf_backend_data *bed
17322 = get_elf_backend_data (output_bfd);
17324 if (!(_bfd_generic_link_add_one_symbol
17325 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
17326 tls_sec, 0, NULL, FALSE,
17327 bed->collect, &bh)))
17330 tlsbase->type = STT_TLS;
17331 tlsbase = (struct elf_link_hash_entry *)bh;
17332 tlsbase->def_regular = 1;
17333 tlsbase->other = STV_HIDDEN;
17334 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
17338 if (htab->fdpic_p && !bfd_link_relocatable (info)
17339 && !bfd_elf_stack_segment_size (output_bfd, info,
17340 "__stacksize", DEFAULT_STACK_SIZE))
17346 /* Finish up dynamic symbol handling. We set the contents of various
17347 dynamic sections here. */
17350 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
17351 struct bfd_link_info * info,
17352 struct elf_link_hash_entry * h,
17353 Elf_Internal_Sym * sym)
17355 struct elf32_arm_link_hash_table *htab;
17356 struct elf32_arm_link_hash_entry *eh;
17358 htab = elf32_arm_hash_table (info);
17362 eh = (struct elf32_arm_link_hash_entry *) h;
17364 if (h->plt.offset != (bfd_vma) -1)
17368 BFD_ASSERT (h->dynindx != -1);
17369 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
17374 if (!h->def_regular)
17376 /* Mark the symbol as undefined, rather than as defined in
17377 the .plt section. */
17378 sym->st_shndx = SHN_UNDEF;
17379 /* If the symbol is weak we need to clear the value.
17380 Otherwise, the PLT entry would provide a definition for
17381 the symbol even if the symbol wasn't defined anywhere,
17382 and so the symbol would never be NULL. Leave the value if
17383 there were any relocations where pointer equality matters
17384 (this is a clue for the dynamic linker, to make function
17385 pointer comparisons work between an application and shared
17387 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
17390 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
17392 /* At least one non-call relocation references this .iplt entry,
17393 so the .iplt entry is the function's canonical address. */
17394 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
17395 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
17396 sym->st_shndx = (_bfd_elf_section_from_bfd_section
17397 (output_bfd, htab->root.iplt->output_section));
17398 sym->st_value = (h->plt.offset
17399 + htab->root.iplt->output_section->vma
17400 + htab->root.iplt->output_offset);
17407 Elf_Internal_Rela rel;
17409 /* This symbol needs a copy reloc. Set it up. */
17410 BFD_ASSERT (h->dynindx != -1
17411 && (h->root.type == bfd_link_hash_defined
17412 || h->root.type == bfd_link_hash_defweak));
17415 rel.r_offset = (h->root.u.def.value
17416 + h->root.u.def.section->output_section->vma
17417 + h->root.u.def.section->output_offset);
17418 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
17419 if (h->root.u.def.section == htab->root.sdynrelro)
17420 s = htab->root.sreldynrelro;
17422 s = htab->root.srelbss;
17423 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
17426 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
17427 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute:
17428 it is relative to the ".got" section. */
17429 if (h == htab->root.hdynamic
17430 || (!htab->fdpic_p && !htab->vxworks_p && h == htab->root.hgot))
17431 sym->st_shndx = SHN_ABS;
17437 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17439 const unsigned long *template, unsigned count)
17443 for (ix = 0; ix != count; ix++)
17445 unsigned long insn = template[ix];
17447 /* Emit mov pc,rx if bx is not permitted. */
17448 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
17449 insn = (insn & 0xf000000f) | 0x01a0f000;
17450 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
17454 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
17455 other variants, NaCl needs this entry in a static executable's
17456 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17457 zero. For .iplt really only the last bundle is useful, and .iplt
17458 could have a shorter first entry, with each individual PLT entry's
17459 relative branch calculated differently so it targets the last
17460 bundle instead of the instruction before it (labelled .Lplt_tail
17461 above). But it's simpler to keep the size and layout of PLT0
17462 consistent with the dynamic case, at the cost of some dead code at
17463 the start of .iplt and the one dead store to the stack at the start
17466 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17467 asection *plt, bfd_vma got_displacement)
17471 put_arm_insn (htab, output_bfd,
17472 elf32_arm_nacl_plt0_entry[0]
17473 | arm_movw_immediate (got_displacement),
17474 plt->contents + 0);
17475 put_arm_insn (htab, output_bfd,
17476 elf32_arm_nacl_plt0_entry[1]
17477 | arm_movt_immediate (got_displacement),
17478 plt->contents + 4);
17480 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
17481 put_arm_insn (htab, output_bfd,
17482 elf32_arm_nacl_plt0_entry[i],
17483 plt->contents + (i * 4));
17486 /* Finish up the dynamic sections. */
17489 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
17494 struct elf32_arm_link_hash_table *htab;
17496 htab = elf32_arm_hash_table (info);
17500 dynobj = elf_hash_table (info)->dynobj;
17502 sgot = htab->root.sgotplt;
17503 /* A broken linker script might have discarded the dynamic sections.
17504 Catch this here so that we do not seg-fault later on. */
17505 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
17507 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
17509 if (elf_hash_table (info)->dynamic_sections_created)
17512 Elf32_External_Dyn *dyncon, *dynconend;
17514 splt = htab->root.splt;
17515 BFD_ASSERT (splt != NULL && sdyn != NULL);
17516 BFD_ASSERT (htab->symbian_p || sgot != NULL);
17518 dyncon = (Elf32_External_Dyn *) sdyn->contents;
17519 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
17521 for (; dyncon < dynconend; dyncon++)
17523 Elf_Internal_Dyn dyn;
17527 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
17534 if (htab->vxworks_p
17535 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
17536 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17541 goto get_vma_if_bpabi;
17544 goto get_vma_if_bpabi;
17547 goto get_vma_if_bpabi;
17549 name = ".gnu.version";
17550 goto get_vma_if_bpabi;
17552 name = ".gnu.version_d";
17553 goto get_vma_if_bpabi;
17555 name = ".gnu.version_r";
17556 goto get_vma_if_bpabi;
17559 name = htab->symbian_p ? ".got" : ".got.plt";
17562 name = RELOC_SECTION (htab, ".plt");
17564 s = bfd_get_linker_section (dynobj, name);
17568 (_("could not find section %s"), name);
17569 bfd_set_error (bfd_error_invalid_operation);
17572 if (!htab->symbian_p)
17573 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17575 /* In the BPABI, tags in the PT_DYNAMIC section point
17576 at the file offset, not the memory address, for the
17577 convenience of the post linker. */
17578 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
17579 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17583 if (htab->symbian_p)
17588 s = htab->root.srelplt;
17589 BFD_ASSERT (s != NULL);
17590 dyn.d_un.d_val = s->size;
17591 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17598 /* In the BPABI, the DT_REL tag must point at the file
17599 offset, not the VMA, of the first relocation
17600 section. So, we use code similar to that in
17601 elflink.c, but do not check for SHF_ALLOC on the
17602 relocation section, since relocation sections are
17603 never allocated under the BPABI. PLT relocs are also
17605 if (htab->symbian_p)
17608 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
17609 ? SHT_REL : SHT_RELA);
17610 dyn.d_un.d_val = 0;
17611 for (i = 1; i < elf_numsections (output_bfd); i++)
17613 Elf_Internal_Shdr *hdr
17614 = elf_elfsections (output_bfd)[i];
17615 if (hdr->sh_type == type)
17617 if (dyn.d_tag == DT_RELSZ
17618 || dyn.d_tag == DT_RELASZ)
17619 dyn.d_un.d_val += hdr->sh_size;
17620 else if ((ufile_ptr) hdr->sh_offset
17621 <= dyn.d_un.d_val - 1)
17622 dyn.d_un.d_val = hdr->sh_offset;
17625 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17629 case DT_TLSDESC_PLT:
17630 s = htab->root.splt;
17631 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17632 + htab->dt_tlsdesc_plt);
17633 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17636 case DT_TLSDESC_GOT:
17637 s = htab->root.sgot;
17638 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17639 + htab->dt_tlsdesc_got);
17640 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17643 /* Set the bottom bit of DT_INIT/FINI if the
17644 corresponding function is Thumb. */
17646 name = info->init_function;
17649 name = info->fini_function;
17651 /* If it wasn't set by elf_bfd_final_link
17652 then there is nothing to adjust. */
17653 if (dyn.d_un.d_val != 0)
17655 struct elf_link_hash_entry * eh;
17657 eh = elf_link_hash_lookup (elf_hash_table (info), name,
17658 FALSE, FALSE, TRUE);
17660 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
17661 == ST_BRANCH_TO_THUMB)
17663 dyn.d_un.d_val |= 1;
17664 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17671 /* Fill in the first entry in the procedure linkage table. */
17672 if (splt->size > 0 && htab->plt_header_size)
17674 const bfd_vma *plt0_entry;
17675 bfd_vma got_address, plt_address, got_displacement;
17677 /* Calculate the addresses of the GOT and PLT. */
17678 got_address = sgot->output_section->vma + sgot->output_offset;
17679 plt_address = splt->output_section->vma + splt->output_offset;
17681 if (htab->vxworks_p)
17683 /* The VxWorks GOT is relocated by the dynamic linker.
