1 /* BFD back-end for Hitachi H8/300 COFF binaries.
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 97, 98, 1999
3 Free Software Foundation, Inc.
4 Written by Steve Chamberlain, <sac@cygnus.com>.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 #include "coff/h8300.h"
28 #include "coff/internal.h"
31 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
33 /* We derive a hash table from the basic BFD hash table to
34 hold entries in the function vector. Aside from the
35 info stored by the basic hash table, we need the offset
36 of a particular entry within the hash table as well as
37 the offset where we'll add the next entry. */
39 struct funcvec_hash_entry
41 /* The basic hash table entry. */
42 struct bfd_hash_entry root;
44 /* The offset within the vectors section where
49 struct funcvec_hash_table
51 /* The basic hash table. */
52 struct bfd_hash_table root;
56 /* Offset at which we'll add the next entry. */
60 static struct bfd_hash_entry *
62 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
65 funcvec_hash_table_init
66 PARAMS ((struct funcvec_hash_table *, bfd *,
67 struct bfd_hash_entry *(*) PARAMS ((struct bfd_hash_entry *,
68 struct bfd_hash_table *,
71 /* To lookup a value in the function vector hash table. */
72 #define funcvec_hash_lookup(table, string, create, copy) \
73 ((struct funcvec_hash_entry *) \
74 bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
76 /* The derived h8300 COFF linker table. Note it's derived from
77 the generic linker hash table, not the COFF backend linker hash
78 table! We use this to attach additional data structures we
79 need while linking on the h8300. */
80 struct h8300_coff_link_hash_table
82 /* The main hash table. */
83 struct generic_link_hash_table root;
85 /* Section for the vectors table. This gets attached to a
86 random input bfd, we keep it here for easy access. */
87 asection *vectors_sec;
89 /* Hash table of the functions we need to enter into the function
91 struct funcvec_hash_table *funcvec_hash_table;
94 static struct bfd_link_hash_table *h8300_coff_link_hash_table_create
97 /* Get the H8/300 COFF linker hash table from a link_info structure. */
99 #define h8300_coff_hash_table(p) \
100 ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
102 /* Initialize fields within a funcvec hash table entry. Called whenever
103 a new entry is added to the funcvec hash table. */
105 static struct bfd_hash_entry *
106 funcvec_hash_newfunc (entry, gen_table, string)
107 struct bfd_hash_entry *entry;
108 struct bfd_hash_table *gen_table;
111 struct funcvec_hash_entry *ret;
112 struct funcvec_hash_table *table;
114 ret = (struct funcvec_hash_entry *) entry;
115 table = (struct funcvec_hash_table *) gen_table;
117 /* Allocate the structure if it has not already been allocated by a
120 ret = ((struct funcvec_hash_entry *)
121 bfd_hash_allocate (gen_table,
122 sizeof (struct funcvec_hash_entry)));
126 /* Call the allocation method of the superclass. */
127 ret = ((struct funcvec_hash_entry *)
128 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
133 /* Note where this entry will reside in the function vector table. */
134 ret->offset = table->offset;
136 /* Bump the offset at which we store entries in the function
137 vector. We'd like to bump up the size of the vectors section,
138 but it's not easily available here. */
139 if (bfd_get_mach (table->abfd) == bfd_mach_h8300)
141 else if (bfd_get_mach (table->abfd) == bfd_mach_h8300h
142 || bfd_get_mach (table->abfd) == bfd_mach_h8300s)
147 /* Everything went OK. */
148 return (struct bfd_hash_entry *) ret;
151 /* Initialize the function vector hash table. */
154 funcvec_hash_table_init (table, abfd, newfunc)
155 struct funcvec_hash_table *table;
157 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
158 struct bfd_hash_table *,
161 /* Initialize our local fields, then call the generic initialization
165 return (bfd_hash_table_init (&table->root, newfunc));
168 /* Create the derived linker hash table. We use a derived hash table
169 basically to hold "static" information during an h8/300 coff link
170 without using static variables. */
172 static struct bfd_link_hash_table *
173 h8300_coff_link_hash_table_create (abfd)
176 struct h8300_coff_link_hash_table *ret;
177 ret = ((struct h8300_coff_link_hash_table *)
178 bfd_alloc (abfd, sizeof (struct h8300_coff_link_hash_table)));
181 if (!_bfd_link_hash_table_init (&ret->root.root, abfd, _bfd_generic_link_hash_newfunc))
183 bfd_release (abfd, ret);
187 /* Initialize our data. */
188 ret->vectors_sec = NULL;
189 ret->funcvec_hash_table = NULL;
191 /* OK. Everything's intialized, return the base pointer. */
192 return &ret->root.root;
195 /* Special handling for H8/300 relocs.
