1 /* BFD back-end for Renesas H8/300 COFF binaries.
2 Copyright (C) 1990-2014 Free Software Foundation, Inc.
3 Written by Steve Chamberlain, <sac@cygnus.com>.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
27 #include "coff/h8300.h"
28 #include "coff/internal.h"
30 #include "libiberty.h"
32 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
34 /* We derive a hash table from the basic BFD hash table to
35 hold entries in the function vector. Aside from the
36 info stored by the basic hash table, we need the offset
37 of a particular entry within the hash table as well as
38 the offset where we'll add the next entry. */
40 struct funcvec_hash_entry
42 /* The basic hash table entry. */
43 struct bfd_hash_entry root;
45 /* The offset within the vectors section where
50 struct funcvec_hash_table
52 /* The basic hash table. */
53 struct bfd_hash_table root;
57 /* Offset at which we'll add the next entry. */
62 /* To lookup a value in the function vector hash table. */
63 #define funcvec_hash_lookup(table, string, create, copy) \
64 ((struct funcvec_hash_entry *) \
65 bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
67 /* The derived h8300 COFF linker table. Note it's derived from
68 the generic linker hash table, not the COFF backend linker hash
69 table! We use this to attach additional data structures we
70 need while linking on the h8300. */
71 struct h8300_coff_link_hash_table {
72 /* The main hash table. */
73 struct generic_link_hash_table root;
75 /* Section for the vectors table. This gets attached to a
76 random input bfd, we keep it here for easy access. */
77 asection *vectors_sec;
79 /* Hash table of the functions we need to enter into the function
81 struct funcvec_hash_table *funcvec_hash_table;
84 static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);
86 /* Get the H8/300 COFF linker hash table from a link_info structure. */
88 #define h8300_coff_hash_table(p) \
89 ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
91 /* Initialize fields within a funcvec hash table entry. Called whenever
92 a new entry is added to the funcvec hash table. */
94 static struct bfd_hash_entry *
95 funcvec_hash_newfunc (struct bfd_hash_entry *entry,
96 struct bfd_hash_table *gen_table,
99 struct funcvec_hash_entry *ret;
100 struct funcvec_hash_table *table;
102 ret = (struct funcvec_hash_entry *) entry;
103 table = (struct funcvec_hash_table *) gen_table;
105 /* Allocate the structure if it has not already been allocated by a
108 ret = ((struct funcvec_hash_entry *)
109 bfd_hash_allocate (gen_table,
110 sizeof (struct funcvec_hash_entry)));
114 /* Call the allocation method of the superclass. */
115 ret = ((struct funcvec_hash_entry *)
116 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
121 /* Note where this entry will reside in the function vector table. */
122 ret->offset = table->offset;
124 /* Bump the offset at which we store entries in the function
125 vector. We'd like to bump up the size of the vectors section,
126 but it's not easily available here. */
127 switch (bfd_get_mach (table->abfd))
130 case bfd_mach_h8300hn:
131 case bfd_mach_h8300sn:
134 case bfd_mach_h8300h:
135 case bfd_mach_h8300s:
142 /* Everything went OK. */
143 return (struct bfd_hash_entry *) ret;
146 /* Initialize the function vector hash table. */
149 funcvec_hash_table_init (struct funcvec_hash_table *table,
151 struct bfd_hash_entry *(*newfunc)
152 (struct bfd_hash_entry *,
153 struct bfd_hash_table *,
155 unsigned int entsize)
157 /* Initialize our local fields, then call the generic initialization
161 return (bfd_hash_table_init (&table->root, newfunc, entsize));
164 /* Create the derived linker hash table. We use a derived hash table
165 basically to hold "static" information during an H8/300 coff link
166 without using static variables. */
168 static struct bfd_link_hash_table *
169 h8300_coff_link_hash_table_create (bfd *abfd)
171 struct h8300_coff_link_hash_table *ret;
172 bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
174 ret = (struct h8300_coff_link_hash_table *) bfd_zmalloc (amt);
177 if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
178 _bfd_generic_link_hash_newfunc,
179 sizeof (struct generic_link_hash_entry)))
185 return &ret->root.root;
188 /* Special handling for H8/300 relocs.