17684 Therefore, we must emit relocations rather than simply
17685 computing the values now. */
17686 Elf_Internal_Rela rel;
17688 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
17689 put_arm_insn (htab, output_bfd, plt0_entry[0],
17690 splt->contents + 0);
17691 put_arm_insn (htab, output_bfd, plt0_entry[1],
17692 splt->contents + 4);
17693 put_arm_insn (htab, output_bfd, plt0_entry[2],
17694 splt->contents + 8);
17695 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
17697 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
17698 rel.r_offset = plt_address + 12;
17699 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17701 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
17702 htab->srelplt2->contents);
17704 else if (htab->nacl_p)
17705 arm_nacl_put_plt0 (htab, output_bfd, splt,
17706 got_address + 8 - (plt_address + 16));
17707 else if (using_thumb_only (htab))
17709 got_displacement = got_address - (plt_address + 12);
17711 plt0_entry = elf32_thumb2_plt0_entry;
17712 put_arm_insn (htab, output_bfd, plt0_entry[0],
17713 splt->contents + 0);
17714 put_arm_insn (htab, output_bfd, plt0_entry[1],
17715 splt->contents + 4);
17716 put_arm_insn (htab, output_bfd, plt0_entry[2],
17717 splt->contents + 8);
17719 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
17723 got_displacement = got_address - (plt_address + 16);
17725 plt0_entry = elf32_arm_plt0_entry;
17726 put_arm_insn (htab, output_bfd, plt0_entry[0],
17727 splt->contents + 0);
17728 put_arm_insn (htab, output_bfd, plt0_entry[1],
17729 splt->contents + 4);
17730 put_arm_insn (htab, output_bfd, plt0_entry[2],
17731 splt->contents + 8);
17732 put_arm_insn (htab, output_bfd, plt0_entry[3],
17733 splt->contents + 12);
17735 #ifdef FOUR_WORD_PLT
17736 /* The displacement value goes in the otherwise-unused
17737 last word of the second entry. */
17738 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
17740 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
17745 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17746 really seem like the right value. */
17747 if (splt->output_section->owner == output_bfd)
17748 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
17750 if (htab->dt_tlsdesc_plt)
17752 bfd_vma got_address
17753 = sgot->output_section->vma + sgot->output_offset;
17754 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
17755 + htab->root.sgot->output_offset);
17756 bfd_vma plt_address
17757 = splt->output_section->vma + splt->output_offset;
17759 arm_put_trampoline (htab, output_bfd,
17760 splt->contents + htab->dt_tlsdesc_plt,
17761 dl_tlsdesc_lazy_trampoline, 6);
17763 bfd_put_32 (output_bfd,
17764 gotplt_address + htab->dt_tlsdesc_got
17765 - (plt_address + htab->dt_tlsdesc_plt)
17766 - dl_tlsdesc_lazy_trampoline[6],
17767 splt->contents + htab->dt_tlsdesc_plt + 24);
17768 bfd_put_32 (output_bfd,
17769 got_address - (plt_address + htab->dt_tlsdesc_plt)
17770 - dl_tlsdesc_lazy_trampoline[7],
17771 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
17774 if (htab->tls_trampoline)
17776 arm_put_trampoline (htab, output_bfd,
17777 splt->contents + htab->tls_trampoline,
17778 tls_trampoline, 3);
17779 #ifdef FOUR_WORD_PLT
17780 bfd_put_32 (output_bfd, 0x00000000,
17781 splt->contents + htab->tls_trampoline + 12);
17785 if (htab->vxworks_p
17786 && !bfd_link_pic (info)
17787 && htab->root.splt->size > 0)
17789 /* Correct the .rel(a).plt.unloaded relocations. They will have
17790 incorrect symbol indexes. */
17794 num_plts = ((htab->root.splt->size - htab->plt_header_size)
17795 / htab->plt_entry_size);
17796 p = htab->srelplt2->contents + RELOC_SIZE (htab);
17798 for (; num_plts; num_plts--)
17800 Elf_Internal_Rela rel;
17802 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17803 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17804 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17805 p += RELOC_SIZE (htab);
17807 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17808 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
17809 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17810 p += RELOC_SIZE (htab);
17815 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
17816 /* NaCl uses a special first entry in .iplt too. */
17817 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
17819 /* Fill in the first three entries in the global offset table. */
17822 if (sgot->size > 0)
17825 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
17827 bfd_put_32 (output_bfd,
17828 sdyn->output_section->vma + sdyn->output_offset,
17830 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
17831 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
17834 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
17837 /* At the very end of the .rofixup section is a pointer to the GOT. */
17838 if (htab->fdpic_p && htab->srofixup != NULL)
17840 struct elf_link_hash_entry *hgot = htab->root.hgot;
17842 bfd_vma got_value = hgot->root.u.def.value
17843 + hgot->root.u.def.section->output_section->vma
17844 + hgot->root.u.def.section->output_offset;
17846 arm_elf_add_rofixup(output_bfd, htab->srofixup, got_value);
17848 /* Make sure we allocated and generated the same number of fixups. */
17849 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size);
17856 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
17858 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
17859 struct elf32_arm_link_hash_table *globals;
17860 struct elf_segment_map *m;
17862 i_ehdrp = elf_elfheader (abfd);
17864 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
17865 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
17867 _bfd_elf_post_process_headers (abfd, link_info);
17868 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
17872 globals = elf32_arm_hash_table (link_info);
17873 if (globals != NULL && globals->byteswap_code)
17874 i_ehdrp->e_flags |= EF_ARM_BE8;
17876 if (globals->fdpic_p)
17877 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC;
17880 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
17881 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
17883 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
17884 if (abi == AEABI_VFP_args_vfp)
17885 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
17887 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
17890 /* Scan segment to set p_flags attribute if it contains only sections with
17891 SHF_ARM_PURECODE flag. */
17892 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
17898 for (j = 0; j < m->count; j++)
17900 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
17906 m->p_flags_valid = 1;
17911 static enum elf_reloc_type_class
17912 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
17913 const asection *rel_sec ATTRIBUTE_UNUSED,
17914 const Elf_Internal_Rela *rela)
17916 switch ((int) ELF32_R_TYPE (rela->r_info))
17918 case R_ARM_RELATIVE:
17919 return reloc_class_relative;
17920 case R_ARM_JUMP_SLOT:
17921 return reloc_class_plt;
17923 return reloc_class_copy;
17924 case R_ARM_IRELATIVE:
17925 return reloc_class_ifunc;
17927 return reloc_class_normal;
17932 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
17934 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
17937 /* Return TRUE if this is an unwinding table entry. */
17940 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
17942 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
17943 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
17947 /* Set the type and flags for an ARM section. We do this by
17948 the section name, which is a hack, but ought to work. */
17951 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
17955 name = bfd_get_section_name (abfd, sec);
17957 if (is_arm_elf_unwind_section_name (abfd, name))
17959 hdr->sh_type = SHT_ARM_EXIDX;
17960 hdr->sh_flags |= SHF_LINK_ORDER;
17963 if (sec->flags & SEC_ELF_PURECODE)
17964 hdr->sh_flags |= SHF_ARM_PURECODE;
17969 /* Handle an ARM specific section when reading an object file. This is
17970 called when bfd_section_from_shdr finds a section with an unknown
17974 elf32_arm_section_from_shdr (bfd *abfd,
17975 Elf_Internal_Shdr * hdr,
17979 /* There ought to be a place to keep ELF backend specific flags, but
17980 at the moment there isn't one. We just keep track of the
17981 sections by their name, instead. Fortunately, the ABI gives
17982 names for all the ARM specific sections, so we will probably get
17984 switch (hdr->sh_type)
17986 case SHT_ARM_EXIDX:
17987 case SHT_ARM_PREEMPTMAP:
17988 case SHT_ARM_ATTRIBUTES:
17995 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
18001 static _arm_elf_section_data *
18002 get_arm_elf_section_data (asection * sec)
18004 if (sec && sec->owner && is_arm_elf (sec->owner))
18005 return elf32_arm_section_data (sec);
18013 struct bfd_link_info *info;
18016 int (*func) (void *, const char *, Elf_Internal_Sym *,
18017 asection *, struct elf_link_hash_entry *);
18018 } output_arch_syminfo;
18020 enum map_symbol_type
18028 /* Output a single mapping symbol. */
18031 elf32_arm_output_map_sym (output_arch_syminfo *osi,
18032 enum map_symbol_type type,
18035 static const char *names[3] = {"$a", "$t", "$d"};
18036 Elf_Internal_Sym sym;
18038 sym.st_value = osi->sec->output_section->vma
18039 + osi->sec->output_offset
18043 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
18044 sym.st_shndx = osi->sec_shndx;
18045 sym.st_target_internal = 0;
18046 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
18047 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
18050 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
18051 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
18054 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
18055 bfd_boolean is_iplt_entry_p,
18056 union gotplt_union *root_plt,
18057 struct arm_plt_info *arm_plt)
18059 struct elf32_arm_link_hash_table *htab;
18060 bfd_vma addr, plt_header_size;
18062 if (root_plt->offset == (bfd_vma) -1)
18065 htab = elf32_arm_hash_table (osi->info);
18069 if (is_iplt_entry_p)
18071 osi->sec = htab->root.iplt;
18072 plt_header_size = 0;
18076 osi->sec = htab->root.splt;
18077 plt_header_size = htab->plt_header_size;
18079 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
18080 (osi->info->output_bfd, osi->sec->output_section));
18082 addr = root_plt->offset & -2;
18083 if (htab->symbian_p)
18085 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18087 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
18090 else if (htab->vxworks_p)
18092 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18094 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
18096 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
18098 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
18101 else if (htab->nacl_p)
18103 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18106 else if (htab->fdpic_p)
18108 enum map_symbol_type type = using_thumb_only(htab)
18112 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt))
18113 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
18115 if (!elf32_arm_output_map_sym (osi, type, addr))
18117 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
18119 if (htab->plt_entry_size == 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry))
18120 if (!elf32_arm_output_map_sym (osi, type, addr + 24))
18123 else if (using_thumb_only (htab))
18125 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
18130 bfd_boolean thumb_stub_p;
18132 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
18135 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
18138 #ifdef FOUR_WORD_PLT
18139 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18141 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
18144 /* A three-word PLT with no Thumb thunk contains only Arm code,
18145 so only need to output a mapping symbol for the first PLT entry and
18146 entries with thumb thunks. */
18147 if (thumb_stub_p || addr == plt_header_size)
18149 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18158 /* Output mapping symbols for PLT entries associated with H. */
18161 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
18163 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
18164 struct elf32_arm_link_hash_entry *eh;
18166 if (h->root.type == bfd_link_hash_indirect)
18169 if (h->root.type == bfd_link_hash_warning)
18170 /* When warning symbols are created, they **replace** the "real"
18171 entry in the hash table, thus we never get to see the real
18172 symbol in a hash traversal. So look at it now. */
18173 h = (struct elf_link_hash_entry *) h->root.u.i.link;
18175 eh = (struct elf32_arm_link_hash_entry *) h;
18176 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
18177 &h->plt, &eh->plt);
18180 /* Bind a veneered symbol to its veneer identified by its hash entry
18181 STUB_ENTRY. The veneered location thus loose its symbol. */
18184 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
18186 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
18189 hash->root.root.u.def.section = stub_entry->stub_sec;
18190 hash->root.root.u.def.value = stub_entry->stub_offset;
18191 hash->root.size = stub_entry->stub_size;
18194 /* Output a single local symbol for a generated stub. */
18197 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
18198 bfd_vma offset, bfd_vma size)
18200 Elf_Internal_Sym sym;
18202 sym.st_value = osi->sec->output_section->vma
18203 + osi->sec->output_offset
18205 sym.st_size = size;
18207 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
18208 sym.st_shndx = osi->sec_shndx;
18209 sym.st_target_internal = 0;
18210 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
18214 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
18217 struct elf32_arm_stub_hash_entry *stub_entry;
18218 asection *stub_sec;
18221 output_arch_syminfo *osi;
18222 const insn_sequence *template_sequence;
18223 enum stub_insn_type prev_type;
18226 enum map_symbol_type sym_type;
18228 /* Massage our args to the form they really have. */
18229 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18230 osi = (output_arch_syminfo *) in_arg;
18232 stub_sec = stub_entry->stub_sec;
18234 /* Ensure this stub is attached to the current section being
18236 if (stub_sec != osi->sec)
18239 addr = (bfd_vma) stub_entry->stub_offset;
18240 template_sequence = stub_entry->stub_template;