196 We only come here for pcrel stuff and return normally if not an -r link.
197 When doing -r, we can't do any arithmetic for the pcrel stuff, because
198 the code in reloc.c assumes that we can manipulate the targets of
199 the pcrel branches. This isn't so, since the H8/300 can do relaxing,
200 which means that the gap after the instruction may not be enough to
201 contain the offset required for the branch, so we have to use the only
202 the addend until the final link. */
204 static bfd_reloc_status_type
205 special (abfd, reloc_entry, symbol, data, input_section, output_bfd,
207 bfd *abfd ATTRIBUTE_UNUSED;
208 arelent *reloc_entry ATTRIBUTE_UNUSED;
209 asymbol *symbol ATTRIBUTE_UNUSED;
210 PTR data ATTRIBUTE_UNUSED;
211 asection *input_section ATTRIBUTE_UNUSED;
213 char **error_message ATTRIBUTE_UNUSED;
215 if (output_bfd == (bfd *) NULL)
216 return bfd_reloc_continue;
221 static reloc_howto_type howto_table[] =
223 HOWTO (R_RELBYTE, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "8", false, 0x000000ff, 0x000000ff, false),
224 HOWTO (R_RELWORD, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "16", false, 0x0000ffff, 0x0000ffff, false),
225 HOWTO (R_RELLONG, 0, 2, 32, false, 0, complain_overflow_bitfield, special, "32", false, 0xffffffff, 0xffffffff, false),
226 HOWTO (R_PCRBYTE, 0, 0, 8, true, 0, complain_overflow_signed, special, "DISP8", false, 0x000000ff, 0x000000ff, true),
227 HOWTO (R_PCRWORD, 0, 1, 16, true, 0, complain_overflow_signed, special, "DISP16", false, 0x0000ffff, 0x0000ffff, true),
228 HOWTO (R_PCRLONG, 0, 2, 32, true, 0, complain_overflow_signed, special, "DISP32", false, 0xffffffff, 0xffffffff, true),
229 HOWTO (R_MOV16B1, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", false, 0x0000ffff, 0x0000ffff, false),
230 HOWTO (R_MOV16B2, 0, 1, 8, false, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", false, 0x000000ff, 0x000000ff, false),
231 HOWTO (R_JMP1, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "16/pcrel", false, 0x0000ffff, 0x0000ffff, false),
232 HOWTO (R_JMP2, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "pcrecl/16", false, 0x000000ff, 0x000000ff, false),
233 HOWTO (R_JMPL1, 0, 2, 32, false, 0, complain_overflow_bitfield, special, "24/pcrell", false, 0x00ffffff, 0x00ffffff, false),
234 HOWTO (R_JMPL2, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "pc8/24", false, 0x000000ff, 0x000000ff, false),
235 HOWTO (R_MOV24B1, 0, 1, 32, false, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", false, 0xffffffff, 0xffffffff, false),
236 HOWTO (R_MOV24B2, 0, 1, 8, false, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", false, 0x0000ffff, 0x0000ffff, false),
238 /* An indirect reference to a function. This causes the function's address
239 to be added to the function vector in lo-mem and puts the address of
240 the function vector's entry in the jsr instruction. */
241 HOWTO (R_MEM_INDIRECT, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "8/indirect", false, 0x000000ff, 0x000000ff, false),
243 /* Internal reloc for relaxing. This is created when a 16bit pc-relative
244 branch is turned into an 8bit pc-relative branch. */
245 HOWTO (R_PCRWORD_B, 0, 0, 8, true, 0, complain_overflow_bitfield, special, "relaxed bCC:16", false, 0x000000ff, 0x000000ff, false),
247 HOWTO (R_MOVL1, 0, 2, 32, false, 0, complain_overflow_bitfield,special, "32/24 relaxable move", false, 0xffffffff, 0xffffffff, false),
249 HOWTO (R_MOVL2, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "32/24 relaxed move", false, 0x0000ffff, 0x0000ffff, false),
251 HOWTO (R_BCC_INV, 0, 0, 8, true, 0, complain_overflow_signed, special, "DISP8 inverted", false, 0x000000ff, 0x000000ff, true),
253 HOWTO (R_JMP_DEL, 0, 0, 8, true, 0, complain_overflow_signed, special, "Deleted jump", false, 0x000000ff, 0x000000ff, true),
256 /* Turn a howto into a reloc number. */
258 #define SELECT_RELOC(x,howto) \
259 { x.r_type = select_reloc(howto); }
261 #define BADMAG(x) (H8300BADMAG(x) && H8300HBADMAG(x) && H8300SBADMAG(x))
262 #define H8300 1 /* Customize coffcode.h */
263 #define __A_MAGIC_SET__
265 /* Code to swap in the reloc. */
266 #define SWAP_IN_RELOC_OFFSET bfd_h_get_32
267 #define SWAP_OUT_RELOC_OFFSET bfd_h_put_32