189 We only come here for pcrel stuff and return normally if not an -r link.
190 When doing -r, we can't do any arithmetic for the pcrel stuff, because
191 the code in reloc.c assumes that we can manipulate the targets of
192 the pcrel branches. This isn't so, since the H8/300 can do relaxing,
193 which means that the gap after the instruction may not be enough to
194 contain the offset required for the branch, so we have to use only
195 the addend until the final link. */
197 static bfd_reloc_status_type
198 special (bfd * abfd ATTRIBUTE_UNUSED,
199 arelent * reloc_entry ATTRIBUTE_UNUSED,
200 asymbol * symbol ATTRIBUTE_UNUSED,
201 void * data ATTRIBUTE_UNUSED,
202 asection * input_section ATTRIBUTE_UNUSED,
204 char ** error_message ATTRIBUTE_UNUSED)
206 if (output_bfd == (bfd *) NULL)
207 return bfd_reloc_continue;
209 /* Adjust the reloc address to that in the output section. */
210 reloc_entry->address += input_section->output_offset;
214 static reloc_howto_type howto_table[] =
216 HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
217 HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
218 HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
219 HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
220 HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
221 HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
222 HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
223 HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
224 HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
225 HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
226 HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
227 HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
228 HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
229 HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
231 /* An indirect reference to a function. This causes the function's address
232 to be added to the function vector in lo-mem and puts the address of
233 the function vector's entry in the jsr instruction. */
234 HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
236 /* Internal reloc for relaxing. This is created when a 16-bit pc-relative
237 branch is turned into an 8-bit pc-relative branch. */
238 HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
240 HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
242 HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
244 HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
246 HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
249 /* Turn a howto into a reloc number. */
251 #define SELECT_RELOC(x,howto) \
252 { x.r_type = select_reloc (howto); }
254 #define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
255 && H8300HNBADMAG(x) && H8300SNBADMAG(x))
256 #define H8300 1 /* Customize coffcode.h */
257 #define __A_MAGIC_SET__
259 /* Code to swap in the reloc. */
260 #define SWAP_IN_RELOC_OFFSET H_GET_32
261 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
262 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
263 dst->r_stuff[0] = 'S'; \
264 dst->r_stuff[1] = 'C';
267 select_reloc (reloc_howto_type *howto)
272 /* Code to turn a r_type into a howto ptr, uses the above howto table. */
275 rtype2howto (arelent *internal, struct internal_reloc *dst)
280 internal->howto = howto_table + 0;
283 internal->howto = howto_table + 1;
286 internal->howto = howto_table + 2;
289 internal->howto = howto_table + 3;
292 internal->howto = howto_table + 4;
295 internal->howto = howto_table + 5;
298 internal->howto = howto_table + 6;
301 internal->howto = howto_table + 7;
304 internal->howto = howto_table + 8;
307 internal->howto = howto_table + 9;
310 internal->howto = howto_table + 10;
313 internal->howto = howto_table + 11;
316 internal->howto = howto_table + 12;
319 internal->howto = howto_table + 13;
322 internal->howto = howto_table + 14;
325 internal->howto = howto_table + 15;
328 internal->howto = howto_table + 16;
331 internal->howto = howto_table + 17;
334 internal->howto = howto_table + 18;
337 internal->howto = howto_table + 19;
345 #define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
347 /* Perform any necessary magic to the addend in a reloc entry. */
349 #define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
350 cache_ptr->addend = ext_reloc.r_offset;
352 #define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
353 reloc_processing (relent, reloc, symbols, abfd, section)
356 reloc_processing (arelent *relent, struct internal_reloc *reloc,
357 asymbol **symbols, bfd *abfd, asection *section)
359 relent->address = reloc->r_vaddr;
360 rtype2howto (relent, reloc);
362 if (((int) reloc->r_symndx) > 0)
363 relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
365 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
367 relent->addend = reloc->r_offset;
368 relent->address -= section->vma;
372 h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
376 s = _bfd_generic_link_get_symbols (abfd);
377 BFD_ASSERT (s != (asymbol **) NULL);
379 /* Search all the symbols for one in INPUT_SECTION with
385 if (p->section == input_section
386 && (input_section->output_section->vma
387 + input_section->output_offset
388 + p->value) == address)
395 /* If RELOC represents a relaxable instruction/reloc, change it into
396 the relaxed reloc, notify the linker that symbol addresses
397 have changed (bfd_perform_slip) and return how much the current
398 section has shrunk by.