18242 if (arm_stub_sym_claimed (stub_entry->stub_type))
18243 arm_stub_claim_sym (stub_entry);
18246 stub_name = stub_entry->output_name;
18247 switch (template_sequence[0].type)
18250 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
18251 stub_entry->stub_size))
18256 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
18257 stub_entry->stub_size))
18266 prev_type = DATA_TYPE;
18268 for (i = 0; i < stub_entry->stub_template_size; i++)
18270 switch (template_sequence[i].type)
18273 sym_type = ARM_MAP_ARM;
18278 sym_type = ARM_MAP_THUMB;
18282 sym_type = ARM_MAP_DATA;
18290 if (template_sequence[i].type != prev_type)
18292 prev_type = template_sequence[i].type;
18293 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
18297 switch (template_sequence[i].type)
18321 /* Output mapping symbols for linker generated sections,
18322 and for those data-only sections that do not have a
18326 elf32_arm_output_arch_local_syms (bfd *output_bfd,
18327 struct bfd_link_info *info,
18329 int (*func) (void *, const char *,
18330 Elf_Internal_Sym *,
18332 struct elf_link_hash_entry *))
18334 output_arch_syminfo osi;
18335 struct elf32_arm_link_hash_table *htab;
18337 bfd_size_type size;
18340 htab = elf32_arm_hash_table (info);
18344 check_use_blx (htab);
18346 osi.flaginfo = flaginfo;
18350 /* Add a $d mapping symbol to data-only sections that
18351 don't have any mapping symbol. This may result in (harmless) redundant
18352 mapping symbols. */
18353 for (input_bfd = info->input_bfds;
18355 input_bfd = input_bfd->link.next)
18357 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
18358 for (osi.sec = input_bfd->sections;
18360 osi.sec = osi.sec->next)
18362 if (osi.sec->output_section != NULL
18363 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
18365 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
18366 == SEC_HAS_CONTENTS
18367 && get_arm_elf_section_data (osi.sec) != NULL
18368 && get_arm_elf_section_data (osi.sec)->mapcount == 0
18369 && osi.sec->size > 0
18370 && (osi.sec->flags & SEC_EXCLUDE) == 0)
18372 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18373 (output_bfd, osi.sec->output_section);
18374 if (osi.sec_shndx != (int)SHN_BAD)
18375 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
18380 /* ARM->Thumb glue. */
18381 if (htab->arm_glue_size > 0)
18383 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18384 ARM2THUMB_GLUE_SECTION_NAME);
18386 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18387 (output_bfd, osi.sec->output_section);
18388 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
18389 || htab->pic_veneer)
18390 size = ARM2THUMB_PIC_GLUE_SIZE;
18391 else if (htab->use_blx)
18392 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
18394 size = ARM2THUMB_STATIC_GLUE_SIZE;
18396 for (offset = 0; offset < htab->arm_glue_size; offset += size)
18398 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
18399 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
18403 /* Thumb->ARM glue. */
18404 if (htab->thumb_glue_size > 0)
18406 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18407 THUMB2ARM_GLUE_SECTION_NAME);
18409 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18410 (output_bfd, osi.sec->output_section);
18411 size = THUMB2ARM_GLUE_SIZE;
18413 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
18415 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
18416 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
18420 /* ARMv4 BX veneers. */
18421 if (htab->bx_glue_size > 0)
18423 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18424 ARM_BX_GLUE_SECTION_NAME);
18426 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18427 (output_bfd, osi.sec->output_section);
18429 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
18432 /* Long calls stubs. */
18433 if (htab->stub_bfd && htab->stub_bfd->sections)
18435 asection* stub_sec;
18437 for (stub_sec = htab->stub_bfd->sections;
18439 stub_sec = stub_sec->next)
18441 /* Ignore non-stub sections. */
18442 if (!strstr (stub_sec->name, STUB_SUFFIX))
18445 osi.sec = stub_sec;
18447 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18448 (output_bfd, osi.sec->output_section);
18450 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
18454 /* Finally, output mapping symbols for the PLT. */
18455 if (htab->root.splt && htab->root.splt->size > 0)
18457 osi.sec = htab->root.splt;
18458 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18459 (output_bfd, osi.sec->output_section));
18461 /* Output mapping symbols for the plt header. SymbianOS does not have a
18463 if (htab->vxworks_p)
18465 /* VxWorks shared libraries have no PLT header. */
18466 if (!bfd_link_pic (info))
18468 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18470 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18474 else if (htab->nacl_p)
18476 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18479 else if (using_thumb_only (htab) && !htab->fdpic_p)
18481 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
18483 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18485 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
18488 else if (!htab->symbian_p && !htab->fdpic_p)
18490 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18492 #ifndef FOUR_WORD_PLT
18493 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
18498 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
18500 /* NaCl uses a special first entry in .iplt too. */
18501 osi.sec = htab->root.iplt;
18502 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18503 (output_bfd, osi.sec->output_section));
18504 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18507 if ((htab->root.splt && htab->root.splt->size > 0)
18508 || (htab->root.iplt && htab->root.iplt->size > 0))
18510 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
18511 for (input_bfd = info->input_bfds;
18513 input_bfd = input_bfd->link.next)
18515 struct arm_local_iplt_info **local_iplt;
18516 unsigned int i, num_syms;
18518 local_iplt = elf32_arm_local_iplt (input_bfd);
18519 if (local_iplt != NULL)
18521 num_syms = elf_symtab_hdr (input_bfd).sh_info;
18522 for (i = 0; i < num_syms; i++)
18523 if (local_iplt[i] != NULL
18524 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
18525 &local_iplt[i]->root,
18526 &local_iplt[i]->arm))
18531 if (htab->dt_tlsdesc_plt != 0)
18533 /* Mapping symbols for the lazy tls trampoline. */
18534 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
18537 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18538 htab->dt_tlsdesc_plt + 24))
18541 if (htab->tls_trampoline != 0)
18543 /* Mapping symbols for the tls trampoline. */
18544 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
18546 #ifdef FOUR_WORD_PLT
18547 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18548 htab->tls_trampoline + 12))
18556 /* Filter normal symbols of CMSE entry functions of ABFD to include in
18557 the import library. All SYMCOUNT symbols of ABFD can be examined
18558 from their pointers in SYMS. Pointers of symbols to keep should be
18559 stored continuously at the beginning of that array.
18561 Returns the number of symbols to keep. */
18563 static unsigned int
18564 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18565 struct bfd_link_info *info,
18566 asymbol **syms, long symcount)
18570 long src_count, dst_count = 0;
18571 struct elf32_arm_link_hash_table *htab;
18573 htab = elf32_arm_hash_table (info);
18574 if (!htab->stub_bfd || !htab->stub_bfd->sections)
18578 cmse_name = (char *) bfd_malloc (maxnamelen);
18579 for (src_count = 0; src_count < symcount; src_count++)
18581 struct elf32_arm_link_hash_entry *cmse_hash;
18587 sym = syms[src_count];
18588 flags = sym->flags;
18589 name = (char *) bfd_asymbol_name (sym);
18591 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
18593 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
18596 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
18597 if (namelen > maxnamelen)
18599 cmse_name = (char *)
18600 bfd_realloc (cmse_name, namelen);
18601 maxnamelen = namelen;
18603 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
18604 cmse_hash = (struct elf32_arm_link_hash_entry *)
18605 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
18608 || (cmse_hash->root.root.type != bfd_link_hash_defined
18609 && cmse_hash->root.root.type != bfd_link_hash_defweak)
18610 || cmse_hash->root.type != STT_FUNC)
18613 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
18616 syms[dst_count++] = sym;
18620 syms[dst_count] = NULL;
18625 /* Filter symbols of ABFD to include in the import library. All
18626 SYMCOUNT symbols of ABFD can be examined from their pointers in
18627 SYMS. Pointers of symbols to keep should be stored continuously at
18628 the beginning of that array.
18630 Returns the number of symbols to keep. */
18632 static unsigned int
18633 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18634 struct bfd_link_info *info,
18635 asymbol **syms, long symcount)
18637 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
18639 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18640 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18641 library to be a relocatable object file. */
18642 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
18643 if (globals->cmse_implib)
18644 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
18646 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
18649 /* Allocate target specific section data. */
18652 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
18654 if (!sec->used_by_bfd)
18656 _arm_elf_section_data *sdata;
18657 bfd_size_type amt = sizeof (*sdata);
18659 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
18662 sec->used_by_bfd = sdata;
18665 return _bfd_elf_new_section_hook (abfd, sec);
18669 /* Used to order a list of mapping symbols by address. */
18672 elf32_arm_compare_mapping (const void * a, const void * b)
18674 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
18675 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
18677 if (amap->vma > bmap->vma)
18679 else if (amap->vma < bmap->vma)
18681 else if (amap->type > bmap->type)
18682 /* Ensure results do not depend on the host qsort for objects with
18683 multiple mapping symbols at the same address by sorting on type
18686 else if (amap->type < bmap->type)
18692 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18694 static unsigned long
18695 offset_prel31 (unsigned long addr, bfd_vma offset)
18697 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
18700 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18704 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
18706 unsigned long first_word = bfd_get_32 (output_bfd, from);
18707 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
18709 /* High bit of first word is supposed to be zero. */
18710 if ((first_word & 0x80000000ul) == 0)
18711 first_word = offset_prel31 (first_word, offset);
18713 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18714 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18715 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
18716 second_word = offset_prel31 (second_word, offset);
18718 bfd_put_32 (output_bfd, first_word, to);
18719 bfd_put_32 (output_bfd, second_word, to + 4);
18722 /* Data for make_branch_to_a8_stub(). */
18724 struct a8_branch_to_stub_data
18726 asection *writing_section;
18727 bfd_byte *contents;
18731 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
18732 places for a particular section. */
18735 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
18738 struct elf32_arm_stub_hash_entry *stub_entry;
18739 struct a8_branch_to_stub_data *data;
18740 bfd_byte *contents;
18741 unsigned long branch_insn;
18742 bfd_vma veneered_insn_loc, veneer_entry_loc;
18743 bfd_signed_vma branch_offset;
18747 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18748 data = (struct a8_branch_to_stub_data *) in_arg;
18750 if (stub_entry->target_section != data->writing_section
18751 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
18754 contents = data->contents;
18756 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18757 generated when both source and target are in the same section. */
18758 veneered_insn_loc = stub_entry->target_section->output_section->vma
18759 + stub_entry->target_section->output_offset
18760 + stub_entry->source_value;
18762 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
18763 + stub_entry->stub_sec->output_offset
18764 + stub_entry->stub_offset;
18766 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
18767 veneered_insn_loc &= ~3u;
18769 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
18771 abfd = stub_entry->target_section->owner;
18772 loc = stub_entry->source_value;
18774 /* We attempt to avoid this condition by setting stubs_always_after_branch
18775 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18776 This check is just to be on the safe side... */
18777 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
18779 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
18780 "allocated in unsafe location"), abfd);
18784 switch (stub_entry->stub_type)
18786 case arm_stub_a8_veneer_b:
18787 case arm_stub_a8_veneer_b_cond:
18788 branch_insn = 0xf0009000;
18791 case arm_stub_a8_veneer_blx:
18792 branch_insn = 0xf000e800;
18795 case arm_stub_a8_veneer_bl:
18797 unsigned int i1, j1, i2, j2, s;
18799 branch_insn = 0xf000d000;
18802 if (branch_offset < -16777216 || branch_offset > 16777214)
18804 /* There's not much we can do apart from complain if this
18806 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
18807 "of range (input file too large)"), abfd);
18811 /* i1 = not(j1 eor s), so:
18813 j1 = (not i1) eor s. */
18815 branch_insn |= (branch_offset >> 1) & 0x7ff;
18816 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
18817 i2 = (branch_offset >> 22) & 1;
18818 i1 = (branch_offset >> 23) & 1;
18819 s = (branch_offset >> 24) & 1;
18822 branch_insn |= j2 << 11;
18823 branch_insn |= j1 << 13;
18824 branch_insn |= s << 26;
18833 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
18834 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
18839 /* Beginning of stm32l4xx work-around. */
18841 /* Functions encoding instructions necessary for the emission of the
18842 fix-stm32l4xx-629360.
