1 /* BFD back-end for Renesas Super-H COFF binaries.
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4 Written by Steve Chamberlain, <sac@cygnus.com>.
5 Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
26 #include "libiberty.h"
30 #include "coff/internal.h"
32 #undef bfd_pe_print_pdata
37 #ifndef COFF_IMAGE_WITH_PE
38 static bfd_boolean sh_align_load_span
39 (bfd *, asection *, bfd_byte *,
40 bfd_boolean (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
41 void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bfd_boolean *);
43 #define _bfd_sh_align_load_span sh_align_load_span
46 #define bfd_pe_print_pdata _bfd_pe_print_ce_compressed_pdata
50 #define bfd_pe_print_pdata NULL
52 #endif /* COFF_WITH_PE. */
56 /* Internal functions. */
59 /* Can't build import tables with 2**4 alignment. */
60 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2
62 /* Default section alignment to 2**4. */
63 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4
66 #ifdef COFF_IMAGE_WITH_PE
67 /* Align PE executables. */
68 #define COFF_PAGE_SIZE 0x1000
71 /* Generate long file names. */
72 #define COFF_LONG_FILENAMES
75 /* Return TRUE if this relocation should
76 appear in the output .reloc section. */
79 in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED,
80 reloc_howto_type * howto)
82 return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
86 static bfd_reloc_status_type
87 sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
89 sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *,
90 bfd_byte *, struct internal_reloc *,
91 struct internal_syment *, asection **);
93 sh_align_loads (bfd *, asection *, struct internal_reloc *,
94 bfd_byte *, bfd_boolean *);
96 /* The supported relocations. There are a lot of relocations defined
97 in coff/internal.h which we do not expect to ever see. */
98 static reloc_howto_type sh_coff_howtos[] =
104 HOWTO (R_SH_IMM32CE, /* type */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
108 FALSE, /* pc_relative */
110 complain_overflow_bitfield, /* complain_on_overflow */
111 sh_reloc, /* special_function */
112 "r_imm32ce", /* name */
113 TRUE, /* partial_inplace */
114 0xffffffff, /* src_mask */
115 0xffffffff, /* dst_mask */
116 FALSE), /* pcrel_offset */
120 EMPTY_HOWTO (3), /* R_SH_PCREL8 */
121 EMPTY_HOWTO (4), /* R_SH_PCREL16 */
122 EMPTY_HOWTO (5), /* R_SH_HIGH8 */
123 EMPTY_HOWTO (6), /* R_SH_IMM24 */
124 EMPTY_HOWTO (7), /* R_SH_LOW16 */
126 EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
128 HOWTO (R_SH_PCDISP8BY2, /* type */
130 1, /* size (0 = byte, 1 = short, 2 = long) */
132 TRUE, /* pc_relative */
134 complain_overflow_signed, /* complain_on_overflow */
135 sh_reloc, /* special_function */
136 "r_pcdisp8by2", /* name */
137 TRUE, /* partial_inplace */
140 TRUE), /* pcrel_offset */
142 EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
144 HOWTO (R_SH_PCDISP, /* type */
146 1, /* size (0 = byte, 1 = short, 2 = long) */
148 TRUE, /* pc_relative */
150 complain_overflow_signed, /* complain_on_overflow */
151 sh_reloc, /* special_function */
152 "r_pcdisp12by2", /* name */
153 TRUE, /* partial_inplace */
154 0xfff, /* src_mask */
155 0xfff, /* dst_mask */
156 TRUE), /* pcrel_offset */
160 HOWTO (R_SH_IMM32, /* type */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
164 FALSE, /* pc_relative */
166 complain_overflow_bitfield, /* complain_on_overflow */
167 sh_reloc, /* special_function */
168 "r_imm32", /* name */
169 TRUE, /* partial_inplace */
170 0xffffffff, /* src_mask */
171 0xffffffff, /* dst_mask */
172 FALSE), /* pcrel_offset */
176 HOWTO (R_SH_IMAGEBASE, /* type */
178 2, /* size (0 = byte, 1 = short, 2 = long) */
180 FALSE, /* pc_relative */
182 complain_overflow_bitfield, /* complain_on_overflow */
183 sh_reloc, /* special_function */
185 TRUE, /* partial_inplace */
186 0xffffffff, /* src_mask */
187 0xffffffff, /* dst_mask */
188 FALSE), /* pcrel_offset */
190 EMPTY_HOWTO (16), /* R_SH_IMM8 */
192 EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
193 EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
194 EMPTY_HOWTO (19), /* R_SH_IMM4 */
195 EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
196 EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
198 HOWTO (R_SH_PCRELIMM8BY2, /* type */
200 1, /* size (0 = byte, 1 = short, 2 = long) */
202 TRUE, /* pc_relative */
204 complain_overflow_unsigned, /* complain_on_overflow */
205 sh_reloc, /* special_function */
206 "r_pcrelimm8by2", /* name */
207 TRUE, /* partial_inplace */
210 TRUE), /* pcrel_offset */
212 HOWTO (R_SH_PCRELIMM8BY4, /* type */
214 1, /* size (0 = byte, 1 = short, 2 = long) */
216 TRUE, /* pc_relative */
218 complain_overflow_unsigned, /* complain_on_overflow */
219 sh_reloc, /* special_function */
220 "r_pcrelimm8by4", /* name */
221 TRUE, /* partial_inplace */
224 TRUE), /* pcrel_offset */
226 HOWTO (R_SH_IMM16, /* type */
228 1, /* size (0 = byte, 1 = short, 2 = long) */
230 FALSE, /* pc_relative */
232 complain_overflow_bitfield, /* complain_on_overflow */
233 sh_reloc, /* special_function */
234 "r_imm16", /* name */
235 TRUE, /* partial_inplace */
236 0xffff, /* src_mask */
237 0xffff, /* dst_mask */
238 FALSE), /* pcrel_offset */
240 HOWTO (R_SH_SWITCH16, /* type */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
244 FALSE, /* pc_relative */
246 complain_overflow_bitfield, /* complain_on_overflow */
247 sh_reloc, /* special_function */
248 "r_switch16", /* name */
249 TRUE, /* partial_inplace */
250 0xffff, /* src_mask */
251 0xffff, /* dst_mask */
252 FALSE), /* pcrel_offset */
254 HOWTO (R_SH_SWITCH32, /* type */
256 2, /* size (0 = byte, 1 = short, 2 = long) */
258 FALSE, /* pc_relative */
260 complain_overflow_bitfield, /* complain_on_overflow */
261 sh_reloc, /* special_function */
262 "r_switch32", /* name */
263 TRUE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
268 HOWTO (R_SH_USES, /* type */
270 1, /* size (0 = byte, 1 = short, 2 = long) */
272 FALSE, /* pc_relative */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 sh_reloc, /* special_function */
277 TRUE, /* partial_inplace */
278 0xffff, /* src_mask */
279 0xffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
282 HOWTO (R_SH_COUNT, /* type */
284 2, /* size (0 = byte, 1 = short, 2 = long) */
286 FALSE, /* pc_relative */
288 complain_overflow_bitfield, /* complain_on_overflow */
289 sh_reloc, /* special_function */
290 "r_count", /* name */
291 TRUE, /* partial_inplace */
292 0xffffffff, /* src_mask */
293 0xffffffff, /* dst_mask */
294 FALSE), /* pcrel_offset */
296 HOWTO (R_SH_ALIGN, /* type */
298 2, /* size (0 = byte, 1 = short, 2 = long) */
300 FALSE, /* pc_relative */
302 complain_overflow_bitfield, /* complain_on_overflow */
303 sh_reloc, /* special_function */
304 "r_align", /* name */
305 TRUE, /* partial_inplace */
306 0xffffffff, /* src_mask */
307 0xffffffff, /* dst_mask */
308 FALSE), /* pcrel_offset */
310 HOWTO (R_SH_CODE, /* type */
312 2, /* size (0 = byte, 1 = short, 2 = long) */
314 FALSE, /* pc_relative */
316 complain_overflow_bitfield, /* complain_on_overflow */
317 sh_reloc, /* special_function */
319 TRUE, /* partial_inplace */
320 0xffffffff, /* src_mask */
321 0xffffffff, /* dst_mask */
322 FALSE), /* pcrel_offset */
324 HOWTO (R_SH_DATA, /* type */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
328 FALSE, /* pc_relative */
330 complain_overflow_bitfield, /* complain_on_overflow */
331 sh_reloc, /* special_function */
333 TRUE, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE), /* pcrel_offset */
338 HOWTO (R_SH_LABEL, /* type */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
342 FALSE, /* pc_relative */
344 complain_overflow_bitfield, /* complain_on_overflow */
345 sh_reloc, /* special_function */
346 "r_label", /* name */
347 TRUE, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE), /* pcrel_offset */
352 HOWTO (R_SH_SWITCH8, /* type */
354 0, /* size (0 = byte, 1 = short, 2 = long) */
356 FALSE, /* pc_relative */
358 complain_overflow_bitfield, /* complain_on_overflow */
359 sh_reloc, /* special_function */
360 "r_switch8", /* name */
361 TRUE, /* partial_inplace */
364 FALSE) /* pcrel_offset */
367 #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
369 /* Check for a bad magic number. */
370 #define BADMAG(x) SHBADMAG(x)
372 /* Customize coffcode.h (this is not currently used). */
375 /* FIXME: This should not be set here. */
376 #define __A_MAGIC_SET__
379 /* Swap the r_offset field in and out. */
380 #define SWAP_IN_RELOC_OFFSET H_GET_32
381 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
383 /* Swap out extra information in the reloc structure. */
384 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
387 dst->r_stuff[0] = 'S'; \
388 dst->r_stuff[1] = 'C'; \
393 /* Get the value of a symbol, when performing a relocation. */
396 get_symbol_value (asymbol *symbol)
400 if (bfd_is_com_section (symbol->section))
403 relocation = (symbol->value +
404 symbol->section->output_section->vma +
405 symbol->section->output_offset);
411 /* Convert an rtype to howto for the COFF backend linker.