400 FIXME: Much of this code has knowledge of the ordering of entries
401 in the howto table. This needs to be fixed. */
404 h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
405 unsigned int shrink, struct bfd_link_info *link_info)
410 static asection *last_input_section = NULL;
411 static arelent *last_reloc = NULL;
413 /* The address of the thing to be relocated will have moved back by
414 the size of the shrink - but we don't change reloc->address here,
415 since we need it to know where the relocation lives in the source
417 bfd_vma address = reloc->address - shrink;
419 if (input_section != last_input_section)
422 /* Only examine the relocs which might be relaxable. */
423 switch (reloc->howto->type)
425 /* This is the 16-/24-bit absolute branch which could become an
426 8-bit pc-relative branch. */
429 /* Get the address of the target of this branch. */
430 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
432 /* Get the address of the next instruction (not the reloc). */
433 dot = (input_section->output_section->vma
434 + input_section->output_offset + address);
436 /* Adjust for R_JMP1 vs R_JMPL1. */
437 dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
439 /* Compute the distance from this insn to the branch target. */
442 /* If the distance is within -128..+128 inclusive, then we can relax
443 this jump. +128 is valid since the target will move two bytes
444 closer if we do relax this branch. */
445 if ((int) gap >= -128 && (int) gap <= 128)
449 if (!bfd_get_section_contents (abfd, input_section, & code,
452 code = bfd_get_8 (abfd, & code);
454 /* It's possible we may be able to eliminate this branch entirely;
455 if the previous instruction is a branch around this instruction,
456 and there's no label at this instruction, then we can reverse
457 the condition on the previous branch and eliminate this jump.
464 This saves 4 bytes instead of two, and should be relatively
467 Only perform this optimisation for jumps (code 0x5a) not
468 subroutine calls, as otherwise it could transform:
481 which changes the call (jsr) into a branch (bne). */
485 && last_reloc->howto->type == R_PCRBYTE)
488 last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
491 if (last_value == dot + 2
492 && last_reloc->address + 1 == reloc->address
493 && !h8300_symbol_address_p (abfd, input_section, dot - 2))
495 reloc->howto = howto_table + 19;
496 last_reloc->howto = howto_table + 18;
497 last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
498 last_reloc->addend = reloc->addend;
500 bfd_perform_slip (abfd, 4, input_section, address);
505 /* Change the reloc type. */
506 reloc->howto = reloc->howto + 1;
508 /* This shrinks this section by two bytes. */
510 bfd_perform_slip (abfd, 2, input_section, address);
514 /* This is the 16-bit pc-relative branch which could become an 8-bit
515 pc-relative branch. */
517 /* Get the address of the target of this branch, add one to the value
518 because the addend field in PCrel jumps is off by -1. */
519 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
521 /* Get the address of the next instruction if we were to relax. */
522 dot = input_section->output_section->vma +
523 input_section->output_offset + address;
525 /* Compute the distance from this insn to the branch target. */
528 /* If the distance is within -128..+128 inclusive, then we can relax
529 this jump. +128 is valid since the target will move two bytes
530 closer if we do relax this branch. */
531 if ((int) gap >= -128 && (int) gap <= 128)
533 /* Change the reloc type. */
534 reloc->howto = howto_table + 15;
536 /* This shrinks this section by two bytes. */
538 bfd_perform_slip (abfd, 2, input_section, address);
542 /* This is a 16-bit absolute address in a mov.b insn, which can
543 become an 8-bit absolute address if it's in the right range. */
545 /* Get the address of the data referenced by this mov.b insn. */