18843 Encoding is extracted from the
18844 ARM (C) Architecture Reference Manual
18845 ARMv7-A and ARMv7-R edition
18846 ARM DDI 0406C.b (ID072512). */
18848 static inline bfd_vma
18849 create_instruction_branch_absolute (int branch_offset)
18851 /* A8.8.18 B (A8-334)
18852 B target_address (Encoding T4). */
18853 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18854 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18855 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18857 int s = ((branch_offset & 0x1000000) >> 24);
18858 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
18859 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
18861 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
18862 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18864 bfd_vma patched_inst = 0xf0009000
18866 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
18867 | j1 << 13 /* J1. */
18868 | j2 << 11 /* J2. */
18869 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
18871 return patched_inst;
18874 static inline bfd_vma
18875 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
18877 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18878 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18879 bfd_vma patched_inst = 0xe8900000
18880 | (/*W=*/wback << 21)
18882 | (reg_mask & 0x0000ffff);
18884 return patched_inst;
18887 static inline bfd_vma
18888 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
18890 /* A8.8.60 LDMDB/LDMEA (A8-402)
18891 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18892 bfd_vma patched_inst = 0xe9100000
18893 | (/*W=*/wback << 21)
18895 | (reg_mask & 0x0000ffff);
18897 return patched_inst;
18900 static inline bfd_vma
18901 create_instruction_mov (int target_reg, int source_reg)
18903 /* A8.8.103 MOV (register) (A8-486)
18904 MOV Rd, Rm (Encoding T1). */
18905 bfd_vma patched_inst = 0x4600
18906 | (target_reg & 0x7)
18907 | ((target_reg & 0x8) >> 3) << 7
18908 | (source_reg << 3);
18910 return patched_inst;
18913 static inline bfd_vma
18914 create_instruction_sub (int target_reg, int source_reg, int value)
18916 /* A8.8.221 SUB (immediate) (A8-708)
18917 SUB Rd, Rn, #value (Encoding T3). */
18918 bfd_vma patched_inst = 0xf1a00000
18919 | (target_reg << 8)
18920 | (source_reg << 16)
18922 | ((value & 0x800) >> 11) << 26
18923 | ((value & 0x700) >> 8) << 12
18926 return patched_inst;
18929 static inline bfd_vma
18930 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
18933 /* A8.8.332 VLDM (A8-922)
18934 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18935 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
18936 | (/*W=*/wback << 21)
18938 | (num_words & 0x000000ff)
18939 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
18940 | (first_reg & 0x00000001) << 22;
18942 return patched_inst;
18945 static inline bfd_vma
18946 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
18949 /* A8.8.332 VLDM (A8-922)
18950 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18951 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
18953 | (num_words & 0x000000ff)
18954 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
18955 | (first_reg & 0x00000001) << 22;
18957 return patched_inst;
18960 static inline bfd_vma
18961 create_instruction_udf_w (int value)
18963 /* A8.8.247 UDF (A8-758)
18964 Undefined (Encoding T2). */
18965 bfd_vma patched_inst = 0xf7f0a000
18966 | (value & 0x00000fff)
18967 | (value & 0x000f0000) << 16;
18969 return patched_inst;
18972 static inline bfd_vma
18973 create_instruction_udf (int value)
18975 /* A8.8.247 UDF (A8-758)
18976 Undefined (Encoding T1). */
18977 bfd_vma patched_inst = 0xde00
18980 return patched_inst;
18983 /* Functions writing an instruction in memory, returning the next
18984 memory position to write to. */
18986 static inline bfd_byte *
18987 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
18988 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18990 put_thumb2_insn (htab, output_bfd, insn, pt);
18994 static inline bfd_byte *
18995 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
18996 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18998 put_thumb_insn (htab, output_bfd, insn, pt);
19002 /* Function filling up a region in memory with T1 and T2 UDFs taking
19003 care of alignment. */
19006 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
19008 const bfd_byte * const base_stub_contents,
19009 bfd_byte * const from_stub_contents,
19010 const bfd_byte * const end_stub_contents)
19012 bfd_byte *current_stub_contents = from_stub_contents;
19014 /* Fill the remaining of the stub with deterministic contents : UDF
19016 Check if realignment is needed on modulo 4 frontier using T1, to
19018 if ((current_stub_contents < end_stub_contents)
19019 && !((current_stub_contents - base_stub_contents) % 2)
19020 && ((current_stub_contents - base_stub_contents) % 4))
19021 current_stub_contents =
19022 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19023 create_instruction_udf (0));
19025 for (; current_stub_contents < end_stub_contents;)
19026 current_stub_contents =
19027 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19028 create_instruction_udf_w (0));
19030 return current_stub_contents;
19033 /* Functions writing the stream of instructions equivalent to the
19034 derived sequence for ldmia, ldmdb, vldm respectively. */
19037 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
19039 const insn32 initial_insn,
19040 const bfd_byte *const initial_insn_addr,
19041 bfd_byte *const base_stub_contents)
19043 int wback = (initial_insn & 0x00200000) >> 21;
19044 int ri, rn = (initial_insn & 0x000F0000) >> 16;
19045 int insn_all_registers = initial_insn & 0x0000ffff;
19046 int insn_low_registers, insn_high_registers;
19047 int usable_register_mask;
19048 int nb_registers = elf32_arm_popcount (insn_all_registers);
19049 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
19050 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
19051 bfd_byte *current_stub_contents = base_stub_contents;
19053 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
19055 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19056 smaller than 8 registers load sequences that do not cause the
19058 if (nb_registers <= 8)
19060 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19061 current_stub_contents =
19062 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19065 /* B initial_insn_addr+4. */
19067 current_stub_contents =
19068 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19069 create_instruction_branch_absolute
19070 (initial_insn_addr - current_stub_contents));
19072 /* Fill the remaining of the stub with deterministic contents. */
19073 current_stub_contents =
19074 stm32l4xx_fill_stub_udf (htab, output_bfd,
19075 base_stub_contents, current_stub_contents,
19076 base_stub_contents +
19077 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19082 /* - reg_list[13] == 0. */
19083 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
19085 /* - reg_list[14] & reg_list[15] != 1. */
19086 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19088 /* - if (wback==1) reg_list[rn] == 0. */
19089 BFD_ASSERT (!wback || !restore_rn);
19091 /* - nb_registers > 8. */
19092 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
19094 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19096 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
19097 - One with the 7 lowest registers (register mask 0x007F)
19098 This LDM will finally contain between 2 and 7 registers
19099 - One with the 7 highest registers (register mask 0xDF80)
19100 This ldm will finally contain between 2 and 7 registers. */
19101 insn_low_registers = insn_all_registers & 0x007F;
19102 insn_high_registers = insn_all_registers & 0xDF80;
19104 /* A spare register may be needed during this veneer to temporarily
19105 handle the base register. This register will be restored with the
19106 last LDM operation.
19107 The usable register may be any general purpose register (that
19108 excludes PC, SP, LR : register mask is 0x1FFF). */
19109 usable_register_mask = 0x1FFF;
19111 /* Generate the stub function. */
19114 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
19115 current_stub_contents =
19116 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19117 create_instruction_ldmia
19118 (rn, /*wback=*/1, insn_low_registers));
19120 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
19121 current_stub_contents =
19122 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19123 create_instruction_ldmia
19124 (rn, /*wback=*/1, insn_high_registers));
19127 /* B initial_insn_addr+4. */
19128 current_stub_contents =
19129 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19130 create_instruction_branch_absolute
19131 (initial_insn_addr - current_stub_contents));
19134 else /* if (!wback). */
19138 /* If Rn is not part of the high-register-list, move it there. */
19139 if (!(insn_high_registers & (1 << rn)))
19141 /* Choose a Ri in the high-register-list that will be restored. */
19142 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19145 current_stub_contents =
19146 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19147 create_instruction_mov (ri, rn));
19150 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
19151 current_stub_contents =
19152 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19153 create_instruction_ldmia
19154 (ri, /*wback=*/1, insn_low_registers));
19156 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
19157 current_stub_contents =
19158 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19159 create_instruction_ldmia
19160 (ri, /*wback=*/0, insn_high_registers));
19164 /* B initial_insn_addr+4. */
19165 current_stub_contents =
19166 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19167 create_instruction_branch_absolute
19168 (initial_insn_addr - current_stub_contents));
19172 /* Fill the remaining of the stub with deterministic contents. */
19173 current_stub_contents =
19174 stm32l4xx_fill_stub_udf (htab, output_bfd,
19175 base_stub_contents, current_stub_contents,
19176 base_stub_contents +
19177 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19181 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
19183 const insn32 initial_insn,
19184 const bfd_byte *const initial_insn_addr,
19185 bfd_byte *const base_stub_contents)
19187 int wback = (initial_insn & 0x00200000) >> 21;
19188 int ri, rn = (initial_insn & 0x000f0000) >> 16;
19189 int insn_all_registers = initial_insn & 0x0000ffff;
19190 int insn_low_registers, insn_high_registers;
19191 int usable_register_mask;
19192 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
19193 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
19194 int nb_registers = elf32_arm_popcount (insn_all_registers);
19195 bfd_byte *current_stub_contents = base_stub_contents;
19197 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
19199 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19200 smaller than 8 registers load sequences that do not cause the
19202 if (nb_registers <= 8)
19204 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19205 current_stub_contents =
19206 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19209 /* B initial_insn_addr+4. */
19210 current_stub_contents =
19211 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19212 create_instruction_branch_absolute
19213 (initial_insn_addr - current_stub_contents));
19215 /* Fill the remaining of the stub with deterministic contents. */
19216 current_stub_contents =
19217 stm32l4xx_fill_stub_udf (htab, output_bfd,
19218 base_stub_contents, current_stub_contents,
19219 base_stub_contents +
19220 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19225 /* - reg_list[13] == 0. */
19226 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
19228 /* - reg_list[14] & reg_list[15] != 1. */
19229 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19231 /* - if (wback==1) reg_list[rn] == 0. */
19232 BFD_ASSERT (!wback || !restore_rn);
19234 /* - nb_registers > 8. */
19235 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
19237 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19239 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
19240 - One with the 7 lowest registers (register mask 0x007F)
19241 This LDM will finally contain between 2 and 7 registers
19242 - One with the 7 highest registers (register mask 0xDF80)
19243 This ldm will finally contain between 2 and 7 registers. */
19244 insn_low_registers = insn_all_registers & 0x007F;
19245 insn_high_registers = insn_all_registers & 0xDF80;
19247 /* A spare register may be needed during this veneer to temporarily
19248 handle the base register. This register will be restored with
19249 the last LDM operation.
