1 /* BFD back-end for Renesas Super-H COFF binaries.
2 Copyright (C) 1993-2015 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4 Written by Steve Chamberlain, <sac@cygnus.com>.
5 Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
26 #include "libiberty.h"
30 #include "coff/internal.h"
32 #undef bfd_pe_print_pdata
37 #ifndef COFF_IMAGE_WITH_PE
38 static bfd_boolean sh_align_load_span
39 (bfd *, asection *, bfd_byte *,
40 bfd_boolean (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
41 void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bfd_boolean *);
43 #define _bfd_sh_align_load_span sh_align_load_span
46 #define bfd_pe_print_pdata _bfd_pe_print_ce_compressed_pdata
50 #define bfd_pe_print_pdata NULL
52 #endif /* COFF_WITH_PE. */
56 /* Internal functions. */
59 /* Can't build import tables with 2**4 alignment. */
60 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2
62 /* Default section alignment to 2**4. */
63 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4
66 #ifdef COFF_IMAGE_WITH_PE
67 /* Align PE executables. */
68 #define COFF_PAGE_SIZE 0x1000
71 /* Generate long file names. */
72 #define COFF_LONG_FILENAMES
75 /* Return TRUE if this relocation should
76 appear in the output .reloc section. */
79 in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED,
80 reloc_howto_type * howto)
82 return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
86 static bfd_reloc_status_type
87 sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
89 sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *,
90 bfd_byte *, struct internal_reloc *,
91 struct internal_syment *, asection **);
93 sh_align_loads (bfd *, asection *, struct internal_reloc *,
94 bfd_byte *, bfd_boolean *);
96 /* The supported relocations. There are a lot of relocations defined
97 in coff/internal.h which we do not expect to ever see. */
98 static reloc_howto_type sh_coff_howtos[] =
104 HOWTO (R_SH_IMM32CE, /* type */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
108 FALSE, /* pc_relative */
110 complain_overflow_bitfield, /* complain_on_overflow */
111 sh_reloc, /* special_function */
112 "r_imm32ce", /* name */
113 TRUE, /* partial_inplace */
114 0xffffffff, /* src_mask */
115 0xffffffff, /* dst_mask */
116 FALSE), /* pcrel_offset */
120 EMPTY_HOWTO (3), /* R_SH_PCREL8 */
121 EMPTY_HOWTO (4), /* R_SH_PCREL16 */
122 EMPTY_HOWTO (5), /* R_SH_HIGH8 */
123 EMPTY_HOWTO (6), /* R_SH_IMM24 */
124 EMPTY_HOWTO (7), /* R_SH_LOW16 */
126 EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
128 HOWTO (R_SH_PCDISP8BY2, /* type */
130 1, /* size (0 = byte, 1 = short, 2 = long) */
132 TRUE, /* pc_relative */
134 complain_overflow_signed, /* complain_on_overflow */
135 sh_reloc, /* special_function */
136 "r_pcdisp8by2", /* name */
137 TRUE, /* partial_inplace */
140 TRUE), /* pcrel_offset */
142 EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
144 HOWTO (R_SH_PCDISP, /* type */
146 1, /* size (0 = byte, 1 = short, 2 = long) */
148 TRUE, /* pc_relative */
150 complain_overflow_signed, /* complain_on_overflow */
151 sh_reloc, /* special_function */
152 "r_pcdisp12by2", /* name */
153 TRUE, /* partial_inplace */
154 0xfff, /* src_mask */
155 0xfff, /* dst_mask */
156 TRUE), /* pcrel_offset */
160 HOWTO (R_SH_IMM32, /* type */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
164 FALSE, /* pc_relative */
166 complain_overflow_bitfield, /* complain_on_overflow */
167 sh_reloc, /* special_function */
168 "r_imm32", /* name */
169 TRUE, /* partial_inplace */
170 0xffffffff, /* src_mask */
171 0xffffffff, /* dst_mask */
172 FALSE), /* pcrel_offset */
176 HOWTO (R_SH_IMAGEBASE, /* type */
178 2, /* size (0 = byte, 1 = short, 2 = long) */
180 FALSE, /* pc_relative */
182 complain_overflow_bitfield, /* complain_on_overflow */
183 sh_reloc, /* special_function */
185 TRUE, /* partial_inplace */
186 0xffffffff, /* src_mask */
187 0xffffffff, /* dst_mask */
188 FALSE), /* pcrel_offset */
190 EMPTY_HOWTO (16), /* R_SH_IMM8 */
192 EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
193 EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
194 EMPTY_HOWTO (19), /* R_SH_IMM4 */
195 EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
196 EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
198 HOWTO (R_SH_PCRELIMM8BY2, /* type */
200 1, /* size (0 = byte, 1 = short, 2 = long) */
202 TRUE, /* pc_relative */
204 complain_overflow_unsigned, /* complain_on_overflow */
205 sh_reloc, /* special_function */
206 "r_pcrelimm8by2", /* name */
207 TRUE, /* partial_inplace */
210 TRUE), /* pcrel_offset */
212 HOWTO (R_SH_PCRELIMM8BY4, /* type */
214 1, /* size (0 = byte, 1 = short, 2 = long) */
216 TRUE, /* pc_relative */
218 complain_overflow_unsigned, /* complain_on_overflow */
219 sh_reloc, /* special_function */
220 "r_pcrelimm8by4", /* name */
221 TRUE, /* partial_inplace */
224 TRUE), /* pcrel_offset */
226 HOWTO (R_SH_IMM16, /* type */
228 1, /* size (0 = byte, 1 = short, 2 = long) */
230 FALSE, /* pc_relative */
232 complain_overflow_bitfield, /* complain_on_overflow */
233 sh_reloc, /* special_function */
234 "r_imm16", /* name */
235 TRUE, /* partial_inplace */
236 0xffff, /* src_mask */
237 0xffff, /* dst_mask */
238 FALSE), /* pcrel_offset */
240 HOWTO (R_SH_SWITCH16, /* type */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
244 FALSE, /* pc_relative */
246 complain_overflow_bitfield, /* complain_on_overflow */
247 sh_reloc, /* special_function */
248 "r_switch16", /* name */
249 TRUE, /* partial_inplace */
250 0xffff, /* src_mask */
251 0xffff, /* dst_mask */
252 FALSE), /* pcrel_offset */
254 HOWTO (R_SH_SWITCH32, /* type */
256 2, /* size (0 = byte, 1 = short, 2 = long) */
258 FALSE, /* pc_relative */
260 complain_overflow_bitfield, /* complain_on_overflow */
261 sh_reloc, /* special_function */
262 "r_switch32", /* name */
263 TRUE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
268 HOWTO (R_SH_USES, /* type */
270 1, /* size (0 = byte, 1 = short, 2 = long) */
272 FALSE, /* pc_relative */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 sh_reloc, /* special_function */
277 TRUE, /* partial_inplace */
278 0xffff, /* src_mask */
279 0xffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
282 HOWTO (R_SH_COUNT, /* type */
284 2, /* size (0 = byte, 1 = short, 2 = long) */
286 FALSE, /* pc_relative */
288 complain_overflow_bitfield, /* complain_on_overflow */
289 sh_reloc, /* special_function */
290 "r_count", /* name */
291 TRUE, /* partial_inplace */
292 0xffffffff, /* src_mask */
293 0xffffffff, /* dst_mask */
294 FALSE), /* pcrel_offset */
296 HOWTO (R_SH_ALIGN, /* type */
298 2, /* size (0 = byte, 1 = short, 2 = long) */
300 FALSE, /* pc_relative */
302 complain_overflow_bitfield, /* complain_on_overflow */
303 sh_reloc, /* special_function */
304 "r_align", /* name */
305 TRUE, /* partial_inplace */
306 0xffffffff, /* src_mask */
307 0xffffffff, /* dst_mask */
308 FALSE), /* pcrel_offset */
310 HOWTO (R_SH_CODE, /* type */
312 2, /* size (0 = byte, 1 = short, 2 = long) */
314 FALSE, /* pc_relative */
316 complain_overflow_bitfield, /* complain_on_overflow */
317 sh_reloc, /* special_function */
319 TRUE, /* partial_inplace */
320 0xffffffff, /* src_mask */
321 0xffffffff, /* dst_mask */
322 FALSE), /* pcrel_offset */
324 HOWTO (R_SH_DATA, /* type */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
328 FALSE, /* pc_relative */
330 complain_overflow_bitfield, /* complain_on_overflow */
331 sh_reloc, /* special_function */
333 TRUE, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE), /* pcrel_offset */
338 HOWTO (R_SH_LABEL, /* type */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
342 FALSE, /* pc_relative */
344 complain_overflow_bitfield, /* complain_on_overflow */
345 sh_reloc, /* special_function */
346 "r_label", /* name */
347 TRUE, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE), /* pcrel_offset */
352 HOWTO (R_SH_SWITCH8, /* type */
354 0, /* size (0 = byte, 1 = short, 2 = long) */
356 FALSE, /* pc_relative */
358 complain_overflow_bitfield, /* complain_on_overflow */
359 sh_reloc, /* special_function */
360 "r_switch8", /* name */
361 TRUE, /* partial_inplace */
364 FALSE) /* pcrel_offset */
367 #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
369 /* Check for a bad magic number. */
370 #define BADMAG(x) SHBADMAG(x)
372 /* Customize coffcode.h (this is not currently used). */
375 /* FIXME: This should not be set here. */
376 #define __A_MAGIC_SET__
379 /* Swap the r_offset field in and out. */
380 #define SWAP_IN_RELOC_OFFSET H_GET_32
381 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
383 /* Swap out extra information in the reloc structure. */
384 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
387 dst->r_stuff[0] = 'S'; \
388 dst->r_stuff[1] = 'C'; \
393 /* Get the value of a symbol, when performing a relocation. */
396 get_symbol_value (asymbol *symbol)
400 if (bfd_is_com_section (symbol->section))
403 relocation = (symbol->value +
404 symbol->section->output_section->vma +
405 symbol->section->output_offset);
411 /* Convert an rtype to howto for the COFF backend linker.
