2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
8 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
9 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
10 * B-3001 Leuven, Belgium
14 #include <isl_map_private.h>
15 #include "isl_basis_reduction.h"
17 static void save_alpha(GBR_LP *lp, int first, int n, GBR_type *alpha)
21 for (i = 0; i < n; ++i)
22 GBR_lp_get_alpha(lp, first + i, &alpha[i]);
25 /* Compute a reduced basis for the set represented by the tableau "tab".
26 * tab->basis, which must be initialized by the calling function to an affine
27 * unimodular basis, is updated to reflect the reduced basis.
28 * The first tab->n_zero rows of the basis (ignoring the constant row)
29 * are assumed to correspond to equalities and are left untouched.
30 * tab->n_zero is updated to reflect any additional equalities that
31 * have been detected in the first rows of the new basis.
32 * The final tab->n_unbounded rows of the basis are assumed to correspond
33 * to unbounded directions and are also left untouched.
34 * In particular this means that the remaining rows are assumed to
35 * correspond to bounded directions.
37 * This function implements the algorithm described in
38 * "An Implementation of the Generalized Basis Reduction Algorithm
39 * for Integer Programming" of Cook el al. to compute a reduced basis.
40 * We use \epsilon = 1/4.
42 * If ctx->opt->gbr_only_first is set, the user is only interested
43 * in the first direction. In this case we stop the basis reduction when
44 * the width in the first direction becomes smaller than 2.
46 struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
54 GBR_type F_old, alpha, F_new;
57 struct isl_vec *b_tmp;
59 GBR_type *alpha_buffer[2] = { NULL, NULL };
60 GBR_type *alpha_saved;
81 gbr_only_first = ctx->opt->gbr_only_first;
87 n_bounded = dim - tab->n_unbounded;
88 if (n_bounded <= tab->n_zero + 1)
104 b_tmp = isl_vec_alloc(ctx, dim);
108 F = isl_alloc_array(ctx, GBR_type, n_bounded);
109 alpha_buffer[0] = isl_alloc_array(ctx, GBR_type, n_bounded);
110 alpha_buffer[1] = isl_alloc_array(ctx, GBR_type, n_bounded);
111 alpha_saved = alpha_buffer[0];
113 if (!F || !alpha_buffer[0] || !alpha_buffer[1])
116 for (i = 0; i < n_bounded; ++i) {
118 GBR_init(alpha_buffer[0][i]);
119 GBR_init(alpha_buffer[1][i]);
125 lp = GBR_lp_init(tab);
131 GBR_lp_set_obj(lp, B->row[1+i]+1, dim);
132 ctx->stats->gbr_solved_lps++;
133 unbounded = GBR_lp_solve(lp);
134 isl_assert(ctx, !unbounded, goto error);
135 GBR_lp_get_obj_val(lp, &F[i]);
137 if (GBR_lt(F[i], one)) {
138 if (!GBR_is_zero(F[i])) {
139 empty = GBR_lp_cut(lp, B->row[1+i]+1);
148 if (i+1 == tab->n_zero) {
149 GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
150 ctx->stats->gbr_solved_lps++;
151 unbounded = GBR_lp_solve(lp);
152 isl_assert(ctx, !unbounded, goto error);
153 GBR_lp_get_obj_val(lp, &F_new);
154 fixed = GBR_lp_is_fixed(lp);
155 GBR_set_ui(alpha, 0);
158 row = GBR_lp_next_row(lp);
159 GBR_set(F_new, F_saved);
161 GBR_set(alpha, alpha_saved[i]);
163 row = GBR_lp_add_row(lp, B->row[1+i]+1, dim);
164 GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
165 ctx->stats->gbr_solved_lps++;
166 unbounded = GBR_lp_solve(lp);
167 isl_assert(ctx, !unbounded, goto error);
168 GBR_lp_get_obj_val(lp, &F_new);
169 fixed = GBR_lp_is_fixed(lp);
171 GBR_lp_get_alpha(lp, row, &alpha);
174 save_alpha(lp, row-i, i, alpha_saved);
176 if (GBR_lp_del_row(lp) < 0)
179 GBR_set(F[i+1], F_new);
181 GBR_floor(mu[0], alpha);
182 GBR_ceil(mu[1], alpha);
184 if (isl_int_eq(mu[0], mu[1]))
185 isl_int_set(tmp, mu[0]);
189 for (j = 0; j <= 1; ++j) {
190 isl_int_set(tmp, mu[j]);
191 isl_seq_combine(b_tmp->el,
192 ctx->one, B->row[1+i+1]+1,
193 tmp, B->row[1+i]+1, dim);
194 GBR_lp_set_obj(lp, b_tmp->el, dim);
195 ctx->stats->gbr_solved_lps++;
196 unbounded = GBR_lp_solve(lp);
197 isl_assert(ctx, !unbounded, goto error);
198 GBR_lp_get_obj_val(lp, &mu_F[j]);
199 mu_fixed[j] = GBR_lp_is_fixed(lp);
201 save_alpha(lp, row-i, i, alpha_buffer[j]);
204 if (GBR_lt(mu_F[0], mu_F[1]))
209 isl_int_set(tmp, mu[j]);
210 GBR_set(F_new, mu_F[j]);
212 alpha_saved = alpha_buffer[j];
214 isl_seq_combine(B->row[1+i+1]+1, ctx->one, B->row[1+i+1]+1,
215 tmp, B->row[1+i]+1, dim);
217 if (i+1 == tab->n_zero && fixed) {
218 if (!GBR_is_zero(F[i+1])) {
219 empty = GBR_lp_cut(lp, B->row[1+i+1]+1);
222 GBR_set_ui(F[i+1], 0);
227 GBR_set(F_old, F[i]);
230 /* mu_F[0] = 4 * F_new; mu_F[1] = 3 * F_old */
231 GBR_set_ui(mu_F[0], 4);
232 GBR_mul(mu_F[0], mu_F[0], F_new);
233 GBR_set_ui(mu_F[1], 3);
234 GBR_mul(mu_F[1], mu_F[1], F_old);
235 if (GBR_lt(mu_F[0], mu_F[1])) {
236 B = isl_mat_swap_rows(B, 1 + i, 1 + i + 1);
237 if (i > tab->n_zero) {
239 GBR_set(F_saved, F_new);
241 if (GBR_lp_del_row(lp) < 0)
245 GBR_set(F[tab->n_zero], F_new);
246 if (gbr_only_first && GBR_lt(F[tab->n_zero], two))
250 if (!GBR_is_zero(F[tab->n_zero])) {
251 empty = GBR_lp_cut(lp, B->row[1+tab->n_zero]+1);
254 GBR_set_ui(F[tab->n_zero], 0);
260 GBR_lp_add_row(lp, B->row[1+i]+1, dim);
263 } while (i < n_bounded - 1);
277 for (i = 0; i < n_bounded; ++i) {
279 GBR_clear(alpha_buffer[0][i]);
280 GBR_clear(alpha_buffer[1][i]);
283 free(alpha_buffer[0]);
284 free(alpha_buffer[1]);
298 isl_int_clear(mu[0]);
299 isl_int_clear(mu[1]);
306 /* Compute an affine form of a reduced basis of the given basic
307 * non-parametric set, which is assumed to be bounded and not
308 * include any integer divisions.
309 * The first column and the first row correspond to the constant term.
311 * If the input contains any equalities, we first create an initial
312 * basis with the equalities first. Otherwise, we start off with
313 * the identity matrix.
315 struct isl_mat *isl_basic_set_reduced_basis(struct isl_basic_set *bset)
317 struct isl_mat *basis;
323 if (isl_basic_set_dim(bset, isl_dim_div) != 0)
324 isl_die(bset->ctx, isl_error_invalid,
325 "no integer division allowed", return NULL);
326 if (isl_basic_set_dim(bset, isl_dim_param) != 0)
327 isl_die(bset->ctx, isl_error_invalid,
328 "no parameters allowed", return NULL);
330 tab = isl_tab_from_basic_set(bset);
335 tab->basis = isl_mat_identity(bset->ctx, 1 + tab->n_var);
338 unsigned nvar = isl_basic_set_total_dim(bset);
339 eq = isl_mat_sub_alloc(bset->ctx, bset->eq, 0, bset->n_eq,
341 eq = isl_mat_left_hermite(eq, 0, NULL, &tab->basis);
342 tab->basis = isl_mat_lin_to_aff(tab->basis);
343 tab->n_zero = bset->n_eq;
346 tab = isl_tab_compute_reduced_basis(tab);
350 basis = isl_mat_copy(tab->basis);