19250 The usable register may be any general purpose register (that excludes
19251 PC, SP, LR : register mask is 0x1FFF). */
19252 usable_register_mask = 0x1FFF;
19254 /* Generate the stub function. */
19255 if (!wback && !restore_pc && !restore_rn)
19257 /* Choose a Ri in the low-register-list that will be restored. */
19258 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19261 current_stub_contents =
19262 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19263 create_instruction_mov (ri, rn));
19265 /* LDMDB Ri!, {R-high-register-list}. */
19266 current_stub_contents =
19267 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19268 create_instruction_ldmdb
19269 (ri, /*wback=*/1, insn_high_registers));
19271 /* LDMDB Ri, {R-low-register-list}. */
19272 current_stub_contents =
19273 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19274 create_instruction_ldmdb
19275 (ri, /*wback=*/0, insn_low_registers));
19277 /* B initial_insn_addr+4. */
19278 current_stub_contents =
19279 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19280 create_instruction_branch_absolute
19281 (initial_insn_addr - current_stub_contents));
19283 else if (wback && !restore_pc && !restore_rn)
19285 /* LDMDB Rn!, {R-high-register-list}. */
19286 current_stub_contents =
19287 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19288 create_instruction_ldmdb
19289 (rn, /*wback=*/1, insn_high_registers));
19291 /* LDMDB Rn!, {R-low-register-list}. */
19292 current_stub_contents =
19293 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19294 create_instruction_ldmdb
19295 (rn, /*wback=*/1, insn_low_registers));
19297 /* B initial_insn_addr+4. */
19298 current_stub_contents =
19299 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19300 create_instruction_branch_absolute
19301 (initial_insn_addr - current_stub_contents));
19303 else if (!wback && restore_pc && !restore_rn)
19305 /* Choose a Ri in the high-register-list that will be restored. */
19306 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19308 /* SUB Ri, Rn, #(4*nb_registers). */
19309 current_stub_contents =
19310 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19311 create_instruction_sub (ri, rn, (4 * nb_registers)));
19313 /* LDMIA Ri!, {R-low-register-list}. */
19314 current_stub_contents =
19315 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19316 create_instruction_ldmia
19317 (ri, /*wback=*/1, insn_low_registers));
19319 /* LDMIA Ri, {R-high-register-list}. */
19320 current_stub_contents =
19321 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19322 create_instruction_ldmia
19323 (ri, /*wback=*/0, insn_high_registers));
19325 else if (wback && restore_pc && !restore_rn)
19327 /* Choose a Ri in the high-register-list that will be restored. */
19328 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19330 /* SUB Rn, Rn, #(4*nb_registers) */
19331 current_stub_contents =
19332 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19333 create_instruction_sub (rn, rn, (4 * nb_registers)));
19336 current_stub_contents =
19337 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19338 create_instruction_mov (ri, rn));
19340 /* LDMIA Ri!, {R-low-register-list}. */
19341 current_stub_contents =
19342 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19343 create_instruction_ldmia
19344 (ri, /*wback=*/1, insn_low_registers));
19346 /* LDMIA Ri, {R-high-register-list}. */
19347 current_stub_contents =
19348 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19349 create_instruction_ldmia
19350 (ri, /*wback=*/0, insn_high_registers));
19352 else if (!wback && !restore_pc && restore_rn)
19355 if (!(insn_low_registers & (1 << rn)))
19357 /* Choose a Ri in the low-register-list that will be restored. */
19358 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19361 current_stub_contents =
19362 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19363 create_instruction_mov (ri, rn));
19366 /* LDMDB Ri!, {R-high-register-list}. */
19367 current_stub_contents =
19368 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19369 create_instruction_ldmdb
19370 (ri, /*wback=*/1, insn_high_registers));
19372 /* LDMDB Ri, {R-low-register-list}. */
19373 current_stub_contents =
19374 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19375 create_instruction_ldmdb
19376 (ri, /*wback=*/0, insn_low_registers));
19378 /* B initial_insn_addr+4. */
19379 current_stub_contents =
19380 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19381 create_instruction_branch_absolute
19382 (initial_insn_addr - current_stub_contents));
19384 else if (!wback && restore_pc && restore_rn)
19387 if (!(insn_high_registers & (1 << rn)))
19389 /* Choose a Ri in the high-register-list that will be restored. */
19390 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19393 /* SUB Ri, Rn, #(4*nb_registers). */
19394 current_stub_contents =
19395 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19396 create_instruction_sub (ri, rn, (4 * nb_registers)));
19398 /* LDMIA Ri!, {R-low-register-list}. */
19399 current_stub_contents =
19400 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19401 create_instruction_ldmia
19402 (ri, /*wback=*/1, insn_low_registers));
19404 /* LDMIA Ri, {R-high-register-list}. */
19405 current_stub_contents =
19406 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19407 create_instruction_ldmia
19408 (ri, /*wback=*/0, insn_high_registers));
19410 else if (wback && restore_rn)
19412 /* The assembler should not have accepted to encode this. */
19413 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19414 "undefined behavior.\n");
19417 /* Fill the remaining of the stub with deterministic contents. */
19418 current_stub_contents =
19419 stm32l4xx_fill_stub_udf (htab, output_bfd,
19420 base_stub_contents, current_stub_contents,
19421 base_stub_contents +
19422 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19427 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
19429 const insn32 initial_insn,
19430 const bfd_byte *const initial_insn_addr,
19431 bfd_byte *const base_stub_contents)
19433 int num_words = ((unsigned int) initial_insn << 24) >> 24;
19434 bfd_byte *current_stub_contents = base_stub_contents;
19436 BFD_ASSERT (is_thumb2_vldm (initial_insn));
19438 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19439 smaller than 8 words load sequences that do not cause the
19441 if (num_words <= 8)
19443 /* Untouched instruction. */
19444 current_stub_contents =
19445 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19448 /* B initial_insn_addr+4. */
19449 current_stub_contents =
19450 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19451 create_instruction_branch_absolute
19452 (initial_insn_addr - current_stub_contents));
19456 bfd_boolean is_dp = /* DP encoding. */
19457 (initial_insn & 0xfe100f00) == 0xec100b00;
19458 bfd_boolean is_ia_nobang = /* (IA without !). */
19459 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
19460 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
19461 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
19462 bfd_boolean is_db_bang = /* (DB with !). */
19463 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
19464 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
19465 /* d = UInt (Vd:D);. */
19466 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
19467 | (((unsigned int)initial_insn << 9) >> 31);
19469 /* Compute the number of 8-words chunks needed to split. */
19470 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
19473 /* The test coverage has been done assuming the following
19474 hypothesis that exactly one of the previous is_ predicates is
19476 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
19477 && !(is_ia_nobang & is_ia_bang & is_db_bang));
19479 /* We treat the cutting of the words in one pass for all
19480 cases, then we emit the adjustments:
19483 -> vldm rx!, {8_words_or_less} for each needed 8_word
19484 -> sub rx, rx, #size (list)
19487 -> vldm rx!, {8_words_or_less} for each needed 8_word
19488 This also handles vpop instruction (when rx is sp)
19491 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
19492 for (chunk = 0; chunk < chunks; ++chunk)
19494 bfd_vma new_insn = 0;
19496 if (is_ia_nobang || is_ia_bang)
19498 new_insn = create_instruction_vldmia
19502 chunks - (chunk + 1) ?
19503 8 : num_words - chunk * 8,
19504 first_reg + chunk * 8);
19506 else if (is_db_bang)
19508 new_insn = create_instruction_vldmdb
19511 chunks - (chunk + 1) ?
19512 8 : num_words - chunk * 8,
19513 first_reg + chunk * 8);
19517 current_stub_contents =
19518 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19522 /* Only this case requires the base register compensation
19526 current_stub_contents =
19527 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19528 create_instruction_sub
19529 (base_reg, base_reg, 4*num_words));
19532 /* B initial_insn_addr+4. */
19533 current_stub_contents =
19534 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19535 create_instruction_branch_absolute
19536 (initial_insn_addr - current_stub_contents));
19539 /* Fill the remaining of the stub with deterministic contents. */
19540 current_stub_contents =
19541 stm32l4xx_fill_stub_udf (htab, output_bfd,
19542 base_stub_contents, current_stub_contents,
19543 base_stub_contents +
19544 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
19548 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
19550 const insn32 wrong_insn,
19551 const bfd_byte *const wrong_insn_addr,
19552 bfd_byte *const stub_contents)
19554 if (is_thumb2_ldmia (wrong_insn))
19555 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
19556 wrong_insn, wrong_insn_addr,
19558 else if (is_thumb2_ldmdb (wrong_insn))
19559 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
19560 wrong_insn, wrong_insn_addr,
19562 else if (is_thumb2_vldm (wrong_insn))
19563 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
19564 wrong_insn, wrong_insn_addr,
19568 /* End of stm32l4xx work-around. */
19571 /* Do code byteswapping. Return FALSE afterwards so that the section is
19572 written out as normal. */
19575 elf32_arm_write_section (bfd *output_bfd,
19576 struct bfd_link_info *link_info,
19578 bfd_byte *contents)
19580 unsigned int mapcount, errcount;
19581 _arm_elf_section_data *arm_data;
19582 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
19583 elf32_arm_section_map *map;
19584 elf32_vfp11_erratum_list *errnode;
19585 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
19588 bfd_vma offset = sec->output_section->vma + sec->output_offset;
19592 if (globals == NULL)
19595 /* If this section has not been allocated an _arm_elf_section_data
19596 structure then we cannot record anything. */
19597 arm_data = get_arm_elf_section_data (sec);
19598 if (arm_data == NULL)
19601 mapcount = arm_data->mapcount;
19602 map = arm_data->map;
19603 errcount = arm_data->erratumcount;
19607 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
19609 for (errnode = arm_data->erratumlist; errnode != 0;
19610 errnode = errnode->next)
19612 bfd_vma target = errnode->vma - offset;
19614 switch (errnode->type)
19616 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
19618 bfd_vma branch_to_veneer;
19619 /* Original condition code of instruction, plus bit mask for
19620 ARM B instruction. */
19621 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
19624 /* The instruction is before the label. */
19627 /* Above offset included in -4 below. */
19628 branch_to_veneer = errnode->u.b.veneer->vma
19629 - errnode->vma - 4;
19631 if ((signed) branch_to_veneer < -(1 << 25)
19632 || (signed) branch_to_veneer >= (1 << 25))
19633 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19634 "range"), output_bfd);
19636 insn |= (branch_to_veneer >> 2) & 0xffffff;
19637 contents[endianflip ^ target] = insn & 0xff;
19638 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19639 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19640 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19644 case VFP11_ERRATUM_ARM_VENEER:
19646 bfd_vma branch_from_veneer;
19649 /* Take size of veneer into account. */
19650 branch_from_veneer = errnode->u.v.branch->vma
19651 - errnode->vma - 12;
19653 if ((signed) branch_from_veneer < -(1 << 25)
19654 || (signed) branch_from_veneer >= (1 << 25))
19655 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19656 "range"), output_bfd);
19658 /* Original instruction. */
19659 insn = errnode->u.v.branch->u.b.vfp_insn;
19660 contents[endianflip ^ target] = insn & 0xff;
19661 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19662 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19663 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19665 /* Branch back to insn after original insn. */
19666 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
19667 contents[endianflip ^ (target + 4)] = insn & 0xff;
19668 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
19669 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
19670 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
19680 if (arm_data->stm32l4xx_erratumcount != 0)
19682 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
19683 stm32l4xx_errnode != 0;
19684 stm32l4xx_errnode = stm32l4xx_errnode->next)
19686 bfd_vma target = stm32l4xx_errnode->vma - offset;
19688 switch (stm32l4xx_errnode->type)
19690 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
19693 bfd_vma branch_to_veneer =
19694 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
19696 if ((signed) branch_to_veneer < -(1 << 24)
19697 || (signed) branch_to_veneer >= (1 << 24))
19699 bfd_vma out_of_range =
19700 ((signed) branch_to_veneer < -(1 << 24)) ?
19701 - branch_to_veneer - (1 << 24) :
19702 ((signed) branch_to_veneer >= (1 << 24)) ?