412 Copied from coff-i386. */
413 #define coff_rtype_to_howto coff_sh_rtype_to_howto
416 static reloc_howto_type *
417 coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED,
419 struct internal_reloc * rel,
420 struct coff_link_hash_entry * h,
421 struct internal_syment * sym,
424 reloc_howto_type * howto;
426 howto = sh_coff_howtos + rel->r_type;
430 if (howto->pc_relative)
431 *addendp += sec->vma;
433 if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
435 /* This is a common symbol. The section contents include the
436 size (sym->n_value) as an addend. The relocate_section
437 function will be adding in the final value of the symbol. We
438 need to subtract out the current size in order to get the
440 BFD_ASSERT (h != NULL);
443 if (howto->pc_relative)
447 /* If the symbol is defined, then the generic code is going to
448 add back the symbol value in order to cancel out an
449 adjustment it made to the addend. However, we set the addend
450 to 0 at the start of this function. We need to adjust here,
451 to avoid the adjustment the generic code will make. FIXME:
452 This is getting a bit hackish. */
453 if (sym != NULL && sym->n_scnum != 0)
454 *addendp -= sym->n_value;
457 if (rel->r_type == R_SH_IMAGEBASE)
458 *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;
463 #endif /* COFF_WITH_PE */
465 /* This structure is used to map BFD reloc codes to SH PE relocs. */
466 struct shcoff_reloc_map
468 bfd_reloc_code_real_type bfd_reloc_val;
469 unsigned char shcoff_reloc_val;
473 /* An array mapping BFD reloc codes to SH PE relocs. */
474 static const struct shcoff_reloc_map sh_reloc_map[] =
476 { BFD_RELOC_32, R_SH_IMM32CE },
477 { BFD_RELOC_RVA, R_SH_IMAGEBASE },
478 { BFD_RELOC_CTOR, R_SH_IMM32CE },
481 /* An array mapping BFD reloc codes to SH PE relocs. */
482 static const struct shcoff_reloc_map sh_reloc_map[] =
484 { BFD_RELOC_32, R_SH_IMM32 },
485 { BFD_RELOC_CTOR, R_SH_IMM32 },
489 /* Given a BFD reloc code, return the howto structure for the
490 corresponding SH PE reloc. */
491 #define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup
492 #define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup
494 static reloc_howto_type *
495 sh_coff_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED,
496 bfd_reloc_code_real_type code)
500 for (i = ARRAY_SIZE (sh_reloc_map); i--;)
501 if (sh_reloc_map[i].bfd_reloc_val == code)
502 return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
504 (*_bfd_error_handler) (_("SH Error: unknown reloc type %d"), code);
508 static reloc_howto_type *
509 sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
514 for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++)
515 if (sh_coff_howtos[i].name != NULL
516 && strcasecmp (sh_coff_howtos[i].name, r_name) == 0)
517 return &sh_coff_howtos[i];
522 /* This macro is used in coffcode.h to get the howto corresponding to
523 an internal reloc. */
525 #define RTYPE2HOWTO(relent, internal) \
527 ((internal)->r_type < SH_COFF_HOWTO_COUNT \
528 ? &sh_coff_howtos[(internal)->r_type] \
529 : (reloc_howto_type *) NULL))
531 /* This is the same as the macro in coffcode.h, except that it copies
532 r_offset into reloc_entry->addend for some relocs. */
533 #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \
535 coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \
536 if (ptr && bfd_asymbol_bfd (ptr) != abfd) \
537 coffsym = (obj_symbols (abfd) \
538 + (cache_ptr->sym_ptr_ptr - symbols)); \
540 coffsym = coff_symbol_from (ptr); \
541 if (coffsym != (coff_symbol_type *) NULL \
542 && coffsym->native->u.syment.n_scnum == 0) \
543 cache_ptr->addend = 0; \
544 else if (ptr && bfd_asymbol_bfd (ptr) == abfd \
545 && ptr->section != (asection *) NULL) \
546 cache_ptr->addend = - (ptr->section->vma + ptr->value); \
548 cache_ptr->addend = 0; \
549 if ((reloc).r_type == R_SH_SWITCH8 \
550 || (reloc).r_type == R_SH_SWITCH16 \
551 || (reloc).r_type == R_SH_SWITCH32 \
552 || (reloc).r_type == R_SH_USES \
553 || (reloc).r_type == R_SH_COUNT \
554 || (reloc).r_type == R_SH_ALIGN) \
555 cache_ptr->addend = (reloc).r_offset; \
558 /* This is the howto function for the SH relocations. */
560 static bfd_reloc_status_type
561 sh_reloc (bfd * abfd,
562 arelent * reloc_entry,
565 asection * input_section,
567 char ** error_message ATTRIBUTE_UNUSED)
571 unsigned short r_type;
572 bfd_vma addr = reloc_entry->address;
573 bfd_byte *hit_data = addr + (bfd_byte *) data;
575 r_type = reloc_entry->howto->type;
577 if (output_bfd != NULL)
579 /* Partial linking--do nothing. */
580 reloc_entry->address += input_section->output_offset;
584 /* Almost all relocs have to do with relaxing. If any work must be
585 done for them, it has been done in sh_relax_section. */
586 if (r_type != R_SH_IMM32
588 && r_type != R_SH_IMM32CE
589 && r_type != R_SH_IMAGEBASE
591 && (r_type != R_SH_PCDISP
592 || (symbol_in->flags & BSF_LOCAL) != 0))
595 if (symbol_in != NULL
596 && bfd_is_und_section (symbol_in->section))
597 return bfd_reloc_undefined;
599 sym_value = get_symbol_value (symbol_in);
607 insn = bfd_get_32 (abfd, hit_data);
608 insn += sym_value + reloc_entry->addend;
609 bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
613 insn = bfd_get_32 (abfd, hit_data);
614 insn += sym_value + reloc_entry->addend;
615 insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
616 bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
620 insn = bfd_get_16 (abfd, hit_data);
621 sym_value += reloc_entry->addend;
622 sym_value -= (input_section->output_section->vma
623 + input_section->output_offset
626 sym_value += (insn & 0xfff) << 1;
629 insn = (insn & 0xf000) | (sym_value & 0xfff);
630 bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
631 if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
632 return bfd_reloc_overflow;
642 #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
644 /* We can do relaxing. */
645 #define coff_bfd_relax_section sh_relax_section
647 /* We use the special COFF backend linker. */
648 #define coff_relocate_section sh_relocate_section
650 /* When relaxing, we need to use special code to get the relocated
652 #define coff_bfd_get_relocated_section_contents \
653 sh_coff_get_relocated_section_contents
655 #include "coffcode.h"
658 sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int);
660 /* This function handles relaxing on the SH.
662 Function calls on the SH look like this:
671 The compiler and assembler will cooperate to create R_SH_USES
672 relocs on the jsr instructions. The r_offset field of the
673 R_SH_USES reloc is the PC relative offset to the instruction which
674 loads the register (the r_offset field is computed as though it
675 were a jump instruction, so the offset value is actually from four
676 bytes past the instruction). The linker can use this reloc to
677 determine just which function is being called, and thus decide
678 whether it is possible to replace the jsr with a bsr.
680 If multiple function calls are all based on a single register load
681 (i.e., the same function is called multiple times), the compiler
682 guarantees that each function call will have an R_SH_USES reloc.
683 Therefore, if the linker is able to convert each R_SH_USES reloc
684 which refers to that address, it can safely eliminate the register
687 When the assembler creates an R_SH_USES reloc, it examines it to
688 determine which address is being loaded (L1 in the above example).
689 It then counts the number of references to that address, and
690 creates an R_SH_COUNT reloc at that address. The r_offset field of
691 the R_SH_COUNT reloc will be the number of references. If the
692 linker is able to eliminate a register load, it can use the
693 R_SH_COUNT reloc to see whether it can also eliminate the function
696 SH relaxing also handles another, unrelated, matter. On the SH, if
697 a load or store instruction is not aligned on a four byte boundary,
698 the memory cycle interferes with the 32 bit instruction fetch,
699 causing a one cycle bubble in the pipeline. Therefore, we try to
700 align load and store instructions on four byte boundaries if we
701 can, by swapping them with one of the adjacent instructions. */
704 sh_relax_section (bfd *abfd,
706 struct bfd_link_info *link_info,
709 struct internal_reloc *internal_relocs;
710 bfd_boolean have_code;
711 struct internal_reloc *irel, *irelend;
712 bfd_byte *contents = NULL;
716 if (link_info->relocatable
717 || (sec->flags & SEC_RELOC) == 0
718 || sec->reloc_count == 0)
721 if (coff_section_data (abfd, sec) == NULL)
723 bfd_size_type amt = sizeof (struct coff_section_tdata);
724 sec->used_by_bfd = bfd_zalloc (abfd, amt);
725 if (sec->used_by_bfd == NULL)
729 internal_relocs = (_bfd_coff_read_internal_relocs
730 (abfd, sec, link_info->keep_memory,
731 (bfd_byte *) NULL, FALSE,
732 (struct internal_reloc *) NULL));
733 if (internal_relocs == NULL)
738 irelend = internal_relocs + sec->reloc_count;
739 for (irel = internal_relocs; irel < irelend; irel++)
741 bfd_vma laddr, paddr, symval;
743 struct internal_reloc *irelfn, *irelscan, *irelcount;
744 struct internal_syment sym;
747 if (irel->r_type == R_SH_CODE)
750 if (irel->r_type != R_SH_USES)
753 /* Get the section contents. */
754 if (contents == NULL)
756 if (coff_section_data (abfd, sec)->contents != NULL)
757 contents = coff_section_data (abfd, sec)->contents;
760 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
765 /* The r_offset field of the R_SH_USES reloc will point us to
766 the register load. The 4 is because the r_offset field is
767 computed as though it were a jump offset, which are based
768 from 4 bytes after the jump instruction. */
769 laddr = irel->r_vaddr - sec->vma + 4;
770 /* Careful to sign extend the 32-bit offset. */
771 laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
772 if (laddr >= sec->size)
774 (*_bfd_error_handler) ("%B: 0x%lx: warning: bad R_SH_USES offset",
775 abfd, (unsigned long) irel->r_vaddr);
778 insn = bfd_get_16 (abfd, contents + laddr);
780 /* If the instruction is not mov.l NN,rN, we don't know what to do. */
781 if ((insn & 0xf000) != 0xd000)
783 ((*_bfd_error_handler)
784 ("%B: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x",
785 abfd, (unsigned long) irel->r_vaddr, insn));
789 /* Get the address from which the register is being loaded. The
790 displacement in the mov.l instruction is quadrupled. It is a
791 displacement from four bytes after the movl instruction, but,
792 before adding in the PC address, two least significant bits
793 of the PC are cleared. We assume that the section is aligned
794 on a four byte boundary. */
797 paddr += (laddr + 4) &~ (bfd_vma) 3;
798 if (paddr >= sec->size)
800 ((*_bfd_error_handler)
801 ("%B: 0x%lx: warning: bad R_SH_USES load offset",
802 abfd, (unsigned long) irel->r_vaddr));
806 /* Get the reloc for the address from which the register is
807 being loaded. This reloc will tell us which function is
808 actually being called. */
810 for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
811 if (irelfn->r_vaddr == paddr
813 && (irelfn->r_type == R_SH_IMM32
814 || irelfn->r_type == R_SH_IMM32CE
815 || irelfn->r_type == R_SH_IMAGEBASE)
818 && irelfn->r_type == R_SH_IMM32
822 if (irelfn >= irelend)
824 ((*_bfd_error_handler)
825 ("%B: 0x%lx: warning: could not find expected reloc",
826 abfd, (unsigned long) paddr));
830 /* Get the value of the symbol referred to by the reloc. */
831 if (! _bfd_coff_get_external_symbols (abfd))
833 bfd_coff_swap_sym_in (abfd,
834 ((bfd_byte *) obj_coff_external_syms (abfd)
836 * bfd_coff_symesz (abfd))),
838 if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
840 ((*_bfd_error_handler)
841 ("%B: 0x%lx: warning: symbol in unexpected section",
842 abfd, (unsigned long) paddr));
846 if (sym.n_sclass != C_EXT)
848 symval = (sym.n_value
850 + sec->output_section->vma
851 + sec->output_offset);
855 struct coff_link_hash_entry *h;
857 h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
858 BFD_ASSERT (h != NULL);
859 if (h->root.type != bfd_link_hash_defined
860 && h->root.type != bfd_link_hash_defweak)
862 /* This appears to be a reference to an undefined
863 symbol. Just ignore it--it will be caught by the
864 regular reloc processing. */
868 symval = (h->root.u.def.value
869 + h->root.u.def.section->output_section->vma
870 + h->root.u.def.section->output_offset);
873 symval += bfd_get_32 (abfd, contents + paddr - sec->vma);
875 /* See if this function call can be shortened. */
879 + sec->output_section->vma
882 if (foff < -0x1000 || foff >= 0x1000)
884 /* After all that work, we can't shorten this function call. */
888 /* Shorten the function call. */
890 /* For simplicity of coding, we are going to modify the section
891 contents, the section relocs, and the BFD symbol table. We
892 must tell the rest of the code not to free up this
893 information. It would be possible to instead create a table
894 of changes which have to be made, as is done in coff-mips.c;
895 that would be more work, but would require less memory when
896 the linker is run. */
898 coff_section_data (abfd, sec)->relocs = internal_relocs;
899 coff_section_data (abfd, sec)->keep_relocs = TRUE;
901 coff_section_data (abfd, sec)->contents = contents;
902 coff_section_data (abfd, sec)->keep_contents = TRUE;
904 obj_coff_keep_syms (abfd) = TRUE;
906 /* Replace the jsr with a bsr. */
908 /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
909 replace the jsr with a bsr. */
910 irel->r_type = R_SH_PCDISP;
911 irel->r_symndx = irelfn->r_symndx;
912 if (sym.n_sclass != C_EXT)
914 /* If this needs to be changed because of future relaxing,
915 it will be handled here like other internal PCDISP
918 (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
919 contents + irel->r_vaddr - sec->vma);
923 /* We can't fully resolve this yet, because the external
924 symbol value may be changed by future relaxing. We let
925 the final link phase handle it. */
926 bfd_put_16 (abfd, (bfd_vma) 0xb000,
927 contents + irel->r_vaddr - sec->vma);
930 /* See if there is another R_SH_USES reloc referring to the same
932 for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
933 if (irelscan->r_type == R_SH_USES
934 && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
936 if (irelscan < irelend)
938 /* Some other function call depends upon this register load,
939 and we have not yet converted that function call.