546 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
547 value = bfd_h8300_pad_address (abfd, value);
549 /* If the address is in the top 256 bytes of the address space
550 then we can relax this instruction. */
551 if (value >= 0xffffff00u)
553 /* Change the reloc type. */
554 reloc->howto = reloc->howto + 1;
556 /* This shrinks this section by two bytes. */
558 bfd_perform_slip (abfd, 2, input_section, address);
562 /* Similarly for a 24-bit absolute address in a mov.b. Note that
563 if we can't relax this into an 8-bit absolute, we'll fall through
564 and try to relax it into a 16-bit absolute. */
566 /* Get the address of the data referenced by this mov.b insn. */
567 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
568 value = bfd_h8300_pad_address (abfd, value);
570 if (value >= 0xffffff00u)
572 /* Change the reloc type. */
573 reloc->howto = reloc->howto + 1;
575 /* This shrinks this section by four bytes. */
577 bfd_perform_slip (abfd, 4, input_section, address);
579 /* Done with this reloc. */
583 /* FALLTHROUGH and try to turn the 24-/32-bit reloc into a 16-bit
586 /* This is a 24-/32-bit absolute address in a mov insn, which can
587 become an 16-bit absolute address if it's in the right range. */
589 /* Get the address of the data referenced by this mov insn. */
590 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
591 value = bfd_h8300_pad_address (abfd, value);
593 /* If the address is a sign-extended 16-bit value then we can
594 relax this instruction. */
595 if (value <= 0x7fff || value >= 0xffff8000u)
597 /* Change the reloc type. */
598 reloc->howto = howto_table + 17;
600 /* This shrinks this section by two bytes. */
602 bfd_perform_slip (abfd, 2, input_section, address);
606 /* No other reloc types represent relaxing opportunities. */
612 last_input_section = input_section;
616 /* Handle relocations for the H8/300, including relocs for relaxed
619 FIXME: Not all relocations check for overflow! */
622 h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
623 struct bfd_link_order *link_order, arelent *reloc,
624 bfd_byte *data, unsigned int *src_ptr,
625 unsigned int *dst_ptr)
627 unsigned int src_address = *src_ptr;
628 unsigned int dst_address = *dst_ptr;
629 asection *input_section = link_order->u.indirect.section;
633 unsigned char temp_code;
635 switch (reloc->howto->type)
637 /* Generic 8-bit pc-relative relocation. */
639 /* Get the address of the target of this branch. */
640 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
642 dot = (input_section->output_offset
644 + link_order->u.indirect.section->output_section->vma);
649 if (gap < -128 || gap > 126)
651 if (! ((*link_info->callbacks->reloc_overflow)
653 bfd_asymbol_name (*reloc->sym_ptr_ptr),
654 reloc->howto->name, reloc->addend, input_section->owner,
655 input_section, reloc->address)))
659 /* Everything looks OK. Apply the relocation and update the
660 src/dst address appropriately. */
661 bfd_put_8 (abfd, gap, data + dst_address);
668 /* Generic 16-bit pc-relative relocation. */
670 /* Get the address of the target of this branch. */
671 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
673 /* Get the address of the instruction (not the reloc). */
674 dot = (input_section->output_offset
676 + link_order->u.indirect.section->output_section->vma + 1);
681 if (gap > 32766 || gap < -32768)
683 if (! ((*link_info->callbacks->reloc_overflow)
685 bfd_asymbol_name (*reloc->sym_ptr_ptr),
686 reloc->howto->name, reloc->addend, input_section->owner,
687 input_section, reloc->address)))
691 /* Everything looks OK. Apply the relocation and update the
692 src/dst address appropriately. */
693 bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
700 /* Generic 8-bit absolute relocation. */
702 /* Get the address of the object referenced by this insn. */
703 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
705 bfd_put_8 (abfd, value & 0xff, data + dst_address);