19703 branch_to_veneer - (1 << 24) : 0;
19706 (_("%pB(%#" PRIx64 "): error: "
19707 "cannot create STM32L4XX veneer; "
19708 "jump out of range by %" PRId64 " bytes; "
19709 "cannot encode branch instruction"),
19711 (uint64_t) (stm32l4xx_errnode->vma - 4),
19712 (int64_t) out_of_range);
19716 insn = create_instruction_branch_absolute
19717 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
19719 /* The instruction is before the label. */
19722 put_thumb2_insn (globals, output_bfd,
19723 (bfd_vma) insn, contents + target);
19727 case STM32L4XX_ERRATUM_VENEER:
19730 bfd_byte * veneer_r;
19733 veneer = contents + target;
19735 + stm32l4xx_errnode->u.b.veneer->vma
19736 - stm32l4xx_errnode->vma - 4;
19738 if ((signed) (veneer_r - veneer -
19739 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
19740 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
19741 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
19742 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
19743 || (signed) (veneer_r - veneer) >= (1 << 24))
19745 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19746 "veneer"), output_bfd);
19750 /* Original instruction. */
19751 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
19753 stm32l4xx_create_replacing_stub
19754 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
19764 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
19766 arm_unwind_table_edit *edit_node
19767 = arm_data->u.exidx.unwind_edit_list;
19768 /* Now, sec->size is the size of the section we will write. The original
19769 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
19770 markers) was sec->rawsize. (This isn't the case if we perform no
19771 edits, then rawsize will be zero and we should use size). */
19772 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
19773 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
19774 unsigned int in_index, out_index;
19775 bfd_vma add_to_offsets = 0;
19777 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
19781 unsigned int edit_index = edit_node->index;
19783 if (in_index < edit_index && in_index * 8 < input_size)
19785 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19786 contents + in_index * 8, add_to_offsets);
19790 else if (in_index == edit_index
19791 || (in_index * 8 >= input_size
19792 && edit_index == UINT_MAX))
19794 switch (edit_node->type)
19796 case DELETE_EXIDX_ENTRY:
19798 add_to_offsets += 8;
19801 case INSERT_EXIDX_CANTUNWIND_AT_END:
19803 asection *text_sec = edit_node->linked_section;
19804 bfd_vma text_offset = text_sec->output_section->vma
19805 + text_sec->output_offset
19807 bfd_vma exidx_offset = offset + out_index * 8;
19808 unsigned long prel31_offset;
19810 /* Note: this is meant to be equivalent to an
19811 R_ARM_PREL31 relocation. These synthetic
19812 EXIDX_CANTUNWIND markers are not relocated by the
19813 usual BFD method. */
19814 prel31_offset = (text_offset - exidx_offset)
19816 if (bfd_link_relocatable (link_info))
19818 /* Here relocation for new EXIDX_CANTUNWIND is
19819 created, so there is no need to
19820 adjust offset by hand. */
19821 prel31_offset = text_sec->output_offset
19825 /* First address we can't unwind. */
19826 bfd_put_32 (output_bfd, prel31_offset,
19827 &edited_contents[out_index * 8]);
19829 /* Code for EXIDX_CANTUNWIND. */
19830 bfd_put_32 (output_bfd, 0x1,
19831 &edited_contents[out_index * 8 + 4]);
19834 add_to_offsets -= 8;
19839 edit_node = edit_node->next;
19844 /* No more edits, copy remaining entries verbatim. */
19845 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19846 contents + in_index * 8, add_to_offsets);
19852 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
19853 bfd_set_section_contents (output_bfd, sec->output_section,
19855 (file_ptr) sec->output_offset, sec->size);
19860 /* Fix code to point to Cortex-A8 erratum stubs. */
19861 if (globals->fix_cortex_a8)
19863 struct a8_branch_to_stub_data data;
19865 data.writing_section = sec;
19866 data.contents = contents;
19868 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
19875 if (globals->byteswap_code)
19877 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
19880 for (i = 0; i < mapcount; i++)
19882 if (i == mapcount - 1)
19885 end = map[i + 1].vma;
19887 switch (map[i].type)
19890 /* Byte swap code words. */
19891 while (ptr + 3 < end)
19893 tmp = contents[ptr];
19894 contents[ptr] = contents[ptr + 3];
19895 contents[ptr + 3] = tmp;
19896 tmp = contents[ptr + 1];
19897 contents[ptr + 1] = contents[ptr + 2];
19898 contents[ptr + 2] = tmp;
19904 /* Byte swap code halfwords. */
19905 while (ptr + 1 < end)
19907 tmp = contents[ptr];
19908 contents[ptr] = contents[ptr + 1];
19909 contents[ptr + 1] = tmp;
19915 /* Leave data alone. */
19923 arm_data->mapcount = -1;
19924 arm_data->mapsize = 0;
19925 arm_data->map = NULL;
19930 /* Mangle thumb function symbols as we read them in. */
19933 elf32_arm_swap_symbol_in (bfd * abfd,
19936 Elf_Internal_Sym *dst)
19938 Elf_Internal_Shdr *symtab_hdr;
19939 const char *name = NULL;
19941 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
19943 dst->st_target_internal = 0;
19945 /* New EABI objects mark thumb function symbols by setting the low bit of
19947 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
19948 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
19950 if (dst->st_value & 1)
19952 dst->st_value &= ~(bfd_vma) 1;
19953 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
19954 ST_BRANCH_TO_THUMB);
19957 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
19959 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
19961 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
19962 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
19964 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
19965 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
19967 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
19969 /* Mark CMSE special symbols. */
19970 symtab_hdr = & elf_symtab_hdr (abfd);
19971 if (symtab_hdr->sh_size)
19972 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
19973 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
19974 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
19980 /* Mangle thumb function symbols as we write them out. */
19983 elf32_arm_swap_symbol_out (bfd *abfd,
19984 const Elf_Internal_Sym *src,
19988 Elf_Internal_Sym newsym;
19990 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19991 of the address set, as per the new EABI. We do this unconditionally
19992 because objcopy does not set the elf header flags until after
19993 it writes out the symbol table. */
19994 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
19997 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
19998 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
19999 if (newsym.st_shndx != SHN_UNDEF)
20001 /* Do this only for defined symbols. At link type, the static
20002 linker will simulate the work of dynamic linker of resolving
20003 symbols and will carry over the thumbness of found symbols to
20004 the output symbol table. It's not clear how it happens, but
20005 the thumbness of undefined symbols can well be different at
20006 runtime, and writing '1' for them will be confusing for users
20007 and possibly for dynamic linker itself.
20009 newsym.st_value |= 1;
20014 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
20017 /* Add the PT_ARM_EXIDX program header. */
20020 elf32_arm_modify_segment_map (bfd *abfd,
20021 struct bfd_link_info *info ATTRIBUTE_UNUSED)
20023 struct elf_segment_map *m;
20026 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
20027 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
20029 /* If there is already a PT_ARM_EXIDX header, then we do not
20030 want to add another one. This situation arises when running
20031 "strip"; the input binary already has the header. */
20032 m = elf_seg_map (abfd);
20033 while (m && m->p_type != PT_ARM_EXIDX)
20037 m = (struct elf_segment_map *)
20038 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
20041 m->p_type = PT_ARM_EXIDX;
20043 m->sections[0] = sec;
20045 m->next = elf_seg_map (abfd);
20046 elf_seg_map (abfd) = m;
20053 /* We may add a PT_ARM_EXIDX program header. */
20056 elf32_arm_additional_program_headers (bfd *abfd,
20057 struct bfd_link_info *info ATTRIBUTE_UNUSED)
20061 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
20062 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
20068 /* Hook called by the linker routine which adds symbols from an object
20072 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
20073 Elf_Internal_Sym *sym, const char **namep,
20074 flagword *flagsp, asection **secp, bfd_vma *valp)
20076 if (elf32_arm_hash_table (info) == NULL)
20079 if (elf32_arm_hash_table (info)->vxworks_p
20080 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
20081 flagsp, secp, valp))
20087 /* We use this to override swap_symbol_in and swap_symbol_out. */
20088 const struct elf_size_info elf32_arm_size_info =
20090 sizeof (Elf32_External_Ehdr),
20091 sizeof (Elf32_External_Phdr),
20092 sizeof (Elf32_External_Shdr),
20093 sizeof (Elf32_External_Rel),
20094 sizeof (Elf32_External_Rela),
20095 sizeof (Elf32_External_Sym),
20096 sizeof (Elf32_External_Dyn),
20097 sizeof (Elf_External_Note),
20101 ELFCLASS32, EV_CURRENT,
20102 bfd_elf32_write_out_phdrs,
20103 bfd_elf32_write_shdrs_and_ehdr,
20104 bfd_elf32_checksum_contents,
20105 bfd_elf32_write_relocs,
20106 elf32_arm_swap_symbol_in,
20107 elf32_arm_swap_symbol_out,
20108 bfd_elf32_slurp_reloc_table,
20109 bfd_elf32_slurp_symbol_table,
20110 bfd_elf32_swap_dyn_in,
20111 bfd_elf32_swap_dyn_out,
20112 bfd_elf32_swap_reloc_in,
20113 bfd_elf32_swap_reloc_out,
20114 bfd_elf32_swap_reloca_in,
20115 bfd_elf32_swap_reloca_out
20119 read_code32 (const bfd *abfd, const bfd_byte *addr)
20121 /* V7 BE8 code is always little endian. */
20122 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
20123 return bfd_getl32 (addr);
20125 return bfd_get_32 (abfd, addr);
20129 read_code16 (const bfd *abfd, const bfd_byte *addr)
20131 /* V7 BE8 code is always little endian. */
20132 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
20133 return bfd_getl16 (addr);
20135 return bfd_get_16 (abfd, addr);
20138 /* Return size of plt0 entry starting at ADDR
20139 or (bfd_vma) -1 if size can not be determined. */
20142 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
20144 bfd_vma first_word;
20147 first_word = read_code32 (abfd, addr);
20149 if (first_word == elf32_arm_plt0_entry[0])
20150 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
20151 else if (first_word == elf32_thumb2_plt0_entry[0])
20152 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
20154 /* We don't yet handle this PLT format. */
20155 return (bfd_vma) -1;
20160 /* Return size of plt entry starting at offset OFFSET
20161 of plt section located at address START
20162 or (bfd_vma) -1 if size can not be determined. */
20165 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
20167 bfd_vma first_insn;
20168 bfd_vma plt_size = 0;
20169 const bfd_byte *addr = start + offset;
20171 /* PLT entry size if fixed on Thumb-only platforms. */
20172 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
20173 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
20175 /* Respect Thumb stub if necessary. */
20176 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
20178 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
20181 /* Strip immediate from first add. */
20182 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
20184 #ifdef FOUR_WORD_PLT
20185 if (first_insn == elf32_arm_plt_entry[0])
20186 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
20188 if (first_insn == elf32_arm_plt_entry_long[0])
20189 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
20190 else if (first_insn == elf32_arm_plt_entry_short[0])
20191 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
20194 /* We don't yet handle this PLT format. */
20195 return (bfd_vma) -1;
20200 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
20203 elf32_arm_get_synthetic_symtab (bfd *abfd,
20204 long symcount ATTRIBUTE_UNUSED,
20205 asymbol **syms ATTRIBUTE_UNUSED,
20215 Elf_Internal_Shdr *hdr;
20223 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
20226 if (dynsymcount <= 0)
20229 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
20230 if (relplt == NULL)
20233 hdr = &elf_section_data (relplt)->this_hdr;
20234 if (hdr->sh_link != elf_dynsymtab (abfd)
20235 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
20238 plt = bfd_get_section_by_name (abfd, ".plt");
20242 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
20245 data = plt->contents;
20248 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
20250 bfd_cache_section_contents((asection *) plt, data);
20253 count = relplt->size / hdr->sh_entsize;
20254 size = count * sizeof (asymbol);
20255 p = relplt->relocation;
20256 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20258 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
20259 if (p->addend != 0)
20260 size += sizeof ("+0x") - 1 + 8;
20263 s = *ret = (asymbol *) bfd_malloc (size);
20267 offset = elf32_arm_plt0_size (abfd, data);
20268 if (offset == (bfd_vma) -1)
20271 names = (char *) (s + count);
20272 p = relplt->relocation;
20274 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20278 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
20279 if (plt_size == (bfd_vma) -1)
20282 *s = **p->sym_ptr_ptr;
20283 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
20284 we are defining a symbol, ensure one of them is set. */
20285 if ((s->flags & BSF_LOCAL) == 0)
20286 s->flags |= BSF_GLOBAL;
20287 s->flags |= BSF_SYNTHETIC;
20292 len = strlen ((*p->sym_ptr_ptr)->name);
20293 memcpy (names, (*p->sym_ptr_ptr)->name, len);
20295 if (p->addend != 0)
20299 memcpy (names, "+0x", sizeof ("+0x") - 1);
20300 names += sizeof ("+0x") - 1;
20301 bfd_sprintf_vma (abfd, buf, p->addend);
20302 for (a = buf; *a == '0'; ++a)
20305 memcpy (names, a, len);
20308 memcpy (names, "@plt", sizeof ("@plt"));
20309 names += sizeof ("@plt");
20311 offset += plt_size;
20318 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
20320 if (hdr->sh_flags & SHF_ARM_PURECODE)
20321 *flags |= SEC_ELF_PURECODE;
20326 elf32_arm_lookup_section_flags (char *flag_name)
20328 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
20329 return SHF_ARM_PURECODE;
20331 return SEC_NO_FLAGS;
20334 static unsigned int
20335 elf32_arm_count_additional_relocs (asection *sec)
20337 struct _arm_elf_section_data *arm_data;
20338 arm_data = get_arm_elf_section_data (sec);
20340 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
20343 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
20344 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
20345 FALSE otherwise. ISECTION is the best guess matching section from the
20346 input bfd IBFD, but it might be NULL. */
20349 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
20350 bfd *obfd ATTRIBUTE_UNUSED,
20351 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
20352 Elf_Internal_Shdr *osection)
20354 switch (osection->sh_type)
20356 case SHT_ARM_EXIDX:
20358 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
20359 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
20362 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
20363 osection->sh_info = 0;
20365 /* The sh_link field must be set to the text section associated with
20366 this index section. Unfortunately the ARM EHABI does not specify
20367 exactly how to determine this association. Our caller does try
20368 to match up OSECTION with its corresponding input section however
20369 so that is a good first guess. */
20370 if (isection != NULL
20371 && osection->bfd_section != NULL
20372 && isection->bfd_section != NULL
20373 && isection->bfd_section->output_section != NULL
20374 && isection->bfd_section->output_section == osection->bfd_section
20375 && iheaders != NULL
20376 && isection->sh_link > 0
20377 && isection->sh_link < elf_numsections (ibfd)
20378 && iheaders[isection->sh_link]->bfd_section != NULL
20379 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
20382 for (i = elf_numsections (obfd); i-- > 0;)
20383 if (oheaders[i]->bfd_section
20384 == iheaders[isection->sh_link]->bfd_section->output_section)
20390 /* Failing that we have to find a matching section ourselves. If
20391 we had the output section name available we could compare that
20392 with input section names. Unfortunately we don't. So instead
20393 we use a simple heuristic and look for the nearest executable
20394 section before this one. */
20395 for (i = elf_numsections (obfd); i-- > 0;)
20396 if (oheaders[i] == osection)
20402 if (oheaders[i]->sh_type == SHT_PROGBITS
20403 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
20404 == (SHF_ALLOC | SHF_EXECINSTR))
20410 osection->sh_link = i;
20411 /* If the text section was part of a group
20412 then the index section should be too. */
20413 if (oheaders[i]->sh_flags & SHF_GROUP)
20414 osection->sh_flags |= SHF_GROUP;
20420 case SHT_ARM_PREEMPTMAP:
20421 osection->sh_flags = SHF_ALLOC;
20424 case SHT_ARM_ATTRIBUTES:
20425 case SHT_ARM_DEBUGOVERLAY:
20426 case SHT_ARM_OVERLAYSECTION:
20434 /* Returns TRUE if NAME is an ARM mapping symbol.