268 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
269 dst->r_stuff[0] = 'S'; \
270 dst->r_stuff[1] = 'C';
274 reloc_howto_type *howto;
279 /* Code to turn a r_type into a howto ptr, uses the above howto table. */
282 rtype2howto (internal, dst)
284 struct internal_reloc *dst;
289 internal->howto = howto_table + 0;
292 internal->howto = howto_table + 1;
295 internal->howto = howto_table + 2;
298 internal->howto = howto_table + 3;
301 internal->howto = howto_table + 4;
304 internal->howto = howto_table + 5;
307 internal->howto = howto_table + 6;
310 internal->howto = howto_table + 7;
313 internal->howto = howto_table + 8;
316 internal->howto = howto_table + 9;
319 internal->howto = howto_table + 10;
322 internal->howto = howto_table + 11;
325 internal->howto = howto_table + 12;
328 internal->howto = howto_table + 13;
331 internal->howto = howto_table + 14;
334 internal->howto = howto_table + 15;
337 internal->howto = howto_table + 16;
340 internal->howto = howto_table + 17;
343 internal->howto = howto_table + 18;
346 internal->howto = howto_table + 19;
354 #define RTYPE2HOWTO(internal, relocentry) rtype2howto(internal,relocentry)
356 /* Perform any necessary magic to the addend in a reloc entry. */
358 #define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
359 cache_ptr->addend = ext_reloc.r_offset;
361 #define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
362 reloc_processing(relent, reloc, symbols, abfd, section)
365 reloc_processing (relent, reloc, symbols, abfd, section)
367 struct internal_reloc *reloc;
372 relent->address = reloc->r_vaddr;
373 rtype2howto (relent, reloc);
375 if (((int) reloc->r_symndx) > 0)
377 relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
381 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
384 relent->addend = reloc->r_offset;
386 relent->address -= section->vma;
393 h8300_symbol_address_p (abfd, input_section, address)
395 asection *input_section;
400 s = _bfd_generic_link_get_symbols (abfd);
401 BFD_ASSERT (s != (asymbol **) NULL);
403 /* Search all the symbols for one in INPUT_SECTION with
408 if (p->section == input_section
409 && (input_section->output_section->vma
410 + input_section->output_offset
411 + p->value) == address)
418 /* If RELOC represents a relaxable instruction/reloc, change it into
419 the relaxed reloc, notify the linker that symbol addresses
420 have changed (bfd_perform_slip) and return how much the current
421 section has shrunk by.
423 FIXME: Much of this code has knowledge of the ordering of entries
424 in the howto table. This needs to be fixed. */
427 h8300_reloc16_estimate (abfd, input_section, reloc, shrink, link_info)
429 asection *input_section;
432 struct bfd_link_info *link_info;
437 static asection *last_input_section = NULL;
438 static arelent *last_reloc = NULL;
440 /* The address of the thing to be relocated will have moved back by
441 the size of the shrink - but we don't change reloc->address here,
442 since we need it to know where the relocation lives in the source
444 bfd_vma address = reloc->address - shrink;
446 if (input_section != last_input_section)
449 /* Only examine the relocs which might be relaxable. */
450 switch (reloc->howto->type)
452 /* This is the 16/24 bit absolute branch which could become an 8 bit
453 pc-relative branch. */
456 /* Get the address of the target of this branch. */
457 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
459 /* Get the address of the next instruction (not the reloc). */
460 dot = (input_section->output_section->vma
461 + input_section->output_offset + address);
463 /* Adjust for R_JMP1 vs R_JMPL1. */
464 dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
466 /* Compute the distance from this insn to the branch target. */
469 /* If the distance is within -128..+128 inclusive, then we can relax
470 this jump. +128 is valid since the target will move two bytes
471 closer if we do relax this branch. */
472 if ((int)gap >= -128 && (int)gap <= 128 )
474 /* It's possible we may be able to eliminate this branch entirely;
475 if the previous instruction is a branch around this instruction,
476 and there's no label at this instruction, then we can reverse
477 the condition on the previous branch and eliminate this jump.