940 Indeed, we may never be able to convert it. There is
941 nothing else we can do at this point. */
945 /* Look for a R_SH_COUNT reloc on the location where the
946 function address is stored. Do this before deleting any
947 bytes, to avoid confusion about the address. */
948 for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
949 if (irelcount->r_vaddr == paddr
950 && irelcount->r_type == R_SH_COUNT)
953 /* Delete the register load. */
954 if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
957 /* That will change things, so, just in case it permits some
958 other function call to come within range, we should relax
959 again. Note that this is not required, and it may be slow. */
962 /* Now check whether we got a COUNT reloc. */
963 if (irelcount >= irelend)
965 ((*_bfd_error_handler)
966 ("%B: 0x%lx: warning: could not find expected COUNT reloc",
967 abfd, (unsigned long) paddr));
971 /* The number of uses is stored in the r_offset field. We've
973 if (irelcount->r_offset == 0)
975 ((*_bfd_error_handler) ("%B: 0x%lx: warning: bad count",
976 abfd, (unsigned long) paddr));
980 --irelcount->r_offset;
982 /* If there are no more uses, we can delete the address. Reload
983 the address from irelfn, in case it was changed by the
984 previous call to sh_relax_delete_bytes. */
985 if (irelcount->r_offset == 0)
987 if (! sh_relax_delete_bytes (abfd, sec,
988 irelfn->r_vaddr - sec->vma, 4))
992 /* We've done all we can with that function call. */
995 /* Look for load and store instructions that we can align on four
1001 /* Get the section contents. */
1002 if (contents == NULL)
1004 if (coff_section_data (abfd, sec)->contents != NULL)
1005 contents = coff_section_data (abfd, sec)->contents;
1008 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1013 if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
1018 coff_section_data (abfd, sec)->relocs = internal_relocs;
1019 coff_section_data (abfd, sec)->keep_relocs = TRUE;
1021 coff_section_data (abfd, sec)->contents = contents;
1022 coff_section_data (abfd, sec)->keep_contents = TRUE;
1024 obj_coff_keep_syms (abfd) = TRUE;
1028 if (internal_relocs != NULL
1029 && internal_relocs != coff_section_data (abfd, sec)->relocs)
1031 if (! link_info->keep_memory)
1032 free (internal_relocs);
1034 coff_section_data (abfd, sec)->relocs = internal_relocs;
1037 if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
1039 if (! link_info->keep_memory)
1042 /* Cache the section contents for coff_link_input_bfd. */
1043 coff_section_data (abfd, sec)->contents = contents;
1049 if (internal_relocs != NULL
1050 && internal_relocs != coff_section_data (abfd, sec)->relocs)
1051 free (internal_relocs);
1052 if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
1057 /* Delete some bytes from a section while relaxing. */
1060 sh_relax_delete_bytes (bfd *abfd,
1066 struct internal_reloc *irel, *irelend;
1067 struct internal_reloc *irelalign;
1069 bfd_byte *esym, *esymend;
1070 bfd_size_type symesz;
1071 struct coff_link_hash_entry **sym_hash;
1074 contents = coff_section_data (abfd, sec)->contents;
1076 /* The deletion must stop at the next ALIGN reloc for an aligment
1077 power larger than the number of bytes we are deleting. */
1082 irel = coff_section_data (abfd, sec)->relocs;
1083 irelend = irel + sec->reloc_count;
1084 for (; irel < irelend; irel++)
1086 if (irel->r_type == R_SH_ALIGN
1087 && irel->r_vaddr - sec->vma > addr
1088 && count < (1 << irel->r_offset))
1091 toaddr = irel->r_vaddr - sec->vma;
1096 /* Actually delete the bytes. */
1097 memmove (contents + addr, contents + addr + count,
1098 (size_t) (toaddr - addr - count));
1099 if (irelalign == NULL)
1105 #define NOP_OPCODE (0x0009)
1107 BFD_ASSERT ((count & 1) == 0);
1108 for (i = 0; i < count; i += 2)
1109 bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
1112 /* Adjust all the relocs. */
1113 for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
1115 bfd_vma nraddr, stop;
1118 struct internal_syment sym;
1119 int off, adjust, oinsn;
1120 bfd_signed_vma voff = 0;
1121 bfd_boolean overflow;
1123 /* Get the new reloc address. */
1124 nraddr = irel->r_vaddr - sec->vma;
1125 if ((irel->r_vaddr - sec->vma > addr
1126 && irel->r_vaddr - sec->vma < toaddr)
1127 || (irel->r_type == R_SH_ALIGN
1128 && irel->r_vaddr - sec->vma == toaddr))
1131 /* See if this reloc was for the bytes we have deleted, in which
1132 case we no longer care about it. Don't delete relocs which
1133 represent addresses, though. */
1134 if (irel->r_vaddr - sec->vma >= addr
1135 && irel->r_vaddr - sec->vma < addr + count
1136 && irel->r_type != R_SH_ALIGN
1137 && irel->r_type != R_SH_CODE
1138 && irel->r_type != R_SH_DATA
1139 && irel->r_type != R_SH_LABEL)
1140 irel->r_type = R_SH_UNUSED;
1142 /* If this is a PC relative reloc, see if the range it covers
1143 includes the bytes we have deleted. */
1144 switch (irel->r_type)
1149 case R_SH_PCDISP8BY2:
1151 case R_SH_PCRELIMM8BY2:
1152 case R_SH_PCRELIMM8BY4:
1153 start = irel->r_vaddr - sec->vma;
1154 insn = bfd_get_16 (abfd, contents + nraddr);
1158 switch (irel->r_type)
1161 start = stop = addr;
1167 case R_SH_IMAGEBASE:
1169 /* If this reloc is against a symbol defined in this
1170 section, and the symbol will not be adjusted below, we
1171 must check the addend to see it will put the value in
1172 range to be adjusted, and hence must be changed. */
1173 bfd_coff_swap_sym_in (abfd,
1174 ((bfd_byte *) obj_coff_external_syms (abfd)
1176 * bfd_coff_symesz (abfd))),
1178 if (sym.n_sclass != C_EXT
1179 && sym.n_scnum == sec->target_index
1180 && ((bfd_vma) sym.n_value <= addr
1181 || (bfd_vma) sym.n_value >= toaddr))
1185 val = bfd_get_32 (abfd, contents + nraddr);
1187 if (val > addr && val < toaddr)
1188 bfd_put_32 (abfd, val - count, contents + nraddr);
1190 start = stop = addr;
1193 case R_SH_PCDISP8BY2:
1197 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1201 bfd_coff_swap_sym_in (abfd,
1202 ((bfd_byte *) obj_coff_external_syms (abfd)
1204 * bfd_coff_symesz (abfd))),
1206 if (sym.n_sclass == C_EXT)
1207 start = stop = addr;
1213 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1217 case R_SH_PCRELIMM8BY2:
1219 stop = start + 4 + off * 2;
1222 case R_SH_PCRELIMM8BY4:
1224 stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
1230 /* These relocs types represent
1232 The r_offset field holds the difference between the reloc
1233 address and L1. That is the start of the reloc, and
1234 adding in the contents gives us the top. We must adjust
1235 both the r_offset field and the section contents. */
1237 start = irel->r_vaddr - sec->vma;
1238 stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);
1242 && (stop <= addr || stop >= toaddr))
1243 irel->r_offset += count;
1244 else if (stop > addr
1246 && (start <= addr || start >= toaddr))
1247 irel->r_offset -= count;
1251 if (irel->r_type == R_SH_SWITCH16)
1252 voff = bfd_get_signed_16 (abfd, contents + nraddr);
1253 else if (irel->r_type == R_SH_SWITCH8)
1254 voff = bfd_get_8 (abfd, contents + nraddr);
1256 voff = bfd_get_signed_32 (abfd, contents + nraddr);
1257 stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1262 start = irel->r_vaddr - sec->vma;
1263 stop = (bfd_vma) ((bfd_signed_vma) start
1264 + (long) irel->r_offset
1271 && (stop <= addr || stop >= toaddr))
1273 else if (stop > addr
1275 && (start <= addr || start >= toaddr))
1284 switch (irel->r_type)
1290 case R_SH_PCDISP8BY2:
1291 case R_SH_PCRELIMM8BY2:
1293 if ((oinsn & 0xff00) != (insn & 0xff00))
1295 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1300 if ((oinsn & 0xf000) != (insn & 0xf000))
1302 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1305 case R_SH_PCRELIMM8BY4:
1306 BFD_ASSERT (adjust == count || count >= 4);
1311 if ((irel->r_vaddr & 3) == 0)
1314 if ((oinsn & 0xff00) != (insn & 0xff00))
1316 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1321 if (voff < 0 || voff >= 0xff)
1323 bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
1328 if (voff < - 0x8000 || voff >= 0x8000)
1330 bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
1335 bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
1339 irel->r_offset += adjust;
1345 ((*_bfd_error_handler)
1346 ("%B: 0x%lx: fatal: reloc overflow while relaxing",
1347 abfd, (unsigned long) irel->r_vaddr));
1348 bfd_set_error (bfd_error_bad_value);
1353 irel->r_vaddr = nraddr + sec->vma;
1356 /* Look through all the other sections. If there contain any IMM32
1357 relocs against internal symbols which we are not going to adjust
1358 below, we may need to adjust the addends. */
1359 for (o = abfd->sections; o != NULL; o = o->next)
1361 struct internal_reloc *internal_relocs;
1362 struct internal_reloc *irelscan, *irelscanend;
1363 bfd_byte *ocontents;
1366 || (o->flags & SEC_RELOC) == 0
1367 || o->reloc_count == 0)
1370 /* We always cache the relocs. Perhaps, if info->keep_memory is
1371 FALSE, we should free them, if we are permitted to, when we
1372 leave sh_coff_relax_section. */
1373 internal_relocs = (_bfd_coff_read_internal_relocs
1374 (abfd, o, TRUE, (bfd_byte *) NULL, FALSE,
1375 (struct internal_reloc *) NULL));
1376 if (internal_relocs == NULL)
1380 irelscanend = internal_relocs + o->reloc_count;
1381 for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
1383 struct internal_syment sym;
1386 if (irelscan->r_type != R_SH_IMM32
1387 && irelscan->r_type != R_SH_IMAGEBASE
1388 && irelscan->r_type != R_SH_IMM32CE)
1390 if (irelscan->r_type != R_SH_IMM32)
1394 bfd_coff_swap_sym_in (abfd,
1395 ((bfd_byte *) obj_coff_external_syms (abfd)
1396 + (irelscan->r_symndx
1397 * bfd_coff_symesz (abfd))),
1399 if (sym.n_sclass != C_EXT
1400 && sym.n_scnum == sec->target_index
1401 && ((bfd_vma) sym.n_value <= addr
1402 || (bfd_vma) sym.n_value >= toaddr))
1406 if (ocontents == NULL)
1408 if (coff_section_data (abfd, o)->contents != NULL)
1409 ocontents = coff_section_data (abfd, o)->contents;
1412 if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
1414 /* We always cache the section contents.