412 Copied from coff-i386. */
413 #define coff_rtype_to_howto coff_sh_rtype_to_howto
416 static reloc_howto_type *
417 coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED,
419 struct internal_reloc * rel,
420 struct coff_link_hash_entry * h,
421 struct internal_syment * sym,
424 reloc_howto_type * howto;
426 howto = sh_coff_howtos + rel->r_type;
430 if (howto->pc_relative)
431 *addendp += sec->vma;
433 if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
435 /* This is a common symbol. The section contents include the
436 size (sym->n_value) as an addend. The relocate_section
437 function will be adding in the final value of the symbol. We
438 need to subtract out the current size in order to get the
440 BFD_ASSERT (h != NULL);
443 if (howto->pc_relative)
447 /* If the symbol is defined, then the generic code is going to
448 add back the symbol value in order to cancel out an
449 adjustment it made to the addend. However, we set the addend
450 to 0 at the start of this function. We need to adjust here,
451 to avoid the adjustment the generic code will make. FIXME:
452 This is getting a bit hackish. */
453 if (sym != NULL && sym->n_scnum != 0)
454 *addendp -= sym->n_value;
457 if (rel->r_type == R_SH_IMAGEBASE)
458 *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;
463 #endif /* COFF_WITH_PE */
465 /* This structure is used to map BFD reloc codes to SH PE relocs. */
466 struct shcoff_reloc_map
468 bfd_reloc_code_real_type bfd_reloc_val;
469 unsigned char shcoff_reloc_val;
473 /* An array mapping BFD reloc codes to SH PE relocs. */
474 static const struct shcoff_reloc_map sh_reloc_map[] =
476 { BFD_RELOC_32, R_SH_IMM32CE },
477 { BFD_RELOC_RVA, R_SH_IMAGEBASE },
478 { BFD_RELOC_CTOR, R_SH_IMM32CE },
481 /* An array mapping BFD reloc codes to SH PE relocs. */
482 static const struct shcoff_reloc_map sh_reloc_map[] =
484 { BFD_RELOC_32, R_SH_IMM32 },
485 { BFD_RELOC_CTOR, R_SH_IMM32 },
489 /* Given a BFD reloc code, return the howto structure for the
490 corresponding SH PE reloc. */
491 #define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup
492 #define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup
494 static reloc_howto_type *
495 sh_coff_reloc_type_lookup (bfd *abfd,
496 bfd_reloc_code_real_type code)
500 for (i = ARRAY_SIZE (sh_reloc_map); i--;)
501 if (sh_reloc_map[i].bfd_reloc_val == code)
502 return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
504 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
505 abfd, (unsigned int) code);
509 static reloc_howto_type *
510 sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
515 for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++)
516 if (sh_coff_howtos[i].name != NULL
517 && strcasecmp (sh_coff_howtos[i].name, r_name) == 0)
518 return &sh_coff_howtos[i];
523 /* This macro is used in coffcode.h to get the howto corresponding to
524 an internal reloc. */
526 #define RTYPE2HOWTO(relent, internal) \
528 ((internal)->r_type < SH_COFF_HOWTO_COUNT \
529 ? &sh_coff_howtos[(internal)->r_type] \
530 : (reloc_howto_type *) NULL))
532 /* This is the same as the macro in coffcode.h, except that it copies
533 r_offset into reloc_entry->addend for some relocs. */
534 #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \
536 coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \
537 if (ptr && bfd_asymbol_bfd (ptr) != abfd) \
538 coffsym = (obj_symbols (abfd) \
539 + (cache_ptr->sym_ptr_ptr - symbols)); \
541 coffsym = coff_symbol_from (ptr); \
542 if (coffsym != (coff_symbol_type *) NULL \
543 && coffsym->native->u.syment.n_scnum == 0) \
544 cache_ptr->addend = 0; \
545 else if (ptr && bfd_asymbol_bfd (ptr) == abfd \
546 && ptr->section != (asection *) NULL) \
547 cache_ptr->addend = - (ptr->section->vma + ptr->value); \
549 cache_ptr->addend = 0; \
550 if ((reloc).r_type == R_SH_SWITCH8 \
551 || (reloc).r_type == R_SH_SWITCH16 \
552 || (reloc).r_type == R_SH_SWITCH32 \
553 || (reloc).r_type == R_SH_USES \
554 || (reloc).r_type == R_SH_COUNT \
555 || (reloc).r_type == R_SH_ALIGN) \
556 cache_ptr->addend = (reloc).r_offset; \
559 /* This is the howto function for the SH relocations. */
561 static bfd_reloc_status_type
562 sh_reloc (bfd * abfd,
563 arelent * reloc_entry,
566 asection * input_section,
568 char ** error_message ATTRIBUTE_UNUSED)
572 unsigned short r_type;
573 bfd_vma addr = reloc_entry->address;
574 bfd_byte *hit_data = addr + (bfd_byte *) data;
576 r_type = reloc_entry->howto->type;
578 if (output_bfd != NULL)
580 /* Partial linking--do nothing. */
581 reloc_entry->address += input_section->output_offset;
585 /* Almost all relocs have to do with relaxing. If any work must be
586 done for them, it has been done in sh_relax_section. */
587 if (r_type != R_SH_IMM32
589 && r_type != R_SH_IMM32CE
590 && r_type != R_SH_IMAGEBASE
592 && (r_type != R_SH_PCDISP
593 || (symbol_in->flags & BSF_LOCAL) != 0))
596 if (symbol_in != NULL
597 && bfd_is_und_section (symbol_in->section))
598 return bfd_reloc_undefined;
600 if (addr > input_section->size)
601 return bfd_reloc_outofrange;
603 sym_value = get_symbol_value (symbol_in);
611 insn = bfd_get_32 (abfd, hit_data);
612 insn += sym_value + reloc_entry->addend;
613 bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
617 insn = bfd_get_32 (abfd, hit_data);
618 insn += sym_value + reloc_entry->addend;
619 insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
620 bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
624 insn = bfd_get_16 (abfd, hit_data);
625 sym_value += reloc_entry->addend;
626 sym_value -= (input_section->output_section->vma
627 + input_section->output_offset
630 sym_value += (insn & 0xfff) << 1;
633 insn = (insn & 0xf000) | (sym_value & 0xfff);
634 bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
635 if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
636 return bfd_reloc_overflow;
646 #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
648 /* We can do relaxing. */
649 #define coff_bfd_relax_section sh_relax_section
651 /* We use the special COFF backend linker. */
652 #define coff_relocate_section sh_relocate_section
654 /* When relaxing, we need to use special code to get the relocated
656 #define coff_bfd_get_relocated_section_contents \
657 sh_coff_get_relocated_section_contents
659 #include "coffcode.h"
662 sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int);
664 /* This function handles relaxing on the SH.
666 Function calls on the SH look like this:
675 The compiler and assembler will cooperate to create R_SH_USES
676 relocs on the jsr instructions. The r_offset field of the
677 R_SH_USES reloc is the PC relative offset to the instruction which
678 loads the register (the r_offset field is computed as though it
679 were a jump instruction, so the offset value is actually from four
680 bytes past the instruction). The linker can use this reloc to
681 determine just which function is being called, and thus decide
682 whether it is possible to replace the jsr with a bsr.
684 If multiple function calls are all based on a single register load
685 (i.e., the same function is called multiple times), the compiler
686 guarantees that each function call will have an R_SH_USES reloc.
687 Therefore, if the linker is able to convert each R_SH_USES reloc
688 which refers to that address, it can safely eliminate the register
691 When the assembler creates an R_SH_USES reloc, it examines it to
692 determine which address is being loaded (L1 in the above example).
693 It then counts the number of references to that address, and
694 creates an R_SH_COUNT reloc at that address. The r_offset field of
695 the R_SH_COUNT reloc will be the number of references. If the
696 linker is able to eliminate a register load, it can use the
697 R_SH_COUNT reloc to see whether it can also eliminate the function
700 SH relaxing also handles another, unrelated, matter. On the SH, if
701 a load or store instruction is not aligned on a four byte boundary,
702 the memory cycle interferes with the 32 bit instruction fetch,
703 causing a one cycle bubble in the pipeline. Therefore, we try to
704 align load and store instructions on four byte boundaries if we
705 can, by swapping them with one of the adjacent instructions. */
708 sh_relax_section (bfd *abfd,
710 struct bfd_link_info *link_info,
713 struct internal_reloc *internal_relocs;
714 bfd_boolean have_code;
715 struct internal_reloc *irel, *irelend;
716 bfd_byte *contents = NULL;
720 if (bfd_link_relocatable (link_info)
721 || (sec->flags & SEC_RELOC) == 0
722 || sec->reloc_count == 0)
725 if (coff_section_data (abfd, sec) == NULL)
727 bfd_size_type amt = sizeof (struct coff_section_tdata);
728 sec->used_by_bfd = bfd_zalloc (abfd, amt);
729 if (sec->used_by_bfd == NULL)
733 internal_relocs = (_bfd_coff_read_internal_relocs
734 (abfd, sec, link_info->keep_memory,
735 (bfd_byte *) NULL, FALSE,
736 (struct internal_reloc *) NULL));
737 if (internal_relocs == NULL)
742 irelend = internal_relocs + sec->reloc_count;
743 for (irel = internal_relocs; irel < irelend; irel++)
745 bfd_vma laddr, paddr, symval;
747 struct internal_reloc *irelfn, *irelscan, *irelcount;
748 struct internal_syment sym;
751 if (irel->r_type == R_SH_CODE)
754 if (irel->r_type != R_SH_USES)
757 /* Get the section contents. */
758 if (contents == NULL)
760 if (coff_section_data (abfd, sec)->contents != NULL)
761 contents = coff_section_data (abfd, sec)->contents;
764 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
769 /* The r_offset field of the R_SH_USES reloc will point us to
770 the register load. The 4 is because the r_offset field is
771 computed as though it were a jump offset, which are based
772 from 4 bytes after the jump instruction. */
773 laddr = irel->r_vaddr - sec->vma + 4;
774 /* Careful to sign extend the 32-bit offset. */
775 laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
776 if (laddr >= sec->size)
778 /* xgettext: c-format */
780 (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES offset"),
781 abfd, (uint64_t) irel->r_vaddr);
784 insn = bfd_get_16 (abfd, contents + laddr);
786 /* If the instruction is not mov.l NN,rN, we don't know what to do. */
787 if ((insn & 0xf000) != 0xd000)
790 /* xgettext: c-format */
791 (_("%pB: %#" PRIx64 ": warning: R_SH_USES points to unrecognized insn %#x"),
792 abfd, (uint64_t) irel->r_vaddr, insn);
796 /* Get the address from which the register is being loaded. The
797 displacement in the mov.l instruction is quadrupled. It is a
798 displacement from four bytes after the movl instruction, but,
799 before adding in the PC address, two least significant bits
800 of the PC are cleared. We assume that the section is aligned
801 on a four byte boundary. */
804 paddr += (laddr + 4) &~ (bfd_vma) 3;
805 if (paddr >= sec->size)
808 /* xgettext: c-format */
809 (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES load offset"),
810 abfd, (uint64_t) irel->r_vaddr);
814 /* Get the reloc for the address from which the register is
815 being loaded. This reloc will tell us which function is
816 actually being called. */
818 for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
819 if (irelfn->r_vaddr == paddr
821 && (irelfn->r_type == R_SH_IMM32
822 || irelfn->r_type == R_SH_IMM32CE
823 || irelfn->r_type == R_SH_IMAGEBASE)
826 && irelfn->r_type == R_SH_IMM32
830 if (irelfn >= irelend)
833 /* xgettext: c-format */
834 (_("%pB: %#" PRIx64 ": warning: could not find expected reloc"),
835 abfd, (uint64_t) paddr);
839 /* Get the value of the symbol referred to by the reloc. */
840 if (! _bfd_coff_get_external_symbols (abfd))
842 bfd_coff_swap_sym_in (abfd,
843 ((bfd_byte *) obj_coff_external_syms (abfd)
845 * bfd_coff_symesz (abfd))),
847 if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
850 /* xgettext: c-format */
851 (_("%pB: %#" PRIx64 ": warning: symbol in unexpected section"),
852 abfd, (uint64_t) paddr);
856 if (sym.n_sclass != C_EXT)
858 symval = (sym.n_value
860 + sec->output_section->vma
861 + sec->output_offset);
865 struct coff_link_hash_entry *h;
867 h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
868 BFD_ASSERT (h != NULL);
869 if (h->root.type != bfd_link_hash_defined
870 && h->root.type != bfd_link_hash_defweak)
872 /* This appears to be a reference to an undefined
873 symbol. Just ignore it--it will be caught by the
874 regular reloc processing. */
878 symval = (h->root.u.def.value
879 + h->root.u.def.section->output_section->vma
880 + h->root.u.def.section->output_offset);
883 symval += bfd_get_32 (abfd, contents + paddr - sec->vma);
885 /* See if this function call can be shortened. */
889 + sec->output_section->vma
892 if (foff < -0x1000 || foff >= 0x1000)
894 /* After all that work, we can't shorten this function call. */
898 /* Shorten the function call. */
900 /* For simplicity of coding, we are going to modify the section
901 contents, the section relocs, and the BFD symbol table. We
902 must tell the rest of the code not to free up this
903 information. It would be possible to instead create a table
904 of changes which have to be made, as is done in coff-mips.c;
905 that would be more work, but would require less memory when
906 the linker is run. */
908 coff_section_data (abfd, sec)->relocs = internal_relocs;
909 coff_section_data (abfd, sec)->keep_relocs = TRUE;
911 coff_section_data (abfd, sec)->contents = contents;
912 coff_section_data (abfd, sec)->keep_contents = TRUE;
914 obj_coff_keep_syms (abfd) = TRUE;
916 /* Replace the jsr with a bsr. */
918 /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
919 replace the jsr with a bsr. */
920 irel->r_type = R_SH_PCDISP;
921 irel->r_symndx = irelfn->r_symndx;
922 if (sym.n_sclass != C_EXT)
924 /* If this needs to be changed because of future relaxing,
925 it will be handled here like other internal PCDISP
928 (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
929 contents + irel->r_vaddr - sec->vma);
933 /* We can't fully resolve this yet, because the external
934 symbol value may be changed by future relaxing. We let
935 the final link phase handle it. */
936 bfd_put_16 (abfd, (bfd_vma) 0xb000,
937 contents + irel->r_vaddr - sec->vma);
940 /* See if there is another R_SH_USES reloc referring to the same
942 for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
943 if (irelscan->r_type == R_SH_USES
944 && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
946 if (irelscan < irelend)
948 /* Some other function call depends upon this register load,
949 and we have not yet converted that function call.