20435 Traditionally the symbols $a, $d and $t have been used.
20436 The ARM ELF standard also defines $x (for A64 code). It also allows a
20437 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20438 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20439 not support them here. $t.x indicates the start of ThumbEE instructions. */
20442 is_arm_mapping_symbol (const char * name)
20444 return name != NULL /* Paranoia. */
20445 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20446 the mapping symbols could have acquired a prefix.
20447 We do not support this here, since such symbols no
20448 longer conform to the ARM ELF ABI. */
20449 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
20450 && (name[2] == 0 || name[2] == '.');
20451 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20452 any characters that follow the period are legal characters for the body
20453 of a symbol's name. For now we just assume that this is the case. */
20456 /* Make sure that mapping symbols in object files are not removed via the
20457 "strip --strip-unneeded" tool. These symbols are needed in order to
20458 correctly generate interworking veneers, and for byte swapping code
20459 regions. Once an object file has been linked, it is safe to remove the
20460 symbols as they will no longer be needed. */
20463 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
20465 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
20466 && sym->section != bfd_abs_section_ptr
20467 && is_arm_mapping_symbol (sym->name))
20468 sym->flags |= BSF_KEEP;
20471 #undef elf_backend_copy_special_section_fields
20472 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20474 #define ELF_ARCH bfd_arch_arm
20475 #define ELF_TARGET_ID ARM_ELF_DATA
20476 #define ELF_MACHINE_CODE EM_ARM
20477 #ifdef __QNXTARGET__
20478 #define ELF_MAXPAGESIZE 0x1000
20480 #define ELF_MAXPAGESIZE 0x10000
20482 #define ELF_MINPAGESIZE 0x1000
20483 #define ELF_COMMONPAGESIZE 0x1000
20485 #define bfd_elf32_mkobject elf32_arm_mkobject
20487 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20488 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
20489 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20490 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
20491 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
20492 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
20493 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
20494 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
20495 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
20496 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
20497 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
20498 #define bfd_elf32_bfd_final_link elf32_arm_final_link
20499 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
20501 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
20502 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
20503 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
20504 #define elf_backend_check_relocs elf32_arm_check_relocs
20505 #define elf_backend_update_relocs elf32_arm_update_relocs
20506 #define elf_backend_relocate_section elf32_arm_relocate_section
20507 #define elf_backend_write_section elf32_arm_write_section
20508 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
20509 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
20510 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20511 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20512 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
20513 #define elf_backend_always_size_sections elf32_arm_always_size_sections
20514 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
20515 #define elf_backend_post_process_headers elf32_arm_post_process_headers
20516 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
20517 #define elf_backend_object_p elf32_arm_object_p
20518 #define elf_backend_fake_sections elf32_arm_fake_sections
20519 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20520 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20521 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
20522 #define elf_backend_size_info elf32_arm_size_info
20523 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20524 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20525 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
20526 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
20527 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
20528 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
20529 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
20530 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
20532 #define elf_backend_can_refcount 1
20533 #define elf_backend_can_gc_sections 1
20534 #define elf_backend_plt_readonly 1
20535 #define elf_backend_want_got_plt 1
20536 #define elf_backend_want_plt_sym 0
20537 #define elf_backend_want_dynrelro 1
20538 #define elf_backend_may_use_rel_p 1
20539 #define elf_backend_may_use_rela_p 0
20540 #define elf_backend_default_use_rela_p 0
20541 #define elf_backend_dtrel_excludes_plt 1
20543 #define elf_backend_got_header_size 12
20544 #define elf_backend_extern_protected_data 1
20546 #undef elf_backend_obj_attrs_vendor
20547 #define elf_backend_obj_attrs_vendor "aeabi"
20548 #undef elf_backend_obj_attrs_section
20549 #define elf_backend_obj_attrs_section ".ARM.attributes"
20550 #undef elf_backend_obj_attrs_arg_type
20551 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
20552 #undef elf_backend_obj_attrs_section_type
20553 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
20554 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
20555 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
20557 #undef elf_backend_section_flags
20558 #define elf_backend_section_flags elf32_arm_section_flags
20559 #undef elf_backend_lookup_section_flags_hook
20560 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
20562 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
20564 #include "elf32-target.h"
20566 /* Native Client targets. */
20568 #undef TARGET_LITTLE_SYM
20569 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
20570 #undef TARGET_LITTLE_NAME
20571 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20572 #undef TARGET_BIG_SYM
20573 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
20574 #undef TARGET_BIG_NAME
20575 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
20577 /* Like elf32_arm_link_hash_table_create -- but overrides
20578 appropriately for NaCl. */
20580 static struct bfd_link_hash_table *
20581 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
20583 struct bfd_link_hash_table *ret;
20585 ret = elf32_arm_link_hash_table_create (abfd);
20588 struct elf32_arm_link_hash_table *htab
20589 = (struct elf32_arm_link_hash_table *) ret;
20593 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
20594 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
20599 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
20600 really need to use elf32_arm_modify_segment_map. But we do it
20601 anyway just to reduce gratuitous differences with the stock ARM backend. */
20604 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
20606 return (elf32_arm_modify_segment_map (abfd, info)
20607 && nacl_modify_segment_map (abfd, info));
20611 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
20613 elf32_arm_final_write_processing (abfd, linker);
20614 nacl_final_write_processing (abfd, linker);
20618 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
20619 const arelent *rel ATTRIBUTE_UNUSED)
20622 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
20623 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
20627 #define elf32_bed elf32_arm_nacl_bed
20628 #undef bfd_elf32_bfd_link_hash_table_create
20629 #define bfd_elf32_bfd_link_hash_table_create \
20630 elf32_arm_nacl_link_hash_table_create
20631 #undef elf_backend_plt_alignment
20632 #define elf_backend_plt_alignment 4
20633 #undef elf_backend_modify_segment_map
20634 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
20635 #undef elf_backend_modify_program_headers
20636 #define elf_backend_modify_program_headers nacl_modify_program_headers
20637 #undef elf_backend_final_write_processing
20638 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
20639 #undef bfd_elf32_get_synthetic_symtab
20640 #undef elf_backend_plt_sym_val
20641 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
20642 #undef elf_backend_copy_special_section_fields
20644 #undef ELF_MINPAGESIZE
20645 #undef ELF_COMMONPAGESIZE
20648 #include "elf32-target.h"
20650 /* Reset to defaults. */
20651 #undef elf_backend_plt_alignment
20652 #undef elf_backend_modify_segment_map
20653 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20654 #undef elf_backend_modify_program_headers
20655 #undef elf_backend_final_write_processing
20656 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20657 #undef ELF_MINPAGESIZE
20658 #define ELF_MINPAGESIZE 0x1000
20659 #undef ELF_COMMONPAGESIZE
20660 #define ELF_COMMONPAGESIZE 0x1000
20663 /* FDPIC Targets. */
20665 #undef TARGET_LITTLE_SYM
20666 #define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20667 #undef TARGET_LITTLE_NAME
20668 #define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20669 #undef TARGET_BIG_SYM
20670 #define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20671 #undef TARGET_BIG_NAME
20672 #define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20673 #undef elf_match_priority
20674 #define elf_match_priority 128
20676 #define ELF_OSABI ELFOSABI_ARM_FDPIC
20678 /* Like elf32_arm_link_hash_table_create -- but overrides
20679 appropriately for FDPIC. */
20681 static struct bfd_link_hash_table *
20682 elf32_arm_fdpic_link_hash_table_create (bfd *abfd)
20684 struct bfd_link_hash_table *ret;
20686 ret = elf32_arm_link_hash_table_create (abfd);
20689 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret;
20696 /* We need dynamic symbols for every section, since segments can
20697 relocate independently. */
20699 elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
20700 struct bfd_link_info *info
20702 asection *p ATTRIBUTE_UNUSED)
20704 switch (elf_section_data (p)->this_hdr.sh_type)
20708 /* If sh_type is yet undecided, assume it could be
20709 SHT_PROGBITS/SHT_NOBITS. */
20713 /* There shouldn't be section relative relocations
20714 against any other section. */
20721 #define elf32_bed elf32_arm_fdpic_bed
20723 #undef bfd_elf32_bfd_link_hash_table_create
20724 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
20726 #undef elf_backend_omit_section_dynsym
20727 #define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20729 #include "elf32-target.h"
20731 #undef elf_match_priority
20733 #undef elf_backend_omit_section_dynsym
20735 /* VxWorks Targets. */
20737 #undef TARGET_LITTLE_SYM
20738 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20739 #undef TARGET_LITTLE_NAME
20740 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20741 #undef TARGET_BIG_SYM
20742 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20743 #undef TARGET_BIG_NAME
20744 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
20746 /* Like elf32_arm_link_hash_table_create -- but overrides
20747 appropriately for VxWorks. */
20749 static struct bfd_link_hash_table *
20750 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
20752 struct bfd_link_hash_table *ret;
20754 ret = elf32_arm_link_hash_table_create (abfd);
20757 struct elf32_arm_link_hash_table *htab
20758 = (struct elf32_arm_link_hash_table *) ret;
20760 htab->vxworks_p = 1;
20766 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
20768 elf32_arm_final_write_processing (abfd, linker);
20769 elf_vxworks_final_write_processing (abfd, linker);
20773 #define elf32_bed elf32_arm_vxworks_bed
20775 #undef bfd_elf32_bfd_link_hash_table_create
20776 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
20777 #undef elf_backend_final_write_processing
20778 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20779 #undef elf_backend_emit_relocs
20780 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
20782 #undef elf_backend_may_use_rel_p
20783 #define elf_backend_may_use_rel_p 0