484 This saves 4 bytes instead of two, and should be relatively
489 && last_reloc->howto->type == R_PCRBYTE)
492 last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
495 if (last_value == dot + 2
496 && last_reloc->address + 1 == reloc->address
497 && !h8300_symbol_address_p (abfd, input_section, dot - 2))
499 reloc->howto = howto_table + 19;
500 last_reloc->howto = howto_table + 18;
501 last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
502 last_reloc->addend = reloc->addend;
504 bfd_perform_slip (abfd, 4, input_section, address);
509 /* Change the reloc type. */
510 reloc->howto = reloc->howto + 1;
512 /* This shrinks this section by two bytes. */
514 bfd_perform_slip (abfd, 2, input_section, address);
518 /* This is the 16 bit pc-relative branch which could become an 8 bit
519 pc-relative branch. */
521 /* Get the address of the target of this branch, add one to the value
522 because the addend field in PCrel jumps is off by -1. */
523 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
525 /* Get the address of the next instruction if we were to relax. */
526 dot = input_section->output_section->vma +
527 input_section->output_offset + address;
529 /* Compute the distance from this insn to the branch target. */
532 /* If the distance is within -128..+128 inclusive, then we can relax
533 this jump. +128 is valid since the target will move two bytes
534 closer if we do relax this branch. */
535 if ((int)gap >= -128 && (int)gap <= 128 )
537 /* Change the reloc type. */
538 reloc->howto = howto_table + 15;
540 /* This shrinks this section by two bytes. */
542 bfd_perform_slip (abfd, 2, input_section, address);
546 /* This is a 16 bit absolute address in a mov.b insn, which can
547 become an 8 bit absolute address if it's in the right range. */
549 /* Get the address of the data referenced by this mov.b insn. */
550 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
552 /* The address is in 0xff00..0xffff inclusive on the h8300 or
553 0xffff00..0xffffff inclusive on the h8300h, then we can
555 if ((bfd_get_mach (abfd) == bfd_mach_h8300
558 || ((bfd_get_mach (abfd) == bfd_mach_h8300h
559 || bfd_get_mach (abfd) == bfd_mach_h8300s)
561 && value <= 0xffffff))
563 /* Change the reloc type. */
564 reloc->howto = reloc->howto + 1;
566 /* This shrinks this section by two bytes. */
568 bfd_perform_slip (abfd, 2, input_section, address);
572 /* Similarly for a 24 bit absolute address in a mov.b. Note that
573 if we can't relax this into an 8 bit absolute, we'll fall through
574 and try to relax it into a 16bit absolute. */
576 /* Get the address of the data referenced by this mov.b insn. */
577 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
579 /* The address is in 0xffff00..0xffffff inclusive on the h8300h,
580 then we can relax this mov.b */
581 if ((bfd_get_mach (abfd) == bfd_mach_h8300h
582 || bfd_get_mach (abfd) == bfd_mach_h8300s)
584 && value <= 0xffffff)
586 /* Change the reloc type. */
587 reloc->howto = reloc->howto + 1;
589 /* This shrinks this section by four bytes. */
591 bfd_perform_slip (abfd, 4, input_section, address);
593 /* Done with this reloc. */
597 /* FALLTHROUGH and try to turn the 32/24 bit reloc into a 16 bit
600 /* This is a 24/32 bit absolute address in a mov insn, which can
601 become an 16 bit absolute address if it's in the right range. */
603 /* Get the address of the data referenced by this mov insn. */
604 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
606 /* If this address is in 0x0000..0x7fff inclusive or
607 0xff8000..0xffffff inclusive, then it can be relaxed. */
608 if (value <= 0x7fff || value >= 0xff8000)
610 /* Change the reloc type. */
611 reloc->howto = howto_table + 17;
613 /* This shrinks this section by two bytes. */
615 bfd_perform_slip (abfd, 2, input_section, address);
619 /* No other reloc types represent relaxing opportunities. */
625 last_input_section = input_section;
629 /* Handle relocations for the H8/300, including relocs for relaxed
632 FIXME: Not all relocations check for overflow! */