950 Indeed, we may never be able to convert it. There is
951 nothing else we can do at this point. */
955 /* Look for a R_SH_COUNT reloc on the location where the
956 function address is stored. Do this before deleting any
957 bytes, to avoid confusion about the address. */
958 for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
959 if (irelcount->r_vaddr == paddr
960 && irelcount->r_type == R_SH_COUNT)
963 /* Delete the register load. */
964 if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
967 /* That will change things, so, just in case it permits some
968 other function call to come within range, we should relax
969 again. Note that this is not required, and it may be slow. */
972 /* Now check whether we got a COUNT reloc. */
973 if (irelcount >= irelend)
976 /* xgettext: c-format */
977 (_("%pB: %#" PRIx64 ": warning: could not find expected COUNT reloc"),
978 abfd, (uint64_t) paddr);
982 /* The number of uses is stored in the r_offset field. We've
984 if (irelcount->r_offset == 0)
986 /* xgettext: c-format */
987 _bfd_error_handler (_("%pB: %#" PRIx64 ": warning: bad count"),
988 abfd, (uint64_t) paddr);
992 --irelcount->r_offset;
994 /* If there are no more uses, we can delete the address. Reload
995 the address from irelfn, in case it was changed by the
996 previous call to sh_relax_delete_bytes. */
997 if (irelcount->r_offset == 0)
999 if (! sh_relax_delete_bytes (abfd, sec,
1000 irelfn->r_vaddr - sec->vma, 4))
1004 /* We've done all we can with that function call. */
1007 /* Look for load and store instructions that we can align on four
1011 bfd_boolean swapped;
1013 /* Get the section contents. */
1014 if (contents == NULL)
1016 if (coff_section_data (abfd, sec)->contents != NULL)
1017 contents = coff_section_data (abfd, sec)->contents;
1020 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1025 if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
1030 coff_section_data (abfd, sec)->relocs = internal_relocs;
1031 coff_section_data (abfd, sec)->keep_relocs = TRUE;
1033 coff_section_data (abfd, sec)->contents = contents;
1034 coff_section_data (abfd, sec)->keep_contents = TRUE;
1036 obj_coff_keep_syms (abfd) = TRUE;
1040 if (internal_relocs != NULL
1041 && internal_relocs != coff_section_data (abfd, sec)->relocs)
1043 if (! link_info->keep_memory)
1044 free (internal_relocs);
1046 coff_section_data (abfd, sec)->relocs = internal_relocs;
1049 if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
1051 if (! link_info->keep_memory)
1054 /* Cache the section contents for coff_link_input_bfd. */
1055 coff_section_data (abfd, sec)->contents = contents;
1061 if (internal_relocs != NULL
1062 && internal_relocs != coff_section_data (abfd, sec)->relocs)
1063 free (internal_relocs);
1064 if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
1069 /* Delete some bytes from a section while relaxing. */
1072 sh_relax_delete_bytes (bfd *abfd,
1078 struct internal_reloc *irel, *irelend;
1079 struct internal_reloc *irelalign;
1081 bfd_byte *esym, *esymend;
1082 bfd_size_type symesz;
1083 struct coff_link_hash_entry **sym_hash;
1086 contents = coff_section_data (abfd, sec)->contents;
1088 /* The deletion must stop at the next ALIGN reloc for an alignment
1089 power larger than the number of bytes we are deleting. */
1094 irel = coff_section_data (abfd, sec)->relocs;
1095 irelend = irel + sec->reloc_count;
1096 for (; irel < irelend; irel++)
1098 if (irel->r_type == R_SH_ALIGN
1099 && irel->r_vaddr - sec->vma > addr
1100 && count < (1 << irel->r_offset))
1103 toaddr = irel->r_vaddr - sec->vma;
1108 /* Actually delete the bytes. */
1109 memmove (contents + addr, contents + addr + count,
1110 (size_t) (toaddr - addr - count));
1111 if (irelalign == NULL)
1117 #define NOP_OPCODE (0x0009)
1119 BFD_ASSERT ((count & 1) == 0);
1120 for (i = 0; i < count; i += 2)
1121 bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
1124 /* Adjust all the relocs. */
1125 for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
1127 bfd_vma nraddr, stop;
1130 struct internal_syment sym;
1131 int off, adjust, oinsn;
1132 bfd_signed_vma voff = 0;
1133 bfd_boolean overflow;
1135 /* Get the new reloc address. */
1136 nraddr = irel->r_vaddr - sec->vma;
1137 if ((irel->r_vaddr - sec->vma > addr
1138 && irel->r_vaddr - sec->vma < toaddr)
1139 || (irel->r_type == R_SH_ALIGN
1140 && irel->r_vaddr - sec->vma == toaddr))
1143 /* See if this reloc was for the bytes we have deleted, in which
1144 case we no longer care about it. Don't delete relocs which
1145 represent addresses, though. */
1146 if (irel->r_vaddr - sec->vma >= addr
1147 && irel->r_vaddr - sec->vma < addr + count
1148 && irel->r_type != R_SH_ALIGN
1149 && irel->r_type != R_SH_CODE
1150 && irel->r_type != R_SH_DATA
1151 && irel->r_type != R_SH_LABEL)
1152 irel->r_type = R_SH_UNUSED;
1154 /* If this is a PC relative reloc, see if the range it covers
1155 includes the bytes we have deleted. */
1156 switch (irel->r_type)
1161 case R_SH_PCDISP8BY2:
1163 case R_SH_PCRELIMM8BY2:
1164 case R_SH_PCRELIMM8BY4:
1165 start = irel->r_vaddr - sec->vma;
1166 insn = bfd_get_16 (abfd, contents + nraddr);
1170 switch (irel->r_type)
1173 start = stop = addr;
1179 case R_SH_IMAGEBASE:
1181 /* If this reloc is against a symbol defined in this
1182 section, and the symbol will not be adjusted below, we
1183 must check the addend to see it will put the value in
1184 range to be adjusted, and hence must be changed. */
1185 bfd_coff_swap_sym_in (abfd,
1186 ((bfd_byte *) obj_coff_external_syms (abfd)
1188 * bfd_coff_symesz (abfd))),
1190 if (sym.n_sclass != C_EXT
1191 && sym.n_scnum == sec->target_index
1192 && ((bfd_vma) sym.n_value <= addr
1193 || (bfd_vma) sym.n_value >= toaddr))
1197 val = bfd_get_32 (abfd, contents + nraddr);
1199 if (val > addr && val < toaddr)
1200 bfd_put_32 (abfd, val - count, contents + nraddr);
1202 start = stop = addr;
1205 case R_SH_PCDISP8BY2:
1209 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1213 bfd_coff_swap_sym_in (abfd,
1214 ((bfd_byte *) obj_coff_external_syms (abfd)
1216 * bfd_coff_symesz (abfd))),
1218 if (sym.n_sclass == C_EXT)
1219 start = stop = addr;
1225 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1229 case R_SH_PCRELIMM8BY2:
1231 stop = start + 4 + off * 2;
1234 case R_SH_PCRELIMM8BY4:
1236 stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
1242 /* These relocs types represent
1244 The r_offset field holds the difference between the reloc
1245 address and L1. That is the start of the reloc, and
1246 adding in the contents gives us the top. We must adjust
1247 both the r_offset field and the section contents. */
1249 start = irel->r_vaddr - sec->vma;
1250 stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);
1254 && (stop <= addr || stop >= toaddr))
1255 irel->r_offset += count;
1256 else if (stop > addr
1258 && (start <= addr || start >= toaddr))
1259 irel->r_offset -= count;
1263 if (irel->r_type == R_SH_SWITCH16)
1264 voff = bfd_get_signed_16 (abfd, contents + nraddr);
1265 else if (irel->r_type == R_SH_SWITCH8)
1266 voff = bfd_get_8 (abfd, contents + nraddr);
1268 voff = bfd_get_signed_32 (abfd, contents + nraddr);
1269 stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1274 start = irel->r_vaddr - sec->vma;
1275 stop = (bfd_vma) ((bfd_signed_vma) start
1276 + (long) irel->r_offset
1283 && (stop <= addr || stop >= toaddr))
1285 else if (stop > addr
1287 && (start <= addr || start >= toaddr))
1296 switch (irel->r_type)
1302 case R_SH_PCDISP8BY2:
1303 case R_SH_PCRELIMM8BY2:
1305 if ((oinsn & 0xff00) != (insn & 0xff00))
1307 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1312 if ((oinsn & 0xf000) != (insn & 0xf000))
1314 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1317 case R_SH_PCRELIMM8BY4:
1318 BFD_ASSERT (adjust == count || count >= 4);
1323 if ((irel->r_vaddr & 3) == 0)
1326 if ((oinsn & 0xff00) != (insn & 0xff00))
1328 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1333 if (voff < 0 || voff >= 0xff)
1335 bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
1340 if (voff < - 0x8000 || voff >= 0x8000)
1342 bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
1347 bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
1351 irel->r_offset += adjust;
1358 /* xgettext: c-format */
1359 (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"),
1360 abfd, (uint64_t) irel->r_vaddr);
1361 bfd_set_error (bfd_error_bad_value);
1366 irel->r_vaddr = nraddr + sec->vma;
1369 /* Look through all the other sections. If there contain any IMM32
1370 relocs against internal symbols which we are not going to adjust
1371 below, we may need to adjust the addends. */
1372 for (o = abfd->sections; o != NULL; o = o->next)
1374 struct internal_reloc *internal_relocs;
1375 struct internal_reloc *irelscan, *irelscanend;
1376 bfd_byte *ocontents;
1379 || (o->flags & SEC_RELOC) == 0
1380 || o->reloc_count == 0)
1383 /* We always cache the relocs. Perhaps, if info->keep_memory is
1384 FALSE, we should free them, if we are permitted to, when we
1385 leave sh_coff_relax_section. */
1386 internal_relocs = (_bfd_coff_read_internal_relocs
1387 (abfd, o, TRUE, (bfd_byte *) NULL, FALSE,
1388 (struct internal_reloc *) NULL));
1389 if (internal_relocs == NULL)
1393 irelscanend = internal_relocs + o->reloc_count;
1394 for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
1396 struct internal_syment sym;
1399 if (irelscan->r_type != R_SH_IMM32
1400 && irelscan->r_type != R_SH_IMAGEBASE
1401 && irelscan->r_type != R_SH_IMM32CE)
1403 if (irelscan->r_type != R_SH_IMM32)
1407 bfd_coff_swap_sym_in (abfd,
1408 ((bfd_byte *) obj_coff_external_syms (abfd)
1409 + (irelscan->r_symndx
1410 * bfd_coff_symesz (abfd))),
1412 if (sym.n_sclass != C_EXT
1413 && sym.n_scnum == sec->target_index
1414 && ((bfd_vma) sym.n_value <= addr
1415 || (bfd_vma) sym.n_value >= toaddr))
1419 if (ocontents == NULL)
1421 if (coff_section_data (abfd, o)->contents != NULL)
1422 ocontents = coff_section_data (abfd, o)->contents;
1425 if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
1427 /* We always cache the section contents.