20784 #undef elf_backend_may_use_rela_p
20785 #define elf_backend_may_use_rela_p 1
20786 #undef elf_backend_default_use_rela_p
20787 #define elf_backend_default_use_rela_p 1
20788 #undef elf_backend_want_plt_sym
20789 #define elf_backend_want_plt_sym 1
20790 #undef ELF_MAXPAGESIZE
20791 #define ELF_MAXPAGESIZE 0x1000
20793 #include "elf32-target.h"
20796 /* Merge backend specific data from an object file to the output
20797 object file when linking. */
20800 elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
20802 bfd *obfd = info->output_bfd;
20803 flagword out_flags;
20805 bfd_boolean flags_compatible = TRUE;
20808 /* Check if we have the same endianness. */
20809 if (! _bfd_generic_verify_endian_match (ibfd, info))
20812 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
20815 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
20818 /* The input BFD must have had its flags initialised. */
20819 /* The following seems bogus to me -- The flags are initialized in
20820 the assembler but I don't think an elf_flags_init field is
20821 written into the object. */
20822 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20824 in_flags = elf_elfheader (ibfd)->e_flags;
20825 out_flags = elf_elfheader (obfd)->e_flags;
20827 /* In theory there is no reason why we couldn't handle this. However
20828 in practice it isn't even close to working and there is no real
20829 reason to want it. */
20830 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
20831 && !(ibfd->flags & DYNAMIC)
20832 && (in_flags & EF_ARM_BE8))
20834 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
20839 if (!elf_flags_init (obfd))
20841 /* If the input is the default architecture and had the default
20842 flags then do not bother setting the flags for the output
20843 architecture, instead allow future merges to do this. If no
20844 future merges ever set these flags then they will retain their
20845 uninitialised values, which surprise surprise, correspond
20846 to the default values. */
20847 if (bfd_get_arch_info (ibfd)->the_default
20848 && elf_elfheader (ibfd)->e_flags == 0)
20851 elf_flags_init (obfd) = TRUE;
20852 elf_elfheader (obfd)->e_flags = in_flags;
20854 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
20855 && bfd_get_arch_info (obfd)->the_default)
20856 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
20861 /* Determine what should happen if the input ARM architecture
20862 does not match the output ARM architecture. */
20863 if (! bfd_arm_merge_machines (ibfd, obfd))
20866 /* Identical flags must be compatible. */
20867 if (in_flags == out_flags)
20870 /* Check to see if the input BFD actually contains any sections. If
20871 not, its flags may not have been initialised either, but it
20872 cannot actually cause any incompatiblity. Do not short-circuit
20873 dynamic objects; their section list may be emptied by
20874 elf_link_add_object_symbols.
20876 Also check to see if there are no code sections in the input.
20877 In this case there is no need to check for code specific flags.
20878 XXX - do we need to worry about floating-point format compatability
20879 in data sections ? */
20880 if (!(ibfd->flags & DYNAMIC))
20882 bfd_boolean null_input_bfd = TRUE;
20883 bfd_boolean only_data_sections = TRUE;
20885 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
20887 /* Ignore synthetic glue sections. */
20888 if (strcmp (sec->name, ".glue_7")
20889 && strcmp (sec->name, ".glue_7t"))
20891 if ((bfd_get_section_flags (ibfd, sec)
20892 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20893 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20894 only_data_sections = FALSE;
20896 null_input_bfd = FALSE;
20901 if (null_input_bfd || only_data_sections)
20905 /* Complain about various flag mismatches. */
20906 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
20907 EF_ARM_EABI_VERSION (out_flags)))
20910 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
20911 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
20912 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
20916 /* Not sure what needs to be checked for EABI versions >= 1. */
20917 /* VxWorks libraries do not use these flags. */
20918 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
20919 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
20920 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
20922 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
20925 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
20926 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
20927 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
20928 flags_compatible = FALSE;
20931 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
20933 if (in_flags & EF_ARM_APCS_FLOAT)
20935 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
20939 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
20942 flags_compatible = FALSE;
20945 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
20947 if (in_flags & EF_ARM_VFP_FLOAT)
20949 (_("error: %pB uses %s instructions, whereas %pB does not"),
20950 ibfd, "VFP", obfd);
20953 (_("error: %pB uses %s instructions, whereas %pB does not"),
20954 ibfd, "FPA", obfd);
20956 flags_compatible = FALSE;
20959 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
20961 if (in_flags & EF_ARM_MAVERICK_FLOAT)
20963 (_("error: %pB uses %s instructions, whereas %pB does not"),
20964 ibfd, "Maverick", obfd);
20967 (_("error: %pB does not use %s instructions, whereas %pB does"),
20968 ibfd, "Maverick", obfd);
20970 flags_compatible = FALSE;
20973 #ifdef EF_ARM_SOFT_FLOAT
20974 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
20976 /* We can allow interworking between code that is VFP format
20977 layout, and uses either soft float or integer regs for
20978 passing floating point arguments and results. We already
20979 know that the APCS_FLOAT flags match; similarly for VFP
20981 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
20982 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
20984 if (in_flags & EF_ARM_SOFT_FLOAT)
20986 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
20990 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
20993 flags_compatible = FALSE;
20998 /* Interworking mismatch is only a warning. */
20999 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
21001 if (in_flags & EF_ARM_INTERWORK)
21004 (_("warning: %pB supports interworking, whereas %pB does not"),
21010 (_("warning: %pB does not support interworking, whereas %pB does"),
21016 return flags_compatible;
21020 /* Symbian OS Targets. */
21022 #undef TARGET_LITTLE_SYM
21023 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
21024 #undef TARGET_LITTLE_NAME
21025 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
21026 #undef TARGET_BIG_SYM
21027 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
21028 #undef TARGET_BIG_NAME
21029 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
21031 /* Like elf32_arm_link_hash_table_create -- but overrides
21032 appropriately for Symbian OS. */
21034 static struct bfd_link_hash_table *
21035 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
21037 struct bfd_link_hash_table *ret;
21039 ret = elf32_arm_link_hash_table_create (abfd);
21042 struct elf32_arm_link_hash_table *htab
21043 = (struct elf32_arm_link_hash_table *)ret;
21044 /* There is no PLT header for Symbian OS. */
21045 htab->plt_header_size = 0;
21046 /* The PLT entries are each one instruction and one word. */
21047 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
21048 htab->symbian_p = 1;
21049 /* Symbian uses armv5t or above, so use_blx is always true. */
21051 htab->root.is_relocatable_executable = 1;
21056 static const struct bfd_elf_special_section
21057 elf32_arm_symbian_special_sections[] =
21059 /* In a BPABI executable, the dynamic linking sections do not go in
21060 the loadable read-only segment. The post-linker may wish to
21061 refer to these sections, but they are not part of the final
21063 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
21064 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
21065 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
21066 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
21067 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
21068 /* These sections do not need to be writable as the SymbianOS
21069 postlinker will arrange things so that no dynamic relocation is
21071 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
21072 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
21073 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
21074 { NULL, 0, 0, 0, 0 }
21078 elf32_arm_symbian_begin_write_processing (bfd *abfd,
21079 struct bfd_link_info *link_info)
21081 /* BPABI objects are never loaded directly by an OS kernel; they are
21082 processed by a postlinker first, into an OS-specific format. If
21083 the D_PAGED bit is set on the file, BFD will align segments on
21084 page boundaries, so that an OS can directly map the file. With
21085 BPABI objects, that just results in wasted space. In addition,
21086 because we clear the D_PAGED bit, map_sections_to_segments will
21087 recognize that the program headers should not be mapped into any
21088 loadable segment. */
21089 abfd->flags &= ~D_PAGED;
21090 elf32_arm_begin_write_processing (abfd, link_info);
21094 elf32_arm_symbian_modify_segment_map (bfd *abfd,
21095 struct bfd_link_info *info)
21097 struct elf_segment_map *m;
21100 /* BPABI shared libraries and executables should have a PT_DYNAMIC
21101 segment. However, because the .dynamic section is not marked
21102 with SEC_LOAD, the generic ELF code will not create such a
21104 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
21107 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
21108 if (m->p_type == PT_DYNAMIC)
21113 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
21114 m->next = elf_seg_map (abfd);
21115 elf_seg_map (abfd) = m;
21119 /* Also call the generic arm routine. */
21120 return elf32_arm_modify_segment_map (abfd, info);
21123 /* Return address for Ith PLT stub in section PLT, for relocation REL
21124 or (bfd_vma) -1 if it should not be included. */
21127 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
21128 const arelent *rel ATTRIBUTE_UNUSED)
21130 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
21134 #define elf32_bed elf32_arm_symbian_bed
21136 /* The dynamic sections are not allocated on SymbianOS; the postlinker
21137 will process them and then discard them. */
21138 #undef ELF_DYNAMIC_SEC_FLAGS
21139 #define ELF_DYNAMIC_SEC_FLAGS \
21140 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
21142 #undef elf_backend_emit_relocs
21144 #undef bfd_elf32_bfd_link_hash_table_create
21145 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
21146 #undef elf_backend_special_sections
21147 #define elf_backend_special_sections elf32_arm_symbian_special_sections
21148 #undef elf_backend_begin_write_processing
21149 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
21150 #undef elf_backend_final_write_processing
21151 #define elf_backend_final_write_processing elf32_arm_final_write_processing
21153 #undef elf_backend_modify_segment_map
21154 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
21156 /* There is no .got section for BPABI objects, and hence no header. */
21157 #undef elf_backend_got_header_size
21158 #define elf_backend_got_header_size 0
21160 /* Similarly, there is no .got.plt section. */
21161 #undef elf_backend_want_got_plt
21162 #define elf_backend_want_got_plt 0
21164 #undef elf_backend_plt_sym_val
21165 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
21167 #undef elf_backend_may_use_rel_p
21168 #define elf_backend_may_use_rel_p 1
21169 #undef elf_backend_may_use_rela_p
21170 #define elf_backend_may_use_rela_p 0
21171 #undef elf_backend_default_use_rela_p
21172 #define elf_backend_default_use_rela_p 0
21173 #undef elf_backend_want_plt_sym
21174 #define elf_backend_want_plt_sym 0
21175 #undef elf_backend_dtrel_excludes_plt
21176 #define elf_backend_dtrel_excludes_plt 0
21177 #undef ELF_MAXPAGESIZE
21178 #define ELF_MAXPAGESIZE 0x8000
21180 #include "elf32-target.h"