1415 Perhaps, if info->keep_memory is FALSE, we
1416 should free them, if we are permitted to,
1417 when we leave sh_coff_relax_section. */
1418 coff_section_data (abfd, o)->contents = ocontents;
1422 val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
1424 if (val > addr && val < toaddr)
1425 bfd_put_32 (abfd, val - count,
1426 ocontents + irelscan->r_vaddr - o->vma);
1428 coff_section_data (abfd, o)->keep_contents = TRUE;
1433 /* Adjusting the internal symbols will not work if something has
1434 already retrieved the generic symbols. It would be possible to
1435 make this work by adjusting the generic symbols at the same time.
1436 However, this case should not arise in normal usage. */
1437 if (obj_symbols (abfd) != NULL
1438 || obj_raw_syments (abfd) != NULL)
1440 ((*_bfd_error_handler)
1441 ("%B: fatal: generic symbols retrieved before relaxing", abfd));
1442 bfd_set_error (bfd_error_invalid_operation);
1446 /* Adjust all the symbols. */
1447 sym_hash = obj_coff_sym_hashes (abfd);
1448 symesz = bfd_coff_symesz (abfd);
1449 esym = (bfd_byte *) obj_coff_external_syms (abfd);
1450 esymend = esym + obj_raw_syment_count (abfd) * symesz;
1451 while (esym < esymend)
1453 struct internal_syment isym;
1455 bfd_coff_swap_sym_in (abfd, esym, &isym);
1457 if (isym.n_scnum == sec->target_index
1458 && (bfd_vma) isym.n_value > addr
1459 && (bfd_vma) isym.n_value < toaddr)
1461 isym.n_value -= count;
1463 bfd_coff_swap_sym_out (abfd, &isym, esym);
1465 if (*sym_hash != NULL)
1467 BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
1468 || (*sym_hash)->root.type == bfd_link_hash_defweak);
1469 BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
1470 && (*sym_hash)->root.u.def.value < toaddr);
1471 (*sym_hash)->root.u.def.value -= count;
1475 esym += (isym.n_numaux + 1) * symesz;
1476 sym_hash += isym.n_numaux + 1;
1479 /* See if we can move the ALIGN reloc forward. We have adjusted
1480 r_vaddr for it already. */
1481 if (irelalign != NULL)
1483 bfd_vma alignto, alignaddr;
1485 alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
1486 alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
1487 1 << irelalign->r_offset);
1488 if (alignto != alignaddr)
1490 /* Tail recursion. */
1491 return sh_relax_delete_bytes (abfd, sec, alignaddr,
1492 (int) (alignto - alignaddr));
1499 /* This is yet another version of the SH opcode table, used to rapidly
1500 get information about a particular instruction. */
1502 /* The opcode map is represented by an array of these structures. The
1503 array is indexed by the high order four bits in the instruction. */
1505 struct sh_major_opcode
1507 /* A pointer to the instruction list. This is an array which
1508 contains all the instructions with this major opcode. */
1509 const struct sh_minor_opcode *minor_opcodes;
1510 /* The number of elements in minor_opcodes. */
1511 unsigned short count;
1514 /* This structure holds information for a set of SH opcodes. The
1515 instruction code is anded with the mask value, and the resulting
1516 value is used to search the order opcode list. */
1518 struct sh_minor_opcode
1520 /* The sorted opcode list. */
1521 const struct sh_opcode *opcodes;
1522 /* The number of elements in opcodes. */
1523 unsigned short count;
1524 /* The mask value to use when searching the opcode list. */
1525 unsigned short mask;
1528 /* This structure holds information for an SH instruction. An array
1529 of these structures is sorted in order by opcode. */
1533 /* The code for this instruction, after it has been anded with the
1534 mask value in the sh_major_opcode structure. */
1535 unsigned short opcode;
1536 /* Flags for this instruction. */
1537 unsigned long flags;
1540 /* Flag which appear in the sh_opcode structure. */
1542 /* This instruction loads a value from memory. */
1545 /* This instruction stores a value to memory. */
1548 /* This instruction is a branch. */
1549 #define BRANCH (0x4)
1551 /* This instruction has a delay slot. */
1554 /* This instruction uses the value in the register in the field at
1555 mask 0x0f00 of the instruction. */
1556 #define USES1 (0x10)
1557 #define USES1_REG(x) ((x & 0x0f00) >> 8)
1559 /* This instruction uses the value in the register in the field at
1560 mask 0x00f0 of the instruction. */
1561 #define USES2 (0x20)
1562 #define USES2_REG(x) ((x & 0x00f0) >> 4)
1564 /* This instruction uses the value in register 0. */
1565 #define USESR0 (0x40)
1567 /* This instruction sets the value in the register in the field at
1568 mask 0x0f00 of the instruction. */
1569 #define SETS1 (0x80)
1570 #define SETS1_REG(x) ((x & 0x0f00) >> 8)
1572 /* This instruction sets the value in the register in the field at
1573 mask 0x00f0 of the instruction. */
1574 #define SETS2 (0x100)
1575 #define SETS2_REG(x) ((x & 0x00f0) >> 4)
1577 /* This instruction sets register 0. */
1578 #define SETSR0 (0x200)
1580 /* This instruction sets a special register. */
1581 #define SETSSP (0x400)
1583 /* This instruction uses a special register. */
1584 #define USESSP (0x800)
1586 /* This instruction uses the floating point register in the field at
1587 mask 0x0f00 of the instruction. */
1588 #define USESF1 (0x1000)
1589 #define USESF1_REG(x) ((x & 0x0f00) >> 8)
1591 /* This instruction uses the floating point register in the field at
1592 mask 0x00f0 of the instruction. */
1593 #define USESF2 (0x2000)
1594 #define USESF2_REG(x) ((x & 0x00f0) >> 4)
1596 /* This instruction uses floating point register 0. */
1597 #define USESF0 (0x4000)
1599 /* This instruction sets the floating point register in the field at
1600 mask 0x0f00 of the instruction. */
1601 #define SETSF1 (0x8000)
1602 #define SETSF1_REG(x) ((x & 0x0f00) >> 8)
1604 #define USESAS (0x10000)
1605 #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1606 #define USESR8 (0x20000)
1607 #define SETSAS (0x40000)
1608 #define SETSAS_REG(x) USESAS_REG (x)
1610 #define MAP(a) a, sizeof a / sizeof a[0]
1612 #ifndef COFF_IMAGE_WITH_PE
1614 /* The opcode maps. */
1616 static const struct sh_opcode sh_opcode00[] =
1618 { 0x0008, SETSSP }, /* clrt */
1619 { 0x0009, 0 }, /* nop */
1620 { 0x000b, BRANCH | DELAY | USESSP }, /* rts */
1621 { 0x0018, SETSSP }, /* sett */
1622 { 0x0019, SETSSP }, /* div0u */
1623 { 0x001b, 0 }, /* sleep */
1624 { 0x0028, SETSSP }, /* clrmac */
1625 { 0x002b, BRANCH | DELAY | SETSSP }, /* rte */
1626 { 0x0038, USESSP | SETSSP }, /* ldtlb */
1627 { 0x0048, SETSSP }, /* clrs */
1628 { 0x0058, SETSSP } /* sets */
1631 static const struct sh_opcode sh_opcode01[] =
1633 { 0x0003, BRANCH | DELAY | USES1 | SETSSP }, /* bsrf rn */
1634 { 0x000a, SETS1 | USESSP }, /* sts mach,rn */
1635 { 0x001a, SETS1 | USESSP }, /* sts macl,rn */
1636 { 0x0023, BRANCH | DELAY | USES1 }, /* braf rn */
1637 { 0x0029, SETS1 | USESSP }, /* movt rn */
1638 { 0x002a, SETS1 | USESSP }, /* sts pr,rn */
1639 { 0x005a, SETS1 | USESSP }, /* sts fpul,rn */
1640 { 0x006a, SETS1 | USESSP }, /* sts fpscr,rn / sts dsr,rn */
1641 { 0x0083, LOAD | USES1 }, /* pref @rn */
1642 { 0x007a, SETS1 | USESSP }, /* sts a0,rn */
1643 { 0x008a, SETS1 | USESSP }, /* sts x0,rn */
1644 { 0x009a, SETS1 | USESSP }, /* sts x1,rn */
1645 { 0x00aa, SETS1 | USESSP }, /* sts y0,rn */
1646 { 0x00ba, SETS1 | USESSP } /* sts y1,rn */
1649 static const struct sh_opcode sh_opcode02[] =
1651 { 0x0002, SETS1 | USESSP }, /* stc <special_reg>,rn */
1652 { 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */
1653 { 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */
1654 { 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */
1655 { 0x0007, SETSSP | USES1 | USES2 }, /* mul.l rm,rn */
1656 { 0x000c, LOAD | SETS1 | USES2 | USESR0 }, /* mov.b @(r0,rm),rn */
1657 { 0x000d, LOAD | SETS1 | USES2 | USESR0 }, /* mov.w @(r0,rm),rn */
1658 { 0x000e, LOAD | SETS1 | USES2 | USESR0 }, /* mov.l @(r0,rm),rn */
1659 { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
1662 static const struct sh_minor_opcode sh_opcode0[] =
1664 { MAP (sh_opcode00), 0xffff },
1665 { MAP (sh_opcode01), 0xf0ff },
1666 { MAP (sh_opcode02), 0xf00f }
1669 static const struct sh_opcode sh_opcode10[] =
1671 { 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */
1674 static const struct sh_minor_opcode sh_opcode1[] =
1676 { MAP (sh_opcode10), 0xf000 }
1679 static const struct sh_opcode sh_opcode20[] =
1681 { 0x2000, STORE | USES1 | USES2 }, /* mov.b rm,@rn */
1682 { 0x2001, STORE | USES1 | USES2 }, /* mov.w rm,@rn */
1683 { 0x2002, STORE | USES1 | USES2 }, /* mov.l rm,@rn */
1684 { 0x2004, STORE | SETS1 | USES1 | USES2 }, /* mov.b rm,@-rn */
1685 { 0x2005, STORE | SETS1 | USES1 | USES2 }, /* mov.w rm,@-rn */
1686 { 0x2006, STORE | SETS1 | USES1 | USES2 }, /* mov.l rm,@-rn */
1687 { 0x2007, SETSSP | USES1 | USES2 | USESSP }, /* div0s */
1688 { 0x2008, SETSSP | USES1 | USES2 }, /* tst rm,rn */
1689 { 0x2009, SETS1 | USES1 | USES2 }, /* and rm,rn */
1690 { 0x200a, SETS1 | USES1 | USES2 }, /* xor rm,rn */
1691 { 0x200b, SETS1 | USES1 | USES2 }, /* or rm,rn */
1692 { 0x200c, SETSSP | USES1 | USES2 }, /* cmp/str rm,rn */
1693 { 0x200d, SETS1 | USES1 | USES2 }, /* xtrct rm,rn */