1428 Perhaps, if info->keep_memory is FALSE, we
1429 should free them, if we are permitted to,
1430 when we leave sh_coff_relax_section. */
1431 coff_section_data (abfd, o)->contents = ocontents;
1435 val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
1437 if (val > addr && val < toaddr)
1438 bfd_put_32 (abfd, val - count,
1439 ocontents + irelscan->r_vaddr - o->vma);
1441 coff_section_data (abfd, o)->keep_contents = TRUE;
1446 /* Adjusting the internal symbols will not work if something has
1447 already retrieved the generic symbols. It would be possible to
1448 make this work by adjusting the generic symbols at the same time.
1449 However, this case should not arise in normal usage. */
1450 if (obj_symbols (abfd) != NULL
1451 || obj_raw_syments (abfd) != NULL)
1454 (_("%pB: fatal: generic symbols retrieved before relaxing"), abfd);
1455 bfd_set_error (bfd_error_invalid_operation);
1459 /* Adjust all the symbols. */
1460 sym_hash = obj_coff_sym_hashes (abfd);
1461 symesz = bfd_coff_symesz (abfd);
1462 esym = (bfd_byte *) obj_coff_external_syms (abfd);
1463 esymend = esym + obj_raw_syment_count (abfd) * symesz;
1464 while (esym < esymend)
1466 struct internal_syment isym;
1468 bfd_coff_swap_sym_in (abfd, esym, &isym);
1470 if (isym.n_scnum == sec->target_index
1471 && (bfd_vma) isym.n_value > addr
1472 && (bfd_vma) isym.n_value < toaddr)
1474 isym.n_value -= count;
1476 bfd_coff_swap_sym_out (abfd, &isym, esym);
1478 if (*sym_hash != NULL)
1480 BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
1481 || (*sym_hash)->root.type == bfd_link_hash_defweak);
1482 BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
1483 && (*sym_hash)->root.u.def.value < toaddr);
1484 (*sym_hash)->root.u.def.value -= count;
1488 esym += (isym.n_numaux + 1) * symesz;
1489 sym_hash += isym.n_numaux + 1;
1492 /* See if we can move the ALIGN reloc forward. We have adjusted
1493 r_vaddr for it already. */
1494 if (irelalign != NULL)
1496 bfd_vma alignto, alignaddr;
1498 alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
1499 alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
1500 1 << irelalign->r_offset);
1501 if (alignto != alignaddr)
1503 /* Tail recursion. */
1504 return sh_relax_delete_bytes (abfd, sec, alignaddr,
1505 (int) (alignto - alignaddr));
1512 /* This is yet another version of the SH opcode table, used to rapidly
1513 get information about a particular instruction. */
1515 /* The opcode map is represented by an array of these structures. The
1516 array is indexed by the high order four bits in the instruction. */
1518 struct sh_major_opcode
1520 /* A pointer to the instruction list. This is an array which
1521 contains all the instructions with this major opcode. */
1522 const struct sh_minor_opcode *minor_opcodes;
1523 /* The number of elements in minor_opcodes. */
1524 unsigned short count;
1527 /* This structure holds information for a set of SH opcodes. The
1528 instruction code is anded with the mask value, and the resulting
1529 value is used to search the order opcode list. */
1531 struct sh_minor_opcode
1533 /* The sorted opcode list. */
1534 const struct sh_opcode *opcodes;
1535 /* The number of elements in opcodes. */
1536 unsigned short count;
1537 /* The mask value to use when searching the opcode list. */
1538 unsigned short mask;
1541 /* This structure holds information for an SH instruction. An array
1542 of these structures is sorted in order by opcode. */
1546 /* The code for this instruction, after it has been anded with the
1547 mask value in the sh_major_opcode structure. */
1548 unsigned short opcode;
1549 /* Flags for this instruction. */
1550 unsigned long flags;
1553 /* Flag which appear in the sh_opcode structure. */
1555 /* This instruction loads a value from memory. */
1558 /* This instruction stores a value to memory. */
1561 /* This instruction is a branch. */
1562 #define BRANCH (0x4)
1564 /* This instruction has a delay slot. */
1567 /* This instruction uses the value in the register in the field at
1568 mask 0x0f00 of the instruction. */
1569 #define USES1 (0x10)
1570 #define USES1_REG(x) ((x & 0x0f00) >> 8)
1572 /* This instruction uses the value in the register in the field at
1573 mask 0x00f0 of the instruction. */
1574 #define USES2 (0x20)
1575 #define USES2_REG(x) ((x & 0x00f0) >> 4)
1577 /* This instruction uses the value in register 0. */
1578 #define USESR0 (0x40)
1580 /* This instruction sets the value in the register in the field at
1581 mask 0x0f00 of the instruction. */
1582 #define SETS1 (0x80)
1583 #define SETS1_REG(x) ((x & 0x0f00) >> 8)
1585 /* This instruction sets the value in the register in the field at
1586 mask 0x00f0 of the instruction. */
1587 #define SETS2 (0x100)
1588 #define SETS2_REG(x) ((x & 0x00f0) >> 4)
1590 /* This instruction sets register 0. */
1591 #define SETSR0 (0x200)
1593 /* This instruction sets a special register. */
1594 #define SETSSP (0x400)
1596 /* This instruction uses a special register. */
1597 #define USESSP (0x800)
1599 /* This instruction uses the floating point register in the field at
1600 mask 0x0f00 of the instruction. */
1601 #define USESF1 (0x1000)
1602 #define USESF1_REG(x) ((x & 0x0f00) >> 8)
1604 /* This instruction uses the floating point register in the field at
1605 mask 0x00f0 of the instruction. */
1606 #define USESF2 (0x2000)
1607 #define USESF2_REG(x) ((x & 0x00f0) >> 4)
1609 /* This instruction uses floating point register 0. */
1610 #define USESF0 (0x4000)
1612 /* This instruction sets the floating point register in the field at
1613 mask 0x0f00 of the instruction. */
1614 #define SETSF1 (0x8000)
1615 #define SETSF1_REG(x) ((x & 0x0f00) >> 8)
1617 #define USESAS (0x10000)
1618 #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1619 #define USESR8 (0x20000)
1620 #define SETSAS (0x40000)
1621 #define SETSAS_REG(x) USESAS_REG (x)
1623 #define MAP(a) a, sizeof a / sizeof a[0]
1625 #ifndef COFF_IMAGE_WITH_PE
1627 /* The opcode maps. */
1629 static const struct sh_opcode sh_opcode00[] =
1631 { 0x0008, SETSSP }, /* clrt */
1632 { 0x0009, 0 }, /* nop */
1633 { 0x000b, BRANCH | DELAY | USESSP }, /* rts */
1634 { 0x0018, SETSSP }, /* sett */
1635 { 0x0019, SETSSP }, /* div0u */
1636 { 0x001b, 0 }, /* sleep */
1637 { 0x0028, SETSSP }, /* clrmac */
1638 { 0x002b, BRANCH | DELAY | SETSSP }, /* rte */
1639 { 0x0038, USESSP | SETSSP }, /* ldtlb */
1640 { 0x0048, SETSSP }, /* clrs */
1641 { 0x0058, SETSSP } /* sets */
1644 static const struct sh_opcode sh_opcode01[] =
1646 { 0x0003, BRANCH | DELAY | USES1 | SETSSP }, /* bsrf rn */
1647 { 0x000a, SETS1 | USESSP }, /* sts mach,rn */
1648 { 0x001a, SETS1 | USESSP }, /* sts macl,rn */
1649 { 0x0023, BRANCH | DELAY | USES1 }, /* braf rn */
1650 { 0x0029, SETS1 | USESSP }, /* movt rn */
1651 { 0x002a, SETS1 | USESSP }, /* sts pr,rn */
1652 { 0x005a, SETS1 | USESSP }, /* sts fpul,rn */
1653 { 0x006a, SETS1 | USESSP }, /* sts fpscr,rn / sts dsr,rn */
1654 { 0x0083, LOAD | USES1 }, /* pref @rn */
1655 { 0x007a, SETS1 | USESSP }, /* sts a0,rn */
1656 { 0x008a, SETS1 | USESSP }, /* sts x0,rn */
1657 { 0x009a, SETS1 | USESSP }, /* sts x1,rn */
1658 { 0x00aa, SETS1 | USESSP }, /* sts y0,rn */
1659 { 0x00ba, SETS1 | USESSP } /* sts y1,rn */
1662 static const struct sh_opcode sh_opcode02[] =
1664 { 0x0002, SETS1 | USESSP }, /* stc <special_reg>,rn */
1665 { 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */
1666 { 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */
1667 { 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */
1668 { 0x0007, SETSSP | USES1 | USES2 }, /* mul.l rm,rn */
1669 { 0x000c, LOAD | SETS1 | USES2 | USESR0 }, /* mov.b @(r0,rm),rn */
1670 { 0x000d, LOAD | SETS1 | USES2 | USESR0 }, /* mov.w @(r0,rm),rn */
1671 { 0x000e, LOAD | SETS1 | USES2 | USESR0 }, /* mov.l @(r0,rm),rn */
1672 { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
1675 static const struct sh_minor_opcode sh_opcode0[] =
1677 { MAP (sh_opcode00), 0xffff },
1678 { MAP (sh_opcode01), 0xf0ff },
1679 { MAP (sh_opcode02), 0xf00f }
1682 static const struct sh_opcode sh_opcode10[] =
1684 { 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */
1687 static const struct sh_minor_opcode sh_opcode1[] =
1689 { MAP (sh_opcode10), 0xf000 }
1692 static const struct sh_opcode sh_opcode20[] =
1694 { 0x2000, STORE | USES1 | USES2 }, /* mov.b rm,@rn */
1695 { 0x2001, STORE | USES1 | USES2 }, /* mov.w rm,@rn */
1696 { 0x2002, STORE | USES1 | USES2 }, /* mov.l rm,@rn */
1697 { 0x2004, STORE | SETS1 | USES1 | USES2 }, /* mov.b rm,@-rn */
1698 { 0x2005, STORE | SETS1 | USES1 | USES2 }, /* mov.w rm,@-rn */
1699 { 0x2006, STORE | SETS1 | USES1 | USES2 }, /* mov.l rm,@-rn */
1700 { 0x2007, SETSSP | USES1 | USES2 | USESSP }, /* div0s */
1701 { 0x2008, SETSSP | USES1 | USES2 }, /* tst rm,rn */
1702 { 0x2009, SETS1 | USES1 | USES2 }, /* and rm,rn */
1703 { 0x200a, SETS1 | USES1 | USES2 }, /* xor rm,rn */
1704 { 0x200b, SETS1 | USES1 | USES2 }, /* or rm,rn */
1705 { 0x200c, SETSSP | USES1 | USES2 }, /* cmp/str rm,rn */
1706 { 0x200d, SETS1 | USES1 | USES2 }, /* xtrct rm,rn */