712 /* Various simple 16-bit absolute relocations. */
716 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
717 bfd_put_16 (abfd, value, data + dst_address);
722 /* Various simple 24-/32-bit absolute relocations. */
726 /* Get the address of the target of this branch. */
727 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
728 bfd_put_32 (abfd, value, data + dst_address);
733 /* Another 24-/32-bit absolute relocation. */
735 /* Get the address of the target of this branch. */
736 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
738 value = ((value & 0x00ffffff)
739 | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
740 bfd_put_32 (abfd, value, data + dst_address);
745 /* This is a 24-/32-bit absolute address in one of the following
748 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
749 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", "ldc.w",
750 "stc.w" and "mov.[bwl]"
752 We may relax this into an 16-bit absolute address if it's in
755 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
756 value = bfd_h8300_pad_address (abfd, value);
759 if (value <= 0x7fff || value >= 0xffff8000u)
761 /* Insert the 16-bit value into the proper location. */
762 bfd_put_16 (abfd, value, data + dst_address);
764 /* Fix the opcode. For all the instructions that belong to
765 this relaxation, we simply need to turn off bit 0x20 in
766 the previous byte. */
767 data[dst_address - 1] &= ~0x20;
773 if (! ((*link_info->callbacks->reloc_overflow)
775 bfd_asymbol_name (*reloc->sym_ptr_ptr),
776 reloc->howto->name, reloc->addend, input_section->owner,
777 input_section, reloc->address)))
782 /* A 16-bit absolute branch that is now an 8-bit pc-relative branch. */
784 /* Get the address of the target of this branch. */
785 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
787 /* Get the address of the next instruction. */
788 dot = (input_section->output_offset
790 + link_order->u.indirect.section->output_section->vma + 1);
795 if (gap < -128 || gap > 126)
797 if (! ((*link_info->callbacks->reloc_overflow)
799 bfd_asymbol_name (*reloc->sym_ptr_ptr),
800 reloc->howto->name, reloc->addend, input_section->owner,
801 input_section, reloc->address)))
805 /* Now fix the instruction itself. */
806 switch (data[dst_address - 1])
810 bfd_put_8 (abfd, 0x55, data + dst_address - 1);
814 bfd_put_8 (abfd, 0x40, data + dst_address - 1);
821 /* Write out the 8-bit value. */
822 bfd_put_8 (abfd, gap, data + dst_address);
829 /* A 16-bit pc-relative branch that is now an 8-bit pc-relative branch. */
831 /* Get the address of the target of this branch. */
832 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
834 /* Get the address of the instruction (not the reloc). */
835 dot = (input_section->output_offset
837 + link_order->u.indirect.section->output_section->vma - 1);
842 if (gap < -128 || gap > 126)
844 if (! ((*link_info->callbacks->reloc_overflow)
846 bfd_asymbol_name (*reloc->sym_ptr_ptr),
847 reloc->howto->name, reloc->addend, input_section->owner,
848 input_section, reloc->address)))
852 /* Now fix the instruction. */
853 switch (data[dst_address - 2])
856 /* bCC:16 -> bCC:8 */
857 /* Get the second byte of the original insn, which contains
858 the condition code. */
859 tmp = data[dst_address - 1];
861 /* Compute the fisrt byte of the relaxed instruction. The
862 original sequence 0x58 0xX0 is relaxed to 0x4X, where X
863 represents the condition code. */
869 bfd_put_8 (abfd, tmp, data + dst_address - 2);
873 /* bsr:16 -> bsr:8 */
874 bfd_put_8 (abfd, 0x55, data + dst_address - 2);
881 /* Output the target. */
882 bfd_put_8 (abfd, gap, data + dst_address - 1);
884 /* We don't advance dst_address -- the 8-bit reloc is applied at
885 dst_address - 1, so the next insn should begin at dst_address. */
890 /* Similarly for a 24-bit absolute that is now 8 bits. */
892 /* Get the address of the target of this branch. */