635 h8300_reloc16_extra_cases (abfd, link_info, link_order, reloc, data, src_ptr,
638 struct bfd_link_info *link_info;
639 struct bfd_link_order *link_order;
642 unsigned int *src_ptr;
643 unsigned int *dst_ptr;
645 unsigned int src_address = *src_ptr;
646 unsigned int dst_address = *dst_ptr;
647 asection *input_section = link_order->u.indirect.section;
652 switch (reloc->howto->type)
654 /* Generic 8bit pc-relative relocation. */
656 /* Get the address of the target of this branch. */
657 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
659 dot = (link_order->offset
661 + link_order->u.indirect.section->output_section->vma);
666 if (gap < -128 || gap > 126)
668 if (! ((*link_info->callbacks->reloc_overflow)
669 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
670 reloc->howto->name, reloc->addend, input_section->owner,
671 input_section, reloc->address)))
675 /* Everything looks OK. Apply the relocation and update the
676 src/dst address appropriately. */
678 bfd_put_8 (abfd, gap, data + dst_address);
685 /* Generic 16bit pc-relative relocation. */
687 /* Get the address of the target of this branch. */
688 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
690 /* Get the address of the instruction (not the reloc). */
691 dot = (link_order->offset
693 + link_order->u.indirect.section->output_section->vma + 1);
698 if (gap > 32766 || gap < -32768)
700 if (! ((*link_info->callbacks->reloc_overflow)
701 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
702 reloc->howto->name, reloc->addend, input_section->owner,
703 input_section, reloc->address)))
707 /* Everything looks OK. Apply the relocation and update the
708 src/dst address appropriately. */
710 bfd_put_16 (abfd, gap, data + dst_address);
717 /* Generic 8bit absolute relocation. */
719 /* Get the address of the object referenced by this insn. */
720 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
724 || (value >= 0x0000ff00 && value <= 0x0000ffff)
725 || (value >= 0x00ffff00 && value <= 0x00ffffff)
726 || (value >= 0xffffff00 && value <= 0xffffffff))
728 /* Everything looks OK. Apply the relocation and update the
729 src/dst address appropriately. */
731 bfd_put_8 (abfd, value & 0xff, data + dst_address);
737 if (! ((*link_info->callbacks->reloc_overflow)
738 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
739 reloc->howto->name, reloc->addend, input_section->owner,
740 input_section, reloc->address)))
747 /* Various simple 16bit absolute relocations. */
751 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
752 bfd_put_16 (abfd, value, data + dst_address);
757 /* Various simple 24/32bit absolute relocations. */
761 /* Get the address of the target of this branch. */
762 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
763 bfd_put_32 (abfd, value, data + dst_address);
768 /* Another 24/32bit absolute relocation. */
770 /* Get the address of the target of this branch. */
771 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
773 value = ((value & 0x00ffffff)
774 | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
775 bfd_put_32 (abfd, value, data + dst_address);
780 /* A 16bit abolute relocation that was formerlly a 24/32bit
781 absolute relocation. */
783 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
786 if (value <= 0x7fff || value >= 0xff8000)
788 /* Insert the 16bit value into the proper location. */
789 bfd_put_16 (abfd, value, data + dst_address);
791 /* Fix the opcode. For all the move insns, we simply
792 need to turn off bit 0x20 in the previous byte. */
793 data[dst_address - 1] &= ~0x20;
799 if (! ((*link_info->callbacks->reloc_overflow)
800 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
801 reloc->howto->name, reloc->addend, input_section->owner,
802 input_section, reloc->address)))
807 /* A 16bit absolute branch that is now an 8-bit pc-relative branch. */
809 /* Get the address of the target of this branch. */
810 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
812 /* Get the address of the next instruction. */
813 dot = (link_order->offset