1707 { 0x200e, SETSSP | USES1 | USES2 }, /* mulu.w rm,rn */
1708 { 0x200f, SETSSP | USES1 | USES2 } /* muls.w rm,rn */
1711 static const struct sh_minor_opcode sh_opcode2[] =
1713 { MAP (sh_opcode20), 0xf00f }
1716 static const struct sh_opcode sh_opcode30[] =
1718 { 0x3000, SETSSP | USES1 | USES2 }, /* cmp/eq rm,rn */
1719 { 0x3002, SETSSP | USES1 | USES2 }, /* cmp/hs rm,rn */
1720 { 0x3003, SETSSP | USES1 | USES2 }, /* cmp/ge rm,rn */
1721 { 0x3004, SETSSP | USESSP | USES1 | USES2 }, /* div1 rm,rn */
1722 { 0x3005, SETSSP | USES1 | USES2 }, /* dmulu.l rm,rn */
1723 { 0x3006, SETSSP | USES1 | USES2 }, /* cmp/hi rm,rn */
1724 { 0x3007, SETSSP | USES1 | USES2 }, /* cmp/gt rm,rn */
1725 { 0x3008, SETS1 | USES1 | USES2 }, /* sub rm,rn */
1726 { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
1727 { 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */
1728 { 0x300c, SETS1 | USES1 | USES2 }, /* add rm,rn */
1729 { 0x300d, SETSSP | USES1 | USES2 }, /* dmuls.l rm,rn */
1730 { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
1731 { 0x300f, SETS1 | SETSSP | USES1 | USES2 } /* addv rm,rn */
1734 static const struct sh_minor_opcode sh_opcode3[] =
1736 { MAP (sh_opcode30), 0xf00f }
1739 static const struct sh_opcode sh_opcode40[] =
1741 { 0x4000, SETS1 | SETSSP | USES1 }, /* shll rn */
1742 { 0x4001, SETS1 | SETSSP | USES1 }, /* shlr rn */
1743 { 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */
1744 { 0x4004, SETS1 | SETSSP | USES1 }, /* rotl rn */
1745 { 0x4005, SETS1 | SETSSP | USES1 }, /* rotr rn */
1746 { 0x4006, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,mach */
1747 { 0x4008, SETS1 | USES1 }, /* shll2 rn */
1748 { 0x4009, SETS1 | USES1 }, /* shlr2 rn */
1749 { 0x400a, SETSSP | USES1 }, /* lds rm,mach */
1750 { 0x400b, BRANCH | DELAY | USES1 }, /* jsr @rn */
1751 { 0x4010, SETS1 | SETSSP | USES1 }, /* dt rn */
1752 { 0x4011, SETSSP | USES1 }, /* cmp/pz rn */
1753 { 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */
1754 { 0x4014, SETSSP | USES1 }, /* setrc rm */
1755 { 0x4015, SETSSP | USES1 }, /* cmp/pl rn */
1756 { 0x4016, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,macl */
1757 { 0x4018, SETS1 | USES1 }, /* shll8 rn */
1758 { 0x4019, SETS1 | USES1 }, /* shlr8 rn */
1759 { 0x401a, SETSSP | USES1 }, /* lds rm,macl */
1760 { 0x401b, LOAD | SETSSP | USES1 }, /* tas.b @rn */
1761 { 0x4020, SETS1 | SETSSP | USES1 }, /* shal rn */
1762 { 0x4021, SETS1 | SETSSP | USES1 }, /* shar rn */
1763 { 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */
1764 { 0x4024, SETS1 | SETSSP | USES1 | USESSP }, /* rotcl rn */
1765 { 0x4025, SETS1 | SETSSP | USES1 | USESSP }, /* rotcr rn */
1766 { 0x4026, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,pr */
1767 { 0x4028, SETS1 | USES1 }, /* shll16 rn */
1768 { 0x4029, SETS1 | USES1 }, /* shlr16 rn */
1769 { 0x402a, SETSSP | USES1 }, /* lds rm,pr */
1770 { 0x402b, BRANCH | DELAY | USES1 }, /* jmp @rn */
1771 { 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */
1772 { 0x4056, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpul */
1773 { 0x405a, SETSSP | USES1 }, /* lds.l rm,fpul */
1774 { 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */
1775 { 0x4066, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpscr / dsr */
1776 { 0x406a, SETSSP | USES1 }, /* lds rm,fpscr / lds rm,dsr */
1777 { 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */
1778 { 0x4076, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,a0 */
1779 { 0x407a, SETSSP | USES1 }, /* lds.l rm,a0 */
1780 { 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */
1781 { 0x4086, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x0 */
1782 { 0x408a, SETSSP | USES1 }, /* lds.l rm,x0 */
1783 { 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */
1784 { 0x4096, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x1 */
1785 { 0x409a, SETSSP | USES1 }, /* lds.l rm,x1 */
1786 { 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */
1787 { 0x40a6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y0 */
1788 { 0x40aa, SETSSP | USES1 }, /* lds.l rm,y0 */
1789 { 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */
1790 { 0x40b6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y1 */
1791 { 0x40ba, SETSSP | USES1 } /* lds.l rm,y1 */
1794 static const struct sh_opcode sh_opcode41[] =
1796 { 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l <special_reg>,@-rn */
1797 { 0x4007, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,<special_reg> */
1798 { 0x400c, SETS1 | USES1 | USES2 }, /* shad rm,rn */
1799 { 0x400d, SETS1 | USES1 | USES2 }, /* shld rm,rn */
1800 { 0x400e, SETSSP | USES1 }, /* ldc rm,<special_reg> */
1801 { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
1804 static const struct sh_minor_opcode sh_opcode4[] =
1806 { MAP (sh_opcode40), 0xf0ff },
1807 { MAP (sh_opcode41), 0xf00f }
1810 static const struct sh_opcode sh_opcode50[] =
1812 { 0x5000, LOAD | SETS1 | USES2 } /* mov.l @(disp,rm),rn */
1815 static const struct sh_minor_opcode sh_opcode5[] =
1817 { MAP (sh_opcode50), 0xf000 }
1820 static const struct sh_opcode sh_opcode60[] =
1822 { 0x6000, LOAD | SETS1 | USES2 }, /* mov.b @rm,rn */
1823 { 0x6001, LOAD | SETS1 | USES2 }, /* mov.w @rm,rn */
1824 { 0x6002, LOAD | SETS1 | USES2 }, /* mov.l @rm,rn */
1825 { 0x6003, SETS1 | USES2 }, /* mov rm,rn */
1826 { 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */
1827 { 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */
1828 { 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */
1829 { 0x6007, SETS1 | USES2 }, /* not rm,rn */
1830 { 0x6008, SETS1 | USES2 }, /* swap.b rm,rn */
1831 { 0x6009, SETS1 | USES2 }, /* swap.w rm,rn */
1832 { 0x600a, SETS1 | SETSSP | USES2 | USESSP }, /* negc rm,rn */
1833 { 0x600b, SETS1 | USES2 }, /* neg rm,rn */
1834 { 0x600c, SETS1 | USES2 }, /* extu.b rm,rn */
1835 { 0x600d, SETS1 | USES2 }, /* extu.w rm,rn */
1836 { 0x600e, SETS1 | USES2 }, /* exts.b rm,rn */
1837 { 0x600f, SETS1 | USES2 } /* exts.w rm,rn */
1840 static const struct sh_minor_opcode sh_opcode6[] =
1842 { MAP (sh_opcode60), 0xf00f }
1845 static const struct sh_opcode sh_opcode70[] =
1847 { 0x7000, SETS1 | USES1 } /* add #imm,rn */
1850 static const struct sh_minor_opcode sh_opcode7[] =
1852 { MAP (sh_opcode70), 0xf000 }
1855 static const struct sh_opcode sh_opcode80[] =
1857 { 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */
1858 { 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */
1859 { 0x8200, SETSSP }, /* setrc #imm */
1860 { 0x8400, LOAD | SETSR0 | USES2 }, /* mov.b @(disp,rm),r0 */
1861 { 0x8500, LOAD | SETSR0 | USES2 }, /* mov.w @(disp,rn),r0 */
1862 { 0x8800, SETSSP | USESR0 }, /* cmp/eq #imm,r0 */
1863 { 0x8900, BRANCH | USESSP }, /* bt label */
1864 { 0x8b00, BRANCH | USESSP }, /* bf label */
1865 { 0x8c00, SETSSP }, /* ldrs @(disp,pc) */
1866 { 0x8d00, BRANCH | DELAY | USESSP }, /* bt/s label */
1867 { 0x8e00, SETSSP }, /* ldre @(disp,pc) */
1868 { 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */
1871 static const struct sh_minor_opcode sh_opcode8[] =
1873 { MAP (sh_opcode80), 0xff00 }
1876 static const struct sh_opcode sh_opcode90[] =
1878 { 0x9000, LOAD | SETS1 } /* mov.w @(disp,pc),rn */
1881 static const struct sh_minor_opcode sh_opcode9[] =
1883 { MAP (sh_opcode90), 0xf000 }
1886 static const struct sh_opcode sh_opcodea0[] =
1888 { 0xa000, BRANCH | DELAY } /* bra label */
1891 static const struct sh_minor_opcode sh_opcodea[] =
1893 { MAP (sh_opcodea0), 0xf000 }
1896 static const struct sh_opcode sh_opcodeb0[] =
1898 { 0xb000, BRANCH | DELAY } /* bsr label */
1901 static const struct sh_minor_opcode sh_opcodeb[] =
1903 { MAP (sh_opcodeb0), 0xf000 }
1906 static const struct sh_opcode sh_opcodec0[] =
1908 { 0xc000, STORE | USESR0 | USESSP }, /* mov.b r0,@(disp,gbr) */
1909 { 0xc100, STORE | USESR0 | USESSP }, /* mov.w r0,@(disp,gbr) */
1910 { 0xc200, STORE | USESR0 | USESSP }, /* mov.l r0,@(disp,gbr) */
1911 { 0xc300, BRANCH | USESSP }, /* trapa #imm */
1912 { 0xc400, LOAD | SETSR0 | USESSP }, /* mov.b @(disp,gbr),r0 */
1913 { 0xc500, LOAD | SETSR0 | USESSP }, /* mov.w @(disp,gbr),r0 */
1914 { 0xc600, LOAD | SETSR0 | USESSP }, /* mov.l @(disp,gbr),r0 */
1915 { 0xc700, SETSR0 }, /* mova @(disp,pc),r0 */
1916 { 0xc800, SETSSP | USESR0 }, /* tst #imm,r0 */
1917 { 0xc900, SETSR0 | USESR0 }, /* and #imm,r0 */
1918 { 0xca00, SETSR0 | USESR0 }, /* xor #imm,r0 */
1919 { 0xcb00, SETSR0 | USESR0 }, /* or #imm,r0 */
1920 { 0xcc00, LOAD | SETSSP | USESR0 | USESSP }, /* tst.b #imm,@(r0,gbr) */
1921 { 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */
1922 { 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */
1923 { 0xcf00, LOAD | STORE | USESR0 | USESSP } /* or.b #imm,@(r0,gbr) */
1926 static const struct sh_minor_opcode sh_opcodec[] =
1928 { MAP (sh_opcodec0), 0xff00 }
1931 static const struct sh_opcode sh_opcoded0[] =
1933 { 0xd000, LOAD | SETS1 } /* mov.l @(disp,pc),rn */
1936 static const struct sh_minor_opcode sh_opcoded[] =
1938 { MAP (sh_opcoded0), 0xf000 }
1941 static const struct sh_opcode sh_opcodee0[] =
1943 { 0xe000, SETS1 } /* mov #imm,rn */
1946 static const struct sh_minor_opcode sh_opcodee[] =
1948 { MAP (sh_opcodee0), 0xf000 }
1951 static const struct sh_opcode sh_opcodef0[] =
1953 { 0xf000, SETSF1 | USESF1 | USESF2 }, /* fadd fm,fn */
1954 { 0xf001, SETSF1 | USESF1 | USESF2 }, /* fsub fm,fn */
1955 { 0xf002, SETSF1 | USESF1 | USESF2 }, /* fmul fm,fn */
1956 { 0xf003, SETSF1 | USESF1 | USESF2 }, /* fdiv fm,fn */
1957 { 0xf004, SETSSP | USESF1 | USESF2 }, /* fcmp/eq fm,fn */
1958 { 0xf005, SETSSP | USESF1 | USESF2 }, /* fcmp/gt fm,fn */
1959 { 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */
1960 { 0xf007, STORE | USES1 | USESF2 | USESR0 }, /* fmov.s fm,@(r0,rn) */
1961 { 0xf008, LOAD | SETSF1 | USES2 }, /* fmov.s @rm,fn */
1962 { 0xf009, LOAD | SETS2 | SETSF1 | USES2 }, /* fmov.s @rm+,fn */
1963 { 0xf00a, STORE | USES1 | USESF2 }, /* fmov.s fm,@rn */
1964 { 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */
1965 { 0xf00c, SETSF1 | USESF2 }, /* fmov fm,fn */
1966 { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */
1969 static const struct sh_opcode sh_opcodef1[] =
1971 { 0xf00d, SETSF1 | USESSP }, /* fsts fpul,fn */
1972 { 0xf01d, SETSSP | USESF1 }, /* flds fn,fpul */
1973 { 0xf02d, SETSF1 | USESSP }, /* float fpul,fn */
1974 { 0xf03d, SETSSP | USESF1 }, /* ftrc fn,fpul */
1975 { 0xf04d, SETSF1 | USESF1 }, /* fneg fn */
1976 { 0xf05d, SETSF1 | USESF1 }, /* fabs fn */
1977 { 0xf06d, SETSF1 | USESF1 }, /* fsqrt fn */
1978 { 0xf07d, SETSSP | USESF1 }, /* ftst/nan fn */
1979 { 0xf08d, SETSF1 }, /* fldi0 fn */
1980 { 0xf09d, SETSF1 } /* fldi1 fn */
1983 static const struct sh_minor_opcode sh_opcodef[] =
1985 { MAP (sh_opcodef0), 0xf00f },
1986 { MAP (sh_opcodef1), 0xf0ff }
1989 static struct sh_major_opcode sh_opcodes[] =
1991 { MAP (sh_opcode0) },
1992 { MAP (sh_opcode1) },
1993 { MAP (sh_opcode2) },
1994 { MAP (sh_opcode3) },
1995 { MAP (sh_opcode4) },
1996 { MAP (sh_opcode5) },
1997 { MAP (sh_opcode6) },
1998 { MAP (sh_opcode7) },
1999 { MAP (sh_opcode8) },
2000 { MAP (sh_opcode9) },
2001 { MAP (sh_opcodea) },
2002 { MAP (sh_opcodeb) },
2003 { MAP (sh_opcodec) },
2004 { MAP (sh_opcoded) },
2005 { MAP (sh_opcodee) },
2006 { MAP (sh_opcodef) }
2009 /* The double data transfer / parallel processing insns are not
2010 described here. This will cause sh_align_load_span to leave them alone. */
2012 static const struct sh_opcode sh_dsp_opcodef0[] =
2014 { 0xf400, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @-as,ds */
2015 { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */
2016 { 0xf404, USESAS | LOAD | SETSSP }, /* movs.x @as,ds */
2017 { 0xf405, USESAS | STORE | USESSP }, /* movs.x ds,@as */
2018 { 0xf408, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @as+,ds */
2019 { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */
2020 { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */
2021 { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */
2024 static const struct sh_minor_opcode sh_dsp_opcodef[] =
2026 { MAP (sh_dsp_opcodef0), 0xfc0d }
2029 /* Given an instruction, return a pointer to the corresponding
2030 sh_opcode structure. Return NULL if the instruction is not
2033 static const struct sh_opcode *
2034 sh_insn_info (unsigned int insn)
2036 const struct sh_major_opcode *maj;
2037 const struct sh_minor_opcode *min, *minend;
2039 maj = &sh_opcodes[(insn & 0xf000) >> 12];
2040 min = maj->minor_opcodes;
2041 minend = min + maj->count;
2042 for (; min < minend; min++)
2045 const struct sh_opcode *op, *opend;
2047 l = insn & min->mask;
2049 opend = op + min->count;
2051 /* Since the opcodes tables are sorted, we could use a binary
2052 search here if the count were above some cutoff value. */
2053 for (; op < opend; op++)
2054 if (op->opcode == l)
2061 /* See whether an instruction uses a general purpose register. */
2064 sh_insn_uses_reg (unsigned int insn,
2065 const struct sh_opcode *op,
2072 if ((f & USES1) != 0
2073 && USES1_REG (insn) == reg)
2075 if ((f & USES2) != 0
2076 && USES2_REG (insn) == reg)
2078 if ((f & USESR0) != 0
2081 if ((f & USESAS) && reg == USESAS_REG (insn))
2083 if ((f & USESR8) && reg == 8)
2089 /* See whether an instruction sets a general purpose register. */
2092 sh_insn_sets_reg (unsigned int insn,
2093 const struct sh_opcode *op,
2100 if ((f & SETS1) != 0
2101 && SETS1_REG (insn) == reg)
2103 if ((f & SETS2) != 0
2104 && SETS2_REG (insn) == reg)
2106 if ((f & SETSR0) != 0
2109 if ((f & SETSAS) && reg == SETSAS_REG (insn))
2115 /* See whether an instruction uses or sets a general purpose register */
2118 sh_insn_uses_or_sets_reg (unsigned int insn,
2119 const struct sh_opcode *op,
2122 if (sh_insn_uses_reg (insn, op, reg))
2125 return sh_insn_sets_reg (insn, op, reg);
2128 /* See whether an instruction uses a floating point register. */
2131 sh_insn_uses_freg (unsigned int insn,
2132 const struct sh_opcode *op,
2139 /* We can't tell if this is a double-precision insn, so just play safe
2140 and assume that it might be. So not only have we test FREG against
2141 itself, but also even FREG against FREG+1 - if the using insn uses
2142 just the low part of a double precision value - but also an odd
2143 FREG against FREG-1 - if the setting insn sets just the low part
2144 of a double precision value.
2145 So what this all boils down to is that we have to ignore the lowest
2146 bit of the register number. */
2148 if ((f & USESF1) != 0
2149 && (USESF1_REG (insn) & 0xe) == (freg & 0xe))
2151 if ((f & USESF2) != 0
2152 && (USESF2_REG (insn) & 0xe) == (freg & 0xe))
2154 if ((f & USESF0) != 0
2161 /* See whether an instruction sets a floating point register. */
2164 sh_insn_sets_freg (unsigned int insn,
2165 const struct sh_opcode *op,
2172 /* We can't tell if this is a double-precision insn, so just play safe
2173 and assume that it might be. So not only have we test FREG against
2174 itself, but also even FREG against FREG+1 - if the using insn uses
2175 just the low part of a double precision value - but also an odd
2176 FREG against FREG-1 - if the setting insn sets just the low part
2177 of a double precision value.
2178 So what this all boils down to is that we have to ignore the lowest
2179 bit of the register number. */
2181 if ((f & SETSF1) != 0
2182 && (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
2188 /* See whether an instruction uses or sets a floating point register */
2191 sh_insn_uses_or_sets_freg (unsigned int insn,
2192 const struct sh_opcode *op,
2195 if (sh_insn_uses_freg (insn, op, reg))
2198 return sh_insn_sets_freg (insn, op, reg);
2201 /* See whether instructions I1 and I2 conflict, assuming I1 comes
2202 before I2. OP1 and OP2 are the corresponding sh_opcode structures.
2203 This should return TRUE if there is a conflict, or FALSE if the
2204 instructions can be swapped safely. */
2207 sh_insns_conflict (unsigned int i1,
2208 const struct sh_opcode *op1,
2210 const struct sh_opcode *op2)
2212 unsigned int f1, f2;
2217 /* Load of fpscr conflicts with floating point operations.
2218 FIXME: shouldn't test raw opcodes here. */
2219 if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
2220 || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
2223 if ((f1 & (BRANCH | DELAY)) != 0
2224 || (f2 & (BRANCH | DELAY)) != 0)
2227 if (((f1 | f2) & SETSSP)
2228 && (f1 & (SETSSP | USESSP))
2229 && (f2 & (SETSSP | USESSP)))
2232 if ((f1 & SETS1) != 0
2233 && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
2235 if ((f1 & SETS2) != 0
2236 && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
2238 if ((f1 & SETSR0) != 0
2239 && sh_insn_uses_or_sets_reg (i2, op2, 0))
2242 && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
2244 if ((f1 & SETSF1) != 0
2245 && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
2248 if ((f2 & SETS1) != 0
2249 && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
2251 if ((f2 & SETS2) != 0
2252 && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
2254 if ((f2 & SETSR0) != 0
2255 && sh_insn_uses_or_sets_reg (i1, op1, 0))
2258 && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
2260 if ((f2 & SETSF1) != 0
2261 && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
2264 /* The instructions do not conflict. */
2268 /* I1 is a load instruction, and I2 is some other instruction. Return
2269 TRUE if I1 loads a register which I2 uses. */
2272 sh_load_use (unsigned int i1,
2273 const struct sh_opcode *op1,
2275 const struct sh_opcode *op2)
2281 if ((f1 & LOAD) == 0)
2284 /* If both SETS1 and SETSSP are set, that means a load to a special
2285 register using postincrement addressing mode, which we don't care
2287 if ((f1 & SETS1) != 0
2288 && (f1 & SETSSP) == 0
2289 && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
2292 if ((f1 & SETSR0) != 0
2293 && sh_insn_uses_reg (i2, op2, 0))
2296 if ((f1 & SETSF1) != 0
2297 && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
2303 /* Try to align loads and stores within a span of memory. This is
2304 called by both the ELF and the COFF sh targets. ABFD and SEC are
2305 the BFD and section we are examining. CONTENTS is the contents of
2306 the section. SWAP is the routine to call to swap two instructions.