893 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
895 /* Get the address of the instruction (not the reloc). */
896 dot = (input_section->output_offset
898 + link_order->u.indirect.section->output_section->vma + 2);
902 /* Fix the instruction. */
903 switch (data[src_address])
907 bfd_put_8 (abfd, 0x55, data + dst_address);
911 bfd_put_8 (abfd, 0x40, data + dst_address);
917 bfd_put_8 (abfd, gap, data + dst_address + 1);
923 /* This is a 16-bit absolute address in one of the following
926 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
927 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
930 We may relax this into an 8-bit absolute address if it's in
933 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
935 /* All instructions with R_H8_DIR16B2 start with 0x6a. */
936 if (data[dst_address - 2] != 0x6a)
939 temp_code = data[src_address - 1];
941 /* If this is a mov.b instruction, clear the lower nibble, which
942 contains the source/destination register number. */
943 if ((temp_code & 0x10) != 0x10)
946 /* Fix up the opcode. */
950 /* This is mov.b @aa:16,Rd. */
951 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
954 /* This is mov.b Rs,@aa:16. */
955 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
958 /* This is a bit-maniputation instruction that stores one
959 bit into memory, one of "bclr", "bist", "bnot", "bset",
961 data[dst_address - 2] = 0x7f;
964 /* This is a bit-maniputation instruction that loads one bit
965 from memory, one of "band", "biand", "bild", "bior",
966 "bixor", "bld", "bor", "btst", and "bxor". */
967 data[dst_address - 2] = 0x7e;
973 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
977 /* This is a 24-bit absolute address in one of the following
980 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
981 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
984 We may relax this into an 8-bit absolute address if it's in
987 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
989 /* All instructions with R_MOV24B2 start with 0x6a. */
990 if (data[dst_address - 2] != 0x6a)
993 temp_code = data[src_address - 1];
995 /* If this is a mov.b instruction, clear the lower nibble, which
996 contains the source/destination register number. */
997 if ((temp_code & 0x30) != 0x30)
1000 /* Fix up the opcode. */
1004 /* This is mov.b @aa:24/32,Rd. */
1005 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
1008 /* This is mov.b Rs,@aa:24/32. */
1009 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
1012 /* This is a bit-maniputation instruction that stores one
1013 bit into memory, one of "bclr", "bist", "bnot", "bset",
1015 data[dst_address - 2] = 0x7f;
1018 /* This is a bit-maniputation instruction that loads one bit
1019 from memory, one of "band", "biand", "bild", "bior",
1020 "bixor", "bld", "bor", "btst", and "bxor". */
1021 data[dst_address - 2] = 0x7e;
1027 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1032 /* Get the address of the target of this branch. */
1033 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1035 dot = (input_section->output_offset
1037 + link_order->u.indirect.section->output_section->vma) + 1;
1042 if (gap < -128 || gap > 126)
1044 if (! ((*link_info->callbacks->reloc_overflow)
1046 bfd_asymbol_name (*reloc->sym_ptr_ptr),
1047 reloc->howto->name, reloc->addend, input_section->owner,
1048 input_section, reloc->address)))
1052 /* Everything looks OK. Fix the condition in the instruction, apply
1053 the relocation, and update the src/dst address appropriately. */
1055 bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1056 data + dst_address - 1);
1057 bfd_put_8 (abfd, gap, data + dst_address);
1068 /* An 8-bit memory indirect instruction (jmp/jsr).
1070 There's several things that need to be done to handle
1073 If this is a reloc against the absolute symbol, then
1074 we should handle it just R_RELBYTE. Likewise if it's
1075 for a symbol with a value ge 0 and le 0xff.
1077 Otherwise it's a jump/call through the function vector,
1078 and the linker is expected to set up the function vector
1079 and put the right value into the jump/call instruction. */
1080 case R_MEM_INDIRECT:
1082 /* We need to find the symbol so we can determine it's
1083 address in the function vector table. */
1086 struct funcvec_hash_table *ftab;
1087 struct funcvec_hash_entry *h;
1088 struct h8300_coff_link_hash_table *htab;
1089 asection *vectors_sec;
1091 if (link_info->output_bfd->xvec != abfd->xvec)
1093 (*_bfd_error_handler)
1094 (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
1095 link_info->output_bfd->xvec->name);
1097 /* What else can we do? This function doesn't allow return
1098 of an error, and we don't want to call abort as that
1099 indicates an internal error. */
1100 #ifndef EXIT_FAILURE
1101 #define EXIT_FAILURE 1
1103 xexit (EXIT_FAILURE);
1105 htab = h8300_coff_hash_table (link_info);
1106 vectors_sec = htab->vectors_sec;
1108 /* First see if this is a reloc against the absolute symbol
1109 or against a symbol with a nonnegative value <= 0xff. */
1110 symbol = *(reloc->sym_ptr_ptr);
1111 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1112 if (symbol == bfd_abs_section_ptr->symbol
1115 /* This should be handled in a manner very similar to
1116 R_RELBYTES. If the value is in range, then just slam
1117 the value into the right location. Else trigger a
1118 reloc overflow callback. */
1121 bfd_put_8 (abfd, value, data + dst_address);
1127 if (! ((*link_info->callbacks->reloc_overflow)
1129 bfd_asymbol_name (*reloc->sym_ptr_ptr),
1130 reloc->howto->name, reloc->addend, input_section->owner,
1131 input_section, reloc->address)))
1137 /* This is a jump/call through a function vector, and we're
1138 expected to create the function vector ourselves.
1140 First look up this symbol in the linker hash table -- we need
1141 the derived linker symbol which holds this symbol's index
1142 in the function vector. */
1143 name = symbol->name;
1144 if (symbol->flags & BSF_LOCAL)
1146 char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
1148 if (new_name == NULL)
1151 sprintf (new_name, "%s_%08x", name, symbol->section->id);
1155 ftab = htab->funcvec_hash_table;
1156 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1158 /* This shouldn't ever happen. If it does that means we've got
1159 data corruption of some kind. Aborting seems like a reasonable
1160 thing to do here. */
1161 if (h == NULL || vectors_sec == NULL)
1164 /* Place the address of the function vector entry into the
1167 vectors_sec->output_offset + h->offset,
1168 data + dst_address);
1173 /* Now create an entry in the function vector itself. */
1174 switch (bfd_get_mach (input_section->owner))
1176 case bfd_mach_h8300:
1177 case bfd_mach_h8300hn:
1178 case bfd_mach_h8300sn:
1180 bfd_coff_reloc16_get_value (reloc,
1183 vectors_sec->contents + h->offset);
1185 case bfd_mach_h8300h:
1186 case bfd_mach_h8300s:
1188 bfd_coff_reloc16_get_value (reloc,
1191 vectors_sec->contents + h->offset);
1197 /* Gross. We've already written the contents of the vector section
1198 before we get here... So we write it again with the new data. */
1199 bfd_set_section_contents (vectors_sec->output_section->owner,
1200 vectors_sec->output_section,
1201 vectors_sec->contents,
1202 (file_ptr) vectors_sec->output_offset,
1213 *src_ptr = src_address;
1214 *dst_ptr = dst_address;
1217 /* Routine for the h8300 linker.
1219 This routine is necessary to handle the special R_MEM_INDIRECT
1220 relocs on the h8300. It's responsible for generating a vectors
1221 section and attaching it to an input bfd as well as sizing
1222 the vectors section. It also creates our vectors hash table.
1224 It uses the generic linker routines to actually add the symbols.
1225 from this BFD to the bfd linker hash table. It may add a few
1226 selected static symbols to the bfd linker hash table. */
1229 h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
1232 struct funcvec_hash_table *funcvec_hash_table;
1234 struct h8300_coff_link_hash_table *htab;
1236 /* Add the symbols using the generic code. */
1237 _bfd_generic_link_add_symbols (abfd, info);
1239 if (info->output_bfd->xvec != abfd->xvec)
1242 htab = h8300_coff_hash_table (info);
1244 /* If we haven't created a vectors section, do so now. */
1245 if (!htab->vectors_sec)
1249 /* Make sure the appropriate flags are set, including SEC_IN_MEMORY. */
1250 flags = (SEC_ALLOC | SEC_LOAD
1251 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
1252 htab->vectors_sec = bfd_make_section_with_flags (abfd, ".vectors",
1255 /* If the section wasn't created, or we couldn't set the flags,
1256 quit quickly now, rather than dying a painful death later. */
1257 if (!htab->vectors_sec)
1260 /* Also create the vector hash table. */
1261 amt = sizeof (struct funcvec_hash_table);
1262 funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
1264 if (!funcvec_hash_table)
1267 /* And initialize the funcvec hash table. */
1268 if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
1269 funcvec_hash_newfunc,
1270 sizeof (struct funcvec_hash_entry)))
1272 bfd_release (abfd, funcvec_hash_table);
1276 /* Store away a pointer to the funcvec hash table. */
1277 htab->funcvec_hash_table = funcvec_hash_table;
1280 /* Load up the function vector hash table. */
1281 funcvec_hash_table = htab->funcvec_hash_table;
1283 /* Now scan the relocs for all the sections in this bfd; create
1284 additional space in the .vectors section as needed. */
1285 for (sec = abfd->sections; sec; sec = sec->next)
1287 long reloc_size, reloc_count, i;
1291 /* Suck in the relocs, symbols & canonicalize them. */
1292 reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1293 if (reloc_size <= 0)
1296 relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
1300 /* The symbols should have been read in by _bfd_generic link_add_symbols
1301 call abovec, so we can cheat and use the pointer to them that was
1302 saved in the above call. */
1303 symbols = _bfd_generic_link_get_symbols(abfd);
1304 reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1305 if (reloc_count <= 0)
1311 /* Now walk through all the relocations in this section. */
1312 for (i = 0; i < reloc_count; i++)
1314 arelent *reloc = relocs[i];
1315 asymbol *symbol = *(reloc->sym_ptr_ptr);
1318 /* We've got an indirect reloc. See if we need to add it
1319 to the function vector table. At this point, we have
1320 to add a new entry for each unique symbol referenced
1321 by an R_MEM_INDIRECT relocation except for a reloc
1322 against the absolute section symbol. */
1323 if (reloc->howto->type == R_MEM_INDIRECT
1324 && symbol != bfd_abs_section_ptr->symbol)
1327 struct funcvec_hash_table *ftab;
1328 struct funcvec_hash_entry *h;
1330 name = symbol->name;
1331 if (symbol->flags & BSF_LOCAL)
1335 new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
1336 if (new_name == NULL)
1339 sprintf (new_name, "%s_%08x", name, symbol->section->id);
1343 /* Look this symbol up in the function vector hash table. */
1344 ftab = htab->funcvec_hash_table;
1345 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1347 /* If this symbol isn't already in the hash table, add
1348 it and bump up the size of the hash table. */
1351 h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
1358 /* Bump the size of the vectors section. Each vector
1359 takes 2 bytes on the h8300 and 4 bytes on the h8300h. */
1360 switch (bfd_get_mach (abfd))
1362 case bfd_mach_h8300:
1363 case bfd_mach_h8300hn:
1364 case bfd_mach_h8300sn:
1365 htab->vectors_sec->size += 2;
1367 case bfd_mach_h8300h:
1368 case bfd_mach_h8300s:
1369 htab->vectors_sec->size += 4;
1378 /* We're done with the relocations, release them. */
1382 /* Now actually allocate some space for the function vector. It's
1383 wasteful to do this more than once, but this is easier. */
1384 sec = htab->vectors_sec;
1387 /* Free the old contents. */
1389 free (sec->contents);
1391 /* Allocate new contents. */
1392 sec->contents = bfd_malloc (sec->size);
1398 #define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1399 #define coff_reloc16_estimate h8300_reloc16_estimate
1400 #define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1401 #define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1403 #define COFF_LONG_FILENAMES
1405 #ifndef bfd_pe_print_pdata
1406 #define bfd_pe_print_pdata NULL
1409 #include "coffcode.h"
1411 #undef coff_bfd_get_relocated_section_contents
1412 #undef coff_bfd_relax_section
1413 #define coff_bfd_get_relocated_section_contents \
1414 bfd_coff_reloc16_get_relocated_section_contents
1415 #define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1417 CREATE_BIG_COFF_TARGET_VEC (h8300_coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)