815 + link_order->u.indirect.section->output_section->vma + 1);
820 if (gap < -128 || gap > 126)
822 if (! ((*link_info->callbacks->reloc_overflow)
823 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
824 reloc->howto->name, reloc->addend, input_section->owner,
825 input_section, reloc->address)))
829 /* Now fix the instruction itself. */
830 switch (data[dst_address - 1])
834 bfd_put_8 (abfd, 0x55, data + dst_address - 1);
838 bfd_put_8 (abfd, 0x40, data + dst_address - 1);
845 /* Write out the 8bit value. */
846 bfd_put_8 (abfd, gap, data + dst_address);
853 /* A 16bit pc-relative branch that is now an 8-bit pc-relative branch. */
855 /* Get the address of the target of this branch. */
856 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
858 /* Get the address of the instruction (not the reloc). */
859 dot = (link_order->offset
861 + link_order->u.indirect.section->output_section->vma - 1);
866 if (gap < -128 || gap > 126)
868 if (! ((*link_info->callbacks->reloc_overflow)
869 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
870 reloc->howto->name, reloc->addend, input_section->owner,
871 input_section, reloc->address)))
875 /* Now fix the instruction. */
876 switch (data[dst_address - 2])
879 /* bCC:16 -> bCC:8 */
880 /* Get the condition code from the original insn. */
881 tmp = data[dst_address - 1];
885 /* Now or in the high nibble of the opcode. */
889 bfd_put_8 (abfd, tmp, data + dst_address - 2);
892 /* bsr:16 -> bsr:8 */
893 bfd_put_8 (abfd, 0x55, data + dst_address - 2);
900 /* Output the target. */
901 bfd_put_8 (abfd, gap, data + dst_address - 1);
903 /* We don't advance dst_address -- the 8bit reloc is applied at
904 dst_address - 1, so the next insn should begin at dst_address. */
909 /* Similarly for a 24bit absolute that is now 8 bits. */
911 /* Get the address of the target of this branch. */
912 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
914 /* Get the address of the instruction (not the reloc). */
915 dot = (link_order->offset
917 + link_order->u.indirect.section->output_section->vma + 2);
921 /* Fix the instruction. */
922 switch (data[src_address])
926 bfd_put_8 (abfd, 0x55, data + dst_address);
930 bfd_put_8 (abfd, 0x40, data + dst_address);
936 bfd_put_8 (abfd, gap, data + dst_address + 1);
942 /* A 16bit absolute mov.b that is now an 8bit absolute mov.b. */
944 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
947 if (data[dst_address - 2] != 0x6a)
950 /* Fix up the opcode. */
951 switch (data[src_address - 1] & 0xf0)
954 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
957 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
963 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
967 /* Similarly for a 24bit mov.b */
969 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
972 if (data[dst_address - 2] != 0x6a)
975 /* Fix up the opcode. */
976 switch (data[src_address - 1] & 0xf0)
979 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
982 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
988 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
993 /* Get the address of the target of this branch. */
994 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
996 dot = (link_order->offset
998 + link_order->u.indirect.section->output_section->vma) + 1;
1003 if (gap < -128 || gap > 126)
1005 if (! ((*link_info->callbacks->reloc_overflow)
1006 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
1007 reloc->howto->name, reloc->addend, input_section->owner,
1008 input_section, reloc->address)))
1012 /* Everything looks OK. Fix the condition in the instruction, apply
1013 the relocation, and update the src/dst address appropriately. */
1015 bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1016 data + dst_address - 1);
1017 bfd_put_8 (abfd, gap, data + dst_address);
1028 /* An 8bit memory indirect instruction (jmp/jsr).
1030 There's several things that need to be done to handle
1033 If this is a reloc against the absolute symbol, then
1034 we should handle it just R_RELBYTE. Likewise if it's
1035 for a symbol with a value ge 0 and le 0xff.