2307 RELOCS is a pointer to the internal relocation information, to be
2308 passed to SWAP. PLABEL is a pointer to the current label in a
2309 sorted list of labels; LABEL_END is the end of the list. START and
2310 STOP are the range of memory to examine. If a swap is made,
2311 *PSWAPPED is set to TRUE. */
2317 _bfd_sh_align_load_span (bfd *abfd,
2320 bfd_boolean (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
2326 bfd_boolean *pswapped)
2328 int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
2329 || abfd->arch_info->mach == bfd_mach_sh3_dsp);
2332 /* The SH4 has a Harvard architecture, hence aligning loads is not
2333 desirable. In fact, it is counter-productive, since it interferes
2334 with the schedules generated by the compiler. */
2335 if (abfd->arch_info->mach == bfd_mach_sh4)
2338 /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2342 sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
2343 sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef [0];
2346 /* Instructions should be aligned on 2 byte boundaries. */
2347 if ((start & 1) == 1)
2350 /* Now look through the unaligned addresses. */
2354 for (; i < stop; i += 4)
2357 const struct sh_opcode *op;
2358 unsigned int prev_insn = 0;
2359 const struct sh_opcode *prev_op = NULL;
2361 insn = bfd_get_16 (abfd, contents + i);
2362 op = sh_insn_info (insn);
2364 || (op->flags & (LOAD | STORE)) == 0)
2367 /* This is a load or store which is not on a four byte boundary. */
2369 while (*plabel < label_end && **plabel < i)
2374 prev_insn = bfd_get_16 (abfd, contents + i - 2);
2375 /* If INSN is the field b of a parallel processing insn, it is not
2376 a load / store after all. Note that the test here might mistake
2377 the field_b of a pcopy insn for the starting code of a parallel
2378 processing insn; this might miss a swapping opportunity, but at
2379 least we're on the safe side. */
2380 if (dsp && (prev_insn & 0xfc00) == 0xf800)
2383 /* Check if prev_insn is actually the field b of a parallel
2384 processing insn. Again, this can give a spurious match
2386 if (dsp && i - 2 > start)
2388 unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);
2390 if ((pprev_insn & 0xfc00) == 0xf800)
2393 prev_op = sh_insn_info (prev_insn);
2396 prev_op = sh_insn_info (prev_insn);
2398 /* If the load/store instruction is in a delay slot, we
2401 || (prev_op->flags & DELAY) != 0)
2405 && (*plabel >= label_end || **plabel != i)
2407 && (prev_op->flags & (LOAD | STORE)) == 0
2408 && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
2412 /* The load/store instruction does not have a label, and
2413 there is a previous instruction; PREV_INSN is not
2414 itself a load/store instruction, and PREV_INSN and
2415 INSN do not conflict. */
2421 unsigned int prev2_insn;
2422 const struct sh_opcode *prev2_op;
2424 prev2_insn = bfd_get_16 (abfd, contents + i - 4);
2425 prev2_op = sh_insn_info (prev2_insn);
2427 /* If the instruction before PREV_INSN has a delay
2428 slot--that is, PREV_INSN is in a delay slot--we
2430 if (prev2_op == NULL
2431 || (prev2_op->flags & DELAY) != 0)
2434 /* If the instruction before PREV_INSN is a load,
2435 and it sets a register which INSN uses, then
2436 putting INSN immediately after PREV_INSN will
2437 cause a pipeline bubble, so there is no point to
2440 && (prev2_op->flags & LOAD) != 0
2441 && sh_load_use (prev2_insn, prev2_op, insn, op))
2447 if (! (*swap) (abfd, sec, relocs, contents, i - 2))
2454 while (*plabel < label_end && **plabel < i + 2)
2458 && (*plabel >= label_end || **plabel != i + 2))
2460 unsigned int next_insn;
2461 const struct sh_opcode *next_op;
2463 /* There is an instruction after the load/store
2464 instruction, and it does not have a label. */
2465 next_insn = bfd_get_16 (abfd, contents + i + 2);
2466 next_op = sh_insn_info (next_insn);
2468 && (next_op->flags & (LOAD | STORE)) == 0
2469 && ! sh_insns_conflict (insn, op, next_insn, next_op))
2473 /* NEXT_INSN is not itself a load/store instruction,
2474 and it does not conflict with INSN. */
2478 /* If PREV_INSN is a load, and it sets a register
2479 which NEXT_INSN uses, then putting NEXT_INSN
2480 immediately after PREV_INSN will cause a pipeline
2481 bubble, so there is no reason to make this swap. */
2483 && (prev_op->flags & LOAD) != 0
2484 && sh_load_use (prev_insn, prev_op, next_insn, next_op))
2487 /* If INSN is a load, and it sets a register which
2488 the insn after NEXT_INSN uses, then doing the
2489 swap will cause a pipeline bubble, so there is no
2490 reason to make the swap. However, if the insn
2491 after NEXT_INSN is itself a load or store
2492 instruction, then it is misaligned, so
2493 optimistically hope that it will be swapped
2494 itself, and just live with the pipeline bubble if
2498 && (op->flags & LOAD) != 0)
2500 unsigned int next2_insn;
2501 const struct sh_opcode *next2_op;
2503 next2_insn = bfd_get_16 (abfd, contents + i + 4);
2504 next2_op = sh_insn_info (next2_insn);
2505 if (next2_op == NULL
2506 || ((next2_op->flags & (LOAD | STORE)) == 0
2507 && sh_load_use (insn, op, next2_insn, next2_op)))
2513 if (! (*swap) (abfd, sec, relocs, contents, i))
2524 #endif /* not COFF_IMAGE_WITH_PE */
2526 /* Swap two SH instructions. */
2529 sh_swap_insns (bfd * abfd,
2532 bfd_byte * contents,
2535 struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
2536 unsigned short i1, i2;
2537 struct internal_reloc *irel, *irelend;
2539 /* Swap the instructions themselves. */
2540 i1 = bfd_get_16 (abfd, contents + addr);
2541 i2 = bfd_get_16 (abfd, contents + addr + 2);
2542 bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
2543 bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
2545 /* Adjust all reloc addresses. */
2546 irelend = internal_relocs + sec->reloc_count;
2547 for (irel = internal_relocs; irel < irelend; irel++)
2551 /* There are a few special types of relocs that we don't want to
2552 adjust. These relocs do not apply to the instruction itself,
2553 but are only associated with the address. */
2554 type = irel->r_type;
2555 if (type == R_SH_ALIGN
2556 || type == R_SH_CODE
2557 || type == R_SH_DATA
2558 || type == R_SH_LABEL)
2561 /* If an R_SH_USES reloc points to one of the addresses being
2562 swapped, we must adjust it. It would be incorrect to do this
2563 for a jump, though, since we want to execute both
2564 instructions after the jump. (We have avoided swapping
2565 around a label, so the jump will not wind up executing an
2566 instruction it shouldn't). */
2567 if (type == R_SH_USES)
2571 off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
2573 irel->r_offset += 2;
2574 else if (off == addr + 2)
2575 irel->r_offset -= 2;
2578 if (irel->r_vaddr - sec->vma == addr)
2583 else if (irel->r_vaddr - sec->vma == addr + 2)
2594 unsigned short insn, oinsn;
2595 bfd_boolean overflow;
2597 loc = contents + irel->r_vaddr - sec->vma;
2604 case R_SH_PCDISP8BY2:
2605 case R_SH_PCRELIMM8BY2:
2606 insn = bfd_get_16 (abfd, loc);
2609 if ((oinsn & 0xff00) != (insn & 0xff00))
2611 bfd_put_16 (abfd, (bfd_vma) insn, loc);
2615 insn = bfd_get_16 (abfd, loc);
2618 if ((oinsn & 0xf000) != (insn & 0xf000))
2620 bfd_put_16 (abfd, (bfd_vma) insn, loc);
2623 case R_SH_PCRELIMM8BY4:
2624 /* This reloc ignores the least significant 3 bits of
2625 the program counter before adding in the offset.