1694 { 0x200e, SETSSP | USES1 | USES2 }, /* mulu.w rm,rn */
1695 { 0x200f, SETSSP | USES1 | USES2 } /* muls.w rm,rn */
1698 static const struct sh_minor_opcode sh_opcode2[] =
1700 { MAP (sh_opcode20), 0xf00f }
1703 static const struct sh_opcode sh_opcode30[] =
1705 { 0x3000, SETSSP | USES1 | USES2 }, /* cmp/eq rm,rn */
1706 { 0x3002, SETSSP | USES1 | USES2 }, /* cmp/hs rm,rn */
1707 { 0x3003, SETSSP | USES1 | USES2 }, /* cmp/ge rm,rn */
1708 { 0x3004, SETSSP | USESSP | USES1 | USES2 }, /* div1 rm,rn */
1709 { 0x3005, SETSSP | USES1 | USES2 }, /* dmulu.l rm,rn */
1710 { 0x3006, SETSSP | USES1 | USES2 }, /* cmp/hi rm,rn */
1711 { 0x3007, SETSSP | USES1 | USES2 }, /* cmp/gt rm,rn */
1712 { 0x3008, SETS1 | USES1 | USES2 }, /* sub rm,rn */
1713 { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
1714 { 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */
1715 { 0x300c, SETS1 | USES1 | USES2 }, /* add rm,rn */
1716 { 0x300d, SETSSP | USES1 | USES2 }, /* dmuls.l rm,rn */
1717 { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
1718 { 0x300f, SETS1 | SETSSP | USES1 | USES2 } /* addv rm,rn */
1721 static const struct sh_minor_opcode sh_opcode3[] =
1723 { MAP (sh_opcode30), 0xf00f }
1726 static const struct sh_opcode sh_opcode40[] =
1728 { 0x4000, SETS1 | SETSSP | USES1 }, /* shll rn */
1729 { 0x4001, SETS1 | SETSSP | USES1 }, /* shlr rn */
1730 { 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */
1731 { 0x4004, SETS1 | SETSSP | USES1 }, /* rotl rn */
1732 { 0x4005, SETS1 | SETSSP | USES1 }, /* rotr rn */
1733 { 0x4006, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,mach */
1734 { 0x4008, SETS1 | USES1 }, /* shll2 rn */
1735 { 0x4009, SETS1 | USES1 }, /* shlr2 rn */
1736 { 0x400a, SETSSP | USES1 }, /* lds rm,mach */
1737 { 0x400b, BRANCH | DELAY | USES1 }, /* jsr @rn */
1738 { 0x4010, SETS1 | SETSSP | USES1 }, /* dt rn */
1739 { 0x4011, SETSSP | USES1 }, /* cmp/pz rn */
1740 { 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */
1741 { 0x4014, SETSSP | USES1 }, /* setrc rm */
1742 { 0x4015, SETSSP | USES1 }, /* cmp/pl rn */
1743 { 0x4016, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,macl */
1744 { 0x4018, SETS1 | USES1 }, /* shll8 rn */
1745 { 0x4019, SETS1 | USES1 }, /* shlr8 rn */
1746 { 0x401a, SETSSP | USES1 }, /* lds rm,macl */
1747 { 0x401b, LOAD | SETSSP | USES1 }, /* tas.b @rn */
1748 { 0x4020, SETS1 | SETSSP | USES1 }, /* shal rn */
1749 { 0x4021, SETS1 | SETSSP | USES1 }, /* shar rn */
1750 { 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */
1751 { 0x4024, SETS1 | SETSSP | USES1 | USESSP }, /* rotcl rn */
1752 { 0x4025, SETS1 | SETSSP | USES1 | USESSP }, /* rotcr rn */
1753 { 0x4026, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,pr */
1754 { 0x4028, SETS1 | USES1 }, /* shll16 rn */
1755 { 0x4029, SETS1 | USES1 }, /* shlr16 rn */
1756 { 0x402a, SETSSP | USES1 }, /* lds rm,pr */
1757 { 0x402b, BRANCH | DELAY | USES1 }, /* jmp @rn */
1758 { 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */
1759 { 0x4056, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpul */
1760 { 0x405a, SETSSP | USES1 }, /* lds.l rm,fpul */
1761 { 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */
1762 { 0x4066, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpscr / dsr */
1763 { 0x406a, SETSSP | USES1 }, /* lds rm,fpscr / lds rm,dsr */
1764 { 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */
1765 { 0x4076, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,a0 */
1766 { 0x407a, SETSSP | USES1 }, /* lds.l rm,a0 */
1767 { 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */
1768 { 0x4086, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x0 */
1769 { 0x408a, SETSSP | USES1 }, /* lds.l rm,x0 */
1770 { 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */
1771 { 0x4096, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x1 */
1772 { 0x409a, SETSSP | USES1 }, /* lds.l rm,x1 */
1773 { 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */
1774 { 0x40a6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y0 */
1775 { 0x40aa, SETSSP | USES1 }, /* lds.l rm,y0 */
1776 { 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */
1777 { 0x40b6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y1 */
1778 { 0x40ba, SETSSP | USES1 } /* lds.l rm,y1 */
1781 static const struct sh_opcode sh_opcode41[] =
1783 { 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l <special_reg>,@-rn */
1784 { 0x4007, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,<special_reg> */
1785 { 0x400c, SETS1 | USES1 | USES2 }, /* shad rm,rn */
1786 { 0x400d, SETS1 | USES1 | USES2 }, /* shld rm,rn */
1787 { 0x400e, SETSSP | USES1 }, /* ldc rm,<special_reg> */
1788 { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
1791 static const struct sh_minor_opcode sh_opcode4[] =
1793 { MAP (sh_opcode40), 0xf0ff },
1794 { MAP (sh_opcode41), 0xf00f }
1797 static const struct sh_opcode sh_opcode50[] =
1799 { 0x5000, LOAD | SETS1 | USES2 } /* mov.l @(disp,rm),rn */
1802 static const struct sh_minor_opcode sh_opcode5[] =
1804 { MAP (sh_opcode50), 0xf000 }
1807 static const struct sh_opcode sh_opcode60[] =
1809 { 0x6000, LOAD | SETS1 | USES2 }, /* mov.b @rm,rn */
1810 { 0x6001, LOAD | SETS1 | USES2 }, /* mov.w @rm,rn */
1811 { 0x6002, LOAD | SETS1 | USES2 }, /* mov.l @rm,rn */
1812 { 0x6003, SETS1 | USES2 }, /* mov rm,rn */
1813 { 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */
1814 { 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */
1815 { 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */
1816 { 0x6007, SETS1 | USES2 }, /* not rm,rn */
1817 { 0x6008, SETS1 | USES2 }, /* swap.b rm,rn */
1818 { 0x6009, SETS1 | USES2 }, /* swap.w rm,rn */
1819 { 0x600a, SETS1 | SETSSP | USES2 | USESSP }, /* negc rm,rn */
1820 { 0x600b, SETS1 | USES2 }, /* neg rm,rn */
1821 { 0x600c, SETS1 | USES2 }, /* extu.b rm,rn */
1822 { 0x600d, SETS1 | USES2 }, /* extu.w rm,rn */
1823 { 0x600e, SETS1 | USES2 }, /* exts.b rm,rn */
1824 { 0x600f, SETS1 | USES2 } /* exts.w rm,rn */
1827 static const struct sh_minor_opcode sh_opcode6[] =
1829 { MAP (sh_opcode60), 0xf00f }
1832 static const struct sh_opcode sh_opcode70[] =
1834 { 0x7000, SETS1 | USES1 } /* add #imm,rn */
1837 static const struct sh_minor_opcode sh_opcode7[] =
1839 { MAP (sh_opcode70), 0xf000 }
1842 static const struct sh_opcode sh_opcode80[] =
1844 { 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */
1845 { 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */
1846 { 0x8200, SETSSP }, /* setrc #imm */
1847 { 0x8400, LOAD | SETSR0 | USES2 }, /* mov.b @(disp,rm),r0 */
1848 { 0x8500, LOAD | SETSR0 | USES2 }, /* mov.w @(disp,rn),r0 */
1849 { 0x8800, SETSSP | USESR0 }, /* cmp/eq #imm,r0 */
1850 { 0x8900, BRANCH | USESSP }, /* bt label */
1851 { 0x8b00, BRANCH | USESSP }, /* bf label */
1852 { 0x8c00, SETSSP }, /* ldrs @(disp,pc) */
1853 { 0x8d00, BRANCH | DELAY | USESSP }, /* bt/s label */
1854 { 0x8e00, SETSSP }, /* ldre @(disp,pc) */
1855 { 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */
1858 static const struct sh_minor_opcode sh_opcode8[] =
1860 { MAP (sh_opcode80), 0xff00 }
1863 static const struct sh_opcode sh_opcode90[] =
1865 { 0x9000, LOAD | SETS1 } /* mov.w @(disp,pc),rn */
1868 static const struct sh_minor_opcode sh_opcode9[] =
1870 { MAP (sh_opcode90), 0xf000 }
1873 static const struct sh_opcode sh_opcodea0[] =
1875 { 0xa000, BRANCH | DELAY } /* bra label */
1878 static const struct sh_minor_opcode sh_opcodea[] =
1880 { MAP (sh_opcodea0), 0xf000 }
1883 static const struct sh_opcode sh_opcodeb0[] =
1885 { 0xb000, BRANCH | DELAY } /* bsr label */
1888 static const struct sh_minor_opcode sh_opcodeb[] =
1890 { MAP (sh_opcodeb0), 0xf000 }
1893 static const struct sh_opcode sh_opcodec0[] =
1895 { 0xc000, STORE | USESR0 | USESSP }, /* mov.b r0,@(disp,gbr) */
1896 { 0xc100, STORE | USESR0 | USESSP }, /* mov.w r0,@(disp,gbr) */
1897 { 0xc200, STORE | USESR0 | USESSP }, /* mov.l r0,@(disp,gbr) */
1898 { 0xc300, BRANCH | USESSP }, /* trapa #imm */
1899 { 0xc400, LOAD | SETSR0 | USESSP }, /* mov.b @(disp,gbr),r0 */
1900 { 0xc500, LOAD | SETSR0 | USESSP }, /* mov.w @(disp,gbr),r0 */
1901 { 0xc600, LOAD | SETSR0 | USESSP }, /* mov.l @(disp,gbr),r0 */
1902 { 0xc700, SETSR0 }, /* mova @(disp,pc),r0 */
1903 { 0xc800, SETSSP | USESR0 }, /* tst #imm,r0 */
1904 { 0xc900, SETSR0 | USESR0 }, /* and #imm,r0 */
1905 { 0xca00, SETSR0 | USESR0 }, /* xor #imm,r0 */
1906 { 0xcb00, SETSR0 | USESR0 }, /* or #imm,r0 */
1907 { 0xcc00, LOAD | SETSSP | USESR0 | USESSP }, /* tst.b #imm,@(r0,gbr) */
1908 { 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */
1909 { 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */
1910 { 0xcf00, LOAD | STORE | USESR0 | USESSP } /* or.b #imm,@(r0,gbr) */
1913 static const struct sh_minor_opcode sh_opcodec[] =
1915 { MAP (sh_opcodec0), 0xff00 }
1918 static const struct sh_opcode sh_opcoded0[] =
1920 { 0xd000, LOAD | SETS1 } /* mov.l @(disp,pc),rn */
1923 static const struct sh_minor_opcode sh_opcoded[] =
1925 { MAP (sh_opcoded0), 0xf000 }
1928 static const struct sh_opcode sh_opcodee0[] =
1930 { 0xe000, SETS1 } /* mov #imm,rn */
1933 static const struct sh_minor_opcode sh_opcodee[] =
1935 { MAP (sh_opcodee0), 0xf000 }
1938 static const struct sh_opcode sh_opcodef0[] =
1940 { 0xf000, SETSF1 | USESF1 | USESF2 }, /* fadd fm,fn */
1941 { 0xf001, SETSF1 | USESF1 | USESF2 }, /* fsub fm,fn */
1942 { 0xf002, SETSF1 | USESF1 | USESF2 }, /* fmul fm,fn */
1943 { 0xf003, SETSF1 | USESF1 | USESF2 }, /* fdiv fm,fn */
1944 { 0xf004, SETSSP | USESF1 | USESF2 }, /* fcmp/eq fm,fn */
1945 { 0xf005, SETSSP | USESF1 | USESF2 }, /* fcmp/gt fm,fn */
1946 { 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */
1947 { 0xf007, STORE | USES1 | USESF2 | USESR0 }, /* fmov.s fm,@(r0,rn) */
1948 { 0xf008, LOAD | SETSF1 | USES2 }, /* fmov.s @rm,fn */
1949 { 0xf009, LOAD | SETS2 | SETSF1 | USES2 }, /* fmov.s @rm+,fn */
1950 { 0xf00a, STORE | USES1 | USESF2 }, /* fmov.s fm,@rn */
1951 { 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */
1952 { 0xf00c, SETSF1 | USESF2 }, /* fmov fm,fn */
1953 { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */
1956 static const struct sh_opcode sh_opcodef1[] =
1958 { 0xf00d, SETSF1 | USESSP }, /* fsts fpul,fn */
1959 { 0xf01d, SETSSP | USESF1 }, /* flds fn,fpul */
1960 { 0xf02d, SETSF1 | USESSP }, /* float fpul,fn */
1961 { 0xf03d, SETSSP | USESF1 }, /* ftrc fn,fpul */
1962 { 0xf04d, SETSF1 | USESF1 }, /* fneg fn */
1963 { 0xf05d, SETSF1 | USESF1 }, /* fabs fn */
1964 { 0xf06d, SETSF1 | USESF1 }, /* fsqrt fn */
1965 { 0xf07d, SETSSP | USESF1 }, /* ftst/nan fn */
1966 { 0xf08d, SETSF1 }, /* fldi0 fn */
1967 { 0xf09d, SETSF1 } /* fldi1 fn */
1970 static const struct sh_minor_opcode sh_opcodef[] =
1972 { MAP (sh_opcodef0), 0xf00f },
1973 { MAP (sh_opcodef1), 0xf0ff }
1976 static struct sh_major_opcode sh_opcodes[] =
1978 { MAP (sh_opcode0) },
1979 { MAP (sh_opcode1) },
1980 { MAP (sh_opcode2) },
1981 { MAP (sh_opcode3) },
1982 { MAP (sh_opcode4) },
1983 { MAP (sh_opcode5) },
1984 { MAP (sh_opcode6) },
1985 { MAP (sh_opcode7) },
1986 { MAP (sh_opcode8) },
1987 { MAP (sh_opcode9) },
1988 { MAP (sh_opcodea) },
1989 { MAP (sh_opcodeb) },
1990 { MAP (sh_opcodec) },
1991 { MAP (sh_opcoded) },
1992 { MAP (sh_opcodee) },
1993 { MAP (sh_opcodef) }
1996 /* The double data transfer / parallel processing insns are not
1997 described here. This will cause sh_align_load_span to leave them alone. */
1999 static const struct sh_opcode sh_dsp_opcodef0[] =
2001 { 0xf400, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @-as,ds */
2002 { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */
2003 { 0xf404, USESAS | LOAD | SETSSP }, /* movs.x @as,ds */
2004 { 0xf405, USESAS | STORE | USESSP }, /* movs.x ds,@as */
2005 { 0xf408, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @as+,ds */
2006 { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */
2007 { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */
2008 { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */
2011 static const struct sh_minor_opcode sh_dsp_opcodef[] =
2013 { MAP (sh_dsp_opcodef0), 0xfc0d }
2016 /* Given an instruction, return a pointer to the corresponding
2017 sh_opcode structure. Return NULL if the instruction is not
2020 static const struct sh_opcode *
2021 sh_insn_info (unsigned int insn)
2023 const struct sh_major_opcode *maj;
2024 const struct sh_minor_opcode *min, *minend;
2026 maj = &sh_opcodes[(insn & 0xf000) >> 12];
2027 min = maj->minor_opcodes;
2028 minend = min + maj->count;
2029 for (; min < minend; min++)
2032 const struct sh_opcode *op, *opend;
2034 l = insn & min->mask;
2036 opend = op + min->count;
2038 /* Since the opcodes tables are sorted, we could use a binary
2039 search here if the count were above some cutoff value. */
2040 for (; op < opend; op++)
2041 if (op->opcode == l)
2048 /* See whether an instruction uses a general purpose register. */
2051 sh_insn_uses_reg (unsigned int insn,
2052 const struct sh_opcode *op,
2059 if ((f & USES1) != 0
2060 && USES1_REG (insn) == reg)
2062 if ((f & USES2) != 0
2063 && USES2_REG (insn) == reg)
2065 if ((f & USESR0) != 0
2068 if ((f & USESAS) && reg == USESAS_REG (insn))
2070 if ((f & USESR8) && reg == 8)
2076 /* See whether an instruction sets a general purpose register. */
2079 sh_insn_sets_reg (unsigned int insn,
2080 const struct sh_opcode *op,
2087 if ((f & SETS1) != 0
2088 && SETS1_REG (insn) == reg)
2090 if ((f & SETS2) != 0
2091 && SETS2_REG (insn) == reg)
2093 if ((f & SETSR0) != 0
2096 if ((f & SETSAS) && reg == SETSAS_REG (insn))
2102 /* See whether an instruction uses or sets a general purpose register */
2105 sh_insn_uses_or_sets_reg (unsigned int insn,
2106 const struct sh_opcode *op,
2109 if (sh_insn_uses_reg (insn, op, reg))
2112 return sh_insn_sets_reg (insn, op, reg);
2115 /* See whether an instruction uses a floating point register. */
2118 sh_insn_uses_freg (unsigned int insn,
2119 const struct sh_opcode *op,
2126 /* We can't tell if this is a double-precision insn, so just play safe
2127 and assume that it might be. So not only have we test FREG against
2128 itself, but also even FREG against FREG+1 - if the using insn uses
2129 just the low part of a double precision value - but also an odd
2130 FREG against FREG-1 - if the setting insn sets just the low part
2131 of a double precision value.
2132 So what this all boils down to is that we have to ignore the lowest
2133 bit of the register number. */
2135 if ((f & USESF1) != 0
2136 && (USESF1_REG (insn) & 0xe) == (freg & 0xe))
2138 if ((f & USESF2) != 0
2139 && (USESF2_REG (insn) & 0xe) == (freg & 0xe))
2141 if ((f & USESF0) != 0
2148 /* See whether an instruction sets a floating point register. */
2151 sh_insn_sets_freg (unsigned int insn,
2152 const struct sh_opcode *op,
2159 /* We can't tell if this is a double-precision insn, so just play safe
2160 and assume that it might be. So not only have we test FREG against
2161 itself, but also even FREG against FREG+1 - if the using insn uses
2162 just the low part of a double precision value - but also an odd
2163 FREG against FREG-1 - if the setting insn sets just the low part
2164 of a double precision value.
2165 So what this all boils down to is that we have to ignore the lowest
2166 bit of the register number. */
2168 if ((f & SETSF1) != 0
2169 && (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
2175 /* See whether an instruction uses or sets a floating point register */
2178 sh_insn_uses_or_sets_freg (unsigned int insn,
2179 const struct sh_opcode *op,
2182 if (sh_insn_uses_freg (insn, op, reg))
2185 return sh_insn_sets_freg (insn, op, reg);
2188 /* See whether instructions I1 and I2 conflict, assuming I1 comes
2189 before I2. OP1 and OP2 are the corresponding sh_opcode structures.
2190 This should return TRUE if there is a conflict, or FALSE if the
2191 instructions can be swapped safely. */
2194 sh_insns_conflict (unsigned int i1,
2195 const struct sh_opcode *op1,
2197 const struct sh_opcode *op2)
2199 unsigned int f1, f2;
2204 /* Load of fpscr conflicts with floating point operations.
2205 FIXME: shouldn't test raw opcodes here. */
2206 if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
2207 || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
2210 if ((f1 & (BRANCH | DELAY)) != 0
2211 || (f2 & (BRANCH | DELAY)) != 0)
2214 if (((f1 | f2) & SETSSP)
2215 && (f1 & (SETSSP | USESSP))
2216 && (f2 & (SETSSP | USESSP)))
2219 if ((f1 & SETS1) != 0
2220 && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
2222 if ((f1 & SETS2) != 0
2223 && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
2225 if ((f1 & SETSR0) != 0
2226 && sh_insn_uses_or_sets_reg (i2, op2, 0))
2229 && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
2231 if ((f1 & SETSF1) != 0
2232 && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
2235 if ((f2 & SETS1) != 0
2236 && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
2238 if ((f2 & SETS2) != 0
2239 && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
2241 if ((f2 & SETSR0) != 0
2242 && sh_insn_uses_or_sets_reg (i1, op1, 0))
2245 && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
2247 if ((f2 & SETSF1) != 0
2248 && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
2251 /* The instructions do not conflict. */
2255 /* I1 is a load instruction, and I2 is some other instruction. Return
2256 TRUE if I1 loads a register which I2 uses. */
2259 sh_load_use (unsigned int i1,
2260 const struct sh_opcode *op1,
2262 const struct sh_opcode *op2)
2268 if ((f1 & LOAD) == 0)
2271 /* If both SETS1 and SETSSP are set, that means a load to a special
2272 register using postincrement addressing mode, which we don't care
2274 if ((f1 & SETS1) != 0
2275 && (f1 & SETSSP) == 0
2276 && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
2279 if ((f1 & SETSR0) != 0
2280 && sh_insn_uses_reg (i2, op2, 0))
2283 if ((f1 & SETSF1) != 0
2284 && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
2290 /* Try to align loads and stores within a span of memory. This is
2291 called by both the ELF and the COFF sh targets. ABFD and SEC are
2292 the BFD and section we are examining. CONTENTS is the contents of
2293 the section. SWAP is the routine to call to swap two instructions.
2294 RELOCS is a pointer to the internal relocation information, to be
2295 passed to SWAP. PLABEL is a pointer to the current label in a
2296 sorted list of labels; LABEL_END is the end of the list. START and
2297 STOP are the range of memory to examine. If a swap is made,
2298 *PSWAPPED is set to TRUE. */
2304 _bfd_sh_align_load_span (bfd *abfd,
2307 bfd_boolean (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
2313 bfd_boolean *pswapped)
2315 int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
2316 || abfd->arch_info->mach == bfd_mach_sh3_dsp);
2319 /* The SH4 has a Harvard architecture, hence aligning loads is not
2320 desirable. In fact, it is counter-productive, since it interferes
2321 with the schedules generated by the compiler. */
2322 if (abfd->arch_info->mach == bfd_mach_sh4)
2325 /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2329 sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
2330 sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef;
2333 /* Instructions should be aligned on 2 byte boundaries. */
2334 if ((start & 1) == 1)
2337 /* Now look through the unaligned addresses. */
2341 for (; i < stop; i += 4)
2344 const struct sh_opcode *op;
2345 unsigned int prev_insn = 0;
2346 const struct sh_opcode *prev_op = NULL;
2348 insn = bfd_get_16 (abfd, contents + i);
2349 op = sh_insn_info (insn);
2351 || (op->flags & (LOAD | STORE)) == 0)
2354 /* This is a load or store which is not on a four byte boundary. */
2356 while (*plabel < label_end && **plabel < i)
2361 prev_insn = bfd_get_16 (abfd, contents + i - 2);
2362 /* If INSN is the field b of a parallel processing insn, it is not
2363 a load / store after all. Note that the test here might mistake
2364 the field_b of a pcopy insn for the starting code of a parallel
2365 processing insn; this might miss a swapping opportunity, but at
2366 least we're on the safe side. */
2367 if (dsp && (prev_insn & 0xfc00) == 0xf800)
2370 /* Check if prev_insn is actually the field b of a parallel
2371 processing insn. Again, this can give a spurious match
2373 if (dsp && i - 2 > start)
2375 unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);
2377 if ((pprev_insn & 0xfc00) == 0xf800)
2380 prev_op = sh_insn_info (prev_insn);
2383 prev_op = sh_insn_info (prev_insn);
2385 /* If the load/store instruction is in a delay slot, we
2388 || (prev_op->flags & DELAY) != 0)
2392 && (*plabel >= label_end || **plabel != i)
2394 && (prev_op->flags & (LOAD | STORE)) == 0
2395 && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
2399 /* The load/store instruction does not have a label, and
2400 there is a previous instruction; PREV_INSN is not
2401 itself a load/store instruction, and PREV_INSN and
2402 INSN do not conflict. */
2408 unsigned int prev2_insn;
2409 const struct sh_opcode *prev2_op;
2411 prev2_insn = bfd_get_16 (abfd, contents + i - 4);
2412 prev2_op = sh_insn_info (prev2_insn);
2414 /* If the instruction before PREV_INSN has a delay
2415 slot--that is, PREV_INSN is in a delay slot--we
2417 if (prev2_op == NULL
2418 || (prev2_op->flags & DELAY) != 0)
2421 /* If the instruction before PREV_INSN is a load,
2422 and it sets a register which INSN uses, then
2423 putting INSN immediately after PREV_INSN will
2424 cause a pipeline bubble, so there is no point to
2427 && (prev2_op->flags & LOAD) != 0
2428 && sh_load_use (prev2_insn, prev2_op, insn, op))
2434 if (! (*swap) (abfd, sec, relocs, contents, i - 2))
2441 while (*plabel < label_end && **plabel < i + 2)
2445 && (*plabel >= label_end || **plabel != i + 2))
2447 unsigned int next_insn;
2448 const struct sh_opcode *next_op;
2450 /* There is an instruction after the load/store
2451 instruction, and it does not have a label. */
2452 next_insn = bfd_get_16 (abfd, contents + i + 2);
2453 next_op = sh_insn_info (next_insn);
2455 && (next_op->flags & (LOAD | STORE)) == 0
2456 && ! sh_insns_conflict (insn, op, next_insn, next_op))
2460 /* NEXT_INSN is not itself a load/store instruction,
2461 and it does not conflict with INSN. */
2465 /* If PREV_INSN is a load, and it sets a register
2466 which NEXT_INSN uses, then putting NEXT_INSN
2467 immediately after PREV_INSN will cause a pipeline
2468 bubble, so there is no reason to make this swap. */
2470 && (prev_op->flags & LOAD) != 0
2471 && sh_load_use (prev_insn, prev_op, next_insn, next_op))
2474 /* If INSN is a load, and it sets a register which
2475 the insn after NEXT_INSN uses, then doing the
2476 swap will cause a pipeline bubble, so there is no
2477 reason to make the swap. However, if the insn
2478 after NEXT_INSN is itself a load or store
2479 instruction, then it is misaligned, so
2480 optimistically hope that it will be swapped
2481 itself, and just live with the pipeline bubble if
2485 && (op->flags & LOAD) != 0)
2487 unsigned int next2_insn;
2488 const struct sh_opcode *next2_op;
2490 next2_insn = bfd_get_16 (abfd, contents + i + 4);
2491 next2_op = sh_insn_info (next2_insn);
2492 if (next2_op == NULL
2493 || ((next2_op->flags & (LOAD | STORE)) == 0
2494 && sh_load_use (insn, op, next2_insn, next2_op)))
2500 if (! (*swap) (abfd, sec, relocs, contents, i))
2511 #endif /* not COFF_IMAGE_WITH_PE */
2513 /* Swap two SH instructions. */
2516 sh_swap_insns (bfd * abfd,
2519 bfd_byte * contents,
2522 struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
2523 unsigned short i1, i2;
2524 struct internal_reloc *irel, *irelend;
2526 /* Swap the instructions themselves. */
2527 i1 = bfd_get_16 (abfd, contents + addr);
2528 i2 = bfd_get_16 (abfd, contents + addr + 2);
2529 bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
2530 bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
2532 /* Adjust all reloc addresses. */
2533 irelend = internal_relocs + sec->reloc_count;
2534 for (irel = internal_relocs; irel < irelend; irel++)
2538 /* There are a few special types of relocs that we don't want to
2539 adjust. These relocs do not apply to the instruction itself,
2540 but are only associated with the address. */
2541 type = irel->r_type;
2542 if (type == R_SH_ALIGN
2543 || type == R_SH_CODE
2544 || type == R_SH_DATA
2545 || type == R_SH_LABEL)
2548 /* If an R_SH_USES reloc points to one of the addresses being
2549 swapped, we must adjust it. It would be incorrect to do this
2550 for a jump, though, since we want to execute both
2551 instructions after the jump. (We have avoided swapping
2552 around a label, so the jump will not wind up executing an
2553 instruction it shouldn't). */
2554 if (type == R_SH_USES)
2558 off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
2560 irel->r_offset += 2;
2561 else if (off == addr + 2)
2562 irel->r_offset -= 2;
2565 if (irel->r_vaddr - sec->vma == addr)
2570 else if (irel->r_vaddr - sec->vma == addr + 2)
2581 unsigned short insn, oinsn;
2582 bfd_boolean overflow;
2584 loc = contents + irel->r_vaddr - sec->vma;
2591 case R_SH_PCDISP8BY2:
2592 case R_SH_PCRELIMM8BY2:
2593 insn = bfd_get_16 (abfd, loc);
2596 if ((oinsn & 0xff00) != (insn & 0xff00))
2598 bfd_put_16 (abfd, (bfd_vma) insn, loc);
2602 insn = bfd_get_16 (abfd, loc);
2605 if ((oinsn & 0xf000) != (insn & 0xf000))
2607 bfd_put_16 (abfd, (bfd_vma) insn, loc);
2610 case R_SH_PCRELIMM8BY4:
2611 /* This reloc ignores the least significant 3 bits of
2612 the program counter before adding in the offset.