1037 Otherwise it's a jump/call through the function vector,
1038 and the linker is expected to set up the function vector
1039 and put the right value into the jump/call instruction. */
1040 case R_MEM_INDIRECT:
1042 /* We need to find the symbol so we can determine it's
1043 address in the function vector table. */
1047 struct funcvec_hash_entry *h;
1048 asection *vectors_sec = h8300_coff_hash_table (link_info)->vectors_sec;
1050 /* First see if this is a reloc against the absolute symbol
1051 or against a symbol with a nonnegative value <= 0xff. */
1052 symbol = *(reloc->sym_ptr_ptr);
1053 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1054 if (symbol == bfd_abs_section_ptr->symbol
1057 /* This should be handled in a manner very similar to
1058 R_RELBYTES. If the value is in range, then just slam
1059 the value into the right location. Else trigger a
1060 reloc overflow callback. */
1063 bfd_put_8 (abfd, value, data + dst_address);
1069 if (! ((*link_info->callbacks->reloc_overflow)
1070 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
1071 reloc->howto->name, reloc->addend, input_section->owner,
1072 input_section, reloc->address)))
1078 /* This is a jump/call through a function vector, and we're
1079 expected to create the function vector ourselves.
1081 First look up this symbol in the linker hash table -- we need
1082 the derived linker symbol which holds this symbol's index
1083 in the function vector. */
1084 name = symbol->name;
1085 if (symbol->flags & BSF_LOCAL)
1087 char *new_name = bfd_malloc (strlen (name) + 9);
1088 if (new_name == NULL)
1091 strcpy (new_name, name);
1092 sprintf (new_name + strlen (name), "_%08x",
1093 (int) symbol->section);
1097 h = funcvec_hash_lookup (h8300_coff_hash_table (link_info)->funcvec_hash_table,
1098 name, false, false);
1100 /* This shouldn't ever happen. If it does that means we've got
1101 data corruption of some kind. Aborting seems like a reasonable
1102 think to do here. */
1103 if (h == NULL || vectors_sec == NULL)
1106 /* Place the address of the function vector entry into the
1109 vectors_sec->output_offset + h->offset,
1110 data + dst_address);
1115 /* Now create an entry in the function vector itself. */
1116 if (bfd_get_mach (input_section->owner) == bfd_mach_h8300)
1118 bfd_coff_reloc16_get_value (reloc,
1121 vectors_sec->contents + h->offset);
1122 else if (bfd_get_mach (input_section->owner) == bfd_mach_h8300h
1123 || bfd_get_mach (input_section->owner) == bfd_mach_h8300s)
1125 bfd_coff_reloc16_get_value (reloc,
1128 vectors_sec->contents + h->offset);
1132 /* Gross. We've already written the contents of the vector section
1133 before we get here... So we write it again with the new data. */
1134 bfd_set_section_contents (vectors_sec->output_section->owner,
1135 vectors_sec->output_section,
1136 vectors_sec->contents,
1137 vectors_sec->output_offset,
1138 vectors_sec->_raw_size);
1148 *src_ptr = src_address;
1149 *dst_ptr = dst_address;
1152 /* Routine for the h8300 linker.
1154 This routine is necessary to handle the special R_MEM_INDIRECT
1155 relocs on the h8300. It's responsible for generating a vectors
1156 section and attaching it to an input bfd as well as sizing
1157 the vectors section. It also creates our vectors hash table.
1159 It uses the generic linker routines to actually add the symbols.
1160 from this BFD to the bfd linker hash table. It may add a few
1161 selected static symbols to the bfd linker hash table. */
1164 h8300_bfd_link_add_symbols (abfd, info)
1166 struct bfd_link_info *info;
1169 struct funcvec_hash_table *funcvec_hash_table;
1171 /* If we haven't created a vectors section, do so now. */
1172 if (!h8300_coff_hash_table (info)->vectors_sec)
1176 /* Make sure the appropriate flags are set, including SEC_IN_MEMORY. */
1177 flags = (SEC_ALLOC | SEC_LOAD
1178 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
1179 h8300_coff_hash_table (info)->vectors_sec = bfd_make_section (abfd,
1182 /* If the section wasn't created, or we couldn't set the flags,
1183 quit quickly now, rather than dieing a painful death later. */
1184 if (! h8300_coff_hash_table (info)->vectors_sec
1185 || ! bfd_set_section_flags (abfd,
1186 h8300_coff_hash_table(info)->vectors_sec,
1190 /* Also create the vector hash table. */