2626 This means that if ADDR is at an even address, the
2627 swap will not affect the offset. If ADDR is an at an
2628 odd address, then the instruction will be crossing a
2629 four byte boundary, and must be adjusted. */
2630 if ((addr & 3) != 0)
2632 insn = bfd_get_16 (abfd, loc);
2635 if ((oinsn & 0xff00) != (insn & 0xff00))
2637 bfd_put_16 (abfd, (bfd_vma) insn, loc);
2646 /* xgettext: c-format */
2647 (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"),
2648 abfd, (uint64_t) irel->r_vaddr);
2649 bfd_set_error (bfd_error_bad_value);
2658 /* Look for loads and stores which we can align to four byte
2659 boundaries. See the longer comment above sh_relax_section for why
2660 this is desirable. This sets *PSWAPPED if some instruction was
2664 sh_align_loads (bfd *abfd,
2666 struct internal_reloc *internal_relocs,
2668 bfd_boolean *pswapped)
2670 struct internal_reloc *irel, *irelend;
2671 bfd_vma *labels = NULL;
2672 bfd_vma *label, *label_end;
2677 irelend = internal_relocs + sec->reloc_count;
2679 /* Get all the addresses with labels on them. */
2680 amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
2681 labels = (bfd_vma *) bfd_malloc (amt);
2685 for (irel = internal_relocs; irel < irelend; irel++)
2687 if (irel->r_type == R_SH_LABEL)
2689 *label_end = irel->r_vaddr - sec->vma;
2694 /* Note that the assembler currently always outputs relocs in
2695 address order. If that ever changes, this code will need to sort
2696 the label values and the relocs. */
2700 for (irel = internal_relocs; irel < irelend; irel++)
2702 bfd_vma start, stop;
2704 if (irel->r_type != R_SH_CODE)
2707 start = irel->r_vaddr - sec->vma;
2709 for (irel++; irel < irelend; irel++)
2710 if (irel->r_type == R_SH_DATA)
2713 stop = irel->r_vaddr - sec->vma;
2717 if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
2718 internal_relocs, &label,
2719 label_end, start, stop, pswapped))
2733 /* This is a modification of _bfd_coff_generic_relocate_section, which
2734 will handle SH relaxing. */
2737 sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
2738 struct bfd_link_info *info,
2740 asection *input_section,
2742 struct internal_reloc *relocs,
2743 struct internal_syment *syms,
2744 asection **sections)
2746 struct internal_reloc *rel;
2747 struct internal_reloc *relend;
2750 relend = rel + input_section->reloc_count;
2751 for (; rel < relend; rel++)
2754 struct coff_link_hash_entry *h;
2755 struct internal_syment *sym;
2758 reloc_howto_type *howto;
2759 bfd_reloc_status_type rstat;
2761 /* Almost all relocs have to do with relaxing. If any work must
2762 be done for them, it has been done in sh_relax_section. */
2763 if (rel->r_type != R_SH_IMM32
2765 && rel->r_type != R_SH_IMM32CE
2766 && rel->r_type != R_SH_IMAGEBASE
2768 && rel->r_type != R_SH_PCDISP)
2771 symndx = rel->r_symndx;
2781 || (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
2784 /* xgettext: c-format */
2785 (_("%pB: illegal symbol index %ld in relocs"),
2787 bfd_set_error (bfd_error_bad_value);
2790 h = obj_coff_sym_hashes (input_bfd)[symndx];
2791 sym = syms + symndx;
2794 if (sym != NULL && sym->n_scnum != 0)
2795 addend = - sym->n_value;
2799 if (rel->r_type == R_SH_PCDISP)
2802 if (rel->r_type >= SH_COFF_HOWTO_COUNT)
2805 howto = &sh_coff_howtos[rel->r_type];
2809 bfd_set_error (bfd_error_bad_value);
2814 if (rel->r_type == R_SH_IMAGEBASE)
2815 addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
2824 /* There is nothing to do for an internal PCDISP reloc. */
2825 if (rel->r_type == R_SH_PCDISP)
2830 sec = bfd_abs_section_ptr;
2835 sec = sections[symndx];
2836 val = (sec->output_section->vma
2837 + sec->output_offset
2844 if (h->root.type == bfd_link_hash_defined
2845 || h->root.type == bfd_link_hash_defweak)
2849 sec = h->root.u.def.section;
2850 val = (h->root.u.def.value
2851 + sec->output_section->vma
2852 + sec->output_offset);
2854 else if (! bfd_link_relocatable (info))
2855 (*info->callbacks->undefined_symbol)
2856 (info, h->root.root.string, input_bfd, input_section,
2857 rel->r_vaddr - input_section->vma, TRUE);
2860 rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
2862 rel->r_vaddr - input_section->vma,
2871 case bfd_reloc_overflow:
2874 char buf[SYMNMLEN + 1];
2880 else if (sym->_n._n_n._n_zeroes == 0
2881 && sym->_n._n_n._n_offset != 0)
2882 name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
2885 strncpy (buf, sym->_n._n_name, SYMNMLEN);
2886 buf[SYMNMLEN] = '\0';
2890 (*info->callbacks->reloc_overflow)
2891 (info, (h ? &h->root : NULL), name, howto->name,
2892 (bfd_vma) 0, input_bfd, input_section,
2893 rel->r_vaddr - input_section->vma);
2901 /* This is a version of bfd_generic_get_relocated_section_contents
2902 which uses sh_relocate_section. */
2905 sh_coff_get_relocated_section_contents (bfd *output_bfd,
2906 struct bfd_link_info *link_info,
2907 struct bfd_link_order *link_order,
2909 bfd_boolean relocatable,
2912 asection *input_section = link_order->u.indirect.section;
2913 bfd *input_bfd = input_section->owner;
2914 asection **sections = NULL;
2915 struct internal_reloc *internal_relocs = NULL;
2916 struct internal_syment *internal_syms = NULL;
2918 /* We only need to handle the case of relaxing, or of having a
2919 particular set of section contents, specially. */
2921 || coff_section_data (input_bfd, input_section) == NULL
2922 || coff_section_data (input_bfd, input_section)->contents == NULL)
2923 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2928 memcpy (data, coff_section_data (input_bfd, input_section)->contents,
2929 (size_t) input_section->size);
2931 if ((input_section->flags & SEC_RELOC) != 0
2932 && input_section->reloc_count > 0)
2934 bfd_size_type symesz = bfd_coff_symesz (input_bfd);
2935 bfd_byte *esym, *esymend;
2936 struct internal_syment *isymp;
2940 if (! _bfd_coff_get_external_symbols (input_bfd))
2943 internal_relocs = (_bfd_coff_read_internal_relocs
2944 (input_bfd, input_section, FALSE, (bfd_byte *) NULL,
2945 FALSE, (struct internal_reloc *) NULL));
2946 if (internal_relocs == NULL)
2949 amt = obj_raw_syment_count (input_bfd);
2950 amt *= sizeof (struct internal_syment);
2951 internal_syms = (struct internal_syment *) bfd_malloc (amt);
2952 if (internal_syms == NULL)
2955 amt = obj_raw_syment_count (input_bfd);
2956 amt *= sizeof (asection *);
2957 sections = (asection **) bfd_malloc (amt);
2958 if (sections == NULL)
2961 isymp = internal_syms;
2963 esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
2964 esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
2965 while (esym < esymend)
2967 bfd_coff_swap_sym_in (input_bfd, esym, isymp);
2969 if (isymp->n_scnum != 0)
2970 *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
2973 if (isymp->n_value == 0)
2974 *secpp = bfd_und_section_ptr;
2976 *secpp = bfd_com_section_ptr;
2979 esym += (isymp->n_numaux + 1) * symesz;
2980 secpp += isymp->n_numaux + 1;
2981 isymp += isymp->n_numaux + 1;
2984 if (! sh_relocate_section (output_bfd, link_info, input_bfd,
2985 input_section, data, internal_relocs,
2986 internal_syms, sections))
2991 free (internal_syms);
2992 internal_syms = NULL;
2993 free (internal_relocs);
2994 internal_relocs = NULL;
3000 if (internal_relocs != NULL)
3001 free (internal_relocs);
3002 if (internal_syms != NULL)
3003 free (internal_syms);
3004 if (sections != NULL)
3009 /* The target vectors. */
3011 #ifndef TARGET_SHL_SYM
3012 CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
3015 #ifdef TARGET_SHL_SYM
3016 #define TARGET_SYM TARGET_SHL_SYM
3018 #define TARGET_SYM sh_coff_le_vec
3021 #ifndef TARGET_SHL_NAME
3022 #define TARGET_SHL_NAME "coff-shl"
3026 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3027 SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
3029 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3030 0, '_', NULL, COFF_SWAP_TABLE)
3033 #ifndef TARGET_SHL_SYM
3035 /* Some people want versions of the SH COFF target which do not align
3036 to 16 byte boundaries. We implement that by adding a couple of new
3037 target vectors. These are just like the ones above, but they
3038 change the default section alignment. To generate them in the
3039 assembler, use -small. To use them in the linker, use -b
3040 coff-sh{l}-small and -oformat coff-sh{l}-small.
3042 Yes, this is a horrible hack. A general solution for setting
3043 section alignment in COFF is rather complex. ELF handles this
3046 /* Only recognize the small versions if the target was not defaulted.
3047 Otherwise we won't recognize the non default endianness. */
3049 static const bfd_target *
3050 coff_small_object_p (bfd *abfd)
3052 if (abfd->target_defaulted)
3054 bfd_set_error (bfd_error_wrong_format);
3057 return coff_object_p (abfd);
3060 /* Set the section alignment for the small versions. */
3063 coff_small_new_section_hook (bfd *abfd, asection *section)
3065 if (! coff_new_section_hook (abfd, section))
3068 /* We must align to at least a four byte boundary, because longword
3069 accesses must be on a four byte boundary. */
3070 if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
3071 section->alignment_power = 2;
3076 /* This is copied from bfd_coff_std_swap_table so that we can change
3077 the default section alignment power. */
3079 static bfd_coff_backend_data bfd_coff_small_swap_table =
3081 coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
3082 coff_swap_aux_out, coff_swap_sym_out,
3083 coff_swap_lineno_out, coff_swap_reloc_out,
3084 coff_swap_filehdr_out, coff_swap_aouthdr_out,
3085 coff_swap_scnhdr_out,
3086 FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
3087 #ifdef COFF_LONG_FILENAMES
3092 COFF_DEFAULT_LONG_SECTION_NAMES,
3094 #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
3099 #ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3105 coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
3106 coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
3107 coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
3108 coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
3109 coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
3110 coff_classify_symbol, coff_compute_section_file_positions,
3111 coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
3112 coff_adjust_symndx, coff_link_add_one_symbol,
3113 coff_link_output_has_begun, coff_final_link_postscript,
3117 #define coff_small_close_and_cleanup \
3118 coff_close_and_cleanup
3119 #define coff_small_bfd_free_cached_info \
3120 coff_bfd_free_cached_info
3121 #define coff_small_get_section_contents \
3122 coff_get_section_contents
3123 #define coff_small_get_section_contents_in_window \
3124 coff_get_section_contents_in_window
3126 extern const bfd_target sh_coff_small_le_vec;
3128 const bfd_target sh_coff_small_vec =
3130 "coff-sh-small", /* name */
3131 bfd_target_coff_flavour,
3132 BFD_ENDIAN_BIG, /* data byte order is big */
3133 BFD_ENDIAN_BIG, /* header byte order is big */
3135 (HAS_RELOC | EXEC_P /* object flags */
3136 | HAS_LINENO | HAS_DEBUG
3137 | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3139 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3140 '_', /* leading symbol underscore */
3141 '/', /* ar_pad_char */
3142 15, /* ar_max_namelen */
3143 0, /* match priority. */
3144 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3145 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3146 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
3147 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3148 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3149 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
3151 { /* bfd_check_format */
3153 coff_small_object_p,
3154 bfd_generic_archive_p,
3157 { /* bfd_set_format */
3158 _bfd_bool_bfd_false_error,
3160 _bfd_generic_mkarchive,
3161 _bfd_bool_bfd_false_error
3163 { /* bfd_write_contents */
3164 _bfd_bool_bfd_false_error,
3165 coff_write_object_contents,
3166 _bfd_write_archive_contents,
3167 _bfd_bool_bfd_false_error
3170 BFD_JUMP_TABLE_GENERIC (coff_small),
3171 BFD_JUMP_TABLE_COPY (coff),
3172 BFD_JUMP_TABLE_CORE (_bfd_nocore),
3173 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3174 BFD_JUMP_TABLE_SYMBOLS (coff),
3175 BFD_JUMP_TABLE_RELOCS (coff),
3176 BFD_JUMP_TABLE_WRITE (coff),
3177 BFD_JUMP_TABLE_LINK (coff),
3178 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3180 &sh_coff_small_le_vec,
3182 &bfd_coff_small_swap_table
3185 const bfd_target sh_coff_small_le_vec =
3187 "coff-shl-small", /* name */
3188 bfd_target_coff_flavour,
3189 BFD_ENDIAN_LITTLE, /* data byte order is little */
3190 BFD_ENDIAN_LITTLE, /* header byte order is little endian too*/
3192 (HAS_RELOC | EXEC_P /* object flags */
3193 | HAS_LINENO | HAS_DEBUG
3194 | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3196 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3197 '_', /* leading symbol underscore */
3198 '/', /* ar_pad_char */
3199 15, /* ar_max_namelen */
3200 0, /* match priority. */
3201 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3202 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3203 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
3204 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3205 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3206 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
3208 { /* bfd_check_format */
3210 coff_small_object_p,
3211 bfd_generic_archive_p,
3214 { /* bfd_set_format */
3215 _bfd_bool_bfd_false_error,
3217 _bfd_generic_mkarchive,
3218 _bfd_bool_bfd_false_error
3220 { /* bfd_write_contents */
3221 _bfd_bool_bfd_false_error,
3222 coff_write_object_contents,
3223 _bfd_write_archive_contents,
3224 _bfd_bool_bfd_false_error
3227 BFD_JUMP_TABLE_GENERIC (coff_small),
3228 BFD_JUMP_TABLE_COPY (coff),
3229 BFD_JUMP_TABLE_CORE (_bfd_nocore),
3230 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3231 BFD_JUMP_TABLE_SYMBOLS (coff),
3232 BFD_JUMP_TABLE_RELOCS (coff),
3233 BFD_JUMP_TABLE_WRITE (coff),
3234 BFD_JUMP_TABLE_LINK (coff),
3235 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3239 &bfd_coff_small_swap_table