2613 This means that if ADDR is at an even address, the
2614 swap will not affect the offset. If ADDR is an at an
2615 odd address, then the instruction will be crossing a
2616 four byte boundary, and must be adjusted. */
2617 if ((addr & 3) != 0)
2619 insn = bfd_get_16 (abfd, loc);
2622 if ((oinsn & 0xff00) != (insn & 0xff00))
2624 bfd_put_16 (abfd, (bfd_vma) insn, loc);
2632 ((*_bfd_error_handler)
2633 ("%B: 0x%lx: fatal: reloc overflow while relaxing",
2634 abfd, (unsigned long) irel->r_vaddr));
2635 bfd_set_error (bfd_error_bad_value);
2644 /* Look for loads and stores which we can align to four byte
2645 boundaries. See the longer comment above sh_relax_section for why
2646 this is desirable. This sets *PSWAPPED if some instruction was
2650 sh_align_loads (bfd *abfd,
2652 struct internal_reloc *internal_relocs,
2654 bfd_boolean *pswapped)
2656 struct internal_reloc *irel, *irelend;
2657 bfd_vma *labels = NULL;
2658 bfd_vma *label, *label_end;
2663 irelend = internal_relocs + sec->reloc_count;
2665 /* Get all the addresses with labels on them. */
2666 amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
2667 labels = (bfd_vma *) bfd_malloc (amt);
2671 for (irel = internal_relocs; irel < irelend; irel++)
2673 if (irel->r_type == R_SH_LABEL)
2675 *label_end = irel->r_vaddr - sec->vma;
2680 /* Note that the assembler currently always outputs relocs in
2681 address order. If that ever changes, this code will need to sort
2682 the label values and the relocs. */
2686 for (irel = internal_relocs; irel < irelend; irel++)
2688 bfd_vma start, stop;
2690 if (irel->r_type != R_SH_CODE)
2693 start = irel->r_vaddr - sec->vma;
2695 for (irel++; irel < irelend; irel++)
2696 if (irel->r_type == R_SH_DATA)
2699 stop = irel->r_vaddr - sec->vma;
2703 if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
2704 internal_relocs, &label,
2705 label_end, start, stop, pswapped))
2719 /* This is a modification of _bfd_coff_generic_relocate_section, which
2720 will handle SH relaxing. */
2723 sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
2724 struct bfd_link_info *info,
2726 asection *input_section,
2728 struct internal_reloc *relocs,
2729 struct internal_syment *syms,
2730 asection **sections)
2732 struct internal_reloc *rel;
2733 struct internal_reloc *relend;
2736 relend = rel + input_section->reloc_count;
2737 for (; rel < relend; rel++)
2740 struct coff_link_hash_entry *h;
2741 struct internal_syment *sym;
2744 reloc_howto_type *howto;
2745 bfd_reloc_status_type rstat;
2747 /* Almost all relocs have to do with relaxing. If any work must
2748 be done for them, it has been done in sh_relax_section. */
2749 if (rel->r_type != R_SH_IMM32
2751 && rel->r_type != R_SH_IMM32CE
2752 && rel->r_type != R_SH_IMAGEBASE
2754 && rel->r_type != R_SH_PCDISP)
2757 symndx = rel->r_symndx;
2767 || (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
2769 (*_bfd_error_handler)
2770 ("%B: illegal symbol index %ld in relocs",
2772 bfd_set_error (bfd_error_bad_value);
2775 h = obj_coff_sym_hashes (input_bfd)[symndx];
2776 sym = syms + symndx;
2779 if (sym != NULL && sym->n_scnum != 0)
2780 addend = - sym->n_value;
2784 if (rel->r_type == R_SH_PCDISP)
2787 if (rel->r_type >= SH_COFF_HOWTO_COUNT)
2790 howto = &sh_coff_howtos[rel->r_type];
2794 bfd_set_error (bfd_error_bad_value);
2799 if (rel->r_type == R_SH_IMAGEBASE)
2800 addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
2809 /* There is nothing to do for an internal PCDISP reloc. */
2810 if (rel->r_type == R_SH_PCDISP)
2815 sec = bfd_abs_section_ptr;
2820 sec = sections[symndx];
2821 val = (sec->output_section->vma
2822 + sec->output_offset
2829 if (h->root.type == bfd_link_hash_defined
2830 || h->root.type == bfd_link_hash_defweak)
2834 sec = h->root.u.def.section;
2835 val = (h->root.u.def.value
2836 + sec->output_section->vma
2837 + sec->output_offset);
2839 else if (! info->relocatable)
2841 if (! ((*info->callbacks->undefined_symbol)
2842 (info, h->root.root.string, input_bfd, input_section,
2843 rel->r_vaddr - input_section->vma, TRUE)))
2848 rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
2850 rel->r_vaddr - input_section->vma,
2859 case bfd_reloc_overflow:
2862 char buf[SYMNMLEN + 1];
2868 else if (sym->_n._n_n._n_zeroes == 0
2869 && sym->_n._n_n._n_offset != 0)
2870 name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
2873 strncpy (buf, sym->_n._n_name, SYMNMLEN);
2874 buf[SYMNMLEN] = '\0';
2878 if (! ((*info->callbacks->reloc_overflow)
2879 (info, (h ? &h->root : NULL), name, howto->name,
2880 (bfd_vma) 0, input_bfd, input_section,
2881 rel->r_vaddr - input_section->vma)))
2890 /* This is a version of bfd_generic_get_relocated_section_contents
2891 which uses sh_relocate_section. */
2894 sh_coff_get_relocated_section_contents (bfd *output_bfd,
2895 struct bfd_link_info *link_info,
2896 struct bfd_link_order *link_order,
2898 bfd_boolean relocatable,
2901 asection *input_section = link_order->u.indirect.section;
2902 bfd *input_bfd = input_section->owner;
2903 asection **sections = NULL;
2904 struct internal_reloc *internal_relocs = NULL;
2905 struct internal_syment *internal_syms = NULL;
2907 /* We only need to handle the case of relaxing, or of having a
2908 particular set of section contents, specially. */
2910 || coff_section_data (input_bfd, input_section) == NULL
2911 || coff_section_data (input_bfd, input_section)->contents == NULL)
2912 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2917 memcpy (data, coff_section_data (input_bfd, input_section)->contents,
2918 (size_t) input_section->size);
2920 if ((input_section->flags & SEC_RELOC) != 0
2921 && input_section->reloc_count > 0)
2923 bfd_size_type symesz = bfd_coff_symesz (input_bfd);
2924 bfd_byte *esym, *esymend;
2925 struct internal_syment *isymp;
2929 if (! _bfd_coff_get_external_symbols (input_bfd))
2932 internal_relocs = (_bfd_coff_read_internal_relocs
2933 (input_bfd, input_section, FALSE, (bfd_byte *) NULL,
2934 FALSE, (struct internal_reloc *) NULL));
2935 if (internal_relocs == NULL)
2938 amt = obj_raw_syment_count (input_bfd);
2939 amt *= sizeof (struct internal_syment);
2940 internal_syms = (struct internal_syment *) bfd_malloc (amt);
2941 if (internal_syms == NULL)
2944 amt = obj_raw_syment_count (input_bfd);
2945 amt *= sizeof (asection *);
2946 sections = (asection **) bfd_malloc (amt);
2947 if (sections == NULL)
2950 isymp = internal_syms;
2952 esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
2953 esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
2954 while (esym < esymend)
2956 bfd_coff_swap_sym_in (input_bfd, esym, isymp);
2958 if (isymp->n_scnum != 0)
2959 *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
2962 if (isymp->n_value == 0)
2963 *secpp = bfd_und_section_ptr;
2965 *secpp = bfd_com_section_ptr;
2968 esym += (isymp->n_numaux + 1) * symesz;
2969 secpp += isymp->n_numaux + 1;
2970 isymp += isymp->n_numaux + 1;
2973 if (! sh_relocate_section (output_bfd, link_info, input_bfd,
2974 input_section, data, internal_relocs,
2975 internal_syms, sections))
2980 free (internal_syms);
2981 internal_syms = NULL;
2982 free (internal_relocs);
2983 internal_relocs = NULL;
2989 if (internal_relocs != NULL)
2990 free (internal_relocs);
2991 if (internal_syms != NULL)
2992 free (internal_syms);
2993 if (sections != NULL)
2998 /* The target vectors. */
3000 #ifndef TARGET_SHL_SYM
3001 CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
3004 #ifdef TARGET_SHL_SYM
3005 #define TARGET_SYM TARGET_SHL_SYM
3007 #define TARGET_SYM sh_coff_le_vec
3010 #ifndef TARGET_SHL_NAME
3011 #define TARGET_SHL_NAME "coff-shl"
3015 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3016 SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
3018 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3019 0, '_', NULL, COFF_SWAP_TABLE)
3022 #ifndef TARGET_SHL_SYM
3024 /* Some people want versions of the SH COFF target which do not align
3025 to 16 byte boundaries. We implement that by adding a couple of new
3026 target vectors. These are just like the ones above, but they
3027 change the default section alignment. To generate them in the
3028 assembler, use -small. To use them in the linker, use -b
3029 coff-sh{l}-small and -oformat coff-sh{l}-small.
3031 Yes, this is a horrible hack. A general solution for setting
3032 section alignment in COFF is rather complex. ELF handles this
3035 /* Only recognize the small versions if the target was not defaulted.
3036 Otherwise we won't recognize the non default endianness. */
3038 static const bfd_target *
3039 coff_small_object_p (bfd *abfd)
3041 if (abfd->target_defaulted)
3043 bfd_set_error (bfd_error_wrong_format);
3046 return coff_object_p (abfd);
3049 /* Set the section alignment for the small versions. */
3052 coff_small_new_section_hook (bfd *abfd, asection *section)
3054 if (! coff_new_section_hook (abfd, section))
3057 /* We must align to at least a four byte boundary, because longword
3058 accesses must be on a four byte boundary. */
3059 if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
3060 section->alignment_power = 2;
3065 /* This is copied from bfd_coff_std_swap_table so that we can change
3066 the default section alignment power. */
3068 static bfd_coff_backend_data bfd_coff_small_swap_table =
3070 coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
3071 coff_swap_aux_out, coff_swap_sym_out,
3072 coff_swap_lineno_out, coff_swap_reloc_out,
3073 coff_swap_filehdr_out, coff_swap_aouthdr_out,
3074 coff_swap_scnhdr_out,
3075 FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
3076 #ifdef COFF_LONG_FILENAMES
3081 COFF_DEFAULT_LONG_SECTION_NAMES,
3083 #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
3088 #ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3094 coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
3095 coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
3096 coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
3097 coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
3098 coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
3099 coff_classify_symbol, coff_compute_section_file_positions,
3100 coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
3101 coff_adjust_symndx, coff_link_add_one_symbol,
3102 coff_link_output_has_begun, coff_final_link_postscript,
3106 #define coff_small_close_and_cleanup \
3107 coff_close_and_cleanup
3108 #define coff_small_bfd_free_cached_info \
3109 coff_bfd_free_cached_info
3110 #define coff_small_get_section_contents \
3111 coff_get_section_contents
3112 #define coff_small_get_section_contents_in_window \
3113 coff_get_section_contents_in_window
3115 extern const bfd_target sh_coff_small_le_vec;
3117 const bfd_target sh_coff_small_vec =
3119 "coff-sh-small", /* name */
3120 bfd_target_coff_flavour,
3121 BFD_ENDIAN_BIG, /* data byte order is big */
3122 BFD_ENDIAN_BIG, /* header byte order is big */
3124 (HAS_RELOC | EXEC_P | /* object flags */
3125 HAS_LINENO | HAS_DEBUG |
3126 HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3128 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3129 '_', /* leading symbol underscore */
3130 '/', /* ar_pad_char */
3131 15, /* ar_max_namelen */
3132 0, /* match priority. */
3133 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3134 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3135 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
3136 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3137 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3138 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
3140 {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
3141 bfd_generic_archive_p, _bfd_dummy_target},
3142 {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
3144 {bfd_false, coff_write_object_contents, /* bfd_write_contents */
3145 _bfd_write_archive_contents, bfd_false},
3147 BFD_JUMP_TABLE_GENERIC (coff_small),
3148 BFD_JUMP_TABLE_COPY (coff),
3149 BFD_JUMP_TABLE_CORE (_bfd_nocore),
3150 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3151 BFD_JUMP_TABLE_SYMBOLS (coff),
3152 BFD_JUMP_TABLE_RELOCS (coff),
3153 BFD_JUMP_TABLE_WRITE (coff),
3154 BFD_JUMP_TABLE_LINK (coff),
3155 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3157 & sh_coff_small_le_vec,
3159 & bfd_coff_small_swap_table
3162 const bfd_target sh_coff_small_le_vec =
3164 "coff-shl-small", /* name */
3165 bfd_target_coff_flavour,
3166 BFD_ENDIAN_LITTLE, /* data byte order is little */
3167 BFD_ENDIAN_LITTLE, /* header byte order is little endian too*/
3169 (HAS_RELOC | EXEC_P | /* object flags */
3170 HAS_LINENO | HAS_DEBUG |
3171 HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3173 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3174 '_', /* leading symbol underscore */
3175 '/', /* ar_pad_char */
3176 15, /* ar_max_namelen */
3177 0, /* match priority. */
3178 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3179 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3180 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
3181 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3182 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3183 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
3185 {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
3186 bfd_generic_archive_p, _bfd_dummy_target},
3187 {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
3189 {bfd_false, coff_write_object_contents, /* bfd_write_contents */
3190 _bfd_write_archive_contents, bfd_false},
3192 BFD_JUMP_TABLE_GENERIC (coff_small),
3193 BFD_JUMP_TABLE_COPY (coff),
3194 BFD_JUMP_TABLE_CORE (_bfd_nocore),
3195 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3196 BFD_JUMP_TABLE_SYMBOLS (coff),
3197 BFD_JUMP_TABLE_RELOCS (coff),
3198 BFD_JUMP_TABLE_WRITE (coff),
3199 BFD_JUMP_TABLE_LINK (coff),
3200 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3202 & sh_coff_small_vec,
3204 & bfd_coff_small_swap_table