1191 funcvec_hash_table = ((struct funcvec_hash_table *)
1192 bfd_alloc (abfd, sizeof (struct funcvec_hash_table)));
1194 if (!funcvec_hash_table)
1197 /* And initialize the funcvec hash table. */
1198 if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
1199 funcvec_hash_newfunc))
1201 bfd_release (abfd, funcvec_hash_table);
1205 /* Store away a pointer to the funcvec hash table. */
1206 h8300_coff_hash_table (info)->funcvec_hash_table = funcvec_hash_table;
1209 /* Load up the function vector hash table. */
1210 funcvec_hash_table = h8300_coff_hash_table (info)->funcvec_hash_table;
1212 /* Add the symbols using the generic code. */
1213 _bfd_generic_link_add_symbols (abfd, info);
1215 /* Now scan the relocs for all the sections in this bfd; create
1216 additional space in the .vectors section as needed. */
1217 for (sec = abfd->sections; sec; sec = sec->next)
1219 long reloc_size, reloc_count, i;
1223 /* Suck in the relocs, symbols & canonicalize them. */
1224 reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1225 if (reloc_size <= 0)
1228 relocs = (arelent **) bfd_malloc ((size_t) reloc_size);
1232 /* The symbols should have been read in by _bfd_generic link_add_symbols
1233 call abovec, so we can cheat and use the pointer to them that was
1234 saved in the above call. */
1235 symbols = _bfd_generic_link_get_symbols(abfd);
1236 reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1237 if (reloc_count <= 0)
1243 /* Now walk through all the relocations in this section. */
1244 for (i = 0; i < reloc_count; i++)
1246 arelent *reloc = relocs[i];
1247 asymbol *symbol = *(reloc->sym_ptr_ptr);
1250 /* We've got an indirect reloc. See if we need to add it
1251 to the function vector table. At this point, we have
1252 to add a new entry for each unique symbol referenced
1253 by an R_MEM_INDIRECT relocation except for a reloc
1254 against the absolute section symbol. */
1255 if (reloc->howto->type == R_MEM_INDIRECT
1256 && symbol != bfd_abs_section_ptr->symbol)
1259 struct funcvec_hash_entry *h;
1261 name = symbol->name;
1262 if (symbol->flags & BSF_LOCAL)
1264 char *new_name = bfd_malloc (strlen (name) + 9);
1266 if (new_name == NULL)
1269 strcpy (new_name, name);
1270 sprintf (new_name + strlen (name), "_%08x",
1271 (int) symbol->section);
1275 /* Look this symbol up in the function vector hash table. */
1276 h = funcvec_hash_lookup (h8300_coff_hash_table (info)->funcvec_hash_table,
1277 name, false, false);
1280 /* If this symbol isn't already in the hash table, add
1281 it and bump up the size of the hash table. */
1284 h = funcvec_hash_lookup (h8300_coff_hash_table (info)->funcvec_hash_table,
1292 /* Bump the size of the vectors section. Each vector
1293 takes 2 bytes on the h8300 and 4 bytes on the h8300h. */
1294 if (bfd_get_mach (abfd) == bfd_mach_h8300)
1295 h8300_coff_hash_table (info)->vectors_sec->_raw_size += 2;
1296 else if (bfd_get_mach (abfd) == bfd_mach_h8300h
1297 || bfd_get_mach (abfd) == bfd_mach_h8300s)
1298 h8300_coff_hash_table (info)->vectors_sec->_raw_size += 4;
1303 /* We're done with the relocations, release them. */
1307 /* Now actually allocate some space for the function vector. It's
1308 wasteful to do this more than once, but this is easier. */
1309 if (h8300_coff_hash_table (info)->vectors_sec->_raw_size != 0)
1311 /* Free the old contents. */
1312 if (h8300_coff_hash_table (info)->vectors_sec->contents)
1313 free (h8300_coff_hash_table (info)->vectors_sec->contents);
1315 /* Allocate new contents. */
1316 h8300_coff_hash_table (info)->vectors_sec->contents
1317 = bfd_malloc (h8300_coff_hash_table (info)->vectors_sec->_raw_size);
1323 #define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1324 #define coff_reloc16_estimate h8300_reloc16_estimate
1325 #define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1326 #define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1328 #define COFF_LONG_FILENAMES
1329 #include "coffcode.h"
1331 #undef coff_bfd_get_relocated_section_contents
1332 #undef coff_bfd_relax_section
1333 #define coff_bfd_get_relocated_section_contents \
1334 bfd_coff_reloc16_get_relocated_section_contents
1335 #define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1337 CREATE_BIG_COFF_TARGET_VEC (h8300coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL)